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Preface

CRYPTO 2015, the 35th Annual International Cryptology Conference, was held
August 16–20, 2015, on the campus of the University of California, Santa Barbara. The
event was sponsored by the International Association for Cryptologic Research (IACR)
in cooperation with the UCSB Computer Science Department.

The program of CRYPTO 2015 reflects significant advances and trends in all areas
of cryptology. Seventy-four papers were included in the program; this two-volume
proceedings contains the revised versions of these papers. The program also included
two invited talks: Shai Halevi on ‘The state of cryptographic multilinear maps’ and Ed
Felten on ‘Cryptography, Security, and Public Safety: A Policy Perspective’. The paper
“Integral Cryptanalysis on Full MISTY1” by Yosuke Todo was selected for both the
best paper award and the award for the best paper authored by a young researcher.

This year we received a record number of submissions (266), and in an effort to
accommodate as many high-quality submissions as possible, the conference ran in two
parallel sessions.

The papers were reviewed by a Program Committee (PC) consisting of 40 leading
researchers in the field, in addition to the two co-chairs. Each PC member was allowed
to submit two papers. Papers were reviewed in a double-blind fashion, with each paper
assigned to three reviewers (four for PC-authored papers). During the discussion phase,
when necessary, extra reviews were solicited.

We would like to sincerely thank the authors of all submissions—those whose
papers made it into the program and those whose papers did not. Our deep appreciation
also goes out to the PC members, who invested an extraordinary amount of time in
reviewing papers, and to the many external reviewers who significantly contributed to
the comprehensive evaluation of the submissions. A list of PC members and external
reviewers follows. Despite all our efforts, the list of external reviewers may contain
errors or omissions; we apologize for that in advance.

We would like to thank Tom Ristenpart, the general chair, for working closely with
us throughout the whole process and providing the much-needed support at every step,
including artfully creating and maintaining the website and taking care of all aspects
of the conference’s logistics—particularly the novel double-track arrangements.

As always, special thanks are due to Shai Halevi for providing his tireless support
of the websubrev software, which we used for the whole conference planning and
operation, including paper submission and evaluation, interaction among PC members,
and communication with the authors. Alfred Hofmann and his colleagues at Springer
provided a meticulous service for the timely production of this volume.

Finally, we would like to thank Qualcomm, NSF, and Microsoft for sponsoring the
conference, and Cryptography Research for their continuous support.

August 2015 Rosario Gennaro
Matthew Robshaw
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Abstract. In this paper, we present a simpler and more restricted vari-
ant of the universally composable security (UC) framework that is suit-
able for “standard” two-party and multiparty computation tasks. Many
of the complications of the UC framework exist in order to enable more
general tasks than classic secure computation. This generality may be a
barrier to entry for those who are used to the stand-alone model of secure
computation and wish to work with universally composable security but
are overwhelmed by the differences. The variant presented here (called
simplified universally composable security, or just SUC) is closer to the
definition of security for multiparty computation in the stand-alone set-
ting. The main difference is that a protocol in the SUC framework runs
with a fixed set of parties, and machines cannot be added dynamically to
the execution. As a result, the definitions of polynomial time and proto-
col composition are much simpler. In addition, the SUC framework has
authenticated channels built in, as is standard in previous definitions of
security, and all communication is done via the adversary in order to
enable arbitrary scheduling of messages. Due to these differences, not all
cryptographic tasks can be expressed in the SUC framework. Neverthe-
less, standard secure computation tasks (like secure function evaluation)
can be expressed. Importantly, we show that for every protocol that can
be represented in the SUC framework, the protocol is secure in SUC if
and only if it is secure in UC. Therefore, the UC composition theorem
holds and any protocol that is proven secure under SUC is secure under
the general framework (with some technical changes to the functionality
definition). As a result, protocols that are secure in the SUC framework
are secure when an a priori unbounded number of concurrent executions
of the protocols take place (relative to the same fixed set of parties).

1 Introduction

1.1 Background

The framework of universally composable security (UC) provides very strong
security guarantees. In particular, a protocol that is UC secure maintains its
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security properties when run together with many other arbitrary secure and
insecure protocols. To be a little more exact, if a protocol π UC securely realizes
some ideal functionality F , then π will “behave just like F” in whatever arbi-
trary computational environment it is run. This security notion matches today’s
computational and network settings and thus has become the security definition
of choice in many cases.

One of the strengths of the UC framework is that it is possible to express
almost any cryptographic task as a UC ideal functionality, and it is possible to
express almost any network environment within the UC framework (e.g., authen-
ticated and unauthenticated channels, synchronous and asynchronous message
delivery, fair and unfair protocol termination, and so on). Unfortunately, this
generality and power of expression comes at the price of the UC formalization
being very complicated. It is important to note that many of these complica-
tions exist in order to enable general cryptographic tasks to be expressible within
the framework. For example digital signatures involve local computation alone,
and also have no a priori polynomial bound on how many signatures will be
generated (by an honest party) since the adversary can determine this. This is
very different from standard “secure computation tasks” that involve an a priori
known number of interactions between the honest parties.

In this paper, we present a simpler and more restricted variant of the univer-
sally composable security (UC) framework; we call this framework simple UC,
or SUC for short. Our simplified framework suffices for capturing classic secure
computation tasks like secure function evaluation, mental poker, and the like.
However, it does not capture more general tasks like digital signatures, and has
a more rigid network model (e.g., the set of parties is a priori fixed and authen-
ticated channels are built into the framework). These restrictions make the for-
malization much simpler, and far closer to the classic stand-alone definition of
security which many are more familiar with. Importantly, our simplifications are
with respect to the expressibility of the framework and not the security guaran-
tees obtained. Thus, we can prove that any protocol that is expressed and proven
secure in the SUC framework is automatically secure also in the full UC frame-
work (relative to an appropriately modified ideal functionality). This means that
it is possible to work in the simpler SUC framework, and automatically obtain
security in the full UC framework. In Sect. 3, we provide an illustrative example
demonstrating that it is significantly more simple to work in the SUC model
than in the full UC model.

Remark: We assume familiarity with the ideal/real model paradigm and
the standard definitions of security for multiparty computation; see [3] and
[15, Chapter 7] for a detailed treatment on these definitions. In addition, we
assume that the reader has basic familiarity and understanding of the notion of
UC security. This paper is not intended as a tutorial of the UC framework.

1.2 An Informal Introduction to Universally Composable Security

We begin by informally outlining the framework for universally composable secu-
rity [4,7]. The framework provides a rigorous method for defining the security
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of cryptographic tasks, while ensuring that security is maintained under concur-
rent general composition. This means that the protocol remains secure when run
concurrently with arbitrary other secure and insecure protocols. Protocols that
fulfill this definition of security are called universally composable.

As in other general definitions (e.g., [1,3,15,16,25,27]), the security require-
ments of a given task (i.e., the functionality expected from a protocol that carries
out the task) are captured via a set of instructions for a “trusted party” that
obtains the inputs of the participants and provides them with the desired outputs
(in one or more iterations). We call the algorithm run by the trusted party an
ideal functionality. Since the trusted party just runs the ideal functionality, we do
not distinguish between them. Rather, we refer to interaction between the parties
and the functionality. Informally, a protocol securely carries out a given task if no
adversary can gain more from an attack on a real execution of the protocol, than
from an attack on an ideal process where the parties merely hand their inputs
to a trusted party with the appropriate functionality and obtain their outputs
from it, without any other interaction. In other words, it is required that a real
execution can be emulated in the above ideal process (where the meaning of
emulation is described below). We stress that in a real execution of the protocol,
no trusted party exists and the parties interact amongst themselves.

In order to prove the universal composition theorem, the notion of emulation
in the UC framework is considerably stronger than in previous ones. Tradition-
ally, the model of computation includes the parties running the protocol, plus
an adversary A that potentially corrupts some of the parties. In the setting of
concurrency, the adversary also has full control over the scheduling of messages
(i.e., it fully determines the order that messages sent between honest parties are
received); thus, the model is inherently asynchronous. Emulation means that for
any adversary A attacking a real protocol execution, there should exist an “ideal
process adversary” or simulator S, that causes the outputs of the parties in the
ideal process to be essentially the same as the outputs of the parties in a real
execution. In the universally composable framework, an additional adversarial
entity called the environment Z is introduced. This environment generates the
inputs to all parties, reads all outputs, and in addition interacts with the adver-
sary in an arbitrary way throughout the computation. (As is hinted by its name,
Z represents the external environment that consists of arbitrary protocol exe-
cutions that may be running concurrently with the given protocol.) A protocol
is said to UC-securely compute a given ideal functionality F if for any “real-
life” adversary A that interacts with the protocol there exists an “ideal-process
adversary” S, such that no environment Z can tell whether it is interacting with
A and parties running the protocol, or with S and parties that interact with F
in the ideal process. (In a sense, here Z serves as an “interactive distinguisher”
between a run of the protocol and the ideal process with access to F .) Note that
the definition requires the “ideal-process adversary” (or simulator) S to interact
with Z throughout the computation. Furthermore, Z cannot be “rewound”.

The following universal composition theorem is proven in [4,7]: Consider a
protocol π that operates in a hybrid model of computation where parties can
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communicate as usual, and in addition have ideal access to an unbounded number
of copies of some ideal functionality F . (This model is called the F-hybrid
model.) Furthermore, let ρ be a protocol that UC-securely computes F as
sketched above, and let πρ be the “composed protocol”. That is, πρ is iden-
tical to ρ with the exception that each interaction with the ideal functionality
F is replaced with a call to (or an activation of) an appropriate instance of the
protocol ρ. Similarly, ρ-outputs are treated as values provided by the function-
ality F . The theorem states that in such a case, π and πρ have essentially the
same input/output behaviour. Thus, ρ behaves just like the ideal functionality
F , even when composed concurrently with an arbitrary protocol π. This implies
the notion of concurrent general composition. A special case of the composition
theorem states that if π UC-securely computes some ideal functionality G in the
F-hybrid model, then πρ UC-securely computes G from scratch.

In order to model dynamic settings, the UC formulation enables programs
to dynamically generate other programs and dynamically determine their code,
and a control function must be defined to determine what operations are allowed
and not allowed. This model provides great flexibility, and enables one to model
almost any conceivable setting. However, this also adds considerable complexity
to the definition, in part due to subtleties that arise with respect to polynomial
time, and with respect to the communication rules [18,19,22].

1.3 The SUC Framework

The SUC framework is designed to be as similar as possible to the stand-alone
definitions of secure multiparty computation (cf. [3,15]), with the addition of an
interactive environment as is required for proving concurrent general composi-
tion [23]. In this section we outline the SUC definition, and discuss the main
differences between it and the full UC framework.

An Outline of the SUC Framework. The SUC framework was designed
by starting with the stand-alone model of secure computation, and adding the
seemingly minimal changes required to obtain security under concurrent gen-
eral composition for standard secure computation tasks, without many of the
complications of the UC framework. Thus, in the SUC framework a fixed set of
parties interact with each other and/or with an ideal functionality (depending
on whether an execution is real, ideal or hybrid). An adversary may corrupt
some subset of the parties, in which case it sees their state and controls them in
the standard way depending on whether it is semi-honest or malicious. As in the
UC framework, an environment machine Z interacts with the adversary through-
out the computation and serves as an “interactive distinguisher” between a real
execution of the protocol and an ideal execution.

In order to model the fact that the adversary controls all message scheduling,
the parties (and any ideal functionality) are connected in a star configuration
via a router machine. The router queues all communication, and forwards mes-
sages only when instructed by the adversary. The adversary sees all the messages
sent, and delivers or blocks these messages at will. We note that although the
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adversary may block messages, it cannot modify messages sent by honest parties
(i.e., the communication lines are ideally authenticated). Thus messages sent by
a party can arrive in a different order or not arrive at all, but cannot be forged
unless the adversary has corrupted the sending party. In order to model the fact
that inputs sent to ideal functionalities are private, the SUC framework defines
that any message between the parties and the ideal functionality is comprised of
a public header and private content. The public header contains any information
that is public and thus revealed to the adversary (e.g., the type of message is
being sent or what its length is), whereas the private content contains informa-
tion that the adversary is not supposed to learn.

Composition is defined by replacing the Turing machine code for sending a
message to an ideal functionality by the Turing machine code of the protocol
that realizes the functionality. Thus, subroutines are executed internally as in
the sequential modular composition modeling in [3], unlike the modeling in the
full UC framework where subprotocols are invoked as separate ITMs.

The Main Differences Between UC and SUC

Defining Polynomial Time. In the UC framework, machines can be dynam-
ically added to the computation through the mechanism of an external write
instruction. Thus, bounding the running time of a single machine by a polyno-
mial does not guarantee that the overall computation is bounded by polynomial
time. For example, consider an execution with a single machine that generates
a copy of itself and halts. Clearly, each machine is polynomial time. However,
an execution of this machine will generate an infinite series of machines and will
thus never halt. This makes defining polynomial time in this setting difficult.
The definition in the UC framework states that a machine M runs in polyno-
mial time if it runs at most p(ñ) steps where p is a polynomial, and ñ is the
length of the input tape of M plus the security parameter, minus the length of
all the inputs M provides to other machines. It can be shown that under this
definition, the overall execution is bounded by a polynomial, and pathological
examples like the one provided above are ruled out.

In the SUC framework, machines cannot generate other machines, and the
set of all machines running is fixed ahead of time. Thus, the aforementioned
challenges do not arise. We can therefore define polynomial time in the more
standard way by simply requiring that each machine run in p(|x| + n) steps,
where |x| is the length of its input and n is the security parameter.

Authentication versus Unauthenticated Channels. The basic UC frame-
work has plain, unauthenticated channels; authenticated channels are obtained
via an ideal functionality Fauth that provides message authentication. However,
almost all secure computation protocols rely on authenticated channels and this
is the modeling used in [3,15]. We therefore adopt authenticated channels as the
default in SUC, thus simplifying the description of protocols (formally, the real
model of computation in the SUC framework corresponds to the Fauth-hybrid
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model of computation in the UC framework). Although this is mainly an aes-
thetic difference, it makes protocol descriptions much more simple.

Defining Composition. The dynamic generation of machines in the UC frame-
work also adds complications regarding defining composition. For example, secu-
rity under composition is only guaranteed to hold for subroutine respecting
protocols, which places limitations on the input/output interface of machines
with other machines; see [4, Sect. 5.1]. These difficulties arise since when a party
calls a subroutine in the UC framework, the subroutine machine is a distinct
machine. In order to simplify this issue, in the SUC framework a subroutine
call is simply a call to a local routine on the same machine, exactly as in the
formulation of sequential modular composition in [3].

We stress that although the number of parties in an SUC protocol is a priori
fixed, security is guaranteed under composition even when an unbounded num-
ber of instances of the protocol are run concurrently. This is obtained via the
SUC/UC composition theorem.

Expressibility. As we have mentioned, there are cryptographic tasks that can
be modeled in the UC framework, but not in the SUC framework. One class
of examples is non-interactive cryptographic primitives like digital signatures,
encryption, pseudorandom functions and so on. These cannot be modeled in the
SUC framework since any interaction with an ideal functionality requires com-
munication that goes via the router and thus its scheduling is controlled by the
adversary. This does not model the real-world behavior of local computation for
these primitives. Another example is that of protocols in synchronous networks
that guarantee output to all parties. This is not possible since the adversary
controls the scheduling and thus it is inherently asynchronous. In addition, the
adversary can always block messages. Despite this, the SUC framework suffices
for modeling any interactive protocol between parties in the most common model
of communication for the concurrent setting where the adversary has full control
over all message scheduling.

The UC Security of SUC Protocols. We define a transformation TP : SUC →
UC that translates SUC-protocols to UC-protocols, and a transformation φ that
translates ideal functionalities from the SUC framework to the UC framework.
We prove that a protocol π SUC-securely computes some ideal functionality F
if and only if TP (π) UC-securely computes φ(F). SUC composition is derived as
a result. The implication is that one may build secure computation protocols in
SUC and automatically derive UC security without working with the complex
structures of the UC framework. Composition of SUC and UC protocols can
also be done freely. Since SUC is less expressive than UC, it is not possible to
express every functionality in SUC. SUC cannot replace UC, but is intended
as a convenient interface to the UC framework that offers the same security
standard, and can simplify the process of proving UC security of protocols.

Organization. Due to lack of space in this extended abstract, the proof of
equivalence between UC and SUC security is not included, and can be found
in the full version [9]. Although this proof is crucial to this work, our main
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contribution is a simple model that can be used. As such, a presentation of the
framework, and a demonstration of why it is easier to use – as can be found in
Sect. 3 – covers the main goals.

1.4 Related Work

There has been considerable work in refining the UC framework and solving all
the subtleties that arise in the fully dynamic and concurrent setting [17,18,20].
In addition, there have been other frameworks developed to capture the same
setting of dynamic concurrency as that of the UC framework [19,21,22,24,27].
However, all of these attempt to capture the same generality of the UC frame-
work in alternative ways. In this work, we make no such attempt and our aim is
to capture concurrency for more restricted tasks and obtain a simpler definition.
Due to its simplicity, our work can also act as a bridge for connecting the full
UC framework with alternative formalisms like [26]. A similar attempt at pro-
viding a simplified framework, but without a proof of equivalence, also appeared
in [28, Ch. 4].

2 The Simpler UC Model and Definition

In this section, we present a simpler variant of universally composable security
that is suitable for standard multiparty computation tasks. It does not have the
generality and expressibility of the full-fledged UC framework, but suffices for
classic secure computation tasks where a set of parties compute some function
of their inputs (a.k.a. secure function evaluation). It also suffices for reactive
computations where parties give inputs and get outputs in stages.

2.1 Preliminaries

We denote the security parameter by n. A function μ : N → [0, 1] is negligible if
for every polynomial p(·) there exists a value n0 ∈ N such that for every n > n0

it holds that μ(n) < 1/p(n). All entities (parties, adversary, etc.) are interactive
Turing machines (ITM); each such machine has an input tape, an output tape, an
incoming communication tape, an outgoing communication tape, and a security
parameter tape. If the machine is probabilistic then it also has a random tape.
The value written on the security parameter tape is in unary.

We say that a machine is polynomial time if it runs in time that is polynomial
in the sum of the lengths of the values that are written on its input tape during
its execution plus the security parameter (note that in reactive computations
there may be many inputs). Thus, we require that there exists a polynomial q(·)
so that for any series of inputs x1, x2, ..., x� written on the machine’s input tape
throughout its lifetime, it always halts after at most q(n+|x1|+|x2|+· · ·+|x�|) =
q
(
n +

∑�
j=1 |xj |

)
steps. This is equivalent to saying that each machine receives

1n as its first input, and n is polynomial in the sum of the lengths of all its inputs.
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It is important to note that even if the inputs are short (e.g., constant
length), a polynomial-time party can still run in time that is polynomial in
the security parameter in every invocation. In order to see this, observe that(
n +

∑�
j=1 |xj |

)2

>
∑�

j=1 n · |xj | and thus a machine that runs in time nc

in every invocation is polynomial-time by taking q(n +
∑�

j=1 |xj |) = (n +∑�
j=1 |xj |)2c.

Interactive Turing Machines. The formal definition of interactive Turing
machines (ITMs) can be found in the full version.

2.2 The Communication and Execution Models

We consider a network where the adversary sees all the messages sent, and
delivers or blocks these messages at will. We note that although the adversary
may block messages, it cannot modify messages sent by honest parties (i.e., the
communication lines are ideally authenticated). We consider a completely asyn-
chronous point-to-point network, and thus the adversary has full control over
when messages are delivered, if at all. We now formally specify the communi-
cation and execution model. This general model is the same for the real, ideal
and hybrid models; we will describe below how each of the specific models are
derived from the general communication and execution model.

Communication. In each execution there is an environment Z, an adversary A,
participating parties P1, . . . , Pm, and possibly an ideal functionality F . The par-
ties, adversary and functionality are “connected” in a star configuration, where
all communication is via an additional router machine that takes instructions
from the adversary (see Fig. 1). Formally, this means that the outgoing com-
munication tape of each machine is connected to the incoming communication
tape of the router, and the incoming communication tape of each machine is
connected to the outgoing communication tape of the router. (For this to work,
we define the router so that it has one incoming and one outgoing tape for every
other entity in the network except the environment). As we have mentioned,
the adversary has full control over the scheduling of all message delivery. Thus,
whenever the router receives a message from a party it stores the message and
forwards it to the adversary A. Then, whenever the adversary wishes to deliver
a message, it sends it to the router who then checks that this message has been
stored. If yes, it delivers the message to the designated recipient and erases it,
thereby ensuring that every message is delivered only once. If no, the router just
ignores the message. If the same message is sent more than once, then the router
will store multiple copies and will erase one every time it is delivered.

Observe that A can only influence when a message is delivered but cannot
modify its content. This therefore models authenticated channels, which is stan-
dard for secure computation. By convention, a message x from a party Pi to
Pj will be of the form (Pi, Pj , x); after Pi writes this message to its outgoing
communication tape, the router receives it and checks that the correct sending
party identifier Pi is written in the message; if yes, it stores it and works as
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Fig. 1. The communication model and rules

above (sending only to the Pj designated in the message); if no, it ignores the
message. Observe that this means that Pj also knows who sent the message to it.
In addition, we assume that the set of parties is fixed and known to all.1

The above communication model is the same regarding the communication
between the functionality F and the parties and adversary, with two differences.
First, the different copies of F are differentiated by a unique session identifier
sid for each copy. Specifically, each message sent to the ideal functionality has a
session identifier sid. When, the “main ideal functionality” receives a message, it
first checks if there exists a copy of the ideal functionality with that sid. If not,
then it begins a new execution of the actual ideal functionality code with that
sid, and executes the functionality on the given message. If a copy with that sid
does already exist, then that copy is invoked with the message. Likewise, any
message sent from a copy of the ideal functionality to a party is sent together
with the sid identifying that copy.

The second difference is that any message between the parties and the ideal
functionality is comprised of a public header and private content. The public
header contains any information that is public and thus revealed to the adver-
sary, whereas the private content contains information that the adversary is not
supposed to learn. For example, in a standard two-party computation function-
ality where F computes f(x, y) for some function f (where x is P1’s input and y
is P2’s input), the inputs x and y sent by the parties to F are private. The output
from F to the parties may be public or private, depending on whether this out-
put is supposed to remain secret (say from an eavesdropping adversary between
two honest parties) even after the computation.2 A more interesting example

1 Observe that in contrast to the full UC model, a protocol party here cannot write
to the input tapes of other parties. All communication between protocol parties is
via the router.

2 If one of the parties is corrupted then f(x, y) is always learned by the adversary.
However, if both are honest, then it may or may not be learned depending on how
one defines it.
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is the commitment functionality, in which the public header would also contain
the message type (i.e., “commit” or “reveal”), since we typically do not try to
hide whether the parties are running a commitment or decommitment protocol.
Formally, upon receiving a message from a participating party Pi for the func-
tionality or vice versa, the router forwards only the sender/receiver identities
and the public header to the adversary; the private content is simply not sent.3

We remark that the public headers of different messages in an execution must
be different, so that there is no ambiguity regarding the adversary’s instructions
to the router (formally, the router ignores any new message that has an identical
public header to a previously sent different message).

We stress that in the SUC framework, the adversary determines when to
deliver a message from F to participating parties P1, . . . , Pm in the same way as
between two participating parties. This is unlike the UC framework where the
adversary has no such power. In the UC model ideal functionalities are invoked as
subroutine machines, and the protocol parties of the main instance communicate
with the invoked sub-protocol machine directly via the input and output tapes,
without passing through the adversary. Thus, the class of functionalities that can
be expressed in SUC is more restricted. Specifically, we cannot guarantee fairness
in the SUC framework, nor model local computation via an ideal functionality
(e.g., as is used to model digital signatures in the UC framework).

Finally, the environment Z communicates with the adversary directly and
not via the router. This is due to the fact that it cannot send messages to any-
one apart from the adversary; this includes the ideal functionality F . However,
differently to all other interaction between parties, the environment Z can write
inputs to the honest parties’ input tapes and can read their output tapes (we
do not call this “communication” in the same sense since it is not via the com-
munication tapes). The adversary A itself can send messages in the name of
any corrupted party (see Sect. 2.3 below), and can send messages to Z and F
(the fact that it can communicate with F is useful for relaxing functionalities to
allow some adversarial influence; see [4,7]). The adversary A cannot “directly”
communicate with the participating parties.

Execution. An execution of a set of machines connected as above and com-
municating according to the above rules proceeds as follows. All machines are
initialized to have the same value 1n on their security parameter tapes. Then, the
environment is given an initial input z ∈ {0, 1}∗ and is the first to be “activated”.

In the concurrent setting, and unlike the classic stand-alone setting for secure
computation, there are no synchronous rounds in which all parties send messages,
compute their next message, and then send it. Rather, the adversary is given
full control over the scheduling of messages sent. In order to model this but
still to have a well-defined execution model, an execution is modeled by a series
of activations of machines one after another, where the order of activations is
determined by the adversary. As we have stated, the environment Z is activated
first. In any activation of the environment, it may write to the input tapes of any
3 In order to formalize this, every ideal functionality F has an associated public-header

function HF (x) that defines the public-header portion of the input x.
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of the participating parties P1, . . . , Pm that it wishes to, and read their output
tapes. In addition, it can send a message to the adversary by writing on its
outgoing communication tape. When it halts, the adversary is activated next.
In any activation of the adversary, it may read all messages written to entities’
outgoing communication tapes (apart from the private content sent between
a party and F), carry out any local computation, and write a message on its
outgoing communication tape to Z. It then completes its activation by doing
one of the following:

1. Instructing the router to deliver a message to any single party that it wishes
(including messages between the parties and F). In this case the router is
activated next to deliver the message. After the router has delivered the
message the recipient party (or F) is activated.

2. Sending a direct message to F (this type of communication is not via the
router). In this case F is activated next.

3. Sending a direct message to Z. In this case Z is activated next.

If the activated machine is F or Z, it reads the message from A, runs a local
computation and then sends a response to A, in which case A is activated next.
Otherwise, the activated party (P1, . . . , Pm or F) can read the message on its
incoming communication tape, carry out any local computation it wishes, and
write any number of messages to its outgoing communication tape to the router;
its activation ends when it halts. The router is activated next and sends all of the
messages that it received to A. The adversary is then once again activated, and so
on. One technicality is that the adversary may wish to activate a party to whom
no message has previously been sent. This makes most sense at the beginning of
a protocol execution where a party already has input but has not yet been sent
any messages. Since the adversary is not generally allowed to communicate to
parties, it cannot activate such a party since there are no messages to deliver.
We therefore allow the adversary to deliver an “empty message” to a party to
activate it whenever it wishes. The execution ends when the environment writes
a bit to its output tape (the fact that the environment’s output is just a single
bit is without loss of generality, as shown in [4,7]).

We stress that the ideal functionality has no input on its input tape and never
writes to its output tape; it only communicates with the participating parties
and the adversary (Fig. 2).

2.3 Corruptions and Adversarial Power

As in the standard model of secure computation, the adversary is allowed to
corrupt parties. In the case of static adversaries the set of corrupted parties
is fixed at the onset of the computation. In the adaptive case the adversary
corrupts parties at will throughout the computation. In the static corruption
case, the environment Z is given the set of corrupted parties at the onset of
the computation. In the active corruption case, whenever the adversary corrupts
a party, Z is notified of the corruption immediately. The adversary is allowed
to corrupt parties whenever it is activated. (Formally, the adversary sends a
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Fig. 2. The execution flow and order of activations

(corrupt, Pi) message first to Pi via the router, and Pi returns its full internal
state to the adversary. Then, by convention, the adversary is required to send the
corrupt message to Z who is activated at the end of the corruption sequence.)

We also distinguish between malicious and semi-honest adversaries: If the
adversary is malicious then corrupted parties follow the arbitrary instructions
of the adversary. In the semi-honest case, even corrupted parties follow the pre-
scribed protocol and the adversary only gets read access to the internal state
of the corrupted parties. In the case of a malicious adversary, we stress that
the adversary can send any message that it wishes in the name of a corrupted
party. Formally, this means that the router delivers any message in the name
of a corrupted party at the request of the adversary. Observe that in the case
of adaptive malicious corruptions, any messages that were sent by a party (to
another party or to the ideal functionality) before it was corrupted but were not
yet delivered may be modified arbitrarily by the adversary. This follows from the
fact that from the point of corruption the router delivers any message requested
by the adversary. This mechanism assumes that the router is notified whenever
a party is corrupted.

We stress that unlike in the full UC model, here it is not possible to “partially
corrupt” a party. Rather, if a party is corrupted, then the adversary learns
everything. This means that we cannot model, for example, the forward security
property of key exchange that states that if a party’s session key is stolen in
one session, then this leaks nothing about its session key in a different session
(since modeling this requires corrupting one session of the key exchange and not
another). For the same reason, it is not possible to model proactive security in
the SUC framework [11].

2.4 The Real, Ideal and Hybrid Models

We are now ready to define the real, ideal and hybrid models. These are all just
special cases of the above communication and execution models:
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– The real model with protocol π: In the real model, there is no ideal function-
ality and the (honest) parties send messages to each other according to the
specified protocol π. We denote the output bit of the environment Z after
a real execution of a protocol π with environment Z and adversary A by
suc-realπ,A,Z(n, z), where z is the input to Z.

– The ideal model with F : In the ideal model with F the parties follow a fixed
ideal-model protocol. According to this protocol, the parties send messages only
to the ideal functionality but never to each other. Furthermore, these messages
are the inputs that they read from their input tapes, and nothing else (unless
they are corrupted and the adversary is malicious, in which case they can send
anything to F). In addition, they write any message received back from the
ideal functionality to their output tapes. That is, the ideal-model protocol
instructs a party upon activation to read any new input on its input tape
and send it unmodified to F as an outgoing message, and to read all incoming
messages (from F) on its incoming message tape and write them unmodified to
its output tape. This then ends the party’s activation. We denote the output of
Z after an ideal execution with ideal functionality F and adversary S (denoted
by S since it is actually a “simulator”) by suc-idealF,S,Z(n, z), where n and
z are as above. We stress that in the ideal model, the adversary/simulator S
interacts with Z in an online way; in particular, it cannot rewind Z or look
at its internal state. In addition, in keeping with the general communication
model all messages between the parties and F are delivered by the adversary.4

– The hybrid model with π and F : In the hybrid model, the parties follow the
protocol π as in the real model. However, in addition to regular messages
sent to other parties, π can instruct the parties to send messages to the ideal
functionality F and also instructs them how to process messages received from
F . We stress that the messages sent to F may be any values specified by π and
are not limited to inputs like in the ideal model. We denote the output of Z
from a hybrid execution of π with ideal calls to F by suc-hybridF

π,A,Z(n, z),
where A,Z, n, z are as above. When F is the ideal functionality we call this
the F-hybrid model.

In all models, there is a fixed set of participating parties P1, . . . , Pm, where
each party has a unique party identifier. Observe that we formally consider
a single ideal-functionality type F , and not multiple different ones.5 This is
not a limitation even though protocols often use multiple different subprotocols
(e.g., commitment, zero knowledge, and oblivious transfer). This is because one
can define a single functionality computing multiple subfunctionalities. Thus,
formally we consider one. When defining protocols and proving security, it is
4 The fact that the adversary delivers these messages and thus message delivery is

not guaranteed frees us from the need to explicitly deal with the “early stopping”
problem of protocols run between two parties or amongst many parties where only
a minority may be honest. This is because the adversary can choose which parties
receive output and which do not, even in the ideal model.

5 This is not to be confused with multiple copies of the same functionality F which is
included in the model.
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customary to refer to multiple functionalities with the understanding that this
is formally taken care of as described.

2.5 The Definition and Composition Theorem

We are now ready to define SUC security, and to state the composition theorem.
Informally, security is defined as in the classic stand-alone definition of security
by requiring the existence of an ideal-model simulator for every real-model adver-
sary. However, in addition, the simulator must work for every environment, as
in the aforementioned communication and execution models. The environment
behaves as the interactive distinguisher, and therefore we say that a protocol π
SUC-securely computes a functionality if the environment outputs 1 with almost
the same probability in a real execution of π with A as in an ideal execution
with F and S. Recall that the suc-ideal and suc-real notation denotes the
output of Z after the respective executions.

Balanced Environments. A balanced environment is an environment for which
at any point in time during the execution, the overall length of the inputs given
to the parties of the main instance of the protocol is at most n times the length of
the input to the adversary [7]. As in the full UC framework, we require balanced
environments in order to prevent unnatural situations where the input length
and communication complexity of the protocol is arbitrarily large relative to
the input length and complexity of the adversary. In such case no PPT adver-
sary can deliver even a fraction of the protocol communication. The definition
of UC security considers only balanced environments, and we adopt this same
convention.

Definition 1. Let π be a protocol for up to m parties and let F be an ideal
functionality. We say that π SUC-securely computes F if for every probabilistic
polynomial-time real-model adversary A there exists a probabilistic polynomial-
time ideal-model adversary S such that for every probabilistic polynomial-time
balanced environment Z and every constant d ∈ N, there exists a negligible func-
tion μ(·) such that for every n ∈ N and every z ∈ {0, 1}∗ of length at most nd,

∣∣∣Pr
[
suc-idealF,S,Z(n, z) = 1

] − Pr
[
suc-realπ,A,Z(n, z) = 1

]∣∣∣ ≤ μ(n).

The SUC composition theorem is essentially the same as the UC composition
theorem: secure protocols “behave like” ideal functionalities when run in arbi-
trary environments. See the full version for a formal statement of the theorem.

3 An Example – Proving in the UC vs SUC Models

In this section, we demonstrate the difference between proving security in the full
UC framework and in the SUC framework. We consider the classic commitment
functionality Fcom, due to its relative simplicity. We also consider realizing the
Fzk functionality in the Fcom-hybrid model, since existing protocols “gloss over”
the details of using the composition theorem correctly.
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3.1 Differences in Defining the Ideal Functionality for Commitments

Before describing the functionality, we need to introduce the delayed output ter-
minology, which is a convention that appears in the full UC framework. Quoting
from [6, Sect. 6.2]: “we say that an ideal functionality F sends a delayed output v
to party P if it engages in the following interaction: Instead of simply outputting
v to P , F first sends to the adversary a message that it is ready to generate an
output to P . If the output is public, then the value v is included in the message
to the adversary. If the output is private then v is not mentioned in this mes-
sage. Furthermore, the message contains a unique identifier that distinguishes it
from all other messages sent by F to the adversary in this execution. When the
adversary replies to the message (say, by echoing the unique id), F outputs the
value v to P .”

We now consider the definition of secure commitments. For simplicity, we
consider the single commitment functionality (typically, the multiple commit-
ment functionality is used, but this even further complicates the definition). This
is the definition that appears in [5, Sect. 7.3.1]:

FIGURE 1 (Functionality Fcom for the Full UC Framework)

1. Upon receiving an input (Commit, sid, x) from C, verify that sid =
(C,R, sid′) for some R, else ignore the input. Next, record x and generate
a public delayed output (Receipt, sid) to R. Once x is recorded, ignore any
subsequent Commit inputs.

2. Upon receiving an input (Open, sid) from C, proceed as follows: If there
is a recorded value x then generate a public delayed output (Open, sid, x)
to R. Otherwise, do nothing.

3. Upon receiving a message (Corrupt-committer, sid) from the adversary,
output a Corrupted value to C, and send x to the adversary. Furthermore,
if the adversary now provides a value x′, and the Receipt output was not
yet written on R’s tape, then change the recorded value to x′.

The Ideal Commitment Functionality Fcom

In contrast, in the SUC framework the functionality description is far sim-
pler. Before writing the functionality, we introduce a convention that was used
in [12] for the public headers and private contents in functionalities. The “oper-
ation labels” (e.g., ,, Receipt, etc.) and the session identifiers are by convention
(and unless explicitly stated otherwise) part of the public header, and the rest
of the message constitutes the private contents. In addition, we parameterize
the functionality by some m = poly(n), which means that all commitment val-
ues are of length m. This is needed since SUC parties have a fixed polynomial
running time, and so a receiver who does not receive input to the commitment
functionality cannot process arbitrarily long strings. Note that all known UC
commitment schemes work in this way (i.e., they are either commitments to
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bits, fixed-length strings, or group elements, etc.). Thus, this definition matches
existing constructions.6 We have:

FIGURE 2 (Functionality Fcom for the SUC Framework)

Fcom runs with length parameter m, as follows:

1. Upon receiving an input (Commit, sid, x) from C, verify that x ∈ {0, 1}m

and that sid = (C,R, sid′) for some R, else ignore the input. Next, record
x and send (Receipt, sid) to R. Once x is recorded, ignore any subsequent
Commit inputs.

2. Upon receiving an input (Open, sid) from C, proceed as follows: If there is
a recorded value x then send (Open, sid, x) to R. Otherwise, do nothing.

The Ideal Commitment Functionality Fcom

Explaining the Differences Between the Functionalities. In the full UC
framework, it is necessary to refer to public delayed outputs, since honest parties
write their inputs locally to ideal functionalities; to be more exact, an ideal
call is a subroutine invocation. Thus, in interactive scenarios, it is necessary
for the ideal functionality to explicitly communicate with the adversary to ask
permission to send the receipt, and so on. Due to the fact that this is tiresome
to describe each time, the convention of a “delayed output” was introduced. In
contrast, in the SUC framework, since the adversary automatically controls all
delivery, it suffices to naturally send messages. However, this does come at the
price of explicitly stating which parts of the messages are public (and seen by
the adversary when it delivers) and which parts are private. Nevertheless, by our
convention, this is typically simple.

A more significant difference arises in the context of corruption. In the full
UC model, an ideal functionality is modeled as a subroutine of the main protocol
instance. Therefore, parties “send” messages/inputs to an ideal functionality F
by writing them directly on the input tape of F . This means that the adversary
cannot change the contents of such a written message, even in the case that the
party is corrupted before the input was effectively used. In real protocols, it is
often possible for the adversary to make such a change. (For example, consider
the case that the honest party sends its first message and is corrupted before it
is delivered. In this case, the adversary can choose not to deliver that message
and instead send a new message in its place for the corrupted party, possibly
using a different input. Thus, this has to also be possible in the ideal model.)
This forces such treatment to be explicitly defined in the ideal functionality. In
contrast, in the SUC framework, this issue does not arise at all. This is because
all messages, including inputs to an ideal functionality and messages in a real
protocol, are treated in the same way and sent via the router. By the way the
6 We remark that it is also possible to define Fcom so that S inputs x and R inputs

1|x|. This ensures that R can run in time that is polynomial in the length of the
committed value. We chose the formulation of a fixed m since it more closely models
how UC commitments are typically constructed.
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router is defined, an adversary can choose not to deliver messages to an ideal
functionality in the same way that it can choose not to deliver messages in a
real protocol.

3.2 Proving Security of Commitment Protocols and Zero
Knowledge Protocols

In this section, we consider the problem of constructing UC commitments in the
CRS model, and then zero knowledge protocols using UC commitments. This is
the standard way of working; see [10,12], and see [14] for a more recent work
following the same paradigm. The authors of [14] claim security of their zero
knowledge protocol by referring to the proof of security of zero knowledge from
commitments that appears in [10]. However, this proof is much closer to the
SUC framework and does not take into account a number of issues that must
be considered in the (current version of the) full UC model. We describe some
of the additional issues that need to be taken into account in order to prove the
full UC security of the zero knowledge protocol from full UC commitments. For
the sake of concreteness, when considering polynomial time, we refer specifically
to the constructions in [14].

Before proceeding, denote the commitment protocol of [14] by Πcom, the CRS
functionality by Fcrs, and the zero knowledge protocol of [10,14] by Πzk. Pro-
tocol Πzk works by running the classic zero knowledge Hamiltonicity protocol
of Blum [2], while using UC commitments. Actually, since many commitments
are needed with respect to the same CRS, the multiple commitment function-
ality Fmcom is used but for simplicity we will ignore this here. Note that the
commitment protocol Πcom in [14] uses a fully-homomorphic encryption scheme
denoted Qenc and a CCA-secure encryption scheme ENCcca.

Proof of Polynomial-Time. One of the requirements of the UC composition
theorem is that all the protocols involved are polynomial time. The mentioned
proofs do not formally prove that the protocols are polynomial time. In the
SUC model, the fact that Πcom in [14] is polynomial time is immediate, and
simply follows from the fact that the Qenc and ENCcca encryption schemes run
in polynomial time (since in each invocation each party trivially runs in time
that is polynomial in the security parameter and input; see Sect. 2.1 for why this
suffices in the SUC framework). However, in order to prove that Πcom in [14] is
polynomial time in the full UC framework, one needs to first pad the input of each
party in Πcom with sufficient tokens, so that it runs in time that is polynomial
in the length of its (padded) input minus the length of the inputs/messages
that it sends to Fcrs. If Fcrs is assumed to be a local functionality (e.g., secure
setup), then this is not difficult since the only input to Fcrs is the pair (CRS, sid).
However, if Fcrs is implemented via coin-tossing using a local Fcrs functionality
(as suggested in the JUC [13] solution to achieving independent CRS invocations
per protocol), then the number of tokens needed to be provided is different.
Essentially, a different Fcrs ideal functionality has to be defined for each of
these cases. (The reason that a different ideal functionality is needed is that the
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functionality defines the length of the input, which depends on the number of
tokens needed.)

Consider next the case of constructing Πzk using Fcom. These zero-knowledge
protocols make multiple calls to the commitment functionality. The number of
calls to Fcom, and thus the length of the input written by the parties in Πzk

to Fcom, differs significantly when the zero-knowledge is based on Hamiltonicity
versus when it is based on 3 coloring. The proof of polynomial-time complexity
must take into account that for Hamiltonicity, for a graph with n nodes, O(n3)
calls to Fcom are made (repeating n times where in each time a matrix of size
O(n2) is committed to). However, the size of the graph depends on the Karp
reduction of the statement being proven to Hamiltonicity, and this must also be
counted. This bound must then be included in the ideal functionality for Fcom,
since the actual length of the input includes these tokens. Notice, however, that
the number of tokens needed in 3 coloring will be different, and so the definition
of Fcom can actually depend on the implementation of Fzk as used by Πcom.
To make this even more complex, if Fcom uses Fcrs as described above, then
the number of token further depends on whether Fcrs is a local functionality or
derived by some type of coin-tossing protocol.

We are not aware of any research paper whose focus is protocol construction
that relates to the issue of defining the number of tokens–equivalently how much
to pad the input–when defining the functionality, and proving that the protocol
is polynomial time as defined in the full UC framework.

Subroutine Respecting Protocols. The UC composition theorem demands
that protocols are subroutine respecting; see [6]. Informally speaking, this means
that subroutines only accept messages from other parties or subsidiaries of the
subroutine instance. In addition, upon the first activation, the adversary receives
notification of the code and SID of the instance. Since these are messages sent to
the adversary, they need to be dealt with by the adversary in the proof of security.
To the best of our knowledge, the adversary’s treatment of these notifications
are typically not described.

Corruptions. In the full UC framework, the protocol specification has to include
what the parties should do upon receiving a Corrupt message. This is due to the
fact that the UC framework enables great flexibility in dealing with corruptions
(and thus can model partial corruptions, proactive corruptions, and so on). In
contrast, in the SUC model, a party is either honest or fully corrupted, and in the
latter case the adversary obtains full control of the party. Although describing
what a party should do upon corruption is not complicated, it is once again
an example of a detail that needs to be addressed, but is to the best of our
knowledge omitted in current protocol specifications.

Order of Activations. In the full UC framework, the order of activations
depends on the adversary and on the protocol, and is derived from the order of
external write calls made by the machines in the system. Each machine can only
write one external message (be it input to a subroutine, output, or a regular
message) per activation, and by writing the message it passes the execution to



A Simpler Variant of Universally Composable Security 21

the receiving machine. This means that multiple invocation patterns are possible,
yielding multiple case analyses in the proof. In addition, when writing the proof,
one must distinguish between the different types of messages (writing to an ideal
functionality is fundamentally different to sending a message to another party).
Both of these complicate the presentation and make it harder for one writing
the proof to be exact. In contrast, in the SUC model, one of our aims was to
make the order of activations the same in all models (real, ideal and hybrid)
and to use the same method for all types of messages. (The only exception
is the parties’ inputs written by the environment and their outputs read by
the environment.) Thus, the scheduling of activations and the terminology with
respect to messages is always the same (under full control of the adversary),
simplifying the presentation.

Conclusions – Current UC Research and UC/SUC Proofs. We are not
aware of any written proof in the UC framework that actually takes these details
into account. Rather, researchers writing protocols in the UC framework do not
specify the number of tokens needed in order to be polynomial time (which is the
most serious issue), do not describe what the adversary should do with invocation
messages, do not consider the varying order of activations, and so on. Essentially,
researchers today write their proofs as if they are working in something similar
to the SUC framework. The main contribution of this paper can therefore be
viewed as a justification of the soundness of working in this way. In addition, we
provide an exact model that can be used, instead of handwaving away the full
UC details. Finally, our proof that SUC protocols are actually UC secure (with
the appropriate adjustments) means that for the standard interactive secure
computation tasks, nothing is lost by working with our simpler model.
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Abstract. Recently, Goyal (STOC’13) proposed a new non-black box
simulation techniques for fully concurrent zero knowledge with straight-
line simulation. Unfortunately, so far this technique is limited to the
setting of concurrent zero knowledge. The goal of this paper is to study
what can be achieved in the setting of concurrent secure computation
using non-black box simulation techniques, building upon the work of
Goyal. The main contribution of our work is a secure computation pro-
tocol in the fully concurrent setting with a straight-line simulator, that
allows us to achieve several new results:

– We give first positive results for concurrent blind signatures and veri-
fiable random functions in the plain model as per the ideal/real world
security definition. Our positive result is somewhat surprising in light
of the impossibility result of Lindell (STOC’03) for black-box simula-
tion. We circumvent this impossibility using non-black box simulation.
This gives us a quite natural example of a functionality in concurrent
setting which is impossible to realize using black-box simulation but
can be securely realized using non-black box simulation.

– Moreover, we expand the class of realizable functionalities in the
concurrent setting. Our main theorem is a positive result for con-
current secure computation as long as the ideal world satisfies the
bounded pseudo-entropy condition (BPC) of Goyal (FOCS’12). The
BPC requires that in the ideal world experiment, the total amount of
information learnt by the adversary (via calls to the ideal functional-
ity) should have “bounded pseudoentropy”.
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– We also improve the round complexity of protocols in the single-input
setting of Goyal (FOCS’12) both qualitatively and quantitatively. In
Goyal’s work, the number of rounds depended on the length of honest
party inputs. In our protocol, the round complexity depends only on
the security parameter, and is completely independent of the length
of the honest party inputs.

Our results are based on a non-black box simulation technique using
a new language (which allows the simulator to commit to an Oracle
program that can access information with bounded pseudoentropy), and
a simulation-sound version of the concurrent zero-knowledge protocol of
Goyal (STOC’13). We assume the existence of collision resistant hash
functions and constant round semi-honest oblivious transfer.

1 Introduction

Secure computation protocols enable a set of mutually distrustful parties to
securely perform a task by interacting with each other. Traditional security
notions for secure computation [21,49] were defined for the stand-alone setting
where security holds only if a single protocol session is executed in isolation.
In today’s connected world (and especially over internet), many instances of
these protocols may be executing concurrently. In such a scenario, a protocol
that is secure in the classical stand-alone setting may become completely inse-
cure [5,37]. Ambitious efforts have been made to generalize the results for the
stand-alone setting, starting with concurrently-secure zero-knowledge protocols
[7,14,34,45,47].

However, in the plain model, the effort to go beyond the zero-knowledge func-
tionality were, unfortunately, less than fully satisfactory. In fact, for the plain
model far reaching unconditional impossibility results were shown in a series of
works [1,5,8,19,24,37,38]. Two notable exceptions giving positive results in the
plain model are the works on bounded concurrency [36,43,44] (where there is an
a-priori fixed bound on the total number of concurrent sessions in the system
and the protocol in turn can depend on this bound), and, the positive results
for a large class of functionalities in the so called “single input” setting [24]. In
this setting, there is a server interacting with multiple clients concurrently with
the restriction that the server (if honest) is required to use the same input in
all sessions. There is a large body of literature on getting concurrently secure
computation in weaker models such as using a super-polynomial time simulator,
or a trusted setup. A short survey of these works is given later in this section.
We emphasize that in this work, we are interested in concurrently secure com-
putation protocols with no trusted set up assumptions where the security holds
according to standard ideal/real paradigm.

An intriguing functionality that cannot be realized in the fully concurrent
setting by these results is blind signatures in the plain model. The blind signature
functionality, introduced by [11], allows users to obtain unforgeable signatures on
messages of their choice without revealing the message being signed to the signer
(blindness property). The question of whether a concurrently-secure protocol
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for this functionality can be constructed as per the ideal/real model simulation
paradigm has been open so far. Moreover, given the impossibility result for
concurrent blind signatures for black box simulation by Lindell [37], it is clear
that we need to use non-black box techniques. Until recently, no non-black box
technique was known which applies to full concurrency with polynomial time
simulation. However, Goyal [25] recently proposed new non-black box simulation
techniques for (fully) concurrent zero-knowledge with straight line simulation.
Unfortunately, the result of Goyal is limited to the setting of concurrent zero-
knowledge. We ask the question: Can we construct non-box black techniques for
(fully) concurrent secure computation, building upon the work of Goyal [25]?

Our Contributions. The main contribution of our work is a secure computation
protocol in the fully concurrent setting with a straight-line simulator, that allows
us to achieve several new results. In short, we expand the class of realizable
functionalities in the concurrent setting and give the first positive results for
concurrent blind signatures and verifiable random functions in the plain model
as per the ideal/real world security definition. Moreover, the round complexity
of our protocol depends only on the security parameter and hence, improves the
round complexity of [24] both qualitatively and quantitatively. Finally, our work
can be seen as a unifying framework, which essentially subsumes all the previous
work on positive results for concurrent secure computation achieving polynomial
time simulation based security in the plain model. For detailed description of
our results, see Sect. 1.1.

Other Models. In order to circumvent the above mentioned impossibility
results in the plain model, there has been quite some work studying various
trust assumptions such as common reference string (CRS) model and tamper
proof hardware tokens [3,10,32]. Another interesting line of work has studied
weaker security definitions [16,39,42,46] while still remaining in the plain model,
and most notably obtains positive results in models like super polynomial time
simulation [6,9,17,46] and input indistinguishable security [17,39].

Note that these trust assumptions and these relaxed notions of security
are sometimes restrictive and are not applicable to many situations. We again
emphasize that the focus of this work is concurrent secure computation in the
plain model achieving polynomial time simulation. In the plain model, there are
point to point authenticated channels between the parties, but there is no global
trusted third party.

What Goes Wrong in Concurrent Setting in Plain Model? A well estab-
lished approach to constructing secure computation protocols is to use the GMW
compiler: take a semi-honest secure computation protocol and “compile” it with
zero-knowledge arguments. The natural starting point in the concurrent setting
is to follow the same principles: somehow compile a semi-honest secure computa-
tion protocol with a concurrent zero-knowledge protocol (actually compile with
concurrent non-malleable zero-knowledge [5]). Does such an approach (or minor
variants) already give us protocols secure according to the standard ideal/real
world definition in the plain model?
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There is a fundamental problem with this approach which poses a key bottle-
neck in a number of previous works (see [17,24,26,28–30]). All known concurrent
zero-knowledge simulators in the fully concurrent setting work by rewinding the
adversarial parties. Such an approach is highly problematic for secure compu-
tation in the concurrent setting, where the adversary controls the scheduling of
the messages of different sessions. For instance, consider the following scenario:
Due to nesting of sessions by the adversary, a rewinding based simulator may
need to execute some sessions more than once. Since the adversary can choose
a different input in each execution (e.g. based on transcript so far), the simula-
tor would have to query the ideal functionality for than once. However, for any
session, the simulator is allowed at most one query! Indeed, such problems are
rather inherent as indicated by various impossibility results [5,38].

Trying to solve this bottleneck of “handling extra queries” in various ways
has inspired a number of different works which revolve around a unified theme:
first construct a protocol where the simulator requires multiple queries per ses-
sion in the ideal world, and then, somehow manage to either eliminate or answer
these extra queries by exploiting some property of the specific setting in ques-
tion. Examples of these include Resettable and Stateless computation [29,30],
Multiple Ideal Query model [26–28], Single-Input setting [24], Leaky Ideal Query
model [26], etc1.

Indeed, as is natural to expect, there are limitations on how much one can
achieve using the above paradigm of constructing protocols. A very natural ques-
tion that arises is whether there exists a different approach which allows us to
construct concurrent secure computation protocols in the plain model without the
need of additional output queries? Moreover, if such a different approach does
exist, we know that due to impossibility results [1,5,8,19,24,37,38], there will
be some limitations on the scope of its applicability. This leads to some more
natural questions. What all can we achieve using this approach? In particular,
can we expand the class of realizable functionalities in the concurrent setting?
Can we improve the parameters (e.g. round complexity) of the protocols which
exist in the plain model?

1.1 Our Results

The key contribution of this work is a new way of approaching the problem of
concurrent secure computation in the plain model facilitated by recent advances
in concurrent non-black box simulation [25]. We give a protocol with non-black
box and straightline simulator. Since, very informally, our simulator does not
rely on rewinding at all, we are able to avoid the key bottleneck of additional
output queries to the ideal functionality during the rewinds.

However, our simulator has to overcome a number of additional obstacles
not present in [25]. Note that unlike secure computation, an adversary in con-
current zero-knowledge does not receive any outputs. Dealing with the outputs
given to the adversary in each session is a key difficulty we have to overcome.

1 For a detailed survey of these works, see our full version.
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In particular, one might think that a straightline simulator for concurrent zero-
knowledge should give a concurrently secure computation protocol trivially for
all functionalities and in particular for concurrently secure oblivious transfer.
Note that this cannot be true given unconditional impossibility results for obliv-
ious transfer. For more on such technical hurdles, please refer to the technical
overview (Sect. 1.2).

Informally stated, our main theorem is a general positive result for concur-
rent secure computation as long as the ideal world satisfies our so called bounded
pseudo-entropy condition (BPC). Very informally, the bounded pseudoentropy
condition requires that in the ideal world experiment, the total amount of infor-
mation learnt by the adversary (via calls to the trusted party) should have
“bounded pseudoentropy”. The origin of the bounded pseudoentropy condition
comes from a conjecture of Goyal [24]. More precisely, the bounded pseudoen-
tropy condition says the following:

Definition 1 (Bounded Pseudoentropy Condition (BPC)). An ideal
world experiment satisfies bounded pseudoentropy condition if there exists B ∈ N

and a PPT algorithm T such that for all m = m(n) concurrent sessions, for all
adversarial input vectors I (where an element of the vector represents the input
of the adversary in that session), there exists a set S of possible output vectors
such that the following conditions are satisfied

• All valid output vectors corresponding to the input vector I of the adversary
are contained in S. Observe that for a given I, for different honest party input
vectors, the output vectors may be different. We require that any such output
vector be contained in S. Furthermore, |S| ≤ 2B.

• For every O ∈ S, T (I,O) = 1, and for every O /∈ S, T (I,O) = 0. That is,
the set S is efficiently recognizable.

Intuitively, this condition says the following: The adversary might be scheduling
an unbounded polynomial number of sessions and gaining information from each
of the outputs obtained. However for any vector of adversarial inputs, the number
of possible output vectors is bounded (and hence so is the information that
adversary learns). Further note that this condition places a restriction only on
the ideal world experiment, which consists of the functionality being computed
and the honest party inputs. There is no restriction on the ideal world adversary,
which may follow any (possibly unbounded state) polynomial time strategy.

It can be seen that in concurrent zero-knowledge, as well as, in the bounded
concurrency setting, the BPC is satisfied. Also note that the class of ideal worlds
which satisfy BPC is significantly more general compared to the single input
setting of [24]. For a formal proof of this claim, refer to Sect. 2. In our work, we
prove the following main theorem.

Theorem 1. Assume the existence of collision resistant hash functions and
constant-round semi-honest oblivious transfer. If the ideal world for the function-
ality F satisfies the bounded pseudoentropy condition in Definition 1, then for
any constant ε, there exists a O(nε) round real world protocol Π which securely
realizes the ideal world for functionality F .



28 V. Goyal et al.

To understand the power of our result, a positive result for all ideal worlds
satisfying BPC allows us to get the following “concrete” results:

– Resolving the Bounded Pseudoentropy Conjecture. Goyal [24] con-
sidered the so called “single input setting” and obtained a positive result for
many functionalities in the plain model. Goyal further left open the so called
bounded pseudoentropy conjecture which if resolved would give a more gen-
eral and cleaner result (see [24] for the exact statement).

Our BPC is inspired from this conjecture (and can be seen as one way of
formalizing it). Thus, Theorem1 allows us to resolve the bounded pseudoen-
tropy conjecture in the positive. Our positive result for the BPC subsumes
most known positive results for concurrent secure computation in the plain
model such as for zero-knowledge [34,45,47], bounded concurrent computation
[36,43,44], and the positive results in the single input setting [24].

– Improving the Round Complexity of Protocols in the Single Input
Setting. The round complexity of the construction of Goyal [24] in the single
input setting was a large polynomial depending not only upon the security para-
meter but also on the length of the input and the nature of the functionality.
For example, for concurrent private information retrieval, the round complex-
ity would depend multiplicatively of the number of bits in the database and the
security parameter. Our construction only has nε rounds, where n is the secu-
rity parameter. Therefore, we obtain a significant qualitative improvement in
the round complexity for protocols in the single input setting.

– Expanding the Class of Realizable Functionalities, and, Getting
Blind Signatures. The blind signature functionality is an interesting case in
the paradigm of secure computation both from theoretical as well as practical
standpoints. The question of whether concurrent blind signatures (secure as per
the ideal/real model simulation paradigm) exist is currently unresolved. Lindell
[36,38] showed an impossibility result for concurrent blind signature based on
black-box simulation. This result has also been used as a motivation to resort to
weaker security notions (such as game based security) or setup assumptions
in various subsequent works (see e.g., [15,18,20,31,33,41]). We show that a
positive result for BPC directly implies a construction of concurrent blind sig-
natures secure in the plain model as per the standard ideal/real world security
notion. Prior to our work, the only known construction of concurrently secure
blind signatures was according to the weaker game based security notion due
to Hazay et al. [31].

This implies that concurrent blind signatures is a “natural” example of a
functionality which is impossible to realize using black-box simulation but can
be securely realized using non-black box simulation in the concurrent setting.2

The only previous such example known [29] was for a reactive (and arguably
rather contrived) functionality. Another concrete (and related) example of a
new functionality that can be directly realized using our techniques is that of a
secure verifiable random function.

2 Previous separations between the power of black-box and non-black box simulation
are known only if we place additional constraints on the design of the real world pro-
tocol (e.g., it should be public coin, or constant rounds, etc.).
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It would also be interesting to see what our approach yields in the plain model
for different settings and security notions where the previous rewinding based
approach has been useful (such as resettable computation, super-polynomial
simulation, etc.). We leave that as future work.

1.2 Our Techniques

Our protocol and analysis for the concurrent secure computation is admittedly
quite complex and we face a number of hurdles on the way. Below, we try to
sketch the main difficulties and our ideas to circumvent them at a high level.

To construct concurrent secure computation, we roughly follow the [21]
strategy of first constructing an appropriate zero-knowledge protocol, and then
“somehow compiling” a semi honest secure computation protocol using that. In
our concurrent setting, in order to avoid the multiple output queries per session,
we need a concurrently secure protocol for zero-knowledge with a straightline
simulator. Recently, the first such protocol was given by Goyal [25] based on
non-black box techniques3.

Another property of the zero-knowledge protocol which is crucial for compi-
lation is simulation-soundness. Our first (and arguably smaller) technical hurdle
is to construct a simulation-sound version of Goyal’s protocol. This is necessary
because the simulator would rely on the soundness of the proofs given by the
adversary while simulating the proofs where it is acting as the prover. Another
issue is that in our protocol for concurrent secure computation, the adversary
is allowed to choose the statement proved till a very late stage in the proto-
col. Hence, we need simulation-soundness to hold even when the statements to
prove are being chosen adaptively by the adversary. We note that this issue is
somewhat subtle to deal with. Our construction of simulation-sound concurrent
zero-knowledge relies on the following ingredients: Goyal’s concurrent simula-
tion strategy, a robust non-malleable commitment scheme [35], and a special
language to be used in the universal arguments. The final construction along
with a description of the main ideas is given in Sect. 3.

The next (and arguably bigger) difficulty is the following. In secure compu-
tation, the adversary receives an output in each session (this is unlike the case of
zero-knowledge). It turns that it is not clear how to handle these outputs while
performing non-black box simulation. Note that some such challenge is inherent
in the light of the long list of general impossibility results known [5,38]. Before
we describe the challenge faced in detail, it would be helpful to recall how the
non-black box techniques based on [2] work at a high level.

3 Before this, all the (fully) concurrent zero-knowledge protocols were based on rewind-
ing techniques, while, the construction of [2] (which had a non-rewinding simulator)
worked only in the bounded concurrent setting. The main result in [25] was the first
public-coin concurrent zero-knowledge protocol where the non-rewinding nature of
the simulation technique was not crucial. However in the current work, we would
crucially exploit the fact that the simulation strategy was straightline.



30 V. Goyal et al.

– Non-black Box Technique. In each session, the simulator has to commit to
a program Π, which has to generate the adversary’s random string r in that
session. In the transcript between the commitment to Π and r, there may be
messages of other sessions, which Π has to regenerate. Even if the program
Π consists of the entire state of the simulator and the adversary at the point
of the commitment, it runs into a problem in the case of secure computation
(where the adversary is getting non-trivial output in each session).

– Key Challenge. Note that to reach from the commitment of Π to the mes-
sage r, the simulator makes use of some external information: namely the
outputs it learns by querying the ideal functionality as it proceeds in the
simulation. This information, however, is not available with the program Π
(since the simulator may query the ideal functionality after the program Π
was committed to). Also, note that the number of outputs learnt could be any
unbounded polynomial. Hence, it is not clear how to regenerate the transcript.

The first obvious solution, which does not work, is to allow the program Π to
take inputs of unbounded length. This would allow the simulator to pass all
the outputs obtained to the program Π. But now the soundness of the protocol
seems to be completely compromised. On the other hand, if Π does not receive
all the outputs, it cannot regenerate the transcript!

To resolve this issue, we use the idea of “Oracle programs” due to Deng,
Goyal, and Sahai [13]. The program Π, while running, is allowed to make any
(polynomially unbounded) number of queries (to be answered by the simulator)
as long as the response to each query is information theoretically fixed by the
query. The soundness is still preserved: an adversarial prover still cannot com-
municate any information about the verifier’s random string r to Π. However,
the program Π can still access a potentially unbounded length string using such
an “Oracle interface”.

Unfortunately, the above idea is still not sufficient for our purpose: the out-
puts given by the ideal functionality are not fixed given the adversary’s input
in the session. Here we rely on the fact that we are only considering the ideal
worlds which satisfy the bounded pseudoentropy condition. Very roughly, it is
guaranteed that the entire output vector has only bounded pseudoentropy (B),
given the input of the adversary. Moreover, given the adversary’s input vector, all
possible output vectors are efficiently testable by the PPT algorithm T . In other
words, for every vector of queries, there is only a bounded (although potentially
exponential) number of response vectors accepted by T . We allow the program
Π to make any number of queries such that the response vector is accepted by T .
More details regarding our precise language for non-black box simulation may be
found in Fig. 1. This idea allows the simulator to supply the entire output vector
(learnt from the ideal functionality) to Π while still preserving soundness. The
soundness proof relies on the fact that the queries only allow for communication
of up to B-bit string to Π, which is still not sufficient for communicating the
string r.

Finally, there are additional challenges due to the requirement of straightline
extraction. Towards that end, we rely on input indistinguishable computation
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introduced by Micali, Pass, and Rosen [39]. Challenges also arise with perform-
ing hybrid arguments in the setting where the code of the simulator itself is
committed (because of non-black box simulation). The full construction along
with the main ideas is given in Sect. 4.

Other Related Work: Though Goyal et al. [25] gave the first protocol for con-
current zero-knowledge with a straightline simulator, recently, Chung et al. [12]
gave a constant round concurrent zero-knowledge protocol for uniform adver-
saries based on a new assumption of P-certificates, which is also straightline
simulatable. Their protocol represents an exciting idea which opens an avenue
for getting constant round concurrently secure computation protocols (albeit for
uniform adversaries only, and, based on a new assumption). We believe that our
techniques could also be applicable in constructing concurrent secure computa-
tion protocols using the protocol of [12].

2 Concurrently Secure Computation: Our Model

In this section, we begin by giving a brief sketch of our model. For formal
description (building upon the model of [38]) of our model, see full version.
In this work, we consider a malicious, static and probabilistic polynomial time
adversary that chooses whom to corrupt before the execution of the proto-
col and controls the scheduling of the concurrent executions. Additionally, the
adversary can choose the inputs of different sessions adaptively. We denote
the security parameter by n. We give a real world/ideal world based secu-
rity definition. There are k parties Q1, Q2, . . . , Qk, where each party may be
involved in multiple sessions with possibly interchangeable roles. In the ideal
world, there is a trusted party for computing the desired two-party functionality
F : {0, 1}r1 × {0, 1}r2 → {0, 1}s1 × {0, 1}s2 . Let the total number of executions
be m = m(n). Note that there is no a-priori bound on the number of sessions
m and the adversary can start any (possibly unbounded) polynomial number of
sessions. On the other hand, in the real world there is no trusted party and the
two parties involved in a session, say P1 and P2, execute a two party protocol
Π for computing F . Our security definition requires that any adversary in the
real model can be emulated by an adversary in the ideal model.

2.1 Our Result and Its Applications

As mentioned in the introduction, our main result (see Theorem1, Sect. 1.1) is
a general positive result for concurrent secure computation as long as the ideal
world satisfies the bounded pseudo-entropy condition (Definition 1, Sect. 1.1).

Next, we show that our theorem not only subsumes the positive results of
[24] in the single input setting but also improves the round complexity.

Comparing Our Results with [24]. In [24], Goyal showed that if the ideal
world satisfies the “key technical property” (KTP), then there exists a real world
protocol which securely realizes this ideal world. The key technical property,
taken verbatim from [24], is as follows:
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Definition 2 (Key Technical Property (Definition 3, [24])). The key tech-
nical property (KTP) of an ideal world experiment requires the existence of a
PPT predictor P satisfying the following conditions. For all sufficiently large n,
there exists a bound D such that for all adversaries and honest party inputs,

∣∣∣
{

j P({I[�]}�≤j , {O[�]}�<j) �= O[j]
}∣∣∣ < D

For the ideal worlds which satisfy KTP, [24] gave a O(n3D2) round secure
protocol which realizes the functionality, where D is the parameter in
Definition 2.

In our full version, we prove the following lemma:

Lemma 1. If an ideal world experiment satisfies the key technical prop-
erty (Definition 2), then it also satisfies the bounded pseudoentropy condition
(Definition 1).

As mentioned before, the round complexity of Goyal [24] is O(n3D2) which
is a polynomial in security parameter n as well as D (which depends upon
length of single input as well as nature of functionality). Our Theorem1 and
Lemma 1 imply a quantitative and qualitative improvement in round complexity.
This leads to lower round protocols for applications like private database search,
secure set intersection, computing kth ranked element etc. For details see the full
version.

Moreover, [24] only gave a positive result for functionalities with hardness free
ideal world, i.e. in the ideal world the trusted party is not required to perform
any cryptographic operations. There is no such restriction in our setting. In
fact, we show that blind signatures and verifiable random functions satisfy the
bounded pseudoentropy condition. More interestingly, they do not satisfy the
key technical property. We next describe our results for these functionalities.

Blind Signatures. Blind signatures, introduced by [11], allow users to obtain
signatures on messages of their choice without revealing the message being signed
to the signer (blindness property). In addition, they also need to satisfy the
unforgeability property of the digital signature schemes. In this work, we give
the following positive result for concurrent blind signatures.

Theorem 2. Assume the existence of collision resistant hash functions and
constant-round semi-honest oblivious transfer. Then for any constant ε, there
exists a O(nε) round secure protocol which realizes the ideal world for concur-
rent blind signature functionality.

We prove this theorem by using unique signatures [22] as the underlying signa-
ture scheme and showing that blind signatures satisfy the bounded pseudoen-
tropy condition when the underlying signature scheme is unique. (Note that
Lindell’s black box impossibility result also holds in this setting.) A signature
scheme is said to be unique if for each public key and each message, there exists
at most one valid signature which verifies.
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We can model blind signature as a two party computation between the signer
and the user for the circuit for generating signatures. Note that the circuit will
have the verification key vk hardcoded. At the end of the protocol, the user
outputs a valid signature σ if obtained, and signer always outputs ⊥. Now we
show that this functionality satisfies BPC for B = 0 and T algorithm which
is same as the signature verification algorithm. Note that if the adversary is
playing the role of the user, its output is unique and is completely determined
by its input message since vk is fixed by the function being computed. If the
adversary is playing the role of the signer, its output is always ⊥. Hence, set S
will contain only one output vector, which is information theoretically fixed by
the adversary inputs and the ideal world experiment (which fixes the verification
keys for all the sessions). The algorithm T simply verifies the user’s signatures
w.r.t. corresponding vk and ensures that signer’s outputs are ⊥.

Finally note that blind signatures will not satisfy the key technical property.
Consider the case when the adversary is acting as the user in all the sessions.
By the unforgeability property of the scheme, any PPT predictor which receives
k valid input/output (message/signature) pairs cannot predict the signature on
the next message with non-negligible probability. Also, note that blind signa-
tures will not satisfy the generalized key technical property discussed in the full
version [23] for the same reason.

Verifiable Random Functions. Verifiable random functions (VRFs) were
introduced by Micali, Rabin, and Vadhan [40]. They combine the properties
of pseudo-random functions with the verifiability property. Intuitively, they are
pseudo-random functions with a public key and proofs for verification. Along
with pseudo-randomness, they are required to satisfy uniqueness, i.e., given the
public key, for any input x, there is a unique y which can verify. In this work,
we show the following:

Theorem 3. Assume the existence of collision resistant hash functions and
constant-round semi-honest oblivious transfer. Then for any constant ε, there
exists a O(nε) round concurrent real world protocol which realizes the ideal world
experiment for verifiable random functions.

We again prove this theorem by showing that VRFs satisfy BPC for B = 0
and T algorithm which is same as verification algorithm. Here, we again rely
on the uniqueness property. Finally, note that VRFs too will not satisfy the key
technical property due to pseudo-randomness guarantee. For details see the full
version.

3 Our Simulation-Sound Non-Black Box Zero-Knowledge
Protocol

Constructing a family of polynomially many zero-knowledge protocols which
are simulation-sound with respect to each other under (unbounded polynomi-
ally many) concurrent executions is one of the difficulties in constructing proto-
cols for fully concurrent multi-party computation (MPC). Simulation-soundness,
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introduced by Sahai [48], means that the soundness of each of the proofs given
by the adversary should hold even when the adversary is getting unbounded
polynomial number of simulated proofs. To avoid the problem of providing mul-
tiple outputs due to a rewinding based simulator for concurrent MPC, we need
to construct simulation-sound zero-knowledge protocols which are straight-line
simulatable. Note that Pass [43] also gave a construction of polynomially many
protocols which are concurrent zero-knowledge and simulation-sound w.r.t. each
other in the restricted setting of bounded concurrency. In this work, we construct
such simulation-sound zero-knowledge protocols building upon the non-black box
public coin concurrent zero-knowledge protocol of Goyal [25].

First, we give a brief overview of [25]. Some of the text has been taken ver-
batim from [25]. One of the main technical ideas in [25] is to have N = nε

non-black box slots, for any constant ε (each consisting of a commitment to
a machine and a verifier challenge string). Each slot is followed by a univer-
sal argument (UA) execution. Any of the UA’s in a session may be picked for
simulation. If a UA is picked for simulation, to make the analysis go through,
the simulator could choose of any of the previously completed slots and pre-
fer the slots which are computationally lighter. In a UA execution, the prover
proves that in one of the completed slots, the machine committed successfully
outputs the verifier challenge string. Other main idea was to have encrypted
executions of the UAs (using its public coin property) to hide the location of
the convincing UA executions in the transcript. Finally there is an execution of
a witness-indistinguishable argument of knowledge (WIAOK), where the prover
proves that either the statement x ∈ L or there exists a decryption of one of the
UAs which is accepting. In the subsequent discussion, we will refer to the part of
the protocol with non black box slots and encrypted UAs as the preamble phase
and last phase as the wiaok phase.

Two main ideas are required to transform the above described protocol into
simulation-sound zero-knowledge protocols, which can then be used to construct
protocols for concurrent MPC. Firstly, observe that unless the parties have iden-
tities it is impossible to construct a simulation-sound protocol because a man-in-
the-middle attack cannot be prevented. Hence, we focus on a setting where each
party has a unique identity of n bits. Let NMCom be a k-robust identity-based
non-malleable commitment scheme. Now, after the preamble phase of the proto-
col, the prover with identity id gives a non-malleable commitment to the witness
under its identity id. More precisely, the prover, having witness w to x ∈ L,
gives a commitment c = NMCom(w) under his identity id. In the final wiaok
phase, the prover proves that either there exists a w such that c = NMCom(w)
and w ∈ RL(x) or one of the UA executions was convincing. We will be able
to prove the simulation-soundness of our protocol using the non-malleability
and k-robustness of NMCom. Note that (as described later) our protocol will
be simulation-sound even when the adversary is allowed to choose the state-
ments to be proven adaptively till the point when he gives this non-malleable
commitment.
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Secondly, in our UA executions we will use a special generalized language
Λ (see Fig. 1) for the UA executions. Here, along with [13] kind of queries
decommit(·) whose response is information theoretically fixed given the query
itself, we will also have a second kind of queries, which we will denote by
output(·). Note that though the responses of these queries is not information
theoretically fixed, they have a bounded pseudoentropy. Next, we give some
intuition about the use of these oracle queries.

The language Λ is defined w.r.t. an algorithm T and bound B with the following
property: For any vector x (of possibly unbounded polynomial length) there exists a
set S containing vectors y such that |S| ≤ 2B and for all y /∈ S, T (x,y ) = 0. Now
the language Λ is defined as follows:
We say that (h, z, r) ∈ Λ if there exists an oracle program Π s.t. z = com(h(Π)) and

there exist strings y1 ∈ {0, 1}≤|r|−B−n, y2 ∈ {0, 1}≤nloglogn
and y3 ∈ {0, 1}≤nloglogn

with the following properties. The oracle program Π takes y1 as input and outputs r
within nloglogn steps. Program Π can make two kinds of calls to the oracle

1. Produce a query of the form decommit(str) and expecting (r) with str = com(r)
in return such that the tuple (str, r) is guaranteed to be found in the string y2 (as
per a suitable encoding of y2). Thus, such oracle calls by Π can be answered using
y2.

2. Produce a query of the form output(x) and expecting y in return, such that the
tuple (x, y) is guaranteed to be found in the string y3 (as per a suitable encoding
of y3). Thus, such oracle calls by Π can be answered using y3.

If the program Π makes a query that cannot be answered by strings y2 or y3, Π aborts
and we have that (h, z, r) /∈ Λ. Also, let x denote the vector containing all the output(·)
queries made by Π (throughout its execution) and y be the corresponding responses,
then Π aborts if T (x,y) = 0 and we have that (h, z, r) /∈ Λ.

Fig. 1. Our language for zero-knowledge with non-black-box simulation

Intuition Behind the Oracle Queries output(·) in Language Λ. The algo-
rithm T and the bound B are introduced to capture the information learnt
by the adversary. When only concurrent sessions of zero-knowledge are running,
there is no information passed to the adversary, hence we can have T to reject all
outputs and still be able to simulate the view of the adversary. This notion will
be important for the concurrent executions of multiparty computation because
the adversary learns non-trivial information from calls to the trusted party. In
particular, it learns the output of the function in each session. We will use the
oracle queries output(·) to communicate the information learnt from the trusted
party to the adversary in the ideal world. But still to get our positive result,
we will need to bound the amount of information learnt by the adversary. The
bound B will be the number of bits of information passed on to the adversary.
This is intuitively captured by the condition that there are only 2B vectors of
oracle responses which might be accepted by T . Looking ahead, the description
of T will depend on the functionality being computed.
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Formal Protocol Description. Let com(·) denote a non-interactive perfectly
binding commitment scheme. Whenever we need to be explicit about the ran-
domness, we denote by com(s; r) a commitment to a string s computed with
randomness r. Unless stated otherwise, all commitments in the protocol are exe-
cuted using this commitment scheme. Let NMCom be the k-robust non-malleable
commitment scheme, where k is a parameter computed later. Let len = n2+B+η,
where B and η are parameters computed later.

The common input to P and V is the security parameter n. The input to
P is x in the language L ∈ NP , and a witness w to x ∈ L. Let id be the n bit
identity of the prover. Our protocol 〈P, V 〉 or cZKid, where id is the identity of
the prover, proceeds as follows: Parts of the protocol have been taken verbatim
from [25].

1. The verifier V chooses a random collision resistant hash function h from a
function family H and sends it to P .

2. For i ∈ [n6], the protocol proceeds as follows:4
• The prover P computes zi = com(h(0)) and sends it to V .
• The verifier V selects a challenge string ri

$← {0, 1}len and sends it to the
prover P . The above two messages (consisting of the prover commitment
and the verifier challenge) are referred to as a “slot”.

• The prover P and the verifier V will now start a three-round public coin
universal argument (of knowledge) [4] where P proves to V that there exists
j ≤ i, s.t., τj(= (h, zj , rj)) is in the language Λ (see Fig. 1).

The three messages of this UA protocol are called as the first UA mes-
sage, verifier UA challenge, and, the last UA message.

Observe that the UA does not just refer to the slot immediately preced-
ing it but rather has a choice of using any of the slots that have completed
in the protocol so far.

• The prover computes the first UA message and sends a commitment to this
message to the verifier. The honest prover will simply commit to a random
string of appropriate size.

• The verifier now sends the UA challenge message.
• The prover computes the last UA message and again sends only a commit-

ment to this message to the verifier. The honest prover will simply commit
to a random string of appropriate size.

3. The prover declares the statement x ∈ L and commits to the witness w using
the non-malleable commitment scheme NMCom under prover’s identity id.
Note that a cheating prover can adaptively choose the statement x here.

4. Finally, the prover proves the following statement to V using WIAOK
1. The value committed to in Step 3 is a value w such that it is a valid witness

to x ∈ L, (i.e. w ∈ RL(x)), or
2. There exists i such that the i-th UA execution was “convincing”. That is,

there exists an i ∈ [n6] such that there exists an opening to the prover first
and last UA messages such that an honest verifier would have accepted
the transcript of the UA execution.

4 Note that the round complexity of our protocol can be made nε using standard
techniques involving “scaling down” the security parameter.
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An honest prover simply commits to the witness for x ∈ L in Step 3 and
uses the first part of the statement to complete the witness-indistinguishable
argument of knowledge protocol.

Observe that a witness to the second part of the above statement would be
the opening of the commitments to the UA first and last messages. Hence,
the size of the witness is fixed and depends only upon the communication
complexity of the 3-round UA system being used.

Remark 1. We call the Steps 1 and 2 of the protocol as non-black box preamble,
step 3 as the nmcom phase and step 4 as the wiaok phase.

Parameter k. We set k to be the round complexity of WIAOK. Hence, we set
k = 3.

Parameter B. Note that the parameter B in len is same as the one in Fig. 1,
i.e. the parameter specified for algorithm T in the description of language Λ.

Setting the Parameter η. Let η be the sum of the following: prover’s maximum
communication complexity in different primitives used in the protocol described
above, and communication complexity of NMCom. More precisely, we set

η = max(cz, cua1, cua2, cwiaok, cNMCom,S) + cNMCom,R,

where cz is the length of the slot begin message z, cua1 is the length of the UA
first message, cua2 is the length of the UA last message, cwiaok is the prover’s com-
munication complexity in the final WIAOK execution, cNMCom,S is the sender’s
communication complexity in NMCom and cNMCom,R is the receiver’s communi-
cation complexity in NMCom.

Looking ahead, (very informally) while proving the simulation-soundness of
the above protocol, different parts of the protocol will be taken externally and
NMCom given by the adversary will be exposed to an external receiver, etc.
Hence, different parts of the protocol will be given externally to the machine
committed by the simulator as part of the string y1 in Λ.

Note that the entire 〈P, V 〉 protocol is run w.r.t. to language Λ having a
specific algorithm T and bound B. We will prove that the security properties
hold for any such T and bound B when η is chosen as above. Next, we prove
the soundness of the protocol for any fixed value of B. Then we will prove the
simulation-soundness of the protocol. Our ZK simulator will not use the oracle
queries of the type output(·). Later on our MPC simulator will make a non-trivial
use of these oracle queries.

The proof of security of simulation-sound non-black box zero-knowledge pro-
tocol proceeds along the lines discussed in the introduction (see Sect. 1.2). We
give a detailed formal proof of security in the full version.

4 Concurrently Secure Computation: Our Protocol

In this section, we will describe our protocol Σ for concurrently secure com-
putation for ideal world experiments which satisfy the bounded pseudoentropy
condition (Definition 1) for some parameter B ∈ N and algorithm T .
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Common input: Let com(·) be a non-interactive perfectly binding commitment
scheme. The functionality fcom1,com2 is parameterized by two commitments com1 and
com2 under com(·), which are the common inputs to the functionality and the parties
P iic
1 and P iic

2 .
Inputs: Let (z1, td1) and (z2, td2) be the inputs of P iic

1 and P iic
2 respectively.

Computation: Party P iic
1 sends its input (z1, td1) and party P iic

2 sends its input
(z2, td2) to the trusted functionality fcom1,com2 .
If td1 is a valid opening of com1 to bit 1, fcom1,com2 sends z2 to P iic

1 , otherwise it sends ⊥.
Similarly, if td2 is a valid opening of com2 to bit 1, fcom1,com2 sends z1 to P iic

2 , otherwise
it sends ⊥.

Fig. 2. The functionality fcom1,com2

Our Construction. In order to describe our construction, we first recall the
notation associated with the primitives that we use in our protocol. Let com(·)
denote the commitment function of a non-interactive perfectly binding commit-
ment scheme. Let 〈P, V 〉 denote the simulation-sound non-black box concurrent
zero-knowledge protocol as described in Sect. 3 with length of challenge strings
modified to be len = n2 + B + θ, where θ is a parameter computed later. Let
〈P iic

1 , P iic
2 〉 be the constant round protocol for input indistinguishable computa-

tion [17,39]. Let NMCom be the k-robust non-malleable commitment scheme,
where k is a parameter computed later. Further, let 〈Pwi, Vwi〉 denote a witness
indistinguishable argument and let 〈P sh

1 , P sh
2 〉 denote a constant round semi-

honest two party computation protocol 〈P sh
1 , P sh

2 〉 that securely computes F in
the stand-alone setting as per the standard definition of secure computation.

Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security
parameter. Protocol Σ = 〈P1, P2〉 proceeds as follows:

I. Non-Black Box Simulation Phase

1. P1 ⇒ P2 : P1 and P2 engage in the preamble phase of 〈P, V 〉 where P1 is the
prover. Next, in the nmcom phase, P1 creates a non-malleable commitment
com1 to bit 0, i.e. com1 = NMCom(0) and sends com1 to P2. P1 and P2

now engage in the wiaok phase where P1 proves that either (1) com1 is a
commitment to 0 , or (2) there exists i such that the i-th UA execution in
the preamble phase was “convincing”.

2. P2 ⇒ P1 : P2 now acts symmetrically. P1 and P2 engage in the preamble
phase of 〈P, V 〉 where P2 is the prover. Next, P2 creates a non-malleable
commitment com2 to bit 0, i.e. com2 = NMCom(0) to bit 0 and sends com2

to P1. P1 and P2 now engage in the wiaok phase where P2 proves that either
(1) com2 is a commitment to 0 , or (2) there exists i such that the i-th UA
execution in the preamble phase was “convincing”.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining
a “trapdoor” to be used during the simulation of the other two phases of the
protocol.
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II. Input Indistinguishable Computation Phase. Intuitively speaking, in
this phase, the parties “commit” to their inputs and random coins (to be used in
the final secure computation phase) by engaging in a execution of 〈P iic

1 , P iic
2 〉 for

the functionality fcom1,com2 described in Fig. 2. More precisely, P1 and P2 engage
in an execution of 〈P iic

1 , P iic
2 〉 for the functionality fcom1,com2 where P1 plays the

role of P iic
1 , while P2 plays the role of P iic

2 as follows:

1. P1 first samples a random string r1 (of appropriate length, to be used as
P1’s randomness in the execution of 〈P sh

1 , P sh
2 〉 in Phase III) and uses input

z1 = x1‖r1 and td1 = ⊥ in execution of 〈P iic
1 , P iic

2 〉 for fcom1,com2 .
2. P2 ⇒ P1 : P2 now acts symmetrically. P2 first samples a random string r2

(of appropriate length, to be used as P2’s randomness in the execution of
〈P sh

1 , P sh
2 〉 in Phase III) and uses input z2 = x2‖r2 and td2 = ⊥ in execution

of 〈P iic
1 , P iic

2 〉 for fcom1,com2 .

Informally speaking, the purpose of this phase is to aid the simulator in extract-
ing the adversary’s input and randomness with the help of the trapdoor obtained
in the previous phase. As we will show later, an adversary will never be able to
input a valid trapdoor.

III. Final Secure Computation Phase.5 In this phase, P1 and P2 engage in
an execution of 〈P sh

1 , P sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role
of P sh

2 . Since 〈P sh
1 , P sh

2 〉 is secure only against semi-honest adversaries, parties
first run a coin-flipping protocol to enforce that the coins of each party are truly
random. We then compile the semi-honest 〈P sh

1 , P sh
2 〉 with 〈Pwi, Vwi〉 to ensure

correct behavior on part of each party. More precisely, after sending each protocol
message, a party also gives a proof using 〈Pwi, Vwi〉 that the message generated
is consistent with the transcript so far and the input used in the previous phase.
More precisely, this phase proceeds as follows:

1. P1 ↔ P2 : P1 samples a random string r′
2 (of same length as r2) and sends

it to P2. Similarly, P2 samples a random string r′
1 (of same length as r1) and

sends it to P1. Let r′′
1 = r1 ⊕ r′

1 and r′′
2 = r2 ⊕ r′

2. Now, r′′
1 and r′′

2 are the
random coins that P1 and P2 will use during the execution of 〈P sh

1 , P sh
2 〉.

2. Let q be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists of a
message from P sh

1 followed by a reply from P sh
2 . Let transcript T1,j (resp.,

T2,j) be defined to contain all the messages exchanged between P sh
1 and P sh

2

before the point P sh
1 (resp., P sh

2 ) is supposed to send a message in round j.
For j = 1, . . . , q:
(a) P1 ⇒ P2 : Compute β1,j = P sh

1 (T1,j , x1, r
′′
1 ) and send it to P2. P1 and P2

now engage in an execution of 〈Pwi, Vwi〉, where P1 proves the following
statement:
i. either there exist values x̂1, r̂1 and t̂d1 such that (a) the fcom1,com2

is valid with respect to the value ẑ1 = x̂1‖r̂1 and t̂d1 and (b) β1,j =
P sh
1 (T1,j , x̂1, r̂1 ⊕ r′

1)
ii. or, the non-malleable commitment com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.
5 Part of the text in this phase has been taken verbarim from [17].
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This completes the description of the protocol Σ = 〈P1, P2〉. Note that Π consists
of several instances of WI, such that the proof statement for each WI instance
consists of two parts. Specifically, the second part of the statement states that
prover committed to bit 1 in the non-black box simulation phase. In the sequel,
we will refer to the second part of the proof statement as the trapdoor condition.
Further, we will call the witness corresponding to the first part of the statement
as real witness and that corresponding to the second part of the statement as
the trapdoor witness.

Setting the Parameters k and θ. We will set k to be the maximum round
complexity among UA, WIAOK, 〈P iic

1 , P iic
2 〉 and 〈P sh

1 , P sh
2 〉. We will set θ to be the

sum of the following: a party’s maximum communication complexity in different
primitives used in the protocol described above (excluding when it acts as a
verifier in 〈P, V 〉), and communication complexity of NMCom. More precisely,

θ = max(cz, cua1, cua2, cwiaok, cwi, ciic, ctpc, cNMCom,S) + cNMCom,R,

where cz is the length of the message z (the slot begin message), cua1 is the length
of the UA first message, cua2 is the length of the UA last message, cwiaok is the
prover’s communication complexity in the final WIAOK execution, cwi is the
prover’s communication complexity in WI, ciic is the communication complexity
of any party in 〈P iic

1 , P iic
2 〉, ctpc is the total communication complexity of the semi-

honest two party computation 〈P sh
1 , P sh

2 〉 for the functionality F , cNMCom,S is the
sender’s communication complexity in NMCom and cNMCom,R is the receiver’s
communication complexity in NMCom. Looking ahead, while proving the security
of the above protocol, different parts of the protocol will be taken externally and
NMCom given by the adversary will be exposed to external receiver, etc. Hence,
all of these will be given externally to the machine committed by the simulator
as part of the string y1 in Λ.

The proof of Theorem 1 proceeds along the lines discussed in the introduction
(see Sect. 1.2). For a complete proof refer to the full version of the paper.
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Abstract. The multiple ideal query (MIQ) model [Goyal, Jain, and
Ostrovsky, Crypto’10] offers a relaxed notion of security for concur-
rent secure computation, where the simulator is allowed to query the
ideal functionality multiple times per session (as opposed to just once in
the standard definition). The model provides a quantitative measure for
the degradation in security under concurrent self-composition, where the
degradation is measured by the number of ideal queries. However, to
date, all known MIQ-secure protocols guarantee only an overall average
bound on the number of queries per session throughout the execution,
thus allowing the adversary to potentially fully compromise some ses-
sions of its choice. Furthermore, [Goyal and Jain, Eurocrypt’13] rule out
protocols where the simulator makes only an adversary-independent con-
stant number of ideal queries per session.

We show the first MIQ-secure protocol with worst-case per-session
guarantee. Specifically, we show a protocol for any functionality that
matches the [GJ13] bound: The simulator makes only a constant number
of ideal queries in every session. The constant depends on the adversary
but is independent of the security parameter.

As an immediate corollary of our main result, we obtain the first pass-
word authenticated key exchange (PAKE) protocol for the fully concur-
rent, multiple password setting in the standard model with no set-up
assumptions.

1 Introduction

General feasibility results for secure computation were established nearly three
decades ago in the seminal works of [14,33]. However, these results only promise
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security for a protocol if it is executed in isolation, “unplugged” from any network
activity. In particular, these results are not suitable for the Internet setting
where multiple protocol executions may occur concurrently under the control of
a common adversary.

A Brief History of Concurrent Security. Towards that end, an ambitious
effort to understand and design concurrently secure protocols kicked into gear
with early works such as [10,15], and later the study of the concurrent zero
knowledge setting [7,11,23,30,32]. For other functionalities and in more general
settings, however, far-reaching impossibility results were established [1,3,6,8,13,
18,24]. These results refer to the “plain model” where the participating parties
have no trusted set-up, and hold even if the parties have access to pairwise
authenticated communication and a broadcast channel.

Two main lines of research have emerged in order to circumvent these impos-
sibility results. The first concerns with the use of trusted setup assumptions such
as a common random string, strong public key infrastructure or tamper-proof
hardware tokens (see, e.g. [2,5,22]).

The second line of research is dedicated to the study of weaker security defin-
itions that allow for positive results in the plain model, without additional trust
assumptions. The most notable examples of this include security w.r.t. super-
polynomial time simulation [4,9,12,28,31] and input-indistinguishable compu-
tation [12,26]. One main drawback in this line of research is that it is not always
clear by “how much” is the definition of security relaxed, or in other words “how
much security” is being lost due to concurrent attacks.

The Multiple Ideal Query Model and Its Applications. The multiple
ideal query model (or, the MIQ model in short) of Goyal, Jain and Ostrovsky
[21] takes a different approach to the problem of quantifying the security loss.
In this model, the simulator is allowed to query the ideal functionality multiple
times per session (as opposed to just once in the standard definition). On the
technical side, allowing the simulator multiple queries indeed facilitates proofs
of security in a concurrent setting. On the conceptual side, this model allows for
a natural quantification of the “security loss” incurred by concurrent attack: the
more ideal queries, the weaker the security guarantee. Furthermore, the effect of
multiple ideal queries strongly depends on the task at hand, thus allowing for
more fine-tuned notions of security for a given problem or setting.

One functionality where this approach proved very effective is that of
password-based key exchange (namely the two-party function that outputs a
secret random value to both parties if the inputs provided by the two parties
are equal). When the number of queries made by the simulator per session is
a constant, the security guarantees of the MIQ model actually imply fully con-
current password-based authenticated key exchange (see [16,17,21]). This fact
was exploited by Goyal et al. [21] to get the first concurrent PAKE in the plain
model — albeit with the significant restriction that the same password is to be
used as input in every session. This restriction results from a weakness in their
modeling and analysis - a weakness that we overcome in this work.



Concurrent Secure Computation with Optimal Query Complexity 45

The Central Question: How Many Queries? So, how to best bound the
number of ideal queries made by the simulator? Intuitively, if we allow a large
number of queries, then the security guarantee may quickly degrade and become
meaningless; in particular, if enough queries are allowed, then the adversary may
be able to completely learn the inputs of the honest parties. On the other hand,
if the number of allowed queries is very small (say only 1 + ε per session) then
the security guarantee is very close to that of the standard definition.

To exemplify this further, consider 1-out-of-m OT. Here, as long as λ, the
simulator’s query complexity, is smaller than m, MIQ provides meaningful secu-
rity which degrades gracefully with λ. More generally, the remaining security
for any session i in concurrently secure computation of function f is propor-
tional to the “level of unlearnability” of f(·, xi) after q queries, where xi is the
secret input of the honest party in session i. Password-based key exchange is
an extreme case of an unlearnable function. Ideally, we would like to bring λ as
close as possible to 1.

Prior Work: Average Case vs. Worst Case Guarantees. The best posi-
tive result in the MIQ model is due to Goyal, Gupta, and Jain [19] (improving
upon [21]). They provide a construction where the number of ideal queries in a
session are (1 + log6 n

n ), where n is the security parameter. However, this is only
an average-case guarantee over the sessions that provides very weak security. In
particular, it does not preclude the ideal adversary from making an arbitrarily
large number of queries in some chosen sessions (while keeping the number of
queries low in the other sessions). In cases of interest, such as the PAKE func-
tionality or the above oblivious polynomial evaluation functionality, this means
that the security in some sessions may be completely compromised !

Furthermore, Goyal and Jain [20] recently proved an unconditional lower
bound on the number of ideal queries per session. Specifically, they show that
there exists a two-party functionality that cannot be securely realized in the
MIQ model with any (adversary independent) constant number of ideal queries
per session. A natural and important question is thus what is the best worst-case
bound we can give on the number of ideal queries asked per session?

1.1 Our Results

In this work, we fully settle the question of worst-case number of per session
ideal queries in the context of general function evaluation. Our main result is
stated below.

Theorem 1.1 (Main Result (Informally Stated)). Under standard crypto-
graphic assumptions, for every PPT functionality f , there exists a protocol in the
MIQ model where the simulator makes only a constant number of ideal queries
in every session. The aforementioned constant is dependent upon the adversary,
and, in particular on the number of sessions (rather than being universal).

If the number of concurrent sessions being executed by the adversary is nc, then
the constant in the above theorem will be derived from c.
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We stress that due to the worst-case guarantee of our result, we are able to
achieve, for the first time in the study of the MIQ model, meaningful security for
all sessions, which is much closer to standard security for secure computation.
Interestingly, our protocol is the same as the [19] protocol. Still, we provide a
significantly better analysis of its security. We stress that prior to this work, no
approach for obtaining a worst-case bound on the ideal query complexity was
known.

Our upper bound tightly matches the lower bound of Goyal and Jain [20]
which rule out protocols where the simulator makes a constant number of ideal
queries per session for any universal constant. Taken together, this fully resolves
the central problem in the study of the MIQ problem: a (adversary dependent)
constant number of ideal queries per session is both necessary and sufficient for
simulation. Thus, our work can be viewed as the final step in understanding the
simulator query complexity of the MIQ model.

Fully Concurrent PAKE Without Setup. Say that a password-based key
exchange protocol is fully concurrent if it remains secure in a setting where
unboundedly many executions of the protocol run concurrently, on potentially
different passwords. An immediately corollary of our main result is the resolution
of the long standing open problem of designing a fully concurrent PAKE protocol
in the standard model and with no setup assumptions.

1.2 Technical Overview

Simulator Query Complexity and Precise Simulation. The question of
simulator query complexity in the MIQ model is intimately connected to the
notion of precise simulation introduced by Micali and Pass [25]. Recall that
traditional simulator strategies allow for the simulator’s running time to be an
arbitrary polynomial factor of the (worst-case) running time of the real adver-
sary. The notion of precise simulation concerns with the study of how low this
polynomial can be. This idea is, in fact, much more general and can also be used
in the context of resources other than running time, such as memory, etc. Thus,
in the most general sense, the goal of precise simulation is to develop simulation
strategies whose resource utilization is “close” to the resource utilization of the
real adversary.

As observed in [21], the study of simulator query complexity in the MIQ
model can also be cast as a precise simulation problem by viewing the trusted
party queries as the resource of the simulator. Therefore, advances in precise
simulation strategies go hand in hand with improvements in the simulator query
complexity in the MIQ model. Indeed, prior works in the MIQ model [19,21]
have relied upon sophisticated precise simulation strategies in order to obtain
their positive results. We note, however, that till date, all precise simulation
strategies only focus on minimizing the total cost of the simulator across all the
sessions. Indeed, this is why these works only yield an average-case bound on
the simulator query complexity.
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In this work, we are interested in minimizing the worst-case simulator query
complexity per session. In other words, we are interested in simulation strategies
that guarantee local precision for every session.

Our Approach in a Nutshell. Towards that end, our starting observation is
that the problem of bounding the simulator query complexity per session can
be reduced to bounding the number of times the output message of a session
appears in the entire simulation transcript.1 In other words, we need a pre-
cise (concurrent) simulation strategy where the output message of every session
appears only a constant number of times across the entire simulation transcript.2

For this purpose, we revisit existing precise simulation strategies. Concretely, we
show that a slight variant of the “sparse” rewinding strategy of Goyal, Gupta and
Jain [19] (that we henceforth refer to as the GGJ simulation strategy) satisfies
our desired property. We prove this by a novel, purely combinatorial analysis.
Our final secure computation protocol remains essentially identical to those in
the prior works in the MIQ model.

We now give an overview of the steps involved in our proof. Say that we
wish to analyze the number of queries in session i. Consider the specific point
in the protocol execution of session i where, the simulator actually makes a
query to the ideal functionality: call this point pi (for example, this may be the
5th message of the protocol execution in session i). This means that whenever
the simulator reaches the point pi (in the overall concurrent execution), it will
have to call the trusted functionality for session i to compute the next outgoing
message. Thus, now the problem reduces to simply counting how many times the
point pi occurs in the entire rewinding schedule. Observe that in each thread of
execution, point pi only occurs once. However, there could be multiple threads of
execution resulting because of rewinding. Therefore, pi may also occur multiple
times in the rewinding schedule.

While a direct (full) analysis of the GGJ rewinding strategy [19] turns out
to be complex, we are able to break it down into three different steps. Each step
builds upon the previous one, with the final step yielding us the desired bound
on the simulator query complexity. Below, we provide an informal overview of
each of the three steps and refer the reader to the later sections for details.

Step 1. Lazy-KP with Static Scheduling: We first consider the warm-up
case when scheduling of messages by the adversary is static. This means that the
ordering of the messages of different sessions is decided by the adversary ahead
of time and is fixed (and does not change upon rewinding by the simulator).
Further, instead of directly analyzing the GGJ simulator [19], here we will ana-
lyze the query complexity of the (simpler) “lazy-KP” simulator [23,29,30] for
the case where the simulator uses a splitting factor of n for rewinding. That is,
during simulation, each thread is divided into n equal parts, and, each resulting
part is rewound individually (resulting in different threads of execution).
1 More concretely, we wish to bound the first message in the protocol where the

simulator is forced to query the trusted party in order to obtain the function output.
2 Note that the output message of a session may appear more than once in the simu-

lation transcript if the simulator employs rewinding.



48 R. Canetti et al.

In this case, we are able to prove that the simulator makes at most O(1)
queries to the ideal functionality in any given session. This is done by relying
on the following fact. Say that the point pi does not occur in a given thread.
Then, since the adversary only employs static scheduling, this would mean that
the point pi also cannot occur in any threads resulting from rewinding this
thread. Thus, the proof reduces to a counting argument on the number of threads
resulting from rewinding the part of the main thread containing pi. If d is the
depth of recursion for our recursive rewinding schedule, then we are able to show
that there are at most O(2d) threads containing point pi. However, the depth d
will be a constant for lazy-KP simulation with splitting factor n.

Step 2. Lazy-KP with Dynamic Scheduling: Now we analyze a general
adversary that may dynamically change the ordering of the messages across
different sessions upon being rewound. Hence, different threads of execution may
have different ordering of the messages. We shall continue to analyze the lazy-KP
simulation strategy with splitting factor n.

In this case, we prove that the simulator makes at most O(log(n)) queries to
the ideal functionality in any given session. The key difficulty in this case is that
even if a given thread does not contain the point pi, the threads resulting from
its rewinding may still have pi. Hence, it seems hard to rule out the possibility
that pi may show up in a large number of threads throughout the simulation.

To overcome this problem, we rely on the following fact: once the point pi

is seen in the main thread of execution, it cannot occur in any thread arising
out of the main thread after that point. We also observe that before this point
is seen in the main thread, there seems hope to rule out its occurrence in a
“large” number of look ahead threads. This relies on the symmetry of the main
and the look-ahead threads, and, on the fact that this point has roughly equal
probability of occurring first in the main thread vs occurring first in any given
look ahead thread. This step of the proof is more involved than the first step
and we refer the reader to Sect. 4 for details.

Step 3. Sparsifying the Lazy-KP Simulation: In the final step, we analyze
the sparse rewinding strategy of [19]. Very roughly speaking, the sparse rewinding
strategy of [19] aims to rewind the adversary in “as few places as possible” while
still solving all the sessions. More specifically, there is a cost associated with
creating each look ahead, and, the goal of the rewinding strategy is to solve all
sessions while minimizing the cost.

The sparse rewinding strategy of [19] builds upon the lazy-KP simulator with
splitting factor n. Very roughly, [19] pick a subset of the total threads resulting
out of the lazy-KP simulation, and choose to execute only the threads in the
subset (while ignoring the remaining threads by aborting them at their start). In
more detail, at each level of recursion, [19] randomly chooses polylog(n)

n fraction
of the total threads and execute them while ignoring the rest. Interestingly,
Goyal et al. [19] show that, if one uses protocols with somewhat higher round
complexity, all the session will still be solved even though most of the look-ahead
threads are never executed.
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The key idea of our final step is to leverage this sparsification in order the
reduce the number of queries from O(log(n)) from the previous step to O(1).
Recall from above that if we were to use the full lazy-KP simulation, the point
pi would have occurred at O(log(n)) places in the entire simulation. However,
now, in the GGJ rewinding strategy, it will occur only O(1) times because most
of the threads will never be executed. More details are given in Sect. 5.

2 Our Model

Let n denote the security parameter. We consider malicious, static adversaries
that choose whom to corrupt before the start of any protocol. We work in the
static input setting, i.e., we assume that the inputs of the honest parties in all
sessions are fixed at the beginning. We do not require fairness.

Ideal Model. In the ideal world experiment, there is a trusted party for com-
puting the desired two-party functionality f . Let there be two parties P1 and P2

that are involved in multiple, say m = m(n), evaluations of f . Let S denote the
adversary. The ideal world execution (parametrized by λ) proceeds as follows.

I. Inputs: P1 and P2 obtain a vector of m inputs, denoted �x and �y respectively.
The adversary is given auxiliary input z, and chooses a party to corrupt.
Without loss of generality, we assume that the adversary corrupts P2. The
adversary receives the input vector �y of the corrupted party.

II. Session Initiation: The adversary initiates a new session by sending a
start-session message to the trusted party. The trusted party then sends
(start-session, i) to P1, where i is the index of the session.

III. Honest Parties Send Inputs to Trusted Party: Upon receiving the
message (start-session, i) from the trusted party, P1 sends (i, xi) to the trusted
party, where xi denotes its input for session i.

IV. Adversary Sends Input to Trusted Party and Receives Output: At
any point, the adversary may send a message (i, �, y′

i,�) to the trusted party
for any y′

i,� of its choice. It receives back (i, �, f(xi, y
′
i,�)) where xi is the input

value that P1 previously sent to the trusted party for session i. For any i, the
trusted party accepts at most λ tuples indexed by i from the adversary.

V. Adversary Instructs Trusted Party to Answer Honest Party: When
the adversary sends a message of the type (output, i, �) to the trusted party,
the trusted party sends (i, f(xi, y

′
i,�)) to P1, where xi and y′

i,� denote the
respective inputs sent by P1 and adversary for session i.

VI. Outputs: The honest party P1 always outputs the values f(xi, y
′
i,�) that

it obtained from the trusted party. The adversary may output an arbitrary
efficient function of its auxiliary input z, input vector �y and the outputs
obtained from the trusted party.

The ideal execution of a function F with security parameter n, input vectors �x, �y
and auxiliary input z to S, denoted IdealF,S(n, �x, �y, z), is defined as the output
pair of the honest party and S from the above ideal execution.
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Definition 2.1 (λ-Ideal Query Simulator). Let S be a non-uniform proba-
bilistic (expected) ppt machine representing the ideal-model adversary. We say
that S is a λ-ideal query simulator if it makes at most λ output queries per
session in the above ideal experiment.

Real Model. Let Π be a two-party protocol for computing F . Let A denote a
non-uniform probabilistic polynomial-time adversary that controls either P1 or
P2. The parties run concurrent executions of the protocol Π, where the honest
party follows the instructions of Π in each execution i using input xi. The
scheduling of all messages is controlled by the adversary. At the conclusion of
the protocol, an honest party computes its output as prescribed by the protocol.
Without loss of generality, we assume the adversary outputs exactly its entire
view of the execution of the protocol.

The real concurrent execution of Π with security parameter n, input vectors
�x, �y and auxiliary input z to A, denoted RealΠ,A(n, �x, �y, z), is defined as the
output pair of the honest party and A, resulting from the above real-world
process.

Definition 2.2 (λ-Secure Concurrent Computation in the MIQ Model).
A protocol Π is said to λ-securely realize a functionality F under concurrent self
composition in the MIQ model if for every real model non-uniform ppt adversary
A, there exists a non-uniform (expected) ppt λ-ideal query simulator S such that
for all polynomials m = m(n), every pair of input vectors �x ∈ Xm, �y ∈ Y m,
every z ∈ {0, 1}∗,

{IdealF,S(n, �x, �y, z)}n∈N

c≡ {RealΠ,A(n, �x, �y, z)}n∈N

3 Framework for Concurrent Extraction

The Setting. Consider the following two-party computation protocol Π =
(P1, P2):

– Stage 1: First, P1 and P2 interact in the commit phase of an execution of
an extractable commitment scheme 〈C,R〉 (described below) where P2 acts as
the committer, committing to a random string, and, P1 acts as the receiver.

– Stage 2: At the end of the commitment protocol, P1 sends a special message
msg to P2.

Now, consider the scenario where P1 and P2 are interacting in multiple con-
current executions of Π. Suppose that P2 is corrupted. Our goal is to design a
simulator algorithm S that satisfies the following two properties:

– Extraction in all Sessions: S must successfully extract the value committed
by adversarial P ∗

2 in each execution of Π.
– Minimize the Query Parameter: Let λ denote the upper bound on the

number of times the special message msgs of any session s appears in the entire
simulation transcript. We refer to λ as the query parameter. Then, the goal of
S is to minimize the query parameter.
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In the next subsection, we describe the extractable commitment scheme 〈C,R〉
from [30]. Later, in Sects. 4 and 5, we analyze the “lazy-KP” rewinding strat-
egy [23,29,30] and the “sparse” rewinding strategy of Goyal, Gupta and Jain
(GGJ) [19].

3.1 Extractable Commitment Protocol 〈C, R〉
Let com(·) denote the commitment function of a non-interactive perfectly bind-
ing string commitment scheme. Let � = ω(log n). Let N = N(n) which will be
determined later depending on the extraction strategy. The commitment scheme
〈C,R〉 between the committer C and the receiver R is described as follows.

Commit Phase: This consists of two stages, namely, the Init stage and the
Challenge-Response stage, described below:

Init: To commit to a n-bit string σ, C chooses (� ·N) independent random pairs
of n-bit strings {α0

i,j , α
1
i,j}�,N

i,j=1 such that α0
i,j ⊕ α1

i,j = σ for all i ∈ [�], j ∈ [N ].
C commits to all these strings using com, with fresh randomness each time. Let
B ← com(σ), and A0

i,j ← com(α0
i,j), A1

i,j ← com(α1
i,j) for every i ∈ [�], j ∈ [N ].

Challenge-Response: For every j ∈ [N ], do the following:

– Challenge: R sends a random �-bit challenge string vj = v1,j , . . . , v�,j .
– Response: ∀i ∈ [�], if vi,j = 0, C opens A0

i,j , else it opens A1
i,j by sending the

decommitment information.

Open Phase: C opens all the commitments by sending the decommitment
information for each one of them. R verifies the consistency of the revealed
values. This completes the description of 〈C,R〉.
Notation. We introduce some terminology that will be used in the remainder
of this paper. We refer to the committed value σ as the preamble secret. A sloti
of the commitment scheme consists of the i’th Challenge message from R and
the corresponding Response message from C. Thus, in the above protocol, there
are N slots.

4 Lazy-KP Extraction Strategy

In this section, we discuss the “lazy-KP” rewinding strategy [23,29,30] with a
“splitting factor” of n. We note that the idea of using a large splitting factor
was first used in [27].

For this strategy, we will first prove that λ = O(1) for static adversarial
schedules. Next, we will prove that for dynamic schedules, λ = O(log n). In both
of these results, the constants in O depend on number of sessions started by the
concurrent adversary.

Lazy-KP Simulator. The rewinding strategy of the lazy-KP simulator is spec-
ified by the Lazy-KP-Simulate procedure. Very roughly, the simulator divides
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the current thread (given as input) into n equal parts and then rewinds each
part individually and recursively. The input to the Lazy-KP-Simulate proce-
dure consists of a triplet (�, hist, T ). The parameter � denotes the adversary’s
messages to be explored, the string hist is a transcript of the current thread of
execution, and T is a table containing the contents of all the adversary’s mes-
sages explored so far (to extract the preamble secrets and for sending the Stage
2 special message in protocol Π in any session).

The simulation is performed by invoking the procedure Lazy-KP-Simulate
with appropriate parameters. Let m = poly(n) denote the number of concurrent
sessions in the adversarial schedule. Then, the Lazy-KP-Simulate procedure
is invoked with input (m (N + 1) , ∅, ∅), where m(N + 1) is the total number
of adversary’s messages in a schedule of m sessions. The Lazy-KP-Simulate
procedure is described in Fig. 1. Note that here (similar to [27]) we divide each
thread into n parts. In other words, we consider a splitting factor of n. For every

Lazy-KP-Simulate(�, hist, T ):

Bottom level (� = 1):

– Run P1’s algorithm to choose the next message α1 and feed P ∗
2 with (hist, α1).

Let α2 be the answer of P ∗
2 .

– Output ((α1, α2), α2).

Recursive step (� > 1):

1. Initialize h̃ist = ∅, T̃ = ∅.
2. For every i ∈ [n]:

(a) Compute (h̃isti,1, T̃i,1) ← Lazy-KP-Simulate
(
�/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

(b) Compute (h̃isti,2, T̃i,2) ← Lazy-KP-Simulate
(
�/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

(c) Update h̃ist = (h̃ist, h̃isti,1) and T̃ = (T̃ , T̃i,1, T̃i,2).

3. Output (h̃ist, T̃ ).

Fig. 1. Lazy-KP Simulator with splitting factor n. Even though the messages in
{˜histi,2} do not appear in the output, some of them do appear in ˜T .

session s consisting of an execution of Π, the goal of the simulator is to find
two instances of any slot i ∈ [N ] of the commitment protocol 〈C,R〉 where the
simulator’s challenges are different and adversary responds with a valid response
to each challenge. Note that in this case, the simulator can extract the preamble
secret of 〈C,R〉 from the two responses of the adversary. On the other hand,
if the simulation reaches Stage 2 in Π at any time, without having extracted
the preamble secret from the adversary, then it gives up the simulation and
outputs ⊥. In this case, we say the simulator gets stuck.
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It follows from [29] that the lazy-KP simulator (as described above) gets
stuck with only negligible probability.

4.1 Terminology for Concurrent Simulation

We introduce some terminology and definitions regarding concurrent simulation
that will be used in the rest of the paper.

Execution Thread. Consider any adversary that starts m = poly(n) number of
concurrent sessions of Π. In order to extract the preamble secret in every session,
the simulator creates multiple execution threads, where a thread of execution is a
simulation of (part of) the protocol messages in the m sessions. We differentiate
between the following:

Main Thread vs Look-ahead Thread: The main thread is a simulation of a com-
plete execution of the m sessions, and this is the execution thread that is output
by the simulator. In addition, from any execution thread, the simulator may cre-
ate other threads by rewinding the adversary to a previous state and continuing
the execution from that state. Such a thread is called a look-ahead thread. Note
that a look-ahead thread can be created from another look-ahead thread.

Complete vs Partial Thread: We say that an execution thread T is a complete
thread if it shares a prefix with the main thread: it starts where the main thread
starts, and, continues until it is terminated by the simulator. Other threads that
start from intermediary points of the simulation are called partial threads. Note
that by definition, the main thread is a complete thread. In general, a complete
thread may consist of various partial threads. Various complete threads may
overlap with each other. For simplicity of exposition, unless necessary, we will
not distinguish between complete and partial threads in the sequel.

Simulation Transcript. The simulation transcript is the set of all the mes-
sages between the simulator and the adversary during the simulation of all the
concurrent sessions. In particular, this includes the messages that appear on the
main thread as well as all the look-ahead threads.

Simulation Index. Consider m = poly(n) concurrent executions of Π. Let
M = m(2N +2), where 2N +2 is the round complexity of Π. Then, a simulation
index i denotes the point where the i’th message (out of a maximum of M
messages) is sent on any complete execution thread in the simulation transcript.

Note that a simulation index i may appear multiple times over various threads
in the simulation transcript. However, a simulation index i can appear at most
once on any given thread (complete or partial). In particular, every simulation
index i ∈ [M ] appears on the main thread (unless the main thread is aborted
prematurely). Further, if a look-ahead thread T was created from a thread at
simulation index i, then only simulation indices j > i can appear on T .

Static vs Dynamic Scheduling. Consider the concurrent execution of m =
poly(n) instances of Π. Recall that the adversary controls the scheduling of the
protocol messages across the m sessions. We say that a concurrent schedule is
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static if the scheduling of the protocol messages is decided by the adversary ahead
of time and does not change upon rewindings. Thus, in a static schedule, protocol
messages appear in the same order on every complete thread. In particular, for
every i ∈ [M ], every instance of a simulation index i in the simulation transcript
corresponds to the same message index j ∈ [2N +2] of the same session s (out of
the m sessions). However note that the actual content of the j’th message may
differ on every execution thread.

We say that a concurrent schedule is dynamic if at any point during the
execution, the adversary may decide which message to schedule next based on the
protocol messages received so far. Therefore, in a dynamic schedule, the ordering
of messages may be different on different execution threads in the simulation. In
particular, each instance of a simulation index i may correspond to a different
message ji of a different session si.

Recursion Levels. We define recursion levels of simulation and count the num-
ber of threads at each recursion level for the lazy-KP simulator. We say that the
main thread is at recursion level 0. Note that the Lazy-KP-Simulate divides
the main thread of execution into n parts and executes each part twice. This
results in 2n execution threads, n of which are part of the main thread, while
the remaining n are look-ahead threads. All of these 2n threads are said to be at
recursion level 1. Now, each of these threads at recursion level 1 is divided into n
parts and each part is executed twice. This creates 2n threads at recursion level
2. Since there are 2n threads at recursion level 1, in total, we have (2n)2 threads
at recursion level 2. (Again, out of these (2n)2 threads, 2n2 threads actually lie
on the 2n threads at level 1.) This process is continued recursively. At recursion
level �, there are (2n)� threads. Since there are m(2N + 2) messages across the
m sessions, the depth of recursion is a constant c′, where c′ = c + log(2N + 2)
when m = nc. Then, at recursion level c′, there are (2n)c′

threads.

Sibling Threads. Consider Fig. 2 where a thread T at some recursion level �
is divided into n = 4 parts, which leads to the creation of 8 threads at recursion
level � + 1. Each pair of threads (Ti, T

′
i ) that are started from the same point

are referred to as sibling threads.

Fig. 2. One recursion step for splitting factor 4. Every Ti and T ′
i are sibling threads.

4.2 Analysis of λ for Static Schedules

We start by analyzing the lazy-KP extraction strategy for static schedules. Let
λlazy-KP denote the query parameter for the lazy-KP simulator.
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Theorem 4.1. For any constant c and any concurrent execution of m = nc

instances of Π where the scheduling of messages is static, λlazy-KP = 2c′
, where

c′ = c + log(2N + 2).

In order to prove Theorem 4.1, we use the following lemma that follows by a
simple counting argument (the proof is deferred to the full version).

Lemma 4.2. For any constant c and any concurrent execution of m = nc

instances of Π, the simulation transcript generated by the lazy-KP simula-
tor is such that every simulation index i ∈ [M ] appears 2c′

times, where
c′ = c + log(2N + 2).

Consider any session s. From the definition of static scheduling, we have that for
every j ∈ [2N+2], if the j’th message of session s appears at simulation index i on
any thread, then every instance of simulation index i in the simulation transcript
corresponds to the j’th message of session s. Now, from Lemma 4.2, since each
simulation index appears 2c′

times in the simulation transcript, we have that the
special message of every session s appears 2c′

times in the simulation. Thus, we
have that λlazy-KP = 2c′

for static schedules.

4.3 Analysis of λ for Dynamic Schedules

Theorem 4.3. For any polynomial m = poly(n), for any concurrent execution
of m instances of Π (with possibly dynamic scheduling of messages), λlazy-KP =
O(log n) except with negligible probability.

Proof of Theorem 4.3. Fix any session s out of the m = nc sessions. Note that
the special message msgs of session s appears exactly once on the main thread.
Let imain denote the simulation index where msgs appears on the main thread.
Now, we will count:

1. The number of times msgs appears in the simulation transcript before imain.
Let δ1 denote this number.

2. The number of times msgs appears in the simulation transcript at imain or
after imain. Let δ2 denote this number.

Thus, the total number of times msgs appears in the simulation transcript is
δ1 + δ2. It suffices to prove that δ1 + δ2 = O(log n).

Let i1, . . . , ik be the distinct simulation indices where msgs appears in the
simulation transcript. Let i1, . . . , ik be ordered, i.e., for every � ∈ [k−1], i� < i�+1.
Let k1 ≤ k be such that ik1 < imain and ik1+1 ≥ imain.

Lemma 4.4. For any � ∈ [k], the probability that msgs does not appear on the
main thread at simulation index i� is at most (1 − 1

c′ ).

Proof. Consider the simulation index i1. From Lemma 4.2, we have that i1
appears on 2c′

threads in the simulation transcript. Let T [i1] = T1, . . . , T2c′

denote these threads. Now, let q be such that the special message msgs appears



56 R. Canetti et al.

at simulation index i1 on q of these 2c′
threads. Let T ∗[i1] = T ∗

1 , . . . , T ∗
q denote

these q threads. Let Tmain denote the main thread. Then, we have that:

Pr [Tmain ∈ T ∗ [i1]] =
q

2c′ (1)

To see this, recall that the Lazy-KP-Simulate procedure uses uniformly random
coins on each execution thread, and follows the same strategy. Thus, the view
of the adversary is indistinguishable on each thread. In particular, if p is the
probability that a message α appears on a thread T and m′ appears on its
sibling thread T ′ with, then with probability p − negl(n), m′ appears on T and
m appears on T ′. (This is the “symmetry” property for threads in the lazy-KP
simulation.) Therefore, Eq. 1 follows.

From Eq. 1, we have that:

Pr [Tmain /∈ T ∗ [i1]] = 1 − q

2c′

Note that the above probability is maximum when q = 1. Hence, we have that:

Pr[msgs does not occur on main thread at i1] ≤ 1 − 1
2c′ . (2)

Now, consider simulation index i2. Again, from Lemma 4.2, we have that i2
appears on 2c′

threads. Let T [i2] denote the set of these threads. Now, note that
msgs cannot appear on the look-ahead threads T ∈ T ∗[i1]∩T [i2]. Thus, following
Eq. 2, we have that:

Pr[msgs does not occur on main thread at i2] ≤ 1 − 1
2c′′ .

where c′′ ≤ c′. Continuing the same argument, we have that for every � ∈ [k−1],

Pr[msgs is not on main thread at i�+1] ≤ Pr[msgs is not on main thread at i�]

Thus, for every i�, we have that the probability that msgs does not occur on
main thread at i� is at most 1 − 1

c′ .

Computing δ1. Now, note that (1 − 1
c′ )t = negl(n) for t = ω(log n). Therefore,

we have that k1 = O(log n). Now, since each of the simulation indices i1, . . . , ik1

appears 2c′
times in the simulation transcript, we have that:

δ1 ≤ 2c′O(log n) (3)

Computing δ2. We now compute the value of γ2. Towards this, let us suppose that
for every simulation index i ∈ [�], the Lazy-KP-Simulate procedure runs all
threads starting from simulation index i in parallel. That is, Lazy-KP-Simulate
performs one step of execution on each of these threads. It then performs the
next execution step on each of these threads, and so on. Note that this is without
loss of generality since the Lazy-KP-Simulate procedure runs all such threads
independently.
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Now, we first observe that msgs cannot appear on a look-ahead thread that
starts at a simulation index i > imain. Thus, to compute δ2, we only need to
consider the look-ahead threads that started at simulation indices i < imain and
did not finish before reaching imain. Let Tgood denote the set of such threads.

By using Lemma 4.2, we can claim that |Tgood| ≤ 2c′
. Then, assuming the

worst case where msgs appears on each thread T ∈ Tgood, we have that δ2 ≤ 2c′

5 GGJ Extraction Strategy

In this section, we discuss the GGJ extraction strategy [19] and analyze the query
complexity parameter for the same. Unlike [19] that used a splitting factor of 2,
we will work with n as the splitting factor. For this strategy, we will prove that for
every concurrent schedule of polynomial number of sessions, the query parameter
λ = O(1). Here, the constant in O depends on the number of concurrent sessions.

Overview. Roughly speaking, the GGJ rewinding strategy can be viewed as
a “stripped down” version of the lazy-KP simulation strategy. In particular,
unlike lazy-KP that executes every thread at every recursion level, here we only
execute a small fraction of them. The actual threads that are to be executed are
chosen uniformly at random, at every level. It is shown in GGJ that by slightly
increasing the round complexity – (roughly) N = n2 from N = n, executing
a polylogn

N fraction of threads at every level is sufficient to extract the preamble
secret in every session.

We describe the GGJ rewinding strategy in two main steps:

1. We first describe an algorithm Sparsify that essentially selects which threads
to execute in the lazy-KP recursion tree (Sect. 5.1).

2. Next, we describe the actual GGJ simulation procedure GGJ-Simulate that
is essentially the same as the Lazy-KP-Simulate strategy, except that it only
executes the threads selected by Sparsify (Sect. 5.2).

5.1 The Sparsification Procedure

We first describe the lazy-KP simulation tree and give a coloring scheme for the
same. Next, we describe the Sparsify algorithm that takes the lazy-KP simulation
tree as input and outputs a “trimmed” version of it that will correspond to the
GGJ simulation tree.

Lazy-KP Simulation Tree. Let m = nc be the total number of concurrent
sessions of Π started by an adversary A. Then, the Lazy-KP-Simulate strategy
for A can be described by a 2n-ary tree Treelazy-KP of constant depth c′ where
c′ = c + log(2N + 2). The nodes in Treelazy-KP are colored white or black as per
the following strategy:

– The root node is colored white.
– Consider the 2n child nodes of any parent node. The odd numbered nodes are

colored white and the even numbered nodes are colored black.
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Let us explain our coloring strategy. The root node (which is colored white)
corresponds to the main thread of execution. Each black colored node Node cor-
responds to a look-ahead thread that was forked from the thread corresponding
to node Parent(Node). A white colored node Node (except the root node) cor-
responds to a thread T ′ that is a part of the thread T corresponding to node
Parent(Node).

Figure 3 denotes the lazy-KP simulation tree for splitting factor n = 2 with
white boxes representing white nodes and grey boxes representing black nodes.

Fig. 3. The lazy-KP simulation tree for splitting factor 2.

Node Labeling. To facilitate the description of the GGJ simulation strategy, we
first describe a simple tree node labeling strategy for Treelazy-KP. The root node
is labeled 1. The i’th child (out of 2n children) of the root node is labeled (1, i).
More generally, consider a node Node at level � ∈ [c′]. Let path be its label. Then
the i’th child of Node is labeled (path, i).

Below, whenever necessary, we shall refer to the nodes by their associated
labels.

The Sparsify Procedure. Let p be such that 1
p = polylog(n)

N . The Sparsify function
transforms the lazy-KP simulation tree Treelazy-KP into a “sparse” tree Treesp in
the following manner.

Let the root node correspond to level 0 and the leaf nodes correspond to
level c′. The Sparsify procedure starts at level 0 and traverses down Treelazy-KP,
stopping at level c′. It performs the following steps at every level � ∈ [c′]:

1. Choose 1
p fraction of the total black nodes at level �, uniformly at random.

Let B� denote the set of these nodes.
2. Delete from Treelazy-KP, every black node Node at level � that is not present

in set B�. Further, delete the entire subtree of Node from Treelazy-KP.

The resultant tree is denoted as Treesp. Looking ahead, we will describe the GGJ
rewinding strategy as essentially a modification of Lazy-KP-Simulate in that
it only executes the threads corresponding to the nodes in Treesp.
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5.2 The GGJ-Simulate Procedure

The rewinding strategy of the GGJ simulator is specified by the GGJ-Simulate
procedure. The input to the GGJ-Simulate procedure is a tuple (path,
�, hist, T ). The parameter path denotes the label of the node in Treesp that is
to be explored, � denotes the number of adversary’s messages to be explored
(on the thread corresponding to the node labeled with path), the string hist is a
transcript of the current thread of execution, T is a table containing the contents
of all the adversary’s messages explored so far (to extract the preamble secrets
and for sending the Stage 2 special message in Π in any session).

The simulation is performed by invoking the procedure GGJ-Simulate with
appropriate parameters. Let m = poly(n) denote the number of concurrent ses-
sions in the adversarial schedule. Then, the GGJ-Simulate procedure is invoked
with input (1,m (N + 1) , ∅, ∅), where m(N + 1) is the total number of adver-
sary’s messages in a schedule of m sessions. The GGJ-Simulate procedure
is described in Fig. 4. Note that unlike [19], where each thread is recursively
divided into two parts, here we divide each thread into n parts. In other words,
we consider a splitting factor of n.For every session s consisting of an execution
of Π, the goal of the simulator is to find two instances of any slot i ∈ [N ] of
the commitment protocol 〈C,R〉 where the simulator’s challenges are different
and adversary responds with a valid response to each challenge. Note that in
this case, the simulator can extract the preamble secret of 〈C,R〉 from the two
responses of the adversary. On the other hand, if the simulation reaches Stage 2
in Π at any time, without having extracted the preamble secret from the adver-
sary, then it gives up the simulation and outputs ⊥. In this case, we say the
simulator gets stuck.

It is implicit in [19] that the GGJ simulator (as described above) gets stuck
with only negligible probability when N = O(n2). We now analyze the query
parameter λGGJ for the GGJ simulation strategy. A formal proof is deferred to
the full version.

Theorem 5.1. For every constant c, every m = nc number of concurrent execu-
tions of Π, the query parameter λGGJ = O(1), where the constant depends on c.

Proof (Sketch). Fix any session s. We will show that the special message msgs

can appear at most O(1) times at each recursion level RL�. Then, since there are
only a constant number of recursion levels, it will follow that λGGJ = O(1).

Towards that end, lets fix a recursion level �. First recall from Theorem 4.3
that for the lazy-KP simulation strategy, λlazy-KP = O(log n). In particular, this
implies that at every recursion level � in the lazy-KP simulation, msgs for a
session s appears on at most O(log n) threads. Using the tree terminology as
introduced earlier, we have that msgs appears on (the threads corresponding to)
at most O(log n) black nodes at level � in Treelazy-KP. Now, recall that at every
level �, the Sparsify procedure selects only 1

p = polylogn
N fraction of black nodes,

uniformly at random, and deletes the rest of the black nodes. Using Chernoff
bound, we can then show that the probability that Sparsify selects ω(1) black
nodes containing msgs is negligible.
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GGJ-Simulate(path, �, hist, T ):

Bottom level (� = 1):

– Run P1’s algorithm to choose the next message α1 and feed P ∗
2 with (hist, α1).

Let α2 be the answer of P ∗
2 .

– Output ((α1, α2), α2).

Recursive step (� > 1):

1. Initialize h̃ist = ∅, T̃ = ∅.
2. For every i ∈ [n]:

– If node (path, 2i − 1) /∈ Treesp, set h̃isti,1 = ∅, T̃i,1 = ∅.
Else, compute:

(h̃isti,1, T̃i,1) ← GGJ-Simulate
(
(path, 2i − 1) , �/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

– If node (path, 2i) /∈ Treesp, set h̃isti,2 = ∅, T̃i,2 = ∅.
Else, compute:

(h̃isti,2, T̃i,2) ← GGJ-Simulate
(
(path, 2i) , �/n,

(
hist, h̃ist

)
,
(
T , T̃

))
.

– Update h̃ist = (h̃ist, h̃isti,1) and T̃ = (T̃ , T̃i,1, T̃i,2).

3. Output (h̃ist, T̃ ).

Fig. 4. GGJ Simulator with splitting factor n. Even though the messages in {˜histi,2}
do not appear in the output, some of them do appear in ˜T .

6 From Concurrent Extraction to Concurrent Secure
Computation

Theorem 6.1. Assuming 1-out-of-2 oblivious transfer, for any efficiently com-
putable functionality f there exists a protocol Π that O(1)-securely realizes f in
the MIQ model.

We construct such a protocol by following the exact recipe of [19,21]. We note
that the works of [19,21] show how to compile a semi-honest secure computation
protocol Πsh for any functionality f into a new protocol Π that securely realizes
f in the MIQ model. The core ingredient of their compiler is a concurrently
extractable commitment 〈C,R〉: if there exists a concurrent simulator for 〈C,R〉
with query parameter λ, then the resultant (compiled) protocol Π λ-securely
realizes f .

In order to prove Theorem 6.1, we construct such a protocol Π by simply
plugging in our O(n2)-round extractable commitment scheme in the construction
of [19,21]. Then, it follows from Theorem 5.1 that protocol Π O(1)-securely
realizes f in the MIQ model, where the constant in O depends on c, where nc is
the number of sessions opened by the concurrent adversary.
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Fully Concurrent PAKE in the Plain Model. Consider the PAKE function-
ality: it takes a password as input from each party, and, if they match, outputs a
randomly generated key to both of them. The above protocol, when executed for
the PAKE functionality gives a PAKE construction in the MIQ model where the
simulator makes a constant number of queries per session in the ideal world. We
then plug in Lemma 7 in [21] which shows that a PAKE construction in the MIQ
model for a constant number of queries implies a concurrent PAKE as per the
definition of Goldreich and Lindell [16] (with the modification that the constant
in big O is adversary dependent). Put together, this gives us a construction of
concurrent password-authenticated key exchange in the plain model.

References

1. Agrawal, S., Goyal, V., Jain, A., Prabhakaran, M., Sahai, A.: New impossibility
results on concurrently secure computation and a non-interactive completeness
theorem for secure computation. In: CRYPTO (2012)

2. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols with
relaxed set-up assumptions. In: FOCS (2004)

3. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS (2006)

4. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition using super-polynomial simulation. In: Proc. 46th FOCS (2005)

5. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

6. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

7. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-

knowledge requires
∼
Ω (log n) rounds. In: STOC, pp. 570–579 (2001)

8. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. In: Eurocrypt (2003)

9. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS (2010)

10. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (electronic) (2000), preliminary version in STOC 1991

11. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC, pp. 409–
418 (1998)

12. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in con-
stant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 99–116. Springer, Heidelberg (2012)

13. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results
for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

15. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 Feburary 1996. http://epubs.siam.org/sam-bin/
dbq/article/22068, preliminary version appeared in ICALP1990

http://epubs.siam.org/sam-bin/dbq/article/22068
http://epubs.siam.org/sam-bin/dbq/article/22068


62 R. Canetti et al.

16. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 408. Springer, Heidelberg
(2001)

17. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. J.
Cryptology 19(3), 241–340 (2006)

18. Goyal, V.: Positive results for concurrently secure computation in the plain model.
In: FOCS (2012)

19. Goyal, V., Gupta, D., Jain, A.: What information is leaked under concurrent com-
position? In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 220–238. Springer, Heidelberg (2013)

20. Goyal, V., Jain, A.: On concurrently secure computation in the multiple ideal
query model. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 684–701. Springer, Heidelberg (2013)

21. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation
on the internet in the plain model. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 277–294. Springer, Heidelberg (2010)

22. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

23. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC (2001)

24. Lindell, Y.: Bounded-concurrent secure two-party computation without setup
assumptions. In: STOC, pp. 683–692. ACM (2003)

25. Micali, S., Pass, R.: Local zero knowledge. In: STOC (2006)
26. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS

(2006)
27. Pandey, O., Pass, R., Sahai, A., Tseng, W.-L.D., Venkitasubramaniam, M.: Precise

concurrent zero knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 397–414. Springer, Heidelberg (2008)

28. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Eurocrypt (2003)

29. Pass, R., Tseng, W.L.D., Venkitasubramaniam, M.: Concurrent zero knowledge,
revisited. J. Cryptology 27(1), 45–66 (2014)

30. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS (2002)

31. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC (2004)

32. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge
proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 415. Springer,
Heidelberg (1999)

33. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS (1986)



Constant-Round MPC with Fairness
and Guarantee of Output Delivery

S. Dov Gordon1(B), Feng-Hao Liu2, and Elaine Shi3

1 Department of Computer Science, George Mason University, Fairfax, USA
crypto@dovgordon.com

2 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu
3 Department of Computer Science, Cornell University, Ithaca, USA

runting@gmail.com

Abstract. We study the round complexity of multiparty computation
with fairness and guaranteed output delivery, assuming existence of an
honest majority. We demonstrate a new lower bound and a matching
upper bound. Our lower bound rules out any two-round fair protocols
in the standalone model, even when the parties are given access to a
common reference string (CRS). The lower bound follows by a reduction
to the impossibility result of virtual black box obfuscation of arbitrary
circuits.

Then we demonstrate a three-round protocol with guarantee of output
delivery, which in general is harder than achieving fairness (since the
latter allows the adversary to force a fair abort). We develop a new
construction of a threshold fully homomorphic encryption scheme, with a
new property that we call “flexible” ciphertexts. Roughly, our threshold
encryption scheme allows parties to adapt flexible ciphertexts to the
public keys of the non-aborting parties, which provides a way of handling
aborts without adding any communication.

1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to
securely compute a function on their inputs with several desired properties,
including: correctness (honest parties should not receive a wrong output),
and privacy (corrupted parties cannot learn anything beyond the prescribed
output). In addition to these two basic properties, one might further require
fairness (corrupted parties receive their output only if all honest parties receive
output), or the stronger guarantee of output delivery (corrupted parties can-
not prevent honest parties from receiving their output). Alternatively, a relaxed
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security notion is often used, called security with abort – it is possible that
the attacker can prevent the honest parties from receiving output. All of these
requirements can be formalized in an Ideal/Real paradigm [5,13], which provides
a nice way to analyze security.

In this work, we explore the round complexity required for achieving these
various properties. For the setting of security with abort, we already understand
the round complexity fairly well – Asharov et al. [1] constructed a 3-round proto-
col (in the common reference string model) under the learning with error (LWE)
assumption; Garg et al. [10] constructed a 2-round protocol for general compu-
tation (in the CRS model) using indistinguishable obfuscation; it is well-known
that one-round protocols are in general not possible.

However, for protocols with fairness and guarantee of output delivery, our
understanding of round complexity is still incomplete. Regarding feasibility,
everything is well understood: if there is no honest majority, Cleve proved [6]
that fair MPC for general computation is not possible. In the setting of an
honest majority, we know that we can always achieve fairness [4], and, assum-
ing a broadcast channel, we can always guarantee output delivery [7]. However,
the optimal round complexity for this setting (of an honest majority) is still
unknown1. Asharov et al. [1] show that their basic protocol can be extended to
achieve security with guarantee of output delivery (and thus fairness) in 5 rounds,
assuming there exists an honest majority. By slightly modifying the multi-key
FHE protocol of Lopez-Alt, Tromer, and Vaikuntanathan [18], we can obtain
a 5-round protocol with guarantee of output delivery, assuming there exists an
honest majority. This is the best known round complexity for achieving fairness
for any t < N/2. For the lower-bounds, Gennaro et al. [11] showed that there
are functionalities that cannot be computed (fairly) by 2-round protocols, even
in the CRS model. Recently, Garg et al. [10] claimed that their 2-round pro-
tocol (in the CRS model) also achieves fairness, but the claim contradicts the
lower-bound of [11], as well as the (stronger) lower bound we present here.

1.1 Our Results

Our main two results are matching upper and lower bounds for three-round
multiparty computation with guaranteed output delivery with security against
a malicious minority of parties. More specifically:

– We show that 2-round, fair MPC for general functions is impossible, even
if there is an honest majority. We strengthen the impossibility result of
Gennaro et al. [11], demonstrating impossibility even when a fail-stop adver-
sary corrupts only a single party. Both our result and the result of Gennaro
et al. extend to the CRS model. (Sect. 3.)

– There exists a 3-round MPC with guaranteed output delivery for general
functions in the CRS model, secure against a minority of semi-honest fail-stop
adversaries. The security relies on the learning with errors (LWE) assumption.
(Sect. 4.)

1 For more restricted corruption settings, we do know how to construct 2-round pro-
tocols. See related work for more discussions.
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– If parties have access to an authenticated broadcast channel2, then the above
3-round protocol can be upgraded to one that is secure against malicious
adversaries, without any additional rounds. (Sect. 5.)

– Additionally, we show that security of the two-round protocol by Garg
et al. [10] can be based on witness encryptions for general NP statements,
which is weaker than indistinguishable obfuscation for general circuits3 as
presented in their work. Together with an idea in Sect. 1.2, we can construct
a three-round fair protocol (but not guarantee of output delivery) based on
witness encryptions for general NP statements. Due to space limit, we present
the results in the full version of this paper [14].

In summary, 2-round general fair MPC is not possible, and 3-round gen-
eral MPC with guarantee of output delivery can be constructed under a falsifi-
able assumption. Guarantee of output delivery implies fairness (by definition),
and thus 3-round fair MPC can also be constructed under the same falsifiable
assumption.

All of our positive results are UC-secure [5]. Our protocols, along with those
appearing in the prior work of Garg et al. [10] and Asharov et al. [1], require a CRS.

1.2 Overview of Our Techniques

Impossibility of Fairness in Two Rounds. We show that a two round, fair,
polynomial-time protocol for general functions yields a construction of virtual
black box (VBB) secure program obfuscation for P/Poly, in contradiction of the
well-known impossibility result of Barak et al. [2].

Consider a symmetric 3-ary functionality f(x1, x2, x3) that interpret x1 as a
circuit C, ignores x3 and outputs C(x2). Suppose there exists a two-round fair
protocol π that computes f with fairness, then we make the following observa-
tions. We assume the three parties are Alice, Bob, and Charlie.
– If the adversary (only) corrupts Alice and instructs her to abort in the second

round, then after Bob and Charlie send their messages in the second round,
the adversary can learn the output C(x2).

– By the property of fairness, Bob and Charlie must be able to learn the output
C(x2), since the adversary in the above case has learned the output.

– It follows that Alice’s second message is redundant. Whether she sends her
second message or not, the other parties can compute the outcome.
Using the above observations, we can construct a program obfuscator for

general circuits: we view Alice’s first message as the obfuscation of C. To evaluate
C(x), we just simulate Bob and Charlie with Bob’s input x. Since Alice’s first

2 An authenticated broadcast channel enables a party to send a message to all other
parties, ensuring that each party knows both the identity of the sender and that all
other parties have received the same message.

3 Indistinguishable obfuscation for general circuits is a stronger assumption. We know
that indistinguishable obfuscation for general circuits implies witness encryption for
general NP statements, but the other way is unclear.
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message is independent of the other parties’ inputs, we can rewind Bob and
Charlie and compute C(x) repeatedly on arbitrary values of x.

We note that Garg et al. state (without proof) that their two-round protocol
achieves fairness [10], and one can see why this mistake might have been made.
Their protocol works by collapsing some protocol with greater round complexity
into a two-round protocol through the use of obfuscation, and they state that
if the underlying protocol is fair, then the resulting two round protocol will
also be fair. Speaking very roughly, in their construction, each party sends a
commitment to their input and their randomness in round one, and in round two,
they each send obfuscations of the next message functions from the underlying
fair protocol. They then each finish the protocol locally, using the obfuscated
programs to generate the correct protocol messages. At first glance, it would
seem that this preserves fairness, because if a party aborts in round two, the
other parties can simply generate next-messages as though he aborted, and, by
the fairness of the underlying protocol, fairness should be preserved. In fact, this
misses the following subtlety. If a party aborts in round two, he still receives all of
the obfuscated programs, and can still compute the output of the function: this
is equivalent to aborting in the very last round of the underlying fair protocol.
On the other hand, because he never sent his obfuscated next-message programs,
the other parties will be forced to treat him as though he aborted in round one
of the underlying protocol, perhaps replacing his input with some default value.
In particular, then, it could be that the malicious party learns f(x1, . . . , xN )
while the other parties learn f(⊥, x2, . . . , xN ).

Fairness in Three Rounds. The construction of Garg et al. can be modified
slightly to get a three-round fair protocol, as we now outline. However, we note
that there is no clear way to guarantee output delivery without increasing the
round complexity; our main technical result is a new protocol for achieving
guaranteed output delivery in three rounds.

To achieve fairness in three rounds, we can start with the protocol of Garg
et al., but instead of sending obfuscations of the next message functions that
compute the underlying secure computation, the parties will send obfuscations
that compute an N/2-out-of-N secret sharing of the output. They then add
one additional round to reconstruct the output. Now, if the adversary aborts
in round two, even though he learns all of the next message functions, he still
cannot recover the output (since there is an honest majority). If he aborts in
round three, the honest parties already have enough shares to reconstruct the
output on their own.

In general, we can compile any fair protocol into one that guarantees output
delivery, assuming a broadcast channel [7], but we cannot necessarily preserve
the round complexity. In the particular protocol just described, note that the
obfuscated programs sent in round two have commitments to the parties’ inputs
embedded inside of them. If a party aborts in round two, the other parties
would need to replace their obfuscations, embedding a commitment to some
default input value in place of the aborting party’s true input. But this will
incur additional communication rounds.
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Guarantee of Output Delivery. Before we describe our protocol, we first
give an overview the approach by Asharov et al. [1]. Asharov et al. proposed a
new primitive called Threshold Fully Homomorphic Encryption (TFHE), which
is essentially a distributed version of fully homomorphic encryption (FHE). For
their TFHE, there is a joint public key pk∗ whose secret key is shared among all
parties, i.e. sk∗ = sk1 + sk2 + · · · + skN . (There is also an evaluation key, but we
omit it for simplicity of exposition). The keys (pk∗, sk∗) constitute an FHE key
pair, so the encryption and evaluation algorithms can remain the same as those
used in the original FHE scheme. To decrypt, parties need to run a threshold
decryption protocol, since the secret key is shared among all parties.

Using the TFHE scheme, their basic three round protocol has the following
structure: (1) in the first round parties establish a joint public key pk∗; (2) in
the second round parties output an encryption of their inputs, i.e. Encpk∗(xi);
(3) in the third round, parties perform the homomorphic operations (for com-
puting f) to obtain an evaluated ciphertext C∗, and then run the threshold
decryption protocol to decrypt C∗. Asharov et al. [1] presented a simple idea
to make the basic protocol fair (and to guarantee output delivery) in the first
round, the parties also secret share their inputs and all random coins. If any
party aborts in the second or third round, the honest majority would recon-
struct his states and resume the protocol. (Note that if a party aborts in the
first round, he is simply ignored). This approach will add two additional rounds
for the worst case.

We note that their construction uses an N -out-of-N sharing of the secret
key sk∗, so they require all parties in order to decrypt. This means, if any party
aborts, the other parties need to reconstruct his view to resume. Thus, these
two additional rounds seem inherent if we follow this approach. To get a 3-round
protocol, we need a new approach. In particular we propose and construct a new
variant of TFHE with more fine-grained features. Using it as a building block,
we are able to get around the barriers mentioned above. We highlight our new
ideas below.

Instead of establishing a “fixed” joint public key, our new TFHE uses
pk[N ] = {pki}i∈[N ] as the public keys, where pki is contributed by party Pi.
Then with {pk1, . . . , pkN}, Pi can encrypt the input xi and produce a flexible
ciphertext Ci. We introduce a new algorithm TransCT(C;S) that transforms
a flexible ciphertext C into C ′, where C ′ is with respect to the public keys
pkS = {pkj : j ∈ S}. Intuitively, a flexible ciphertext is one that is not yet com-
mitted to a set of public keys, and a transformed one commits to some pkS and
can be homomorphically evaluated. Finally, our threshold decryption protocol
works when there is an honest majority of parties (as opposed to the previous
one which requires all parties).

Using the new TFHE, our protocol has the following structure: (1) in the
first round, parties generate {pk1, . . . , pkN}; (2) in the second round, each party
output a flexible ciphertext Ci = Enc(xi); (3) let S be the parties that did not
abort in the second round. Now each party transforms the ciphertexts to C ′

i

with respect to pkS and performs the homomorphic evaluation for computing f .
Then they perform the threshold decryption to obtain the output.
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Intuitively, if a party aborts in the first round, then he is simply ignored. If
he aborts in the second round, he is also ignored: since the other parties output
flexible ciphertexts, these can be transformed to a public key representing the set
of non-aborting parties. Those remaining parties can then proceed to perform
the homomorphic computation. Finally, if a party aborts at the end, then it is
too late – our threshold decryption algorithm only requires an honest majority
of parties. We describe our three round protocol in Sect. 4.3.

Constructing TFHE. Our construction of TFHE is a distributed variant
of the FHE scheme by Gentry, Sahai, and Waters [12]. We inherit from
their scheme that our TFHE does not need the evaluation keys that Asharov
et al. required, which allows for a cleaner presentation. We outline some of
the technical aspects of our construction here, after we recall the GSW con-
struction. The public key in their construction is a matrix B and a vector
b = Bs + e of the LWE form; the secret key is the LWE secret s. To
encrypt a bit m, the algorithm generates a random 0-1 matrix R, and out-
puts C = Flatten

(
m · ID + BitDecomp

(
R · b || R · B))

, where ID is the identity
matrix. (We will define BitDecomp and BitDecomp−1 in Sect. 2, but, essentially,
these functions act as their names suggest, decomposing a field element into a
binary representation, and building a field element from a binary string.) To
decrypt, the algorithm takes row β (where roughly 2β > some noise bound) and
parses the row into (Cβ,1, Cβ,2) ∈ Z

�
q × Z

n·�
q . (The parameters �, n, q will be set

in the scheme. Here for exposition, we can omit them.) Then it outputs
⌊
BitDecomp−1(Cβ,1) − 〈BitDecomp−1(Cβ,2), s〉

2β

⌉
.

The homomorphic evaluation of the GSW scheme is surprisingly simple and
beautiful! For addition it is C + C ′ and for multiplication C · C ′.

As we discussed, our TFHE does not immediately determine a public key with
respect to all parties, as done by Asharov et al. [1]. Instead, we set the public
parameter (CRS) to be B, and let each party Pi output pki = bi = Bsi+e i. Note
that each (B, bi) is a GSW public key. The next challenge is how to generate
flexible ciphertexts. A first natural idea would be: for Pi to generate a flexible
ciphertext on some message m, Pi encrypts m under all GSW-type public keys
{(B, bi)}[N ] to get C = (C1, . . . , CN ). To transform C with respect to a set S, we
simply output {Ci}i∈S . However, this is not secure since it allows every party,
independently, to decrypt Pi’s ciphertext. A next idea would be Pi encrypts
m under the key (B, bi) corresponding to his public key, and encrypts 0 for
other keys {(B, bj)}j �=i. The transform algorithm works the same. Intuitively,
semantic security holds since Pi does not encrypt m under other people’s keys.
However, it is not clear how to jointly evaluate two ciphertexts from two parties,
since the essential messages are encrypted under two different GSW public keys.

Our new idea to solve such challenge modifies Cj ’s for j �= i: instead of generat-
ing Enc(0)’s under {(B, bi)}[N ]\{i}, Pi outputs some hints for the transformation
algorithm, but such hints will not hurt security. More specifically, we have the fol-
lowing design: Pi generates Ci = Flatten

(
m · ID + BitDecomp

(
R · bi || R · B))
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and Cj = BitDecomp
(
R · bj || 0)

, for j �= i, where the same R is used for all
{Cj}j∈[N ]. Since each Cj only decreases the entropy of R by |R · bj |, we can still
use a leftover-hash-lemma style approach to argue that m is hidden.

Then given a set S (including i), we can compute CS =
∑

j∈S Cj . By unfold-
ing the equation, we can see:

CS =

⎛
⎝m · ID + BitDecomp

(
R · ( ∑

j∈S

bj

) || R · B
)
⎞
⎠ ,

which is of the form Enc(m) under the GSW public key (B,
∑

j∈S bj)! This
means any flexible ciphertext, after being transformed, results in an encryption
under the GSW public key. Therefore, ciphertexts from different parties can be
jointly computed after transformed to ones with respect to the same set S.

Our threshold decryption protocol needs to work for any set S of partici-
pants such that |S| > [N/2]. So the parties should distribute the secret si’s to
all the other parties using a threshold secret sharing scheme. The challenging
part is to design a one-round protocol. We use the fact that the decryption algo-
rithm of the GSW scheme is essentially computing inner product (of a publicly
known vector and the secret key), and Shamir’s secret sharing scheme is highly
compatible with inner product computation. In particular, each party Pi shares
si into (pi(1),pi(2), . . . ,pi(N)) and sends pi(j) to Pj , where p is a vector of
polynomials for Shamir’s shares. To compute w = 〈u ,

∑
j∈S sj〉 for some pub-

licly known vector u (think of it as part of a ciphertext), each party can output
wi = 〈u ,

∑
j∈S pj(i)〉. Then it is not hard to see that these wi’s form shares of

w, so after receiving a majority of shares each party can run the reconstruction
without interaction!

Finally, we need to handle an additional technicality to deal with noise of
evaluated ciphertexts, as pointed out by Asharov et al. [1]. Intuitively, an eval-
uated ciphertext Enc(f(x)) might contain noise that is related to the original
input x, so we need to add additional smudging noise to eliminate any such link.
In the decryption protocol of the work [1], each party adds independent small
noise to the output. However, this method will not work for our case because in
our reconstruction procedure, these noise values are multiplied by the Lagrange
coefficient, which can be too large. To solve this issue, we let each party Pi secret
share some small noise ηi into (ri(1), . . . , ri(N)) and send the shares to the other
parties (where ri is a random polynomial for the shares). Then each party Pi

adds
∑

j∈S rj(i) to their output. By the linearity of the Shamir’s sharing scheme,
this is equivalent to adding

∑
j∈S ηj to the original reconstructed output value.

In Sect. 4.2 we go through this construction in detail. The new TFHE may be of
independent interests.

1.3 Related Work

There is a long line of work studying the round complexity of secure computation,
both in the semi-honest and malicious models, the two-party and multi-party
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settings, the honest majority and honest minority settings, and even in a variety
of other models. We will not aim to survey all of this work, but mention what
we know to be the best round complexity in the most relevant settings.

Constant round protocols have been known since Yao’s original two-round
construction for the two-party, semi-honest setting [21], and Beaver et al.’s con-
stant round protocol for the setting of a malicious minority [3]. In the two-party,
malicious setting, Katz and Ostrovsky give a five-round protocol and demon-
strate that this is tight [16]. There are several works demonstrating constant
round protocols in the multiparty, malicious majority setting ([17,19] Of course,
with a malicious majority (including the two-party case), fairness is unachiev-
able, so these results are in the security-with-abort model, and are not directly
relevant to our own work.

In the multiparty setting with a malicious minority, the best known round
complexity is achieved by the two-round protocol of Garg et al. [10], but, as
we outlined above, their result does not ensure fairness. For t < N/5 corrup-
tions, Damg̊ard and Ishai give a three-round protocol with a guarantee of output
delivery [8], though they require private point-to-point channels, and establish-
ing these would add at least one additional round. For t < N/2, the exact
round complexity of their protocol is a bit hard to discern, but it is greater than
four (and we believe more); in this domain, the five-round protocol of Asharov
et al. [1], which also guarantees output delivery, is the best known. For t = 1
corruption, Ishai et al. [15] showed that N ≥ 5 parties are sufficient to securely
compute general functionalities with guarantee of output delivery. The work [15]
also showed 2-round protocols (guarantee of output delivery) for general func-
tionalities in the server-client model, with a more restricted corruption pattern
(e.g. one corrupted client and coalitions of t < N/3 servers). In the semi-honest,
two-party setting, Yao’s original construction already achieves two-rounds.

Very recently and independent of this paper, Mukherjee and Wichs [] con-
structed 2-round protocols (in the CRS model) that achieve security with abort
against any number of corruptions. In the setting of an honest majority, their
protocol can be easily modified to achieve guarantee of output delivery in 3
rounds, assuming private communication channels, and in 4 rounds without pri-
vate communication channels.

Gennaro et al. [11] provide a lower bound on the round complexity of fair
protocols whenever 1 < t < N/2. Our lower-bound strengthens theirs, ruling out
even a fail-stop adversary that corrupts a single party.

2 Preliminaries

In this section, we present basic vector operations. Due to space limit, we describe
the security definitions for MPC and the LWE assumptions in the full version
of this paper [14].
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2.1 Elementary Vector Operations

We define a number of vector/matrix operations that we describe below. Let
a , b be vectors of dimension k. Let � = �log q	 + 1 for some modulus q. Note
that the operations we describe are also defined over matrices, operating row by
row on the matrix, and that all arithmetic is over Zq.

BitDecomp(a) = the k ·� dimensional vector (a1,0, . . . , a1,�−1, . . . , ak,0, . . . ak,�−1)
where ai,j is the jth bit in the binary representation of ai, with bits ordered
from least significant to most significant.

BitDecomp−1(a ′) For a ′ = (a1,0, . . . , a1,�−1, . . . , ak,0, . . . ak,�−1), let

BitDecomp−1(a ′) =
(∑�−1

j=0 2ja1,j , . . . ,
∑�−1

j=0 2jak,j

)
, but defined even when a ′

isn’t binary.
Flatten(a ′) = BitDecomp

(
BitDecomp−1(a ′)

)
Powersof2(b) = (b1, 2b1, 4b1, . . . , 2�−1b1, . . . , bk, . . . 2�−1bk).

3 Impossibility Result

In this section, we are going to show that it is impossible to construct a two-round
secure protocol for general multi-party computation with fairness, even with an
honest majority of players. Our impossibility results holds in the standalone
model, even with non-rushing fail-stop adversaries with access to a CRS. Our
result strengthens that of Gennaro, as it holds even for adversaries corrupting
only a single party, while their result cannot rule out the case where t = 1.

We assume that the players have both point-to-point channels and a pub-
lic broadcast channel, but they do not have private point-to-point channels –
an eavesdropper can listen to all channels.4 We note that our three round pro-
tocol from Sect. 4 can be collapsed into a three round protocol if we give the
users access to a PKI of the appropriate form, so the assumption of non-private
channels in our lower-bound is natural.5 A more formal proof follows.

Theorem 1. Let C be a family of circuits, and let Π be a polynomial-time,
2-round, 3-party secure protocol for computing U(C, x, 0) = C(x) for any C ∈
C, with fairness in the standalone model. Then there exists a virtual black-box
obfusctor for general circuits6.

Proof. We describe a VBB obfuscator O for all circuits in C. Before doing that,
we define some notation and our next message functions. We let M denote the
set of valid messages in the secure computation. We let ⊥ ∈ M denote a special
abort symbol, and we let ∅ denote the empty transcript (before any messages
4 Our lower bound holds even when the eavesdropper only listens to some channels.
5 Although we allow the eavesdropping adversary to corrupt two private channels at

once, we do not allow it to corrupt the parties themselves, so we do still maintain
an honest majority. However, there is still room to consider a weaker model where
the eavesdropper can only listen to a single channel.

6 We describe the definition of VBB obfuscation in the full version of this paper [14].
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have been sent). A partial incoming transcript, is either ∅ (if no messages have
been sent yet), or of the form (M,M), where each message is received from one
of the two other parties in the first round of the protocol. A partial outgoing
transcript is of the same form, but represents the two messages sent by a single
party in the first round, each going to one of the other parties. A full incoming
transcript is of the form ((M,M), (M,M)), where the first pair of messages are
those received in the first round, and the second pair are those received in the
second round. We define the following set of circuits.

πi,j(x, τ, r) : for parties i, j ∈ {1, 2, 3}, on input value x, partial incoming tran-
script τ and randomness r, the circuit outputs i’s next message to j.
πout(x, τ, r2) : the circuit computes P2’s output in the secure computation, given
input x, full incoming transcript τ and randomness r2.

The VBB obfuscation of circuit C is as follows. O(C) chooses randomness r1
and computes α2 = π12(C, ∅, r1), α3 = π13(C, ∅, r1). Note that they are the first-
round messages from P1 to P2 and P3. Then the obfuscator outputs the following
circuit Γα2,α3(x; r2, r3), which, on input x and randomness r2, r3, performs the
following computations:

– γ(1) = π32(0, ∅, r3); β = π23(x, ∅, r2). (The relevant first round messages.)
– γ(2) = π32(0, (α3, β), r3). (The relevant second round message.)
– Output πout(x,

(
(α2, γ

(1)), (⊥, γ(2))
)
, r2). (P2’s output, given his full incoming

transcript.)

Basically, the circuit simulates P2,P3’s messages when P1 sends out α2, α3

and then aborts in the second round Fig. 1

Fig. 1. A depiction of the messages used in the circuit Γα2,α3 . α messages are sent by
party P1, β messages by P2, and γ messages by P3. A subscript i indicates that the
recipient is Pi, and a superscript indicates a round number. Since we do not need all
protocol messages, we drop subscripts and superscripts where we can.

We claim that for any C ∈ C, Γα2,α3 is a secure VBB obfuscation of C. Effi-
ciency of Γα2,α3 follows from the fact that the secure computation is polynomial-
time. Correctness follows from the fairness of the underlying secure computation
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protocol – we note that by the correctness of the protocol, P1 can learn the out-
put after he sees all the incoming messages, regardless of whether or not he
aborts in the second round. Thus by fairness of the protocol, P2 should also
receives the output, regardless of whether or not P1 aborts in the second round.
Thus, given the transcript (x,

(
(α2, γ

(1)), (⊥, γ(2))
)
, P2 can compute the output.

To prove the VBB property, recall that we need to prove that for any adver-
sary AO, for any circuit C, there exists a simulator SO and a negligible function
ε such that

|Pr[AO(Γα2,α3) = 1] − Pr[SC
O(1|C|) = 1]| < ε(|C|)

By the security of the underlying secure computation, we know there exists an
ideal-world simulator, which we will denote by SE, that simulates the view of an
eavesdropper who listens to the channels between P1 and P2, and between P1 and
P3. We will denote by S(1)

E the result of running SE and restricting the output
to the partial outgoing transcript, i.e. the first round messages sent from P1.
Then, SO gets (α̃2, α̃3) ← S(1)

E , and constructs the circuit Γα̃2,α̃3 , as described
above; we note that neither C nor r1 are needed, once α̃2 and α̃3 are computed.
Finally, SO outputs AO(Γα̃2,α̃3).

Suppose that this does not meet the above security requirement. It follows
that there exists a distinguisher D that distinguishes between a real world exe-
cution of the protocol and the ideal simulation of SE. This follows immediately,
because the only difference between the true obfuscation and the simulated
obfuscation is the way in which α2 and α3 are generated. Therefore, on input
transcript τ , D simply takes the messages α2, α3 that constitute the first round
messages sent from P1 to P2 and P3 respectively, and he completes the construc-
tion of Γα2,α3 himself. D then runs AO on the resulting circuit and determines
from the output whether τ was simulated.

Remark. The lower bound proof can be extended to rule out protocols in the
CRS model, using the same idea. The obfuscated circuit will now embed crs as a
common reference string, and in the security proof, the simulator will simulate
the string, i.e. (c̃rs, α̃2, α̃3) ← S(1)

E .

Two Round Feasibility with a PKI. Note that the proof breaks down if
the parties have access to private channels, including in the scenario where they
have access to a PKI. This is because we need both first-round messages sent
from P1 in order to simulate round two of the protocol. In particular, without
access to α3, we could not correctly simulate γ(2) (as sent from P3 to P2 in round
two), and therefore we could guarantee the correct output of the obfuscation. The
only way to gain access to both α2 and α3 is either by eavesdropping on multiple
channels, or by corrupting two parties, but this latter approach would violate
our assumption of an honest majority. Indeed, as we mentioned previously, and
as we will see later, our construction in Sect. 4 can be collapsed to two rounds
if we have access to a PKI, with public keys of a particular form. It is still an
open question whether a two-round protocol with guaranteed output delivery is
possible, given access only to private channels.
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4 Towards Fairness and Guarantee of Output Delivery

The previous section shows that two-round fair protocols are in general impossi-
ble. As discussed in the introduction, we can construct a three-round fair protocol
by adding one more round to the protocol by Garg et al. [10]; yet it is unclear
how to construct three-round protocols with guarantee of output delivery. In
this section, we present our main contribution – we construct a new threshold
FHE scheme, which extends the notion of threshold FHE by Asharov et al. [1]
with enriched features. We elaborate on these below.

4.1 New Threshold Fully Homomorphic Encryption Scheme

As discussed in the introduction, our TFHE introduces a new idea of flexible
and transformed ciphertexts that play an important role in our 3-round MPC
construction. Here we first present the syntax: a threshold fully homomorphic
encryption scheme (TFHE) is basically a homomorphic encryption scheme, with
the difference that the key generation and decryption are N -party protocols
instead of algorithms. We will consider protocols defined in terms of some com-
mon parameter pp.

– TFHE.Gen(pp) (Key Generation Protocol). Initially each party holds some
parameter pp. At the conclusion of the protocol, each party Pi for i ∈ [N ]
publishes a public key pki, and keeps a private key ski.

– TFHE.DecS(C; v) (Threshold Decryption Protocol). Let S be a set in
[N ], and v = {vi : i ∈ S} be some secret values, each held by one party.
The protocol is run among parties {Pi : i ∈ S}. Initially each party holds a
secret input v [i], a secret key ski, and receives a ciphertext C as the public
input. At the end, the parties in the set can compute the decrypted message
m. Intuitively, the secret input v is used for smudging the noise.

Note: in the setting with honest majority, we assume that |S| ≥ [N/2] + 1.
For simplicity, we assume the input ciphertext C has already been transformed
to one that corresponds to the set of public keys pkS = {pki : i ∈ S}. See the
syntax below for further exposition.

– TFHE.Enci(pp, pk1, . . . , pkN ;m) (Encryption Algorithm). Let parties
{Pi}i∈[N ] participate in the protocol, and {pki}i∈[N ] be the set of their public
keys. The encryption algorithm is non-interactive and run by party Pi. The
algorithm takes inputs the public parameter, the public keys {pki}i∈[N ], a
message m, and computes a ciphertext C.

We implicitly require that the ciphertexts here are flexible in the sense that
they do not commit to a particular public key/secret key yet; in particular,
we can use the algorithm below to transform a flexible ciphertext into one
that corresponds to a set of public keys.

– TFHE.TransCT(C;S) (Ciphertext Transform Algorithm). The algorithm
takes inputs a flexible ciphertext C (from the above encryption algorithm),
and a set S ⊆ [N ] and outputs a transformed ciphertext CS . The ciphertext
can be thought as one under the set of joint keys: pkS = {pki : i ∈ S}.
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– TFHE.Eval(f, C1, . . . , Ct;S) (Evaluation Algorithm). The evaluation algo-
rithm is non-interactive. A party Pi (can be any party) receives inputs a func-
tion f : {0, 1}t → {0, 1}, flexible ciphertexts C1, . . . , Ct, and a set S ⊆ [N ].
He computes an evaluated ciphertext C ′

S with respect to the set S, which can
be thought as an evaluated ciphertext under the joint public key pkS defined
as above.

We summarize the main differences between our TFHE and that of the prior
work [1].

1. Our key generation does not output a joint public key. Instead each party
will only output their own public key pki. Then parties can run the Eval
algorithm to homomorphically compute on the ciphertexts under pkS for some
set S decided later. As pointed out in the introduction, this is an important
feature.

2. The construction of the prior work requires all parties to participate in the
decryption protocol (in the non-interactive case). Here we allow a subset of
parties to run the protocol; moreover, we allow a “threshold” type of decryp-
tion where a majority of parties can decrypt the ciphertext.

These new features play an important role: intuitively, when a party generates
a ciphertext, he does not know who else might abort. The flexibility of ciphertexts
handles this problem – the parties can generate ciphertexts first, and later on
decide a set of public key (namely pkS = {pki : i ∈ S}), so that the flexible
ciphertexts can be transformed with respect to pkS . Then the parties can perform
homomorphic computation with respect to pkS and run the threshold decryption
algorithm.

Similar to the work [1], we do not define the security of TFHE on its own.
The reason is similar: requiring that the above protocols securely realize some
ideal key-generation and decryption functionalities is unnecessarily restrictive.
Instead, we will show that our TFHE scheme is secure directly in the context of
our implementation of general MPC in Sect. 4.3.

4.2 Construction of Our New TFHE

Following the intuition in the introduction, we describe our construction.

Common Parameter. All parties receive the common parameter pp of the
form: let N be the number of parties, L = poly(κ) be the maximum depth of
the circuits supported by the TFHE evaluation algorithm. Then we choose a
modulus q of poly(L,N) bits, lattice dimension parameter n = n(L,N), and
error distribution χ = χ(κ,L,N) appropriately for LWE security against 2κ

known attacks. Also, choose parameter m = m(κ,L) = O((n + N) log q). Let
the distribution χ be Bχ-bounded (i.e. with overwhelming probability, a sample
from χ has the absolute value less than Bχ). Let � = [log q] + 1, D = (n + 1) · �,
and Bsmug ∈ Z be an integer bound, satisfying the following relations:

(D + 1)L · N · Bχ

Bsmug
= negl(κ), Bsmug < q/8.
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Then pp = (n, q, χ,m,Bχ, Bsmug,B) where B is sampled uniformly from Z
m×n
q .

TFHE.Gen(pp): This is a two-round protocol among N parties.

– (Round 1): Each party Pi samples a random vector si ∈ Z
n
q , and computes

bi = B · si + e i where e i ← χm. Then Pi broadcasts pki = bi, and keep si

secretly.
– (Round 2): Each party Pi secret shares si using the Shamir Secret Sharing

Scheme with threshold [N/2]+1. Let pi denote the random polynomial vector
(of degree [N/2]+1) generated by Pi where pi(0) = si (This is how the Shamir
Secret Sharing works). Pi sends pi(j) to Pj for j ∈ [N ]. At the end, Pi sets
ski = (p1(i),p2(i), . . . ,pN (i)).

Note that although we do not assume secure point-to-point channels, send-
ing private message in the second round is achievable – everyone can send a
public key in the first round, and later on every party encrypts the outgo-
ing messages. For simplicity, we just assume there are secure point-to-point
channels available in the second round.

TFHE.DecS(C; v): Let v be a vector of |S| numbers (error terms), where v [i]
(the element indexed by i) is held by party Pi for i ∈ S; let C be a ciphertext.
For S ⊆ [N ] such that |S| ≥ N/2, this is a one-round protocol among parties
{Pi : i ∈ S}. For simplicity, we assume that C is a transformed ciphertext that
corresponds to pkS .

– Each party Pi parses C as a matrix in Z
D×D
q . Then he picks the β-th row,

Cβ , where β = �log2(q/2)	. Note that 2β ∈ (q/4, q/2]. Then parse Cβ =
(Cβ,1, Cβ,2) where Cβ,1 ∈ Z

�
q, Cβ,2 ∈ Z

n·�
q . Then he computes z i =

∑
j∈S pj(i)

and broadcasts wi = 〈BitDecomp−1(Cβ,2), z i〉 + v [i].
– At the end, each party picks an arbitrary subset T ⊆ S such that |T | =

[N/2] + 1. Then they compute w =
∑

k∈T μk(0)wk, where μk is the Lagrange

polynomial. Finally they output
⌊
BitDecomp−1(Cβ,1)−w

2β

⌉
.

TFHE.Enci(pp, pk1, . . . , pkN ;m): This is the i-th party’s encryption algorithm.
Let m ∈ {0, 1} be the input message.

– The algorithm parses pp as a matrix B ∈ Z
m×n
q , pkj = bj ∈ Z

m
q for

j ∈ [N ]. Then it samples a random matrix R ∈ {0, 1}D×m, and com-
putes Wj = BitDecomp

(
R · bj || 0D×n

)
for j �= i. It computes Wi =

Flatten
(
m · ID + BitDecomp

(
R · bi || R · B))

, where ID is the identity matrix
of dimension D × D. It outputs C = (W1, . . . ,WN ).

TFHE.TransCT(C;S):

– The algorithm parses C as a N matrices (W1, . . . ,WN ). It outputs
CS =

∑
j∈S Wj .

TFHE.Eval(f, C1, . . . , Ct;S):
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– For simplicity, we assume that all the ciphertexts C1, . . . , Ct’s are trans-
formed to ones that correspond to pkS (otherwise we can apply the above
TFHE.TransCT first). We then observe that actually a transformed cipher-
text is of the same form of the GSW scheme [12] where the public key
is (

∑
k∈S bk || B). Thus, we can run exactly the same evaluation as the

GSW scheme! More specifically, we represent f as a circuit (with all NAND
gates). Then we can homomorphically compute NAND(C,C ′) by outputting
Flatten(ID − C · C ′). See the work [12] for detailed explanation.

With out setting of parameters, we can argue that flexible ciphertexts do not
leak the underlying messages to the other parties (and so do the transformed
ciphertexts, since they can be obtained deterministically from flexible cipher-
texts). This can be shown formally using the lemma below in a strait-forward
way as done by the work [12]. See their work [12] for further exposition7.

Lemma 1 (Implicit in [20]). Let n,m, χ, q be parameters such that the
LWEn,q,χ holds, and N be some polynomial. Then for m = O((n + N) log q),
for any vectors b1, b2, . . . , bN−1 ∈ Z

m
q , then the distribution described as above

(B, b,R · (B||b),R · (b1|| . . . ||bN−1)) is computationally indistinguishable from
(B,u,U,R · (b1|| . . . ||bN−1)), where B is uniform over Z

m×n
q , u is uniform

over Z
m
q , U is uniform over Z

D×(n+1)
q , and R is uniform over {0, 1}D×m,

D = (n + 1) · �, � = [log q] + 1.

4.3 Three-Round MPC with Guarantee of Output Delivery

Now we are ready to present our new three-round MPC for general functions
using the new TFHE we have developed in the previous section. We first present
a simpler case that considers MPC for polynomial-time deterministic boolean
function f (where all parties receive the same bit). Moreover, the security holds
against static semi-malicious fail-stop attackers8 corrupting less than half of
the parties. In Sect. 5, we discuss how to handle general cases using standard
techniques.

Remark 1. Our protocol only needs a public broadcast channel9. For simplicity
of presentation, we make the following two assumptions. First, there are secure
point-to-point channels available. Second, when a party distributes shares to the

7 Our setting of parameters is slightly different from that of the work [12], so our
parameters in the lemma are slightly different. The analysis is essentially identical.

8 Basically, a semi-malicious attacker is one whose behavior follows the protocol with
some input and randomness he must know. Protocols that achieve such security can
be upgraded to malicious security without adding a coin flipping round (c.f. Sect. 5).
See the full version of this paper [14] for further details about the notion and its
advantage.

9 In the semi-malicious setting, this can be easily implemented by reliable public point-
to-point channels, where an eavesdropper can listen to the all channels but cannot
modify the messages.
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other parties, he must either send messages to all parties or send messages to no
one. These assumptions are not necessary, and we sketch how to achieve them in
our protocol using the broadcast channel. We observe that our protocol will only
use the secure channels to distribute shares in the second round. So in the first
round everyone can publish a public key, and then in the second round, everyone
broadcasts encryptions of the shares (under different parties’ public keys). This
can implement the secure channels, and ensure that parties will either abort (not
broadcast at all) or distribute messages to all the other parties.

Our Construction. Let f : {0, 1}(�in)N → {0, 1} be a function computed by a
depth L circuit, where �in is the input length of each party.

Input: Each party Pi holds some input xi ∈ {0, 1}�in . The parties share the
public parameter pp as described in the TFHE scheme. (pp can be viewed as
the common reference string. The generation of pp depends on L, since we need
the TFHE to support circuits up to depth L).

The Protocol:

– Round 1: The parties execute the first round of the TFHE.Gen(pp). If anyone
aborts in this round, then he is simply ignored. Let S1 ⊆ [N ] be the set of
non-aborting parties at this round. At the end of this round, each party holds
all {pki}i∈S1 .

– Round 2: The parties execute the following procedures at the same time:
• The (currently non-aborting) parties execute the second round of the
TFHE.Gen(pp).

• For i ∈ S1, Pi broadcasts an encryption of his input using the algorithm
TFHE.Enci(xi) (encrypt it bit-by-bit). Note that these are a flexible cipher-
texts.

• Each Pi samples a uniformly random error term from ηi ← [−Bsmug, Bsmug],
and compute random Shamir secret shares (with the same threshold
[T/2] + 1). Denote the polynomial as ri (note that ri(0) = ηi). Then each
Pi sends ri(j) to party Pj for j �= i.

Let Ci = (Ci,1, Ci,2, . . . , Ci,�in) be the broadcasted ciphertexts from Pi, and
(ri(1), . . . , ri(N)) be the shares from Pi to the other parties.

If anyone aborts at this round, either not sending the second round of
TFHE.Gen(pp), the ciphertexts, or the shares of error terms, then he (and his
input) are again ignored. Let S2 ⊆ S1 be the set of non-aborting parties.

– Round 3: Now each non-aborting party in S2 first transforms the cipher-
texts he received to ones that correspond to pkS2

. Let {Cj,k}j∈S2,k∈[�in]

be the broadcasted ciphertexts. For i ∈ S2, Pi first computes CS2
j,k =

TFHE.TransCT(Cj,k;S2) for j ∈ S2, k ∈ [�in].
Let fS2 be the residual function where the inputs of [N ] \ S2 are replaced

with the default values. Pi homomorphically computes the residual function,
i.e. C∗ = TFHE.Eval(fS2 , {CS2

j,k}j∈S2,k∈[�in]).
Then each Pi computes vi =

∑
k∈S2

rk(i). Finally, they run the thresh-
old decryption TFHE.DecS2({C∗; vS2}), where vS2 denotes the vector of the
following set {vj : j ∈ S2}.
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Recall that the protocol TFHE.Dec handles situations when parties abort.
In this round, parties broadcast some messages, and a majority of them is
sufficient to recover the output.

Theorem 2. Let f be any deterministic functionality with N inputs and one
output. Let pp be parameters sampled according to the choice as the TFHE above,
and the corresponding LWE assumption holds. Then the above protocol π UC-
realizes the ideal functionality Ff with guarantee of output delivery, in the pres-
ence of any static (semi-malicious) fail-stop adversary who corrupts less than
[N/2] parties.

As explained in the introduction, the transformed ciphertexts {CS2
j,k}j∈S2,k∈[�in]

are GSW ciphertexts under the public key (B,
∑

i∈S2
bi). Therefore, by apply-

ing the evaluation algorithm, C∗ is a ciphertext of the output y. Each party in
our threshold decryption protocol, as explained, outputs a share of y by comput-
ing some inner product with the shares (and substraction). Thus, the correctness
holds.

To prove security, we need to construct a simulator S that generates the
views of the honest parties. We sketch the construction: the simulator simulates
the public parameter faithfully, and generates the messages in each round as
follows. Let I be the set of corrupted set.

– (First round). S simulates the public keys of honest parties’ by random
vectors u i for i /∈ I.

– (Second round). S simulates the encrypted ciphertexts by TFHE.Enc(0),
and simulates the error terms and shares of secret keys by sending random
values (or vectors).

– (Third round). S then reads the witness tapes of the adversary to get secret
keys and inputs from the corrupted parties. He sets the aborting parties’ inputs
to be the default value, and then queries the ideal functionality to receive the
output y. From the output y and the secret keys of the corrupted parties, S
then figures out consistent outputs of the honest parties.

Intuitively, the LWE assumption guarantees that the simulation in round 1 is
indistinguishable, and Lemma 1 guarantees that TFHE.Enc(0) is indistinguish-
able form the encryptions in the real world. The last step is the most challenging,
and we will further explain the ideas in the appendix.

In the full version of this paper [14], we present the detailed analyses of
correctness and security with further exposition.

5 Variants and Generalizations

In this section, we discuss variants of our basic protocol in the following
aspects: (1) how to handle functionalities with longer inputs, (2) how to handle
randomized functionalities, (3) how to compile a protocol that is secure against
semi-malicious adversaries into one that is secure against malicious adversaries,
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and (4) how to reduce one round by using a PKI setup. These issues can be han-
dled using standard techniques as presented in the work of Asharov et al. [1].
We highlight the ideas and refer curious readers to their work for further details.

Functions with Longer Outputs. Let f : {0, 1}(�in)N → {0, 1}�out be an N -
ary functionality. We consider �out boolean functionalities

{
fi : {0, 1}(�in)N →

{0, 1}
}

i∈[�out]
where each fi outputs the i-th bit of f . Let πi be the protocol

computing fi as we described in Sect. 4. To compute f , we simply run π1, . . . , π�out

in parallel, and we treat an abort in any one of the execution as an abort in all
executions. To argue that the resulting protocol is secure against an arbitrary
semi-malicious adversary, we also require the adversary to include proofs, in
the form of witnesses written to their witness tape, of input-consistency across
the parallel executions. This is to enforce that the adversary is using the same
inputs for all the subprotocols. Below we will describe a compiler that upgrades
the protocol to one against malicious adversaries.

Randomized Functionalities. Our basic MPC protocol only considers deter-
ministic functionalities where all the parties receive the same output. It can
be generalized to handle with randomized functionalities and individual out-
puts via a standard transformation. Basically in this transformation, instead
of computing some randomized function f(x1, . . . , xN ; r), the parties compute
the deterministic function f ′ ((x1, r1), . . . , (xN , rN )) = f

(
x1, . . . , xN ;⊕i∈[N ]ri

)
.

This transformation does not add additional rounds.

Semi-malicious Security to Malicious Security. Our basic MPC protocol
is only secure in the semi-malicious setting. Asharov et al. [1] presents a simple
and general round-preserving compiler from semi-malicious to fully malicious
security using UC NIZKs [9] in the CRS model. In particular, in each round,
the attacker must prove (in zero-knowledge) that it is following the protocol
consistently with some setting of the random coins. In particular, we present
the theorem of Asharov et al. [1]:

Theorem 3 ([1]). There is a generic round-preserving compiler such the fol-
lowing holds. Let F be an N -ary functionality and π be an N -party protocol.
Suppose π t-securely computes F against semi-malicious fail-stop adversaries
with guarantee of output delivery (or fairness), then the compiled protocol π′

t-securely computes F against malicious adversaries with guarantee of output
delivery (or fairness, respectively) in the CRS, FZK, and authenticated broadcast-
hybrid model. Moreover, π′ has the same round complexity as π.

Together with Theorem 2, we are able to achieve the following corollary:

Corollary 1. Assume that the LWE assumption holds and UC-NIZK exists.
Then there exists a three-round MPC in the CRS and authenticated broadcast
hybrid model, with a guarantee of output delivery, and providing security against
a malicious adversary that corrupts less than half of the parties.
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Two Rounds with PKI. We recall that in the first round of our protocol, each
party just publishes some public key bi = B · si + e i, which is independent of
the input. If there is an additional setup public-key infrastructure (PKI), then
we can move the first round to the PKI. Thus the entire MPC execution would
consist only of the remaining two rounds. The resulting PKI is very simple and
does not require a trusted party for setup; we just need a trusted party to choose
a CRS, and then each party can choose its own public key individually (possibly
maliciously). Moreover, the PKI can be reused for many MPC executions of
arbitrary functions f with arbitrary inputs.

The security analysis is exactly the same as that of our original three-round
protocol in the CRS model, just by noting that the first round there consists
of broadcast message, which does not depend on the inputs of the parties (and
hence we can think of it as a public key). In the malicious case, the parties need
to provide a zero-knowledge proof of knowing some randomness of their public
keys registered in the PKI. This is similar to our original protocol (without
PKI) where the parties need to provide a zero-knowledge proof of knowing some
randomness of their first round messages.
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Abstract. Concurrent non-malleable zero-knowledge (CNMZK) proto-
cols are zero-knowledge protocols that are secure even when the adver-
sary interacts with multiple provers and verifiers simultaneously. Recently,
the first statistical CNMZK argument for NP was constructed by Orlandi
et al. (TCC’14) under the DDH assumption.

In this paper, we construct a statistical CNMZK argument for NP
assuming only the existence of one-way functions. The security is proven
via black-box simulation, and the round complexity is poly(n). Under
the existence of collision-resistant hash functions, the round complexity
can be reduced to ω(log n), which is essentially optimal for black-box
concurrent zero-knowledge.

1 Introduction

Zero-knowledge (ZK) proofs and arguments are protocols that enable the prover
to convince the verifier of the correctness of a mathematical statement while
providing zero additional knowledge. This “zero additional knowledge” property
is formalized by using the simulation paradigm: An interactive proof or argument
is said to be zero-knowledge if for any adversarial verifier there exists a simulator
that can output a simulated view of the adversary. In the original definition of
the ZK property, the adversary interacts with a single prover at a time. Thus,
the original definition guarantees the ZK property in the stand-alone setting.

Non-malleable zero-knowledge (NMZK) [6] and concurrent zero-knowledge
(CZK) [7] are security notions that guarantee the ZK property in the concurrent
setting. Specifically, NMZK guarantees the ZK property in the setting where the
adversary concurrently interacts with a honest prover in the left session and a
honest verifier in the right session, and CZK guarantees the ZK property in the
setting where the adversary concurrently interacts with unbounded number of
honest provers.

As a security notion that implies both NMZK and CZK, Barak et al. [1] pro-
posed concurrent non-malleable zero-knowledge (CNMZK). CNMZK guarantees
the ZK property in the setting where the adversary concurrently interacts with
many provers in the left sessions and many verifiers in the right sessions. In par-
ticular, it guarantees that receiving proofs in the left session does not help the
adversary to give proofs in the right sessions—that is, it guarantees that if the

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 85–106, 2015.
DOI: 10.1007/978-3-662-48000-7 5
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adversary can prove some statements in the right sessions while receiving proofs
in the left sessions, the adversary could prove the same statements even without
receiving proofs in the left sessions. In the definition of CNMZK, this guaran-
tee is formalized as the existence of a simulator-extractor that can simulate the
adversary’s view in the left and right sessions while extracting witnesses from
the adversary in the simulated right sessions.

The first CNMZK argument was constructed by Barak et al. [1]. Subse-
quently, a computationally efficient construction was shown by Ostrovsky et al.
[21]. The first CNMZK proof was constructed by Lin et al. [16], and a vari-
ant of their protocol was shown to be secure with adaptively chosen inputs by
Lin and Pass [14]. Additionally, a CNMZK argument that is secure with “fully”
adaptively chosen inputs was recently constructed by Venkitasubramaniam [26].

Very recently, Orlandi et al. [20] constructed the first statistical CNMZK
argument—that is, a CNMZK argument such that the view simulated by the
simulator-extractor is statistically indistinguishable from the adversary’s view.
Statistical CNMZK is clearly of great interest since it guarantees quite strong
security in the concurrent setting. However, statistical CNMZK is hard to
achieve, and the existing techniques of computational CNMZK protocols seem
to be insufficient for constructing statistical CNMZK protocols (see Sect. 2.1).

On statistical CNMZK protocols, an important open question is what hard-
ness assumption is needed for constructing them. The statistical CNMZK argu-
ment of Orlandi et al. [20] was constructed under the DDH assumption (or the
existence of dense cryptosystems). Thus, it is already known that statistical
CNMZK protocols can be constructed under standard assumptions. However,
since it is known that the existence of one-way functions is sufficient for con-
structing both statistical ZK protocols and computational CNMZK protocols
[1,10], it is important to study the following question.

Can we construct statistical concurrent non-malleable zero-knowledge
protocols by assuming only the existence of one-way functions?

1.1 Our Result

In this paper, we answer the above question affirmatively.

Theorem 1. Assume the existence of one-way functions. Then, there exists a
statistical concurrent non-malleable zero-knowledge argument for NP with round
complexity poly(n). Furthermore, if there exists a family of collision-resistant
hash functions, the round complexity can be reduced to ω(log n).

The round complexity of our statistical CNMZK argument—poly(n) rounds
when only the existence of one-way functions is assumed and ω(log n) rounds
when the existence of a family of collision-resistant hash functions is assumed—is
the same as the round complexity of the known statistical CZK arguments [9].
Thus, our result closes the gap between statistical CNMZK arguments and statis-
tical CZK arguments. Furthermore, since the security of our statistical CNMZK
protocol is proven via black-box simulation, the logarithmic round complexity
of our hash-function-based protocol is essentially tight due to the lower bound
on black-box CZK protocols [3].



Statistical Concurrent Non-malleable ZK from OWFs 87

2 Techniques

2.1 Previous Techniques

Before explaining our technique, we explain the difficulty of constructing sta-
tistical CNMZK protocols by using the techniques of existing computational
CNMZK protocols [1,16].

We first recall the protocols of [1,16]. The definition of CNMZK requires
the existence of a simulator-extractor that simulates the adversary’s view while
extracting the witnesses for the statements proven by the adversary in the sim-
ulated view. To satisfy this definition, protocols need to satisfy the following
properties: (i) the proofs in the left sessions can be simulated for the adversary;
(ii) even when the adversary receives simulated proofs in the left sessions, the wit-
nesses can be extracted from the adversary in the right sessions. In the protocol of
[1,16], the simulatability of the left sessions is guaranteed by requiring the verifier
to commit to a random trapdoor by using a concurrently extractable commitment
scheme CECom [17]. Since the committed values of CECom can be extracted by a
rewinding extractor even in the concurrent setting, the proofs in the left sessions
can be simulated by extracting the trapdoors from CECom. On the other hand, the
witness-extractability of the right sessions is guaranteed by requiring the prover
to commit to the witness with a non-malleable commitment scheme NMCom [6]
and additionally designing the protocols so that the following hold.

1. When the adversary receives honest proofs in the left sessions, the committed
value of the NMCom commitment is indeed a valid witness in every accepted
right session.

2. When the proofs in the left sessions are switched to the simulated ones, the
committed values of the NMCom commitments do not change in the right
sessions due to the non-malleability of NMCom.

It follows from these that even when the adversary receives simulated proofs in
the left sessions, the committed value of the NMCom commitment is a witness
for the statement in every accepted right session. Therefore, the witnesses can be
extracted in the right sessions by extracting the committed values of the NMCom
commitments.

As mentioned above, the techniques of [1,16] alone seem to be insufficient
for constructing statistical CNMZK protocols. This is because the techniques of
[1,16] requires the prover to commit to the witness by using NMCom, which is
only computationally hiding.1 Since in the simulation the committed values of
NMCom need to be switched to another values (e.g., 0n) in the left sessions, the
simulated view can be only computational indistinguishable from the real view.
1 NMCom need to be non-malleable w.r.t. commitment [6], which roughly says that

the committed value of the commitment that the man-in-the-middle adversary gives
is independent of the committed value of the commitment that adversary receives.
Since the definition of non-malleability w.r.t. commitment is meaningless when the
committed values cannot be uniquely determined, NMCom cannot be statistically
hiding.
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Recently, Orlandi et al. [20] constructed a statistical CNMZK protocol by
modifying the CNMZK protocol of [1] with mixed non-malleable commitment
scheme MXNMCom. MXNMCom is parametrized by a string and is either statis-
tically hiding or non-malleable depending on the string.2 Very roughly speaking,
Orlandi et al. circumvent the above problem by switching the parameter string of
MXNMCom in the security proof—when proving the statistical indistinguishabil-
ity of the simulation, the string is set so that MXNMCom is statistically hiding,
and when proving the non-malleability, the string is set so that MXNMCom is
non-malleable. The use of MXNMCom, however, requires assumptions that are
stronger than the existence of one-way functions (such as the DDH assump-
tion or the existence of dense cryptosytems). Thus, the technique of Orlandi
et al. cannot be used to construct statistical CNMZK protocols from one-way
functions.

2.2 Our Technique

Since the techniques of [1,16] cannot be used for statistical CNMZK protocols
because the committed values of NMCom need to be switched during the simu-
lation, one potential strategy for statistical CNMZK is to construct a protocol
such that the adversary’s view can be simulated without switching the commit-
ted value of NMCom (and of any other computationally hiding commitment).
However, when the simulator commits to the same value in NMCom as a honest
prover, it is not clear how non-malleability of NMCom can be used in the security
proof. Below, we show that the CNMZK property can be shown even in this case
if we use a stronger variant of NMCom.

A key technical tool in our technique is CCA-secure commitment schemes [4],
which is a stronger variant of (concurrent) non-malleable commitment schemes.
Roughly speaking, CCA security guarantees that the scheme is hiding even
against adversaries that have access to the committed-value oracle, which receives
concurrent commitments from the adversary and returns their committed val-
ues to the adversary. (In non-malleability, the oracle receives only parallel com-
mitments from the adversary and returns the committed values only after the
adversary finishes the interaction with the committer.) Several CCA-secure com-
mitment schemes were constructed from one-way functions [4,8,12,15]; further-
more, although CCA security itself does not provide any extractability, all of
these schemes satisfy concurrent extractability as well.

Using CCA-secure commitment schemes, we construct the following protocol
as a starting point.

Stage 1. (V commits to trapdoor)
1. The verifier V chooses random rV ∈ {0, 1}n and commits to rV by using a

statistically binding commitment scheme Com, which can be constructed
from one-way functions [11,18]. Let (rV , d) be the decommitment.

2 Specifically, Orlandi et al. [20] used the scheme such that (i) when the string is
sampled from a uniform distribution, the scheme is statistically hiding and (ii) when
the string is taken from another (computationally indistinguishable) distribution,
the scheme is non-malleable.
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2. V commits to (rV , d) by using CCA-CECom, where CCA-CECom is a CCA-
secure commitment scheme that is also concurrent extractable [4,8,12,15].

Stage 2. (P proves x ∈ L or knowledge of trapdoor) The prover P proves
that it knows a witness for x ∈ L or a valid decommitment (rV , d) of the Com
commitment that V gives in Stage 1. P proves this statement by using a statis-
tical witness-indistinguishable argument of knowledge sWIAOK, which can be
constructed from one-way functions by instantiating Blum’s Hamiltonian-cycle
protocol with the statistically hiding commitment scheme of [10].

In this protocol, the verifier’s view can be statistically simulated by a simulator
that extracts (rV , d) from CCA-CECom and uses it as a witness in sWIAOK. (Note
that this simulator executes Stage 1 honestly; thus, even if computationally
hiding commitment schemes are used as building blocks in CCA-CECom, the
simulator commits to the same values by using them as a honest prover.) Also,
intuitively this protocol seems to be CNMZK from the following reason.

– The CCA security of CCA-CECom guarantees that the trapdoors of the right
sessions are hidden from the adversary even when the trapdoors of the left
sessions are extracted and returned to the adversary.

– Then, since the simulated proofs are generated in the left sessions by extract-
ing the trapdoors, the trapdoors in the right sessions are hidden from the
adversary even when the adversary receives simulated proofs in the left ses-
sions.

– Thus, even when the adversary receives the simulated proofs in the left ses-
sions, the adversary cannot “cheat” in the right sessions, and therefore wit-
nesses for the statements must be extractable from sWIAOK in the right
sessions.

Of course, to formally show the statistical CNMZK property, we need to show
a simulator-extractor that statistically simulates the adversary’s view and also
extracts witnesses for the statements in the right sessions.

As the simulator-extractor, we consider the following SE .

1. First, SE simulates the view of the adversary A by executing the following
simulator S: Simulator S internally invokes A and interacts with it in the left
and right sessions honestly except that in each left session, S extracts (rV , d)
by using the concurrent extractor of CCA-CECom and uses it as a witness in
sWIAOK.

2. After simulating the view of A as above, SE extracts witnesses from the
right sessions by doing the following for each right session. First, SE rewinds
S until the point just before S sends the challenge message of sWIAOK to
A.3 Then, SE repeatedly executes S from this point with flesh random-
ness until it obtains another accepted transcript of sWIAOK. After obtaining
another accepted transcript, SE extracts a witness by using the argument-of-
knowledge property of sWIAOK.

3 Since S rewinds A during the concurrent extraction of CCA-CECom, S may send
the challenge message of sWIAOK of a right session to A multiple times. Here, SE
rewinds S until the point just before S sends it to A on the “main thread.”
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It is easy to see that SE statistically simulates the real view of A. Thus, it remains
to show that SE extracts witnesses for the statements in the right sessions.

To show the witness extractability of SE , a natural approach is to follow the
above-mentioned approach of [1,16] and show the following.

1. When A receives honest proofs in the left sessions, a witness for the statement
is extracted from the sWIAOK proof in every accepted right session.

2. When the honest proofs in the left sessions are switched to the simulated
ones, the value extracted from sWIAOK does not change in every accepted
right session.

Note that here we argue about the extracted values instead of the committed
values. At first sight, it seems that this is not a big difference and it seems that
the above can be shown by using an argument similar to the one used in [1,16].

However, this approach does not work. In particular, we cannot show the
second part—that is, we cannot show that the extracted values remain to be the
same when the honest proofs in the left sessions are switched to the simulated
ones. To see this, observe the following. Since the witnesses used in sWIAOK
are switched in the simulated proofs, we need to use the witness indistinguisha-
bility of sWIAOK of the left sessions. However, since A is rewound during the
witness extraction of the sWIAOK proofs of the right sessions, if the left and the
right sessions are scheduled so that the sWIAOK proofs of the left sessions are
executed in parallel with the sWIAOK proofs of the right sessions, the sWIAOK
proofs of the left sessions are also rewound, and thus we cannot use their witness
indistinguishability.4

Thus, we instead use the following approach. Informally, the above approach
does not work because the honest proofs and the simulated proofs are “too dif-
ferent.” We thus introduce a hybrid experiment in which A receives hybrid proofs
in the left sessions, where a hybrid proof is generated by extracting (rV , d) by
brute force and using it as a witness in sWIAOK. (Notice that the only difference
between the hybrid proofs and the simulated proofs is how the trapdoors are
extracted.) We then show that (i) witnesses for the statements are extracted
in the right sessions when A receives hybrid proofs in the left sessions, and
(ii) when hybrid proofs are switched to the simulated ones, the extracted values
do not change. In particular, our analysis proceeds as follows.

– First, we show the second part, i.e., we show that the values extracted in the
right sessions do not change when the proofs in the left sessions are switched
from the hybrid proofs to the simulated ones. Since the only difference between
the hybrid proofs and the simulated ones is how the committed values of the

4 If we use the robust extraction technique [8], for each left session there exists a
rewinding strategy that allows us to extract witnesses from the right sessions without
rewinding sWIAOK of this left session. However, since what we want to show is that
the values extracted in the right sessions by the rewinding strategy that SE uses
are unchanged, the robust extraction technique cannot be used here (unless there
exists a rewinding strategy that allows us to extract witnesses from the right sessions
without rewinding the sWIAOK proof of every left session).
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CCA-CECom commitments are extracted (by brute-force or by the concurrent
extractability), we can show this by using the concurrent extractability of
CCA-CECom. We note however that there is a subtlety since CCA-CECom
in the left sessions can be rewound not only by the concurrent extractor of
CCA-CECom but also by the extractor of sWIAOK. Nonetheless, by carefully
using a standard technique (the “good prefix” argument), we can show that
the concurrent extractor of CCA-CECom works even in this case.

– Next, we show that in the hybrid experiment, witnesses for the statements are
extracted from the right sessions. Since the simulated proofs can be efficiently
generated given access to the committed-value oracle of CCA-CECom, at first
sight it seems that this follows directly from the CCA security of CCA-CECom
and argument-of-knowledge property of sWIAOK—if a witness for the state-
ment is not extracted, (rV , d) must be extracted, and thus we can break the
CCA security of CCA-CECom. However, there are two problems.
1. Since CCA-CECom in the left sessions can be rewound during the wit-

ness extraction of sWIAOK of the right sessions, the hybrid experiment
cannot be emulated even given access to the committed-value oracle of
CCA-CECom. Hence, the CCA-secure commitments in the right sessions
may not be hiding in the hybrid experiment.

2. Since the adversary obtains hybrid proofs, which are generated in super-
polynomial time, the argument-of-knowledge property of sWIAOK may
not hold in the hybrid experiment. We note that although existing CCA-
secure commitment schemes provides robustness, which guarantees that
arbitrary “small”-round protocol remains secure even when adversaries
have access to the committed-value oracle, we cannot use robustness here
since CCA-CECom in the left sessions can be rewound during the witness
extraction of sWIAOK of the right sessions and therefore the hybrid experi-
ment cannot be emulated even given access to the committed-value oracle.

Because of these problems, we cannot use the security of CCA-CECom directly
in the analysis. Thus, instead of using existing CCA-secure commitment
schemes in a modular way, we directly use their building blocks in the pro-
tocol and directly use their proof technique in the analysis. (In particular,
we use the robust concurrent extraction technique of [8] and a one-one CCA-
secure commitment scheme of [13].) The proof techniques of existing CCA-
secure commitment schemes are strong enough to solve the above problems,
and thus we can show that witnesses for the statements are extracted in the
hybrid experiment.

From the above two, it follows that even when A receives simulated proofs in the
left session, valid witnesses are extracted in right sessions. This completes the
overview of our technique.

3 Definitions

In this section, we sketch the definitions used in this paper. The formal definitions
are given in the full version.
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3.1 Statistical Concurrent Non-malleable Zero-Knowledge
Arguments

The definition of (statistical) concurrent non-malleable zero-knowledge [1,20] is
closely related to the definition of simulation extractability of [22]. Let 〈P, V 〉
be an interactive argument for a language L ∈ NP. For any man-in-the-middle
adversary A, let us consider a probabilistic experiment in which A participates in
the following left and right interactions. In the left interaction, A interacts with
a honest prover P of 〈P, V 〉 and verifies the validity of statements x1, . . . , xm

using identities id1, . . . , idm. In the right interaction, A interacts with a honest
verifier V of 〈P, V 〉 and proves the validity of statements x̃1, . . . , x̃m using iden-
tities ĩd1, . . . , ĩdm. The statements proven in the left interaction, x1, . . . , xm, are
given to P and A prior to the experiment. In contrast, the statements proven in
the right interaction, x̃1, . . . , x̃m, and the identities used in the left and the right
interactions, id1, . . . , idm and ĩd1, . . . , ĩdm, are chosen by A during the exper-
iment. Then, roughly speaking, 〈P, V 〉 is statistical concurrent non-malleable
zero-knowledge (statistical CNMZK) if for any adversary A, there exists a ppt
machine called the simulator-extractor that can statistically simulate the view of
A in the above experiment while extracting witnesses for the statements proven
by A in the accepted right interactions that use different identities from the left
interactions.

3.2 Concurrently Extractable Commitment Schemes

Roughly speaking, a commitment scheme is concurrently extractable if there
exists a ppt extractor such that for any adversarial committer that concurrently
commits to many values by using the scheme, the extractor can extract the
committed value from the adversarial committer in every valid commitment.5

Micciancio et al. [17] showed a ω(log n)-round concurrently extractable com-
mitment CECom (Fig. 1), which is an abstraction of the preamble stage of the
concurrent zero-knowledge protocol of [25] and can be constructed from one-
way functions. The extractor of CECom performs the extraction by rewinding
the adversarial committer according to the rewinding strategy of [23,25]—the
extractor internally invokes the adversarial committer C∗ and interacts with
C∗ as honest receivers on the “main thread”; at the same time, the extrac-
tor rewinds the main thread and generates “look-ahead threads” on which the
extractor interacts with C∗ again as honest receivers with flesh randomness;
then, at the end of each commitment on each thread, the extractor extracts the
committed values by using the information collected on the other threads.

Robust Concurrent Extraction. On the concurrently extractable commitment
scheme CECom of [17], Goyal et al. [8] showed a very useful lemma called the
robust concurrent extraction lemma. Roughly speaking, this lemma states that
even when the adversarial committer additionally participates in an external

5 A commitment is valid if there exists a value to which it can be decommitted.
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Fig. 1. Concurrently extractable commitment CECom [17].

protocol, the committed values can be extracted from the adversarial committer
without rewinding the external protocol as long as the round complexity of the
external protocol is “small.” In particular, the lemma guarantees that the robust
concurrent extraction is possible as long as �−O(k · log n) = ω(log n), where � is
the parameter of CECom and k is the round complexity of the external protocol.
(Thus, we need to set � := ω(log n) when k = O(1) and set � := poly(n) when
k = poly(n).)

In this work, we cannot use the lemma in a black-box way since in the security
analysis we use a specific property of the extractor shown in [8]. In particular,
in our security analysis, it is important that the extractor of [8] performs the
extraction by generating the main thread and the look-ahead threads as in the
rewinding strategies of [23,25].

3.3 (One-one) CCA-secure Commitment Schemes

We recall the definition of (one-one) CCA security and κ-robustness of commit-
ment schemes [4,13,15].

(One-one) CCA Security. Roughly speaking, a tag-based commitment scheme
〈C,R〉 (i.e., a commitment scheme that takes an n-bit string—a tag—as an
additional input) is CCA-secure if it is hiding even against adversary A that
interacts with the following committed-value oracle: The committed-value oracle
O interacts with A as an honest receiver in many concurrent sessions of the
commit phase of 〈C,R〉 using tags chosen adaptively by A; at the end of each
session, if the commitment of this session is invalid or has multiple committed
values, O returns ⊥ to A; otherwise, O returns the unique committed value to A.

If 〈C,R〉 is CCA secure only against adversaries that interact with the one-
session committed-value oracle, which is the same as the committed-value oracle
except that it interacts with the adversary only in a single session, 〈C,R〉 is
one-one CCA secure.
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κ-Robustness. Roughly speaking, a tag-based commitment scheme is κ-robust if
for any adversary A and any ITM B, the joint output of a κ-round interaction
between AO and B can be simulated without O by a ppt simulator. Intuitively, κ-
robustness guarantees that the security of any κ-round protocol (say, the hiding
property of a κ-round commitment scheme) holds even against the adversary
that interacts with O.

The Scheme We Use. From a result shown in [8], we can obtain a constant-round
κ-robust one-one CCA-secure commitment scheme for every constant κ ∈ N from
one-way functions. In [8], Goyal et al. constructed a ω(log n)-round CCA-secure
commitment scheme from one-way functions. This scheme has ω(log n) rounds
because CECom with parameter � = ω(log n) is used as a building block. The
reason why � is set to be ω(log n) is that in the security analysis, the committed
values of CECom need to be extracted when polynomially many CECom com-
mitments are concurrently executed. In the setting of one-one CCA security,
however, the security analysis works even if the committed values of CECom are
extractable only when a single CECom commitment is executed; hence, we can
set � := O(1). For completeness, we give the protocol and the proof of one-one
CCA security in the full version.

4 Our Statistical Concurrent Non-malleable ZK
Argument

We show that a statistical concurrent non-malleable zero-knowledge argument
can be constructed from any statistically hiding commitment scheme.

Theorem 2. Assume the existence of statistically hiding commitment schemes
with round complexity RSH(n). Then, there exists an ω(RSH(n) log n)-round sta-
tistical concurrent non-malleable zero-knowledge argument sCNMZK.

Since poly(n)-round statistically hiding commitment schemes can be constructed
from one-way functions [10] and constant-round ones can be constructed from a
family of collision-resistant hash functions [5,19], our main theorem (Theorem 1)
follows from Theorem 2.

Proof (of Theorem2). In sCNMZK, we use the following building blocks, all of
which can be constructed from RSH(n)-round statistically hiding commitment
schemes (or one-way functions, which can be obtained from statistically hiding
commitment schemes).

– Two-round statistically binding commitment scheme ComSB [11,18].
– Constant-round 4-robust one-one CCA-secure commitment scheme
CCACom1:1 (see Sect. 3.3).

– Four-round witness-indistinguishable proof of knowledge WIPOK, which is a
parallel version of Blum’s Hamiltonian-cycle protocol [2].

– (RSH(n)+2)-round statistical witness-indistinguishable argument of knowledge
sWIAOK, which is a parallel version of Blum’s Hamiltonian-cycle protocol that
is instantiated with a RSH(n)-round statistically hiding commitment scheme
ComSH.
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Fig. 2. Statistical concurrent non-malleable zero-knowledge argument sCNMZK.

– ω(RSH(n) log n)-round concurrently extractable commitment scheme CECom,
which is the scheme of [17] with parameter � = ω(RSH(n) log n). From the
robust concurrent extraction lemma [8], we can extract the committed values
from any adversarial committer even when it additionally participates in any
O(RSH(n))-round external protocol.

Protocol sCNMZK is shown in Fig. 2. Roughly speaking, soundness can be
proven as follows. Assume that an adversary breaks the soundness. From the
witness extractability of sWIAOK, a valid decommitment (r′

V , d′) of the ComSB

commitment of Stage I can be extracted from this adversary in Stage III. Further-
more, from the hiding property of CECom and the witness indistinguishability
of WIPOK, it can be shown that (r′

V , d′) can be extracted even when Stage I
is simulated by extracting rP in Stage II-1 and using it in Stage II-2 and II-4.
Then, since Stage 2 is now simulated without using the decommitment of the
ComSB commitment of Stage 1, we can derive a contradiction by breaking the
hiding property of ComSB or CECom by using (r′

V , d′). The formal proof is given
in the full version.

In the following, we prove the statistical CNMZK property.

Simulator-Extractor SE. Recall that to prove the statistical CNMZK prop-
erty, we need to show a simulator-extractor that simulates the view of the adver-
sary A and also extracts a witness in every accepted right session. We construct
our simulator-extractor step by step. First, we construct a super-polynomial-time
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simulator Ŝ that simulates the view of A but does not extract witnesses in the
right seasons. Next, we construct a super-polynomial-time simulator-extractor
ŜE that simulates the view of A by executing Ŝ and then extracts the witnesses
by rewinding Ŝ. Finally, we construct a polynomial-time simulator-extractor SE
that emulates the execution of ŜE in polynomial time.

Remark 1. In the following, we use the hat symbol in the names of simulators
and simulator-extractors if they run in super-polynomial time (e.g., Ŝ and ŜE).
Also, we use the tilde symbol in the names of the messages of sCNMZK if they
are the messages of the right sessions (e.g., r̃V and r̃P ); if necessary, we use
subscript to denote the index of the session.

Super-Polynomial-Time Simulator Ŝ. First, we show the simulator Ŝ, which
simulates the view of A in super-polynomial time as follows. Ŝ internally invokes
A and interacts with A as provers and verifiers in the following way.

– In each left session, Ŝ interacts with A in the same way as a honest prover
except for the following. In Stage I-2, Ŝ extracts the committed value (rV , d)
of the CECom commitment by brute force. (If the committed value is not
uniquely determined, (rV , d) is defined to be (⊥,⊥).) In Stage III, Ŝ checks
whether (rV , d) is a valid decommitment of the ComSB commitment of Stage
I-1; if so, Ŝ gives a sWIAOK proof by using (rV , d) as a witness; otherwise, Ŝ
terminates with output fail.

– In each right session, Ŝ interacts with A in the same way as a honest verifier.

Finally, Ŝ outputs the view of internal A. Notice that Ŝ does not rewind A.

Super-Polynomial-Time Simulator-Extractor ŜE. Next, we show the simulator-
extractor ŜE , which simulates the view of A in super-polynomial time and also
extracts witnesses in every accepted right session as follows. First, ŜE simulates
the view of A by executing Ŝ. We call this execution of Ŝ the wi-main thread.
Next, for each i ∈ [m], if the i-th right session is accepted on the wi-main thread
and uses a different identity from every left session, ŜE extracts a witness from
this session as follows.

– ŜE rewinds the wi-main thread until the point just before the challenge mes-
sage of sWIAOK of the i-th right session is sent. Then, from this point, ŜE
executes Ŝ again with flesh randomness (i.e., interacts with A as Ŝ does with
flesh randomness). ŜE repeats this rewinding until it obtains another accept-
ing transcript of the i-th right session. We call each execution of Ŝ in this step
a wi-auxiliary thread .

– After obtaining two accepting transcripts of the i-th right session (one is on
the wi-main thread and the other is on an wi-auxiliary thread), ŜE extracts
a witness from sWIAOK by using the witness extractability of sWIAOK. If ŜE
fails to extract a witness for x̃i ∈ L (the statement proven in the i-th right
session), ŜE terminates with output failWI. Otherwise, let w̃i be the extracted
witness.
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If the i-th right session is not accepted or uses the same identity as a left session,
define w̃i

def= ⊥. The output of ŜE is (view, {w̃i}i∈[m]), where view is the view of
A on the wi-main thread.

Polynomial-Time Simulator-Extractor SE . Finally, we show the simulator-
extractor SE , which emulates the execution of ŜE in polynomial time as follows.
First, SE emulates the wi-main thread in polynomial time as follows.

– SE internally invokes A and interacts with A as Ŝ does except that in each left
session, SE extracts (rV , d) by using the concurrent extractability of CECom.
Recall that a concurrent extraction of CECom involves the generation of a
main thread and many look-ahead threads. We call the main thread generated
during the concurrent extraction of CECom the cec-main thread , and call the
look-ahead threads generated during the concurrent extraction of CECom the
cec-auxiliary threads.6

Next, for each i ∈ [m], if the i-th right session is accepted on the emulated wi-
main thread and uses a different identity from every left session, SE emulates
wi-auxiliary threads as follows.

– SE rewinds the emulation of the wi-main thread until the point just before
the challenge message of sWIAOK of the i-th right session is sent on the cec-
main thread. Then, from this point, ŜE emulates the wi-main thread again
with flesh randomness (i.e., generates the rest of cec-main thread and cec-
auxiliary threads with flesh randomness). SE repeats this rewinding until it
obtains another accepted transcript of the i-th right session on an emulated
wi-auxiliary thread.

Let (view, {w̃i}i∈[m]) be the output of the emulated ŜE . Then, SE outputs
(view, {w̃i}i∈[m]).

Analysis of Poly-Time Simulator-Extractor SE.
To prove the statistical CNMZK property, we show that SE statistically simu-
lates the view of A and also extracts witnesses for the statements in the right
sessions.

Lemma 1. The view of A simulated by SE is statistically indistinguishable from
the view of A in the real experiment. Furthermore, except with negligible proba-
bility, SE outputs witnesses for the statements proven by A in the accepted right
sessions that use different identities from the left sessions.

Proof (sketch). In this proof, we use the following claim, which states that the
super-polynomial-time simulator-extractor ŜE statistically simulates the view of
A and also extracts the witnesses from the right sessions.

6 Note that the wi-main thread is also a cec-main thread.
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Claim 1. The view of A simulated by ŜE is statistically indistinguishable from
the view of A in the real experiment. Furthermore, except with negligible proba-
bility, ŜE outputs witnesses for the statements proven by A in the accepted right
sessions that use different identities from the left sessions.

Before proving this claim, we finish the proof of Lemma 1. Given Claim 1, we
can prove Lemma 1 by showing that the output of SE is statistically indistin-
guishable from that of ŜE . This indistinguishability can be shown by observing
the following.

– In SE , the emulation of ŜE is perfect if in every left session that reaches Stage
III, the value extracted by the concurrent extractability of CECom is equal to
the value that would be extracted by brute force.

– In every such left session, the value extracted by the concurrent extractability
of CECom is indeed equal to the value that would be extracted by brute force.
This is because the CECom commitment in Stage I-2 is valid in every such
left session except with negligible probability, which in turn is because of the
soundness of WIPOK and the hiding property of CCACom1:1.

We note that there is a subtlety since the concurrent extraction of CECom itself
is rewound in SE when the witnesses are extracted from the right sessions. The
formal proof is given in the full version. ��

Analysis of Super-Poly-Time Simulator-Extractor ŜE.
It remains to prove Claim 1, which states that (i) super-polynomial-time
simulator-extractor ŜE statistically simulates the real view of A and (ii) ŜE also
extracts a valid witness from every accepted right session in the simulated view.

Proof (of Claim 1). First, we show that ŜE statistically simulates the real view
of A. Since ŜE simulates the view of A by executing Ŝ, it suffices to show that
the output of Ŝ is statistically indistinguishable from the real view of A. In Ŝ,
each left session is simulated by extracting (rV , d) from the CECom commitment
in Stage I-2 and giving a sWIAOK proof in Stage III with witness (rV , d). Hence,
the indistinguishability follows from the statistical witness indistinguishability
of sWIAOK and the following claim.

Claim 2. In Ŝ, the following holds except with negligible probability: In every
left session that reaches Stage III, the CECom commitment in Stage I-2 of this
session is valid and its committed value is a valid decommitment of the ComSB

commitment of Stage I-1.

We do not prove Claim 2, since it is implied by the claim that we prove later
(Claim 5).

Next, we show that ŜE extracts a valid witness from every accepted right
session except with negligible probability. Since ŜE outputs failWI when it fails to
extract a witness in an accepted right session, it suffices to show that ŜE outputs
failWI only with negligible probability. Assume for contradiction that there exists



Statistical Concurrent Non-malleable ZK from OWFs 99

ĩ∗ ∈ [m] such that ŜE outputs failWI during the witness extraction of the ĩ∗-th
right session with non-negligible probability. Then, let us consider the following
hybrid simulator-extractor ŜE

˜i∗ .

– ŜE
˜i∗ is the same as ŜE except that ŜE

˜i∗ tries to extract a witness only from
the ĩ∗-th right session (and therefore rewinds the wi-main thread only from
the challenge message of sWIAOK of the ĩ∗-th right session).

Clearly, ŜE
˜i∗ outputs failWI with non-negligible probability. Then, we reach a

contradiction roughly as follows.

Step 1. First, we show that in ŜE
˜i∗ , the probability that r̃V is extracted as

a witness during the witness extraction of the ĩ∗-th right session is non-
negligible, where r̃V is the value chosen by the verifier in Stage I-1 of the
ĩ∗-th right session.

Step 2. Next, we define a sequence of hybrid simulator-extractors. The first
hybrid is the same as ŜE

˜i∗ , and we gradually modify the ĩ∗-th right session
so that it is independent of r̃V in the last hybrid.

Step 3. Finally, we show that even in the last hybrid, the probability that r̃V

is extracted during the witness extraction of the ĩ∗-th right session is non-
negligible. Since the ĩ∗-th right session is independent of r̃V in the last hybrid,
we reach a contradiction.

Details are given below.

Step 1. Prove that ŜE
˜i∗ extracts r̃V . We first prove the following claim.

Claim 3. Let r̃V be the value chosen by the verifier in Stage I-1 of the ĩ∗-th
right session. If ŜE

˜i∗ outputs failWI with non-negligible probability, then in ŜE
˜i∗

the probability that r̃V is extracted during the witness extraction of the ĩ∗-th right
session is non-negligible.

Proof. Assume for contradiction that r̃V is extracted during the witness extrac-
tion of the ĩ∗-th right session with at most negligible probability. Then, since
we assume that ŜE

˜i∗ outputs failWI with non-negligible probability, the following
occurs in ŜE

˜i∗ with non-negligible probability:

– ŜE
˜i∗ obtains two accepting transcript of the ĩ∗-th right session (and therefore

that of sWIAOK) such that the commit-messages of sWIAOK are the same,7

but
– from these two transcript, ŜE

˜i∗ fails to extract any witness from sWIAOK
(either a witness for x̃

˜i∗ ∈ L or a valid decommitment of the Stage I-1 com-
mitment).

We first show that when the above occurs, the two accepting sWIAOK transcripts
are admissible except with negligible probability, where a pair of accepted tran-
scripts of sWIAOK are admissible if their commit-messages are the same but their
challenge-messages are different. Toward this end, it suffices to show that ŜE

˜i∗
chooses the same challenge-message of sWIAOK on two wi-auxiliary threads with
at most negligible probability. This can be shown as follows.
7 Recall that WIPOK consists of three stages: commit, challenge, and response.
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– From a standard argument, we can show that the expected number of rewind-
ing of the wi-main thread is 1 in ŜE

˜i∗ .8 Thus, the probability that ŜE
˜i∗

rewinds the wi-main thread more than 2n/2 times is at most 2−n/2. Further-
more, under the condition that ŜE

˜i∗ rewinds the wi-main thread at most 2n/2

times, the probability that ŜE
˜i∗ chooses the same challenge-message on two

wi-auxiliary threads is at most 2n/2 · 2−n = 2−n/2. Thus, the probability that
ŜE

˜i∗ chooses the same challenge-message in two wi-auxiliary thread is at most
2−n/2 + 2−n/2 = negl(n).

Thus, with non-negligible probability ŜE
˜i∗ obtains two admissible transcripts of

sWIAOK from which no witness can be computed.
We then reach a contradiction as follows. Since sWIAOK is a parallel version

of Blum’s Hamiltonian-cycle protocol, if no witness is extracted from two admis-
sible transcripts of sWIAOK, a ComSH commitment in the commit-messages is
decommitted to two different values in the transcripts. Thus, we derive a con-
tradiction by breaking the binding property of ComSH using ŜE

˜i∗ . A problem is
that since ŜE

˜i∗ runs in super-polynomial time, the computational hiding prop-
erty of ComSH may not hold in ŜE

˜i∗ . To overcome this problem, we consider
hybrid simulator-extractor SE

˜i∗ that emulates the execution of ŜE
˜i∗ in polyno-

mial time. Specifically, SE
˜i∗ emulates ŜE

˜i∗ in the same way as SE emulates ŜE
(i.e., by using the concurrent extractability of CECom instead of the brute-force
extraction) except for the following.

– During the emulation of the wi-main thread, the value (rV , d) is extracted in
Stage I-2 of each left session by using the robust concurrent extractability of
CECom so that the commit-message of sWIAOK of the ĩ∗-th right session is
not rewound.

As in the proof of Lemma 1, we can show that SE
˜i∗ statistically emulates the

execution of ŜE
˜i∗ . Thus, with non-negligible probability, SE

˜i∗ obtains two valid
decommitments of a ComSH commitment (in the commit-messages of sWIAOK of
the ĩ∗-th right session) such that decommitted values are different. Then, since
SE

˜i∗ runs in polynomial time and since the commit-messages of sWIAOK (and
therefore the ComSH commitment) of the ĩ∗-th right session is not rewound in
SE

˜i∗ ,9 we can break the binding property of ComSH. Thus, we reach a contra-
diction. ��

8 For any prefix ρ of the transcript up until the challenge message of sWIAOK of the
i-th right session, let pρ be the probability that the i-th right session is accepted
when the prefix of the transcript is ρ. Then, we have E

[

Ti | prefixρ

]

= pρ · 1/pρ = 1,
where Ti is the random variable representing the number of rewinding of the wi-main
thread and prefixρ is the event that the prefix of the transcript is ρ. Thus, we have

E [Ti] =
∑

ρ E
[

Ti | prefixρ

]

Pr
[

prefixρ

]

= 1.
9 Note that the commit-messages of sWIAOK of the ˜i∗-th right session appear only on

the wi-main thread.
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Step 2. Introduce hybrid simulator-extractor. Next, we introduce hybrid
simulator-extractors. To clarify the exposition, we first define a sequence of
hybrid simulators by gradually modifying Ŝ and then define the hybrid simulator-
extractors by using them. Below, when we refer to a particular stage of sCNMZK,
we always means the corresponding stage of sCNMZK in the ĩ∗-th right session.

Hybrid simulator h-Ŝ0 is identical with Ŝ.
Hybrid simulator h-Ŝ1 is the same as h-Ŝ0 except that r̃P is extracted by brute

force in Stage II-1 and the committed value of the CECom commitment in
Stage II-2 is switched from 0n to r̃P .

Hybrid simulator h-Ŝ2 is the same as h-Ŝ1 except that in Stage II-4, the
WIPOK proof is computed by using a witness for the fact that the committed
value of the CECom commitment of Stage II-2 is r̃P .

Hybrid simulator h-Ŝ3 is the same as h-Ŝ2 except that in Stage I-2, the
committed value of the CECom commitment is switched from (r̃V , d̃) to
(0|r̃V |, 0|˜d|).

Hybrid simulator h-Ŝ4 is the same as h-Ŝ3 except that in Stage I-1, the
committed value of the ComSB commitment is switched from r̃V to 0n.

Then, for each k ∈ {0, . . . , 4}, hybrid simulator-extractor h-ŜEk is defined as
follows.

Hybrid simulator-extractor h-ŜEk is the same as ŜE
˜i∗ except that the exe-

cution of Ŝ is replaced with that of h-Ŝk. The output of h-ŜEk is the value
extracted during the witness extraction of the ĩ∗-th right session.

Note that the value r̃V is not used anywhere in h-ŜE4.

Step 3. Prove that r̃V is extracted in every hybrid. Finally, we show that
r̃V is extracted with non-negligible probability in each hybrid. First, we consider
h-ŜE1.

Claim 4. Let r̃V be the value chosen by the verifier in Stage I-1 of the ĩ∗-th right
session. If ŜE

˜i∗ outputs failWI with non-negligible probability, then in h-ŜE1 the
probability that r̃V is extracted during the witness extraction of the ĩ∗-th right
session is non-negligible.

Proof. In this proof, we use intermediate hybrid simulator-extractors in which the
CECom commitment in Stage II-2 of the ĩ∗-th right session is gradually modified.
Again, we first introduce hybrid simulators. Recall that a CECom commitment
consists of � = ω(RSH(n) log n) ExtCom commitments. Then, the intermediate
hybrid simulators h-Ŝ0:0, . . . , h-Ŝ0:� are defined as follows.

Hybrid simulator h-Ŝ0:0 is the same as h-Ŝ0 except that r̃P is extracted by
brute force in Stage II-1 of the ĩ∗-th right session.

Hybrid simulator h-Ŝ0:k (k ∈ [�]) is the same as h-Ŝ0:k−1 except that the
committed value of the k-th ExtCom commitment in the CECom commitment
of Stage II-2 is switched from 0n to r̃P in the ĩ∗-th right session.



102 S. Kiyoshima

Then, for each k ∈ {0, . . . , �}, hybrid simulator-extractor h-ŜE0:k is defined as
follows.

Hybrid simulator-extractor h-ŜE0:k is the same as h-ŜE0 except that the
execution of h-Ŝ0 is replaced with that of h-Ŝ0:k.

Note that h-ŜE0:� is identical with h-ŜE1.
Below, we show that for every k ∈ [�], the output of h-ŜE0:k−1 and that of

h-ŜE0:k are indistinguishable. (Recall that the outputs of h-ŜE0:k−1 and h-ŜE0:k

are the value extracted in the ĩ∗-th right session.) Since the probability that r̃V is
extracted in h-ŜE0:0 is non-negligible from Claim 3, this suffices to prove Claim 4.

Roughly speaking, we show this indistinguishability as follows. Since
h-ŜE0:k−1 and h-ŜE0:k differ only in the committed values of a ExtCom com-
mitment, we use the hiding property of the ExtCom commitment to show the
indistinguishability. A problem is that we cannot use it directly since h-ŜE0:k−1

and h-ŜE0:k run in super-polynomial time. To overcome this problem, we observe
that the only super-polynomial computations in h-ŜE0:k−1 and h-ŜE0:k are
the brute-force extraction of CCACom1:1 in the ĩ∗-th right session and those
of CECom in the left sessions. Based on this observation, we first show that
the execution of h-ŜE0:k−1 and h-ŜE0:k can be emulated in polynomial-time by
using the one-session committed-value oracle O of CCACom1:1 and the concur-
rent extractability of CECom. We then combine the 4-robustness of CCACom1:1

with the hiding property of ExtCom (which has only four rounds) to argue that
the output of h-ŜE0:k−1 and that of h-ŜE0:k are indistinguishable. To formally
implement this idea, we need to make sure that the ExtCom commitment and
the CCACom1:1 commitment are not rewound during the concurrent extraction
of CECom. Details are given below.

First, we introduce hybrid simulator-extractors h-SEO
0:k−1 and h-SEO

0:k, where
O is the one-session committed-value oracle of CCACom1:1. Hybrid h-SEO

0:k

(resp., h-SEO
0:k−1) emulates h-ŜE0:k (resp., h-ŜE0:k−1) in the same way as SE

emulates ŜE except for the following.

– During the emulation of the wi-main thread, the value (rV , d) is extracted
in Stage I-2 of each left session by using the robust concurrent extractabil-
ity so that the CCACom1:1 commitment of Stage II-1 and the k-th ExtCom
commitment of the CECom commitment of Stage II-2 are not rewound in the
ĩ∗-th right session. In addition, in the ĩ∗-th right session, the committed value
of CCACom1:1 is extracted by forwarding the commitment to O. Note that
the CCACom1:1 commitment in the ĩ∗-th right session is not rewound and
therefore it can be forwarded to O.

Next, we show that for each h ∈ {k−1, k}, the output of h-ŜE0:h and that of
h-SEO

0:h are indistinguishable. This can be proven in a similar way to Lemma 1.
In particular, we can use the same argument if we use the following claim instead
of Claim 2.

Claim 5. In h-Ŝ0:h for each h ∈ {k − 1, k}, the following holds except with
negligible probability: In every left session that reaches Stage III, the CECom
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commitment in Stage I-2 of this session is valid and its committed value is a
valid decommitment of the ComSB commitment of Stage I-1.

Note that since h-Ŝ0:0 is identical to Ŝ, Claim 5 implies Claim 2.

Proof (of Claim 5). Let us say that a left session is bad if it reaches Stage III and
either the CECom commitment in Stage I-2 is invalid or its committed value is
not a valid decommitment of the ComSB commitment in Stage I-1; a left session
is good if it is not bad. What we want to prove is that every left session is good
except with negligible probability.

Roughly speaking, the proof proceeds as follows. From the soundness of
WIPOK, if a left session is bad, then in Stage II-2 of this left session, the com-
mitted value of the CECom commitment is rP , which is the committed value
of the CCACom1:1 commitment of Stage II-1; thus, before rP is decommitted
to in Stage II-3, we can obtain rP by extracting the committed value from
CECom in Stage II-2. This itself does not contradict to the hiding property of
CCACom1:1 since h-Ŝ0:h runs in super-polynomial time in the brute-force extrac-
tion of CECom and CCACom1:1. Thus, we again replace the brute-force extraction
with the concurrent extraction of CECom and an oracle access to the one-session
committed-value oracle O of CCACom1:1, and use the one-one CCA-security of
CCACom1:1 instead of its hiding property. Here, since we want to use the one-one
CCA-security of CCACom1:1, we perform the concurrent extraction of CECom so
that the CCACom1:1 commitment in a left session and the CCACom1:1 in the
ĩ∗-th right session are not rewound. Details are given below.

Assume for contradiction that there exists h ∈ {k −1, k} such that in h-Ŝ0:h,
a left session is bad with non-negligible probability. (Here, the indices of the left
sessions are determined by the order in which Stage III begins; the reason why
we define the indices in this way will become clear later.) Then, there exists
i∗ ∈ [m] such that in h-Ŝ0:h, the first (i∗ − 1) left sessions are good except
with negligible probability but the i∗-th left session is bad with non-negligible
probability. Note that from the soundness of WIPOK, when the i∗-th left session
is bad, the committed value of the CECom commitment in Stage II-2 is rP in
the i∗-th left session except with negligible probability, where rP is the value
committed to in Stage II-1 of the i∗-th left session. In the following, we use BAD

to denote the event that the i∗-th left session is bad, and use CHEAT to denote
the event that the committed value of the CECom commitment in Stage II-2 is
rP in the i∗-th left session. Then, let us consider the following hybrids.

Hybrid simulator h-Ŝ0:h:0 is the same as h-Ŝ0:h. From our assumption, BAD

occurs in h-Ŝ0:h:0 with non-negligible probability. Thus, from the above argu-
ment, CHEAT occurs in h-Ŝ0:h:0 with non-negligible probability.

Hybrid simulator h-Ŝ0:h:1 is the same as h-Ŝ0:h:0 except that h-Ŝ0:h:1 termi-
nates just before Stage III of the i∗-th left session begins. Clearly, BAD and
CHEAT also occur in h-Ŝ0:h:1 with non-negligible probability.

Hybrid simulator h-SO
0:h:1 emulates h-Ŝ0:h:1 in polynomial time as follows.

– At the beginning, a random left session s is chosen. (Here, we guess that
session s is the i∗-th left session.)
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– In every left session, in Stage I-2, the committed value (rV , d) is extracted
by the robust concurrent extractor of CECom in such a way that the
CCACom1:1 commitment of left session s and the CCACom1:1 commitment
of the ĩ∗-th right session are not rewound. In addition, in the ĩ∗-th right
session, the committed value of CCACom1:1 is extracted by forwarding
the commitment to O.

– In left session s, the committed value is also extracted in Stage II-2 by the
robust concurrent extractor of CECom without rewinding the CCACom1:1

commitment of the ĩ∗-th right session.
Note that when Stage III of a left session is executed, the CECom commit-
ment in Stage I-2 of that session is valid except with negligible probability
(since that session is one of the first (i∗ − 1) left sessions and therefore it
is good except with negligible probability). Thus, the values extracted from
the concurrent extractor are equal to the values that would be extracted by
brute force except with negligible probability; therefore, h-SO

0:h:1 statistically
emulates h-Ŝ0:h:1, and BAD and CHEAT occur in h-SO

0:h:1 with non-negligible
probability.

Note that session s is the i∗-th left session with non-negligible probability. Then,
since CHEAT occurs in h-SO

0:h:1 with non-negligible probability, rP is extracted
from the CECom commitment in Stage II-2 of session s with non-negligible prob-
ability, where rP is the value committed to in Stage II-1 of session s. Then, since
the CCACom1:1 commitment of session s is not rewound in h-SO

0:h:1, we can break
the one-one CCA security of CCACom1:1. Thus, we reach a contradiction. ��
Thus, for each h ∈ {k − 1, k}, the outputs of h-ŜE0:h and h-SEO

0:h are indistin-
guishable.

To show that the outputs of h-ŜE0:k−1 and h-ŜE0:k are indistinguishable, it
remains to prove that the outputs of h-SEO

0:k−1 and h-SEO
0:k are indistinguishable.

This can be shown as follows. Observe that h-SEO
0:k−1 and h-SEO

0:k differ only
in the k-th ExtCom commitment of the CECom commitment of the ĩ∗-th right
session, and this ExtCom commitment is not rewound in h-SEO

0:k−1 and h-SEO
0:k.

In addition, h-SEO
0:k−1 and h-SEO

0:k run in polynomial time given oracle access to
the one-session committed-value oracle O of CCACom1:1. Thus, from the hiding
property of ExtCom and the 4-robustness of CCACom1:1, the output of SEO

0:k−1

and that of h-SEO
0:k are indistinguishable.

Thus, we conclude that the probability that r̃V is extracted in h-ŜE1 is non-
negligible. This concludes the proof of Claim 4. ��
By using essentially the same argument as in the proof of Claim 4, we can
show that r̃V is extracted with non-negligible probability also in h-ŜE2, h-ŜE3,
and h-ŜE4.

Concluding the Proof of Claim 1. In h-ŜE4, the ĩ∗-th right session is independent
of r̃V , and therefore the probability that r̃V is extracted is negligible. However,
we show above that this probability is non-negligible. Thus, we reach a contra-
diction.

This concludes the proof of Theorem 2. ��
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Abstract. We introduce implicit zero-knowledge arguments (iZK) and
simulation-sound variants thereof (SSiZK); these are lightweight alter-
natives to zero-knowledge arguments for enforcing semi-honest behavior.
Our main technical contribution is a construction of efficient two-flow iZK
and SSiZK protocols for a large class of languages under the (plain) DDH
assumption in cyclic groups in the common reference string model. As
an application of iZK, we improve upon the round-efficiency of existing
protocols for securely computing inner product under the DDH assump-
tion. This new protocol in turn provides privacy-preserving biometric
authentication with lower latency.

Keywords: Hash proof systems · Zero-knowledge · Malicious adver-
saries · Two-party computation · Inner product

1 Introduction

Zero-Knowledge Arguments (ZK) enable a prover to prove the validity of
a statement to a verifier without revealing anything else [13,30]. In addition to
being interesting in its own right, zero knowledge has found numerous applica-
tions in cryptography, most notably to simplify protocol design as in the setting
of secure two-party computation [28,29,46], and as a tool for building cryp-
tographic primitives with strong security guarantees such as encryption secure
against chosen-ciphertext attacks [19,41].

In this work, we focus on the use of zero-knowledge arguments as used in effi-
cient two-party protocols for enforcing semi-honest behavior. We are particularly
interested in round-efficient two-party protocols, as network latency and round-
trip times can be a major efficiency bottleneck, for instance, when a user wants
to securely compute on data that is outsourced to the cloud. In addition, we
want to rely on standard and widely-deployed cryptographic assumptions. Here,
a standard interactive zero-knowledge argument based on the DDH assumption
would require at least three flows; moreover, this overhead in round complexity is
incurred each time we want to enforce semi-honest behavior via zero knowledge.
To avoid this overhead, we could turn to non-interactive zero-knowledge proofs
c© International Association for Cryptologic Research 2015
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(NIZK). However, efficient NIZK would require either the use of pairings [32]
and thus stronger assumptions and additional efficiency overhead, or the use of
random oracles [6,23].

We would like to point out that, contrary to some common belief, there is no
straightforward way to reduce the number of rounds of zero-knowledge proofs
“à la Schnorr” [42] by performing the first steps (commitment and challenges)
in a preprocessing phase, so that each proof only takes one flow subsequently.
Indeed, as noticed by Bernhard-Pereira-Warinsky in [9], the statement of the
proof has to be chosen before seeing the challenges, unless the proof becomes
unsound.

On the Importance of Round-Efficiency. In addition to being an inter-
esting theoretical problem, improving the round efficiency is also very impor-
tant in practice. If we consider a protocol between a client in Europe, and a
cloud provider in the US, for example, we expect a latency of at least 100ms
(and even worse if the client is connected with 3 g or via satellite, which may
induce a latency of up to 1s [14]). Concretely, using Curve25519 elliptic curve
of Bernstein [10] (for 128 bits of security, and 256-bit group elements) with
a 10 Mbps Internet link and 100 ms latency, 100 ms corresponds to sending 1
flow, or 40,000 group elements, or computing 1,000 exponentiations at 2 GHz on
one core of current AMD64 microprocessor1, hence 4,000 exponentiations on a
4-core microprocessor2. As a final remark on latency, while speed of networks
keeps increasing as technology improves, latency between two (far away) places
on earth is strongly limited by the speed of light: there is no hope to get a latency
less than 28 ms between London and San Francisco, for example.

Our Contributions. In this work, we introduce implicit Zero-Knowledge
Arguments or iZK and simulation-sound variants thereof or SSiZK, lightweight
alternatives to (simulation-sound) zero-knowledge arguments for enforcing semi-
honest behavior in two-party protocols. Then, we construct efficient two-flow
iZK and SSiZK protocols for a large class of languages under the (plain) DDH
assumption in cyclic groups without random oracles; this is the main techni-
cal contribution of our work. Our SSiZK construction from iZK is very efficient
and incurs only a small additive overhead. Finally, we present several applica-
tions of iZK to the design of efficient secure two-party computation, where iZK
can be used in place of interactive zero-knowledge arguments to obtain more
round-efficient protocols.

While our iZK protocols require an additional flow compared to NIZK, we
note that eliminating the use of pairings and random oracles offers both theoret-
ical and practical benefits. From a theoretical stand-point, the DDH assumption
in cyclic groups is a weaker assumption than the DDH-like assumptions used
in Groth-Sahai pairing-based NIZK [32], and we also avoid the theoretical pit-
falls associated with instantiating the random oracle methodology [5,16]. From a
practical stand-point, we can instantiate our DDH-based protocols over a larger
1 According to [20], an exponentiation takes about 200,000 cycles.
2 Assuming exponentiations can be made in parallel, which is the case for our iZKs.
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Fig. 1. Enforcing semi-honest behavior of Alice (A)

class of groups. Concrete examples include Bernstein’s Curve25519 [10] which
admit very efficient group exponentiations, but do not support an efficient pair-
ing and are less likely to be susceptible to recent breakthroughs in discrete log
attacks [4,31]. By using more efficient groups and avoiding the use of pairing
operations, we also gain notable improvements in computational efficiency over
Groth-Sahai proofs. Moreover, additional efficiency improvements come from
the structure of iZK which makes them efficiently batchable. Conversely, Groth-
Sahai NIZK cannot be efficiently batched and do not admit efficient SS-NIZK
(for non-linear equations).

New Notion: Implicit Zero-Knowledge Arguments. iZK is a two-party
protocol executed between a prover and a verifier, at the end of which both
parties should output an ephemeral key. The idea is that the key will be used to
encrypt subsequent messages and to protect the privacy of a verifier against a
cheating prover. Completeness states that if both parties start with a statement
in the language, then both parties output the same key K. Soundness states that
if the statement is outside the language, then the verifier’s ephemeral output key
is hidden from the cheating prover. Note that the verifier may not learn whether
his key is the same as the prover’s and would not be able to detect whether the
prover is cheating, hence the soundness guarantee is implicit. This is in contrast
to a standard ZK argument, where the verifier would “explicitly” abort when
interacting with a cheating prover. Finally, zero-knowledge stipulates that for
statements in the language, we can efficiently simulate (without the witness) the
joint distribution of the transcript between an honest prover and a malicious
verifier, together with the honest prover’s ephemeral output key K. Including K
in the output of the simulator ensures that the malicious verifier does not gain
additional knowledge about the witness when honest prover uses K in subsequent
interaction, as will be the case when iZK is used as part of a bigger protocol.
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More precisely, iZK are key encapsulation mechanisms in which the public
key ipk is associated with a word x and a language iL . In our case, x is the flow3

and iL the language of valid flows. If x is in iL , knowing a witness proving so
(namely, random coins used to generate the flow) enables anyone to generate ipk
together with a secret key isk, using a key generation algorithm iKG. But, if x
is not in iL , there is no polynomial-time way to generate a public key ipk for
which it is possible to decrypt the associated ciphertexts (soundness).

To ensure semi-honest behavior, as depicted in Fig. 1, each time a player sends
a flow x, he also sends a public key ipk generated by iKG and keeps the associated
secret key isk. To answer back, the other user generates a key encapsulation c
for ipk and x, of a random ephemeral key K. He can then use K to encrypt
(using symmetric encryption or pseudo-random generators and one-time pad)
all the subsequent flows he sends to the first player. For this transformation
to be secure, we also need to be sure that c (and the ability to decapsulate K
for any ipk) leaks no information about random coins used to generate the flow
(or, more generally, the witness of x). This is ensured by the zero-knowledge
property, which states there must exist a trapdoor (for some common reference
string) enabling to generate a public key ipk and a trapdoor key itk (using a
trapdoor key algorithm iTKG), so that ipk looks like a classical public key and
itk allows to decapsulate any ciphertext for ipk.

Overview of Our iZK and SSiZK Constructions. We proceed to provide an
overview of our two-flow iZK protocols; this is the main technical contribution
of our work. Our main tool is Hash Proof Systems or Smooth Projective Hash
Functions (SPHFs) [18]. We observe that SPHFs are essentially “honest-verifier”
iZK; our main technical challenge is to boost this weak honest-verifier into full-
fledged zero knowledge, without using pairings or random oracles.

Informally speaking, a smooth projective hash function on a language L is a
sort of hash function whose evaluation on a word C ∈ L can be computed in two
ways, either by using a hashing key hk (which can be seen as a private key) or by
using the associated projection key hp (which can be seen as a public key). On the
other hand, when C /∈ L , the hash of C cannot be computed from hp; actually,
when C /∈ L , the hash of C computed with hk is statistically indistinguishable
from a random value from the point of view of any individual knowing the pro-
jection key hp only. Hence, an SPHF on L is given by a pair (Hash,ProjHash)
with the requirements that, when there is a witness w ensuring that C ∈ L ,
Hash(hk,L , C) = ProjHash(hp,L , C, w), while when there is no such witness
(i.e. C /∈ L ), the smoothness property states that H = Hash(hk,L , C) is ran-
dom and independent of hp. In this paper, as in [26], we consider a weak form
of SPHFs, where the projection key hp can depend on C.

Concretely, if we have an SPHF for some language L , we can set the public
key ipk to be empty (⊥), the secret key isk to be the witness w, the ciphertext c
to be the projection key hp, and the encapsulated ephemeral key K would be the
hash value. (Similar connections between SPHF and zero knowledge were made
3 In our formalization, actually, it is the flow together all the previous flows. But we

just say it is the flow to simplify explanations.
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in [1,12,25,26]). The resulting iZK would be correct and sound, the soundness
coming from the smoothness of the SPHF: if the word C is not in L , even
given the ciphertext c = hp, the hash value K looks random. However, it would
not necessarily be zero-knowledge for two reasons: not only, a malicious verifier
could generate a malformed projection key, for which the projected hash value of
a word depends on the witness, but also there seems to be no trapdoor enabling
to compute the hash value K from only c = hp.

These two issues could be solved using either Trapdoor SPHF [7] or NIZK
of knowledge of hk. But both methods require pairings or random oracle, if
instantiated on cyclic or bilinear groups. Instead we construct it as follows:

First, suppose that a projection key is well-formed (i.e., there exists a corre-
sponding hashing key). Then, there exists an unbounded zero-knowledge simu-
lator that “extracts” a corresponding hashing key and computes the hash value.
To boost this into full-fledged zero knowledge with an efficient simulator, we rely
on the “OR trick” from [22]. We add a random 4-tuple (g′, h′, u′, e′) to the CRS,
and build an SPHF for the augmented language C ∈ L or (g′, h′, u′, e′) is a DDH
tuple. In the normal setup, (g′, h′, u′, e′) is not a DDH tuple with overwhelm-
ing probability, so the soundness property is preserved. In the trapdoor setup,
(g′, h′, u′, e′) := (g′, h′, g′r, h′r) is a random DDH tuple, and the zero-knowledge
simulator uses the witness r to compute the hash value.

Second, to ensure that the projection key is well-formed, we use a second
SPHF. The idea for building the second SPHF is as follows: in most SPHF
schemes, proving that a projected key hp is valid corresponds to proving that
it lies in the column span of some matrix Γ (where all of the linear algebra is
carried out in the exponent). Now pick a random vector tk: if hp lies in the span
of Γ , then hpᵀtk is completely determined given Γ ᵀtk; otherwise, it is completely
random. The former yields the projective property and the latter yields smooth-
ness, for the SPHF with hashing key hk and projection key tp = Γ ᵀtk. Since the
second SPHF is built using the transpose Γ ᵀ of the original matrix Γ (defining
the language L ), we refer to it as a “transpose SPHF”. As it turns out, the
second fix could ruin soundness of the ensuing iZK protocol: a cheating prover
could pick a malformed Γ ᵀtk, and then the hash value hpᵀtk computed by the
verifier could leak additional information about his witness hk for hp, thereby
ruining smoothness. To protect against the leakage, we would inject additional
randomness into hk so that smoothness holds even in the presence of leakage
from the hash value hpᵀtk. This idea is inspired by the 2-universality technique
introduced in a very different context of chosen-ciphertext security [18].

Finally, to get simulation-soundness (i.e., soundness even if the adversary can
see fake or simulated proofs), we rely on an additional “OR trick” (mixed up
with an idea of Malkin et al. [40]): we build an SPHF for the augmented language
C ∈ L , or (g′, h′, u′, e′) is a DDH tuple (as before), or (g′, h′,W1(C),W2(C))
is not a DDH tuple (with Wk a Waters function [45], Wk(m) = vk,0

∏|m|
i=1 vmi

k,i ,
when m = m1‖ . . . ‖m|m| is a bitstring, the vk,0, . . . , vk,|m| are random group
elements, and C is seen as a bitstring, for k = 1, 2). In the security proof,
with non-negligible probability, (g′′, h′′,W1(C),W2(C)) is a non-DDH tuple for
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simulated proofs, and a DDH tuple for the soundness challenge, which proves
simulation-soundness.

Organization. First, we formally introduce the notion of implicit zero-
knowledge proofs (iZK) in Sect. 2. Second, in Sect. 3, we discuss some difficul-
ties related to the construction of iZK from SPHF and provide an intuition
of our method to overcome these difficulties. Next, we show how to construct
iZK and SSiZK from SPHF over cyclic groups for any language handled by the
generic framework [7], which encompasses most, if not all, known SPHFs over
cyclic groups. This is the main technical part of the paper. Third, in Sect. 4, we
indeed show a concrete application of our iZK constructions: the most efficient
3-round two-party protocol computing inner product in the UC framework with
static corruption so far. We analyze our construction and provide a detailed
comparison with the Groth-Sahai methodology [32] and the approach based on
zero-knowledge proofs “à la Schnorr” [42]. In addition, as proof of concept, we
show in the full version [8] that iZK can be used instead of ZK arguments to
generically convert any protocol secure in the semi-honest model into a protocol
secure in the malicious model. This conversion follows the generic transforma-
tion of Goldreich, Micali and Wigderson (GMW) in their seminal papers [28,29].
While applying directly the original transformation with Schnorr-like ZK proto-
cols blows up the number of rounds by a multiplicative factor of at least three
(even in the common reference string model), our conversion only adds a small
constant number of rounds. Eventually, in the full version [8], we extend our
construction of iZK from SPHF to handle larger classes of languages described
by computational structures such as circuits or branching programs.

Additional Related Work. Using the “OR trick” with SPHF is reminiscent
of [2]. However, the methods used in our paper are very different from the one
in [2], as we do not use pairings, but consider weaker form of SPHF on the other
hand.

A recent line of work has focused on the cut-and-choose approach for trans-
forming security from semi-honest to malicious models [34,35,37–39,43,44] as an
alternative to the use of zero-knowledge arguments. Indeed, substantial progress
has been made towards practical protocols via this approach, as applied to Yao’s
garbled circuits. However, the state-of-the-art still incurs a large computation
and communication multiplicative overhead that is equal to the security parame-
ter. We note that Yao’s garbled circuits do not efficiently generalize to arithmetic
computations, and that our approach would yield better concrete efficiency for
natural functions F that admit compact representations by arithmetic branch-
ing programs. In particular, Yao’s garbled circuits cannot take advantage of the
structure in languages handled by the Groth-Sahai methodology [32], and namely
the ones defined by multi-exponentiations: even in the latter case, Groth-Sahai
technique requires pairings, while we will be able to avoid them.

The idea of using implicit proofs (without the zero-knowledge requirement) as
a lightweight alternative to zero-knowledge proofs also appeared in an earlier work
of Aiello, Ishai and Reingold [3]. They realize implicit proofs using conditional
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disclosure of secrets [27]. The latter, together with witness encryption [24] and
SPHFs, only provide a weak “honest-verifier zero-knowledge” guarantee.

Recently, Jarecki introduced the concept of conditional key encapsulation
mechanism [36], which is related to iZK as it adds a “zero-knowledge flavor”
to SPHFs by allowing witness extraction. The construction is a combination of
SPHF and zero-knowledge proofs “à la Schnorr”. Contrary to iZK, it does not aim
at reducing the interactivity of the resulting protocol, but ensures its covertness.

Witness encryption was introduced by Garg et al. in [24]. It enables to encrypt
a message M for a word C and a language L into a ciphertext c, so that any
user knowing a witness w that C ∈ L can decrypt c. Similarly to SPHFs, witness
encryption also only has this “honest-verifier zero-knowledge” flavor: it does not
enable to decrypt ciphertext for words C /∈ L , with a trapdoor. That is why, as
SPHF, witness encryption cannot be used to construct directly iZK.

2 Definition of Implicit Zero-Knowledge Arguments

2.1 Notations

Since we will now be more formal, let us present the notations that we will
use. Let {0, 1}∗ be the set of bitstrings. We denote by PPT a probabilistic
polynomial time algorithm. We write y ← A(x) for ‘y is the output of the
algorithm A on the input x’, while y

$← A(x) means that A will addition-
ally use random coins. Similarly, X

$← X indicates that X has been cho-
sen uniformly at random in the (finite) set X . We sometimes write st the
state of the adversary. We define, for a distinguisher A and two distributions
D0,D1, the advantage of A (i.e., its ability to distinguish those distributions) by
AdvD0,D1(A) = Prx∈D0 [A(x) = 1] − Prx∈D1 [A(x) = 1]. The qualities of adver-
saries will be measured by their successes and advantages in certain experiments
ExpsecA or Expsec−b

A : Succsec(A,K) = Pr[ExpsecA (1K) = 1] and Advsec(A,K) =
Pr[Expsec−1

A (1K) = 1] − Pr[Expsec−0
A (1K) = 1] respectively, where K is the secu-

rity parameter, and probabilities are over the random coins of the challenger and
of the adversary.

2.2 Definition

Let (iLcrs)crs be a family of NP languages, indexed by a common reference
string crs, and defined by a witness relation iRcrs, namely iL = {x ∈ iXcrs |
∃iw, iRcrs(x, iw) = 1}, where (iXcrs)crs is a family of sets. crs is generated by some
polynomial-time algorithm Setupcrs taking as input the unary representation of
the security parameter K. We suppose that membership to Xcrs and iRcrs can
be evaluated in polynomial time (in K). For the sake of simplicity, crs is often
implicit.

To achieve stronger properties (namely simulation-soundness in Sect. 3.4), we
sometimes also assume that Setupcrs can also output some additional information
or trapdoor Tcrs. This trapdoor should enable to check, in polynomial time,
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whether a given word x is in iL or not. It is only used in security proofs, and is
never used by the iZK algorithms.

An iZK is defined by the following polynomial-time algorithms:

– icrs
$← iSetup(crs) generates the (normal) common reference string (CRS)

icrs (which implicitly contains crs). The resulting CRS provides statistical
soundness;

– (icrs, iT ) $← iTSetup(crs)4 generates the (trapdoor) common reference string
icrs together with a trapdoor iT . The resulting CRS provides statistical zero-
knowledge;

– (ipk, isk) $← iKG�(icrs, x, iw) generates a public/secret key pair, associated to a
word x ∈ iL and a label � ∈ {0, 1}∗, with witness iw;

– (ipk, itk) $← iTKG�(icrs, iT , x) generates a public/trapdoor key pair, associated
to a word x ∈ X and a label � ∈ {0, 1}∗;

– (c,K) $← iEnc�(icrs, ipk, x) outputs a ciphertext c of a value K (an ephemeral
key), for the public key ipk, the word x, and the label � ∈ {0, 1}∗;

– K ← iDec�(icrs, isk, c) decrypts the ciphertext c for the label � ∈ {0, 1}∗, and
outputs the ephemeral key K;

– K ← iTDec�(icrs, itk, c) decrypts the ciphertext c for the label � ∈ {0, 1}∗, and
outputs the ephemeral key K.

The three last algorithms can be seen as key encapsulation and decapsulation
algorithms. Labels � are only used for SSiZK and are often omitted. The CRS
icrs is often omitted, for the sake of simplicity.

Normally, the algorithms iKG and iDec are used by the user who wants to
(implicitly) prove that some word x is in iL (and we often call this user the
prover), while the algorithm iEnc is used by the user who wants to (implicitly)
verify this (and we often call this user the verifier), as shown in Figs. 1 and 3.
The algorithms iTKG and iTDec are usually only used in proofs, to generate
simulated or fake implicit proofs (for the zero-knowledge property).

2.3 Security Requirements

An iZK satisfies the four following properties (for any (crs, Tcrs)
$← Setupcrs(1K)):

– Correctness. The encryption is the reverse operation of the decryption, with
or without a trapdoor: for any icrs

$← iSetup(crs) or with a trapdoor, for any
(icrs, iT ) $← iTSetup(crs), and for any x ∈ X and any � ∈ {0, 1}∗,
• if x ∈ iL with witness iw, (ipk, isk) $← iKG�(icrs, x, iw), and (c,K) $←

iEnc�(ipk, x), then we have K = iDec�(isk, c);
• if (ipk, itk) $← iTKG�(iT , x) and (c,K) $← iEnc�(ipk, x), then we have K =

iTDec�(itk, c).

4 When the CRS is word-dependent, i.e., when the trapdoor iT does only work for one

word x∗ previously chosen, there is a second argument: (icrs, iT )
$← iTSetup(crs, x∗).

Security notions are then slightly different. See details in the full version [8].
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– Setup Indistinguishability. A polynomial-time adversary cannot distin-
guish a normal CRS generated by iSetup from a trapdoor CRS generated by
iTSetup. More formally, no PPT can distinguish, with non-negligible advan-
tage, the two distributions:

{icrs | icrs $← iSetup(crs)} {icrs | (icrs, iT ) $← iTSetup(crs)}.

– Soundness. When the CRS is generated as icrs
$← iSetup(crs), and when

x /∈ L , the distribution of K is statistically indistinguishable from the uniform
distribution, even given c. More formally, if Π is the set of all the possible
values of K, for any bitstring ipk, for any word x /∈ iL , for any label � ∈ {0, 1}∗,
the two distributions:

{(c,K) | (c,K) $← iEnc�(ipk, x)} {(c,K ′) | (c,K) $← iEnc�(ipk, x);K ′ $← Π}

are statistically indistinguishable (iEnc may output (⊥,K) when the public
key ipk is not well formed).

– Zero-Knowledge. For any label � ∈ {0, 1}∗, when the CRS is generated
using (icrs, iT ) $← iTSetup�(crs), for any message x∗ ∈ iL with the witness iw∗,
the public key ipk and the decapsulated key K corresponding to a ciphertext
c chosen by the adversary, either using isk or the trapdoor itk, should be
indistinguishable, even given the trapdoor iT . More formally, we consider the
experiment ExpiZK-zk-b in Fig. 2. The iZK is (statistically) zero-knowledge if
the advantage of any adversary A (not necessarily polynomial-time) for this
experiment is negligible.

We defined our security notion with a “composable” security flavor, as Groth
and Sahai in [32]: soundness and zero-knowledge are statistical properties, the
only computational property is the setup indistinguishability property. This is
slightly stronger than what is needed, but is satisfied by our constructions and
often easier to use.

Fig. 2. Experiments ExpiZK-zk-b for zero-knowledge of iZK, and ExpiZK-ss-b for
simulation-soundness of SSiZK
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Prover P Verifier V
(ipk, isk) $← iKG(icrs, x, iw)

x, ipk

(c, K)
$← iEnc(ipk, x)

c

K ← iDec(isk, c) accept if K = K
K

Fig. 3. Three-round zero-knowledge from iZK for a word x ∈ iL and a witness iw

We also consider stronger iZK, called simulation-sound iZK or SSiZK, which
satisfies the following additional property:

– Simulation Soundness. The soundness holds (computationally) even when
the adversary can see simulated public keys and decryption with these keys.
More formally, we consider the experiment ExpiZK-ss-b in Fig. 2, where the
oracle O, and the lists L and L′ are defined as follows:
• on input (�, x), O generates (ipk, itk) $← iTKG(icrs, iT , x), stores (�, x, ipk, itk)

in a list L, and outputs ipk;
• on input (ipk, c), O retrieves the record (�, x, ipk, itk) from L (and aborts

if no such record exists), removes it from L, and adds it to L′, computes
K ← iTDec�(icrs, itk, c), and outputs K.

The iZK is (statistically) simulation-sound if the advantage of any adversary
A (not necessarily polynomial-time) for this experiment is negligible.

Remark 1. An iZK for some language iL directly leads to a 3-round zero-
knowledge arguments for iL . The construction is depicted in Fig. 3 and the proof
is provided in the full version [8]. If the iZK is additionally simulation-sound, the
resulting zero-knowledge argument is also simulation-sound.

Remark 2. For the sake of completeness, in the full version [8], we show how to
construct iZK from either NIZK or Trapdoor SPHFs. In the latter case, the result-
ing iZK is not statistically sound and zero-knowledge but only computationally
sound and zero-knowledge. In both cases, using currently known constructions
over cyclic groups, strong assumptions such as the random oracle model or pair-
ings are needed.

3 Construction of Implicit Zero-Knowledge Arguments

Let us first recall the generic framework of SPHFs [7] for the particular case of
cyclic groups, and when the projection key hp can depend on the word C, as it
is at the core of our construction of iZK. Second, we explain in more details the
limitations of SPHFs and the fact they cannot directly be used to construct iZK
(even with a concrete attack). Third, we show how to overcome these limitations
to build iZK and SSiZK.
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3.1 Review of the Generic Framework of SPHFs over Cyclic Groups

Languages. Let G be a cyclic group of prime order p and Zp the field of integers
modulo p. If we look at G and Zp as the same ring (G,+, •), where internal
operations are on the scalars, many interesting languages can be represented as
subspaces of the vector space G

n, for some n. Here are some examples.

Example 3 (DDH or ElGamal Ciphertexts of 0). Let g and h be two generators
of G. The language of DDH tuples in basis (g, h) is

L = {(u, e) ∈ G
2 | ∃r ∈ Zp, u = gr and e = hr} ⊆ G

2,

where r is the witness. It can be seen as the subspace of G2 generated by (g, h).
We remark that this language can also be seen as the language of (additive)
ElGamal ciphertexts of 0 for the public key pk = (g, h). �	
Example 4 (ElGamal Ciphertexts of a Bit). Let us consider the language of
ElGamal ciphertexts of 0 or 1, under the public key pk = (g, h):

L := {(u, e) ∈ G
2 | ∃r ∈ Zp,∃b ∈ {0, 1}, u = gr and e = hrgb}.

Here C = (u, e) cannot directly be seen as an element of some vector space. How-
ever, a word C = (u, e) ∈ G

2 is in L if and only there exists λ = (λ1, λ2, λ3) ∈ Z
3
p

such that:

u = gλ1 (= λ1 • g) e = hλ1gλ2 (= λ1 • h + λ2 • g)

1 = uλ2gλ3 (= λ2 • u + λ3 • g) 1 = (e/g)λ2hλ3 (= λ2 • (e − g) + λ3 • h),

because, if we write C = (u, e) = (gr, hrgb) (with r, b ∈ Zp, which is always
possible), then the first three equations ensure that λ1 = r, λ2 = b and λ3 = −rb,
while the last equation (right bottom) ensures that b(b − 1) = 0, i.e., b ∈ {0, 1},
as it holds that (hrgb/g)bh−rb = gb(b−1) = 1.

Therefore, if we introduce the notation Ĉ = θ(C) :=
(
u e 1 1

) ∈ G
4, then

the language L can be defined as the set of C = (u, e) such that Ĉ is in the
subspace of G4 generated by the rows of the following matrix

Γ :=

⎛
⎝

g h 1 1
1 g u e/g
1 1 g h

⎞
⎠ . �	

Example 5 (Conjunction of Languages). Let gi and hi (for i = 1, 2) be four
generators of G, and Li be (as in Example 3) the languages of DDH tuples in
bases (gi, hi) respectively. We are now interested in the language L = L1×L2 ⊆
G

4, which is thus the conjunction of L1 × G
2 and G

2 × L2: it can be seen as
the subspace of G4 generated by the rows of the following matrix

Γ :=
(

g1 h1 1 1
1 1 g2 h2

)
. �	

This can also be seen as the matrix, diagonal by blocks, with Γ1 and Γ2 the
matrices for L1 and L2 respectively.
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More formally, the generic framework for SPHFs in [7] considers the languages
L ⊆ X defined as follows: There exist two functions θ and Γ from the set of
words X to the vector space Gn of dimension n, and to set Gk×n of k×n matrices
over G, such that C ∈ L if and only if Ĉ := θ(C) is a linear combination of the
rows of Γ (C). From a witness w for a word C, it should be possible to compute
such a linear combination as a row vector λ = (λi)i=1,...,k ∈ Z

1×k
p :

Ĉ = θ(C) = λ • Γ (C). (1)

For the sake of simplicity, because of the equivalence between w and λ, we will
use them indifferently for the witness.

SPHFs. Let us now build an SPHF on such a language. A hashing key hk is
just a random column vector hk ∈ Z

n
p , and the associated projection key is

hp := Γ (C) • hk. The hash value of a word C is then H := Ĉ • hk, and if λ is a
witness for C ∈ L , this hash value can also be computed as:

H = Ĉ • hk = λ • Γ (C) • hk = λ • hp = projH,

which only depends on the witness λ and the projection key hp. On the other
hand, if C /∈ L , then Ĉ is linearly independent from the rows of Γ (C). Hence,
H := Ĉ • hk looks random even given hp := Γ (C) • hk, which is exactly the
smoothness property.

Example 6. The SPHF corresponding to the language in Example 4, is then
defined by:

hk = (hk1, hk2, hk3, hk4)ᵀ $← Z
4
p

hp = Γ (C) • hk = (ghk1hhk2 , ghk2uhk3(e/g)hk4 , ghk3hhk4)

H = Ĉ • hk = uhk1ehk2 projH = λ • hp = hpr
1 · hpb

2 · hp−rb
3 .

For the sake of clarity, we will omit the C argument, and write Γ , instead of
Γ (C).

3.2 Limitations of Smooth Projective Hash Functions

At a first glance, as explained in the introduction, it may look possible to con-
struct an iZK from an SPHF for the same language L = iL as follows:

– iSetup(crs) and iTSetup(crs) outputs the empty CRS icrs :=⊥;
– iKG(icrs, x, iw) outputs an empty public key ipk :=⊥ together with the secret

key isk := (x, iw);
– iEnc(ipk, x) generates a random hashing key hk

$← HashKG(crs, x) and outputs
the ciphertext c := hp ← ProjKG(hk, crs, x) together with the ephemeral key
K := H ← Hash(hk, crs, x);

– iDec(isk, c) outputs the ephemeral key K := projH ← ProjHash(hp, crs, x, iw).
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This construction is sound: if x /∈ L , given only c = hp, the smoothness ensures
that K = H looks random. Unfortunately, there seems to be no way to compute
K from only c, or in other words, there does not seem to exist algorithms iTKG
and iTDec.

Example 6 is not Zero-Knowledge. Actually, with the SPHF from
Example 6, no such algorithm iTKG or iTDec (verifying the zero-knowledge prop-
erty) exists. It is even worse than that: a malicious verifier may get information
about the witness, even if he just has a feedback whether the prover could use
the correct hash value or not (and get the masked value or not), in a protocol
such as the one in Fig. 1. A malicious verifier can indeed generate a ciphertext
c = hp, by generating hp1 honestly but by picking hp2 and hp3 uniformly at
random. Now, a honest prover will compute projH = hpr

1hp
b
2hp

−rb
3 , to get back

the ephemeral key (using iDec). When C is an encryption of b = 1, this value
is random and independent of H, as hp2 and hp3 have been chosen at random,
while when b = 0, this value is the correct projH and is equal to H. Thus the
projected hash value projH, which is the ephemeral output key by the honest
prover, reveals some information about b, part of the witness.

If we want to avoid such an attack, the prover has to make sure that the hp
he received was built correctly. Intuitively, this sounds exactly like the kind of
verifications we could make with an SPHF: we could simply build an SPHF on
the language of the “correctly built” hp. Then the prover could send a projection
key for this new SPHF and ask the verifier to XOR the original hash value H
with the hash value of this new SPHF. However, things are not that easy: first
this does not solve the limitation due to the security proof (the impossibility of
computing H for x /∈ iL ) and second, in the SPHF in Example 6, all projection
keys are valid (since Γ is full-rank, for any hp, there exists necessarily a hk such
that hp = Γ • hk).

3.3 iZK Construction

Let us consider an SPHF defined as in Sect. 3.1 for a language iL = L . In
this section, we show how to design, step by step, an iZK for iL from this
SPHF, following the overview in Sect. 1. At the end, we provide a summary of
the construction and a complete proof. We illustrate our construction on the
language of ElGamal ciphertexts of bits (Examples 4 and 6), and refer to this
language as “our example”. We suppose a cyclic group G of prime order p is
fixed, and that DDH is hard in G

5.
We have seen the limitations of directly using the original SPHF are actually

twofold. First, SPHFs do not provide a way to compute the hash value of a word
outside the language, with just a projection key for which the hashing key is not
known. Second, nothing ensures that a projection key has really been derived
from an actually known hashing key, and in such a bad case, the projected hash
value may leak some information about the word C (and the witness).
5 The construction can be trivially extended to DLin, or any MDDH assumption [21]

though.
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To better explain our construction, we first show how to overcome the first
limitation. Thereafter, we will show how our approach additionally allows to
check the validity of the projection keys (with a non-trivial validity meaning). It
will indeed be quite important to notice that the projection keys coming from our
construction (according to one of the setups) will not necessarily be valid (with
a corresponding hashing key), as the corresponding matrix Γ will not always be
full rank, contrary to the projection keys of the SPHF in Example 6. Hence, the
language of the valid projection keys will make sense in this setting.

Adding the Trapdoor. The CRS of our construction is a tuple icrs =
(g′, h′, u′ = g′r′

, e′ = h′s′
) ∈ G

4, with g′, h′ two random generators of G, and

– r′, s′ two random distinct scalars in Zp, for the normal CRS generated by
iSetup, so that (g′, h′, u′, e′) is not a DDH tuple;

– r′ = s′ a random scalar in Zp, for the trapdoor CRS generated by iTSetup,
with iT = r′ the trapdoor, so that (g′, h′, u′, e′) is a DDH tuple.

Then, we build an SPHF for the augmented language Lt defined as follows: a
word Ct = (C, u′, e′) is in Lt if and only if either C is in the original language L
or (u′, e′) is a DDH tuple. This new language Lt can be seen as the disjunction of
the original language L and of the DDH language in basis (g′, h′). Construction
of disjunctions of SPHFs were proposed in [2] but require pairings. In this article,
we use an alternative more efficient construction without pairing6. Let us show
it on our example, with Ct = (C, u′, e′). We set Ĉt := (g′−1, 1, 1, 1, 1, 1, 1) and
Γt(Ct) ∈ G

(k+3)×(n+3) as

Γt(Ct) :=

⎛
⎜⎜⎜⎜⎝

1 Γ (C)
g′ 1 1 Ĉ = θ(C)
1 g′ h′ 1 . . . 1
g′ u′ e′ 1 . . . 1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 g h 1 1
1 1 1 1 g u e/g
1 1 1 1 1 g h
g′ 1 1 u e 1 1
1 g′ h′ 1 1 1 1
g′ u′ e′ 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Let us show the language corresponding to Γt and Ĉt is indeed Lt: Due to the
first column of Γt and the first element of Ĉt, if Ĉt is a linear combination of
rows of Γt with coefficients λt (i.e., Ĉt = λt • Γt), one has λt,4 + λt,6 = −1, and
thus at least λt,4 or λt,6 is not equal to zero.

– If λt,6 
= 0, looking at the second and the third columns of Γt gives that:

λt,5 • (g′, h′) + λt,6 • (u′, e′) = (1, 1) , i.e., (u′, e′) = (g′λt,5/λt,6 , h′λt,5/λt,6),

or in other words (u′, e′) is a DDH tuple in basis (g′, h′);
– if λt,4 
= 0, looking at the last four columns of Γt gives that: λt,4 • Ĉ =

λt,4 • (u, e, 1, 1) is a linear combination of rows of Γ , hence Ĉ too. As a
consequence, by definition of L , C ∈ L .

6 Contrary to [2] however, our matrix Γt depends on the words Ct, which is why we
get this more efficient construction.
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Now, whatever the way the CRS is generated (whether (u′, e′) is a DDH tuple or
not), it is always possible to compute projH as follows, for a word C ∈ L with
witnesses r and b:

projH = λt • hp λt = (λ,−1, 0, 0) = (r, b,−rb,−1, 0, 0)

When the CRS is generated with the normal setup, as shown above, this is
actually the only way to compute projH, since (u′, e′) is not a DDH tuple and so
Ĉt is linearly dependent of the rows of Γt if and only if C ∈ L . On the opposite,
when the CRS is generated by the trapdoor setup with trapdoor r′, we can also
compute projH using the witness r′: projH = λ′

t•hp with λ′
t = (0, 0, 0, 0, r′,−1).

However, the latter way to compute projH gives the same result as the former
way, only if hpt,5 and hpt,6 involve the correct value for hk1. A malicious verifier
could decide to choose random hpt,5 and hpt,6, which would make λ′

t • hp look
random and independent of the real hash value!

Ensuring the Validity of Projection Keys. The above construction and
trapdoor would provide zero-knowledge if we could ensure that the projection
keys hp (generated by a potentially malicious verifier) is valid, so that, intuitively,
hpt,5 and hpt,6 involve the correct value of hk1. Using a zero-knowledge proof
(that hp derives from some hashing key hk) for that purpose would annihilate
all our efforts to avoid adding rounds and to work under plain DDH (interactive
ZK proofs introduce more rounds, and Groth-Sahai [32] NIZK would require
assumptions on bilinear groups). So we are left with doing the validity check
again with SPHFs.

Fortunately, the language of valid projection keys hp can be handled by the
generic framework, since a valid projection key hp is such that: hp = Γt • hk,
or in other words, if we transpose everything hpᵀ = hkᵀ • Γ ᵀ

t . This is exactly
the same as in Eq. (1), with Ĉ ↔ hpᵀ, Γ ↔ Γ ᵀ

t and witness λ ↔ hkᵀ. So we
can now define a smooth projective hash function on that language, where the
projection key is called transposed projection key tp, the hashing key is called
transposed hashing key tk, the hash value is called transposed hash value tH
and the projected hash value is called transposed projected hash value tprojH.

Finally, we could define an iZK, similarly to the one in Sect. 3.2, except, ipk
contains a transposed projection key tp (generated by the prover from a random
transposed hashing key tk), and c contains the associated transposed projected
hash value tprojH in addition to hp, so that the prover can check using tk that
hp is valid by verifying whether tprojH = tH or not.

An Additional Step. Unfortunately, we are not done yet, as the above
modification breaks the soundness property! Indeed, in this last construction,
the prover now learns an additional information about the hash value H:
tprojH = hkᵀtp, which does depend on the secret key hk. He could therefore
choose tp = Ĉᵀ

t , so that tprojH = hkᵀĈᵀ
t = Ĉthk is the hash value H = K of C

under hk.
We can fix this by ensuring that the prover will not know the extended word

Ĉt on which the SPHF will be based when he sends tp, using an idea similar to
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the 2-universality property of SPHF introduced by Cramer and Shoup in [18].
For that purpose, we extend Γt and make Ĉt depends on a random scalar ζ ∈ Zp

chosen by the verifier (and included in c).

Detailed Construction. Let us now formally show how to build an iZK from
any SPHF built from the generic framework of [7], following the previous ideas.
We recall that we consider a language L = iL , such that a word x = C is in
iL , if and only if Ĉ = θ(C) is a linear combination of the rows of some matrix
Γ ∈ G

k×n (which may depend on C). The coefficients of this linear combination
are entries of a row vector λ ∈ Z

1×k
p : Ĉ = λ • Γ , where λ = λ(iw) can be

computed from the witness iw for x.
The setup algorithms iSetup(crs) and iTSetup(crs) are defined as above

(page 13). We define an extended language using the generic framework:

θt(x, ζ) = Ĉt = (g′−1, 1, . . . , 1, g′−ζ , 1, . . . , 1) ∈ G
1×(2n+6)

Γt(x) =
(

Γ ′
t (x) 1
1 Γ ′

t (x)

)
∈ G

(2k+6)×(2n+6),

where Γ ′
t (x) is the matrix (initially called Γt(x) in Eq. (2), 1 is the matrix of

G
(2k+3)×(2n+3) with all entries equal to 1, and ζ is a scalar used to ensure the

prover cannot guess the word Ĉt which will be used, and so cannot choose
tp = Ĉt. As explained above, this language corresponds to a 2-universal SPHF
for the disjunction of the language of DDH tuples (g′, h′, u′, e′) and the original
language L . We write:

λt(ζ, iw) = (λ(iw),−1, 0, 0, ζλ(iw),−ζ, 0, 0)
λt(ζ, iT ) = (0, . . . , 0, r′,−1, 0, . . . , 0, ζr′,−ζ) with iT = r′,

so that:

Ĉt =

{
λt(ζ, iw) • Γt(x) if (g′, h′, u′, e′) is a DDH tuple, with witness iT
λt(ζ, iT ) • Γt(x) if x ∈ iL with witness iw.

The resulting iZK construction is depicted in Fig. 4. This is a slightly more
efficient construction that the one we sketched previously, where the prover does
not test anymore explicitly tprojH, but tprojH (or tH) is used to mask K. Thus,
tprojH no more needs to be included in c.

Variants. In numerous cases, it is possible to add the trapdoor in a slightly
more efficient way, if we accept to use word-dependent CRS. While the previous
construction would be useful for security in the UC framework [15], the more
efficient construction with a word-dependent CRS is enough in the stand-alone
setting. Independently of that improvement, it is also possible to slightly reduce
the size of hp, by computing ζ with an entropy extractor, and so dropping it
from hp. Details for both variants are given in the full version [8].
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iSetup(crs)

(g , h )
$← G

∗2

(r , s )
$← Z

2
p \ {(a, a) | a ∈ Zp}

(u , e ) ← (g
r

, h
s

) ∈ G
2

icrs ← (g , h , u , e )
return icrs

iTSetup(crs)

(g , h )
$← G

∗2

r
$← Zp

(u , e ) ← (g
r

, h
r

) ∈ G
2

icrs ← (g , h , u , e ); iT ← r
return (icrs, iT )

iKG(icrs, x, iw)

tk $← Z
2k+6
p

ipk := tp ← Γt(x) • tk ∈ G
2n+6

isk := (x, tk, iw)
return (ipk, isk)

iTKG(icrs, x, iT )

tk $← Z
2k+6
p

ipk := tp ← Γt(x) • tk ∈ G
2n+6

itk := (x, tk, iT )
return (ipk, itk)

iEnc(icrs, ipk, x)

tp ← ipk; hk $← Z
2n+6
p ; ζ $← Zp

hp ← Γt(x) • hk ∈ Z
2k+6
p

tprojH ← hk • tp ∈ G

H ← θt(x, ζ) • hk ∈ Zp

K ← H · tprojH ∈ G

c := (ζ, hp)
return (K, c)

iDec(icrs, isk, c)
(x, tk, iw) ← isk
(ζ, hp) ← c
tH ← hp • tk ∈ Zp

projH ← λt(ζ, iw) • hp ∈ G

return K := projH · tH ∈ G

iTDec(icrs, itk, c)
(x, tk, iT ) ← itk
(ζ, hp) ← c
tH ← hp • tk ∈ Zp

trapH := λt(ζ, iT ) • hp ∈ G

return K := trapH · tH ∈ G

Fig. 4. Construction of iZK

3.4 SSiZK Construction

Our SSiZK construction is similar to our iZK construction, except that, in addi-
tion both iSetup and iTSetup add the CRS icrs, a tuple (vk,i)

k=1,2
i=0,...,2K of group

elements constructed as follows: for i = 0 to 2K (with K the security parame-
ter): r′

i
$← Zp, v1,i ← g′r′

i , v2,i ← h′r′
i . We also define the two Waters func-

tions [45] Wk : {0, 1}2K → G, as Wk(m) = vk,0

∏2K
i=1 vmi

k,i , for any bitstring

m = m1‖ . . . ‖m2K ∈ {0, 1}2K. Finally, the CRS is also supposed to contain
a hash function H : {0, 1}∗ → {0, 1}2K drawn from a collision-resistant hash
function family HF .

Next, the language Lt is further extended by adding 3 rows and 2 columns
(all equal to 1 except on the 3 new rows) to both the sub-matrices Γ ′

t (x) of Γt(x),
where the 3 new rows are:

⎛
⎝

1 1 1 1 . . . 1 g′ h′

1 1 1 1 . . . 1 u′′ e′′

g′ 1 1 1 . . . 1 g′ 1

⎞
⎠ ∈ G

3×(n+5),

with u′′ = W1(H(�, x)) and e′′ = W2(H(�, x)). The vector Ĉt becomes
Ĉt = (g−1, 1, . . . , 1, g−ζ , 1, . . . , 1) (it is the same except for the number of 1’s).
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Due to lack of space, the full matrix is depicted in the full version [8], where the
security proof can also be found. The security proof requires that Setupcrs also
outputs some additional information or trapdoor Tcrs, which enables to check, in
polynomial time, whether a given word x is in iL or not.

Here is an overview of the security proof. Correctness, setup indistinguisha-
bility, and zero-knowledge are straightforward. Soundness follows from the fact
that (g′, h′, u′′, e′′) is a DDH-tuple, when parameters are generated by iSetup
(and also iTSetup actually), and so (g′, 1) is never in the subspace generated
by (g′, h′) and (u′′, e′′) (as h′ 
= 1), hence the corresponding language Lt is the
same as for our iZK construction. Finally, to prove simulation-soundness, we
use the programmability of the Waters function [33] and change the generation
of the group elements (vk,i) so that for the challenge proof (generated by the
adversary) (g′, h′, u′′, e′′) is not a DDH-tuple, while for the simulated proofs it is
a DDH-tuple. Then, we can change the setup to iSetup, while still being able to
simulate proofs. But in this setting, the word Ĉt for the challenge proof is no
more in Lt, and smoothness implies simulation-soundness.

4 Application to the Inner Product

In case of biometric authentication, a server S wants to compute the Hamming
distance between a fresh user’s feature and the stored template, but without
asking the two players to reveal their own input: the template y from the server
side and the fresh feature x from the client side. One can see that the Hamming
distance between the �-bit vectors x and y is the sum of the Hamming weights of x
and y, minus twice the inner product of x and y. Let us thus focus on this private
evaluation of the inner product: a client C has an input x = (xi)�

i=1 ∈ {0, 1}�

and a server S has an input y = (yi)�
i=1 ∈ {0, 1}�. The server S wants to learn

the inner product IP =
∑�

i=1 xiyi ∈ {0, . . . , �}, but nothing else, while the client
C just learns whether the protocol succeeded or was aborted.

Semi-Honest Protocol. C can send an ElGamal encryption of each bit under
a public key of her choice and then S can compute an encryption of IP+R, with
R ∈ Zp a random mask, using the homomorphic properties of ElGamal, and
sends this ciphertext. C finally decrypts and sends back gIP+R to S who divides
it by gR to get gIP. Since IP is small, an easy discrete logarithm computation
leads to IP.

Malicious Setting. To transform this semi-honest protocol into one secure
against malicious adversaries, we could apply our generic conversion presented in
the full version [8]. Here, we propose an optimized version of this transformation
for this protocol. We use the ElGamal scheme for the encryption Epk, where pk

is a public key chosen by C and the secret key is sk = (skj)
log p
j=1 , and the Cramer-

Shoup scheme [17] for commitments Com, of group elements or multiple group
elements with randomness reuse, where the public key is in the CRS. The CRS
additionally contains the description of a cyclic group and a generator g of this
group. The construction is presented on Fig. 5. First, the client commits to her
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C
pk, (ci = Epk(g

xi))i=1 S
i=1 cyii · Epk(g

R) ≡ Epk(g
IP+R)

gIP+R

C
pk,Com ((gskj )log p

j=1 ), (ci = (ui, ei) = Epk(g
xi))i=1 , ipkC S

Com ((gyi)i=1, g
R, gR , uyi

i , eyii ), (û, ê), ipkS , cC

gR·IP+R · KS , cS

Fig. 5. Semi-honest and malicious protocols for secure inner product computation

secret key (this is the most efficient alternative as soon as n  �) and sends
encryptions (ci)i≤n of her bits. Then, the server commits to his inputs (yi)i

and to two random integers (R,R′), computes the encryption (û, ê) of gR·IP+R′
),

re-randomized with a randomness ρ, masked by an iZK to ensure that the ci’s
encrypt bits under the key pk whose corresponding secret key sk is committed
(masking one of the two components of an ElGamal ciphertext suffices). The
client replies with gR·IP+R′

, masked by a SSiZK (this is required for UC security)
to ensure that the Com(gyi) contains bits, and that the masked ciphertext has
been properly built. The server then recovers gR·IP+R′

, removes R and R′, and
tries to extract the discrete logarithm IP. If no solution exists in {0, . . . , �}, the
server aborts. This last verification avoids the 2-round verification phase from
our generic compiler: if the client tries to cheat on R · IP + R′, after removing
R and R′, the result would be random, and thus in the appropriate range with
negligible probability �/p, since � is polynomial and p is exponential. We prove in
the full version [8] that the above protocol is secure against malicious adversaries
in the UC framework with static corruptions, under the plain DDH assumption,
and in the common reference string setting.

Efficiency and Comparison with Other Methodologies. In the full ver-
sion [8], we provide a detailed analysis of our inner product protocol in terms of
complexity. Then, we estimate the complexity of this protocol when, instead of
using iZK, the security against malicious adversaries in the UC model is ensured
by using the Groth-Sahai methodology [32] or Σ-protocols. In this section, we
sum up our comparisons in a table. The notation > indicates that the given
complexity is a lower bound on the real complexity of the protocol (we have
not taken into account the linear blow-up incurred by the conversion of NIZK
into SS-NIZK), and  indicates a very loose lower bound. We stress that with
usual parameter, an element of G2 is twice as big as an element of G1 (or G)
and the number of rounds in the major efficiency drawback (see Sect. 1). The
efficiency improvement of iZK compared to NIZK essentially comes from their
“batch-friendly” nature.

Moreover, our iZKs do not require pairings, which allows us to use more
efficient elliptic curves than the best existing curves for the Groth-Sahai
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Proofs Pairings Exponentiations Communication Rounds

Σ-proofs 0 38� 20� 5

GS proofs >14� �28�(G1) + 6�(G2) >11�(G1) + 10�(G2) 3

iZK (this paper) 0 67� 21� 3

methodology. With a reasonable choice of two curves, one without pairing and
one with pairing, for 128 bits of security, we get the following results: (counting
efficiency as a multiple of the running time of an exponentiation in G1).

Curve\Efficiency Pairings Exponentiations in G1 Exponentiations in G2

Curve25519 [10] no pairings 1 ✗

[11] ≈8 ≈3 ≈6
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Abstract. In this work, we show how to use the positive results on suc-
cinct argument systems to prove impossibility results on leakage-resilient
black-box zero knowledge. This recently proposed notion of zero knowl-
edge deals with an adversary that can make leakage queries on the state
of the prover. Our result holds for black-box simulation only and we
also give some insights on the non-black-box case. Additionally, we show
that, for several functionalities, leakage-resilient multi-party computa-
tion is impossible (regardless of the number of players and even if just
one player is corrupted).

More in details, we achieve the above results by extending a tech-
nique of [Nielsen, Venturi, Zottarel – PKC13] to prove lower bounds for
leakage-resilient security. Indeed, we use leakage queries to run an execu-
tion of a communication-efficient protocol in the head of the adversary.
Moreover, to defeat the black-box simulator we connect the above tech-
nique for leakage resilience to security against reset attacks.

Our results show that the open problem of [Ananth, Goyal, Pandey –
Crypto 14] (i.e., continual leakage-resilient proofs without a common
reference string) has a negative answer when security through black-box
simulation is desired. Moreover our results close the open problem of
[Boyle et al. – STOC 12] for the case of black-box simulation (i.e., the
possibility of continual leakage-resilient secure computation without a
leak-free interactive preprocessing).

Keywords: Zero knowledge · MPC · Resettability · Succinct argu-
ments · Impossibility results · Black-box vs non-black-box simulation

1 Introduction

The intriguing notion of a zero-knowledge proof introduced by Goldwasser,
Micali and Rackoff [31] has been for almost three decades a source of fascinating
open questions in Cryptography and Complexity Theory. Indeed, motivated by
new real-world attacks, the notion has been studied in different flavors (e.g., non-
interactive zero knowledge [8], non-malleable zero knowledge [21], concurrent
zero knowledge [23], resettable zero knowledge [16]) and each of them required
c© International Association for Cryptologic Research 2015
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extensive research to figure out the proper definition and its (in)feasibility. More-
over all such real-world attacks have been considered also for the natural gener-
alization of the concept of zero knowledge: secure computation [30].

Leakage Attacks. Leakage resilience deals with modeling real-word attacks where
the adversary manages through some physical observations to obtain side-
channel information on the state (e.g., private input, memory content, ran-
domness) of the honest player (see, for example, [42]). Starting with the works
of [25,34,35,41] leakage resilience has been a main-stream research topic in Cryp-
tography, and recently the gap between theory and practice has been significantly
reduced [22,40,43].

The notions of leakage-resilient zero knowledge [28] (LRZK) and secure multi-
party computation [10] (LRMPC) have been also considered. Despite the above
intensive research on leakage resilience, LRZK and LRMPC are still rich of
interesting open problems.

1.1 Previous Work and Open Problems

Leakage Resilience vs. Tolerance. The first definition for leakage-resilient zero
knowledge (LRZK, in short) was given by Garg et al. in [28]. In their definition,
the simulator is allowed to make leakage queries in the ideal world. This was
justified by the observation that an adversary can, through leakage queries, easily
obtain some of the bits of the witness used by the prover in the real world. Clearly,
these bits of information can not be simulated, unless the simulator is allowed
to make queries in the ideal model. Therefore the best one can hope for is that a
malicious verifier does not learn anything from the protocol beyond the validity
of the statement being proved and the leakage obtained from the prover. This
formalization of security has been extensively studied by Bitansky et al. in [6] for
the case of universally composable secure computation [15]. Similar definitions
have been used in [9,11,12,36].

In [28], constructions for LRZK in the standard model and for non-interactive
LRZK in the common reference string (CRS) model were given. The simulator
of [28] for LRZK asks for a total of (1 + ε) · l bits in the ideal world, where l
is the number of bits obtained by the adversarial verifier. Thus the simulator
is allowed to obtain more bits than the verifier and this seems to be necessary
as Garg et al. show that it is impossible to obtain a simulator that ask for less
than l bits in the ideal world. Very recently, Pandey [39] gave a constant-round
construction for LRZK under the definition of [28].

Nowadays, leakage tolerance is the commonly accepted term for the security
notion used in [6,28,39] as it does not prevent a leakage attack but only guar-
antees that a protocol does not leak more than what can be obtained through
leakage queries. Bitansky et al. [7] obtained UC-secure continual leakage toler-
ance using an input-independent leak-free preprocessing phase.

Open Problems: Leakage Resilience with Leak-Free Encoding. The motivation to
study leakage-tolerant Cryptography is based on the observation that a private
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input can not be protected in full from a leakage query. However this notion
is quite extreme and does not necessarily fit all real-world scenarios. Indeed, it
is commonly expected that an adversary attacks the honest player during the
execution of the protocol, while they are connected through some communica-
tion channel. It is thus reasonable to assume that a honest player receives his
input in a preliminary phase, before having ever had any interaction with the
adversary. Once this input is received, the honest player can encode it in order
to make it somewhat intelligible from leakage queries but still valid for the exe-
cution of a protocol. This encoding phase can be considered leak-free since, as
stressed before, the honest player has never been in touch with the adversary1.
Later on, when the interaction with the adversary starts, leakage queries will be
possible but they will affect the current state of the honest player that contains
an encoding of the input. The need of a leak-free phase to protect a secret from
leakage queries was considered also in [26,32,33].

The above realistic scenario circumvents the argument that leakage tolerance
is the best one can hope for, and opens the following challenging open questions:

Open Question 1: “Assuming players can encode their inputs during a leak-free
phase, is it possible to construct LRZK argument/proof systems?”

Open Question 2: “Assuming players can encode their inputs during a leak-
free phase, is it possible to construct protocols for leakage-resilient Multi-Party
Computation (LRMPC)?”

Leakage Resilience Assuming the Existence of a CRS. Very recently, Ananth
et al. [1], showed that in the CRS (common reference string) model it is possible
to have an interactive argument system that remains non-transferable even in
presence of continual leakage attacks. More precisely, in their model a prover
encodes the witness in a leak-free environment and, later on, the prover runs
the protocol with a verifier using the encoded witness. During the execution
of the protocol, the adversarial verifier is allowed to launch leakage queries. Once
the protocol has been completed, the prover can refresh (again, in a leak-free
environment) its encoded witness and then it can play again with the verifier
(under leakage attacks). Non-transferability means that an adversarial verifier
that mounts the above attack against a honest prover does not get enough
information to later prove the same statement to a honest verifier. The main
contribution of [1] is the construction of an encoding/refreshing mechanism
and a protocol for non-transferable arguments against such continual leakage
attacks. They left explicitly open the following open problem (see page 167
of [1]): is it possible to obtain non-transferable arguments/proofs that remain
secure against continual leakage attacks without relying on a CRS? This prob-
lem has similarities with Open Problem 1. Indeed, zero knowledge (without a
CRS) implies non-transferability and therefore solving Open Problem 1 in the
positive and with continual leakage would solve the problem opened by [1] in

1 Moreover such a phase can be run on a different device disconnected from the net-
work, running an operating system installed on some read-only disk.
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a strong sense since non-transferability would be achieved through zero knowl-
edge, and this goes even beyond the security definition of [1]2. However, as we
will show later we will give a negative answer to Open Problem 1 for the case
of black-box simulation. Even in light of our negative results, the open problem
of [1] remains open as one might be able to construct leakage resilient non-
black-box zero knowledge (which is clearly non-transferable) or leakage resilient
witness hiding/indistinguishable proofs (that can still be non-transferable since
non-malleable proofs can be achieved with non-malleable forms of WI as shown
in [37]).

Leakage Resilience Assuming Leak-Free Preprocessing. In [10], Boyle et al. pro-
posed a model for leakage-resilient secure computation based on the following
three phases:

1. a leak-free interactive preprocessing to be run only once, obliviously w.r.t.
inputs and functions;

2. a leak-free stand-alone input-encoding phase to be run when a new input
arrives (and of course after the interactive preprocessing), obliviously w.r.t.
functions to be computed later;

3. an on-line phase where parties, on input the states generated during the last
executions of the input-encoding phases, and on input a function f , run a
protocol that aims at securely computing the output of f .

In the model of [10] leakage attacks are not possible during the first two phases
but are possible in any other moment, including the 3rd phase and in between
phases.

Reference [10] showed (a) the impossibility of leakage-resilient 2-party com-
putation and, more in general, of n-party LRMPC when n − 1 players are cor-
rupted; (b) the feasibility of leakage-resilient MPC when the number of players
is polynomial and a constant fraction of them is honest.

The positive result works for an even stronger notion of leakage resilience
referred to as “continual leakage” that has been recently investigated in several
papers [13,14,19,20,24]). Continual leakage means that the same input can be
re-used through unbounded multiple executions of the protocol each allowing for
a bounded leakage, as long as the state can be refreshed after each execution.
Leakage queries are allowed also during the refreshing.

Boyle et al. explicitly leave open (see paragraph “LR-MPC with Non-
Interactive Preprocessing” on page 1240 of [10]) the problem of achieving their
results without the preprocessing (i.e., Open Question 2) and implicitly left open
the case of zero-knowledge arguments/proofs. (i.e., Open Question 1) since when
restricting to the ZK functionality only, the function is known in advance and
therefore their impossibility for the two-party case does not directly hold.

We notice that the result of [1] does not yield a continual leakage-resilient
non-transferable proof system for the model of [10]. Indeed, while the preprocess-
ing of [10] can be used to establish the CRS needed by [1], the refresh of the

2 Their definition does not require zero knowledge.
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state of [1] requires a leak-free phase that is not available in the model of [10].
We finally stress that the construction of [1] is not proved to be LRZK.

However the interesting open question in the model of [10] consists in achiev-
ing continual LRZK without an interactive preprocessing. Indeed, if an inter-
active preprocessing is allowed, continual LRZK can be trivially achieved as
follows. The preprocessing can be used to run a secure 2-party computation for
generating a shared random string. The input-encoding phase can replace the
witness with a non-interactive zero-knowledge proof of knowledge (NIZKPK).
The on-line phase can be implemented by simply sending the previously com-
puted NIZKPK. This trivial solution would allow the leakage of the entire state,
therefore guaranteeing continual leakage (i.e., no refresh is needed).

Impossibility Through Obfuscation. In the model studied by Garg et al. [28], the
simulator is allowed to see the leakage queries issued by the adversarial verifier
(and not the replies) and, based on these, it decides his own leakage queries in
the ideal model. Nonetheless, the actual simulator constructed by [28] does not
use this possibility; such a simulator is called leakage-oblivious. In our setting (in
which the simulator is not allowed to ask queries) leakage-oblivious simulators
are very weak: an adversarial verifier that asks the query for function R(x, ·)
applied to the witness w (here R is the relation associated to NP language L
and x is the common input) cannot be simulated. Notice though that in the
model we are interested in, the leak-free encoding phase might invalidate this
approach since the encoded witness could have a completely different structure
and therefore could make R evaluate to 0. Despite this issue (that is potentially
fixable), the main problem is that in our setting the simulator can read the query
of the adversarial verifier and could easily answer 1 (the honest prover always
has a valid witness). Given the recent construction of circuit obfuscators [27],
one could then think of forcing simulators to be leakage-oblivious by considering
an adversary that obfuscates its leakage queries. While this approach has a
potential, we point out that our goal is to show the impossibility under standard
assumptions (e.g., the existence of a family of CRHFs).

The Technique of Nielsen et al. [36]. We finally discuss the very relevant work
of Nielsen et al. [36] that showed a lower bound on the size of a secret key
for leakage-tolerant adaptively secure message transmission. Nielsen et al. intro-
duced in their work a very interesting attack consisting in asking a collision-
resistant hash of the state of a honest player through a leakage query. Then a
succinct argument of knowledge is run through leakage queries in order to ask
the honest player to prove knowledge of a state that is consistent with the previ-
ously sent hash value. As we will discuss later, we will extend this technique to
achieve our main result. The use of CRHFs and succinct arguments of knowledge
for impossibility of leakage-resilience was also used in [18] but in a very different
context. Indeed in [18] the above tools are used to check consistency with the
transcript of played messages with the goal of proving that full adaptive security
is needed in multi-party protocols as soon as some small amount of leakage must
be tolerated.
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1.2 Our Results

In this paper we study the above open questions and show the following results.

Black-Box LRZK Without CRS/Preprocessing. As a main result, we
show that, if a family of collision-resistant hash functions exist, then black-
box LRZK is impossible for non-trivial languages if we only rely on a leak-
free input-encoding phase (i.e., without CRS/preprocessing). More in details,
with respect to the works of [1,10], our results shows that, by removing the
CRS/preprocessing, not only non-transferable continual black-box LRZK is
impossible, but even ignoring non-transferability and continual leakage, the sim-
ple notion of 1-time black-box LRZK is impossible. Extending the techniques
of [36], we design an adversarial verifier V� that uses leakage queries to obtain
a very small amount of data compared to the state of the prover and whose
view cannot be simulated in a black-box manner. The impossibility holds even
knowing already at the input-encoding phase which protocol will be played later.

Overview of Our Techniques. We prove the above impossibility result by extend-
ing the previously discussed technique of [36]: the adversary will attack the hon-
est player without running the actual protocol at all! Indeed, the adversary will
only run an execution of another (insecure) protocol in its head, using leakage
queries to get messages from the other player for the “virtual” execution of the
(insecure) protocol.

More in details, assuming by contradiction the existence of a protocol (P,V)
for a language L �∈ BPP, we show an adversary V� that first runs a leakage
query to obtain a collision-resistant (CR) hash w̃ of the state ŵ of the prover.
Then it takes a communication-efficient (insecure) protocol Π = (Π.P,Π.V)
and, through leakage queries, V� runs in its head an execution of Π playing as
a honest verifier Π.V, while the prover P will have to play as Π.P proving that
the hash is a good one: namely, it corresponds to a state that would convince
a honest verifier V on the membership of the instance in L. We stress that this
technique was introduced in [36].

Notice that in the real-world execution P would convince V� during the “vir-
tual” execution of Π since P runs as input an encoded witness that by the
completeness of (P,V) convinces V.

Therefore a black-box simulator will have to do the same without having the
encoding of a witness but just relying on rewinding capabilities. To show our
impossibility we extend the technique of [36] by making useless the capabilities
of the simulator. This is done by connecting leakage resilience with resettability.
Indeed we choose Π not only to be communication efficient on Π.P’s side (this
helps so that the sizes of the outputs of leakage queries will correspond to a small
portion of the state of P), but also to be a resettable argument of knowledge (and
therefore resettably sound). Such arguments of knowledge admit an extractor
Π.Ext that works even against a resetting prover Π.P� (i.e., such an adversary
in our impossibility will be the simulator Sim of (P,V)).
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The existence of a family of CR hash functions gives not only the CR hash
function required by the first leakage query but also the communication-efficient
resettable argument of knowledge for NP. Indeed we can use Barak’s public-
coin universal argument [3] that enjoys a weak argument of knowledge property
when used for languages in NEXP. Instead when used for NP languages, Barak’s
construction is a regular argument of knowledge with a black-box extractor. We
can finally make it extractable also in presence of a resetting prover by using
the transformation of Barak et al. [4] that only requires the existence of one-way
functions.

Summing up, we will show that the existence of a black-box simulator for
(P,V) implies either that the language is in BPP, or that (P,V) is not sound or
that the family of hash functions is not collision resistant.

The Non-Black-Box Case. Lower bounds in the case of non-black-box simulation
are rare in Cryptography and indeed we can not rule out the existence of LRZK
argument whose security is based on the existence of a non-black-box simulator.
We will however discuss some evidence that achieving a positive result under
standard assumptions requires a breakthrough on non-black-box simulation that
goes beyond Barak’s non-black-box techniques.

Impossibility of Leakage-Resilient MPC for Several Functionalities.
Additionally, we address Open Question 2 by showing that for many function-
alities LRMPC with a leak-free input-encoding phase (and without an interac-
tive preprocessing phase) is impossible. This impossibility holds regardless of
the number of players involved in the computation and only assumes that one
player is corrupted. It applies to functionalities that when executed multiple
times keeping unchanged the input xi of a honest player Pi, produce outputs
delivered to the dishonest players that reveal more information on xi than what
a single output would reveal. Similar functionalities were studied in [17]. We also
require outputs to be short.

Our impossibility is actually even stronger since it holds also in case the
functionality and the corresponding protocol to be run later are already known
during the input-encoding phase.

For simplicity, we will discuss a direct example of such a class of functionali-
ties: a variation of Yao’s Millionaires’ Problem, where n players send their inputs
to the functionality that will then send as output a bit b specifying whether player
P1 is the richest one.

High-Level Overview. The adversary will focus on attacking player P1 that has
an input to protect. The adversary can play in its head by means of a single
leakage query the entire protocol selecting inputs and randomnesses for all other
players, and obtaining as output of the leakage query the output of the function
(i.e., the bit b). This “virtual” execution can be repeated multiple times, therefore
extracting more information on the input of the player. Indeed playing multiple
times and changing the inputs of the other players while the input of P1 remains
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the same, it is possible to restrict the possible input of P1 to a much smaller
range of values than what can be inferred by a single execution.

The above attack will be clearly impossible to simulate since it would require
the execution of multiple queries in the ideal world, but the simulator by defin-
ition can make only one query.

When running the protocol through leakage queries, we are of course assum-
ing that authenticated channels do not need to be simulated by the adversary3

since their management is transparent to the state of the players running the
leakage-resilient protocol. This is already assumed in previous work like [10] since
otherwise leakage-resilient authenticated channels would have been required,
while instead [10] only requires an authenticated broadcast channel (see Sect. 3
of [10]).

We will give only a sketch of this additional simpler result.

2 Definitions

We will denote by “α ◦ β” the string resulting from appending β to α, and by
[k] the set {1, . . . , k}. A polynomial-time relation R is a relation for which it
is possible to verify in time polynomial in |x| whether R(x,w) = 1. We will
consider NP-languages L and denote by RL the corresponding polynomial-time
relation such that x ∈ L if and only if there exists w such that RL(x,w) = 1.
We will call such a w a valid witness for x ∈ L and denote by WL(x) the set
of valid witnesses for x ∈ L. We will slightly abuse notation and, whenever L is
clear from the context, we will simply write W (x) instead of WL(x). A negligible
function ν(k) is a function such that for any constant c < 0 and for all sufficiently
large k, ν(k) < kc.

We will now give all definitions required for the main result of our work, the
impossibility of black-box LRZK. Since we will only sketch the additional result
on LRMPC, we defer the reader to [10] for the additional definitions.

2.1 Interactive Proof Systems

An interactive proof system [31] for a language L is a pair of interactive Tur-
ing machines (P,V), satisfying the requirements of completeness and soundness.
Informally, completeness requires that for any x ∈ L, at the end of the interac-
tion between P and V, where P has on input a valid witness for x ∈ L, V rejects
with negligible probability. Soundness requires that for any x �∈ L, for any com-
putationally unbounded P�, at the end of the interaction between P� and V, V
accepts with negligible probability. When P� is only probabilistic polynomial-
time, then we have an argument system. We denote by 〈P,V〉(x) the output of
the verifier V when interacting on common input x with prover P. Also, some-
times we will use the notation 〈P(w),V〉(x) to stress that prover P receives as
3 More in details, we are assuming that the encoded state of the player does not

include any information useful to check if a message supposed to be from a player
Pj is genuine.
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additional input witness w for x ∈ L. We will write 〈P(w; rP ),V(rV )〉(x) to make
explicit the randomness used by P and V. We will also write V�(z) to denote an
adversarial verifier V� that runs on input an auxiliary string z.

Definition 1 [31]. A pair of interactive Turing machines (P,V) is an interactive
proof system for the language L, if V is probabilistic polynomial-time and

1. Completeness: There exists a negligible function ν(·) such that for every x ∈ L
and for every w ∈ W (x) Prob [ 〈P(w),V〉(x) = 1 ] ≥ 1 − ν(|x|).

2. Soundness: For every x �∈ L and for every interactive Turing machines
P� there exists a negligible function ν(·) such that Prob [ 〈P�,V〉(x) = 1 ] ≤
ν(|x|).

If the soundness condition holds only with respect to probabilistic polynomial-time
interactive Turing machines P� then (P,V) is called an argument.

We now define the notions of reset attack and of resetting prover.

Definition 2 [4]. A reset attack of a prover P� on V is defined by the following
two-step random process, indexed by a security parameter k.

1. Uniformly select and fix t = poly(k) random tapes, denoted by r1, . . . , rt, for
V, resulting in deterministic strategies V(i)(x) = Vx,ri

defined by Vx,ri
(α) =

V(x, ri, α), where x ∈ {0, 1}k and i ∈ 1, . . . , t. Each V(i)(x) is called an
incarnation of V.

2. On input 1k, machine P� is allowed to initiate poly(k)-many interactions with
V. The activity of P� proceeds in rounds. In each round P chooses x ∈ {0, 1}k

and i ∈ 1, . . . , t, thus defining V(i)(x), and conducts a complete session (a
session is complete if is either terminated or aborted) with it.

We call resetting prover a prover that launches a reset attack.

We now define proofs/arguments of knowledge, in particular considering the case
of a prover launching a reset attack.

Definition 3 [5]. Let R be a binary relation and ε : {0, 1}� → [0, 1]. We say
that a probabilistic polynomial-time interactive machine V is a knowledge verifier
for the relation R with knowledge error ε if the following two conditions hold:

Non-triviality: There exists a probabilistic polynomial-time interactive machine
P such that for every (x,w) ∈ R, with overwhelming probability an interac-
tion of V with P on common input x, where P has auxiliary input w, is
accepting.

Validity (or Knowledge Soundness) with Negligible Error ε: for
every probabilistic polynomial-time machine P�, there exists an expected
polynomial-time machine Ext, such that and for every x, aux, r ∈ {0, 1}�,
Ext satisfies the following condition: Denote by p(x, aux, r) the probability
(over the random tape of V) that V accepts upon input x, when interacting
with the prover P� who has input x, auxiliary-input aux and random-tape
r. Then, machine Ext, upon input (x, aux, r), outputs a solution w ∈ W (x)
with probability at least p(x, aux, r) − ε(|x|).
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A pair (P,V) such that V is a knowledge verifier with negligible knowledge error
for a relation R and P is a machine satisfying the non-triviality condition (with
respect to V and R) is called an argument of knowledge for the relation R. If the
validity condition holds with respect to any (not necessarily polynomial- time)
machine P�, then (P,V) is called a proof of knowledge for R. If the validity
condition holds with respect to a polynomial-time machine P� launching a reset
attack, then (P,V) is called a resettable argument of knowledge for R.

In the above definition the extractor does not depends on the code of the
prover (i.e., the same extractor works with all possible provers) Ext then the
interactive argument/proof system is a black-box (resettable) argument/proof of
knowledge.

The Input-Encoding Phase. Following previous work we will assume that the
prover receives the input and encodes it running in a leak-free environment.
This is unavoidable since otherwise a leakage query can cask for some bits of the
witness and therefore zero knowledge would be trivially impossible to achieve,
unless the simulator is allowed to ask leakage query in the ideal world (i.e.,
leakage tolerance). After this leak-free phase that we call input-encoding phase,
the prover has a state consisting only of the encoded witness and is ready to
start the actual leakage-resilient protocol.

Leakage-Resilient Protocol [39]. As in previous work, we assume that random
coins are available only in the specific step in which they are needed. More in
details, the prover P at each round of the protocol obtains fresh randomness r for
the computations related to that round. However, unlike in previous work, we
do not require the prover to update its state by appending r to it. We allow the
prover to erase randomness and change its state during the protocol execution.
This makes our impossibility results even stronger.

The adversarial verifier performs a leakage query by specifying a polynomial-
sized circuit C that takes as input the current state of the prover. The verifier
gets immediately the output of C and can adaptively decide how to continue.
An attack of the verifier that includes leakage queries is called a leakage attack.

Definition 4. Given a polynomial p, we say that an interactive argument/proof
system (P,V) for a language L ∈ NP with a witness relation R, is p(|x|)-leakage-
resilient zero knowledge if for every probabilistic polynomial-time machine V∗

launching a leakage attack on P after the input-encoding phase, obtaining at most
p(|x|) bits, there exists a probabilistic polynomial-time machine Sim such that for
every x ∈ L, every w such that R(x,w) = 1, and every z ∈ {0, 1}∗ distributions
〈P(w),V�(z)〉(x) and Sim(x, z) are computationally indistinguishable.

The definition of standard zero-knowledge is obtained by enforcing that no leak-
age query is allowed to any machine and removing the input-encoding phase.

In the above definition the simulator does not depends on the code of the
verifier (i.e., the same simulator works with all possible verifiers) Sim then the
interactive argument/proof system is leakage-resilient black-box zero knowledge.
We will denote by SimV�

an execution of Sim having oracle access to V�.
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3 Impossibility of Leakage-Resilient Zero Knowledge

Here we prove that LRZK argument systems exist only for BPP languages.

Tools. In our proof we assume the existence of a communication-efficient argu-
ment system Π = (Π.P,Π.V) for a specific auxiliary NP language (to be defined
later). Moreover we require such an argument system to be a resettable argu-
ment of knowledge. Specifically, we require that on common input x, Π.P sends
O(|x|ε) bits to Π.V for an arbitrarily chosen constant ε > 0. We denote, with
a slight abuse of notation, by Π.P the prover’s next message function; that is,
Π.P on input x, randomness r1, . . . , ri−1 used in the previous i− 1 rounds, fresh
randomness ri and verifier messages v1, . . . , vi received so far, outputs msgi, the
prover’s i-th message. Similarly, we denote the verifier’s next message function
by Π.V. Finally, we denote by Π.Ext the extractor that in expected polynomial
time outputs a witness for x ∈ L whenever a polynomial-time prover can make
Π.V accept x ∈ L with non-negligible probability.

Such a resettable argument of knowledge Π exists based on the existence
of a family of collision-resistant hash functions. It can be obtained by starting
with the public-coin universal argument of [3] that for NP languages is also an
argument of knowledge. Then by applying the transformation of [4] that requires
one-way functions, we have that the resulting protocol is still communication
efficient, and moreover is a resettable argument of knowledge.

Theorem 1. Assume the existence of a family of collision-resistant hash func-
tions. If an NP-language L admits an (|x|ε)-leakage-resilient black-box zero-
knowledge argument system ΠLRZK = (P,V) for some constant ε > 0 then
L ∈ BPP.

Proof. For sake of contradiction, we assume that language L �∈ BPP admits a
(|x|ε)-leakage-resilient zero-knowledge argument system (P,V) with black-box
simulator Sim for some constant ε > 0. We now describe an adversarial verifier
V� = V�

x,s,h,t, parameterized by input x, strings s and t, and function h from a
family of collision-resistant hash functions. In the description of V�, we let {Fs}
be a pseudorandom family of functions.

Our proof makes use of the auxiliary language Λ consisting of the tuples
τ = (h, w̃, randP, randV) for which there exists ŵ such that h(ŵ) = w̃ and
〈P(ŵ; randP),V(randV)〉(x) = 1. Clearly, Λ ∈ NP. Let Π = (Π.P,Π.V) be a
communication-efficient argument system for Λ. We assume wlog that the num-
ber of rounds of Π is 2	 (i.e., 	 messages played by the verifier and 	 messages
played by the prover) where 	 > 1 and that the verifier speaks first.

1. At the start of the interaction between P and V� on an n-bit input x with
n = poly(k), the state of P consists solely of the encoding ŵ of the witness w
for x ∈ L, where |ŵ| = poly(n).

2. V� issues leakage query Q0 by specifying function h; as a reply, V� receives
w̃ = h(ŵ), a hash of the encoding of the witness used by P.
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3. V� then selects randomness

rand = (randP, randV, randΠ.P
1 , . . . , randΠ.P

� , randΠ.V
1 , . . . , randΠ.V

� , randΠ.V
�+1)

by setting rand = Fs(w̃ ◦ x).
4. V� performs, by means of leakage queries, an execution of the protocol Π on

common input (h, w̃, randP, randV).
Specifically, for round i = 1, . . . , 	, V� computes

vi = Π.V
(
(h, w̃, randP, randV), {msgj}0<j<i, {randΠ.V

j }0<j≤i

)

and issues leakage query Qi for the prover’s next message function

Π.P
(
(h, w̃, randP, randV), · , {vj}0<j≤i, {randΠ.P

j }0<j≤i

)

that is to be applied to the state ŵ of prover P. In other words, the query
computes the prover’s i-th message msgi of an interaction of protocol Π in
which prover Π.P (running on randomness randΠ.P

1 , . . . , randΠ.P
� ) tries to con-

vince verifier Π.V (running on randomness randΠ.V
1 , . . . , randΠ.V

� , randΠ.V
�+1)

that (h, w̃, randP, randV) ∈ Λ.
After receiving prover Π.P’s last message, V� computes Π.V’s output in

this interaction:

b = Π.V((h, w̃, randP, randV), msg1, . . . , msg�, rand
Π.V
1 , . . . , randΠ.V

�+1).

5. If b = 1 then V� outputs t; otherwise, V� outputs ⊥.

This concludes the description of V�.

Counting the Number of Bits Leaked. The total number of bits leaked is equal to
the output of the first leakage query (i.e., the length in bits of a range element of
the collision-resistant hash function) |w̃| = k and the number of bits sent by the
prover in Π which, for inputs of length n, is O(nε′

) for an arbitrarily constant
ε′ > 0 . Being n = poly(k), we have that the amount of leakage can be made
smaller than nε for any ε > 0.

Sim Can Get t only by Succeeding in Π, Therefore Properly Answering to Leakage
Queries. We continue by observing that the output of the real game (i.e., when
P and V�

x,s,h,t interact) is t. Therefore, Sim must output t when interacting with
V�

x,s,h,t with overwhelming probability. Since Sim is a black-box simulator, and
since all messages of V�

x,s,h,t except for the last one, are independent of t, the only
way Sim can obtain t from V�

x,s,h,t is by replying with a value w̃ to the first leakage
query and by replying to queries Q1, . . . , Q� so to define a transcript Conv =
(v1, msg1, . . . , v�, msg�) that for common input (h, w̃, randP, randV) produces 1 =
Π.V((h, w̃, randP, randV), msg1, . . . , msg�, rand

Π.V
1 , . . . , randΠ.V

�+1).
By the security of the pseudorandom function, we can consider the same

experiment except having that rand = R(w̃ ◦ x) (computed by V� in step 3 of
its description) where R is a truly random function (i.e., each time w̃ ◦x is new,
rand is computed by sampling fresh randomness).
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We denote by SimV�

R the simulation in such a modified game. We can show
(the proofs of the following lemmas are omitted for lack of space) that when
considering SimV�

R , still t is given in output with overwhelming probability.

Lemma 1. The output of SimV�

R is computationally indistinguishable from the
output of SimV�

.

We can then show that SimV�

R (x, z) outputs t also for some x �∈ L.

Lemma 2. If L �∈ BPP then there exists some x �∈ L such that SimV�

R (x, z)
outputs t with probability greater than 2/3.

Let x �∈ L be a special statement such that SimV�

R (x, z) outputs t with probability
at least 2/3 (such an x exists since we are assuming that L �∈ BPP). This
means that SimR feeds V� with a transcript of messages that with non-negligible
probability produces t as output.

Let timeSimR
be the expected running time of SimR. Consider the strict

polynomial-time machine SimpR that consists of running the first 3timeSimR
steps

of SimR.
We can prove the following lemma.

Lemma 3. If L �∈ BPP then there exists some x �∈ L such that SimV�

pR(x, z)
outputs t with probability greater than 1/3.

For notation purposes, we say that a query of SimpR to V� belongs to the i-th
session if it is a tuple (h, w̃, . . .) where w̃ is the i-th different value played by
SimpR as first message of Π.P answering a leakage query of V�. Let timeSimpR

be
the strict polynomial corresponding to the running time of SimpR.

We can then prove the existence of a critical session i.

Lemma 4. There exist x �∈ L and i ∈ [timeSimpR
] such that SimV�

pR obtains t
after answering to a query of the i-th session with non-negligible probability.

Consider now the augmented simulator SimiV
�

pR that works as SimV�

pR except that
V� in the i-th session will only send h, while all other messages of V� will be
asked to an external oracle that plays as honest verifier of Π. Let timeΠ.Ext be
the expected running time of Π.Ext.

We can prove the following lemma.

Lemma 5. There exist x �∈ L and i ∈ [timeSimpR
] such that the extrac-

tor Π.Ext of Π outputs a witness ŵ for τ = (h, w̃, randP, randV) ∈ Λ with
non-negligible probability and running in expected polynomial time. Moreover
Prob [ 〈P(ŵ),V〉(x) = 1 ] is non-negligible.

We now show an adversarial prover P� that violates the soundness of ΠLRZK .
Let Π.Extp be the strict polynomial-time extractor that behaves precisely as
Π.Ext (up to a given polynomial number of steps) as specified in the last part
of the proof of Lemma 5.

P� works as follows:
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1. P� picks at random i ∈ [timeSimpR
] and then runs Π.Extp with respect to

SimiV
�

pR . If Π.Extp does not give in output a state ŵ as part of a witness
proving that τ ∈ Λ, then P� aborts.

2. P� then runs the honest prover P of ΠLRZK on input ŵ for proving to a
honest verifier V that x ∈ L where x is the above special statement (i.e.,
x �∈ L).

First of all, the running time of P� is clearly polynomial since both the above
steps take polynomial time. Then, we notice that by Lemma 5, both Step 1 and
2 correspond to runs without aborting with non-negligible probability. This is
due to the fact that the extractor Π.Extp fails only with negligible probability
and that the extracted state ŵ gives to a honest prover of (P,V) non-negligible
probability to convince the verifier. Therefore P� succeeds in proving a false
statement to honest V with non-negligible probability.

We have proved that if L �∈ BPP then ΠLRZK can not be both LRZK and
sound.

3.1 Discussion on Non-Black-Box LRZK

Since we have shown that LRZK is impossible when security is proved through
black-box simulation, a natural question is whether non-black-box simulation
can be useful to overcome this impossibility result.

The technique that we have shown for the black-box case is based on an
adversarial verifier V� that uses leakage queries to perform an execution of a
resettably sound communication-efficient argument of knowledge Π against a
honest prover. This makes the rewinding capabilities of the simulator ineffective
therefore showing the impossibility of a black-box simulation.

However, the technique proposed by Barak in [2] allows for non-black-box
straight-line simulation thus bypassing the difficulties to simulate a protocol
where rewinds are useless. The construction and simulator proposed by Barak
in [2] allows to get public-coin constant-round zero knowledge with a straight-
line simulator, going therefore beyond the limits of black-box simulation [29].
It is also known that non-black-box simulation allows for resettably sound zero
knowledge [4] where a prover can reset a verifier while the protocol still remains
sound and zero knowledge. This is similar to the setting in which our black-
box impossibility result holds. Indeed our adversarial verifier V� is resilient to
rewinds of the black-box simulator.

Having in mind the goal of overcoming the above impossibility result through
non-black-box simulation, remember that in order to answer properly to the
leakage queries of our adversarial verifier, a simulator either must simulate the
execution of the universal argument4 or must use a special trapdoor. Such a
trapdoor must allow a honest prover of ΠLRZK to succeed in convincing a honest
verifier that runs on input a randomness r. Such randomness is later revealed by
4 Proving that Kilian’s construction, analyzed in [2,3] as a 4-round public-coin uni-

versal argument, is zero-knowledge would be a major breakthrough.
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V� only after seeing the short representation of the state w̃. Barak’s construction
does not allow to run the prover with an input different from a witness for x ∈ L,
however, we next present a simple variant of it that does.

A Variation of Barak’s Construction. Consider the following variant of Barak’s
protocol: (1) the verifier sends the description of a CRHF h; (2) the prover
sends hw = h(Com(w, u)) to the verifier5 where w is its private input, Com is
the commitment function of a non-interactive commitment scheme and u is a
random string; (3) the verifier sends a random string z; (4) the prover runs a
witness indistinguishable universal argument proving that either x ∈ L ∨ hw

corresponds to the hash of a commitment of a machine M that in at most
nlog log n steps outputs z; the prover uses its private input w and u as witness in
the universal argument.

Notice that the variation is really minimal: it just consists in asking the
prover to use its private input when computing hw. The impact of this variation
is that the prover now can run successfully the protocol both when receiving
as input a witness for x ∈ L and also when receiving as input the code of the
verifier.

The above small variation does not affect the zero-knowledge property (the
proof is the same as Barak’s), but allows the simulator to answer leakage queries
of V� since the description of V� can be used as a legitimate encoded state that a
prover can use in order to convince a verifier using a randomness r (again, such r
is revealed by V� upon receiving through a leakage query the short representation
of the state of the prover).

We stress that the discussion so far does not propose a LRZK protocol,
rather it shows that the impossibility result given for the black-box case fails
spectacularly when Barak’s non-black-box techniques are considered.

Defeating Barak’s Non-Black-Box Simulation Technique. While the above dis-
cussion seems to say that Barak’s techniques could be used to design a LRZK
protocol, we argue here that a breakthrough on non-black-box simulation6 is
required in order to obtain a LRZK protocol. Notice that the above variation
of Barak’s construction allowed the prover to use a special trapdoor (the code
of the verifier) instead of a witness to successfully run the protocol. Moreover,
notice that the size of such a trapdoor is not bound by a fixed polynomial in
the length of the common input since it depends on the size of the adversarial
verifier. Instead there exists a constant c > 0 such that the length of a legiti-
mate encoded witness of a LRZK protocol for a common input of length n is
at most nc. Therefore, let us consider an adversarial verifier that, just as in the
impossibility proof for black-box LRZK, uses the leakage queries to execute a
special protocol with a prover. In such a protocol, in addition to proving that the
encoded state (that is consistent with the commitment already sent) makes the
verifier accept, the prover also proves that the committed value is the hash of an
5 Note that in Barak’s protocol the prover uses 0n instead of w.
6 We stress that our work sticks with the use of standard/falsifiable assumptions.
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encoded state of length at most nc. Then the code of the adversarial verifier can
not be used anymore as the simulation fails for adversarial verifiers whose code
is longer than nc. In other words, Barak’s technique turns out to be insufficient.
Additionally, the adversarial verifier might send a long vector of random strings
r1, . . . , r� therefore asking the prover to prove in the universal argument that the
verifier would have accepted the proof running with any of those 	 randomnesses.
Since 	 can be greater than the upperbound on the encoded witness, there is no
way to commit to a small machine that can predict all such strings.

In other words, we would need a non-black-box simulation technique that
relies on standard assumptions and allows to construct a protocol where the
trapdoor used by the simulator is of an a-priori fixed bounded size and can
thus be given as input to the prover. Notice that it is exactly because of this
limitation (or, rather, because of the lack of it) on the size of the trapdoor that
the construction from [2] requires the use of a witness indistinguishable universal
arguments instead of a witness-indistinguishable arguments of knowledge. In
turn, this implies that the straight-line simulation of [2] can only be extended to
bounded concurrency, leaving still unsolved the question of achieving constant-
round concurrent zero knowledge under standard assumptions.

As a conclusion, as for many other lower bounds in zero knowledge, when tak-
ing into account non-black-box simulation, we can not rule out the existence of a
non-black-box LRZK argument system, but at the same time we gave evidence
that, to obtain such a result, new breakthroughs on non-black-box simulation
are required.

4 Impossibility of LRMPC

We now use again the technique of running a protocol in the head of the adver-
sary through leakage queries to show that LRMPC is impossible, therefore solv-
ing a problem opened in [10]. For this simpler result we give only a sketch of
the proof and we defer for the additional definitions to [10]. We stress that the
only variation here is that the interactive preprocessing does not take place (as
required in the formulation of the open problem in [10]).

We can show that for many functionalities LRMPC with a leak-free input-
encoding phase is impossible. The involved functionalities are the ones such that
when they are run multiple times keeping unchanged the input xi of a honest
player Pi, the (short) outputs delivered to the dishonest players reveal more
information on xi than what a single output would reveal. Our impossibility
requires just one dishonest player.

For simplicity we will now consider one such functionality: a variation of
Yao’s Millionaires’ Problem, where n players P1, . . . , Pn send their inputs to the
functionality F and then F outputs to all players a bit b specifying whether P1

is the richest one.

Theorem 2. Consider the n-party functionality F that on input n k-bit strings
x1, . . . , xn outputs to all players the bit b = 1 when x1 ≥ xj for 1 < j ∈ [n] and
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0 otherwise. If at least one among P2, . . . , Pn is corrupted and can get two bits
as total output of leakage queries then there exists no LRMPC for F .

Proof. We will sketch the proof since the main ideas were already used in the
proof of the impossibility of LRZK.

Assume by contradiction that there exists a secure multi-party protocol Π.
Assume wlog that all players are honest except Pn. The adversary Adv controls
Pn and works as follows.

1. It sends a leakage query that includes different encodings of the same value
x2 = · · · = xn = 2k−1 for players P2, . . . , Pn; the leakage query asks for a
“virtual” execution of the protocol where P1 uses its state x̂1, and requires
to give in output the output of Pn.

2. It repeats Step 1 changing the value to be used for the n − 1 encodings of
P2, . . . , Pn (still a unique value for all of them) according to binary search
(i.e., 2k−1 + 2k−2 if the previous output was 1 or 2k−2 otherwise).

3. Adv ends the protocol by giving in output the first two bits of the original
(i.e., pre-encoding) input of P1.

The communication complexity (from honest player to adversary) of this
execution through leakage queries is the constant 2. Notice that the above leakage
attack can be mounted with two queries each obtaining one bit as output, or
with one single query obtaining two bits as output. As a result of the above
leakage attack, Adv in the real world obtains the first two bits of x1, the original
input of P1. Sim in the ideal world does not have such an information since it
can perform only one query to F , therefore getting at most one bit.

Acknowledgments. We thank the anonymous reviewers for their useful comments.
The full version of this work appears in [38].

Part of this work was done while the second and third authors were visiting the
Computer Science Department of UCLA.

This work has been supported by NSF grants 09165174, 1065276, 1118126 and
1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Founda-
tion Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. This material is based upon work supported by the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014 -11
-1-0392. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

References

1. Ananth, P., Goyal, V., Pandey, O.: Interactive proofs under continual memory
leakage. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol.
8617, pp. 164–182. Springer, Heidelberg (2014)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, pp. 106–115. IEEE
Computer Society (2001)



Impossibility of Black-Box Simulation Against Leakage Attacks 147

3. Barak, B.: Non-black-box techniques in cryptography. Ph.D. Thesis (2004). http://
www.boazbarak.org/Papers/thesis.pdf

4. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, pp. 116–125. IEEE Computer Society (2001)

5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

6. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

7. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with
input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014)

8. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

9. Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against
adaptive auxiliary information. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 316–334. Springer, Heidelberg (2013)

10. Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure
against continual memory leakage. In: Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, pp. 1235–1254. ACM (2012)

11. Boyle, E., Goldwasser, S., Kalai, Y.T.: Leakage-resilient coin tossing. In: Peleg, D.
(ed.) Distributed Computing. LNCS, vol. 6950, pp. 181–196. Springer, Heidelberg
(2011)

12. Boyle, E., Goldwasser, S., Kalai, Y.T.: Leakage-resilient coin tossing. Distrib. Com-
put. 27(3), 147–164 (2014)

13. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptol. 26(3),
513–558 (2013)

14. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: Public-key cryptography resilient to continual memory leakage. In: 51th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp.
501–510. IEEE Computer Society (2010)

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, pp. 136–145. IEEE Computer Society (2001)

16. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, STOC 2000, pp. 235–244. ACM (2000)
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Abstract. We describe a zero-knowledge proof system in which a prover
holds a large dataset M and can repeatedly prove NP relations about
that dataset. That is, for any (public) relation R and x, the prover can
prove that ∃w : R(M,x,w) = 1. After an initial setup phase (which
depends only on M), each proof requires only a constant number of
rounds and has communication/computation cost proportional to that
of a random-access machine (RAM) implementation of R, up to polylog-
arithmic factors. In particular, the cost per proof in many applications is
sublinear in |M |. Additionally, the storage requirement between proofs
for the verifier is constant.

1 Introduction

Zero-knowledge (ZK) proofs are a fundamental concept in cryptography and are
used as a building block in numerous applications. ZK proofs allow a prover with
the knowledge of a witness w to prove statements of the form ∃w : R(x,w) = 1 to
a verifier V , for a public NP statement R and a public input x. The soundness of
such a proof guarantees that a malicious prover cannot prove a false statement to
a verifier, and the zero-knowledge property guarantees that a malicious verifier
cannot learn any information about the witness except for validity of the proved
statement.

Since the conception of zero-knowledge proofs [GMR89], a large body of work
has focused on design of efficient constructions that are practical enough for
use in practice. But until recently, all such constructions were practical only for
proving statements about certain algebraic structures such as proving knowledge
of and relations for discrete logarithms, RSA public keys, and bilinear equations
[Sch90,CDS94,CM99,GS08].

The recent work of [JKO13] proposes a new approach based on garbled cir-
cuits (GC) that is suitable for general-purpose statements represented as boolean
circuits. This is particularly powerful for proving non-algebraic statements, e.g.,
proving knowledge of x such that y = Sha256(x) for a public value y. The con-
struction is very efficient, only requiring a constant number of rounds and com-
munication/computation cost that is similar to that of semi-honest 2PC based
c© International Association for Cryptologic Research 2015
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on garbled circuits (i.e., Yao’s protocol). Given the recent advances in design &
implementation of circuit garbling techniques, these ZK proofs are scalable to
statements with billions of gates.

Need for ZK Proof of RAM Programs. But the GC-based approach falls short
when the statement being proven involves access to a large dataset commit-
ted by the prover. For instance, recall the problem solved by zero-knowledge
sets [MRK03]: a prover commits to a set S in an initial phase and is later able
to prove membership and non-membership statements (x ∈ S, x /∈ S) for any
input x without revealing additional information.

A natural extension is to prove membership for a (possibly private) value x
that satisfies a predicate p without leaking any additional information about x
or the set S. For instance, the prover may need to prove knowledge of an x ∈ S
where Sha256(x) = y for a public y in order to prove inclusion of a password in
a password-file. Furthermore, to improve on storage cost, the prover may want
to store his set S in a Bloom filter [Blo70]. This would lead to major storage
improvement, especially when considering the inevitable overhead caused by
crypto for every bit of memory stored. Now, the prover needs to prove knowledge
of an x where Sha256(x) = y and where the Bloom filter stores a bit 1 at each
of the locations H1(x), . . . , Hk(x) (the Hi’s are the hash functions associated
with the Bloom filter and can be public). Such a statement involves several hash
evaluations and memory lookups. More generally, the prover may want to store
its data in a data-structure of its own choice and still have efficient tools for
proving statements about it.

In all of these scenarios, the statements being proven are naturally expressed
as RAM programs whose running time is sublinear in the size of the large dataset.
By comparison, directly applying a circuit-based approach (i.e., [JKO13]) would
involve garbled circuits that are at least linear in the size of the large dataset.

Existing Solutions for RAM-ZK. One can combine the GC-based proof system
of [JKO13] with the recent garbled RAM constructions [LO13,GHL+14] that
directly garble RAM programs as opposed to circuits. But the existing construc-
tions for garbled RAM are not efficient enough for practical use. In particular,
one needs to perform cryptographic operations inside the garbled circuits for
every step of RAM computation, which is a major bottleneck.

Finally, given that ZK proofs are a special case of secure two-party compu-
tation against malicious adversaries (i.e., a malicious 2PC where one party, the
verifier, has no input), we can obtain a solution by employing an efficient mali-
cious 2PC for RAM programs [AHMR15] and not assigning one party any input.
But for statistical security 2−s, such a proof would be a factor of s more expen-
sive than the semi-honest 2PC for the same RAM program, and the number of
rounds would also be proportional to the running time of the RAM program.

1.1 Our Contribution

We propose a new solution for zero-knowledge proof of statements of the form
∃w : R(M,x,w) = 1 where R is a RAM program and M is its (large) memory.
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Here, M is committed upfront by the prover and can in general remain private
from the verifier. Our construction is constant-round, and incurs online compu-
tation and communication cost that is linear in the running time of the RAM
program (upto a polylogarithmic factor), competitive with the best semi-honest
2PC for RAM programs ([GKK+12]), and hence sublinear in |M | for many appli-
cations of interest. Sublinear-time 2PC is not possible in general when expressing
the NP relation as a boolean circuit. Furthermore, in our protocol the verifier
maintains only constant storage space between multiple proofs.

Our construction combines an Oblivious RAM [GO96] and garbled circuits,
but it avoids the use of cryptographic operations inside the garbled circuits as in
current garbled-RAM constructions. Unlike previous 2PC constructions based
on RAM computation [GKK+12,AHMR15], our construction requires only a
constant number of rounds of interaction. We discuss the construction in more
detail next.

2 Overview of the Protocol

The JKO Protocol. Our starting point is the garbled-circuit-based ZK protocol
of [JKO13], which we summarize here. To prove a statement ∃w : R(x,w) = 1
(for public R and x), the protocol proceeds as follows:

1. The verifier generates a garbled circuit computing R(x, ·). Using a committing
oblivious transfer, the prover obtains the wire labels corresponding to his
private input w. Then the verifier sends the garbled circuit to the prover.

2. The prover evaluates the garbled circuit, obtaining a single garbled output
(wire label). He commits to this garbled output.

3. The verifier opens his inputs to the committing oblivious transfer, giving the
prover all garbled inputs. From this, the prover can check whether the garbled
circuit was generated correctly. If so, the prover opens his commitment to the
garbled output; if not, the prover aborts.

4. The verifier accepts the proof if the prover’s commitment holds the output
wire label corresponding to true.

Security against a cheating prover follows from the properties of the circuit
garbling scheme. Namely, the prover commits to the output wire label before
the circuit is opened, so the authenticity property of the garbling scheme ensures
that he cannot predict the true output wire label unless he knows a w with
R(x,w) = true. Security against a cheating verifier follows from correctness of
the garbling scheme. The garbled output of a correctly generated garbled circuit
reveals only the output of the (plain) circuit, and this garbled output is not
revealed until the garbled circuit was shown to be correctly generated.

Note that in this protocol, the prover evaluates the garbled circuit on an
input which is completely known to him. This is the main reason that the garbled
circuit used for evaluation can also be later opened and checked for correctness,
unlike in the setting of cut-and-choose for general 2PC. Along the same lines, it
was further pointed out in [FNO15] that the circuit garbling scheme need not
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satisfy the privacy requirement of [BHR12], only the authenticity requirement.
Removing the privacy requirement from the garbling scheme leads to a non-
trivial reduction in garbled circuit size.

Adapting to the ORAM Setting, Using Constant Rounds. We follow roughly
the RAM-2PC paradigm of [GKK+12,AHMR15], with some important differ-
ences. Let Π be an Oblivious RAM program with memory M̂ , that implements
R(M,x, ·).1 We assume a trusted setup phase in which Π’s memory M̂ and state
st are initialized from M . The prover learns M̂ , st, as well as a garbled encoding
of these values (i.e., one wire label for each bit of memory & state); the verifier
specifies the garbled encoding to be used (i.e., both wire labels for each bit).
If we follow [GKK+12,AHMR15] strictly, we would have both parties repeat-
edly evaluate the next-memory-access circuit of Π, updating memory M̂ , until
it halts. However, this would result in a protocol with one round of interaction
for each memory access of Π.

To see how to achieve the same effect in a constant number of rounds, imagine
that when executing an ORAM program, the memory access pattern I is known
in advance. Then it is possible to express the entire computation in a single
circuit. The circuit includes many copies of the RAM program’s next-memory-
access circuit, but is wired together under the assumption that the memory
accesses will be I. For example, if I says that Π writes to some memory block
at time 2, and later reads from the same memory block at time 10, then the
memory-output wires of subcircuit copy #2 will be connected to the memory-
input wires of subcircuit copy #10, and so on.

We can leverage this optimization in our setting because the prover knows
all (plaintext) inputs to Π, including the contents of memory and the ORAM
state. Hence, the prover can execute Π locally to determine the complete memory
access pattern I. Since Π is an oblivious RAM, its access pattern I leaks no
information about the inputs/memory/state, so the prover can safely send I
to the verifier. Using I, the verifier constructs a single garbled circuit Cx,I as
described above. To prevent the prover from lying about the access pattern
I, the circuit recomputes the memory access pattern of Π and compares it to
(hard-coded) I.

Hence, this setting admits a constant-round solution based on ORAM, but
avoiding tools like garbled RAM [LO13,GHL+14] which incorporate expensive
additional crypto circuitry into the garbled circuits.

Reusing M to Perform Many Proofs. We follow the approach of [AHMR15],
where the prover stores the ORAM memory and ORAM state encoded as wire
labels from the various garbled circuits. The idea is that these wire labels can
be reused directly as inputs to subsequent circuits, avoiding oblivious transfers
for garbled circuit input. However, some modifications are required to adapt this
idea to our setting.

1 We use M to refer to the logical RAM memory, and ̂M to refer to the physical
ORAM memory.
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After evaluating a garbled circuit, the prover holds a garbled output encoding
of ORAM state & memory. The authenticity property of the garbling scheme
guarantees that the prover knows at most one valid label per wire. As soon as
the garbled circuit is opened, however, the prover learns both labels for each wire
and authenticity is lost. The output wire labels are no longer useful for input to
subsequent circuits, as the prover can now feed arbitrary garbled state/memory
into subsequent garbled circuits. We need a mechanism to restore authenticity
on all wire labels that may be later used (this includes the ORAM internal state
as well as all memory locations that are read or written by the garbled circuit).

Say the two wire labels on some output wire are y0 and y1, and that the
prover knows only yb. Let us call y0 and y1 the temporary wire labels, since they
will soon be discarded. The verifier chooses a random function h from a strongly
universal hash family. Just before the garbled circuit is opened (clobbering wire-
label authenticity), the parties perform a private function evaluation (PFE),
where the prover gives yb, the verifier gives h, and the prover learns h(yb). After
the PFE, the garbled circuit can be opened, revealing y0 and y1.

Define y′
0 = h(y0) and y′

1 = h(y1) to be the permanent wire labels for this
wire. At the time of the PFE, the prover could not have guessed y1−b, and so
learned the output of h on some point that was not y1−b. From strong universality
of h, even if y1−b is later revealed, y′

1−b = h(y1−b) is still random from the
prover’s point of view. Hence the PFE “transfers” the authenticity guarantee
from the temporary wire labels y0, y1 to the permanent ones y′

0, y
′
1, preserving

authenticity even after both of y0, y1 are revealed. Hence, y′
0, y

′
1 are safe to use

as input wire labels to a subsequent garbled circuit. We emphasize that all wire
labels are used only in a single garbled circuit — we use the term “permanent”
since these wire labels will be the long-term representation of the RAM program’s
memory between proof instances. (It may be many proof instances before a
particular block of memory is next accessed.)

For technical reasons, the PFE needs to be committing with respect to the
input h (so that the verifier can later “open” the h that was used). We suggest
two efficient instantiations of committing-PFE for strongly universal families:
one based on oblivious linear function evaluation (OLFE) [WW06] and one based
on the string-select variant of OT presented in [KK12].

Note that all the PFE instances can be run in parallel hence, maintaining
the constant round complexity of the overall protocol.

Eliminating the Verifier’s Storage Requirement. As described so far, the verifier
is required to keep track of two wire labels for each bit of M̂ , at all times.
We can decrease this burden somewhat by letting the verifier derive these wire
labels from a PRF. Let s be a seed to a PRF. For simplicity, suppose a wire label
encoding truth value b on the jth bit of the ith memory block, last accessed at
time t, is chosen as PRF(s, i‖j‖t‖b). In the actual protocol, the choice of wire
labels is slightly more complicated.

Using this choice of wire labels, the verifier need only remember the last-
access time of each block of M̂ . However, this is still storage proportional to
|M̂ |. To reduce the storage even further, we “outsource” the maintenance of
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these last-access times to the prover. Let T [i] denote the last-access time of
block i. We let the prover store the array T authenticated by a Merkle tree for
which the verifier remembers only the root node.2

Whenever the verifier is about to garble a circuit, he must be reminded of
T [i] for each memory block i to be read by the RAM in its computation. We
make the prover report each such T [i] to the verifier, authenticating each value
via the Merkle tree. The ORAM circuit performs some reads & writes in M̂ , so
T and the Merkle tree are updated accordingly, for each memory block that was
accessed. Note that all accesses to the Merkle tree are done at the same time (in
parallel), and similarly for the updates at the end of the execution.

Overall, accessing/updating the authenticated array T adds polylogarithmic
(in |M̂ |) communication/computation overhead and only a small constant num-
ber of rounds to the protocol. Instead of remembering two wire labels for each
bit of M̂ , the verifier need now remember only a PRF seed and the root of a
Merkle tree.

3 Preliminaries

Throughout the paper, we let k ∈ N be the security parameter. We say a function
ε : N → [0, 1] is negligible if for any polynomial p, there exists a large enough
k′ such that for all k > k′, ε(k) < 1/p(k). Also, for a integer n, we define
[n] = {1, 2, . . . , n}.

3.1 ZK Proofs and Other Standard Functionalities

Here we define the variant of ZK proofs that we achieve, as well as other standard
ideal functionalities used in our protocol.

Zero-Knowledge Proofs: Roughly speaking, a zero-knowledge proof is an interac-
tive protocol in which a party P (the prover) can prove to another party V (the
verifier) that some NP statement x is true by using a valid witness w, leaking
no information about w (except that the statement x is true).

More precisely, for any language L ∈ NP with some binary relation RL,
for all valid instances x ∈ L, there exists a string w such that RL(x,w) = 1.
Otherwise, if x /∈ L, then for all string w we have RL(x,w) = 0.

The ideal functionality FR
ZK is defined in Fig. 1, which allows for many proofs

to reference a common (secret) value M .

Commitment: The commitment functionality Fcom is described in Fig. 2. It
allows a party to commit to a secret value at one time and reveal that value
at a later time.
2 More generally, T can be stored in any authenticated data structure that provides

small storage for the verifier.
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FR
ZK is parametrized by a relation R. It involves two parties: a prover P and a verifier

V .

– Setup: On input (init, M) from P , if no previous init command has been given,
then FR

ZK stores M internally.
– Proof: On input (prove, sid, x, w) from P , if R(M, x, w) = 1, output

(accept, sid, x) to V .

Fig. 1. Ideal functionality FR
ZK for zero-knowledge proofs of NP-relation R

Let M denote the space of valid messages. Fcom receives input from party P and
sends output message to party V . It consists of two phases: Commit and Open.

– Commit: On input (commit, m) from P with m ∈ M, if there is no value m
already stored in memory, then Fcom stores m internally and outputs committed
to party V .

– Open: On input open from P , if value m exists in memory, then Fcom outputs
(opened, m) to party V .

Fig. 2. Ideal functionality Fcom for commitment

– Initialization: Fotc takes private input E (an m × 2 array) from party V and the
private input σ ∈ {0, 1}m from party P , then stores (E, σ) internally and output
committed.

– Transfer: On command transfer from V , Fotc sends (transferred, E|σ) to P .
– Open: On command open from V , Fotc sends (opened, E) to P .

Fig. 3. Ideal functionality Fotc for committing oblivious transfer. Notation E|σ is
defined in Sect. 3.4.

– Initialization: On input (init, N) from party V , FAut initialize an array T of size
N . For each T [i], i ∈ {1, . . . , N}, set T [i] = 0.

– Update: On input (update, id, data) from party V , set T [id] = data and output
(updated, id, data) to both parties.

– Open: On input (access, id) from party V , where id ∈ {1, . . . , N}, send
(accessed, id, T [id]) to V .

Fig. 4. Ideal functionality FAut for authenticated array access.

Committing Oblivious Transfer: The definition of committing oblivious transfer
was first given by Kiraz and Schoenmakers [KS06]. In the general OT protocol,
party V inputs a description of wire labels E and party P has input σ. After
running oblivious transfer, P receives a garbled encoding of σ under the encoding
E. See Sect. 3.4 for more details about the wire-label syntax used in the figure.
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Fcpfe is parametrized by a class of functions H, with each h ∈ H having a common
domain A.

– Evaluation: On input h ∈ H from party V and input x ∈ A from party P , give
output h(x) to party P . Remember h internally.

– Open: On input open from party V , give output h to party P .

Fig. 5. Ideal functionality Fcpfe for committing private function evaluation.

The “committing” aspect of committing OT allows party V to reveal E at a
later time. The ideal functionality Fotc is defined in Fig. 3.

Authenticated Array: The functionality FAut in Fig. 4 simply provides storage
of an array, in which the party V has control over modifications. Such a func-
tionality becomes interesting in our setting when it is realized by a protocol
with minimal (constant) storage for party V . A simple approach is to use an
authenticated Merkle-tree, with V storing only the root of the tree.

3.2 Committing Private Function Evaluation (of a Strongly
Universal Family)

Private function evaluation (PFE) takes input h (a function) from a sender,
input x from a receiver, and gives output h(x) to the receiver. We define and
use a committing variant of PFE in which the sender can later reveal the h that
was used. The formal description is given in Fig. 5.

In our final protocol, we require committing PFE supporting a strongly
universal class H of functions. Suppose each function h in H is of the form
h : A → B. Then H is strongly universal if for all distinct a, a′ ∈ A and all
(possibly equal) b, b′ ∈ B,

Pr
h←H

[h(a) = b | h(a′) = b′] = 1/|B|

Below we suggest several efficient choices for PFE of strongly universal
families:

Using 1-out-of-2 OT: Let X be an n × 2 matrix of length-m strings. For such
an X, define the function hX : {0, 1}n → {0, 1}m via:

hX(z) =
n⊕

i=1

Xi,zi

Then the class H = {hX | X ∈ ({0, 1}m)n×2} is strongly universal.
A simple protocol for private function evaluation of H uses standard 1-out-

of-2 oblivious transfer (of strings) in the following way: For i = 1 to n, the sender
gives input Xi,0 and Xi,1 as input to an instance of OT. The receiver gives input
zi and obtains ri = Xi,zi . Finally the receiver outputs r1 ⊕ · · · ⊕ rn.
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Technically, this protocol is not a secure PFE for the family H, because
the receiver learns more than hX(z). In particular, the receiver learns various
Xi,zi values. However, the protocol suffices for our needs, by considering slightly
relaxed definitions. Let H be a family of pairs of functions. We write (h, ĥ) ∈ H,
where h : A → B and ĥ : A → B̂. Then we say that H is modified strongly
universal if for all distinct a, a′ ∈ A and all (possibly equal) b ∈ B, b̂′ ∈ B̂:

Pr
(h,̂h)←H

[h(a) = b | ĥ(a′) = b̂′] = 1/|B|

The family H = {hX} we described above satisfies this definition, taking ĥX(z) =
(X1,z1 , . . . , Xn,zn). That is, the value of hX(z′) is distributed uniformly even after
fixing the output of ĥX(z) for z �= z′.

Then the protocol just described is secure for a variant of Fig. 5 in which an
adversarial receiver obtains not h(x) but ĥ(x). It should be clear that such a
modified functionality suffices for our eventual usage of Fcpfe when the family H
is modified strongly universal. For simplicity we write our eventual ZK protocol
in terms of the simpler Fcpfe defined in Fig. 5.

Furthermore, when the underlying OT protocol is a committing OT, then
the PFE protocol is also committing in a natural way (with the sender revealing
all committed-OT inputs). We note that this protocol is essentially the “string-
select oblivious transfer” protocol of [KK12] but without the final verification
step which is not needed here.

Using OLFE: In a finite field F, the class of functions of the form x �→ ax + b
is strongly universal (with a, b ∈ F). A private function evaluation for this class
therefore accepts a, b ∈ F from the sender, x ∈ F from the receiver, and gives
output ax+b to the receiver. Such a functionality is already known by the name
of oblivious linear function evaluation (OLFE or OLE) [WW06].

The state of the art for malicious-secure OLFE is due to the general protocol
of Ishai, Prabhakaran, and Sahai [IPS09] for evaluating arithmetic circuits in
the OT-hybrid model. Since OLFE can be represented by an arithmetic circuit
with just 2 gates, their construction yields an OLFE protocol with (amortized)
constant number of field elements communicated per OLFE and computation
roughly O(log k) field operations per OLFE.

The general construction of [IPS09] combines an outer MPC protocol among
imaginary parties and an inner 2PC protocol between the real parties. It is easy
to see that if the inner protocol is committing, so is the overall protocol.

3.3 Oblivious RAM Program

Oblivious RAM (ORAM) programs were first introduced by Goldreich &
Ostrosvsky [GO96]. ORAM allows a client to hide its access pattern and data
to the server. In this work we freely identify a RAM program Π with its deter-
ministic next-instruction circuit. We use M to represent the logical memory of a
RAM program and M̂ to indicate the physical memory array in Oblivious RAM
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program. We consider all memory to be split into blocks, where M [i] denotes
the ith block of M .

Without loss of generality, we assume that the RAM program is deterministic.
Although constructions of oblivious RAM require randomness, we can allow the
prover to provide that randomness as part of the witness w. Thus, we think of
w as w = wreal‖r, where wreal is the actual witness to the statement and r is
randomness used by the ORAM. An honest prover will choose r uniformly so
that the ORAM memory access sequence hides private information. Allowing a
corrupt prover to choose r does not compromise soundness in practical ORAM
constructions (e.g., [SvDS+13]) — it only affects the probability of an overflow
error event (in which case we can have the ORAM circuit output false).

Let the next-instruction circuit Π have syntax:

(inst, st, block) ← Π(st,Σ, block)

where Σ is external input, st is the ORAM state, block is the memory blocks
and inst represents a RAM memory access instruction, which must have one of
the following forms: (read, i), (write, i), or (halt, z), where i is the index of a
memory block.

The execution of an ORAM program Π on input (x,w) using memory M̂ is
as follows:

RAMEval(Π, M̂, (x,w), st)
I := ∅
(inst, st, block) := Π(st, (x,w),⊥)
do until inst has the form (halt, true):

block := [if inst = (read, id) then M̂ [id] else ⊥]
(inst, st, block) := Π(st,⊥, block)
if inst = (write, id) then M̂ [id] := block
I := I‖inst

output I
Note that we have RAMEval output the access sequence I. We say I is an
accepting access sequence if the last instruction in I is (halt, true).

We assume a function Initialize with syntax:

(M̂, st) ← Initialize(1k,M)

This function returns the initial value of st and also the initialized physical
memory array M̂ encoding the logical memory M .

The security definition of an oblivious RAM program Π requires that the
memory access sequence I does not leak information about the data set M or
witness wreal. More formally:

Definition 1. We say that Π is a secure ORAM if there exists an efficent
S such that, for all M , all (M̂, st) ← Initialize(1k,M), all (x,wreal) such that
R(M,x,wreal) = 1 and for all PPT A, the following difference:

∣∣∣ Pr[A(S(1k, |M̂ |, x) = 1] − Pr
r

[A(RAMEval(Π, M̂, (x,wreal‖r), st)) = 1]
∣∣∣

is negligible in k.
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Any RAM program can be converted into an oblivious one satisfying our defini-
tions, using standard constructions [SvDS+13,CP13]. Note that I (the output of
RAMEval) contains only the memory locations and not the contents of memory.
Hence, we do not require the ORAM construction to encrypt/decrypt memory
contents.

3.4 Garbling Scheme

We assume some familiarity with standard constructions of garbled circuits. We
employ the abstraction of garbling scheme [BHR12] introduced by Bellare et al.,
but we use a slightly different syntax for our needs.

We represent a set of wire labels on m wires via a m × 2 array W . For each
wire i, W [i, 0] ∈ {0, 1}k and W [i, 1] ∈ {0, 1}k are two wire labels that encode
false and true, respectively. For a truth value x, the corresponding wire labels
are defined as W |x = (W [1, x1], . . . ,W [m,xm]).

Our protocol adopts the idea of [MGFB14,AHMR15] of re-using wire labels
between different garbled circuits. We require somewhat different syntax for the
garbling scheme in order to facilitate this reuse.

For our purposes, a garbling scheme consists of the following algorithms:

– Gb(1k, f, E,D) → F . Takes as input a boolean circuit f , descriptions of input
wire labels E and output wire labels D, and outputs a garbled circuit F .

– En(E, x) → X = E|x. Takes as input description of input wire labels E, a
plaintext input x and outputs a garbled input X. In our schemes, encoding is
always done via E|x.

– Ev(F,X) → Y . Takes as input a garbled circuit F and a garbled input X and
returns a garbled output Y .

– Chk(f, F,E) → D or ⊥. Takes as input a boolean circuit, a (purported) gar-
bled circuit F and input wire label desription E and outputs either D or an
error indicator ⊥.

The correctness and security condition of garbling scheme we require here
is slightly different from those given in [BHR12], but any garbling scheme that
meet the requirements in [BHR12] also works well for our definitions.

Definition 2. A garbling scheme satisfies correctness if:

1. For all circuits f , circuit-inputs x, and valid wire label descriptions E,D,

Chk(f, F,E) = D whenever F ← Gb(1k, f, E,D)

2. For all circuits f , (possibly malicious) garbled circuits F and wire-label
descriptions E,

Ev(F,E|x) = D|f(x) whenever Chk(f, F,E) = D �= ⊥
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Definition 3. Let W denote the uniform distribution of m × 2 matrices as
described above. A garbling scheme has authenticity if for every circuit f ,
circuit-input x, and PPT algorithm A, the following probability:

Pr[∃y �= f(x), D̃ = D|y : E ← W, F ← Gb(1k, f, E,D), D̃ = A(F,E|x)]

is negligible in k.

The above definition says that when given F and E|x, there is no efficient adver-
sary that can forge valid output wire labels D̃ such that D̃ �= D|f(x).

We emphasize that the garbling scheme we use here only requires only the
authenticity property and not any privacy property. Hence, the protocol may
use a more efficient and simpler garbling scheme (e.g., the “privacy-free” con-
structions of [FNO15,ZRE15]).

4 Zero-Knowledge by Oblivious RAM

4.1 Notation and Helper Routines

ORAM components: Let I be an ORAM memory access sequence. We define
read(I) = {i | (read, i) ∈ I}, write(I) = {i | (write, i) ∈ I}, and access(I) =
read(I) ∪ write(I); i.e., the indices of blocks that are read/write/accessed in I.
If S = {s1, . . . , sn} is a set of memory-block indices, then we define M [S] =
(M [s1], . . . ,M [sn]).

Let Π denote the next-instruction circuit of an ORAM. Given a zero-
knowledge statement x and ORAM access sequence I, we let circuit Cx,I denote
the following circuit:

Cx,I(st, w, M̂ [read(I)]):
(inst, st, block) := Π(st, (x,w),⊥)
for i = 1 to |I| − 1:

if I[i] = (read, id) then:
(st, inst,⊥) ← Π(st,⊥, M̂ [id])

if I[i] = (write, id) then:
(st, inst, block) ← Π(st,⊥,⊥)
M̂ [id] = block

I ′ := I ′‖inst

z := [I ?= I ′]
return (st, z, M̂ [access(I)])

As described in Sect. 2, Cx,I is the circuit that will be garbled in the protocol.
Note that both x and I are hard-coded into Cx,I . Also, the circuit verifies that
I = I ′, and this entails checking the correctness of the witness since the final
element of I is (halt, true).
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Garbling Notation: The circuit Cx,I has 3 logical inputs and 3 logical out-
puts, and we must distinguish among them. When garbling the circuit via
F ← Gb(Cx,I , E,D, 1k), we denote by E a description of input wire labels
(i.e., two labels per wire) and D a description of output wire labels. We write
E = Est‖Ewit‖Emem, denoting the corresponding input wire labels for state, wit-
ness, and memory blocks, respectively. We define D = Dst‖Dz‖Dmem similarly.
When referring to a specific memory block i, we use notation Emem,i and Dmem,i.

We use X to denote the prover’s garbled input, and Y to denote the prover’s
garbled output (i.e., one label per wire). As above, we define Xst, Xwit, Xmem,
Yst, Yz, Ymem. Finally, we have the prover maintain an array Rmem at all times,
containing the current wire labels for all of the ORAM memory M̂ .

For an overview of the notation used in the protocol, see Fig. 6.
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z

M̂ [access(I)]
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(garbled) output
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︸ ︷︷ ︸
“permanent”
wire labels

Ev LabelXfer

Fig. 6. Summary of variables and notation used in the protocol.

Temporary and Permanent Wire Labels. Recall from Sect. 2 that the output
wire labels of a circuit are “temporary” in the sense that their authenticity is
lost when the garbled circuit is opened. We use PFE to transfer the authenticity
property of these temporary wire labels to a different set of “permanent” wire
labels.

We transfer authenticity with the LabelXfer subprotocol, where Y is a list
of “temporary” wire labels (i.e., one label per wire), and h is a list of elements
from a strongly universal hash family H.

prot LabelXfer(Y,h):
for i = 1 to |Y | (in parallel):

V sends Y [i] and P sends h[i] to an instance of Fcpfe

P receives output Z[i] := h[i](Y [i])
P outputs Z
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Note that all instances of Fcpfe are run in parallel and hence the protocol
remains constant-round given that Fcpfe is itself constant-round.

Selecting Wire Labels. Now let’s consider how the verifier generates wire labels
for the circuit. Recall from Sect. 2 that the verifier uses a PRF to generate wire
labels corresponding to the ORAM memory, in order to reduce storage.

Since permanent wire labels are derived by applying strongly universal func-
tions to temporary wire labels, the verifier must also select strongly universal
functions using the PRF to be able to reconstruct the choice of functions later.

Let s be the seed to a PRF. The verifier derives the temporary wire labels
for a set S of memory block indices, last updated at time t, via the subroutine
TempMemLabels. The verifier derives the choice of strongly universal functions
via the subroutine GenH.

Finally, the verifier derives the current, permanent wire labels for a set S
of memory block indices via the subprotocol PermMemLabels. Since each block
may have been last accessed a different time, the authenticated array FAut is
referenced. For each block, the most recent temporary wire labels and strongly
universal functions are reconstructed to derive the permanent wire labels.

func TempMemLabels(S, t):
D := ∅
for i ∈ S:

for j ∈ {1, . . . , l}, b ∈ {0, 1}:
Di[j, b] = PRF(s, 0‖i‖j‖t‖b)

D := D‖Di

return D

func GenH(S, t):
h = ∅
for i ∈ S:

for j ∈ {1, . . . , l}:
hi[j] = PRF(s, 1‖i‖j‖t)

h := h‖hi

return h

prot PermMemLabels(S):
E := ∅
for all i in S (in parallel):

send (access, i) to FAut

receive ti := T [i]
Di := TempMemLabels({i}, ti)
hi := GenH({i}, ti)
Ei := hi(Di)
E := E‖Ei

return E

When h is an array of functions and D is a matrix of wire labels, the notation
h(D) refers to the matrix E whose entries are E[j, b] = h[j](D[j, b]).

4.2 Detailed Protocol

Now we present the full protocol π. We refer to the prover as P and the verifier
as V . The setup phase uses the initialization functionality Finit defined in Fig. 7.

Setup: On input M for prover P , let N denote the number of blocks in the
ORAM encoding of M . Then both parties do the following:
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– Initialize: On command (init, M) from P and (init, Dst, Dmem), where M
is logical ORAM memory, and Dst & Dmem are wire label descriptions, run
(st, M̂) ← Initialize(1k, M). Give output (st, M̂ , Dst|st, Dmem|

̂M ) to P .
– Open: On command open from V , give output (Dst, Dmem) to P .

Fig. 7. Ideal functionality Finit for initializing an ORAM program along with wire
labels.

1. V picks random wire label descriptions D0
st and computes D0

mem =
TempMemLabels([N ], 0). V also chooses a random PRF seed s ← {0, 1}k.

2. P sends (init,M) to Finit; V sends (init,D0
st,D

0
mem) to Finit. P receives output

(st, M̂ , Y 0
st = D0

st|st, Y 0
mem = D0

mem|
̂M

).
3. [Transfer wire-label authenticity]:3

(a) V picks random vector h0
st of strongly universal functions and sets

E1
st = h0

st(D
0
st). The parties perform subprotocol LabelXfer(Y 0

st ,h
0
st), with

P obtaining output h0
st(Y

0
st) which he stores as X1

st.
(b) V picks vector h0

mem = GenH([N ], 0) and the parties perform subprotocol
LabelXfer(Y 0

memh
0
mem). P receives output h0

mem(Y 0
mem) which he stores as

Rmem.
(c) V sends open to Finit, and P receives output (D0

st,D
0
mem).

4. P sends (init,N) to FAut to initialize authenticated array T (with T [i] = 0
for all i).

Proofs: On input (x,w) for the prover, let this be the tth such proof. The parties
do the following:

5. [ORAM Evaluation]: P runs I ← RAMEval(Π, M̂, x, w, st), then sends
(x, I) to V . V aborts if I is not an accepting access sequence. Note that
RAMEval modifies M̂ for the prover.

6. [Garbling the circuit]: V generates a garbled circuit as follows:
(a) V chooses input wire labels to the circuit as follows: Et

wit are chosen
randomly. Et

mem are chosen as Et
mem ← PermMemLabels(read(I)). Recall

that Et
st has been set previously.

(b) V chooses output wire labels Dt
z and Dt

st randomly, and chooses Dt
mem =

TempMemLabels(access(I), t).
(c) V sets Et = Et

st‖Et
wit‖Et

mem, sets Dt = Dt
st‖Dt

z‖Dt
mem, then invokes gar-

bling algorithm F t ← Gb(1k, Cx,I , Et,Dt).
7. [Evaluating garbled circuit]:

(a) The parties invoke Fotc with P giving input w and V giving input Et
wit.

P receives Xt
wit = Et

wit|w. Additionally, P finds Xt
st in its memory and

sets Xt
mem = Rmem[read(I)].

(b) V sends F t to P , and P evaluates the garbled circuit Y t ← Ev(F t,Xt).

3 This step could be easily incorporated into Finit, but is written separately so that
the remainder of the protocol has no edge-cases involving t = 0.
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(c) P commits to Y t
z (a single wire label) under Fcom.

8. [Transfer wire-label authenticity]:
(a) V picks random vector ht

st of strongly universal functions and sets
Et+1

st = ht
st(D

t
st). The parties perform subprotocol LabelXfer(Y t

st,h
t
st),

with P obtaining output ht
st(Y

t
st) which he stores as Xt+1

st .
(b) V picks vector ht

mem = GenH(access(I), t) and the parties perform sub-
protocol LabelXfer(Y t

mem,ht
mem). P receives output ht

mem(Y t
mem) which he

stores as Rmem[access(I)].
9. [Check garbled circuit]:

(a) V sends open to the Fotc-instance from time t, and P receives output
Et

wit.
(b) V sends open to the PFE-instances used for the state wire labels in time

t − 1. The prover thus obtains ht−1
st and sets Et

st = ht−1
st (Dt−1

st ).
(c) For each i ∈ read(I), verifier sends open to the PFE-instances used for

memory block i in time T [i]. The prover thus obtains h
T [i]
mem,i and sets

Et
mem,i = h

T [i]
mem,i(D

T [i]
mem,i).

(d) The verifier sets Et = Et
st‖Et

wit‖Et
mem and runs Dt = Chk(Cx,I , F t, Et).

If the result is ⊥, then V aborts. Otherwise, V opens his commitment
to Y t

z .
10. [Check prover’s output]: V checks whether Y t

z = Dt
z|true. If not, then V

aborts the protocol. Otherwise, V outputs (accept, t, x).
11. [Update T ]: For all i ∈ access(I) (in parallel), V sends (update, i, t) to FAut.

Other Discussion. Our protocol is written in a hybrid model with access to var-
ious setup functionalities. In particular, Fcpfe is a reactive functionality, and our
protocol involves many (O(|M̂ |)) instances of Fcpfe that remain “active” between
ZK proofs. We have shown how the verifier’s inputs to the Fcpfe instances can
be derived from a PRF, eliminating the need to explicitly store them. However,
when these Fcpfe instances are realized by concrete protocols, both parties are
required to keep internal state between the PFE phase and opening phase. Hence,
the verifier’s random coins for the Fcpfe-protocols should also be derived from a
PRF. In that way, the verifier’s entire view can be reconstructed as needed when
it is time to open each Fcpfe instance.

4.3 Security Proof

Theorem 1. The protocol π presented in Sect. 4.2 is a secure realization of the
FR

ZK functionality.

Proof. We describe two simulators, depending on which party is corrupted.

Prover is corrupt: The primary role of the simulator in this case is to extract the
witness from P . We construct the simulator in a sequence of hybrid interactions:

H0: Simulator plays the role of an honest verifier V (who has no input) and all
ideal functionalities. In particular, the simulator obtains all of P ’s inputs to
the ideal functionalities. This interaction is identical to the real interaction
with π.
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H1: Same as H0 except that instead of using a PRF, the simulated veri-
fier chooses output wire labels Dt

mem and ht
mem functions uniformly (in

TempMemLabels and GenH). We have H1 ≈ H0 by the security of the PRF.
H2: Same as H1 except that the simulator aborts in certain cases as follows.

The simulator has initially generated M̂ and st (while simulating Finit) and
obtains w as P ’s input to Fotc in each step (7a). Hence, each time in step
7, the simulator executes Cx,I(st, w, M̂ [read(I)]) → (st, z, M̂ [access(I)]),
updating its internal st and M̂ .

In the LabelXfer subprotocols in steps (3) and (8), P is meant to provide
his garbled output Y t

mem and Y t
st to the Fcpfe functionalities. Similarly, in

step (7c), the prover is expected to commit to Y t
z |true. In H2, the simulator

artificially aborts if P provides a valid encoding Dt|y for y not equal to the
simulated output of Cx,I at time t.

Now we claim that the simulator artificially aborts with only negligible
probability (so H1 ≈ H2) and that the prover’s view of Et during step (8)
in time t can be simulated given only Et

mem|
̂M [read(I)]

and Et
st|st. This follows

essentially from the authenticity property of the garbling scheme and the
strong-universal hashing property of H.

Consider the LabelXfer subprotocol in step (3) (i.e., time t = 0). At this
time, all wire labels in D0 besides D0

mem|
̂M

and D0
mem|st are independent

of the adversary’s view by definition of the Finit functionality. Hence, the
simulator artificially aborts with negligible probability during these steps.
Conditioned on not aborting, the action of the strongly universal hash func-
tions on the “wrong” wire labels of D0 — and hence the value of the “wrong”
input wire labels in E1 — is distributed independently of P ’s view. Thus P ’s
view in step (7) can be simulated given only the claimed subset of E1. Induc-
tively, the prover’s view of Et at the time of the LabelXfer steps depends only
on the “expected” input wire labels. Hence, the simulator artificially aborts
with negligible probability, due to the authenticity property of the garbling
scheme. As above, conditioned on not aborting, the strong universal hashing
property ensures that the prover’s view of Et+1 depends only on the claimed
subset of Et+1.

H3: Same as H2 except that in step (2) the simulator sends P ’s input M to
FR

ZK. In step (10), if the simulated verifier does not abort, then the simulator
sends (x,wreal) to FR

ZK (where w was extracted from the prover in step (7a).
We claim that the output of the ideal verifier always matches that of the
simulated verifier. The simulated verifier accepts the proof if P has commit-
ted to Dt

z|true. Provided that the simulator has not artificially aborted, then
it must be that the simulated Cx,I has output z = true. By the correctness
of the RAM program, it must be that wreal is a valid witness for x.

Hence, the simulator implicit in H3 is our final simulator.

Verifier is Corrupt: In this case, the primary role of the simulator is to simulate
its view without knowledge of the witness w. We note that the only information
that needs to be simulated in each proof is the memory access sequence I and
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the opened commitment to output wire label Y t
z . Again we proceed in a sequence

of hybrid interactions.

H0: Simulator plays the role of an honest prover P (including M and witnesses
w as input) and all ideal functionalities. Hence, the simulator obtains all of
V ’s inputs to the ideal functionalities. This interaction is identical to the
real interaction with π.

H1: Same as H0 except for the following changes. An honest prover computes
Dt in step (9d) when the verifier decommits to certain inputs to ideal func-
tionalities. Here we have the simulator perform the same computations, but
as soon as possible given the ability to see the verifier’s inputs to the func-
tionalities. Hence, in step (7c), the simulator will know the entire contents
of Dt. Instead of evaluating the garbled circuit to obtain garbled output Y t

z ,
we have the simulator simply commit to Dt

z|true.
This commitment is only opened when the garbled circuit F t is shown to

be correct. Hence, H0 ≡ H1.
H2: Same as H1 except for the following changes. Note that in H1 the simulator

uses secret values M and w only to generate the memory access sequence
I. All of the simulated prover’s other inputs to ideal functionalities can be
set to dummy values, as V gets no outputs. So in H2 we have the simulated
prover generate I in step (5) using the ORAM simulator instead of actually
executing the RAM program itself. We have H1 ≈ H2 by the security of the
ORAM.

The simulator implicit in H2 defines our final simulator, since it no longer
requires the secret values M and w to operate.

This completes the security proof of our protocol.
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Abstract. Motivated by the goal of constructing efficient hash func-
tions, we investigate the possibility of hashing a long message by only
making parallel, non-adaptive calls to a hash function on short mes-
sages. Our main result is a simple construction of a collision-resistant
hash function h : {0, 1}n → {0, 1}k that makes a polynomial number of
parallel calls to a random function f : {0, 1}k → {0, 1}k, for any poly-
nomial n = n(k). This should be compared with the traditional use of
a Merkle hash tree, that requires at least log(n/k) rounds of calls to
f , and with a more complex construction of Maurer and Tessaro [26]
(Crypto 2007) that requires two rounds of calls to f . We also show that
our hash function h satisfies a relaxed form of the notion of indifferentia-
bility of Maurer et al. [27] (TCC 2004) that suffices for implementing the
Fiat-Shamir paradigm. As a corollary, we get sublinear-communication
non-interactive arguments for NP that only make two rounds of calls to
a small random oracle.

An attractive feature of our construction is that h can be implemented
by Boolean circuits that only contain parity gates in addition to the par-
allel calls to f . Thus, we get the first domain-extension scheme which
is degree-preserving in the sense that the algebraic degree of h over the
binary field is equal to that of f .

Our construction makes use of list-recoverable codes, a generalization
of list-decodable codes that is closely related to the notion of random-
ness condensers. We show that list-recoverable codes are necessary for
any construction of this type.

The first author was supported by ISF grant 1076/11, I-CORE grant 4/11, BSF grant
2010196, and Check Point Institute for Information Security. The second author
was supported by ERC starting grant 259426, ISF grant 1709/14, and BSF grant
2012378. The third author was supported by ERC starting grants 259426 and 279559,
and by ISF grant 544/13. The fourth author was supported by ERC starting grant
279559, BSF grant 2010120, and ISF grant 864/11.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 173–190, 2015.
DOI: 10.1007/978-3-662-48000-7 9



174 I. Haitner et al.

1 Introduction

In this work we consider the problem of extending the domain of cryptographic
hash functions. We start by discussing the case of collision-resistant hash func-
tions, and later address extensions to other types of hash functions.

A family
{

g : {0, 1}v → {0, 1}k
}

of efficiently computable, length-decreasing
functions is called collision resistant if given the description of a random g from
the family, it is computationally infeasible to find a pair of distinct inputs s, s′

such that g(s) = g(s′).
Collision-resistant hashing is a fundamental primitive in cryptography that

has been the subject of a large body of work. Its applications span many areas,
ranging from the commonly used “hash and sign” paradigm for practical digital
signatures [10,29] to cryptographic protocols such as sublinear-communication
commitments [9,21], succinct and efficiently verifiable arguments for NP [23,30],
and protocols that bypass black-box simulation barriers [1].

The existence of collision-resistant hash functions can be based on a variety
of standard number theoretic or algebraic cryptographic assumptions, includ-
ing the conjectured intractability of factoring, discrete logarithms, and lattice
problems [8,13,25,33]. Yet, the task of heuristically constructing highly efficient
hash functions that can also be conjectured to have near-optimal security is quite
challenging. In particular, this task is arguably more challenging than a similar
task for other “symmetric” cryptographic primitives such as one-way functions
[41], pseudorandom generators [5,41], and universal one-way hash functions [31].
This intuition is supported by theoretical results that rule out the possibility of
obtaining collision-resistant hash functions from any of these other symmetric
primitives via a black-box construction [19,36]. Practical collision attacks on
commonly used hash functions such as MD5 [40] may also be viewed as an indi-
cation for the subtle nature of hash function design. Despite the above, there are
many practical constructions of cryptographic hash functions that are conjec-
tured to satisfy collision resistance as well as other useful properties. See [4] for a
description of SHA-3, the winner of the recent NIST hash function competition,
as well as an overview of other work on practical hash function design.

A common technique for building a hash function g : {0, 1}v → {0, 1}k that
compresses a long input into a short output is by combining multiple invocations
of a smaller hash function f : {0, 1}kin → {0, 1}kout in a way that supports a
black-box reduction of the collision-resistance of g to that of f . This technique,
known as domain-extension, is motivated by the possibility of carefully designing
and analyzing an optimized implementation of f on some fixed input length,
and then scaling up its efficiency and security advantages to apply to arbitrarily
long inputs. It is sometimes the case that the collision-resistance of g relies
on a stronger assumption on f than just collision-resistance. In fact, several
domain-extension schemes assume f to be a completely random function (see
e.g., [26,34,37,38] and references therein, as well as [20] for discussion of the
meaningfulness of such results). In the following we will use the term “domain-
extension” in this broader sense. A simple domain-extension technique due to
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Merkle [28] extends the domain of a hash function f : {0, 1}2k → {0, 1}k for short
inputs into a hash function g : {0, 1}nk → {0, 1}k for long inputs by applying a
tree of invocations of f whose leaves are k-bit input blocks and whose root is
the output.

In this work we consider the question of minimizing the parallel complexity of
domain-extension schemes. A natural measure of this complexity is the number
of rounds of parallel calls to f . Ideally, one could hope to compute g by only
making a single round of calls to f , where the input for each call is computed
directly from the input for g, and the outputs of the calls are used to compute
the output of g. The hash tree construction falls short of this goal, requiring at
least �log2 n� rounds. A more complex construction of [26] comes close to this
goal, requiring only two rounds of calls to f .1

Our main result is a simple construction of a fully parallel (single-round)
domain-extension scheme that realizes a collision-resistant g : {0, 1}v → {0, 1}k

by making a polynomial number of parallel calls to a random function f :
{0, 1}k → {0, 1}k, for any polynomial v = v(k). The construction achieves a
near-optimal level of security, requiring an attacker to make roughly 2k/2 calls
to f in order to find a collision in g with high probability. However, this may
come at the cost of a higher number of calls to f compared to traditional domain-
extension schemes. See Sect. 7 for a more detailed discussion of the achievable
parameters.

Our domain-extension scheme has the attractive feature that g can be imple-
mented by Boolean circuits consisting only of parity gates in addition to the
parallel calls to f . Thus, we get the first degree-preserving domain-extension
scheme, in the sense that the algebraic degree of g over the binary field is equal
to that of f . In contrast, in constructions that make two rounds of calls to f ,
the degree of g is at least quadratic in that of f . Low-degree hash functions are
motivated by applications in the domain of secure computation, in which the
cost of evaluating a function may depend on its algebraic degree. See [20] for
further discussion.

Our construction makes use of list-recoverable codes, a generalization of list-
decodable codes that is closely related to the notion of randomness condensers.
We show that list-recoverable codes are necessary for any construction of this
type. In the following we give a more detailed account of our results and the
underlying techniques.

2 Parallel Domain-Extension

Recall that a domain-extension scheme for hash functions takes as input a fixed
length hash function f : {0, 1}kin → {0, 1}kout and outputs a new hash function
for much larger inputs, namely a function g : {0, 1}v → {0, 1}kout for a given
v > kin. (For the sake of simplicity, we assume that the output length of g

1 Their construction actually realizes the stronger goal of constructing a function g
that is indistinguishable from a random function. See Sect. 8 for further discussion.
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is kout, rather than an additional parameter.) We consider the standard model
in which the function f is provided to the construction after being chosen by
some randomized process, and the function g uses f as a black-box (i.e., it is
oblivious to the concrete implementation of f). The focus of this work is on
parallel domain-extension: upon receiving an input s ∈ {0, 1}v, the function g
first prepares n queries to the hash function f (which we will denote by C(s) =
(x1, . . . , xn)), and then the final output of g is obtained by computing some
function h on the input s and the answers f(x1), . . . , f(xn).

Definition 1 (Parallel Domain-Extension Scheme). Let kin, kout, v, n be

integers, let C : {0, 1}v →
(
{0, 1}kin

)n

and let h be defined over {0, 1}v ×(
{0, 1}kout

)n

. The parallel domain-extension scheme (C, h) is the oracle-aided func-

tion g(C,h) defined as follows. For f : {0, 1}kin → {0, 1}kout , let gf
(C,h) : {0, 1}v →

{0, 1}kout be defined by

gf
(C,h)(s) = h(s, f(C(s)1), . . . , f(C(s)n)).

If the value of (C, h) is clear from the context, we refer to gf
(C,h) as gf or g.

Such a construction should maintain the security of the underlying hash function
(i.e., f). In particular, whenever f is chosen from a collision-resistant hash func-
tion family, the resulting function g should be collision-resistant as well. As a
step towards this goal, it is common to consider the following intermediate goal:
assume that f is a random function (which in particular is collision-resistant),
and prove that the resulting function g is collision-resistant. In the following let
Fkin,kout

be the family of all functions mapping kin-bit strings to kout-bit strings.

Definition 2 (Collision-Resistance in the Random Oracle Model). Let g
be an oracle-aided function (i.e., deterministic algorithm), with an oracle mapping
kin-bit strings to kout-bit strings. The function g is (�, ε)-collision-resistant in the
random oracle model, if for any �-query adversary A (i.e., A makes � oracle calls),
it holds that Prf←Fkin,kout

[
(s1, s2) ← Af : s1 �= s2 ∧ gf (s1) = gf (s2)

] ≤ ε.

An important goal is to come up with an efficient collision-resistant parallel
domain-extension scheme, according to Definition 2, where efficiency can be mea-
sured in terms of circuit size, depth, or algebraic degree. This motivates schemes
in which n (the number of queries) is as small as possible, and the functions C
and h are efficiently computable.

Our main result is that if we take C to be a list-recoverable code (defined
below), then for making the resulting scheme collision-resistant in the random-
oracle model, it suffices to take h to be simply the XOR function applied to the
n outputs of f .

It turns out that when used with (short) random oracle, our parallel domain-
extension scheme also maintains other useful properties of the random oracle.
While we cannot show our parallel domain-extension scheme to be indifferen-
tiable from a random function in the sense of Maurer et al. [27], we show that it
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enjoys a weaker form of indifferentiability, which neither implies nor is implied
by collision-resistance. This property will turn out to be sufficient for converting
interactive proof system into non-interactive ones using the Fiat-Shamir para-
digm [12].

Definition 3 (Weak Indifferentiability). Let g : {0, 1}v 
→ {0, 1}t be an
oracle-aided function, taking an oracle mapping kin-bit strings to kout-bit strings.
The function g is (�,R, r)-weak-indifferentiable from a random function, if for any
two-oracle algorithm D making � queries to the left-hand side oracle, and a single
query to the right-hand side oracle, there exists a single-query algorithm Sim such
that PrfIdeal←Fkin,kout

[
DfIdeal,g

fIdeal ∈ E
]

≤ R ·PrgIdeal←Fv,t

[
DSimgIdeal ,gIdeal ∈ E

]

for any event E. The simulator Sim is of size r, i.e., it is implemented by a next
message circuit of size r (i.e., a circuit that gets as input the past queries and
the current one, and returns the answer to the current query).

The main difference between Definition 3 and the standard notion of indifferen-
tiability from [27], is that the above definition only requires domination between
the real and emulated pair of systems, whereas [27] require statistical closeness.
We also provide Sim the query parameter � as a parameter, which makes our
relaxed definition easier to realize. For simplicity, we have fixed the number of
queries to the right-hand side oracle to one (both for the distinguisher and the
simulator). It turns out that this type of security is achieved by our parallel
domain-extension scheme and is sufficient for applying the Fiat-Shamir para-
digm as described below. Concretely, we show that by taking C and h to be as
above, the resulting function is weakly indifferentiable from a random function,
with small (i.e., polynomial) parameters.

We now give some brief intuition for why the above weak indifferentiability
property suffices for applying the Fiat-Shamir paradigm to simulate the verifier’s
challenge in 3-message public-coin interactive proofs. Let P be a malicious prover
that convinces the verifier V with noticeable success probability. P may make
� queries to the real short-input oracle before sending his message to V. We
can consider a distinguisher D that simulates P and then uses one query to
the long-input oracle to see whether V accepts. D accepts iff V accepts. Now
consider the behavior of D in the two experiments that appear in Definition 3.
In the real experiment, the probability that D accepts is the success probability
of P. In the ideal experiment, V uses an ideal (full length) oracle and so the
success probability of D is bounded by the success probability when applying
the Fiat-Shamir paradigm with an ideal hash function.

3 List-Recoverable Codes

Definition 4 (List-Recoverable Code). Let α ∈ [0, 1]. A tuple x ∈(
{0, 1}k

)n

is

– α-consistent with a set T ⊆ {0, 1}k, if |{i : xi ∈ T}| ≥ α · n.
– α-consistent with sets T1, . . . , Tn ⊆ {0, 1}k, if |{i : xi ∈ Ti}| ≥ α · n.



178 I. Haitner et al.

A function C : {0, 1}v →
(
{0, 1}k

)n

is (α, �, L)-list recoverable, if for every set

T ⊆ {0, 1}k of size at most �, there are at most L strings s ∈ {0, 1}v such that
C(s) is α-consistent with T . It is strongly (α, �, L)-list recoverable, if for every
T1, . . . , Tn ⊆ {0, 1}k each of size at most �, there are at most L strings s ∈ {0, 1}v

such that C(s) is α-consistent with T1, . . . , Tn.
For α = 1, we omit α in the above notation. The strings in the image of C

are referred to as codewords, and C has distance β, if every two codewords differ
on at least β · n of the indices.

The function C has a size r list-recovering algorithm, if there exists a circuit
of size r that given a set T ⊆ {0, 1}k of size at most � returns the full list of (at
most L) strings that are α-consistent with T .

The notion of strongly list-recoverable codes (explicitly defined in [15]) is a
natural extension of the more standard uniquely decodable codes (captured by
� = L = 1) and list-decodable codes (captured by � = 1 and L > 1). The reader
is referred to [14] for a comprehensive treatment of list-decodable codes. In this
paper we use the weaker notion of list-recoverable codes (with a single set T
instead of a collection T1, . . . , Tn), as it turns out to be more natural for the
applications we consider.2 List-recoverable codes show up naturally in coding
theory when one considers list-decoding of concatenated codes.3 Conveniently,
many list-decoding algorithms (e.g., [16,17,32,39]) solve the more general list-
recovering problem, and list-decoding is achieved as a special case. The para-
meter regime that we consider is less standard in coding theory and is strongly
related to unbalanced expanders and randomness condensers. We elaborate on
this connection in [20].

In our construction we require codes that, in addition to having large distance
and being list-recoverable, are also well ordered.

Definition 5 (Well-Ordered Codes). A function C : {0, 1}v →
(
{0, 1}k

)n

is

well ordered, if for every s1, s2 ∈ {0, 1}v (not necessarily distinct) and for every
i �= j, C(s1)i �= C(s2)j.

Constructions of list-recoverable codes in the literature typically have this prop-
erty. Furthermore, a given function C : {0, 1}v →

(
{0, 1}k

)n

can be converted

into a function C̄ : {0, 1}v →
(
{0, 1}k+log n

)n

that is well ordered by defining

C̄(s)i = (C(s)i, i). This transformation increases the alphabet of the code, but
does not compromise the distance or list-recoverability. In our setting log n is

2 Note that it is immediate that a strongly list recoverable code is also (weakly) list-
recoverable, and that a weakly list-recoverable code with L′ = n · L is strongly
list recoverable. In our setting n is negligible compared to L and so the distinction
between the two notions of list-recoverable code makes little difference.

3 More precisely, if the inner code is list-decodable (rather than uniquely decodable)
then to obtain a list-decodable code, the outer code needs to be list-recoverable (and
not only list-decodable).
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typically negligible compared to k and so the increase in alphabet size is imma-
terial. Hence, one can assume without loss of generality that a list-recoverable
code is well ordered.

4 Parallel Domain-Extension via List-Recoverable Codes

We show that well-ordered, list-recoverable codes with large distance yield
parallel domain-extension schemes that are collision-resistant in the random-
oracle model, and furthermore are weak-indifferentiable from a random func-
tion. Specifically, this holds for any domain-extension scheme of the form
gf (s) =

⊕n
i=1 f (C(s)i), where C is such a list-recoverable code. Hereafter, we

refer to this scheme as the XOR parallel domain extension scheme.

Theorem 1. Let kin, kout, v be integers, α > 0, and let C : {0, 1}v →(
{0, 1}kin

)n

be a well-ordered, (α, �, L)-list recoverable code of distance α. Define

h : {0, 1}v×
(
{0, 1}kout

)n

→ {0, 1}kout by h(s, a1, . . . , an) =
⊕n

i=1 ai. Then g(C,h)

is (�, L2/2kout)-collision-resistant in the random-oracle model.

We remark that the collision-resistance of g(C,h) holds even if we only require
that the function f it gets as oracle be L2-wise independent. Thus, using codes
with small L allows us to require less of the oracle.

Theorem 2. Let kin, kout, v be integers, and let C : {0, 1}v →
(
{0, 1}kin

)n

be
a well-ordered, (�, L)-list recoverable code, with size r list-recovering algorithm,
and let h be as in Theorem1. Then g(C,h) is (�, L, r̂)-weak-indifferentiable from
random function (from v bits to kout bits), with r̂ = O(r + � · (kout + kin)).

Note that the weak-indifferentiablity of the scheme requires much less from the
underlying code. In particular, it is not sensitive to the consistency parameter
(allowing it to be 1) nor to the distance of the code, and hence does not imply
collision-resistance. On the other hand, our application of this notion in the
context of computationally sound arguments will require the list-recovering algo-
rithm to be computationally efficient, a feature that is not needed for collision-
resistance.

We prove Theorem 1 below. For the proof of Theorem2, and proofs of the
other theorems in this paper, see full version [20].

4.1 Proving Theorem 1

We show that an �-query adversary is unlikely to find a collision in the above
construction (i.e., find two elements s1 �= s2 ∈ {0, 1}v, with gf (s1) = gf (s2)),
when f is chosen at random from F — the set all functions mapping kin-bit
strings to kout-bit strings.

Fix a code C of the type considered in Theorem1 and an �-query (without
loss of generality, deterministic) adversary A, and let g = g(C,xor). The core of
the argument is using the list-recoverability of C, and its distance, to bound the
number of input pairs that A is able to try out. We use the following definition.
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Definition 6 (Dangerous Pairs). A pair (s1, s2) ∈ ({0, 1}v)2 of distinct
elements is dangerous w.r.t. a (query) set Q of elements in {0, 1}kin , if
C(s1)i, C(s2)i ∈ Q for all 1 ≤ i ≤ n with C(s1)i �= C(s2)i.

We bound the number dangerous pairs w.r.t. an �-size query set Q using the
bound on the number of codewords that are α-consistent with Q.

Claim 3. Let (s1, s2) be a dangerous pair w.r.t. a query set Q, then both C(s1)
and C(s2) are α-consistent with Q.

Proof. Assume that (s1, s2) is a dangerous pair w.r.t. a query set Q. Let D =
{i : C(s1)i �= C(s2)i}. Since the distance of C is α, it holds that |D| ≥ α · n.
Since (s1, s2) is a dangerous pair, C(s1)i, C(s2)i ∈ Q for all i ∈ D, and hence,
both C(s1) and C(s2) are α-consistent with Q.

Corollary 1. There are at most
(
L
2

)
dangerous pairs w.r.t. an �-size query set.

Proof. Since C is (α, �, L)-list recoverable, there are at most L strings s ∈ {0, 1}v

such that C(s) is α-consistent with an �-size query set Q. Hence, by Claim 3,
there are at most

(
L
2

)
dangerous pairs w.r.t. Q.

For f ∈ F , let QA,f be the �-size query set asked by Af . Corollary 1 yields that
there are at most

(
L
2

)
dangerous pairs w.r.t. QA,f . A straightforward union bound

yields that a non-adaptive A (i.e., one that “writes” all its queries in advance)
is unlikely to find a collision within the dangerous pairs w.r.t. QA,f . A slightly
more involved argument yields the same bound also for adaptive adversaries.
Specifically, we give the following bound (proof given below).

Claim 4. Prf←F [(s1, s2) ← Af : (s1, s2) is dangerous w.r.t. QA,f ∧ gf (s1) =
gf (s2)] ≤ (

L
2

) · 2−kout .

On the other hand, it is immediate that A is unlikely to find a collision of a
non-dangerous pair.

Claim 5. Prf←F [(s1, s2) ← Af : s1 �= s2 ∧ (s1, s2) is non-dangerous w.r.t. QA,f

∧gf (s1) = gf (s2)] = 2−kout .

Proof. Since (s1, s2) is non-dangerous, it follows that C(s1)i �= C(s2)i for some
i ∈ [v], and without loss of generality C(s1)i /∈ QA,f . Consider any fixing of all f
queries but C(s1)i that is consistent with the actual answers of f on the queries
in QA,f . Since C is well ordered, this fixes C(st)j for all t ∈ {1, 2} and j /∈ [n].
The claim follows, since for each such fixing, it holds that

Pr
[
gf (s1) = gf (s2)

]
= Pr

⎡
⎣f (C(s1)i) =

⊕
j∈[n]\{i}

f (C(s1)j) ⊕
⊕
j∈[n]

f (C(s2)j)

⎤
⎦

= 2−kout .
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It follows that Af finds a collision with probability at most (
(
L
2

)
+ 1) · 2−kout ≤

L2/2kout , proving the first part Theorem1.

Proving Claim 4. Recall that the �-query adversary A in consideration may
be adaptive, which means that it possibly selects its oracle queries based on the
answers it received for previous queries. Our goal is to bound the probability
that A finds a pair of codewords that is both dangerous (with respect to QA,f )
and forms a collision.

To this end, we first introduce the following notations. Let Q
(j)
A,f ={

q
(1)
A,f , . . . , q

(j)
A,f

}
be the set of first j queries made by Af . Let E

(j)
A,f be the

event that there exists a pair (s1, s2) ∈ ({0, 1}v)2 of distinct elements that is
dangerous w.r.t. Q

(j)
A,f and gf (s1) = gf (s2). Finally, denote by d

(j+1)
A,f the num-

ber of pairs (ŝ1, ŝ2) that are dangerous w.r.t. Q
(j+1)
A,f and there exists 1 ≤ i ≤ n

such that C(ŝ1)i = q
(j+1)
A,f �= C(ŝ2)i.

We next bound the probability that after making the j + 1 query, the adver-
sary finds – for the first time – a pair that is both dangerous and colliding.

Claim 6. For any 1 ≤ j < � and d ∈ N, it holds that
Prf←F

[
E

(j+1)
A,f ∧ ¬E

(j)
A,f | d

(j+1)
A,f = d

]
≤ d

2kout
.

Proof. By simple rules of conditional probability, it suffices to prove
Prf←F

[
E

(j+1)
A,f | ¬E

(j)
A,f ∧ d

(j+1)
A,f = d

]
≤ d

2kout
. For E

(j+1)
A,f to occur, there needs

to be a pair (ŝ1, ŝ2) that is dangerous w.r.t. Q
(j+1)
A,f and gf (ŝ1) = gf (ŝ2). The

condition that E
(j)
A,f does not occur yields that if (ŝ1, ŝ2) is dangerous w.r.t.

Q
(j)
A,f , then gf (ŝ1) �= gf (ŝ2). Hence, for computing the probability that such a

pair exists, one should only consider pairs that are dangerous w.r.t. Q
(j+1)
A,f and

are not dangerous w.r.t. Q
(j)
A,f .

Let (ŝ1, ŝ2) be a pair that is dangerous w.r.t. Q
(j+1)
A,f and not dangerous w.r.t.

Q
(j)
A,f . Note that there exists a (single) 1 ≤ i ≤ n with C(ŝ1)i = q

(j+1)
A,f �= C(ŝ2)i;

the existences holds since otherwise, this pair is already a dangerous pair w.r.t.
Q

(j)
A,f , and the uniqueness follows since C is well-ordered. We next compute the

probability that gf (ŝ1) = gf (ŝ2). Consider any fixing of all f queries but C(s1)i

that is consistent with the actual answers of f on the queries in Q
(j)
A,f (specifically,

E
(j)
A,f does not occur and d

(j+1)
A,f = d for such fixings). Since C is well ordered,

this fixes C(st)j for all t ∈ {1, 2} and j /∈ [n]. For each such fixing, it holds that

Pr
[
gf (ŝ1) = gf (ŝ2)

]
= Pr

⎡
⎣f (C(ŝ1)i) =

⊕
j∈[n]\{i}

f (C(ŝ1)j) ⊕
⊕
j∈[n]

f (C(ŝ2)j)

⎤
⎦

= 2−kout .

By assumption, there are d such dangerous pairs. Hence, by a union bound, the
claim follows.
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Proof (Proof of Claim 4). Since QA,f = Q
(�)
A,f , it holds that EA,f := E

(�)
A,f is

the event that there exists a pair (ŝ1, ŝ2) ∈ ({0, 1}v)2 of distinct elements that
is dangerous w.r.t. QA,f and gf (ŝ1) = gf (ŝ2). Clearly, the probability of EA,f

upperbounds the probability that A outputs such a pair.
Evidently, E

(1)
A,f can never occur, since no pair is dangerous w.r.t. a single

query. Furthermore, E
(j′)
A,f for any j′ ≤ j implies E

(j)
A,f . Hence, we have that

Pr
f←F

[EA,f ] =
�−1∑
j=1

Pr
f←F

[E(j+1)
A,f ∧ ¬E

(j)
A,f ] ≤

�−1∑
j=1

E
f←F

d
(j+1)
A,f

2kout
, (1)

where the inequality follows from Claim6. By linearity of expectation, it holds
that

Pr
f←F

[EA,f ] ≤ 2−kout · E
f←F

�−1∑
j=1

d
(j+1)
A,f ≤ 2−kout ·

(
L

2

)
. (2)

The last inequality follows since

�−1∑
j=1

d
(j+1)
A,f ≤

(
L

2

)
(3)

for every f ∈ F . To see that Eq. (3) holds, note that each pair that is dangerous
w.r.t. Q

(j)
A,f is also dangerous w.r.t. Q

(�)
A,f (i.e., the set of all queries made by A).

Furthermore, each such dangerous pair (s, s′) is only counted by a single d
(j)
A,f ,

i.e., for the first j in which Qj contains all the queries C(s)i �= C(s′)i. Hence,
Eq. (3) follows from Corollary 1.

5 Beyond Collision-Resistance

We suggest some applications of the XOR parallel domain-extension scheme
described in [20] to parallel constructions of other cryptographic primitives in
the random oracle model. These applications exploit both the collision-resistance
and weak-indifferentiability properties of our construction. In this section we
give a high level description of these applications and refer the reader to [20] for
formal statements.

Fiat-Shamir Paradigm. We show that the XOR parallel domain-extension
scheme can be used to implement the Fiat-Shamir paradigm for converting any
three-message public-coin argument, which may possibly employ a random ora-
cle, into a non-interactive (i.e., single-message) argument in the random oracle
model.

We start by describing the Fiat-Shamir transformation when applied to three-
message protocols. Let 〈P,V〉 be a public-coin three-message argument system
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for an NP language. Such a protocol has the following high level structure:
(1) P send a v-bit message to V; (2) V sends a random k-bit challenge to P;
(3) P responds to this challenge; (4) V decides whether to accept by applying an
efficient predicate to the input and the protocol’s transcript.

The Fiat-Shamir transformation makes P generate all three messages by
applying a hash function h : {0, 1}v → {0, 1}k to the first message of P to sim-
ulate the random challenge. This paradigm is provably secure in the random
oracle model, but requires the random oracle input length to be as long as P’s
first message. We then use the weak-indifferentiability property, as discussed
in Sect. 2, to show that the resulting scheme is also secure when h is the hash
function obtained by applying the XOR parallel domain-extension scheme to
a random oracle f : {0, 1}k → {0, 1}k. Namely, we create a Fiat-Shamir like
transformation that uses parallel calls to a small random oracle.

Parallel Commitment with Local Decommitment. Next, we consider commitment
schemes for strings s ∈ {0, 1}v that support a sublinear-communication local
decommitment of any bit from s. Intuitively, in such schemes we require that
the sender be bound to the string it committed to, but we do not explicitly
require that it hide s. Instead, we require that the communication of both the
commitment to s and the decommitment of each bit si be sublinear in v. We
observe that such a commitment scheme can be obtained by dividing s into√

v blocks of length
√

v each and applying the XOR parallel domain-extension
separately to each block. To decommit si, the sender reveals the entire block
containing si, and the receiver applies the hash function to ensure consistency.
In this scheme, both the sender and the receiver only make parallel calls to a
small random oracle.

Two-Adaptive Sublinear Non-interactive Arguments. Finally, we combine the
above two applications to obtain sublinear-communication non-interactive argu-
ments for NP in the random oracle model, which does not require the oracle input
length to be large. To this end, we first apply the three-message protocol of [22],
which combines a probabilistically checkable proof (PCP) with a commitment
scheme as above. Then, following [30], we apply the Fiat-Shamir transformation
to make this argument non-interactive.

By using efficient PCP constructions (e.g., those from [2]) and applying the
XOR parallel domain-extension in both steps of the process, we get the following
corollary: every NP language that can be recognized by a non-deterministic
Turing machine of running time T (n) has a non-interactive argument of length
Õ(T 1/2(n)) in the random oracle model, in which the prover and the verifier
make only two rounds of calls to the oracle.

6 Necessity of List-Recoverability for Parallel
Domain-Extension

It turns out that some form of list-recoverability is necessary for the collision-
resistance of a parallel domain-extension. Let (C, h) be a domain-extension
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scheme, and assume that C is not (1, �, L)-list recoverable. Namely, there exists
a set T ⊆ {0, 1}kin of size at most �, for which there are (at least) L + 1
distinct elements s1, . . . , sL+1 ∈ {0, 1}v such that for every 1 ≤ i ≤ L + 1:
gf (si) = h(si, f(x1), . . . , f(xn)) for x1, . . . , xn ∈ T . Hence, by querying f only
on the � elements in T , an adversary obtains the required information for com-
puting gf (s1), . . . , gf (sL+1). This attack finds a collision in gf if L ≥ 2kout . Thus,
(1, �, L)-list-recoverability with L ≤ 2kout , is necessary for the collision-resistance
of g in the random-oracle model. This is formally stated below.

Theorem 7. Let kin, kout, v, n be integers. For every C : {0, 1}v →
(
{0, 1}kin

)n

and h : {0, 1}v ×
(
{0, 1}kout

)n

→ {0, 1}kout if C is not (1, �, 2kout)-list-recoverable
then g(C,h) is not (�, 0.99)-collision-resistant in the random oracle model.

We note that there are codes of large minimal distance (such as the repetition
code) for which the attack in the proof of Theorem7 can be implemented in
polynomial time, by using linear algebra.

Necessity of List-Recoverability with L ≈ 2
kout

2 . Note that Theorem 7 discusses
L = 2kout while in Theroem 1 we require L ≤ 2

kout
2 to get a meaningful result. Is

it possible to show that (�, L) list-recoverability with L ≈ 2
kout

2 is also necessary
for security? We give a partial answer to this question below.

Observe that the above attack allows the adversary to use � queries into
f and come up with

(
L+1
2

) ≈ 2kout pairs s �= s′, such that he can compute
g(s) and g(s′). In some natural settings, computing g on this number of pairs
suffices to find a collision. For instance, this is the case if the function g is
4-wise independent.4 There are codes C satisfying the properties requested in
Theorem 1, with which the construction of Theorem1 is 4-wise independent.
This implies that Theorem 1 cannot be improved to imply security with L > 2

k
2 .

Necessity of List-Recoverability with α < 1. Theorem 7 shows that it is necessary
that C is list-recoverable with α = 1 in any parallel domain-extension scheme. In
our construction, however, we use stronger codes with α < 1, and we also require
that the codes have large distance. The next theorem shows that this assumption
is necessary in case h is the XOR function (as we chose in Theorem 1).

Theorem 8. There exists c > 0 such that the following holds for every α < 1,
integers kin ≥ c · log( v

1−α ), kout, v ≥ c ·max {kin, kout}, c ·( v
1−α ) ≤ n ≤ 2kin/2, c ·

4 g is 4-wise independent, if for every four distinct s1, s2, s3, s4 ∈ {0, 1}v the random
variables g(s1), g(s2), g(s3), g(s4) are uniformly distributed and independent (over
the random choice of the oracle f). For such g, the expectation of the random
variable counting the number of pairs s �= s′ such that g(s) = g(s′) is at least
(

L+1
2

)

/2kout (which is large if L ≥ 2kout/2). Moreover, 4-wise indpendence implies
that the variance of the random variable above is small, and therefore, the number
of collisions is with high probability, close to the expectation. This implies that the
adversary obtains a collision with high probability.
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( n
1−α ) ≤ � ≤ 2kin/4 and L ≥ �. There exists a function C : {0, 1}v →

(
{0, 1}kin

)n

that is (1, �, L)-list recoverable, well ordered, and has distance α, and (yet) for
h(s, a1, . . . , an) =

⊕n
i=1 ai, the parallel domain-extension scheme g(C,h) is not

(O( n
1−α ), 0.99)-collision-resistant in the random-oracle model.

Theorem 8 shows that there exist codes C which satisfy all the requirements of
Theorem 1 with the single exception being that the list-recoverability parameter
is taken to be one (rather than the distance α of the code). Yet, the resulting
construction is insecure. In fact, there is a lot of slack in the counterexample, one
can choose the parameters �, L to be much more favorable than in Theorem1,
and still an adversary with only O( n

1−α ) queries can break the scheme with
probability arbitrarily close to one.

It should be noted that the previous construction of [26] extends the domain
of a random function by relying on a notion of “input-restricting families”,
which is equivalent to strongly list-recoverable codes with α = 1.5 Such input-
restricting families were subsequently used in [11] for the purpose of extending
the domain of MACs. The construction from [26] is not fully parallel, requiring
two rounds of calls to the random oracle f . The example provided in Theorem8
gives a formal explanation why the use of input-restricting families does not
suffice for using a single round of calls, even if one is only interested in collision-
resistance as in this work.

Intuitively, the issue is as follows. In order to break collision-resistance the
adversary is only required to produce a distinct pair (s, s′) of inputs such that
g(s) = g(s′), and the adversary is not required to be able to compute g(s).
Loosely speaking, parallel domain-extension schemes in which C is (α = 1, �, L)-
list recoverable, have the property that after asking � queries the adversary
cannot come up with t > L inputs s1, . . . , st such that he can compute
g(s1), . . . , g(st). The example in Theorem 8 shows that there are (1, �, L)-list-
recoverable codes, in which the adversary can a produce a collision (s, s′) even
though he did not query f on all the inputs required to compute g(s), g(s′) (and
therefore is not controlled by list-recoverability with α = 1). In Theorem 1 we
show how to bypass this limitation by using list-recoverable codes with α < 1.
We hope that the introduction of this stronger combinatorial object to the area
of domain-extensions may help to improve and simplify other tasks in this area.

7 Using Known Explicit List-Recoverable Codes

In this section we plug in list-recoverable codes with specific parameters to obtain
concrete results. We use the Parvaresh-Vardy code [32] in the range of parameters
analyzed by Guruswami, Umans and Vadhan [18].

Theorem 9 ([18]). For every α ≥ 1/2, 0 < β < 1, and k < v ∈ N, there

exists a poly(v)-time computable function C : {0, 1}v →
(
{0, 1}k

)n

for n =

5 This notion is also equivalent to certain unbalanced expander graphs, see discussion
in [20].
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O(v ·k)
1

1−β , that is well ordered, has distance α, and for every L ≤ 2β·(k−2 log n),
it is (α, �, L)-list recoverable with � = Ω(n · L) and has a poly(v, �)-size list-
recovering algorithm. Furthermore, when viewed as a function C : Fv

2 → F
k·n
2 ,

every output bit can be expressed as a degree one polynomial in the input bits.

We remark that [18] give a more general trade-off of parameters as well as a
tighter connection between the parameters. More specifically, the theorem of [18]
is stated as a condenser, and the statement given here is using the interpretation
of condensers as list-recoverable codes (see [20] for more details). The facts that
the construction of [18] is well-ordered and has large distance are not explicitly
stated in [18], but are easily verified from the actual construction. The list-
recovering algorithm is also not explicitly stated but follows directly from the
proof of [18]. Finally, the fact that the mapping can be seen as a collection of
degree one polynomials over F2 also follows from the specific structure of the
construction of [18], or more generally from the structure of the Parvaresh-Vardy
code.6

We now plug this code into Theorem 1 and obtain concrete results. For
simplicity, we assume here that the input and output length of the oracle (i.e.,
f) are the same, and denote both lengths by k. We consider powerful adversaries
with � = 2(

1
2−γ)·k for a small constant γ > 0 and shoot for ε that is exponentially

small in k. Plugging the code of [18] into the construction of Theorem1, yields
that for desired security ε, it suffices to take L = c · ε 1

2 · 2 k
2 for some constant c.

By the construction of [18] we can achieve this with � = Ω(L · n) = Ω(ε
1
2 ·

2
k
2 · n). Namely, we can achieve ε = 2−2γk for � = 2(

1
2−γ)·k-query adversaries.

Furthermore, � can be taken to be Ω(2k/2 · n) (that is larger than 2k/2) for any
small constant ε > 0. This is best possible in the sense that with 2

k
2 · n queries

to f , one can simulate a birthday attack against g, and find a collision.
Comparing to the standard Merkle-tree based domain-extension, the result-

ing construction does make significantly more oracle calls to the underlying
small domain function. Specifically, our construction makes n = O(v2 · k2) calls,
whereas the Merkle-tree construction makes O(v/k) calls. We remark that if we
were to use a random code (rather than an explicit one), then the number of
calls decreases to O(v/k) as is the case for Merkle trees. Furthermore, even when
using explicit codes, if we settle for security against 2βk-query adversaries, the
6 More precisely, the function C has the following form. It sets v = v1 · v2 for some

integers v1, v2. Given an input x ∈ {0, 1}v it is interpreted as a vector in F
v2
2v1 which

is in turn interpreted as the coefficients of a degree v2 univariate polynomial f(X)
over F2v1 . For every i ∈ [n], C(x)i = (i, f0(αi), . . . , fm−1(αi)) where αi ∈ F2v1 is
a constant that depends only on i, and for every j ∈ [m], fj(X) is a univariate

polynomial defined by fj = fhj

mod E, where h is a parameter and E is some
degree v2 + 1 irreducible polynomial. Thus, the code is immediately seen to be well-
ordered and to inherit distance from the Reed-Solomon code (that corresponds to
j = 1). The analysis of [18] allows choosing h that is even. Note that for an even h,
the identity (x+y)h = xh +yh holds in F2v1 . It is standard that this implies that for
every fixed α ∈ F2v1 , the map f → (fh mod E)(α) is F2-linear. This indeed implies
that viewing the function C as a map from F

v
2 to F

k·n
2 , it is a degree one mapping.
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query complexity of our construction can be reduced to roughly (v ·k)
1

1−β , which
roughly matches the Merkle-tree construction for v that is significantly larger
than k (which is the interesting range of parameters). Parvaresh-Vardy codes
allow for some other trade-offs between security and number of queries that we
do not examine here.

The code C that we use can be evaluated by degree one polynomials over F2.
This immediately gives a very efficient parallel implementation in the standard
model of Boolean circuits with parity gates of fan-in 2. Such circuits can compute
the code C with depth log2 v. Moreover, in this model, computing the final xor in
our construction, can be done by circuits of depth log2 n. Thus, overall our final
hash function g can be implemented by circuits whose depth is bigger than the
depth of f by log2 v+log2 n. By our bounds on n, this quantity is roughly 3 log2 v
for 2(

1
2−γ)·k-query adversaries with small γ > 0, and roughly (2 + β) · log2 v for

small β > 0 and 2βk-query adversaries. We remark that future developments
in the area of list-recoverable codes or randomness condensers may reduce n
to O(v/k). It is also natural to expect that random F2-linear codes (or even
families of efficiently encodable LDPC codes that are used in practice) achieve
this bound. However, this is not known at this point.

8 Additional Related Work

Extending the domain of collision-resistant hash functions is of great impor-
tance for many cryptographic applications that depend on collision-resistance.
Classical construction paradigms for domain-extension are the Merkle hash
tree [28] and the Merkle-Damg̊ard paradigm [10,29]. Both paradigms are itera-
tive, namely, use sequential calls to the underlying hash-function. More specif-
ically, in both paradigms n = O(v/k) calls are made to the primitive, where
the former paradigm requires log(n) rounds of calls, and the latter paradigm
requires n rounds. Indeed, the Merkle-Damg̊ard paradigm realizes the much
stronger task of extending a fixed domain hash function to a full-fledged hash
function, i.e., one that can deal with input of any length. The Merkle-Damg̊ard
paradigm is extensively used in practice and was the subject of much theoretical
research and extensions (see, e.g., [3,7,24]). Lower bounds on the security of
these domain-extension techniques were obtained, e.g., in [37,38]. The construc-
tion of Shrimpton and Stam [35] was the first construction achieving optimal
collision-resistance security in an inherently non-trivial way. Their construction
only doubles the domain, and requires two rounds of calls.

Most relevant to our work is the work of Maurer and Tessaro [26], already
discussed above. This work considers the more challenging problem of extending
the domain of a random function. Specifically, given a random function f from
k bits to k bits, they construct a function g from m(k) bits to �(k) bits, for arbi-
trary polynomials m, �, such that g is indistinguishable from a random function.
The latter is formalized by using the indifferentiability framework from [27],
which implies collision-resistance as a special case. The main goal of [27] is to
obtain near-optimal security, namely to guarantee security against attackers that
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make 2(1−ε)k oracle queries to f , improving over previous works.7 However, their
construction also achieves a high level of parallelism, requiring only two rounds
of calls to f . Compared to the construction from [27], our construction is con-
siderably simpler, it is fully parallel (i.e., requires only one round of calls to f),
and it preserves the algebraic degree of f (whereas the construction from [27]
more than squares the degree). As discussed in Sect. 6 (below Theorem 8), these
disadvantages of [26] seem inherent given the type of combinatorial object on
which they rely.

Building on and extending the techniques of [26], Dodies and Steinberger [11]
construct a domain-extension scheme for MACs that has security beyond the
“birthday barrier”. Finally, Canetti et al. [6] considered the related, but some-
what orthogonal, goal of amplifying the security of a collision-resistant hash
function.

Acknowledgments. We thank Yevgeniy Dodis, Swastik Kopparty, Phil Rogaway,
Atri Rudra and Stefano Tessaro for helpful discussions and pointers.
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to be securely reducible to each other in the interactive setting, turn
out to be qualitatively different in the setting of one-way communica-
tion. In particular, a BEC cannot be implemented from a BSC, and
while the erasure probability of a BEC can be manipulated in both
directions, the crossover probability of a BSC can only be manipulated
in one direction.

– Zero-knowledge Proofs and Secure Computation of Deter-
ministic Functions. One-way communication over BEC or BSC is
sufficient for securely realizing any deterministic (possibly reactive)
functionality which takes its inputs from a sender and delivers its
outputs to a receiver. This provides the first truly non-interactive
solutions to the problem of zero-knowledge proofs.

– Secure Computation of Randomized Functions. One-way com-
munication over BEC or BSC cannot be used for realizing general
randomized functionalities which take input from a sender and deliver
output to a receiver. On the other hand, one-way communication over
other natural channels, such as bursty erasure channels, can be used
to realize such functionalities. This type of protocols can be used for
distributing certified cryptographic keys without revealing the keys to
the certification authority.

1 Introduction

The seminal work of Wyner [Wyn75] demonstrated the usefulness of noise for
secure communication. Since then, there has been a large body of work on
basing various cryptographic primitives, such as key agreement and commit-
ment [BBCM95,BBR88,Mau91,DKS99,WNI03,Wul09,RTWW11], on different
types of noisy communication channels.

In 1988, Crépeau and Kilian [CK88] showed that noise in a communica-
tion channel can be used to realize essentially everything a cryptographer could
wish for. In particular, they showed that any non-trivial binary-symmetric chan-
nel (BSC) can be used to realize oblivious transfer (OT) which is sufficient
for realizing two-party secure computation. (More efficient construction were
later considered in [KM01,SW02,IKO+11b].) Finally, Crépeau, Morozov and
Wolf [CMW04] generalized these results to arbitrary discrete memory-less chan-
nels. Other results towards characterizing the types of channels on which OT
can be based appeared in [Kil88,DKS99,DFMS04,Wul07,Wul09].

Following the work of Crépeau and Kilian [CK88], the entire body of research
on secure two-party computation over noisy channels requires parties to inter-
act. In contrast, the present paper considers cryptographic protocols which only
use one-way communication, namely ones in which only one party speaks. There
has been a considerable amount of work on realizing information-theoretic secure
message transmission in this setting. These works are motivated not only by the
goal of achieving information-theoretic security, but also by the goal of efficiency;
see [BTV12] for discussion. Our goal is to extend this study to more general cryp-
tographic tasks, including useful special cases of secure two-party computation
in which the input originates from only one party.
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1.1 Our Model

We model a channel as an ideal functionality C. This is done in order to capture
the security properties of the channel in a clean way and in order to facilitate
the use of composition theorems. A channel provides a communication medium
between a sender and a receiver. The sender can invoke the channel C on an input
of its choice. The channel “based on its nature” processes the input and outputs
the processed value to the receiver. The correctness and secrecy requirements of
a channel and the protocols we build on top of it can be specified in terms of UC
security. For example, consider a binary erasure channel (BEC) parameterized
by a probability p ∈ (0, 1). For this channel, the sender inputs a bit x ∈ {0, 1}
and the channel outputs (for the receiver) x with a probability p and ⊥ with
a probability 1 − p.1 Even for this basic channel, stating the correctness and
security properties is non-trivial. Correctness requires that if the sender sends x
then the receiver outputs either x or ⊥ with the right probability distribution.
Security is a bit more involved; it requires that no malicious sender can figure out
whether the receiver actually received the sent bit or not, and that a malicious
receiver does not learn any partial information about the sent bit in the case of
an erasure.

In this work, we consider various such channels. Two other channels that
would be of great interest to us are the binary symmetric channel (BSC) and
the random oblivious transfer (ROT) channel. A BSC is parameterized by a
probability p ∈ ( 12 , 1). For this channel, the sent bit is transmitted correctly
with probability p and is flipped with probability 1 − p. An ROT channel takes
as input two strings m0 and m1 from the sender and outputs either (m0,⊥) or
(⊥,m1) to the receiver, with equal probability.

When considering protocols built on top of such channels, we distinguish
between the weaker semi-honest model, where the sender follows the protocol
but tries to learn information about the receiver’s output from its random coins,
and the malicious model, where the sender may send arbitrary information over
the channel. When the sender follows the protocol, the receiver’s output should
be as specified by the functionality. When the sender deviates from the protocol,
the security requirement uses the standard real-ideal paradigm, asserting that
the sender’s strategy can be simulated by a distribution over honest strategies.
It is important to note, however, that in this case the standard definition of
“security with abort” also allows the sender to make the protocol fail, as long
as the receiver can detect this failure. By default, the term “secure” refers to
the malicious model, though most of our negative results apply also to the semi-
honest model.

1.2 Our Results

We initiate a general study of one-way secure computation (OWSC) protocols
over noisy channels in a setting where only one party speaks. Surprisingly, the
1 In the literature, p sometimes stands for the error probability, while in our paper it

is the probability of the “no noise” event.
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Deterministic Functionalities

BSC BEC Erasure Channel

Bursty Channel ROT Red–Blue Channel

Randomized Functionalities

Fig. 1. Relationships among different kinds of channels and their applications. Solid
arrows are used to denote a positive reduction, i.e. A → B implies that B can be
constructed given A. On the other hand, dashed arrows indicate negative results, i.e.
A ��� B implies that B cannot be constructed given A. Solid self-edge of BEC indicates
that the transmission probability of a BEC can be manipulated in both directions. On
the other hand, the solid and dashed self-edges of BSC respectively indicate that the
probability of correct transmission of a BSC can be diminished (and brought closer to
1
2
) but cannot be amplified (Color figure online).

one-way setting is strikingly different from the interactive setting. In the inter-
active setting, all finite channels are either trivial, equivalent to secure message
transmission, or equivalent to oblivious transfer. On the other hand, in the set-
ting of OWSC, the landscape of what a channel is useful for is much richer.
Specifically, we obtain the following results. All the implications have been sum-
marized in Fig. 1.

– Relationships Between Channels. Binary erasure channel (BEC) and
binary symmetric channel (BSC), which are known to be securely reducible
to each other in the interactive setting, turn out to be qualitatively very dif-
ferent in the setting of one-way communication. In particular, we show that
a BEC cannot be implemented given a BSC. Also, somewhat surprisingly,
we show that while the erasure probability of a BEC can be manipulated in
both directions the probability of correct transmission of a BSC can only be
manipulated in one direction.

– Deterministic Functions. We show that both BEC and and BSC are suffi-
cient for securely realizing any deterministic (possibly reactive) functionality
that takes input from a sender and delivers its output to a receiver with only
one-way communication. This provides the first truly non-interactive solution
to the problem of zero-knowledge. We extend our results to the Generalized
Erasure Channel (GEC) which is a generalization of BEC (see Sect. 3 for for-
mal definition).
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– Randomized Functions. We show that neither BEC nor BSC can be used
(even assuming computational assumptions) for the task of realizing random-
ized functionalities which take input from a sender and deliver output to a
receiver, in the setting of one-way communication. Nonetheless, one-way com-
munications over natural channels, such as bursty erasure channels, can be
used to realize such functionalities. This result is obtained by first constructing
a random oblivious-transfer channel (ROT) and building on the techniques
from [IPS08,IKO+11a]. This provides the first non-trivial feasibility result for
secure-computation in a setting where only one party speaks.

1.3 Applications

One-way secure computation (OWSC) both for deterministic and randomized
functionalities enable a number of applications for which there are no known
solutions.

Truly Non-interactive Zero-Knowledge. Non-interactive zero-knowledge proof
systems (NIZKs) [BFM90,FLS99] are a fundamental tool in cryptography with
widespread applications. However, all known constructions rely on a common
random string (or a random oracle)2 and inherently fail to achieve useful fea-
tures such as non-transferability or deniability [Pas03]. OWSC for deterministic
functions provides the first truly non-interactive solution to the problem of zero-
knowledge. This solution does not rely on a shared string between parties or a
random oracle and achieves non-transferability and deniability properties. Fur-
thermore, this solution achieves information theoretic and composable security.

Oblivious Certification of Cryptographic Keys. Public-key cryptography relies on
the existence of certification authorities (like Verisign) who sign the public keys
of different parties. All known implementations of this certification procedure
rely on interaction. Our OWSC for randomized functionalities provides for the
first candidate to realize this procedure with just one-way communication. More
specifically, our protocol allows the certification authority to send a public-key
secret-key pair along with a certificate on the public key with just one-way
communication. We stress that in this setting the certification authority itself
does not learn the secret key of the recipient party, as the randomness used in
its generation is derived from the channel. However, if the certificate authority
deviates from the protocol, the recipient may detect failure rather than output
a pair of keys.

Fair Puzzle Distribution. Consider a Sudoku Puzzle competition where the orga-
nizer of the competition would like to generate signed puzzles for all the par-
ticipants. However the participants do not trust the organizer and would like

2 The result of Barak and Pass [BP04] is an exception to this. However they only
achieve a weaker notion where security is only guaranteed against uniform provers.
We, on the other hand, are interested in the standard notion of zero-knowledge.
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their challenge Sudoku puzzles to be of the same difficulty. More specifically, we
would like to have a mechanism that allows the competition organizer to provide
independent puzzles of a pre-specified difficulty level (along with a signature on
this puzzle) to each of the participants. The participants should be assured not
only that the puzzles were generated independently from the correct distribu-
tion, but also that the organizers do not have an edge in solving the puzzles
they generated (e.g., by generating random solved puzzles). There are no known
solutions for this problem in a setting with just one-way communication. Our
OWSC protocol for randomized functions gives the first such solution.

2 Preliminaries

Let λ denote a security parameter. We say that a function is negligible in λ if it is
asymptotically smaller than the inverse of any fixed polynomial in λ. Otherwise,
the function is said to be non-negligible in λ. We say that an event happens with
overwhelming probability if it happens with probability p(λ) = 1 − ν(λ), where
ν(λ) is a negligible function in λ. We use [n] to denote the set {1, . . . , n}.

Monotone Sets. Let X1,X2 . . . Xn be independent Bernoulli variables with
Pr[Xi = 1] = pi. We define Qn = {0, 1}n (the n-cube) and identify each ele-
ment a ∈ Qn with the corresponding subset of [n]; i.e., {i | ai = 1}. We define a
probability measure Pr on Qn by:

Pr(a) =
∏
i∈a

pi

∏
i�∈a

(1 − pi) .

A set A ⊆ Qn is said to be a monotone if a ∈ A and a ⊆ b implies that b ∈ A.

Lemma 1 (Harris [Har60], Kleitman [Kle66]). If A and B are two monotone
subsets of Qn then A and B are positively correlated ; namely,

Pr[A ∩ B] ≥ Pr[A] Pr[B].

Chernoff Bounds. Let X1,X2 . . . Xn be independent Bernoulli variables with
Pr[Xi = 1] = pi. Let X =

∑n
i=1 Xi and μ be the expectation of X. Then,

Pr(X ≥ (1 + δ)μ) ≤ e− δ2μ
3 , for 0 < δ < 1.

Pr(X ≤ (1 − δ)μ) ≤ e− δ2μ
2 , for 0 < δ < 1.

3 Different Kinds of Channels

In this work, we model a channel as an ideal functionality C. This is done in order
to capture the security properties of a channel in a clean way. A channel provides
a (one-way) communication medium between a sender and a receiver. The sender
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can invoke the channel C on an input of its choice. The channel “based on its
nature”, processes the input and outputs the processed value to the receiver.
The correctness and secrecy requirements of a channel can be specified by a
two-party functionality, which takes an input from the sender, generates some
internal randomness, and delivers an output to the receiver. Our formulation of
channel functionalities, as well as the security definition of protocols that build
on top of them, follow the standard UC framework [Can05]. All of our positive
results hold with statistical security, and some of our negative results apply also
to the case of computational security. We will consider the following types of
channels.

Binary Erasure Channel. The binary erasure channel (BEC) is perhaps the
simplest non-trivial channel model considered in the literature. We denote this
channel by Cp

BEC . For this channel, the sender inputs a bit x ∈ {0, 1} and the
channel outputs (to the receiver) x with a probability p and ⊥ with a probability
1 − p.

Binary Symmetric Channel. The binary symmetric channel (BSC) denoted by
Cp

BSC (for p > 1
2 ) is a channel in which the sender inputs a bit x ∈ {0, 1} and

the channel outputs (for the receiver) x with a probability p and 1 − x with a
probability 1 − p.

Generalized Erasure Channel. The generalized erasure channel (GEC) is a gen-
eralization of the BEC, where k strings are sent by the sender and some sub-
set of them, determined by a probability distribution D, is erased. We denote
this channel by Ck,�,D

GEC . Formally, the functionality takes as input k strings
x1, . . . , xk ∈ {0, 1}� from the sender. It samples a string s ∈ {0, 1}k (which we
call the randomness of the channel) according to the distribution D. If si = 1
then set yi = xi and, otherwise, yi = ⊥. The functionality outputs y1, . . . , yk

to the receiver. We will consider the following special cases of the generalized
erasure channel.

– �-Bit Random Oblivious Transfer. The �-bit random oblivious transfer channel
(�-ROT) denoted by C�

ROT corresponds to the channel C2,�,D2,OT

GEC , where D2,OT

is the distribution that outputs a uniformly random value in {01, 10}. We also
consider a p-biased �-bit ROT channel denoted by C�,p

ROT corresponds to the
channel C2,�,D2,p,OT

GEC , where D2,p,OT is the distribution that outputs 10 with
probability p and 01 with a probability 1 − p.

– (k, �, p)-Erasure Channel. The (k, �, p)-erasure channel corresponds to the
channel Ck,�,Dk,p

GEC , where Dk,p is the distribution that outputs a k bit string s
such that, for every i ∈ [k], we have si = 1 with probability p and si = 0 with
probability 1 − p.

– (k, �)-Perfect Red-Blue Channel. The (k, �)-Perfect Red-Blue channel corre-
sponds to the channel Ck,�,Dk,RB

GEC , where Dk,RB is any distribution such that
each string in its output space (namely {0, 1}k) may be labeled either Red
or Blue (or none) in a way that Pr[Red ∪ Blue] = 1, Pr[Red] = Pr[Blue] and
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∀r ∈ Red and ∀s ⊆ r we have that s /∈ Blue and, similarly, ∀b ∈ Blue and
∀c ⊆ b we have that c /∈ Red.3

– (k, �, μ, ν, η)-Statistical Red-Blue Channel. The (k, �, μ, ν, η)-Statistical Red-
Blue channel is a relaxed version of the Perfect Red-Blue Channel, that cor-
responds to the channel Ck,�,Dk,μ,ν,η

GEC , where Dk,μ,ν,η is any distribution whose
output space can be labelled Red and Blue such that (i) Pr[Red∪Blue] ≥ 1−μ,
(ii) |Pr[Red] − Pr[Blue]| ≤ ν, (iii) Prr∈Red[∃s ⊆ r such that s ∈ Blue] ≤ η, and
(iv) Prb∈Blue[∃c ⊆ b such that c ∈ Red] ≤ η.

– (k, �, b)-Perfect Bursty Channel. This is an erasure channel where all b erasures
appear in a “burst”. Formally, the (k, �, b)-Perfect bursty channel corresponds
to the channel Ck,�,Dk,b

GEC , where Dk,b is the distribution that outputs a k bit
string such that all the bits are set to 1 besides the bits in locations x+1, x+
2, . . . , x + b where x is chosen uniformly from {0, . . . , k − b}.

– (k, �, b, σ)-Noisy Bursty Channel. This is an erasure channel where erasures
still appear in a “burst” but their number b′ is normally distributed around
b. Formally, the (k, �, b, σ)-noisy bursty channel corresponds to the channel
Ck,�,Dk,b,σ

GEC for typical k � b, where Dk,b,σ is the distribution that outputs a
k bit string such that all the bits are set to 1 besides the bits in locations
x+1, x+2, . . . , x+ b′ where b′ is sampled from a gaussian and rounded to the
closest non-negative integer ≤ k with mean b and standard deviation σ and
then x is chosen uniformly from {0, . . . , k − b′}.

4 Classification of Functionalities

Below we define the notion of one-way secure computation (OWSC) over a chan-
nel C (thought of as a non-reactive ideal functionality). We shall refer to such a
OWSC scheme as OWSC/C.

An OWSCf/C scheme for a function f : X → Y is a two-party protocol
between Sender and Receiver and it follows the following format:

– Sender gets an input x ∈ X.
– Sender invokes the channel C (possibly multiple instances of the channel) with

inputs of its choice. The channel, based on its nature, processes the input value
and outputs it to the Receiver.

– Receiver carries out a local computation and outputs f(x) or an error message.

Similarly, we can consider reactive functionality specified by a stateful func-
tion f : Σ×X → Σ×Y . The Sender of a OWSCf/C scheme for a stateful function
f obtains multiple inputs on the fly. On obtaining an input x ∈ X, Sender can
invoke the channel C multiple times and in each execution the Receiver should
either output y where (σ′, y) ← f(σ, x) (where σ ∈ Σ is the current state and
σ′ is the state for the next execution) or an error message. The first execution
of the protocol sets the state to ε.

3 Here, again, we identify each a ∈ {0, 1}k with a subset of [k] in the natural way.
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The correctness and secrecy requirements of an OWSC scheme can be speci-
fied in terms of an ideal functionality. An OWSCf/C scheme for f is required to
be a secure realization of the following function Ff in the C-hybrid model.

– Ff accepts x ∈ X from the Sender and outputs f(x) to the receiver. If x is a
special input error, then it outputs error to the Receiver.

We shall denote the security parameter by λ and require that the sender and the
receiver in any scheme run in time polynomial in λ and the size of the circuit
computing the function f . Further, for a scheme to be considered secure, we
require that the simulation error be at most 2−Ω(λ).

Definition 1 (Completeness for Deterministic Functionalities). A chan-
nel C is said to be OWSC complete for deterministic functionalities, if for every
deterministic function f : X → Y there exists a OWSCf/C scheme that is a
UC-secure realization of the functionality Ff in the C-hybrid model.

Definition 2 (Completeness for Randomized Functionalities). A chan-
nel C is said to be OWSC complete for randomized functionalities, if for every
randomized function f : X → Y there exists a OWSCf/C scheme that is a
UC-secure realization of the functionality Ff in the C-hybrid model.

5 Reductions Among Channels

In this section, we study the relationships between different kinds of channels.
Specifically:

– Impossibility Results for CROT . One of the key channels of interest to us is
the random oblivious transfer channel. We start by establishing (in Sect. 5.1)
that this channel cannot be securely realized out of the most basic channels
such as CBEC (in fact, from any Ck,�,Dk,p

GEC , where Dk,p is the distribution that
outputs a k bit string s such that, for every i ∈ [k], we have si = 1 with
probability p and si = 0 with probability 1 − p) and CBSC . In full-version, we
provide extensions of these results to the computational setting (but ruling
out only protocols with negligible error rather than small noticeable error).

– Positive Results for CROT . We consider a variety of more structured chan-
nels, such as the Red-Blue channel and the bursty channel, and give construc-
tions of random oblivious transfer channel from such channels (Sect. 5.2).

– Self-transformations for CBEC and CBSC . We move back to the basic
channels (CBEC and CBSC) and study additional properties of them. Although
both these channels do not imply C1

ROT , they are of a very different nature.
We show (in Sect. 5.3) that erasure probabilities of the CBEC can be easily
manipulated but the flipping probability of CBSC is harder to manipulate.
In particular, we show that, given a CBEC , we can construct another CBEC

with amplified or diminished erasure probabilities. On the other hand, given a
CBSC , we can only construct another CBSC with amplified flipping probability.
In fact, diminishing the flipping probability turns out to be is impossible.
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We remark that all the impossibility results (in this section) are stated in
terms of the simulation based notion but hold even for a weaker game-based
security notion. These stronger impossibility results are implied by the proofs
and are not spelled out explicitly.

5.1 Impossibility Results for CROT

In this subsection, we rule out the construction of C1
ROT (random oblivious trans-

fer) from the most basic channels such as CBEC and CBSC . In particular, we
show:

– C�′
ROT (and, in fact, even biased-ROT) cannot be non-interactively securely

realized from Ck,�,Dk,p

GEC .
– Cp′

BEC cannot be non-interactively securely realized from Cp
BSC . It is easy to

realize C 1
2
BEC from C�′

ROT . Hence, combining with the above result, we also
conclude that C�′

ROT cannot be non-interactively securely realized from Cp
BSC .

The following theorem and its proof can be adapted to rule out even C�′,q
ROT

for any constant q. We state the result and the proof in the simpler setting where
q = 1

2 .

Theorem 1. ∃ ε ∈ (0, 1) and �′ ∈ Z
+ such that ∀k, �, p, the channel C�′

ROT

cannot be ε-securely realized in the Ck,�,Dk,p

GEC hybrid model even against semi-
honest adversaries.

We start by giving some intuition for the case of binary erasure channel. The
intuition extends to (k, �, p)-erasure channels in a natural way. In any protocol for
non-interactively realizing C1

ROT the sender will need to encode both its inputs
m0,m1 into its first message. Whether the receiver obtains m0 or m1 should
depend solely on the random coins of the channel. In other words, erasure of
certain bits (or more generally one combination from a list of possible choices)
allows the receiver to obtain m0 while erasure of another combination allows
the receiver to learn m1. The key issue is that a binary erasure channel erases
each bit sent by the sender independently with a probability 1 − p. Consider
the scenario in which a receiver can obtain m0 from the received bits. In this
scenario, since each bit sent by the sender is treated independently we have that
the receiver also obtains m1 with a large enough probability, contradicting the
security of the protocol. Arguing the last step formally is tricky and we rely on
the Harris-Kleitman inequality for our argument. The full proof appears in the
full-version.

Theorem 2. ∀p ∈ (12 , 1), p′ ∈ (0, 1) and protocol π, ∃ε such that π does not
ε-securely realize Cp′

BEC in the Cp
BSC-hybrid model even against semi-honest

adversaries.
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We start by giving some intuition. Any protocol for non-interactively securely
realizing CBEC will need the sender to encode its input m into its first message.
Whether the receiver obtains m or not should depend solely on the random
coins of the channel. In other words when certain bits (or, more generally, one
combination from a list of possible choices) is flipped then the receiver loses
all information about m while flipping another combination allows the receiver
to learn m completely. Consider a sequence of hybrid strings between a pair of
strings on which the receiver outputs m and ⊥ respectively. Among the hybrid
strings there must exist two strings that differ in exactly one bit but are such
that the receiver’s output on the two differs completely. At this point, we argue
that a change of just one bit cannot affect the receiver’s best guess about the
sent bit very dramatically, contradicting the security of the protocol. The key
technical challenge of the proof lies in proving that this happens with a noticeable
probability. The full proof appears in the full-version.

5.2 Positive Constructions for CROT

We start by presenting a construction of a random oblivious transfer channel in
Red-Blue channel hybrid model. Our construction provides a solution for any
arbitrary Red-Blue channel and is inefficient. Furthermore, such a channel in
its generality is not very natural. Therefore, we study natural examples of Red-
Blue channels (and their approximate variants) and attempt at more efficient
solutions.

We start by considering the basic setting of an arbitrary Red-Blue Channel
and prove that it is sufficient to realize a random oblivious transfer channel.

Theorem 3. C�
ROT can be max{μ, ν, η}-UC-securely realized (even against mali-

cious adversaries) in the (k, �′, μ, ν, η)-Red-Blue Channel hybrid model where
�′ = � · 2k.

The proof appears in the full-version. Note that for the case of perfect Red-Blue
Channel, we have that μ = ν = η = 0, and hence C�

ROT can be perfectly-UC-
securely realized in the (k, �′)-Perfect Red-Blue Channel hybrid model where
�′ = � · 2k.

Efficient Construction for ROT. We will start by considering the case of perfect
bursty channel and show that it can be used to realize ROT. Recall that a
(k, �, b)-perfect bursty channel corresponds to the channel Ck,�,Dk,b

GEC , where Dk,b

is the distribution that outputs a k bit string such that all the bits are set to 1
besides the “burst” of bits in locations x + 1, x + 2, . . . , x + b which are set to 0,
where x is chosen uniformly from {0, . . . , k − b}. In this setting we claim that:

Theorem 4. C�
ROT can be UC-securely realized (even against malicious adver-

saries) in the (k, �, b)-perfect bursty channel hybrid model when b > k
2 or when

b is odd.

Proof. We start by giving the intuition. The key idea is to use Shamir’s secret
sharing (with shares of length �) and secret share the first string in the first
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Π = 〈S, R〉 protocol with sender input m0, m1

1. Let θ = t − �b/2�. Let {α1, . . . , αt} be a θ-out-of-t Shamir’s secret sharing of
m0. Similarly, let {αt+1, . . . , αk} be a θ-out-of-t Shamir’s secret sharing of m1.

2. Send (α1, . . . , αk) to the receiver.
3. Let the starting point of the burst in the symbols received by the receiver be

i∗. If i∗ > θ compute m0 using the shares α1, . . . , αθ and output (m0, ⊥); oth-
erwise, output (⊥, m1) where m1 is computed using the shares αk−θ+1, . . . , αk.

Fig. 2. C�
ROT in the (k, �, b)-perfect bursty channel hybrid model, for odd b

half and the second string in the second half (with some appropriate threshold).
Both when b > k

2 or when b is odd we will have an asymmetry in terms of
the deletion pattern. If more terms from the first half are erased then the first
string is deleted and, on the other hand, if more terms from the second half get
erased then the second string is deleted. If k is odd then our construction will
only give a biased-ROT but this bias can be corrected using the transformation
from Sect. 7. Similarly, we note that in our construction we do not need the
distribution over where the burst happens to be uniform. Our protocol can be
very easily modified so that this restriction is not crucial. This would however
only give biased ROT protocols and this bias will need to be corrected using the
transformation from Sect. 7.

Next we give the construction for the case when b is odd. We assume, for
simplicity, that k is even and t = k

2 . The construction for the setting when k is
odd or when b is not necessarily odd but k > b/2 are identical except that the
parameters should be adjusted appropriately.

The construction appears in Fig. 2. Since b is odd, either in the first half or
in the second half at least �b/2� of the strings are erased and hence that value
remains hidden. On the other hand, in the other half the value can always be
computed since at most �b/2� strings are deleted. The proof is identical to the
case of Red-Blue Channel (proved in the full-version and is therefore omitted.

Channel with Imprecise Burst. Finally, we consider a bursty erasure channel
where the size of burst is not precisely known but comes from roughly a discrete
gaussian distribution. Recall that (k, �, b, σ)-noisy bursty channel corresponds to
the channel Ck,�,Dk,b,σ

GEC , where Dk,b,σ is the distribution that outputs a k bit string
such that all the bits are set to 1 besides the bits in locations x+1, x+2, . . . , x+b′

where b′ is sampled from a gaussian and rounded to the closest non-negative
integer ≤ k with mean b and standard deviation σ and then x is chosen uniformly
from {0, . . . , k − b′}.

Theorem 5. C�
ROT can be (1−α)b

k−(1+α)b+ σ2

α2b2 -UC-securely realized in the (k, �, b, σ)-
noisy bursty channel hybrid model for any constant α ∈ (0, 1).
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Proof. We use the same construction as in Fig. 2 except the threshold parameter
θ of the Shamir secret sharing. We set it up in a way so that it is possible to obtain
m0 if less than (1−α)b/2 symbols are erased from the first half. Similarly secret
sharing is done for the second half. By Chebyshev’s inequality, the probability
that the size of the burst, b′, lies outside the range {(1 − α)b, . . . , (1 + α)b} is
at most σ2

α2b2 (if b′ is too big the receiver may not learn any value, while if b′ is
too small it may learn both values). Assuming this does not happen, then the
receiver gets only one of the sent values as long as the burst does not happen “in
the middle” (i.e., (1−α)b/2 symbols are erased from each half). The probability
that the burst happens in the middle is at most (1−α)b

k−(1+α)b .

5.3 Self-transformations for CBEC and CBSC

In this subsection, we show that any erasure channel can be used to construct a
binary erasure channel with any desired erasure probability. On the other hand,
the case of BSC is very different. The probability of correct transmission in a
BSC channel can be reduced but cannot be increased. Formally,

Theorem 6. ∀ Ck,�,D
GEC such that D is not a constant distribution, ∃ p such

that Cp
BEC can be (perfectly) UC-securely realized (even against malicious adver-

saries) in the Ck,�,D
GEC -hybrid model.

Theorem 7. ∀p, p′ ∈ (0, 1) and ε > 1, ∃p′′ ∈ [p′, εp′], such that Cp′′
BEC can

be (perfectly) UC-securely realized (even against malicious adversaries) in the
Cp

BEC-hybrid model.

Theorem 8. ∀p ∈ ( 12 , 1) and t ∈ Z
+, the channel Cp′

BSC can be (perfectly) UC-
securely realized (even against malicious adversaries) in the Cp

BSC-hybrid model
where p′ = 1

2 + 2t−1
(
p − 1

2

)t.

Theorem 9. ∀ p, p′ ∈ ( 12 , 1), p′ > p and protocol π, ∃ε such that π does not
ε-securely realize Cp′

BSC in the Cp
BSC-hybrid model even against semi-honest

adversaries.

Proofs of the above theorems appear in the full-version.

6 OWSC Scheme for Deterministic Functionalities

OWSCf/C is a meaningful notion only for those deterministic functions f such
that given a value y identifying if there exists an input x such that y = f(x)
is non-trivial (cannot be done in efficiently). This, in particular, rules out all
functions with polynomial sized input domains. Furthermore, this notion is useful
only in the setting of malicious adversaries because it is trivial to realize this
notion in the setting of semi-honest adversaries.
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We start by noting that a OWSCf/C scheme, for any deterministic function
f , can be realized by using a OWSCzk/C scheme for the zero-knowledge function-
ality. This can be achieved simply by having the sender send the output to the
receiver and along with it prove in zero-knowledge, knowledge of an input x for
which f(x) yields the provided output. Here we implicitly assume that besides
the channel C the sender also has access to an error free channel which can be
implemented using C itself (with a negligible error). Formally,

Theorem 10. For every deterministic function f , there exists a OWSCf/C
scheme that is a UC-secure realization (even against malicious adversaries) of
the functionality Ff in the C-hybrid model where C ∈ {Ck,�,D

GEC , Cp
BSC}.

As already mentioned, proving the above theorem reduces to the task of realizing
a OWSCzk/C scheme. In our construction, we will make use of oblivious ZK-PCPs
(see definitions in full-version).

Lemma 2. There exists a OWSCzk/C scheme that is a UC-secure realization
(even against malicious adversaries) of the zero-knowledge functionality in the
C-hybrid model where C ∈ {Ck,�,D

GEC , Cp
BSC}.

We start by giving some intuition. The key idea is to use an erasure channel
or a binary symmetric channel to send over multiple instances of independently
chosen ZK-PCPs and observe the statistical gap that can be created only if valid
proofs were sent. However, a number of difficulties arise in realizing this intuition,
particularly in our construction from BSC. Below, we provide our construction
from erasure channels. The more involved construction from binary symmetric
channel is deferred to full-version.

Erasure Channels. We start by considering the case of binary erasure channels
with error probability 1

2 ; i.e., when C = C 1
2
BEC . It follows from Theorems 6 and 7

that any Ck,�,D
GEC can be used to realize C 1

2
BEC .4 We give the protocol in Fig. 3.

Completeness. For every i ∈ [k], using Chernoff bound, we have that:

Pr
[
Υ(π′

i) ≤ n

4

]
≤ e− n

16 ,

where Υ(π′
i) denotes the number of occurrences of ⊥ in π′

i.
Hence, except with negligible probability for each i ∈ [k], R receives at least

c. Given this the completeness of the protocol follows from the completeness of
the oblivious ZK-PCP.

Soundness. We will construct an extractor E′, that extracts valid witnesses from
any cheating prover P ∗ that makes the honest verifier accept with non-negligible
probability. We will first describe our extractor E′ and then argue that it indeed
works (with overwhelming probability).

4 Theorem 7 only guarantees a channel Cp′
BEC with p′ close enough to p. We will use

the value 1
2

for concreteness but any value close enough to 1
2
, say in the range 1

2
to

51
100

, will suffice as well.
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OWSCzk/Cp
BEC protocol for language L

Common Input: x ∈ {0, 1}λ.
Auxiliary Input for prover P : w such that (x, w) ∈ RL.
Parameters: Let (PoZK, VoZK) be any (c, ν)-oblivious ZK-PCP system (see
full-version)(with c ≤ n

4
and ν ≥ 3

4
) with knowledge soundness κ. Let � = λ

κ
.

– P samples proofs π1, . . . , π� from PoZK(λ, x, w) and sends (π1, . . . , π�) to V via
the erasure channel Cp

BEC .
– V receives π′

1, . . . , π
′
� and for all i ∈ [�] checks if VoZK(π′

i). It outputs accept if
all the checks pass and reject otherwise.

Fig. 3. Realizing zero-knowledge from binary erasure channel

Our extractor E′ proceeds as follows. Let (π1, π2, . . . , π�) be the proofs gen-
erated by the cheating prover P ∗. For every i ∈ [�], E′ obtains yi = E(x, πi). If
∃i∗ ∈ [�] such that yi∗ ∈ R(x) then output yi∗ (breaking ties arbitrarily). If no
such i∗ exists then output ⊥.

Note that since our extractor E′ failed to extract witness out of πi for any
i ∈ [�] we have (by soundness of the ZK-PCP) that Pr[VoZK(x, π′

i) = 0] ≥ κ,
for every i ∈ [�], where the probability is taken over the random choices of
obtaining π′

i from πi. Hence, if E′ outputs ⊥ then the verifier must also always
reject, except with probability at most ≤ (1 − κ)�, which is negligible for � = λ

κ .

Zero-Knowledge. We need to construct a simulator S ′ for our protocol. This con-
struction follows immediately from the ν-zero-knowledge property of the oblivi-
ous ZK-PCP.

The full proof for the case of BSC appears in full-version.

7 C�
ROT is OWSC Complete for Randomized

Functionalities

In this section, we describe an OWSC scheme for any randomized function in
the CROT -hybrid model that uses only a single round of random OTs and no
additional interaction. The functionalities considered here provide output to only
one party. This result follows directly from [IPS08, Appendix B] and we include
the construction and proof in the full-version for completeness (much of the text
have been taken verbatim from [IPS08, Appendix B]). More efficient alternatives
have been considered by [IKO+11a] however we consider the simplest feasibility
result for our setting.

One technical difference in our setting compared to [IPS08] is in the under-
lying primitive from which the protocols are constructed. While the protocol
in [IPS08] uses a regular 1-out-of-N OT protocol, in our case we only have access
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to a 1-out-of-2 ROT protocol and need to convert it to a 1-out-of-N ROT proto-
col. (Recall that the choice about which 1-out-of-N strings the receiver obtains
is made by the channel in the ROT protocol.) This however can be done easily
using standard techniques and a sketch of the construction has been provided in
full-version.

Theorem 11. For every randomized function f , ∃� and a OWSCf/C�
ROT

scheme that is a UC-secure realization (even against malicious adversaries) of
the functionality Ff in the C�

ROT -hybrid model.

ε-secure Variant. We can also use the ε-UC realization of ROT (based on noisy
bursty channel as in Theorem 5) in order to obtain a ε · r-UC realization of
OWSCf where r is the number of ROT calls made inside our construction. r for
our construction is a fixed polynomial in the security parameter λ, independent
of the size of the function being computed.

Construction Using Biased-ROT. The above theorem is stated just for the case
of C�

ROT -hybrid model. However we note that the same construction continues
to work in the C�,p

ROT -hybrid model, for any constant p ∈ (0, 1), with one small
change. When using the C�,p

ROT channel, the input provided by the channel for the
function evaluation will be biased. This issue can be resolved by using security
parameter λ number of independent bits from the channel to obtain each bit
for the functionality being evaluated. More specifically, each input bit for the
functionality is obtained by taking the exclusive or of λ independent input bits.
By the XOR Lemma, we claim that the obtained bits will be close to uniform.

Furthermore, when using the C�,p
ROT -hybrid model, the construction itself does

not depend on the precise value of the constant p. Hence, our construction is
robust in the sense that it remains secure even if the adversary gets to specify
the value of p (within some bounded range).
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Abstract. We revisit the problem of black-box constructions of uni-
versal one-way hash functions (UOWHFs) from several typical classes of
one-way functions (OWFs), and give respective constructions that either
improve or generalize the best previously known.

– For any 1-to-1 one-way function, we give an optimal construction of
UOWHFs with key and output length Θ(n) by making a single call
to the underlying OWF. This improves the constructions of Naor and
Yung (STOC 1989) and De Santis and Yung (Eurocrypt 1990) that
need key length O(n · ω(log n)).

– For any known-(almost-)regular one-way function with known hard-
ness, we give an optimal construction of UOWHFs with key and out-
put length Θ(n) and a single call to the one-way function.

– For any known-(almost-)regular one-way function, we give a construc-
tion of UOWHFs with key and output length O(n·ω(1)) and by mak-
ing ω(1) non-adaptive calls to the one-way function. This improves the
construction of Barhum and Maurer (Latincrypt 2012) that requires
key and output length O(n·ω(log n)) and ω(log n) calls.

– For any weakly-regular one-way function introduced by Yu et al. at
TCC 2015 (i.e., the set of inputs with maximal number of siblings
is of an n−c-fraction for some constant c), we give a construction of
UOWHFs with key length O(n·logn) and output length Θ(n). This
generalizes the construction of Ames et al. (Asiacrypt 2012) which
requires an unknown-regular one-way function (i.e., c = 0).

Along the way, we use several techniques that might be of independent
interest. We show that almost 1-to-1 (except for a negligible fraction)
one-way functions and known (almost-)regular one-way functions are

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 209–229, 2015.
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equivalent in the known-hardness (or non-uniform) setting, by giving
an optimal construction of the former from the latter. In addition, we
show how to transform any one-way function that is far from regular
(but only weakly regular on a noticeable fraction of domain) into an
almost-regular one-way function.

1 Introduction

Informally, a family of compressing hash functions, denoted by G, is called uni-
versal one-way, if given a random function g ∈ G and a random (or equivalently,
any pre-fixed) input x, it is infeasible for any efficient algorithm to find any x′ �= x
satisfying g(x) = g(x′). The seminal result that one-way functions (OWFs) imply
universal one-way hash functions (UOWHFs) [17] constitutes one of the central
pieces of modern cryptography. Applications of UOWHFs include basing digi-
tal signatures [9] on minimal assumptions (one-way functions), Cramer-Shoup
encryption scheme [4], statistically hiding commitment scheme [12,13], etc.

UOWHFs from any OWFs. The principle possibility result that UOWHFs
can be based on any OWF was established by Rompel [17] (with some corrections
given in [15,18]). However, Rompel’s construction was quite complicated and
extremely unpractical. In particular, for any one-way function on n-bit inputs it
requires key length Õ(n12) and output length Õ(n8). Haitner et al. [11] improved
the construction via the notion of inaccessible entropy [13], and reduced key
and output length to Õ(n7). Therefore, even the best known generic UOWHF
constructions (based on arbitrary OWFs) are mainly of theoretical interest and
are too inefficient to be of any practical use.

UOWHFs from special OWFs. Another line of research focuses on more
efficient (and nearly practical) constructions of UOWHFs from special structured
OWFs. Naor and Yung gave an elegant “hash-then-truncate” construction of
UOWHFs with key and output length Θ(n) which does a single call to any one-
way permutation. However, for a slightly weaker primitive, namely, 1-to-1 one-
way functions, the authors of [16] only gave a rather complicated construction.
De Santis and Yung [19] gave an improved construction from any 1-to-1 OWF
f : {0, 1}n → {0, 1}l as below:

G1−1
def
= {(hn

n−1 ◦ . . .◦ hl−1
l−2 ◦ hl

l−1 ◦ f) : {0, 1}n → {0, 1}n−1, hi
i−1 ∈ Hi

i−1, n≤i ≤ l },

where “◦” denotes function composition, each Hi
i−1 denotes a family of pairwise-

independent hash functions that compress i-bit strings into (i−1) bits. Although
G1−1 enjoys linear output length and a single function call, it requires1 key length
O(ω(log n)·n). In addition, the work of [19] also introduced a construction from

1 A straightforward calculation suggests that G1-1 needs key length O(l·(l − n)), and
we know (see Fact 1) that every 1-to-1 one-way function implies another one-way

function f ′ : {0, 1}n′∈Θ(n) → {0, 1}n′+ω(log n) that is 1-to-1 except on a negligible
fraction of inputs, which implies that the key length of [16,19] can be pushed to
O(ω(log n)·n).
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any known-regular2 one-way function with key and output length O(ω(log2 n) ·
n) and O(ω(1) · log n) adaptive calls, which was recently improved by Barhum
and Maurer [3] to key and output length O(ω(log n) · n) and O(ω(1) · log n)
non-adaptive calls. Based on unknown-regular one-way functions, Ames et al.
[1] presented a more general construction with output length Θ(n), key length
O(logn·n) and Õ(n) adaptive calls. We refer to Table 1 for a summary of previous
constructions and a comparison to our work.

Table 1. A summary of existing constructions [1,3,16,19] and our work, where KR-
OWF and UR-OWF are the shorthands for known-regular and unknown-regular one-
way functions respectively, ε-hard KR-OWF additionally assumes that the hardness
parameter ε of KR-OWF is known, and n−c-WUR-OWF is the shorthand for weakly
unknown-regular one-way functions (see Footnote 7 and formally Definition 9).

Assumption Output Length Key Length # of Calls Type of Call

[16] OWP Θ(n) Θ(n) 1 non-adaptive

[16,19] 1-to-1 OWF Θ(n) O(ω(log n)·n) 1 non-adaptive

[19] KR-OWF O(ω(log2 n) · n) O(ω(log2 n) · n) O(ω(log n)) adaptive

[3] KR-OWF O(ω(log n) · n) O(ω(log n) · n) O(ω(log n)) non-adaptive

[1] UR-OWF Θ(n) O(log n · n) Õ(n) adaptive

ours 1-to-1 OWF Θ(n) Θ(n) 1 non-adaptive

ours ε-hard KR-OWF Θ(n) Θ(n) 1 non-adaptive

ours KR-OWF O(ω(1) · n) O(ω(1) · n) O(ω(1)) non-adaptive

ours n−c-WUR-OWF Θ(n) O(log n · n) Õ(n2c+1) adaptive

Summary of our constructions. In this paper, we give the following con-
structions from the respective aforementioned one-way functions. The first two
constructions enjoy optimal parameters simultaneously and they are (almost)
security-preserving3, the third achieves parameters that are almost optimal up to
an arbitrarily small super-constant factor ω(1) (e.g., log log log n or even less),
and thus they all improve upon the respective known constructions. The fourth
construction generalizes to beyond regular one-way functions (as introduced in
[21]) with optimal output length Θ(n) and key length O(n · log n).

1. For any 1-to-1 one-way function, we construct an optimal family of UOWHFs
with key and output length Θ(n) and a single OWF call.

2 A function f is regular if every image has the same number (say α) of preimages, and
it is known- (resp., unknown-) regular if α is efficiently computable (resp., inefficient
to approximate). More generally (as introduced in [21]), f is weakly unknown-regular
if the fraction of x’s with maximal |f−1(f(x))| (which is not necessarily efficiently
computable) is noticeable. We stress that here “weakly” is used to describe “regu-
larity” (rather than “one-way-ness” as in “weakly one-way functions”).

3 The security of the first UOWHF is essentially the same as the respective OWF, and
the security of the second one is roughly a square root of its underlying OWF.
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2. For any known-regular one-way function with known hardness, we give
another optimal construction of UOWHFs with key and output length Θ(n)
and a single call.

3. For any known-regular one-way function, we give a construction of UOWHFs
with key and output length O(ω(1)·n) and ω(1) non-adaptive calls.

4. For any one-way function f that is weakly unknown-regular on a noticeable
fraction (i.e., n−c for constant c) of domain [21], we give a construction of
UOWHFs with key length O(n·logn) and output length Θ(n).

On the (a)symmetry to PRGs. Our results further exhibit the inherent
“black-box duality” [5,11,13] between UOWHFs and PRGs. Firstly, we abstract
out a lemma about universal hashing (see Lemma 1) that is implicit in previous
works [13,15,17] and plays a dual role in UOWHF constructions to the leftover
hash lemma in PRG constructions. Secondly, constructions #2 and #3 above
match the best known results about constructions of PRGs from known-regular
OWFs (see [22]), namely, seed length O(ω(1)·n) or even Θ(n) if the hardness
of the underlying OWF is known. Thirdly, construction #4 is symmetric to the
recent PRG construction [21] based on the same class of one-way functions with
succinct key/seed length O(n · log n). Finally (and perhaps more interestingly),
construction #1 is asymmetric to the case of PRGs, where we do not know
how to construct a linear seed length PRG from an arbitrary 1-to-1 one-way
function4.

On the efficiency, feasibility and limits. Constructions #1, #2 and #3
are practically relevant as most one-way function candidates turn out to be
known-almost-regular or even 1-to-1. Goldreich, Levin and Nisan [8] showed
how to base almost 1-to-1 (except for a negligible fraction) one-way functions on
intractable problems such as RSA and DLP, and thus construction #1 enables
to build optimal UOWHFs from those problems. A byproduct of construction
#2 is the equivalence of almost 1-to-1 one-way functions and known-(almost-
)regular one-way functions in certain (known-hardness or non-uniform) settings,
where we give an optimal construction of the former from the latter. Moreover,
unknown regular one-way functions further reduce the knowledge required about
the underlying one-way functions, and the problem of basing cryptographic prim-
itives (PRGs, UOWHFs, etc.) on weaker assumptions is of theoretic interests. It
improves our understanding about the feasibility and limits of black-box reduc-
tions. In particular, Holenstein and Sinha [14], Barhum and Holenstein [2] showed
that Ω(n/ log n) black-box calls to an arbitrary (including unknown-regular) one-
way function is necessary to construct PRGs and UOWHFs, and the lower bound
is matched by explicit constructions of PRGs [10] and UOWHFs [1] respec-
tively. The recent work of [21] carried on this line of research even further by

4 Given a 1-to-1 one-way function f , one might think of getting a PRG by hashing
f(Un) into n− s bits concatenated with s+1 hard-core bits of f , where s ∈ ω(log n)
is the necessary entropy loss due to the leftover hash lemma. This is in general
not possible without knowing the exact hardness of the underlying f . See more
discussions and the relaxed solutions to this problem by Goldreich [6, Sect. 3.5.1.3].
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considering a more general class of one-way functions (which they call weakly
unknown-regular one-way functions), namely, the underlying one-way function
can have an arbitrary structure as long as the set of x with maximal num-
ber of siblings (i.e., x and x′ are siblings of each other if f(x) = f(x′)) is of
noticeable fraction. The authors of [21] gave a construction of PRG with seed
length O(n · log n) from weakly unknown-regular OWFs. However, their analysis
is quite ad-hoc (see Remark 2), and doesn’t seem to generalize to UOWHFs. As
an intermediate step of construction #4, we prove that “iterating such a one-way
function (weakly regular on only a noticeable fraction) polynomially many times
yields a one-way function that is almost-regular on an overwhelming fraction”
and thus unify the approach to the two dual objects (i.e., PRGs and UOWHFs).

The roadmap. We outline below the steps to build UOWHFs from the respec-
tive one-way function f : {0, 1}n → {0, 1}l introduced above. We note that the
following assumptions (about output length) can be made without loss of gen-
erality: l ∈ O(n) for 1-to-1 one-way functions and length-preserving-ness (i.e.,
l = n) for arbitrary one-way functions. More specifically, any 1-to-1 one-way
function f : {0, 1}n → {0, 1}l implies a one-way function f ′ : {0, 1}n′∈Θ(n) →
{0, 1}l′∈Θ(n) that is 1-to-1 except for a negligible fraction. Any one-way function
f with α ≤ |f−1(y)| ≤ α·β implies another length-preserving one-way function
f ′ : {0, 1}n′∈Θ(n) → {0, 1}n′

with α′ ≤ |f ′−1(y)| ≤ α′·β except for a negligible
fraction, where the size of range β is preserved, and α′ is efficiently computable
if α is. We refer to [20] for a full proof.

Based on 1-to-1 OWFs. We adapt Naor-Yung’s elegant “hash-then-truncate”
approach (for one-way permutation) to any 1-to-1 one-way function:

G1
def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−s , h ∈ H },

where H is a family of universal hash permutations on l bits, and trunc : {0, 1}l →
{0, 1}n−s is a truncating function that outputs the first n − s bits of input. We
show that if f is a (t,ε)- 1-to-1 OWF then the resulting G1 is a (t − nO(1),
2s+1 · ε)-UOWHF family with key and output length Θ(n) and shrinkage s
(see Definitions 3 and 7 for formal definitions). The construction enjoys optimal
parameters and somewhat counter-intuitively the security bound drops only by
factor 2s (which is optimal by [5]) rather than by 2l−n+s (i.e., exponential in the
number of bits truncated which would render the construction useless). We refer
to the proof of Theorem 1 and Remark 1 for more technical details and further
discussions.

Based on known-(almost-)regular ε-hard OWFs. Given an almost-
regular f (see Definition 6) which is known to be (t,ε)-one-way for some efficiently
computable ε, we define the following function family

G2
def
= { g : {0, 1}n → {0, 1}n−s, g(x) = ( trunc(h(f(x))), h1(x) ), h ∈ H, h1 ∈ H1 }

where H is a family of universal hash permutations, and let H1 and trunc be
a family of universal hash functions and the truncating function (both with
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appropriate output sizes) respectively. We show that G2 is a UOWHF family
with key and output length Θ(n) and shrinkage s. The rationale is that for any5

x �= x′ colliding on g ∈ G2 it either satisfies “f(x) = f(x′) ∧ h1(x) = h1(x′)” or
“f(x)�=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′)))”. The former is unconditionally
bounded by universal hashing, and the latter is computationally bounded (and
reducible to the one-way-ness of f). Interestingly, by abstracting out function

f ′(x, h1)
def
= (f(x), h1(x), h1) from the above construction, we further show that

f ′ is a one-way function that is 1-to-1 except for a negligible fraction. We refer
to Theorem 2, Lemma 2 and Theorem 3 for the details.

Based on known-(almost-)regular OWFs. Next, we consider any known-
(almost)-regular OWF f whose hardness parameter is ε unknown (i.e., ε is negli-
gible but may not be efficiently computable). In this case, we run q independent
copies of f , and we get a construction by making q non-adaptive calls with
shrinkage q log n, key and output length O(q · n), where q ∈ ω(1) can be any
efficiently computable super-constant. The parallel repetition technique was also
used in similar contexts (e.g., the construction of PRG from any known regular
OWF [22]). We refer to Theorem 4 for the detailed construction and proof.

Based on a more general class of OWFs. We show iterating the class
of one-way functions introduced in [21] sufficiently many times yields a one-way
function f ′ that is almost-regular, and thus plugging this f ′ into the construction
of Ames et al. [1] yields a construction of UOWHFs with output length Θ(n)
and key length O(n · log n).

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use
capital letters (e.g., X, Y ) for random variables, standard letters (e.g., x, y)
for values, and calligraphic letters (e.g. X , Y) for sets. The support of a random
variable X, denoted by Supp(X), refers to the set of values on which X takes with
non-zero probability, i.e., {x : Pr[X = x] > 0}. For a binary string x = x1 . . . xn,
denote by x[t] the first t bits of x, i.e., x1 . . . xt. x‖y refers the concatenation
of x and y. We denote by trunc : {0, 1}n → {0, 1}t a truncating function that
outputs the first t bits of input, i.e., trunc(x) = x[t]. |S| denotes the cardinality

of set S. For function f : {0, 1}n → {0, 1}l(n), we use shorthand f({0, 1}n)
def
=

{f(x) : x ∈ {0, 1}n}, and denote by f−1(y) the set of y’s preimages under f ,

i.e., f−1(y)
def
= {x : f(x) = y}. We say f is length-preserving if l(n) = n. We

use s ← S to denote sampling an element s according to distribution S, and
let s

$←− S denote sampling s uniformly from set S, and y := f(x) denote value
assignment. We use Un and UX to denote uniform distributions over {0, 1}n and
X respectively, and let f(Un) be the distribution induced by applying function

5 More precisely, x is sampled at random and x′ can be any distinct value (i.e., x′ �= x)
efficiently computable from x and g.
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f to Un. For probabilistic algorithm A, we use A(x; r) to denote the output of
A on input x and internal coin r. The min-entropy and max-entropy (see, e.g.,
[13]) of a random variable X, denoted by H∞(X) and H0(X) respectively, are
defined as:

H∞(X)
def
= log min

x∈Supp(X)

1
Pr[X = x]

; H0(X)
def
= log |Supp(X)|.

We use ‘+/−’ and ‘·’ for addition/subtraction and multiplication between field
elements respectively. The zero element of any finite field is denoted by 0.
Collision probability. We use CP(X) to denote the collision probability of

X, i.e., CP(X)
def
=

∑
x Pr[X = x]2, and denote by CP(X|Z) the average collision

probability of X conditioned on another (possibly correlated) random variable
Z by

CP(X|Z)
def
= Ez←Z

[ ∑
x Pr[X = x| Z = z]2

]
.

Simplifying Notations. Parameters (e.g., ε, r) are said to be known if they
are polynomial-time computable from the security parameter n. By notation
f : {0, 1}n → {0, 1}l we refer to the ensemble of functions {f : {0, 1}n →
{0, 1}l(n)}n∈N. As slight abuse of notion, poly might be referring to the set of
all polynomials or a certain polynomial, and h might be either a function or its
description which will be clear from context. For example, in h(y)

def
= h · y the

first h denotes a function, the second h refers to a string (a finite field element)
that describes the function (i.e., multiplying y by h).

Definition 1 (ρ-almost universal hashing). A family of functions H = {h :
{0, 1}l → {0, 1}t} is ρ-almost universal if for any distinct x1, x2 ∈ {0, 1}l, it
holds that

Pr
h

$←−H
[h(x1) = h(x2)] ≤ ρ.

In the special case ρ = 2−t, we say that H is universal.

Definition 2 (pairwise independent hashing). A family of functions H =
{h : {0, 1}l → {0, 1}t} is pairwise independent if any distinct x1, x2 ∈ {0, 1}l

and any v1, v2 ∈ {0, 1}t it holds that Pr
h

$←−H
[ h(x1) = v1 ∧ h(x2) = v2 ] = 2−2t.

Definition 3 (one-way functions). A sequence of functions {f : {0, 1}n →
{0, 1}l(n)}n∈N is (t(n),ε(n))-one-way if f is polynomial-time computable and for
any probabilistic algorithm A of running time t(n)

Pr
x

$←−{0,1}n

[A(1n, f(x))∈f−1(f(x))] ≤ ε(n).

Hereafter we use simplified notation f : {0, 1}n → {0, 1}l(n) for the above one-
way function, where t(·) and 1/ε(·) are super-polynomial.



216 Y. Yu et al.

Definition 4 (a family of one-way functions). A sequence of function fam-
ily F = {Fn}n∈N, where Fn = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)}, is
(t(n),ε(n))-one-way if for any n ∈ N, u ∈ {0, 1}q(n) and x ∈ {0, 1}n, the value
fu(x) can be computed in polynomial time, and for any probabilistic algorithm A
of running time t(n), we have that

Pr
x

$←−{0,1}n; u
$←−{0,1}q(n)

[ A(1n, u, fu(x))∈f−1
u (fu(x)) ] ≤ ε(n).

We use shorthands F = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)} for {Fn}n∈N.

Definition 5 (almost 1-to-1 functions). A function f : {0, 1}n → {0, 1}l(n)

is ε(n)-almost 1-to-1 if there exists a negligible function ε(n), such that for every
n ∈ N we have

Pr
x

$←−{0,1}n

[ ∃x′ : x′ �= x ∧ f(x) = f(x′) ] ≤ ε(n).

In particular, f is 1-to-1 if ε(n) ≡ 0.

Definition 6 (almost regular functions). For integer functions α = α(n)
and β = β(n), a function f : {0, 1}n → {0, 1}l(n) is α-regular if for every n ∈ N

and x ∈ {0, 1}n we have

|f−1(f(x))| = α.

f is (α, α·β)-almost regular if for every n ∈ N and x ∈ {0, 1}n we have

α ≤ |f−1(f(x))| ≤ α · β.

In particular, f is known-(almost)-regular if α is polynomial-time computable,
or otherwise it is called unknown-(almost)-regular. Standard “almost-regularity”
for a (t, ε)-one-way function f refers to that f is (α, α·β)-almost-regular for
β = poly(n) or at most β = (1/ε)Θ(1) for certain small constant 0 < Θ(1) < 1.

Definition 7 (UOWHFs [16]). A sequence of function family G = {Gn}n∈N,
where Gn = {gu : {0, 1}�(n) → {0, 1}�(n)−s(n), u ∈ {0, 1}q(n), � ∈ poly}, is a family
of (t(n),ε(n))-universal one-way hash functions if for every n ∈ N, u ∈ {0, 1}q(n)

and x ∈ {0, 1}�(n), the value gu(x) can be computed in polynomial time, and for
every probabilistic algorithm A of running time t(n), it holds that

Pr
x

$←−{0,1}�(n); u
$←−{0,1}q(n); x′←A(1n,x,u)

[ x �= x′ ∧ gu(x) = gu(x′) ] ≤ ε(n).

The difference between input and output lengths (i.e., s(n)) is called shrinkage.
For succinctness, hereafter we will use shorthand G = {gu : {0, 1}� → {0, 1}�−s,
u ∈ {0, 1}q} for {Gn}n∈N defined above.
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3 UOWHFs from 1-to-1 One-Way Functions

3.1 A Technical Lemma and Its Applications

We state below a folklore lemma about universal hashing which is symmetric to
the leftover hash lemma.

Lemma 1 (The injective hash lemma [20]). For any integers a, d, k and
l satisfying a≤l, let Y be any random variable over {0, 1}l with H0(Y )≤a, and

let H def
= {h : {0, 1}l → {0, 1}a+d} be a family of (k·2−(a+d))-almost universal

hash functions. Then, we have that

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Supp(Y ) : ỹ �= y ∧ h(ỹ) = h(y) ] ≤ k·2−d.

Recall that k = 1 corresponds to the special case that H is universal.

We also mention the fact that the input and output lengths of a 1-to-1 one-
way function f : {0, 1}n → {0, 1}l(n) can be assumed to be linearly related (i.e.,
l(n) = O(n)). For almost regular one-way functions, we can even assume that
they are length-preserving (i.e., l(n) = n). We refer to [20] for the proof of Fact 1.

Fact 1. For any r1 = r1(n) ≤ r2 = r2(n) and any efficiently computable
κ = κ(n) ∈ O(n), we have

1. Any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a (t − nO(1),
ε + poly(n) · 2−κ)-one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}(n′+κ)∈Θ(n)

which is 1-to-1 except on a (poly(n) · 2−κ)-fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ ∃x′ ∈ {0, 1}n′

: x′ �= x ∧ f ′(x) = f ′(x′) ] ≤ poly(n) · 2−κ

2. Any (2r1 , 2r2)-almost regular (t,ε)-one-way function f : {0, 1}n → {0, 1}l

implies a length-preserving (t−nO(1),ε+poly(n) ·2−(r1+κ))-one-way function
f̄ : {0, 1}n′∈Θ(n) → {0, 1}n′

which is (2κ+r1 , 2κ+r2)-almost regular except on
a (poly(n) · 2−(r1+κ))-fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ 2κ+r1 ≤ |f̄−1(f̄(x))| ≤ 2κ+r2 ] ≥ 1 − poly(n) · 2−(r1+κ).

Therefore, we will assume in the remainder of the paper that the underlying
1-to-1 one-way function has linear output length (i.e., l(n) = O(n)) and that
the almost-regular and weakly unknown-regular one-way functions are length-
preserving (i.e., l(n) = n).
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3.2 UOWHFs from 1-to-1 OWFs

For a 1-to-1 OWF f : {0, 1}n → {0, 1}l, we define a cryptographic game between

a challenger C and an inverter Inv. That is, C samples a random y∗ $←− {0, 1}l

and sends it to Inv, and Inv wins the game iff he comes up with any x′ satisfying
f(x′) = y∗. Note that even unbounded Inv wins this game with advantage no
more than 2−(l−n) (which is probability that y∗ ∈ f({0, 1}n)), and Fact 2 states
that the chance to win is even smaller for computationally bounded Inv.

Fact 2. For any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l and any
probabilistic algorithm Inv of running time t, it holds that

Pr
y∗ $←−{0,1}l

[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n) · ε.

Proof.

Pr
y∗ $←−{0,1}l

[f(Inv(y∗)) = y∗] ≤ Pr
y∗ $←−{0,1}l

[y∗ ∈ f({0, 1}n)] · Pr
y∗ $←−f({0,1}n)

[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n) · ε.

Remark 1 (on the proof sketch of Theorem 1). We use a trick to prove Theorem 1.
We show that any A that ε′-breaks the TCR of the constructed UOWHF implies
an InvA (of almost the same efficiency as A) that wins the above game (i.e.,
inverting f on a random y∗ ∈ {0, 1}l) with advantage roughly 2n−l−s · ε′. This
may seem useless since l−n can be Ω(n) or even poly(n). However, by Fact 2 this
term (i.e., 2n−l−s · ε′) is actually upper bounded by 2−(l−n) · ε. The conclusion
ε′≤2sε immediately follows by cancelling the factor (l − n). In other words, the
security bound does not depend on the number of bits truncated (i.e., l−n+ s),
but only on shrinkage s, and it is tight due to [5].

Theorem 1 (UOWHFs from 1-to-1 OWFs). Let f : {0, 1}n → {0, 1}l∈O(n)

be any 1-to-1 (t, ε)-one-way function, let H be a family of permutations6 over
{0, 1}l as follows:

H = {h : {0, 1}l → {0, 1}l , h(y)
def
= h · y, where y ∈ GF (2l), 0�=h ∈ GF (2l) },

let trunc : {0, 1}l → {0, 1}n−s be a truncating function, where s = s(n) is effi-
ciently computable. Then, we have that

G1
def
= { (trunc ◦ h ◦ f ) : {0, 1}n → {0, 1}n−s , h ∈ H }

is a family of (t − nO(1), 2s+1 · ε)-UOWHFs with key and output length Θ(n),
and shrinkage s.

6 In fact, H constitutes a family of universal hash permutations. However, our proofs
only use the concrete construction of H and benefit from its algebraic property over
finite fields, rather than assuming a universal H plus a constructible property [13]

(given any x and y there exists a PPT sampler to output h
$←− {h ∈ H : h(x) = y}).
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Algorithm 1. InvA that inverts f on input y∗ using random coins (x, v).

Input: y∗ $←− {0, 1}l

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x) − y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}l \ {0} : v[n−s] =

n−s
︷ ︸︸ ︷

0 . . . 0}
{The above implies h

$←− {h ∈ H : h(f(x))[n−s] = h(y∗)[n−s]} by the GF (2l)
arithmetics. }
x′ ← A(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

Proof. Suppose for contradiction that there exists a G1-collision finder A of run-
ning time t′ that on input (x, h), breaks the target collision resistance with some
non-negligible probability ε′, i.e.,

Pr
x

$←−{0,1}n,h
$←−H

[x′←A(x, h) : x �= x′∧h(f(x))[n−s] = h(f(x′))[n−s] ] = ε′ > 2s+1 · ε

We define algorithm InvA (that inverts f on input y∗ $←− {0, 1}l by invoking A)

as in Algorithm 1. Define event Eneq
def
= (f(x)�=y∗). We argue that InvA inverts

f with the following probability (see the rationale below)

Pr
y∗ $←−{0,1}l, x

$←−{0,1}n, v
$←−V

[ f(InvA(y∗)) = y∗ ]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}l

[ Eneq ] · Pr
x

$←−{0,1}n, y∗ $←−{0,1}l\{f(x)}, v
$←−V

[ f(InvA(y∗)) = y∗ | Eneq ]

≥ (1 − 2−l) · Pr
x

$←−{0,1}n,h
$←−H,x′←A(x,h),v

$←−V
[x �= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ∧ y∗ = f(x′) ]

≥ (1 − 2−l) · ε′ · Pr
v

$←−V
[y∗ = f(x′) | Eneq ∧ x �= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s]]

=
(1 − 2−l) · ε′

|V| =
(1 − 2−l) · ε′

2l−n+s − 1
>

ε′/2
2l−n+s

> ε·2−(l−n),

where the first inequality is straightforward (note that conditioned on Eneq the
sampling of x and y∗ are uniform over {0, 1}n and {0, 1}l \ {f(x)} respectively),
the second inequality follows from Claim 1, namely, conditioned on Eneq it is

equivalent to consider (x, h, v) $←− {0, 1}n ×H×V and then y∗ := f(x)−v ·h−1,
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and the third inequality is due to that A takes only x and h as input (i.e.,
independent of v). That is, conditioned on that A produces a valid x′ �= x
satisfying h(f(x′))[n−s] = h(f(x))[n−s], we have by Claim 1 that string y∗ is

uniformly distributed over set Y∗ def
= {f(x) − v·h−1, v ∈ V}. Note that the

already fixed f(x′) is also an element of Y∗ and thus y∗ hits f(x′) with probability
1/|Y∗|=1/|V|. We complete the proof by reaching a contradiction to Fact 2.

Claim 1 (equivalent sampling). Let the values h, v, x, y∗ be sampled as

in Algorithm 1, and conditioned on event Eneq
def
= (f(x)�=y∗), it is equivalent

to sample (x, h, v) $←− {0, 1}n × H × V uniformly and independently and then
determine y∗ := f(x) − v · h−1.

Proof of Claim 1. We know that (x, v) is uniformly sampled from {0, 1}n × V by
definition, and thus it suffices to show that “fix any (x, v), and conditioned on
y∗ �= f(x) (i.e., Y ∗ is uniform distributed over {0, 1}l \{f(x)}), it holds that h is
uniform over H”. This follows from that v �= 0 (V excludes 0 by definition) and

hence h = (f(x)−Y ∗)−1 ·v is uniform over {0, 1}l \{0}, namely, h
$←− H. Finally,

for any given (x, h, v), one efficiently determines the value y∗ = f(x) − v · h−1

due to the arithmetics over the finite field. �

4 UOWHFs from Known Regular OWFs

We proceed to the more general case that f is a known almost-regular function.
Recall that by Fact 1 we can assume WLOG that the underlying almost regular
one-way function is length-preserving. We first show a construction where the
hardness parameter ε is known, and then remove the dependency on ε.

4.1 Compressing the Output Is Necessary but not Sufficient

We attempt to generalize the Naor-Yung approach for one-way permutations
(and 1-to-1 one-way functions) to almost regular one-way functions by com-
pressing (using trunc ◦ h) the output Y = f(X) into H∞(Y ) − s′ bits for
s′ ∈ O(log (1/ε)). However, this only gives a weak form of guarantee, as stated
in Lemma 2 below, that given a random x it is infeasible for efficient algorithms
to find any f(x′) �= f(x) such that trunc(h(f(x′))) = trunc(h(f(x))). Other-
wise said, it does not rule out the possibility that one may easily find x′ �= x
satisfying f(x′) = f(x). Hence, compressing the output is only a useful inter-
mediate step to obtain UOWHFs. Lemma 2 below further generalizes Theorem 1
to known-(almost-)regular functions, whose proof is similar to that of Theorem
ref1-to-1-OWF (see [20]).

Lemma 2. For any constant c, any efficiently computable r = r(n) and
s′ = s′(n), let f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-
preserving) (t, ε)-one-way function, let H be a family of permutations over
{0, 1}n as below

H = {h : {0, 1}n → {0, 1}n , h(y)
def
= h · y, where y ∈ GF (2n), 0�=h ∈ GF (2n) },
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let trunc : {0, 1}n → {0, 1}n−r−c· log n−s′
be a truncating function. Then, for any

Ã of running time t − nO(1) (for some universal constant O(1)) we have that

Pr
x

$←−{0,1}n, h
$←−H, x′←Ã(x,h)

[ f(x)�=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ] ≤ nc·2s′+1 · ε.

4.2 Known (Almost-)Regular OWFs with Known Hardness

We first give an optimal construction assuming that the inversion probability
upper bound ε is known. Note that in addition to hashing the output f(x) (as
we did in Lemma 2), we also hash the input x to ensure that no distinct x′

collides with x with respect to the resulting function.

Theorem 2 (UOWHFs from known-almost-regular ε-hard OWFs). Let
f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-
one-way function as assumed in Lemma 2. Let shrinkage s = s(n) be any effi-
ciently computable function, and let H and trunc be as defined in Lemma 2 with
s′ = (s + log(1/ε) − c log n)/2, and let H1 = {h1 : {0, 1}n → {0, 1}r+c log n+s′−s}
be a family of universal hash functions. Then, we have that

G2
def
= { g : {0, 1}n → {0, 1}n−s , g(x)

def
= (g1(x), h1(x)), g1 ∈ H , h1 ∈ H1 }

where g1
def
= (trunc ◦ h ◦ f), is a (t − nO(1), O(

√
2s · nc · ε))-universal one-way

hash function family with key and output length Θ(n).

Proof. Define shorthands E1
def
=

(
x �= x′ ∧ f(x) = f(x′) ∧ h1(x) = h1(x′)

)
and

E2
def
=

(
f(x) �= f(x′) ∧ g1(x) = g1(x′)

)
. For any G2-collision finder A, we have

Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ x�=x′ ∧ g(x) = g(x′) ]

≤ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ E1 ∨ E2 ]

≤ Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ �= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

+ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ f(x)�=f(x′) ∧ g1(x) = g1(x′) ]

≤ 2−(s′−s) + nc·2s′+1 · ε =
√

2s · nc · ε + 2
√

2s · nc · ε = 3
√

2s · nc · ε,

where the first inequality refers to that any collision on g ∈ G2 (for x′ �= x) must
satisfy either E1 or E2 and the second inequality follows by a union bound. We
already know by Lemma 2 that the second term is bounded by nc·2s′+1ε, and it
thus remains to show that the first term is bounded by 2−(s′−s). Conditioned on
any y = f(X) random variable X is a flat distribution on a set of size at most
2r·nc, so we apply Lemma 1 (setting a = r + c · logn, d≥s′ − s and k = 1) to get
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Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ �= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

= Ey←f(Un)

[
Pr

x
$←−f−1(y), h1

$←−H1

[ ∃ x′ �= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]
]

≤ Ey←f(Un)[ 2−(s′−s) ] = 2−(s′−s),

which completes the proof.

4.3 An Alternative Approach to Sect. 4.2

A neater (and perhaps more intuitive) approach is to construct an almost 1-to-1
one-way function f ′ (with input and output lengths Θ(n)) based on f (stated
as Theorem 3) and then plug f ′ into Theorem 1 (using f ′ in place of f)7. This
statement is interesting in its own right as it implies that almost 1-to-1 one-way
functions and known-(almost-)regular one-way functions (with known hardness)
are equivalent. Taking a closer look at Theorem 3 we find that this almost 1-to-1
f ′ is also present (as an intermediate function) in construction G2 of Theorem 2
(except with slightly different length parameters). Lemmas 3 and 4 state the
almost injectiveness and one-way-ness of f ′ respectively, for which we determine
a judicious value for d (assuming knowledge about ε) in Theorem 3 to achieve
injectiveness and one-way-ness simultaneously.

Theorem 3 (almost 1-to-1 OWF from almost-regular ε -hard OWF).
Let f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving)
(t,ε)-one-way function as assumed in Lemma2. For efficiently computable d =
d(n) ∈ N, define

f ′ : {0, 1}n × H1 → {0, 1}n × {0, 1}r+c·log n+d × H1

′(x, h1)
def
= (f(x), h1(x), h1)

where H1 is a family of universal hash functions from n bits to r + c·log n + d

bits. Then, for d = log(1/ε)−c·log n−3
3 we have that f ′ is 2 3

√
ε · nc-almost 1-to-1

and (t − O(n), 2 3
√

ε · nc)-one-way with input and output lengths Θ(n).

Proof. The almost 1-to-1-ness and one-way-ness of f ′ follow from Lemmas 3 and 4
respectively by setting parameter d = log(1/ε)−c·log n−3

3 .

Lemma 3 ( f ′ is almost 1-to-1 [20]). f ′ defined in Therorem3 is 2−d-almost
1-to-1.

Lemma 4 ( f ′ is one-way [20]). f ′ defined in Therorem3 is a (t − O(n),√
2d+3 · nc · ε)-one-way function.

7 Strictly speaking, we need to show that the construction works even if the underlying
OWF is only 1-to-1 on an overwhelming fraction of inputs. The proof is given in [20].
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4.4 UOWHFs from any Known (Almost-)Regular OWFs

Removing the dependency on ε. Unfortunately, Theorem2 doesn’t immedi-
ately apply to an arbitrary regular function as in general we assume no knowl-
edge about ε (other than that ε is negligible). To see the difficulty, check the
proof of Theorem2 where the security of the resulting UOWHF is bounded by
the sum of two terms, i.e., 2−(s′−s) + nc·2s′+1 · ε. Without knowing ε, one
may end up setting some super-polynomial 2s′

(to make the first term negli-
gible) which kills the second term nc·2s′+1 · ε. Same problems arise in similar
situations (e.g., construction of PRGs from regular OWFs [22]). A remedy for
this is parallel repetition: run q ∈ ω(1) copies of f on x = (x1, . . . , xq), apply
hash-then-truncate (setting s′ = 2 log n) to every copy f(xi), which shrinks the
entropies by 2q log n bits and yields a bound O(ε·nc+2). Next, apply a single
hashing to x that expands q· log n bits (to yield another negligible term n−q).
This gives a family of UOWHFs with shrinkage 2q log n − q log n = q log n, and
key and output length O(q · n) for any (efficiently computable) q ∈ ω(1). The
proof is similar in spirit to that of Theorem2 (see [20]).

Definition 8 (parallel repetition). For any function g : X → Y, we define
its q-fold parallel repetition gq : X q → Yq as

gq(x1, ..., xq) = ( g(x1) , ..., g(xq) ).

For simplicity, we use shorthand x
def
= (x1, . . . , xq) and thus

gq(x)=gq(x1, . . . , xq).

Theorem 4 (UOWHFs from any known almost-regular OWFs). Let
f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-
one-way function as assumed in Lemma2. Then, for any efficiently computable
q = q(n) = ω(1), let H and trunc be as defined in Lemma 2 with s′ = 2 log n, and
let H1 = {h1 : {0, 1}q·n → {0, 1}q(r+(c+1) log n)} be a family of universal hash
functions, we have that

G3
def
= { g : {0, 1}qn → {0, 1}qn−q log n , g(x)

def
= (g1(x), h1(x)), h ∈ H , h1 ∈ H1 }

where g1
def
= (trunc ◦ h ◦ f)q, is a (t−nO(1),n−q +2q·nc+2 ·ε)-universal one-way

hash function family with key and output length O(q · n), and shrinkage q· log n.

5 Going Beyond Almost-Regular OWFs

Although (almost) optimal, our foregoing constructions need at least almost-
regularity, i.e., the one-way function f satisfies α ≤ |f−1(f(x))| ≤ α · β for all
(or at least an overwhelming portion of) x, where α is efficiently computable and
β = poly(n) (or at most β = O(log (1/ε)) for an (ε−1,ε)-hard f). Complementary
to our work, Ames et al. [1] gave an elegant construction from unknown-(almost-
)regular one-way functions, namely, without knowledge about α, for which they
pay a cost of much increased number of one-way function calls (i.e., O(n/logn))
and key length O(n log n). In this section, we further weaken the assumption so
that f can have an arbitrary structure (i.e., β is not bounded) as long as the
fraction of x’s with (nearly) maximal number of siblings is noticeable.
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5.1 A More General Class of OWFs

The following class of one-way functions was introduced in [21] as a relaxation
to unknown-(almost-)regular one-way functions.

Definition 9 (weakly unknown-regular OWFs [21]). Let f : {0, 1}n →
{0, 1}l(n) be a one-way function, and for every n ∈ N, divide domain {0, 1}n

into sets X1, . . . ,Xn (i.e., X1 ∪ . . . ∪ Xn = {0, 1}n) such that Xj
def
= {x : 2j−1 ≤

|f−1(f(x))| < 2j}, and define max = max(n) to be the maximal subscript of
the non-empty sets, i.e., |Xmax| > 0 and |Xmax+1 ∪ . . . ∪ Xn| = 0. We say that
f is weakly unknown-regular if there exists a constant c such that for all
sufficiently large n:

Pr[Un ∈ Xmax] ≥ n−c. (1)

Note that max(·) can be arbitrary (not necessarily efficient) functions and thus
unknown-regular one-way functions fall into a special case8 for c = 0.

5.2 UOWHFs from Beyond Almost-Regular OWFs

We state below the main results of this section, namely, the fourth construction
which is based on weakly unknown-regular one-way functions (see Definition 9).

Theorem 5. Assume that f is a weakly unknown-regular one-way function on
an n−c-fraction of domain for constant c. Then, there exists an explicit con-
struction of UOWHF family with output length Θ(n), key length O(n · logn) by
making n2c+1 · ω(1) black-box calls to f .

The main idea is to transform any weakly unknown-regular one-way function
f into a family of functions F = {fu : u ∈ {0, 1}O(n log n)} such that F is almost
regular and that it preserves the one-way-ness of f . F is constructed based on
(the derandomized version of) the randomized iterate with a succinct description

u. Finally, we sample a random fu
$←− F and plug it into the construction by

Ames et al. to get the UOWHFs as desired. We refer to [20] for more details
about the explicit construction.

Definition 10 (the randomized iterate [7,10]). Let n ∈ N, function f :
{0, 1}n → {0, 1}n, and let H be a family of pairwise-independent length-
preserving hash functions over {0, 1}n. For k ∈ N, x1 ∈ {0, 1}n and vector
hk = (h1, . . . , hk) ∈ Hk, recursively define the ith randomized iterate by:

yi = f(xi), xi+1 = hi(yi).
8 In fact, our construction #4 only assumes a relaxed condition than (1), i.e., Pr[Un ∈

Xmax −O(log n)∪. . .∪Xmax] ≥ n−c, so that unknown-almost-regular one-way functions
become a special case for c = 0.
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We denote the ith iterate by function f i, i.e., yi = f i(x1,h
k), where hk is

possibly redundant as for i ≤ k + 1 yi only depends on hi−1.
The randomized version refers to the case where x1

$←− {0, 1}n and hk $←− Hk.

The derandomized version refers to that x1
$←− {0, 1}n, u

$←− {0, 1}q∈O(n·logn),
hk := BSG(u), where BSG : {0, 1}q → {0, 1}k·log |H| is a bounded-space gener-
ator that 2−2n-fools every (2n + 1, k, log |H|)-LBP (layered branching program),
and log |H| is the description length of H (e.g., 2n bits for concreteness).

Remark 2 (on what is proven in [21]). The authors of [21] introduced weakly
unknown-regular one-way functions from which they constructed a pseudoran-
dom generator with seed length O(n · log n) based on the randomized iterate.
They showed that “every k = n2c · log n · ω(1) iterations are hard-to-invert”,
i.e., for any j it is hard to predict xj given yj+k = f j+k(x1, BSG(u)) and u.
A PRG thus follows by outputting log n hardcore bits for every k iterations.
In this paper, we first adapt their findings to show that fu(·) = fk(·, BSG(u))
constitutes a family of one-way functions, i.e., given yk = fu(x1) and u it is infea-
sible to find any x′

1 such that yk = fk(x′
1, BSG(u)). This is stated as Lemma 6.

However, it is still insufficient to construct UOWHFs with the one-way-ness of
fu. We further show in Lemma 7 that a random fu

$←− F is almost regular (in a
slightly weaker sense than Definition 6 but already suffices for our needs).

Following [21], we define the following event and recall some inequalities.

Definition 11. For any n, j≤k ∈ N, define events

E ′
j

def
=

(
(X1, Uq) ∈ {

(x1, u) : yj = f j(x1, BSG(u)) ∈ Ymax

})

where Ymax
def
= {y : 2max−1≤|f−1(y)| < 2max}, and (X1, Uq) are uniform over

{0, 1}n × {0, 1}q. Note that by definition Ymax = f(Xmax) (see Definition 9) and
thus Pr[f(Un) ∈ Ymax] ≥ n−c.

Lemma 5 (Some inequalities from [20])

CP( Y ′
k | Uq) ≤ k·2max−n+1 + 2−2n, (2)

Pr[E ′
1 ∨ E ′

2 ∨ . . . ∨ E ′
k] ≥ 1 − 2−k/n2c − 2−2n , (3)

where Y ′
k

def
= fk(X1, BSG(Uq)).

Lemma 6 (F is one-way [20]). Assume that f is a (t, ε)-OWF that is weakly
unknown-regular on an n−c fraction of domain, define a family of functions

F def
= { fu : {0, 1}n → {0, 1}n, fu(x)=fk(x,BSG(u)), u ∈ {0, 1}O(n· log n) } (4)

where H,fk and BSG : {0, 1}q∈O(n·log n) → {0, 1}k·log |H| are as defined in
Definition 10. Then, for any A of running time t − nO(1) it holds that

Pr
u

$←−{0,1}q , x
$←−{0,1}n

[ A(u, fu(x)) ∈ f−1
u ( fu(x) ) ] ≤

√
28·k4 · n3c · ε + 2−k/n2c

+ 2−2n. (5)
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Lemma 7 ( F is almost-regular). Let F = {fu} be as defined in Lemma 6.
Then, for any a ≥ 0 it holds that

Pr
u

$←−{0,1}q, x
$←−{0,1}n

[ 2max−a−1 ≤ |f−1
u ( fu(x) )| ≤ 2max+a+1 ] ≥ 1 − k

2a−2
− 1

2k/n2c ,

(6)
where u ∈ {0, 1}q∈O(n·log n) and fu(x)=fk(x,BSG(u)).

Proof. We define Slow
def
=

(
(X1, Uq) ∈ {(x, u) : 0 < |f−1

u (fu(x))| < 2max−a−1}
)

and Sup
def
=

(
(X1, Uq) ∈ {(x, u) : |f−1

u (fu(x))| > 2max+a+1}
)

, where X1 is

uniform over {0, 1}n. The left-hand of (6) is lower bounded by 1 − Pr[Slow] −
Pr[Sup] and thus it suffices to upper bound both Pr[Slow] and Pr[Sup]. We have

Pr[Slow] = Pr[Slow ∧ (E ′
1 ∨ E ′

2 ∨ . . . ∨ E ′
k)] + Pr[Slow ∧ ¬(E ′

1 ∨ E ′
2 ∨ . . . ∨ E ′

k)]

≤ Pr[
k∨

j=1

(Slow ∧ E ′
j)] + Pr[¬(E ′

1 ∨ E ′
2 ∨ . . . ∨ E ′

k)]

≤
k∑

j=1

Pr[Slow ∧ E ′
j ] + (2−k/n2c

+ 2−2n)

≤ k·2−a + 2−k/n2c

+ 2−2n

where the first inequality is trivial, the second is by the union bound and
(3), and the third is due to that for every j ∈ [k] with shorthand fu,j(x)

def
=

f j(x,BSG(u)) it holds that

Pr[Slow ∧ E ′
j ] =

∑
u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u (fu(x))|<2max −a−1

Pr[X1 = x|Uq = u]

≤
∑

u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u,j(fu,j(x))|<2max −a−1

Pr[X1 = x | Uq = u]

≤
∑

u

Pr[Uq = u] · |Ymax|·2max−a−1·2−n

≤ 2n+1−max · 2−n+max−a−1 = 2−a

where the first inequality is due to Fact 3 (setting f1=fu,j , f2 = f◦hk−1◦ . . . ◦f ◦
hj and thus f̄ = fu), the second follows from the fact that there are |Ymax|
possible values for fu,j(x) ∈ Ymax and every fu,j(x) has less than 2max−a−1

preimages (by definition of Slow), and the third is due to |Ymax|≤2n+1−max.
Next we proceed to bounding the second term, i.e., Pr[Sup] ≤ k·2−a+1.
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k·2max−n+1 + 2−2n ≥ CP( Y ′
k | Uq) = Eu←Uq

[ ∑
y

Pr[ fu(X1) = y | Uq = u]2
]

> 2max+a−n+1 · Eu←Uq

[ ∑

y: |f−1
u (y)|>2max+a+1

Pr[ fu(X1) = y | Uq = u]
]

= 2max+a−n+1 · Pr[Sup],

where the first inequality is by (2), and the second is due to that for any (y, u)
satisfying |f−1

u (y)| > 2max+a+1 and it holds that

Pr[ fu(X1) = y | Uq = u] = Pr[ X1 ∈ f−1
u (y) ] > 2−n·2max+a+1 = 2max+a−n+1.

It follows that Pr[Sup] ≤ (k·2max−n+1 + 2−2n)/2max+a−n+1≤k·2−a+1 and hence
completes the proof.

Fact 3. Let f1 : X → Y and f2 : Y → Z be any functions, and let f̄
def
= f2◦f1.

Then for any t ∈ N
+ it holds that

{x : 0 < |f̄−1(f̄(x))| < t} ⊆ {x : 0 < |f−1
1 (f1(x))| < t}.

Proof. Any x satisfying 0 < |f̄−1(f̄(x))| < t implies 0 < |f−1
1 (f1(x))| < t.

Given that F is a family of unknown-(almost-)regular one-way functions with
description length O(n · log n), we just plug a random fu ∈ F into the Ames
et al.’s construction [1] to yield a family of UOWHFs with output length Θ(n)
and key length O(n · log n). We refer to a more complete version of this work
[20], where we put together all the necessary technical details.
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Abstract. Round-optimal blind signatures are notoriously hard to con-
struct in the standard model, especially in the malicious-signer model,
where blindness must hold under adversarially chosen keys. This is sub-
stantiated by several impossibility results. The only construction that can
be termed theoretically efficient, by Garg and Gupta (Eurocrypt’14),
requires complexity leveraging, inducing an exponential security loss.

We present a construction of practically efficient round-optimal blind
signatures in the standard model. It is conceptually simple and builds on
the recent structure-preserving signatures on equivalence classes (SPS-
EQ) from Asiacrypt’14. While the traditional notion of blindness fol-
lows from standard assumptions, we prove blindness under adversarially
chosen keys under an interactive variant of DDH. However, we neither
require non-uniform assumptions nor complexity leveraging.

We then show how to extend our construction to partially blind
signatures and to blind signatures on message vectors, which yield a
construction of one-show anonymous credentials à la “anonymous cre-
dentials light” (CCS’13) in the standard model.

Furthermore, we give the first SPS-EQ construction under non-
interactive assumptions and show how SPS-EQ schemes imply conven-
tional structure-preserving signatures, which allows us to apply optimality
results for the latter to SPS-EQ.

Keywords: (Partially) Blind signatures · Standard model · SPS-EQ ·
One-show anonymous credentials

1 Introduction

The concept of blind signatures [22] dates back to the beginning of the 1980s.
A blind signature scheme is an interactive protocol where a user (or obtainer)
requests a signature on a message which the signer (or issuer) must not learn. In
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particular, the signer must not be able to link a signature to the execution of the
issuing protocol in which it was produced (blindness). Furthermore, it should
even for adaptive adversaries be infeasible to produce a valid blind signature
without the signing key (unforgeability). Blind signatures have proven to be
an important building block for cryptographic protocols, most prominently for
e-cash, e-voting and one-show anonymous credentials. In more than 30 years of
research, many different (> 50) blind signature schemes have been proposed.
The spectrum ranges from RSA-based (e.g., [19,22]) over DL-based (e.g., [2,41])
and pairing-based (e.g., [12,14]) to lattice-based (e.g., [44]) constructions, as well
as constructions from general assumptions (e.g., [25,35,36]).

Blind Signatures and Their Round Complexity. Two distinguishing fea-
tures of blind signatures are whether they assume a common reference string
(CRS) set up by a trusted party to which everyone has access; and the number
of rounds in the signing protocol. Schemes which require only one round of inter-
action (two moves) are called round-optimal [25]. Besides improving efficiency,
round optimality also directly yields concurrent security (which otherwise has
to be dealt with explicitly; e.g., [35,37]). There are very efficient round-optimal
schemes [11,14,23] under interactive assumptions (chosen target one more RSA
inversion and chosen target CDH, respectively) in the random oracle model
(ROM), as well as under the interactive LRSW [39] assumption in the CRS
model [32]. All these schemes are in the honest-key model, where blindness only
holds against signers whose keys are generated by the experiment.

Fischlin [25] proposed a generic framework for constructing round-optimal
blind signatures in the CRS model with blindness under malicious keys: the
signer signs a commitment to the message and the blind signature is a non-
interactive zero-knowledge (NIZK) proof of a signed commitment which opens
to the message. Using structure-preserving signatures (SPS) [3] and the Groth-
Sahai (GS) proof system [33] instead of general NIZKs, this framework was effi-
ciently instantiated in [3]. In [12,13], Blazy et al. gave alternative approaches to
compact round-optimal blind signatures in the CRS model which avoid includ-
ing a GS proof in the final blind signature. Another round-optimal solution with
comparable computational costs was proposed by Seo and Cheon [46] building
on work by Meiklejohn et al. [40].

Removing the CRS. Known impossibility results indicate that the design of
round-optimal blind signatures in the standard model has some limitations. Lin-
dell [38] showed that concurrently secure (and consequently also round-optimal)
blind signatures are impossible in the standard model when using simulation-
based security notions. This can however be bypassed via game-based security
notions, as shown by Hazay et al. [35] for non-round-optimal constructions.

Fischlin and Schröder [27] showed that black-box reductions of blind-
signature unforgeability to non-interactive assumptions in the standard model
are impossible if the scheme has three moves or less, blindness holds statistically
(or computationally if unforgeability and blindness are unrelated) and protocol
transcripts allow to verify whether the user is able to derive a signature. Existing
constructions [30,31] bypass these results by making non-black-box use of the
underlying primitives (and preventing signature-derivation checks in [31]).
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Garg et al. [31] proposed the first round-optimal generic construction in the
standard model, which can only be considered as a theoretical feasibility result.
Using fully homomorphic encryption, the user encrypts the message sent to the
signer, who evaluates the signing circuit on the ciphertext. To remove the CRS,
they use two-round witness-indistinguishable proofs (ZAPs) to let the parties
prove honest behavior; to preserve round-optimality, they include the first fixed
round of the ZAP in the signer’s public key.

Garg and Gupta [30] proposed the first efficient round-optimal blind signature
constructions in the standard model. They build on Fischlin’s framework using
SPS. To remove a trusted setup, they use a two-CRS NIZK proof system based
on GS proofs, include the CRSs in the public key while forcing the signer to
honestly generate the CRS. Their construction, however, requires complexity
leveraging (the reduction for unforgeability needs to solve a subexponential DL
instance for every signing query) and is proven secure with respect to non-
uniform adversaries. Consequently, communication complexity is in the order
of hundreds of KB (even at a 80-bit security level) and the computational costs
(not considered by the authors) seem to limit their practical application even
more significantly.

Partially Blind Signatures. Partially blind signatures are an extension of blind
signatures, which additionally allow to include common information in a signa-
ture. Many non-round-optimal partially blind signature schemes in the ROM are
based on a technique by Abe and Okamoto [7]. The latter [42] proposed an efficient
construction for non-round-optimal blind as well as partially blind signatures in
the standard model. Round-optimal partially blind signatures in the CRS model
can again be obtained from Fischlin’s framework [25]. Round-optimal partially
blind signatures in the CRS model are constructed in [13,40,46]. To date, there
is—to the best of our knowledge—no round-optimal partially blind signature
scheme that is secure in the standard model.

One-Show Anonymous Credentials Systems. Such systems allow a user to
obtain a credential on several attributes from an issuer. The user can later selec-
tively show attributes (or prove relations about attributes) to a verifier without
revealing any information about undisclosed attributes. No party (including the
issuer) can link the issuing of a credential to any of its showings, yet differ-
ent showings of the same credential are linkable. An efficient implementation of
one-show anonymous credentials is Microsoft’s U-Prove [16].

Baldimtsi and Lysyanskaya [9] showed that the underlying signature
scheme [15] cannot be proven secure using known techniques. To mitigate this
problem, in [8] they presented a generic construction of one-show anonymous
credentials in the vein of Brands’ [15] approach from so-called blind signatures
with attributes. They also present a scheme based on a non-round-optimal blind
signature scheme by Abe [2] and prove their construction secure in the ROM.

Our Contribution

Blind Signatures and Anonymous Credentials. Besides Fischlin’s generic
commit-prove paradigm [25], there are other classes of schemes. For instance,
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RSA and BLS blind signatures [11,14,23] follow a randomize-derandomize app-
roach, which exploits the homomorphic property of the respective signature
scheme. Other approaches follow the commit-rerandomize-transform paradigm,
where a signature on a commitment to a message can be transformed into a reran-
domized (unlinkable) signature on the original message [12,32]. Our construction
is based on a new concept, which one may call commit-randomize-derandomize-
open approach. It does not use non-interactive proofs at all and is solely based
on the recent concept of structure-preserving signature schemes on equivalence
classes (SPS-EQ) [34] and commitments. As we also avoid a trusted setup of the
commitment parameters, we do not require a CRS. We do however prove our
scheme secure under interactive hardness assumptions.

In SPS-EQ the message space is partitioned into equivalence classes and given
a signature on a message anyone can adapt the signature to a different represen-
tative of the same class. SPS-EQ requires that after signing a representative a
signer cannot distinguish between an adapted signature for a new representative
of the same class and a fresh signature on a completely random message.

In our blind-signature scheme the obtainer combines a commitment to the
message with a normalization element yielding a representative of an equivalence
class (commit). She chooses a random representative of the same class (random-
ize), on which the signer produces a signature. She then adapts the signature to
the original representative containing the commitment (derandomize), which can
be done without requiring the signing key. The blind signature is the rerandom-
ized (unlinkable) signature for the original representative plus an opening for the
commitment (open). Our contributions to blind signatures are the following:

– We propose a new approach to constructing blind signatures in the standard
model based on SPS-EQ. It yields conceptually simple and compact construc-
tions and does not rely on techniques such as complexity leveraging. Our
blind signatures are practical in terms of key size, signature size, communica-
tion and computational effort (when implemented with known instantiations
of SPS-EQ [29], a blind signature consists of 5 bilinear-group elements).

– We provide the first construction of round-optimal partially blind signatures in
the standard model, which follow straightforwardly from our blind signatures
and are almost as efficient.

– We generalize our blind signature scheme to message vectors, which yields
one-show anonymous credentials à la “anonymous credentials light” [8]. We
thus obtain one-show anonymous credentials secure in the standard model
(whereas all previous ones have either no security proof or ones in the ROM).

SPS-EQ. We give the first structure-preserving signatures on equivalence classes
satisfying all security notions from [34] under non-interactive assumptions.
(Unfortunately, the scheme does not have all the properties required for building
blind signatures from it, for which we strengthen the notions from [34].)

Moreover, we show how any SPS-EQ scheme can be turned into a standard
structure-preserving signature scheme. This transformation allows us to apply
the optimality criteria by Abe et al. [4,5] to SPS-EQ. We conclude that the
scheme from [29] is optimal in terms of signature size and verification complexity
and that it cannot be proven unforgeable under non-interactive assumptions.
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2 Preliminaries

A function ε : N → R
+ is negligible if ∀ c > 0 ∃ k0 ∀ k > k0 : ε(k) < 1/kc. By

a ←R S we denote that a is chosen uniformly at random from a set S. We write
A(a1, . . . , an; r) to make the randomness r used by a probabilistic algorithm
A(a1, . . . , an) explicit. If G is an (additive) group then G

∗ denotes G \ {0G}.

Definition 1 (Bilinear Map). Let (G1,+), (G2,+), generated by P and P̂ ,
resp., and (GT , ·) be cyclic groups of prime order p. We call e : G1 × G2 → GT

a bilinear map (pairing) if it is efficiently computable and the following holds:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp.
Non-degeneracy: e(P, P̂ ) �= 1GT

, i.e., e(P, P̂ ) generates GT .

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3)
otherwise. For Type-2 pairings there is an efficiently computable isomorphism
Ψ: G2 → G1; for Type-3 pairings no such isomorphism is known. Type-3 pairings
are currently the optimal choice in terms of efficiency and security trade-off [21].

Definition 2 (Bilinear-Group Generator). A bilinear-group generator is
a polynomial-time algorithm BGGen that takes a security parameter 1κ and
outputs a bilinear group BG = (p,G1,G2,GT , e, P, P̂ ) consisting of groups
G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT of prime order p with log2 p = κ and a pair-
ing e : G1 × G2 → GT . In this work we assume that BGGen is a deterministic
algorithm.1

Definition 3 (Decisional Diffie-Hellman Assumption). Let BGGen be a
bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ).
The DDH assumption holds in Gi for BGGen if for all probabilistic polynomial-
time (PPT) adversaries A there is a negligible function ε(·) such that

Pr
[

b ←R {0, 1}, BG = BGGen(1κ), r, s, t ←R
Zp

b∗ ← A(
BG, rPi, sPi, ((1 − b) · t + b · rs)Pi

) : b∗= b

]
− 1

2
≤ ε(κ) .

Definition 4 ((Symmetric) External Diffie-Hellman Assumption). The
XDH and SXDH assumptions hold for BGGen if the DDH assumption holds in
G1 and holds in both G1 and G2, respectively.

The next assumption is a static computational assumption derived from the
SXDH version of the q-Diffie-Hellman inversion assumption [21].

Definition 5 (Co-Diffie-Hellman Inversion Assumption). Let BGGen be
a bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ).
The co-DHI∗i assumption holds for BGGen if for every PPT adversary A there
is a negligible function ε(·) such that

Pr
[
BG = BGGen(1κ), a ←R

Zp
∗ : 1

aPi ← A(BG, aP1, aP2)
] ≤ ε(κ) .

1 This is e.g. the case for BN-curves [10]; the most common choice for Type-3 pairings.
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co-DHI∗1 is implied by a variant of the decision linear assumption in asymmetric
groups stating that given (BG, (aPj , bPj)j∈[2], raP2, sbP2) for a, b, r, s ←R

Zp
∗ it

is hard to distinguish T = (r + s)P2 from a random G2 element. (A co-DHI∗i
solver could be used to compute 1

aP1 and 1
b P1, which enables to check whether

e( 1
aP1, raP2) e( 1b P1, sbP2) = e(P1, T ).) This holds analogously for co-DHI∗2.

Generalized Pedersen Commitments. These are commitments to a vector
of messages m = (mi)i∈[n] ∈ Z

n
p that consist of one group element. They are

perfectly hiding and computationally binding under the discrete-log assumption.

SetupP(1κ, n): Choose a group G of prime order p with log2 p = κ and n+1 dis-
tinct generators (Pi)i∈[n], Q and output parameters cpp ← (G, p, (Pi)i∈[n], Q)
(which is an implicit input to the following algorithms).

CommitP(m; r): On input a vector m ∈ Z
n
p and randomness r ∈ Zp, output a

commitment C ← ∑
i∈[n] miPi + rQ and an opening O ← (m, r).

OpenP(C,O): On input C ∈ G and O = (m, r), if C =
∑

i∈[n] miPi + rQ then
output m = (mi)i∈[n]; else output ⊥.

Remark 1. SetupP is typically run by a trusted party; it can however also be run
by the receiver since commitments are perfectly hiding.

2.1 Structure-Preserving Signatures on Equivalence Classes

Structure-preserving signatures (SPS) [3,4,6,18] can sign elements of a bilinear
group without requiring any prior encoding. In such a scheme public keys, mes-
sages and signatures consist of group elements only and the verification algorithm
evaluates a signature by deciding group membership and evaluating pairing-
product equations (PPEs).

The notion of SPS on equivalence classes (SPS-EQ) was introduced by Hanser
and Slamanig [34]. Their initial instantiation turned out to only be secure
against random-message attacks (cf. [28] and the updated full version of [34]),
but together with Fuchsbauer [29] they subsequently presented a scheme that
is unforgeable under chosen-message attack (EUF-CMA) in the generic group
model.

The concept of SPS-EQ is as follows. Let p be a prime and � > 1; then Zp
� is

a vector space and we can define a projective equivalence relation on it, which
propagates to Gi

� and partitions Gi
� into equivalence classes. Let ∼R be this

relation, i.e., for M,N ∈ Gi
� : M ∼R N ⇔ ∃ s ∈ Z

∗
p : M = sN . An SPS-EQ

scheme signs an equivalence class [M ]R for M ∈ (G∗
i )

� by signing a representative
M of [M ]R. It then allows for switching to other representatives of [M ]R and
updating the signature without access to the secret key. An important property
of SPS-EQ is class-hiding, which roughly means that two message-signature pairs
corresponding to the same class should be unlinkable.

Here, we discuss the abstract model and the security model of such a signa-
ture scheme, as introduced in [34].
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Definition 6 (Structure-Preserving Signatures on Equivalence Cla-
sses). An SPS-EQ scheme SPS-EQ on (G∗

i )
� (for i ∈ {1, 2}) consists of the

following PPT algorithms:

BGGenR(1κ), a bilinear-group generation algorithm, which on input a security
parameter κ outputs an asymmetric bilinear group BG.

KeyGenR(BG, �), on input BG and vector length � > 1, outputs a key pair (sk, pk).
SignR(M, sk), given a representative M ∈ (G∗

i )
� and a secret key sk, outputs a

signature σ for the equivalence class [M ]R.
ChgRepR(M,σ, μ, pk), on input a representative M ∈ (G∗

i )
� of class [M ]R, a sig-

nature σ on M , a scalar μ and a public key pk, returns an updated message-
signature pair (M ′, σ′), where M ′ = μ · M is the new representative and σ′

its updated signature.
VerifyR(M,σ, pk) is deterministic and, on input a representative M ∈ (G∗

i )
�, a

signature σ and a public key pk, outputs 1 if σ is valid for M under pk and
0 otherwise.

VKeyR(sk, pk) is a deterministic algorithm, which given a secret key sk and a
public key pk outputs 1 if the keys are consistent and 0 otherwise.

An SPS-EQ scheme must satisfy correctness, EUF-CMA security and class-
hiding.

Definition 7 (Correctness). An SPS-EQ scheme SPS-EQ on (G∗
i )

� is correct
if for all κ ∈ N, all � > 1, all key pairs (sk, pk) ← KeyGenR(BGGenR(1κ), �), all
messages M ∈ (G∗

i )
� and all μ ∈ Zp

∗: VKeyR(sk, pk) = 1,

Pr
[
VerifyR(M,SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), μ, pk), pk) = 1

]
= 1.

In contrast to standard signatures, EUF-CMA security is defined with respect to
equivalence classes, i.e., a forgery is a signature on a message from an equivalence
class from which no message has been signed.

Definition 8 (EUF-CMA). An SPS-EQ scheme SPS-EQ is existentially
unforgeable under adaptively chosen-message attacks, if for all PPT algorithms
A with access to a signing oracle O, there is a negligible function ε(·) such that:

Pr

⎡
⎣
BG ← BGGenR(1κ),
(sk, pk) ← KeyGenR(BG, �),
(M∗, σ∗) ← AO(·,sk)(pk)

:
[M∗]R �= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

⎤
⎦ ≤ ε(κ),

where Q is the set of queries that A has issued to the signing oracle O.

Class-hiding is defined in [34] and uses the following oracles and a list Q to keep
track of queried messages M .

ORM : Pick a message M ←R (G∗
i )

�, append it to Q and return M .
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BGGenR(1κ): Generate a Type-3 bilinear group BG with order p of bitlength κ.

KeyGenR(BG, �): On input BG and vector length � > 1, choose (xi)i∈[�] ←R (Zp
∗)�,

set sk ← (xi)i∈[�], pk ← (X̂i)i∈[�] = (xiP̂ )i∈[�] and output (sk, pk).

SignR(M, sk): Given a representative M = (Mi)i∈[�] ∈ (G∗
1)

� of class [M ]R and

secret key sk = (xi)i∈[�], choose y ←R Zp
∗ and output σ = (Z, Y, Ŷ ) with

Z ← y
∑

i∈[�] xiMi Y ← 1
y
P Ŷ ← 1

y
P̂

VerifyR(M, σ, pk): Given M = (Mi)i∈[�] ∈ (G∗
1)

�, σ = (Z, Y, Ŷ ) ∈ G1 × G
∗
1 × G

∗
2

and public key pk = (X̂i)i∈[�], output 1 if the following hold and 0 otherwise:

∏
i∈[�] e(Mi, X̂i) = e(Z, Ŷ ) e(Y, P̂ ) = e(P, Ŷ )

ChgRepR(M, σ, μ, pk): Given representative M = (Mi)i∈[�] ∈ (G∗
1)

�, σ = (Z, Y, Ŷ ),
scalar μ ∈ Zp

∗ and pk, return ⊥ if VerifyR(M, σ, pk) = 0. Otherwise pick
ψ ←R Zp

∗ and return (μM, σ′) with σ′ ← ψμZ, 1
ψ

Y, 1
ψ

Ŷ
)
.

VKeyR(sk, pk): Given sk = (xi)i∈[�] ∈ (Zp
∗)� and pk = (X̂i)i∈[�] ∈ (G∗

2)
�, output 1

if xiP̂ = X̂i ∀i ∈ [�] and 0 otherwise.

Scheme 1. EUF-CMA-secure construction of an SPS-EQ scheme

ORoR(M, sk, pk, b): Given message M , key pair (sk, pk) and bit b, return ⊥ if
M �∈ Q. On the first valid call, record M and σ ← SignR(M, sk); if later
called on M ′ �= M , return ⊥. Pick R ←R (G∗

i )
� and μ ←R

Zp
∗, set (M0, σ0) ←

ChgRepR(M,σ, μ, pk) and (M1, σ1) ← (R,SignR(R, sk)) and return (Mb, σb).

Definition 9 (Class-Hiding). An SPS-EQ scheme SPS-EQ on (G∗
i )

� is called
class-hiding if for all � > 1 and PPT adversaries A with oracle access to O ←
{ORM ,ORoR(·, sk, pk, b)} there is a negligible function ε(·) such that

Pr
[
BG ← BGGenR(1κ), b ←R {0, 1},
(st, sk, pk)←A(BG, �), b∗ ←AO(st, sk, pk) :

b∗ = b ∧
VKeyR(sk, pk) = 1

]
− 1

2
≤ ε(κ).

Fuchsbauer, Hanser and Slamanig [29] present an EUF-CMA-secure scheme,
which we give as Scheme 1, and prove the following.

Theorem 1. Scheme 1 is EUF-CMA secure against generic forgers and class-
hiding under the DDH assumption.

3 New Results on SPS-EQ

In the following, we present the first standard-model construction of SPS-EQ
as modeled in [34]. We then introduce new properties to characterize SPS-
EQ constructions, strengthening the notion of class-hiding. Finally, we show
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BGGen′
R(1κ): Output BG ← BGGenR(1κ).

KeyGen′
R(BG, �): Given BG and � > 1, output (sk, pk) ← KeyGenR(BG, � + 2).

Sign′
R(M, sk): Given M = (Mi)i∈[�] ∈ (G∗

1)
� and sk, choose (R1, R2) ←R (G∗

1)
2,

compute τ ← SignR((M, R1, R2), sk) and output σ ← (τ, R1, R2).

Verify′
R(M, σ, pk): Given M = (Mi)i∈[�] ∈ (G∗

1)
�, signature σ ← (τ, R1, R2) and pk,

return VerifyR((M, R1, R2), τ, pk).

ChgRep′
R(M, σ, μ, pk): Given M = (Mi)i∈[�] ∈ (G∗

1)
�, σ ← (τ, R1, R2), μ ∈ Zp

∗ and

pk, run ((M̃, R̃1, R̃2), τ̃) ← ChgRepR((M, R1, R2), τ, μ, pk) and output (M̃, σ̃)
with σ̃ ← (τ̃ , R̃1, R̃2) (or ⊥ if ChgRepR output ⊥).

VKey′
R(sk, pk): Return VKeyR(sk, pk).

Scheme 2. Standard-model SPS-EQ construction from Scheme 1

how to turn any SPS-EQ construction into an SPS construction. This does
not only provide a new, efficient standard-model SPS scheme derived from our
SPS-EQ scheme; it also allows us to infer optimality of the SPS-EQ scheme
from [29], (Scheme 1) and the impossibility of basing its EUF-CMA security on
non-interactive assumptions.

3.1 A Standard-Model SPS-EQ Construction

Following the approach by Abe et al. [4], we construct from scheme SPS-
EQ, given as Scheme 1, an SPS-EQ scheme SPS-EQ′, given as Scheme 2, and
prove that it satisfies EUF-CMA and class-hiding, both under non-interactive
assumptions.

The scheme for �-length messages is simply Scheme 1 with message space
(G∗

1)
�+2, where before each signing two random group elements are appended to

the message. Scheme 2 features constant-size signatures (4 G1 +1 G2 elements),
has public keys of size � + 2 and still uses 2 PPEs for verification.

Unforgeability follows from a q-type assumption that states that Scheme 1
for � = 2 is secure against random-message attacks. (That is, no PPT adver-
sary, given the public key and signatures on q random messages, can, with non-
negligible probability, output a message-signature pair for an equivalence class
that was not signed.) Class-hiding follows from class-hiding of Scheme 1. Both
proofs can be found in the full version.

3.2 Perfect Adaption of Signatures

We now introduce new definitions characterizing the output distribution of
ChgRepR, which lead to stronger notions than class-hiding. The latter only
guarantees that given an honestly generated signature σ on M , the output
(μM, σ′) of ChgRepR for a random μ looks like a random message-signature pair.
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This however does not protect a user against a signer when the user randomizes
a pair obtained from the signer. We thus explicitly require that an adaption
of any valid (not necessarily honestly generated) signature is distributed like a
fresh signature.

Definition 10 (Perfect Adaption of Signatures). SPS-EQ on (G∗
i )

� per-
fectly adapts signatures if for all tuples (sk, pk,M, σ, μ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗
i )

� μ ∈ Zp
∗

ChgRepR(M,σ, μ, pk) and (μM,SignR(μM, sk)) are identically distributed.

We now show the relation between Definitions 9 and 10. The following is proven
analogously to the proof of class-hiding of Scheme 1 in [29].

Proposition 1. Let SPS-EQ be an SPS-EQ scheme on (G∗
i )

�, � > 1, with perfect
adaption of signatures. If M ←R [M ]R is computationally indistinguishable from
M ←R (G∗

i )
� then SPS-EQ is class-hiding.

Corollary 1. If the DDH assumption holds in Gi then any SPS-EQ scheme on
(G∗

i )
� satisfying Definition 10 is class-hiding (Definition 9).

We note that the converse is not true, as witnessed by Scheme 2: it satisfies
class-hiding, but the discrete logs of (R1, R2) contained in a signature σ have
the same ratio as those of (R̃1, R̃2) from the output of ChgRepR.

Maliciously Chosen Keys. Whereas Definition 10 strengthens Definition 9 in
that it considers maliciously generated signatures, the next definition strengthens
this further by considering maliciously generated public keys. As there might not
even be a corresponding signing key, we cannot compare the outputs of ChgRepR
to those of SignR. We therefore require that ChgRepR outputs a random element
that satisfies verification.

Definition 11 (Perfect Adaption Under Malicious Keys). SPS-EQ on
(G∗

i )
� perfectly adapts signatures under malicious keys if for all tuples

(pk,M, σ, μ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗
i )

� μ ∈ Zp
∗

we have that ChgRepR(M,σ, μ, pk) outputs (μM, σ′) such that σ′ is a random
element in the space of signatures, conditioned on VerifyR(μM, σ′, pk) = 1.

Proposition 2. Scheme 1, from [29], satisfies both Definitions 10 and 11.

Proof (sketch). For any M ∈ (G∗
1)

� and pk ∈ (G∗
2)

�, let (xi)i∈[�] be s.t. pk =
(xiP̂ )i∈[�]. A signature (Z, Y, Ŷ ) ∈ G1 ×G

∗
1 ×G

∗
2 satisfying VerifyR(M, (Z, Y, Ŷ ),

pk) = 1 must be of the form (Z = y
∑

xiMi, Y = 1
y P, Ŷ = 1

y P̂ ) for some y ∈ Zp
∗.

ChgRepR outputs σ′ = (yψ
∑

xiμMi,
1

yψ P, 1
yψ P̂ ), which is a random element in

G1 × G
∗
1 × G

∗
2 satisfying VerifyR(M,σ′, pk) = 1. ��
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3.3 From SPS-EQ to (Rerandomizable) SPS Schemes

We now show how any EUF-CMA-secure SPS-EQ scheme that signs equivalence
classes of (G∗

i )
�+1 with � > 0 can be turned into an EUF-CMA-secure SPS

scheme signing vectors of (G∗
i )

�. (We note that SPS schemes typically allow
messages from G1 and/or G2, which is preferable when used in combination
with Groth-Sahai proofs.) The transformation works by embedding messages
(Mi)i∈[�] ∈ (G∗

i )
� into (G∗

i )
�+1 as M ′ = ((Mi)i∈[�], P ) and signing M ′. To verify

a signature σ on a message (Mi)i∈[�] ∈ (G∗
i )

� under key pk, one checks whether
VerifyR(((Mi)i∈[�], P ), σ, pk) = 1.

What we have done is to allow only one single representative of each class,
namely the one with P as its last element, a procedure we call normalization.
EUF-CMA of the SPS-EQ states that no adversary can produce a signature on
a message from an unqueried class, which therefore implies EUF-CMA of the
resulting SPS scheme.

Moreover, from any SPS-EQ with perfect adaption of signatures the above
transformation yields a rerandomizable SPS scheme, since signatures can be
rerandomized by running ChgRepR for μ = 1 (Definition 10 guarantees that this
outputs a random signature). This also means that the lower bounds for SPS
over Type-3 groups given by Abe et al. in [4,5] carry over to SPS-EQ: any SPS
must use at least 2 PPEs for verification and must have at least 3 signature
elements, which cannot be from the same group. Moreover, EUF-CMA security
of optimal (that is, 3-element-signature) SPS-EQ schemes cannot be reduced to
non-interactive assumptions.

Finally, let us investigate the possibility of SPS-EQ in the Type-1 and
Type-2 pairing setting and implied lower bounds. Class-hiding requires the DDH
assumption to hold on the message space. This excludes the Type-1 setting, while
in Type-2 settings the message space must be (G∗

1)
�. In [6] Abe et al. identified

the following lower bounds for Type-2 SPS schemes with messages in G1: 2 PPEs
for verification and 3 group elements for signatures. The above transformation
converts a Type-2 SPS-EQ into a Type-2 SPS, hence these optimality criteria
apply to Type-2 SPS-EQ schemes as well.

Implications. Applying the above transformation to the SPS-EQ scheme
from [29] (Scheme 1) yields a perfectly rerandomizable SPS scheme in Type-3
groups with constant-size signatures of unilateral length-� message vectors and
public keys of size � + 1. Scheme 1 is optimal as it only uses 2 PPEs and its sig-
natures consist of 3 bilateral group elements. Hence, by [5] there is no reduction
of its EUF-CMA security to a non-interactive assumption and the generic group
model proof in [29] is the best one can achieve.

Applying our transformation to Scheme 2 yields a new standard-model SPS
construction for unilateral length-� message vectors in Type-3 groups. It has
constant-size signatures (4 G1 + 1 G2 elements), a public key of size � + 3 and
uses 2 PPEs for verification; it is therefore almost as efficient as the best known
direct SPS construction from non-interactive assumptions in [4], whose signa-
tures consist of 3 G1 + 1 G2 elements. Scheme 2 is partially rerandomizable [3],
whereas the scheme in [4] is not.
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4 Blind Signatures from SPS-EQ

We first present the abstract model for blind signature schemes. Security is
defined by unforgeability and blindness and was initially studied in [36,43] and
then strengthened in [26,45].

Definition 12 (Blind Signature Scheme). A blind signature scheme BS con-
sists of the following PPT algorithms:

KeyGenBS(1κ), on input κ, returns a key pair (sk, pk). The security parameter κ
is also an (implicit) input to the following algorithms.

(UBS(m, pk),SBS(sk)) are run by a user and a signer, who interact during exe-
cution. UBS gets input a message m and a public key pk and SBS has input
a secret key sk. At the end UBS outputs σ, a signature on m, or ⊥ if the
interaction was not successful.

VerifyBS(m,σ, pk) is deterministic and given a message-signature pair (m,σ) and
a public key pk outputs 1 if σ is valid on m under pk and 0 otherwise.

A blind signature schemeBSmust satisfy correctness, unforgeability and blindness.

Definition 13 (Correctness). A blind signature scheme BS is correct if
for all κ ∈ N, all (sk, pk) ← KeyGenBS(1κ), all messages m and σ ←
(UBS(m, pk),SBS(sk)) it holds that VerifyBS(m,σ, pk) = 1.

Definition 14 (Unforgeability). BS is unforgeable if for all PPT algorithms
A having access to a signer oracle, there is a negligible function ε(·) such that:

Pr
[
(sk, pk) ← KeyGenBS(1κ),
(m∗

i , σ
∗
i )k+1

i=1 ←A(·,SBS(sk))(pk)
:

m∗
i �= m∗

j ∀i, j ∈ [k+1], i �= j ∧
VerifyBS(m∗

i , σ
∗
i , pk)=1 ∀i ∈ [k+1]

]
≤ ε(κ),

where k is the number of completed interactions with the oracle.

There are several flavors of blindness. The strongest definition is blindness in the
malicious signer model [1,42], which allows the adversary to create pk, whereas
in the honest-signer model the key pair is set up by the experiment. We prove
our construction secure under the stronger notion, which was also considered by
the recent round-optimal standard-model constructions [30,31].

Definition 15 (Blindness). BS is called blind if for all PPT algorithms A with
one-time access to two user oracles, there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎢⎢⎣

b ←R {0, 1}, (pk,m0,m1, st) ← A(1κ),
st ← A(UBS(mb,pk),·)(1),(UBS(m1−b,pk),·)(1)(st),
Let σb and σ1−b be the resp. outputs of UBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) ← (⊥,⊥),
b∗ ← A(st, σ0, σ1)

: b∗ = b

⎤
⎥⎥⎥⎥⎦

− 1
2

≤ ε(κ).
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4.1 Construction

Our construction uses commitments to the messages and SPS-EQ to sign these
commitments and to perform blinding and unblinding. Signing an equivalence
class with an SPS-EQ scheme lets one derive a signature for arbitrary repre-
sentatives of this class without knowing the private signing key. This concept
provides an elegant way to realize a blind signing process as follows.

The signer’s key contains an element Q under which the obtainer makes a
Pedersen commitment C = mP + rQ to the message m. (Since the commitment
is perfectly hiding, the signer can be aware of q with Q = qP .) The obtainer
then forms a vector (C,P ), which can be seen as the canonical representative
of equivalence class [(C,P )]R. Next, she picks s ←R

Zp
∗ and moves (C,P ) to a

random representative (sC, sP ), which hides C. She sends (sC, sP ) to the signer
and receives an SPS-EQ signature on it, from which she can derive a signature
on the original message (C,P ), which she can publish together with an opening
of C. As verification will check validity of the SPS-EQ signature on a message
ending with P , the unblinding is unambiguous.

Let us now discuss how the user opens the Pedersen commitment C = mP +
rQ. Publishing (m, r) directly would break blindness of the scheme (a signer
could link a pair M = (D,S), received during signing, to a signature by checking
whether D = mS + rqS). We therefore define a tweaked opening, for which we
include Q̂ = qP̂ in addition to Q = qP in the signer’s public key. We define
the opening as (m, rP ), which can be checked via the pairing equation e(C −
mP, P̂ ) = e(rP, Q). This opening is still computationally binding under the
co-DHI∗1 assumption (in contrast to standard Pedersen commitments, which are
binding under the discrete-log assumption). Hiding of the commitment still holds
unconditionally, and we will prove the constructed blind-signature scheme secure
in the malicious-signer model without requiring a trusted setup.

The scheme is presented as Scheme 3. (Note that for simplicity the blind
signature contains T = rQ instead of C.) Correctness follows by inspection.

4.2 Security

Theorem 2. If the underlying SPS-EQ scheme is EUF-CMA secure and the
co-DHI∗1 assumption holds then Scheme 3 is unforgeable.

The proof, which is given in the full version, follows the intuition that a forger
must either forge an SPS-EQ signature on a new commitment or open a commit-
ment in two different ways. The reduction has a natural security loss proportional
to the number of signing queries.

Blindness. For the honest-signer model, blindness follows from the DDH
assumption and perfect adaption of signatures (Definition 10) of the underly-
ing SPS-EQ scheme. Let Q ← qP and let q be part of the signing key, and let
(P, rP, sP, tP ) be a DDH instance. In the blindness game we compute M as
(m · sP + q · tP, sP ). When the adversary returns a signature on M , we must
adapt it to the unblinded message—which we cannot do as we do not know the
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KeyGenBS(1κ): Compute BG ← BGGenR(1κ), (sk, pkR) ←R KeyGenR(BG, � = 2),
pick q ←R Zp

∗ and set Q ← qP , Q̂ ← qP̂ . Output (sk, pk = (pkR, Q, Q̂)).

U (1)
BS (m, pk): Given pk = (pkR, Q, Q̂) and m ∈ Zp, compute BG ← BGGenR(1κ). If

Q = 0G1 or e(Q, P̂ ) �= e(P, Q̂) then return ⊥; else choose s ←R Zp
∗ and r ←R Zp

s.t. mP + rQ �= 0G1 and output

M ← (s(mP + rQ), sP ) st ← (BG, pkR, Q, M, r, s)

SBS(M, sk): Given M ∈ (G∗
1)

2 and secret key sk, output π ← SignR(M, sk).

U (2)
BS (st, π): Parse st as (BG, pkR, Q, M, r, s). If VerifyR(M, π, pkR) = 0, return ⊥.

Run ((mP +rQ, P ), σ) ← ChgRepR(M, π, 1
s
, pkR) and output τ ← (σ, rP, rQ).

VerifyBS(m, τ, pk): Given m ∈ Zp
∗, blind signature τ = (σ, R, T ) and pk =

(pkR, Q, Q̂), with Q �= 0G1 and e(Q, P̂ ) = e(P, Q̂), output 1 if the follow-
ing holds and 0 otherwise.

VerifyR((mP + T, P ), σ, pkR) = 1 e(T, P̂ ) = e(R, Q̂)

Scheme 3. Blind signature scheme from SPS-EQ

blinding factor s. By perfect adaption however, an adapted signature is distrib-
uted as a fresh signature on the unblinded message, so, knowing the secret key,
we can compute a signature σ on (m · P + q · rP, P ) and return the blind signa-
ture (σ, rP, q · rP ). If the DDH instance was real, i.e., t = s · r, then we perfectly
simulated the game; if t was random then the adversary’s view during issuing
was independent of m.

For blindness in the malicious-signer model, we have to deal with two obsta-
cles. (1) We do not have access to the adversarially generated signing key,
meaning we cannot recompute the signature on the unblinded message. (2) The
adversarially generated public-key values Q, Q̂ do not allow us to embed a DDH
instance for blinding and unblinding.

We overcome (1) by using the adversary A itself as a signing oracle by rewind-
ing it. We first run A to obtain a signature on (s′(mP+rQ), s′P ), which, knowing
s′, we can transform into a signature on (mP +rQ, P ). We then rewind A to the
point after outputting its public key and run it again, this time embedding our
challenge. In the second run we cannot transform the received signature, instead
we use the signature from the first run, which is distributed identically, due to
perfect adaption under malicious keys (Definition 11) of the SPS-EQ scheme.

To deal with the second obstacle, we use an interactive variant of the DDH
assumption: Instead of being given P, rP, sP and having to distinguish rsP from
random, the adversary, for some Q of its choice, is given rP, rQ, sP and must
distinguish rsQ from random.

Definition 16 (Assumption 1). Let BGGen be a bilinear-group generator that
outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ). We assume that for all PPT
algorithms A there is a negligible function ε(·) such that:
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Pr

⎡

⎣

b ←R {0, 1}, BG = BGGenR(1κ)

(st, Q, Q̂) ← A(BG), r, s, t ←R Zp

b∗ ←A(st, rP, rQ, sP, ((1−b)·t + b·rs)Q)

:
e(Q, P̂ ) = e(P, Q̂)

b∗ = b

⎤

⎦− 1

2
≤ ε(κ) .

Proposition 3. The assumption in Definition 16 holds in generic groups and
reaches the optimal, quadratic simulation-error bound.

Theorem 3. If the underlying SPS-EQ scheme has perfect adaption of signa-
tures under malicious keys and Assumption 1 holds then Scheme 3 is blind.

The proofs can be found in the full version.

4.3 Discussion

Basing Our Scheme on Non-interactive Assumptions. Fischlin and
Schröder [27] show that the unforgeability of a blind-signature scheme cannot
be based on non-interactive hardness assumptions if (1) the scheme has 3 moves
or less, (2) its blindness holds statistically and (3) from a transcript one can
efficiently decide whether the interaction yielded a valid blind signature. Our
scheme satisfies (1) and (3), whereas blindness only holds computationally.

They extend their result in [27] to computationally blind schemes that meet
the following conditions: (4) One can efficiently check whether a public key has a
matching secret key; this is the case in our setting because of group-membership
tests and pairings. (5) Blindness needs to hold relative to a forgery oracle. As
written in [27], this does e.g. not hold for Abe’s scheme [2], where unforgeability
is based on the discrete-log problem and blindness on the DDH problem.

This is the case in our construction too (as one can forge signatures by solv-
ing discrete logarithms), hence the impossibility result does not apply to our
scheme. Our blind signature construction is black-box from any SPS-EQ with
perfect adaption under malicious keys (Definition 11). However, the only known
such scheme is the one from [29], which is EUF-CMA secure in the generic-group
model, that is, it is based on an interactive assumption. Plugging this scheme
into Scheme 3 yields a round-optimal blind signature scheme with unforgeability
under this interactive assumption and co-DHI∗1, and blindness (under adversar-
ially chosen keys) under Assumption 1 (Definition 16), which is also interactive.

To construct a scheme under non-interactive assumptions, we would thus
have to base blindness on a non-interactive assumption; and find an SPS-EQ
scheme satisfying Definition 11 whose unforgeability is proven under a non-
interactive assumption.

Efficiency of the Construction. When instantiating our blind-signature con-
struction with the SPS-EQ scheme from [29] (given as Scheme 1), which we
showed optimal, this yields a public key size of 1 G1 + 3 G2, a communication
complexity of 4 G1 + 1 G2 and a signature size of 4 G1 + 1 G2 elements. For a
80-bit security setting, a blind signature has thus 120 Bytes.

The most efficient scheme from standard assumptions is based on DLIN [30].
Ignoring the increase of the security parameter due to complexity leveraging,
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their scheme has a public key size of 43 G1 elements, communication complexity
18 log2 q+41 G1 elements (where, e.g., we have log2 q = 155 when assuming that
the adversary runs in ≤ 280 steps) and a signature size of 183 G1 elements.

4.4 Round-Optimal Partially Blind Signatures

Partially blind signatures are an extension of blind signatures, where messages
contain common information γ, which is agreed between the user and the signer.
This requires slight modifications to the unforgeability and blindness notions:
An adversary breaks unforgeability if after k signing queries it outputs k + 1
distinct valid message-signature pairs for the same common information γ∗. In
the partial-blindness game m0 and m1 must have the same common information
γ to prevent the adversary from trivially winning the game. (Formal definitions
for partially blind signatures can be found in the full version.)

Construction. We construct a round-optimal partially blind signature scheme
PBS = (KeyGenPBS, (UPBS,SPBS),VerifyPBS) secure in the standard model from
an SPS-EQ scheme SPS-EQ by modifying Scheme 3 as follows. To include com-
mon information γ ∈ Zp

∗, SPS-EQ is set up for � = 3. On input M ←
(s(mP + rQ), sP ), SPBS returns a signature for M ← (s(mP + rQ), γ · sP, sP )
and U (2)

PBS additionally checks correctness of the included γ and returns ⊥ if this is
not the case. Otherwise, it runs ((mP + rQ, γP, P ), σ) ← ChgRepR(M,π, 1

s , pk)
and outputs signature τ ← (σ, rP, rQ) for message m and common information
γ. For this construction we obtain the following, whose proofs are analogous to
those for Scheme 3.

Theorem 4. If SPS-EQ is EUF-CMA secure and the co-DHI∗1 assumption
holds, then the resulting partially blind signature scheme is unforgeable.

Theorem 5. If SPS-EQ has perfect adaption under malicious keys and Assump-
tion 1 holds, then the resulting partially blind signature scheme is partially blind.

5 One-Show Anonymous Credentials from SPS-EQ

Baldimtsi and Lysyanskaya [8] introduced blind signatures with attributes and
show that they directly yield a one-show anonymous credential system in the vein
of Brands [15]. In contrast to Brands’ original construction, their construction
relies on a provably secure three-move blind signature scheme (in the ROM).
In this section we show how to construct two-move blind signatures on message
vectors, which straightforwardly yield anonymous one-show credentials that are
secure in the standard model.

5.1 Blind Signatures on Message Vectors

Our construction BSV of round-optimal blind signatures on message vectors
m ∈ Z

n
p simply replaces the Pedersen commitment mP +rQ in Scheme 3 with a
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generalized Pedersen commitment
∑

i∈[n] miPi +rQ. Thus, KeyGenBSV, on input
1κ, n, additionally outputs generators (Pi)i∈[n] and VerifyBSV(m, (σ,R, T ), pk)
checks VerifyR((

∑
i∈[n] miPi + T, P ), σ, pkR) = 1 and e(T, P̂ ) = e(R, Q̂). Due to

space constraints, the construction BSV is detailed in the full version, where we
also show the following.

Theorem 6. If the underlying SPS-EQ scheme is EUF-CMA secure and the
co-DHI∗1 assumption holds then BSV is unforgeable.

Theorem 7. If the underlying SPS-EQ scheme has perfect adaption under mali-
cious keys and Assumption 1 holds then BSV is blind.

5.2 Anonymous Credentials Light

The intuition behind our construction is comparable to [8], which roughly works
as follows. In the registration phase, a user registers (once) a generalized Peder-
sen commitment C to her attributes and gives a zero-knowledge (ZK) proof of
the opening (some attributes may be opened and some may remain concealed).
In the preparation and validation phase, the user engages in a blind-signature-
with-attributes protocol for some message m (which is considered the credential
serial number) and another commitment C ′. C ′ is a so-called combined commit-
ment obtained from C and a second credential-specific commitment provided
by the user. Finally, the credential is the user output of a blind-signature-with-
attributes protocol resulting in a signature on message m and a so-called blinded
Pedersen commitment C ′′. The latter contains the same attributes as C, but is
unlinkable to C and C ′. Showing a credential amounts to presenting C ′′ along
with the blind signature and proving in ZK a desired relation about attributes
within C ′′.

Our construction combines BSV with efficient ZK proofs and is conceptually
simpler than the one in [8]. For issuing, the user sends the issuer a blinded version
M ← (sC, sP ) of a commitment C to the user’s attributes (M corresponds to the
blinded generalized Pedersen commitment in [8]). In addition, the user engages
in a ZK proof (denoted PoK) proving knowledge of an opening of C (potentially
revealing some of the committed attributes). The user obtains a BSV-signature
π on M and turns it into a blind signature σ for commitment C by running
((C,P ), σ) ← ChgRepR(M,π, 1

s , pk). The credential consists of C, σ and the
randomness r used to produce the commitment. It is showed by sending C and
σ and proving in ZK a desired relation about attributes within C.

For ease of presentation, we only consider selective attribute disclosure below.
We note that proofs for a rich class of relations [17,20,24] w.r.t. generalized Ped-
erson commitments, as used by our scheme, could be used instead. Henceforth,
we denote by S the index set of attributes to be shown and by U those to
be withheld. During a showing, a ZK proof of knowledge for a commitment
C =

∑
i∈[n] miPi + rQ to attributes (mi)i∈[n] amounts to proving

PoKP

{(
(αj)j∈U , β

)
: C =

∑
i∈S miPi +

∑
j∈U αjPj + βQ

}
. (1)
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The proof for a blinded commitment (A,B) = (sC, sP ) during the obtain phase
is done as follows.

PoKBP

{(
(αj)j∈U , β, γ

)
:

A =
∑

i∈S miHi +
∑

j∈U αjHj + βHQ ∧∧
i∈[n](Hi = γPi) ∧ HQ = γQ ∧ B = γP

}
. (2)

Here the representation is with respect to bases Hi = sPi, HQ = sQ, which are
published and guaranteed to be correctly formed by PoKBP.2

Construction. As we combine scheme BSV with ZK proofs, we need the fol-
lowing conceptual modifications. The signature τ ← (σ,R, T ) reduces to τ ← σ,
since the user provides a ZK-PoK proving knowledge of the randomness r in C.
Moreover, verification takes C instead of m as verifiers have only access to the
commitment. Consequently, VerifyBSV of scheme BSV only runs VerifyR.

Setup. The issuer runs (sk, pk) ← KeyGenBSV(1κ, n), where n is the number of
attributes in the system, and publishes pk as her public key.

Issuing. A user with attribute values m runs (M, st) ← U (1)

BSV(m, pk; (s, r))
(where (s, r) is the chosen randomness), sends the blinded commitment M =
(sC, sP ) to the issuer and gives a proof PoKBP from (2) that M commits to
m (where the sets U and S depend on the application). The issuer returns
π ← SBSV(M, sk) and after running σ ← U (2)

BSV(st, π) (the outputs rP and rQ are
not needed), the user holds a credential (C, σ, r).

Showing. Assume a user with credential (C, σ, r) to the attributes m = (mi)i∈[n]

wants to conduct a selective showing of attributes with a verifier who holds the
issuer’s public key pk. They engage in a proof PoKP from (1) and the verifier addi-
tionally checks the signature for the credential by running VerifyBSV(C, σ, pk). If
both verifications succeed, the verifier accepts the showing.

Let us finally note that there is no formal security model for one-show credentials.
Theorem 2 in [8] informally states that a secure commitment scheme together
with a blind signature scheme with attributes implies a one-show credential
system. Using the same argumentation as [8], our construction yields a one-show
credential system in the standard model.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments.
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45. Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679.
Springer, Heidelberg (2012)

46. Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups, and
round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 133–150. Springer, Heidelberg (2012)



Programmable Hash Functions Go Private:
Constructions and Applications
to (Homomorphic) Signatures

with Shorter Public Keys

Dario Catalano1, Dario Fiore2, and Luca Nizzardo2(B)

1 Dipartimento di Matematica e Informatica,
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Abstract. We introduce the notion of asymmetric programmable hash
functions (APHFs, for short), which adapts Programmable Hash Func-
tions, introduced by Hofheinz and Kiltz at Crypto 2008, with two main
differences. First, an APHF works over bilinear groups, and it is asym-
metric in the sense that, while only secretly computable, it admits an
isomorphic copy which is publicly computable. Second, in addition to the
usual programmability, APHFs may have an alternative property that we
call programmable pseudorandomness. In a nutshell, this property states
that it is possible to embed a pseudorandom value as part of the func-
tion’s output, akin to a random oracle. In spite of the apparent limitation
of being only secretly computable, APHFs turn out to be surprisingly
powerful objects. We show that they can be used to generically imple-
ment both regular and linearly-homomorphic signature schemes in a sim-
ple and elegant way. More importantly, when instantiating these generic
constructions with our concrete realizations of APHFs, we obtain: (1)
the first linearly-homomorphic signature (in the standard model) whose
public key is sub-linear in both the dataset size and the dimension of
the signed vectors; (2) short signatures (in the standard model) whose
public key is shorter than those by Hofheinz-Jager-Kiltz from Asiacrypt
2011, and essentially the same as those by Yamada, Hannoka, Kunihiro,
(CT-RSA 2012).

1 Introduction

Programmable Hash Functions. Programmable Hash Functions (PHFs)
were introduced by Hofheinz and Kiltz [26] as an information theoretic tool to
“mimic” the behavior of a random oracle in finite groups. In a nutshell, a PHF
H is an efficiently computable function that maps suitable inputs (e.g., binary
strings) into a group G, and can be generated in two different, indistinguish-
able, ways. In the standard modality, H hashes inputs X into group elements
H(X) ∈ G. When generated in trapdoor mode, a trapdoor allows one to express
c© International Association for Cryptologic Research 2015
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every output in terms of two (user-specified) elements g, h ∈ G, i.e., one can
compute two integers aX , bX such that H(X) = gaX hbX . Finally, H is program-
mable in the sense that it is possible to program the behavior of H so that
its outputs contain (or not) g with a certain probability. More precisely, H is
said (m,n)-programmable if for all disjoint sets of inputs {X1, . . . , Xm} and
{Z1, . . . , Zn}, the joint probability that ∀i, aXi

= 0 and ∀j, aZj
�= 0 is signif-

icant (e.g., 1/poly(λ)). Programmability turns out to be particularly useful in
several security proofs. For instance, consider a security proof where a signature
on H(X) can be simulated as long as aX = 0 (i.e., g does not appear) while a
forgery on H(Z) can be successfully used if aZ �= 0 (i.e., g does appear). Then
one could rely on an (m, 1)-programmability of H to “hope” that all the queried
messages X1, . . . , Xm are simulatable, i.e., ∀i, aXi

= 0, while the forgery message
Z is not, i.e., aZ �= 0. PHFs essentially provide a nice abstraction of the so-called
partitioning technique used in many cryptographic proofs.

1.1 Our Contribution

Asymmetric Programmable Hash Functions. We introduce the notion of
asymmetric programmable hash functions (asymmetric PHFs) which modifies
the original notion of PHFs [26] in two main ways. First, an asymmetric PHF
H maps inputs into a bilinear group G and is only secretly computable. At the
same time, an isomorphic copy of H can be publicly computed in the target group
GT , i.e., anyone can compute e(H(X), g).1 Second, when generated in trapdoor
mode, for two given group elements g, h ∈ G such that h = gz, the trapdoor
allows one to write every H(X) as gcX(z) for a degree-d polynomial cX(z).

We define two main programmability properties of asymmetric PHFs. The
first one is an adaptation of the original programmability notion, and it says
that H is (m,n, d)-programmable if it is (m,n)-programmable as before except
that, instead of looking at the probability that aX = 0, one now looks at whether
cX,0 = 0, where cX,0 is the coefficient of the degree-0 term of the polynomial cX(·)
obtained using the trapdoor.2 The second programmability property is new and
is called programmable pseudo-randomness. Roughly speaking, programmable
pseudo-randomness says that one can program H so that the values gcX,0 look
random to any polynomially-bounded adversary who observes the public hash
key and the outputs of H on a set of adaptively chosen inputs. This functionality
turns out to be useful in security proofs where one needs to cancel some random
values for simulation purposes (we explain this in slightly more detail later in
the introduction). In other words, programmable pseudo-randomness provides
another random-oracle-like property for standard model hash functions, that is
to “hide” a PRF inside the hash function. This is crucial in our security proofs,
and we believe it can have further applications.

Applications. In principle, secretly computable PHFs seem less versatile than
regular PHFs. In this work, however, we show that, for applications such as
digital signatures, asymmetric PHFs turn out to be more powerful than their
1 Because of such asymmetric behavior we call these functions “asymmetric”.
2 For d = 1, this is basically the same programmability of [26].
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publicly computable counterparts. Specifically, we show how to use asymmetric
PHFs to realize both regular and linearly-homomorphic signatures secure in the
standard model. Next, we show efficient realizations of asymmetric PHFs that,
when plugged in our generic constructions, yield new and existing schemes that
improve the state-of-the-art in the following way. First, we obtain the first lin-
early homomorphic signature scheme, secure in the standard model, achieving a
public key which is sub-linear in both the dataset size and the dimension of the
signed vectors. Second, we obtain regular signature schemes, matching the effi-
ciency of the ones in [31], thus providing the shortest signatures in the standard
model with a public key shorter than in [25].

In the following we elaborate more on these solutions.

Linearly-Homomorphic Signatures with Short Public Key in the Stan-
dard Model. Imagine a user Alice stores one or more datasets D1,D2, . . . , D�

on a cloud server. Imagine also that some other user, Bob, is allowed to perform
queries over Alice’s datasets, i.e., to compute one or more functions F1, . . . , Fm

over any Di. The crucial requirement here is that Bob wants to be ensured
about the correctness of the computation’s results Fj(Di), even if the server is
not trusted. An obvious way to do this (reliably) is to ask Alice to sign all her
data Di = m

(i)
1 , . . . ,m

(i)
N . Later, Bob can check the validity of the computa-

tion by (1) downloading the full dataset locally, (2) checking all the signatures
and (3) redoing the computation from scratch. Efficiency-wise, this solution is
clearly undesirable in terms of bandwidth, storage (Bob has to download and
store potentially large amount of data) and computation (Bob has to recompute
everything on his own).

A much better solution comes from the notion of homomorphic signatures
[9]. These allow to overcome the first issue (bandwidth) in a very elegant way.
Using such a scheme, Alice can sign m1, . . . ,mN , thus producing signatures
σ1, . . . , σN , which can be verified exactly as ordinary signatures. In addition, the
homomorphic property provides the extra feature that, given σ1, . . . , σN and
some function F : MN → M, one can compute a signature σF,y on the value
y = F (m1, . . . ,mN ) without knowledge of the secret signing key sk. In other
words, for a set of signed messages and any function F , it is possible to provide
y = F (m1, . . . ,mN ) along with a signature σF,y vouching for the correctness of
y. The security of homomorphic signatures guarantees that creating a signature
σF,y∗ for a y∗ �= F (m1, . . . ,mN ) is computationally hard, unless one knows sk.

To solve the second issue and allow Bob to verify efficiently such signatures
(i.e., by spending less time than that required to compute F ), one can use homo-
morphic signatures with efficient verification, recently introduced in [15].

The notion of homomorphic signature was first introduced by Johnson et al.
[28]. Since then several schemes have been proposed. The first schemes were homo-
morphic only for linear functions over vector spaces [1–3,8,10,12–14,17,19,30]
and have nice applications to network coding and proofs of retrievability.
More recent works proposed realizations that can support more expressive
functionalities such as polynomials [9,15] or general circuits of bounded polyno-
mial depth [11,21].
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Despite the significant research work in the area, it is striking that all the
existing homomorphic signature schemes that are proven secure in the standard
model [1–3,11,13–15,17,21,30] suffer from a public key that is at least linear in
the size N of the signed datasets. On one hand, the cost of storing such large
public key can be, in principle, amortized since the key can be re-used for multiple
datasets. On the other hand, this limitation still represents a challenging open
question from both a theoretical and a practical point of view. From a practical
perspective, a linear public key might be simply unaffordable by a user Bob who
has limited storage capacity. From a theoretical point of view, considered the
state-of-the-art, it seems unclear whether achieving a standard-model scheme
with a key of length o(N) is possible at all. Technically speaking, indeed, all
these schemes in the standard model somehow rely on a public key as large as
one dataset for simulation purposes. This essentially hints that any solution for
this problem would require a novel proof strategy.

Our Contribution. We solve the above open problem by proposing the first
standard-model homomorphic signature scheme that achieves a public key whose
size is sub-linear in the maximal size N of the supported datasets. Slightly more
in detail, we show how to use asymmetric PHFs in a generic fashion to construct
a linearly-homomorphic signature scheme based on bilinear maps that can sign
datasets, each consisting of up to N vectors of dimension T . The public key of
our scheme mainly consists of the public hash keys of two asymmetric PHFs. By
instantiating these using (one of) our concrete realizations we obtain a linearly-
homomorphic signature with a public key of length O(

√
N +

√
T ). We stress

that ours is also the first linearly-homomorphic scheme where the public key is
sub-linear in the dimension T of the signed vectors. Concretely, if one considers
applications with datasets of 1 million of elements and a security parameter of
128bits, previous solutions (e.g., [2,14]) require a public key of at least 32 MB,
whereas our solution simply works with a public key below 100 KB.

On the Power of Secretly-Computable PHFs. The main technical idea
nderlying this result is a new proof technique that builds on asymmetric hash
functions with programmable pseudo-randomness. We illustrate the technique
via a toy example inspired by our linearly-homomorphic signature scheme. The
scheme works over asymmetric bilinear groups G1,G2, and with an asymmetric
PHF H : [N ] → G1 that has programmable pseudo-randomness w.r.t. d = 1. To
sign a random message M ∈ G1 w.r.t. a label τ , one creates the signature

S = (H(τ) · M)1/z

where z is the secret key. The signature is linearly-homomorphic – S1S2 =
(H(τ1)H(τ2)M)1/z, for M = M1M2 – and it can be efficiently checked using a
pairing – e(S, gz

2) =
∏

i e(H(τi), g2)e(M, g2) – and by relying on that e(H(·), g2)
is publicly computable.

The first interesting thing to note is that having H secretly computable is
necessary: if H is public the scheme could be easily broken, e.g., choose M∗ =
H(τ)−1. Let us now show how to prove its security assuming that we want to
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do a reduction to the following assumption: given g1, g2, g
z
2 , the challenge is

to compute W 1/z ∈ G1 for W �= 1 of adversarial choice. Missing gz
1 seems to

make hard the simulation of signatures since M,S ∈ G1. However, we can use
the trapdoor generation of H for d = 1 (that for asymmetric pairings takes
g1, h1 = gy1

1 , g2, h2 = gy2
2 and allows to express H(X) = g

cX(y1,y2)
1 ), by plugging

h1 = 1, h2 = gz
2 . This allows to write every output as H(τ) = g

cτ (z)
1 = g

cτ,0+cτ,1z
1 .

Every signing query with label τ is simulated by setting Mτ = g−cτ,0 and Sτ =
(gcτ,1

1 ). The signature is correctly distributed since (1) Sτ = (H(τ) · Mτ )1/z, and
(2) Mτ looks random thanks to the programmable pseudo-randomness of H. To
conclude the proof, assume that the adversary comes up with a forgery M∗, S∗

for label τ∗ such that τ∗ was already queried, and let Ŝ, M̂ be the values in
the simulation of the signing query for τ∗. Now, Ŝ = (H(τ∗) · M̂)1/z holds by
correctness, while S∗ = (H(τ∗) · M∗)1/z holds for M∗ �= M̂ by definition of
forgery. Then (M∗/M̂, S∗/Ŝ) is clearly a solution to the above assumption. This
essentially shows that we can sign as many M ’s as the number of τ ’s, that is N .
And by using our construction H = Hsqrt this is achievable with a key of length
O(

√
N). Let us stress that the above one is an incomplete proof sketch, that we

give only to illustrate the core ideas of using programmable pseudo-randomness.
We defer the reader to Sect. 4 for a precise description of our signature scheme
and its security proof.

Short Signatures from Bilinear Maps in the Standard Model. Hofheinz
and Kiltz [26] proposed efficient realizations of PHFs, and showed how to use
them to obtain black-box proofs of several cryptographic primitives. Among
these applications, they use PHFs to build generic, standard-model, signature
schemes from the Strong RSA problem and the Strong q-Diffie Hellman prob-
lem. Somewhat interestingly, these schemes (in particular the ones over bilinear
groups) can enjoy very short signatures. The remarkable contribution of the
generic construction in [26] is that signatures can be made short by reducing the
size ρ of the randomness used (and included) in the signature so that ρ can go
beyond the birthday bound. Precisely, by using an (m, 1)-programmable hash
function, m can control the size of the randomness so that the larger is m, the
smaller is the randomness. However, although this would call for (m, 1)-PHFs
with a large m, the original work [26] described PHFs realizations that are only
(2, 1)-programmable.3

Later, Hofheinz, Jager and Kiltz [25] showed constructions of (m, 1)-PHFs for
any m ≥ 1. By choosing a larger m, these new PHFs realizations yield the shortest
known signatures in the standard model. On the negative side, however, this also
induces much larger public keys. For instance, to obtain a signature of 302 bits
from bilinear maps, they need a public key of more than 8MB. The reason of such
inefficiency is that their realizations of (deterministic) (m, 1)-PHFs have keys of
length O(m2�), where � is the bit size of the inputs. In a subsequent work, Yamada
et al. [31] improved on this aspect by proposing a signature scheme with a pub-
lic key of length O(m

√
�). Their solution followed a different approach: instead of

3 [26] gives also a (1, poly)-programmable PHF which allows for different applications.
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relying on (m, 1)-PHFs they obtained the signature by applying the Naor’s trans-
formation [7] to a new identity-based key encapsulation mechanism (IBKEM).

Our Results. Our results are mainly two. First, we revisit the generic signature
constructions of [25,26] in order to work with asymmetric (m, 1, d)-PHFs. Our
generic construction is very similar to that in [25,26], and, as such, it inherits
the same property: the larger is m, the shorter can be the randomness.

Second we show the construction of an asymmetric PHF, Hacfs, that is (m, 1, 2)-
programmable and has a hash key consisting of O(m

√
�) group elements. By

plugging Hacfs into our generic construction we immediately obtain standard-
model signatures that achieve the same efficiency as the scheme of Yamada
et al. [31]. Namely, they are the shortest standard model signature schemes with
a public key of length O(m

√
�), that concretely allows for signatures of 302bits

and a public key of 50KB. One of our two schemes recover the one in [31]. In this
sense we provide a different conceptual approach to construct such signatures.
While Yamada et al. obtained this result by going through an IBKEM, our
solution revisits the original Hofheinz-Kiltz’s idea of applying programmable
functions.

Other Related Work. Hanaoka, Matsuda and Schuldt [23] show that there
cannot be any black-box construction of a (poly, 1)-PHF. The latter result has
been overcome by the recent work of Freire et al. [18] who propose a (poly, 1)-
PHF based on multilinear maps. The latter result is obtained by slightly chang-
ing the definition of PHFs in order to work in the multilinear group setting.
Their (poly, 1)-PHF leads to several applications, notably standard-model ver-
sions (over multilinear groups) of BLS signatures, the Boneh-Franklin IBE, and
identity-based non-interactive key-exchange. While the notion of PHFs in the
multilinear setting of [18] is different from our asymmetric PHFs (with the main
difference being that ours are secretly computable), it is worth noting that the
two notions have some relation. As we discuss in the full version of our paper, our
asymmetric PHFs indeed imply PHFs in the bilinear setting (though carrying
the same degree of programmability).

The idea of using bilinear maps to reduce the size of public keys was used
previously by Haralambiev et al. [24] in the context of public-key encryption,
and by Yamada et al. [31] in the context of digital signatures. We note that our
solutions use a similar approach in the construction of APHFs, which however
also include the important novelty of programmable pseudorandomness, that
turned out to be crucial in our proofs for the linearly-homomorphic signature.

2 Preliminaries

Bilinear Groups and Complexity Assumptions. Let λ ∈ N be a security
parameter and let G(1λ) be an algorithm which takes as input the security
parameter and outputs the description of (asymmetric) bilinear groups bgp =
(p,G1,G2,GT , e, g1, g2) where G1, G2 and GT are groups of the same prime order
p > 2λ, g1 ∈ G1 and g2 ∈ G2 are two generators, and e : G1 × G2 → GT is an
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efficiently computable, non-degenerate, bilinear map, and there is no efficiently
computable isomorphism between G1 and G2. We call such an algorithm G a
bilinear group generator. In the case G1 = G2, the groups are said symmetric,
else they are said asymmetric.

In our work we rely on specific complexity assumptions in such bilinear
groups: q-Strong Diffie-Hellman [6], q-Diffie-Hellman-Inversion [5], and External
DDH in G1. For lack of space, we defer the interested reader to the corresponding
references or the full version of our paper for their definition.

Finally, we introduce the following static assumption over asymmetric bilin-
ear groups, that we call “Flexible Diffie-Hellman Inversion” (FDHI) for its sim-
ilarity to Flexible Diffie-Hellman [22]. As we discuss in the full version of our
paper, FDHI is hard in the generic bilinear group model.

Definition 1 (Flexible Diffie-Hellman Inversion Assumption). Let G be
a generator of asymmetric bilinear groups, and let bgp = (p,G1,G2,GT , g1, g2, e)
$← G(1λ). We say that the Flexible Diffie-Hellman Inversion (FDHI) Assumption
is ε-hard for G if for random z, r, v

$← Zp and for every PPT adversary A:

AdvFDHI
A (λ) = Pr[W ∈ G1 \ {1G1} : (W,W

1
z )←A(g1, g2, gz

2 , g
v
2 , g

z
v
1 , gr

1, g
r
v
1 )] ≤ ε

3 Asymmetric Programmable Hash Functions

In this section we present our new notion of asymmetric programmable hash
functions.

Let bgp = (p,G1,G2,GT , g1, g2, e) be a family of asymmetric bilinear groups
induced by a bilinear group generator G(1λ) for a security parameter λ ∈ N.4 An
asymmetric group hash function H : X → G1 consists of three PPT algorithms
(H.Gen,H.PriEval,H.PubEval) working as follows:

H.Gen(1λ, bgp) → (sek, pek): on input the security parameter λ ∈ N and a
bilinear group description bgp, the PPT key generation algorithm outputs a
(secret) evaluation key sek and a (public) evaluation key pek.

H.PriEval(sek,X) → Y ∈ G1: given the secret evaluation key sek and an input
X ∈ X , the deterministic evaluation algorithm returns an output Y = H(X)
∈ G1.

H.PubEval(pek,X) → Ŷ ∈ GT : on input the public evaluation key pek and an
input X ∈ X , the public evaluation algorithm outputs a value Ŷ ∈ GT such
that Ŷ = e(H(X), g2).

For asymmetric hash functions satisfying the syntax described above, we
define two different properties that model their possible programmability.

The first property is a generalization of the notion of programmable hash
functions of [26,27] to our asymmetric setting (i.e., where the function is only

4 Our definition can be easily adapted to work in symmetric bilinear groups where
G1 = G2.
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secretly-computatble), and to the more specific setting of bilinear groups. The
basic idea is that it is possible to generate the function in a trapdoor-mode
that allows one to express every output of H in relation to some specified group
elements. In particular, the most useful fact of programmability is that for two
arbitrary disjoint sets of inputs X̄, Z̄ ⊂ X , the joint probability that some of
these group elements appear in H(Z),∀Z ∈ Z̄ and do not appear in H(X),∀X ∈
X̄ is significant.

Definition 2 (Asymmetric Programmable Hash Functions). An asym-
metric group hash function H = (H.Gen,H.PriEval,H.PubEval) is (m,n, d, γ, δ)-
programmable if there exist an efficient trapdoor generation algorithm H.TrapGen
and an efficient trapdoor evaluation algorithm H.TrapEval such that:

Syntax: H.TrapGen(1λ, bgp, ĝ1, ĥ1, ĝ2, ĥ2) → (td, pek) takes as input the secu-
rity parameter λ, bilinear group description bgp and group elements ĝ1, ĥ1 ∈
G1, ĝ2, ĥ2 ∈ G2, and it generates a public hash key pek along with a trapdoor
td. H.TrapEval(td,X) → cX takes as input the trapdoor information td and an
input X ∈ X , and outputs a vector of integer coefficients cX = (c0, . . . , cd′) ∈
Z

d′
of a 2-variate polynomial cX(y1, y2) of degree ≤ d.

Correctness: For all group elements ĝ1, ĥ1 ∈ G1, ĝ2, ĥ2 ∈ G2 such that
ĥ1 = ĝy1

1 and ĥ2 = ĝy2
2 for some y1, y2 ∈ Zp, for all trapdoor keys

(td, pek) $← H.TrapGen(1λ, ĝ1, ĥ1, ĝ2, ĥ2), and for all inputs X ∈ X , if cX ←
H.TrapEval(td,X), then

H(X) = ĝ
cX(y1,y2)
1

Statistically-Close Trapdoor Keys: For all generators ĝ1, ĥ1 ∈ G1, ĝ2, ĥ2 ∈
G2 and for all (sek, pek) $← H.Gen(1λ), (td, pek′) $← H.TrapGen(1λ, ĝ1, ĥ1, ĝ2,

ĥ2), the distribution of the public keys pek and pek′ is within statistical dis-
tance γ.

Well Distributed Logarithms: For all ĝ1, ĥ1 ∈ G1, ĝ2, ĥ2 ∈ G2, all keys
(td, pek) $← H.TrapGen(1λ, ĝ1, ĥ1, ĝ2, ĥ2), and all inputs X1, . . . , Xm ∈ X and
Z1, . . . , Zn ∈ X such that Xi �= Zj for all i, j, we have

Pr[cX1,0 = · · · = cXm,0 = 0 ∧ cZ1,0, . . . , cZn,0 �= 0] ≥ δ

where cXi
←H.TrapEval(td,Xi) and cZj

←H.TrapEval(td, Zj), and cXi,0 (resp.
cZj ,0) is the coefficient of the term of degree 0.

If γ is negligible and δ is noticeable we simply say that H is (m,n, d)-
programmable. Furthermore, if m (resp. n) is an arbitrary polynomial in λ, then
we say that H is (poly, n, d)-programmable (resp. (m, poly, d)-programmable).
Finally, if H admits trapdoor algorithms that satisfy only the first three properties,
then H is said simply (d, γ)-programmable. Note that any H that is (m,n, d, γ, δ)-
programmable is also (d, γ)-programmable.

Programmable Pseudo-randomness. The second main programmability
property that we define for asymmetric hash functions is quite different from
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the previous one. It is called programmable pseudo-randomness, and very intu-
itively it says that, when using the hash function in trapdoor mode, it is possible
to “embed” a PRF into it. More precisely, the trapdoor algorithms satisfy pro-
grammable pseudo-randomness if they allow to generate keys such that even by
observing pek and H(X) for a bunch of inputs X, then the elements g

cX,0
1 look

random. The formal definition follows:

Definition 3 (Asymmetric Hash Functions with Programmable Pseu-
dorandomness). An asymmetric hash function H = (H.Gen,H.PriEval,
H.PubEval) has (d, γ, ε)-programmable pseudorandomness if there exist efficient
trapdoor algorithms H.TrapGen,H.TrapEval that satisfy the properties of syntax,
correctness, and γ-statistically-close trapdoor keys as in Definition 2, and addi-
tionally satisfy the following property with parameter ε:

Pseudorandomness: Let b ∈ {0, 1} and let ExpPRH-b
A,H (λ) be the following

experiment between an adversary A and a challenger.
1. Generate bgp

$← G(1λ), and run A(bgp), that outputs two generators
h1 ∈ G1, h2 ∈ G2.

2. Compute (td, pek) $← H.TrapGen(1λ, g1, h1, g2, h2) and run A(pek) with
access to the following oracle:
– If b = 0, A is given O(·) that on input X ∈ X returns H(X) = g

cX(y1,y2)
1

and g
cX,0
1 , where cX←H.TrapEval(td,X);

– If b = 1, A is given R(·) that on input X ∈ X returns H(X) = g
cX(y1,y2)
1

and grX
1 , for a randomly chosen rX

$← Zp (which is unique for every
X ∈ X ).

3. At the end the adversary outputs a bit b′, and b′ is returned as the output
of the experiment.

Then we say that H.TrapGen,H.TrapEval satisfy pseudo-randomness for ε, if
for all PPT A

∣∣∣Pr[ExpPRH-0
A,H (λ) = 1] − Pr[ExpPRH-1

A,H (λ) = 1]
∣∣∣ ≤ ε

where the probabilities are taken over all the random choices of TrapGen, the
oracle R and the adversary A.

Other Variants of Programmability. Here we define two other variants of
the programmability notion given in Definition 2. Formal definitions appear in
the full version of our paper.

Weak Programmability. We consider a weak version of the above program-
mability property in which one fixes at key generation time the n inputs Zj on
which cZj ,0 �= 0.

Remark 1. We remark that for those (deterministic) functions H whose domain
X has polynomial size any weak programmability property for an arbitrary m =
poly trivially holds with δ = 1.
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Degree-d Programmability. In our work we also consider a variant of
the above definition in which the property of well distributed logarithms is
stated with respect to the degree-d coefficients of the polynomials generated by
H.TrapEval. In this case, we say that H is (m,n, d, γ, δ)-degree-d-programmable.

3.1 An Asymmetric PHF Based on Cover-Free Sets

In this section we present the construction of an asymmetric hash function,
Hacfs, based on cover-free sets. Our construction uses ideas similar to the ones
used by Hofheinz, Jager and Kiltz [25] to design a (regular) programmable hash
function. Our construction extends these ideas with a technique that allows us
to obtain a much shorter public key. Concretely, for binary inputs of size �, the
programmable hash function Hcfs in [25] is (m, 1)-programmable with a hash key
of length O(�m2). In contrast, our new construction Hacfs is (m, 1)-programmable
with a hash key of length O(m

√
�). While such improvement is obtained at the

price of obtaining the function in the secret-key model, our results of Sect. 5 show
that asymmetric programmable hash are still useful to build short bilinear-map
signatures, whose efficiency, in terms of signature’s and key’s length matches
that of state-of-the-art schemes [31].

Before proceeding with describing our function, below we recall the notion
of cover-free sets.

Cover-Free Families. If S, V are sets, we say that S does not cover V if
S �⊇ V . Let T,m, s be positive integers, and let F = {Fi}i∈[s] be a family of
subsets of [T ]. A family F is said to be m-cover-free over [T ], if for any subset
I ⊆ [s] of cardinality at most m, then the union ∪i∈IFi does not cover Fj for
all j /∈ I. More formally, for any I ⊆ [s] such that |I| ≤ m, and any j /∈ I,
∪i∈IFi �⊇ Fj . Furthermore, we say that F is w-uniform if every subset Fi in the
family have size w. In our construction, we use the following fact from [16,29]:

Lemma 1 ([16,29]). There is a deterministic polynomial time algorithm that,
on input integers s = 2� and m, returns w, T, F where F = {Fi}i∈[s] is a w-
uniform, m-cover-free family over [T ], for w = T/4m and T ≤ 16m2�.

The Construction of Hacfs. Let G(1λ) be a bilinear group generator, let bgp =
(p,G1,G2,GT , g1, g2, e) be an instance of bilinear group parameters generated
by G. Let � = �(λ) and m = m(λ) be two polynomials in the security parameter.
We set s = 2�, T = 16m2�, and w = T/4m as for Lemma 1, and define t = �√T �.
Note that every integer k ∈ [T ] can be written as a pair of integers (i, j) ∈ [t]×[t]
using some canonical mapping. For the sake of simplicity, sometimes we abuse
notation and write (i, j) ∈ [T ] where i, j ∈ [t].

In the following we describe the asymmetric hash function Hacfs = (H.Gen,
H.PriEval,H.PubEval) that maps Hacfs : X → G1 where X = {0, 1}�. In particular,
every input X ∈ {0, 1}� is associated to a set Fi, i ∈ [2�], by interpreting X as
an integer in {0, . . . , 2� − 1} and by setting i = X + 1. We call FX such subset
associated to X.
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H.Gen(1λ, bgp): for i = 1 to t, sample αi, βi
$← Zp and compute Ai = gαi

1 , Bi =
gβi

2 . Finally, set sek = {αi, βi}t
i=1, pek = {Ai, Bi}t

i=1, and return (sek, pek).
H.PriEval(sek,X): first, compute the subset FX ⊆ [T ] associated to X ∈ {0, 1}�,

and then return
Y = g

∑

(i,j)∈FX
αiβj

1 ∈ G1

H.PubEval(pek,X): let FX ⊆ [T ] be the subset associated to X, and compute

Ŷ =
∏

(i,j)∈FX

e(Ai, Bj) = e(H(X), g2)

Theorem 1. Let G be a bilinear group generator. The hash function Hacfs

described above is an asymmetric (m,n, d, γ, δ)-programmable hash function with
n = 1, d = 2, γ = 0 and δ = 1/T .

We show a proof sketch by giving the description of the trapdoor algorithms.
A full proof showing that these algorithms satisfy the desired programmability
property appears in the full version.

H.TrapGen(1λ, bgp, ĝ1, ĥ1, ĝ2, ĥ2): first, sample ai, bi
$← Zp for all i ∈ [t], and pick

a random index τ
$← [T ]. Parse τ = (i∗, j∗) ∈ [t]× [t]. Next, set Ai∗ = ĝ1ĥ

ai∗
1 ,

Bj∗ = ĝ2ĥ
bj∗
2 , Ai = ĥai

1 , ∀i �= i∗, and Bj = ĥ
bj

2 , ∀j �= j∗. Finally, set
td = (τ, {ai, bi}t

i=1), pek = {Ai, Bi}t
i=1, and output (td, pek).

H.TrapEval(td,X): first, compute the subset FX ⊆ [T ] associated to X ∈ {0, 1}�,
and then return the coefficients of the degree-2 polynomial cX(y1, y2) =∑

(i,j)∈FX
αi(y1) · βj(y2), where every αi(y1) (resp. βj(y2)) is the discrete

logarithm of Ai (resp. Bj) in base ĝ1 (resp. ĝ2), viewed as a degree-1 poly-
nomial in the unknown y1 (resp. y2).

3.2 An Asymmetric PHF with Small Domain

In this section, we present the construction of an asymmetric hash function, Hsqrt,
whose domain is of polynomial size T . Hsqrt has a public key of length O(

√
T ),

and it turns out to be very important for obtaining our linearly-homomorphic
signature scheme with short public key presented in Sect. 4. Somewhat inter-
estingly, we show that this new function Hsqrt satisfies several programmability
properties, that make it useful in the context of various security proofs.

Let G(1λ) be a bilinear group generator, let T = poly(λ) and t = �√T �. The
hash function Hsqrt = (H.Gen,H.PriEval,H.PubEval) that maps Hsqrt : X → G1

with X = [T ] is defined as follows.

H.Gen(1λ, bgp): for i = 1 to t, sample αi, βi
$← Zp and compute Ai = gαi

1 , Bi =
gβi

2 . Finally, set sek = {αi, βi}t
i=1, pek = {Ai, Bi}t

i=1, and return(sek, pek).
H.PriEval(sek,X): first, write X ∈ [T ] as a pair of integer (i, j) ∈ [t] × [t], and

then return
Y = g

αiβj

1 ∈ G1



Programmable Hash Functions Go Private 265

H.PubEval(pek,X): let X = (i, j). The public evaluation algorithm returns

Ŷ = e(Ai, Bj) = e(H(X), g2)

Here we show that Hsqrt satisfies the programmable pseudo-randomness prop-
erty of Definition 3.

Theorem 2 (Programmable Pseudorandomness of Hsqrt). Let G1 be a
bilinear group of order p over which the XDDH assumption is ε′-hard. Then the
asymmetric hash function Hsqrt described above satisfies (2, 0, ε)-programmable
pseudo-randomness with ε = T · ε′. Furthermore, in the case when h1 = 1 ∈ G1

or h1 = g1, Hsqrt has (1, 0, ε)-programmable pseudo-randomness.

Proof. First, we describe the trapdoor algorithms:

H.TrapGen(1λ, g1, h1, g2, h2): first, sample ai, ri, si, bi
$← Zp for all i ∈ [t] and

then set Ai = hri
1 gai

1 , Bi = hsi
2 gbi

2 . Finally, set td = ({ai, ri, si, bi}t
i=1), pek =

{Ai, Bi}t
i=1, and output (td, pek).

H.TrapEval(td,X): let X = (i, j), and then return the coefficients of the degree-2
polynomial

cX(y1, y2) = (y1ri + ai)(y2sj + bj)

First, it is easy to see that the two algorithms satisfy the syntax and correctness
properties. Also, in the case h1 = 1 (i.e., y1 = 0) or h1 = g1 (i.e., y1 = 1), we
obtain a degree-1 polynomial cX(y2). Second, observe that each element Ai (resp.
Bi) in pek is a uniformly distributed group element in G1 (resp. G2), as in H.Gen,
hence γ = 0. Third, we show that the function satisfies the pseudo-randomness
property under the assumption that XDDH holds in G1. The main observation
is that for every X = (i, j), we have cX,0 = aibj where all the values bi are
uniformly distributed and information-theoretically hidden to an adversary who
only sees pek. In particular, this holds even if h1 = 1.

To prove the pseudo-randomness we make use of Lemma 2 below, which
shows that for a uniformly random choice of a, b

$← Z
t
p, c

$← Z
t×t
p the dis-

tributions (ga
1 , ga·b�

1 ) ∈ G
t×(t+1)
1 and (ga

1 , gc
1) ∈ G

t×(t+1)
1 are computationally

indistinguishable.

Lemma 2. Let a, b
$← Z

t
p, c

$← Z
t×t
p be chosen uniformly at random. If the

XDDH assumption is ε′-hard in G1, then for any PPT B it holds |Pr[B(ga
1 , ga·b�

1 )
= 1] − Pr[B(ga

1 , gc
1) = 1]| ≤ T · ε′.

We first show how to use Lemma 2 to prove that Hsqrt has programmable
pseudo-randomness. The proof of Lemma 2 appears in the full version.

Let A be an adversary that breaks the ε-programmable pseudo-randomness
of Hsqrt. We construct a simulator B that can distinguish the two distributions
(ga

1 , ga·b�
1 ) and (ga

1 , gc
1) described above with advantage greater than ε.

B’s input is a tuple (A′, C) ∈ G
t
1 × G

t×t
1 and its goal is to decide about

the distribution of C. First, B runs A(bgp) which outputs the generators h1, h2.
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B then samples two random vectors r,β
$← Z

t
p, computes B = gβ

2 ∈ G
t
2, A =

hr
1 · A′ ∈ G

t
1, sets pek = (A,B), and runs A(pek) Next, for every oracle query

(i, j) made by A, B simulates the answer by returning to A: H(i, j) = A
βj

i and
Ci,j . It is easy to see that if C = ga·b�

1 then B is perfectly simulating ExpPRH-0
A,Hsqrt

,
otherwise, if C is random and independent, then B is simulating ExpPRH-1

A,Hsqrt
. As

a final note, we observe that the above proof works even in the case h1 = 1. ��
In the following theorems (whose proofs appear in the full version of our paper)
we show that Hsqrt satisfies programmability with various parameters.

Theorem 3 ((poly, 0, 2)-programmability of Hsqrt). The asymmetric hash
function Hsqrt described above is (poly, 0, d, γ, δ)-programmable with d = 2, γ = 0
and δ = 1. Furthermore, in the case when either ĥ1 = ĝ1 or ĥ2 = ĝ2, Hsqrt is
(poly, 0, d, γ, δ)-programmable with d = 1, γ = 0 and δ = 1.

Theorem 4 (Weak (poly, 1, 2)-programmability of Hsqrt). The asymmetric
hash function Hsqrt described above is weakly (poly, 1, d, γ, δ)-programmable with
d = 2, γ = 0 and δ = 1.

Theorem 5 (Weak (poly, 1, 2)-degree-2-programmability of Hsqrt). The
asymmetric hash function Hsqrt described above is weakly (poly, 1, d, γ, δ)-degree-
2 programmable with d = 2, γ = 0 and δ = 1.

4 Linearly-Homomorphic Signatures with Short Public
Keys

In this section, we show a new linearly-homomorphic signature scheme that uses
asymmetric PHFs in a generic way. By instantiating the asymmetric PHFs with
our construction Hsqrt given in Sect. 3, we obtain the first linearly-homomorphic
signature scheme that is secure in the standard model, and whose public key
has a size that is sub-linear in both the dataset size and the dimension of the
signed vectors. Precisely, if the signature scheme supports datasets of maximal
size N and can sign vectors of dimension T , then the public key of our scheme
is of size O(

√
N +

√
T ). All previously existing constructions in the standard

model achieved only public keys of length O(N + T ). Furthermore, our scheme
is adaptive secure and achieves the interesting property of efficient verification
that allows to use the scheme for verifiable delegation of computation in the
preprocessing model [15].

4.1 Homomorphic Signatures for Multi-Labeled Programs

First we recall the definition of homomorphic signatures as presented in [15].
This definition extends the one by Freeman in [17] in order to work with the
general notion of multi-labeled programs [4,20].

Multi-Labeled Programs. A labeled program P is a tuple (f, τ1, ..., τn) such
that f : Mn → M is a function of n variables (e.g., a circuit) and τi ∈ {0, 1}∗
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is a label of the i-th input of f . Labeled programs can be composed as follows:
given P1, . . . ,Pt and a function g : Mt → M, the composed program P∗ is the
one obtained by evaluating g on the outputs of P1, . . . ,Pt, and it is denoted
as P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all the distinct labeled
inputs of P1, · · · Pt (all the inputs with the same label are grouped together and
considered as a unique input of P∗). Let fid : M → M be the identity function
and τ ∈ {0, 1}∗ be any label. We refer to Iτ = (fid, τ) as the identity program
with label τ . Note that a program P = (f, τ1, · · · , τn) can be expressed as the
composition of n identity programs P = f(Iτ1 , · · · , Iτ1).

A multi-labeled program PΔ is a pair (P,Δ) in which P = (f, τ1, · · · , τn)
is a labeled program while Δ ∈ {0, 1}∗ is a data set identifier. Given
(P1,Δ), . . . , (Pt,Δ) which has the same data set identifier Δ, and given a func-
tion g : Mt → M, the composed multi-labeled program P∗

Δ is the pair (P∗,Δ)
where P∗ = g(P1, · · · ,Pt), and Δ is the common data set identifier for all the
Pi. As for labeled programs, one can define the notion of a multi-labeled identity
program as I(Δ,τ) = ((fid, τ),Δ).

Definition 4 (Homomorphic Signatures). A homomorphic signature
scheme HSig consists of a tuple of PPT algorithms (KeyGen,Sign,Ver,Eval) sat-
isfying the following four properties: authentication correctness, evaluation cor-
rectness, succinctness and security.

KeyGen(1λ,L) the key generation algorithm takes as input a security parameter
λ, the description of the label space L (which fixes the maximum data set size
N), and outputs a public key vk and a secret key sk. The public key vk defines
implicitly a message space M and a set F of admissible functions.

Sign(sk,Δ, τ,m) the signing algorithm takes as input a secret key sk, a data set
identifier Δ, a label τ ∈ L a message m ∈ M, and it outputs a signature σ.

Ver(vk,PΔ,m, σ) the verification algorithm takes as input a public key vk, a
multi-labeled program PΔ = ((f, τ1, . . . , τn),Δ) with f ∈ F , a message m ∈
M, and a signature σ. It outputs either 0 (reject) or 1 (accept).

Eval(vk, f,σ) the evaluation algorithm takes as input a public vk, a function
f ∈ F and a tuple of signatures {σi}n

i=1 (assuming that f takes n inputs). It
outputs a new signature σ.

Authentication Correctness. The scheme HSig satisfies the authentica-
tion correctness property if for a given label space L, all key pairs (sk, vk) ←
KeyGen(1λ,L), any label τ ∈ L, data identifier Δ ∈ {0, 1}∗, and any signa-
ture σ ← Sign(sk,Δ, τ,m), Ver(vk, IΔ,τ ,m, σ) outputs 1 with all but negligible
probability.

Evaluation Correctness. Fix a key pair (vk, sk) $← KeyGen(1λ,L), a
function g : Mt → M, and any set of program/message/signature triples
{(Pi,mi, σi)}t

i=1 such that Ver(vk,Pi,mi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ =
g(P1, · · · ,Pt), and σ∗ = Eval(vk, g, (σ1, . . . , σt)), then Ver(vk,P∗,m∗, σ∗) = 1
holds with all but negligible probability.
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Succintness. A homomorphic signature scheme is said to be succint if, for a
fixed security parameter λ, the size of signatures depends at most logarithmically
on the data set size N .

Security. To define the security notion of homomorphic signatures we define
the following experiment HomUF-CMAA,HomSign(λ) between an adversary A and
a challenger C:

Key Generation C runs (vk, sk) $← KeyGen(1λ,L) and gives vk to A.
Signing Queries A can adaptively submit queries of the form (Δ, τ,m), where

Δ is a data set identifier, τ ∈ L, and m ∈ M. The challenger C proceeds
as follows: if (Δ, τ,m) is the first query with the data set identifier Δ, the
challenger initializes an empty list TΔ = ∅ for Δ. If TΔ does not already
contain a tuple (τ, ·), the challenger C computes σ

$← Sign(sk,Δ, τ,m), returns
σ to A and updates the list TΔ ← TΔ ∪ (τ,m). If (τ,m) ∈ TΔ then C replies
with the same signature generated before. If TΔ contains a tuple (τ,m′) for
some message m′ �= m, then the challenger ignores the query.

Forgery At the end A outputs a tuple (P∗
Δ∗ ,m∗, σ∗).

The experiment HomUF-CMAA,HomSign(λ) outputs 1 if the tuple returned by
A is a forgery, and 0 otherwise. To define what is a forgery in such a game we
recall the notion of well defined program with respect to a list TΔ [15].

Definition 5. A labeled program P∗ = (f∗, τ∗
1 , . . . , τ∗

n) is well defined with
respect to T ∗

Δ if ∃ m1, . . . ,mn s.t. (τ∗
i ,mi) ∈ TΔ∗ ∀i = 1, . . . , n, or if .

∃ i ∈ {1, · · · , n} s.t. (τi, ·) /∈ TΔ∗ and f∗({mj}(τj ,mj)∈TΔ∗ ∪ {m̃(τj ,·)/∈TΔ∗ }) does
not change for all possible choices of m̃j ∈ M.

Using this notion, it is then possible to define the three different types of
forgeries that can occur in the experiment HomUF-CMA:

Type 1: Ver(vk,P∗
Δ∗ ,m∗, σ∗) = 1 and TΔ∗ was not initialized in the game

Type 2: Ver(vk,P∗
Δ∗ ,m∗, σ∗) = 1, P∗ is well defined w.r.t. TΔ∗ and m∗ �=

f∗({mj}(τj ,mj)∈TΔ∗ )
Type 3: Ver(vk,P∗

Δ∗ ,m∗, σ∗) = 1 and P∗ is not well defined w.r.t. TΔ∗ .

Then we say that HSig is a secure homomorphic signature if for any PPT
adversary A, we have that Pr[HomUF-CMAA,HomSign(λ) = 1] ≤ ε(λ) where ε(λ)
is a negligible function.

Finally, we recall that, as proved by Freeman in [17], in a linearly-
homomorphic signatures scheme any adversary who outputs a Type 3 forgery
can be converted into one that outputs a Type 2 forgery.

Homomorphic Signatures with Efficient Verification. We recall the notion
of homomorphic signatures with efficient verification introduced in [15]. Infor-
mally, the property states that the verification algorithm can be split in two
phases: an offline phase where, given the verification key vk and a labeled pro-
gram P, one precomputes a concise key vkP ; an online phase in which vkP can
be used to verify signatures w.r.t. P and any dataset Δ. To achieve (amortized)
efficiency, the idea is that vkP can be reused an unbounded number of times,
and the online verification is cheaper than running P.
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4.2 Our Construction

Let Σ′ = (KeyGen′,Sign′,Ver′) be a regular signature scheme, and F : K ×
{0, 1}∗ → Zp be a pseudorandom function with key space K. Our linearly-
homomorphic signature scheme signs T -dimensional vectors of messages in Zp,
and supports datasets of size N , with both N = poly(λ) and T = poly(λ). Let
H = (H.Gen,H.PriEval,H.PubEval) and H′ = (H.Gen′,H.PriEval′,H.PubEval′) be
two asymmetric programmable hash functions such that H : [N ] → G1 and
H′ : [T ] → G1. We construct a homomorphic signature HSig = (KeyGen,Sign,
Ver,Eval) as follows:

KeyGen(1λ,L, T ). Let λ be the security parameter, L be a set of admissible labels
where L = {1, . . . , N}, and T be an integer representing the dimension of the
vectors to be signed. The key generation algorithm works as follows.
– Generate a key pair (vk′, sk′) $← KeyGen′(1λ) for the regular scheme.
– Run bgp

$← G(1λ) to generate the bilinear groups parameters bgp =
(p,G1,G2,GT , g1, g2, e).

– Choose a random seed K
$← K for the PRF FK : {0, 1}∗ → Zp.

– Run (sek, pek) $← H.Gen(1λ, bgp) and (sek′, pek′) $← H.Gen′(1λ, bgp) to gen-
erate the keys of the asymmetric hash functions.

– Return vk = (vk′, bgp, pek, pek′) and sk = (sk′,K, sek, sek′).
Sign(sk,Δ, τ,m). The signing algorithm takes as input the secret key sk, a data

set identifier Δ ∈ {0, 1}∗, a label τ ∈ [N ] and a message vector m ∈ Z
T
p , and

proceeds as follows:
1. Derive the integer z ← FK(Δ) using the PRF, and compute Z = gz

2 .
2. Compute σΔ ← Sign′(sk′,Δ|Z) to bind Z to the dataset identifier Δ.
3. Choose a random R

$← G1 and compute

S =

⎛
⎝H.PriEval(sek, τ) · R ·

T∏
j=1

H.PriEval′(sek′, j)mj

⎞
⎠

1/z

4. Return a signature σ = (σΔ, Z,R, S).
Essentially, the algorithm consists of two main steps. First, it uses the PRF
FK to derive a common parameter z which is related to the data set Δ, and it
signs the public part, Z = gz

2 , of this parameter using the signature scheme Σ′.
Second, it uses z to create the homomorphic component R,S of the signature,
such that S is now related to all (Δ, τ,m).

Eval(vk, f,σ). The public evaluation algorithm takes as input the public key
vk, a linear function f : Z

�
p → Zp described by its vector of coefficients

f = (f1, . . . , f�), and a vector σ of � signatures σ1, . . . , σ� where σi =
(σΔ,i, Zi, Ri, Si) for i = 1, . . . , �. Eval returns a signature σ = (σΔ, , Z,R, S)
that is obtained by setting Z = Z1, σΔ = σΔ,1, and by computing

R =
�∏

i=1

Rfi

i , S =
�∏

i=1

Sfi

i
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Ver(vk,PΔ,m, σ). Let PΔ = ((f, τ1, . . . , τ�),Δ) be a multi-labeled program such
that f : Z�

p → Zp is a linear function described by coefficients f = (f1, . . . , f�).
Let m ∈ Z

T
p be a message-vector and σ = (σΔ, Z,R, S) be a signature.

First, run Ver′(vk′,Δ|Z, σΔ) to check that σΔ is a valid signature for Z and
the dataset identifier Δ taken as input by the verification algorithm. If σΔ is
not valid, stop and return 0 (reject).
Otherwise, output 1 if and only if the following equation is satisfied

e(S,Z) =

(
�∏

i=1

H.PubEval(pek, τi)fi

)
·e(R, g2) ·

⎛
⎝

T∏
j=1

H.PubEval′(pek′, j)mj

⎞
⎠

Finally, we describe the algorithms for efficient verification:

VerPrep(vk,P). Let P = (f, τ1, . . . , τ�) be a labeled program for a linear function
f : Z�

p → Zp. The algorithm computes H =
∏�

i=1 H.PubEval(pek, τi)fi , and
returns the concise verification key vkP = (vk′, bgp,H, pek′).

EffVer(vkP ,Δ,m, σ). The online verification is the same as Ver except that in the
verification equation the value H has been already computed in the off-line
phase (and is included in vkP).

Clearly, running the combination of VerPrep and EffVer gives the same result
as running Ver, and EffVer’s running time is independent of f ’s complexity �.

The following theorem states the security of the scheme. Formal proofs of
correctness and security appear in the full version of our paper.

Theorem 6. Assume that Σ′ is an unforgeable signature scheme, F is a
pseudorandom function, and G is a bilinear group generator such that: H has
(1, γ, ε)-programmable pseudorandomness; H′ is weakly (poly, 1, 2, γ′, δ′)-degree-
2-programmable, weakly (poly, 1, 2, γ′, δ′)-programmable and (poly, 0, 1, γ′, δ′)-
programmable; the 2-DHI and the FDHI assumptions hold. Then HSig is a secure
linearly-homomorphic signature scheme.

We note that our scheme HSig can be instantiated by instantiating both H
and H′ with two different instances of our programmable hash Hsqrt described in
Sect. 3.2. As one can check in Sect. 3.2, Hsqrt allows for the multiple programma-
bility modes required in our Theorem6. Let us stress that requiring the same
function to have multiple programmability modes is not contradictory, as such
modes do not have to hold simultaneously. It simply means that for the same
function there exist different pairs of trapdoor algorithms each satisfying pro-
grammability with different parameters.5

5 Short Signatures with Shorter Public Keys
from Bilinear Maps

In this section we describe how to use asymmetric PHFs to construct in a generic
fashion standard-model signature schemes over bilinear groups. We propose two
5 We also stress that, by definition, the outputs of these trapdoor algorithms are

statistically indistinguishable.
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constructions that are provably-secure under the q-Strong Diffie-Hellman [6] and
the q-Diffie-Hellman [5] assumptions. These constructions are the analogues of
the schemes in [26] and [25] respectively. The basic idea behind the constructions
is to replace a standard (m, 1)-PHF with an asymmetric (m, 1, d)-PHF. In fact,
in this context, having a secretly-computable H does not raise any issue when
using H in the signing procedure as the signer already uses a secret key. At the
same time, for verification purposes, computing the (public) isomorphic copy of
H in the target group is also sufficient. Our proof confirms that the (m, 1, d)-
programmability can still be used to control the size of the randomness in the
same way as in [25,26]. One difference in the security proof is that the schemes in
[25,26] are based on the q-(S)DH assumption, where q is the number of signing
queries made by the adversary, whereas ours have to rely on the (q+d−1)-(S)DH
problem. Since our instantiations use d = 2, the difference (when considering
concrete security) is very minor.

When plugging into these generic constructions our new asymmetric PHF,
Hacfs, described in Sect. 3.1, which is (m, 1, 2)-programmable, we obtain schemes
that, for signing �-bits messages, allow for public keys of length O(m

√
�) as

in [31].
Below we describe the scheme based on q-SDH. For lack of space, the one

based on q-DH (which uses similar ideas) appears in the full version. As discussed
in [25], the advantage of the scheme from q-DH compared to the one from q-SDH
is to be based on a weaker assumption.

A q-Strong Diffie-Hellman Based Solution. Here we revisit the q-SDH
based solution of [26]. The signature ΣqSDH = (KeyGen,Sign,Ver) is as follows:

KeyGen(1λ). Let λ be the security parameter, and let � = �(λ) and ρ = ρ(λ)
be arbitrary polynomials. Our scheme can sign messages in {0, 1}� using ran-
domness in {0, 1}ρ. The key generation algorithm works as follows:
– Run bgp

$← G(1λ) to generate the bilinear groups parameters bgp =
(p,G1,G2,GT , g1, g2, e).

– Run (sek, pek) $← H.Gen(1λ, bgp) to generate the keys of the asymmetric
hash function.

– Choose a random x
$← Z

∗
p and set X ← gx

2 . Return vk = (bgp, pek,X) and
sk = (sek, x).

Sign(sk,M). The signing algorithm takes as input the secret key sk, and a message
M ∈ {0, 1}�. It starts by generating a random r

$← {0, 1}ρ. Next, it computes
σ = H.PriEval(sek,M)

1
x+r and outputs (σ, r).

Ver(vk,M, (σ, r)). To check that (σ, r) is a valid signature, check that r is of
length ρ and that e(σ,X · gr

2) = H.PubEval(pek,M).

We state the security of the scheme in the following theorem (whose proof
appears in the full version). We note that for simplicity our proof assumes an
asymmetric (m, 1, d)-PHF for d = 2, which matches our realization. A general-
ization of the theorem for a generic d can be immediately obtained, in which
case one would rely on the (q + d − 1)-SDH assumption.
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Theorem 7. Assume that G is a bilinear group generator such that the (q +1)-
SDH assumption holds in G1 and H is (m, 1, 2, γ, δ)-programmable, then ΣqSDH

is a secure signature scheme. More precisely, let B be an efficient (probabilistic)
algorithm that runs in time t, asks (up to) q signing queries and produces a valid
forgery with probability ε, then there exists an equally efficient algorithm A that
confutes the (q+1)-SDH assumption with probability ε′ ≥ δ

q

(
ε − γ − q

p − qm+1

2ρm

)
.
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Abstract. Structure-preserving signatures (SPS) are pairing-based sig-
natures where all the messages, signatures and public keys are group
elements, with numerous applications in public-key cryptography. We
present new, simple and improved SPS constructions under standard
assumptions via a conceptually different approach. Our constructions
significantly narrow the gap between existing constructions from stan-
dard assumptions and optimal schemes in the generic group model.

1 Introduction

Structure-preserving signatures (SPS) [4] are pairing-based signatures where all
the messages, signatures and public keys are group elements, verified by test-
ing equality of products of pairings of group elements. They are useful building
blocks in modular design of cryptographic protocols, in particular in combina-
tion with non-interactive zero-knowledge (NIZK) proofs for algebraic relations in
a group [29]. Structure-preserving signatures have found numerous applications
in public-key cryptography, such as blind signatures [4,25], group signatures
[4,25,27,28,40], homomorphic signatures [38], delegatable anonymous creden-
tials [11,24], compact verifiable shuffles [18], network encoding [9], oblivious
transfer [26] and e-cash [13].

A systematic treatment of structure-preserving signatures was initiated by
Abe et al. in 2010 [4], building upon previous constructions in [17,26,27]. In the
past few years, substantial and rapid progress were made in our understand-
ing of the construction of structure-preserving signatures, yielding both efficient
schemes under standard assumptions [2–4,30] as well as “optimal” schemes in
the generic group model with matching upper and lower bounds on the efficiency
of the schemes [5–8,10]. The three important measures of efficiency in structure-
preserving signatures are (i) signature size, (ii) public key size (also per-user
public key size for applications like delegatable credentials where we need to
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sign user public keys), and (iii) number of pairing equations during verification,
which in turn affects the efficiency of the NIZK proofs.

One of the main advantages of designing cryptographic protocols starting
from structure-preserving signatures is that we can obtain efficient protocols that
are secure under standard cryptographic assumptions without the use of random
oracles. Ideally, we want to build efficient SPS based on the well-understood
k-Lin assumption, which can then be used in conjunction with Groth-Sahai proofs
[29] to derive protocols based on the same assumption. In contrast, if we start
with SPS that are only secure in the generic group model, then the ensuing
protocols would also only be secure in the generic group model, which offer little
theoretical or practical benefits over alternative – and typically more efficient
and pairing-free – solutions in the random oracle model.

Unfortunately, there is still a big efficiency gap between existing construc-
tions of structure-preserving signatures from the k-Lin assumption and the opti-
mal schemes in the generic group model. For instance, to sign a single group
element, the best construction under the SXDH (1-Lin) assumption contains 11
and 21 group elements in the signature and the public key [2], whereas the best
construction in the generic group model contains 3 and 3 elements (moreover,
this is “tight”) [5]. The goal of this work is to bridge this gap.

1.1 Our Results

We present clean, simple, and improved constructions of structure-preserving
signatures via a conceptually novel approach. Our constructions are secure under
the k-Lin assumption; under the SXDH assumption (i.e., k = 1), we achieve 7
group elements in the signature.

Previous constructions use fairly distinct techniques, resulting in a large fam-
ily of schemes with incomparable efficiency and security guarantees. We obtain
a family of schemes that simultaneously match – and in many settings, improve
upon – the efficiency, assumptions, and security guarantees of all of the previ-
ous constructions. Figure 1 summarizes the efficiency of our constructions. (The
work of [41] is independent and concurrent.) Our schemes are fully explicit and
simple to describe. Furthermore, our schemes have a natural derivation from a
symmetric-key setting, and the derivation even extends to a modular and intu-
itive proof of security.

We highlight two results:

– For Type III asymmetric pairings, under the SXDH assumption, we can sign a
vector of n elements in G1 with 7 group elements. This improves upon the prior
SXDH-based scheme in [2] which requires 11 group elements, and matches the
signature size of the scheme in [4] based on (non-standard) q-type assumptions;

– For Type I symmetric pairings, under the 2-Lin assumption, we can sign a
vector of n elements with 10 group elements, improving upon that in [3] which
requires 14 group elements.

In each of these cases, we also improve the size of the public key, as well as the
number of equations used in verification. Finally, we extend our schemes to obtain
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Fig. 1. Structure-preserving signatures for message space M = G
n1
1 ×G

n2
2 or M = G

n

if G = G1 = G2. Notation (x, y) means x elements in G1 and y elements in G2.
RE(Dk) denotes the number of group elements needed to represent [A]. In case of
k-Lin, we have RE(Dk) = k. Recall that k-Lin is a special case of Dk-MDDH (deci-
sional assumptions) and k-KerLin is a special case of Dk-KerMDH (search assump-
tions), for Dk = Lk, the linear distribution. For k = 1 (SXDH) and n1 = 1, we obtain
(|pk|, |σ|, #equations) = (7, 7, 3) for M = G

n1
1 . For comparison, the known lower bound

[5,6] is (|σ|, #equations) ≥ (4, 2).

efficient SPS for signing bilateral messages in G
n1
1 × G

n2
2 for Type III asymmet-

ric pairings. Particularly, under the SXDH assumption, our scheme can sign mes-
sages in G

n1
1 × G

n2
2 with 10 group elements in the signature, 4 pairing product

equations for verification, and (n1 + n2 + 8) group elements in the public key.
Prior SXDH-based schemes from [2] required 14 group elements in the signature,
5 pairing product equations, and (n1 + n2 + 22) elements in the public key.

At a high level, our constructions and techniques borrow heavily from the
recent work of Kiltz and Wee [36] which addresses a different problem of con-
structing pairing-based non-interactive zero-knowledge arguments [29,33]. We
exploit recent developments in obtaining adaptively secure identity-based encryp-
tion (IBE) schemes, notably the use of pairing groups to “compile” a symmetric-
key primitive into an asymmetric-key primitive [14,19,44], and the dual system
encryption methodology for achieving adaptive security against unbounded col-
lusions [37,43]. Along the way, we have to overcome a new technical hurdle which
is specific to structure-preserving cryptography.

1.2 Our Approach: SPS from MACs

We provide an overview of our construction of structure-preserving signatures.
Throughout this overview, we fix a pairing group (G1,G2,GT ) with e : G1×G2 →
GT , and rely on implicit representation notation for group elements, as explained
in Sect. 2.1.1 As a warm-up, we explain in some detail how to build a one-time
structure-preserving signature scheme, following closely the exposition in [36].
While we do not obtain significant improvement in this setting (nonetheless,
we do simplify and generalize prior one-time schemes [4]), we believe it already

1 For fixed generators g1 and g2 of G1 and G2, respectively, and for a matrix M ∈ Z
n×t
q ,

we define [M]1 := gM
1 and [M]2 := gM

2 (componentwise).
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illustrates the conceptual simplicity and novelty of our approach over previous
constructions of structure-preserving signatures.

Warm-Up: One-Time SPS. We want to build a one-time signature scheme
for signing a vector [m]1 ∈ G

n
1 of group elements. The starting point of our

construction is a one-time “structure-preserving” information-theoretic MAC
for vectors of group elements. We pick a secret MAC key K ←r Z

(n+1)×(k+1)
q

known to the verifier (k ≥ 1 is a parameter of the security assumption), and the
MAC on [m]1 is given by

σ := [(1,m�)K]1 ∈ G
1×(k+1)
1

Verification is straight-forward: check if

σ
?= (1,m�)K (1)

Security follows readily from the fact that for any pair of distinct vectors m,m∗ ∈
Z

n
q , the vectors (1,m�) and (1,m∗�) are linearly independent, and therefore the

quantities
(1,m�)K, (1,m∗�)K ∈ Z

(k+1)
q

are two independently random values; this holds even if m∗ �= m is chosen
adaptively after seeing (1,m�)K.

To achieve public verifiability as is required for a signature scheme, we publish
a “partial commitment” to K in G2 as given by [A]2, [KA]2, where the choice
of A ∈ Z

(k+1)×k
q is defined by the security assumption. The signature on [m]1 is

the same as the MAC value, and verification is the natural analogue of Eq. (1)
with the pairing:

e(σ, [A]2)
?= e([(1,m�)]1, [KA]2)

As [A]2, [KA]2 leaks additional information about the secret MAC key K, we can
only prove computational adaptive soundness. In particular, we rely on the Dk-
KerMDH Assumption [42], which stipulates that given a random [A]2 drawn from
a matrix distribution Dk, it is hard to find a non-zero [s]1 ∈ G

k+1
1 such that s�A =

0; this is implied by the Dk-MDDH Assumption [22], a generalization of the k-Lin
Assumption.2 Therefore, for any ([m∗]1, [σ]1) produced by an efficient adversary,

σA = (1,m∗�)KA =⇒ (σ − (1,m∗�)K)A = 0
using assumption

=⇒ σ − (1,m∗�)K = 0 =⇒ σ = (1,m∗�)K.

That is, security of the signature reduces to the security for the MAC, with a little
more work to account for the leakage from KA. Moreover, adaptive security for
the MAC (which is easy to analyze via a purely information-theoretic argument)
carries over to adaptive security for the signature.

General SPS. To achieve unforgeability against multiple signature queries, we
move from a one-time MAC to a randomized MAC that is secure against multiple
2 We refer the reader to Sect. 2.2 for a more detailed treatment of the assumptions.
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queries. As shown in [14,36], we know that under the Dk-MDDH assumption in
G1, the following construction is a randomized PRF

τ �→ (
[t�(K0 + τK1)]1, [t�]1

) ∈ (G1×(k+1)
1 )2, (2)

where K0,K1 is the seed and t is the randomness. We now use the randomized
PRF to additively mask the one-time MAC value [(1,m�)K]1. The new ran-
domized MAC takes as input a vector of group elements [m]1 ∈ G

n
1 as before,

picks a random tag τ ∈ Zq and a fresh t and outputs

(σ1, σ2) := ([(1,m�)K]1 + [t�(K0 + τK1)]1 , [t�]1 ) ∈ (G1×(k+1)
1 )2 (3)

where K and K0,K1 ←r Z
(k+1)×(k+1)
q constitute the key. The boxed terms

correspond to the additive mask from Eq. (2). We want to argue that an adver-
sary upon obtaining MAC values on Q message vectors [m1]1, . . . , [mQ]1, cannot
compute the MAC value on a new message vector [m∗]1. First, we may assume
that the MAC values on [m1]1, . . . , [mQ]1 use distinct tags τ1, . . . , τQ. Then, we
consider two cases:

– case 1: the adversary uses a fresh tag for [m∗]1. This immediately breaks the
pseudorandomness of the security of the construction in Eq. (2);

– case 2: the adversary reuses tag τi. Again, we know from pseudorandomness
that the MAC values on the remaining Q−1 tags do not leak any information
K; therefore, the only leakage about K in the Q queries comes from (1,m�

i )K.
We may then rely on the security of the one-time MAC to argue that given
only (1,m�

i )K, it is hard to compute (1,m∗�)K.

As before, to obtain a signature scheme, we then publish [A]2, [KA]2, [K0A]2,
[K1A]2 for public verification:

e(σ1, [A]2)
?= e([(1,m�)]1, [KA]2) · e(σ2, [K0A]2 · [τK1A]2)

Note that the above verification requires knowledge of τ ∈ Zq to compute
[τK1A]2.

To obtain a structure-preserving signature, we cannot publish τ ∈ Zq in the
signature. The main technical challenge in this work is to find a way to embed
τ as a group element that enables both verification and a security reduction.
The natural work-around is to add [τK1A]2 and [τ ]1 to the signature, but the
proof breaks down. Instead, we add [τ ]2 and [τt�]1 to the signature to enable
verification. This yields a signature with 3k + 4 group elements.

An Alternative Interpretation. Linearly homomorphic signatures (LHS)
[15,21,32] are signatures where the messages consist of vectors over group G1 such
that from any set of signatures on [mi]1 ∈ G

n
1 , one can efficiently derive a signa-

ture σ on any element message [m]1 := [
∑

ωimi]1 in the span of m1, . . . ,mQ. For
security, one requires that it is infeasible to produce a signature on a message
outside of the span of all previously signed messages. Linearly homomorphic
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structure preserving signatures (LHSPS) [16,36,38] have the additional prop-
erty that signatures and public keys are all elements of the groups G1,G2,GT ,
while allowing the use of a tag which is a scalar.

We can construct a SPS with message space G
n
1 from a LHSPS with message

space G
n+1
1 as follows: to sign a message [m]1, we use a LHSPS to sign the

(n + 1)-dimensional vector [1,m]1 on a random tag. Suppose the SPS adversary
forges a signature on [m∗]1. First, we may assume that all the signatures from
the signing queries [m1]1, . . . , [mQ]1 are on distinct tags τ1, . . . , τQ. Then, we
consider two cases:

– case 1: the adversary uses a fresh tag. Then, security of LHSPS tells us that
the adversary can only sign the vector 0 ∈ G

n+1
1 , which does not correspond

to a valid message in the SPS.
– case 2: the adversary reuses tag τi. Then, (1,m∗�) must lie in the span of

(1,m�
i ), which means m∗ = mi. Here, we crucially rely on the fact that

τ1, . . . , τQ are distinct, which ensures that the adversary has seen at most one
signature corresponding to τi.

At this point, we can then embed τ ∈ Zq as a group element as described earlier.
Our constructions may also be viewed as instantiating the above paradigm with
the state-of-the-art LHSPS in [36].

1.3 Discussion

Optimality. The linearity in the verification equation of SPS poses severe
restrictions on the efficiency of such constructions. In both Type I and III bilin-
ear groups, it was proved in [5,8] that any fully secure SPS requires at least 2
verification equations, at least 3 group elements, the 3 elements not all the same
group (for Type III asymmetric pairings).In fact, [5] shows the above lower
bounds by giving attacks the weaker security model of unforgeability against
two random message queries. Furthermore, one-time secure SPS against random
message attack (RMA) in Type I bilinear groups require at least 2 group ele-
ments and 2 equations [8].Furthermore, SPSs in Type III bilinear groups require
at least 4 group elements [6] for unforgeability against adaptive chosen message
attack under non-interactive assumptions (such as k-Lin).

Interestingly, for one-time RMA-security, we can match the lower bounds. By
combining our main result on the one-time CMA-secure SPS and the techniques
used in [36] to obtain shorter QANIZK, we obtain an optimal RMA-secure one-
time SPS (Sect. 5). In Type III asymmetric groups, under the SXDH assumption,
signatures requires 1 group element and 1 verification equation which is clearly
optimal; in Type I symmetric groups, under the 2-Lin assumption, our scheme
requires 2 elements and 2 verification equations, matching the lower bound for
one-time RMA-secure SPS from [8].

Comparison with Previous Approaches. The prior works of Abe, et al.
[2,3] presented two generic approaches for constructing SPS from SXDH and
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2-Lin assumptions: both constructions combine a structure-preserving one-time
signature and random-message secure signatures ala [23], with slightly different
syntax and security notions for the two underlying building blocks; the final
signature is the concatenation of the two underlying signatures. Our construction
has a similar flavor in that we combine a one-time MAC with a randomized PRF.
However, we are able to exploit the common structure in both building blocks
to compress the output; interestingly, working with the matrix Diffie-Hellman
framework [22] makes it easier to identity such common structure. In particular,
the output length of the randomized MAC with unbounded security is that of the
PRF and not the sum of the output lengths of the one-time MAC and the PRF;
this is akin to combining a one-time signature and a random-message secure
signature in such a way that the combined signature size is that of the latter
rather than the sum of the two.

Signatures from IBE. While our construction of signatures exploits techniques
from the literature on IBE, it is quite different from the well-known Naor’s
derivation of a signature scheme from an IBE. There, the signature on a message
m ∈ Zq corresponds to an IBE secret key for the identity m. This approach
seems to inherently fail for structure-preserving signatures as all known pairings-
based IBE schemes need to treat the identity as a scalar. In our construction,
a signature on [m]1 also corresponds to an IBE secret key: the message vector
(specifically, a one-time MAC applied to the message vector) is embedded into
the master secret key component of an IBE, and a fresh random tag τ ∈ Zq is
chosen and used as the identity. The idea of embedding [m]1 into the master
secret key component of an IBE also appeared in earlier constructions of linearly
homomorphic structure-preserving schemes [36,38,39]; a crucial difference is that
these prior constructions allow the use of a scalar tag in the signature.

Towards Shorter SPS? One promising approach to get even shorter SPS
against adaptive chosen message attack by using our approach is to improve upon
the underlying MAC in the computational core lemma (Lemma 3). Currently,
the MAC achieves security against chosen message attacks, whereas it suffices to
use one that is secure against random message attacks. Saving one group element
in this MAC would likely yield a saving of two group elements in the SPS, which
would in turn yield a SXDH-based signature with 5 group elements. Note that
the state-of-the-art standard signature from SXDH contains 4 group elements
[20]. Together with existing lower bounds for SPS, this indicates a barrier of 5
group elements for SXDH-based SPS; breaking this barrier would likely require
improving upon the best standard signatures from SXDH.

Perspective. As noted at the beginning of the introduction, structure-preserving
signatures have been a target of intense scrutiny in recent years. We presented a
conceptually different yet very simple approach for building structure-preserving
signatures. We are optimistic that our approach will yield further insights into
structure-preserving signatures as well as concrete improvements to the numerous
applications that rely on such signatures.
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2 Definitions

Notation. If x ∈ Bn, then |x| denotes the length n of the vector. Further,
x ←r B denotes the process of sampling an element x from set B uniformly at
random. If A ∈ Z

n×k
q is a matrix with n > k, then A ∈ Z

k×k
q denotes the upper

square matrix of A and then A ∈ Z
(n−k)×k
q denotes the remaining n− k rows of

A. We use span() to denote the column span of a matrix.

2.1 Pairing Groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = (G1,G2,GT , q, g1, g2, e) of asymmetric pairing
groups where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, g1 and
g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerate) bilinear map. Define gT := e(g1, g2), which is a
generator in GT .

We use implicit representation of group elements as introduced in [22]. For
s ∈ {1, 2, T} and a ∈ Zq, define [a]s = ga

s ∈ Gs as the implicit representation of
a in Gs. More generally, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the

implicit representation of A in Gs:

[A]s :=

⎛
⎝

ga11
s ... ga1m

s

gan1
s ... ganm

s

⎞
⎠ ∈ G

n×m
s

We will always use this implicit notation of elements in Gs, i.e., we let
[a]s ∈ Gs be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to
compute the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT

it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion
problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently
compute [ax]s ∈ Gs. Further, given [a]1, [a]2 one can efficiently compute [ab]T
using the pairing e. For two matrices A,B with matching dimensions define
e([A]1, [B]2) := [AB]T ∈ GT .

2.2 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) and the
Kernel Diffie-Hellman assumptions [22,42].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix dis-
tribution if it outputs matrices in Z

(k+1)×k
q of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A ←r Dk form an
invertible matrix. The Dk-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←r Dk, w ←r Z

k
q and

u ←r Z
k+1
q .
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Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let
Dk be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries A,

Advmddh
Dk,GGen(A) := | Pr[A(G, [A]s, [Aw]s) = 1] − Pr[A(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G ←r GGen(1λ), A ←r Dk,w ←r Z
k
q ,u ←r

Z
k+1
q .

The Kernel-Diffie-Hellman assumption Dk-KerMDH [42] is a natural computa-
tional analogue of the Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman Assumption Dk-KerMDH). Let
Dk be a matrix distribution and s ∈ {1, 2}. We say that the Dk-Kernel Diffie-
Hellman (Dk-KerMDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries A,

Advkmdh
Dk,GGen(A) := Pr[c�A = 0 ∧ c �= 0 | [c]3−s ←r A(G, [A]s)] = negl(λ),

where the probability is taken over G ←r GGen(1λ), A ←r Dk.

Note that we can use a non-zero vector in the kernel of A to test membership
in the column space of A. This means that the Dk-KerMDH assumption is a
relaxation of the Dk-MDDH assumption, as captured in the following lemma
from [42].

Lemma 1. For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KerMDH.

For each k ≥ 1, [22,42] specify distributions Lk, SCk, Uk (and others) such that
the corresponding Dk-MDDH and Dk-KerMDH assumptions are generically secure
in bilinear groups and form a hierarchy of increasingly weaker assumptions.

SCk : A =

⎛
⎜⎜⎝

1 0 0 ... 0
a 1 0 ... 0
0 a 1 0
0 0 a 0

.

.

.
. . .

. . .
0 0 0 ... a

⎞
⎟⎟⎠ , Lk : A =

⎛
⎜⎜⎜⎝

1 1 1 ... 1
a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 0

.

.

.
. . .

. . .
0 0 0 ... ak

⎞
⎟⎟⎟⎠ , Uk : A =

⎛
⎝

a1,1 ... a1,k

.

.

.
. . .

.

.

.
ak+1,1 ... ak+1,k

⎞
⎠,

where a, ai, ai,j ← Zq. We define the representation size RE(Dk) of a given matrix
distribution Dk as the minimal number of group elements needed to represent [A]s,
where A ←r Dk. Then RE(SCk) = 1, RE(Lk) = k and RE(Uk) = k(k + 1). As shown in
[22], SCk-MDDH offers the same security guarantees as Lk-MDDH (k-Linear Assump-
tion of [31]), while having the advantage of a more compact representation. We define
k-Lin := Lk-MDDH and k-KerLin := Lk-KerMDH. Note that 2-KerLin = SDP (Simulta-
neous Double Pairing Assumption of [17]). The relations between the different assump-
tions for Dk = Lk are as follows:
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2.3 Structure-Preserving Signatures

Let par be some parameters that contain a pairing group PG. In a structure-preserving
signature (SPS) [4], both the messages and signatures are group elements, verification
proceeds via a pairing-product equation.

Definition 4 (Structure-preserving signature). A structure-preserving signature
scheme SPS is defined as a triple of probabilistic polynomial time (PPT) algorithms
SPS = (Gen, Sign,Verify):

– The probabilistic key generation algorithm Gen(par) returns the public/secret key
(pk, sk), where pk ∈ G

npk for some npk ∈ poly(λ). We assume that pk implicitly
defines a message space M := G

n for some n ∈ poly(λ).
– The probabilistic signing algorithm Sign(sk, [m]) returns a signature σ ∈ G

nσ for
nσ ∈ poly(λ).

– The deterministic verification algorithm Verify(pk, [m], σ) only consists of pairing
product equations and returns 1 (accept) or 0 (reject).

(Perfect correctness.) for all (pk, sk) ←r Gen(par) and all messages [m] ∈ M and
all σ ←r Sign(sk, [m]) we have Verify(pk, [m], σ) = 1.

Definition 5 (Unforgeablility against chosen message attack). To an adversary
A and SPS we associate the advantage function

Advcma
SPS (A) := Pr

[
[m∗] /∈ Qmsg ∧ Verify(pk, [m∗], σ∗) = 1

∣∣∣∣
(pk, sk) ←r Gen(par)

([m∗], σ∗) ←r ASignO(·)(pk)

]
,

where SignO([m]) runs σ ←r Sign(sk, [m]), adds the vector [m] to Qmsg (initialized
with ∅) and returns σ to A. SPS is said to be (unbounded) CMA-secure if for all PPT
adversaries A, Advcma

SPS (A) is negligible. SPS is said to be one-time CMA-secure with
corresponding advantage function Advot-cma

SPS (A), if A is restricted to make at most one
query to oracle SignO.

3 One-Time CMA-Secure SPS

The scheme is given in Fig. 2 and its parameters are:

|pk| = (n + 1)k + RE(Dk), |σ| = k + 1.

As defined in Sect. 2.2, RE(Dk) denotes the number of group elements needed to repre-
sent [A]s, where A ←r Dk. For k-Lin, we achieve 2 group elements in the signature for
k = 1 and 3 group elements for k = 2. Moreover, we note that the verification needs k
pairing product equations: for e(σ, [A]2) = e([(1,m)]1, [C]2) we need to pair the vector
σ with every column of [A]2 and thus this check needs k pairing product equations.

We will exploit the following lemma in the analysis of our scheme. Informally, the
lemma says that m �→ (1,m�)K is a secure information-theoretic one-time MAC even
if the adversary first sees (A,KA).

Lemma 2 (Core lemma for adaptive soundness). Let n, k be integers. For any

A ∈ Z
(k+1)×k
q and any (possibly unbounded) adversary A,

Pr

[

m∗ �= m ∧ z� = (1,m∗�
)K

∣

∣

∣

∣

∣

K ←r Z
(n+1)×(k+1)
q

(z,m∗) ←r AO(·)(A,KA)

]

≤ 1

q
, (4)

where O(m ∈ Z
n
q ) returns (1,m�)K and A only gets a single call to O.
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Gen(par)

A ← Dk;K ← Z
(n+1)×(k+1)
q

C := KA ∈ Z
(n+1)×k
q

sk := K
pk := ([C]2, [A]2)

(pk, sk)

Sign(sk, [m]1)

σ :=
[
(1,m�)K

]
1

σ ∈ G
1×(k+1)
1

Verify(pk, [m]1, σ)

e(σ, [A]2) = e([(1,m�)]1, [C]2)

Fig. 2. One-time CMA-secure structure-preserving signature SPSot with message-space
M = G

n
1 .

This lemma can be seen as an adaptive version of a special case of [36, Lemma 2] in

that we fix t = 1, M to be the matrix (1,m�) ∈ Z
1×(n+1)
q , and we use the fact that

if m∗ �= m, then (1,m∗) /∈ span(M). In our adaptive version, m may depend on KA
but the proof is essentially the same as in [36]. Lemma 2 implies the security of SPSot.
Formal proofs of Lemma 2 and Theorem 1 are given in [35].

Theorem 1. Under the Dk-KerMDH Assumption in G2, SPSot from Fig. 2 is a one-
time CMA-secure structure-preserving signature scheme.

4 Unbounded CMA-Secure SPS

4.1 Computational Core Lemma

We present a variant of the computational core lemma from [36, Lemma 3].

Lemma 3 (Computational core lemma for unbounded CMA-security). For
all adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Pr

⎡

⎢

⎢

⎢

⎢

⎣

τ∗ /∈ Qtag

∧ b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A,B ←r Dk

K0,K1 ←r Z
(k+1)×(k+1)
q

(P0,P1) := (B�K0,B
�K1)

pk := ([P0]1, [P1]1, [B]1,K0A,K1A,A)

b ←r {0, 1}; b′ ←r AOb(·),O∗(·)(pk)

⎤

⎥

⎥

⎥

⎥

⎦

≤ 1

2
+ 2Q · Advmddh

Dk,GGen(B) + Q/q,

where

– Ob(τ) returns (
[

bμa⊥ + r�(P0 + τP1)
]

1
,
[

r�B�]

1
) ∈ (G

1×(k+1)
1 )2 with μ ←r Zq,

r ←r Z
k
q and adds τ to Qmsg. Here, a⊥ is non-zero vector in Z

1×(k+1)
q that satisfies

a⊥A = 0.
– O∗([τ∗]2) returns [K0 + τ∗K1]2 . A only gets a single call τ∗ to O∗.
– Q is the number of queries A makes to Ob.

Compared to [36, Lemma 3], oracle O∗ is modified as follows. Instead of getting tag τ∗

and returning K0 + τ∗K1 in the clear, both the query and the output are encoded in
G2. The change is boxed in the lemma. It is straight-forward to check that the proof
goes through as in [36]:
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– the security reduction knows K0,K1, and therefore it can compute [K0 + τ∗K1]2
given [τ∗]2;

– the quantity [K0 +τ∗K1]2 does not reveal any additional information about K0,K1

beyond K0 + τ∗K1.

For completeness, a formal proof of the lemma is given in [35].

4.2 Our Scheme

The parameters are:

|pk| = (n + 1)k + 2(k + 1)k + RE(Dk), |σ| = (3(k + 1), 1),

where notation (x, y) represents x elements in G1 and y elements in G2. For k-Lin, this
yields (n+6, (6, 1)) for k = 1 and (2n+16, (9, 1)) for k = 2. Moreover, we note that the
verification needs 2k +1 pairing product equations: for e(σ1, [A]2) = e([(1,m)]1, [C]2) ·
e(σ2, [C0]2) · e(σ3, [C1]2) we need to pair the vector σ1 with every column of [A]2 and
thus this check needs k pairing product equations; and for e(σ2, [τ ]2) = e(σ3, [1]2) we
need to pair every element from σ2 with [τ ]2 ∈ G2 and thus this requires k + 1 pairing
product equations.

Gen(par)

A,B ← Dk;K ← Z
(n+1)×(k+1)
q

K0,K1 ← Z
(k+1)×(k+1)
q

C := KA ∈ Z
(n+1)×k
q

(C0,C1) := (K0A,K1A)

∈ (Z
(k+1)×k
q )2

(P0,P1) := (B�K0,B
�K1)

∈ (Z
k×(k+1)
q )2

sk := (K, [P0]1, [P1]1, [B]1)
pk := ([C0]2, [C1]2, [C]2, [A]2)

(pk, sk)

Sign(sk, [m]1)

r ← Z
k
q τ ← Zq

σ1 :=
[
(1,m�)K + r�(P0 + τP1)

]
1

∈ G
1×(k+1)
1

σ2 :=
[
r�B�]

1
∈ G

1×(k+1)
1

σ3 :=
[
r�B�τ

]
1

∈ G
1×(k+1)
1

σ4 := [τ ]2 ∈ G2

(σ1, σ2, σ3, σ4)

Verify(pk, [m]1, σ)

σ = (σ1, σ2, σ3, σ4 = [τ ]2)

e(σ1, [A]2) = e([(1,m)]1, [C]2) · e(σ2, [C0]2) ·
e(σ3, [C1]2)
∧ e(σ2, [τ ]2) = e(σ3, [1]2)

Fig. 3. Structure-preserving signature SPSfull with message-space M = G
n
1 .

Theorem 2. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption
in G2, SPSfull from Fig. 3 is an unbounded CMA-secure structure-preserving signature
scheme.

Proof. Perfect correctness and the structure-preserving property are straight-forward.
We proceed to establish the unbounded CMA-security. We will show that for any adver-
sary A that makes at most Q signing queries, there exists adversaries B0, B1 with
T(A) ≈ T(B0) ≈ T(B1) and

Advcma
SPSfull(A) ≤ Advkmdh

Dk,GGen(B0)+2Q(Q+1)·Advmddh
Dk,GGen(B1)+(Q+1)2/q+Q2/2q. (5)

We proceed via a series of games and we use Advi to denote the advantage of A
in Game i.
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Game 0. This is the CMA-security experiment from Definition 5.

Advcma
SPSfull(A) = Adv0

Game 1. Switch Verify to Verify∗:

Verify∗(pk, [m]1, σ):

Parse σ = (σ1, σ2, σ3, σ4 = [τ ]2)
Check: e(σ1, [1]2) = e([(1,m�)K]1, [1]2) · e(σ2, [K0 + τK1]2)
∧ e(σ2, [τ ]2) = e(σ3, [1]2)

Suppose e(σ2, [τ ]2) = e(σ3, [1]2). We note that

e(σ1, [A]2) = e([(1,m�)]1, [C]2) · e(σ2, [C0]2) · e(σ3, [C1]2)

⇐⇒ e(σ1, [A]2) = e([(1,m�)]1, [KA]2) · e(σ2, [K0A]2) · e(σ3, [K1A]2)

⇐= e(σ1, [1]2) = e([(1,m�)]1, [K]2) · e(σ2, [K0]2) · e(σ3, [K1]2)

⇐⇒ e(σ1, [1]2) = e([(1,m�)]1, [K]2) · e(σ2, [K0 + τK1]2)

Hence, for any ([m]1, σ) that passes Verify but not Verify∗, the value

σ1 − ([(1,m�)K]1 + σ2K0 + σ3K1) ∈ G
1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to be computed under the
Dk-KerMDH assumption in G2. This means that

|Adv0 − Adv1| ≤ Advkmdh
Dk,GGen(B0).

Game 2. Let τ1, . . . , τQ denote the randomly chosen tags in the Q queries to SignO.
We abort if τ1, . . . , τQ are not all distinct.

Adv2 ≥ Adv1 − Q2/2q.

Game 3. We define τQ+1 := τ∗. Now, pick i∗ ←r [Q + 1] and abort if i∗ is not the
smallest index i for which τ∗ = τi. In the rest of the proof, we focus on the case we
do not abort, which means that τ∗ = τi∗ and τ1, . . . , τi∗−1 are all different from τ∗.
This means that given τ , SignO can check whether τ∗ equals τ : for the rest i∗ − 1
queries, answer NO, and starting from the i∗’th query, we know τ∗. It is easy to
see that

Adv3 ≥ 1

Q + 1
Adv2.

Game 4. Switch SignO to SignO∗ where

SignO∗([m]1): // adds μa⊥ for τ �= τ∗

r ←r Z
k
q ; τ ←r Zq; μ ←r Zq;

if τ = τ∗ then μ := 0
σ1 :=

[

(1,m�)K + μa⊥ + r�(P0 + τP1)
]

1

σ2 :=
[

r�B�]

1

σ3 :=
[

r�B�τ
]

1
σ4 := [τ ]2

Return (σ1, σ2, σ3, σ4) ∈ G
1×(k+1)
1 ×G

1×(k+1)
1 ×G

1×(k+1)
1 ×G2

We will use Lemma 3 to show that

|Adv3 − Adv4| ≤ 2QAdvmddh
Dk,GGen(B1) + Q/q
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Basically, we pick K ourselves and use Ob to simulate either SignO or SignO∗ and
O∗ to simulate Verify∗ as follows:

– For the i’th signing query [m]1 where i �= i∗, we query Ob at τ ←r Zq to obtain

(σ′
1, σ2) := (

[

bμa⊥ + r�(P0 + τP1)
]

1
,
[

r�B�]

1
),

and we return

(σ1 := [(1,m�)K]1 · σ′
1, σ2, σ3 := σ2τ, σ4 := [τ ]2)

– For the i∗’th signing query [m]1 where i∗ ≤ Q, we run Sign honestly using our
knowledge of K, [P0]1, [P1], [B]1.

– For Verify∗, we will query O∗ on [τ∗]2 to get [K0+τ∗K1]2. The latter is sufficient
to simulate the Verify∗ query by computing e(σ2, [K0 + τ∗K1]2).

This allows us to then build a distinguisher for Lemma 3.

Game 5. Switch K ←r Z
(n+1)×(k+1)
q in Gen to K := K′ + ua⊥, where K′ ←r

Z
(n+1)×(k+1)
q ,u ←r Z

n+1
q .

Since ua⊥ is masked by a uniform matrix K′, K in Game 5 is still uniformly random
and thus Game 4 and 5 are identical. We have

Adv5 = Adv4.

To conclude the proof, we bound the adversarial advantage in Game 5 via an
information-theoretic argument. We first consider the information about u leaked
from pk and signing queries:

– C = (K′ + ua⊥)A = K′A completely hides u;
– the output of SignO∗ on (m, τ) for τ �= τ∗ completely hides u, since (1,m�)(K′+

ua⊥) + μa⊥ is identically distributed to (1,m�)K′ + μa⊥ (namely, (1,m�)u is
masked by μ ←r Zq).

– the output of SignO∗ on τ∗ leaks (1,m�)(K′ + ua⊥), which is captured by
(1,m�)u.

To convince Verify∗ to accept a signature σ∗ on m∗, the adversary must correctly
compute

(1,m∗�
)(K′ + ua⊥)

and thus (1,m∗�)u ∈ Zq. Given (1,m�)u, for any adaptively chosen m∗ �= m, we
have that (1,m∗�)u is uniformly random over Zq from the adversary’s view-point.
Therefore, Adv5 ≤ 1/q. ��

4.3 Extension: SPS for Bilateral Message Spaces

Let M := G
n1
1 ×G

n2
2 be a message space. In Type III pairing groups, M is bilateral if

both n1 �= 0 and n2 �= 0; otherwise, M is unilateral. We extend the construction from
Sect. 4.2 to sign bilateral message spaces.

The main idea of our construction is to use the Even-Goldreich-Micali (EGM)
framework [23] and a method of Abe et al. [2]: for m = ([m1]1, [m2]2) ∈ G

n1
1 × G

n2
2

we sign [m1]1 by using a one-time SPS with a fresh public key pkot over G2 and
then sign message ([m2]2, pkot) using an unbounded CMA-secure SPS; the signature
on ([m1]1, [m2]2) is pkot together with the concatenation of both signatures. However,
this yields long signatures as pkot contains O(n1k) group element for the best known
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one-time SPS. Next, we observe that our one-time SPS is in fact a so-called “two-
tier” signature scheme [12], i.e. opk can decomposed into a reusable long primary key
plus a one-time short secondary key which contains only k group elements. For the
transformation sketched above it is sufficient to put the short secondary key in the
signature which leads to short signatures.

Details about our two-tier SPS and generic transformation are given in the full
version [35]. The resulting unbounded CMA-secure SPS for bilateral message spaces is
shown in Fig. 4. Its parameters are: |pk| = (n1 + n2)k + 3(k + 1)k + 2RE(Dk), |σ| =
(4k + 3, k + 2), and #equations = 3k + 1. Notation (x, y) represents x elements in
G1 and y elements in G2. Under the SXDH assumption, our scheme achieves (|pk|, |σ|,
#equations) = (n1 + n2 + 8, (7, 3), 4). Compared with (n1 + n2 + 22, (8, 6), 5) of [2], we
obtain better efficiency under standard assumptions. The following theorem is proved
in the full version [35].

Theorem 3. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in
both G1 and G2, BSPSfull from Fig. 4 is an unbounded CMA-secure structure-preserving
signature scheme.

Gen(par)

A,B ← Dk;K ← Z
(n1+k+1)×(k+1)
q

K0,K1 ← Z
(k+1)×(k+1)
q

C := KA ∈ Z
(n1+k+1)×k
q

(C0,C1) := (K0A,K1A)

∈ (Z
(k+1)×k
q )2

(P0,P1) := (B�K0,B
�K1)

∈ (Z
k×(k+1)
q )2

A′ ← Dk X ← Z
n2×(k+1)
q

Z := XA′ ∈ Z
n2×k
q

sk := (K,X, [P0]1, [P1]1, [B]1)
pk := ([C0]2, [C1]2, [C]2, [Z]1, [A]2,
[A′]1)

(pk, sk)

Sign(sk, ([m1]1, [m2]2))

x ← Z
k+1
q z := x�A′ ∈ Z

1×k
q

r ← Z
k
q τ ← Zq

σ1 :=
[
(1,m�

1 , z)K + r�(P0 + τP1)
]
1

∈ G
1×(k+1)
1

σ2 :=
[
r�B�]

1
∈ G

1×(k+1)
1

σ3 :=
[
r�B�τ

]
1

∈ G
1×(k+1)
1

σ4 := [τ ]2 ∈ G2

σ5 := [x + X�m2]2 ∈ G
k+1
2

([z]1, σ1, σ2, σ3, σ4, σ5)

Verify(pk, ([m1]1, [m2]2), σ)

σ = ([z]1, σ1, σ2, σ3, σ4, σ5)

e(σ1, [A]2) = e([1,m�
1 , z]1, [C]2) · e(σ2, [C0]2) ·

e(σ3, [C1]2) ∧ e(σ2, σ4) = e(σ3, [1]2)
∧ e([A′]�1 , σ5) = e([z]�1 , [1]2) · e([Z]�1 ,m2)

Fig. 4. Structure-preserving signature BSPSfull for bilateral message spaces M = G
n1
1 ×

G
n2
2 .

5 Security Against Random Message Attacks

In this section, we consider possible efficiency improvements on the structure-preserving
signatures (SPS) from Sects. 3 and 4 for the weaker security notion of unforgeability
against random message attacks (RMA). Precisely, we obtain a one-time RMA-secure
SPS with signature size one less than that from Fig. 2 and an unbounded RMA-secure
SPS with signature size k+1 less than that from Fig. 3. Figure 5 summarizes our results.
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Our rSPSot is optimal for both the Type I and III settings: in the Type I setting,
under the 2-Lin assumption, rSPSot requires 2 elements and 2 verification equations,
matching the lower bound for one-time RMA-secure SPS from [8]; in the Type III set-
ting, under the SXDH assumption, rSPSot requires 1 element and 1 verification equation,
which is clearly optimal.

|m| |σ| |pk|
AGOT14
AGOT14 n (1, 0) n + 3
ACDKNO12 Lin
rSPSot Dk KerMDH (G2) n (k, 0) (n + 1)k + RE(Dk) k
rSPSfull Dk MDDH (G1,G2) n (2k + 2, 1) (n + 2k + 3)k + RE(Dk) 2k + 1

Fig. 5. Structure-preserving signatures secure against random message attacks for
M = G

n
1 in the Type I and III setting. For the Type I setting we have G = G1 = G2.

Notation (x, y) represents x elements in G1 and y elements in G2.

5.1 Unforgeability Against Random Message Attacks

RMA-security states that it is hard for an adversary to forge a signature even if he
sees many signatures on randomly chosen messages. The security is formally defined
as follows:

Definition 6 (Unforgeability against random message attacks). To an adver-
sary A and SPS we associate the advantage function

Advrma
SPS (A) := Pr

[
[m∗] /∈ Qmsg ∧ Verify(pk, [m∗], σ∗) = 1

∣∣∣∣
(pk, sk) ←r Gen(par)

([m∗], σ∗) ←r ASignO()(pk)

]
,

where SignO() chooses a random message [m] ←r G
n, runs σ ←r Sign(sk, [m]), adds

the vector [m] to Qmsg (initialized with ∅) and returns ([m], σ) to A. SPS is said to
be RMA-secure if for all PPT adversaries A, Advrma

SPS (A) is negligible. SPS is said to
be one-time RMA-secure with corresponding advantage function Advot-rma

SPS (A), if A is
restricted to make at most one query to oracle SignO.

5.2 One-Time RMA-Secure SPS

Motivated by the techniques used in [1,34,36] to obtain shorter QANIZK proofs for
linear subspaces, we construct a one-time RMA-secure SPS in Fig. 6 with the following
parameters:

|pk| = (n + 1)k + RE(Dk), |σ| = k.

For k-Lin, this yields (n+2, 1) for k = 1 and (2n+4, 2) for k = 2. Moreover, we note
that verification needs k pairing product equations for e(σ1,

[

A
]

2
) = e([(1,m)]1, [C]2).

Compared with SPSot, we reduce the signature size by one element.

Theorem 4. Under the Dk-KerMDH Assumption in G2, rSPSot from Fig. 6 is a one-
time RMA-secure structure-preserving signature scheme.
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Gen(par)

A ← Dk;K ← Z
(n+1)×k
q

C := KA ∈ Z
(n+1)×k
q

sk := K
pk := ([C]2, [A]2)

(pk, sk)

Sign(sk, [m]1)

σ :=
[
(1,m�)K

]
1

σ ∈ G
1×k
1

Verify(pk, [m]1, σ)

e(σ,
[
A

]
2
) = e([(1,m�)]1, [C]2)

Fig. 6. One-time RMA-secure structure-preserving signature rSPSot with message-space
M = G

n
1 . Recall that A denotes the upper k × k submatrix of A.

Our proof is similar to that in [36, Theorem 2]. As we choose m ∈ Z
n
q in the security

game ourselves, we can compute the kernel basis M⊥ ∈ Z
(n+1)×n
q of (1,m�) such

that (1,m�) · M⊥ = 0 and then we embed M⊥ in the secret key K. This way we do
not need to compute the kernel of [A]2 when answering the signing query. However,
for the forgery m∗ �= m, since (1,m∗�)M⊥ �= 0, the adversary has to compute an
element from the kernel to break RMA-security, which is infeasible under the Dk-
KerMDH Assumption.

5.3 Unbounded RMA-Secure SPS

Consider the scheme SPSfull from Fig. 3 with the modification that in the signing algo-
rithm, vector Br is chosen as a random vector as t ←r Z

k+1
q . Clearly, under the

Dk-MDDH Assumption, this modified scheme is also a CMA-secure SPS. Suppose that
the message space is G

n
1 with n = n′ + k + 1 ≥ k + 1. Then we can view the random

Gen(par)

A ← Dk;K ← Z
(n+1)×(k+1)
q

K0,K1 ← Z
(k+1)×(k+1)
q

C := KA ∈ Z
(n+1)×k
q

(C0,C1) := (K0A,K1A)

∈ (Z
(k+1)×k
q )2

sk := (K,K0,K1)
pk := ([C0]2, [C1]2, [C]2, [A]2)

(pk, sk)

Sign(sk, [m]1)

[m]1 = ([s]1, [t]1) ∈ G
n′
1 × G

k+1
1

τ ← Zq

σ1 :=
[
(1,m�)K + t�(K0 + τK1)

]
1

σ2 :=
[
τt�

]
1

σ3 := [τ ]2

(σ1, σ2, σ3) ∈ G
1×(k+1)
1 ×G

1×(k+1)
1 ×G2

Verify(pk, [m]1, σ)

σ = (σ1, σ2, σ3 = [τ ]2)
[m]1 = ([s]1, [t]1)

e(σ1, [A]2) = e([(1,m�)]1, [C]2) · e([t�]1, [C0]2) ·
e(σ2, [C1]2)
∧ e(σ2, [1]2) = e([t�]1, [τ ]2)

Fig. 7. An unbounded RMA-secure structure-preserving signature rSPSfull with
message-space M = G

n
1 where n = n′ + k + 1 ≥ k + 1.
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vector [t]1 ∈ G
k+1
1 as part of the message space which reduces the signature size from

3k + 4 elements to 2k + 3. The modified scheme is presented in Fig. 7. Its parameters
are:

|pk| = (n + 1)k + 2(k + 1)k + RE(Dk), |σ| = (2(k + 1), 1),

where notation (x, y) represents x elements in G1 and y elements in G2. For k-Lin,
(|pk|, |σ|) = (n + 6, (4, 1)) for k = 1 and (2n + 16, (6, 1)) for k = 2. Moreover, we note
that the verification needs 2k + 1 pairing product equations. Compared to the SPSfull

from Fig. 3, rSPSfull requires (k + 1) elements less in the signature.

Theorem 5. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption
in G2, rSPSfull from Fig. 7 is an unbounded RMA-secure structure-preserving signature
scheme.

The proof is given in [35].

Acknowledgments. We thank Olivier Blazy and Georg Fuchsbauer for helpful
discussions.
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Abstract. Group signatures are a central cryptographic primitive which
allows users to sign messages while hiding their identity within a crowd of
group members. In the standard model (without the random oracle ide-
alization), the most efficient constructions rely on the Groth-Sahai proof
systems (Eurocrypt’08). The structure-preserving signatures of Abe et al.
(Asiacrypt’12) make it possible to design group signatures based on well-
established, constant-size number theoretic assumptions (a.k.a. “simple
assumptions”) like the Symmetric eXternal Diffie-Hellman or Decision
Linear assumptions. While much more efficient than group signatures
built on general assumptions, these constructions incur a significant over-
head w.r.t. constructions secure in the idealized random oracle model.
Indeed, the best known solution based on simple assumptions requires
2.8 kB per signature for currently recommended parameters. Reducing
this size and presenting techniques for shorter signatures are thus natural
questions. In this paper, our first contribution is to significantly reduce
this overhead. Namely, we obtain the first fully anonymous group signa-
tures based on simple assumptions with signatures shorter than 2 kB at
the 128-bit security level. In dynamic (resp. static) groups, our signature
length drops to 1.8 kB (resp. 1 kB). This improvement is enabled by two
technical tools. As a result of independent interest, we first construct a
new structure-preserving signature based on simple assumptions which
shortens the best previous scheme by 25 %. Our second tool is a method
for attaining anonymity in the strongest sense using a new CCA2-secure
encryption scheme which is also a Groth-Sahai commitment.

Keywords: Group signatures · Standard model · Simple assumptions ·
Efficiency · Structure-preserving cryptography · QA-NIZK arguments

1 Introduction

As introduced by Chaum and van Heyst [27] in 1991, group signatures allow
members of a group administered by some authority to anonymously sign mes-
sages on behalf of the group. In order to prevent abuses, an opening authority
has the power to uncover a signer’s identity if the need arises.
c© International Association for Cryptologic Research 2015
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The usual approach for building a group signature consists in having the
signer encrypt his group membership credential under the public key of the open-
ing authority while appending a non-interactive zero-knowledge (NIZK) proof,
which is associated with the message, claiming that things were done correctly.
Until 2006, efficient instantiations of this primitive were only available under
the random oracle idealization [14], which is limited to only provide heuristic
arguments in terms of security [24]. This state of affairs changed in the last
decade, with the emergence of solutions [20,21,35,36] enabled by breakthrough
results in the design of relatively efficient non-interactive witness indistinguish-
able (NIWI) proofs [37]. While drastically more efficient than solutions based on
general NIZK proofs [12,15], the constructions of [20,21,35,36] still incur a sub-
stantial overhead when compared with their random-oracle-based counterparts
[10,18,30]. Moreover, their most efficient variants [21,36] tend to rely on para-
metrized assumptions – often referred to as “q-type” assumptions – where the
number of input elements is determined by a parameter q which, in turn, depends
on the number of users in the system or the number of adversarial queries (or
both). Since the assumption becomes stronger as q increases, a different assump-
tion is needed for every adversary (based on its number of queries) and every
maximal number of users in the group. Not only does it limit the scalability of
realizations, it also restricts the level of confidence in their security.

In this paper, we consider the problem of devising as short as possible group
signatures based on simple assumptions. By “simple assumption”, we mean a
well-established assumption, like the Decision Diffie-Hellman assumption, which
is simultaneously non-interactive and described using a constant number of ele-
ments, regardless of the number of users in the system or the number of adver-
sarial queries. We remark that even in the random oracle model, this problem
turns out to be highly non-trivial as non-simple assumptions (like the Strong
RSA [10,42] or Strong Diffie-Hellman [18,30]) are frequently relied on. In the
standard model, our main contribution is designing the first group signatures
based on simple assumptions and whose size is less than 2 kB for the currently
recommended 128-bit security level. In static groups, our most efficient scheme
features signatures slightly longer than 1 kB. So far, the best standard-model
group signature based on simple assumptions was obtained from the structure-
preserving signatures (SPS) of Abe et al. [1,2] and required 2.875 kB per sig-
nature. Along the way and as a result of independent interest, we also build a
new structure-preserving signature (SPS) with the shortest length among those
based on simple assumptions. Concretely, the best previous SPS based on similar
assumptions [1,2] is shortened by 25%.

Related Work. Group signatures have a long history. Still, efficient and prov-
ably coalition-resistant constructions (in the random oracle model) remained
elusive until the work of Ateniese, Camenisch, Joye and Tsudik [10] in 2000. At
that time, however, there was no proper formalization of the security proper-
ties that can be naturally expected from group signatures. This gap was filled
in 2003 by Bellare, Micciancio and Warinschi [12] (BMW) who captured all
the requirements of group signatures in three properties. In (a variant of) this
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model, Boneh, Boyen and Shacham [18] obtained very short signatures using the
random oracle methodology [14].

The BMW model assumes static groups where the set of members is frozen
after the setup phase beyond which no new member can be added. The setting
of dynamic groups was explored later on by Bellare-Shi-Zhang [15] and, inde-
pendently, by Kiayias and Yung [42]. In these models [15,42], short signature
lengths were obtained in [30]. A construction based on interactive assumptions
in the standard model was also put forth by Ateniese et al. [9]. Using standard
assumptions, Boyen and Waters gave a different solution [20] based on the Groth-
Ostrovsky-Sahai NIZK proof system [34]. They subsequently managed to obtain
O(1)-size signatures at the expense of appealing to a q-type assumption [21].
Their constructions [20,21] were both analyzed in (a relaxation of) the BMW
model [12] where the adversary is not granted access to a signature opening
oracle. In dynamic groups [15], Groth [35] obtained constant-size signatures in
the standard model but, due to huge hidden constants, his result was mostly
a proof of concept. By making the most of Groth-Sahai NIWI proofs [37], he
subsequently reduced signatures to 48 group elements [36] with the caveat of
resting on relatively ad hoc q-type assumptions. For the time being, the best
group signatures based on standard assumptions are enabled by the structure-
preserving signatures of Abe, Chase, David, Kohlweiss, Nishimaki, and Ohkubo
[1]. In asymmetric pairings e : G×Ĝ → GT (where G �= Ĝ), anonymously signing
messages requires at least 40 elements of G and 26 elements of Ĝ.

In 2010, Abe et al. [3,8] advocated the use of structure-preserving cryptogra-
phy as a general tool for building privacy-preserving protocols in a modular fash-
ion. In short, structure-preserving signatures (SPS) are signature schemes that
smoothly interact with Groth-Sahai proofs [37] as messages, signatures public
keys all live in the source groups (G, Ĝ) of a bilinear map e : G× Ĝ → GT . SPS
schemes were initially introduced by Groth [35] and further studied in [25,31].
In the last three years, a large body of work was devoted to the feasibility
and efficiency of structure-preserving signatures [1–4,8,23,25,26,31,35,38]. In
Type III pairings (i.e., where G �= Ĝ and no isomorphism is computable from
Ĝ to G or backwards), Abe et al. [4] showed that any SPS scheme must con-
tain at least 3 group elements per signature. For a natural class of reductions,
the security of optimally short signatures was also shown [5] unprovable under
any non-interactive assumption. These impossibility results were recently found
[7] not to carry over to Type II pairings (i.e., where G �= Ĝ and an efficiently
computable isomorphism ψ : Ĝ → G is available).

To the best of our knowledge, the minimal length of structure-preserving
signatures based on simple assumptions remains an unsettled open question. We
believe it to be of primary importance considering the versatility of structure-
preserving cryptography in the design of privacy-related protocols, including
group signatures [8], group encryption [25] or adaptive oblivious transfer [33].

Our Results. The first contribution of this paper is to describe a new
structure-preserving signature based on the standard Symmetric eXternal Diffie-
Hellman (SXDH) assumption and an asymmetric variant of the Decision Linear
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assumption with only 10 group elements (more precisely, 9 elements of G and
one element of Ĝ) per signature. So far, the best instantiation of [1,2] required 7
elements of G and 4 elements of Ĝ. Since the representation of Ĝ elements is at
least twice as long as that of G elements, our scheme thus saves 26% in terms of
signature length. Armed with our new SPS and other tools, we then construct
dynamic group signatures using only 32 elements of G and 14 elements of Ĝ in
each signature, where Abe et al. [1,2] need at least 40 elements of G and 26 ele-
ments of Ĝ. For typical parameters, our signatures are thus 37% shorter with a
total length of only 1.8 kB at the 128-bit security level. In an independent work,
Kiltz, Pan and Wee [45] managed to obtain even shorter structure-preserving
signatures than ours under the SXDH assumption. If their construction is used
in our dynamic group signature, it allows eliminating at least 4 more elements
of G from signatures. In the static model of Bellare, Micciancio and Warinschi
[12], we describe an even more efficient realization where the signature length
decreases to almost 1 kB.

Our Techniques. Our structure-preserving signature can be seen as a non-
trivial optimization of a modular design, suggested by Abe et al. [1], which
combines a weakly secure SPS scheme and a tagged one-time signature (TOTS).
In a TOTS scheme, each signature contains a fresh tag and, without knowing the
private key, it should be computationally infeasible to generate a signature on
a new message for a previously used tag. The construction of [1] obtains a full-
fledged SPS by combining a TOTS scheme with an SPS system that is only secure
against extended random message attacks (XRMA). As defined in [1], XRMA
security basically captures security against an adversary that only obtains signa-
tures on random group elements even knowing some auxiliary information used
to sample these elements (typically their discrete logarithms). While Abe et al.
[1] make use of the discrete logs of signed messages in their proofs of XRMA secu-
rity, their modular construction does not. Here, by explicitly using the discrete
logarithms in the construction, we obtain significant efficiency improvements.
Using Waters’ dual system techniques [51], we construct an SXDH-based F -
unforgeable signature scheme which, according to the terminology of Belenkiy
et al. [11], is a signature scheme that remains verifiable and unforgeable even
if the adversary only outputs an injective function of the forgery message. Our
new SPS is the result of combining our F -unforgeable signature and the TOTS
system of [2]. We stress that our scheme can no longer be seen as an instantiation
of a generic construction. Still, at the natural expense of sacrificing modularity,
it does provide shorter signatures.

In turn, our F -unforgeable signatures are obtained by taking advantage of
the quasi-adaptive NIZK (QA-NIZK) arguments of linear subspace membership
suggested by Jutla and Roy [40] and further studied in [41,47], where the CRS
may depend on the language for which proofs have to be generated. In a nutshell,
our starting point is a signature scheme suggested by Jutla and Roy (inspired
by ideas due to Camenisch et al. [22]) where each signature is a CCA2-secure
encryption of the private key (made verifiable via QA-NIZK proofs) and the
message is included in the label [50]. We rely on the observation that QA-NIZK
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proofs for linear subspaces [40] (or their optimized variants [41,47]) make it
possible to verify signatures even if the message is only available in the exponent.

In order to save the equivalent of 15 elements of the group G and make
the group signature as short as possible, we also design a new CCA2-secure
tag-based encryption (TBE) scheme [44,48] which incorporates a Groth-Sahai
commitment. In fully anonymous group signatures, CCA2-anonymity is usually
acquired by verifiably encrypting the signer’s credential using a CCA2-secure
cryptosystem while providing evidence that the plaintext coincides with a com-
mitted group element. Inspired by a lossy encryption scheme [13] suggested by
Hemenway et al. [39], we depart from this approach and rather use a CCA2-
secure encryption scheme which simultaneously plays the role of a Groth-Sahai
commitment. That is, even when the Groth-Sahai CRS is a perfectly hiding CRS,
we are able to extract committed group elements for any tag but a specific one,
where the encryption scheme behaves like a perfectly hiding commitment and
induces perfectly NIWI proofs. In order to make the validity of TBE ciphertexts
publicly verifiable, we rely on the QA-NIZK proofs of Libert et al. [47] which
are well-suited to the specific subspaces encountered1 in this context. We believe
this encryption scheme to be of interest in its own right since it allows shortening
other group signatures based on Groth-Sahai proofs (e.g., [36]) in a similar way.

Our group signature in the static BMW model [12] does not build on
structure-preserving signatures but rather follows the same design principle as
the constructions of Boyen and Waters [20,21]. It is obtained by extending our F -
unforgeable signature into a 2-level hierarchical signature [43] (or, equivalently,
an identity-based signature [49]) where first-level messages are implicit in the
exponent. In spirit and from an efficiency standpoint, our static group signature
is thus similar to the second construction [21] of Boyen and Waters, with the
benefit of providing full anonymity while relying on the sole SXDH assumption.

2 Background

2.1 Hardness Assumptions

We use bilinear maps e : G × Ĝ → GT over groups of prime order p where
e(g, ĥ) �= 1GT

if and only if g �= 1G and ĥ �= 1
Ĝ
. We rely on hardness assumptions

that are non-interactive and described using a constant number of elements.

Definition 1. The Decision Diffie-Hellman (DDH) problem in G, is to dis-
tinguish the distributions (ga, gb, gab) and (ga, gb, gc), with a, b, c R← Zp. The
DDH assumption is the intractability of the problem for any PPT distinguisher.

In the following, we will rely on the Symmetric external Diffie-Hellman (SXDH)
assumption which posits the hardness of DDH in G and Ĝ in asymmetric pairing
configurations. We also assume the hardness of the following problem, which
generalizes the Decision Linear problem [18] to asymmetric pairings.
1 Specifically, we have to prove membership of a t×n subspace of rank t described by

a 2t × n matrix and the security proofs of [46,47] still work in this case.
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Definition 2 ([1]). In bilinear groups (G, Ĝ,GT ) of prime order p, the eXter-
nal Decision Linear Problem 2 (XDLIN2) is to distinguish the distribution

D1 = {(g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd, ĝc+d) ∈ G
5 × Ĝ

6 | a, b, c, d R← Zp}
D2 = {(g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd, ĝz) ∈ G

5 × Ĝ
6 | a, b, c, d, z R← Zp}.

The XDLIN1 assumption is defined analogously and posits the infeasibility of
distinguishing gc+d and gz given (g, ga, gb, gac, gbd, ĝ, ĝa, ĝb, ĝac, ĝbd).

2.2 Linearly Homomorphic Structure-Preserving Signatures

Structure-preserving signatures [3,8] are signature schemes where messages and
public keys all consist of elements of a group over which a bilinear map e :
G × Ĝ → GT is efficiently computable.

Libert et al. [46] considered structure-preserving signatures with linear homo-
morphic properties. This section recalls the one-time linearly homomorphic
structure-preserving signature (LHSPS) of [46]. In the description below, we
assume that all algorithms take as input the description of common public para-
meters cp consisting of asymmetric bilinear groups (G, Ĝ,GT , p) of prime order
p > 2λ, where λ is the security parameter.

In [46], Libert et al. suggested the following construction which can be proved
secure under the SXDH assumption.

Keygen(cp,n): Given common public parameters cp = (G, Ĝ,GT , p) and the
dimension n ∈ N of the subspace to be signed. Then, choose ĝz, ĝr

R← Ĝ. For
i = 1 to n, pick χi, γi

R← Zp and compute ĝi = ĝz
χi ĝr

γi . The private key is
sk = {(χi, γi)}n

i=1 while the public key is pk =
(
ĝz, ĝr, {ĝi}n

i=1

) ∈ Ĝ
n+2.

Sign(sk, (M1, . . . , Mn)): In order to sign a vector (M1, . . . ,Mn) ∈ G
n using

sk = {(χi, γi)}n
i=1, output σ = (z, r) =

( ∏n
i=1 M−χi

i ,
∏n

i=1,M
−γi

i

)
.

SignDerive(pk, {(ωi, σ(i))}�
i=1): given pk as well as � tuples (ωi, σ

(i)), parse σ(i)

as σ(i) =
(
zi, ri

)
for i = 1 to �. Return σ = (z, r) =

( ∏�
i=1 zωi

i ,
∏�

i=1 rωi
i

)
.

Verify(pk, σ, (M1, . . . , Mn)): Given a signature σ = (z, r) ∈ G
2 and a vector

(M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) �= (1G, . . . , 1G) and (z, r)
satisfy 1GT

= e(z, ĝz) · e(r, ĝr) · ∏n
i=1 e(Mi, ĝi).

In [47], (a variant of) this scheme was used to construct constant-size QA-
NIZK arguments [40] showing that a vector v ∈ G

n belongs to a linear subspace
of rank t spanned by a matrix ρ ∈ G

t×n. Under the SXDH assumption, each
argument is comprised of two elements of G, independently of t or n.

3 An F-Unforgeable Signature

As a technical tool, our constructions rely on a signature scheme which we prove
F-unforgeable under the SXDH assumption. As defined by Belenkiy et al. [11], F-
unforgeability refers to the inability of the adversary to output a valid signature
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for a non-trivial message M without outputting the message itself. Instead, the
adversary is only required to output F (M), for an injective but not necessarily
efficiently invertible function F .

The scheme extends ideas used in signature schemes suggested in [22,40],
where each signature is a CCA2-secure encryption —using the message to be
signed as a label—of the private key accompanied with a QA-NIZK proof that
the encrypted value is the private key. In their most efficient variant, Jutla
and Roy observed [40, Sect. 5] that it suffices to encrypt private keys gω with
a projective hash value (vM · w)r [29] so as to obtain signatures of the form
(σ1, σ3, σ3) = (gω · (vM · w)r, gr, hr), which is reminiscent of selectively secure
Boneh-Boyen signatures [16].

As in [32,51], the security proof proceeds with a sequence of games to grad-
ually reach a game where the signing oracle never uses the private key, in which
case it becomes easier to prove security. In the final game, signatures always
encrypt a random value while QA-NIZK proofs are simulated. When transition-
ing from one hybrid game to the next one, the crucial step is to argue that, even
if the signing oracle produces fewer and fewer signatures using the private key,
the adversary’s forgery will still encrypt the private key. This is achieved via an
information theoretic argument borrowed from hash proof systems [28,29].

In order to obtain an F -unforgeable signature which is verifiable given only
F (M), our key observation is that QA-NIZK proofs make it possible to verify
signatures even if M appears only implicitly in a tuple (gs·M , gs, hs·M , hs) ∈ G

4.

Keygen(cp): Given common public parameters cp = (G, Ĝ,GT , p) consisting of
asymmetric bilinear groups of prime order p > 2λ, do the following.
1. Choose ω, a R← Zp, g, v, w R← G, ĝ R← Ĝ and set h = ga, Ω = hω.
2. Define a matrix M = (Mj,i)j,i given by

M =

⎛
⎝

g 1 1 1 1 h
v g 1 h 1 1
w 1 g 1 h 1

⎞
⎠ ∈ G

3×6. (1)

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomorphic
signature of Sect. 2.2 in order to sign vectors of dimension n = 6. Let
skhsps = {(χi, γi)}6i=1 be the private key, of which the corresponding
public key is pkhsps =

(
ĝz, ĝr, {ĝi}6i=1

)
.

4. Using skhsps = {χi, γi}6i=1, generate one-time homomorphic signatures
{(zj , rj)}3j=1 on the rows M j = (Mj,1, . . . ,Mj,6) ∈ G

6 of M. These are

obtained as (zj , rj) =
(∏6

i=1 M−χi

j,i ,
∏6

i=1 M−γi

j,i

)
, for each j ∈ {1, 2, 3}

and, as part of the common reference string for the QA-NIZK proof sys-
tem of [47], they will be included in the public key.

The private key is sk := ω and the public key is defined as

pk =
(
(G, Ĝ,GT ), p, g, h, ĝ, (v, w), Ω = hω, pkhsps, {(zj , rj)}3j=1

)
.
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Sign(sk,M): given sk = ω and a message M ∈ Zp, choose s R← Zp to compute

σ1 = gω · (vM · w)s, σ2 = gs·M , σ3 = gs

σ4 = hs·M σ5 = hs

Then, generate a QA-NIZK proof that the vector (σ1, σ2, σ3, σ4, σ5, Ω) ∈ G
6

is in the row space of M. This QA-NIZK proof (z, r) ∈ G
2 is obtained as

z = zω
1 · (zM

2 · z3)s, r = rω
1 · (rM

2 · r3)s. (2)

Return the signature σ =
(
σ1, σ2, σ3, σ4, σ5, z, r

)
.

Verify(pk, σ,M): parse σ as above and return 1 if and only if it holds that

e(z, ĝz) · e(r, ĝr) = e(σ1, ĝ1)−1 · e(σ3, ĝ3 · ĝ2
M )−1 · e(σ5, ĝ5 · ĝ4

M )−1

·e(Ω, ĝ6)−1

and (σ2, σ4) = (σM
3 , σM

5 ).

Note that a signature can be verified given only F (M) = ĝM by testing the
equalities e(σ2, ĝ) = e(σ3, F (M)), e(σ4, ĝ) = e(σ5, F (M)) and

e(z, ĝz) · e(r, ĝr)

= e(σ1, ĝ1)−1 · e(σ2, ĝ2)−1 · e(σ3, ĝ3)−1 · e(σ4, ĝ4)−1 · e(σ5, ĝ5)−1 · e(Ω, ĝ6)−1.

In order to keep the description as simple as possible, the above description uses
the QA-NIZK argument system of [47], which is based on linearly homomorphic
signatures. However, the security proof goes through if we use the more efficient
SXDH-based QA-NIZK argument of Jutla and Roy [41], as explained in the full
version of the paper. The pair (z, r) can thus be replaced by a single G-element.

Under the SXDH assumption, the scheme can be proved to be F-unforgeable
for the injective function F (M) = ĝM . The proof of this result is implied by the
security result of Sect. 4 where we describe a generalization of the scheme that
will be used to build a group signature in the BMW model.

4 A Two-Level SXDH-based Hierarchical Signature

This section extends our F-unforgeable signature into a 2-level hierarchical sig-
nature with partially hidden messages. In a 2-level hierarchical signature [43]
(a.k.a. identity-based signature), a signature on a message ID (called “identity”)
can be used as a delegated key for signing messages of the form (ID,M) for
any M . In order to construct group signatures, Boyen and Waters [21] used
hierarchical signatures that can be verified even when identities (i.e., first-level
messages) are not explicitly given to the verifier, but only appear implicitly in
the exponent. The syntax and security definition are given in [20,21].

In their most efficient construction [21], Boyen and Waters used a non-
standard q-type assumption. This section gives a very efficient solution based
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on the standard SXDH assumption. It is obtained from our signature of Sect. 3
by having a signature (gω · (vID · w)s, gs, hs) on a given identity ID serve as a
private key for this identity modulo the introduction of a delegation component
ts akin to those of the Boneh-Boyen-Goh hierarchical IBE [17]. For the security
proof to go through, we need to make sure that pairs (gs·M , gs), (hs·M , hs) hide
the same message M , which is not immediately verifiable in the SXDH setting.
To enforce this condition, we thus include ĝM in each signature.

Setup(cp): Given public parameters cp = (G, Ĝ,GT , p), do the following.

1. Choose ω, a R← Zp, g, t, v, w R← G, ĝ R← Ĝ and set h = ga, Ω = hω.
2. Define a matrix M = (Mj,i)j,i given by

M =

⎛
⎜⎜⎝

g 1 1 1 1 1 1 h
v g 1 h 1 1 1 1
w 1 g 1 h 1 1 1
t 1 1 1 1 g h 1

⎞
⎟⎟⎠ ∈ G

4×8. (3)

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomorphic
signature of Sect. 2.2 in order to sign vectors of dimension n = 8. Let
skhsps = {(χi, γi)}8i=1 be the private key, of which the corresponding
public key is pkhsps =

(
ĝz, ĝr, {ĝi}8i=1

)
.

4. Using skhsps = {χi, γi}8i=1, generate one-time homomorphic signatures
{(zj , rj)}4j=1 on the rows M j = (Mj,1, . . . ,Mj,8) ∈ G

8 of M. These are

obtained as (zj , rj) =
(∏8

i=1 M−χi

j,i ,
∏8

i=1 M−γi

j,i

)
each for j ∈ {1, . . . , 4}

and, as part of the common reference string for the QA-NIZK proof sys-
tem of [47], they will be included in the public key.

The master secret key is msk := ω and the master public key is defined as

mpk =
(
(G, Ĝ,GT ), p, g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)
.

Extract(msk, ID): given msk = ω and ID ∈ Zp, choose s R← Zp to compute

K1 = gω · (vID · w)s, K2 = gs·ID, K3 = gs

K4 = hs·ID K5 = hs K6 = ts

as well as K̂7 = ĝID. Looking ahead, K6 will serve as a delegation component
in the generation of level 2 signatures. Then, generate a QA-NIZK proof that
the vector (K1,K2,K3,K4,K5, 1, 1, Ω) ∈ G

8 is in the row space of the first
3 rows of M. This QA-NIZK proof (z, r) ∈ G

2 is obtained as

z = zω
1 · (zID2 · z3)s, r = rω

1 · (rID2 · r3)s. (4)

Then, generate a QA-NIZK proof (zd, rd) that the delegation component K6

is well-formed. This proof consists of (zd, rd) = (zs
4, r

s
4). The private key is

KID =
(
K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd

)
. (5)
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Sign(mpk,KID,M): to sign M ∈ Zp, parse KID as in (5) and do the following.

1. Choose s′ R← Zp and compute

σ1 = K1 · KM
6 · (vID · tM · w)s′

= gω · (vID · tM · w)s̃,

where s̃ = s + s′, as well as

σ2 = K2 · gs′·ID = gs̃·ID, σ3 = K3 · gs′
= gs̃, σ̂6 = K̂7 = ĝID

σ4 = K4 · hs′·ID = hs̃·ID, σ5 = K5 · hs′
= hs̃.

2. Using (z, r) and (zd, rd), generate a QA-NIZK proof (z̃, r̃) ∈ G
2 that

the vector (σ1, σ2, σ3, σ4, σ5, σ
M
3 , σM

5 , Ω) ∈ G
8 is in the row space of M.

Namely, compute z̃ = z ·zM
d ·(zID2 ·zM

4 ·z3)s′
and r̃ = r ·rM

d ·(rID2 ·rM
4 ·r3)s′

.

Return the signature σ =
(
σ1, σ2, σ3, σ4, σ5, z̃, r̃, σ̂6

) ∈ G
7 × Ĝ.

Verify(mpk, σ,M): parse σ as above and return 1 if and only if it holds that

e(z̃, ĝz) · e(r̃, ĝr) = e(σ1, ĝ1)−1 · e(σ2, ĝ2)−1 · e(σ3, ĝ3 · ĝ6
M )−1

·e(σ4, ĝ4)−1 · e(σ5, ĝ5 · ĝ7
M )−1 · e(Ω, ĝ8)−1

as well as e(σ2, ĝ) = e(σ3, σ̂6) and e(σ4, ĝ) = e(σ5, σ̂6).

As in Sect. 3, the technique of [41] can be used to shorten the signature by one
element of G as it allows replacing (z̃, r̃) by one element of G.

We prove that, under the sole SXDH assumption, the scheme is secure in
the sense of the natural security definition used by Boyen and Waters [20,21].
In short, this definition requires that the adversary be unable to forge a valid
signature for a pair (ID�,M�) such that no private key query was made for ID�

and no signing query was made for the pair (ID�,M�).

Theorem 1. The above hierarchical signature is secure under chosen-message
attacks if the SXDH assumption holds in (G, Ĝ,GT ). (The proof is available the
full version of the paper).

A simple reduction shows that the signature scheme of Sect. 3 is F -unforgeable
so long as the above scheme is a secure 2-level hierarchical signature.

Theorem 2. The signature scheme of Sect. 3 is F -unforgeable under chosen-
message attacks for the function F (M) = ĝM if the SXDH assumption holds in
(G, Ĝ,GT ). (The proof is available in the full version of the paper).

5 A Structure-Preserving Signature from the SXDH
and XDLIN2 Assumptions

Our F-unforgeable signature of Sect. 3 can be combined with the tagged one-time
signature of Abe et al. [2] (or, more precisely, an adaption of [2] to asymmetric
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pairings) so as to obtain a new structure-preserving signature based on the SXDH
and XDLIN2 assumptions. Like [1], we obtain an SPS scheme based on simple
assumptions with only 11 group elements per signature. However, only one of
them has to be in Ĝ, instead of 4 in [1]. Considering that Ĝ elements are at
least twice as long to represent as those of G, we thus shorten signatures by the
equivalent of 3 elements of G (or 20%).

Our construction can be seen as an optimized instantiation of a general con-
struction [1] that combines a tagged one-time signature and an SPS scheme which
is only secure against extended random-message (XRMA) attacks. A tagged
one-time signature (TOTS) is a signature scheme where each signature con-
tains a single-use tag: namely, only one signature is generated w.r.t. each tag.
The generic construction of [1] proceeds by certifying the tag of the TOTS
scheme using an XRMA-secure SPS scheme. Specifically, our F-unforgeable sig-
nature assumes the role of the XRMA-secure signature and its shorter message
space allows us to make the most of the optimal tag size of [2]. In [1], the proofs
of XMRA security rely on the property that, when the reduction signs random
groups elements of its choice, it is allowed to know their discrete logarithms.
However, this property is only used in the security proof and not in the scheme
itself. Here, we also use the discrete logarithm of the tag in the SPS construction
itself, which allows our F -unforgeable signature to supersede the XRMA-secure
signature. By exploiting the smaller message space of our F -unforgeable signa-
ture, we can leverage the optimal tag size of [2]. Unlike the SPS of [2], we do not
need to expand the tag from one to three group elements before certifying it.

Keygen(cp, n): given the length n of messages to be signed and common para-
meters cp specifying the description of bilinear groups (G, Ĝ,GT ) of prime
order p > 2λ, do the following.

a. Generate a key pair (skfsig, pkfsig) ← Setup(cp) for the F-unforgeable
signature of Sect. 3. Namely,
1. Choose ω, a R← Zp, g R← G, ĝ R← Ĝ and set h = ga, Ω = hω. Then,

choose v, w R← G.
2. Define a matrix M = (Mj,i)j,i given by

M =

⎛
⎝

g 1 1 1 1 h
v g 1 h 1 1
w 1 g 1 h 1

⎞
⎠ ∈ G

3×6. (6)

3. Generate a key pair (skhsps, pkhsps) for the linearly homomorphic sig-
nature of Sect. 2.2 in order to sign vectors of dimension n = 6. Let
skhsps = {(χ0,i, γ0,i)}6i=1 be the private key, of which the correspond-
ing public key is pkhsps =

(
ĝz, ĝr, {ĝi}6i=1

)
.

4. Using skhsps = {χ0,i, γ0,i}6i=1, generate one-time homomorphic signa-
tures {(zj , rj)}3j=1 on the rows M j = (Mj,1, . . . ,Mj,6) ∈ G

6 of M.

These are obtained as (zj , rj) =
(∏6

i=1 M
−χ0,i
j,i ,

∏6
i=1 M

−γ0,i
j,i

)
, for

j ∈ {1, 2, 3} and, as part of the common reference string for the QA-
NIZK proofs of [47], they will be included in the public key.
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b. Generate a key pair (pkpots, skpots) for the partial one-time SPS of Abe
et al. [1]. Namely, choose wz, wr, μz, μu, wt

R← Zp and set

Ĝz = ĝwz , Ĝr = ĝwr , Ĝt = ĝwt , Ĥz = ĝμz , Ĥu = ĝμu

Gz = gwz , Gr = gwr , Gt = gwt , Hz = gμz , Hu = gμu

Then, for i = 1 to n, choose χi, γi, δi
R← Zp and compute Ĝi = Ĝz

χi · Ĝr
γi

and Ĥi = Ĝz
χi · Ĝr

δi . Define skpots := {(χi, γi, δi)}n
i=1 and

pkpots :=
(
Gz, Gr, Gt,Hz,Hu, Ĝz, Ĝr, Ĝt, Ĥz, Ĥu, {Ĝi, Ĥi}n

i=1

)
.

The private key is SK = (ω,wr, μu, skpots) and the public key consists of

PK =
(

g, h, ĝ, (v, w), Ω = hω, pkpots, pkhsps, {(zj , rj)}3j=1

)
.

Sign(SK,M ): given SK = (ω,wr, μu, skpots) and M = (M1, . . . ,Mn) ∈ G
n,

1. Choose s, τ R← Zp to compute

σ1 = gω · (vτ · w)s, σ2 = gs·τ , σ3 = gs,

σ4 = hs·τ σ5 = hs, σ̃6 = ĝτ .

Then, generate a QA-NIZK proof that the vector (σ1, σ2, σ3, σ4, σ5, Ω) is
in the row space of M. This proof (z, r) ∈ G

2 is computed as

z = zω
1 · (zτ

2 · z3)s, r = rω
1 · (rτ

2 · r3)s. (7)

2. Choose ζ R← Zp and compute Z = gζ · ∏n
i=1 M−χi

i as well as

R = (Gτ
t · Gz

−ζ)1/wr ·
n∏

i=1

M−γi

i , U = (H−ζ
z )1/μu ·

n∏
i=1

M−δi
i

Return σ =
(
σ1, σ2, σ3, σ4, σ5, σ̂6, z, r, Z,R,U

) ∈ G
5 × Ĝ × G

5.

Verify(PK, σ,M ): given M = (M1, . . . ,Mn) ∈ G
n, parse σ as above. Return 1

if and only if e(σ2, ĝ) = e(σ3, σ̂6) and e(σ4, ĝ) = e(σ5, σ̂6) as well as

e(z, ĝz) · e(r, ĝr) =
5∏

i=1

e(σi, ĝi)−1 · e(Ω, ĝ6)−1

e(Gt, σ̂6) = e(Z, Ĝz) · e(R, Ĝr) ·
n∏

i=1

e(Mi, Ĝi) (8)

1GT
= e(Z, Ĥz) · e(U, Ĥu) ·

n∏
i=1

e(Mi, Ĥi).
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Each signature requires 10 elements of G and one element of Ĝ. Using the opti-
mized F -unforgeable signature based on the Jutla-Roy QA-NIZK proof [41], we
can also save one more element of G and obtain signatures in G

9×Ĝ, which short-
ens the signatures of Abe et al. [1] by 26%. In the full version of the paper, we
give more detailed comparisons among all SPS based on non-interactive assump-
tions.

In the application to group signatures, it is desirable to minimize the number
of signature components that need to appear in committed form. To this end,
signatures must be randomizable in such a way that (σ3, σ5) can appear in the
clear modulo a re-randomization of s ∈ Zp. To enable this randomization, it is
necessary to augment signatures (similarly to [6]) with a randomization token
(gτ , hτ , vτ , zτ

2 , rτ
2 ). We will prove that the scheme remains unforgeable even when

the signing oracle also outputs these randomization tokens at each invocation.2

We call this notion extended existential unforgeability (or EUF-CMA∗ for short).
When the re-randomization tokens are used, proving the knowledge of a

signature on a committed message M ∈ G
n requires 2n + 24 elements of G and

12 elements of Ĝ. In comparison, the best previous solution of Abe et al. costs
2n + 26 elements of G and 18 elements of Ĝ.

Theorem 3. The scheme provides EUF-CMA∗ security if the SXDH and
XDLIN2 assumptions hold in (G, Ĝ,GT ). (The proof is given in the full ver-
sion of the paper).

In short, the proof of Theorem 3 considers two kinds of forgeries. In Type I
forgeries, the adversary’s forgery contains an element σ̂6

� that did not appear
in any signature obtained by the forger during the game. In contrast, Type
II forgeries are those for which σ̂6

� is recycled from a response of the signing
oracle. It is easy to see that a Type I forger allows breaking the security of the
F -unforgeable signature. As for Type II forgeries, they are shown to contradict
the XDLIN2 assumption via a careful adaptation of the proof given by Abe
et al. for their TOTS scheme [2]. While the latter was originally presented in
symmetric pairings, it goes through in Type 3 pairings modulo natural changes
that consist in making sure that most handled elements of Ĝ have a counterpart
in G. One difficulty is that, at each query, the reduction must properly simulate
the randomization tokens (vτ , gτ , hτ , zτ

2 , rτ
2 ) as well as an instance of the F -

unforgeable signature without knowing the discrete logarithm logĝ(σ̂6) = ĝτ or
that of its shadow logg(σ6) = gτ in G. Fortunately, this issue can be addressed
by letting the reduction know logg(v) and logg(w).

In an independent work [45], Kiltz, Pan and Wee obtained even shorter sig-
natures, which live in G

6 × Ĝ under the SXDH assumption. On the other hand,
their security reduction is looser than ours as the gap between the adversary’s
advantage and the reduction’s probability to break the underlying assumption
is quadratic (instead of linear in our case) in the number of signing queries.

2 Note, however, that the adversary is not required to produce any randomization
token as part of its forgery.



Short Group Signatures via Structure-Preserving Signatures 309

6 A Publicly Verifiable Tag-Based Encryption Scheme

As a tool for constructing a CCA2-anonymous group signature, we describe a new
tag-based encryption scheme [44,48] which is inspired by the lossy encryption
scheme [13] of [39]. In our group signature, we will exploit the fact that the
DDH-based lossy encryption scheme of Bellare et al. [13] can also be seen as a
Groth-Sahai commitment.

Keygen(cp): Given public parameters cp = (G, Ĝ,GT , p) specifying asymmetric
bilinear groups of prime order p > 2λ, conduct the following steps.

1. Choose g, h R← Ĝ. Choose x, α, β R← Zp and set X1 = gx, X2 = hx,
S = gα, T = gβ , W = hα and V = hβ .

2. Generate a key pair (pk′
hsig, sk

′
hsig) for the homomorphic signature of

Sect. 2.2 in order to sign vectors in G
3. Let pk′

hsig =
(
Ĝz, Ĝr, {Ĝi}3i=1

)
be

the public key and let sk′
hsig = {(ϕi, ϑi)}3i=1 be the private key.

3. Use sk′
hsig to generate linearly homomorphic signatures {(Zi, Ri)}4i=1 on

the rows of the matrix

L =

⎛
⎜⎜⎝

g 1 T
h 1 V
1 g S
1 h W

⎞
⎟⎟⎠ ∈ G

4×3

which form a subspace of rank 2. The key pair consists of sk = (x, α, β)
and pk :=

(
g, h,X1,X2, S,W, T, V, pk′

hsig, {(Zi, Ri)}4i=1

)
.

Encrypt(pk,M, τ): To encrypt M ∈ G under the tag τ , choose θ1, θ2
R← Zp and

compute the ciphertext C = (C0, C1, C2, Z,R) as

C =
(
M · Xθ1

1 · Xθ2
2 , gθ1 · hθ2 , (Sτ · T )θ1 · (W τ · V )θ2 ,

(Zτ
3 · Z1)θ1 · (Zτ

4 · Z2)θ2 , (Rτ
3 · R1)θ1 · (Rτ

4 · R2)θ2
)
.

Here, (Z,R) serves as a proof that the vector (C1, C
τ
1 , C2) is in the row space

of L and satisfies

e(Z, Ĝz) · e(R, Ĝr) = e(C1, Ĝ1
τ · Ĝ2)−1 · e(C2, Ĝ2)−1 (9)

Decrypt(sk,C , τ): Parse C as above. Return ⊥ if (Z,R) does not satisfy (9).
Otherwise, return M = C0/Cx

1 .

We observe that (C0, C1) form a Groth-Sahai commitment based on the DDH
assumption in G. If logg(X1) = logh(X2), the commitment is extractable. Oth-
erwise, it is perfectly hiding. We will use this CCA2-secure scheme as a commit-
ment that is extractable on all tags, except one τ� where it behaves as a perfectly
hiding commitment. The above system achieves this while only expanding the
original Groth-Sahai commitment (C0, C1) by 3 elements of G.

This scheme will save our group signatures from having to contain (beyond
(C0, C1)) an additional CCA2-secure encryption and a NIZK proof that the
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plaintext coincides with the content of a Groth-Sahai commitment. The above
technique allows saving the equivalent of 16 elements of G. We thus believe this
cryptosystem to be of interest in its own right since it can be used in a similar
way to shorten other group signatures (e.g., [36]) based on Groth-Sahai proofs.

In the full paper, the scheme is proved secure in the sense of [44].

Theorem 4. The above scheme is selective-tag weakly IND-CCA2-secure if the
SXDH assumption holds. (The proof is given in the full paper).

7 Short Group Signatures in the BMW Model

The TBE scheme of Sect. 6 allows us to achieve anonymity in the CCA2 sense by
encrypting an encoding of the group member’s identifier. In order to minimize
the signature length, we let the TBE ciphertext live in G instead of Ĝ. To open
signatures in constant time, however, the opening algorithm uses the extraction
trapdoor of a Groth-Sahai commitment in Ĝ

2 rather than the private key sktbe of
the TBE system. The latter key is only used in the proof of anonymity where the
reduction uses a somewhat inefficient opening algorithm of complexity O(N).

Keygen(λ,N): given a security parameter λ ∈ N and the number of users N ,
choose asymmetric bilinear groups cp = (G, Ĝ,GT , p) of order p > 2λ.
1. Generate a key pair (msk,mpk) for the two-level hierarchical signature of

Sect. 4. Let

mpk :=
(
(G, Ĝ,GT ), p, g, h, ĝ, (t, v, w), Ω = hω, pkhsps, {(zj , rj)}4j=1

)

be the master public key and msk := ω ∈ Zp be the master secret key.
2. Generate a key pair (sktbe, pktbe) for the tag-based encryption scheme

of Sect. 6. Let pktbe =
(
g, h,X1,X2, S,W, T, V, pk′

hsig, {(Zi, Ri)}4i=1

)
be

the public key and sktbe = (x, α, β) be the underlying private key. For
simplicity, the element g can be recycled from mpk.

3. Choose a vector û1 = (û11, û12)
R← Ĝ

2 and set û2 = û1
ξ, where ξ R← Zp.

Also, define the vectors u1 = (g,X1) and u2 = (h,X2). These vectors will
form Groth-Sahai CRSes (u1,u2) and (û1, û2) in the perfectly binding
setting. Although sktbe serves as an extraction trapdoor for commitments
generated on the CRS (u1,u2), the group manager will more efficiently
use ζ = logû11

(û12) to open signatures.
4. Choose a chameleon hash function CMH = (CMKg,CMhash,CMswitch)

with a key pair (hk, tk) and randomness space Rhash.
5. For each group member i, choose an identifier IDi

R← Zp and use msk to
compute KIDi = (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd), where

K1 = gω · (vIDi · w)s·, K2 = gs·IDi , K3 = gs

K4 = hs·IDi K5 = hs K6 = ts

z = zω
1 · (zIDi

2 · z3)s r = rω
1 · (rIDi

2 · r3)s K̂7 = ĝIDi
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and (zd, rd) = (zs
4, r

s
4). For each i ∈ {1, . . . , N}, the i-th group member’s

private key is gsk[i] = (IDi,KIDi
).

The group manager’s secret key is gsk :=
(
msk, ζ = logû11

(û12)
)

while the
group public key consists of

gpk :=
(
(G, Ĝ,GT ), mpk, pktbe, (u1,u2), (û1, û2), CMH, hk

)
.

Sign(gpk, gsk[i],M): In order to sign a message M ∈ Zp using the i-th group
member’s private key gsk[i] = (IDi,KIDi), conduct the following steps.
1. Using KIDi

= (K1,K2,K3,K4,K5,K6, K̂7, z, r, zd, rd), derive a second-
level hierarchical signature. Namely, choose s′ R← Zp and compute

σ1 = K1 · KM
6 · (vIDi · tM · w)s′

σ2 = K2 · gs′·IDi = gs̃·IDi

= gω · (vIDi · tM · w)s̃ σ3 = K3 · gs′
= gs̃

σ4 = K4 · hs′·IDi = hs̃·IDi σ5 = K5 · hs′
= hs̃,

and σ̂6 = K̂7, where s̃ = s + s′, as well as

z̃ = z · zM
d · (zIDi

2 · zM
4 · z3)s′

r̃ = r · rM
d · (rIDi

2 · rM
4 · r3)s′

= zω
1 · (zIDi

2 · zM
4 · z3)s̃ = rω

1 · (rIDi
2 · rM

4 · r3)s̃.

2. Choose θ1, . . . , θ12
R← Zp and compute Groth-Sahai commitments

C σ1 = (1, σ1) · u1
θ1 · u2

θ2 , C σ2 = (1, σ2) · u1
θ3 · u2

θ4 ,

C σ4 = (1, σ4) · u1
θ5 · u2

θ6 , C σ̂6 = (1, σ̂6) · û1
θ7 · û2

θ8 .

C z̃ = (1, z̃) · u1
θ9 · u2

θ10 , C r̃ = (1, r̃) · u1
θ11 · u2

θ12

Note that C σ2 can be written as (C1, C0) = (gθ3 · hθ4 , σ2 · Xθ3
1 · Xθ4

2 ).
3. Generate Groth-Sahai NIWI proofs π1 ∈ Ĝ

2, π2 ∈ G
2 × Ĝ

2 and π3 ∈
G

2 × Ĝ
2 that committed variables (z̃, r̃, σ1, σ2, σ4, σ̂6) satisfy

e( z̃ , ĝz) · e( r̃ , ĝr) = e( σ1 , ĝ1)
−1 · e( σ2 , ĝ2)

−1 · e(σ3, ĝ3 · ĝ6M )−1 (10)

·e( σ4 , ĝ4)
−1 · e(σ5, ĝ5 · ĝ7M )−1 · e(Ω, ĝ8)

−1

and

e( σ2 , ĝ) = e(σ3, σ̂6 ), e( σ4 , ĝ) = e(σ5, σ̂6 ). (11)

4. Choose rhash
R← Rhash and compute a chameleon hash value

τ = CMhash(hk, (Cσ1 ,Cσ2 , σ3,Cσ4 , σ5,C σ̂6 ,C z̃,C r̃, π1, π2, π3), rhash).

Then, using τ and (θ3, θ4) ∈ Z
2
p, compute C2 = (Sτ · T )θ3 · (W τ · V )θ4 .

Using pk′
hsig, compute (Z,R) =

(
(Zτ

3 · Z1)θ3 · (Zτ
4 · Z2)θ4 , (Rτ

3 · R1)θ3 ·
(Rτ

4 · R2)θ4
)

as a QA-NIZK argument that (C1, C
τ
1 , C2) is in the row
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space of L. This allows turning C σ2 = (C1, C0) into a TBE ciphertext
C̃ σ2 = (C0, C1, C2, Z,R) as

C̃ σ2 =
(

σ2 · Xθ3
1 · Xθ4

2 , gθ3 · hθ4 , (Sτ · T )θ3 · (W τ · V )θ4 ,

(Zτ
3 · Z1)θ3 · (Zτ

4 · Z2)θ4 , (Rτ
3 · R1)θ3 · (Rτ

4 · R2)θ4
) ∈ G

5

for the tag τ . Note that C̃ σ2 contains the original commitment C σ2 .
Return σ =

(
C σ1 , C̃ σ2 , σ3,C σ4 , σ5,C σ̂6 ,C z̃,C r̃,π1,π2,π3, rhash

)
.

Verify(gpk,M, σ): Parse σ as above. Return 1 if and only if: (i) The
proofs π1,π2,π3 verify; (ii) C̃ σ2 is a valid TBE ciphertext (i.e., (9)
holds) for the tag τ = CMhash(hk, (C σ1 ,C σ2 , σ3,C σ4 , σ5,C σ̂6 ,C z̃,C r̃,
π1,π2,π3), rhash).

Open(gpk, gmsk,M, σ): To open σ using gmsk =
(
msk, ζ

)
, parse σ as above and

return ⊥ if it is not a valid signature w.r.t. gpk and M . Otherwise, use
ζ = logû11

(û12) to decrypt the Elgamal ciphertext C σ̂6 ∈ Ĝ
2. Then, check

if the resulting plaintext is ĝID for some group member’s identifier ID. If so,
output ID. Otherwise, return ⊥.

The signature consists of 19 elements of G, 8 elements of Ĝ and one element
of Zp. If each element of G (resp. Ĝ) has a 256-bit (resp. 512-bit) representation,
the entire signature fits within 9216 bits (or 1.125 kB). By using the technique
of Jutla and Roy [41] to shorten the hierarchical signature, it is possible to
shorten the latter by one group element (as explained in Sect. 4), which saves
two elements of G in the group signature without modifying the underlying
assumption. In this case, the signature length reduces to 8704 bits (or 1.062 kB).
Using the technique of Boyen, Mei and Waters [19], it is also possible to eliminate
the randomness rhash and replace the chameleon hash function by an ordinary
collision-resistant hash function, as explained in the full version of the paper. By
doing so, at the expense of a group public key made of Θ(λ) elements of Ĝ, we
can further compress signatures down to 8448 bits (or 1.031 kB).

To give a concrete comparison with earlier constructions, an implementa-
tion of the Boyen-Waters group signature [21] in asymmetric prime order groups
requires 8 elements of G and 8 elements of Ĝ for a total of 6400 bits per signa-
ture. However, besides the SXDH assumption, the resulting scheme relies on the
non-standard q-Hidden Strong Diffie-Hellman assumption [21] and only provides
anonymity in the CPA sense.

Theorem 5. The scheme provides full traceability under the SXDH assumption.

The proof of Theorem 5 relies on the unforgeability of the two-level hierarchi-
cal signature of Sect. 4. By preparing extractable Groth-Sahai CRSes (u1,u2)
and (û1, û2), the reduction can always turn a full traceability adversary (see
[12] for a definition) into a forger for the hierarchical signature. The proof is
straightforward and the details are omitted.

Theorem 6. The scheme provides full anonymity assuming that: (i) The SXDH
assumption holds in (G, Ĝ,GT ); (ii) CMhash is a collision-resistant chameleon
hash function. (The proof is given in the full version of the paper).
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In the full version of the paper, we extend the above system to obtain dynamic
group signatures based on the SXDH and XDLIN2 assumption. The signature
length is only 1.8 kB, which gives us the shortest dynamic group signatures based
on constant-size assumptions to date. The construction builds on our structure-
preserving signature and the encryption scheme of Sect. 6 in a modular manner.
Detailed efficiency comparisons are given in the full paper.
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Abstract. Recently, there has been huge progress in the field of con-
cretely efficient secure computation, even while providing security in the
presence of malicious adversaries. This is especially the case in the two-
party setting, where constant-round protocols exist that remain fast even
over slow networks. However, in the multi-party setting, all concretely
efficient fully-secure protocols, such as SPDZ, require many rounds of
communication.

In this paper, we present an MPC protocol that is fully-secure in the
presence of malicious adversaries and for any number of corrupted par-
ties. Our construction is based on the constant-round BMR protocol of
Beaver et al., and is the first fully-secure version of that protocol that
makes black-box usage of the underlying primitives, and is therefore con-
cretely efficient.

Our protocol includes an online phase that is extremely fast and
mainly consists of each party locally evaluating a garbled circuit. For the
offline phase we present both a generic construction (using any under-
lying MPC protocol), and a highly efficient instantiation based on the
SPDZ protocol. Our estimates show the protocol to be considerably more
efficient than previous fully-secure multi-party protocols.

1 Introduction

Background: Protocols for secure multi-party computation (MPC) enable a set
of mutually distrustful parties to securely compute a joint functionality of their
inputs. Such a protocol must guarantee privacy (meaning that only the output
is learned), correctness (meaning that the output is correctly computed from the
inputs), and independence of inputs (meaning that each party must choose its
input independently of the others). Formally, security is defined by comparing the
distribution of the outputs of all parties in a real protocol to an ideal model where
an incorruptible trusted party computes the functionality for the parties. The two
main types of adversaries that have been considered are semi-honest adversaries
who follow the protocol specification but try to learn more than allowed by
inspecting the transcript, and malicious adversaries who can run any arbitrary
strategy in an attempt to break the protocol. Secure MPC has been studied since
the late 1980s, and powerful feasibility results were proven showing that any
c© International Association for Cryptologic Research 2015
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DOI: 10.1007/978-3-662-48000-7 16



320 Y. Lindell et al.

two-party or multi-party functionality can be securely computed [10,22], even in
the presence of malicious adversaries. When an honest majority (or 2/3 majority)
is assumed, then security can even be obtained information theoretically [3,4,19].
In this paper, we focus on the problem of security in the presence of malicious
adversaries, and a dishonest majority.

Recently, there has been much interest in the problem of concretely efficient
secure MPC, where “concretely efficient” refers to protocols that are sufficiently
efficient to be implemented in practice (in particular, these protocols should only
make black-box usage of cryptographic primitives; they must not, say, use generic
ZK proofs that operate on the circuit representation of these primitives). In the
last few years there has been tremendous progress on this problem, and there now
exist extremely fast protocols that can be used in practice; see [8,13,14,16,17] for
just a few examples. In general, there are two approaches that have been followed;
the first uses Yao’s garbled circuits [22] and the second utilizes interaction for
every gate like the GMW protocol [10].

There are extremely efficient variants of Yao’s protocol for the two party
case that are secure against malicious adversaries (e.g., [14,16]). These proto-
cols run in a constant number of rounds and therefore remain fast over slow
networks. The BMR protocol [1] is a variant of Yao’s protocol that runs in a
multi-party setting with more than two parties. This protocol works by the par-
ties jointly constructing a garbled circuit (possibly in an offline phase), and then
later computing it (possibly in an online phase). However, in the case of mali-
cious adversaries this protocol suffers from two main drawbacks: (1) Security is
only guaranteed if at most a minority of the parties are corrupt; (2) The proto-
col uses generic protocols secure against malicious adversaries (say, the GMW
protocol) that evaluate the pseudorandom generator used in the BMR protocol.
This non black-box construction results in an extremely high overhead.

The TinyOT and SPDZ protocols [8,17] follow the GMW paradigm, and have
offline and online phases. Both of these protocols overcome the issues of the BMR
protocol in that they are secure against any number of corrupt parties, make only
black-box usage of cryptographic primitives, and have very fast online phases
that require only very simple (information theoretic) operations. (A black-box
constant-round MPC construction appears in [11]; however, it is not “concretely
efficient”.) In the case of multi-party computation with more than two parties,
these protocols are currently the only practical approach known. However, since
they follow the GMW paradigm, their online phase requires a communication
round for every multiplication gate. This results in a large amount of interaction
and high latency, especially over slow networks. To sum up, there is no known
concretely efficient constant-round protocol for the multi-party case (with the
exception of [5] that considers the specific three-party case only). Our work
introduces the first protocol with these properties.

Our Contribution: In this paper, we provide the first concretely efficient const-
ant-round protocol for the general multi-party case, with security in the presence
of malicious adversaries. The basic idea behind the construction is to use an effi-
cient non-constant round protocol – with security for malicious adversaries – to
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compute the gate tables of the BMR garbled circuit (and since the computa-
tion of these tables is of constant depth, this step is constant round). A crucial
observation, resulting in a great performance improvement, shows that in the
offline stage it is not required to verify the correctness of the computations of the
different tables. Rather, validation of the correctness is an immediate by product
of the online computation phase, and therefore does not add any overhead to
the computation. Although our basic generic protocol can be instantiated with
any non-constant round MPC protocol, we provide an optimized version that
utilizes specific features of the SPDZ protocol [8].

In our general construction, the new constant-round MPC protocol consists
of two phases. In the first (offline) phase, the parties securely compute random
shares of the BMR garbled circuit. If this is done naively, then the result is
highly inefficient since part of the computation involves computing a pseudo-
random generator or pseudorandom function multiple times for every gate. By
modifying the original BMR garbled circuit, we show that it is possible to actu-
ally compute the circuit very efficiently. Specifically, each party locally computes
the pseudorandom function as needed for every gate (in our construction we use
a pseudorandom function rather than a pseudorandom generator), and uses the
results as input to the secure computation. Our proof of security shows that if
a party cheats and inputs incorrect values then no harm is done, since it can
only cause the honest parties to abort (which is anyway possible when there is
no honest majority). Next, in the online phase, all that the parties need to do is
reconstruct the single garbled circuit, exchange garbled values on the input wires
and locally compute the garbled circuit. The online phase is therefore very fast.

In our concrete instantiation of the protocol using SPDZ [8], there are actu-
ally three separate phases, with each being faster than the previous. The first
two phases can be run offline, and the last phase is run online after the inputs
become known.

– The first (slow) phase depends only on an upper bound on the number of
wires and the number of gates in the function to be evaluated. This phase uses
Somewhat Homomorphic Encryption (SHE) and is equivalent to the offline
phase of the SPDZ protocol.

– The second phase depends on the function to be evaluated but not the function
inputs; in our proposed instantiation this mainly involves information theoretic
primitives and is equivalent to the online phase of the SPDZ protocol.

– In the third phase the parties provide their input and evaluate the function;
this phase just involves exchanging shares of the circuit and garbled values on
the input wire and locally computing the BMR garbled circuit.

We stress that our protocol is constant round in all phases since the depth
of the circuit required to compute the BMR garbled circuit is constant. In addi-
tion, the computational cost of preparing the BMR garbled circuit is not much
more than the cost of using SPDZ itself to compute the functionality directly.
However, the key advantage that we gain is that our online time is extraordi-
narily fast, requiring only two rounds and local computation of a single garbled
circuit. This is faster than all other existing circuit-based multi-party protocols.



322 Y. Lindell et al.

Finite Field Optimization of BMR: In order to efficiently compute the
BMR garbled circuit, we define the garbling and evaluation operations over a
finite field. A similar technique of using finite fields in the BMR protocol was
introduced in [2] in the case of semi-honest security against an honest majority.
In contrast to [2], our utilization of finite fields is carried out via vectors of field
elements, and uses the underlying arithmetic of the field as opposed to using very
large finite fields to simulate integer arithmetic. This makes our modification in
this respect more efficient.

2 The General Protocol

2.1 The BMR Protocol

To aid the reader we provide here a high-level description of the BMR pro-
tocol of [1]. A detailed description of the protocol can be found in [1,2] or in
the full version of our paper [15]. We describe here the version of the protocol
that is secure against semi-honest adversaries. The protocol is comprised of an
offline-phase, where the garbled circuit is created by the players, and an online-
phase, where garbled inputs are exchanged between the players and the circuit
is evaluated.

Seeds and Superseeds: Each player associates random 0-seed and 1-seed with
each wire. Input wires of the circuit are treated differently, and there only the
player which provides the corresponding input bit knows the seeds of the wire.
The 0-superseed (resp. 1-superseed) of a wire is the concatenation of all 0-seeds
(1-seeds) of this wire, and its components are the seeds.

Garbling: For each of the four combinations of input values to a gate, the
garbling produces an encryption of the corresponding superseed of the output
wire, with the keys being each of the component seeds of the corresponding
superseeds of the input wires.

The Offline Phase: In the offline-phase, the players run (in parallel) a secure
computation for each gate, which computes the garbled table of the gate as a
function of the 0/1-seeds of each of the players for the input/output wires of the
gate, and of the truth table of the gate. This computation runs in a constant
number of rounds. The resulting garbled table enables to compute the superseed
of the output wire of the gate, given the superseeds of its input wires.

The Online Phase: In the online-phase each player which is assigned an input
wire, and which has an input value b on that wire, sends the b-superseed of the
wire to all other players. Then, every player is able evaluate the circuit on its
own, without any further interaction with the other players.

2.2 Modified BMR Garbling

In order to facilitate fast secure computation of the garbled circuit in the offline
phase, we make some changes to the original BMR garbling above. First, instead
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of using XOR of bit strings, and hence a binary circuit to instantiate the gar-
bled gate, we use additions of elements in a finite field, and hence an arithmetic
circuit. This idea was used by [2] in the FairplayMP system, which used the
BGW protocol [3] in order to compute the BMR circuit. Note that FairplayMP
achieved semi-honest security with an honest majority, whereas our aim is mali-
cious security for any number of corrupted parties.

Second, we observe that the external values1 do not need to be explicitly
encoded, since each party can learn them by looking at its own “part” of the
garbled value. In the original BMR garbling, each superseed contains n seeds
provided by the parties. Thus, if a party’s zero-seed is in the decrypted superseed
then it knows that the external value (denoted by Λ) is zero, and otherwise it
knows that it is one.

Naively, it seems that independently computing each gate securely in the
offline phase is insufficient, since the corrupted parties might use inconsistent
inputs for the computations of different gates. For example, if the output wire of
gate g is an input to gate g′, the input provided for the computation of the table
of g might not agree with the inputs used for the computation of the table of g′.
It therefore seems that the offline computation must verify the consistency of the
computations of different gates. This type of verification would greatly increase
the cost since the evaluation of the pseudorandom functions (or pseudorandom
generator in the original BMR) used in computing the tables needs to be checked
inside the secure computation. This means that the pseudorandom function is
not treated as a black box, and the circuit for the offline phase would be huge
(as it would include multiple copies of a subcircuit for computing pseudorandom
function computations for every wire). Instead, we prove that this type of corrupt
behavior can only result in an abort in the online phase, which would not affect
the security of the protocol. This observation enables us to compute each gate
independently and model the pseudorandom function used in the computation
as a black box, thus simplifying the protocol and optimizing its performance.

We also encrypt garbled values as vectors; this enables us to use a finite field
that can encode {0, 1}κ (for each vector coordinate), rather than a much larger
finite field that can encode all of {0, 1}n·κ. Due to this, the parties choose keys
(for a pseudorandom function) rather than seeds for a pseudorandom generator.
The keys that Pi chooses for wire w are denoted ki

w,0 and ki
w,1, which will be

elements in a finite field Fp such that 2κ < p < 2κ+1. In fact we pick p to be
the smallest prime number larger than 2κ, and set p = 2κ + α, where (by the
prime number theorem) we expect α ≈ κ. We shall denote the pseudorandom
function by Fk(x), where the key and output will be interpreted as elements of
Fp in much of our MPC protocol. In practice the function Fk(x) we suggest will
be implemented using CBC-MAC using a block cipher enc with key and block
size κ bits, as Fk(x) = CBC-MACenc(k (mod 2κ), x). Note that the inputs x to
our pseudorandom function will all be of the same length and so using naive
CBC-MAC will be secure.
1 The external values (as denoted in [2]) are the signals (as denoted in [1]) observable

by the parties when evaluating the circuit in the online phase.
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We interpret the κ-bit output of Fk(x) as an element in Fp where p = 2κ +α.
Note that a mapping which sends an element k ∈ Fp to a κ-bit block cipher key
by computing k (mod 2κ) induces a distribution on the key space of the block
cipher which has statistical distance from uniform of

1
2

(
(2κ − α) ·

(
1
2κ

− 1
p

)
+ α ·

(
2
p

− 1
2κ

))
≈ α

p
≈ κ

2κ
.

The output of the function Fk(x) will also induce a distribution which is close
to uniform on Fp. In particular the statistical distance of the output in Fp, for a
block cipher with block size κ, from uniform is given by

1
2

(
2κ ·

(
1
2κ

− 1
p

)
+ α ·

(
1
p

− 0
))

=
α

p
≈ κ

2κ

(note that 1 − 2κ

p = α
p ). In practice we set κ = 128, and use the AES cipher as

the block cipher enc. The statistical difference is therefore negligible.

Functionality 1 (The SFE Functionality: FSFE)

The functionality is parameterized by a function f(x1, . . . , xn) which is input
as a binary circuit Cf . The protocol consists of 3 externally exposed commands
Initialize, InputData, and Output and one internal subroutine Wait.

Initialize: On input (init , Cf ) from all parties, the functionality activates
and stores Cf .

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , xi) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , xi). The functionality then calls Wait.

Output: On input (output) from all honest parties the functionality computes
y = f(x1, . . . , xn) and outputs y to the adversary. The functionality then
calls Wait. Only if Wait does not abort it outputs y to all parties.

The goal of this paper is to present a protocol ΠSFE which implements the
Secure Function Evaluation (SFE) functionality of Functionality 1 in a constant
number of rounds in the case of a malicious dishonest majority. Our constant
round protocol ΠSFE implementing FSFE is built in the FMPC-hybrid model, i.e.
utilizing a sub-protocol ΠMPC which implements the functionality FMPC given
in Functionality 2. The generic MPC functionality FMPC is reactive. We require
a reactive MPC functionality because our protocol ΠSFE will make repeated
sequences of calls to FMPC involving both output and computation commands.
In terms of round complexity, all that we require of the sub-protocol ΠMPC is
that each of the commands which it implements can be implemented in con-
stant rounds. Given this requirement our larger protocol ΠSFE will be constant
round.
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Functionality 2 (The Generic Reactive MPC Functionality: FMPC)

The functionality consists of five externally exposed commands Initialize, In-
putData, Add, Multiply, and Output, and one internal subroutine Wait.

Initialize: On input (init , p) from all parties, the functionality activates and
stores p. All additions and multiplications below will be mod p.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functional-
ity retrieves (varid1, x), (varid2, y) and stores (varid3, x + y mod p). The
functionality then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the function-
ality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p). The
functionality then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i �= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i �= 0.

In what follows we use the notation [varid ] to represent the result stored in
the variable varid by the FMPC or FSFE functionality. In particular we use the
arithmetic shorthands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of
calling the Add and Multiply commands on the FMPC functionality.

2.3 The Offline Functionality: preprocessing-I and preprocessing-II

Our protocol, ΠSFE, is comprised of an offline-phase and an online-phase, where
the offline-phase, which implements the functionality Foffline, is divided into two
subphases: preprocessing-I and preprocessing-II. To aid exposition we first present
the functionality Foffline in Functionality 3. In the next section, we present an
efficient methodology to implement Foffline which uses the SPDZ protocol as the
underlying MPC protocol for securely computing functionality FMPC; while in
the full version of the paper [15] we present a generic implementation of Foffline

based on any underlying protocol ΠMPC implementing FMPC.
In describing functionality Foffline we distinguish between attached wires and

common wires: the attached wires are the circuit-input-wires that are directly
connected to the parties (i.e., these are inputs wires to the circuit). Thus, if every
party has � inputs to the functionality f then there are n · � attached wires. The
rest of the wires are considered as common wires, i.e. they are directly connected
to none of the parties.
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Functionality 3 (The Offline Functionality – Foffline)

This functionality runs the same Initialize, Wait, InputData and Output
commands as FMPC (Functionality 2). In addition, the functionality has two
additional commands preprocessing-I and preprocessing-II, as follows.

preprocessing-I: On input (preprocessing-I, W, G), for all wires w ∈ [1, . . . , W ]:
– The functionality chooses and stores a random masking value [λw]

where λw ∈ {0, 1}.
– For 1 ≤ i ≤ n and β ∈ {0, 1},

• The functionality stores a key of user i for wire w and value β,
[ki

w,β ] where ki
w,β ∈ Fp

• The functionality outputs [ki
w,β ] to party i by running Output

as in functionality FMPC.
preprocessing-II: On input of (preprocessing-II, Cf ) for a circuit Cf with at

most W wires and G gates.
– For all wires w which are attached to party Pi the functionality opens

[λw] to party Pi by running Output as in functionality FMPC.
– For all output wires w the functionality opens [λw] to all parties by

running Output as in functionality FMPC.
– For every gate g with input wires 1 ≤ a, b ≤ W and output wire

1 ≤ c ≤ W .
• Party Pi provides the following values for x ∈ {a, b} by running

InputData as in functionality FMPC:

Fki
x,0

(0‖1‖g), . . . , Fki
x,0

(0‖n‖g) Fki
x,0

(1‖1‖g), . . . , Fki
x,0

(1‖n‖g)

Fki
x,1

(0‖1‖g), . . . , Fki
x,1

(0‖n‖g) Fki
x,1

(1‖1‖g), . . . , Fki
x,1

(1‖n‖g)

• Define the selector variables

χ1 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ2 =

{
0 if fg(λa, λb) = λc

1 otherwise

χ3 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ4 =

{
0 if fg(λa, λb) = λc

1 otherwise

• Set Ag = (A1
g, . . . , An

g ), Bg = (B1
g , . . . , Bn

g ), Cg = (C1
g , . . . , Cn

g ),
and Dg = (D1

g , . . . , Dn
g ) where for 1 ≤ j ≤ n:

Aj
g =

(
n∑

i=1

Fki
a,0

(0‖j‖g) + Fki
b,0

(0‖j‖g)

)
+ kj

c,χ1

Bj
g =

(
n∑

i=1

Fki
a,0

(1‖j‖g) + Fki
b,1

(0‖j‖g)

)
+ kj

c,χ2

Cj
g =

(
n∑

i=1

Fki
a,1

(0‖j‖g) + Fki
b,0

(1‖j‖g)

)
+ kj

c,χ3

Dj
g =

(
n∑

i=1

Fki
a,1

(1‖j‖g) + Fki
b,1

(1‖j‖g)

)
+ kj

c,χ4

• The functionality stores the values [Ag], [Bg], [Cg], [Dg].

Our preprocessing-I takes as input an upper bound W on the number of wires
in the circuit, and an upper bound G on the number of gates in the circuit.
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The upper bound G is not strictly needed, but will be needed in any efficient
instantiation based on the SPDZ protocol. In contrast preprocessing-II requires
knowledge of the precise function f being computed, which we assume is encoded
as a binary circuit Cf .

Protocol 1 (ΠSFE: Securely Computing FSFE in the Foffline-Hybrid Model)

On input of a circuit Cf representing the function f which consists of at most
W wires and at most G gates the parties execute the following commands.

Pre-Processing: This procedure is performed as follows
1. Call Initialize on Foffline with the smallest prime p in {2κ, . . . , 2κ+1}.
2. Call Preprocessing-I on Foffline with input W and G.
3. Call Preprocessing-II on Foffline with input Cf .

Online Computation: This procedure is performed as follows
1. For all input wires w for party Pi the party takes his input bit ρw and

computes Λw = ρw ⊕λw, where λw was obtained in the preprocessing
stage. The value Λw is broadcast to all parties.

2. Party i calls Output on Foffline to open [ki
w,Λw

] for all his input wires
w, we denote the resulting value by ki

w.
3. The parties call Output on Foffline to open [Ag], [Bg], [Cg] and [Dg]

for every gate g.
4. Passing through the circuit topologically, the parties can now locally

compute the following operations for each gate g
– Let the gates input wires be labeled a and b, and the output wire

be labeled c.
– For j = 1, . . . , n compute kj

c according to the following cases:
• Case 1 – (Λa, Λb) = (0, 0): compute

kj
c = Aj

g −
(

n∑
i=1

Fki
a
(0‖j‖g) + Fki

b
(0‖j‖g)

)
.

• Case 2 – (Λa, Λb) = (0, 1): compute

kj
c = Bj

g −
(

n∑
i=1

Fki
a
(1‖j‖g) + Fki

b
(0‖j‖g)

)
.

• Case 3 – (Λa, Λb) = (1, 0): compute

kj
c = Cj

g −
(

n∑
i=1

Fki
a
(0‖j‖g) + Fki

b
(1‖j‖g)

)
.

• Case 4 – (Λa, Λb) = (1, 1): compute

kj
c = Dj

g −
(

n∑
i=1

Fki
a
(1‖j‖g) + Fki

b
(1‖j‖g)

)
.

– If ki
c /∈ {ki

c,0, k
i
c,1}, then Pi outputs abort. Otherwise, it proceeds.

If Pi aborts it notifies all other parties with that information. If
Pi is notified that another party has aborted it aborts as well.

– If ki
c = ki

c,0 then Pi sets Λc = 0; if ki
c = ki

c,1 then Pi sets Λc = 1.
– The output of the gate is defined to be (k1

c , . . . , kn
c ) and Λc.

5. Assuming party Pi does not abort it will obtain Λw for every circuit-
output wire w. The party can then recover the actual output value
from ρw = Λw⊕λw, where λw was obtained in the preprocessing stage.
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In order to optimize the performance of the preprocessing-II phase, the secure
computation does not evaluate the pseudorandom function F (), but rather has
the parties compute F () and provide the results as an input to the protocol.
Observe that corrupted parties may provide incorrect input values Fki

x,j
() and

thus the resulting garbled circuit may not actually be a valid BMR garbled
circuit. Nevertheless, we show that such behavior can only result in an abort.
This is due to the fact that if a value is incorrect and honest parties see that
their key (coordinate) is not present in the resulting vector then they will abort.
In contrast, if their seed is present then they proceed and the incorrect value
had no effect. Since the keys are secret, the adversary cannot give an incorrect
value that will result in a correct different key, except with negligible probabil-
ity. This is important since otherwise correctness would be harmed. Likewise, a
corrupted party cannot influence the masking values λ, and thus they are con-
sistent throughout (when a given wire is input into multiple gates), ensuring
correctness.

2.4 Securely Computing FSFE in the Foffline-Hybrid Model

We now define our protocol ΠSFE for securely computing FSFE (using the BMR
garbled circuit) in the Foffline-hybrid model, see Protocol 1. In the full version of
this paper [15], we prove the following theorem:

Theorem 1. If F is a pseudorandom function, then Protocol ΠSFE securely com-
putes FMPC in the Foffline-hybrid model, in the presence of a static malicious
adversary corrupting any number of parties.

2.5 Implementing Foffline in the FMPC-Hybrid Model

At first sight, it may seem that in order to construct an entire garbled circuit (i.e.
the output of Foffline), an ideal functionality that computes each garbled gate can
be used separately for each gate of the circuit (that is, for each gate the parties
provide their PRF results on the keys and shares of the masking values asso-
ciated with that gate’s wires). This is sufficient when considering semi-honest
adversaries. However, in the setting of malicious adversaries, this can be prob-
lematic since parties may input inconsistent values. For example, the masking
values λw that are common to a number of gates (which happens when any wire
enters more than one gate) need to be identical in all of these gates. In addi-
tion, the pseudorandom function values may not be correctly computed from the
pseudorandom function keys that are input. In order to make the computation
of the garbled circuit efficient, we will not check that the pseudorandom func-
tion values are correct. However, it is necessary to ensure that the λw values are
correct, and that they (and likewise the keys) are consistent between gates (e.g.,
as in the case where the same wire is input to multiple gates). We achieve this
by computing the entire circuit at once, via a single functionality.

The cost of this computation is actually almost the same as separately com-
puting each gate. The single functionality receives from party Pi the values
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ki
w,0, k

i
w,1 and the output of the pseudorandom function applied to the keys only

once, regardless of the number of gates to which w is input. Thereby consistency
is immediate throughout, and this potential attack is prevented. Moreover, the
λw values are generated once and used consistently by the circuit, making it easy
to ensure that the λ values are correct.

Another issue that arises is that the single garbled gate functionality expects
to receive a single masking value for each wire. However, since this value is secret,
it must be generated from shares that are input by the parties. In the full version
of the paper [15] we describe the full protocol for securely computing Foffline in the
FMPC-hybrid model (i.e., using any protocol that securely computes the FMPC

ideal functionality). In short, the parties input shares of λw to the functionality,
the single masking value is computed from these shares, and then input to all
the necessary gates.

In the semi-honest case, the parties could contribute a share which is random
in {0, 1} (interpreted as an element in Fp) and then compute the product of all
the shares (using the underlying MPC) to obtain a random masking value in
{0, 1}. This is however not the case in the malicious case since parties might
provide a share that is not from {0, 1} and thus the resulting masking value
wouldn’t likewise be from {0, 1}.

This issue is solved in the following way. The computation is performed by
having the parties input random masking values λi

w ∈ {1,−1}, instead of bits.
This enables the computation of a value μw to be the product of λ1

w, . . . , λn
w and

to be random in {−1, 1} as long as one of them is random. The product is then
mapped to {0, 1} in Fp by computing λw = μw+1

2 .
In order to prevent corrupted parties from inputting λi

w values that are not
in {−1,+1}, the protocol for computing the circuit outputs (

∏n
i=1 λi

w)2 − 1, for
every wire w (where λi

w is the share contributed from party i for wire w), and
the parties can simply check whether it is equal to zero or not. Thus, if any party
cheats by causing some λw /∈ {−1,+1}, then this will be discovered since the
circuit outputs a non-zero value for (

∏n
i=1 λi

w)2−1, and so the parties detect this
and can abort. Since this occurs before any inputs are used, nothing is revealed
by this. Furthermore, if

∏n
i=1 λi

w ∈ {−1,+1}, then the additional value output
reveals nothing about λw itself.

In the next section we shall remove all of the complications by basing our
implementation for FMPC upon the specific SPDZ protocol. The reason why the
SPDZ implementation is simpler – and more efficient – is that SPDZ provides
generation of such shared values effectively for free.

3 The SPDZ Based Instantiation

3.1 Utilizing the SPDZ Protocol

As discussed in Sect. 2.2, in the offline-phase we use an underlying secure com-
putation protocol, which, given a binary circuit and the matching inputs to
its input wires, securely and distributively computes that binary circuit. In this
section we simplify and optimize the implementation of the protocol Πoffline which
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implements the functionality Foffline by utilizing the specific SPDZ MPC proto-
col as the underlying implementation of FMPC. These optimizations are possible
because the SPDZ MPC protocol provides a richer interface to the protocol
designer than the naive generic MPC interface given in functionality FMPC. In
particular, it provides the capability of directly generating shared random bits
and strings. These are used for generating the masking values and pseudorandom
function keys. Note that one of the most expensive steps in FairplayMP [2] was
coin tossing to generate the masking values; by utilizing the specific properties
of SPDZ this is achieved essentially for free.

Functionality 4 (The SPDZ Functionality: FSPDZ)

The functionality consists of seven externally exposed commands Initialize,
InputData, RandomBit, Random, Add, Multiply, and Output and one
internal subroutine Wait.

Initialize: On input (init , p, M, B, R, I) from all parties, the functionality
activates and stores p. Pre-processing is performed to generate data needed
to respond to a maximum of M Multiply, B RandomBit, R Random
commands, and I InputData commands per party.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

RandomBit: On command (randombit , varid) from all parties, with varid
a fresh identifier, the functionality selects a random value r ∈ {0, 1} and
stores (varid , r). The functionality then calls Wait.

Random: On command (random, varid) from all parties, with varid a fresh
identifier, the functionality selects a random value r ∈ Fp and stores
(varid , r). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x + y) and then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x · y) and then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i �= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i �= 0.

In Sect. 3.2 we describe explicit operations that are to be carried out on the
inputs in order to achieve the desired output; the circuit’s complexity analysis
appears in Sect. 3.3 and the expected results from an implementation of the
circuit using the SPDZ protocol are in Sect. 3.4.

Throughout, we utilize FSPDZ (Functionality 4), which represents an ideal-
ized representation of the SPDZ protocol, akin to the functionality FMPC from
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Sect. 2.2. Note that in the real protocol, FSPDZ is implemented itself by an offline
phase (essentially corresponding to our preprocessing-I) and an online phase (cor-
responding to our preprocessing-II). We fold the SPDZ offline phase into the
Initialize command of FSPDZ. In the SPDZ offline phase we need to know the
maximum number of multiplications, random values and random bits required in
the online phase. In that phase the random shared bits and values are produced,
as well as the “Beaver Triples” for use in the multiplication gates performed in
the SPDZ online phase. In particular the consuming of shared random bits and
values results in no cost during the SPDZ online phase, with all consumption
costs being performed in the SPDZ offline phase. The protocol, which utilizes
Somewhat Homomorphic Encryption to produce the shared random values/bits
and the Beaver multiplication triples, is given in [7].

As before, we use the notation [varid ] to represent the result stored in the
variable varid by the functionality. In particular we use the arithmetic short-
hands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of calling the Add
and Multiply commands on the functionality FSPDZ.

3.2 The Πoffline SPDZ Based Protocol

As remarked earlier Foffline can be securely computed using any secure multi-
party protocol. This is advantageous since it means that future efficiency
improvements to concretely secure multi-party computation (with dishonest
majority) will automatically make our protocol faster. However, currently the
best option is SPDZ. Specifically, it utilizes the fact that SPDZ can very effi-
ciently generate coin tosses. This means that it is not necessary for the parties to
input the λi

w values, to multiply them together to obtain λw and to output the
check values (λw)2−1. Thus, this yields a significant efficiency improvement. We
now describe the protocol which implements Foffline in the FSPDZ-hybrid model

preprocessing-I

1. Initialize the MPC Engine: Call Initialize on the functionality FSPDZ

with input p, a prime with p > 2k and with parameters

M = 13 · G, B = W, R = 2 · W · n, I = 2 · G · n + W,

where G is the number of gates, n is the number of parties and W is the
number of input wires per party. In practice the term W in the calculation
of I needs only be an upper bound on the total number of input wires per
party in the circuit which will eventually be evaluated.

2. Generate Wire Masks: For every circuit wire w we need to generate a
sharing of the (secret) masking-values λw. Thus for all wires w the parties
execute the command RandomBit on the functionality FSPDZ, the output
is denoted by [λw]. The functionality FSPDZ guarantees that λw ∈ {0, 1}.

3. Generate Keys: For every wire w, each party i ∈ [1, . . . , n] and for j ∈
{0, 1}, the parties call Random on the functionality FSPDZ to obtain output
[ki

w,j ]. The parties then call Output to open [ki
w,j ] to party i for all j and w.

The vector of shares [ki
w,j ]

n
i=1 we shall denote by [kw,j ].
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preprocessing-II (This protocol implements the computation gate table as it is
detailed in the BMR protocol. The correctness of this construction is explained
in the full version of the paper.)

1. Output Input Wire Values: For all wires w which are attached to party
Pi we execute the command Output on the functionality FSPDZ to open [λw]
to party i.

2. Output Masks for Circuit-Output-Wires: In order to reveal the real
values of the circuit-output-wires it is required to reveal their masking values.
That is, for every circuit-output-wire w, the parties execute the command
Output on the functionality FSPDZ for the stored value [λw].

3. Calculate Garbled Gates: This step is operated for each gate g in the
circuit in parallel. Specifically, let g be a gate whose input wires are a, b and
output wire is c. Do as follows:
(a) Calculate Output Indicators: This step calculates four indicators

[xa], [xb], [xc], [xd] whose values will be in {0, 1}. Each one of the garbled
labels Ag,Bg,Cg,Dg is a vector of n elements that hide either the vector
kc,0 = k1

c,0, . . . , k
n
c,0 or kc,1 = k1

c,1, . . . , k
n
c,1; which one it hides depends on

these indicators, i.e. if xa = 0 then Ag hides kc,0 and if xa = 1 then Ag

hides kc,1. Similarly, Bg depends on xb, Cg depends on xc and Dc depends
on xd. Each indicator is determined by some function on [λa], [λb],[λc]
and the truth table of the gate fg. Every indicator is calculated slightly
different, as follows (concrete examples are given after the preprocessing
specification):

[xa] =
(

fg([λa], [λb])
?

�= [λc]
)

= (fg([λa], [λb]) − [λc])2

[xb] =
(

fg([λa], [λb])
?

�= [λc]
)

= (fg([λa], (1 − [λb])) − [λc])2

[xc] =
(

fg([λa], [λb])
?

�= [λc]
)

= (fg((1 − [λa]), [λb]) − [λc])2

[xd] =
(

fg([λa], [λb])
?

�= [λc]
)

= (fg((1 − [λa]), (1 − [λb])) − [λc])2

where the binary operator
?

�= is defined as [a]
?

�= [b] equals [0] if a = b, and
equals [1] if a �= b. For the XOR function on a and b, for example, the
operator can be evaluated by computing [a] + [b] − 2 · [a] · [b]. Thus, these
can be computed using Add and Multiply.

(b) Assign the Correct Vector: As described above, we use the calculated
indicators to choose for every garbled label either kc,0 or kc,1. Calculate:

[vc,xa
] = (1 − [xa]) · [kc,0] + [xa] · [kc,1]

[vc,xb
] = (1 − [xb]) · [kc,0] + [xa] · [kc,1]

[vc,xc
] = (1 − [xc]) · [kc,0] + [xa] · [kc,1]

[vc,xd
] = (1 − [xd]) · [kc,0] + [xa] · [kc,1]
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In each equation either the value kc,0 or the value kc,1 is taken, depending
on the corresponding indicator value. Once again, these can be computed
using Add and Multiply.

(c) Calculate Garbled Labels: Party i knows the value of ki
w,b (for wire

w that enters gate g) for b ∈ {0, 1}, and so can compute the 2 · n values
Fki

w,b
(0‖1‖ g), . . . , Fki

w,b
(0‖n‖ g) and Fki

w,b
(1‖1‖ g), . . . , Fki

w,b
(1‖n‖ g).

Party i inputs them by calling InputData on the functionality FSPDZ.
The resulting input pseudorandom vectors are denoted by

[F 0
ki

w,b
(g)] = [Fki

w,b
(0‖1‖g), . . . , Fki

w,b
(0‖n‖g)]

[F 1
ki

w,b
(g)] = [Fki

w,b
(1‖1‖g), . . . , Fki

w,b
(1‖n‖g)].

The parties now compute [Ag], [Bg], [Cg], [Dg], using Add, via

[Ag] =
∑n

i=1

(
[F 0

ki
a,0

(g)] + [F 0
ki

b,0
(g)]

)
+ [vc,xa

]

[Bg] =
∑n

i=1

(
[F 1

ki
a,0

(g)] + [F 0
ki

b,1
(g)]

)
+ [vc,xb

]

[Cg] =
∑n

i=1

(
[F 0

ki
a,1

(g)] + [F 1
ki

b,0
(g)]

)
+ [vc,xc

]

[Dg] =
∑n

i=1

(
[F 1

ki
a,1

(g)] + [F 1
ki

b,1
(g)]

)
+ [vc,xd

]

where every + operation is performed on vectors of n elements.
4. Notify Parties: Output construction-done.

The functions fg in Step 3a above depend on the specific gate being evaluated.
For example, on clear values we have,

– If fg = ∧ (i.e. the AND function), λa = 1, λb = 1 and λc = 0 then xa =
((1∧1)−0)2 = (1−0)2 = 1. Similarly xb = ((1∧ (1−1))−0)2 = (0−0)2 = 0,
xc = 0 and xd = 0. The parties can compute fg on shared values [x] and [y]
by computing fg([x], [y]) = [x] · [y].

– If fg = ⊕ (i.e. the XOR function), then xa = ((1⊕1)−0)2 = (0−0)2 = 0, xb =
((1⊕(1−1))−0)2 = (1−0)2 = 1, xc = 1 and xd = 0. The parties can compute
fg on shared values [x] and [y] by computing fg([x], [y]) = [x]+ [y]−2 · [x] · [y].

Below, we will show how [xa], [xb], [xc] and [xd] can be computed more efficiently.

3.3 Circuit Complexity

In this section we analyze the complexity of the above circuit in terms of the
number of multiplication gates and its depth. We are highly concerned with
multiplication gates since, given the SPDZ shares [a] and [b] of the secrets a,
and b resp., an interaction between the parties is required to achieve a secret
sharing of the secret a · b. Achieving a secret sharing of a linear combination of
a and b (i.e. α · a + β · b where α and β are constants), however, can be done
locally and is thus considered negligible. We are interested in the depth of the
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circuit because it gives a lower bound on the number of rounds of interaction
that our circuit requires (note that here, as before, we are concerned with the
depth in terms of multiplication gates).

Multiplication Gates: We first analyze the number of multiplication opera-
tions that are carried out per gate (i.e. in step 3) and later analyze the entire
circuit.

– Multiplications Per Gate. We will follow the calculation that is done per
gate chronologically as it occurs in step 3 of preprocessing-II phase:
1. In order to calculate the indicators in step 3a it suffices to compute one

multiplication and 4 squares. We can do this by altering the equations a
little. For example, for fg = AND, we calculate the indicators by first
computing [t] = [λa] · [λb] (this is the only multiplication) and then [xa] =
([t] − [λc])2, [xb] = ([λa] − [t] − [λc])2, [xc] = ([λb] − [t] − [λc])2, and [xd] =
(1 − [λa] − [λb] + [t] − [λc])2.

As another example, for fg = XOR, we first compute [t] = [λa] ⊕ [λb] =
[λa] + [λb] − 2 · [λa] · [λb] (this is the only multiplication), and then [xa] =
([t]− [λc])2, [xb] = (1− [λa]− [λb]+2 · [t]− [λc])2, [xc] = [xb], and [xd] = [xa].
Observe that in XOR gates only two squaring operations are needed.

2. To obtain the correct vector (in step 3b) which is used in each garbled
label, we carry out 8 multiplications. Note that in XOR gates only 4 mul-
tiplications are needed, because kc,xc

= kc,xb
and kc,xd

= kc,xa
.

Summing up, we have 4 squaring operations in addition to 9 multiplication
operations per AND gate and 2 squarings in addition to 5 multiplications per
XOR gate.

– Multiplications in the Entire Circuit. Denote the number of multipli-
cation operation per gate (i.e. 13 for AND and 7 for XOR) by c, we get G · c
multiplications for garbling all gates (where G is the number of gates in the
boolean circuit computing the functionality f). Besides garbling the gates we
have no other multiplication operations in the circuit. Thus we require c · G
multiplications in total.

Depth of the Circuit and Round Complexity: Each gate can be garbled by
a circuit of depth 3 (two levels are required for step 3a and another one for step
3b). Recall that additions are local operations only and thus we measure depth in
terms of multiplication gates only. Since all gates can be garbled in parallel this
implies an overall depth of three. (Of course in practice it may be more efficient
to garble a set of gates at a time so as to maximize the use of bandwidth and
CPU resources.) Since the number of rounds of the SPDZ protocol is in the order
of the depth of the circuit, it follows that Foffline can be securely computed in a
constant number of rounds.

Other Considerations: The overall cost of the pre-processing does not just
depend on the number of multiplications. Rather, the parties also need to
produce the random data via calls to Random and RandomBit to the
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functionality FSPDZ.2 It is clear all of these can be executed in parallel. If W is
the number of wires in the circuit then the total number of calls to RandomBit
is equal to W , whereas the total number of calls to Random is 2 · n · W .

Arithmetic vs Boolean Circuits: Our protocol will perform favourably for
functions which are reasonably represented as boolean circuit, but the low
round complexity may be outweighed by other factors when the function can
be expressed much more succinctly using an arithmetic circuit, or other progra-
matic representation as in [12]. In such cases, the performance would need to be
tested for the specific function.

3.4 Expected Runtimes

To estimate the running time of our protocol, we extrapolate from known public
data [7,8]. The offline phase of our protocol runs both the offline and online
phases of the SPDZ protocol. The numbers below refer to the SPDZ offline phase,
as described in [7], with covert security and a 20% probability of cheating, using
finite fields of size 128-bits, to obtain the following generation times (in milli-
seconds). As described in [7], comparable times are obtainable for running in the
fully malicious mode (but more memory is needed) (Table 1).

Table 1. SPDZ offline generation times in milliseconds per operation

No. parties Beaver triple RandomBit Random Input

2 0.4 0.4 0.3 0.3

3 0.6 0.5 0.4 0.4

4 0.9 1.2 0.9 0.9

The implementation of the SPDZ online phase, described in both [7] and
[12], reports online throughputs of between 200,000 and 600,000 per second for
multiplication, depending on the system configuration. As remarked earlier the
online time of other operations is negligible and are therefore ignored.

To see what this would imply in practice consider the AES circuit described in
[18]; which has become the standard benchmarking case for secure computation
calculations. The basic AES circuit has around 33,000 gates and a similar number
of wires, including the key expansion within the circuit.3 Assuming the parties
share a XOR sharing of the AES key, (which adds an additional 2 · n · 128 gates
and wires to the circuit), the parameters for the Initialize call to the FSPDZ

functionality in the preprocessing-I protocol will be

M ≈ 429, 000, B ≈ 33, 000, R ≈ 66, 000 · n, I ≈ 66, 000 · n + 128.

2 These Random calls are followed immediately with an Open to a party. However,
in SPDZ Random followed by Open has roughly the same cost as Random alone.

3 Note that unlike [18] and other Yao based techniques we cannot process XOR gates
for free. On the other hand we are not restricted to only two parties.
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Using the above execution times for the SPDZ protocol we can then estimate
the time needed for the two parts of our processing step for the AES circuit.
The expected execution times, in seconds, are given in the following table. These
expected times, due to the methodology of our protocol, are likely to estimate
both the latency and throughput amortized over many executions.

No. parties preprocessing-I preprocessing-II

2 264 0.7–2.0
3 432 0.7–2.0
4 901 0.7–2.0

The execution of the online phase of our protocol, when the parties are given
their inputs and actually want to compute the function, is very efficient: all
that is needed is the evaluation of a garbled circuit based on the data obtained
in the offline stage. Specifically, for each gate each party needs to process two
input wires, and for each wire it needs to expand n seeds to a length which is
n times their original length (where n denotes the number of parties). Namely,
for each gate each party needs to compute a pseudorandom function 2n2 times
(more specifically, it needs to run 2n key schedulings, and use each key for n
encryptions). We examined the cost of implementing these operations for an
AES circuit of 33,000 gates when the pseudorandom function is computed using
the AES-NI instruction set. The run times for n = 2, 3, 4 parties were 6.35 ms,
9.88 ms and 15 ms, respectively, for C code compiled using the gcc compiler on
a 2.9 GHZ Xeon machine. The actual run time, including all non-cryptographic
operations, should be higher, but of the same order.

Our run-times estimates compare favourably to several other results on imple-
menting secure computation of AES in a multiparty setting:

– In [6] an actively secure computation of AES using SPDZ took an offline time
of over five minutes per AES block, with an online time of around a quarter
of a second; that computation used a security parameter of 64 as opposed to
our estimates using a security parameter of 128.

– In [12] another experiment was shown which can achieve a latency of 50 ms
in the online phase for AES (but no offline times are given).

– In [17] the authors report on a two-party MPC evaluation of the AES circuit
using the Tiny-OT protocol; they obtain for 80 bits of security an amortized
offline time of nearly three seconds per AES block, and an amortized online
time of 30 ms; but the reported non-amortized latency is much worse. Fur-
thermore, this implementation is limited to the case of two parties, whereas
we obtain security for multiple parties.

Most importantly, all of the above experiments were carried out in a LAN setting
where communication latency is very small. However, in other settings where
parties are not connect by very fast connections, the effect of the number of
rounds on the protocol will be extremely significant. For example, in [6], an
arithmetic circuit for AES is constructed of depth 120, and this is then reduced
to depth 50 using a bit decomposition technique. Note that if parties are in
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separate geographical locations, then this number of rounds will very quickly
dominate the running time. For example, the latency on Amazon EC2 between
Virginia and Ireland is 75ms. For a circuit depth of 50, and even assuming just
a single round per level, the running-time cannot be less than 3750 ms (even if
computation takes zero time). In contrast, our online phase has just 2 rounds
of communication and so will take in the range of 150 ms. We stress that even
on a much faster network with latency of just 10ms, protocols with 50 rounds of
communication will still be slow.
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Abstract. In [Eurocrypt 2004] Katz and Ostrovsky establish the exact
round complexity of secure two-party computation with respect to black-
box proofs of security. They prove that 5 rounds are necessary for secure
two-party protocols (4-round are sufficient if only one party receives the
output) and provide a protocol that matches such lower bound. The
main challenge when designing such protocol is to parallelize the proofs
of consistency provided by both parties – necessary when security against
malicious adversaries is considered– in 4 rounds. Toward this goal they
employ specific proofs in which the statement can be unspecified till
the last round but that require non-black-box access to the underlying
primitives.

A rich line of work [1,9,11,13,24] has shown that the non-black-box
use of the cryptographic primitive in secure two-party computation is
not necessary by providing black-box constructions matching basically
all the feasibility results that were previously demonstrated only via non-
black-box protocols.

All such constructions however are far from being round optimal. The
reason is that they are based on cut-and-choose mechanisms where one
party can safely take an action only after the other party has success-
fully completed the cut-and-choose phase, therefore requiring additional
rounds.

A natural question is whether round-optimal constructions do inher-
ently require non-black-box access to the primitives, and whether the
lower bound shown by Katz and Ostrovsky can only be matched by a
non-black-box protocol.

In this work we show that round-optimality is achievable even with
only black-box access to the primitives. We provide the first 4-round
black-box oblivious transfer based on any enhanced trapdoor permuta-
tion. Plugging a parallel version of our oblivious transfer into the black-
box non-interactive secure computation protocol of [12] we obtain the
first round-optimal black-box two-party protocol in the plain model for
any functionality.

1 Introduction

Secure two-party computation allows two mutually distrustful parties to com-
pute a function of their secret inputs without revealing any information except
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 339–358, 2015.
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what can be gathered from the output. It is known that achieving secure two-
party computation information theoretically is impossible, and thus computation
assumptions are required. In this work we are interested in construction for two-
party computation based on general hardness assumptions in the plain model.
Protocols based on general assumptions are flexible in that they allow the pro-
tocol to be implemented based on a variety concrete assumptions; even possibly
ones which where not considered when the protocol was designed. Constructions
based on general assumptions may use the cryptographic primitive based on the
assumption in two ways: black-box usage, if the construction refers only to
the input/output behavior of the underlying primitive; non-black-box usage,
if the construction uses the code computing the functionality of the primitive.
The advantage of black-box constructions is that their complexity is indepen-
dent of the complexity of the implementation of the underlying primitive and
are typically considered the first step towards practical constructions.

Secure Two-Party Computation Under General Assumptions. Yao [29] provided
an elegant construction which securely realizes any two-party functionality, and
which uses the underlying cryptographic primitives as black-box. This con-
struction however guarantees security only against semi-honest adversaries, i.e.,
adversaries that honestly follow the protocol. [5] show that semi-honest security
is sufficient, as any protocol tolerating semi-honest adversaries can be compiled
into one secure against malicious adversaries (i.e., adversaries who can arbitrar-
ily deviate from the protocol), by forcing the parties to prove, after each step,
that they behaved honestly. Roughly, in this compiler, each party commits to
his input at the very beginning and use a coin-flipping protocol to define the
randomness that will be used in the semi-honest protocol. Then, for each pro-
tocol message, they add a zero-knowledge “proof of consistency” proving that
the message was correctly computed according to the input committed and the
randomness generated in the coin-flipping.

Unfortunately, this compiler is highly inefficient as the proofs of consistency
require Karp reductions involving the circuits of the cryptographic primitives
used. The exact complexity of these reductions grows more than linearly in the
circuit complexity of the cryptographic primitive.1 Researchers naturally began
to wonder whether security against malicious adversaries could be achieved with-
out relying on non-black-box use of cryptographic primitives.

Black-Box Secure Two-Party Computation. Ishai et al. [9,11] show that mali-
cious security can be achieved without using expensive zero-knowledge proofs
involving the code of the cryptographic primitives. Their work is based on the
following observation: we can check that a party is honestly computing the pro-
tocol messages, by challenging the party to reveal the input and the randomness

1 We note that a different approach altogether was taken by Kilian in [16], which does
not require the use of cryptographic assumptions at all. However, his compiler works
in the OT-hybrid model, thus we still need a protocol that implements the oblivious
transfer functionality against malicious adversaries.
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used in the computation. While this will certainly prove consistency2, it is not
zero-knowledge, as it leaks parties’ entire inputs. Thus, the next idea is to have
the parties engage in several parallel executions of the semi-honest protocol,
where they run with random inputs. When a party is challenged on a random
subset of protocol executions, she can safely reveal the randomness/inputs used
in those executions which are independent of her actual inputs. If the party pro-
vides all convincing answers, then the challenger is guaranteed that the majority
of the remaining executions are honestly computed as well. This step is repeated
again in the opposite direction. Eventually after both parties have passed the
tests, they run an additional step to “connect” the random inputs with their
actual inputs and combine them across the remaining executions.

Following [9,11] subsequent work have shown black-box construction for
adaptively secure two-party protocols [1], and constant-round black-box two-
party protocols [13,24].

Round-Optimal Secure Two-Party Computation. In [15] Katz and Ostrovsky
establish the exact round complexity of secure two-party computation from gen-
eral assumptions. They show that 5 rounds are necessary and sufficient to com-
pute any two-party functionality where both parties obtain the output, and 4
rounds are sufficient if only one party receives the output. To prove the upper
bound they give a protocol that uses non-black-box proofs of consistency to
enforce semi-honest behavior. The main technical difficulty they face is getting
these proofs to complete in only 4 rounds − not an easy task as zero-knowledge
in the standard model requires at least 4 rounds. Nevertheless, they manage
to parallelize the proof and the computation into just 4 rounds using special
properties of certain constructions of witness-indistinguishable (WI) proofs of
knowledge. Namely, they crucially use the fact that in the WI proof of [19],
the statement can be specified in the last round. Unfortunately, however, the
statements to be proved concern values committed or computed in the protocol,
and require the use of the circuits of the cryptographic primitives used in the
protocol.

Previous results [1,11,24] have shown that essentially any feasibility result for
two-party computation demonstrated using non-black-box techniques can also be
obtained via black-box constructions. A natural question however, which so far
has not been answered, is whether this is true for round optimal non-black-box
constructions. This question is the focus of the current work. Namely,

Can we construct a round-optimal fully black-box protocol for two-party
computation based on general assumptions?

Black-Box Round-Optimal Two-Party Computation? When it comes to round
optimality, the current state of the art suggests a negative answer. All known
black-box protocols for secure computation achieve malicious security using a
2 For sake of better clarity we are oversimplifying here. In [11] they introduce the

definition of defensible adversaries and show how to use it in the cut-and-choose. We
refer the reader to [11] for more details.
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cut-and-choose mechanism that introduces additional rounds. The need for addi-
tional rounds seems inherent because in such mechanisms a party will take an
action only after the other party has successfully completed the cut-and-choose
phase. Additional rounds are used to combine and connect the random inputs
used in the unopened sessions of the cut-and-choose with the real inputs.

An alternative to the traditional cut-and-choose approach for black-box con-
struction was shown by Ishai et al. in [12], where they provide a black-box
protocol for non-interactive secure two-party computation (NISC) based on the
“MPC-in-the-head” paradigm of [13]. This approach however, following [14,16],
works in the OT-hybrid model, and thus can only hope to achieve round opti-
mality in the plain model if there exists a 4-round black-box oblivious transfer
protocol in the plain model with parallel security.

One might hope that perhaps we can build a 4-round black-box oblivious
transfer in the plain model starting from the 2-round OT protocol of Peikert
et al. [25] − whose security is in the CRS model − by running a two-party coin
flipping protocol to generate the CRS. We note that this approach seems doomed
to fail because, as proved in [15], secure coin-flipping requires at least 5 rounds,
regardless of the use of the underlying cryptographic primitives.

Our Contribution. In this paper we answer the above question positively by
constructing a 4-round black-box oblivious transfer protocol based on the exis-
tence of (enhanced) trapdoor permutations. Our construction is easily extended
to achieve parallel secure oblivious transfer which, using the compiler of [12],
gives a round-optimal black-box protocol for two-party computation in the plain
model.

1.1 Our Techniques

As mentioned above, it suffices to build a 4-round black-box oblivious transfer
protocol based on general assumptions. We start with a high-level overview of
the main ideas behind the construction.

Our starting point is the following basic 3-round protocol for OT based on
black-box use of enhanced trapdoor permutations (TDP).

1. S chooses trapdoor permutation (f, f−1) ← Gen(1κ) and sends f to R.
2. R chooses x

R← {0, 1}κ, and sends (z0, z1) to S where zb = f(x) and where
z1−b

R← {0, 1}κ is random.
3. S returns (w0, w1) where wa = sa ⊕ hc

(
f−1(za)

)
, a ∈ {0, 1}

where hc(·) is a hardcore bit of f . If both parties follow the protocol then S can’t
learn anything about R’s input bit b as both z0 and z1 are just random κ−bit
strings. Similarly, the security of the TDP f ensures that R cannot distinguish
w1−b from random as long as z1−b was truly chosen randomly. Unfortunately,
there are two serious problems with this protocol. First, there is nothing to
stop a malicious R from sending (z0, z1) such that he knows the pre-images of
both values under f , thus allowing him to learn both s0 and s1. Indeed, the
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above protocol only offers security against a semi-honest receiver. Second, while
the above protocol leaks no information to S about R’s input bit, it is not
simulateably secure. Input indistinguishably is often sufficient if a protocol is to
be executed once in isolation, however we aim to use our OT as a building block
for general 2PC, as such, stronger security is required.

Katz and Ostrovsky [15] solve the first problem by having the parties engage
in a secure coin-flipping protocol to produce a random r ∈ {0, 1}κ and forcing
R to prove that either z0 = r or z1 = r using a witness-indistinguishable proof
of knowledge. This denies R the freedom to generate both z0 and z1. Such WI
proofs, however, require using the underlying commitment scheme, used for the
coin-flipping, in a non-black-box way. Our solution to this problem can be seen
as implementing the coin-flipping idea of [15] while making only black-box use
of the commitment scheme. For this we use an adaptation of the black-box
commit-and-prove protocol of Kilian [17].

We solve the second problem by having S commit the inputs already in the
second round and prove that such committed inputs are the ones used for the
OT. Doing this näıvely would require making non-black-box use of cryptographic
primitives, so, in typical cut-and-choose style, we instead have S commit to shares
of the inputs, and play the protocol many times in parallel where R opens mostly
the shares corresponding to his input bit (to enable reconstruction of sb) but
enough shares of s1−b to be convinced that S is playing fairly. This introduces
several subtleties, that we discuss in the next paragraph.

We construct our OT protocol in two steps. First, we construct a 4-round OT
protocol, ΠR

OT, that is simulatable only against a malicious receiver. Then, we
use ΠR

OT as a building block to build the final OT protocol that is simulatable for
both parties. In the next two paragraphs we describe the ideas outlined above
in greater details.

A 4-Round Black-Box OT Secure Against Malicious Receivers. We want to
implement the coin-flipping that we mentioned above, without requiring R to
give non-black-box proofs about the committed values. We do it by recasting
the above problem in terms of equivocal and binding commitments, and having
the output of the coin-flipping to be the pair of strings (z0, z1) (instead of a ran-
dom r such that either z0 = r or z1 = r). We provide a mechanism that allows
R to compute one binding commitment and one equivocal commitment. In the
coin-flipping, R first sends such commitments to S, then after seeing S’s random
strings, she opens both commitments. The crucial point is that R can control
the output of one of the strings by equivocating one the commitments, while
the other string will be truly random. With this tool we can directly obtain a
black-box OT protocol that is simulatable for the receiver as follows.

1. R, on secret input b, chooses random strings r0, r1. Then sends commitments
C0, C1 such that commitment Cb is equivocal. R proves that one of the com-
mitments is binding.

2. S chooses trapdoor permutation (f, f−1) ← Gen(1κ) and sends f to R. Addi-
tionally S sends a random string r to R.
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3. R chooses x
R← {0, 1}κ and computes zb = f(x). Then it equivocates com-

mitment Cb so that it opens to rb = zb ⊕ r, while it honestly opens value
r1−b.

4. S upon receiving r0, r1, computes z0 = r ⊕ r0 and z1 = r ⊕ r1 and sends
(w0, w1) where wa = sa ⊕ hc

(
f−1(za)

)
.

If the proof in Step 1 is sound, R can only equivocate one string and thus
knows the preimage of one value only. If the proofs and the commitments are
hiding, the sender has no advantage in distinguishing which string is controlled
by the receiver. Additionally, if we make the proof extractable, then the above
protocol is simulatable against a malicious receiver.

Thus, what is left to do is to construct the tool that allows R to compute an
equivocal commitments and a binding commitment and a WI proof of the binding
of one of the two. This proof must be black-box and 3 rounds only. We implement
this proof, by employing ideas from the black-box commit-and-prove protocol due
to Kilian [17] which allows a party to commit to two bits x0 and x1 and prove the
equality x0 = x1 without revealing the value of the committed bit. Kilian’s pro-
tocol for proving equality of two committed bits goes as follows. (In the following
matrix, think of each column of the matrix as the shares of one bit.)

1. R chooses M =
(

x0,0 x0,1

x1,0 x1,1

)
∈ {0, 1}2×2 randomly such that x0,a ⊕x1,a = xa

for a ∈ {0, 1}. R then computes and sends Com(xa,a′) for a, a′ ∈ {0, 1} over
to S along with v = x0,0 ⊕ x0,1.

2. S sends a random b
R← {0, 1} to R.

3. R sends to S the decommitments to xb,0 and xb,1. S verifies that v = xb,0⊕xb,1.

Note that the sum of the columns of M are equal iff x0 = x1, in which case
the sum of the rows of M are also equal, and so if R is honest the protocol will
complete and S’s verification will succeed. On the other hand, if x0 �= x1 then
the sum of the rows of M are different and so no matter which value v was sent
by R in Step 1, there is only a 1/2 chance that S will ask for the row which sums
to v. To decommit, R decommits to one of the remaining two values that he has
not yet revealed, x1−b,0 and x1−b,1. Revealing one is enough since either one can
be used to reconstruct x0. The interesting feature of this protocol, which was
already used in [4], is that opening only one of the columns, instead of two, can
enable equivocality: assume R can guess the row S will ask to open, then R could
commit to a matrix where each column sums to a different bit, and compute v as
the xor of the row that S will select. In this way S will be convinced and later R
can adaptively choose whether to decommit to 0 or 1, by opening one column or
another. This observation is particularly useful when combined with a standard
trick for composing two Σ-protocols to compute the OR of two statements [2].
Recall that Σ-protocols satisfy the property that, if the challenge is known in
advance, then one can simulate an accepting transcript without knowledge of the
witness. The trick is to run two independent executions, say Σ0, Σ1, in parallel,
but have the challenges c0, c1 derived in such a way that the prover can control
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exactly one of the challenge cb while the other c1−b will be totally random, and
the verifier cannot tell the difference. In this way, the prover can successfully
finish both protocols Σ0, Σ1 by simulating one of the transcripts and computing
the other one honestly.

Putting the two ideas together, we can build a protocol where R commits
to a bit x and a bit y, using two executions of the above protocol for equality
proofs, and then using the trick for OR composition, R can cheat in one of the
equality proofs. Thus one of the value between x and y is equivocal.

One can extend this idea to a string commitment having R commits to two
strings X and Y by committing each single bit and then cheat in all the proof for
bits belonging to one string, and being honest in all bits belonging to the other
string, by using the OR trick as before. Note however, that in the string case we
must show that a malicious committer, cannot gain advantage by committing
equivocally only some of the bits of each string. We protect our protocol from
such behavior by using error-correction: we expand each κ-bit string into a 3κ
bit string, while having the committer being able to control in total only κ bits
for both strings. We are able to prove that due to error-correcting property,
corrupting only some bits for each string is not enough to control the final value
of the string. We provide more details on how this mechanism is implemented
in Sect. 3.

From One-Side Simulatable OT to Fully Simulatable OT. The protocol ΠR
OT is

not simulatable against a malicious sender. Just as with the basic protocol, S is
not committed to any value till the last round so any rewinding strategy will be
ineffective. Therefore we have the sender commit to two secret keys in the second
round via an extractable commitment3 and then have him play ΠR

OT using the
decommitments as inputs. In the last round the server encrypts the actual inputs
using the committed keys. This gives the simulator some hope of extracting S’s
secret inputs by rewinding. This idea by itself doesn’t exactly work; the simulator
has no guarantee that S used valid decommitments as inputs in the OT played
with R. This opens the door to input-dependent abort attacks. We fix this by
having S first secret share his inputs and commit to the shares. Then R and
S run many executions of the OT protocol ΠR

OT, where in the i-th execution,
S uses as input the decommitments to the i−th shares. Intuitively, this helps
solving the input-depended abort attack, because now R will also check some of
the shares corresponding to sb−1. This check, however, must be done in such a
way that the probability of S passing the check is independent of the bit b. A bit
more in details, obtaining a fully secure protocol requires dealing with two types
of malicious behavior. First, we need a mechanism that allows S to prove that
he committed to valid shares of a secret. For this we use t-out-of-κ Shamir secret
sharing scheme and another variant of Kilian’s commit-and-prove protocol. Our
main observation is that Kilian’s technique is actually quite general and can be
used, not only to prove equality of committed values, but that the committed

3 Note that extractable commitments can be built from black-box use of any one-way-
permutation [21]. In particular it does not require trapdoor permutation.
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values satisfy any linear relation. In particular, it can be used to prove that a
committed vector is a set of valid shares of some secret according to Shamir
secret sharing scheme.

Secondly, we must give R a strategy to detect the case in which S is not
using valid decommitment of the shares in some of the OT executions. Consider,
for example, what happens if S were to give correct decommitment in all of the
parallel executions of ΠR

OT except one, where he uses a wrong decommitment in
correspondence of the bit 1. Then since R opens more of the ΠR

OT using input b
he is noticeably more likely to notice the bad input b = 1. We fix this problem
by having R performing first a test, which is independent on his secret bit b. R
opens an equal number of execution of ΠR

OT, say κ/4, using inputs b = 0 and
b = 1. This test is clearly independent on R’s actual input and allows R to check
that S is playing honestly in most of the OT executions for both inputs. If the
test passes, then R is guaranteed that he will obtain at least t − n/4 more valid
decommitments from the remaining OTs and will be able to reconstruct the
secret.

1.2 Further Discussions

Following the OT protocol used in [15], our protocol is based only on enhanced
trapdoor permutation. We do not require any additional assumption. Moreover,
we stress that the lower bound of 4 rounds for secure two-party computation only
applies in the plain model. Indeed, in the UC-setting we know how to construct
2-round OT [25] (although under different, standard, assumptions).

We also emphasize that aim of this paper is to match the upper bound of
4-round for two-party computation from general assumptions, that so far was
achieved only with a non-black-box construction. As such, our result should be
seen as a feasibility result rather than an attempt of building more efficient
two-party protocols under general assumptions. It is an interesting direction to
improve our techniques to achieve better efficiency.

1.3 Other Related Work on Black-Box Secure Computation

We mention additional related work that are less relevant for our result but
that have contributed in the understanding of the power of black-box access
to cryptographic primitives. In [3] Damgaard and Ishai show a constant round
multi-party protocol where the party have only black-box access to a PRG. This
work assumes honest majority. In [27], Wee shows the first black-box construc-
tions with sub-linear round complexity for MPC, which Goyal [6] improves to
obtain constant-round MPC constructions based on the black-box use of any
OWF. In [7] black-box use of OWFs has been shown to be sufficient to construct
constant-round concurrent non-malleable commitments. Other black-box con-
structions for commitment schemes have been considered w.r.t. selective opening
attacks in [22,28]. In [20] Lin and Pass showed the first black-box construction
for MPC in the standard model that satisfies a non-trivial form of concurrent
security. Their construction requires a non-constant number of rounds. Very
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recently, Kiyoshima et al. in [18] improved on the round complexity providing a
constant- round construction for the same result. Finally, another line of research
has looked at achieving black-box construction for protocols that requires non-
black-box simulation, such as black-box public coin ZK [8] and resettably-sound
ZK from OWF [23].

2 Preliminaries

General Notation. We denote by κ the security parameter, and by PPT a
machine running in probabilistic polynomial time. We denote vector using bold
notation v and we denote the i-th coordinate of a vector v using notation [v]i.
We denote a matrix using capital and bold letters M, and we denote the element
in position i, j of Mindex by xindex

i,j . Let [n] be the set {1, . . . , n} and Zq be the
integers mod q. For a bit b ∈ {0, 1} we write b as shorthand for 1 − b. We write
negl(·) for an unspecified negligible function.

Trapdoor Permutations. Trapdoor permutations are permutations which are
easy to compute and hard to invert unless you know the trapdoor, in which
case they are easy to invert. The formal definition is as follows.

Definition 1 (Trapdoor Permutation). Let F = (Gen,Eval, Invert) be three
PPT algorithms such that

– Gen(1κ) outputs a pair (f, trap) where f : {0, 1}κ → {0, 1}κ is a permutation;
– Eval(f, ·) = f(·) evaluates f ; and
– Invert(f, trap, ·) = f−1(·) evaluates f−1.

We say that F is a family of trapdoor permutations (TDPs) if for any PPT
algorithm R R

Pr(f,trap)←Gen(1κ),y←{0,1}κ

(
R(f, y) = f−1(x)

)
= negl(κ).

Additionally, we assume that our TDP families have a weak form of certifiability.
Namely, we assume that given some f output by Gen(1κ) it is possible to tell
in polynomial time whether f is a permutation on {0, 1}κ or not. It will be
convenient for us to have trapdoor permutations which act on vector spaces over
fields instead of just {0, 1}κ. This can be arranged by identifying {0, 1}κ with
F

κ
2 , or if we need a larger alphabet, we can identify {0, 1}κ with F

κ/k

2k . When we

are using this point of view we will write (f, trap) R← Gen(Fκ
2 ).

Hard-Core Bits. We assume the reader is familiar with the notion of a hard-
core bit of a oneway permutation. Briefly, we say that a family of predicates
H =

{
h : {0, 1}κ → {0, 1}} is hard-core for the TDP family F if for random

(f, trap) R← Gen(1κ), h
R← H, and x

R← {0, 1}κ, h(x) is hard to predict given f(x).
A hardcore big can be extended to output a vector in a natural way: h(x) =
h(x) ◦ h

(
f(x)

) ◦ · · · ◦ h
(
fk−1(x)

)
, which is indistinguishable from random, given

fk(x). When we identify the domain {0, 1}κ of f with a κ−dimensional vector
space over F2, we will likewise identify the output of h(·) with an F2−vector of
the same dimension.
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Oblivious Transfer. Oblivious Transfer (OT) is a two-party functionality FOT,
in which a sender S holds a pair of strings (s0, s1), and a receiver R holds
an a bit b, and wants to obtain the string sb. The security requirement for
the FOT functionality is that any malicious receiver does not learn anything
about the string s1−b and any malicious sender does not learn which string has
been transfered. This security requirement is formalized via the ideal/real world
paradigm. In the ideal world, the functionality is implemented by a trusted
party that takes the inputs from S and R and provides the output to R and is
therefore secure by definition. A real world protocol Π securely realizes the ideal
FOT functionalities, if the following two conditions hold. (a) Security against
a malicious receiver. The output of any malicious receiver R∗ running one
execution of Π with an honest sender S can be simulated by a PPT simulator
Sim that has only access to the ideal world functionality FOT and oracle access
to R∗. (b) Security against a malicious sender. The joint view of output of
any malicious sender S∗ running one execution of Π with R and the output of
R can be simulated by a PPT simulator Sim that has only access to the ideal
world functionality functionality FOT and oracle access to S∗. In this case the
output of the malicious S∗ is combined with the output of R in the ideal world.

We also consider a weaker definition of FOT that is called one-sided simu-
latable FOT, in which we do not demand the existence of a simulator against a
malicious sender, but we only require that a malicious sender cannot distinguish
whether the honest receiver is playing with bit 0 or 1. A bit more formally, we
require that for any PPT malicious sender S∗ the view obtained from executing
Π when the receiver R plays with bit 0 is computationally indistinguishable from
the view obtained when R is playing with bit 1.

Finally, we consider the Fm
OT functionality where the sender S and the receiver

R runs m execution of OT in parallel.

Secure Two-Party Computation. Let F(x1, x2) be a two-party functionality run
between parties P1 holding input x1 and P2 holding input x2. In the ideal world,
Pi (with i ∈ {1, 2}) sends its input xi to the f and obtains only y = F(x1, x2).
We say that a protocol Π securely realizes F(·, ·) if the view of any malicious
P ∗

i executing Π with an honest Pj with i �= j combined with the output of Pj

(if any) can be simulated by a PPT simulator that has only access to F and has
oracle access to P ∗

i .

Shamir Secret Sharing Scheme. A t-out-of-n secret sharing scheme gives a way
to break a secret into shares in such a way so that any set of shares either
reveals nothing about the secret, if the set has size less than t, or allows one
to reconstruct the entire secret, if the set has size at least t. Shamir secret
sharing [26] constructs such a scheme using polynomials. Fix a prime q > n.
To share a secret field element α ∈ Zq, the function Share chooses a random
polynomial f(x) ∈ Zq[x] of degree at most t − 1 and defines the vector [α] =(
[α]1, . . . , [αn]

) ∈ Z
n
q , by setting [α]i = f(i). That this is a t−out−of−n secret

sharing scheme follows from basic properties of polynomials. To reconstruct a
secret, the fuction Recon takes in input a set of t + 1 valid shares and uses
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Lagrange interpolation to compute the unique t-degree polynomial f defined by
such shares and output the free coefficient of f .

We briefly comment on another property of this scheme that we will use
in our protocol. The map which sends a degree t − 1 polynomial to its vector
of shares is linear over Zq. It follows that the set of vectors in Z

n
q which are

valid sharings is a t−plane in Z
n
q , or equivalently, that there exists a linear map

ψ : Zn
q → Z

n−t
q such that ψ(v) = 0 iff v is a valid sharing.

Extractable Commitments. A commitment scheme scheme is a two-party func-
tionality run between a sender with input a secret message m and a committer
that has no input, and consists of two phase: commitment and decommitment
phase. In the commitment phase the sender commits to its message m. A com-
mitment scheme is hiding if any PPT malicious receiver cannot distinguish the
secret message m in this phase. In the decommitment phase the message reveals
m and the randomness used to compute the commitment. This phase is statis-
tically binding if any malicious sender cannot successfully open to any message
m′ �= m in this phase.

We say that a commitment scheme is extractable if there exists an efficient
extractor that having black-box access to any malicious sender that successfully
performs the commitment phase, is able to efficiently extract the committed
string. In the paper we employ the extractable commitment provided in [21]. The
commitment phase consists of 3 rounds, that we denote by (ExtCom1, ExtCom2,
ExtCom3). The decommitment phase is non-interactive.

3 Four-Round Black-Box Oblivious Transfer

In this section we describe our 4-round black-box OT protocol ΠOT in details. We
present it in two steps. First we give an OT protocol that is simulatable against
a malicious receiver and provides only indistinguishability security against a
malicious sender. We denote this protocol by ΠR

OT. We then show how to use
(black-box) extractable commitments and Shamir secret sharing, to compile ΠR

OT

into a protocol that is fully simulatable.

3.1 Four-Round Black-Box OT Secure Against Malicious Receivers

The building block for ΠR
OT is a protocol that allows the receiver to compute two

string commitments, C0, C1, such that one commitment is equivocal, and prove
that at least one commitment is binding.

As a warm up for our construction we show how to implement such building
block for the simpler case where the receiver commits to two bits, and then
he is able to equivocate one bit. The soundness of the warm up protocol is
1/2. The idea is to have two executions of Kilian’s black-box commit-and-prove
protocol (outlined in Sect. 1.1), and combine the two proofs using the OR trick
of Σ-protocols. The details are shown in Protocol 1.
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Protocol 1. Compute One Biding and One Equivocal Commitment.
Input to R: A bit b indicating which commitment should be equivocal.

1. R chooses two matricesM0 andM1 where eachMa =
(

xa
0,0 xa

0,1

xa
1,0 xa

1,1

)
∈ {0, 1}2×2

is random such that:
– Matrix Mb: this matrix represent two different bits, therefore the xor of the

first column is 0, and the xor of the second column is 1. Namely, xb
0,0 ⊕

xb
1,0 = 0 and xb

0,1 ⊕ xb
1,1 = 1;

– Matrix M1−b: both columns are representing the same bit: x1−b
0,0 ⊕ x1−b

1,0 =
x1−b
0,1 ⊕ x1−b

1,1 = r1−b for r1−b ∈ {0, 1}.
R commits to all of the xa

a′,a′′ in both matrixes and sends to S values v0 and
v1 computed as follows:
– v1−b is honestly computed as the xor of the first row (as in Kilian’s proto-

col), namely, v1−b = x1−b
0,0 ⊕ x1−b

0,1 .
– vb is a random bit.

2. S sends R a random r′ R← {0, 1} and a challenge c ∈ {0, 1}.
3. R computes challenges (c0, c1) such that c0 ⊕ c1 = c and the challenge cb is

pointing exactly to the row of Mb the xor of which is vb. Namely, cb is such
that vb = xb

cb,0 ⊕xb
cb,1. Note this is always possible as xb

0,0 ⊕xb
0,1 �= xb

1,0 ⊕xb
1,1.

Next, R decommits to x0
c0,0, x0

c0,1 from matrix M0 as well as x1
c1,0, x1

c1,1 from
matrix M1.

Finally, for each matrix, R decommits to one column. For M1−b, which
is honestly computed, R opens one column chosen at random (R will need
to decommit one value of the column as the other one was already opened to
answer the challenge). For Mb, R will decommit to the column rb such that
rb ⊕ r′ = sb where sb is the bit that R wants to obtain out of the coin-flipping
of the bit in position b. Formally, R decommits to one of xb

cb,0 and xb
cb,1 at

random (using the shorthand b = 1 − b), completing a decommitment to the
value s1−b = r1−b. R decommits to xb

cb,rb
(completing a decommitment to

sb = rb ⊕ r′). R also sends (c0, c1).
4. Verification: S checks that c0 ⊕ c1 = c and that xa

ca,0 ⊕ xa
ca,1 = va for

a ∈ {0, 1}. If not S aborts.
5. Output: Both parties set output to (z0, z1) where za = sa ⊕ r′.

If R correctly follows the protocol then the output (z0, z1) satisfies zb = rb

while z1−b is random. Furthermore, if R, in an attempt to cheat, chooses M0

and M1 both such that xa
0,0 ⊕ xa

1,0 �= xa
1,0 ⊕ xa

1,1, then S will abort whenever
c �= d0 ⊕d1 (which happens with probability 1/2), where da ∈ {0, 1} is such that
va = xa

da,0 ⊕ xa
da,1. This protocol can be seen as partial coin-flipping protocol

that output two coins and guarantee that at least one coin is fair.
The ability for R to completely control one but not both of the output bits

in the above protocol is essentially exactly what we need in order to compile the
OT which is secure only against a semi-honest R into one which is maliciously
secure. The basic idea is to extend the above coin-flipping to strings and enable
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R to obtain two strings z0, z1 ∈ {0, 1}κ such that zb = fk(x) for some value x
chosen by her. As mentioned, this forces z1−b to be random, and so R cannot
know a preimage without breaking the trapdoor permutation.

However, when extending the above warm-up protocol to a string via bit-wise
commit-and-proofs we must enforce that a malicious receiver cannot cheat by
controlling some of the bits of both z0 and z1 and wind up knowing preimages of
both values. We protect our protocol from such behavior by letting A ∈ Z

3κ×κ
q be

a matrix with good error correcting properties (such as a Vandermonde matrix)
and working in the image of A.

This introduces some complications. Specifically it requires moving to a non-
binary base field as we need an error correcting code with (constant but) large
distance. In our actual protocol we use a variant of the unfair coin flipping
described above, adapted to work over over Zq for some prime power q = Ø(κ).
The major difference is that instead of committing to every entry in 2−by−2
matrices, R commits to every entry in 2−by−q matrices. For each matrix R
proves that the sum of the elements in each column is the same. In order to
commit equivocally, R chooses the q columns of the matrices corresponding to
his bit b to have distinct sums. Namely, for every α ∈ Zq there is exactly one
column whose entries add to α. The final protocol ΠR

OT is formally described in
Protocol 2.

Protocol 2 (ΠR
OT). Public Input: A prime q = O(κ), a Vandermonde matrix

A ∈ Z
3κ×κ
q and a statistically binding commitment scheme Com.

Sender’s Input: s0, s1 ∈ Z
κ
q . Receiver’s Input: b ∈ {0, 1}.

1.
(
R −→ S

)
: R chooses rb R←− Z

κ
q and sets r̂b = Arb ∈ Z

3κ
q . R then chooses

6κ matrices
{
(M0,i,M1,i)

}
i=1,...,3κ

where Ma,i =
(

xa,i
0,0 xa,i

0,1 · · · xa,i
0,q−1

xa,i
1,0 xa,i

1,1 · · · xa,i
1,q−1

)
∈

Z
2×q
q is random such that:

– xb,i
0,0 + xb,i

1,0 = · · · = xb,i
0,q−1 + xb,i

1,q−1 = [r̂b]i, ∀ i.
– xb,i

0,0 + xb,i
1,0 = σi(0), . . . , xb,i

0,q−1 + xb,i
1,q−1 = σi(q − 1) ∀ i, where the σi are

random permutations of Zq.
R commits to all of the xa,i

a′,a′′ using Com. Let xa,i
0 = (xa,i

0,0, . . . , x
a,i
0,q−1) ∈ Z

q
q

be the top row vector of Ma,i. Similarly, let xa,i
1 be the bottom row of Ma,i.

Also let ψ : Zq
q → Z

q−1
q be the linear map ψ : x = (x0, . . . , xq−1) 	→ (x1 −

x0, . . . , xq−1−x0). R sends vectors {v0,i,v1,i}i=1,...,3κ where each va,i ∈ Z
q−1
q

is generated as follows:
– vb,i = ψ(xb,i

0 );
– draw cb

R← {0, 1}3κ and set vb,i = ψ(xb,i
0 ) if cb,i = 0, vb,i = −ψ(xb,i

1 ) if
cb,i = 1.

2.
(
S −→ R

)
: S chooses random c

R←− {0, 1}3κ, r′ R←− Z
κ
q , and sends c and

r′. Additionally, S chooses a trapdoor permutation (f, f−1) R←− Gen(Zκ
q ) and

sends f to R.
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3.
(
R −→ S

)
: R parses c into (c0, c1) such that c0 ⊕ c1 = c where cb is as in step

1. For both a ∈ {0, 1}, R decommits to every coordinate of xa,i
ca,i

as well as
to one coordinate, [xa,i

ca,i
]j, of xa,i

ca,i
. When a = b, this coordinate j is chosen

randomly, completing a decommitment to r̂b (defined in step 1). When a = b,
R draws a random y R←− Z

κ
q and sets r̂b = A

(
fκ(y) − r′) ∈ Z

3κ
q . Finally, R

decommits to xb,i
cb,i,j

∀ i, where j is such that [r̂b]i = xb,i
0,j + xb,i

1,j. Note that R
has decommitted to (r̂0, r̂1).

4.
(
S −→ R

)
: For all (a, i), S has received decommitments to all of the coor-

dinates of exactly one of xa,i
0 and xa,i

1 . S checks either that vi,a = ψ(xa,i
0 )

or that va,i + ψ(xa,i
1 ) = 0. If any of these checks fails, S aborts. Otherwise,

S computes vectors (z0, z1) where za ∈ Z
κ
q is the unique vector such that

Aza = r̂a + Ar′ (such a value exists by linearity). If no such za exists for
some a then S aborts. S sends (w0,w1) to R where wa = sa − h

(
f−κ(za)

)
.

Output: R outputs sb = wb + h(y).

3.2 Four-Round Fully Simulatable Oblivious Transfer from ΠR
OT

We transform the one-sided simulatable ΠR
OT into an OT which is simulatable for

both the sender and the receiver using the following ingredients. We use a (κ +
1, 2κ)-secure Shamir Secret sharing scheme. Let A ∈ Z

2κ×κ
q be the Vandermonde

matrix and let φ be a linear map such that φ(A) = 0.
First, the sender picks two random keys x0, x1, and computes their corre-

spondent vectors of 2κ shares v0,v1 according to Shamir secret sharing. Then,
the sender commits to each coordinate of vectors v0,v1 and proves that they are
valid shares, in a black-box way. We build this proof using the observation that
v is a valid vector of shares for a (κ + 1, 2κ)-secure Shamir secret sharing, iff
φ(v) = 0, and that for any pair of vectors a,b it holds that if a+b = v then also
φ(a) + φ(b) = 0. Thus, to prove that a vector v is a vector of valid shares, the
sender will commit to κ pairs of vectors aj ,bj such that v = aj +bj , and prove
that there exists at least a j such that the predicate φ(a)+φ(b) = 0 holds. This
proof is easily implemented by having the sender commit to aj ,bj and zj = φ(aj)
and having the receiver ask to either open aj and check that zj = φ(aj), or to
open bj and check that φ(bj) + zj = 0. Note that this proof only guarantees
that there exists at least one j for which the condition φ(a) + φ(b) = 0 is true.
Summing up, S will commit to vectors a0,jb0,j and a1,jb1,j (for shares v0,v1)
with an extractable commitment scheme, and run a proof of validity for each
such pair. In the last round S will send the encryptions x0 + s0, x1 + s1 of his
actual secret inputs. Now we need a way for R to retrieve the decommitments
of the shares for the secret he is interested in, without the server knowing which
decommitments are revealed. We accomplish this by using the OT protocol ΠR

OT

implemented above. Therefore, in parallel to such extractable commitments and
proofs, the sender and the receiver will engage in 2κ parallel executions of ΠR

OT:
in the i-th OT execution S plays with inputs the opening of the i-th coordinate
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of (a0,j ,b0,j) and (a1,j ,b1,j) for all j, and R plays with bit bi. Note that, open-
ing to the i-th coordinate of all j vectors allows the receiver to check that all j
vectors agree on the same coordinate [vbi

]i. This check, together with the proof
of consistency provided above, will guarantee that most of the shares received
via OT (and extracted by the simulator via the extractable commitments) are
valid.

Before attempting to reconstruct the secret, R will test the consistency of
κ/2 coordinates for vector v0 and v1 by playing with bit 0 and 1 accordingly, in
the correspondent OTs, while he plays with the his secret bit b for the remaining
κ executions. R will attempt to reconstruct the vector vb only if the consistency
test passes. We provide a formal description of such steps in Protocol 3.

Protocol 3 (ΠOT). Sub-protocols. Let ΠR
OT = {OT1,OT2,OT3,OT4} denote

the 4 messages exchanged in protocol ΠR
OT (Prot. 2). Let OT[i] denote the i-th

parallel execution of ΠR
OT. Let ExtCom = (ExtCom1, ExtCom2, ExtCom3) be a 3-

round statistically binding extractable commitment scheme with non-interactive
decommitment ExtDec. Let Share,Recon be a (κ + 1)-out-of-2κ Shamir secret
sharing scheme over Zp, together with a linear map ψ : Z2κ

p → Z
κ−1
p such that

ψ(v) = 0 iff v is a valid sharing of some secret.

Public Input: A prime p and 	 = 
log q� st 2�/p = 1−negl(κ), a Vandermonde
matrix A ∈ Z

2κ×κ
p , linear map φ.

Sender’s Input: s0, s1 ∈ Zp. Receiver’s Input: b ∈ {0, 1}.
1.

(
R −→ S

)
: R randomly chooses a set T1−b ∈ [2κ] of κ/2 coordinates. R plays

the i-th execution of ΠR
OT with input bi = (1− b). For the remaining i /∈ T1−b

set bi = b R sends (OT1[1], . . . ,OT1[2κ]) to S, where OT1[i] is computed on
input bi.

2.
(
S −→ R

)
: Upon receiving a correct first message, S proceeds as follows.

– Pick random strings x0, x1 ∈ Zp and secret share each string: Compute
shares vb = ([vb]1, . . . , [vb]2κ) ← Share(xb) for b ∈ {0, 1}.

– To commit to shares v0,v1 and prove that they are valid shares of a κ-
degree polynomial S proceeds as follows.
• For j = 1, . . . , κ, pick random a0,j ,b0,j ∈ Z

2κ
p such that a0,j +b0,j = v0

and compute z0,j = φ(a0,j) for all j. Resp., compute a1,j ,b1,j = v1

• Commit to each coordinate of ab,j and bb,j using ExtCom, namely send
acomb,j,i = ExtCom1([ab,j ]i)), bcomb,j,i = ExtCom1([bb,j ]i).

S sends to R the messages (OT2[1], . . . ,OT2[2κ]), {ExtCom1([ab,j ]i),
{ExtCom1([bb,j ]i)}i∈2κ, and zb,j for b = 0, 1 and j ∈ [κ].

3.
(
R −→ S

)
: R sends (OT3[1], . . . ,OT3[2κ]), the second message ExtCom2 for

the extractable commitment, and a random challenge c1, . . . , cκ ∈ {0, 1}κ.
4.

(
S −→ R

)
: S computes OT message OT4[i] using as inputs the i-th coor-

dinate of all j vectors committed before. Specifically, in the i-th OT it uses
decommitment to values (a[0,j ]i, [b0,j ]i) ∀j; (a[1,j ]i, b1,j ]i) ∀j. Additionally, for
each j, S reveals vector a0,j ,a1,j if cj = 0; or vectors b0,j ,b1,j if cj = 1;
and the messages for the third round of the extractable commitments, namely
{ExtCom3([ab,j ]i), {ExtCom3([bb,j ]i)}i∈2κ,j∈κ. Finally, S sends C0 = s0 ⊕ x0

and C1 = s1 ⊕ x1.
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Verification and Output: If the extractable commitments are all successfully
completed, proceeds as follows.

– Check Validity of Shares. For j = 1, . . . , κ, if cj = 0 check that z0,j =
φ(a0,j) and z1,j = φ(a1,j). Else, if cj = 1 check that φ(b0,j) + z0,j = 0 and
φ(b1,j) + z0,j = 1.

– Test Phase. R randomly chooses a set Tb of κ/2 coordinates in {[2κ]/T1−b}.
For each i ∈ Tσ, with σ ∈ {0, 1}; let [aσ,j ]i, [bσ,j ]i be the coordinates obtained
from the i-th OT. R checkes that, for all j, there exists a unique [vσ]i such
that [aσ,j ]i + [bσ,j ]i = [vσ]i. If so, [vσ]i is then marked as consistent. If all
shares obtained in this phase are consistent, R proceeds to the reconstruction
phase. Else abort.

– Reconstruction Phase. For i ∈ {[2κ]/T1−b}, if there exists a unique [vb]i
such that [ab,j ]i + [bb,j ]i = [vb]i, mark share [vb]i as consistent. If R obtains
less than κ + 1 consistent shares, he aborts. Else, let [vb]j1 , . . . , [vb]jκ+1 be any
set of κ+1 consistent shares. R computes xb ← Recon([vb]j1 , . . . , [vb]jκ+1) and
outputs sb = Cb ⊕ xb.

3.3 Proof of Security

In this section we provide the intuition behind the security of our constructions.
The reader is referred to the full version for the complete proof.

Security of ΠR
OT. We start by proving that ΠR

OT is one-sided simulatable.

Indistinguishability Against a Malicious Sender. It follows from the hiding of the
commitment scheme used by R to commit to the secret vectors r0, r1. Indeed, the
only difference between the transcript of a completed execution of ΠR

OT when R
uses input bit b = 0 and when R uses bit 1 is in the matrices that are computed
equivocally. In turn, the equivocal matrix differs from a binding matrix in that
the sum of the rows of an equivocal Mi,b leads to the vector of all permuted
values in Zq while in a binding matrix the sum of the row of the i-th matrix
corresponds to the vector r̂b

i .

Simulatability Against a Malicious Receiver. For the case of a malicious receiver,
we build a simulator who rewinds S and extracts R’s input bit from the coin-
flipping protocol. Note that when R’s input bit is b, R commits equivocally
to the matrices Mb,i, and therefore cannot commit equivocally to the Mb,i. It
follows that when R is rewound and asked a new query, his decommitment from
the b matrices will be the same. In this way, our simulator can figure out R’s
input bit. It remains to show that a malicious R cannot gain some advantage by
committing equivocally to some of the M0,i and some of the M1,i. This follows
from the error-correction property guaranteed by the choice of the matrix A.
A more detailed proof is provided in the full version.
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Security of ΠOT. We now sketch the main ideas behind the security of ΠOT.
Correctness follows from the correctness of the underlying ΠR

OT protocol, the
correctness of the statistically binding commitment scheme and the Shamir secret
sharing scheme: the receiver will be able to retrieve more than κ + 1 shares and
reconstruct the key xb that allows to decrypt sb. We now analyze the security of
the protocol in case either of the parties is corrupted.

Simulatability Against Malicious Receiver. We show a PPT simulator that sim-
ulates the attack of the receiver in the ideal world as follows. Sim computes the
messages of protocol ΠOT honestly till the third round, by committing to ran-
domly selected x0, x1. In parallel, Sim extracts the bits played by R∗ in protocol
ΠR

OT by running the simulator SimOT
R guaranteed by the one-sided simulatabil-

ity property of ΠR
OT. SimOT

R outputs the bits b1, . . . , b2κ which are the selections
made by R∗ in the first 3 rounds of protocol ΠR

OT. (Note that in ΠR
OT the server

commits to its input only in the fourth round, when the selection has already
beed committed. However, this will not be a problem because in ΠOT the sender
is still using its secret input only in the last round). If there are more than
κ+1 bits pointing to the same bit b then Sim sends this bit to FOT and receives
the string sb. Otherwise it will just send a random bit and continue the sim-
ulation of the protocol with random values. In the last round the simulator
uses SimOT

R to complete the OT using in input the shares that were dictated
by the bits b1, . . . , b2κ and it obtains messages OT4[i] for i ∈ [2κ]. Finally, Sim
completes the protocol by honestly computing message CPmsg3, but it prepares
cb = xb ⊕ sb, c1−b = r, where r is a randomly chosen string.

The indistinguishability of the simulation follows from the simulatability of
the underlying OT, the security of Shamir secret sharing and the hiding of the
underlying commitment scheme. We stress that in the proof we need to argue
about the hiding of the unopened shares. Namely, we require to prove that the
protocol satisfies a form of hiding in presence of selective opening attack. This is
not a problem as our protocol is interactive and the positions that the receiver
is choosing to open are fixed in advance before observing any commitment. This
property allows us to prove indistinguishability by relying on standard hiding
definition.

Simulatability Against Malicious Sender. We show a simulator that, having ora-
cle access to the malicious sender S∗, extracts both inputs s0, s1. Sim runs as
receiver in the ΠOT protocol by choosing sets T0 and T1, and playing with a
random bit in the remaining OT executions. Then, if the Test phase passes, Sim
rewinds S∗ to extract the vectors (a0,j ,b0,j) and (a01,j ,b1,j) from the extractable
commitments. Due to the indistinguishability property of the underlying ΠR

OT

we have that any malicious sender cannot detect on which coordinates he will
be tested. Therefore, if the test phase passes, then it holds that, for each bit,
at least κ/2 + 1 of the remaining OT were computed correctly for that bit. Due
to the binding of the commitment scheme, to the correctness of Shamir’s secret
sharing, and the correctness of the proof of consistency of the shares, the val-
ues reconstructed from the shares extracted by the simulator in the extractable
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commitments correspond to the unique value that a honest receiver would have
obtained from the shares retrieved via ΠR

OT.

3.4 Parallel OT

Protocol ΠOT can be used as a building block for constructing a protocol imple-
menting the Fm

OT functionality. The idea is to have the Sender S and the receiver
R compute m executions of ΠOT in parallel, and accepting a round of commu-
nication if and only if all the m executions are computed correctly.

3.5 Round-Optimal Secure Two-Party Computation

The non-interactive secure two-party protocol proposed in [12] it is based on
Yao [29] garbled circuits and works in the OT-hybrid model. The main contribu-
tion of [12] is to show an (asymptotically) more efficient black-box cut-and-choose
for proving that a garbled circuit is computed correctly. The cut-and-choose is
non-interactive in the OT-hybrid model. We can cast their construction to the
simpler setting of stand-alone two-party computation and replace the ideal calls
to the OT with our parallel OT Πm

OT.
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compute any function in this setting, with guaranteed output delivery,
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When n = 4 in the setting described above, we show the following:

– A statistical VSS protocol that has a 1-round sharing phase and 1-round
reconstruction phase. This improves over the state-of-the-art result of
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– A 2-round computationally secure protocol for general functionalities
with guaranteed output delivery, under the assumption that injective
(one-to-one) one-way functions exist.

– A 2-round protocol for general functionalities with guaranteed out-
put delivery in the preprocessing model, whose correlated randomness
complexity is proportional to the length of the inputs. This protocol
makes a black-box use of a pseudorandom generator or alternatively
can offer unconditional security for functionalities in NC1.

Prior to our work, the feasibility results implied by our positive results
were not known to hold even in the stronger MPC model considered by
Gennaro et al. (Crypto 2002), where a broadcast channel is available.

Keywords: Secure multiparty computation · Round complexity ·
Efficiency

1 Introduction

Suppose that two or more parties wish to compute some function on their sensi-
tive inputs while hiding the inputs from each other to the extent possible. One
solution would be to employ an external trusted server. Such a trust assumption
gives rise to the following minimalist protocol: each party sends its input to the
server, who computes the result and sends only the output back to the parties.

However, trusting an external server has several drawbacks, such as being sus-
ceptible to server breaches. To eliminate the single point of failure, the parties
may employ a secure multiparty computation (MPC) protocol for distributing
the trust between the parties. When replacing the external trusted server with
an MPC protocol, a major practical disadvantage is that we lose the minimal-
ist structure of the earlier protocol. Indeed, MPC protocols that offer security
against malicious parties typically require a substantial amount of interaction.
For instance,

– Implementing broadcast (a special case of MPC) over secure point-to-point
channels generally requires more than two rounds [12].

– Even if broadcast is given for free, 3 or more rounds are necessary for gen-
eral MPC protocols that tolerate t ≥ 2 malicious parties and guarantee fair-
ness [15].

Fortunately, neither of the above limitations rules out the possibility of obtain-
ing 2-round MPC protocols secure against a single malicious party. This was
exploited in the work of Ishai et al. [19], who showed that if only one party can
be corrupted, then n ≥ 5 parties can securely compute any function of their
inputs, with guaranteed output delivery, by using only two rounds of interac-
tion over secure point-to-point channels, and without assuming broadcast or any
additional setup. Since a similar result can be ruled out in the case of n = 2
parties [21], the work of [19] leaves open the corresponding question for n = 3
and n = 4.
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This question may be highly relevant to real world situations where the num-
ber of parties is small and the existence of two or more corrupted parties is
unlikely. Indeed, the only real world deployment of MPC that we are aware of is
for the case of n = 3 and t = 1 (cf. [5,6]). Furthermore, in settings where secure
computation between multiple servers involves long-term secrets, such as cryp-
tographic keys or sensitive databases, it may be preferable to employ three or
more servers as opposed to two for the purpose of recovery from faults. Indeed,
in secure 2-server solutions the long-term secrets are lost forever if one of the
servers malfunctions. Finally, the existence of a strict honest majority allows for
achieving stronger security goals, such as fairness and strong forms of compos-
ability, that are provably unrealizable in the two-party setting and, moreover, it
gives hope for designing leaner protocols that use weaker cryptographic assump-
tions and have better concrete efficiency. Thus, positive results in this regime
(i.e., 2-round protocols for n = 3 and n = 4) may have strong relevance to the
goal of practically efficient secure computation.

Our interest in this problem is motivated not only by the quantitative goal
of minimizing the amount of interaction, but also by qualitative advantages of
2-round protocols over protocols with more rounds. For instance, as pointed out
in [19], the minimal interaction pattern of 2-round protocols makes it possible to
divide the secure computation process into two non-interactive stages of input
contribution and output delivery. These stages can be performed independently
of each other in an asynchronous manner, allowing clients to go online only when
their inputs change, and continue to (passively) receive periodic outputs while
inputs of other parties may change.

Our Results. We obtain several results on the existence of 2-round MPC pro-
tocols over secure point-to-point channels, without broadcast or any additional
setup, which tolerate a single malicious party out of n = 3 or n = 4 parties.

Three-Party Setting. In an information-theoretic setting without a broad-
cast channel, the broadcast functionality itself is unrealizable for n = 3 and
t = 1 [22]. Therefore, if we wish to obtain secure computation protocols with per-
fect/statistical security, with guaranteed output delivery, then we have to assume
a broadcast channel. In the computational setting, broadcast is realizable in two
rounds using digital signatures (assuming a public key infrastructure setup).
Further, assuming indistinguishability obfuscation and a CRS setup, there exist
2-round protocols which tolerate an arbitrary number of corruptions t < n [2,13].
These protocols guarantee fairness when t = 1 and n = 3 (more generally, when
t < n/2), and also have nearly optimal communication complexity. However,
the above computationally secure protocols require a trusted setup and, perhaps
more importantly, they rely on strong cryptographic assumptions and have poor
concrete efficiency.

Fortunately, as we show, it turns out that a further relaxation of this notion,
referred to as “security-with-selective-abort,” allows us to obtain statistical secu-
rity even without resorting to the use of a broadcast channel or a trusted setup.
This notion of security, introduced in [17], differs from the standard notion
of security-with-abort in that it allows the adversary (after learning its own
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outputs) to individually decide for each uncorrupted party whether this party
will obtain its correct output or will abort with the special output “⊥”. Our
main result in this setting is the following:

– There exists a 2-round, 3-party general MPC protocol over secure point-to-
point channels, that provides security-with-selective-abort in the presence of
a single malicious party. The protocol provides statistical security for func-
tionalities in NC1 and computational security for general functionalities by
making a black-box use of a PRG.1

The above protocol is very efficient in concrete terms. There is a large body of
recent work on optimizing the efficiency of 2-party protocols based on garbled cir-
cuits. A recent work of Choi et al. [8] considered the 3-party setting, but required
security against 2 malicious parties and thus did not offer better efficiency than
that of 2-party protocols. Our work suggests that settling for security against
a single party can lead to better overall efficiency while also minimizing round
complexity. In particular, our 3-party protocol is roughly as efficient as 2-party
semi-honest garbled circuit protocols. See discussion in Sect. 3.

Four-Party Setting. Gennaro et al. [14] show the impossibility of 2-round
perfectly secure protocols for secure computation for n = 4 and t = 1, even
assuming a broadcast channel. Ishai et al. [19] show a secure-with-selective-
abort protocol in this setting over point-to-point channels. Their protocol does
not guarantee output delivery. We complete the picture in several ways. We start
by focusing on the simpler question of designing verifiable secret sharing (VSS)
protocols. Prior to our work, for the case when n = 4 and t = 1, it was known
that (1) there exists a 1-round sharing and 2-round reconstruction statistical VSS
protocol [24], and (2) there exists a 2-round sharing and 1-round reconstruction
statistical VSS protocol [1]. We improve the state-of-the-art by showing that:

– There exists a 4-party statistically secure VSS protocol over point-to-point
channels that tolerates a single malicious party and requires one round in the
sharing phase and one round in the reconstruction phase.

The above result is somewhat unexpected in light of the results from [1,24], and
the corresponding protocol is significantly more involved than other 1-round
VSS protocols. Our 1-round VSS protocol implies statistically secure 2-round
protocols for fair coin-tossing and simultaneous broadcast over point-to-point
channels. More generally, we show that:

– There exists a 2-round 4-party statistically secure MPC protocol for linear
functionalities (that compute a linear mapping from inputs to outputs) over
secure point-to-point channels, providing full security against a single mali-
cious party.

1 Our information-theoretic protocols are limited to NC1 like all known constant-
round protocols, even in the semi-honest model. However, settling for computational
security, all our protocols apply to general circuits by using any PRG as a black box.
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We complement the above positive result by proving the following negative
result:

– There exists a nonlinear function which cannot be realized by a protocol as
above.

Taken together, the two results above showcase a unique provable separation
between the round complexity of linear functionalities (which capture coin-
tossing and secure multicast as special cases) and that of higher degree func-
tions. Next, we show that settling for computational security allows us to beat
the previous negative result.

– Assuming the existence of injective (one-to-one) one-way functions, there
exists a 2-round 4-party computationally secure MPC protocol for general
functionalities over secure point-to-point channels, providing full security
against a single malicious party.

None of our previous results require a setup assumption. A natural question
is whether it is possible to obtain statistical security (at least for functional-
ities in NC1) in the same setting by relying on some form of setup. Several
prior works [4,7,9,10,18] obtain information-theoretic security in a so-called pre-
processing model, where the parties are given access to a source of correlated
randomness before the inputs are known. However, these protocols either have
a higher round complexity, or alternatively make use of correlated randomness
whose size grows exponentially with the input length [3,18]. We present a proto-
col in this setting where the size of correlated randomness is exactly the length
of the inputs. In the full version, we show that:

– Assuming a correlated randomness setup, there exists a 2-round 4-party MPC
protocol over secure point-to-point channels, providing full security against a
single malicious party. The protocol provides statistical security for functional-
ities in NC1 and computational security for general functionalities by making
a black-box use of a PRG. The size of the correlated randomness is linear in
the input size.

Prior to our work, our positive results in either the 3-party or 4-party settings
were not known to hold even in the setting considered where a broadcast chan-
nel is available, which was studied in the line of work originating from [14,15].
Moreover, our protocols are secure against adaptive and rushing adversaries.
Finally, while we analyze our protocols in the standalone setting, they are in
fact composable (in particular, none of our simulators is rewinding).

Technical Overview. We now give a very brief and high level overview of
some of our results. The main primitives that we use in our protocols are private
simultaneous message (PSM) protocols [11] and 1-private secret sharing schemes
(cf. Sect. 2). Our high level strategy is similar to the one used in [19]. The parties
secret share their inputs among other parties in the first round. Then, in the
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second round, they make use of PSM subprotocols to reconstruct parties’ inputs
from the shares, and also to evaluate a function on the reconstructed inputs.
Given the above, there are still two main issues that need to be resolved: (1)
a malicious PSM client may supply inconsistent shares of honest parties inputs
inside the PSM, and (2) a malicious party may supply inconsistent shares of
its own input to honest parties. Thus, different PSM instances may reconstruct
different inputs thereby generating different outputs all of which seem correct.

Ishai et al. [19] get around (1) and (2) by using (n − 2)-client PSM. Note
that for n ≥ 5 there are at least two honest clients and these two clients hold
all the shares of all parties. Thus, it is easy to detect inconsistent input shares
inside the PSM, and it is possible to either apply a “correction” inside the PSM
or easily ensure that incorrect PSM outputs are discarded. In our setting, i.e.,
n ∈ {3, 4}, we have to deal with 2-client PSMs. This is obviously necessary when
n = 3. We can use 3-client PSM when n = 4, but this PSM cannot be expected
to deliver output since a malicious client can simply abort this PSM. For these
reasons, techniques from [19] do not work when n ∈ {3, 4}. We can no longer
apply corrections inside the PSM or easily identify incorrect PSM outputs.

To get around (1), we use a novel “view reconstruction” technique (cf.
Sect. 3). When n = 3, this technique suffices, together with some additional
ideas, to get around both (1) and (2). To get around (2), when n = 4, we
use information-theoretic MACs for secure linear function evaluation and non-
interactive commitments for general secure function evaluation. Additional com-
plications arise when using MACs inside the PSM and we overcome these by
employing a cut-and-choose technique (cf. Sect. 4).

2 Preliminaries

In this section, we provide definitions of verifiable secret sharing (VSS) and pri-
vate simultaneous message (PSM) protocols. We also describe the secret sharing
schemes we use.

Verifiable Secret Sharing (VSS). In this work, we focus on the statistical
variant of verifiable secret sharing. We give the general definition below, but will
construct protocols for the specific case of n = 4 and t = 1.

Definition 1. Let σ be a statistical security parameter. A two-phase protocol
for parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P holds initial
input s ∈ F, is a statistical VSS protocol tolerating t malicious parties if the
following conditions hold for any adversary controlling at most t parties:

– Privacy. If the dealer is honest at the end of the first phase (the sharing
phase), then at the end of this phase the joint view of the malicious parties is
independent of the dealer’s input s.

– Correctness. Each honest party Pi outputs a value si at the end of the second
phase (the reconstruction phase). If the dealer is honest, then except with
probability negligible in σ, it holds that si = s.
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– Commitment. Except with probability negligible in σ, the joint view of the
honest parties at the end of the sharing phase defines a value s′ such that
si = s′ for every honest Pi. ♦

The PSM Model. A private simultaneous messages (PSM) protocol [11] is a
non-interactive protocol involving m parties P1, . . . , Pm, who share a common
random string r = rpsm, and an external referee who has no access to r. In such
a protocol, each party Pi sends a single message to the referee based on its input
xi and r. These m messages should allow the referee to compute some function
of the inputs without revealing any additional information about the inputs. Our
definitions below are taken almost verbatim from [19].

Formally, a PSM protocol π for a function f : {0, 1}�×m → {0, 1}∗ is defined
by R(�), a randomness length parameter, m message algorithms A1, . . . , Am and
a reconstruction algorithm Rec, such that the following requirements hold.

– Correctness: for every input length �, all x1, . . . , xm ∈ {0, 1}�, and all r ∈
{0, 1}R(�), we have Rec(A1(x1, r), . . . , Am(xm, r)) = f(x1, . . . , xm).

– Privacy: there is a simulator ∼trans
π such that, for all x1, . . . , xm of

length �, the distribution ∼trans
π (1�, f(x1, . . . , xm)) is indistinguishable from

(A1(x1, r), . . . , Am(xm, r)).

We consider either perfect or computational privacy, depending on the notion
of indistinguishability. (For simplicity, we use the input length � also as security
parameter, as in [16]; this is without loss of generality, by padding inputs to the
required length.)

A robust PSM protocol π should additionally guarantee that even if a subset
of the m parties is malicious, the protocol still satisfies a notion of “security with
abort.” That is, the effect of the messages sent by corrupted parties on the output
can be simulated by either inputting to f a valid set of inputs (independently
of the honest parties’ inputs) or by making the referee abort. This is formalized
as follows.

– Statistical Robustness: For any subset T ⊂ [m], there is an efficient (black-
box) simulator ∼ext

π which, given access to the common r and to the messages
sent by (possibly malicious) parties P ∗

i , i ∈ T , can generate a distribution x∗
T

over xi, i ∈ T , such that the output of Rec on inputs AT (x∗
T , r), AT (xT , r) is

statistically close to the “real-world” output of Rec when receiving messages
from the m parties on a randomly chosen r. The latter real-world output is
defined by picking r at random, letting party Pi pick a message according
to Ai, if i 	∈ T , and according to P ∗

i for i ∈ T , and applying Rec to the m
messages. We allow ∼ext

π to produce a special symbol ⊥ (indicating abort) on
behalf of some party P ∗

i , in which case Rec outputs ⊥ as well.

The following theorem summarizes some known facts about PSM protocols.

Theorem 1 ([11,19,23]). (i) For any f ∈ NC1, there is a polynomial-time,
perfectly private, and statistically robust PSM protocol. (ii) For any polynomial-
time computable f , there is a polynomial-time, computationally private, and sta-
tistically robust PSM protocol which uses any PRG as a black box.
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Secret Sharing. In a t-private n-party secret sharing scheme every t parties
learn nothing about the secret, and every t+1 parties can jointly reconstruct it.
A secret sharing scheme is efficiently extendable, if for any subset T ⊆ [n], it is
possible to efficiently check whether the (purported) shares to T are consistent
with a valid sharing of some secret s. Additionally, in case the shares are consis-
tent, it is possible to efficiently sample a (full) sharing of some secret which is
consistent with that partial sharing. In our protocols, we use 2-out-of-2 additive
secret sharing and 1-private 3-party CNF secret sharing.

Additive Sharing. In 2-out-of-2 additive sharing over F2, given both shares r1, r2,
we can reconstruct the secret as s = r1⊕r2. On the other hand, given the secret
s and one of the shares r1, we can determine the remaining share r2 = s⊕r1.

CNF Sharing [20]. In 1-private 3-party CNF sharing over F2, we choose ran-
dom r1, r2 ∈ F2, compute r3 = s⊕r1⊕r2, and set the CNF shares held by
P1, P2, P3 as 〈r2, r3〉, 〈r3, r1〉, 〈r1, r2〉 respectively. Given two of the three CNF
shares, say 〈r1, r2〉, 〈r2, r3〉 we can reconstruct the secret s = r1⊕r2⊕r3. Also,
given s and one of the shares say 〈r1, r2〉, we can determine the remaining shares
as 〈r2, s⊕r1⊕r2〉 and 〈s⊕r1⊕r2, r1〉. We say that P1, P2 hold “consistent” CNF
shares if P1, P2 respectively hold 〈r2, r3〉, 〈r′

3, r1〉 with r′
3 = r3.

Notation. We let n denote the number of parties. In this paper n ∈ {3, 4}. We
denote by Ti (resp. Ti,j) the set [n] \ {i} (resp. [n] \ {i, j}), where the value of
n is clear from the context. Throughout this paper, the number of corrupted
parties t = 1. Since this is the case, we sometimes abuse notation and use t as
a variable to denote parties’ index (e.g., Pt). We let rpsmi,j = rpsmj,i to denote the
shared randomness for PSM executions involving clients Pi and Pj .

3 2-Round 3-Party Computation with Selective Abort
Security

Recall that in security with selective abort, the adversary is able to deny output
to an honest party (i.e., there is no guaranteed output delivery), and further it
can choose to do so individually for each honest party. We wish to stress that
the abort is dependent only on the inputs/outputs of the corrupt party and is
otherwise (statistically) independent of the inputs/outputs of the honest parties.

A First Attempt. Consider the following protocol which makes use of additive
sharing and PSM subprotocols. Each party Pi first additively shares its input
xi into xi,j and xi,k (i.e., xi = xi,j⊕xi,k) and sends xi,j to party Pj and xi,k to
party Pk. In the second round, parties execute pairwise (robust) PSMs that first
reconstruct each party’s input from the additive shares possessed by the PSM
clients, and then compute the output from the reconstructed inputs. It should
be clear that the above yields a secure protocol in the semi-honest setting.

Predictably, things go wrong in the presence of a malicious adversary. Specif-
ically, an adversary that corrupts, say, P1 can carry out the following attack:
Party P1 can use input 0 in the PSM execution where P1 and P2 are the PSM
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clients and P3 is the PSM referee. Then, P1 uses a different input, say 1 in the
PSM execution where P1 and P3 are the PSM clients and P2 is the PSM ref-
eree. This results in the undesirable situation where P2 and P3 disagree on the
output and, furthermore, are not even aware that there may be a disagreement.
Note that this does not yield security with selective abort, since honest parties
accept outputs that are computed using different values for the corrupt input.
In other words, there is no single effective corrupt input (to be extracted by the
‘simulator’ in the ideal execution) that explains all honest outputs. To counter
this attack, we employ the following “view reconstruction trick.”

View Reconstruction Trick. Essentially this trick tries to reconstruct the
(first round) view of the PSM referee using the views supplied by the PSM
clients. Note that the “view” in the näıve protocol described above consists of
additive shares supplied by the parties. Fortunately, the efficient extendability of
linear secret sharing schemes such as the additive secret sharing and CNF secret
sharing, enables us to reconstruct the unique share that must be held by the
PSM referee. (For more details see Sect. 2 and [19].)

To see this trick in action, consider a concrete example. Suppose Pi and
Pj are PSM clients and Pk is the PSM referee. Note that Pk’s view consists
of the shares xi,k sent by Pi and xj,k sent by Pj . Now in the PSM subprotocol
(instantiated in the näıve protocol) suppose party Pi supplies input x′

i and party
Pj supplies input x′

j . (If Pi (resp. Pj) is not honest then x′
i = xi (resp. x′

j = xj)
may not hold.) In the PSM protocol, we now ask Pi to supply in addition to its
input x′

i = xi also the shares obtained in round 1, namely x′
j,i = xj,i obtained

from Pj and x′
k,i = xk,i obtained from Pk. We ask Pj to do the same as well, i.e.,

Pj supplies x′
j = xj , x′

i,j = xi,j , x′
k,j = xk,j . Of course, a malicious party, say

Pi, may not supply the correct inputs or shares as it obtained from the honest
parties (i.e., it may be the case that x′

i 	= xi or x′
j,i 	= xj,i or x′

k,i 	= xk,i). Anyway,
we can compute the values that ought to be held by Pk using the values supplied
by Pi and Pj . For instance, the values xk,i, xk,j can directly be obtained from
Pi, Pj since they supplied x′

k,i, x
′
k,j (respectively) to the PSM subprotocol. The

values xi,k (resp. xj,k) can be reconstructed as x′
i⊕x′

i,j where x′
i was supplied by

Pi and x′
i,j was supplied by Pj .

In our modified protocol, we let the PSM referee, say Pk to accept the final
output only if the reconstructed view from the PSM protocol matches its first
round view, i.e., only if x′

k,i = xk,i, x′
k,j = xk,j , x′

i,k = xi,k, and x′
j,k = xj,k all

hold. We prove the following theorem.

Theorem 2. There exists a 2-round 3-party secure-with-selective-abort protocol
for secure function evaluation over point-to-point channels that tolerates a single
malicious party. The protocol provides statistical security for functionalities in
NC1 and computational security for general functionalities by making a black-box
use of a pseudorandom generator.

Proof. The formal protocol is described in Fig. 1. We provide a sketch of the
simulation and the analysis below.
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Simulation Sketch. Denote the corrupt party by P�. Let Pi, Pj be the remaining
(honest) parties. The simulator begins by sending random additive shares to
the corrupt party on behalf of the honest parties. It also sends and receives
randomness to be used in the PSM executions in the next round. Note that the
simulator also receives additive shares from the corrupt party. Using the additive
shares, the simulator computes the effective input say x̂� of the corrupt party
(i.e., by simply xor-ing the additive shares). Then, the simulator sends x̂� to the
trusted party first, and obtains the output z�.

Next the simulator invokes the PSM simulator ∼trans
πi,j

(guaranteed by the pri-
vacy property) on inputs z� and the additive shares sent on behalf of the honest
parties. Denote the output of the ∼trans

πi,j
by τi,� and τj,�. Acting as the honest

party Pi (resp. Pj), the simulator sends τi,� (resp. τj,�) to the corrupt party. It
remains to be shown how the simulator decides which uncorrupted parties learn
the output and which receive ⊥. To do this, the simulator does the following.
First, acting as the honest party Pi the simulator receives the PSM message
τ�,i that P� sends to Pi as part of PSM execution π�,j . Similarly, acting as Pj ,
the simulator also receives τ�,j . Next, the simulator invokes the PSM simulator
∼ext

π�,i
on the PSM message τ�,i (and also the PSM randomness) to decide what

effective input P� used in PSM subprotocol π�,j . Depending on this input, the
simulator then decides whether Pi will accept the output of π�,j or not. Specifi-
cally as in the real execution, the simulator checks if the shares input by P� are
consistent with those held by Pi. If this is indeed the case, then the simulator
asks the trusted party to deliver output to Pi, else it asks the trusted party to
deliver ⊥ to Pi. Whether Pj gets the output or not is also handled similarly by
the simulator.

Analysis Sketch. We first consider a hybrid experiment which is exactly the same
as the real execution except that the PSM messages sent by the honest parties
to P� are replaced by the simulated PSM transcripts generated by ∼trans

πi,j
. To

generate these transcripts we first extract the input x̂� by xor-ing the additive
shares sent by P�, and then compute the output of πi,j using inputs provided
by honest parties and x̂�. We then supply this output to ∼trans

πi,j
to generate the

simulated PSM transcripts. The privacy property of the PSM protocol implies
that the joint distribution of the view of the adversary and honest outputs in
the real protocol is indistinguishable from the corresponding distribution in the
hybrid execution.

Note that the distribution of the additive shares and the PSM randomness
sent by the simulator in the ideal execution is identical to the distribution of the
corresponding values in the hybrid execution. Thus, to prove indistinguishability
of the hybrid execution and the ideal execution it suffices to focus on the distri-
bution of honest outputs. Note that in the ideal execution the honest outputs
are generated using the true honest inputs and extracted input x̂�.

We first show that honest party Pi (resp. Pj) that accepts a non-⊥ output in
the hybrid execution is ensured that this output is computed using the true hon-
est inputs and the corrupt input x̂�. It is here that we use the view reconstruction
trick. Specifically now, (1) if P� supplied incorrect input, then the reconstructed
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Fig. 1. 2-round 3-party secure-with-selective-abort protocol.

share x′
�,i (which is revealed as part of the output of π�,j) does not equal x�,i

possessed by Pi and thus the final output is rejected, and (2) if P� supplied
inconsistent share x′

i,� 	= xi,� inside π�,j , then since this value is revealed as part
of the output of π�,j , the final output will be rejected by Pi.

Given the above it remains to be shown that the set of honest parties that
receive ⊥ in the ideal execution equals the set of honest parties that output ⊥
in the hybrid execution. To prove the above, we use the fact that for all j ∈ T�,
with all but negligible probability the PSM simulator ∼ext

π�,j
extracts the input

supplied by P� in the PSM execution π�,j . It follows by simple inspection that
the criterion used to add i to S� in the simulation is essentially the same as the
criterion used by Pi to reject the final output of π�,j in the hybrid execution. ��
Concrete Efficiency. Robust PSM subprotocols can be based on Yao garbled
circuits [11,23]. The concrete cost of such a robust PSM protocol is essentially the
same as a single Yao garbled circuit and incurs an additional cost proportional
to the length of the inputs (and is otherwise independent of the complexity of
f). Thus our 3-party protocol costs essentially the same as cost of transmitting
and evaluating 3 garbled circuits, i.e., thrice the cost of semi-honest 2-party Yao.
Contrast this with the concrete cost of realizing state-of-the-art malicously secure
two-party protocols which is essentially the cost of transmitting and evaluating
roughly σ garbled circuits where σ denotes the statistical security parameter. We
previously argued that 3-party protocols provide more redundancy and stability
compared to 2-party protocols. Now by settling for just security-with-selective-
abort, our three-party protocol provides a much better alternative from a cost
perspective as well. All this is in addition to the fact that our 3-party protocol
requires only two rounds over point-to-point channels. In contrast, current imple-
mentations of 3-party protocols [5,6] require rounds proportional to the depth
of the circuit, provide only semi-honest security, or require use of broadcast.
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4 4-Party Statistical VSS in a Total of 2 Rounds

Let the set of parties be {D,P1, P2, P3}. First, let us look at a näıve protocol
that assumes the existence of a broadcast channel. Here, the dealer CNF shares
its input in the sharing phase. Then in the reconstruction phase, parties simply
broadcast the CNF shares they obtained from the dealer. To decide on the
output, parties construct an “inconsistency graph” G which tells which parties
broadcasted consistent CNF shares.

Sharing Phase. The dealer CNF shares (according to a 1-private 3-party CNF
scheme) its secret s among P1, P2, P3. That is, it chooses random s1, s2, s3 subject
to

⊕
i=1,2,3si = s, and sends CNF share {sj}j �=i to party Pi for i ∈ [3].

Reconstruction Phase. Each party Pi broadcasts its share {s
(i)
j = sj}j �=i.

Local Computation. D outputs s and terminates the protocol. For every j, k ∈
[3], define recj,k = s

(k)
j ⊕⊕

i�=js
(j)
i (i.e., secret reconstructed from CNF shares

possessed by Pj and Pk). Let G denote the 3-vertex inconsistency graph which
contains an edge between vertices i, j ∈ [3] iff ∃k ∈ [3]\{i, j} such that s

(i)
k 	= s

(j)
k .

(That is, Pi and Pj disagree on the share sk.)

– (Single-edge case) If G contains exactly one edge, output ⊥.
– (Even-edge case) Else, if ∃(j, k) 	∈ G, then each party outputs recj,k.
– (Triple-edge case) If there is no such j, k, then output default value say ⊥.

It can be easily shown that the above protocol works as long as G does not
contain exactly one edge. The difficulty in handling the single-edge case comes
because parties do not know which of the inconsistent CNF shares to trust,
i.e., which of s

(i)
k 	= s

(j)
k when (i, j) ∈ G. In the computational setting, this is

solved by a trivial use of signatures. In the information-theoretic setting, we can
substitute signatures with information-theoretic MACs, but this is not sufficient
since such MACs do not have public verification. Fortunately, a combination of
MACs with a cut-and-choose technique helps us in this case.

Protocol Overview. The high level idea is to use MACs and then apply the cut-
and-choose technique to ensure that (1) parties reveal their true share when D is
honest, and (2) detect an inconsistent sharing by a dishonest D. In more detail,
now we require D to send, in addition to the CNF shares, also authentication
information in the form of information-theoretic MACs (such that a forgery is
possible only with probability negl(σ)). Specifically for each CNF share sj , the
dealer D sends sj along with σ MAC values {M

(i)
j,� }�∈[σ]to each party Pi for each

j 	= i, while each party Pj receives the corresponding keys {K
(i)
j,�}�∈[σ] for each

i 	= j. Each share is authenticated multiple times to allow application of the
cut-and-choose technique.

The reconstruction phase is modified to handle, in particular, the case when
the inconsistency graph contains exactly one edge. (All other cases are han-
dled exactly as in the näıve attempt described above.) Now we ask each Pi to
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broadcast its CNF share {s
(i)
j }j �=i (as in the näıve construction), and in addition

broadcast its MAC values {M
(i)
j,� }j �=i,�∈[σ]. Also we ask each party Pj to pick for

every i 	= j, a random subset Sj,i ⊂ [σ] (this corresponds to the check set for the
cut-and-choose step), and send (1) keys K

(i)
j,� for � ∈ Sj,i to Pi, and (2) all keys

(i.e., K
(i)
j,� for all � ∈ [σ]) to Pk where k ∈ [3] \ {i, j}.

Now we explain in more detail how the cut-and-choose technique helps to
resolve the single-edge case. Let (i, j) ∈ G and let k 	∈ {i, j}. We consider two
cases depending on whether D is honest or not. Note that in either case, we are
assured that Pk is honest, and in fact, our protocol will use MAC keys held by
Pk to anchor the parties’ output towards the correct output. First consider the
case when D is honest. Wlog assume Pi is dishonest, and that Pi disagrees with
Pj on the value sk that is supposed to be held by both of them. Note that while
Pk does not hold sk, it does hold the keys {K

(i)
k,�}�∈[σ] to verify the MACs that Pi

possesses. Note that the protocol asks Pi to broadcast all its MACs on sk, and Pk

to send half its keys, say corresponding to some subset Sk,i ⊂ [σ], to Pi and all
its keys to Pj . While a rushing Pi can wait to receive (half) the keys from Pk to
allow forging the corresponding MACs, note that it cannot forge the MACs for
the remaining half (except with negligible probability) for which it simply does
not know the keys. In other words, when Pi tries to reveal s′

k 	= sk along with
MACs {M̃ (i)

k,�}�∈[σ], then with high probability the MAC verification will fail for
all keys that Pi does not know. Thus, by asking honest Pj and Pk to accept Pi’s
reveal only if MACs revealed by Pi is consistent with all keys in {K

(i)
k,�}�∈Sk,i

(i.e., those that were sent to Pi) and at least one key in {K
(i)
k,�}� �∈Sk,i

(i.e., those
that were not sent to Pi), we are ensured (except with negligible probability)
that Pi’s reveal s′

k 	= sk will be rejected by Pj and Pk. Finally note that honest
Pj ’s share sk is always accepted by the honest parties.

Next, consider the case when D is dishonest. In this case, a single-edge in the
inconsistency graph is induced by the inconsistent shares dealt to Pi, Pj . There-
fore, the main challenge here is to ensure that all parties agree that D dealt
inconsistent shares (as opposed to suspecting that one of the honest parties is
deviating from the protocol). Once again, the keys held by Pk serve to anchor all
honest parties’ decisions on whether to accept or reject reveals made by Pi, Pj .
The crux of the argument is the following: except with negligible probability,
all parties Pi, Pj , Pk unanimously agree on their decision to accept/reject each
of Pi, Pj ’s reveals. Before we show this, observe that this suffices to achieve
resilience against a malicious D. For e.g., suppose both parties’ reveals get
accepted then if they revealed inconsistent values then all parties agree to output
some default value. The case when both parties’ reveals get rejected is handled
similarly. Finally, when only one of Pi, Pj ’s reveal is accepted, then all parties can
simply agree to output the value corresponding to the reveal that got accepted.

Now we argue that except with negligible probability, all parties will unani-
mously agree on whether to accept or reject reveals made by Pi, Pj . First observe
that the reveals made by a party, say Pj , are either unanimously accepted or
unanimously rejected by both Pi and Pk. This is because both Pi and Pk make
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decisions using the same algorithm on the same values. Next, in our protocol,
Pj will accept or reject its own reveal by checking whether its reveal is consis-
tent with the keys that Pk sent to it (i.e., those corresponding to the subset
Sk,i). Thus, if Pj ’s reveal is rejected by Pj itself, then obviously it will also be
rejected by Pi and Pk. Therefore, by way of contradiction, wlog assume that
Pj ’s reveal is rejected by Pi, Pk while it is accepted by Pj . Clearly this hap-
pens only if Pk chooses its random subset Sk,j such that all the MAC values
held by Pj corresponding to Sk,j are consistent with the keys held by Pk, while
all the MAC values held by Pj corresponding to [σ] \ Sk,j are not consistent
with the keys held by Pk. Obviously such an event happens with probability(

σ
σ/2

)−1 = negl(σ). Hence we have that with all but negligible probability, all
parties Pi, Pj , Pk unanimously agree whether to accept/reject reveals made by
Pi and Pj . As explained before, this suffices to prove that agreement holds even
when D is dishonest. Fortunately, we can remove the use of broadcast channel
in the above protocol. In the full version, we prove the following theorem.

Theorem 3. There exists a 4-party statistically secure protocol for VSS over
point-to-point channels that tolerates a single malicious party and requires one
round in the sharing phase and one round in the reconstruction phase.

5 2-Round 4-Party Statistically Secure Computation
for Linear Functions over Point-to-Point Channels

Overview. In the first round of the protocol parties verifiably secret share their
inputs (using the protocol from the previous section), and also exchange ran-
domness for running pairwise (robust) PSM executions. Loosely speaking, the
PSM executions serve two purposes: (1) parties can evaluate the function on
their inputs while preserving privacy, and (2) parties can learn the inconsistency
graph corresponding to each VSS sharing. To do (1), the PSM protocol first
attempts to reconstruct parties’ inputs from the CNF shares held by the PSM
clients, and if successful, evaluates the function on these inputs. To do (2), the
PSM protocol makes use of the “view reconstruction trick.” Note that in the
case of VSS, learning the inconsistency graphs was trivial, since parties would
broadcast their shares during the reconstruction phase. Unlike VSS, here it is
important to protect privacy of these shares throughout the computation. The
view reconstruction trick enables us to construct the inconsistency graphs while
preserving privacy of the shares.

Recall that each party could potentially receive PSM outputs from three PSM
executions. Computing the final output from these PSM outputs is not straight-
forward, and we will need the inconsistency graphs (generated using outputs of
the PSM protocols) to help us. To explain how this is done, we will adopt the per-
spective of the simulation extraction procedure. Let m ∈ [4] denote the index of
the corrupt party. The extraction procedure constructs the inconsistency graph
G′ adding edges between vertices if the CNF shares held by corresponding par-
ties are not consistent. If the graph contains all three edges, then the effective
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input used in this case is 0. We call this the identifiable triple-edge case since it is
clear that Pm is corrupt. Next, if the graph contains two edges or no edges (i.e.,
an even number of edges), then we are now assured that there exists a pair of
(honest) parties that hold consistent CNF shares of Pm’s input. In this case, we
can extract the effective input as the secret reconstructed from these consistent
CNF shares. We call this case the resolvable even-edge case. As was the case in
VSS, if G′ contains a single-edge then the procedure performs a vote computa-
tion step using the MAC values and the corresponding keys. This is to find out
which of the two parties is supported by Pm. If there is a unique party that is
supported by Pm, then the inconsistency in CNF shares is resolved by using the
CNF share possessed by this party. We call this the resolvable single-edge case.
On the other hand if there is no unique party supported by Pm, then it is clear
that Pm is corrupt. We call this the identifiable single-edge case. In this case, we
extract the effective input used for Pm as the xor of all unique shares (including
the inconsistent CNF shares) possessed by all remaining parties.

Observe that the extraction procedure is identical to the VSS extraction
procedure except in the identifiable single-edge case. In VSS, it was possible
to simply output 0 in the identifiable single-edge case. Here we are not able
to replace the corrupt party’s input by 0 and then evaluate the function while
simultaneously preserving privacy of honest inputs. However, if we use the effec-
tive input extracted as described above, then we can exploit the linearity of f
to force parties’ outputs to be consistent with the extracted input.

Clearly we are done if we force honest parties’ outputs in the real protocol to
be consistent with the corrupt input extracted by the simulator while preserving
privacy of honest parties’ inputs. The main obstacle in the implementation is
that different honest parties’ may hold different inconsistency graphs. The chal-
lenge therefore is to design an output computation procedure that allows honest
parties’ to end up with the same correct output even though they may possess
different inconsistency graphs. Also, unlike VSS, here we do not have the luxury
of a reconstruction phase where parties can freely disclose their secret shares.

Our output computation procedure makes use of the view reconstruction
trick to help each party compute its inconsistency graph, and adapts the cut-
and-choose idea from our VSS protocol to help compute the votes (which we
can ensure whp that parties agree on). In addition, our procedure exploits the
linearity of f to compute the correct output in the identifiable single-edge case.
To ensure parties’ compute the same output in the resolvable cases, we make use
of an “accusation graph” which parties use to determine a pair of honest parties
that hold consistent shares of the corrupt input extracted by the simulation
procedure described above. For a detailed step-by-step overview of the protocol,
please see the full version where we prove:

Theorem 4. There exists a 2-round 4-party statistically secure protocol for
secure linear function evaluation over point-to-point channels that tolerates a
single malicious party.
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5.1 Impossibility of 2-Round Statistically Secure 4-Party
Computation

In this section, we prove the following:

Theorem 5. There exists a function which cannot be information-theoretically
realized by a 2-round 4-party protocol over point-to-point channels that tolerates
a single corrupt party.

Proof. Assume by way of contradiction that there exists a 2-round statistically
secure 4-party protocol π for general secure computation. Let us further set up
some notation related to protocol π. Let A

(r)
i,j denote the algorithm specified by

protocol π that is to be executed by (honest) party Pi to generate its r-th round
message to Pj . We use the notation

m
(r)
i,j ← A

(r)
i,j (xi, {{m(s)

k,i}k∈K
(s)
i

}s : 0<s<r;ωi)

where xi (resp. ωi) represents Pi’s input (resp. internal randomness), and m
(r)
i,j

represents Pi’s message to Pj in round r, and K
(s)
i represents the subset of parties

from which Pi receives a message in round s. Wlog, we assume that algorithm
A

(3)
i,i computes the final output of honest Pi.

The function that we consider is a simple non-linear function and is inspired
by the oblivious transfer functionality. Let f be such that f(b,⊥,⊥, (y0, y1)) =
(yb,⊥,⊥,⊥). That is, f takes as input a bit b ∈ {0, 1} from P1 and a pair of
bits y0, y1 ∈ {0, 1} from P4, and returns yb to P1. The parties P2, P3 supply no
inputs, and parties P2, P3, P4 receive no outputs.

The high level strategy is to launch an attack on the real protocol that cannot
be simulated in the ideal execution. We let P1 be the corrupt party, and show that
it can obtain both y0 and y1 in the real protocol with non-negligible probability.
Clearly, no ideal process adversary can do the same, and hence the negative
result is establised. At a high level, the adversarial strategy of P1 is to set things
up such that the joint view of P2 and P4 would infer that P1’s input is 0, while the
joint view of P3 and P4 would infer that P1’s input is 1. To do this, P1 chooses
internal randomness ω1 and computes its first round messages m̃

(1)
1,2, m̃

(1)
1,4 to

send to P2 and P4 assuming that its input equals 0. Then, it samples uniform
randomness ω̃ such that its first round message to P4 computed assuming input
1 and randomness ω̃ matches m̃

(1)
1,4. Since we are in the information-theoretic

regime, note that we can allow P1 to perform arbitrary computations. Then
it will follow from the privacy property of π that P1 will be able to sample ω̃
with all but negligible probability. P1 then computes its first round message to
P3 assuming input 1 and internal randomness ω̃. It then sends its first round
messages to the parties, and accepts messages from them. In the second round,
it does not send any messages and only accepts messages from other parties.
Next, P1 computes a value y′

0 by invoking its output computation algorithm
on input 0, internal randomness ω1, round 1 messages received from all parties,
and round 2 messages received from P2 and P4. Similarly, P1 computes y′

1 by
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invoking its output computation algorithm on input 1, internal randomness ω̃,
round 1 messages from all parties, and round 2 messages from P3 and P4. Finally,
P1 outputs the values y′

0, y
′
1 as part of its view. We will show that with all but

negligible probability it will hold that y′
0 = y0 and y′

1 = y1. Since an ideal-process
adversary has access to P4’s input only via the trusted party implementing f ,
it is clear that it can obtain either y0 or y1 but not both. Thus, this suffices to
establish the theorem. This is the high level idea; we now proceed to the formal
details. Formally, P1 does the following:

– Choose randomness ω1 and compute m̃
(1)
1,2 ← A

(1)
1,2(0,⊥, ω1), and

m̃
(1)
1,4 ←A

(1)
1,4(0,⊥, ω1).

– Choose random ω̃ such that A
(1)
1,4(1,⊥, ω̃) = m̃

(1)
1,4. If no such ω̃ exists, output

fail1 and terminate.
– Compute m̃

(1)
1,3 ← A

(1)
1,3(1,⊥, ω̃).

– For j = 2, 3, 4, send message m̃
(1)
1,j to Pj in round 1.

– Receive round 1 messages m
(1)
2,1, m

(1)
3,1, m

(1)
4,1, from other parties. Do not send

any round 2 messages to any party. Receive round 2 messages m
(2)
2,1, m

(2)
3,1,

m
(2)
4,1, from other parties and terminate the protocol.

– Compute and output y′
0 ←A

(3)
1,1(0, {{m(1)

k,i}k∈T1 , {m
(2)
k,i}k∈{2,4}};ω1),

y′
1 ← A

(3)
1,1(1, {{m(1)

k,i}k∈T1 , {m
(2)
k,i}k∈{3,4}}; ω̃).

First, we claim that corrupt P1 does not output fail1 with all but negligible
probability, i.e., P1 will be able to successfully find ω̃ satisfying the conditions
above. To show this, we rely on the privacy property of π against an (all-powerful)
P4. Clearly, if there exists no ω̃ such that the output of A

(1)
1,4 on input 1 and

internal randomness ω̃, it is obvious to P4 that P1’s input is 0, and thus privacy
is violated. Therefore, it must hold with all but negligible probability (over the
choice of ω) that such ω̃ exists.

Next, we first assert that y′
0 = y0 holds with all but negligible probability. The

key observation is that messages input to A
(3)
1,1 that are distributed identically to

an execution where P1 holds input 0 and a corrupt P3 behaves honestly except
it does not send its round 2 messages (i.e., aborts after round 1). Thus, it follows
from the correctness of π that y0 = y′

0 holds with all but negligible probability.
Similarly, we assert that y′

1 = y1 holds with all but negligible probability. This
is because the messages input to A

(3)
1,1 are distributed identically to an execution

where P1 holds input 1 and a corrupt party P2 behaves honestly except it does
not send its round 2 messages. Thus it follows from the correctness of π that
y′
1 = y1 holds with all but negligible probability.

Finally we claim that no ideal-process adversary can generate a view with
(y′

0, y
′
1) such that these equal P4’s inputs with probability greater than 1/2. The

key observation is that an ideal-process adversary has access to P4’s input only
via the trusted party implementing f , it is clear that it can obtain either y0 or
y1 but not both. In such a case, the best strategy for the ideal process adversary
is to obtain one of them, and then simply try and guess the value of the other
(thereby succeeding with probability 1/2). ��
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It is instructive to note why the above impossibility does not apply to linear
functions. Specifically for a linear function f , if the adversary P1 can obtain
an evaluation of f on input x1 and honest inputs, then it can trivially obtain
an evaluation of f on input x′

1 	= x1 and the same honest inputs. Finally, we
note that our negative result can be easily extended to hold in a setting with
broadcast.

6 2-Round Computationally Secure 4-Party Computation

Protocol Overview. For simplicity let us assume the existence of a broadcast
channel. Our protocol proceeds by letting each party to broadcast a commitment
of its input, and then CNF share the corresponding decommitment among the
remaining parties. In the second round, parties execute pairwise PSMs that first
attempts to reconstruct the inputs of all parties, and then compute the output
from the reconstructed inputs. Unfortunately the general framework described
as-is does not suffice for secure computation. For one, it may not always be possi-
ble to reconstruct input from shares distributed by a malicious party. Further, it
may be the case that one pair of honest parties may hold consistent CNF shares
from the malicious party while a different pair of honest parties may not. This
is exacerbated by the fact that an honest party is guaranteed to receive output
from only one PSM instance. In other words, even guaranteeing agreement on
output seems somewhat nontrivial.

To circumvent the problems mentioned above, our protocol first detects
whether the joint view of honest parties suffices to reconstruct the input of all
parties. We do this by enhancing the PSM functionality in a way that lets parties
ascertain if for every broadcasted commitment, there exists some pair of parties
that hold (consistent) shares of the corresponding decommitment. (Indeed, this
is our strategy for extracting the adversary’s input in the simulation.) If a pair of
parties do not hold consistent shares of a valid decommitment for some party’s
commitment, then the pairwise PSM in which the parties act as clients delivers
as outputs the first round views of the honest clients. This in turn lets the referee
to determine if its own shares coupled with shares from one of the clients suffices
to reconstruct valid decommitments for all commitments. If this is indeed the
case, then the referee can reconstruct all inputs from the joint views and then
evaluate the function from scratch. On the other hand if there is some party
whose commitment cannot be decommitted using the joint views, then the ref-
eree simply substitutes that party’s input with 0, and evaluates the function
from scratch using this new set of inputs. Of course, care must be taken not
to reveal honest inputs to a malicious referee. We achieve this by letting the
PSM check if the referee’s commitment can be decommitted using shares held
by honest clients, and then revealing the client views only if this check passes.

The ideas described above still do not suffice to address the somewhat subtler
issue of agreement on output. We describe this issue in more detail below. Note
that a malicious party that distributed shares of an invalid decommitment can
ensure that all inputs are reconstructed successfully in exactly one of the PSM
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instances where it participated as a client and supplied shares of a valid decom-
mitment. Thus, in this PSM instance the function will be evaluated on the
reconstructed inputs. Note that this strategy lets exactly one honest party (that
acted as referee in the PSM instance described above) to obtain directly the
output of the function, while all other honest parties evaluate the function from
scratch after substituting the malicious party’s input with 0. In other words, the
adversary can succeed in forcing different honest parties to obtain evaluations
of the function on different sets of inputs. We use a somewhat counterintuitive
idea to counter this adversarial strategy. Namely, we force the honest referee in
the PSM instance to disregard the output of the function, and instead evaluate
the function from scratch (using honest clients’ views output in a different PSM
instance) after substituting the malicious party’s input with 0. To do this, we
design the PSM functionality in a way that allows an honest referee to infer
whether the joint view of the honest parties indeed contains a valid decommit-
ments to all broadcasted commitments. In more detail, the PSM functionality
will attempt to reconstruct the first round view of the referee from the views of
the participating clients. (Note that this is possible due to the efficient extend-
ability property of CNF sharing schemes.) Upon receiving this reconstructed
view, the referee outputs the PSM output only if its view agrees with the recon-
structed views. For a formal description of the protocol, and how to remove the
use of broadcast, please see the full version where we prove:

Theorem 6. Assuming the existence of one-way permutations (alternatively,
one-to-one one-way functions), there exists a 2-round 4-party computationally
secure protocol over point-to-point channels for secure function evaluation that
tolerates a single malicious party.
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Abstract. Motivated by the recent success of Bitcoin we study the ques-
tion of constructing distributed cryptographic protocols in a fully peer-
to-peer scenario under the assumption that the adversary has limited
computing power and there is no trusted setup (like PKI, or an unpre-
dictable beacon). We propose a formal model for this scenario and then
we construct a broadcast protocol in it. This protocol is secure under
the assumption that the honest parties have computing power that is
some non-negligible fraction of computing power of the adversary (this
fraction can be small, in particular it can be much less than 1/2), and a
(rough) total bound on the computing power in the system is known.

Using our broadcast protocol we construct a protocol for simulating
any trusted functionality. A simple application of the broadcast protocol
is also a scheme for generating an unpredictable beacon (that can later
serve, e.g., as a genesis block for a new cryptocurrency).

Under a stronger assumption that the majority of computing power
is controlled by the honest parties we construct a protocol for simu-
lating any trusted functionality with guaranteed termination (i.e. that
cannot be interrupted by the adversary). This could in principle be used
as a provably-secure substitute of the blockchain technology used in the
cryptocurrencies.

Our main tool for verifying the computing power of the parties are
the Proofs of Work (Dwork and Naor, CRYPTO 92). Our broadcast pro-
tocol is built on top of the classical protocol of Dolev and Strong (SIAM
J. on Comp. 1983).

1 Introduction

Distributed cryptography is a term that refers to cryptographic protocols exe-
cuted by a number of mutually distrusting parties in order to achieve a common
goal. One of the first primitives constructed in this area were the broadcast pro-
tocols [14,24] using which a party P can send a message over a point-to-point
network in such a way that all the other parties will reach consensus about
the value that was sent (even if P is malicious). Another standard example
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are the secure multiparty computations (MPCs) [7,11,20,30], where the goal
of the parties is to simulate a trusted functionality. The MPCs turned out to
be a very exciting theoretical topic. They have also found some applications in
practice (in particular they are used to perform the secure on-line auctions [8]).
Despite of this, the MPCs unfortunately still remain out of scope of interest for
most of the security practitioners, who are generally more focused on more basic
cryptographic tools such as encryption, authentication or the digital signature
schemes.

One of very few examples of distributed cryptography techniques that
attracted attention from general public are the cryptographic currencies (also
dubbed the cryptocurrencies), a fascinating recent concept whose popularity
exploded in the past 1-2 years. Historically the first, and the most prominent
of them is the Bitcoin, introduced in 2008 by an anonymous developer using a
pseudonym “Satoshi Nakamoto” [26]. Bitcoin works as a peer-to-peer network
in which the participants jointly emulate the central server that controls the
correctness of transactions, in particular: it ensures that there was no “double
spending”, i.e., a given coin was not spent twice by the same party. Although the
idea of multiple users jointly “emulating a digital currency” sounds like a special
case of the MPCs, the creators of Bitcoin did not directly use the tools developed
in this area, and it is not clear even to which extend they were familiar with
this literature (in particular, Nakamoto [26] did not cite any of MPC papers in
his work). Nevertheless, at the first sight, there are some resemblances between
these areas. In particular: the Bitcoin system works under the assumption that
the majority of computing power in the system is under control of the honest
users, while the classical results from the MPC literature state that in general
constructing MPC protocols is possible when the majority of the users is honest.

At a closer look, however, it becomes clear that there are some important
differences between both areas. In particular the main reason why the MPCs
cannot be used directly to construct the cryptocurrencies is that the scenarios
in which these protocols are used are fundamentally different. The MPCs are
supposed to be executed by a fixed (and known in advance) set of parties, out of
which some may be honestly following the protocol, and some other ones may be
corrupt (i.e. controlled by the adversary). In the most standard case the number
of misbehaving parties is bounded by some threshold parameter t. This can be
generalized in several ways. Up to our knowledge, however, until now all these
generalizations use a notion of a “party” as a separate and well-defined entity
that is either corrupt or honest.

The model for the cryptocurrencies is very different, as they are supposed to
work in a purely peer-to-peer environment, and hence the notion of a “party”
becomes less clear. This is because they are constructed with a minimal trusted
setup (as we explain below the only “trusted setup” in Bitcoin was the generation
of an unpredictable “genesis block”), and in particular they do not rely on any
Public Key Infrastructure (PKI), or any type of a trusted authority that would,
e.g., “register” the users. Therefore the adversary can always launch a so-called
Sybil attack [15] by creating a large number k of “virtual” parties that remain
under his control. In this way, even if in reality he is just a single entity, from
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the point of view of the other participants he will control a large number of
parties. In some sense the cryptocurrencies lift the “lack of trust” assumption
to a whole new level, by considering the situation when it is not even clear who
is a “party”. The Bitcoin system overcomes this problem in the following way:
the honest majority is defined in terms of the “majority of computing power”.
This is achieved by having all the honest participants to constantly prove that
they devote certain computing power to the system, via the so-called “Proofs of
Work” (PoWs) [16,17].

The high level goal for this work is to bridge the gap between these two
areas. In particular, we propose a formal model for the peer-to-peer commu-
nication and the Proofs of Work concept used in Bitcoin. We also show how
some standard primitives from the distributed computation, like broadcast and
MPCs, can be implemented in this model. Our protocols do not require any
trusted setup assumptions, unlike Bitcoin that assumes a trusted generation of
an unpredictable “genesis block” (see below for more details). Besides of being
of general interest, our work is motivated twofold.

Firstly, recently discovered weaknesses of Bitcoin [5,19] come, in our opinion,
partially from the lack of a formal framework for this system. Our work can be
viewed as a step towards better understanding of this model. We also believe that
the “PoW-based distributed cryptography” can find several other applications
in the peer-to-peer networks (we describe some of them). In particular, as the
Bitcoin example shows, the “lack of trusted setup” can be very attractive to
users1. In fact, there are already some ongoing efforts to use the Bitcoin paradigm
for purposes other than the cryptocurrencies (see full version of this paper [1] for
more on this). We would like to stress however, that this is not the main purpose
of our work, and that we do not provide a full description of a new currency.
Our goal is also not the full analysis of the security of Bitcoin (which would be a
very ambitious project that would also need to take into account the economical
incentives of the participants).

Secondly, what may be considered unsatisfactory in Bitcoin is the fact that
its security relies on the fact that the so-called genesis block B0, announced
by Satoshi Nakamoto on January 3, 2009, was generated using heuristic meth-
ods. More concretely, in order to prove that he did not know B0 earlier, he
included the text The Times 03/Jan/2009 Chancellor on brink of second bailout
for banks in B0 (taken from the front page of the London Times on that day).
The unpredictability of B0 is important for Bitcoin to work properly, as other-
wise a “malicious Satoshi Nakamoto” A that knew B0 beforehand could start
the mining process much earlier, and publish an alternative block chain at some
later point. Since he would have more time to work on his chain, it would be
longer than the “official” chain, even if A controls only a small fraction of the
total computing power. Admittedly, its now practically certain that no attack
like this was performed, and that B0 was generated honestly, as it is highly
1 Actually, probably one of the reasons why the MPCs are not widely used in practice

is that the typical users do not see a fundamental difference between assuming a
trusted setup and delegating the whole computation to a trusted third party.
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unlikely that any A invested more computing power in Bitcoin mining than all
the other miners combined, even if A started the mining process long before
January 3, 2009.

However, if we want to use the Bitcoin paradigm for some other purpose
(including starting a new currency), it may be desirable to have an automatic
and non-heuristic method of generating unpredictable strings of bits. The prob-
lem of generating such random beacons [27] has been studied in the literature for
a long time. Informally: a random beacon scheme is a method (possibly involv-
ing a trusted party) of generating uniformly random (or indistinguishable from
random) strings that are unknown before the moment of their generation. The
beacons have found a number of applications in cryptography and information
security, including the secure contract signing protocols [18,27], voting schemes
[25], or zero-knowledge protocols [3,21]. Note that a random beacon is a stronger
concept than the common reference string frequently used in cryptography, as
it has to be unpredictable before it was generated (for every instance of the pro-
tocol using it). Notice also that for Bitcoin we actually need something weaker
than uniformity of the B0, namely it is enough that B0 is hard to predict for
the adversary.

Constructing random beacons is generally hard. Known practical solutions
are usually based on a trusted third party (like the servers www.random.org and
beacon.nist.gov). Since we do not want to base the security of our protocols on
trusted third parties thus using such services is not an option for our applica-
tions. Another method is to use public data available on the Internet, e.g. the
financial data [12] (the Bitcoin genesis block generation can also be viewed as
an example of this method). Using publicly-available data makes more sense,
but also this reduces the overall security of the constructed system. For exam-
ple, in any automated solution the financial data would need to come from a
trusted third party that would need to certify that the data was correct. The
same problem applies to most of other data of this type (like using a sentence
from a newspaper article). One could also consider using the Bitcoin blocks as
such beacons (in fact recently some on-line lotteries started using them for this
purpose). We discuss the problems with this approach in the full version of this
paper [1].

Our Contribution. Motivated by the cryptocurrencies we initiate a formal
study of the distributed peer-to-peer cryptography based on the Proofs of Work.
From the theory perspective the first most natural questions in this field is
what is the right model for communication and computation in this scenario?
And then, is it possible to construct in this model some basic primitives from
the distributed cryptography area, like: (a) broadcast, (b) unpredictable beacon
generation, or (c) general secure multiparty computations? We propose such a
model (in Sect. 2). Our model does not assume any trusted setup (in particular:
we do not assume any trusted beacon generation). Then, in Sect. 4 we answer the
questions (a)-(c) positively. To describe our results in more detail let n denote
the number of honest parties, let π be the computing power of each honest party

http://www.random.org/
https://beacon.nist.gov
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(for simplicity we assume that all the honest parties have the same computing
power), let πmax be the maximal computing power of all the participants of the
protocol (the honest parties and the adversary), and let πA ≤ πmax − nπ be the
actual computing power of the adversary. We allow the adversary to adaptively
corrupt at most t parties, in which case he takes the full control over them (how-
ever, we do not allow him to use the computing power of the corrupt parties,
or in other words: once he corrupts a party he is also responsible for computing
the Proofs of Work for her). Of course in general it is better to have protocols
depending on πA, not on πmax. On the other hand, sometimes the dependence
from πmax is unavoidable, as the participants need to have some rough estimate
on the power of the adversary (e.g. clearly it is hard to construct any proto-
col when π is negligible compared to πmax). Note that also Bitcoin started with
some arbitrary assumption on the computing power of the participant (this was
reflected by setting the initial “mining difficulty” to 232 hash computations).
Our contribution is as follows. First, we construct a broadcast protocol secure
against any πmax, working in time linear in �πmax/π�. Then, using this broadcast
protocol, we argue how to construct a protocol for executing any functionality in
our model. In case the adversary controls the minority of the computing power
(i.e. n ≥ �πA/π� + t)2 that were user ber our protocol cannot be aborted pre-
maturely by her. This could in principle be used as a provably-secure substitute
of the blockchain technology used in the cryptocurrencies. Using the broadcast
protocol as a subroutine we later (in Sect. 5) construct a scheme for an unpre-
dictable beacon generation.

One thing that needs to be stressed is that our protocols do not require an
unpredictable trusted beacon to be executed (and actually, as described above,
constructing a protocol that emulates such a beacon is one of our contributions).
This poses a big technical challenge, since we have to prevent the adversary from
launching a “pre-computation” attack, i.e., computing solutions to some puzzles
before the execution of the protocol started.

The only thing that we assume is that the participating parties know a session
identifier (sid), which can be known publicly long time before the protocol starts.
Observe that some sort of mechanism of this type is always needed, as the parties
need to know in advance, e.g., the time when the execution starts.

One technical problem that we need to address is that, since we work in
a purely peer-to-peer model, an adversary can always launch a Denial of Ser-
vice Attack, by “flooding” the honest parties with his messages, hence forcing
them to work forever. Thus, in order for the protocols to terminate in a finite
time we also need some mild upper bound θ on the number of messages that
the adversary can send (much greater than what the honest parties will send).

2 The reader might be confused we in this inequality t appears on the righ hand side,
as it may look like contradicting the assumption that the adversary does not take
the control of the computing power of the corrupt parties. The reason for having
this term is the adaptivity: the adversary can corrupt a party at the very end of the
protocol, hence, in some sense taking advantage of her computing resources before
she was corrupted.
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We write more on this in Sect. 2. Although our motivation is mostly theoretic,
we believe that our ideas can lead to practical implementations (probably after
some optimizations and simplifications). We discuss some possible applications
of our protocols in Sect. 5.

Independent Work. Recently an interesting paper by Katz, Miller and Shi
[23] with a motivation similar to ours was published on the Eprint archive. While
their high-level goal is similar to ours, there are some important technical dif-
ferences. First of all, their solution essentially assumes existence of a trusted
unpredictable beacon (technically: they assume that the parties have access to
a random oracle that was not available to the adversary before the execution
started). This simplifies the design of the protocols significantly, as it removes
the need for every party to ensure that “her” challenge was used to compute
the Proof-of-Work (that in our work we need to address to deal with the pre-
computation attacks described above). Secondly, they assume that the proof
verification takes zero time (we note that with such an assumption our protocols
would be significantly simpler, and in particular we would not need an addi-
tional paramter θ that measures the number of messages sent by the adversary).
Thirdly, unlike us, they assume that the number of parties executing the pro-
tocol is known from the beginning. On the other hand, their work covers also
the “sequential puzzles” (see [23]), while in this work we focus on parallelizable
puzzles.

2 Our Model

In this section we present our model for reasoning about computing power and
the peer-to-peer protocols. We first do it informally, and then formalize it using
the universal composability framework of Canetti [9].

Modeling Hashrate. Since in general proving lower bounds on the computa-
tional hardness is very difficult, we make some simplifying assumptions about
our model. In particular, following a long line of previous works both in theory
and in the systems community (see e.g. [4,17,26]), we establish the lower bounds
on computational difficulty by counting the number of times a given algorithm
calls some random oracle H [6]. In our protocols the size of the input of H will
be linear in the security parameter κ (usually it will be 2κ at most). Hence it is
realistic to assume that each invocation of such a function takes some fixed unit
of time.

Our protocols are executed in real time by a number of devices and attacked
by an adversary A. The exact way in which time is measured is not important,
but it is useful to fix a unit of time Δ (think of it as 1 minute, say). Each device
D that participates in our protocols will be able to perform some fixed number
πD of queries to H in time Δ. The parameter πD is called the hashrate of D
(per time Δ). The hashrate of the adversary is denoted by πA. The other steps
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of the algorithms do not count as far as the hashrate is considered (they will
count, however, when we measure the efficiency of our protocols, see paragraph
Computational complexity below). Moreover we assume that the parties have
access to a “cheap” random oracle, calls to this oracle do not count as far as the
hashrate is considered. This assumption is made to keep the model as simple as
possible. It should be straightforward that in our protocols we do not abuse this
assumption, and in on any reasonable architecture the time needed for computing
H’s would be the dominating factor during the Proofs of Work. In particular:
any other random oracles will be invoked a much smaller number of times than
H. Note that, even if these numbers were comparable, one could still make H
evaluate much longer than any other hash function F , e.g., by defining H to be
equal to multiple iterations of F .

In this paper we will assume that every party (except of the adversary)
has the same hashrate per time Δ (denoted π). This is done only to make the
exposition simpler. Our protocols easily generalize to the case when each party
has a device with hashrate πi and the πi’s are distinct. Note that if a party has
a hashrate tπ (for natural t) then we can as well think about her as of t parties
of hashrate π each. Making it formal would require changing the definition of
the “honest majority” in the MPCs to include also “weights” of the parties.

The Communication Model. Unlike in the traditional MPC settings, in our
case the number of parties executing the protocol is not known in advance to the
parties executing it. Because of this it makes no sense to specify a protocol by a
finite sequence (M1, . . . ,Mn) of Turing machines. Instead, we will simply assume
that there is one Turing machine M whose code will be executed by each party
participating in the protocol (think of it as many independent executions of the
same program). This, of course, does no mean that these parties have identical
behavior, since their actions depend also on their inputs, the party identifier
(pid), and the random coins.

Since we do not assume any trusted set-up (like a PKI or shared private keys)
modeling the communication between the parties is a bit tricky. We assume that
the parties have access to a public channel which allows every party and the
adversary to post a message on it. One can think of this channel as being imple-
mented using some standard (cryptographically insecure) “network broadcast
protocol” like the one in Bitcoin [29]. The contents of the communication chan-
nel is publicly available. The message m sent in time t by some Pi is guaranteed
to arrive to Pj within time t′ such that t′ − t ≤ Δ. Note that some assumption
of this type needs to be made, as if the messages can be delayed arbitrarily
then there is little hope to measure the hashrate reliably. Also observe that we
have to assume that the messages always reach their destinations, as otherwise
an honest party could be “cut of” the network. Similar assumptions are made
(implicitly) in Bitcoin. Obviously without assumptions like this, Bitcoin would
be easy to attack (e.g. if the miners cannot send messages to each other reliably
then it is easy to make a “fork” in the blockchain).

To keep the model simple we will assume that the parties have perfectly
synchronized clocks. This assumption could be easily relaxed by assuming that
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clocks can differ by a small amount of time δ, and our model from Sect. 2.1 could
be easily extended to cover also this case, using the techniques, e.g., from [22].
We decided not to do it to in order to keep the exposition as simple as possible.

We give to the adversary full access to the communication between the par-
ties: he learns (without any delay) every message that is sent through the commu-
nication channel, and he can insert messages into it. The adversary may decide
that the messages inserted into the channel by him arrive only to a certain subset
of the parties (he also has a full control over the timing when they arrive). The
only restriction is that he cannot erase or modify the messages that were sent
by the other parties (but he can delay them for time at most Δ).

Resistance to the Denial of Service Attacks. As already mentioned in the
introduction, in general a complete prevention of the denial of service attacks
against fully distributed peer-to-peer protocols seems very hard. Since we do not
assume any trusted set-up phase, hence from the theoretical point of view the
adversary is indistinguishable from the honest users, and hence he can always
initiate a connection with an honest user forcing it to perform some work. Even
if this work can be done very efficiently, it still costs some effort (e.g. it requires
the user to verify a PoW solution), and hence it allows a powerful (yet poly-
time bounded) adversary to force each party to work for a very long amount
of time, and in particular to exceed some given deadline for communicating with
the other parties. Since any PoW-based protocol inherently needs to have such
deadlines, thus we need to somehow restrict the power of adversary. We do it in
the following way.

First of all, we assume that if a message m sent to Pi is longer than the
protocols specifies then Pi can discard it without processing it.3 Secondly, we
assume that there is a total bound θ on the number of messages that all the
participants can send during each interval Δ. Since this includes also the mes-
sages sent by the honest parties, thus the bound on the number of messages
that the adversary A sends will be slightly more restrictive, but from practical
point of view (since the honest parties send very few messages) it is approxi-
mately equal to θ. This bound can be very generous, and, moreover it will be
much larger than the number of messages sent by the honest users4. In practice
such a bound could be enforced using some ad-hoc methods. For example each
party could limit the number of messages it can receive from a given IP address.
Although from the theoretical perspective no heuristic method is fully satisfac-
tory, in practice they seem to work. For example Bitcoin seems to resist pretty
well the DoS attacks thanks to over 30 ad-hoc methods of mitigating them (see
[28]). Hence, we believe that some bound on θ is reasonable to assume (and,
as argued above, seems necessary). We will use this bound in a weak way, in

3 Discarding incorrect messages is actually a standard assumption in the distributed
cryptography. Here we want to state it explicitly to make it clear that the processing
time of too long messages does not count into the computing steps of the users.

4 This is important, since otherwise we could trivialize the problem by asking each
user to prove that he is honest by sending a large number of messages.
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particular the number of messages sent by the honest parties will not depend on
it, and the communication complexity will (for any practical choice of parame-
ters) be linear in θ for every party (in other words: by sending θ messages the
adversary can force an honest party to send one long message of length O(θ)).
The real time of the execution of the protocol can depend on θ. Formally it is
a linear dependence (again: this seems to be unavoidable, since every message
that is sent to an honest party Pi forces Pi to do some non-trivial work). Fortu-
nately, the constant of this linear function will be really small. For example, in
the RankedKeys (Fig. 3, Page 16) the time each round takes (in the “key ranking
phase”) will be Δ+ θ · timeV/π, where timeV is small. Observe that, e.q, θ/π = 1
if the adversary can send the messages at the same speed as the honest party
can compute the Hκ queries, hence it is reasonable to assume that θ/π < 1.

Communication, Message and Computational Complexity. In the full
version of this paper [1] we define and analyze the communication complexity of
our protocols. We also analyze their computational complexity. We also extend
our model to cover the case of non-authenticated bilateral channels.

2.1 Formal Definition

Formally, a multiparty protocol (in the (π, πA, θ) -model) is an ITM (Interactive
Turing Machine) M . It is executed together with an ITM A representing the
adversary, and and ITM E representing the environment. The real execution of
the system essentially follows that scheme from [9]. Every ITM gets as input a
security parameter 1κ. Initially, the environment takes some input z ∈ {0, 1}∗

and then it activates an adversary A and a set P of parties. The adversary
may (actively and adaptively) corrupt some parties. The environment is notified
about these corruptions.

The set P (or even its size) will not be given as input to the honest parties.
In other words: the protocol should work in the same way for any P. On the
other hand: each P ∈ P will get as input her own hashrate π and the upper
bound πmax on the total combined hashrate of all the parties and the adversary
(this will be the paramters of the protocol). The running time of P ∈ P can
depend on these parameters. Note that |P| · π + πA ≤ πmax, but this inequality
may be sharp, and even |P| · π + πA � πmax is possible, as, e.g., the adversary
can use much less hashrate than the maximal amount that he is allowed to5.

Each party P ∈ P runs the code of M . It gets as input its party identifier
(pid) and some random input. We assume that all the pid’s are distinct, which
can be easily obtained by choosing them at random from a large domain ({0, 1}κ,
say). Moreover the environment sends to each P some input xP ∈ {0, 1}∗, and
at the end of its execution it outputs to E some value yP ∈ {0, 1}∗. We assume
that at a given moment only one machine is active. For a detailed description on
5 In particular it is important to stress that the assumption that the majority of the

computing power is honest means that n · π > πA, and not, as one might think,
n · π > πmax/2 (assuming the number t of corrupt parties is zero).



388 M. Andrychowicz and S. Dziembowski

Functionality Fπ,πA,θ
syn

Fπ,πA,θ
syn receives a session ID sid ∈ {0, 1}∗. Moreover we assume that it obtains a list P of

parties that were activated with sid, i.e., those parties among which synchronization is to be
provided and that will issue the random oracle queries.

1. At the first activation, the functionality chooses at random a random oracle H . It then waits
for queries from the adversary A of a form (Hash, w) (where w is from the domain of H).
Each such a query is answered with H(w). This phase ends when A sends a query Next or
when it terminates its operation.

2. Initialize a round counter r := 1, for every party P ∈ P initialize variables hP := 0 and
L1

P = ∅. Initialize hA := 0. Send a public delayed output (Init, sid) to all parties in P .
3. Upon receiving input (Send, sid, m) from a party P ∈ P , for every P ′ ∈ P set Lr

P ′ :=
Lr

P ′ ∪ {m} and output (sid, P, m, r) to the adversary.
4. Upon receiving input (Send, sid, P ′, m) from A (where P ′ ∈ P) set Lr

P ′ := Lr
P ′ ∪ {m}.

5. Upon receiving (Hash, w) from P ′ ∈ P ∪ {A} (note that P ′ can either be a party or the
adversary) do
(a) if P ′ ∈ P , where P ′ is not corrupt and hP ′ < π then reply with H(w) and increment

the counter: hP ′ := hP ′ + 1,
(b) if P ′ = A and hA < πA then reply with H and increment the counter: hA := hA + 1,
(c) otherwise do nothing (since P ′ has already exceeded the number of allowed queries to

Hκ in this round).
6. Upon receiving input (Receive, sid, r′) from a party P ∈ P , do:

(a) If r′ = r (i.e., r′ is the current round), and you have received the Send message from
every non-corrupt party in this round then:
i. Increment the round number: r := r + 1.
ii. For every P ′ ∈ P ∪ {A} reset the variable hP ′ := 0.
iii. If the size of Lr−1

P is at most θ then output (Received, sid, Lr−1
P ) to P , otherwise

output ⊥ to P .
(b) If r′ < r and the size of Lr′

P is at most θ then output (Received, sid, Lr′
P ) to P , other-

wise output ⊥ to P .
(c) Else (i.e., r′ > r or not all parties in P have sent their messages for round r), output

Round Incomplete to P .

Fig. 1. Functionality Fπ,πA,θ
syn .

how the control is passed between the machines see [9], but let us only say that
it is done via sending messages (if one party sends a message to the other one
then it “activates it”). The environment E can communicate with A and with the
parties in P. The adversary controls the network. However, we require that every
message sent between two parties is always eventually delivered. Moreover, since
the adversary is poly-time bounded, thus he always eventually terminates. If he
does so without sending any message then the control passed to the environment
(that chooses which party will be activated next).

We assume that all the parties have access to an ideal functionality Fπ,πA,θ
syn

(depicted on Fig. 1) and possibly to some random oracles. The ideal functionality
Fπ,πA,θ

syn is used to formally model the setting described informally above. Since
we assumed that every message is delivered in time Δ we can think of the whole
execution as divided into rounds (implicitly: of length Δ). This is essentially the



PoW-Based Distributed Cryptography with No Trusted Setup 389

“synchronous communication” model from [9] (see Sect. 6.5 of the Eprint version
of that paper). As it is the case there, the notion of a “round” is controlled by
a counter r, which is initially set to 1 and is increased each time all the honest
parties send all their inputs for a given round to Fπ,πA,θ

syn . The messages that are
sent to P in a given round r are “collected” in a buffer denote Lr

P and delivered
to P at the end of the rounds (on P ’s request). The fact that every message
sent by an honest party has to arrive to another honest party within a given
round is reflected as follows: the round progresses only if every honest party sent
her message for a given round to the functionality (and this happens only if all
of them received messages from the previous round). Recall also that sending
“delayed output x to a P” means that the x is first received by A who can decide
when x is delivered to P .

Compared to [9] there are some important differences though. First of all,
since in our model the set P of the parties participating in the execution is
known to the honest participants, thus we cannot assume that P is a part of
the session identifier. We therefore give it directly to the functionality (note that
this set is anyway known to E , which can share it with A).

Secondly, we do not assume that the parties can send messages directly to
each other. The only communication that is allowed is through the “public chan-
nel”. This is reflected by the fact that the “Send” messages produced by the
parties do not specify the sender and the receiver (cf. Step 3), and are delivered
to everybody . In contrast, the adversary can send messages to concrete parties
(cf. Step 4).

Thirdly, and probably most importantly, the functionality Fπ,πA,θ
syn also keeps

track on how much computational resources (in terms of access to the oracle H)
were used by each participant in each round. To take into account the fact that
the adversary may get access the oracle long before the honest parties started
the execution we first allow him (in Step 1) to query this oracle adaptively (the
number of these queries is bounded only by the running time of the adversary,
and hence it has to be polynomial in the security parameter). Then, in each
round every party P ∈ P can query H. The number of such queries is bounded
by π.

We use a counter hP (reset to 0 at the beginning of each new round) to track
the number of times the user P queried H. The number of oracle queries that A
can ask is bounded by πA and controlled by the counter hA. Note that, once a
party P ∈ P gets corrupted by A it looses access the oracle H. This reflects the
fact that from this point the computing power of P does not count anymore as
being controlled by the honest parties, and hence every call to H made by such
a P has to be “performed” by the adversary (and consequently increase hA).
The output of the environment on input z interacting with M , A and the ideal
functionality Fπ,πA,θ

syn will be denoted execπ,πA,θ
M,A,E (z).

In order to define security of such execution we define an ideal functionality
F that is also an ITM that can interact with the adversary. Its interaction with
the parties is pretty simple: each party simply interacts with F directly (with no
disturbance from the adversary). The adversary may corrupt some of the parties,
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in which case he learns their inputs and outputs. The functionality is notified
about each corruption. At the end the environment outputs a value execF,A,E(z).

Definition 1. We say that a protocol M securely implements a functionality F
in the (π, πA, θ)-model if for every polynomial-time adversary A there exists a
polynomial-time simulator S such that for every environment Z the distribution
ensemble execπ,πA,θ

M,A,E and the distribution ensemble execF,A,E are computationally
indistinguishable (see [9] for the definition of the distribution ensembles and the
computational indistinguishability).

3 The Security Definition of Broadcast

In this section we present the security definitions of our main construction, i.e.,
the broadcast protocol. We first describe its informal properties and then specify
it as an ideal functionality. Let P be the set of parties executing Π, each of them
having a device with hashrate π > 0 per time Δ. Each P ∈ P takes as input
xP ∈ {0, 1}κ, and it produces as output a multiset YP ⊂ {0, 1}κ. The protocol
is called a πmax-secure broadcast protocol if it terminates is some finite time
and for any poly-time adversary A whose device has hashrate πA < πmax and
who attacks this protocol the following conditions hold except with probability

FT
syn receives a session ID sid ∈ {0, 1}∗. Moreover it obtains a listP of parties that were activated

with sid.

1. At the first activation initialize the variables X := ∅ and XS := ∅, where X and XS are
multisets. Send a public delayed output (Init, sid) to all parties in P .

2. Upon receiving input (Broadcast, sid, x) (where x ∈ {0, 1}∗) from P ∈ P (with PID pid)
do the following:
(a) add x to X , i.e., let X := X ∪ {x}, moreover send (Broadcast, sid, pid, x) to S,
(b) otherwise do nothing.

3. Upon receiving (Broadcast, sid, x) from S:
(a) if |XS | < T then let XS := XS ∪ {x},
(b) otherwise do nothing.

4. Upon receiving (Remove, sid, pid) from S: if P with PID pid is not corrupt or such a mes-
sage has already been received before then ignore it.
Otherwise look for a string x that was added by a party with PID pid to X in Step 2. If no
such string exists do nothing. Otherwise: remove x from the multiset X .

5. Upon receiving (Receive, sid) from some P ∈ P:
(a) If there is some non-corrupt party P ∈ P from which no message (Broadcast, sid, x)

has been received yet then ignore this message.
(b) Otherwise:

i. If it is the first message (Receive, sid) received then set Y := X ∪ XS and send Y
to the adversary.

ii. Output (Received, sid, Y) to P .

Fig. 2. Functionality FT
bc, where T is the bound on the number of “fake identities” that

the adversary can create. Our security definition requires that T = �πA/π�.
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negligible in κ (let H denote the set of parties in P that were not corrupted by
the adversary): (1) Consistency: All the sets YP are equal for all non-corrupt
P ’s, i.e.: there exists a set Y such that for every P ∈ H we have YP = Y,
(2) Validity: For every P ∈ H we have xi ∈ Y, and (3) Bounded creation of
inputs: The number of elements in Y that do not come from the honest parties
(i.e.:|Y \{xP }P∈P |) is at most �πA/π�. This is formally defined by specifying an
ideal functionality F�πA/π�

bc see Fig. 2. The formal definition is given below.

Definition 2. An ITM M is a (πmax, θ)-secure broadcast protocol if for any π

and πA it securely implements the functionality F�πA/π�
bc in the (π, πA, θ)-model

(see Definition 1 from Sect. 2.1), as long as the number |P| of parties running
the protocol (i.e. invoked by the environment) is such that |P| · π + πA ≤ πmax.

Note that we do not require any lower bound on π other than 0. In practice,
however, running this protocol will make sense only for π being a noticeable
fraction of πmax, since the running time of our protocol is linear in πmax/π. This
protocol is implemented in the next section.

4 The Construction of the Broadcast Protocol

We are now ready to present the constructions of the protocols specified in
Sect. 3. In our protocols the computational effort will be verified using so-called
Proofs of Work. A Proof-of-Work (PoW) scheme [16], for a fixed security para-
meter κ is a pair of randomized algorithms: a prover P and a verifier V, having
access to a random oracle H (in our constructions the typical input to H will
be of size 2κ). The algorithm P takes as input a challenge c ∈ {0, 1}κ and pro-
duces as output a solution s ∈ {0, 1}∗. The algorithm V takes as input (c, s) and
outputs true or false. We require that for every c ∈ {0, 1}∗ it is that case that
V(c,P(c)) = true.

We say that a PoW (P,V) has prover complexity t if on every input c ∈ {0, 1}∗

the prover P makes at most t queries to the oracle H. We say that (P,V) has
verifier complexity t′ if for every c ∈ {0, 1}κ and s ∈ {0, 1}∗ the verifier V makes
at most t′ queries to the oracle H. Defining security is a little bit tricky, since we
need to consider also the malicious provers that can spend considerable amount
of computational effort before they get the challenge c. We will therefore have
two parameters: t̂0, t̂1 ∈ N, where t̂0 will be the bound on the total time that a
malicious prover has, and t̂1 ≤ t̂0 will be the bound on the time that a malicious
prover got after he learned c. Consider the following game between a malicious
prover P̂ and a verifier V: (1) P̂ adaptively queries the oracles H on the inputs of
his choice, (2) P̂ receives c ← {0, 1}κ, (3) P̂ again adaptively queries the oracles
H on the inputs of his choice, (4) P̂ sends a value s ∈ {0, 1}∗ to V. We say that
P̂ won if V(c, s) = true. We say that (P,V) is (t̂0, t̂1) -secure with ε -error (in the
H-model) if for a uniformly random c ← {0, 1}∗ and every malicious prover P̂
that makes in total at most t̂0 queries to H in the game above, and at most t̂1

queries after receiving c we have that P

(
P̂(c) wins the game

)
≤ ε. It will also
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be useful to use the asymptotic variant of this notion (where κ is the security
parameter). Consider a family {(Pκ,Vκ)}∞

κ=1. We will say that it is t̂1-secure if
for every polynomial t̂0 there exists a negligible ε such that (Pκ,Vκ) is (t̂0(κ), t̂1)-
secure with error ε(κ). Our protocols will be based on the PoW based on the
Merkle trees combined with the Fiat-Shamir transform. The following lemma is
proved in the full version of this paper [1].

Lemma 1. For every function t : N → N s.t. t(κ) ≥ κ there exists a family
of PoWs (PTreeκ

t(κ),VTree
κ
t(κ)) has prover complexity t and verifier complexity⌈

κ log2 t
⌉
. Moreover the family {(PTreeκ

t(κ),VTree
κ
t(κ))}∞

κ=1 is ξt-secure for every
constant ξ ∈ [0, 1).

One of the main challenges will be to prevent the adversary from precomputing
the solutions to PoW, as given enough time every puzzle can be solved even by
a device with a very small hashrate. Hence, each honest party Pi can accept a
PoW proof only if it is computed on some string that contains a freshly generated
challenge c. Since we work in a completely distributed scenario, and in particular
we do not want to assume existence of a trusted beacon, thus the only way a Pi

can be sure that a challenge c was fresh is that she generated it herself at some
recent moment in the past (and, say, sent it to all the other parties).

This problem was already considered in [2], where the following solution was
proposed. At the beginning of the protocol each party Pi creates a fresh (public
key, secret key) pair (pki, ski) (we will call the public keys identities) and sends
to all other parties a random challenge ci. Then, each party computes a Proof
of Work on her public key and all received challenges. Finally, each party sends
her public key with a Proof of Work to all other parties. Moreover, whenever a
party receives a message with a given key for the first time, than it forwards it
to all other parties. An honest party Pi accepts only these public keys which:
(1) she received before some agreed deadline, and (2) are accompanied with a
Proof of Work containing her challenge ci. It is clear that each honest party
accepts a public key of each other honest party and that after this process an
adversary can not control a higher fraction of all identities that his fraction of
the computational power. Hence, it may seem that the parties can later exe-
cute protocols assuming channels that are authenticated with the secret keys
corresponding to these identities.

Unfortunately there is a problem with this solution. Namely it is easy to
see that the adversary can cause a situation where some of his identities will be
accepted by some honest parties and not accepted by some other honest parties6.
We present a solution to this problem in the next sections.

4.1 Ranked Key Sets

The main idea behind our protocol is that parties assign ranks to the keys they
have received. If a key was received before the deadline and the corresponding
6 This discrepancy can come from two reasons: (1) some messages could be received

by some honest parties before deadline and by some other after it, and (2) a Proof
of Work can containing challenges of some of the honest parties, but not all.
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proof contains the appropriate challenge, then the key is assigned a rank 0. In
particular, keys belonging to honest parties are always assigned a rank 0. The
rank bigger than 0 means that the key was received with some discrepancy from
the protocol (e.g. it was received slightly after the deadline) and the bigger the
rank is, the bigger this discrepancy was. More precisely each party Pi computes
a function ranki from the set of keys she knows Ki into the set {0, . . . , 	} for
some parameter 	. Note that this primitive bares some similarities with the
“proxcast” protocol of Considine et al. [13]. Since we will use this protocol only
as a subroutine for our broadcast protocol, to save space, we present its definition
without using the “ideal functionality” paradigm.

Let Σ = (Gen,Sign,Vrfy) be a signature scheme and let 	 ∈ N be an arbitrary
parameter. Consider a multi-party protocol Π in the model from Sect. 2, i.e.,
having access to an ideal functionality Fπ,πA

syn , where π is interpreted as the
hashrate of each of the parties, and πA as the hashrate of the adversary.

Each party P takes as input a security parameter 1κ, and it produces as out-
put a tuple (skP , pkP ,KP , rankP ), where (skP , pkP ) ∈ {0, 1}∗ × {0, 1}∗ is called
a (private key, public key) pair of P , the finite set KP ⊂ {0, 1}∗ will be some set
of public keys, and rankP : KP → {0, . . . , 	} will be called a key-ranking function
(of P ). We will say that an identity pk was created during the execution Π if
pk ∈ KP for at least one honest P (regardless of the value of rankP (pk)). The
protohancol Π is called a πA-secure 	-ranked Σ-key generation protocol if for any
poly-time adversary A who attacks this protocol (in the model from Sect. 2) the
following conditions hold: (1) Key-generation: Π is a key-generation algorithm
for every P , by which we mean the following. First of all, for every i = 1, . . . , n
and every m ∈ {0, 1}∗ we have that Vrfy(pkP ,Sign(skP ,m)) = true. Moreover
skP can be securely used for signing messages in the following sense. Suppose
the adversary A learns the entire information received by all the parties except
of some P , and later A engages in the “chosen message attack” against an ora-
cle that signs messages with key skP . Then any such A has negligible (in κ)
probability of forging a valid (under key pkP ) signature on a fresh message. (2)
Bounded creation of identities: We require that the number of created identities
is at most n + �πA/π� except with probability negligible in κ. (3) Validity: For
every two honest parties P and P ′ we have that rankP (P ′) = 0. (4) Consis-
tency: For every two honest parties P and P ′ and every key pk ∈ KP such that
rankP (pk) < 	 we have that pk ∈ KP ′ and moreover rankP ′(pk) ≤ rankP (pk) + 1.

Our construction of a ranked key generation protocol RankedKeys is presented
on Fig. 3. The protocol RankedKeys uses a Proof of Work scheme (P,V) with
prover time timeP and verifier time timeV. Note that the algorithms P and V
query the oracle H. Technically this is done by sending Hash queries to the Fπ,πA

syn

oracle, in the Hκ-model (it also uses another hash function F : {0, 1}∗ → {0, 1}κ

that is modeled as a random oracle, but its computation does not count into the
hashrate). We can instantiate this PoW scheme with the scheme (PTree,VTree)
described in the full version of this paper [1]. The parameter 	 will be equal to
�πmax/π�. The notation ≺ is described below.

Let us present some intuitions behind our protocol. First, recall that the
problem with the protocol from [2] (described at the beginning of this section)
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Fig. 3. The RankedKeys protocol.
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was that some public keys could be recognized only by a subset of the honest
parties. A key could be dropped because: (1) it was received too late; or (2) the
corresponding proof did not contained the appropriate challenge. Informally, the
idea behind the RankedKeys protocol is to make these conditions more granular.
If we forget about the PoWs, and look only at the time constrains then our pro-
tocol could be described as follows: keys received in the first round are assigned
rank 0, keys received in the second round are assigned rank 1, and so on. Since
we instruct every honest party to forward to everybody all the keys that she
receives, hence if a key receives rank k from some honest party, then it receives
rank at most k + 1 from all the other honest parties.

If we also consider the PoWs then the description of the protocol becomes
a bit more complicated. The RankedKeys protocol consists of 3 phases. We now
sketch them informally. The “challenges phase” is divided into 	 + 2 rounds. At
the beginning of the first round each P generates his challenge c0P randomly and
sends it to all the other parties. Then, in each k-th round each P collects the
messages a1, . . . , am sent in the previous round, concatenates then into Ak

P =
(a1, . . . , am), hashes them, and sends the result ck

P = F (Ak
P ) to all the other

parties.
Let a ≺ (b1, . . . , bm) denote the fact that a = bi for some i. We say that

the string b dependents on a if there exists a sequence a = v1, . . . , vm = b, such
that for every 1 ≤ i < m, it holds that F (vi) ≺ vi+1. The idea behind this
notion is that b could not have been predicted before a was revealed, because
b is created using a series of concatenations and queries to the random oracle
starting from the string a. Note that in particular ck

P depends on ck−1
P ′ for any

honest P, P ′7 and 1 ≤ k ≤ 	 and hence ck
P depends on c0P ′ for any honest P, P ′

and an arbitrary 1 ≤ k ≤ 	 + 1.
Then, during the “Proof of Work” phase each honest party P draws a random

key pair (skP , pkP ) and creates a proof of work8 P(F (pkP , A�+1
P )). Then, she

sends her public key together with the proof to all the other parties.
Later, during the “key ranking phase” the parties receive the public keys of

the other parties and assign them ranks. To assign the public key pk rank k the
party P requires that she receives it in the k-th round in this phase and that it
is accompanied with a proof P(F (pkP , s)) for some string s, which depends on
c�−k
P . Such a proof could not have been precomputed, because c�−k

P depends on
c0P , which was drawn randomly by P at the beginning of the protocol and hence
could not been predicted before the execution of the protocol. If those conditions
are met, then P forwards the message with the key to the other parties. This
message will be accepted by other parties, because it will be received by them in
the (k+1)-st round of this phase and because s depends on c�−k

P , which depends
on c

�−(k+1)
P ′ for any honest P ′. In the effect, all other honest parties, which have

not yet assigned pk a rank will assign it a rank k + 1.
7 This is because ck−1

P ′ ≺ Ak
P and F (Ak

P ) = ck
P .

8 The reason why we hash the input before computing a PoW is that the PoW defin-
ition requires that the challenges are random.
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Let RankedKeysPTree denote the RankedKeys scheme instantiated with the
PoW scheme (PTreeκ

timeP ,VTree
κ
timeP) (from Lemma 1), where timeP := κ2 · (	 +

2)Δ·π and timeV := κ �log2 timeP� . We have the following fact (its proof appears
in the full version of this paper [1]).

Lemma 2. Assume the total hashrate of all the participants is at most πmax,
the hashrate of each honest party if π, and the adversary can not send more
than (θ−�πmax/π�) messages in every round. Then the RankedKeysPTree protocol
is a πA-secure 	-ranked key generation protocol, for 	 = �πmax/π�, whose total
execution takes (2	 + 3) + �timeP/(π · Δ)� + �(	 + 1)(θ · timeV)/(π · Δ)� rounds.

The communication and message complexity of the RankedKeys protocol are
analysed in the full version of this paper [1].

The Broadcast Protocol. The reason why ranked key sets are useful is that
they allow to construct a reliable broadcast protocol, which is secure against an
adversary that has an arbitrary hashrate. The only assumption that we need
to make is that the total hashrate in the system is bounded by some πmax and
the adversary cannot send more than θ − n messages in one interval (for some
parameter θ). Our protocol, denoted Broadcast, works in time that is linear in
	 = �πmax/π� plus the execution time of RankedKeys. It is based on a classical
authenticated Byzantine agreement by Dolev and Strong [14] (and is similar

1. Each party P takes as input (Broadcast, sid, xP ).
2. The parties run the RankedKeys protocol (attaching sid to every message). Let

(skP , pkP , KP , rankP ) be the output of each P ∈ P .
3. Each party P initializes, for every pk ∈ KP , a variable Zpk

P = ∅.
4. Each D ∈ P performs the following procedure that consists of � + 1 rounds (this can be

executed in parallel for every D):
– Round 0: D (we will call him the Dealer) sends to every other party a message

(sid, xD, pkD, SignpkD (xD, pkD)).
– Round k, for 1 ≤ k ≤ �: Each party P except of the dealer D waits for the messages

of the form (sid, v, pkD, Signska1
(v, pkD), . . . , Signskak

(v, pkD)). Such a message is
accepted by P if:
(1) all signatures are valid and are corresponding to different public keys,
(2) pka1

= pkD ,
(3) pkaj

∈ KP and rankP (pkaj
) ≤ k for 1 ≤ j ≤ k, and

(4) v Z∈
 pkD
P and |ZpkD

P | < 2.
If a message is accepted then P adds v to her set ZpkD

P

and if moreover k < �, than she sends a message
(sid, v, pkD, Signpka1

(v, pkD), . . . , Signpkak
(v, pkD), SignpkP (v, pkD)) to all

other parties.
5. Each party P determines the set YP as the union over all Zpk

P ’s that are of size 1, i.e.:
YP =

⋃
pk:|Zpk

P
|=1

Zpk
P . It outputs (Received, sid, YP ).

Fig. 4. The Broadcast protocol.
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to the technique used to construct broadcast from a proxcast protocol [13]).
The protocol is depicted on Fig. 4 and it works as follows. First the parties
execute the RankedKeys protocol with parameters π, πmax and θ, built on top
of a signature scheme (Gen,Sign,Vrfy) — Signpk denotes a signatures computed
using a private key corresponding to a public key pk. For convenience assume
that every signature σ contains information identifying the public key that was
used to compute it. Let (skP , pkP ,KP , rankP ) be the output of each P after this
protocol ends (recall that (skP , pkP ) is her key pair, KP is the set of public keys
that she accepted, rankP is the key ranking function). Then, each party D ∈ P
executes in parallel the procedure from Step 4. During the execution each party
P maintains a set ZpkD

P initialized with ∅. The output of each party is equal
to the only elements of this set (if ZpkD

P is a singleton) or ⊥ otherwise. The
following lemma is proven in the full version of this paper [1].

Lemma 3. The Broadcast protocol is a (πmax, θ)-secure broadcast protocol.

5 Applications

Multiparty Computations. As already mentioned before, the Broadcast pro-
tocol can be used to establish a group of parties that can later perform the MPC
protocols. For the lack of space we only sketch this method here. The main idea
is as follows. First, each party P generates its key pair (skP , pkP ). Then, it uses
the broadcast protocol to send to all the other parties the public key pkP . Let
πA be the computing power of the adversary, and let t be the number of parties
that he corrupted. From the properties of the broadcast protocol he can make
the honest parties accept at most �πA/π� keys pkP chosen by the adversary.
Additionally, the adversary knowns up to t secret keys of the parties that she
corrupted. Therefore altogether there are at most �πA/π�+ t keys pkP such that
the adversary knows the corresponding secret keys skP . The total number of
keys is �πA/π� + n (where n is the number of the honest parties).

Given such a setup the parties can now simulate the secure channels, even if
initially they did not know each others identities (i.e. in the model from Sect. 2),
by treating the public keys as the identities. More precisely: whenever a party P
wants to send a message to P ′ (known to P by her public key pkP ′) she would
use the standard method of encryption (note that in the adaptive case this is
secure only if the encryption scheme is non-committing) and digital signatures
to establish a secure channel (via the insecure broadcast channel available in
the model) with P ′. Hence the situation is exactly as in the standard MPC
settings with the private channels between �πA/π� + n parties. We can now
use well-known fact that simulating any functionality is possible in this case
[10]. In case we require that the protocol has guaranteed termination we need
an assumption that the majority of the participants is honest [20], i.e., that
�πA/π� + t < (n − t). Suppose we ignore the rounding up (observe that in
practice we can make �πA/π� arbitrarily close to πA/π by making π small).
Then we obtain the condition πA + tπ < (n − t)π. The left hand side of this
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inequality can be interpreted as the “total computing power of the adversary”
(including his own computing power and the one of corrupt parties), and the right
hand side can be interpreted as the total computing power of the honest parties.
Therefore we get that every functionality can he simulated (with guaranteed
termination) as long as the majority of the computing power is controlled by
the honest parties. This argument will be formalized in the full version of this
paper.

Unpredictable Beacon Generation. The Broadcast protocols can also be
used to produce unpredictable beacons even if there is no honest majority of
computing power in the system by letting every party broadcast a random nonce
and then hashing the result. This is described in more detail in the full version
of this paper [1], where we also discuss also the possibility of creating provable
secure currencies using our techniques.
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Abstract. We reconsider the concept of two-prover (and more gener-
ally: multi-prover) commitments, as introduced in the late eighties in the
seminal work by Ben-Or et al. As was recently shown by Crépeau et al.,
the security of known two-prover commitment schemes not only relies on
the explicit assumption that the two provers cannot communicate, but
also depends on what their information processing capabilities are. For
instance, there exist schemes that are secure against classical provers but
insecure if the provers have quantum information processing capabilities,
and there are schemes that resist such quantum attacks but become inse-
cure when considering general so-called non-signaling provers, which are
restricted solely by the requirement that no communication takes place.

This poses the natural question whether there exists a two-prover
commitment scheme that is secure under the sole assumption that no
communication takes place, and that does not rely on any further restric-
tion of the information processing capabilities of the dishonest provers;
no such scheme is known.

In this work, we give strong evidence for a negative answer: we show
that any single-round two-prover commitment scheme can be broken by
a non-signaling attack. Our negative result is as bad as it can get: for
any candidate scheme that is (almost) perfectly hiding, there exists a
strategy that allows the dishonest provers to open a commitment to an
arbitrary bit (almost) as successfully as the honest provers can open an
honestly prepared commitment, i.e., with probability (almost) 1 in case
of a perfectly sound scheme. In the case of multi-round schemes, our
impossibility result is restricted to perfectly hiding schemes.

On the positive side, we show that the impossibility result can be
circumvented by considering three provers instead: there exists a three-
prover commitment scheme that is secure against arbitrary non-signaling
attacks.

Keywords: Non-signaling · Bit-commitment · Multi-prover

1 Introduction

Background. A commitment scheme is an important primitive in theoretical
cryptography with various applications, for instance to zero-knowledge proofs
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and multiparty computation, which themselves are fundamentally important
concepts in modern cryptography. For a commitment scheme to be secure, it
must be hiding and binding. The former means that after the commit phase,
the committed value is still hidden from the verifier, and the latter means that
the prover (also referred to as committer) can open a commitment only to one
value. Unfortunately, a commitment scheme cannot be unconditionally hiding
and unconditionally binding at the same time. This is easy to see in the classi-
cal setting, and holds as well when using quantum communication [9,10]. Thus,
we have to put some limitation on the capabilities of the dishonest party. One
common approach is to assume that the dishonest prover (or, alternatively, the
dishonest verifier) has limited computing resources, so that he cannot solve cer-
tain computational problems (like factoring large integers). Another approach
was suggested by Ben-Or, Goldwasser, Kilian and Wigderson in their seminal
paper [2] in the late eighties. They assume that the prover consists of two (or
more) agents that cannot communicate with each other, and they show the exis-
tence of a secure commitment scheme in this two-prover setting. Based on this
two-prover commitment scheme, they then show that every language in NP has
a two-prover perfect zero-knowledge interactive proof system (though there are
some subtle issues in this latter result, as discussed in [15]).

A simple example of a two-prover commitment scheme, due to [4], is the
following. The verifier chooses a uniformly random string a ∈ {0, 1}n and sends
it to the first prover, who sends back x := r ⊕ a · b as the commitment for bit
b ∈ {0, 1}, where r ∈ {0, 1}n is a uniformly random string known (only) to the
two provers, and where “⊕” is bit-wise XOR and “·” scalar multiplication (of
the scalar b with the vector a). In order to open the commitment (to b), the
second prover sends back y := r, and the verifier checks the obvious: whether
y = x⊕a·b. It is clear that this scheme is hiding: x := r⊕a·b is uniformly random
and independent of a no matter what b is, and the intuition behind the binding
property is the following. In order to open the commitment to b = 0, the second
prover needs to announce y = x; in order to open to b = 1, he needs to announce
y = x ⊕ a. Therefore, in order to open to both, he must know x and x ⊕ a,
which means he knows a, but this is a contradiction to the no-communication
assumption, because a was sent only to the first prover.

In [4], Crépeau, Salvail, Simard and Tapp show that, as a matter of fact, the
security of such two-prover commitment schemes not only relies on the explicit
assumption that the two provers cannot communicate, but the security also
crucially depends on the information processing capabilities of the dishonest
provers. Indeed, they show that a slight variation of the above two-prover com-
mitment scheme (where some slack is given to the verification y = x ⊕ a · b) is
secure against classical provers, but is completely insecure if the provers have
quantum information processing capabilities and can obtain x and y by means of
doing local measurements on an entangled quantum state.1 Furthermore, they

1 The above intuition for the binding property of the scheme (which also applies to the
variation considered in [4]) fails in the quantum setting where x and y are obtained
by means of destructive measurements.
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show that the above two-prover commitment scheme remains secure against such
quantum attacks, but becomes insecure against so-called non-signaling provers.
The notion of non-signaling was first introduced by Khalfin and Tsirelson [14]
and by Rastall [12] in the context of Bell-inequalities, and later reintroduced
by Popescu and Rohrlich [11]. Non-signaling provers are restricted solely by the
requirement that no communication takes place — no additional restriction limits
their information processing capabilities (not even the laws of quantum mechan-
ics) — and thus considering non-signaling provers is the minimal assumption for
the two-prover setting to make sense.

This gives rise to the following question. Does there exist a two-prover com-
mitment scheme that is secure against arbitrary non-signaling provers? Such a
scheme would truly be based on the sole assumption that the provers cannot
communicate. No such scheme is known. Clearly, from a practical point of view,
asking for such a scheme may be overkill; given our strong believe in quantum
mechanics, relying on a scheme that resists quantum attacks seems to be a safe
bet. But from a theoretical perspective, this question is certainly in line with the
general goal of theoretical cryptography: to find the strongest possible security
based on the weakest possible assumption.

Our Results. In this work, we give strong evidence for a negative answer:
we show that there exists no single-round two-prover commitment scheme that
is secure against general non-signaling attacks. Our impossibility result is as
strong as it can get. We show that for any candidate single-round two-prover
commitment scheme that is (almost) perfectly hiding, the binding property can
be (almost) completely broken: there exists a non-signaling strategy that allows
the dishonest provers to open a commitment to an arbitrary bit (almost) as
successfully as the honest provers can open an honestly prepared commitment,
i.e., with probability (almost) 1 in case of a perfectly sound scheme. Furthermore,
for a restricted but natural class of schemes, namely for schemes that have the
same communication pattern as the above example scheme, our impossibility
result is tight: for every (rational) parameter 0 < ε ≤ 1 there exists a perfectly
sound two-prover commitment scheme that is ε-hiding and as binding as allowed
by our negative result (which is almost not binding if ε is small).

In the case of multi-round schemes, our impossibility result is limited and
applies to perfectly hiding schemes only. Proving the impossibility of non-
perfectly-hiding multi-round schemes remains open.

On the positive side, we show the existence of a secure three-prover commit-
ment scheme against non-signaling attacks. Thus, our impossibility result can
be circumvented by considering three instead of two provers.

RelatedWork. Two-prover commitments are closely related to relativistic com-
mitments, as introduced by Kent in [8]. In a nutshell, a relativistic commitment
scheme is a two-prover commitment scheme where the no-communication
requirement is enforced by having the actions of the two provers separated by a
space-like interval, i.e., the provers are placed far enough apart, and the scheme
is executed quickly enough, so that no communication can take place by the
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laws of special relativity. As such, our impossibility result immediately implies
impossibility of relativistic commitment schemes of the form we consider (e.g.,
we do not consider quantum schemes) against general non-signaling attacks.

Very generally speaking, and somewhat surprisingly, the (in)security of cryp-
tographic primitives against non-signaling attacks may have an impact on more
standard cryptographic settings, as was recently demonstrated by Kalai, Raz
and Rothblum [7], who showed the (computational) security of a delegation
scheme based on the security of an underlying multi-party interactive proof sys-
tem against non-signaling (or statistically-close-to-non-signaling) adversaries.

2 Preliminaries

2.1 (Conditional) Distributions

For the purpose of this work, a (probability) distribution is a function p : X → R,
x �→ p(x), where X is a finite non-empty set, with the properties that p(x) ≥ 0
for every x ∈ X and

∑
x∈X p(x) = 1. For any subset Λ ⊂ X , p(Λ) is naturally

defined as p(Λ) =
∑

x∈Λ p(x), and it holds that

p(Λ) + p(Γ ) = p(Λ ∪ Γ ) − p(Λ ∩ Γ ) ≤ 1 + p(Λ ∩ Γ ) (1)

for all Λ, Γ ⊂ X . A probability distribution is bipartite if it is of the form
p : X × Y → R. In case of such a bipartite distribution p(x, y), probabilities like
p(x=y), p(x=f(y)), p(x �=y) etc. are naturally understood as

p(x=y) = p({(x, y) ∈ X × Y |x = y}) =
∑

x∈X ,y∈Y
s.t. x=y

p(x, y)

etc. Also, for a bipartite distribution p : X ×Y → R, the marginals p(x) and p(y)
are given by p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y), respectively. We note that

this notation may lead to an ambiguity when writing p(w) for some w ∈ X ∩ Y;
we avoid this by writing p(x = w) or p(y = w) instead, which are naturally
understood. The above obviously extends to arbitrary multipartite distributions
p(x, y, z) etc.

A conditional (probability) distribution is a function p : X × A → R,
(x, a) �→ p(x|a), for finite non-empty sets X and A, such that for every fixed
a∗ ∈ A, the function p(x|a∗) is a probability distribution in the above sense,
which we also write as p(x|a = a∗). As such, the above naturally extends to
bi- and multipartite conditional probability distributions; e.g., if p(x, y|a, b) is a
conditional distribution then p(x|a, b), p(y|a, b), p(x = y|a, b) etc. are all natu-
rally defined. However, we emphasize that for instance p(x|a) is in general not
well defined — unless the corresponding conditional distribution p(b|a) is given,
or unless p(x|a, b) does not depend on b.

Remark 1. By convention, we write p(x|a, b) = p(x|a) to express that p(x|a, b)
does not depend on b, i.e., that p(x|a, b1) = p(x|a, b2) for all b1 and b2, and as
such p(x|a) is well defined and equals p(x|a, b).
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A distribution δ(x) over X is called a Dirac distribution if there exists x∗ ∈ X
so that δ(x = x∗) = 1, and a conditional distribution δ(x|a) over X is called
a conditional Dirac distribution if δ(x|a = a∗) is a Dirac distribution for every
a∗ ∈ A, i.e., for every a∗ ∈ A there exists x∗ ∈ X so that δ(x=x∗|a=a∗) = 1.

Note that we often abuse notation slightly and simply write p(x) instead of
p : X → R, x �→ p(x); furthermore, we may use p for different distributions
and distinguish between them by using different names for the variable, like
when we consider the two marginals p(x) and p(y) of a bipartite distribution
p(x, y). Finally, given two distributions p(x0) and q(x1) over the same set X (and
similarly if we use the above convention and denote them by p(x0) and p(x1)
instead), we write p(x0) = q(x1) to denote that p(x0 = w) = q(x1 = w) for all
w ∈ X . In a corresponding way, equalities like p(x0, x

′
0, y) = q(x1, x

′
1, y) should

be understood; in situations where we feel it is helpful, we may clarify that “x0

is associated with x1, and x′
0 with x′

1”; similarly for conditional distributions.

2.2 Gluing Together Distributions

We recall the definition of the statistical distance.

Definition 1. Let p(x0) and p(x1) be two distributions over the same set X .2

Then, their statistical distance is defined as

d
(
p(x0), p(x1)

)
=

1
2

·
∑
x∈X

∣∣p(x0=x) − p(x1=x)
∣∣ .

The following property of the statistical distance is well known (see e.g. [13]).

Proposition 1. Let p(x0) and p(x1) be two distributions over the same set X
with d

(
p(x0), p(x1)

)
= ε. Then, there exists a distribution p′(x0, x1) over X × X

with marginals p′(x0) = p(x0) and p′(x1) = p(x1), and such that p′(x0 �=x1) = ε.

The following is an immediate consequence.

Lemma 1. Let p(x0, y0) and p(x1, y1) be distributions with d
(
p(x0), p(x1)

)
= ε.

Then, there exists a distribution p′(x0, x1, y0, y1) with marginals p′(x0, y0) =
p(x0, y0) and p′(x1, y1) = p(x1, y1), and such that p′(x0 �= x1) = ε and, as a
consequence, d

(
p′(x0, y1), p′(x1, y1)

) ≤ ε.

Proof. We first apply Proposition 1 to p(x0) and p(x1) to obtain p′(x0, x1), and
then we set

p′(x0, x1, y0, y1) = p′(x0, x1) · p(y0|x0) · p(y1|x1) .

The claims on the marginals and on p′(x0 �=x1) follow immediately, and for the
last claim we note that

p′(x0, y1) = p′(x0=x1) · p′(x0, y1|x0=x1) + p′(x0 �=x1) · p′(x0, y1|x0 �=x1)
= p′(x0=x1) · p′(x1, y1|x0=x1) + p′(x0 �=x1) · p′(x0, y1|x0 �=x1)

2 This is without loss of generality: the domain can always be extended by including
zero-probability elements.
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and

p′(x1, y1) = p′(x0=x1) · p′(x1, y1|x0=x1) + p′(x1 �=x1) · p′(x1, y1|x0 �=x1)

and the claim follows because p′(x1 �=x1) = ε. �
Remark 2. Note that due to the consistency of the marginals, it makes sense to
write p(x0, x1, y0, y1) instead of p′(x0, x1, y0, y1). We say that we “glue together”
p(x0, y0) and p(x1, y1) along x0 and x1.

Remark 3. In the special case where p(x0) and p(x1) are identically distributed,
i.e., d

(
p(x0), p(x1)

)
= 0, we obviously have p(x0, y1) = p(x1, y1).

Remark 4. It is easy to see from the proof of Lemma 1 that the following nat-
ural property holds. If p(x0, x1, y0, y1, y

′
0, y

′
1) is obtained by gluing together

p(x0, y0, y
′
0) and p(x1, y1, y

′
1) along x0 and x1, then the marginal p(x0, x1, y0, y1)

coincides with the distribution obtained by gluing together the marginals
p(x0, y0) and p(x1, y1) along x0 and x1.

3 Bipartite Systems and Two-Prover Commitments

3.1 One-Round Bipartite Systems

Informally, a bipartite system consists of two subsystem, which we refer to as the
left and the right subsystem. Upon input a to the left and input a′ to the right
subsystem, the left subsystem outputs x and the right subsystem outputs x′ (see
Fig. 1, left). Formally, the behavior of such a system is given by a conditional
distribution q(x, x′|a, a′), with the interpretation that given input (a, a′), the
system outputs a specific pair (x, x′) with probability q(x, x′|a, a′). Note that
we leave the sets A,A′,X and X ′, from which a, a′, x and x′ are respectively
sampled, implicit.

If we do not put any restriction upon the system, then any conditional dis-
tribution q(x, x′|a, a′) is eligible, i.e., describes a bipartite system. However, we
are interested in systems where the two subsystems cannot communicate with
each other. How exactly this requirement restricts q(x, x′|a, a′) depends on the
available “resources”. For instance, if the two subsystems are deterministic, i.e.,
compute x and x′ as deterministic functions of a and a′ respectively, then this
restricts q(x, x′|a, a′) to be of the form q(x, x′|a, a′) = δ(x|a) · δ(x′|a′) for condi-
tional Dirac distributions δ(x|a) and δ(x′|a′). If in addition to allowing them to
compute deterministic functions, we give the two subsystem shared randomness,
then q(x, x′|a, a′) may be of the form

q(x, x′|a, a′) =
∑

r

p(r) · δ(x|a, r) · δ(x′|a′, r)

for a distribution p(r) and conditional Dirac distributions δ(x|a, r) and δ(x′|a′, r).
Such a system is called classical or local. Interestingly, this is not the end of
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the story. By the laws of quantum mechanics, if the two subsystems share an
entangled quantum state and obtain x and x′ without communication as the
result of local measurements that may depend on a and a′, respectively, then
this gives rise to conditional distributions q(x, x′|a, a′) of the form

q(x, x′|a, a′) =
〈
ψ

∣∣(Ea
x ⊗ F a′

x′
)∣∣ψ〉

,

where |ψ〉 is a quantum state and {Ea
x}x and {F a′

x′ }x′ are so-called POVMs.
What this exactly means is not important for us; what is important is that
this leads to a strictly larger class of bipartite systems. This is typically referred
to as a violation of Bell inequalities [1], and is nicely captured by the notion
of nonlocal games. A famous example is the so-called CHSH-game [3], which
is closely connected to the example two-prover commitment scheme from the
introduction, and which shows that the variant considered in [4] is insecure
against quantum attacks.

The largest possible class of bipartite systems that is compatible with the
requirement that the two subsystem do not communicate, but otherwise does
not assume anything on the available resources and/or the underlying physical
theory, are the so-called non-signaling systems, defined as follows.

Definition 2. A conditional distribution q(x, x′|a, a′) is called a non-signaling
(one-round) bipartite system if it satisfies

q(x|a, a′) = q(x|a) (NS)

as well as with the roles of the primed and unprimed variables exchanged, i.e.,

q(x′|a, a′) = q(x′|a′) (NS’)

Recall that, by the convention in Remark 1, the equality (NS) is to be understood
in the sense that q(x|a, a′) does not depend on a′, i.e., that q(x|a, a′

1) = q(x|a, a′
2)

for all a′
1, a

′
2, and correspondingly for (NS′).

We emphasize that this is the minimal necessary condition for the require-
ment that the two subsystems do not communicate. Indeed, if e.g. q(x|a, a′

1) �=
q(x|a, a′

2), i.e., if the input-output behavior of the left subsystem depends on
the input to the right subsystem, then the system can be used to communicate
by giving input a′

1 or a′
2 to the right subsystem, and observing the input-output

behavior of the left subsystem. Thus, in such a system, communication does take
place.

The non-signaling requirement for a bipartite system is — conceptually and
formally — equivalent to requiring that the two subsystems can (in principle) be
queried in any order. Conceptually, it holds because the left subsystem should
be able to deliver its outputs before the right subsystem has received any input
if and only if the output does not depend on the right subsystem’s input (which
means that no information is communicated from right to left), and similarly
the other way round. And, formally, we see that the non-signaling requirement
from Definition 2 is equivalent to asking that q(x, x′|a, a′) can be written as

q(x, x′|a, a′) = q(x|a) · q(x′|x, a, a′) and q(x, x′|a, a′) = q(x′|a′) · q(x|x′, a, a′)
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for some respective conditional distributions q(x|a) and q(x′|a′). This charac-
terization is a convenient way to “test” whether a given bipartite system is
non-signaling without doing the maths.

Clearly, all classical systems are non-signaling. Also, any quantum system is
non-signaling.3 But there are non-signaling systems that are not quantum (and
thus in particular not classical). The typical example is the NL-box (non-local
box; also known as PR-box) [11], which, upon input bits a and a′ outputs random
output bits x and x′ subject to

x ⊕ x′ = a · a′ .

This system is indeed non-signaling, as it can be queried in any order: submit
a to the left subsystem to obtain a uniformly random x, and then submit a′ to
the right subsystem to obtain x′ := x ⊕ a · b, and correspondingly the other way
round.

3.2 Two-Round Systems

We now consider bipartite systems as discussed above, but where one can interact
with the two subsystems multiple times. We restrict to two rounds: after having
input a to the left subsystem and obtained x as output, one can now input b into
the left subsystem and obtain output y, and similarly with the right subsystem
(see Fig. 1, right). In such a two-round setting, the non-signaling condition needs
to be paired with causality, which captures that the output of the first round
does not depend on the input that will be given in the second round.

a′

x′

a

x

b b′

y y′

a′

x′

a

x

Fig. 1. A one-round (left) and two-round (right) bipartite system.

Definition 3. A conditional distribution q(x, x′, y, y′|a, a′, b, b′) is called a non-
signaling two-round bipartite system if it satisfies the following two causality
constraints

q(x, x′|a, a′, b, b′) = q(x, x′|a, a′) (C1)

3 Indeed, the two parts of an entangled quantum state can be measured in any order,
and the outcome of the first measurement does not depend on how the other part is
going to be measured.
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and q(x′|x, y, a, a′, b, b′) = q(x′|x, y, a, a′, b) (C2)

and the following two non-signaling constraints

q(x, y|a, a′, b, b′) = q(x, y|a, b) (NS1)

and q(y|x, x′, a, a′, b, b′) = q(y|x, x′, a, a′, b) (NS2)

as well as with the roles of the primed and unprimed variables exchanged.

(C1) captures causality of the overall system, i.e., when considering the left and
the right system as one “big” multi-round system. (C2) captures that no matter
what interaction there is with the left system, the right system still satisfies
causality. Similarly, (NS1) captures that the left and the right system are non-
signaling over both rounds, and (NS2) captures that no matter what interaction
there was in the first round, the left and the right system remain non-signaling
in the second round.

It is rather clear that these are necessary conditions; we argue that they are
sufficient to capture a non-signaling two-round system in the full version [6].

3.3 Two-Prover Commitments

We consider two-prover commitments of the following form. To commit to bit
b, the two provers P and Q receive respective “questions” a and a′ from the
verifier V , and they compute, without communicating with each other, respective
replies x and x′ and send them to V . To open the commitment, P and Q send
respectively y and y′. Finally, V performs some check to decide whether to accept
or not.

In case of classical provers P and Q, restricting the opening phase to one
round with one-way communication is without loss of generality: one may always
assume that in the opening phase P and Q simply reveal the shared randomness,
and V checks whether x and x′ had been correctly computed, consistent with
the claimed bit b. Restricting the commit phase to one round is, as far as we can
see, not without loss of generality; we discuss the multi-round case later.

Formally, this can be captured as follows.

Definition 4. A (single-round) two-prover commitment scheme Com consists of
a probability distribution p(a, a′), two conditional distributions p0(x, x′, y, y′|a, a′)
and p1(x, x′, y, y′|a, a′), and an acceptance predicate Acc(x, x′, y, y′|a, a′, b).

We say that Com is classical/quantum/non-signaling if p0(x, x′, y, y′|a, a′)
and p1(x, x′, y, y′|a, a′) are both classical/quantum/non-signaling when parsed as
bipartite one-round systems pb((x, y), (x′, y′)|a, a′). By default, any two-prover
commitment scheme Com is assumed to be non-signaling.

The distribution p(a, a′) captures how V samples the “questions” a and a′,
pb(x, x′, y, y′|a, a′) describes the choices of x and x′ and of y and y′, given that the
bit to commit to is b, and Acc(x, x′, y, y′|a, a′, b) determines whether V accepts
the opening or not. Whether a scheme is classical, quantum or non-signaling
captures the restrictions of the honest provers.
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Given a two-prover commitment scheme Com, we define

Prob[Acc|b] :=
∑

a,a′,x,x′,y,y′
p(a, a′) · pb(x, x′, y, y′|a, a′) · Acc(x, x′, y, y′|a, a′, b) ,

which is the probability that a correctly formed commitment to bit b is success-
fully opened.

Definition 5. A commitment scheme Com is θ-sound if Probp[Acc|b] ≥ θ for
b ∈ {0, 1}. We say that it is perfectly sound if it is 1-sound.

It will be convenient to write p(x0, x
′
0, y0, y

′
0|a, a′) instead of p0(x, x′, y, y′|a, a′)

and p(x1, x
′
1, y1, y

′
1|a, a′) instead of p1(x, x′, y, y′|a, a′). Switching to this notation,

the hiding property is expressed as follows.

Definition 6. Com is called ε-hiding if d
(
p(x0, x

′
0|a, a′), p(x1, x

′
1|a, a′)

)≤ ε for
all a, a′. If Com is 0-hiding, we also say it is perfectly hiding.

Capturing the binding property is more subtle. From the classical approach
of defining the binding property for a commitment scheme, one is tempted
to require that once the commit phase is over and a, a′, x and x′ are fixed,
adversarial provers P̂ and Q̂ cannot come up with an opening to b = 0 and
simultaneously with an opening to b = 1, i.e., with y0, y

′
0 and y1, y

′
1 such that

Acc(x, x′, y0, y′
0|a, a′, b = 0) and Acc(x, x′, y1, y′

1|a, a′, b = 1) are both satisfied
(except with small probability). However, as pointed out by Dumais, Mayers
and Salvail [5], in the context of a general physical theory where y and y′ may
possibly be obtained as respective outcomes of destructive measurements (as
is the case in quantum mechanics), such a definition is too weak. It does not
exclude that P̂ and Q̂ can freely choose to open the commitment to b = 0 or to
b = 1, whatever they want, but they cannot do both simultaneously; once they
have produced one opening, their respective states got disturbed and the other
opening can then not be obtained anymore.

Our definition for the binding property is based on the following game
between the (honest) verifier V and the adversarial provers P̂ , Q̂.

1. The commit phase is executed: V samples a and a′ according to p(a, a′), and
sends a to P̂ and a′ to Q̂, upon which P̂ and Q̂ send x and x′ back to V ,
respectively.

2. V sends a bit b ∈ {0, 1} to P̂ and Q̂.
3. P̂ and Q̂ try to open the commitment to b: they prepare y and y′ and send

them to V .
4. V checks if the verification predicate Acc(x, x′, y, y′|a, a′, b) is satisfied.

We emphasize that even though in the actual binding game above, the same
bit b is given to the two provers, we require that the response of the provers
is well determined by their strategy even in the case that b �= b′. Of course, if
the provers are allowed to communicate, they are able to detect when b �= b′

and could reply with, e.g., y = y′ = ⊥ in that case. However, if we restrict
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to non-signaling provers, we assume that it is physically impossible for them to
communicate with each other and distinguish the case of b = b′ from b �= b′.

As such, a non-signaling attack strategy against the binding property of
a two-prover commitment scheme Com is given by a non-signaling two-round
bipartite system q(x, x′, y, y′|a, a′, b, b′), as specified in Definition 3. For any such
bipartite system, representing a strategy for P̂ and Q̂ in the above game, the
probability that P̂ and Q̂ win the game, in that Acc(x, x′, y, y′|a, a′, b) is satisfied
when they have to open to the bit b, is given by

Prob∗
q [Acc|b] :=

∑
a,a′,x,x′,y,y′

p(a, a′)·q(x, x′, y, y′|a, a′, b, b)·Acc(x, x′, y, y′|a, a′, b) .

We are now ready to define the binding property.

Definition 7. A two-prover commitment scheme Com is δ-binding (against
non-signaling attacks) if it holds for any non-signaling two-round bipartite sys-
tem q(x, x′, y, y′|a, a′, b, b′) that

Prob∗
q [Acc|0] + Prob∗

q [Acc|1] ≤ 1 + δ .

In other words, a scheme is δ-binding if in the above game the dishonest provers
win with probability at most (1 + δ)/2 when b ∈ {0, 1} is chosen uniformly
at random. If a commitment scheme is binding (for a small δ) in the sense of
Definition 7, then for any strategy q for P̂ and Q̂, they can just as well honestly
commit to a bit b̂, where b̂ is set to 0 with probability p0 = Prob∗

q [Acc|0] and to
1 with probability p1 = 1− p0 ≈ Prob∗

q [Acc|1], and they will have essentially the
same respective success probabilities in opening the commitment to b = 0 and
to b = 1.

4 Impossibility of Two-Prover Commitments

In this section, we show impossibility of secure single-round two-prover com-
mitments against arbitrary non-signaling attacks. We start with the analysis of
a restricted class of schemes which are easier to understand and for which we
obtained stronger results.

4.1 Simple Schemes

We first consider a special, yet natural, class of schemes. We call a two-prover
commitment scheme Com simple if it has the same communication pattern as the
scheme described in the introduction. More formally, it is called simple if a′, x′

and y are “empty” (or fixed), i.e., if Com is given by p(a), p0(x, y′|a), p1(x, y′|a)
and Acc(x, y′|a, b); to simplify notation, we then write y instead of y′. In other
words, P is only involved in the commit phase, where, in order to commit to
bit b, he outputs x upon input a, and Q is only involved in the opening phase,
where he outputs y. The non-signaling requirement for Com then simplifies to
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pb(y|a) = pb(y). Recall that by our convention, we may write p(x0, y0|a) instead
of p0(x, y|a) and p(x1, y1|a) instead of p1(x, y|a).

In case of such a simple two-prover commitment scheme Com, a non-signaling
two-prover strategy reduces to a non-signaling one-round bipartite system as
specified in Definition 2 (see Fig. 2).

a

x

b

y

Fig. 2. The adversaries’ strategy q(x, y|a, b) in case of a simple commitment scheme.

As a warm-up exercise, we first consider a simple two-prover commitment
scheme that is perfectly hiding and perfectly sound. Recall that formally, a simple
scheme is given by p(a), p0(x, y|b), p1(x, y|a) and Acc(x, y|a, b), and the perfect
hiding property means that p0(x|a) = p1(x|a) for any a. To show that such a
scheme cannot be binding, we have to show that there exists a non-signaling
one-round bipartite system q(x, y|a, b) such that Prob∗

q [Acc|0] + Prob∗
q [Acc|1]

is significantly larger than 1. But this is actually trivial: we can simply set
q(x, y|a, b) := pb(x, y|a). It then holds trivially that

Prob∗
q [Acc|b] =

∑
a,x,y

p(a) q(x, y|a, b)Acc(x, y|a, b)

=
∑
a,x,y

p(a) pb(x, y|a)Acc(x, y|a, b)

= Probp[Acc|b]

and thus that the dishonest provers are as successful in opening the commitment
as are the honest provers in opening an honestly prepared commitment. Thus,
the binding property is broken as badly as it can get. The only thing that needs
to be verified is that q(x, y|a, b) is non-signaling, i.e., that q(x|a, b) = q(x|a) and
q(y|a, b) = q(y|b). To see that the latter holds, note that q(y|a, b) = pb(y|a), and
because Com is non-signaling we have that pb(y|a) = pb(y), i.e., does not depend
on a. Thus, the same holds for q(y|a, b) and we have q(y|a, b) = q(y|b). The
former condition follows from the (perfect) hiding property: q(x|a, b) = pb(x|a) =
pb′(x|a) = q(x|a, b′) for arbitrary b, b′ ∈ {0, 1}, and thus q(x|a, b) = q(x|a).

Below, we show how to extend this result to non-perfectly-binding simple
schemes. In this case, we cannot simply set q(x, y|a, b) := pb(x, y|a), because
such a q would not be non-signaling anymore — it would merely be “almost
non-signaling”. Instead, we have to find a strategy q(x, y|a, b) that is (perfectly)
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non-signaling and close to pb(x, y|a); we will find such a strategy with the help of
Lemma 1. In Sect. 4.2, we will then consider general schemes where both provers
interact with the verifier in both phases. In this general case, further complica-
tions arise.

Theorem 1. Consider a simple two-prover commitment scheme Com that is
ε-hiding. Then, there exists a non-signaling strategy q(x, y|a, b) such that

Prob∗
q [Acc|0] = Probp[Acc|0] and Prob∗

q [Acc|1] ≥ Probp[Acc|1] − ε .

If Com is perfectly sound, it follows that

Prob∗
q [Acc|0] + Prob∗

q [Acc|1] ≥ 1 + (1 − ε)

and thus it cannot be δ-binding for δ < 1 − ε.

Proof. Recall that Com is given by p(a), pb(x, y|a) and Acc(x, y|a, b), and we
write p(xb, yb|a) instead of pb(x, y|a). Because Com is ε-hiding, it holds that
d
(
p(x0|a), p(x1|a)

) ≤ ε for any fixed a. Thus, using Lemma 1 for every a,
we can glue together p(x0, y0|a) and p(x1, y1|a) along x0 and x1 to obtain a
distribution p(x0, x1, y0, y1|a) such that p(x0 �= x1|a) ≤ ε, and in particular
d
(
p(x0, y1|a), p(x1, y1|a)

) ≤ ε.
We define a strategy q for the dishonest provers by setting q(x, y|a, b) :=

p(x0, yb|a) (see Fig. 3). First, we show that q is non-signaling. Indeed, we have
q(x|a, b) = p(x0|a) for any b, so q(x|a, b) = q(x|a), and we have q(y|a, b) =
p(yb|a) = p(yb) for any a, and thus q(y|a, b) = q(y|b).

As for the acceptance probability, for b = 0 we have q(x, y|a, 0) = p(x0, y0|a)
and as such Prob∗

q [Acc|0] equals Probp[Acc|0]. For b = 1, we have

d
(
q(x, y|a, 1), p(x1, y1|a)

)
= d

(
p(x0, y1|a), p(x1, y1|a)

) ≤ ε

and since the statistical distance does not increase under data processing, it
follows that Probp[Acc|1] and Prob∗

q [Acc|1] are ε-close; this proves the claim. �

a

x1 y1

a

x0

b

yb

a

x0 y0
�

Fig. 3. Defining the strategy q by gluing together p(x0, y0|a) and p(x1, y1|a).

The bound on the binding property in Theorem1 is tight, as the following the-
orem shows. The proof is given in the full version [6].

Theorem 2. For all ε ∈ Q such that 0 < ε ≤ 1 there exists a classical simple
two-prover commitment scheme that is perfectly sound, ε-hiding and (1 − ε)-
binding against non-signaling adversaries.
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4.2 Arbitrary Schemes

We now remove the restriction on the scheme to be simple. As before, we first
consider the case of a perfectly hiding scheme.

Theorem 3. Let Com be a single-round two-prover commitment scheme. If
Com is perfectly hiding, then there exists a non-signaling two-prover strategy
q(x, x′, y, y′|a, a′, b, b′) such that

Prob∗
q [Acc|b] = Probp[Acc|b]

for b ∈ {0, 1}.
Proof. Com being perfectly hiding means that d(p(x0, x

′
0|a, a′), p(x1, x

′
1|a, a′)) =

0 for all a and a′. Gluing together the distributions p(x0, x
′
0, y0, y

′
0|a, a′) and

p(x1, x
′
1, y1, y

′
1|a, a′) along (x0, x

′
0) and (x1, x

′
1) for every (a, a′), we obtain a

distribution p(x0, x
′
0, x1, x

′
1, y0, y

′
0, y1, y

′
1|a, a′) with the correct marginals and

p((x0, x
′
0) �= (x1, x

′
1)|a, a′) = 0. That is, we have x0 = x1 and x′

0 = x′
1 with

certainty. We now define a strategy for dishonest provers as (Fig. 4).

q(x, x′, y, y′|a, a′, b, b′) := p(x0, x
′
0, yb, y

′
b′ |a, a′) .

Since p(x0, x
′
0, yb, y

′
b|a, a′) = p(xb, x

′
b, yb, y

′
b|a, a′), it holds that Prob∗

q [Acc|b] =
Probp[Acc|b]. It remains to show that this distribution satisfies the non-signaling
and causality constraints (C1) up to (NS2) of Definition 2. This is done below.

– For (C1), note that summing up over y and y′ yields q(x, x′|a, a′, b, b′) =
p(x0, x

′
0|a, a′), which indeed does not depend on b and b′.

– For (NS1), note that q(x, y|a, a′, b, b′) = p(x0, yb|a, a′) = p(xb, yb|a, a′) =
p(xb, yb|a), where the last equality holds by the non-signaling property of
p(xb, yb|a, a′).

– For (C2), first note that

q(x, x′, y|a, a′, b, b′) = p(x0, x
′
0, yb|a, a′) (2)

which does not depend on b′. We then see that (C2) holds by dividing by
q(x, y|a, a′, b, b′) = p(x0, yb|a, a′).

– For (NS2), divide Eq. (2) by q(x, x′|a, a′, b, b′) = p(x0, x
′
0|a, a′)

The properties (C1) to (NS2) with the roles of the primed and unprimed variables
exchanged follows from symmetry. This concludes the proof. �

The case of non-perfectly hiding schemes is more involved. At first glance, one
might expect that by proceeding analogously to the proof of Theorem3 — i.e.,
gluing together p(x0, x

′
0, y0, y

′
0|a, a′) and p(x1, x

′
1, y1, y

′
1|a, a′) along (x0, x

′
0) and

(x1, x
′
1) and defining q the same way — one can obtain a strategy q that succeeds

with probability 1−ε if the scheme is ε-hiding. Unfortunately, this approach fails
because in order to show (NS1) we use that p(x0, y1|a, a′) = p(x1, y1|a, a′) which
in general does not hold for commitment schemes that are not perfectly hiding.
As a consequence, our proof is more involved, and we have a constant-factor loss
in the parameter.
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Fig. 4. Defining q from p(x0, x
′
0, y0, y

′
0|a, a′) and p(x1, x

′
1, y1, y

′
1|a, a′) glued together.

Theorem 4. Let Com be a single-round two-prover commitment scheme and
suppose that it is ε-hiding. Then there exists a non-signaling two-prover strategy
q(x, x′, y, y′|a, a′, b, b′) such that

Prob∗
q [Acc|0] = Probp[Acc|0] and Prob∗

q [Acc|1] ≥ Probp[Acc|1] − 5ε .

Thus, if Com is perfectly sound, it is at best (1 − 5ε)-binding.

To prove this result, we use two lemmas. In the first one, we add the additional
assumptions that p(x0|a, a′) = p(x1|a, a′) and p(x′

0|a, a′) = p(x′
1|a, a′). The sec-

ond one shows that we can tweak an arbitrary scheme in such a way that these
additional conditions hold. The proofs are given in the full version [6].

Lemma 2. Let Com be a ε-hiding two-prover commitment scheme with the addi-
tional property that p(x0|a, a′) = p(x1|a, a′) and p(x′

0|a, a′) = p(x′
1|a, a′). Then,

there exists a non-signaling p′(x1, x
′
1, y1, y

′
1|a, a′) such that

d
(
p′(x1, x

′
1, y1, y

′
1|a, a′), p(x1, x

′
1, y1, y

′
1|a, a′)

) ≤ ε

and p′(x1, x
′
1|a, a′) = p(x0, x

′
0|a, a′).

As usual, the non-signaling requirement on p′(x1, x
′
1, y1, y

′
1|a, a′) is to be under-

stood as p′(x1, y1|a, a′) = p′(x1, y1|a) and p′(x′
1, y

′
1|a, a′) = p′(x′

1, y
′
1|a′).

Lemma 3. Let Com be a ε-hiding two-prover commitment scheme. Then, there
exists a non-signaling p̃(x1, x

′
1, y1, y

′
1|a, a′) such that

d
(
p̃(x1, x

′
1, y1, y

′
1|a, a′), p(x1, x

′
1, y1, y

′
1|a, a′)

) ≤ 2ε

which has the property that p̃(x1|a, a′) = p(x0|a, a′) and p̃(x′
1|a, a′) = p(x′

0|a, a′).

With these two lemmas, Theorem 4 is easy to prove.

Proof (Theorem4). We start with a ε-hiding non-signaling bit-commitment
scheme Com. We apply Lemma 3 and obtain p̃(x1, x

′
1, y1, y

′
1|a, a′) that is 2ε-close

to p(x1, x
′
1, y1, y

′
1|a, a′) and satisfies p̃(x1|a, a′) = p(x0|a, a′) and p̃(x′

1|a, a′) =
p(x′

0|a, a′). Furthermore, by triangle inequality

d
(
p̃(x1, x

′
1|a, a′), p(x0, x

′
0|a, a′)

) ≤ 3ε .
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Thus, replacing p(x1, x
′
1, y1, y1|a, a′) by p̃(x1, x

′
1, y1, y

′
1|a, a′) gives us a 3ε-hiding

two-prover commitment scheme that satisfies the extra assumption in Lemma 2.
As a result, we obtain a distribution p′(x1, x

′
1, y1, y

′
1|a, a′) that is 3ε-close to

p̃(x1, x
′
1, y1, y

′
1|a, a′), and thus 5ε-close to p(x1, x

′
1, y1, y

′
1|a, a′), with the property

that p′(x1, x
′
1|a, a′) = p(x0, x

′
0|a, a′). Therefore, replacing p̃(x1, x

′
1, y1, y

′
1|a, a′) by

p′(x1, x
′
1, y1, y

′
1|a, a′) gives us a perfectly-hiding two-prover commitment scheme,

to which we can apply Theorem 3. As a consequence, there exists a non-signaling
strategy q(x, x′, y, y′|a, a′) with Prob∗

q [Acc|0] = Probp[Acc|0] and Prob∗
q [Acc|1] ≥

Probp[Acc|1] − 5ε, as claimed.

Remark 5. If Com already satisfies p(x0|a, a′) = p(x1|a, a′) and p(x′
0|a, a′) =

p(x′
1|a, a′), we can apply Lemma 2 right away and thus get a strategy q with

Prob∗
q [Acc|0] = Probp[Acc|0] and Prob∗

q [Acc|1] ≥ Probp[Acc|1] − ε. Thus, with
this additional condition, we still obtain a tight bound as in Theorem1.

4.3 Multi-round Schemes

We briefly discuss a limited extension of our impossibility results for single-round
schemes to schemes where during the commit phase, there is multi-round inter-
action between the verifier V and the two provers P and Q. We still assume the
opening phase to be one-round; this is without loss of generality in case of clas-
sical two-prover commitment schemes (where the honest provers are restricted
to be classical). In this setting, we have the following impossibility result, which
is restricted to perfectly-hiding schemes.

Theorem 5. Let Com be a multi-round two-prover commitment scheme. If Com
is perfectly hiding, then there exists a non-signaling two-prover strategy that com-
pletely breaks the binding property, in the sense of Theorem3.

A formal proof of this statement requires a definition of n-round non-signaling
bipartite systems for arbitrary n. Such a definition can be based on the intuition
that it must be possible to query the left and right subsystem in any order.
With this definition, the proof is a straightforward extension of the proof
of Theorem 3: the non-signaling strategy is obtained by gluing together
p(x0,x′

0|a,a′) and p(x1,x′
1|a,a′) along (x0,x′

0) and (x1,x′
1), and setting

q(x,x′, y, y′|a,a′, b, b′) := p(x0,x′
0, yb, y

′
b′ |a,a′), where we use bold-face notation

for the vectors that collect the messages sent during the multi-round commit
phase: a collects all the messages sent by the verifier to the prover P , etc.

As far as we see, the proof of the non-perfect case, i.e. Theorem 4, does not
generalize immediately to the multi-round case. As such, proving the impossibil-
ity of non-perfectly-hiding multi-round two-prover commitment schemes remains
an open problem.

5 Possibility of Three-Prover Commitments

It turns out that we can overcome the impossibility results by adding a third
prover. We will describe a scheme that is perfectly sound, perfectly hiding and
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2−n-binding with communication complexity O(n). We now define what it means
for three provers to be non-signaling; since our scheme is similar to a simple
scheme, we can simplify this somewhat. We consider distributions q(x, y, z|a, b, c)
where a and x are input and output of the first prover P , b and y are input and
output of the second prover Q and c and z are input and output of the third
prover R.

Definition 8. A conditional distribution q(x, y, z|a, b, c) is called a non-
signaling (one-round) tripartite system if it satisfies

q(x|a, b, c) = q(x|a) , q(y|a, b, c) = q(y|b) , q(z|a, b, c) = q(z|c) ,

and

q(x, y|a, b, c) = q(x, y|a, b), q(x, z|a, b, c) = q(x, z|a, c), q(y, z|a, b, c) = q(y, z|b, c).
In other words, for any way of viewing q as a bipartite system by dividing in- and
outputs consistently into two groups, we get a non-signaling bipartite system.

We restrict to simple schemes, where during the commit phase, only P is
active, sending x upon receiving a from the verifier, and during the opening
phase, only Q and R are active, sending y and z to the verifier, respectively.

Definition 9. A simple three-prover commitment scheme Com consists of a
probability distribution p(a), two distributions p0(x, y, z|a) and p1(x, y, z|a), and
an acceptance predicate Acc(x, y, z|a, b).

It is called classical/quantum/non-signaling if pb(x, y, z|a) is, when under-
stood as a tripartite system pb(x, y, z|a, ∅, ∅) with two “empty” inputs.

Soundness and the hiding-property are defined in the obvious way. As for the
binding property, for a simple three-prover commitment scheme Com and a non-
signaling strategy q(x, y, z|a, b, c), let

Prob∗
q [Acc|b] =

∑
a,x,y,z

p(a) · q(x, y, z|a, b, b) · Acc(x, y, z|a, b) .

We say that Com is δ-binding if

Prob∗
q [Acc|0] + Prob∗

q [Acc|1] ≤ 1 + δ.

Theorem 6. For every positive integer n, there exists a classical simple three-
prover commitment scheme that is perfectly sound, perfectly hiding and 2−n-
binding. The verifier communicates n bits to the first prover and receives n bits
from each prover.

The scheme that achieves this is essentially the same as the example two-prover
scheme described in the introduction, except that we add a third prover that
imitates the actions of the second. To be more precise: the provers P , Q and
R have as shared randomness a uniformly random r ∈ {0, 1}n. The verifier V
chooses a uniformly random a ∈ {0, 1}n and sends it to P . As commitment, P
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returns x := r ⊕ a · b. To open the commitment to b, Q and R send y := r and
z := r to V who accepts if and only if y = z and x = y ⊕ a · b.

Before beginning with the formal proof that this scheme has the properties
stated in our theorem, we give some intuition. Let a and x be the input and
output of the dishonest first prover, P . To succeed, the second prover Q has
to produce output x ⊕ a · b where b is the second prover’s input and the third
prover R has to produce x⊕a ·c where c is the third prover’s input. Our theorem
implies that a strategy which always produces these outputs must be signaling.
Why is that the case?

In the game that defines the binding-property, we always have b = c, but the
dishonest provers must obey the non-signaling constraint even in the “impossi-
ble” case that b �= c. Let us consider the XOR of Q’s output and R’s output in
the case that b �= c: we get (x ⊕ a · b) ⊕ (x ⊕ a · c) = a · b ⊕ a · c = a. But in
the non-signaling setting, the joint distribution of Q’s and R’s output may not
depend on a. Thus, the strategy we suggested does not satisfy the non-signaling
constraint. Let us now prove the theorem.

Proof (Theorem6). It is easy to see that the scheme is sound. Furthermore, for
every fixed a and b, pb(x|a) is uniform, so the scheme is perfectly hiding. Now
consider a non-signaling strategy q for dishonest provers. The provers succeed if
and only if y = z = x ⊕ a · b. Define q(a, x, y, z|b, c) = p(a) · q(x, y, z|a, b, c). The
non-signaling property implies that

q(y = x ⊕ a · b|a, b, c = 0) = q(y = x ⊕ a · b|a, b, c = 1) and (3)
q(z = x ⊕ a · c|a, b = 0, c) = q(z = x ⊕ a · c|a, b = 1, c) . (4)

It follows that

Prob∗
q [Acc|0] + Prob∗

q [Acc|1]

= q(y = x ⊕ a · b, z = x ⊕ a · c|b = 0, c = 0)
+ q(y = x ⊕ a · b, z = x ⊕ a · c|b = 1, c = 1)

≤ q(y = x ⊕ a · b|b = 0, c = 0) + q(z = x ⊕ a · c|b = 1, c = 1)
= q(y = x ⊕ a · b|b = 0, c = 1) + q(z = x ⊕ a · c|b = 0, c = 1)

by Eqs. (3) and (4)
≤ 1 + q(y = x ⊕ a · b, z = x ⊕ a · c|b = 0, c = 1) by Eq. (1)

It now remains to upper-bound q(y = x ⊕ a · b, z = x ⊕ a · c|b = 0, c = 1). Since
p(a) is uniform and q(y, z|a, b, c) is independent of a, we have

q(y = x ⊕ a · b, z = x ⊕ a · c|b = 0, c = 1) ≤ q(y ⊕ z = a|b = 0, c = 1) =
1
2n

and thus our scheme is 2−n-binding. �
Remark 6. The three-prover scheme above has the drawback that two provers
are involved in the opening phase; as such, there needs to be agreement on
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whether to open the commitment or not; if there is disagreement then this may
be problematic in certain applications. However, P and Q are not allowed to
communicate. One possible solution is to have V forward an authenticated “open”
or “not open” message from P to Q and R. This allows for some communication
from P to Q and R, but if the size of the authentication tag is small enough
compared to the security parameter of the scheme, i.e., n, then security is still
ensured.

Acknowledgements. We would like to thank Claude Crépeau for pointing out the
issue addressed in Remark 6 and the solution sketched there, and Jed Kaniewski for
helpful discussions regarding relativistic commitments.
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Abstract. An interactive proof of proximity (IPP) is an interactive pro-
tocol in which a prover tries to convince a sublinear-time verifier that
x ∈ L. Since the verifier runs in sublinear-time, following the property
testing literature, the verifier is only required to reject inputs that are
far from L. In a recent work, Rothblum et. al (STOC, 2013) constructed
an IPP for every language computable by a low depth circuit.

In this work, we study the computational analogue, where soundness is
required to hold only against a computationally bounded cheating prover.
We call such protocols interactive arguments of proximity.

Assuming the existence of a sub-exponentially secure FHE scheme, we
construct a one-round argument of proximity for every language com-
putable in time t, where the running time of the verifier is o(n)+polylog(t)
and the running time of the prover is poly(t).

As our second result, assuming sufficiently hard cryptographic PRGs,
we give a lower bound, showing that the parameters obtained both in
the IPPs of Rothblum et al., and in our arguments of proximity, are close
to optimal.

Finally, we observe that any one-round argument of proximity imme-
diately yields a one-round delegation scheme (without proximity) where
the verifier runs in linear time.

1 Introduction

With the prominent use of computers, tremendous amounts of data are available.
For example, hospitals have massive amounts of medical data. This data is very
precious as it can be used, for example, to learn important statistics about vari-
ous diseases. This data is often too large to store locally, and thus is often stored
on cloud platforms (or external servers). As a result, if a hospital (which has
bounded storage and bounded computational power), wishes to perform some
computation on its medical data, it would need to delegate this computation to
the cloud. Since the cloud’s computation may be faulty, the party delegating the
computation (say, the hospital), may want a proof that the computation was
done correctly. It is important that this proof can be verified very efficiently,

c© International Association for Cryptologic Research 2015
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and that the prover’s running time is not much larger than the time it takes to
perform the computation, since otherwise, the solution will not be practical.

This problem is closely related to the problem of computation delegation,
where a weak client delegates a computation to a powerful server, and the
server needs to provide the client with a proof that the computation was
done correctly. In contrast to the current setting, in the setting of compu-
tation delegation, the input is thought of as being small and the computa-
tion is thought of as being large. The client (verifier) is required to run in
time that is proportional to the input size (but much smaller than the time
it takes to do the computation), and the powerful server (prover) runs in time
polynomially related to the time it takes to do the computation. Indeed the
problem of computation delegation is extremely important, and received a lot
of attention (e.g., [GKR08,Mic94,Gro10,GGP10,CKV10,AIK10,GLR11,Lip12,
BCCT12a,DFH12,BCCT12b,GGPR12,PRV12,KRR13a,KRR13b]).

In reality, however, the input (data) is often very large, and the client cannot
even store the data. Hence, we seek a solution in which the client runs in time
that is sub-linear in the input size. The question is:

If the client cannot read the data, how can he verify the correctness of a
computation on the data?

The work of [CKLR11], on memory delegation, considers this setting where
the input (thought of as the client’s memory) is large, and the client cannot store
it locally. However, in memory delegation, it is assumed that the client (verifier)
stores a short “commitment” of the input, and then can verify computations
in sub-linear time. However, computing such a commitment takes time at least
linear in the input length, which is infeasible in many settings.

Recently, Rothblum, Vadhan and Wigderson [RVW13], in their work on inter-
active proofs of proximity (IPP, a notion first studied by Ergün, Kumar and
Rubinfeld [EKR04]), provide a solution where the verifier does not need to know
such a commitment. Without such a commitment, the verifier cannot be sure
that the computation is correct (since he cannot read the entire input), however
they guarantee that the input is “close” to being correct. More specifically, they
construct an interactive proof system for every language computable by a (log-
space uniform) low depth circuit, where the verifier is given oracle access to the
input (the data), and the verifier can check whether the input is close to being
in the language in sub-linear time in the input (and linear time in the depth of
the computation). We note that in many settings where the data is large (such
as medical data) and the goal is to compute some statistics on this data, an
approximate solution is acceptable. The work of [RVW13] is the starting point
of our work.

1.1 Our Results in a Nutshell

We depart from the interactive proof of proximity setting, and consider argu-
ments of proximity. In contrast to proofs of proximity, in an argument of proxim-
ity, soundness is required to hold only against computationally bounded cheating
provers. Namely, the soundness guarantee is that any bounded cheating prover
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can convince the verifier to accept an input that is far from the language (in
Hamming distance) only with small probability. By relaxing the power of the
prover we obtain stronger results.

We construct one-round arguments of proximity for every deterministic lan-
guage (without a dependency on the depth). Namely, fix any t = t(n) and any
language L ∈ DTIME(t(n)), we construct a one-round argument of proximity
for L where the verifier runs in time o(n) + polylog(t), assuming the existence of
a sub-exponentially secure fully homomorphic encryption (FHE) scheme.

Our one-round argument of proximity is constructed in two steps, and follows
the outline of the recent works of Kalai et al. [KRR13a,KRR13b]. These works
first show how to construct an MIP for all deterministic languages, that is sound
against no-signaling strategies. Such no-signaling soundness is stronger than the
typical notion of soundness, and is inspired by quantum physics and by the
principal that information cannot travel faster than light (see Sect. 3.2 for the
definition, and [KRR13a,KRR13b] for more background on this notion). They
then show how to convert these no-signaling MIPs into one-round arguments.

As our first step, we combine the IPPs of [RVW13], and the no-signaling
MIP construction of [KRR13b], to obtain a no-signaling multi-prover interactive
proof of proximity (MIPP). This construction combines techniques and results of
[RVW13] and [KRR13b], and may be of independent interest.

Then, similarly to [KRR13a], we show how to convert any no-signaling MIPP
to a one-round argument of proximity. This transformation relies on a heuristic
developed by Aiello et al. [ABOR00], which uses a (computational) PIR scheme
(or a fully homomorphic encryption scheme) to convert any MIP into a one-round
argument. This heuristic was proven to be secure in [KRR13a] if the underlying
MIP is secure against no-signaling strategies. We extend the result of [KRR13a]
to the proximity setting.

Finally, we provide a negative result, which shows that the parameters we
obtain for MIPP and the parameters obtained in [RVW13], are somewhat tight.
Proving such a lower bound was left as an open problem in [RVW13]. This part
contains several new ideas, and is the main technical contribution of this work.

We also show that the parameters in our one-round argument of proximity
are somewhat optimal, for arguments with adaptive soundness and are proven
to be (adaptively) sound via a black-box reduction to a falsifiable assumption.
See the full version for further details.

Linear-Time Delegation. We observe that both proofs and arguments of prox-
imity, aside from being natural notions, can also be used as tools to obtain new
results for delegating computation in the standard setting (i.e., where soundness
is guaranteed for every x �∈ L). More specifically, using our results on arguments
of proximity and the [RVW13] results on interactive proofs of proximity for low-
depth circuits, we can construct (standard) one-round argument-systems for any
deterministic computation, and interactive proof systems for low-depth circuits,
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where the verifier truly runs in linear-time. In contrast, the results of [GKR08]
and [KRR13b] only give a quasi-linear time verifier.1

1.2 Our Results in More Detail

Our main result is a construction of a one-round argument of proximity for any
deterministic language. Here, and throughout this work, we use n to denote the
input length. Let t = t(n), let L ∈ DTIME(t) be a language. For a proximity
parameter ε = ε(n) ∈ (0, 1), we denote by ε-IPP an interactive proof for testing
ε-proximity to L.2 Similarly we denote by ε-MIPP a multi-prover interactive
proof for testing ε-proximity to L.

Theorem 1 (Informal). Suppose that there exists a sub-exponentially secure
FHE. Fix a proximity parameter ε

def= n−(1−β), for some sufficiently small β > 0,
and a security parameter τ (polynomially related to n).

There exists a 1-round argument of ε-proximity for L, where the verifier runs
in time n1−γ + polylog(t) + polyFHE(τ), where γ > 0 is a constant and polyFHE is
a polynomial that depends only on the FHE scheme, and makes n1−γ +polylog(t)
oracle queries to the main input. The prover runs in time poly(t). The total
communication is of length polyFHE(τ).

Note that for languages in DTIME
(
2nα)

for sufficiently small α > 0 (and in
particular for languages in P), the verifier in Theorem 1 runs in sub-linear time.

As mentioned previously, this result is obtained in two steps. We first con-
struct an MIPP that is sound against no-signaling strategies, and then show how
to convert any such MIPP into a one-round argument of proximity.

Theorem 2 (Informal). Fix a proximity parameter ε = ε(n) ∈ (0, 1). There
exists an ε-MIPP that is secure against no-signaling strategies, where the ver-
ifier makes q = (1/ε)1+o(1) oracle queries to the input, the communication
complexity c = (εn)2 · no(1) · polylog(t) and the running time of the verifier
is (εn)2 · polylog(t) +

(
1
ε + εn

)1+o(1).

We then show how to convert any no-signaling ε-MIPP to a one-round argument
of ε-proximity. In the following we say that a fully homomorphic encryption
scheme (FHE) is (T, δ) secure if every family of circuits of size T can break the
semantic security of the FHE with probability at most δ.

Theorem 3 (Informal). Fix a proximity parameter ε = ε(n) ∈ (0, 1). Suppose
that the language L has an �-prover ε-MIPP that is sound against δ-no-signaling
strategies, with communication complexity c. Suppose that there exists a (T, δ/�)-
secure FHE, where T ≥ 2c. Then L has a 1-round argument of ε-proximity where
1 Actually, by an observation of Vu et al. [VSBW13] (see also [Tha13, Lemma 3]), the

verifier in the [GKR08] protocol can be directly implemented in linear-time. However
the latter implementation would only guarantee constant soundness error.

2 A string x ∈ {0, 1}n is ε-close to L if there exists x′ ∈ {0, 1}n∩L such that �(x, x′) ≤
εn, where � denotes the Hamming distance between the two strings.
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the running time of the prover and verifier and the communication complexity of
the argument system, are proportional to those of the underlying MIPP scheme.

We note that the parameters in Theorem 2 are somewhat similar to the para-
meters of the interactive proof of proximity (IPP) in [RVW13]. In particular, in
both constructions it holds that c · q = Ω(n). The work of [RVW13] shows that
this lower bound of c · q = Ω(n) is inherent for IPPs with 2-messages (and that a
weaker bound holds for IPPs with a constant number of rounds), and left open
the question of whether this lower bound is inherent for general (multi-round)
IPPs.

We resolve this question by showing that for every ε-IPP, and every ε-MIPP
that is sound against no-signaling strategies, it must be the case that c·q = Ω(n).
For this result we assume the existence of exponentially hard pseudorandom
generators.

Theorem 4 (Informal). Assume the existence of exponentially hard pseudo-
random generators. There exists a constant ε > 0 such that for every q = q(n) ≤
n, there exists a language L ∈ P such that for every ε-IPP for L , and for every
ε-MIPP for L that sound against no-signaling adversaries, it holds that q · c =
Ω(n), where q is the query complexity and c is the communication complexity.

In fact, assuming a slightly stronger cryptographic assumption, we can replace
L ∈ P with L ∈ NC1 (which shows that the [RVW13] upper bound for log-space
uniform NC is essentially tight). See Sect. 4 for details.

We note that the [RVW13] lower bound for 2-message IPPs is uncondi-
tional (and in particular they do not assume that the verifier is computationally
bounded). It remains an interesting open problem to obtain an unconditional
lower bound for multi-message IPPs.

The parameters we obtain for the one-round argument also satisfy q · c =
Ω(n). We show that these parameters are close to optimal for arguments with
adaptive soundness, that are proven sound via a black-box reduction to falsifiable
assumptions. We refer the reader to the full version for details.

Finally, using the [RVW13] protocol or the protocol of Theorem 1 we con-
struct delegation schemes in which the verifier runs in linear-time.

Theorem 5 (Informal). For every language in (logspace-uniform) NC there
exists an interactive proof system in which the verifier runs in time O(n) and
the prover runs in time poly(n).

Theorem 6 (Informal). Assume that there exists a sub-exponentially secure
FHE. Then, for every language in P there exists a 1-round argument-system in
which the verifier runs in time O(n) and the prover runs in time poly(n).

1.3 Related Work

As mentioned above, the work of [RVW13] and [KRR13a,KRR13b] are most
related to ours. Both our work, and the work of [RVW13], lie in the intersec-
tion of property-testing and computation delegation. As opposed to property
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testing, where an algorithm is required to decide whether an input is close to
the language on its own in sub-linear time, in our work the algorithm receives
a proof, and only needs to verify correctness of the proof in sub-linear time.
Thus, our task is significantly easier than the task in property testing. Indeed
we get much stronger results. In particular, the works on property testing typ-
ically get sub-linear algorithms for specific languages, whereas our result holds
for all deterministic languages.3

Another very related problem is that of constructing a probabilistically check-
able proof of proximity (PCPP) [BSGH+06] (also known as assignment testers
[DR06]). A PCPP consists of a prover who publishes a long proof, and a verifier,
who gets oracle access to this proof and to the instance x, and needs to decide
whether x is close to the language in sub-linear time. The significant difference
between PCPP and proofs/argument of proximity is that in the PCPP setting the
proof is a fixed string (and cannot be modified adaptively based on the verifier’s
messages).

The fundamental works of Kilian and Micali [Kil92,Mic94] show how to
convert any probabilistically checkable proof (PCP) into a 2-round (4-message)
argument. As pointed out by [RVW13], their transformation can be also used
to convert any PCPP into a 2-round argument of proximity. Thus, obtaining a
2-round argument of proximity follows immediately by applying the transforma-
tion of [Kil92,Mic94] to any PCPP construction. Moreover, the parameters of
the resulting 2-round argument are optimal (up to logarithmic factors); i.e., the
query complexity, the communication complexity and the runtime of the verifier
is poly(log(t), τ) where t is the time it takes to compute if x is in the language,
and where τ is the security parameter.

The focus of this work is on constructing one-round arguments of proximity.
Unfortunately, our parameters do not match those of the two-round arguments
of proximity outlined above. However, we show that using our techniques (i.e., of
constructing one-round arguments of proximity from no-signaling MIPPs), our
parameters are almost optimal.

Other works that are related to ours are the work of Gur and Rothblum
[GR13] on non-interactive proofs of proximity, and of Fischer et al. [FGL14] on
partial testing. The former studies an NP version of property testing (which
can be thought of as a 1-message variant of IPP), whereas the latter studies a
model of property testing in which the tester needs to only accept a sub-property
(we note that the two notions, which were developed independently, are tightly
related, see [GR13,FGL14] for details).

Organization. In this extended abstract we give an overview of our techniques
and only prove some of our results. In Sect. 2 we give a high level view of our
techniques. In Sect. 3 we formally define arguments of proximity and the other
central definitions that are used throughout this work. In Sect. 4 we show our
3 Indeed, as shown by Goldwasser, Goldreich and Ron [GGR98], there are properties

in very low complexity classes that require Ω(n) queries and running-time in order
to test (without the help of a prover).
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lower bound for no-signaling MIPPs. See the full version for the missing proofs
and formal theorem statements.

2 Our Techniques

2.1 Our Positive Results

To construct arguments of proximity for languages in DTIME(t), we adapt the
technique of [KRR13a] to the “proximity” setting. That is, we first construct an
MIPP that has soundness against no-signaling strategies and then employ the
technique of Aiello et al. [ABOR00] to obtain an argument of proximity. We
elaborate on these two steps below. In what follows, we focus for simplicity on
languages in P, though everything extends to languages in DTIME(t).

No-Signaling MIPPs for P. Our first step (which is technically more involved)
is a construction of MIPPs that are sound against no-signaling strategies for
any language L ∈ P. This construction is inspired by (and reminiscent of) the
IPP construction of [RVW13]. The starting point for the [RVW13] IPP is the
“Muggles” protocol of Goldwasser et al. [GKR08], whereas our starting point is
the no-signaling MIP of [KRR13b].

The main technical difficulty in using both the [GKR08] and [KRR13b] pro-
tocols by a sublinear time verifier is that in both protocols, the verifier needs
to compute an error corrected encoding of the input x. More specifically, the
verifier needs to compute the low degree extension of x, denoted LDEx. Since
error-correcting codes are very sensitive to changes in the input, a sub-linear
algorithm has no hope to compute LDEx.

The key point is that in both the [GKR08] and the [KRR13b] protocols, it
suffices for the verifier to check the value of LDEx at relatively few randomly
selected points (this property was also used by [CKLR11] in their work on mem-
ory delegation). Hence, it will be useful for us to view both the [GKR08] and
[KRR13b] protocols as protocols for producing a sequence of points J in the
low degree extension of x and a sequence of corresponding values v with the
following properties:

– If x ∈ L and the prover(s) honestly follow the protocol then LDEx(J) = v .
– If x /∈ L then no matter what the cheating prover does (resp., no-signaling

cheating prover do), with high probability the verifier outputs J, v such that
LDEx(J) �= v .

Hence, the verifiers in both protocols first run this subroutine to produce J and
v and then accept if and only if LDEx(J) = v . Remarkably, in both cases, in the
protocol that produces J and v , the verifier does not need to access x.

The next step in [RVW13] is a parallel repetition of the foregoing protocol
in order to reduce the soundness error. Once the soundness error is sufficiently
small, [RVW13] argue that for every x that is ε-far from L, no matter what the
cheating prover does (in the parallel repetition of the base protocol), the verifier
will output J, v such that not only LDEx(J) �= v , but furthermore, x is far from
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any x′ such that LDEx′(J) = v . This steps simply follows by taking a union
bound over all x′ that are close to x.

We borrow this step almost as-is from [RVW13] except for the following
technical difficulty - it is not known whether parallel repetition decreases the
soundness error of no-signaling MIP protocols.4 However, we observe that the
[KRR13b] protocol already allows for sufficient flexibility in choosing its sound-
ness error so that the parallel repetition step can be avoided.

The last step of [RVW13] is designing an IPP protocol for a language that
they call PVALJ,v (for “polynomial evaluation”). This language, parameterized
by J and v , consists of all strings x such that LDEx(J) = v . Using this IPP
for PVAL, the IPP verifier for a language L first runs the (parallel repetition of
the) [GKR08] protocol, to produce J, v as above. Then, the IPP verifier runs the
PVALJ,v protocol and accepts if and only if the PVAL-verifier accepts. If x ∈ L
then we know that LDEx(J) = v and therefore the PVAL-verifier will accept,
whereas if x is far from L then x is far from PVALJ,v and therefore the PVAL-
verifier will reject. Hence the (parallel repetition of the) [GKR08] protocol is
sequentially composed with the IPP for PVAL.

For the no-signaling case, we also use the [RVW13] IPP protocol for PVAL.
A technical difficulty that arises is that in contrast to the IPP setting in which
sequential composition (of two interactive proofs) is trivial, here we need to com-
pose a 1-round no-signaling MIP with an IPP protocol, to produce a no-signalling
MIPP. We indeed prove that such a composition holds thereby constructing a
no-signaling MIPP as we desire.

From No-Signaling MIPP to Arguments of Proximity. The transformation
from a no-signaling MIPP to an argument of proximity is based on the assump-
tion that there exists a fully homomorphic encryption scheme (or alternatively, a
computational private information retrieval scheme) and is practically identical
to that in [KRR13a]. More specifically, the argument’s verifier uses the MIPP
verifier to generate a sequence of queries q1, . . . , q� to the � provers. It encrypts
each query using a fresh encryption key as follows: q̂i ← Encki

(qi). The argu-
ment’s verifier sends all the encrypted queries to the prover. Given q̂1, . . . , q̂�, the
prover uses the homomorphic evaluation algorithm to compute the MIPP answers
“underneath” the encryption. It sends these answers back to the verifier, which
can decrypt the encrypted answers and decide. As in [KRR13a] we show that
if the MIPP is sound against no-signaling strategies then, assuming the seman-
tic security of the FHE, the resulting protocol is sound against computationally
bounded adversaries.

Linear-TimeDelegation.Weshowthatusing the foregoingone-roundargument
of proximity for every language L ∈ P and good error-correcting codes, one can
easily construct a one-round delegation protocol where the verifier runs in linear
time (in contrast, the verifier in [KRR13b] runs in quasi-linear time). A similar
observation, in the context of PCPs, was previously pointed out by [EKR04].

4 Holenstein [Hol09] showed a parallel repetition theorem for no-signaling 2-prover
MIPs. It is not known whether this result can be extended to 3 or more provers.
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Let L ∈ P and consider L′ = {ECC(x) : x ∈ L} where ECC is an error cor-
recting code with constant rate, constant relative distance, linear-time encoding
and polynomial-time decoding5. Then, L′ ∈ P and so it has an argument of
proximity with a sublinear-time verifier. We construct a delegation scheme for
L by having both the verifier and the prover compute x′ = ECC(x) and run
the argument of proximity protocol with respect to x′. Since the argument of
proximity verifier runs in sublinear time, and ECC(x) can be computed in linear-
time, the resulting delegation verifier runs in linear-time. Soundness follows from
the fact that a cheating prover that convinces the argument-system verifier to
accept x /∈ L can be used to convince the argument-of-proximity verifier to
accept ECC(x) which is indeed far from L′.

A similar result can be obtained for interactive proofs for low-depth compu-
tation based on the results of [RVW13] by using an error-correcting code that
can be decoded in logarithmic-depth (such a code was constructed by Spiel-
man [Spi96]).

2.2 Our Negative Results

We prove that assuming the existence of exponentially hard pseudorandom gen-
erators, there exists a constant ε > 0 for which there does not exist a no-signaling
ε-MIPP for all of P with query complexity q and communication complexity c
such that q ·c = o(n) (where n is the input length). We also show a similar result
for ε-IPP.

We start by focusing on our lower bound for MIPP. The high-level idea is
the following: Suppose (towards contradiction) that every language in P has a
no-signaling MIPP with query complexity q and communication complexity c
where q · c = o(n). The fact that q = o(n) implies that (for every language in P),
there is some set of coordinates S ⊆ [n] of size O(n/q) that with high (constant)
probability the verifier does not query.

As a first step, suppose for the sake of simplicity that there is a fixed (univer-
sal) set of coordinates S ⊆ [n] such that with high probability the verifier never
queries the coordinates in S, for every language in P (for example, if the ver-
ifier’s queries are non-adaptive and are generated before it communicates with
the prover, then such a set S must exist). We derive a contradiction by show-
ing that one can use the no-signaling MIPP to construct a no-signaling MIP for
languages in NP\P with communication c = o(n). The latter was shown to be
impossible, assuming that NP � DTIME(2o(n)) [DLN+04] (see also [Ito10]).

The basic idea is the following: Take any language L ∈ NP\P that is assumed
to be hard to compute in time 2o(n), and convert it into the language L′ ∈ P,
defined as follows: x′ ∈ L′ if and only if x′

S is a valid witness of x′
[n]\S in the

underlying NP language L. The no-signaling MIP for L will simply be the no-
signaling ε-MIPP for L′, where the MIP verifier simulates the ε-MIPP verifier
with oracle access to x′ where x′

[n]\S = x, and x′
S = 0|S|. Note that the MIP

verifier, which takes as input x (supposedly in L), cannot (efficiently) generate a

5 Such codes are known to exist, see, e.g., [Spi96].
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corresponding witness w and set x′
S = w. But the point is that it does not need

to, since S was chosen so that with high probability the MIPP verifier for L′ will
not query x′ on coordinates in S.

There are several problems with this approach. First, the witness can be very
long compared to x, and the set S may be very small compared to n. In this
case we will not be able to fit the entire witness in the coordinate set S. Second,
after running the MIPP, the verifier is convinced that x′ is close to an instance
in L′. However, this does not imply that x is in L (and can only imply that x is
close to L).

One can fix these two problems with a single solution: Instead of setting
x′
[n]\S = x we set x′

[n]\S = ECC(x), where ECC is a error-correcting code with
efficient encoding, that is resilient to 2ε-fraction of errors. Now, we can take
ECC(x) so that |ECC(x)| is very large compared to |w|, so that we can fit all
of the witness in the coordinate set S. Moreover, if |ECC(x)| > |w| then if x′

is ε-close to L′ then x′
[n]\S is 2ε-close to L. This, together with the fact that

ECC(x) is resilient to 2ε-fraction of errors implies that the encoded element is
indeed in L.

The foregoing idea indeed seems to work if there was a fixed (universal) set S
that the MIPP verifier does not query (with high probability). However, this is
not necessarily the case, and this set S may be different for different languages
in P. In particular, we cannot claim that for the language L′ the set S is exactly
where the witness lies. Namely, it may be that the verifier in the underlying
MIPP always queries some coordinates in S.

We solve this problem by using repetitions. Namely, every element x′ ∈ L′

will consist of many instances (encoded using an error-correcting code) along
with many witnesses; i.e., x′ = (ECC(x1, . . . , xm), w1, . . . , wm), where each wj is
a witness for the NP statement xj ∈ L. Now, suppose that the verifier makes q
queries to x′ (where q = o(n)). Then if we take m = 4q then we know that 3/4
of the (xj , wj)’s are not queried.

As above, we derive a contradiction by showing that one can use the no-
signaling MIPP to construct a no-signaling MIP for languages in NP\P with o(n)
communication, (which is known to be impossible for languages that cannot be
computed in time 2o(n) [DLN+04,Ito10]). However, now the no-signaling MIP
construction will be different: Given an instance x (supposedly in L), the MIP
verifier will choose a random i∗ ∈R [m], along with m random instance and
witness pairs (x1, w1), . . . , (xm, wm), where xi∗ = x and wi∗ can be arbitrary
(assumed not to be queried).

We need to argue that with probability at least 3/4 the verifier will not query
the coordinates of wi∗ , and thus with probability at least 3/4 the MIP verifier will
successfully simulate the MIPP verifier. If the queries of the MIPP verifier were
chosen before interacting with the prover then this would follow immediately
from the fact that i∗ ∈ [m] is chosen at random. However, the MIPP verifier may
choose its oracle queries after interacting with the MIPP provers, and therefore
we need to argue that the MIPP provers also do not know i∗. Note that the
MIPP provers see all of x1, . . . , xm. Hence, in order to claim that the provers
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cannot guess i∗ it needs to be the case that x is distributed identically to the
other x1, . . . , xm.

Hence, we seek a language L ∈ NP\P for which there exists a distribution D
(distributed over L) such that:

1. It is computationally hard to distinguish between x ∈R D and x �∈ L (i.e., L
is hard on the average); and

2. x ∈R D can be sampled together with a corresponding NP witness.

We note that the first requirement is needed to obtain a contradiction (and
replaces the weaker assumption that L ∈ NP\P) whereas the second assumption
is required so that we can sample x1, . . . , xm (together with the corresponding
witnesses) so that MIPP protocol cannot distinguish between x and any of the
xj ’s (thereby hiding i∗). In can be easily verified that both requirement are met
by considering D which is the output of a cryptographic pseudorandom generator
(PRG). Hence the language L that we use is precisely the output of such a PRG.

Indeed, we can only argue that our no-signaling MIP has average-case com-
pleteness (with respect to the distribution D), since if x ∈ L is distributed
differently from (x1, . . . , xm) then the verifier of the MIPP may always query the
coordinates where the witness of x is embedded, in which case the MIP verifier
will fail to simulate. However, for random x ∈R L the provers (and verifier) in
the MIPP cannot guess i∗ with any non-negligible advantage, and therefore the
verifier will not query the coordinates of wi∗ with probability at least 3/4, in
which case the MIP verifier will succeed in simulating the underlying ε-MIPP
verifier. We refer the reader to Sect. 4 for further details.

A Lower Bound for IPP. To obtain a multiplicative lower bound for IPP, we
follow the same paradigm outlined above for MIPP’s with no-signaling soundness.
More specifically, we consider a language L ∈ NP and the corresponding language

L′ =
{(

ECC(x1, . . . , xm), w1, . . . , wm

)
: wj is an NP-witness for xj

}

as above. We show that an IPP protocol for L′ implies a (standard) interactive-
proof for L with similar communication complexity. Here we obtain a contra-
diction by arguing that (assuming exponential hardness) there are languages in
NP\P for which every interactive proof require Ω(n) communication. The lat-
ter is based on the proof that IP ⊆ PSPACE (i.e., the “easy” direction in the
IP = PSPACE theorem).

Given the [RVW13] positive result of IPP for low depth computations, we
would like to show that our lower bound is not just for languages in P but even
for languages, say, in NC1 (thereby showing that the [RVW13] result is tight).
To do so we observe that if (1) the error correcting code that we use has an
encoding procedure that can be computed by an NC1 circuit and (2) the cryp-
tographic PRG can be computed in NC1, then indeed L′ ∈ NC1.

A Lower Bound for One-Round Arguments of Proximity. For one-round
arguments of proximity, we show a similar lower-bound of q ·c = Ω(n), assuming
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the argument has adaptive soundness, and the proof of (adaptive) soundness is
via a black-box reduction to some falsifiable cryptographic assumption.

Loosely speaking, a cryptographic assumption is falsifiable (a notion due to
Naor [Nao03]) if there is an efficient way to “falsify it”, i.e., to demonstrate that
it is false. We note that most standard cryptographic assumptions (e.g., one-way
functions, public-key encryption, LWE etc.) are falsifiable. A black-box reduction
of one cryptographic primitive to another, is a reduction that, using black-box
access to any (possibly inefficient) adversary for the first primitive, breaks the
security of the second primitive.

Similarly to the MIPP and IPP lower bounds, we consider the languages L
and L′, as above, where L ∈ NP is exponentially hard on average and L ∈ P. We
prove that if there exists an adaptively sound one-round argument of proximity
for L′ with q ·c = o(n) then there exists an adaptively sound one-round argument
for L with o(n) communication (in the crs model).

We then rely on a result of Gentry and Wichs [GW11], which shows that
there does not exist a one-round argument for exponentially hard (on average)
NP languages, with adaptive soundness and black-box reduction to a falsifiable
assumption.

We conclude that P does not have an adaptively sound one-round argument of
proximity with q ·c = o(n), and a black-box reduction to a falsifiable assumption.
We refer the reader to the full version for details.

3 Definitions

In this section we define arguments of proximity and MIPs of proximity (with
soundness against no-signaling strategies). See the full version for additional
standard definitions.

Notation. For x, y ∈ {0, 1}n, we denote the Hamming distance of x and y by
Δ(x, y) def= |{i ∈ [n] : xi �= yi}|. We say that x is ε-close to y if Δ(x, y) ≤ δ. We
say that x is ε-close to a set S ⊆ {0, 1}n if there exists y ∈ S such that x is
ε-close to y.

If A is an oracle machine, we denote by Ax(z) the output of A when given
oracle access to x and explicit access to z.

For a vector a = (a1, . . . , a�) and a subset S ⊆ [�], we denote by aS the
sequence of elements of a that are indexed by indices in S, that is, aS = (ai)i∈S .

For a distribution A, we denote by a ∈R A a random variable distributed
according to A (independently of all other random variables). We will measure
the distance between two distributions by their statistical distance, defined as
half the l1-distance between the distributions. We will say that two distributions
are δ-close if their statistical distance is at most δ.

3.1 Arguments of Proximity

An interactive argument of proximity for a language L consists of a polynomial-
time verifier that wishes to verify that x is close (in Hamming distance) to some
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x′ such that x′ ∈ L, and a prover that helps the verifier to decide. The verifier is
given as input n ∈ N, a proximity parameter ε = ε(n) > 0 and oracle access to
x ∈ {0, 1}n (and its oracle queries are counted). The prover gets as input ε and
x. The two parties interact and at the end of the interaction the verifier either
accepts or rejects. We require that if x ∈ L then the verifier accepts with high
probability but if x is ε-far from L, then no computationally bounded prover can
convince the verifier to accept with non-negligible (in n) probability.

We focus on 1-round arguments of proximity systems. Such an argument-
system consists of a single message sent from the verifier V to the prover P ,
followed by a single message sent from the prover to the verifier.

Let ε = ε(n) ∈ (0, 1) be a proximity parameter. Let T : N → N and s : N →
[0, 1] be parameters. We say that (V, P ) is a one-round argument of ε-proximity
for L, with soundness (T, s), if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V x(|x|, ε) accepts with over-
whelming probability, after interacting with P (ε, x).

2. Soundness: For every family of circuits {P ∗
n}n∈N of size poly(T (n)) and for

all sufficiently large x /∈ L, the verifier V x(|x|, ε) rejects with probability
≥ 1 − s(|x|), after interacting with P ∗

|x|(ε, x).

3.2 Multi-prover Interactive Proofs (MIP)

Let L be a language and let x be an input of length n. In a one-round �-prover
interactive proof, � computationally unbounded provers, P1, . . . , P�, try to con-
vince a (probabilistic) poly(n)-time verifier, V , that x ∈ L. The input x is known
to all parties.

The proof consists of only one round. Given x and its random string, the
verifier generates � queries, q1, . . . , q�, one for each prover, and sends them to
the � provers. Each prover responds with an answer that depends only on its own
individual query. That is, the provers respond with answers a1, . . . , a�, where for
every i we have ai = Pi(qi). Finally, the verifier decides wether to accept or
reject based on the answers that it receives (as well as the input x and its
random string).

We say that (V, P1, . . . , P�) is a one-round multi-prover interactive proof sys-
tem (MIP) for L, with completeness c ∈ [0, 1] and soundness s ∈ [0, 1] (think of
s < c) if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V accepts with probability c,
over the random coins of V , P1, . . . , P�, after interacting with P1, . . . , P�, where
c is a parameter referred to as the completeness of the proof system.

2. Soundness: For every x �∈ L, and any (computationally unbounded, possibly
cheating) provers P ∗

1 , . . . , P ∗
� , the verifier V rejects with probability ≥ 1 − s,

over the random coins of V , after interacting with P ∗
1 , . . . , P ∗

� , where s is a
parameter referred to as the error or soundness of the proof system.

Important parameters of an MIP are the number of provers, the length of
queries, the length of answers, and the error. We say that the proof-system has
perfect completeness If completeness hold with probability 1 (i.e. c = 1).
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No-Signaling MIP. We will consider a variant of the MIP model, where the
cheating provers are more powerful. In the MIP model, each prover answers
its own query locally, without knowing the queries that were sent to the other
provers. The no-signaling model allows each answer to depend on all the queries,
as long as for any subset S ⊂ [�], and any queries qS for the provers in S, the
distribution of the answers aS , conditioned on the queries qS , is independent of
all the other queries.

Intuitively, this means that the answers aS do not give the provers in S
information about the queries of the provers outside S, except for information
that they already have by seeing the queries qS .

Formally, denote by D the alphabet of the queries and denote by Σ the
alphabet of the answers. For every q = (q1, . . . , q�) ∈ D�, let Aq be a distribution
over Σ�. We think of Aq as the distribution of the answers for queries q.

We say that the family of distributions {Aq}q∈D� is no-signaling if for every
subset S ⊂ [�] and every two sequences of queries q, q′ ∈ D�, such that qS = q′

S ,
the following two random variables are identically distributed:

– aS , where a ∈R Aq

– a′
S where a′ ∈R Aq′

If the two distributions are δ-close, rather than identical, we say that the family
of distributions {Aq}q∈D� is δ-no-signaling.

An MIP (V, P1, . . . , P�) for a language L is said to have soundness s against
no-signaling strategies (or provers) if the following (more general) soundness
property is satisfied:

2. Soundness: For every x �∈ L, and any no-signaling family of distributions
{Aq}q∈D� , the verifier V rejects with probability ≥ 1 − s, where on queries
q = (q1, . . . , q�) the answers are given by (a1, . . . , a�) ∈R Aq, and s is the
soundness parameter.

If the property is satisfied for any δ-no-signaling family of distributions
{Aq}q∈D� , we say that the MIP has soundness s against δ-no-signaling strategies
(or provers).

MIP of Proximity (MIPP). Let L be a language, let x be an input of length n
(which we refer to as the main input) and let ε = ε(n) ∈ (0, 1) be a proximity
parameter. In a one-round �-prover interactive proof of proximity, � computation-
ally unbounded provers, P1, . . . , P�, try to convince a (probabilistic) polynomial-
time verifier, V , that the input x is ε-close (in relative Hamming distance) to
some x′ ∈ L. The provers have free access to n, ε and x. The verifier has free
access to n and ε and oracle access to x (and the number of oracle queries is
counted).

We say that (V, P1, . . . , P�) is a one-round multi-prover interactive proof sys-
tem of ε-proximity (ε-MIPP) for L, with completeness c ∈ [0, 1] and sound-
ness s ∈ [0, 1], if the following properties are satisfied:

1. Running Time: The verifier runs in polynomial time, i.e., time polynomial
in the communication complexity and the number of oracle queries.
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2. Completeness: For every x ∈ L the verifier V accepts with probability c,
after interacting with P1, . . . , P�.

3. Soundness: For every x that is ε-far from L, and any (computationally
unbounded, possibly cheating) provers P ∗

1 , . . . , P ∗
� , the verifier V rejects with

probability ≥ 1 − s, after interacting with P ∗
1 , . . . , P ∗

� .

We denote such a proof system by ε-MIPP (and omit the soundness and complete-
ness parameters from the notation). We say that the proof-system has perfect
completeness if completeness hold with probability 1 (i.e. c = 1). The parame-
ters we are mainly interested in are the query complexity and the communication
complexity.

No-Signaling MIPP. An ε-MIPP, (V, P1, . . . , P�) for a language L is said to
have soundness s against no-signaling strategies (or provers) if the following
(more general) soundness property is satisfied:

2. Soundness: For every x that is ε-far from L, and any no-signaling family of
distributions {Aq}q∈D� , the verifier V rejects with probability ≥ 1 − s, where
on queries q = (q1, . . . , q�) the answers are given by (a1, . . . , a�) ∈R Aq, and s
is the error parameter.

If the property is satisfied for any δ-no-signaling family of distributions {Aq}q∈D� ,
we say that the MIP has soundness s against δ-no-signaling strategies (or provers).

4 Lower Bound for No-Signaling MIPP

In this section we prove a lower bound, showing that there does not exist a
no-signaling MIPP for all of P with query complexity q and communication
complexity c such that q·c = o(n) (where n is the input length). More specifically,
for every q we construct a language L in P and prove that if exponentially hard
pseudo-random generators exist then for any no-signaling ε-MIPP for L with
query complexity q and communication complexity c, it must be the case that
q · c = Ω(n). In the full version we show how to extend the result to IPPs and
to arguments of proximity.

In what follows we denote by τ the security parameter.

Definition 1. A pseudo-random generator G : {0, 1}n → {0, 1}�(n) (with stretch
�(n) > n) is said to be exponentially hard if for every circuit family {Aτ}τ of
size 2o(τ),

∣∣∣∣ Pr
s∈R{0,1}τ

[Aτ (1τ , G(s)) = 1] − Pr
y∈R{0,1}�(τ)

[Aτ (1τ , y) = 1]
∣∣∣∣ = negl(τ).

Theorem 7. Assume the existence of exponentially hard pseudo-random gener-
ators. There exists a constant ε > 0 such that for every q = q(n) ≤ n, there exists
a language L ∈ P such that every MIPP for testing ε-proximity to L with com-
pleteness 2/3, soundness 1/3, query complexity q and communication complexity
c it holds that q · c = Ω(n).
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Remark 1. The above theorem holds with respect to any constant completeness
parameter c > 0 and constant soundness parameter s such that s < c, and we
chose c = 2/3 and s = 1/3 only for the sake of concreteness.

Remark 2. The assumption in Theorem 7 can be reduced to sub-exponentially
hard pseudo-random generators (i.e., it is infeasible for circuits of size 2τδ

to
distinguish the output of the generator from uniform, for some δ > 0), rather
than exponential hardness, at the cost of a weaker implication (i.e., q·c = Ω(nδ)).

Proof of Theorem 7. We start by defining the notion of average-case no-
signaling MIP (in the crs model), which is used in the proof of Theorem 7. We
note that this average-case completeness seems too weak for applications and we
define this weak notion only for the sake of the proof of Theorem 7.

Definition 2. An average-case no-signaling MIP in the common random string
(crs) model, for a language L, with completeness c and soundness s, consists of
(V, P1, . . . , P�, crs), where as before V is the verifier, P1, . . . , P� are the provers,
and crs is a common random string of length poly(n), chosen uniformly at ran-
dom and given to all parties. In particular, V ’s queries and decision may depend
on the crs, and the answers generated by both honest and cheating provers may
depend on the crs. The following completeness and soundness conditions are
required:

– Average-Case Completeness. For all sufficiently large n ∈ N,

Pr
[
(V, P1, . . . , P�)(x, crs) = 1

] ≥ c,

where the probability is over uniformly distributed x ∈R L ∩ {0, 1}n, over
uniformly generated crs ∈R {0, 1}poly(n), and over the random coin tosses of
the verifier V .

– Soundness Against No-Signaling Provers. For every x �∈ L, and every
family of distributions {Aq,crs}q∈D�,crs∈{0,1}poly(n) such that for every crs ∈
{0, 1}poly(n) the family of distributions {Aq,crs}q∈D� is no-signaling, the ver-
ifier V rejects with probability ≥ 1 − s, where the answers corresponding to
(q, crs) are given by (a1, . . . , a�) ∈R Aq,crs.

The following proposition, which we use in the proof of Theorem 7, follows
from [DLN+04] (see also [Ito10]).

Proposition 1. Suppose that a language L has an average-case no-signaling MIP
in the crs model, communication complexity c = c(n) (where n is the instance
length), and with constant completeness and soundness (where the soundness para-
meter is smaller than the completeness parameter). Then, there exists a randomized
algorithm D that runs in time poly(n, 2c) such that:

– For every n ∈ N,
Pr

x∈RL∩{0,1}n
[D(x) = 1] ≥ 2/3

where the probability is also over the coin tosses of D.
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– For every x �∈ L it holds that

Pr[D(x) = 1] ≤ 1/3

where the probability is over the coins tosses of D.

We note that [DLN+04,Ito10] did not consider the crs model nor average-case
completeness, but the claim extends readily to this setting as well.

We are now ready to prove Theorem 7.

Proof of Theorem 7. Assume that there exists a pseudo-random generator (PRG),
denoted by G : {0, 1}τ → {0, 1}2τ , that is exponentially secure. Namely, every
adversary of size 2o(τ) cannot distinguish between uniformly distributed r ∈R

{0, 1}2τ and G(s) for uniformly distributed s ∈R {0, 1}τ , with non-negligible
advantage. For sake of simplicity, we assume that G is injective6.

Let ε > 0 be a constant for which there exists a (good) error-correcting-code,
denoted by ECC, with constant rate and efficient encoding that is resilient to
(2ε)-fraction of adversarially chosen errors.

Fix any query complexity q = o(n).7 We show that there exists a language
L ∈ P such that for every no-signaling ε-MIPP for L with query complexity q
and communication complexity c (and completeness 2

3 and soundness 1
3 ) it must

be the case that q · c = Ω(n).
Consider the following language:

L =
{
(ECC(r1, . . . , rm), s1, . . . , sm) : ∀i ∈ [m], G(si) = ri

}
,

where m = 4q and τ = |si| = Θ(n/q), where n = |(ECC(r1, . . . , rm), s1, . . . , sm)|.
The fact that |si| = Θ(n/q) follows from the fact that ECC has constant rate
(i.e., |ECC(z)| = O(|z|)).

The fact that ECC is efficiently decodable and G is efficiently computable
implies that L ∈ P. Suppose for contradiction that there exists a no-signaling
ε-MIPP for L, denoted by (V, P1, . . . , P�), with communication complexity c such
that c = o(n/q).

Consider the following NP language

LG = {r : ∃s s.t. G(s) = r}.

Proposition 1, together with the fact that G is exponentially secure, implies
that LG does not have an average-case MIP in the crs model with soundness
against no-signaling strategies, with communication complexity o(τ) for instances
of length τ .

We obtain a contradiction by constructing an average-case MIP in the crs
model with soundness against no-signaling strategies, with communication com-
plexity o(τ). To this end, consider the following MIP in the crs model for LG,
denoted by (V ′, P ′

1, . . . , P
′
� , crs).

6 We note that this assumption can be easily removed by replacing the use of the
uniform distribution over the language L′ (defined below) with the distribution G(s)
for s ∈R {0, 1}τ .

7 Note that for q = Ω(n) the theorem is trivially true.
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– The crs consists of m uniformly distributed seeds s1, . . . , sm ∈R {0, 1}τ , and
a random coordinate i ∈R [m].

– The verifier V ′, on input r ∈ {0, 1}2τ , does the following:
1. Let ri = r, and for every j ∈ [m] \ {i}, let rj = G(sj).
2. Emulate V with oracle access to (ECC(r1, . . . , rm), s1, . . . , sm).

(Note that with overwhelming probability r �= G(si), and thus ri �= G(si).
However V will not notice this unless it queries coordinates that belong
to si.)

– The provers P ′
1, . . . , P

′
� , emulate P1, . . . , P� on input (ECC(r1, . . . , rm), s1,

. . . , sm), while setting ri = r and setting si = s where r = G(s) (assum-
ing that such s exists).8 If such s does not exist then the provers P ′

1, . . . , P
′
�

send a reject message, and abort.

Note that the communication complexity of (V ′, P ′
1, . . . , P

′
� , crs) is equal to the

communication complexity of (V, P1, . . . , P�, crs), denoted by c. By our assump-
tion, c = o(n/q) = o(τ), as desired.

Average-Case Completeness. We need to prove that Pr[(V ′, P ′
1, . . . , P

′
�)

(r, crs) = 1] ≥ 1
2 , where the probability is over uniformly distributed r ∈R (LG)τ ,

over uniformly generated crs = (s1, . . . , sm, i) where each sj ∈R {0, 1}τ , i ∈R [m],
and over the random coin tosses of the verifier V .

Let GOOD denote the event that V ′ does not query any of the coordinates
that belong to si, where i ∈ [m] is the random coordinate chosen by V ′. Notice
that for every r ∈ LG,

Pr
[
(V ′, P ′

1, . . . , P
′
�)(r, crs) = 1 | GOOD]

=

Pr
[
(V, P1, . . . , P�)(ECC(r1, . . . , rm), s1, . . . , sm) = 1 | si is not queried

] ≥ 2
3

where the probabilities are over a uniformly distributed crs and the random
coin tosses of V ′ and V , and where in the second equation ri = r and si = s,
where r = G(s). Recall that the fact that r ∈ LG implies that such s exists.

The fact that

Pr[(V ′, P ′
1, . . . , P

′
�)(r, crs)=1] ≥ Pr[(V ′, P ′

1, . . . , P
′
�)(r, crs)=1| GOOD]·Pr[GOOD]

implies that it suffices to prove that Pr[GOOD] ≥ 3
4 , where the probability is over

uniformly distributed r ∈R LG, uniformly distributed crs, and over the random
coin tosses of V ′.

Note that r1, . . . , rm are all distributed identically to r, and thus V, P1, . . . , P�,
which all receive as input (ECC(r1, . . . , rm), s1, . . . , sm), where ri = r, do not have
any advantage in guessing i (herewe crucially use the fact that theMIPPprovers are
not given access to the crs). Therefore, since V makes at most q queries,

8 This step can be done by a brute force search (since the honest provers are also
computationally unbounded). Nevertheless, we note that typically in proof-systems
for languages in NP the prover is given the NP witness and so this step can also be
done efficiently.
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and since m = 4q, it follows from the union bound that V queries any location
of si with probability at most q

m = 1
4 . Hence, Pr[GOOD] ≥ 3

4 and (average-case)
completeness follows.

Soundness Against No-Signaling Strategies. We prove that for every r /∈
LG, every crs = (s1, . . . , sm, i), and every no-signaling cheating strategy PNS =
(P ∗

1 , . . . , P ∗
� ), it holds that Pr[(V ′, PNS)(r, crs) = 1] ≤ 1

3 , where the probability
is over the random coin tosses of V ′ and PNS.

To this end, fix any r /∈ LG and any crs = (s1, . . . , sm, i) where each sj ∈
{0, 1}τ and i ∈ [m]. Suppose for the sake of contradiction that there exists a no-
signaling cheating strategy PNS = (P ∗

1 , . . . , P ∗
� ) such that Pr[(V ′, PNS)(r, crs) =

1] > 1
3 , where the probability is over the random coin tosses of V ′ and PNS.

Recall that V ′ runs V on input (ECC(r1, . . . , rm), s1, . . . , sm), where ri = r
and where rj = G(sj) for every j ∈ [m] \ {i}. We prove that there exists a
no-signaling cheating strategy, denoted by P̂NS, such that

Pr
[(

V, P̂NS
)

(ECC(r1, . . . , rm), s1, . . . , sm) = 1
]

>
1
3
, (1)

where the probability is over the random coin tosses of V and P̂NS.

The cheating strategy P̂NS simply emulates PNS. Namely, P̂NS, upon receiv-
ing queries (q1, . . . , q�), will emulate PNS(r, crs) upon receiving (q1, . . . , q�), where
r = ri and crs = (s1, . . . , sm, i). Note that P̂NS simulates PNS perfectly, and
therefore indeed Equation (1) holds. Also note that the fact that PNS is a no-
signaling strategy immediately implies that P̂NS is also a no-signaling strategy.

To get a contradiction, it thus remains to show that (ECC(r1, . . . ,
rm), s1, . . . , sm) is ε-far from L. Indeed, the fact that ECC is an error correcting
code resilient to 2ε-fraction of adversarial errors, together with the fact that
r /∈ LG implies that (ECC(r1, . . . , rm), s1, . . . , sm) is ε-far from L, as desired. �
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Abstract. In this paper we consider the problem of extracting secret
key from an eavesdropped source pXY Z at a rate given by the conditional
mutual information. We investigate this question under three different
scenarios: (i) Alice (X) and Bob (Y ) are unable to communicate but
share common randomness with the eavesdropper Eve (Z), (ii) Alice
and Bob are allowed one-way public communication, and (iii) Alice and
Bob are allowed two-way public communication. Distributions having
a key rate of the conditional mutual information are precisely those in
which a “helping” Eve offers Alice and Bob no greater advantage for
obtaining secret key than a fully adversarial one. For each of the above
scenarios, strong necessary conditions are derived on the structure of
distributions attaining a secret key rate of I(X : Y |Z). In obtaining
our results, we completely solve the problem of secret key distillation
under scenario (i) and identify H(S|Z) to be the optimal key rate using
shared randomness, where S is the Gács-Körner Common Information.
We thus provide an operational interpretation of the conditional Gács-
Körner Common Information. Additionally, we introduce simple example
distributions in which the rate I(X : Y |Z) is achievable if and only if
two-way communication is allowed.

Keywords: Information-theoretic security · Public key agreement ·
Gács-Körner Common Information

1 Introduction

A basic information-processing task involves the exchange of secret information
between Alice (X) and Bob (Y ) in the presence of an eavesdropper, Eve (E). If
Alice and Bob have some pre-established key that is secret from Eve, then any
future message M can be transmitted using the key as a one-time pad. Thus,
the problem of private communication can be reduced to the problem of secret
key distillation, which studies the extraction of secret key ΦXY · qZ from some
initial tripartite correlation pXY Z . Here, ΦXY is a perfectly correlated bit and
qZ is an arbitrary distribution. Often, the correlations pXY Z are presented as a
c© International Association for Cryptologic Research 2015
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many-copy source pn
XY Z , and Alice and Bob wish to know the optimal rate of

secret bits per copy that they can distill from this source.
It turns out that Alice and Bob can often enhance their distillation capa-

bilities by openly disclosing some information about X and Y through public
communication [1,8]. In general, Alice and Bob’s communication schemes can
be interactive with one round of communication depending on what particular
messages were broadcasted in previous rounds. Such interactive protocols are
known to generate higher key rates than non-interactive protocols, at least in
the absence of “noisy” local processing by Alice and Bob [8]. Thus, for a given dis-
tribution pXY Z , one obtains a hierarchy of key rates pertaining to the respective
scenarios of no communication, one-way communication, and two-way (interac-
tive) communication. It is also possible to consider no-communication scenarios
in which Alice and Bob have access to some publically shared randomness that is
uncorrelated with their primary source pXY Z . Clearly publically shared random-
ness is a weaker resource than public communication since the latter is able to
generate the former. However, below we will prove even stronger that publically
shared randomness offers no advantage whatsoever for secret key distillation.

For the one-way communication scenario, a single-letter characterization of
the key rate has been proven by Ahlswede and Csiszár [1]. When the unidirectional
communication is from Alice to Bob, we denote the key rate by

−→
K(X : Y |Z),

while
←−
K(X : Y |Z) denotes the rate when communication is from Bob to Alice

only. No formula is known for the two-way key rate of a given distribution, which
we denote by K(X : Y |Z), and the complexity of protocols utilizing interactive
communication makes computing this a highly challenging open problem.

In the special case of an uncorrelated Eve in pXY Z , the key rate is given
by the mutual information I(X : Y ), and this can be achieved using one-way
communication. For more general distributions in which Eve possesses some side
information of XY , the conditional mutual information I(X : Y |Z) is a known
upper bound for the key rate under two-way communication [1,8]. In general
this bound is not tight [9]. Rather, the conditional mutual information quantifies
the key rate when Eve helps Alice and Bob by broadcasting her variable Z. Key
obtained by a helping Eve is also known as private key [4], and private key is still
secret from Eve even though she helps Alice and Bob obtain it. The relevance
of private key naturally arises in situations where Eve functions as a central
server who helps establish secret correlations between Alice and Bob. Thus,
distributions with a secret key rate equaling the private key rate of I(X : Y |Z)
are precisely those in which nothing is gained by a helping Eve.

The objective of this paper is to investigate the types of distributions for
which I(X : Y |Z) is indeed an achievable secret key rate. This will be considered
under the scenarios of (i) publically shared randomness but no communication,
(ii) one-way communication, and (iii) two-way communication. A full solution
to the problem would involve a structural characterization of the distributions
pXY Z whose key rates are I(X : Y |Z). We are able to fully achieve this only
for the no-communication setting, but we nevertheless derive strong necessary
conditions for both the one-way and the two-way scenarios. In the case of one-
way communication, our condition makes use of the key-rate formula derived
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by Ahlswede and Csiszár. For the statement of this formula, recall that three
variables A, B, and C satisfy the Markov chain A − B − C if C is conditionally
independent of A given B; i.e. p(c|b, a) = p(c|b) for letters in the range of A, B,
and C. Then,

Lemma 1 ([1]). For distribution pXY Z ,

−→
K(X : Y |Z) = max

KU |X
I(K : Y |U) − I(K : Z|U), (1)

where the maximization is taken over all auxiliary variables K and U satisfying
the Markov chain KU − X − Y Z, with K and U ranging over sets of size no
greater than |X | + 1. In particular,

−→
K(X : Y |Z) � I(X : Y ) − I(X : Z). (2)

In this paper, we consider when variables KU can be found that satisfy both
KU −X−Y Z and I(K;Y |U)−I(K;Z|U) = I(X : Y |Z). Theorem 2 below offers
a necessary condition on the structure of distributions for which this is possible.
Turning to the scenario of two-way communication, we utilize the well-known
intrinsic information upper bound on K(X : Y |Z). For distribution pXY Z , its
intrinsic information is given by

I(X : Y ↓ Z) := min
Z|Z

I(X : Y |Z) (3)

where the minimization is taken over over all auxiliary variables Z satisfying
XY −Z −Z, with Z having the same range as Z [3]. Thus, the intrinsic informa-
tion is the smallest conditional mutual information achievable after Eve processes
her variable Z. The intrinsic information satisfies K(X : Y |Z) � I(X : Y ↓ Z).
In Theorem 3 below, we identify a large class of distributions for which a channel
Z|Z can be found satisfying I(X : Y |Z) < I(X : Y |Z). This allows us to derive
a necessary condition on distributions having K(X : Y |Z) = I(X : Y |Z).

A brief summary of our results is the following:

– For publically shared randomness with no communication, we identify
H(JXY |Z) as the secret key rate, where JXY is the Gács-Körner Common
Information of Alice and Bob’s marginal distribution pXY . Moreover, this
rate is achievable without using shared randomness. Using this result, the
structure of distributions attaining I(X : Y |Z) can easily be characterized.

– When one-way communication is permitted between Alice and Bob, we show
that the distribution pXY Z must satisfy a certain “block-like” structure in
order to obtain the key rate I(X : Y |Z). Specifically, given some outcome z of
Eve, if there exists collections of events X0 and Y0 for Alice and Bob respec-
tively that satisfy p(Y0|X0, z) = p(X0|Y0, z) = 1, then p(Y0|X0) = p(X0|Y0) =
1; i.e. conclusive determination of whether an event belongs to X0 × Y0 can
be done by each party, regardless of Eve’s outcome.
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– For key distillation with two-way communication, we show that distributions
attaining a key rate of I(X : Y |Z) must also satisfy a certain type of uni-
formity similar to the one-way case. One special class of distributions our
necessary condition applies to are those obtained by mixing a perfectly cor-
related distribution pXY with an uncorrelated one such that the marginals
have the same range and such that Eve’s variable Z specifies which one of the
distributions Alice and Bob hold. We show that unless either Alice or Bob
can likewise identify the distribution from his or her variable, a key rate of
I(X : Y |Z) is unattainable.

– We construct distributions in which a distillation rate of I(X : Y |Z) is
unachievable when the communication is restricted from Alice to Bob, and
yet it becomes achievable if the communication direction is from Bob to Alice.
We further provide an example when I(X : Y |Z) is achievable only if two-way
communication is used.

Before presenting these results in greater detail, we begin in Sect. 2 with a
more precise overview of the key rates studied in this paper. In Sect. 3, we then
present the Gács-Körner Common Information and prove some basic proper-
ties. Section 4 contains our main results, with longer proofs postponed to the
appendix. Finally, Sect. 5 offers some concluding remarks.

2 Definitions

Let us review the relevant definitions of secret key rate under various communi-
cation scenarios. We consider random variables X, Y and Z ranging over finite
alphabets X , Y, and Z respectively. For a general distribution q, we say its
support (denoted by supp[q]) is the collection of x such that q(x) > 0. In all dis-
tillation tasks, we assume that Alice and Bob each have access to one part of an
i.i.d. (identical and independently distributed) source XY Z whose distribution
is pXY Z . Hence, after n realizations of the source, Xn, Y n and Zn belong to
Alice, Bob, and Eve respectively. In addition, Alice and Bob each possess a local
random variable, QA and QB respectively, which are mutually independent from
each other and from XnY nZn. This allows them to introduce local randomness
into their processing of XnY n.

We first turn to the most restrictive scenario, which is key distillation using
publicly shared randomness. The common randomness (c.r.) key rate of X, Y ,
and Z, denoted by Kc.r.(X : Y |Z), is defined to be the largest R such that for
every ε > 0, there is an integer N such that n � N implies the existence of (a)
a random variable W independent of XnY nZn and ranging over some set W,
(b) a random variable K ranging over some set K, and (c) a pair of mappings
f(Xn, QA,W ) and g(Y n, QB ,W ) for which

(i) Pr[f = g = K] > 1 − ε;
(ii) log |K| − H(K|ZnW ) < ε;
(iii) 1

n log |K| � R.
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We next move to the more general scenario of when Alice and Bob are allowed
to engage in public communication. A local operations and public communica-
tion (LOPC) protocol consists of a sequence of public communication exchanges
between Alice and Bob. The ith message exchanged between them is described
by the variable Mi. If Alice (resp. Bob) is the broadcasting party in round i,
then Mi is a function of Xn and QA (resp. Y n and QB) as well as the previous
messages (M1,M2, · · · ,Mi−1). The protocol is one-way if there is only one round
of a message exchange.

For distribution pXY Z , the Alice-to-Bob secret key rate
−→
K(X : Y |Z) is the

largest R that satisfies the above three conditions except with W being replaced
by some message M that is generated by Alice and therefore a function of (Xn,
QA). We can likewise define the Bob-to-Alice key rate

←−
K(X : Y |Z). The (two-

way) secret key rate of X and Y given Z, denoted by K(X : Y |Z), is defined
analogously except with M = (M1,M2, · · · ,Mr) being any random variable gen-
erated by an LOPC protocol [1,8]. The key rates satisfy the obvious relationship:

Kc.r.(X : Y |Z) �
{−→

K(X : Y |Z)←−
K(X : Y |Z)

� K(X : Y |Z). (4)

3 The Gács-Körner Common Information

In this section, we introduce the Gács-Körner Common Information. For every
pair of random variables XY , there exists a maximal common variable JXY in
the sense that JXY is a function of both X and Y , and any other such common
function of both X and Y is itself a function of JXY . Hence, up to relabeling,
the variable JXY is unique for each distribution pXY . In terms of its structure,
a distribution pXY can always be decomposed as

p(x, y) =
∑

JXY =j

p(x, y|j)p(j), (5)

where for any x, x′ ∈ X and y, y′ ∈ Y, the conditional distributions satisfy
p(x, y|j)p(x, y′|j′) = 0 and p(x, y|j)p(x′, y|j′) = 0 if j �= j′. Gács and Körner
identify H(JXY ) as the common information of XY [6].

It is instructive to rigorously prove the statements of the preceding para-
graph. A common partitioning of length t for XY are pairs of subsets (Xi,Yi)t

i=1

such that

(i) Xi ∩ Xj = Yi ∩ Yj = Ø for i �= j,
(ii) p(Xi|Yj) = p(Yi|Xj) = δij , and
(iii) if (x, y) ∈ Xi × Yi for some i, then pX(x)pY (y) > 0.

For a given common partitioning, we refer to the subsets Xi ×Yi as the “blocks”
of the partitioning. The subscript i merely serves to label the different blocks,
and for any fixed labeling, we associate a random variable C(X,Y ) such that
C(x, y) = i if (x, y) ∈ Xi × Yi. Note that each party can determine the value of
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J from their local information, and it is therefore called a common function of
X and Y . A maximal common partitioning is a common partitioning of greatest
length. The following proposition is proven in the appendix.

Proposition 1
(a) Every pair of finite random variables XY has a unique maximal common

partitioning, which we denote by JXY .
(b) Variable JXY satisfies

H(JXY ) = max
K

{H(K) : 0 = H(K|X) = H(K|Y )}

iff JXY is a common function for the maximal common partitioning of XY .
(c) If f(X) = g(Y ) = C is any other common function of X and Y , then

C(JXY ).

With property (a), we can speak unambiguously of the maximal common par-
titioning of a distribution pXY . Consequently the variable JXY is unique up to
a relabeling of its range. The following proposition from [6] provides a useful
characterization of values x and x′ that belong to the same block in a maximal
common partitioning.

Proposition 2 ([6]). If JXY (x) = JXY (x′) for x, x′ ∈ JXY , then there exists
a sequence of values

xy1x1y2x2 · · · ynx′

such that p(x, y1)p(y1, x1)p(x1, y2) · · · p(yn, x′) > 0.

4 Results

4.1 Key Distillation Using Auxiliary Public Randomness

The Gács and Körner Common Information plays a central role in the problem
of key distillation with no communication. To see a preliminary connection, we
recall an operational interpretation of H(JXY ) that Gács and Körner prove
in Ref. [6]. The task involves Alice and Bob constructing faithful encodings of
their respective sources X and Y , and H(JXY ) quantifies the asymptotic average
sequence-length of codewords per copy such that both Alice and Bob’s encodings
output matching codewords with high probability over this sequence [6].

For the task of key distillation, Alice and Bob are likewise trying to con-
vert their sources into matching sequences of optimal length. However, the key
distillation problem is different in two ways. On the one hand there is the addi-
tional constraint that the common sequence should be nearly uncorrelated from
Eve. On the other hand, unlike the Gács-Körner problem, it is not required that
these sequences belong to faithful encodings of the sources X and Y . Neverthe-
less, we find that H(JXY |Z) quantifies the distillable key when Alice and Bob
are unable to communicate with one another. This is also the rate even if Alice
and Bob have access to auxillary public randomness which is uncorrelated with
their primary distribution.
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Theorem 1. Kc.r.(X : Y |Z) = H(JXY |Z). Moreover, H(JXY |Z) is achievable
with no additional common randomness.

Proof. See the appendix. Many parts of the converse proof follow analogously
to the converse proof of Theorem 2.6 in Ref. [4] (see also [5]).

One can also consider a related quantity known as the maximal conditional
common function JXY |Z , which is the collection of variables {JXY |Z=z : z ∈ Z}
with JXY |Z=z being a maximal common function of the conditional distribution
pXY |Z=z. The variable JXY |Z is again unique for every distribution pXY Z up to
relabeling. Since JXY |Z=z is computed from both X and Y with the additional
information that Z = z, maximality of JXY |Z=z ensures that JXY is a function
of JXY |Z=z for each z ∈ Z. In other words, a labeling of JXY and JXY |Z can
be chosen so that JXY is a coarse-graining of JXY |Z . Therefore, H(JXY |Z) �
H(JXY |Z |Z) with equality iff H(JXY |Z |ZJXY ) = 0. When the equality condition
holds, it means that for each z ∈ Z, the value of JXY |Z=z can be determined
from JXY alone. Hence, the variables JXY and JXY |Z must be equivalent up to
relabeling. From this it follows that a distribution satisfies H(JXY |Z |ZJXY ) = 0
iff it admits a decomposition of

p(x, y, z) =
∑

JXY =j

p(x, y|z, j)p(j|z)p(z), (6)

where for any x, x′ ∈ X , y, y′ ∈ Y and z, z′ ∈ Z the conditional distributions
satisfy

p(x, y|z, j)p(x, y′|z′, j′) = 0, p(x, y|j)p(x′, y|z′, j′) = 0 if j �= j′.

The class of distributions of this form we shall call uniform block (UB)
(see Fig. 1).

The quantity H(JXY |Z |Z) is the private key rate when Eve is helping yet
Alice and Bob are still prohibited from communicating with one another. Thus,
the difference H(JXY |Z |Z)−H(JXY |Z) quantifies how much Eve can assist Alice
and Bob in distilling key when no communication is exchanged between the two.
From the previous paragraph, it follows that Eve offers no assistance (i.e. the
private key rate equals the secret key rate) in the no-communication scenario iff
the distribution is UB.

Returning to Theorem 1, we can now answer the underlying question of this
paper for no-communication distillation. By using the chain rule of conditional
mutual information and the fact that JXY is both a function of X and Y , we
readily compute

I(X : Y |Z) = I(JXY X : Y |Z) = I(JXY : Y |Z) − I(X : Y |ZJXY )
= H(JXY |Z) − I(X : Y |ZJXY ). (7)

The conditional mutual information is thus an achievable rate whenever I(X :
Y |ZJXY ) = 0. Distributions satisfying this equality are uniform block with
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Fig. 1. Example of a distribution that is not uniform block (a) and one that is (b).
Each entry corresponds to a conditional probability value p(x, y|z). UB distribution (b)
is not uniform block independent (UBI) since the block in the Z = 1 plane contains
correlations between Alice and Bob.

the extra condition that p(x, y|z, j) = p(x|z, j)p(y|z, j) in Eq. (6). We shall
call distributions having this form uniform block independent (UBI). Putting
everything together, we find that

Corollary 1. A distribution pXY Z satisfies Kc.r.(X : Y |Z) = I(X : Y |Z) if
and only if it is uniformly block independent.

Remark 1. The no-communication results discussed above and proven in the
appendix are already implicit in the work of Csiszár and Narayan. In Ref. [4],
they study various key distillation scenarios with Eve functioning as a helper
and limited communication between Alice and Bob. Included in this is the no-
communication scenario with and without helper. However, being very general in
nature, Csiszár and Narayan’s results involve optimizations over auxiliary ran-
dom variables, and it is therefore still a non-trivial matter to discern Theorem 1
and Corollary 1 directly from their work. Additionally, they do not consider the
scenario of just shared public randomness.

4.2 Obtaining I(X : Y |Z) with One-Way Communication

In this section we want to identify the type of tripartite distributions from which
secret key can be distilled at the rate I(X : Y |Z) using one-way communication.
Since K(X : Y |Z) � I(X : Y |Z), our analysis deals with distributions for which
one-way communication suffices to optimally distill secret key. Manipulating
Eq. (1) of Lemma 1 allows us to determine when

−→
K(X : Y |Z) = I(X : Y |Z).

We have that

I(K : Y |U) − I(K : Z|U) = I(K : Y |ZU) − I(K : Z|Y U)
= I(KU : Y |Z) − I(U : Y |Z) − I(K : Z|Y U)
= I(X : Y |Z) − I(X : Y |KUZ) − I(U : Y |Z) − I(K : Z|Y U),
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where K and U satisfy KU − X − Y Z. From this and Lemma 1, we conclude
the following.

Lemma 2. Distribution pXY Z has
−→
K(X : Y |Z) = I(X : Y |Z) iff there exists

variables KUXY Z with K and U ranging over sets of size no greater than |X |+1
such that

(1) KU − X − Y Z, (2) X − KUZ − Y,

(3) U − Z − Y, (4) K − Y U − Z. (8)

The conditions of Lemma 2 allow for the follow rough interpretation. (1) says
that Alice is able to generate variables K and U from knowledge of her variable
X. We think of K as containing the key that Alice and Bob will share and U as
the public message sent from Alice to Bob. (2) says that from Eve’s perspective,
Alice and Bob share no more correlations given U and K. Likewise, (3) says that
from Eve’s perspective, the public message is uncorrelated with Bob. Finally,
(4) says that after learning U , Bob can generate the key K that is independent
from Eve.

Unfortunately, Lemma 2 does not provide a transparent characterization
of the distributions for which

−→
K(X : Y |Z) = I(X : Y |Z). We next proceed

to obtain a better picture of these distributions by exploring additional con-
sequences of the Markov chains in Eq. (8). The following places a necessary
condition on the distributions. We will see in Sect. 4.4, however, that it fails to
be sufficient.

Theorem 2. If distribution pXY Z has either
−→
K(X : Y |Z) = I(X : Y |Z) or←−

K(X : Y |Z) = I(X : Y |Z), then pXY Z must have the following property: For
any z ∈ Z, if Xi×Yi and Xj ×Yj are two distinct blocks in the maximal common
partitioning of pXY |Z=z, then

pXY (Xi,Yj) = 0.

Proof. Without loss of generality, assume that
−→
K(X : Y |Z) = I(X : Y |Z).

For distribution pXY |Z=z with maximal common partition (Xλ,Yλ)t
λ=1, consider

arbitrary (xi, yi) ∈ Xi ×Yi and (xj , yj) ∈ Xj ×Yj . Note that from the definition
of a maximal common partitioning, we have that p(xi, z)p(yi, z) > 0, but we
need not have that p(xi, yi, z) > 0.

We will prove that p(xi, yj , z
′) = 0 for all z′ ∈ Z (clearly this already holds

when z′ = z). Suppose on the contrary that p(xi, yj , z
′) > 0. Since p(xi, z) >

0, there will exist some y′
i ∈ Yi such that p(xi, y

′
i, z) > 0. Then the Markov

chain condition KU − X − Y Z implies that for some (k, u) ∈ K × U such that
p(k, u|xi) > 0, we have

p(k, u|xi) = p(k, u|xi, y
′
i, z) = p(k, u|xi, yj , z

′) > 0. (9)

Equation (9) implies that both p(k, u|y′
i, z) > 0 and p(k, u|yj , z

′) > 0. From
p(u|y′

i, z) > 0 and the Markov chain U − Z − Y , we have that p(u|yj , z) > 0.
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Fig. 2. (a) The conditions of Theorem 2 are violated for this distribution. To see this,
note that the events (X = 1, Y = 2) and (X = 2, Y = 1) are both possible when Z = 1.
Hence, Theorem 2 necessitates p(1, 1) = 0, which is not the case because of the plane
Z = 0. Distribution (b) lacks this characteristic and therefore it satisfies the conditions
of Theorem 2.

Then we can further derive

0 < p(k, u|yj , z
′) = p(u|yj , z

′)p(k|u, yj , z
′) = p(u|yj , z

′)p(k|u, yj , z)
⇒ p(k|u, yj , z) > 0,

⇒ p(k, u|yj , z) = p(k|u, yj , z)p(u|yj , z) > 0,

where we have used the Markov chain K −Y U −Z. From the last line, we must
be able to find some x′

j ∈ Xj such that p(x′
j , yj , z) > 0 and p(k, u|x′

j , yj , z) > 0.
Inverting probabilities gives that both p(x′

j , yj |k, u, z) > 0 and p(xi, y
′
i|k, u, z) >

0. Hence,

I(X : Y |KUZ) = I(JXY |ZX : Y |KUZ)

= I(X : Y |JXY |ZKUZ) +
∑
k,u,z

H(JXY |Z=z|k, u, z)p(k, u, z) > 0,

since H(JXY |Z=z|k, u, z) > 0 because (xi, y
′
i) ∈ Xi × Yi and (x′

j , yj) ∈ Xj ×
Yj . However, this strict inequality contradicts the Markov chain condition X −
KUZ − Y . �

Figure 2 (a) provides an example distribution which does not satisfy the neces-
sary conditions of Theorem 2 for I(X : Y |Z) to be an achievable one-way key
rate. On the other hand, Fig. 2 (b) depicts an distribution for which the condi-
tions of the theorem are met. However, Theorem 3 in the next section will show
that both distributions (a) and (b) have K(X : Y |Z) < I(X : Y |Z).

4.3 Obtaining I(X : Y |Z) with Two-Way Communication

We now turn to the general scenario of interactive two-way communication. Our
main result is the necessary structural condition of Theorem 3. Its statement
requires some new terminology.
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For two distributions pXY and qXY over X×Y, we say that qXY � pXY if, up to
a permutation between X and Y , the distributions satisfy supp[qX ] ⊂ supp[pX ]
and one of the three additional conditions: (i) qXY is uncorrelated, (ii) supp[qY ] ⊂
supp[pY ], or (iii) y ∈ supp[qY ] \ supp[pY ] implies that H(X|Y = y) = 0.

Theorem 3. Let pXY Z be a distribution over X ×Y ×Z such that pXY |Z=z1 �
pXY |Z=z0 for some z0, z1 ∈ Z. If there exists some pair (x, y) ∈ supp[pX|Z=0] ×
supp[pY |Z=0] for which p(x, y|z1) > 0 but p(x, y|z0) = 0, then K(X : Y |Z) <
I(X : Y |Z).

Proof. The proof will involve showing that there exists a channel Z|Z such that
I(X : Y |Z) < I(X : Y |Z). The channel will involve mixing z0 and z1 but leaving
all other elements unchanged. Define the function

f(t) = I(X : Y )(1−t)pXY |Z=z0+tpXY |Z=z1
t ∈ [0, 1], (10)

which gives the mutual information of the mixed distribution (1− t)pXY |Z=z0 +
tpXY |Z=z1 . The function f is continuous and twice differentiable in the open
interval (0, 1). To prove the theorem, we will need a simple general fact about
functions of this sort.

Proposition 3. Suppose that f is a continuous function on the closed interval
[0, 1] and twice differentiable in the open interval (0, 1). Suppose there exists
some 0 < δ < 1 such that f is strictly convex in the interval I = (0, δ] and
f(1) − f(0) > f ′(t) for all t ∈ I. Then f(t) < (1 − t)f(0) + tf(1) for all t ∈ I.

Continuing with the proof of Theorem 3, it will suffice to show that the function
given by Eq. (10) satisfies the conditions of Proposition 3. For if this is true, then
we can argue as follows. Choose ε sufficiently small so that εp(z1)

p(z0)+εp(z1)
∈ (0, δ],

where δ is described by the proposition. Define the channel Z|Z by p(z0|z1) = ε,
p(z1|z1) = 1 − ε, and p(z|z) = 1 for all z �= z1 ∈ Z. This means that
p(z0) = p(z0) + εp(z1) and p(z1) = (1 − ε)p(z1), and inverting the probabili-
ties gives p(z1|z1) = 1, p(z1|z0) = εp(z1)

p(z0)+εp(z1)
, and p(z0|z0) = p(z0)

p(z0)+εp(z1)
. Since

p(x, y|Z = z) =
∑

z p(x, y|Z = z)p(Z = z|Z = z), the average conditional
mutual information is

∑
z �=z0,z1∈Z

I(X : Y |Z = z)p(z) + f( εp(z1)
p(z0)+εp(z1)

)p(z0) + f(1)p(z1)

<
∑

z �=z0,z1∈Z
I(X : Y |Z = z)p(z)

+
(

p(z0)
p(z0)+εp(z1)

f(0) + εp(z1)
p(z0)+εp(z1)

f(1)
)

p(z0) + f(1)(1 − ε)p(z1)

= I(X : Y |Z), (11)

where Proposition 3 at x = εp(z1)
p(z0)+εp(z1)

has been invoked.
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Let us then show that the conditions of Proposition 3 hold true for the func-
tion given by Eq. (10) whenever pXY |Z=z1 � pXY |Z=z0 ; i.e. that there exists some
interval (0, δ] for which f is strictly convex and f(1) − f(0) > f ′(t). We have

f(t) = −
∑

x∈X
[(1 − t)p(x|z0) + tp(x|z1)] log[(1 − t)p(x|z0) + tp(x|z1)]

−
∑

y∈Y
[(1 − t)p(y|z0) + tp(y|z1)] log[(1 − t)p(y|z0) + tp(y|z1)]

+
∑

x∈X

∑

y∈Y
[(1 − t)p(x, y|z0) + tp(x, y|z1)] log[(1 − t)p(x, y|z0) + tp(x, y|z1)]. (12)

We are interested in limt→0 f ′(t) and limt→0 f ′′(t). To compute these, we use the
fact that the function g(t) = (r+st) log(r+st) satisfies g′(t) = s(1+ log(r+st))
and g′′(t) = s2

r+st . We separate the analysis into three cases. Without loss of
generality, we will assume supp[pX|Z=z1 ] ⊂ supp[pX|Z=z0 ].

Case (i): pXY |Z=z1
is Uncorrelated

Since supp[pX|Z=z1 ] ⊂ supp[pX|Z=z0 ], we can assume that p(x|z0) �= 0 for
all x; otherwise there is no term involving x in Eq. (12). Now suppose that
p(y|z0) = 0. Then for this fixed y, the summation over x in the third term of
Eq. (12) becomes

∑
x∈X

[(1 − t)p(x, y|z0) + tp(x, y|z1)] log[(1 − t)p(x, y|z0) + tp(x, y|z1)]

= t
∑
x∈X

p(x|z1)p(y|z1) log[tp(x|z1)p(y|z1)]

= tp(y|z1) log[tp(y|z1)] + tp(y|z1)
∑
x∈X

p(x|z1) log[p(x|z1)]. (13)

Hence, by letting BI = {y : p(y|zI) > 0} for I ∈ {0, 1}, we can equivalently write
Eq. (12) as

f(t) = −
∑

x∈X
[(1 − t)p(x|z0) + tp(x|z1)] log[(1 − t)p(x|z0) + tp(x|z1)]

−
∑

y∈B0

[(1 − t)p(y|z0) + tp(y|z1)] log[(1 − t)p(y|z0) + tp(y|z1)]

+
∑

y∈B0

∑

x∈X
[(1 − t)p(x, y|z0) + tp(x, y|z1)] log[(1 − t)p(x, y|z0) + tp(x, y|z1)]

+ t
∑

y∈B1\B0

p(y|z1)
∑

x∈X
p(x|z1) log[p(x|z1)]. (14)

If p(x, y|z0) = 0 for some (x, y) ∈ X × B0, then the first derivative of (14) will
diverge to −∞ as t → 0 while its second derivative will diverge to +∞ whenever
p(x, y|z1) > 0. But by assumption, there is at least one pair of (x, y) for which
this latter case holds. Hence, an interval (0, δ] can always be found for which
Proposition 3 can be applied to f .
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Case (ii): B1 \ B0 = Ø
This is covered in case (iii).

Case (iii): y ∈ B1 \ B0 ⇒ p(y|z1) = p(xy, y|z1) for some particular
xy ∈ X

The condition p(y|z1) = p(xy, y|z1) implies that p(x, y|z1) = 0 for all x �= xy.
Then similar to the previous case, when y ∈ B1 \ B0, the summation over x in
the third term of Eq. (12) is

∑
x∈X

tp(x, y|z1) log[tp(x, y|z1)] = tp(xy, y|z1) log[tp(xy, y|z1)]

= tp(y|z1) log[tp(y|z1)]. (15)

Hence each term with y ∈ B1 \ B0 becomes canceled in Eq. (12). Then Eq. (12)
reduces to

f(t) =−
∑
x∈X

[(1− t)p(x|z0) + tp(x|z1)] log[(1− t)p(x|z0) + tp(x|z1)]

−
∑
y∈B0

[(1− t)p(y|z0) + tp(y|z1)] log[(1− t)p(y|z0) + tp(y|z1)]

+
∑
x∈X

∑
y∈B0

[(1− t)p(x, y|z0) + tp(x, y|z1)] log[(1− t)p(x, y|z0) + tp(x, y|z1)]. (16)

As in the previous case, the first derivative of this function will diverge to −∞
while its second derivative will diverge to +∞ whenever p(x, y|z1) > 0 and
p(x, y|z0) = 0. By assumption, such a pair (x, y) exists, and so again, an interval
(0, δ] can always be found for which Proposition 3 can be applied to f . Note that
when B1 \ B0 = Ø, as in case (ii), Eq. (16) is equivalent to (12). The derivative
argument can thus be applied directly to (12). �

Theorem 3 is quite useful in that it allows us to quickly eliminate many
distributions from achieving the rate I(X : Y |Z). For example, consider when
pXY |Z=z is uncorrelated for some z ∈ Z, but pXY |Z=z′ is perfectly correlated for
some other z′ ∈ Z with either supp[pX|Z=z] ⊂ supp[pX|Z=z′ ] or supp[pY |Z=z] ⊂
supp[pY |Z=z′ ]. Here, perfectly correlated means that p(x, y|z′) = p(x|z′)δx,y

up to relabeling. Then from Theorem 3, it follows that I(X : Y |Z) is an achiev-
able rate only if

p(x, y|z) > 0 ⇒ p(x|z′)p(y|z′) = 0.

In other words, it is always possible for either Alice or Bob to identify when
Z �= z′.

Finally, we close this section by comparing Theorems 2 and 3. In short, nei-
ther one supersedes the other. As noted above, distribution (b) in Fig. 2 satisfies
the necessary condition of Theorem 2 for

−→
K(X : Y |Z) = I(X : Y |Z). However,

Theorem 3 can be used to show that K(X : Y |Z) < I(X : Y |Z). This is because
pXY |Z=1 � pXY |Z=2 yet p(1, 1|2) = 0 while p(1, 1|1) = 1/3. Therefore its key
rate is strictly less than I(X : Y |Z). Figure 3 depicts a distribution for which
Theorem 3 cannot be applied but Theorem 2 shows that

−→
K(X : Y |Z) < I(X :

Y |Z). The two-way key rate for this distribution is still unknown.
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Fig. 3. The event (x, y) = (0, 1) has conditional probabilities p(0, 1|Z = 0) > 0
and p(0, 1|Z = 1) = 0. However, we cannot use these facts in conjunction with
Theorem 3 to conclude that K(X : Y |Z) < I(X : Y |Z) since the distribution
does not satisfy pXY |Z=0 � pXY |Z=1 (neither supp[pX|Z=0] ⊂ supp[pX|Z=1] nor
supp[pY |Z=0] ⊂ supp[pY |Z=1]). On the other hand, since p(0, 1|Z = 0) > 0, Theorem 2
can be applied to conclude that the one-way rate is less than I(X : Y |Z).

Fig. 4. A distribution requiring communication from Bob to Alice to achieve a key rate
of I(X : Y |Z).

4.4 Communication Dependency in Optimal Distillation

We next consider some general features of the public communication when per-
forming optimal key distillation. Our main observations will be that (i) attaining
a key rate of I(X : Y |Z) by one-way communication may depend on the direc-
tion of the communication, and (ii) two-way communication may be necessary
in order to achieve the key rate I(X : Y |Z).

Example 1 (Optimal one-way distillation depends on communication direction).
Consider the distribution depicted in Fig. 4 with I(X : Y |Z) = 1/3. When Bob
is the communicating party, a protocol attaining this as a key rate is obvious: he
simply announces whether or not y ∈ {0, 1}. If it is, they share one bit, otherwise
they fail. Hence, I(X : Y |Z) = 1/3 is an achievable key rate.

However, the interesting question is whether or not the key rate I(X : Y |Z)
is achievable by one-way communication from Alice to Bob. We will now show
that this is not possible. By Lemma 2, in order to obtain the rate I(X : Y |Z),
there must exist random variables U and V satisfying Eq. (8). Assume that such
variables exist. If U − Z − Y , then p(u|X = 0)p(u|X = 1) > 0 for all U = u;
otherwise, U and Y couldn’t be independent. But then X − KUZ − Y applied
to Z = 0 means there must exist a pair (k, u) ∈ K × U such that

p(k, u|X = 0) = 0 & p(k, u|X = 1) > 0.

Hence, 0 = p(k|Y = 2, U = u,Z = 2) < p(k|Y = 2, U = u,Z = 1), which
contradicts K − Y U − Z. Thus

−→
K(X : Y |Z) < I(X : Y |Z) =

←−
K(X : Y |Z).
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Fig. 5. Additional outcomes augmented to the distribution of Fig. 4. The enlarged
distribution can no longer attain a key rate of I(X : Y |Z) unless both parties commu-
nicate.

In this example, notice that if we restricted Eve’s distribution to Z = {0, 1}
(i.e. p(Z = 2) = 0), then the rate I(X : Y |Z) would indeed be achievable
using one-way communication from Alice to Bob. This is because without the
z = 2 outcome, the Markov Chain X − Y − Z holds. Such a result is counter-
intuitive since Alice and Bob share no correlations when z ∈ {1, 2}. And yet the
distribution becomes one-way reversible from Alice to Bob when p(Z = 2) = 0,
but otherwise it is not.

Example 2 (Optimal distillation requires two-way communication). The previous
example can be generalized by adding two more outcomes for Eve so that |Z| = 5.
The additional outcomes are shown in Fig. 5 and this is combined with Fig. 4 to
give the full distribution. Notice that the distribution pXY |Z=3 is obtained from
pXY |Z=1 simply by swapping Alice and Bob’s variables, and likewise for pXY |Z=4

and pXY |Z=2. Hence by the argument of the previous example, if Eve were to
reveal whether or not z ∈ {0, 3, 4}, then the average Bob-to-Alice distillable key
c onditioned on this information would be less than I(X : Y |Z). Likewise, if Eve
were to reveal whether or not z ∈ {0, 1, 2}, then the Alice-to-Bob distillable key
conditioned on this information would be less than I(X : Y |Z). Thus since the
average conditional key rate cannot exceed the key rate with no side information,
we conclude that I(X : Y |Z) is unattainable using one one-way communication
in either direction. On the other hand, the distribution is easily seen to admit a
key rate of I(X : Y |Z) when the parties simply announce whether or not their
variable belongs to the set {0, 1}.

5 Conclusion

In this paper, we have considered when a secret key rate of I(X : Y |Z) can be
attained by Alice and Bob when working with a variety of auxiliary resources.
The conditional mutual information quantifies the private key rate of pXY Z ,
which is the rate of key private from Eve that is attainable when Eve helps
Alice and Bob by announcing her variable. Therefore, distributions for which
K(X : Y |Z) = I(X : Y |Z) are those for which nothing is gained when Eve
functions as a helper rather than a full adversary.

We have found that with no additional communication, the key rate is
I(X : Y |Z) if and only if the distribution is uniform block independent. Fur-
thermore, supplying Alice and Bob with additional public randomness does not
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increase the distillable key rate. While this may not be overly surprising since
the considered common randomness is uncorrelated with the source, it is never-
theless a nontrivial result because in general, randomness can serve a resource
in distillation tasks [1,10].

Turning to the one and two-way communication scenarios, we have presented
in Theorems 2 and 3 necessary conditions for a distribution to attain the key rate
I(X : Y |Z). The conditions we have derived are all single-letter structural char-
acterizations, and they are thus computationally easy to apply. We leave open
the question of whether Theorem 3 is also sufficient for attaining I(X : Y |Z),
although we have no strong reason to believe this is true. Further improvements
to the results of this paper can possibly be obtained by studying tighter bounds
on K(X : Y |Z) than the intrinsic information such as those presented in Refs.
[11] and [7]. Nevertheless, we hope this paper has shed new light on the problem
of secret key distillation under various communication settings.

6 Appendix

6.1 Proof of Propositions 1

Proof. (a) Trivially X × Y gives a common partitioning of length one, and any
common partitioning cannot have length exceeding min{|X |, |Y|}; hence a max-
imal common partitioning exists. To prove uniqueness, suppose that (Xi,Yi)t

i=1

and (X ′
i ,Y ′

i)
t
i=1 are two maximal common partitionings. If they are not equiv-

alent, then there must exist some subset, say Xi0 such that Xi0 ⊂ ∪K
λ=1X ′

λ in
which Xi0 ∩ X ′

λ �= Ø for λ = 1, · · · ,K � 2. Choose any such X ′
λ0

from this
collection and define the new sets Ri0 = Xi0 ∩ X ′

λ0
and R̃i0 = Xi0 \ X ′

λ0
, which

are both nonempty since k � 2 and the Xλ are disjoint. However, we also have
the properties

x ∈ Xi0 ⇒ p(Yi0 |x) = 1; x ∈ X ′
λ0

⇒ p(Y ′
λ0

|x) = 1;
x �∈ Xi0 ⇒ p(Yi0 |x) = 0; x �∈ X ′

λ0
⇒ p(Y ′

λ0
|x) = 0.

(Here we are implicitly using condition (iii) in the above definition by assum-
ing that p(x) > 0 thereby defining conditional distributions). Therefore,
p(Si0 |Ri0) = p(S̃i0 |R̃i0) = 1 and p(Si0 |R̃i0) = p(S̃i0 |Ri0) = 0, where
Si0 = Yi0 ∩ Y ′

λ0
and S̃i0 = Yi0 \ Y ′

λ0
. A similar argument shows that

p(Ri0 |Si0) = p(R̃i0 |S̃i0) = 1 and p(Ri0 |S̃i0) = p(R̃i0 |Si0) = 0. Hence,
(Xi,Yi)t

i�=i0

⋃
(Si0 , Ri0)

⋃
(S̃i0 , R̃i0) is a common partitioning of length t+1. But

this is a contradiction since (Xi,Yi)t
i=1 is a maximal common decomposition.

(b) Suppose that K satisfies 0 = H(K|X) = H(K|Y ) so that K = f(X) =
g(Y ) for some functions f and g. It is clear that f and g must be constant-valued
for any pair of values taken from same block Xi × Yi in the maximal common
partitioning of XY . Hence the maximum possible entropy of K is then attained
iff f and g take on a different value for each block in this partitioning.

(c) Suppose that C is not a function of JXY . Then H(CJXY ) > H(JXY ),
which contradicts the maximality of JXY. �
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6.2 Proof of Theorem 1

Proof. Achievability: We will prove that H(JXY |Z) is an achievable rate with-
out any auxiliary shared public randomness (i.e. W is constant). For n copies of
pXY Z , Alice and Bob extract their common information from each copy of pXY Z .
This will generate a sequence of Jn

XY , with Alice and Bob having identical copies
of this sequence. It is now a matter of performing privacy amplification on this
sequence to remove Eve’s information [2]. The main construction is guaranteed
to exist by the following lemma.

Lemma 3 (See Corollary 17.5 in [5]). For an i.i.d. source of two random
variables JXY and Z with JXY ranging over set J , for any δ > 0 and k <
2n[H(JXY |Z)−δ], there exists an ε > 0 and a mapping κ : J n → K = {1, 2, · · · , k}
such that

log |K| − H(κ(Jn
XY )|Zn) < 2−nε.

From this lemma, it follows that H(JXY |Z) is an achievable key rate.

Converse: The converse proof follows analogously to the converse proof of
Theorem 2.6 in Ref. [4] (see also [5]). We will first prove the converse under
the assumption of no local randomness (i.e. QA and QB are constant). We
will then show that adding local randomness does not change the result. Sup-
pose that Kc.r.(X : Y |Z) = R. We consider a slightly weaker security con-
dition than the one presented in Sect. 2. This is done by replacing (ii) with
(ii’): 1

n (log |K| − H(K|ZnW )) < ε. Under this weaker assumption, we can
assume without loss of generality that K is a function of (Xn, QA,W ); i.e.
K = f(Xn, QA,W ) [5]. Then, for every δ, ε > 0 and n sufficiently large,
there exists a random variable W independent of XnY nZn along with func-
tions f(Xn,W ) and g(Y n,W ) satisfying (i) Pr[f = g = K] > 1 − ε, (ii’)
1
n (log |K| − H(K|ZnW )) < ε and (iii) 1

n log |K| � R.
Note that from (i) in the security condition, Fano’s Inequality together with

data processing gives

H(K|Y nW ) < h(ε) + ε(log |K| − 1). (17)

Combining this with (ii’) gives

1
n

(1 − ε) log |K| <
1
n

[H(K|ZnW ) − H(K|Y nW ) + h(ε) − ε],

and so

R � 1

n
log |K| + δ <

1

1 − ε
· 1

n
[H(K|ZnW ) − H(K|Y nW )] +

h(ε) − ε

1 − ε
· 1

n
+ δ. (18)

To analyze the quantity H(K|ZnW )−H(K|Y nW ), we will use a standard trick.

Lemma 4. Let J be uniformly distributed over the set {1, · · · , n} and let A(i)

denote the ith instance of A in An. Likewise, let A(<i) = A(1) · · · A(i−1) and
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A(>i) = A(i+1) · · · A(n) with A(<1) := Ø and A(n+1) := Ø. Then for random
variables P and Q and sequences of random variables An, Bn

H(P |AnQ) − H(P |BnQ) = n[I(P : B(J)|TQ) − I(P : A(J)|TQ)], (19)

where T = JA(>J)B(<J)

Proof. See, e.g., proof of Lemma 17.12 in [5].

Then we can use Lemma 4 to obtain

H(K|ZnW ) − H(K|Y nW ) = n[I(K : Y (J)|UW ) − I(K : Z(J)|UW )], (20)

where U := JY (<J)Z(>J). Notice that for any i ∈ {1, · · · , n} we have

X(<i)X(>i)Y (<i)Z(>i) − X(i) − Y (i)Z(i), (21)

since the sampling is i.i.d.. Therefore, because K is a function of (Xn,W ), we
have KU−X(J)W−Y (J)Z(J). Removing the superscript “J” and taking ε, δ → 0,
we have the bound

R � I(K : Y |UW ) − I(K : Z|UW ) (22)

such that KU − XW − Y Z.
Next, Eq. (17) gives

h(ε) + ε(log |K| − 1) > H(K|Y nW ) − H(K|XnW )

= n[I(K : X(J)|JY (<J)X(>J)W ) − I(K : Y (J)|JY (<J)X(>J)W )],

where the first inequality follows because H(K|XnW ) is nonnegative and the
equality follows from Lemma 4. We want to put this in terms of U . To do this,
note that

I(K : X(J)|JY (<J)X(>J)W )

= I(KY (<J)X(>J) : X(J)|JW )

= I(KY (<J)X(>J)Z(>J) : X(J)|JW ) − I(Z(>J) : X(J)|JKY (<J)X(>J)W )

= I(KUX(>J) : X(J)|JW ) = I(KU : X(J)|JW ) + I(X(>J) : X(J)|KUW ),

where the first equality follows from the chain rule and I(Y (<J)X(>J) : X(J)

JW ) = 0, and in the second equality

I(Z(>J) : X(J)|JKY (<J)X(>J)W ) � I(Z(>J) : KX(J)|JY (<J)X(>J)W )

= I(Z(>J) : X(J)|JY (<J)X(>J)W ) = 0.

Here we use I(Z(>J) : K|JY (<J)X(�J)W ) = 0 since K − JY (<J)X(�J)W −
Z(>J) is a Markov chain. Again this follows from the basic Markov condition
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K − WXn − Y nZn and the sampling is i.i.d.. The second equality follows from
i.i.d. sampling and W independence of Xn, Y n, Zn.

A similar analysis likewise gives

I(K : Y (J)|JY (<J)X(>J)W ) = I(KU : Y (J)|JW ) + I(X(>J) : Y (J)|KUW )

� I(KU : Y (J)|JW ) + I(X(>J) : X(J)|KUW ),

where the inequality follows from the Markov condition

X(>J) − KUX(J)W − Y (J),

a consequence of the more obvious condition KUXn −JX(J)W −Y (J). Putting
everything together yields

h(ε) + ε(log |K| − 1)

> I(KU : X(J)|JW ) − I(KU : Y (J)|JW )

= I(KU : X(J)Y (J)|JW ) − I(KU : Y (J)|JX(J)W ) − I(KU : Y (J)|JW ) (23)

= I(KU : X(J)|JY (J)W ) + I(KU : Z(J)|JY (J)X(J)W ) (24)

= I(KU : X(J)Z(J)|JY (J)W ),

where the second term in Eq. (23) is zero from the already proven Markov
chain KU − XW − Y Z, and in Eq. (24) we use the fact that I(KU :
Z(J)|JY (J)X(J)W ) = 0. Removing the superscript “J” and taking ε → 0 neces-
sitates the Markov chain KU − Y W − XZ.

It is easy to verify that the double Markov chain K−XW−Y and K−Y W−X
implies that I(K : XY |JXY W ) = 0 (see Exercise 16.25 in [5]). Since K is a
function of (X,W ), we have that H(K|JXY W ) = 0. Thus, K must also be a
function of (Y,W ). Continuing Eq. (22) gives the bound

R � I(K : Y |UW ) − I(K : Z|UW ) = H(K|UW ) − I(K : Z|UW )
= H(K|ZUW ) � H(K|ZW ). (25)

We have therefore obtained the following:

R � max H(K|ZW ), (26)

where the maximization is taken over all variables K such that H(K|XW ) =
H(K|Y W ) = 0.

This can be further bounded by using the following proposition.

Proposition 4. If W is independent of XY and H(K|XW ) = H(K|Y W ) = 0,
then K is a function of (JXY ,W ).

Proof. The fact that H(K|XW ) = H(K|Y W ) = 0 implies the existence of two
functions f(X,W ) and g(Y,W ) such that Pr[f(X,W ) = g(Y,W )] = 1. Con-
sequently, if p(x1, y1)p(x1, y2) > 0, then f(x1, w) = g(y1, w) = g(y2, w) for all



462 E. Chitambar et al.

w ∈ W with p(w) > 0. Indeed, if, say, f(x1, w) �= g(y1, w), then Pr[f(X,W ) �=
g(Y,W )] � p(x1, y1, w) = p(x1, y2)p(w) > 0, where we have used the inde-
pendence between XY and W . By the same reasoning, p(x1, y1)p(y1, x2) > 0
implies that f(x1, w) = f(x2, w) = g(y1, w) for all w ∈ W. Turning to
Proposition 2, if JXY (x) = JXY (x′), then there exists a sequence xy1x1y2x2 · · ·
ynx′ such that p(xy1)p(y1x1)p(x1y2) · · · p(ynx′) > 0. Therefore, as just argued,
we must have that f(x,w) = f(x′, w) for all w ∈ W. Hence K must be a function
of (JXY ,W ).

We now apply Proposition 4 to Eq. (26). Suppose that K obtains the maximiza-
tion in Eq. (26). Then, since K is a function of (JXY ,W ), we have that

H(K|ZW ) � H(JXY W |ZW ) = H(JXY |ZW ) � H(JXY |Z). (27)

This proves the desired upper bound under no local randomness.
To consider the case when Alice and Bob have local randomness QA and QB ,

respectively, define X̂ := (X,QA) and Ŷ := (Y,QB). Then repeating the above
argument shows that R � H(JX̂Ŷ |Z). It is straightforward to show that with QA

and QB pairwise independent and independent of XY , we have JX,Y = JXY . �
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6. Gács, P., Körner, J.: Common information is far less than mutual information.
Probl. Control Inf. Theory 2(2), 149 (1973)

7. Gohari, A., Anantharam, V.: Information-theoretic key agreement of multiple ter-
minals; part i. IEEE Trans. Inf. Theory 56(8), 3973–3996 (2010)

8. Maurer, U.: Secret key agreement by public discussion from common information.
IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

9. Maurer, U., Wolf, S.: Unconditionally secure key agreement and the intrinsic con-
ditional information. IEEE Trans. Inf. Theory 45(2), 499–514 (1999)

10. Ozols, M., Smith, G., Smolin, J.A.: Bound entangled states with a private key and
their classical counterpart. Phys. Rev. Lett. 112, 110502 (2014)

11. Renner, R., Wolf, S.: New bounds in secret-key agreement: the gap between forma-
tion and secrecy extraction. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 562–577. Springer, Heidelberg (2003)



Privacy with Imperfect Randomness

Yevgeniy Dodis1(B) and Yanqing Yao2

1 Department of Computer Science, New York University, New York, USA
dodis@cs.nyu.edu

2 School of Computer Science and Engineering, Beihang University, Beijing, China
yaoyanqing1984@gmail.com

Abstract. We revisit the impossibility of a variety of cryptographic
tasks including privacy and differential privacy with imperfect random-
ness. For traditional notions of privacy, such as security of encryption,
commitment or secret sharing schemes, dramatic impossibility results
are known [MP90,DOPS04] for several concrete sources R, including a
(seemingly) very “nice and friendly” Santha-Vazirani (SV) source. Some-
what surprisingly, Dodis et al. [DLMV12] showed that non-trivial differ-
ential privacy is possible with the SV sources. This suggested a qualita-
tive gap between traditional and differential privacy, and left open the
question of whether differential privacy is possible with more realistic
(i.e., less structured) sources than the SV sources.

Motivated by this question, we introduce a new, modular framework
for showing strong impossibility results for (both traditional and differ-
ential) privacy under a general imperfect source R. As direct corollaries
of our framework, we get the following new results:

(1) Existing, but quantitatively improved , impossibility results for tra-
ditional privacy, but under a wider variety of sources R.

(2) First impossibility results for differential privacy for a variety of realis-
tic sources R (including most “block sources”, but not the SV source).

(3) Any imperfect source allowing (either traditional or differential) pri-
vacy under R admits a certain type of deterministic bit extraction
from R.

1 Introduction

Traditional cryptographic tasks take for granted the availability of perfect ran-
dom sources, i.e., sources that output unbiased and independent random bits.
However, in many situations it seems unrealistic to expect a source to be per-
fectly random, and one must deal with various imperfect sources of randomness.
Some well known examples of such imperfect random sources are physical sources
[BST03,BH05], biometric data [BDK+05,DORS08], secrets with partial leakage,
and group elements from Diffie-Hellman key exchange [GKR04,Kra10].

Imperfect Sources. To abstract this concept, several formal models of
imperfect sources have been described (e.g., [vN51,CFG+85,Blu86,SV86,CG88,
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LLS89,Zuc96,ACRT99,Dod01]). Roughly, they can be divided into extractable
and non-extractable. Extractable sources (e.g., [vN51,CFG+85,Blu86,LLS89])
allow for deterministic extraction of nearly perfect randomness. And, while the
question of optimizing the extraction rate and efficiency has been very interest-
ing, from the qualitative perspective such sources are good for any application
where perfect randomness is sufficient. Unfortunately, it was quickly realized
many imperfect sources are non-extractable [SV86,CG88,Dod01]. The simplest
example is the Santha-Vazirani (SV) source [SV86], which produces an infinite
sequence of bits r1, r2, . . ., with the property that Pr[ri = 0 | r1 . . . ri−1] ∈
[12 (1 − γ), 1

2 (1 + γ)], for any setting of the prior bits r1, . . . , ri−1. Namely, each
bit has almost one bit of fresh entropy, but can have a small bias γ < 1. San-
tha and Vazirani [SV86] showed that there exists no deterministic extractor
Enc : {0, 1}n → {0, 1} capable of extracting even a single bit of bias strictly less
than γ from the γ-SV source, irrespective of how many SV bits r1, . . . , rn it is
willing to wait for.

Despite this pessimistic result, ruling out the “black-box compiler” from
imperfect (e.g., SV) to perfect randomness for all applications, one may still
hope that specific “non-extractable” sources, such as SV-sources, might be suffi-
cient for concrete applications, such as simulating probabilistic algorithms or
cryptography. Indeed, a series of results [VV85,SV86,CG88,Zuc96,ACRT99]
showed that very “weak” sources (including SV-sources and even much more
realistic “weak” and “block” sources) are sufficient for simulating probabilis-
tic polynomial-time algorithms; namely, for problems which do not inherently
need randomness, but which could potentially be sped up using randomization.
Moreover, even in the area of cryptography — where randomness is essential
(e.g., for key generation) — it turns out that many “non-extractable” sources
(again, including SV sources and more) are sufficient for authentication appli-
cations, such as the designs of MACs [MW97,DKRS06] and even signature
schemes [DOPS04,ACM+14] (under appropriate hardness assumptions). Intu-
itively, the reason for the latter “success story” is that authentication appli-
cations only require that it is hard for the attacker to completely guess (i.e.,
“forge”) some long string, so having min-entropy in our source should be suffi-
cient to achieve this goal.

Negative Results for Privacy with Imperfect Randomness. In con-
trast, the situation appears to be much less bright when dealing with privacy
applications, such as encryption, commitment, zero-knowledge, and a few oth-
ers. First, McInnes and Pinkas [MP90] showed that unconditionally secure sym-
metric encryption cannot be based on SV sources, even if one is restricted to
encrypting a single bit. This result was subsequently strengthened by Dodis
et al. [DOPS04], who showed that SV sources are not sufficient for building
even computationally secure encryption (again, even of a single bit), and, in
fact, essentially any other cryptographic task involving “privacy” (e.g., commit-
ment, zero-knowledge, secret sharing and others). This was again strengthened
by Austrin et al. [ACM+14], who showed that the negative results still hold even
if the SV source is efficiently samplable. Finally, Bosley and Dodis [BD07] showed
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an even more negative result: if a source of randomness R is “good enough” to
generate a secret key capable of encrypting k bits, then one can deterministically
extract nearly k almost uniform bits from R, suggesting that traditional privacy
requires an “extractable” source of randomness.1

What about Differential Privacy? While the above series of negative
results seem to strongly point in the direction that privacy inherently requires
extractable randomness, a recent work of Dodis et al. [DLMV12] put a slight
dent into this consensus, by showing that SV sources are provably sufficient for
achieving a more recent notion of privacy, called differential privacy [DMNS06].
Intuitively, a differentially private mechanism M(D, r) uses its randomness r to
add some “noise” to the true answer q(D), where D is some sensitive database of
users, and q is some useful aggregate information (query) about the users of D.
This noise is added in a way as to satisfy the following two conflicting properties
(see Definitions 6 and 7 for formalism):

(a) ε-differential privacy (ε-DP): up to “advantage” ε, the returned value z =
M(D, r) does not tell any information about the value D(i) of any individual
user i, which was not already known to the attacker before z was returned;

(b) ρ-utility: on average (over r), |z − q(D)| is upper bounded by ρ, meaning
that perturbed answer is not too far from the true answer.

Since we will be mainly talking about negative results, for the rest of this
work we will restrict our attention to the simplest concrete example of differential
privacy, where a “record” D(i) is a single bit, and q is the Hamming weight wt(D)
of the corresponding bit-vector D (i.e., wt(D) =

∑
D(i)). In this case, a very

simple ε-DP mechanism [DMNS06] M(D, r) would simply return wt(D) + e(r)
(possibly truncated to always be between 0 and |D|), where e(r) is an appropriate
noise2 with ρ = E[|q(r)|] ≈ 1/ε. Intuitively, this setting ensures that when D(i)
changes from 0 to 1, the answer distribution M(D, r) does not “change” by more
than ε.

Coming back to Dodis et al. [DLMV12], the authors show that although no
“additive noise” mechanism of the form M(D, r) = wt(D) + e(r) can simul-
taneously withstand all γ-SV-distributions r ← R, a better designed mecha-
nism (that they also constructed) is capable of working with all such distribu-
tions, provided that the utility ρ is now relaxed to be polynomial in 1/ε, whose
degree and coefficients depend on γ, but not on the size of the database D.
Moreover, the value ε can be made an arbitrarily small constant (e.g., ε � γ).
This should be contrasted with the impossibility results for the traditional pri-
vacy [MP90,DOPS04] with SV sources, where it was shown that ε = Ω(γ),
meaning that even a fixed constant (let alone “negligible”) security is impossible.
Hence, the result of [DLMV12] suggested a qualitative gap between traditional
1 On the positive side, [DS02,BD07] showed that extractable sources are not strictly

necessary for encrypting a “very small” number of bits. Still, for natural “non-
extractable” sources, such as SV sources, it is known that encrypting even a single
bit is impossible [SV86,DOPS04,ACM+14].

2 So called Laplacian distribution, but the details do not matter here.



466 Y. Dodis and Y. Yao

and differential privacy, but left open the question of whether differential privacy
is possible with more realistic (i.e., less structured) sources than the SV sources.
Indeed, the SV sources seem to be primarily interesting from the perspective of
negative results, since real-world distributions are unlikely to produce a sequence
of bits, each of which has almost a full unit of fresh entropy.

Our Results In Brief. In part motivated by solving this question, we abstract
and generalize prior techniques for showing impossibility results for achieving
privacy with various imperfect sources of randomness. Unlike prior work (with
the exception of [BD07]), which focused on specific imperfect sources R (e.g.,
SV sources), we obtain most of our results for general sources R, but then use
various natural sources (namely, SV sources [SV86], weak/block sources [CG88],
and Bias-Control Limited sources [Dod01]) as specific examples to illustrate
our technique. In particular, we introduce the concepts of expressiveness and
separability of a given imperfect source R as a measure of its “imperfectness”,
and show the following results:

– Low levels of expressiveness generically imply strong impossibility results for
differential as well as traditional privacy.

– We reduce expressiveness to separability and prove the equivalence between
“weak bit extraction” and NON-separability.

– Though the separability of some concrete (e.g., SV) sources R was implic-
itly known, we show new separability results for several important sources,
including general “block sources”.

We stress that the first two results are completely generic, and reduce the
question of feasibility of privacy under R to a much easier and self-contained
question of separability of R. And establishing the latter is the only “source-
specific” technical work which remains. In particular, after explicitly stating
known separability results for weak and SV sources, and establishing our new
separability results for block and Bias-Control Limited (BCL) sources, we obtain
the following direct corollaries:

– Existing, but quantitatively improved, impossibility results for traditional pri-
vacy, but under a wider variety of sources R (i.e., weak, block, SV, BCL).

– First impossibility results for differential privacy. Although, unsurprisingly,
these results (barely) miss the highly structured SV sources, they come back
extremely quickly once the source becomes slightly more realistic (e.g., a very
“constrained” weak/block/BCL source).

– Any imperfect source allowing (either traditional or differential) privacy
admits a certain type of deterministic bit extraction. (This result is incompa-
rable to the result of [BD07].)

We briefly expand on these results below, but conclude that, despite the result
of [DLMV12], our results seem to unify and strengthen the belief that, for the
most part, privacy with imperfect randomness is impossible, unless the source is
(almost) deterministically extractable. More importantly, they provide an intu-
itive, modular and unified picture elucidating the (im)possibility of privacy with
general imperfect sources.
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1.1 Our Results in More Detail

At a high level, our results follow the blueprint of [DOPS04] (who concentrated
exclusively on the SV sources), but in significantly more modular and quanti-
tatively optimized way (making our proofs somewhat more illuminating, in our
opinion). In essence, they establish an impossibility of a given privacy task P
under a source R using three steps:
Step 1: impossibility of task P under R −→ expressiveness of R.
Intuitively, expressiveness of R means that R is rich enough to “distinguish”
any functions f and g which are not point-wise equal almost everywhere (see
Definition 1): there exists R ∈ R s.t. SD(f(R), g(R)) is “noticeable”, where SD
is the statistical distance between distributions.3 With this clean abstraction,
we almost trivially show (see Theorem 1) that most traditional privacy tasks
P (extraction, encryption, secret sharing, commitment) imply the existence of
sufficiently-distinct functions f and g that violate the expressiveness of R. For
example, such f(r) and g(r) are simply the encryptions of two different plaintexts
under key r when P is encryption, and similar arguments hold for commitment,
extraction and secret sharing schemes.

More interestingly, we show expressiveness is again sufficient to rule out even
differential privacy (Theorem 2). The proof follows the same high-level intuition
as for the traditional privacy, but is somewhat more involved. This is because
DP only gives us security for “close” databases, while the utility guarantees are
only meaningful for “far” databases. In particular, for this reason it will turn out
that the expressiveness requirement on R for ruling out differential privacy will
be slightly higher than that for traditional privacy (Theorem 2 vs. Theorem 1).4

Still, aside from this quantitative difference, there is no qualitative difference
between our arguments for traditional and differential privacy.

Overall, the deceptive simplicity of our “privacy-to-expressiveness” argu-
ments is actually a feature of our framework, as these arguments are the only
place when the specific details of P matter, as the rest of the framework —
described below — will only concentrate on the expressiveness of R!
Step 2: expressiveness of R −→ separability of R.
Intuitively, separability of R means that R is rich enough to “separate” any
sufficiently large disjoint sets G and B (see Definition 8; wlog, assume that
|G| ≥ |B|): there exists R ∈ R s.t. (Pr[R ∈ G] − Pr[R ∈ B]) is “noticeable”.5

A moment reflection shows that separability is closely related to expressive-
ness, but restricted to boolean functions f and g of disjoint support (i.e., the

3 Like in [DOPS04] and unlike [MP90], our distinguishers between f(R) and g(R) will
be very efficient, but we will not require this in order not to clutter the notation.

4 Jumping ahead, this will be the reason although our new impossibility results for
DP will (barely) miss the SV sources, they will come back very quickly once the
source becomes more realistic.

5 For example, if R only consists of the uniform distribution Un, the latter is impossible
when |G| = |B|. In contrast, we will see that natural “non-extractable” sources (i.e.,
weak, block, SV, and BCL sources) are separable.
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characteristic functions of G and B), which makes it noticeably easier to work
with (as we will see).

Nevertheless, we show that separability generically implies expressiveness,
with nearly identical parameters (see Theorem 3). This is where we differ and
quantitatively improve the argument implicit in [DOPS04]: while [DOPS04] used
a bit-by-bit hybrid argument to show expressiveness (for the SV source), our
proof of Theorem 3 used a more clever “universal hashing trick”,6 allowing us to
obtain results which are independent of the ranges of f and g (which, in turn,
will later correspond to bit sizes of ciphertexts, commitments, secret shares, etc.)

Of independent interest, we also show that NON-separability of R is equiv-
alent to some type of “weak bit extraction” from R (see Theorem 4): (a) when
produced, the extracted bit is guaranteed to be almost unbiased, (b) although
the extractor is allowed to fail, it will typically succeed at least on the uniform
distribution.7

Coupled with Step 1, we get the following two implications. First, we reduce
the impossibility of many privacy tasks P under R to a much easier question
of separability of R (which is independent of P ). Second, we generically show
that the feasibility of P under R implies deterministic weak bit extraction from
R, incomparably complementing the prior result of [BD07]. Namely, [BD07]
showed that several traditional privacy primitives, including (only multi-bit)
encryption and commitment (but not secret sharing) imply the existence of
multi-bit deterministic extraction schemes capable of extracting almost the same
number of bits as the plaintext. On the positive, our result applies to a much
wider set of primitives P (e.g., secret-sharing, as well as even single-bit encryption
and commitment). On the negative, we can only argue a rather weak kind of
single-bit extraction, where the extractor is allowed to fail, while [BD07] showed
traditional, and possibly multi-bit, extraction.
Step 3: separability of various sources R.
Unlike the prior results in [MP90,DOPS04,ACM+14], all the above results are
true for any imperfect source R. To get concrete impossibility results for natural
sources, though, we finally must establish good separability bounds for specific
R. Such bounds were already implicitly known [DOPS04] (or trivial to see)
for the SV and general weak sources, but we show how they can also be demon-
strated for other natural sources: block sources [CG88] and Bias-Control Limited
sources [Dod01]. In particular, our separability bounds for block sources turned
out to be quite non-trivial, and form one of the more technical contributions of
this work. See the proof of Lemma 2(b).

Aside from being natural and interesting in their own right, the new separabil-
ity results for block/BCL sources are especially interesting from the perspective
of differential privacy (see below). Indeed, both of them can be viewed as real-
istic relaxations of highly-structured (and unrealistic!) SV sources, but yet not

6 Similar trick with randomness extractors was used, in a slightly different context,
by [ACM+14].

7 Unfortunately, we demonstrate that the limitation of part (b) holding only for the
uniform distribution is somewhat inherent in this great level of generality.
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as general/unstructured as weak sources. And since we already know that DP
is possible with SV sources [DLMV12], it is interesting to know how soon it will
take for the impossibility results to come back, once the source slowly becomes
more realistic/unstructured, but before going “all the way” to being weak.

Putting them all together: New and Old Impossibility Results.
Applying Steps 1–3 to specific sources of interest (i.e., weak, block, SV, and BCL
sources), we immediately derive a variety of impossibility results for traditional
privacy (see Table 1). Although these results were derived mainly as a “warm-
up” to our (completely new) impossibility results for differentially privacy, they
offer quantitative improvements to the results of [DOPS04] (due to stronger
expressiveness-to-separability reduction). For example, they rule out even con-
stant (as opposed to negligible) security for encryption/commitment/secret shar-
ing, irrespective of the sizes of ciphertexts/commitments/shares. Relatedly, we
unsurprisingly get stronger impossibility results for block/BCL sources than the
more structured SV sources.

More interestingly, we obtain first impossibility results for differential pri-
vacy with imperfect randomness. In light of the positive result of [DLMV12],
our separability result for SV sources is (barely) not strong enough to rule out
differential privacy under SV sources. As we explained, this failure happened
not because our framework was too weak to apply to SV sources or differential
privacy, but rather due to a “local-vs-global gap” between the privacy and utility
requirements for differential privacy.

However, once we consider general weak sources, or even much more struc-
tured BCL/block sources, the impossibility results come back extremely quickly!
For example, when studying ε-DP with utility ρ, n-bit weak sources of min-
entropy k are ruled out the moment k = n − log(ερ) − O(1) (Theorem 6(a)),8

while BCL sources are ruled out the moment the number of “SV bits” b the
attacker can fix completely (instead of only bias by γ) is just b = Ω(log(ερ)/γ)
(Theorem 6(c)). As ερ is typically desired to be a constant, log(ερ) is an even
smaller constant, which means we even rule out constant entropy deficiency
(n − k) (or m − k for block source) or number of “interventions” b, respectively.
We also compare impossibility results for traditional and differential privacy in
Table 2, and observe that the latter are only marginally weaker than the former.
This leads us to the conclusion that differential privacy is still rather demanding
to achieve with realistic imperfect sources of randomness.

Due to space limitations, most proofs are deferred to the full version [DY14].

2 Preliminaries

Let US be the uniform distribution over a set S. For simplicity, Un
def
= U{0,1}n .

For a distribution or random variable R, let r ← R denote the operation of
8 More generally, even n-bit block sources with block length m and fresh min-entropy

k per block are ruled out when k = m − log(ερ) − O(1), irrespective of the number
of blocks n/m. See Theorem 6(b).
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sampling a random r according to R , and H∞(R)
def
= minr∈supp(R) log 1

Pr[R=r]
denote the min-entropy of R. We call a family of distributions over {0, 1}n a
source, denoted as Rn. All logarithms are to the base 2.

For two random variables R and R′ over {0, 1}n, the statistical distance

between R and R′ is defined as SD(R,R′)
def
= 1

2

∑
r∈{0,1}n |Pr[R = r] − Pr[R′ =

r]|. One can observe that SD(R,R′) = maxEve |Pr[Eve(R) = 1] − Pr[Eve(R′) =
1]|, where Eve is a distinguisher. We say that the relative distance between R
and R′ is ε, denoted as RD(R,R′) = ε, if ε is the smallest number such that
e−ε · Pr[R′ = r] ≤ Pr[R = r] ≤ eε · Pr[R′ = r] for all r ∈ {0, 1}n. It’s easy to see
that RD(R,R′) ≤ ε implies SD(R,R′) ≤ eε − 1.

3 Expressiveness and Its Implications to Privacy

In this section, we introduce the concept of expressiveness of a source. Then we
study its implications to both traditional and differential privacy.

Informally, an expressive source Rn can separate two distributions f(R) and
g(R), unless the functions f and g are point-wise equal almost everywhere.

Definition 1. We say that a source Rn is (t, δ)−expressive if for any functions
f, g : {0, 1}n → C, where C is any universe, such that Pr

r←Un

[f(r) 	= g(r)] ≥ 1
2t for

some t ≥ 0, there exists a distribution R ∈ Rn such that SD(f(R), g(R)) ≥ δ.

3.1 Implications to Traditional Privacy

We recall (or define) some cryptographic primitives related to traditional privacy:
bit extractor, bit encryption scheme, weak bit commitment, and bit T -secret
sharing as follows.

Definition 2. We say that Ext : {0, 1}n → {0, 1} is (Rn, δ)-secure bit extractor
if for every distribution R ∈ Rn, | Pr

r←R
[Ext(r) = 1] − Pr

r←R
[Ext(r) = 0]| < δ

(equivalently, SD(Ext(R), U1) < δ/2).

In the following, we consider the simplest encryption scheme, where the plain-
text is composed of a single bit x.

Definition 3. A (Rn, δ)−secure bit encryption scheme is a tuple of functions
Enc : {0, 1}n × {0, 1} → {0, 1}λ and Dec : {0, 1}n × {0, 1}λ → {0, 1}, where, for
convenience, Enc(r, x) (resp. Dec(r, c)) is denoted as Encr(x) (resp. Decr(c)),
satisfying the following two properties:

(a) Correctness: for all r ∈ {0, 1}n and x ∈ {0, 1}, Decr(Encr(x)) = x;
(b) Statistical Hiding: SD(EncR(0),EncR(1)) < δ, for every distribution R ∈ Rn.

Commitment schemes allow the sender Alice to commit a chosen value (or
statement) while keeping it secret from the receiver Bob, with the ability to reveal
the committed value in a later stage. Binding and hiding properties are essential
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to any commitment scheme. Informally, “binding” means that it’s “hard” for
Alice to alter her commitment after she has made it; “hiding” means that it’s
“hard” for Bob to find out the committed value without Alice revealing it.

Each of them can be computational or information theoretical. However,
we can’t achieve information theoretically binding and information theoretically
hiding properties at the same time. Instead of defining computational notions,
we relax binding to some very weak property, so that hiding and this new (very
weak) binding properties both can be information theoretical. Since we aim to
show an impossibility result, such relaxation is justified.

Definition 4. A (Rn, δ)−secure weak bit commitment is a function Com :
{0, 1}n × {0, 1} → {0, 1}λ satisfying that: for any distribution R ∈ Rn,

(a) Weak Binding: Pr
r←Un

[Com(0; r) 	= Com(1; r)] ≥ 1
2 ;

(b) Statistical Hiding: SD(Com(0;R),Com(1;R)) < δ.

Note that in the traditional notion of commitment, the binding property
holds if it is “hard” to find r1 and r2 such that Com(0; r1) = Com(1; r2). Here
we give a much weaker binding notion. We only require that the attacker can
not win with probability ≥ 1

2 by choosing r1 = r2 uniformly at random. For
example, Com(x; r) = x ⊕ r, where x, r ∈ {0, 1} can be easily verified to be a
weak bit commitment for any δ > 0 (despite not being a standard commitment).

In the notion of T -party Secret Sharing, two thresholds T1 and T2, where
1 ≤ T1 < T2 ≤ T , are involved such that (a) any T1 parties have “no information”
about the secret, (b) any T2 parties enable to recover the secret. Because our
purpose is to show an impossibility result, we restrict to T1 = 1 and T2 = T ,
and only consider one bit secret x.

Definition 5. A (Rn, δ)−secure bit T−Secret Sharing scheme is a tuple
(Share1,Share2, . . . ,ShareT ,Rec) satisfying the following two properties:

(a) Correctness: Rec(Share1(x, r), . . . ,ShareT (x, r)) = x for all r ∈ {0, 1}n and
each x ∈ {0, 1};

(b) Statistical Hiding: SD(Sharej(0;R),Sharej(1;R)) < δ, for every index j ∈ [T ]
and any distribution R ∈ Rn.

Now we abstract and generalize the results of [MP90,DOPS04] to show that
expressiveness implies the impossibility of security involving traditional privacy.
See [DY14] for the proof.

Theorem 1. (a) When Rn is (0, δ)−expressive, no (Rn, δ)-secure bit extractor
exists.

(b) When Rn is (0, δ)−expressive, no (Rn, δ)-secure bit encryption scheme
exists.

(c) When Rn is (1, δ)−expressive, no (Rn, δ)-secure weak bit commitment exists.
(d) When Rn is (log T, δ)−expressive, no (Rn, δ)-secure bit T -secret sharing

exists.
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3.2 Implications to Differential Privacy

Dodis et al. [DLMV12] have shown how to do differential privacy with respect
to the γ-SV source for all “queries of low sensitivity”. Since we aim to show
impossibility results, henceforth we only consider the simplest case: let D =
{0, 1}N be the space of all databases and for D ∈ D, the query function q is the
Hamming weight function wt(D) = |{i | D(i) = 1}|, where D(i) means the i-th
bit (“record”) of D. If the source Rn has only one distribution Un, Rn is denoted
by Un for simplicity. For any D,D′ ∈ D, the discrete distance function between
them is defined by Δ(D,D′)

def
= wt(D⊕D′), where ⊕ is the bitwise exclusive OR

operator. We say that D and D′ are neighboring if Δ(D,D′) = 1. A mechanism
M is an algorithm that takes as input a database D ∈ D and a distribution
R ∈ Rn, and outputs a random value z. Informally, we wish z = M(D,R) to
approximate the true value wt(D) without revealing too much information about
any individual D(i). More formally, a mechanism is differentially private for the
Hamming weight queries if replacing an entry in the database with one containing
fake information only changes the output distribution of the mechanism by a
small amount. In other words, evaluating the mechanism on two neighboring
databases, does not change the outcome distribution by much. On the other
hand, we define its utility to be the expected difference between the true answer
wt(D) and the output of the mechanism. More formally,

Definition 6. Let ε ≥ 0 and Rn be a source. A mechanism M (for the Hamming
weight queries) is (Rn, ε)-differentially private if for all neighboring databases
D1,D2 ∈ D, and all distributions R ∈ Rn, we have RD(M(D1, R),M(D2, R)) ≤
ε. Equivalently, for any possible output z:

Pr
r←R

[M(D1, r) = z]

Pr
r←R

[M(D2, r) = z]
≤ eε.

Note that for ε < 1, we can rather accurately approximate eε by 1 + ε.

Definition 7. Let 0 < ρ ≤ N/4 and Rn be a source. A mechanism M has
(Rn, ρ)-utility for the Hamming weight queries, if for all databases D ∈ D and
all distributions R ∈ Rn, we have Er←R[|M(D, r) − wt(D)|] ≤ ρ.

We show that, much like with traditional privacy, expressiveness implies
impossibility of differential privacy with imperfect randomness, albeit with
slightly more demanding parameters.

Theorem 2. Assume 1/(8ρ) ≤ ε ≤ 1/4 and the source Rn is (log(ρε
δ ) + 4, δ)−

expressive, for some 2ε ≤ δ ≤ 1. Then no (Rn, ε)−differentially private and
(Un, ρ)-accurate mechanism for the Hamming weight queries exists. In particu-
lar, plugging δ = 2ε and δ = 1

2 , respectively, this holds if either

(a) Rn is (3+log(ρ), 2ε)−expressive; or (b) Rn is (5+log(ρε), 1
2 )−expressive.
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The high-level idea is as follows. For two databases D and D′, define two
functions f(r)

def
= M(D, r) and g(r)

def
= M(D′, r). Intuitively, for all R ∈ Rn,

since RD(f(R), g(R)) ≤ ε · Δ(D,D′) implies SD(f(R), g(R)) ≤ eε·Δ(D,D′) − 1,
we could use expressiveness to argue that f(r) = g(r) almost everywhere, which
must eventually contradict utility (even for uniform distribution). However, we
can’t use this technique directly, because if ε · Δ(D,D′) is large enough, then
eε·Δ(D,D′) − 1 > 1, which is greater than the general upper bound 1 of the
statistical distance. Instead, we simply use this trick on close-enough databases
D and D′, and then use a few “jumps” from D0 to D1, etc., until eventually we
must violate the ρ-utility.

Proof. Assume for contradiction that there exists such a mechanism M . Let
D′ def

= {D | wt(D) ≤ 4ρ}. Denote

Trunc(x)
def
=

⎧
⎪⎨
⎪⎩

0, if x < 0;
x, if x ∈ {0, 1, . . . , 4ρ};

4ρ, otherwise.

For any D ∈ D′, define the truncated mechanism M ′ def
= Trunc(M) by

M ′(D, r)
def
= Trunc(M(D, r)). Since for every D ∈ D′, we have wt(D) ∈

{0, 1, . . . , 4ρ}, M ′ still has (Un, ρ)−utility on D′. Additionally, from Definition 6,
it’s straightforward that M ′ is (Rn, ε)-differentially private on D′. In the follow-
ing, we only consider the truncated mechanism M ′ on D′.

Let t = log(ρε
δ ) + 4 and s = δ

2ε . Notice, 1 ≤ s ≤ 1/(2ε) ≤ 4ρ, eεs − 1 < δ,
and 2t = 8ρ/s.

We start with the following claim:

Claim. Consider any databases D,D′ ∈ D′, s.t. Δ(D,D′) ≤ s, and denote

f(r)
def
= M ′(D, r) and g(r)

def
= M ′(D′, r). Then Pr

r←Un

[f(r) 	= g(r)] < 1
2t .

Proof. Since M ′ is (Rn, ε)-differentially private, then for all R ∈ Rn, we have
RD(f(R), g(R)) ≤ ε · Δ(D,D′) ≤ ε · s. Hence, SD(f(R), g(R)) ≤ eε·s − 1 < δ, by
our choice of s. Since this holds for all R ∈ Rn and Rn is (t, δ)−expressive, we
conclude that it must be the case that Pr

r←Un

[f(r) 	= g(r)] < 1
2t . ��

Coming back to the main proof, consider a sequence of databases D0,D1, · · · ,

D4ρ/s such that wt(Di) = i ·s and Δ(Di,Di+1) = s. Denote fi(R)
def
= M ′(Di, R)

for all i ∈ {0, 1, . . . , 4ρ/s}. From the above Claim, we get that Pr
r←Un

[fi(r) 	=
fi+1(r)] < 1

2t . By the union bound and our choice of s and t,

Pr
r←Un

[f0(r) 	= f4ρ/s(r)] <
4ρ

2t · s
≤ 1

2
(1)

Let α
def
= Er←Un

[ f4ρ/s(r) − f0(r) ]. From (Un, ρ)-utility, we get that

α ≥ (wt(D4ρ/s) − ρ) − (wt(D0) + ρ) = (4ρ − ρ) − (0 + ρ) = 2ρ.
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On the other hand, from Inequation (1),

α ≤ Pr
r←Un

[f0(r) 	= f4ρ/s(r)] · max
r

|f4ρ/s(r) − f0(r)| <
1
2

· 4ρ = 2ρ,

which is a contradiction. ��

4 Separability and Its Implications

Expressiveness is a powerful tool, but it’s hard for us to use it directly. In this
section, we introduce the concept of separability and show that it implies expres-
siveness, and also has its own applications to (weak) coin flipping. Several typical
examples can been seen in Sect. 5.

Intuitively, separable sources Rn allow one to choose a distribution R ∈ Rn

capable of “separating” any sufficiently large, disjoint sets G and B: increasing
a relative weight of one set w.r.t. R without doing the same for the counterpart
of the other one.

Definition 8. We say that a source Rn is (t, δ)−separable if for all G,B ⊆
{0, 1}n, where G∩B = ∅ and |G∪B| ≥ 2n−t, there exists a distribution R ∈ Rn

such that | Pr
r←R

[r ∈ G] − Pr
r←R

[r ∈ B] | ≥ δ.

4.1 Separability Implies Expressiveness

We investigate the relationship between separability and expressiveness. We
show that separable sources must be expressive. The high-level idea of the proof
comes from the work of [DOPS04] (who only applied it to SV sources), but we
quantitatively improve the technique of [DOPS04], by making the gap between
expressiveness and separability independent of the range C of the functions f
and g. See [DY14] for the proof.

Theorem 3. If a source Rn is (t + 1, δ)−separable, then it’s (t, δ)-expressive.

Remark 1. Note that if the universe C is a subset of {0, 1}poly(n), then the univer-
sal hash function family in the proof of Theorem 3 can be made efficient (in n).
Hence, the distinguisher Eve can be made efficient as well. Therefore, there exists
an efficient distinguisher Eve such that | Pr

r←R
[Eve(f(r)) = 1] − Pr

r←R
[Eve(g(r)) =

1]| ≥ δ. Namely, f(R) is “δ- computationally distinguishable” from g(R).

Combining Theorem 3 with Theorems 1 and 2, we get

Corollary 1. (a) If Rn is (1, δ)−separable, then no (Rn, δ)-secure bit extractor
exists.

(b) If Rn is (1, δ)−separable, then no (Rn, δ)-secure bit encryption exists.
(c) If Rn is (2, δ)−separable, then no (Rn, δ)-secure weak bit commitment exists.
(d) If Rn is (log T +1, δ)−separable, then no (Rn, δ)-secure bit T -secret sharing

exists.
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(e) Assume 1/(8ρ) ≤ ε ≤ 1/4 and Rn is (log(ρε
δ ) + 5, δ)−separable, for some

2ε ≤ δ ≤ 1. Then no (Rn, ε)−differentially private and (Un, ρ)-accurate
mechanism for the Hamming weight queries exists. In particular, plug-
ging δ = 2ε and δ = 1

2 , respectively, this holds if either (e.1) Rn is
(4 + log(ρ), 2ε)−separable; or (e.2) Rn is (6 + log(ρε), 1

2 )−separable.

The above results are illustrated by several typical sources in Sect. 5.

4.2 Separability and Weak Bit Extraction

In this section, we define weak bit extraction and show that weak bit extraction
is equivalent to NON-separability. Then we propose its implications to privacy.

Recall, Bosley and Dodis [BD07] initiated the study of the general question:
does privacy inherently require “extractable” source of randomness? A bit more
formally, if a primitive P admits (Rn, δ)-secure implementation, does it mean
one can construct a (deterministic, single- or multi-) bit extractor from Rn?

They also obtained very strong affirmative answers to this question for sev-
eral traditional privacy primitives, including (only multi-bit) encryption and
commitment (but not secret sharing, for example). Here we make the obser-
vation that our impossibility results give an incomparable (to [BD07]) set of
affirmative answers to this question. On the positive, our results apply to a
much wider set of primitives P (e.g., secret-sharing, as well as even single-bit
encryption and commitment). On the negative, we can only argue a rather weak
kind of single-bit extraction (as opposed to [BD07], who showed traditional, and
possibly multi-bit extraction). Our weak notion of extraction is defined below.

Definition 9. We say that Ext : {0, 1}n → {0, 1,⊥} is (Rn, δ, τ)-secure weak
bit extractor if

(a) for every distribution R ∈ Rn, | Pr
r←R

[Ext(r) = 1] − Pr
r←R

[Ext(r) = 0]| < δ;

(b) Pr
r←Un

[Ext(r) 	= ⊥] ≥ τ .

We briefly discuss this notion, before showing our results. First, we notice that
setting τ = 1 recovers the notion of traditional bit-extractor given in Definition 2.
And, even for general τ < 1, the odds of outputting 0 or 1 are roughly the same,
for any distribution R in the source. However, now the extractor is also allowed to
output a failure symbol ⊥, which means that each of the above two probabilities
can occur with probabilities noticeably smaller than 1/2. Hence, to make it
interesting, we also add the requirement that Ext does not output ⊥ all the
time. This is governed by the second parameter τ requiring that Pr

r←R
[Ext(r) 	=

⊥] ≥ τ . Ideally, we would like this to be true for any distribution R in the source.
Unfortunately, such a desirable guarantee will not be achievable in our setting
(see Remark 2). Thus, to salvage a meaningful and realizable notion, we will only
require that this non-triviality guarantee at least holds for R ≡ Un. Namely,
while we do not rule out the possibility that some particular distributions R
might force Ext to fail the extraction with high probability, we still ensure that:
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(a) when the extraction succeeds, the extracted bit is unbiased for any R in the
source; (b) the extraction succeeds with noticeable probability at least when R
is (“close to”) the uniform distribution Un.

We now observe (and prove in [DY14]) that the notion of weak bit-extraction
is simply a different way to express (the negation of) our notion of separability!

Lemma 1. Rn has a (Rn, δ, 2−t)-secure weak bit extractor if and only if Rn is
not (t, δ)-separable.

Combining Lemma 1 with the counter-positive of Corollary 1, we get

Theorem 4. (a) If (Rn, δ)-secure bit encryption scheme exists, then (Rn, δ, 1
2 )-

secure weak bit-extraction exists.
(b) If (Rn, δ)-secure weak bit commitment exists, then (Rn, δ, 1

4 )-secure weak bit
extraction exists.

(c) If (Rn, δ)-secure bit T -secret-sharing exists, then (Rn, δ, 1
2T )-secure weak bit

extraction exists.
(d) If (Rn, ε)−differentially private and (Un, ρ)-accurate mechanism for the

Hamming weight queries exists, then (Rn, 2ε, 1
16ρ )-secure weak bit extraction

exists.

It is also instructive to see the explicit form of our weak bit extractor. For
example, in the case of bit encryption (part (a), other examples similar), we get

Ext(r)
def
=

⎧
⎪⎨
⎪⎩

1, if h∗(Encr(1)) = 1 and h∗(Encr(0)) = 0,
0, if h∗(Encr(1)) = 0 and h∗(Encr(0)) = 1,
⊥, otherwise (i.e., if h∗(Encr(1)) = h∗(Encr(0))),

where h∗ is the boolean universal hash function from the proof of Theorem 3,
chosen as to ensure Pr

r←Un

[Ext(r) 	= ⊥] = Pr
r←Un

[h∗(Encr(0)) 	= h∗(Encr(1))] ≥ 1
2 .

When the bit encryption (resp. commitment, secret sharing, DP mechanism) is
computationally efficient (in n), our bit extractor is efficient too. This means that
even computationally secure analogs of encryption (commitment, secret sharing,
DP mechanism) imply efficient, statistically secure weak bit extraction.

Remark 2. As we mentioned, the major weakness of our weak bit extraction
definition comes from the fact that the non-triviality condition Pr

r←R
[Ext(r) 	=

⊥] ≥ τ is only required for R ≡ Un. Unfortunately, we observe that the analog
of Theorem 4.(a)-(c) is no longer true if we require the extraction non-triviality
to hold for all R ∈ Rn. Indeed, this stronger notion of (Rn, δ, τ)-secure weak bit
extraction clearly implies traditional (Rn, 1 + δ − τ)-secure bit extraction (by
mapping ⊥ to 1). On the other hand, Dodis and Spencer [DS02] gave an example
of a source Rn for which, for any ε > 0, there exists (Rn, ε)-secure bit encryption
(and hence, weak commitment and 2-secret sharing) scheme, but no (Rn, 1 −
21−n/2)-secure bit-extraction. Thus, the only analogs of Theorem 4.(a)-(c) we
could hope to prove using the strengthened notion of weak bit extraction would
have to satisfy τ ≤ δ+21−n/2, which is not a very interesting weak bit extraction
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scheme (e.g., if δ is “negligible”, then the extraction succeeds with “negligible”
probability as well).9

5 Privacy with Several Typical Imperfect Sources

Now we define several imperfect sources Rn: the (k, n)−source [CG88], n-bit
(k,m)-block source [CG88], n-bit γ-Santha-Vazirani (SV) source [SV86], and
(γ, b, n)-Bias-Control Limited (BCL) source [Dod01] below. Then we prove all
these sources are separable. Based on this result, we show they are all expressive.
Afterwards, we study the impossibility of traditional and differential privacy with
weak, block and BCL sources, and explain why the SV source does not work.
Finally, we compare the impossibility of traditional and differential privacy.

Definition 10. The (k, n)-source (or n-bit weak source with min-entropy at

least k) is defined by Weak(k, n)
def
= {R | H∞(R) ≥ k,where R is over {0, 1}n}.

Block sources are generalizations of weak sources, allowing n/m blocks
R1, . . . , Rn/m each having k fresh bits of entropy.10

Definition 11. Let m divide n, and R1, . . . , Rn/m be a sequence of Boolean
random variables over {0, 1}m. A probability distribution R = (R1, . . . , Rn/m)
over {0, 1}n is an n-bit (k,m)-block distribution, denoted by Block(k,m, n), if
for all i ∈ [n/m] and for every s1, . . . , si−1 ∈ {0, 1}m, we have

H∞(Ri | R1 . . . Ri−1 = s1 . . . si−1) ≥ k.

We define the n-bit (k,m)-block source Block(k,m, n) to be the set of all n-bit
(k,m)-block distributions.

Hence, weak sources correspond to m = n (i.e., one block). From the other
extreme, SV sources as shown in Definition 12 correspond to 1-bit blocks (i.e.,
m = 1). In this case, it is customary to express the imperfectness of the source as
the function of its “bias” γ instead of min-entropy k. Of course, for 1-bit random
variables bias and min-entropy are related by 2−k = (1 + γ)/2.

Definition 12. Let r1, . . . , rn be a sequence of Boolean random variables and
0 ≤ γ < 1. A probability distribution R = (r1, . . . , rn) over {0, 1}n is an n-bit
γ-Santha-Vazirani distribution, denoted by SV (γ, n), if for all i ∈ {1, . . . , n} and
every string s ∈ {0, 1}i−1, 1−γ

2 ≤ Pr[ri = 1 | r1 . . . ri−1 = s] ≤ 1+γ
2 holds. We

define the n-bit γ-SV source SV(γ, n) to be the set of all n-bit γ-SV distributions.

9 For differential privacy (part (d)), we do not have an analog of the counter-example
in [DS02], and anyway the value τ = O(1/ρ) � δ = O(ε) (so no contradiction). Of
course, this does not imply that a stronger bit extraction result should be true; only
that it is not definitely false.

10 For consistency with prior work, we only assume that Ri has k fresh bits conditioned
on the prior blocks, but our impossibility results easily extend to the case when we
condition on both the past and the future blocks..
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Finally, we define BCL sources [Dod01].

Definition 13. Assume that 0 ≤ γ < 1. The (γ, b, n)-Bias-Control Lim-
ited (BCL) source BCL(γ, b, n) generates n bits r1, . . . , rn, where for all i ∈
{1, . . . , n}, the value of ri can depend on r1, . . . , ri−1 in one of the following two
ways:

(a) ri is determined by r1, . . . , ri−1, but this can happen for at most b bits. This
rule of determining a bit is called an intervention.

(b) 1−γ
2 ≤ Pr[ri = 1 | r1r2 . . . ri−1] ≤ 1+γ

2 .

Every distribution over {0, 1}n generated from BCL(γ, b, n) is called a (γ, b, n)-
BCL distribution BCL(γ, b, n).

In particular, if b = 0, BCL(γ, b, n) degenerates into SV(γ, n) [SV86]; if γ = 0,
it yields the sequential-bit-fixing source of Lichtenstein, Linial, and Saks [LLS89].

5.1 Separability Results

In the following, we propose that the above sources are separable. It should be
noted that: (a) The results for the weak and SV sources are implicitly known;
(b) The BCL source was not considered before, but it is not hard to prove its
separability given careful application of prior work; (c) The separability of the
block source is new. It was not considered before because the SV source is a block
source with each block of length 1, and [MP90,DOPS04] showed traditional pri-
vacy impossible even with the SV source (hence with the block source). But in
light of [DLMV12], where differential privacy is possible with the SV source,
we find it important to precisely figure out the separability of the block source.
A naive approach would be to employ the so called γ-biased half-space source
(see [DY14]), introduced by [RVW04] and [DOPS04], which is both γ-SV and
(m − log 1+γ

1−γ ,m)-block sources. We can easily conclude that (1) SV(γ, n) is

(t, γ
2t+1 )−separable, and (2) Block(k,m, n) is (t, 2m−k−1

2t+1·(2m−k+1)
)−separable. How-

ever, these results are somewhat sub-optimal. Instead, we introduce a new sepa-
rability bound for block sources in Lemma 2 (b), and use it to get an improved
result about the SV sources as well (see [DY14] for the proof).

Lemma 2. (a) Assume that k ≤ n − 1. Then Weak(k, n) is (t, 1)−separable
when k ≤ n− t−1, and (t, 2n−t−k−1)−separable when n− t−1 < k ≤ n−1.
In particular, it’s (t, 1

2 )−separable when k ≤ n − t.

(b) Block(k,m, n) is
(

t, 1

1+2t+1·
(

2k−1
2m−2k

)

)
−separable. In particular, it is

(t, 1/(1+22+t+k−m))−separable when k ≤ m−1 (and, hence, (t, 1
2 )−separable

when k ≤ m − t − 2).
(c) SV(γ, n) is (t, γ

2t )−separable.
(d) BCL(γ, b, n) is (t, 1 − 2t+2

(1+γ)b )−separable. In particular, it is (t, 1
2 )−separable

for b ≥ t+3
log(1+γ) = Θ( t+1

γ ).
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5.2 Implications to Traditional and Differential Privacy

Impossibility of Traditional Privacy. From Lemma 2 and Corollary 1
(a)-(d), we conclude:

Theorem 5. For the following values of δ, shown in Table 1, no (Rn, δ)−secure
cryptographic primitive P exists, where Rn ∈ {Weak(k, n),Block(m −
1,m, n),SV(γ, n),BCL(γ, b, n)} and P ∈ {bit extractor, bit encryption scheme,
weak bit commitment, bit T -secret sharing}.

Table 1. Values of δ for which no (Rn, δ)−secure cryptographic primitive P exists

We notice that, while the impossibility results for the block and BCL sources
are new, the prior work of [MP90,DOPS04] already obtained similar results for
the weak and SV sources. However, our results still offer some improvements
over the works of [MP90,DOPS04]. First, unlike the work of [MP90], our dis-
tinguisher is efficient (see Remark 1), ruling out even computationally secure
encryption, commitment, and secret sharing schemes. Second, unlike the work
of [DOPS04], our lower bound on δ does not depend on the sizes of cipher-
text/commitment/shares. In particular, while [DOPS04] used a bit-by-bit hybrid
argument to show their impossibility results, our proof of Theorem 3 used a more
clever “universal hashing trick”. More importantly, instead of focusing the entire
proof on some specific weak/block/SV sources [MP90,DOPS04], our impossibil-
ity results for such sources were obtained in a more modular manner, making
these proofs somewhat more illuminating.

Impossibility of Differential Privacy with the Weak, Block and
BCL sources. Now we apply the impossibility results of differential privacy
to the sources Weak(k, n), Block(k,m, n), and BCL(γ, b, n). In particular, by
combining Corollary 1 (e.2) with Lemma 2 (a), (b), and (d), respectively, we get

Theorem 6. For the following sources Rn, no (Rn, ε)−differentially private
and (Un, ρ)-accurate mechanisms for the Hamming weight queries exist:
(a) Weak(k, n) where k ≤ n − log(ερ) − 6;
(b) Block(k,m, n) where k ≤ m − log(ερ) − 8;
(c) BCL(γ, b, n) where b ≥ log(ερ)+9

log(1+γ) = Ω( log(ερ)+1
γ ).
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Table 2. Comparison about the Impossibility of Traditional Privacy and Differential
Privacy.

Source Traditional Privacy δ Differential Privacy ε & Utility ρ

Block(k, m, n) Impossible if δ ≤ 1
9 , even if k = m − 1 Impossible if k ≤ m − log(ερ) − O(1)

SV(γ, n) Impossible if δ = O(γ) Impossible if ρ = O( 1
ε ), even for Un

(Possible if ρ = poly1/(1−γ)(
1
ε ) 	 1

ε )

BCL(γ, b, n) Impossible if δ = O(γ), even if b = 0; Impossible if b = Ω(
log(ερ)+1

γ )

Impossible if δ ≤ 1
2 and b = Ω( 1

γ )

We discuss the (non-)implications to the SV source below, but notice the
strength of these negative results the moment the source becomes a little bit
more “adversarial” as compared to the SV source. In particular, useful mecha-
nisms in differential privacy (called “non-trivial” by [DLMV12]) aim to achieve
utility ρ (with respect to the uniform distribution) which only depends on the
differential privacy ε, and not on the size N of the database D. This means that
the value log(ερ) is typically upper bounded by some constant c = O(1). For
such “non-trivial” mechanisms, our negative results say that differential privacy
is impossible with (1) weak sources even when the min-entropy k = n−O(1); (2)
block sources even when the min-entropy k = m − O(1); (3) BCL sources even
when the number of interventions b = Ω(1). So what prevented us from strong
impossibility for the SV sources, as is expected given the feasibility results of
[DLMV12]? The short answer is that the separability of the SV sources given by
Lemma 2 (c) is just not good enough to yield very strong results. We explain it
in more detail in [DY14].

5.3 Comparing Impossibility Results for Traditional and Differential
Privacy

In this section, we compare the impossibility of traditional privacy and differ-
ential privacy (see Table 2). For traditional privacy, we consider bit extractor,
bit encryption scheme, weak bit commitment, and bit T -secret sharing (i.e., set
T = 2 for concreteness). We observe that the impossibility results for differential
privacy are only marginally weaker than those for traditional privacy.

In particular, while a very “structured” (and, hence, rather unrealistic) SV
source is sufficient to guarantee loose, but non-trivial differential privacy, without
guaranteeing (strong-enough) traditional privacy, once the source becomes more
realistic (e.g., number of interventions b becomes super-constant, or one removes
the conditional entropy guarantee within different blocks), both notions of pri-
vacy become impossible extremely quickly. In other words, despite the surprising
feasibility result of [DLMV12] regarding differential privacy with SV sources, the
prevalent opinion that “privacy is impossible with realistic weak randomness”
appears to be rather accurate.
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Abstract. We initiate a systematic treatment of the communication
complexity of conditional disclosure of secrets (CDS), where two parties
want to disclose a secret to a third party if and only if their respective
inputs satisfy some predicate. We present a general upper bound and
the first non-trivial lower bounds for conditional disclosure of secrets.
Moreover, we achieve tight lower bounds for many interesting setting of
parameters for CDS with linear reconstruction, the latter being a require-
ment in the application to attribute-based encryption. In particular, our
lower bounds explain the trade-off between ciphertext and secret key
sizes of several existing attribute-based encryption schemes based on the
dual system methodology.

1 Introduction

We revisit a fundamental question in the foundations of cryptography: what is
the communication overhead of privacy in computation? This question has been
considered in several different models and settings [2,12,14,41]. In this work,
we focus on a very simple and natural model where non-private computation
requires very little communication (just a single bit), whereas the best upper
bound for private computation is exponential.

Namely, we consider two-party conditional disclosure of secrets (CDS) [19] (c.f.
Fig. 2), a generalization of secret sharing [23,44]: two parties want to disclose a
secret to a third party if and only if their respective inputs satisfy some fixed
predicate P. Concretely, Alice holds x, Bob holds y and they both share a secret
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α ∈ {0, 1} (along with some additional private randomness), whereas Carol knows
x, y but not α. Alice and Bob want to disclose α to Carol iff P(x, y) = 1. How many
bits do Alice and Bob need to communicate to Carol? In the non-private setting,
Alice or Bob can send α to Carol, upon which Carol computes P(x, y) and decides
whether to output α or ⊥. This trivial protocol with one-bit communication is
not private because Carol learns α even when the predicate is false; in fact, the
best upper bound we have for CDS for general predicates requires that Alice and
Bob each transmits 2Ω(|x|+|y|) bits [7]. Here, we are interested not only in the total
communication from Alice and Bob to Carol, but also in trade-offs between the
length of Alice’s message �A and that of Bob’s message �B.

Connection to Attribute-Based Encryption. Attribute-based encryption
(ABE) [20,43] is a new paradigm for public-key encryption that enables fine-
grained access control for encrypted data. In attribute-based encryption, cipher-
texts are associated with descriptive values x in addition to a plaintext, secret
keys are associated with values y, and a secret key decrypts the ciphertext if
and only if P(x, y) = 1 for some boolean predicate P. Note that x and y are
public given the respective ciphertext and secret key. Here, y together with P
may express an arbitrarily complex access policy, which is in stark contrast to
traditional public-key encryption, where access is all or nothing. The simplest
example of ABE is that of identity-based encryption (IBE) [8,13,45] where P
corresponds to equality. The security requirement for attribute-based encryption
enforces resilience to collusion attacks, namely any group of users holding secret
keys for different values learns nothing about the plaintext if none of them is
individually authorized to decrypt the ciphertext. This should hold even if the
adversary adaptively decides which secret keys to ask for.

In [47], Waters introduced the powerful dual system encryption method-
ology for building adaptively secure IBE in bilinear groups; this has since
been extended to obtain adaptively secure ABE for a large class of predicates
[30,31,33,35,38,40]. In recent works [3,48], Attrapadung and Wee presented a
unifying framework for the design and analysis of dual system ABE schemes,
which decouples the predicate P from the security proof. Specifically, the lat-
ter work puts forth the notion of predicate encoding, a private-key, one-time,
information-theoretic primitive similar to conditional disclosure of secrets, and
provides a compiler from predicate encoding for a predicate P into an ABE for
the same predicate using the dual system encryption methodology. Moreover,
the parameters in the predicate encoding scheme and in CDS correspond nat-
urally to ciphertext and key sizes in the ABE. In particular, Alice’s message
corresponds to the ciphertext, and Bob’s message to the secret key. For these
applications, we require that Alice’s and Bob’s messages are linear functions of
the shared randomness, and also that Carol computes a linear function of the
messages to reconstruct the secret α. These applications consider linear func-
tions over Zp where p is the order of the underlying bilinear group; in this work,
we focus on lower bounds for the case p = 2 although our techniques do hold for
general p. Note that while the parameters for ABE schemes coming from predi-
cate encodings are not necessarily the best known parameters, they do match the
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state-of-the-art in terms of ciphertext and secret key sizes for many predicates
such as inner product, index, and read-once formula.

CDS Parameters. Unlike in traditional communication complexity where the
primary measure is the total communication from Alice and from Bob, we make a
more fine-grained distinction between the lengths of Alice’s and Bob’s messages
�A and �B. For instance, in the application to ABE, �A and �B correspond to
ciphertext and secret key sizes respectively. Note that for ABE ciphertext and
key sizes, we ignore the contributions from the descriptive values x, y as well as
multiplicative factors in the security parameter.1 We are particularly interested
in three regimes of parameters for (�A, �B):

– How small can �B be when �A is constant? This corresponding to minimizing
key sizes for schemes with constant-size ciphertexts;

– How small can �A be when �B is constant? This corresponding to minimizing
ciphertext sizes for schemes with constant-size keys;

– How small can max(�A, �B) be? This corresponds to minimizing the overall
parameter sizes of the scheme.

We also care about the complexity of the reconstruction function as computed
by Carol, as a function of the messages from Alice and Bob; as noted earlier, for
ABE, we will require linear reconstruction.

Prior Works. There have been several works studying CDS protocols (and
strengthenings thereof) for a large class of predicates [3,19,22,48]: the best gen-
eral upper bound achieves both linear reconstruction and communication that is
linear in the size of the smallest (arithmetic) branching program computing the
predicate [19,22]. However, we basically do not have any techniques for proving
lower bounds on the communication complexity of CDS protocols. Here, even
the probabilistic method or a counting argument does not seem to yield mean-
ingful lower bounds for a random function (in contrast, these techniques do yield
meaningful lower bounds for circuit complexity of a random function).

1.1 Our Results

We initiate a systematic treatment of the communication complexity of condi-
tional disclosure of secrets (CDS). We present a general upper bound and the
first non-trivial lower bounds for conditional disclosure of secrets, summarized
in Fig. 1. Moreover, we achieve tight lower bounds for many interesting setting
of parameters for CDS with linear reconstruction, the latter being a requirement
in the application to attribute-based encryption; this addresses an open problem
posed in [48]. Very informally, for CDS with linear reconstruction, we obtain
lower bounds of the form:

�A · �B ≥ “communication complexity of P”
1 The latter suppresses the distinction between counting bits and group elements, and

also between working over Z2 vs Zp, where p is the order of the underlying bilinear
group.
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Fig. 1. Summary of our upper and lower bounds for linear CDS, where �A and �B
denote the length of the messages from Alice and Bob respectively. We marked the
tight lower bounds with an asterisk ∗.

For example, for inner product on n-bit vectors, we have �A · �B = Ω(n). Our
lower bounds partially explain the trade-off between ciphertext and secret key
sizes of several existing attribute-based encryption schemes based on the dual
system methodology, c.f. [3,10,31,35,39,48].

Proof Techniques. Since we want to argue about the lengths of the messages
of Alice and Bob to Carol, the first idea would be to look at the communication
complexity of the predicate P [29,49]. Informally, communication complexity
measures how many bits of information about x and y we need to transmit in
order to compute P(x, y) (c.f. Fig. 2). Namely, Alice holds x and Bob holds y
and each of them sends a message to a third party Carol who wants to compute
P(x, y). We also allow all three parties to share public randomness w. The goal
is to minimize the communication from Alice and Bob to Carol, and there is
no privacy requirement. There is now a large body of works in communication
complexity giving tight upper and lower bounds for a large class of predicates.
For instance, a classic result from communication complexity tells us that to
compute the inner product of two vectors x,y ∈ {0, 1}n, each of Alice and Bob

Fig. 2. Pictorial representation of CDS and communication complexity.
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must send n − Ω(1) bits [11]. That is, we need to know essentially all of x and
all of y in order to compute their inner product.

Our goal is to leverage the rich literature on lower bounds for communication
complexity to obtain lower bounds for CDS. Namely, we want to transform any
CDS Πcds for a predicate P into a communication complexity protocol Πcc for P
with only a small blow-up in communication complexity. The crucial distinction
between CDS and communication complexity is that Carol knows x, y in Πcds

but not in Πcc (as shown in Fig. 2).
The first attempt would be to show that a Πcds for a predicate P is also a

Πcc for P. Fix x, y to denote the inputs to Πcc. That is, we would like to argue
that Alice’s message together with Bob’s message in a CDS (even without x, y)
must completely determine P(x, y). Intuitively, this ought to be the case because
if the CDS messages are consistent with both values of P(x, y), then they must
simultaneously uniquely determine α (via correctness) and hide α (via privacy),
a contradiction. Indeed, if this worked out, we would have a lower bound of
the form

�A + �B ≥ “communication complexity for P”

Unfortunately, the above statement is false for inner product. The above state-
ment implies a lower bound of 2n − Ω(1) bits for inner product, but we have
a CDS for inner product with n + 1 bits! It is instructive to understand why
the above attempt fails. The issue arises in using correctness of CDS to argue
that Alice’s and Bob’s message must determine α: specifically, it is necessary for
Carol to specify inputs x′, y′ in order to reconstruct α from Alice’s and Bob’s
messages. In fact, different inputs (x′, y′) could yield different values for α. We
need to fix this issue.

– The first idea is to have Alice in Πcc also send the secret α; Carol then tries
all possible (x′, y′) for which P (x′, y′) = 1 and output 1 iff for some x, y the
reconstructed secret indeed equals α. By the correctness of CDS, Carol will
output 1 when P (x, y) = 1. However, there could be false positives, since even
when P (x, y) = 0, there could be inputs (x′, y′) for which P (x′, y′) = 1 and
the reconstructed secret matches α, upon which Carol will incorrectly output
1. In fact, privacy tells us that Carol will recover a random value for the secret
for each choice of (x′, y′), and with pretty good probability, at least one of
them will match α.

– The second idea is to avoid false positives by having Alice and Bob run the
CDS protocol Πcds N times, with fresh independent private randomness and
secrets across the repetitions. As before, Carol will try all possible (x′, y′) for
which P (x′, y′) = 1 and output 1 iff for some x′, y′ the reconstructed secret
equals α in all repetitions of the protocol. By the correctness of CDS, Carol
will always output 1 when P (x, y) = 1. On the other hand, if P (x, y) = 0, a
straight-forward union bound over (x′, y′) ∈ P−1(1) tells us Carol outputs 1
with probability at most P−1(1) ·2−N , since Carol recovers a random value in
each repetition. For inner product, we need to take a union bound over 22n−1

possible pairs, which requires running N = 2n− 1 copies of the CDS protocol
Πcds; the communication complexity of Πcc is then 2n − 1 times that of Πcds.
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This does not yield any non-trivial lower bound for Πcds since we have an
upper bound of 2n for communication complexity.

Here comes our key observation: we can substantially reduce the number of rep-
etitions needed if the CDS protocol Πcds has small communication complexity!
Suppose Πcds has total communication �A+�B � n bits. Observe that the recon-
struction function computed by Carol in Πcds is a function from {0, 1}�A+�B to
{0, 1}. Now, instead of having Carol in Πcc enumerate over all possible (x, y), she
will instead enumerate over all functions from {0, 1}�A+�B to {0, 1}, and output
1 iff for some function the reconstructed secret equals α in all N repetitions. By
the correctness of CDS, Carol will always output 1 when P (x, y) = 1. Moreover,
there are 22�A+�B possible functions, which means we will need to run 2�A+�B

copies of Πcds in Πcc; this already implies a Ω(log n) lower bound for inner prod-
uct! Moreover, if the CDS Πcds admits linear reconstruction, then Carol in Πcc

will also need to enumerate over all 2�A+�B linear functions from {0, 1}�A+�B to
{0, 1}, which means we only need to run �A + �B copies of Πcds in Πcc; this in
turn yields a Ω(

√
n) lower bound for inner product.

We obtain our lower bounds on CDS for concrete predicates by instantiating
the above argument with existing lower bounds in communication complexity
[4,11,24,28,36,42] (c.f. Sect. 5).

Implications for Dual System ABE. As observed in [3,10,48], underlying
most “information-theoretic” dual system ABE schemes for a predicate P is
a CDS for the same predicate, and our lower bounds apply to ciphertext and
secret key sizes for these dual system ABE schemes. On the other hand, we do
have ABE schemes based on a “computational” dual system argument, such as
those in [3,9,27,32,34], many of which are more efficient and do avoid the lower
bounds in this work. Informally, underlying the “computational” dual system
argument is a computational analogue of CDS, where the privacy requirement
is computational rather than information-theoretic. As it turns out, formalizing
the right notion of computational privacy in CDS is quite tricky.

Recall that CDS guarantees privacy of the secret α whenever P(x, y) = 0,
and in the application to ABE, we require that privacy holds even if x, y are
chosen adaptively, namely Alice’s input x may be chosen depending on Bob’s
input y and Bob’s message, and vice versa. Now, if the privacy guarantee is
information-theoretic and perfect, then privacy for non-adaptive choices of x, y
implies privacy for adaptive choices2; this equivalence dissipates as soon as we
relax the privacy requirement to be statistical or computational. The “right”
notion of computational privacy for use in ABE schemes is that of “doubly selec-
tive” security [3,34], where “doubly” refers to the two possibilities depending on

2 The easiest way to see this is via complexity leveraging: an adaptive distinguisher
with advantage ε can be converted into a non-adaptive distinguisher with an expo-
nential loss in ε via random guessing. Since any non-adaptive distinguisher has
advantage 0, we must have ε = 0 to begin with.
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whether x or y is chosen first. Unsurprisingly, proving3 and using doubly selec-
tive security require substantially more delicate security reductions, and in most
cases, stronger and less desirable q-type assumptions. This raises the natural
question of whether the increased complexity in these proofs and assumptions
are inherent, or simply a failure to find more clever and efficient CDS with
information-theoretic privacy. Our work rules out the latter option.

1.2 Discussion

Perspective. Note that our set-up is quite different from previous lower bounds
for private computation in the literature; to the best of our knowledge, this is
the first super-constant lower bound in a setting where the price of privacy in
computation is always bounded. For instance, in interactive secure two-party
computation, some functions are impossible to compute securely [12], so the
cost of privacy is infinite for these functions (whereas ours is bounded for all
predicates). For secure computation in the FKN model [14,15], we do not have
any techniques for super-constant gaps. For locally decodable codes, there is no
gap for privacy in some ranges of parameters, for instance, when we want to
minimize one-way communication from the client and communication from the
server is essentially “free”; here, the server needs to send the entire database,
whether or not we care about client privacy.

Additional Related Work. There is a large body of work on lower bounds
on share sizes in secret-sharing (c.f. [5, Sect. 5]). Most of these works rely on
Shannon-type inequalities on entropy of random variables, which do not seem
applicable to our setting. Roughly speaking, in secret sharing, Carol either gets a
share or not, whereas Alice and Bob in CDS can do more complex computations
than simply computing shares and then deciding whether to send each share
to Carol. The recent work of Data, Prabhakaran and Prabhakaran [14] draws
upon tools from information theory to obtain new communication complexity
lower bounds for secure computation in three-party setting. In their model which
allows multiple rounds of interaction, the problem we consider admits a secure
protocol with a single bit of communication, and their techniques do not yield
better bounds in the non-interactive setting.

Open Problems. We conclude with a number of open problems:

– explore the power of non-linear reconstruction in CDS (that is, positive results,
c.f. [6,46]);

– tight lower bounds for inner product with linear reconstruction (which we
conjecture to be Ω(n));

3 Typically, this entails two separate reductions, one for x being chosen first and the
other for y. In [34], these correspond to selectively secure key-policy and ciphertext-
policy ABE schemes; in [3], these correspond to so-called selective and co-selective
security.
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– obtain better lower bounds for multi-bit secrets (which is related to lower
bounds for secret sharing for multi-bit secrets), or obtain upper bounds that
are better than the naive “direct product” construction;

– improve the upper or lower bounds in CDS for read-once span programs for
constant �A or constant �B. A related problem is to prove stronger communi-
cation complexity lower bounds for general span programs (which may not be
read-once).

2 Preliminaries

Notations. We denote by s ←r S the fact that s is picked uniformly at random
from a finite set S or from a distribution. Throughout this paper, we denote by
log the logarithm of base 2.

2.1 Conditional Disclosure of Secrets

We recall the notion of conditional disclosure of secrets (CDS), c.f. Fig. 2. The
definition we give here is for two parties Alice and Bob and a referee Carol, where
Alice and Bob share randomness w and want to conditionally disclose a secret
α to Carol. The general notion of conditional disclosure of secrets has first been
investigated in [19]. Two-party CDS is closely related to the notions of predicate
encoding [10,48] and pairing encoding [3]; in particular, the latter two notions
imply two-party CDS with linear reconstruction.

Definition 1 (Conditional Disclosure of Secrets (CDS) [19,48]). Fix a
predicate P : X × Y → {0, 1}. A (�A, �B)-conditional disclosure of secrets (CDS)
for P is a triplet of deterministic functions (A,B,C)

A : X × W × D → {0, 1}�A , B : Y × W × D → {0, 1}�B , C : X × Y × {0, 1}�A × {0, 1}�B → D

satisfying the following properties:

(reconstruction.) For all (x, y) ∈ X × Y such that P(x, y) = 1, for all w ∈ W,
and for all α ∈ D:

C(x, y,A(x,w, α),B(y, w, α)) = α

(privacy.) For all (x, y) ∈ X×Y such that P(x, y) = 0, and for all C∗ : {0, 1}�A ×
{0, 1}�B → D,

Pr
w←W,α←rD

[
C∗(A(x,w, α),B(y, w, α)

)
= α

]
≤ 1

|D|
Note that the formulation of privacy above with uniformly random secrets is
equivalent to standard indistinguishability-based formulations

A useful measure for the complexity of a CDS is the complexity of recon-
struction as a function of the outputs of A,B, as captured by the function C,
with (x, y) hard-wired.
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Definition 2 (C-Reconstruction). Given a set C of functions from {0, 1}�A ×
{0, 1}�B → D, we say that a CDS (A,B,C) admits C-reconstruction if for all
(x, y) such that P(x, y) = 1, C(x, y, ·, ·) ∈ C.

Two examples of C of interest are:

– Call is the set of all functions from {0, 1}�A × {0, 1}�B → D; that is, we do not
place any restriction on the complexity of reconstruction. Note that |Call| =
|D|2�A+�B .

– Clin is the set of all linear functions over Z2 from {0, 1}�A × {0, 1}�B → D;
that is, we require the reconstruction to be linear as a function of the outputs
of A and B as bit strings (but may depend arbitrarily on x, y). This is the
analogue of linear reconstruction in linear secret sharing schemes and is a
requirement for the applications to attribute-based encryption [3,10,48]. Note
that |Clinear| ≤ |D|�A+�B for |D| ≥ 2.

Remark 1. Note that while looking at C, we consider C(x, y, ·, ·), which has (x, y)
hard-wired, and takes an input of total length �A + �B. In particular, it could be
that C runs in time linear in |x| = |y| = n, and yet �A = �B = O(log n) so C has
“exponential” complexity w.r.t. �A + �B.

Definition 3 (Linear CDS). We say that a CDS (A,B,C) is linear if it admits
Clin-reconstruction.

2.2 Communication Complexity

The description of communication complexity in Fig. 2 actually refers to the
“simultaneous message” model, where A and B each sends a message to C. For
our actual proof, it suffices to consider one way communication complexity, where
there is no C, but either A sends a single message to B or B sends a single
message to A. We now proceed to recall the basic definitions for communication
complexity [29,49], specifically one-way communication complexity with one-
sided error [1,28,37].

Definition 4 ([28,49]). A one-way (A → B) communication protocol for a pred-
icate P : X × Y → {0, 1} it is a pair of deterministic functions (A,B) where

A : X × W × {0, 1}� → {0, 1}, B : Y × W × {0, 1}� → {0, 1},

and the following properties are satisfied for every (x, y) ∈ X × Y:

– If P(x, y) = 1, then Prw←rW[B(y, w,A(x,w)) = 1] = 1
– If P(x, y) = 0, then Prw←rW[B(y, w,A(x,w)) = 0] ≥ 1/2.

The one-way communication complexity of P, denoted by RA→B(P), is the min-
imum � over all one-way communication protocols (A,B) for P.

We also denote by RB→A(P) the minimum � over all one-way (B → A) com-
munication protocols (A,B), where

A : X × W × {0, 1}� → {0, 1}, B : Y × W × {0, 1}� → {0, 1},

and the following properties are satisfied for every (x, y) ∈ X × Y:
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– If P(x, y) = 1, then Prw←rW[A(x,w,B(y, w)) = 1] = 1
– If P(x, y) = 0, then Prw←rW[A(x,w,B(y, w)) = 0] ≥ 1/2.

3 CDS for General Predicates

We present a general upper bound for linear CDS for any predicate:

Theorem 1 (Generic Upper Bounds for Linear CDS). Given any predi-
cate P : {0, 1}n ×{0, 1}n → {0, 1}, for any t ≤ 2n, there exists a linear (t, 2n/t)-
CDS for P with D = {0, 1}. In particular, there exists a (1, 2n)-CDS, a (2n, 1)-
CDS, a (2n/2, 2n/2)-CDS for P, all three of which are linear.

The result improves upon the (2n/2, 2n/2)-CDS (but not linear) given in [7]; our
construction is also considerably simpler.

Proof (sketch.) The construction follows from a standard reduction of any gen-
eral predicate to the INDEX predicate on 2n-dimensional vectors: Alice treats
the truth table P(x, ·) as a vector of length 2n and Bob treats y ∈ {0, 1}n

as an index, so that the INDEX predicate returns P(x, y). Then, we can use
the (t, 2n/t)-linear CDS for the INDEX predicate on 2n-dimensional vectors in
[10,17] 
�
More generally, for any predicate P : X×Y → {0, 1}, we have a (t,min(|X|, |Y|)/t)-
linear CDS, by treating either x or y as an index depending on whether |X| ≤ |Y|
or not. This is essentially optimal for linear reconstruction, since we prove a tight
lower bound for INDEX: {0, 1}n × [n] → {0, 1} in Sect. 5.

4 Lower Bounds for CDS

In this section, we present our lower bounds on the communication complexity
of CDS.

Theorem 2 (Lower Bounds for Linear CDS). Let P : X × Y → {0, 1} be a
predicate. For all linear (�A, �B)-CDS of P with |D| ≥ 2, we have

�A · (�A + �B + 1) ≥ RA→B(P) and �B · (�A + �B + 1) ≥ RB→A(P).

We then derive our lower bounds for linear CDS by using existing lower bounds
on one-way communication complexity; see Sect. 5. In fact, our techniques are
fairly general and also yield lower bounds on non-linear CDS.

Theorem 3 (Lower Bounds for General CDS). Let P : X × Y → {0, 1} be
a predicate. For all (�A, �B)-predicate CDS of P with |D| ≥ 2, we have

�A + �B ≥ 1
2

log
(
RA→B(P) + RB→A(P)

)
.

While the lower bounds for general CDS are exponentially smaller than those
for linear CDS, we still do obtain non-trivial logarithmic lower bounds for many
concrete predicates.
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4.1 Main Lemma

We obtain both lower bounds via a general reduction from CDS for a predicate P
to one-way communication protocols for the same predicate; the communication
cost of the reduction depends crucially on the complexity of reconstruction (c.f.
Definition 2):

Lemma 1 (Main Technical Lemma). Let P : X× Y → {0, 1} be a predicate.
Then, any (�A, �B)-CDS for P with |D| ≥ 2 and which admits C-reconstruction
satisfies

(log |C| + 1) · �A ≥ RA→B(P) · log |D| and (log |C| + 1) · �B ≥ RB→A(P) · log |D|
Theorem 2 then follows from instantiating the lemma with C := Clin, where
log |Clin| = (�A+�B)·log |D|. Similarly, Theorem 3 uses C := Call where log |Call| =
2�A+�B · log |D|.
Proof (of Lemma 1). Let N := log |C|+1

log |D| . We build a one-way communication

protocol (Ã, B̃) for the predicate P as follows:

– Sample wi ←r W, αi ←r D for i = 1, . . . , N and set

w := (w1, α1, . . . , wN , αN )

– Alice computes

Ã(x,w) := (A(x,w1, α1), . . . ,A(x,wN , αN ))

– Bob outputs 1 iff there exists a function C∗ ∈ C such that

C∗(A(x,wi, αi),B(y, wi, αi)
)

= αi, ∀ i = 1, . . . , N

We proceed to analyze the protocol (Ã, B̃).

– Completeness. Suppose P(x, y) = 1. Then, by the reconstruction property, the
function C∗(·) := C(x, y, ·) ∈ C satisfies

C∗(A(x,wi, αi),B(y, wi, αi)
)

= αi, ∀ i = 1, . . . , N

for all (w1, α1, . . . , wN , αN ). Therefore, B̃ outputs 1 with probability 1.

– Soundness. Suppose P(x, y) = 0. Fix C∗ ∈ C. For each i = 1, . . . , N , α-privacy
implies that

Pr
wi,αi

[
C∗(A(x,wi, αi),B(y, wi, αi)

)
= αi

]
≤ 1

|D|

Since the (wi, αi) are chosen independently at random, we have

Pr
w1,α1,...,wN ,αN

[
C∗(A(x,wi, αi),B(y, wi, αi)

)
= αi, ∀ i = 1, . . . , N

]
≤ 1

|D|N

By a union bound over all |C| functions C∗ ∈ C, we have

Pr
[
B̃ outputs 1

]
≤ |C| · |D|−N ≤ 1/2

by our choice of N .
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It is straightforward to check that Ã sends log |C|+1
log |D| · �A bits to B̃. Similarly, we

can build a (B̃, Ã) protocol for P, where B̃ sends log |C|+1
log |D| · �B bits to Ã. This

completes the proof. 
�
Remark 2 (Extensions). It is easy to see that the reduction also works for CDS
with imperfect reconstruction and weak privacy. If the gap between the proba-
bility of reconstructing α when P(x, y) = 1 and the probability of recovering α

when P(x, y) = 0 is δ, then it suffices to take N := O
(

1
δ log |C|

)
via a straight-

forward application of the Chernoff bound. The ensuing randomized protocol for
communication complexity will then have a two-sided error.

Remark 3 (Beyond Linear CDS). Note that the bounds of Theorem 2 are much
more general than just for linear CDS. For instance, if we require that reconstruc-
tion be carried out by circuits of size �c for some constant c (where � := �A + �B),
or by polynomials of degree c, then we get lower bounds of the form

�A + �B = Ω
(
(RA→B(P) + RB→A(P))1/(c+1)

)

4.2 Lower Bounds for Multi-bit Secrets

We now look at CDS where the secret α is a multi-bit string; that is, D is of the
form {0, 1}d, for d ≥ 1. There is a trivial upper bound for d-bit secrets obtained
by running d times a CDS for single-bit secrets. Note, of course, that hiding a
secret of size d = 1 is the easiest case, since we can simply embed this secret
to a larger d-bit string by randomly adding d − 1 bits and use the CDS for the
secret of size d. Hence, the lower bounds on the message lengths of the CDS for
a secret of size d = 1 still hold for the CDS of secret of size d ≥ 1. We would like
a lower bound that grows with d.

Here, we prove that for any non-trivial predicate P, for any (�A, �B)-CDS of
P, both �A and �B need to be at least d. A trivial predicate is one whose output
is completely determined by either x or y (e.g. the output of the predicate is the
first bit of x), for which there is a protocol with �A + �B = d. The intuition is
that in any non-trivial predicate, Alice’s message essentially serves as the secret
key for a one-time pad, which is needed to “unlock” α ∈ {0, 1}d from Bob’s
message. This means that Alice’s message must itself be at least d bits.

It is easy to see that the lower bound is tight for the equality predicate. For
all other non-trivial predicates, it remains an open problem to close the gap
between lower and upper bounds for CDS of multi-bit secrets.

Theorem 4. Let D := {0, 1}d, and let P : X × Y → {0, 1} be a non-trivial
predicate that depends on both inputs x and y; that is, there exists x∗ ∈ X, such
that P(x∗, ·) is not constant on Y, and there exists y∗ ∈ Y such that P(·, y∗) is
not constant on X. Then, for any (�A, �B)-CDS of P, we have

�A ≥ d and �B ≥ d.
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Proof. We begin with the lower bound on �A. Let x0, x1 ∈ X be such that

P(x0, y
∗) = 0 and P(x1, y

∗) = 1

Let C∗ : {0, 1}�A+�B → {0, 1}d be a randomized function defined as follows: on
input mA ∈ {0, 1}�A and mB ∈ {0, 1}�B ,

– picks a message m ←r {0, 1}�A at random (and ignores mA);
– outputs C(x1, y

∗,m,mB).

By α-reconstruction for P(x1, y
∗) = 1, for all α ∈ D, w ∈ W, we have

C
(
x1, y

∗,A(x1, w, α),B(y∗, w, α)
)

= α.

Therefore, for all α ∈ D, w ∈ W, we have

Pr
m←r{0,1}�A

[
C
(
x1, y

∗,A(x1, w, α),B(y∗, w, α)
)

= α and m = A(x1, w, α)
]

= 1/2�A

Thus,

Pr
w←W,α←rD, coins of C∗

[

C∗(A(x1, w, α),B(y∗, w, α)
)

= α
]

≥ Pr
w←W,α←rD,m←r{0,1}�A

[

C
(

x1, y
∗,A(x1, w, α),B(y∗, w, α)

)

= α and m = A(x1, w, α)
]

= 1/2�A

Since C∗ ignores mA, this means that for all mA, and in particular for mA =
A(x0, w, α), we have

Pr
w←W,α←rD, coins of C∗

[
C∗(A(x0, w, α),B(y∗, w, α)

)
= α

]
≥ 1/2�A

On the other hand, by α-privacy for P(x0, y
∗) = 0, we have

Pr
w←W,α←rD, coins of C∗

[
C∗(A(x0, w, α),B(y∗, w, α)

)
= α

]
≤ 1/2d

Combining the two preceding inequalities, we have 1/2�A ≤ 1/2d and thus,

�A ≥ d.

For the same reason,
�B ≥ d. 
�
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5 Concrete Predicates

In this section, we describe how we can combine the results in the previous
section with lower bounds in one-way communication complexity to obtain the
results in Fig. 1. Each of these predicates has been studied in prior works on
attribute-based encryption. For each of these predicates, we obtain non-trivial
lower bounds for general (�A, �B)-CDS of the form:

�A + �B = Ω(log n).

We focus hence-forth on lower bounds for linear (�A, �B)-CDS, where linearity is
over Z2. In the applications to ABE, we will typically work with linear functions
over D = Zp (where log p is linear in the security parameter), in which case we
lose a multiplicative log p factor in the lower bounds.

Index, Prefix. We consider the following predicates:

– Index: X := {0, 1}n,Y := [n] and

Pindex(x, i) = 1 iff xi = 1

That is, x is the characteristic vector of a subset of [n]. In the context of ABE,
this corresponds to broadcast encryption [16].

– Prefix: X := {0, 1}n,Y := {0, 1}≤n and

Pprefix(x,y) = 1 iff y is a prefix of x

In the context of ABE, this corresponds to hierarchical identity-based encryp-
tion [18,21].

For both predicates, we have tight bounds for one-way communication complex-
ity:

RA→B(P) = Θ(n) and RB→A(P) = Θ(log n)

By Theorem 2, this means that any linear (�A, �B)-CDS for any of the two pred-
icates must satisfy

�A(�A + �B + 1) = Ω(n)

This immediately yields

– �B = Ω(n) if �A = O(1) and more generally, �B = Ω(n/�A) for any �A = o(
√

n);
– �A = Ω(

√
n) if �B = O(1);

– max(�A, �B) = Ω(
√

n).

The first and third lower bounds are tight, as we have matching upper bounds
in [3,10,48] exhibiting a linear (t, n/t)-CDS for both predicates and any t ∈ [n].
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Disjointness, Inner Product. We consider the following predicates:

– Disjointness: X = Y := {S ⊆ [n]} and

Pdisj(X,Y ) = 1 iff X ∩ Y = ∅
In the context of ABE, this is related to a special case of fuzzy IBE [43].

– Inner Product [26]: X = Y := Z
n
p and

PIP(x,y) = 1 iff x�y = 0

For both predicates, we have tight bounds for one-way communication complex-
ity:

RA→B(P) = Θ(n) and RB→A(P) = Θ(n)

given in [4,24,42] for disjointness, in [11] for inner product. By Theorem 2, this
means that any linear (�A, �B)-CDS for any of the two predicates must satisfy

�A(�A + �B + 1) = Ω(n) and �B(�A + �B + 1) = Ω(n)

This immediately yields

– �B = Ω(n) if �A = O(1);
– �A = Ω(n) if �B = O(1);
– max(�A, �B) = Ω(

√
n).

The first and second lower bounds are tight, as we have matching upper bounds
in [3,10,48] exhibiting a linear (t, n − t + O(1))-CDS for these predicates and
any t ∈ [n]. It is open whether a CDS with overall parameter size of O(

√
n) is

possible.

Read-Once Monotone Span Programs. We consider the following predi-
cate:

– Read-once monotone span program: X := {0, 1}n, Y := Z
n×n
p is a collection of

read-once monotone span programs [25] specified by a matrix M of height n
and

PMSP(x,M) = 1 iff x satisfies M

Here, x satisfies M iff (1, 0, . . . , 0) lies in the row span of {Mj : xj = 1} where
Mj is the j’th row of M. In the context of ABE, this corresponds to key-policy
ABE for access structures [20].

RA→B(P) = Θ(n) and RB→A(P) = Θ(n2)

By Theorem 2, this means that any linear (�A, �B)-CDS for both predicates must
satisfy

�A(�A + �B + 1) = Ω(n) and �B(�A + �B + 1) = Ω(n2)

This immediately yields
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– �B = Ω(n) if �A = O(1);
– �A = Ω(n2) if �B = O(1);
– max(�A, �B) = Ω(n).

The third lower bound is tight, as we have matching upper bounds in [3,10,48]
exhibiting a linear (n, n)-CDS for the predicate. It is open what the optimal
parameters are when we keep either the key or the ciphertext size constant.

Acknowledgments. We would like to thank Amos Beimel, Yuval Ishai and Sophie
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Abstract. In predicate encryption, a ciphertext is associated with
descriptive attribute values x in addition to a plaintext μ, and a secret
key is associated with a predicate f . Decryption returns plaintext μ if
and only if f(x) = 1. Moreover, security of predicate encryption guar-
antees that an adversary learns nothing about the attribute x or the
plaintext μ from a ciphertext, given arbitrary many secret keys that are
not authorized to decrypt the ciphertext individually.

We construct a leveled predicate encryption scheme for all circuits,
assuming the hardness of the subexponential learning with errors (LWE)
problem. That is, for any polynomial function d = d(λ), we construct
a predicate encryption scheme for the class of all circuits with depth
bounded by d(λ), where λ is the security parameter.

1 Introduction

Predicate encryption [BW07,SBC+07,KSW08] is a new paradigm for public-key
encryption that supports searching on encrypted data. In predicate encryption,
ciphertexts are associated with descriptive attribute values x in addition to plain-
texts μ, secret keys are associated with a predicate f , and a secret key decrypts
the ciphertext to recover μ if and only if f(x) = 1. The security requirement
for predicate encryption enforces privacy of x and the plaintext even amidst
multiple secret key queries: an adversary holding secret keys for different query
predicates learns nothing about the attribute x and the plaintext (apart from
the fact that x does not satisfy any of the query predicates) if none of them is
individually authorized to decrypt the ciphertext.
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Motivating Applications. We begin with several motivating applications for pred-
icate encryption [BW07,SBC+07]:

– For inspecting recorded log files for network intrusions, we would encrypt
network flows labeled with a set of attributes from the network header, such as
the source and destination addresses, port numbers, time-stamp, and protocol
numbers. We could then issue auditors with restricted secret keys that can only
decrypt the network flows that fall within a particular range of IP addresses
and some specific time period.

– For credit card fraud investigation, we would encrypt credit card transactions
labeled with a set of attributes such as time, costs and zipcodes. We could then
issue investigators with restricted secret keys that decrypt transactions over
$1,000 which took place in the last month and originated from a particular
range of zipcodes.

– For anti-terrorism investigation, we would encrypt travel records labeled with
a set of attributes such as travel destination and basic traveller data. We
could then issue investigators with restricted secret keys that match certain
suspicious travel patterns.

– For online dating, we would encrypt personal profiles labeled with dating
preferences pertaining to age, height, weight, salary and hobbies. Secret keys
are associated with specific attributes and can only decrypt profiles for which
the attributes match the dating preferences.

In all of these examples, it is important that unauthorized parties do not learn the
contents of the ciphertexts, nor of the meta-data associated with the ciphertexts,
such as the network header or dating preferences. On the other hand, it is often
okay to leak the meta-data to authorized parties. We stress that privacy of the
meta-data is an additional security requirement provided by predicate encryption
but not by the related and weaker notion of attribute-based encryption (ABE)
[SW05,GPSW06]; the latter only guarantees the privacy of the plaintext μ and
not the attribute x.

Utility and Expressiveness. The utility of predicate encryption is intimately
related to the class of predicates for which we could create secret keys. Ideally,
we would like to support the class of all circuits. Over the past decade, sub-
stantial advances were made for the weaker primitive of ABE, culminating
most recently in schemes supporting any policy computable by general cir-
cuits [GVW13,BGG+14] under the standard LWE assumption [Reg09]. How-
ever, the state-of-the-art for predicate encryption is largely limited to very simple
functionalities related to computing an inner product [BW07,SBC+07,KSW08,
AFV11,GMW15].

1.1 Our Contributions

In this work, we substantially advance the state of the art to obtain predicate
encryption for all circuits (c.f. Fig. 1):
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Theorem (Informal). Under the LWE assumption, there exists a pred-
icate encryption scheme for all circuits, with succint ciphertexts and
secret keys independent of the size of the circuit.

As with prior LWE-based ABE for circuits [GVW13,BGG+14], to support cir-
cuits of depth d, the parameters of the scheme grow with poly(d), and we require
sub-exponential nΩ(d) hardness of the LWE assumption. In addition, the security
guarantee is selective, but can be extended to adaptive security via complexity
leveraging [BB04].

Privacy Guarantees. The privacy notion we achieve is a simulation-based variant
of “attribute-hiding” from the literature [SBC+07,OT10,AFV11]. That is, we
guarantee privacy of the attribute x and the plaintext μ against collusions hold-
ing secret keys for functions f such that f(x) = 0. An even stronger requirement
would be to require privacy of x even against authorized keys corresponding to
functions f where f(x) = 1; in the literature, this stronger notion is referred to
as “full attribute-hiding” [BW07,KSW08]. This stronger requirement is equiva-
lent to “full-fledged” functional encryption [BSW11], for which we cannot hope
to achieve simulation-based security for all circuits as achieved in this work
[BSW11,AGVW13].

Relation to Prior Works. Our result subsumes all prior works on predicate
encryption under standard cryptographic assumptions, apart from a few excep-
tions pertaining to the inner product predicate [BW07,KSW08,OT12]. These
results achieve a stronger security notion for predicate encryption, known as full
(or strong) security (please refer to Sect. 3.1, and the full version for definitions).

In a recent break-through work, Garg et al. [GGH+13b] gave a beautiful
candidate construction of functional encryption (more general primitive than
predicate encryption) for arbitrary circuits. However, the construction relies on
“multi-linear maps” [GGH13a,CLT13,GGH15], for which we have few candi-
dates and which rely on complex intractability assumptions that are presently
poorly understood and not extensively studied in the literature. It remains an
intriguing open problem to construct a functional encryption scheme from a
standard assumption, such as LWE.

In contrast, if we consider functional encryption with a-priori bounded col-
lusions size (that is, the number of secret keys any collusion of adversaries may
obtain is fixed by the scheme at the setup phase), then it is possible to obtain
functional encryption for general circuits under a large class of standard assump-
tions [SS10,GVW12,GKP+13]. This notion is weaker than standard notion of
functional encryption, yet remains very meaningful for many applications.

1.2 Overview of Our Construction

Our starting point is the work of Goldwasser, Kalai, Popa, Vaikuntanathan
and Zeldovich [GKP+13] who show how to convert an attribute-based encryp-
tion (ABE) scheme into a single key secure functional encryption (FE) scheme.
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Functional Encryption
[SS10,GVW12,GKP+13,GGH+13b]

Predicate Encryption
[this work]

Attribute-Based Enc
[GVW13,BGG+14]

IPE
[KSW08]

Fig. 1. State of the art in functional encryption. The white region refers to function-
alities for which we have constructions under standard cryptographic assumptions like
LWE or decisional problems in bilinear groups: these functionalities include inner prod-
uct encryption (IPE), attribute-based encryption for general circuits (ABE) and pred-
icate encryption for general circuits. The grey region refers to functionalities beyond
predicate encryption for which we only have constructions for weaker security notions
like bounded collusions, or under non-standard cryptographic assumptions like obfus-
cation or multilinear maps.

Interface Security Guarantee given skf
ABE Enc(x, µ) µ is secret iff f(x) = 0

x is always public
PE Enc(x, µ) (x, µ) is secret iff f(x) = 0
FE Enc(x) user learns only f(x)

Fig. 2. Comparison of the security guarantees provided by attribute-based (ABE),
predicate (PE) and functional encryption (FE), where secret keys are associated with
a Boolean function f ; the main distinction lies in how much information about x is
potentially leaked to the adversary. The main distinction between ABE and PE is that
x is always public in ABE, but remains secret in PE when the user is not authorized
to decrypt. The main distinction between PE and FE is that x always remains hidden
(even when f(x) = 1) and hence the user only learns the output of the computation of
f on x.

Recall that in an attribute-based encryption scheme [GPSW06], a ciphertext is
associated with a descriptive value (a public “attribute”) x and plaintext μ,
and it hides μ, but not x. The observation of Goldwasser et al. [GKP+13]
is to hide x by encrypting it using a fully homomorphic encryption (FHE)
scheme [Gen09,BV11b], and then using the resulting FHE ciphertext as the pub-
lic “attribute” in an ABE scheme for general circuits [GVW13,BGG+14]. This
has the dual benefit of guaranteeing privacy of x, while at the same time allowing
homomorphic computation of predicates f on the encryption of x (Fig 2).

This initial idea quickly runs into trouble. The decryptor who is given the
predicate secret key for f and a predicate encryption of (x, μ) can indeed com-
pute an FHE encryption of f(x). However, the decryption process is confronted
with a decision, namely whether to release the message μ or not, and this decision
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depends on whether the plaintext f(x) is 0 or 1.1 Clearly, resolving this conun-
drum requires obtaining f(x), which requires knowledge of the FHE secret key.
Goldwasser et al. [GKP+13] solved this by employing a (single use) Yao garbling
of the FHE decryption circuit, however this limited them to obtaining single key
secure predicate/functional encryption schemes.2

Our first key idea is to embed the FHE secret key as part of the attributes in
the ABE ciphertext. That is, in order to encrypt a plaintext μ with attributes
x in the predicate encryption scheme, we first choose a symmetric key fhe.sk for
the FHE scheme, encrypt x into a FHE ciphertext x̂, and encrypt μ using the
ABE scheme with (fhe.sk, x̂) as the attributes to obtain an ABE ciphertext ct.
Our predicate encryption ciphertext is then given by

(x̂, ct)

To generate the predicate secret key for a function f , one simply generates the
ABE secret key for the function g that takes as input (fhe.sk, x̂) and computes

g(fhe.sk, x̂) = FHE.Dec(fhe.sk;FHE.Eval(f, x̂))

That is, g first homomorphically computes a FHE encryption of f(x), and then
decrypts it using the FHE secret key to output f(x).

At first glance, this idea evokes strong and conflicting emotions as it raises
two problems. The first pertains to correctness: we can no longer decrypt the
ciphertext since the ABE decryption algorithm needs to know all of the attributes
(x̂ and fhe.sk), but fhe.sk is missing. The second pertains to security: the ABE
ciphertext ct is not guaranteed to protect the privacy of the attributes, and could
leak all of fhe.sk which together with x̂ would leak all of x. Solving both of these
problems seems to require designing a predicate encryption scheme from scratch!

Our next key observation is that the bulk of the computation in g, namely the
homomorphic evaluation of the function f , is performed on the public attribute
x̂. The only computation performed on the secret value fhe.sk is FHE decryp-
tion which is a fairly lightweight computation. In particular, with all known FHE

1 In fact, there is a syntactic mismatch since f̂(·) is not a predicate, as it outputs an
FHE ciphertext.

2 A reader familiar with [GKP+13] might wonder whether replacing single-use garbled
circuits in their construction with reusable garbled circuits (also from [GKP+13].)
might remove this limitation. We remark that this does not seem possible, essentially
because the construction in [GKP+13] relies crucially on the simplicity of computing
garbled inputs from the “garbling key”. In particular, in Yao’s garbled circuit scheme,
the garbling key is (many) pairs of “strings” L0 and L1, and a garbling of an input
bit b is simply Lb. This fits perfectly with the semantics of ABE (rather, a variant
termed two-input ABE in [GKP+13]) that releases one of two possible “messages”
L0 or L1 depending on the outcome of a computation. In contrast, computing a
garbled input in the reusable garbling scheme is a more complex and randomized
function of the garbling key, and does not seem to align well with the semantics of
ABE.
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schemes [Gen09,BV11b,BV11a,BGV12,GSW13,BV14,AP14], decryption corre-
sponds to computing an inner product followed by a threshold function. Further-
more, we do know how to construct lattice-based predicate encryption schemes
for threshold of inner product [AFV11,GMW15]. We stress that the latter do not
correspond to FHE decryption since the inner product is computed over a vector
in the ciphertext and one in the key, whereas FHE decryption requires computing
an inner product over two vectors in the ciphertext; nonetheless, we will build
upon the proof techniques in achieving attribute-hiding in [AFV11,GMW15] in
the proof of security.

In other words, if we could enhance ABE with a modicum of secrecy so that
it can perform a heavyweight computation on public attributes followed by a
lightweight privacy-preserving computation on secret attributes, we are back in
business. Our first contribution is to define such an object, that we call partially
hiding predicate encryption.

Partially Hiding Predicate Encryption. We introduce the notion of partially hid-
ing predicate encryption (PHPE), an object that interpolates between attribute-
based encryption and predicate encryption (analogously to partial garbling in
[IW14]). In PHPE, the ciphertext, encrypting message μ, is associated with an
attribute (x, y) where x is private but y is always public. The secret key is asso-
ciated with a function f , and decryption succeeds iff f(x, y) = 1. On the one
extreme, considering a dummy x or functions f that ignore x and compute on y,
we recover attribute-based encryption. On the other end, considering a dummy y
or functions f that ignore y and compute on x, we recover predicate encryption.

We will be interested in realizing PHPE for functions φ of the form φ(x, y) =
g(x, h(y)) for some functions g and h where h may perform arbitrary heavy-
weight computation on the public y and g only performs light-weight computa-
tion on the private x. Mapping back to our discussion, we would like to achieve
PHPE for the “evaluate-then-decrypt” class of functions, namely where g is the
FHE decryption function, h is the FHE evaluation function, x is the FHE secret
key, and y is the FHE ciphertext. In general, we would like g to be simple and
will allow h to be complex. It turns out that we can formalize the observation
above, namely that PHPE for this class of functions gives us a predicate encryp-
tion scheme. The question now becomes: can we construct PHPE schemes for
the “evaluate-then-decrypt” class of functions?

Assuming the subexponential hardness of learning with errors (LWE), we
show how to construct a partially hiding predicate encryption for the class of
functions f : Zt

q × {0, 1}� → {0, 1} of the form

fγ(x,y) = IPγ(x, h(y)),

where h : {0, 1}� → {0, 1}t, γ ∈ Zq, and IPγ(x, z) = 1 iff 〈x, z〉 =
(∑

i∈[t] x[i] ·

z[i]
)

= γ mod q.

This is almost what we want, but not quite. Recall that FHE decryption in
many recent schemes [BV11b,BGV12,GSW13,BV14,AP14] is a function that
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checks whether an inner product of two vectors in Z
t
q (one of which could be

over {0, 1}t) lies in a certain range. Indeed, if z ∈ {0, 1}t is an encryption of 1
and x ∈ Z

t
q is the secret key, we know that 〈x, z〉 ∈ [q/2 − B, q/2 + B] (mod q),

where B is the noise range. Applying the so-called “modulus reduction” [BV11b]
transformation to all these schemes, we can assume that this range is polynomial
in size.

In other words, we will manage to construct a partially hiding PE scheme
for the function

fγ(x,y) : 〈x, h(y)〉 ?= γ (mod q)

whereas we need a partially hiding PE scheme for the FHE decryption function
which is

f ′
R(x,y) : 〈x, h(y)〉 ?∈ R (mod q)

where R is the polynomial size range [q/2 − B, q/2 + B] from above. How do we
reconcile this disparity?

The “Lazy OR” Trick. The solution, called the “lazy OR trick” [SBC+07,
GMW15] is to publish secret keys for all functions fγ for γ ∈ R := [q/2 −
B, q/2 + B]. This will indeed allow us to test if the FHE decryption of the eval-
uated ciphertext is 1 (and reveal the message μ if it is), but it is also worrying.
Publishing these predicate secret keys for the predicates fγ reveals more infor-

mation than whether 〈x, h(y)〉 ?∈ R. In particular, it reveals what 〈x, h(y)〉 is.
This means that an authorized key would leak partial information about the
attribute, which we do allow for predicate encryption. On the other hand, for an
unauthorized key where the FHE decryption is 0, each of these fγ , γ ∈ R is also
an unauthorized key in the PHPE and therefore leaks no information about the
attribute. This extends to the collection of keys in R since the PHPE is secure
against collusions. For simplicity, we assume in the rest of this overview that
FHE decryption corresponds to exactly to inner product.

Asymmetry to the Rescue: Constructing Partially Hiding PE. Our final contri-
bution is the construction of a partially hiding PE for the function class fγ(x,y)
above. We will crucially exploit the fact that fγ computes an inner product on
the private attribute x. There are two challenges here: first, we need to design
a decryption algorithm that knows fγ and y but not x (this is different from
decryption in ABE where the algorithm also knows x); second, show that the
ciphertext does not leak too much information about x. We use the fully key-
homomorphic encryption techniques developed by Boneh et al. [BGG+14] in the
context of constructing an “arithmetic” ABE scheme. The crucial observation
about the ABE scheme of [BGG+14] is that while it was not designed to hide
the attributes, it can be made to partially hide them in exactly the way we
want. In particular, the scheme allows us to carry out an inner product of a
public attribute vector (corresponding to the evaluated FHE ciphertext) and a
private attribute vector (corresponding to the FHE secret key fhe.sk), thanks to
an inherent asymmetry in homomorphic evaluation of a multiplication gate on
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ABE ciphertexts. More concretely, in the homomorphic evaluation of a cipher-
text for a multiplication gate in [BGG+14], the decryption algorithm works even
if one of the attribute remains private, and for addition gates, the decryption
algorithms works even if both attributes remain private. This addresses the first
challenge of a decryption algorithm that is oblivious to x. For the second chal-
lenge of security, we rely on techniques from inner product predicate encryption
[AFV11] to prove the privacy of x Note that in the latter, the inner product
is computed over a vector in the ciphertext and one in the key, whereas in our
scheme, the inner product is computed over two vectors in the ciphertext. Inter-
estingly, the proof still goes through since the ciphertext in the ABE [BGG+14]
has the same structure as the ciphertext in [AFV11]. We refer the reader to
Sect. 3.2 for a detailed overview of the partial hiding PE, and to Sect. 4 for an
overview of how we combine the partial hiding PE with FHE to obtain our main
result.

Finally, we remark that exploiting asymmetry in multiplication has been used
in fairly different contexts in both FHE [GSW13,BV14] and in ABE [GVW13,
GV14]. In [GSW13] and in this work, the use of asymmetry was crucial for real-
izing the underlying cryptographic primitive; whereas in [GVW13,BV14,GV14],
asymmetry was used to reduce the noise growth during homomorphic evaluation,
thereby leading to quantitative improvements in the underlying assumptions and
hence improved efficiency.

1.3 Discussion

Comparison with Other Approaches. The two main alternative approaches for
realizing predicate and functional encryption both rely on multi-linear maps
either implicitly, or explicitly. The first is to use indistinguishability obfuscation
as in [GGH+13b], and the second is to extend the dual system encryption frame-
work to multi-linear maps [Wat09,GGHZ14]. A crucial theoretical limitation of
these approaches is that they all rely on non-standard assumptions; we have few
candidates for multi-linear maps [GGH13a,CLT13,GGH15] and the correspond-
ing assumptions are presently poorly understood and not extensively studied
in cryptanalysis, and in some cases, broken [CHL+15]. In particular, the lat-
est attack in [CHL+15] highlight the importance of obtaining constructions and
developing techniques that work under standard cryptographic assumptions, as
is the focus of this work.

Barriers to Functional Encryption from LWE. We note the two main barriers
to achieving full-fledged functional encryption from LWE using our framework.
First, the lazy conjunction approach to handle threshold inner product for FHE
decryption leaks the exact inner product and therefore cannot be used to achieve
full attribute-hiding. Second, we do not currently know of a fully attribute-hiding
inner product encryption scheme under the LWE assumption, although we do
know how to obtain such schemes under standard assumptions in bilinear groups
[OT12,KSW08].
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2 Preliminaries

We refer the reader to the full version for the background on lattices.

2.1 Fully-Homomorphic Encryption

We present a fairly minimal definition of fully homomorphic encryption (FHE)
which is sufficient for our constructions. A leveled homomorphic encryption
scheme is a tuple of polynomial-time algorithms (HE.KeyGen,HE.Enc,HE.Eval,
HE.Dec):

– Key generation. HE.KeyGen(1λ, 1d, 1k) is a probablistic algorithm that takes
as input the security parameter λ, a depth bound d and message length k and
outputs a secret key sk.

– Encryption. HE.Enc(sk, μ) is a probabilistic algorithm that takes as input sk
and a message μ ∈ {0, 1}k and outputs a ciphertext ct.

– Homomorphic evaluation. HE.Eval(f, ct) is a deterministic algorithm that
takes as input a boolean circuit C : {0, 1}k → {0, 1} of depth at most d and
a ciphertext ct and outputs another ciphertext ct′.

– Decryption. HE.Dec(sk, ct′) is a deterministic algorithm that takes as input
sk and ciphertext ct′ and outputs a bit.

Correctness. We require perfect decryption correctness with respect to homo-
morphically evaluated ciphertexts: namely for all λ, d, k and all sk ←
HE.KeyGen(1λ, 1d, 1k), all μ ∈ {0, 1}k and for all boolean circuits C : {0, 1}k →
{0, 1} of depth at most d:

Pr
[
HE.Dec(sk, HE.Eval(C, HE.Enc(sk, μ))) = C(μ)

]
= 1

where the probablity is taken over HE.Enc and HE.KeyGen.

Security. We require semantic security for a single ciphertext: namely for every
stateful p.p.t. adversary A and for all d, k = poly(λ), the following quantity

Pr

⎡
⎢⎢⎢⎢⎣

b = b′ :

sk ← Setup(1λ, 1d, 1k);
(μ0, μ1) ← A(1λ, 1d, 1k);
b

$← {0, 1};
ct ← Enc(sk, μb);
b′ ← A(ct)

⎤
⎥⎥⎥⎥⎦

− 1
2

is negligible in λ.

FHE from LWE We will rely on an instantiation of FHE from the LWE
assumption:
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Theorem 2.1. (FHE from LWE [BV11b,BGV12,GSW13,BV14,AP14]).
There is a FHE scheme HE.KeyGen,HE.Enc,HE.Eval,HE.Dec that works for any
q with q ≥ O(λ2) with the following properties:

– HE.KeyGen outputs a secret key sk ∈ Z
t
q where t = poly(λ);

– HE.Enc outputs a ciphertext ct ∈ {0, 1}� where � = poly(k, d, λ, log q);
– HE.Eval outputs a ciphertext ct′ ∈ {0, 1}t;
– for any boolean circuit of depth d, HE.Eval(C, ·) is computed by a boolean

circuit of depth poly(d, λ, log q).
– HE.Dec on input sk, ct′ outputs a bit b ∈ {0, 1}. If ct′ is an encryption of 1

then
t∑

i=1

sk[i] · ct′[i] ∈ [�q/2	 − B, �q/2	 + B]

for some fixed B = poly(λ). Otherwise, if ct′ is an encryption of 0, then

t∑
i=1

sk[i] · ct′[i] /∈ [�q/2	 − B, �q/2	 + B];

– security relies on dLWEΘ(t),q,χ.

We highlight several properties of the above scheme: (1) the ciphertext is a bit-
string, (2) the bound B is a polynomial independent of q (here, we crucially
exploit the new results in [BV14] together with the use of leveled bootstrap-
ping)3, (3) the size of normal ciphertexts is independent of the size of the circuit
(this is the typical compactness requirement).

3 Partially Hiding Predicate Encryption

3.1 Definitions

We introduce the notation of partially hiding predicate encryption (PHPE),
which interpolates attribute-based encryption and predicate encryption (analo-
gously to partial garbling in [IW14]). In PHPE, the ciphertext, encrypting mes-
sage μ, is associated with an attribute (x, y) where x is private but y is always
public. The secret key is associated with a predicate C, and decryption succeeds
iff C(x, y) = 1. The requirement is that a collusion learns nothing about (x, μ)
if none of them is individually authorized to decrypt the ciphertext. Attribute-
based encryption corresponds to the setting where x is empty, and predicate
encryption corresponds to the setting where y is empty. We refer the reader to
the full version for the standard notion of predicate encryption.

Looking ahead to our construction, we show how to:

– construct PHPE for a restricted class of circuits that is “low complexity” with
respect to x and allows arbitrarily polynomial-time computation on y;

– bootstrap this PHPE using FHE to obtain PE for all circuits.
3 Recall that no circular security assumption needs to be made for leveled

bootstrapping.
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Syntax. A Partially-Hiding Predicate Encryption scheme PHPE for a pair of
input-universes X ,Y, a predicate universe C, a message space M, consists of
four algorithms (PH.Setup,PH.Enc, PH.Keygen,PH.Dec):

PH.Setup(1λ,X ,Y, C,M) → (ph.mpk, ph.msk). The setup algorithm gets as
input the security parameter λ and a description of (X ,Y, C,M) and outputs
the public parameter ph.mpk, and the master key ph.msk.

PH.Enc(ph.mpk, (x, y), μ) → cty. The encryption algorithm gets as input ph.mpk,
an attribute (x, y) ∈ X ×Y and a message μ ∈ M. It outputs a ciphertext cty.

PH.Keygen(ph.msk, C) → skC . The key generation algorithm gets as input
ph.msk and a predicate C ∈ C. It outputs a secret key skC .

PH.Dec((skC , C), (cty, y)) → μ. The decryption algorithm gets as input the secret
key skC , a predicate C, and a ciphertext cty and the public part of the
attribute y. It outputs a message μ ∈ M or ⊥.

Correctness. We require that for all PH.Setup(1λ,X ,Y, C,M) → (ph.mpk,
ph.msk), for all (x, y, C) ∈ X × Y × C, for all μ ∈ M,

– if C(x, y) = 1, Pr
[
PH.Dec((skC , C), (cty, y)) = μ

] ≥ 1 − negl(λ),
– if C(x, y) = 0, Pr

[
PH.Dec((skC , C), (cty, y)) =⊥ ] ≥ 1 − negl(λ),

where the probabilities are taken over skC ← PH.Keygen(ph.msk, C), cty ←
PH.Enc(ph.mpk, (x, y), μ) and coins of PH.Setup.

Definition 3.1 (PHPE Attribute-Hiding). Fix (PH.Setup,PH.Enc,
PH.Keygen, PH.Dec). For every stateful p.p.t. adversary Adv, and a p.p.t. sim-
ulator Sim, consider the following two experiments:

expreal
PHPE,Adv(1

λ): expideal
PHPE,Sim(1λ):

1: (x, y) ← Adv(1λ,X ,Y, C,M)
2: (ph.mpk, ph.msk) ←

PH.Setup(1λ,X ,Y, C,M)
3: μ ← AdvPH.Keygen(msk,·)(ph.mpk)
4: cty ← PH.Enc(ph.mpk, (x, y), μ)
5: α ← AdvPH.Keygen(ph.msk,·)(cty)
6: Output (x, y, μ, α)

1: (x, y) ← Adv(1λ,X ,Y, C,M)
2: (ph.mpk, ph.msk) ←

PH.Setup(1λ,X ,Y, C,M)
3: μ ← AdvPH.Keygen(ph.msk,·)(ph.mpk)
4: cty ← Sim(mpk, y, 1|x|, 1|μ|)
5: α ← AdvPH.Keygen(msk,·)(cty)
6: Output (x, y, μ, α)

We say an adversary Adv is admissible if all oracle queries that it makes C ∈ C
satisfy C(x, y) = 0. The Partially-Hiding Predicate Encryption scheme PHPE
is then said to be attribute-hiding if there is a p.p.t. simulator Sim such that for
every stateful p.p.t. adversary Adv, the following two distributions are compu-
tationally indistinguishable:

{
expreal

PHPE,Adv(1
λ)

}

λ∈N

c≈
{

expideal
PHPE,Sim(1λ)

}

λ∈N
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Remarks. We point out some remarks of our definition (SIM-AH) when treated
as a regular predicate encryption (i.e. the setting where y is empty; see the
full version for completeness) and how it compares to other definitions in the
literature.

– We note the simulator for the challenge ciphertext gets y but not x; this cap-
tures the fact that y is public whereas x is private. In addition, the simulator
is not allowed to program the public parameters or the secret keys. In the ideal
experiment, the simulator does not explicitly learn any information about x
(apart from its length); nonetheless, there is implicit leakage about x from the
key queries made by an admissible adversary. Finally, we note that we can
efficiently check whether an adversary is admissible.

– Our security notion is “selective”, in that the adversary “commits” to (x, y)
before it sees ph.mpk. It is possible to bootstrap selectively-secure scheme to
full security using standard complexity leveraging arguments [BB04,GVW13],
at the price of a 2|x| loss in the security reduction.

– Our definition refers to a single challenge message, but the definition extends
readily to a setting with multiple challenge messages. Moreover, our definition
composes in that security for a single message implies security with multiple
messages (see the full version). The following remarks refer to many messages
setting.

– We distinguish between two notions of indistinguishability-based (IND)
definitions used in the literature: attribute-hiding (IND-AH)4 and strong
attribute-hiding (IND-SAH)5 [BW07,SBC+07,KSW08,AFV11]. In the IND-
AH, the adversary should not be able to distinguish between two pairs of
attributes/messages given that it is restricted to queries which do not decrypt
the challenge ciphertext (See the full version for details). It is easy to see that
our SIM-AH definition is stronger than IND-AH. Furthermore, IND-SAH also
ensures that adversary cannot distinguish between the attributes even when
it is allowed to ask for queries that decrypt the messages (in this case, it must
output μ0 = μ1). Our SIM-AH definition is weaker than IND-SAH, since we
explicitly restrict the adversary to queries that do not decrypt the challenge
ciphertext.

– In the context of arbitrary predicates, strong variants of definitions (that is,
IND-SAH and SIM-SAH) are equivalent to security notions for functional
encryption (the simulation definition must be adjusted to give the simulated
the outputs of the queries). However, the strong variant of notion (SIM-SAH)
is impossible to realize for many messages [BSW11,AGVW13]. We refer the
reader to the full version for a sketch of the impossibility. Hence, SIM-AH is
the best-possible simulation security for predicate encryption which we realize
in this work. The only problem which we leave open is to realize IND-SAH
from standard LWE.

4 Sometimes also referred as weak attribute-hiding.
5 Sometimes also referred as full attribute-hiding.
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3.2 Our Construction

We refer the reader to the full version for the complete description of our con-
struction. Below, we provide an overview.

Overview. We construct a partially hiding predicate encryption for the class
of predicate circuits C : Zt

q × {0, 1}� → {0, 1} of the form Ĉ ◦ IPγ where Ĉ :
{0, 1}� → {0, 1}t is a boolean circuit of depth d, γ ∈ Zq, and

(Ĉ ◦ IPγ)(x,y) = IPγ(x, Ĉ(y)),

where IPγ(x, z) = 1 iff 〈x, z〉 =
(∑

i∈[t] x[i] · z[i]
)

= γ mod q. We refer to

circuit IP as the generic inner-product circuit of two vectors.
Looking ahead, Ĉ corresponds to FHE evaluation of an arbitrary circuit C,

whereas IPγ corresponds to roughly to FHE decryption; in the language of the
introduction in Sect. 1, Ĉ corresponds to heavy-weight computation h, whereas
IPγ corresponds to light-weight computation g.

The scheme. The public parameters are matrices
(
A, A1, . . . ,A�, B1, . . . ,Bt

)

An encryption corresponding to the attribute (x,y) ∈ Z
t
q × {0, 1}� is a GPV

ciphertext (an LWE sample) corresponding to the matrix
[
A | A1 + y[1] · G | · · · | A� + y[�] · G | B1 + x[1] · G | · · · | Bt + x[t] · G ]

To decrypt the ciphertext given y and a key for Ĉ ◦ IPγ , we apply the
BGGHNSVV algorithm to first transform the first part of the ciphertext into a
GPV ciphertext corresponding to the matrix

[
A | A

̂C1
+ z[1] · G | · · · | A

̂Ct
+ z[t] · G]

where Ĉi is the circuit computing the i’th bit of Ĉ and z = Ĉ(y) ∈ {0, 1}t. Next,
observe that

−
(
(A

̂Ci
+z[i]·G)·G−1(Bi)

)
+z[i]·

(
Bi+x[i]·G

)
= −A

̂Ci
G−1(Bi)+x[i]·z[i]·G.

Summing over i, we have

�∑
i=1

−
(
(A

̂Ci
+ z[i] · G) · G−1(Bi)

)
+ z[i] ·

(
Bi + x[i] · G

)
= A

̂C ◦ IP + 〈x, z〉 · G

where
A
̂C ◦ IP := −

(
A
̂C1
G−1(B1) + · · · + A

̂Ct
G−1(Bt)

)
.
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Therefore, given only the public matrices and y (but not x), we may transform
the ciphertext into a GPV ciphertext corresponding to the matrix

[
A | A

̂C ◦ IP + 〈x, z〉 · G ]
.

The secret key corresponding to Ĉ ◦ IPγ is essentially a “short basis” for the
matrix [

A | A
̂C ◦ IP + γ · G ]

which can be sampled using a short trapdoor T of the matrix A.

Proof Strategy. There are two main components to the proof. Fix the selective
challenge attribute x,y. First, we will simulate the secret keys without knowing
the trapdoor for the matrix A: here, we rely on the simulated key generation for
the ABE [BGG+14]. Roughly speaking, we will need to generate a short basis
for the matrix [

A | AR
̂C ◦ IP + (γ − Ĉ ◦ IP(x,y)) · G ]

where R
̂C ◦ IP is a small-norm matrix known to the simulator. Now, whenever

Ĉ ◦ IP(x,y) = γ as is the case for admissible adversaries, we will be able to
simultae secret keys using the puncturing techniques in [ABB10,AFV11,MP12].

Next, we will show that the attribute x is hidden in the challenge ciphertext.
Here, we adopt the proof strategy for attribute-hiding inner product encryption
in [AFV11,GMW15]. In the proof, we simulate the matrices A,B1, . . . ,Bt using

A,AR′
1 − x[1]G, . . . ,AR′

t − x[t]G

where R′
1, . . . ,R

′
t

$← {±1}m×m. In addition, we simulate the corresponding
terms in the challenge ciphertext by c, cTR′

1, . . . , c
TR′

t, where c is a uniformly
random vector, which we switched from ATs+e using the LWE assumption. Here
we crucially rely on the fact that switched to simulation of secret keys without
knowing the trapdoor of A. Going further, once c is random, we can switch back
to simulating secret keys using the trapdoor T. Hence, the secret keys now do
not leak any information about R′

1, . . . ,R
′
t. Therefore, we may then invoke the

left-over hash lemma to argue that x is information-theoretically hidden.

4 Predicate Encryption for Circuits

In this section, we present our main construction of predicate encryption for
circuits by bootstrapping on top of the partially-hiding predicate encryption.
That is,

– We construct a Predicate Encryption scheme PE = (Setup,Keygen,Enc,Dec)
for boolean predicate family C bounded by depth d over k bit inputs.

starting from

– an FHE scheme FHE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) with prop-
erties as described in Sect. 2.1. Define � as the size of the initial ciphertext
encrypting k bit messages, and t as the size of the FHE secret key and evalu-
ated ciphertext vectors;
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– a partially-hiding predicate encryption scheme PHPE = (PH.Setup,
PH.Keygen, PH.Enc,PH.Dec) for the class CPHPE of predicates bounded by
some depth parameter d′ = poly(d, λ, log q). Recall that

(Ĉ ◦ IPγ)(x ∈ Z
t
q,y ∈ {0, 1}t) = 1 iff

( ∑
i∈[t]

x[i] · Ĉ(y)[i]
)

= γ mod q

where Ĉ : {0, 1}� → {0, 1}t is a circuit of depth at most d′.

Overview. At a high level, the construction proceeds as follows:

– the PE ciphertext corresponding to an attribute a ∈ {0, 1}k is a PHPE
ciphertext corresponding to an attribute (fhe.sk, fhe.ct) where fhe.sk

$← Z
t
q

is private and fhe.ct := HE.Enc(a) ∈ {0, 1}� is public;
– the PE secret key for a predicate C : {0, 1}k → {0, 1} ∈ C is a collection

of 2B + 1 PHPE secret keys for the predicates {Ĉ ◦ IPγ : Zt
q × {0, 1}� →

{0, 1}}γ=�q/2�−B,...,�q/2�+B where Ĉ : {0, 1}� → {0, 1} is the circuit:

Ĉ(fhe.ct) := HE.Eval(fhe.ct, C),

so Ĉ is a circuit of depth at most d′ = poly(d, λ, log q);
– decryption works by trying all possible 2B + 1 secret keys.

Note that the construction relies crucially on the fact that B (the bound on the
noise in the FHE evaluated ciphertexts) is polynomial. For correctness, observe
that for all C,a:

C(a) = 1

⇔ HE.Dec(fhe.sk,HE.Eval(C, fhe.ct)) = 1

⇔ ∃ γ ∈ [�q/2� − B, �q/2� + B] such that

(∑
i∈[t]

fhe.sk[i] · fhe.ct[i]
)

= γ mod q

⇔ ∃ γ ∈ [�q/2� − B, �q/2� + B] such that (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 1

where fhe.sk, fhe.ct, Ĉ are derived from C,a as in our construction.

4.1 Our Predicate Encryption Scheme

Our construction proceeds as follows:

– Setup(1λ, 1k, 1d): The setup algorithm takes the security parameter λ, the
attribute length k and the predicate depth bound d.
1. Run the partially-hiding PE scheme for family CPHPE to obtain a pair of

master public and secret keys:

(ph.mpk, ph.msk) ← PH.Setup(1λ, 1t, 1�, 1d′
)



518 S. Gorbunov et al.

where for k-bit messages and depth d circuits: t is the length of FHE
secret key, � is the bit-length of the initial FHE ciphertext and d′ is the
bound on FHE evaluation circuit (as described at the beginning of this
section).

2. Output (mpk
.= ph.mpk,msk

.= ph.msk).
– Keygen(msk, C): The key-generation algorithms takes as input the master

secret key msk and a predicate C. It outputs a secret key skC computed
as follows.
1. Let Ĉ(·) := HE.Eval(·, C) and let (Ĉ ◦ IPγ) be the predicates for γ =

�q/2	 − B, . . . , �q/2	 + B.
2. For all γ = �q/2	 − B, . . . , �q/2	 + B, compute

sk
̂C ◦ IPγ

← PH.Keygen
(
ph.msk, Ĉ ◦ IPγ

)

3. Output the secret key as skC
.=

({sk
̂C ◦ IP}γ=�q/2�−B,...,�q/2�+B

)
.

– Enc(mpk,a, μ): The encryption algorithm takes as input the public key mpk,
the input attribute vector a ∈ {0, 1}k and message μ ∈ {0, 1}. It proceeds as
follow.
1. Samples a fresh FHE secret key fhe.sk ∈ Z

t
q by running

HE.KeyGen(1λ, 1d′
, 1k).

2. Encrypt the input to obtain

fhe.ct ← HE.Enc(fhe.sk,a) ∈ {0, 1}�

3. Compute
ctfhe.ct ← PH.Enc

(
mpk, (fhe.sk, fhe.ct), μ

)

Note that the fhe.sk corresponds to the hidden attribute and fhe.ct cor-
responds to the public attribute.

4. Output the ciphertext ct = (ctfhe.ct, fhe.ct).
– Dec((skC , C), ct) : The decryption algorithm takes as input the secret key

skC with corresponding predicate C and the ciphertext ct. If there exists
γ = �q/2	 − B, . . . , �q/2	 + B such that

PH.Dec((sk
̂C ◦ IPγ

, Ĉ ◦ IPγ), (ctfhe.ct, fhe.ct)) = μ =⊥

then output μ. Otherwise, output ⊥.

4.2 Correctness

Lemma 4.1. Let C be a family of predicates bounded by depth d and let PHPE
be the partially-hiding PE and FHE be a fully-homomorphic encryption as per
scheme description. Then, our predicate encryption scheme PE is correct. More-
over, the size of each secret key is poly(d, λ) and the size of each ciphertext is
poly(d, λ, k).

We refer the reader to the full version for the proof.



Predicate Encryption for Circuits from LWE 519

4.3 Security

Theorem 4.2. Let C be a family of predicates bounded by depth d and let PHPE
be the secure partially-hiding PE and FHE be the secure fully-homomorphic
encryption as per scheme description. Then, our predicate encryption scheme
PE is secure.

Proof. We define p.p.t. simulator algorithms EncSim and argue that its output is
indistinguishable from the output of the real experiment. Let PH.EncSim be the
p.p.t. simulator for partially-hiding predicate encryption scheme.

– EncSim(mpk, 1|a|, 1|μ|): To compute the encryption, the simulator does the
following. It samples FHE secret key fhe.sk by running HE.KeyGen(1λ, 1d′

, 1k).
It encrypts a zero-string fhe.ct ← HE.Enc(fhe.sk,0). It obtains the ciphertext
as ctfhe.ct ← PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1|μ|).

We now argue via a series of hybrids that the output of the ideal experiment.

– Hybrid 0: The real experiment.
– Hybrid 1: The real encryption algorithm is replaced with Enc∗, where Enc∗

is an auxiliary algorithm defined below. On the high level, Enc∗ computes the
FHE ciphertext honestly by sampling a secret key and using the knowledge
of a. It then invokes PH.EncSim on the honestly generated ciphertext.

– Hybrid 2: The simulated experiment.

Auxiliary Algorithms. We define the auxiliary algorithm Enc∗ used in Hybrid 1.

– Enc∗(a, 1|μ|): The auxiliary encryption algorithm takes as input the attribute
vector a and message length.
1. Sample a fresh FHE secret key fhe.sk by running HE.KeyGen(1λ, 1d′

, 1k).
2. Encrypt the input attribute vector to obtain a ciphertext

fhe.ct ← HE.Enc(fhe.sk,a) ∈ {0, 1}�

3. Run PH.EncSim on input (mpk, fhe.ct, 1|fhe.sk|, 1|μ|) to obtain the ciphertext
ctfhe.ct.

Lemma 4.3. The output of Hybrid 0 is computationally indistinguishable from
the Hybrid 1, assuming security of Partially-Hiding Predicate Encryption.

Proof. Assume there is an adversary Adv and a distinguisher D that distin-
guishes the output (a, μ, α) produced in either of the two hybrids. We construct
an adversary Adv′ and a distinguisher D′ that break the security of the Partially-
Hiding Predicate Encryption. The adversary Adv′ does the following.

1. Invoke the adversary Adv to obtain an attribute vector a.
2. Sample a fresh FHE secret key fhe.sk using HE.KeyGen(1λ, 1d′

, 1k). Encrypt
the attribute vector

fhe.ct ← HE.Enc(fhe.sk,a)

and output the pair (fhe.sk, fhe.ct) as the “selective” challenge attribute.
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3. Upon receiving mpk, it forwards it to Adv.
4. For each oracle query C that Adv makes which satisfies C(a) = 0, Adv′ uses

its oracle to obtain secret keys sk
̂C ◦ IPγ

for γ = �q/2	 − B, . . . , �q/2	 + B. It
outputs skC =

({sk
̂C ◦ IPγ

}γ=�q/2�−B,...,�q/2�+B

)
.

5. It outputs message μ that Adv produces, obtains a ciphertext ctfhe.ct and
sends ct = (ctfhe.ct, fhe.ct) back to Adv to obtain α.

We note that given Adv that is admissible, Adv′ is also admissible. That is, for
all queries Ĉ ◦ IPγ that Adv′ makes satisfies (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 0 since
〈fhe.sk, Ĉ(fhe.ct)〉 = γ for γ = �q/2	 − B, . . . , �q/2	 + B by the correctness of
FHE in Sect. 2.1 and the fact that C(a) = 0. Finally, the distinguisher D′ on
input (fhe.sk, fhe.ct, μ, α) invokes D and outputs whatever it outputs. Now, in
Hybrid 0 the algorithms used as PH.Setup,PH.Keygen,PH.Enc which corresponds
exactly to the real security game of PHPE. However, in Hybrid 1 the algorithms
correspond exactly to the simulated security game. Hence, we can distinguish
between the real and simulated experiments contradicting the security of PHPE
scheme.

Lemma 4.4. The output of Hybrid 1 and Hybrid 2 are computationally indis-
tinguishable, assuming semantic security of Fully-Homomorphic Encryption
Scheme.

Proof. The only difference in Hybrids 1 and 2 is how the FHE ciphertext is
produced. In one experiment, it is computed honestly by encrypting the attribute
vector a, while in the other experiment it is always an encryption of 0. Hence, we
can readily construct an FHE adversary that given a, distinguishes encryption
of a from encryption of 0 as follows:

1. Invoke the admissible PE adversary Adv to obtain an attribute vector a.
2. Run the honest PH.Setup and forwards mpk to Adv.
3. For each oracle query C that Adv makes which satisfies C(a) = 0,

return skC =
({sk

̂C ◦ IPγ
}γ=�q/2�−B,...,�q/2�+B

)
as computed using the hon-

est PH.Keygen algorithm.
4. To simulate the ciphertext, first forward the pair (a,0) to the FHE challenger

to obtain a ciphertext fhe.ct. Then, run PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1μ) to
obtain a ciphertext ctfhe.ct and forward it to Adv

5. Finally, it runs the PE distinguisher on input (a, μ, α) and outputs its guess.

The lemma then follows from semantic security of the FHE completing the secu-
rity proof. We also refer the reader to the full version for the summary of para-
meters selection.
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Abstract. We develop a technique inspired by pseudorandom functions
that allows us to increase the entropy available for proving the security
of dual system encryption schemes under the Decisional Linear Assump-
tion. We show an application of the tool to Attribute-Based Encryption
by presenting a Key-Policy ABE scheme that is fully-secure under DLIN
with short public parameters.

1 Introduction

Since its conception in [31], attribute-based encryption (ABE) has served as a
demonstrably fertile ground for exploring the possible tradeoffs between express-
ibility, security, and efficiency in cryptographically enforced access control. In
addition to the potential applications it has in its own right, the primitive
of attribute-based encryption has been a catalyst for the definitions and con-
structions of further cryptographic primitives, such as functional encryption
for general circuits. The rich structure of secret keys demanded by expressive
attribute-based encryption has promoted a continuing evolution of proof tech-
niques designed to meet the challenges inherent in balancing large and complex
structures on the pinhead of simple computational hardness assumptions.

The origins of attribute-based encryption can be traced back to identity-
based encryption [5,10], where users have identities that serve as public keys
and secret keys are generated on demand by a master authority. A desirable
notion of security for such schemes ensures resilience against arbitrary collusions
among users by allowing an attacker to demand many secret keys for individual
users and attack a ciphertext encrypted to any user not represented in the set
of obtained keys. Proving this kind of security requires a reduction design that
can satisfy the attacker’s demands without fully knowing the master secret key.
This challenge is exacerbated in the (key-policy) attribute-based setting, where
user keys correspond to access policies expressed over attributes and ciphertexts
are associated with subsets of these attributes. Decryption is allowed precisely
when a single user’s policy is satisfied by a ciphertext’s attribute set. Thus, the
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structure of allowable keys that the attacker can request grows more complex as
the scheme is equipped to express more complex policies.

As a consequence of this, the intuitive and elegant constructions of attribute-
based encryption in bilinear groups in [17,33] were only proven secure in the
selective security model: a weakened model of security that requires the attacker
to declare the target of attack in advance, before seeing the public parameters
of the system. This limitation of the model allows the security reduction to
embed the computational challenge into its view of the public parameters of
the scheme in a way that partitions the space of secret keys. Keys that do not
satisfy the targeted ciphertext are able to be generated under the embedding,
while keys that do satisfy the ciphertext cannot be generated. This approach
does not extend well to the full security model, where this artificial limitation
on the attacker is lifted.

The first fully secure ABE schemes appeared in [18], using the dual system
encryption methodology [32] for designing the security reduction. In a dual sys-
tem approach, there are typically multiple (computationally indistinguishable)
forms of keys and ciphertexts. There are “norma” keys and ciphertexts that are
employed in the real system, and then are various forms of “semi-functional”
keys and ciphertexts. The core idea is to prove security via a hybrid argument,
where the ciphertext is changed to semi-functional and keys are changed to semi-
functional types one by one, until all the keys are of a semi-functional type inca-
pable of decrypting the semi-functional ciphertext (it is important that they still
decrypt normal ciphertexts, otherwise the hybrid transitions could be detected
by the attacker who can create normal ciphertexts for itself using the public
parameters). Once we reach a state where the key and ciphertexts distributions
provided to the attacker are no longer bound by correct decrypt behavior, it is
easier for the reduction to produce these without knowing the master secret key.

The most critical step of these dual system arguments occurs when a par-
ticular key changes from a type that can decrypt the challenge ciphertext to a
type that cannot - the fact that this change is not detected by the attacker is
where the reduction must use the criterion that the access policy is not satisfied.
The security reductions in [18] and many subsequent works (e.g. [21,27]) used an
information-theoretic argument for this step. However, this argument requires a
great deal of entropy (specifically, fresh randomness for each attribute-use in a
policy). This entropy was supplied by parameters in the semi-functional space
that paralleled the published parameters of the normal space. This necessitated
a blowup in public parameter and ciphertext sizes, specifically a multiplicative
factor of the number of attribute-uses allowed for access policies.

In [25], it was observed that the initial steps of a typical dual system encryp-
tion hybrid argument could be re-interpreted as providing a “shadow copy” of
the system parameters in the semi-functional space that does not have to be com-
mitted to when the public parameters for the normal space are provided. This
perspective suggests that one can embed a computational challenge into these
semi-functional space parameters as semi-functional objects are produced. For
instance, when a portion of these parameters affect a single semi-functional key
that is queried after the semi-functional ciphertext, one can essentially embed the
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challenge in the same way as the original selective security arguments in [17].
In the reverse case, where the semi-functional key is queried before the chal-
lenge ciphertext, the embedding can be similar to a selective security proof for
a ciphertext-policy ABE scheme, where keys are associated with attributes and
ciphertexts are associated with access policies. In [25], state of the art selective
techniques for KP-ABE and CP-ABE systems were combined into a full security
proof, avoiding the blowup in parameters incurred by the information-theoretic
dual system techniques.

However, even selective security for CP-ABE systems remains a rather chal-
lenging task, and the state of the art technique in [33] introduces an undesirable
q-type assumption into the fully secure ABE scheme. In the CP-ABE setting,
selectivity means that the attacker declares a target access policy up front. This
can then be leveraged by the security reduction to design public parameters so
that it can create keys precisely for sets of attributes that do not satisfy this
target policy. The q-type assumption in [33] was a consequence of the need to
encode a potentially large access policy into small public parameters. This leaves
us still searching for an ideal KP-ABE scheme in the bilinear setting that has
parameter sizes comparable to the selectively secure scheme in [17] and a full
security proof from a simple assumption such as the decisional linear assumption
(DLIN). A security reduction for such a scheme must seemingly break outside
the mold of using either a purely information-theoretic or purely computational
argument for leveraging the fact that a requested key policy cannot be satisfied
by the challenge ciphertext.

Our Results. To demonstrate our approach, we present a KP-ABE constructions
in the composite-order bilinear setting which is proven fully secure from simple
assumptions, and supports LSSS/MSP access policies (like its bilinear prede-
cessors). Security is proven using a few specific instances of subgroup-decision
assumptions and DLIN. Our scheme greatly reduces the size of the public para-
meters as compared to [18,27], as the number of group elements we need to
include in the public parameters grows only logarithmically rather than linearly
in the bound on the number of attribute-uses in an access policy.

Our Techniques. We intermix the computational and information-theoretic dual
system encryption approaches, using computational steps to “boost” the entropy
of a small set of (unpublished) semi-functional parameters to a level that suf-
fices to make the prior information-theoretic argument work. Essentially, we
use the fact that the semi-functional space parameters are never published to
not only “delay” their definition as exploited in [25], but further to argue that
they can (computationally) appear to provide more entropy than their size would
information-theoretically allow. The gadget that allows us do this computational
pre-processing before the running information-theoretic argument is presented
as our “bilinear entropy expansion lemma.”

The inspiration for the gadget construction comes from pseudorandom gen-
erators/pseudorandom functions. Naturally, if we want a small set of semi-
functional generators to seemingly produce a large amount of entropy, we may
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want to view these parameters as the seed for a PRF, for example. Out-of-the-
box PRF constructions like Naor-Reingold [26] and its DLIN-based extension
[24] however are unsuitable in the bilinear setting (even though the DLIN ver-
sion would remain secure) because they would require direct access to the seed
for computation, and a secure bilinear construction will only provide indirect
access to the seed as exponents of group elements.

To circumvent this difficulty, we use a subset-sum based construction that
can be computed in a bilinear group with the seed elements in the exponents. Of
course, using a naked linear structure would be detectable, but we are able to
use a rather minimal amount of additional random exponents to push the linear
sub-structure out of reach of detection by regular group or pairing operations.

We build our construction in two steps. First, we present a construction
for a one-use KP-ABE system which only supports access policies where each
attribute is used at most once. This scheme achieves ciphertext and key sizes
which rival those of selectively secure schemes (up to constants), while signifi-
cantly reducing public parameter size. Then, we apply a standard transforma-
tion to get from a one-use system to a system which allows multiple uses of
attributes in policies (the number of uses allowed per attribute is constant and
fixed at setup). The overhead of this transformation is drastically mitigated by
our scheme’s small public parameters. The effect on ciphertext and key sizes
compared to previous applications of this transformation remain the same up to
constants.

Further Discussion of Related Work. Additional work on ABE in the bilin-
ear setting includes various constructions of KP-ABE and CP-ABE schemes
(e.g. [4,16,30]), schemes supporting multiple authorities (e.g. [6,7,21,29]), and
schemes supporting large attribute universes (e.g. [22,28]). Some of the struc-
ture for randomization in our schemes is inspired by [22]. The large universe
scheme in [28] also achieves full-security with short public parameters using con-
ceptually different techniques. We view the main contribution of this paper to
be the entropy expansion lemma, which we believe is modular and potentially
useful in other settings. Our approach lends a clear understanding of the roles of
information-theoretic and computational techniques in dual-system encryption
proofs.

There are also recent constructions of ABE schemes in the lattice setting.
The construction of [15] allows access policies to be expressed as circuits, which
makes it more expressive than any known bilinear scheme. It was proven selec-
tively secure under the standard LWE assumption. Circuit policies are also sup-
ported by the construction in [12] based on multilinear maps. This scheme is also
proven selectively secure, under a particular computational hardness assumption
for multilinear groups. The very recent multilinear scheme in [13] achieves full
security, relying on computational hardness assumptions in multilinear groups.
The fully secure general functional encryption scheme in [34], which relies on
indistinguishability obfuscation, can also be specialized to the ABE setting.

Some relationships between ABE and other cryptographic primitives have
also been explored. The work of [2] derives schemes for verifiable computation
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from attribute-based encryption schemes, while [14] use attribute-based encryp-
tion as a tool in designing more general functional encryption and reusable gar-
bling schemes. Dual system encryption proof techniques have also been further
studied in the works of [1,9,20,34], applied to achieve leakage resilience in
[11,19,23], and applied directly to computational assumptions in [8].

2 Preliminaries

Our construction uses composite order bilinear groups. Background on these
groups and the (static) subgroup decision assumptions on which our composite
order construction’s security is based can be found in the full version of this
paper. We now give required background material on Linear Secret Sharing
Schemes. The formal definition of a KP-ABE scheme, and the security definition
we will use can be found in the full version.

Linear Secret Sharing Schemes. Our construction uses linear secret-sharing
schemes (LSSS). We use the following definition (adapted from [3]). In the con-
text of ABE, attributes will play the role of parties and will be represented as
nonempty subsets K ⊆ [k] for a fixed k.

Definition 1 (Linear Secret-Sharing Schemes (LSSS)). A secret sharing scheme
Π over a set of attributes is called linear (over Zp) if the shares belonging to all
attributes form a vector over Zp and there exists an � × n matrix Λ called the
share-generating matrix for Π. The matrix Λ has � rows and n columns. For all
j = 1, . . . , �, the jth row of Λ is labeled by an attribute K. When we consider
the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and
r2, . . . , rn ∈ Zp are randomly chosen, then Λv is the vector of � shares of the
secret s according to Π. The share (Λv)j = λK belongs to attribute K.

We note the linear reconstruction property: we suppose that Π is an LSSS. We let
S denote an authorized set. Then there is a subset S∗ ⊆ S such that the vector
(1, 0, . . . , 0) is in the span of rows of Λ indexed by S∗, and there exist constants
{ωK ∈ Zp}K∈S∗ such that, for any valid shares {λK} of a secret s according
to Π, we have:

∑
K∈S∗

ωKλK = s. These constants {ωK} can be found in time

polynomial in the size of the share-generating matrix Λ [3]. For unauthorized
sets, no such S∗, {ωK} exist.

For our construction, we will employ LSSS matrices over ZN , where N is a
product of three distinct primes p, q, w. As in the definition above over the prime
order Zp, we say a set of attributes S is authorized if is a subset S∗ ⊆ S such
that the rows of the access matrix A labeled by elements of S have the vector
(1, 0, . . . , 0) in their span modulo N . In our security proof for our system, we
will further assume that for an unauthorized set, the corresponding rows of A
do not include the vector (1, 0, . . . , 0) in their span modulo q. We may assume
this because if an adversary can produce an access matrix A over ZN and an
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unauthorized set over ZN that is authorized over Zq, then this can be used
to produce a non-trivial factor of the group order N , which would violate our
subgroup decision assumptions.

Transformation from One-Use to Multiple Use KP-ABE. Given a KP-
ABE scheme which is fully-secure when attributes are used at most once in
access policies, we can obtain a KP-ABE scheme which is fully-secure when
each attribute is used at most some constant number of times in access policies
using a standard transformation. Essentially, multiple uses of an attribute are
treated as new “attributes” in the one-use system. For example, if we want an
attribute x to be able to be used up to kx times in access policies, we will
instantiate our one-use system with kx “attributes” x : 1, ..., x : kx. Each time
we want to label a row of an access matrix Λ with x, we label it with x : i for
a new value of i. Each time we want to associate a subset S of attributes to a
ciphertext, we instead use the set S′ = {x : 1, ..., x : kx | x ∈ S}. We can then
employ the one-use KP-ABE scheme on this new larger set of “attributes” and
retain its full security and functionality.

Clearly, this transformation comes at a cost. Typically, the ciphertext and
public parameter size of the KP-ABE scheme resulting from the transformation
now scale linearly with the number of attribute-uses allowed in access policies,
not just the number of attributes. This presents a problem if one desires policies
which have high reuse of attributes. Our one-use KP-ABE scheme mitigates the
problem with public parameter size by featuring public parameters that scale
only logarithmically with the number of attributes supported by the system,
compared to the linear scaling of the fully secure KP-ABE schemes based on
static assumptions in [18,21]. Note that [28] also achieves full-security from static
assumptions with short parameters, using conceptually different techniques.

3 KP-ABE Construction

Our single-use KP-ABE construction assumes a polynomially sized attribute
universe U where attributes are non-empty subsets K ⊆ [k] for some fixed k.
The prior fully secure single-use KP-ABE scheme in [18] required a fresh group
element to appear in the public parameters for each attribute in the universe.
After using the generic transformation discussed in Sect. 2, this results in the
scheme requiring a fresh group element for each attribute-use allowed in access
policies. As a concrete example, if one wanted to allow 9 attributes to be used
up to 7 times each, one needed to have 9 × 7 = 63 group elements in the public
parameters corresponding to this attribute. In our composite order scheme, to
allow the same 63 = 26−1 attribute-uses, we only need 2×6 group elements in the
public parameters corresponding to the attribute. The way we accomplish this
dramatic “compression” of public parameters is to note that the encryptor can
produce 63 group elements from 6 by taking products of all non-empty subsets
(these correspond to subset-sums in the exponent). More generally, given k group
elements ga1 , . . . , gak , we can produce 2k−1 group elements by enumerating over
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all non-empty subsets K ⊆ [k] and computing g

∑
j∈K

aj

. We name the resulting
collection of elements gAK , where AK :=

∑
j∈K

aj . Our composite order scheme

uses two parallel such subset constructions (causing the factor of 2).
These 2k − 1 group elements no longer look random - they have linear rela-

tionships in their exponents by construction. However, since we are assuming
the decisional linear assumption is hard, if we choose 2k − 1 additional random
exponents {tK}, then the 2(2k − 1) group elements formed as {gtK , gtKAK} are
computationally indistinguishable from 2(2k − 1) uniformly random group ele-
ments (which lack any hidden linear structures in their exponents). The proof of
this is the core of bilinear entropy expansion lemma, though the full statement
of the lemma includes some additional structure that is useful for linking into a
KP-ABE construction. The dual system encryption framework allows us to apply
this argument to the parameters in the semi-functional space, where we do not
need to publish the values {gaj}. (Note that publishing these would make the
structure of {gtK , gtKAK} detectable through applications of the bilinear map).

Setup(λ,U , k) → PP,MSK. The setup algorithm chooses a bilinear group G
of order N = pqw where p, q, w are primes. We let Gp, Gq, Gw represent the
subgroup of order p, q, and w respectively in G. It then draws α ← ZN and
random group element gp ∈ Gp. For each j ∈ [k], it chooses values aj , bj ← ZN .
The public parameters are N, gp, e(gp, gp)α, {g

aj
p , g

bj
p : j ∈ [k]}. The MSK is α

and a generator gw of Gw. Such a construction is equipped to create keys for
access policies which include attributes K ⊆ [k] where K is not empty.

KeyGen(MSK, Λ, PP ) → SK. The key generation algorithm takes in the pub-
lic parameters, master secret key, and LSSS access matrix Λ. First, the key
generation algorithm generates {λK}: a linear sharing of α according to policy
matrix Λ (the reader is referred to Sect. 2 for details). For each attribute K
corresponding to a row in the policy matrix Λ, it then raises generator gw to
random exponents to create gzK

w , g
z′
K

w , g
z′′
K

w ∈ Gw, chooses exponent yK ← ZN

and computes gAK
p =

∏
j∈K

gaj
p and gBK

p =
∏
j∈K

gbj
p . Note that here and throughout

the rest of the description of our construction and its proof of security we will
use the notation AK =

∑
j∈K

aj and BK =
∑
j∈K

bj . It then outputs the secret key:

SKΛ = {gλK
p gyKAK

p gzK
w , gyK

p g
z′
K

w , gyKBK
p g

z′′
K

w : (∀K labels ∈ Λ)}
Encrypt(M,S, PP ) → CT . The encryption algorithm first draws s ← ZN . For
each K ∈ S, the encryption algorithm draws tK ← ZN and computes gAK

p =∏
j∈K

gaj
p and gBK

p =
∏
j∈K

gbj
p . It then outputs the ciphertext:

CT = Me(gp, gp)αs, {gs
p, gsAK

p gtKBK
p , gtK

p : (∀K ∈ S)}
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Decrypt(CT, SK,PP ) → M . We let S correspond to the set of attributes associ-
ated to ciphertext CT , and Λ be the policy matrix. If S satisfies Λ, the decryp-
tion algorithm computes suitable constants ωK such that

∑
K∈S∗

ωKλK = α (recall

Sect. 2). It then computes:

∏
K∈S∗

⎛
⎝e(gs

p, gλK
p gyKAK

p gzK
w )

(
e(gyK

p g
z′
K

w , gsAK
p gtKBK

p )

e(gtK
p , gyKBK

p g
z′′
K

w )

)−1
⎞
⎠

ωK

=
∏

K∈S∗

(
e(gp, gp)sλKe(gp, gp)syKAK

e(gp, gp)syKAK

)ωK

=
∏

K∈S∗

(
e(gp, gp)sλK

)ωK = e(gp, gp)

∑
K∈S∗

sωKλK

= e(gp, gp)αs

The message can then be recovered by computing: Me(gp, gp)αs/e(gp, gp)αs =
M . This demonstrates correctness of the scheme.

3.1 Security Proof Overview

Our security proof uses a hybrid argument over a sequence of games. We let
Gamereal denote the real security game. The rest of the games use semi-functional
keys and ciphertexts, which we describe below. We let gq denote a fixed generator
of the subgroup Gq, which will serve as the “semi-functional space.”

Like a typical dual system encryption proof, we will begin by transitioning
from a normal ciphertext to a semi-functional ciphertext with semi-functional
components that mimic the structure of their normal counterparts. This kind of
transition can be done with a basic subgroup decision assumption. We will then
perform a hybrid over keys, gradually changing each one to a semi-functional
form that does not properly decrypt the semi-functional ciphertext. To start,
we can bring in semi-functional components for a particular key that mimic the
structure of normal components, up to the constraint that the shared valued in
the semi-functional space will be 0 (modulo q). Technically, this constraint arises
because we will be taking a challenge term from a subgroup decision assumption
that has an unknown exponent in the normal space and raising it to a share -
so we have to make this a share of 0 and separately share the α value in the
normal space so that the unknown exponent does not affect the correctness of
the sharing in the normal space. At a higher level, this constraint explains why
the simulator at this stage of the hybrid cannot solve the challenge problem for
itself by test decrypting against a semi-functional ciphertext. Since the structure
in the semi-functional space parallels the normal structure and the shared value
here is zero, the semi-functional components will cancel out upon decryption.

So we can arrive at a stage where a key and ciphertext have semi-functional
components structured just like the normal space, but with fresh parameters
modulo q that are independent of the published parameters modulo p. This is a
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consequence of the Chinese Remainder Theorem, that ensures when we sample
an exponent uniformly at random modulo N , its modulo p and modulo q reduc-
tions are independent and uniformly random in Zp,Zq respectively. Since these
implicit parameters in the semi-functional space are never published, we can use
our bilinear entropy expansion lemma to argue that their subset-sum structure
is hidden under the decisional linear assumption. This allows us to replace them
with higher entropy parameters (lacking the subset-sum structure of the nor-
mal space), and then argue that the shared value in the semi-functional space
is information-theoretically hidden (this is where we use that the access policy
is not satisfied and that attributes are used at most once in the policy). This
enables us to switch the semi-functional shares in the key to shares of a random
value, now destroying correct decryption of a semi-functional ciphertext. We
then remove some of the other (now unnecessary) semi-functional components
of the key, to reclaim the entropy of those parameters to use in processing the
next key in the hybrid. Finally, once we have reached a game where all keys are
semi-functional with shares of a random secret modulo q, we can use Subgroup
Decision Assumption 3 to create such keys without knowing the master secret
and can hence complete the proof.

We now formally present our definitions of semi-functional ciphertexts and
keys used in our hybrid proof:

Semi-functional Ciphertext. We will use 3 types of semi-functional ciphertexts.
To produce a semi-functional ciphertext for an attribute set S, one first calls the
normal encryption algorithm to produce a normal ciphertext consisting of:

Me(gp, gp)αs, {gs
p, gsAK

p gtKBK
p , gtK

p : (∀K ∈ S)}

One then draws s̃ ← ZN . For each K ∈ S, an exponent t̃K ← ZN is chosen. The
remaining composition of the semifunctional ciphertext depends on the type of
ciphertext desired:

Type 1. The semi-functional ciphertext of Type 1 is formed as:

Me(gp, gp)αs, {gs
pg

s̃
q , gsAK

p gtKBK
p gs̃AK

q gt̃KBK
q , gtK

p gt̃K
q : (∀K ∈ S)}

(again, here AK =
∑
j∈K

aj and BK =
∑
j∈K

bj).

Type 2. The semi-functional ciphertext of Type 2 is formed as:

Me(gp, gp)αs, {gs
pg

s̃
q , gsAK

p gtKBK
p gs̃AK

q gt̃K b̃K
q , gtK

p gt̃K
q : (∀K ∈ S)}

for fixed b̃K ∈ ZN which are chosen uniformly at random and fixed if they do
not already exist (in a semi-functional key, for instance).
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Type 3. The semi-functional ciphertext of Type 3 is formed as:

Me(gp, gp)αs, {gs
pg

s̃
q , gsAK

p gtKBK
p gs̃ãK

q gt̃K b̃K
q , gtK

p gt̃K
q : (∀K ∈ S)}

for fixed ãK , b̃K ∈ ZN which are chosen uniformly at random and fixed if they
do not already exist.

Semi-functional Keys. We will use 7 types of semi-functional keys. To produce
a semi-functional key for an access policy Λ, one first calls the normal key gen-
eration algorithm to produce a normal key consisting of:

{gλK
p gyKAK

p gzK
w , gyK

p g
z′
K

w , gyKBK
p g

z′′
K

w : (∀K labels ∈ Λ)}
The first 6 types of keys fall under 3 classes which have two variants each: a “Z”
variant and an “R” variant. For Z-type keys one computes a linear sharing of
0 under access policy Λ, creating shares λ̃K . For R-type keys one computes a
linear sharing of a random element u of Zq which is fixed once it is created and
used for all R-type keys. u is shared under access policy Λ, to create shares λ̃K .
The next steps depend on the class of the key:

Class 1. First compute gAK
q and gBK

q (where, again, AK and BK represent the
subset-sums of aj and bj). For each K label in the honest key, one then draws
ỹK ← ZN and forms the semi-functional key of type 1Z or 1R (depending on
the sharing λ̃K) as:

{gλK
p gyKAK

p gλ̃K
q gỹKAK

q gzK
w , gyK

p gỹK
q g

z′
K

w , gyKBK
p gỹKBK

q g
z′′
K

w : (∀K labels ∈ Λ)}

Class 2. First compute gAK
q . Random values b̃K ∈ ZN are chosen if they do not

already exist (in a semi-functional ciphertext, for instance) and fixed. For each K
label in the honest key, one then draws ỹK ← ZN and forms the semi-functional
key of type 2Z or 2R as:

{gλK
p gyKAK

p gλ̃K
q gỹKAK

q gzK
w , gyK

p gỹK
q g

z′
K

w , gyKBK
p gỹK b̃K

q g
z′′
K

w : (∀K labels ∈ Λ)}

Class 3. Random values ãK , b̃K ∈ ZN are chosen if they do not already exist
and fixed. For each K label in the honest key, one then draws ỹK ← ZN and
forms the semi-functional key of type 3Z or 3R as:

{gλK
p gyKAK

p gλ̃K
q gỹK ãK

q gzK
w , gyK

p gỹK
q g

z′
K

w , gyKBK
p gỹK b̃K

q g
z′′
K

w : (∀K labels ∈ Λ)}
Note we now have defined 6 types of keys: 1Z, 1R, 2Z, 2R, 3Z, and 3R, where

the letter (Z/R) describes whether the λ̃K share zero or a random element of
Zq respectively, and the number (1/2/3) describes whether the semi-functional
analogues of the gAK

p and gBK
p in the Gq group are structured as subset-sums or

as random elements of Gq (Class 1 keys have both gAK
q and gBK

q . Class 2 keys
have just gAK

q structured, with a random element gb̃K
q . Class 3 keys have both

replaced by random elements gãK
q , gb̃K

q of Gq). There is one final type of key,
type 4R, which does not contain any of these elements:
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Type 4R. Using shares λ̃K of u (which is randomly chosen from Zp and fixed if
it has not already been fixed), one forms the semi-functional key of type 4R as:

{gλK
p gyKAK

p gλ̃K
q gzK

w , gyK
p g

z′
K

w , gyKBK
p g

z′′
K

w : (∀K labels ∈ Λ)}
Proof Structure. Our hybrid proof takes place over a series of games defined as
follows: Letting Q denote the total number of key queries that the attacker
makes, we define Game�1 , Game�2 , Game�3 , Game�4 , Game�5 , Game�6 , and
Game�7 for � = 1, ..., Q. In each game, the first � − 1 keys are semi-functional
of type 4R, and all keys after the �th request are normal. They differ in the
construction of the �th key and the ciphertext as follows:

Game �1 . In this game, the �th key is type 1Z and the ciphertext is type 1.
Game �2 . In this game, the �th key is type 2Z and the ciphertext is type 2.
Game �3 . In this game, the �th key is type 3Z and the ciphertext is type 3.
Game �4 . In this game, the �th key is type 3R and the ciphertext is type 3.
Game �5 . In this game, the �th key is type 2R and the ciphertext is type 2.
Game �6 . In this game, the �th key is type 1R and the ciphertext is type 1.
Game �7 . In this game, the �th key is type 4R and the ciphertext is type 1.

Note that under this definition, we have that in Game07 , the ciphertext
given to the attacker is type 1 and the keys are all normal.

The outer structure of our hybrid argument will progress as follows. First,
we transition from Gamereal to Game07 , then to Game11 , next to Game12 , next
to Game13 , next to Game14 , next to Game15 , next to Game16 , next to Game17

and then to Game21 and so on. We then arrive at GameQ7 , where the ciphertext
is semifunctional of type 1 and all of the keys given to the attacker are type 4R.
We then transition to one last game named Gamefinal which will complete our
proof. Gamefinal uses a semi-functional ciphertext of a new type: type X:

Type X. The semi-functional ciphertext of Type X is formed as:

MX, {gs
pg

s̃
q , gsAK

p gtKBK
p gs̃AK

q gt̃KBK
q , gtK

p gt̃K
q : (∀K ∈ S)} for X ← GT

Gamefinal. In this game, all keys are semi-functional of type 4R and the cipher-
text is semi-functional of type X.

Note that a ciphertext of type X information-theoretically hides its message
M because the message is multiplied by the uniform random X which is unused
anywhere else. So, in Gamefinal, no polynomial time adversary will be able
to achieve advantage in the security game, completing our proof. This hybrid
argument is accomplished in the full version of this paper.

4 Bilinear Entropy Expansion Lemma

The main technical lemma used in our security argument is used to transition
between hybrid games where semi-functional keys and ciphertexts have subset-
sum structured gBK

q components and games where they have random gb̃K
q com-

ponents. The relevant quantities in the following lemma are ri where either ri is
a random exponent or is structured as a subset sum of ci (which are analogous
to the aj , bj in different applications of the lemma).
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Definition 2. Given G, a group of prime order q, and g a generator of that
group, let D1(m) be the distribution of:

gs̃, gỹ1 , ..., gỹM−1 ,

gỹ1r1 , ..., gỹM−1rM−1 ,

gỹ1b1 , ..., gỹM−1bM−1 ,

gt̃1 , ..., gt̃M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1

where the ỹi, t̃i, bi, ri, s̃ ← Zq and M = 2m.

Definition 3. Given G, a group of prime order q, g a generator of that group,
and C = {c1, ..., cm} a set of m elements drawn uniformly at random from Zq,
let D2(m) be the distribution of the same elements (where the ỹi, t̃i, bi, s̃ ← Zq

and M = 2m) EXCEPT that each ri =
∑
j∈Ci

cj where Ci denotes the ith indexed

nonempty subset of C (|C| = m and there are M−1 = 2m−1 nonempty subsets).

We show that the distributions D1(m) and D2(m) are computationally indistin-
guishable if m = O(lg poly(λ)) through an inductive proof, beginning with the
base case of m = 2, where a distinguisher for D1(2) and D2(2) (C = {c1, c2})
can be used to achieve the same advantage in the 2-Linear Problem.

Lemma 1. If there exists a polynomial-time algorithm able to achieve advantage
22δ in distinguishing between the distributions D1(2) and D2(2), then there exists
a polynomial-time algorithm able to achieve advantage δ in the 2-Linear Problem.

Proof. If there exists a polynomial time algorithm A which distinguishes between
D1(2) and D2(2) with advantage 22δ, we can construct a distinguisher for the
2-Linear problem: B. B, upon receiving g, gy1 , gy2 , gy1c1 , gy2c2 , gc1+c2+r, draws
uniform random s̃, b3, ỹ3, t̃1, t̃2, t̃3, γ1, γ2 ← Zq, then creates the set:

gs̃, gy1 , gy2 , gỹ3 ,

gy1c1 , gy2c2 , (gc1+c2+r)ỹ3 ,

(gy1c1)− s̃
t̃1 (gy1)γ1 , (gy2rc)− s̃

t̃2 (gy2)γ2 , gỹ3b3 ,

gt̃1 , gt̃2 , gt̃3 ,

gt̃1γ1 , gt̃2γ2 , (gc1+c2+r)s̃gt̃3b3

then runs A on this input and returns the output of A.
Notice that if r = 0, this distribution is exactly D2(2) (with C = {c1, c2},

ỹ1 = y1, ỹ2 = y2, b1 = − c1s
t̃1

+ γ1, and b2 = − c2s
t̃2

+ γ2). If r is instead random,
this distribution is exactly D1(2). Therefore, B will achieve the same advantage
22δ as A (which is greater than δ) in deciding the 2-Linear problem.
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Lemma 2. For all integers m ≥ 2, if there exists a polynomial-time algorithm
able to achieve an advantage of 2m+1δ deciding between distributions D1(m + 1)
and D2(m + 1), then either there exists a polynomial-time algorithm able to
achieve an advantage of 2mδ in deciding between distributions D1(m) and D2(m)
or there exists a polynomial time algorithm able to achieve an advantage of δ in
the 2-Linear Problem.

Proof. If there exists a polynomial time algorithm A which distinguishes between
D1(m + 1) and D2(m + 1) with non-negligible advantage 2m+1δ, we construct
B: a distinguisher for D1(m) and D2(m).

B, upon receiving:
gs̃, gỹ1 , ..., gỹM−1 , gỹ1r1 , ..., gỹM−1rM−1 , gỹ1b1 , ..., gỹM−1bM−1 , gt̃1 , ..., gt̃M−1 ,
gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 where M = 2m, first draws:

y∗
1 , ..., y∗

M−1, σ1, ..., σM−1, γ1, ..., γM−1, ỹM , t̃M , bM , cm+1 ← Zq, and constructs:

gs̃, gỹ1 , ..., gỹM−1 , gỹM ,

(gỹ1)y∗
1 , ..., (gỹM−1)y∗

M−1 ,

gỹ1r1 , ..., gỹM−1rM−1 , gỹMcm+1 ,

(gỹ1)y∗
1cm+1(gỹ1r1)y∗

1 , ..., (gỹM−1)y∗
M−1cm+1(gỹM−1rM−1)y∗

M−1 ,

gỹ1b1 , ..., gỹM−1bM−1 , gỹMbM ,

(gỹ1b1)y∗
1 (gỹ1)σ1y∗

1 , ..., (gỹM−1bM−1)y∗
M−1(gỹM−1)σM−1y∗

M−1 ,

gt̃1 , ..., gt̃M−1 , gt̃M ,

gt̃1(gỹ1)γ1 , ..., gt̃M−1(gỹM−1)γM−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 , (gs̃)cm+1gt̃MbM ,

(gs̃)cm+1gs̃r1+t̃1b1(gt̃1)σ1(gb1ỹ1)γ1(gỹ1)σ1γ1 , ...,

(gs̃)cm+1gs̃rM−1+t̃M−1bM−1(gt̃M−1)σM−1(gbM−1ỹM−1)γM−1(gỹM−1)σM−1γM−1

which is equal to:

gs̃, gỹ1 , ..., gỹM−1 , gỹM ,

gỹ1y∗
1 , ..., gỹM−1y∗

M−1 ,

gỹ1r1 , ..., gỹM−1rM−1 , gỹMcm+1 ,

gỹ1y∗
1 (r1+cm+1), ..., gỹM−1y∗

M−1(rM−1+cm+1),

gỹ1b1 , ..., gỹM−1bM−1 , gỹMbM ,

gỹ1y∗
1 (b1+σ1), ..., gỹM−1y∗

M−1(bM−1+σM−1),

gt̃1 , ..., gt̃M−1 , gt̃M ,

gt̃1+ỹ1γ1 , ..., gt̃M−1+ỹM−1γM−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 , gs̃cm+1+t̃MbM ,

gs̃(r1+cm+1)+(t̃1+ỹ1γ1)(b1+σ1), ..., gs̃(rM−1+cm+1)+(t̃M−1+ỹM−1γM−1)(bM−1+σM−1)
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Notice that if B’s input is D2(m), then the distribution of sets constructed
by B is exactly D2(m + 1), where a new cm+1 element is drawn and added to
form the subsets of the new augmented set C, ỹM+i = ỹiy

∗
i , bM+i = bi + σi,

and t̃M+i = t̃i + ỹiγi for i = 1, ...,M − 1 which are all uniformly distributed at
random. However, if B’s input is D1(m), then the distribution of sets constructed
by B is not exactly D1(m + 1).

Definition 4. Let D′
1(m+1) be the distribution of sets created by B given input

sets from D1(m).

We have therefore only proved that if an algorithm is able to achieve advantage
in distinguishing D′

1(m + 1) and D2(m + 1), then it can be used to achieve that
same advantage in deciding between D1(m) and D2(m). Fortunately, we can
transition between D′

1(m + 1) and D1(m + 1) using a hybrid proof. First we
define M = 2m hybrid distributions indexed by (j):

Definition 5. Let D′(j)
1 (m + 1) be the distribution of:

gs̃, gỹ1 , ..., gỹM−1 , gỹM ,

gỹM+1 , ..., gỹ2M−1 ,

gỹ1r1 , ..., gỹM−1rM−1 , gỹMcm+1 ,

gỹM+1(r1+cm+1), ..., gỹM+j(rj+cm+1), gỹM+j+1rM+j+1 , ..., gỹ2M−1r2M−1 ,

gỹ1b1 , ..., gỹM−1bM−1 , gỹMbM ,

gỹM+1bM+1 , ..., gỹ2M−1b2M−1 ,

gt̃1 , ..., gt̃M−1 , gt̃M ,

gt̃M+1 , ..., gt̃2M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 , gs̃cm+1+t̃MbM ,

gs̃(r1+cm+1)+t̃M+1bM+1 , ..., gs̃(rj+cm+1)+t̃M+jbM+j , gs̃rM+j+1+t̃M+j+1bM+j+1 , ...,

gs̃r2M−1+t̃2M−1b2M−1

for j = 0, ...,M − 1 where the rM+j+i are distributed uniformly at random in Zp

for i = 1, ...M − j − 1.

Notice that D′(0)
1 (m + 1) = D1(m + 1) and D′(M−1)

1 (m + 1) = D′
1(m + 1). So, if

some adversary A could distinguish between D1(m+1) and D′
1(m+1) with non-

negligible advantage 2mδ, then by the triangle inequality, there must exists some
j such that:

∣∣∣Pr[A = 1|D′(j+1)
1 (m + 1)] − Pr[A = 1|D′(j)

1 (m + 1)]
∣∣∣ ≥ 2mδ

M = δ.
Such an A can be used to construct a distinguisher for the 2-Linear Problem: B
that achieves advantage δ:

B, upon receiving g, gy1 , gy2 , gy1c1 , gy2c2 , gc1+c2+r, relabels the elements as:
g, gy1 , gy2 , gy1r∗

, gy2cm+1 , gx (defining y1 = y1, y2 = y2, r
∗ = c1, cm+1 = c2, and

x = r∗ + cm+1 + r). B then draws s̃, γj+1, ỹ1, ..., ỹj , ỹj+2, ..., ỹM−1, y
∗
M , ..., y∗

M+j ,

ỹM+j+1, ..., ỹ2M−1, t̃1, ..., t̃2M−1, γM , ..., γM+j , bj+2, ..., b2M−1, r1, ..., rj , rj+2, ...,
r2M−1 uniformly at random from Zq and constructs:
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gs̃, gỹ1 , ..., gỹj , gy1 , gỹj+2 , ..., gỹM−1 , (gy2)y∗
M ,

(gy2)y∗
M+1 , ..., (gy2)y∗

M+j , gỹM+j+1 , ..., gỹ2M−1 ,

gỹ1r1 , ..., gỹjrj , gy1r∗
, gỹj+2rj+2 , ..., gỹM−1rM−1 , (gy2cm+1)y∗

M ,

((gy2)y∗
M+1)r1(gy2cm+1)y∗

M+1 , ..., ((gy2)y∗
M+j )rj (gy2cm+1)y∗

M+j , (gx)ỹM+j+1 ,

gỹM+j+2rM+j+2 , ..., gỹ2M−1r2M−1 ,

gỹ1b1 , ..., gỹjbj , (gy1r∗
)
− s̃

t̃j+1 (gy1)γj+1 , gỹj+2bj+2 , ..., gỹM−1bM−1 , (gy2)y∗
M−1bM−1 ,

(gy2)y∗
MγM (gy2cm+1)−y∗

M
s̃

t̃M

(gy2)
−y∗

M+1(
s̃r1

t̃M+1
−γM+1)(gy2cm+1)

−y∗
M+1

s̃
t̃M+1 , ...,

(gy2)
−y∗

M+j(
s̃rj

t̃M+j
−γM+j)(gy2cm+1)

−y∗
M+j

s̃
t̃M+j ,

gỹM+j+1bM+j+1 , ..., gỹ2M−1b2M−1 ,

gt̃1 , ..., gt̃M ,

gt̃M+1 , ..., gt̃2M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rj+t̃jbj , gt̃j+1γj+1 , gs̃rj+1+t̃j+1bj+1 , ..., gs̃rM−1+t̃M−1bM−1 , gt̃MγM

gt̃M+1γM+1 , ..., gt̃M+jγM+j , (gx)s̃gt̃M+j+1bM+j+1 , gs̃rM+j+2+t̃M+j+2bM+j+2 , ...,

gs̃r2M−1+t̃2M−1b2M−1

where ỹj+1 = y1, rj+1 = r∗, bj+1 = − s̃r∗

t̃j+1
+ γj+1, bM = − s̃cm+1

t̃M
+ γM , and the

bM+i = − s̃(ri+cm+1)

t̃M+i
+ γM+i for i = 1, ..., j and ỹM+i = y2ỹ

∗
M+i for i = 0, ..., j

are all distributed uniformly at random in Zp.
B then runs A on this input and outputs the same.
Note that if x = r∗+cm+1+0, then B has sampled an instance of D′(j+1)

1 (m+1).
Otherwise, if x = r∗ +cm+1 +r for a uniform random r it has sampled an instance
of D′(j)

1 (m + 1). So, B will enjoy the same advantage δ of A but in deciding the
2-Linear Problem.

We assumed there is a polynomial time algorithm A which distinguishes
between D1(m + 1) and D2(m + 1) with advantage 2m+1δ. By the triangle
inequality, then A must be able to be used to either achieve advantage 2mδ
in distinguishing between instances of D1(m + 1) and D′

1(m + 1) or achieve
advantage 2mδ in distinguishing between instances of between D′

1(m + 1) and
D2(m + 1).

In the first case, if A can be used to achieve advantage 2mδ in distinguishing
between instances of D1(m+1) and D′

1(m+1), then we showed in the first proof
how such an algorithm could be used to distinguish between D1(m) and D2(m)
with the same advantage (2mδ).

In the second case, if A can be used to achieve advantage 2mδ in distinguish-
ing between instances of D′

1(m+1) and D2(m+1), then we showed in the second
proof how such an algorithm could be used to break the 2-Linear problem with
advantage 2mδ

M = δ.
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Therefore, if there is a polynomial time algorithm A which distinguishes
between D1(m + 1) and D2(m + 1) with advantage 2m+1δ, then either there
exists a polynomial-time algorithm able to achieve an advantage of 2mδ in decid-
ing between distributions D1(m) and D2(m) or there exists a polynomial time
algorithm able to achieve an advantage of δ in the 2-Linear Problem.

Lemma 3. The distributions D1(k) and D2(k) are computationally indistin-
guishable under the 2-Linear computational hardness assumption if k = O
(lg poly(λ)).

Proof. We have shown that for all integers m ≥ 2, if there exists a polynomial-
time algorithm able to achieve an advantage of 2m+1δ deciding between distri-
butions D1(m + 1) and D2(m + 1), then either there exists a polynomial-time
algorithm able to achieve an advantage of 2mδ in deciding between distributions
D1(m) and D2(m) or there exists a polynomial time algorithm able to achieve an
advantage of δ in the 2-Linear Problem. We have also shown that if there exists
a polynomial-time algorithm able to achieve advantage 22δ in distinguishing
between the distributions D1(2) and D2(2), then there exists a polynomial-time
algorithm able to achieve advantage δ in the 2-Linear Problem. By induction,
it follows that for all m, if an algorithm is able to achieve an advantage of 2mδ
in distinguishing between distributions D1(m) and D2(m), then that algorithm
can be used to achieve advantage δ in the 2-Linear problem.

If k = O(lg poly(λ)), then any algorithm A able to achieve non-negligible
advantage δ in distinguishing between D1(k) and D2(k) can be used to achieve
non-negligible advantage Ω( δ

poly(λ) ) in the 2-Linear problem. This violates our
2-Linear Assumption, so no such algorithm A can exist.

5 Concluding Remarks

We have presented a composite order KP-ABE scheme proven fully secure under
the DLIN assumption and additional subgroup decision type assumptions. The
scheme allows a bound of 2k − 1 attribute-uses in an access policy, where the
number of group elements required in the public parameters per attribute-use
grows polynomially with k. An interesting question for future work is whether
the ciphertext sizes can be significantly reduced (our scheme has ciphertexts still
growing linearly in size with 2k − 1). We have chosen to demonstrate our tech-
niques on a KP-ABE scheme, though we note that they are equally applicable
to the CP-ABE setting. The core of CP-ABE schemes often mirror the structure
of KP-ABE schemes, and would benefit similarly from the reduced public para-
meter size our lemma enables. Finally, our bilinear entropy expansion lemma
is not restricted to the ABE setting, and we suspect it may have applications
to other cryptographic primitives. Primitive structure can be built around the
lemma’s core components of {gtK , gtKAK}, which can be plugged in to replace
a need for independent random group elements. Our composite order KP-ABE
scheme demonstrates this usage.
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Abstract. The common approach to defining secure channels in the lit-
erature is to consider transportation of discrete messages provided via
atomic encryption and decryption interfaces. This, however, ignores that
many practical protocols (including TLS, SSH, and QUIC) offer stream-
ing interfaces instead, moreover with the complexity that the network
(possibly under adversarial control) may deliver arbitrary fragments of
ciphertexts to the receiver. To address this deficiency, we initiate the
study of stream-based channels and their security. We present notions
of confidentiality and integrity for such channels, akin to the notions for
atomic channels, but taking the peculiarities of streams into account.
We provide a composition result for our setting, saying that combining
chosen-plaintext confidentiality with integrity of the transmitted cipher-
text stream lifts confidentiality of the channel to chosen-ciphertext secu-
rity. Notably, for our proof of this theorem in the streaming setting we
need an additional property, called error predictability. We finally give an
AEAD-based construction that achieves our notion of a secure stream-
based channel. The construction matches rather well the one used in
TLS, providing validation of that protocol’s design.

Keywords: Secure channel · Data stream · AEAD · Confidentiality ·
Integrity

1 Introduction

The most widely-used application for cryptography today is still secure commu-
nications—providing a ‘secure channel’ for the transmission of data between two
parties. Secure channel protocols are numerous and diverse in their features,
operating at different network layers and offering different security services.
Prominent examples can be found in GSM, UMTS and LTE [1] mobile telecom-
munications systems, in WEP, WPA and WPA2 [19] (which secure wireless LAN
communications), IPsec [22] (which provides security at the IP layer), TLS [15]
and DTLS [31] (which run over TCP [30] and UDP [29], respectively), Google’s
QUIC protocol [33], and SSH [36] (an ‘application layer’ secure protocol).
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AEAD and Secure Channels in the Literature. Authenticated Encryption with
Associated Data (AEAD) [32] has emerged as being the right cryptographic tool
for building secure channels. AEAD provides both confidentiality and integrity
guarantees for data. However, on its own, AEAD is insufficient for constructing
secure channels. For example, in most practical situations, a secure channel should
provide more than simple encryption of messages, but also guarantee detection of
(and possibly recovery from) out-of-order delivery and replays of messages. Fur-
thermore, a secure channel should deal with error handling, with errors potentially
arising from both cryptographic and non-cryptographic processing —whether or
not to tear-down a secure channel session when an error is encountered, and how
(and indeed whether) to signal errors to the other side. As another difference,
some secure channel designs (such as IPsec and to a limited extent TLS) have
additional features that can be used to provide protection against traffic analysis.
A secure channel may accept messages of arbitrary length and need to fragment
these before encryption, and may reassemble these fragments again after decryp-
tion; alternatively, it may present to applications a maximum message size that is
well-matched to the underlying network infrastructure. Finally, and most impor-
tantly in the context of the paper here, a secure channel may be designed to protect
a stream of data rather than the series of discrete messages that is usually found
in cryptographic abstractions.

There is, then, a substantial gap between what the AEAD primitive can
reasonably provide and the needs of secure channels. We are not the first to
recognize this gap, of course. For example, Bellare et al. [5] extended the standard
security notions of confidentiality and integrity for symmetric encryption to the
stateful setting, enabling the treatment of security of the ordering of discrete
messages in a secure channel, with application to the analysis of SSH being their
principle motivation. Their notions were later extended by Black et al. [23] to
include a richer variety of features, suitable for handling channels that permit (or
deny) replays, message drops, and reordering. Additional literature concerning
the formalization of secure channels includes [3,12,13,20,24–27,34].

Stream-Based Channels. Characteristic of all the above-mentioned prior works
is that they treat secure channels as providing an atomic interface for messages,
meaning that the channel is designed only for sending and receiving sequences
of discrete messages. However, this only captures a fraction of secure channel
designs that are actually used in the real world. In particular, TLS, SSH, and
QUIC all provide a streaming interface for the applications that use them: appli-
cations submit segments (or fragments) of message (or plaintext) streams to
an application programming interface (API), and similarly receive fragments of
message streams from the API. The sending side may arbitrarily buffer and/or
fragment the message stream before encapsulating it for sending. Moreover, in
some cases, even under normal operations, it is not guaranteed by the network
that the resulting stream of ciphertext fragments (which we refer to as cipher-
texts henceforth treating them as opaque bit strings) that is sent will arrive at
the receiver with the same pattern of fragmentation, even if the reconstructed
message streams are in the end identical. Under adversarial conditions, such
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guarantees certainly do not hold: for example, TLS runs over TCP and an
active man-in-the-middle adversary can tinker with the TCP segments, adding,
removing and reordering TLS data at will. Thus practical secure channels need
to securely process arbitrarily fragmented ciphertexts. Finally, to make things
even more complex, and coming full circle, applications (like HTTP [17]) often
attempt to use stream-oriented secure channels (like TLS) to perform secure,
atomic message delivery.

This discussion points to a mismatch between atomic descriptions of secure
channels in the cryptography literature and the reality of the operation of secure
channels. As one may expect, such mismatches can have negative consequences for
security. The starkest example of this comes from the plaintext recovery attack
against SSH given by Albrecht et al. [2]. Their attack specifically exploits the
adversary’s ability to deliver arbitrary sequences of SSH packet fragments to the
receiver (over TCP) and observe the receiver’s behavior in response. The attack
is possible despite the analysis of [5] which proved that the SSH secure channel
satisfies suitable atomic stateful security notions. Related attacks against certain
IPsec configurations (and exploiting IPsec’s need to handle IP fragmentation)
were presented in [14]. Attacks highlighting a disjunction between what applica-
tions expect and what secure channels provide, in the specific context of HTTP
and TLS, can be found in [7,35]. All these attacks show the incompleteness of pre-
vious approaches to modeling and analyzing secure channels.

Boldyreva et al. [9] extended the classical, atomic secure channel notions to
cover the case of SSH-like stream-based secure channels, broadening the SSH-
specific work of [28]. However, while they allow for fragmented delivery of cipher-
texts to the receiver, their work still assumes that the encryption process on
the sender’s side is atomic, meaning that there is a one-to-one correspondence
between message and ciphertexts. This may be the case for SSH when used in
interactive sessions, but it is not the case for the tunneling mode of SSH, and
never the case for other secure channels protocols. For example, even though the
TLS specification [15] does not include a formal API definition, it is clear that
the design intention is to provide a secure channel for data streams (and the
application programmer is in practice offered a TCP-like socket interface), and,
as noted above, the sending side can arbitrarily buffer and fragment the message
stream when preparing ciphertexts for sending.

Our Contributions. In this paper we develop formal functional specifications,
security notions, and a construction (using AEAD as a building block) for stream-
based channels. Our models are in the game-based tradition, and extend those
of [5,9] to handle the streaming nature of the channels that we consider.

While our methodology and modeling closely resemble those of [9], and indeed
build upon them, a crucial difference comes in our treatment of the sending (or
encrypting) function of a stream-based channel: in [9], this is still atomic (while
decryption is not), whereas in our stream-based channel setting, both the send-
ing and receiving function support streams of data, with potentially arbitrary
buffering and fragmentation on the sending and receiving side. This requires care-
ful modification of the confidentiality definitions of [9]. In addition, we develop
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suitable integrity notions for the streaming setting, whereas [9] does not con-
sider this aspect. This is important because the (informal) security properties
that applications expect a secure channel to provide include confidentiality as
well as integrity, while security in the most powerful ‘chosen fragment attack’
setting of [9] does not provide any integrity guarantees.

Bringing integrity into the picture for stream-based channels also enables us
to prove a composition result analogous to the classical result of [6] for symmetric
encryption schemes, which states that IND − CPA security in combination with
integrity of ciphertexts (INT − CTXT security) guarantees IND − CCA security.
This provides an easy route to proving that a given stream-based channel con-
struction provides appropriate confidentiality (indistinguishability under chosen
ciphertext-fragment attacks, or IND − CCFA security) and integrity (integrity of
plaintext streams, INT − PST security).

The composition theorem brings an interesting technical challenge to sur-
mount: as was already recognized in [10] for the classical (atomic) setting, the
possibility that realistic models of encryption schemes may involve multiple error
messages means that the original composition proof of [6] does not go through.
In [10], this was overcome by assuming the scheme is such that only one of the
possible error messages has a non-negligible chance of being produced during
operation of the scheme. Here we take a different tack, introducing the concept
of error predictability, which guarantees the existence of an efficient algorithm
that can predict which errors should be output during decryption of a ciphertext
stream.

We demonstrate the feasibility of our security notions by providing a generic
construction for a stream-based channel that uses AEAD as a component and
achieves our strongest confidentiality and integrity notions. The resulting stream-
based channel closely mimics the TLS Record Protocol. So our security results
provide validation for this important real-world protocol design, whilst fully
taking its streaming behavior into account. In the full version of this paper
we moreover propose a generic construction of a stream-based channel from
symmetric encryption supporting fragmentation as per [9].

Also in the full version, we return to the starting point of our discussion
and analyze how applications can use stream-based channels to safely transport
atomic messages by encoding distinguished end-of-message symbols into the sent
message stream to identify the atomic messages’ boundaries. Establishing the
security of this simple and natural approach however requires the introduction of
an additional technical property orthogonal to integrity and confidentiality. Our
analysis sheds a new formal light on the truncation [35] and ‘cookie-cutter’ [7]
attacks on HTTP running over TLS, showing how they can be seen as arising
from a misunderstanding of the security guarantees that can be provided by a
stream-based channel to applications expecting an atomic-message channel.

Further Related Work. Bhargavan et al. [8] have developed notions of security for
stream-based channels as part of their detailed analysis of the TLS Record Pro-
tocol. Their approach involves expressing channel security properties as types in
a programming language, and then formally proving that the type definitions are
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respected in an adversarial setting (where the adversary is modeled as another
program interacting with the code for the send and receive functions of the
channel).

A seemingly similar line of work to ours concerns blockwise-adaptive security
and on-line symmetric encryption schemes, as developed in [4,11,18,21]. There,
the schemes operate in an on-the-fly manner, processing one fixed-size block
of plaintext or ciphertext at a time; meanwhile the adversary is given access to
blockwise encryption (and possibly decryption) oracles. However, in these papers
messages and ciphertexts are ultimately regarded as discrete entities, rather than
as streams of message and ciphertext fragments as in our treatment.

Paper Organization. After introducing some basic notation and terminology
in Sect. 2, we present in Sect. 3 our formal definition for stream-based channels.
Section 4 contains our security notions for confidentiality and integrity of stream-
based channels as well as our composition theorem. Finally, in Sect. 5 we show
feasibility of our notions by providing a generic construction of a stream-based
channel. We conclude with open questions arising from this work in Sect. 6.

2 Preliminaries

Notation. Let Σ be an alphabet and s ∈ Σ∗. We indicate by |s| the length of s,
by s[i] its i-th character, and by s[i, . . . , j] the substring s[i]|| . . . ||s[j], where ||
denotes the string concatenation. Let s, t ∈ Σ∗. We say that s is a prefix of t
and write s ≺ t if there exists r ∈ Σ∗ such that s||r = t; in this case we write
r = t % s. We denote the longest common prefix of s and t by [s, t] = [t, s]. Note
that s ≺ t if and only if [s, t] = s. Using the above notation we will often consider
s % [s, t], i.e., the suffix of s with the longest common prefix of s and t stripped
off. Let s = (s1, . . . , s�) ∈ (Σ∗)� be a vector of strings for some integer �; if s
is empty, i.e., � = 0, we denote this by s = (). For every 0 ≤ i ≤ j ≤ � we
denote s[i] = si and s[i, . . . , j] = (si, . . . , sj); we use the shortcut ||s for the
concatenation s1|| . . . ||s�, and conventionally define ||() = ε. We say that two
vectors s = (s1, . . . , s�) and t = (t1, . . . , t�′) are equal and write s = t if and
only if � = �′ and s[i] = t[i] for all 1 ≤ i ≤ �. Slightly overloading notation, we
denote the merge of two vectors s and t as s||t = (s1, . . . , s�, t1, . . . , t�′).

Channel Terminology. Our syntax for channels is intentionally independent of
the targeted security properties as these may vary from one specific applica-
tion to another. To reflect the generic functionality of channels and maintain a
higher level of abstraction than, e.g., in the case of authenticated encryption, we
define sending (Send) and receiving (Recv) rather than encryption and decryption
algorithms.

3 Stream-Based Channels

We capture the functionality of channel protocols that offer a reliable trans-
mission of streams like the Transmission Control Protocol (TCP) [30] and, in
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a second step, we define confidentiality and integrity properties expected from
(stream-based) secure channel protocols like the Transport Layer Security (TLS)
Record Protocol [15] or the Secure Shell (SSH) Binary Packet Protocol [37].1

To do so we first need to define the syntax of stream-based channels that, in
constrast to previous models for channel, send fragments of a message (or plain-
text) stream rather than atomic messages. In order to remain close to real-world
implementations we restrict both the message space and the ciphertext space
to the set of bit strings, where we understand ‘messages’ and ‘ciphertexts’ not
as atomic units, but as fragments (i.e., substrings) of a message stream and a
ciphertext stream.

Additionally, we do not stipulate a particular input/output behavior on the
sender side, but instead allow the sending algorithm Send to process input data
at its discretion, e.g., implementing some form of buffering. We enforce send-
ing out particular chunks of the message stream by employing the established
concept of ‘flushing a stream’ known from network socket programming, and
provide the Send algorithm with an additional flush flag f ∈ {0, 1} which, if set
to f = 1, ensures that all the message fragments fed so far are sent out instan-
taneously. Jumping ahead, in our security model this choice conservatively also
allows the adversary to control fragmentation. If the flush flag is set to zero,
Send may internally decide to keep accepting more message fragments or to
send out a ciphertext fragment, depending on its implementation and resources.
In our definition below we demand that each message fragment mi processed
by Send results in a ciphertext fragment ci. Since a ciphertext fragments can be
empty (ci = ε), this implicitly enables Send to wait for more data by outputting
empty ciphertext fragments. Figure 1 illustrates the behavior of the sending and
receiving algorithms of a stream-based channel.

We proceed with defining syntax and correctness of stream-based channels.

Definition 1 (Syntax of stream-based channels). A stream-based chan-
nel Ch = (Init,Send,Recv) with associated sending and receiving state space SS

resp. SR and error space E consists of three efficient probabilistic algorithms:

– Init. On input of a security parameter 1λ, this algorithm outputs initial states
stS,0 ∈ SS, stR,0 ∈ SR for the sender and the receiver, respectively. We write
(stS,0, stR,0) ←$ Init(1λ).

1 Our model inherently assumes that, in a benign scenario, ciphertext fragments
are delivered reliably and in order (i.e., in a TCP-like manner). While we recog-
nize that efficient and secure transmission protocols can be designed also on top
of unreliable protocols like the User Datagram Protocol (UDP) [29] as done, e.g.,
in Google’s Quick UDP Internet Connections (QUIC) protocol [33], we deem these
approaches orthogonal or unrelated to our work. In such cases, a reliable and ordered
stream transmission can be implemented non-cryptographically either by TCP-like
preprocessing of the UDP datagrams before handing them over to a stream-based
channel according to our definition or by postprocessing UDP datagrams which are
encrypted and authenticated in an isolated manner (e.g., using an AEAD scheme).
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Fig. 1. Illustration of the behavior of the Send and Recv algorithms of a stream-based
channel, indicating the message and ciphertext fragments being sent (mi resp. ci) and
received (m′

i resp. c′
i).

– Send. On input of a state stS, ∈ SS, a fragment m ∈ {0, 1}∗, and a flush
flag f ∈ {0, 1}, this algorithm outputs an updated state st′S ∈ Ss and a cipher-
text fragment c ∈ {0, 1}∗. We write (st′S ∈ Ss, c) ←$ Send(stS,,m, f).

– Recv. On input of a state stR, ∈ SR and a ciphertext fragment c ∈ {0, 1}∗,
this algorithm outputs an updated state st′R ∈ SR and a message fragment
m ∈ {0, 1}∗ ∪ E. We write (st′R,m) ←$ Recv(stR,c).

Given a state pair (stS,0, stR,0), an integer � ≥ 0, and tuples of message frag-
ments m = (m1, . . . ,m�) ∈ ({0, 1}∗)� and of flush flags f = (f1, . . . , f�) ∈
{0, 1}�, let (stS,, c) ←$ Send(stS,0,m,f) be shorthand for the sequential exe-
cution (stS,1, c1) ←$ Send(stS,0,m1, f1), . . . , (stS,�, c�) ←$ Send(stS,�−1,m�, f�)
with c = (c1, . . . , c�) and stS, = stS,�. For � = 0 we define c to be the empty
vector and stS,� = stS, to be the initial state. We use an analogous notation for
the receiver’s algorithm.

Intuitively, correctness of stream-based channels guarantees that for every
message fragments input to Send, if the corresponding ciphertext stream is
processed by Recv, then no matter how the ciphertext stream is (re)fragmented
at the receiver side the returned message stream is a prefix of the initial message
stream. Moreover, when Recv consumes a ciphertext fragment generated by a
call to Send with the flush flag set to 1, its output stream contains all the message
fragments input to Send up to that call. We next formalize this intuition.
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Definition 2 (Correctness of stream-based channels). Let Ch = (Init,
Send,Recv) be a stream-based channel. We say that Ch provides correctness if for
all state pair (stS,0, stR,0) ←$ Init(1λ), all �, �′ ≥ 0, all choices of the randomness
for algorithms Init,Send and Recv, all message-fragment vectors m ∈ ({0, 1}∗)�,
all flush-flag vectors f ∈ {0, 1}�, all sending output sequences (stS,�, c) ←$

Send(stS,0,m,f), all ciphertext-fragment vectors c′ ∈ ({0, 1}∗)�′
, and all receiv-

ing output sequences (st′R,�′ ,m′) ←$ Recv(stR,0, c
′), we have

||c = ||c′ =⇒ ||m[1, . . . , i] ≺ ||m′ ≺ ||m,

where i = max({0} ∪ {j : fj = 1}) is the largest index such that the flush
flag fi = 1 (i.e., if all flush flags are set to zero then i = 0 and m[1, . . . , i] = ε).

Remark 1. Correctness implies that if we feed Recv with a prefix of the ciphertext
stream output by Send, i.e., ||c′ ≺ ||c, then the receiver outputs a prefix of the
corresponding message stream, ||m′ ≺ ||m, since

||c′ ≺ ||c ⇒ ∃ c′′ ∈ {0, 1}∗ : ||c′ || c′′ = ||c(corr.)=⇒ ||m′ ||m′′ ≺ ||m ⇒ ||m′ ≺ ||m
for all receiving output sequences (st′R,�′+1,m

′′) ←$ Recv(st′R,�′ , c′′).

Remark 2. It is instructive to compare our correctness definition with that of
Boldyreva et al. [9]. There, correctness requires that if a sequence m of discrete
messages is encrypted, and the resulting ciphertext stream ||c is then decrypted
(possibly in a fragmented manner), then the obtained message sequence (when
message separators ¶ are removed) is identical to the original sequence m. In
the special case of a single message, this implies that encryption ‘always flushes’
in the setting of [9], and is in turn the reason why encryption is necessarily an
atomic operation. By contrast, in our setting the Send algorithm is equipped
with a flush flag and, when the latter is set to zero, potentially the entire mes-
sage fragment is buffered for later sending. This is, then, an essential difference
between the setting of Boldyreva et al. [9] and the streaming one. An additional
difference is that the correctness condition in [9] is stronger than ours as it
incorporates a certain amount of robustness. More specifically, the sequence of
ciphertext fragments c′ submitted for decryption in the correctness definition of
[9] may extend the sequence produced by encryption (in other words, ||c is only
required to be a prefix of ||c′ for decryption to still work correctly up to ||c).

4 Security for Stream-Based Channels

In the following we introduce both confidentiality and integrity notions attuned
to the stream-based setting and analyze their composition. We provide corre-
sponding notions in terms of asymptotic security; analogous notions in the con-
crete setting are easy to infer.2

2 It is straightforward to define a concrete notion of security by considering the advan-
tage of the adversary as a concrete function of its running time, the numbers of oracle
queries, and bounds on the size of the input streams for oracle queries.
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4.1 Confidentiality

As in the ciphertext fragmentation setting introduced by Boldyreva et al. [9],
whose confidentiality notion in turn is inspired by the IND − sfCCA notion by
Bellare et al. [5], our security notions have to deal with the fact that stream-
based channels support processing of arbitrary fragments of the message resp.
ciphertext stream. While Boldyreva et al. [9] considered only fragmented decryp-
tion (but atomic encryption) and therefore focused their attention on the CCA-
like setting, the fragmented message processing of stream-based channels in our
case also affects the adversarial capabilities in the CPA-like setting. We hence
define security notions both for the case of chosen plaintext-fragment attacks
(IND − CPFA) as well as chosen ciphertext-fragment attacks (IND − CCFA).

Adapting the chosen-plaintext capabilities of an adversary to the stream-based
settings is relatively straightforward (incorporating the standard left-or-right
oracle). However, deriving a sound security notion for an adversary controlling
the fragmentation on the received ciphertext stream turns out to be more delicate.
In general, chosen-ciphertext-like oracles strive to allow decryption of as much of
the input as possible without enabling trivial attacks. We follow the approach of
Bellare et al. [5] to model stateful (decryption) security notions by considering
the receiving oracle ORecv to be in-sync and not returning a response to the adver-
sary A as long as A supplies (parts of) the original ciphertext stream output by
the left-or-right sending oracle OLoR in correct sequential order. When A deviates
from the original ciphertext stream, the ORecv oracle is considered out of sync and,
from that point on, the output of the Recv algorithm is given to the adversary.

For a sound definition we are faced with the question: At which point exactly
shall ORecv be considered out-of-sync? Boldyreva et al. decided to stay close to the
original definitions of Bellare et al. and conservatively defined synchronization to
be lost at ciphertext boundaries (i.e., their notion reveals the decryption of the
full ciphertext as output by Send whenever any part of it is modified). However
this option is inappropriate in our stream-based setting where the output of Send
is not necessarily an atomic unit.

As an example to illustrate this, consider the case of TLS and the Send
algorithm being called on a (214 + 1)-byte input message with the flush flag set
to 1—mimicking the behavior of many TLS implementations that keep no send
buffer. Obeying the limit of at most 214 bytes payload in a single TLS record,
Send is forced to output a ciphertext fragment which contains (at least) two
TLS records. An adversary which now forwards this fragment to the decryption
oracle in the IND − sfCFA definition of Boldyreva et al. [9, Definition 4] with
the second record modified but the first record untouched will be provided with
the decryption of both records, thereby trivially revealing parts of the challenge
message string.

Mindful of this example and taking into account that the output of Send in
our case is a bit stream without any further structure in general, the natural
choice appears to consider ORecv to become out-of-sync exactly when the first
bit of its ciphertext stream input deviates from the genuine output of Send.
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Fig. 2. Security experiment for confidentiality (IND − atk) of stream-based channels.
A CPFA-attacker only has access to the oracle OLoR.

In more detail, we define our stream-based confidentiality notions IND − CPFA
(indistinguishability under chosen plaintext-fragment attack) and IND − CCFA
(indistinguishability under chosen ciphertext-fragment attack) through the exper-
iment ExptIND−atk,b

Ch,A (where atk is a placeholder for either CPFA or CCFA), depicted
in Fig. 2. The adversary’s goal in the experiment ExptIND−atk,b

Ch,A is to guess the bit b.
In the experiment the OLoR oracle provides the adversary with the response of Send
to the (left or right) message fragment input. The oracle first checks if the input
message fragments m0 and m1 have the same bit length (i.e., |m0| = |m1|). If this
is the case, it invokes Send on mb, adds its response c to the internal ciphertext
stream variable CS and provides A with c.

The ORecv oracle in the experiment processes the ciphertext fragment input
(thereby updating the receiving state stR,), but artificially suppresses the out-
put of Recv as long as the fragments are in sync. In case synchronization has
been already lost (i.e., sync = 0), ORecv simply passes the output of Recv to A.
Otherwise, it checks whether the concatenation CR of ciphertext fragments seen
so far together with the current fragment c is still a prefix of the ciphertext
stream CS output by OLoR: if this is the case, Recv is invoked on c but its
output is suppressed. Otherwise ORecv is now considered out-of-sync and there
are two definitional options available, both following the paradigm of giving as
much information to the adversary as possible without enabling trivial attacks:
The first option is to split the call to the receiver into two, one for the longest
common prefix c̃ of the received ciphertext c which still matches the ciphertext
stream CS output by OLoR, and one for the remaining ciphertext part where they
diverge. The second option, and this is the one we use here and which turns out
to be more appropriate than the first one (as we discuss in the full version), is to
run the receiver on the full ciphertext c and later suppress parts of the message
stream which the receiver would have obtained when run on c̃.
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More formally, our suppression strategy on the level of the message stream
first simulates a Recv call on a copy of the current state stR, and c̃ and registers
its output m̃. Second, Recv is regularly invoked (again for the original state
stR,) on the full ciphertext fragment c provided by the adversary, resulting in
a message m being output. Finally, the common prefix of m and m̃ (i.e., any
potential challenge message stream bits in m) is suppressed and the remaining
part of m is passed to A.

Definition 3 (IND − CPFA and IND − CCFA Security). Let Ch = (Init,Send,
Recv) be a stream-based channel and experiment ExptIND−atk,b

Ch,A (1λ) for an adver-
sary A and a bit b be defined as in Fig. 2, where atk is a placeholder for either
CPFA or CCFA. Within the experiment the adversary A is given access to a
(stateful) left-or-right sending oracle OLoR and, in the case of IND − CCFA secu-
rity, a (stateful) receiving oracle ORecv. We say that Ch provides indistinguisha-
bility under chosen plaintext-fragment (resp. ciphertext-fragment) attacks
(IND − CPFA resp. IND − CCFA) if for all PPT adversaries A the following
advantage function is negligible in the security parameter:

AdvIND−atk,b
Ch,A (λ) :=

∣∣∣Pr
[
ExptIND−atk,1

Ch,A (1λ) = 1
]

− Pr
[
ExptIND−atk,0

Ch,A (1λ) = 1
]∣∣∣ .

For the sake of completeness we comment on the alternative, intuitively
appealing way for defining the receiving oracle by splitting the ciphertext in
our setting in in the full version, which however leads to a confidentiality notion
that only covers a smaller class of channels.

4.2 Integrity

In this section we formalize integrity notions for stream-based channels. We high-
light that, while integrity properties for atomic messages (and atomic cipher-
texts) are well-understood, no previous work considered integrity in the non-
atomic setting. In particular Boldyreva et al. [9] only addressed confidential-
ity in the presence of ciphertext fragmentation. We define integrity notions
for stream-based channels as refinements of standard (stateful) properties of
plaintext integrity (INT − sfPTXT), resp., ciphertext integrity (INT − sfCTXT)
from [5] and refer to the new properties as plaintext-stream integrity, resp.,
ciphertext-stream integrity (INT − PST, resp., INT − CST).

Similarly to the setting with atomic messages, INT − PST ensures that no
adversarial query to the receiving oracle causes the message stream output
by Recv to deviate from the message stream input to Send. Formalizing the
stronger INT − CST property demands more care. Intuitively, from ciphertext
integrity we expect that when processing any ‘out-of-sync’ ciphertext, the algo-
rithm Recv should return an error message. However, when considering a stream-
based interface it may happen that Recv processes an out-of-sync ciphertext
which does not yet contain ‘enough information’ to be recognized as being
invalid; in this case the receiving algorithm would buffer (part of) the ciphertext



556 M. Fischlin et al.

and wait for further fragments until a sufficiently long ciphertext string is avail-
able to be processed and deemed as valid or invalid. In such a scenario, a naive
adaptation of the INT − sfCTXT definition of [5] would allow trivial attacks by
declaring successful any adversary that makes the Recv buffer (part of) an out-of-
sync ciphertext. Our notion of ciphertext-stream integrity carefully identifies the
case just described and, by letting the receiving oracle wait for further ciphertext
fragments, declares the adversary successful only if Recv outputs a non-emtpy
message fragment resulting from an out-of-sync portion of the ciphertext stream.

Fig. 3. Security experiment for integrity (INT − atk) of stream-based channels. An
PST-attacker is provided with access to the middle ORecv oracle (INT − PST), whereas a
CST-attacker is instead granted access to the oracle on the right-hand side (INT − CST).

We formalize integrity of plaintext and ciphertext streams through the secu-
rity experiment ExptINT−atk

Ch,A depicted in Fig. 3. The experiment provides the
adversary with oracles OSend and ORecv, where the former grants A access to algo-
rithm Send under arbitrarily chosen message fragments and the latter gives A an
interface with algorithm Recv. We highlight that, while the sending oracle OSend

is common for both experiments INT − PST and INT − CST, the receiving ora-
cle ORecv follows different procedures in the two cases, as we further explain
below.

In the execution of the INT − PST experiment, OSend maintains in string MS

the stream of all sent message fragments and, analogously, ORecv maintains in MR
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the stream of all received message fragments (and/or error symbols). The adver-
sary wins the game if it causes MS and MR to deviate in such a way that
their difference contains more than error symbols. Formally, we demand that
the string MR output by the receiver is not a prefix of the sender’s string MS ,
but such that this prefix-freeness is not only due to error symbols from E .

In the INT − CST experiment oracles OSend and ORecv maintain strings CS

and CR to record the streams of sent ciphertexts resp. received ciphertext frag-
ments. Furthermore, ORecv decides when the adversary wins by inspecting sent
and received ciphertext streams, an inherently more complex task than looking
for deviations in the underlying sequences of sent/received message fragments.
Indeed, in a stream-based channel the algorithm Recv may need to buffer several
ciphertexts before being able to recover the underlying message stream or detect-
ing that an error occurred; such a behavior is reflected in our experiment. When
processing in-sync ciphertexts ORecv simply appends each new fragment to CR.
In the moment when an out-of-sync ciphertext arrives, the oracle compares the
outputs of algorithm Recv when processing (i) the current input ciphertext c
and (ii) its longest in-sync prefix c̃. The adversary wins if ORecv outputs more in
case (i) than it would in case (ii) and if the difference between the two outputs
is a non-empty, valid message. It also wins if it is able to make Recv output a
non-empty, valid message with a subsequent out-of-sync ciphertext.

Definition 4 (INT − PST and INT − CST Security). Let Ch = (Init,Send,
Recv) be a stream-based channel and experiment ExptINT−atk

Ch,A (1λ) for an adver-
sary A be defined as in Fig. 2, where atk is a placeholder for either PST or
CST. Within the experiment, the adversary A is given access to a sending ora-
cle OSend and a receiving oracle ORecv. We say that Ch provides integrity of
plaintext streams (resp. ciphertext streams) (INT − PST resp. INT − CST) if
for all PPT adversaries A the following advantage function is negligible in the
security parameter:

AdvINT−atk
Ch,A (λ) := Pr

[
ExptINT−atk

Ch,A (1λ) = 1
]
.

Remark 3. Our definitions of integrity do not preclude from being secure those
channels in which message bits can be output as a result of the adversary deliv-
ering partial ciphertexts to the Recv oracle. This is because in the streaming
setting we care about the adversary’s ability to force the receiver to accept mes-
sage fragments corresponding to a part of the ciphertext stream that has gone
out-of-sync, without attaching importance to ciphertext boundaries. Hence, this
is quite distinct from the usual ‘atomic’ setting. In particular, applications that
use a streaming channel to transmit atomic messages must take extra care to
ensure no partially retrieved message fragment from the streaming channel is
processed as if it was a complete (atomic) message, as such misinterpretation
can lead—and in the past has led—to attacks [7,35].

We further note that stream-based integrity providing weaker guarantees
than atomic-message integrity seems to be an intrinsic consequence of the nature
of stream-based channels. In particular, apparent avenues of strengthening the
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given integrity definition lead to notions which are clearly inappropriate in the
streaming setting. On the one hand, requiring a channel to output an error imme-
diately after processing the first bit deviating from the sent ciphertext stream
is, for most constructions, an unattainable goal as it is in general impossible to
decide if an initial bit received is genuine or not. On the other hand, requiring
that a channel does not output any message bit until a full ciphertext output
by Send is received inappropriately enforces an atomic structure on the channel,
i.e., basically the one of [9] which, as already discussed, is too strong for channels
that, like TLS, might output ciphertexts which contain multiple, independent
parts.

4.3 Relations Amongst Notions and Generic Composition Theorem

Due to space restrictions we comprehensively discuss the relations among the intro-
duced security notions for the streaming setting only in the full version. In short,
we show that, for both confidentiality and integrity, the stronger notion implies
the weaker one, i.e., IND − CCFA ⇒ IND − CPFA and INT − CST ⇒ INT − PST,
as one might expect. Further, we extend the composition result from [6]—that
(stateful) IND − CPA and INT − CTXT together imply (stateful) IND − CCA—
to our streaming setting. Interestingly, the analogous prerequisites IND − CPFA
and INT − CST alone are not sufficient to establish the composition result in our
case: we additionally require the channel to be error predictable (ERR − PRE). The
latter notion, defined only in the full version due to space restrictions, formalizes
the ability to efficiently predict the error messages that should be obtained when
the receiving algorithm fails.

Error predictability assists the security proof for our composition theorem
in two ways. First, it allows us to deal with the problem of having multiple
decryption errors [10]. This problem also appears in the atomic setting and
has been surmounted there by considering only single error messages [6] or by
restricting the likelihood of different error messages to appear [10]. Our notion of
error predictability gives a more general approach which is also applicable in the
atomic setting. Secondly, error predictability directly supports the reduction to
the integrity property INT − CST in our proof. In our stream-based scenario we
basically must be able to tell if the receiver is still buffering ciphertext fragments,
or if it can already produce an error message. Error predictability gives us exactly
this.

We stress, and will expand in Sect. 5, that error predictability can be met
by natural constructions. The composition result for stream-based channels is
summarized in the theorem below. We provide a formal proof of this result in
the full version.

Theorem 1 (INT − CST ∧ IND − CPFA ∧ ERR − PRE ⇒ IND − CCFA). Let
Ch = (Init,Send,Recv) be a (correct) stream-based channel with associated error
space E. If Ch provides integrity of ciphertext streams, error predictability, and
indistinguishability under chosen plaintext-fragment attacks then it also pro-
vides indistinguishability under chosen ciphertext-fragment attacks. Formally, for
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every efficient IND − CCFA adversary A there exist efficient INT − CST adver-
sary B, ERR − PRE adversary C, and IND − CPFA adversary D such that

AdvIND−CCFA
Ch,A ≤ 2 · AdvINT−CST

Ch,B + 2 · AdvERR−PRE
Ch,C + AdvIND−CPFA

Ch,D .

5 Construction of Stream-Based Channels

In this section we demonstrate the feasibility of our security notions by providing
a generic construction of stream-based channels which directly bases on the
well-established primitive of authenticated encryption with associated data and
provides strong security in terms of confidentiality as well as integrity. Although
it is rather illustrative than definitive, we remark that our construction is quite
close to the TLS Record Protocol.

We define the generic construction of a stream-based channel ChAEAD =
(Init,Send,Recv) based on an authenticated encryption with associated data
(AEAD) scheme AEAD = (Enc,Dec) with key space K and distinguished error
symbol ⊥ as introduced by Rogaway [32].3 The encryption algorithm Enc : K ×
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ on input a key, an associated data string, and a mes-
sage, outputs a ciphertext. The decryption algorithm Dec : K×{0, 1}∗×{0, 1}∗ →
({0, 1}∗ ∪ {⊥}) on input a key, an associated data string, and a ciphertext, out-
puts either a message or the distinguished error symbol. We assume that the
AEAD scheme allows the encryption of variable-length messages of up to il bits
and that the ciphertext output for such messages has length at most 2ol −1 bits.
This enables us to encode the length of ciphertexts with a fixed-size string of ol
bits.

Our channel construction ChAEAD is displayed in Fig. 4 and has sending state
space SS = K ×N× {0, 1}∗, receiving state space SR = K ×N× {0, 1}∗ × {0, 1},
and error space E = {⊥}. The channel works as follows.

– The Init algorithm first draws uniformly at random a key K for the AEAD
scheme. It then initializes the sending and receiving state respectively as tuples
containing key K, a sequence number set to 0, and a message-fragment resp.
ciphertext-fragment buffer initially empty; the receiving state also contains a
failure flag, initially set to 0.

– The Send algorithm keeps on buffering input message strings until it has
collected at least il bits. If sufficiently many bits have been collected, then
Send encrypts message chunks m′ of length il bits using the AEAD scheme on
input message m′ and associated data a running sequence number seqno.4 The
ciphertext generated is then prepended with the binary encoding of its size

3 Although our construction does not incorporate nonces it can easily be extended to
the nonce-based setting as originally defined by Rogaway [32].

4 A more natural construction in the nonce-based setting would use seqno as the
encryption nonce and have empty associated data input. We have chosen the current
construction because of its closeness to TLS, which treats its sequence number as
associated data.
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(with the fixed number of ol bits) and the result appended to the ciphertext
string c to be output. Note that the size encoding is not authenticated. In
case the Send algorithm was called with the flush flag set to 1, in a final step
it also encrypts any remaining buffered message in the same way, in order to
empty the message buffer (this message will potentially be of length smaller
than il).

– The Recv algorithm outputs an error (without any further state modifica-
tion) once a first error has emerged from the AEAD decryption algorithm
in some previous call; otherwise, it appends the incoming ciphertext frag-
ment to its buffer. In case enough bits to parse the length field of ol bits
were received it does so. Next, it checks whether the buffer contains the com-
plete AEAD ciphertext of the indicated length and, if so, strips it from the
buffer, decrypts it (incrementing the sequence number used in the associated
data), and appends the result to the message to be output. This process is
repeated until there is no completely parsable ciphertext left. However, in case
the AEAD decryption algorithms outputs an error, after appending this error
symbol to the output message, the Recv algorithm sets the failure flag fail to 1
and stops parsing further input.

Correctness of ChAEAD follows from the correctness of the AEAD scheme.

Security Analysis. Our generic stream-based channel construction ChAEAD from
Fig. 4 provides indistinguishability under chosen plaintext-fragment attacks
(IND − CPFA), integrity of ciphertext streams (INT − CST), and error predictabil-
ity (ERR − PRE), given that the underlying authenticated encryption with asso-
ciated data scheme AEAD provides indistinguishability under chosen plaintext
attacks (IND − CPA) and authenticity (AUTH) as defined by Rogaway [32].5 Using
Theorem 1 we can moreover infer that it also provides indistinguishability under
chosen ciphertext-fragment attacks (IND − CCFA). We provide the detailed secu-
rity analysis in the full version of this paper.

5.1 A Note on the TLS Record Protocol

As discussed earlier, the Transport Layer Security (TLS) Record Protocol imple-
ments a stream-based channel whose complete analysis as such lies outside of
the scope of this work. However we do pause to note that our construction of a
stream-based channel based on authenticated encryption with associated data is
actually very close to the TLS Record Protocol when using an AEAD scheme as
specified for TLS version 1.2 [15, Section 6.2.3.3] and in the current draft for TLS
version 1.3 [16, Section 6.2.2]: the Record Protocol also incorporates a sequence
number which is authenticated but not sent on the wire and a length field which
is sent and authenticated in TLS 1.2 (and which is sent but not authenticated

5 Note that Rogaway [32] actually defines the stronger IND$- CPA notion which implies
IND − CPA security based on a standard left-or-right encryption oracle. We only
require IND − CPA though as it is sufficient for our security proof.
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Fig. 4. A generic construction of a stream-based channel ChAEAD = (Init, Send,Recv)
from any authenticated encryption with associated data (AEAD) scheme AEAD =
(Enc,Dec) with key space K and distinguished error symbol ⊥ which allows to encrypt
variable-length messages of up to il bits and for which the ciphertext output has length
at most 2ol − 1 bits.

in TLS 1.3).6 However, the TLS Record Protocol additionally includes a 2-byte
version number and a 1-byte content type; these are both sent and authenticated
in the associated data. Moreover, the AEAD schemes used are considered to be
nonce-based, though the exact nonce generation is left to be specified by the
particular cipher suite in use.

The content type field in particular allows TLS to multiplex data streams
for different purposes within a single connection stream, as TLS does for the
Handshake Protocol, the Alert Protocol, the ChangeCipherSpec protocol, and
the Application protocol. While our model does not capture multiplexing several
message streams into one ciphertext stream, it can be augmented to do so. This
brings additional complexity and is an avenue for future work.

6 That is, our approach of using a length field which is sent on the wire but not part of
the authenticated associated data conforms with the approach adopted in TLS 1.3.
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6 Conclusion

In this work we approached the security of channels designed to (securely) con-
vey a stream of data from one party to another, narrowing the gap between
real-world transport layer security protocols (like TLS or SSH) and our theoret-
ical understanding of them. For this purpose, we formalized the syntax of such
stream-based channels, explored strong security notions, and demonstrated their
feasibility by providing a natural and secure construction which closely mimics
the operation of the TLS Record Protocol.

Our approach sheds a formal light on recent attacks, in particular concern-
ing the use of HTTP over TLS, confirming a disjunction between applications’
expectations on the one hand and the guarantees that secure streaming channels
provide on the other. This highlights that there is a need for detailed specifica-
tions of APIs and security guarantees for such protocols.

Our work also raises new research questions. Naturally, exploring the exact
relation between stream-based and atomic-message channels is an avenue that
should be pursued, with the development of detailed relations between security
notions in our work and those in [9] as a specific task. Considering established
techniques, the open question remains whether the well-accepted concept of
length-hiding encryption can be incorporated in the stream-based setting despite
being intrinsically connected to atomic messages. It also seems worthwhile to
extend our stream-based model to encompass channel protocol designs (such as
TLS and QUIC) that allow multiplexing of several data streams within a single
channel.
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Abstract. Many efficient data structures use randomness, allowing them
to improve upon deterministic ones. Usually, their efficiency and/or cor-
rectness are analyzed using probabilistic tools under the assumption that
the inputs and queries are independent of the internal randomness of the
data structure. In this work, we consider data structures in a more robust
model, which we call the adversarial model. Roughly speaking, this model
allows an adversary to choose inputs and queries adaptively according to
previous responses. Specifically, we consider a data structure known as
“Bloom filter” and prove a tight connection between Bloom filters in this
model and cryptography.

A Bloom filter represents a set S of elements approximately, by using
fewer bits than a precise representation. The price for succinctness is allow-
ing some errors: for any x ∈ S it should always answer ‘Yes’, and for any
x /∈ S it should answer ‘Yes’ only with small probability.

In the adversarial model, we consider both efficient adversaries (that
run in polynomial time) and computationally unbounded adversaries that
are only bounded in the amount of queries they can make. For compu-
tationally bounded adversaries, we show that non-trivial (memory-wise)
Bloom filters exist if and only if one-way functions exist. For unbounded
adversaries we show that there exists a Bloom filter for sets of size n and
error ε, that is secure against t queries and uses only O(n log 1

ε
+ t) bits of

memory. In comparison, n log 1
ε

is the best possible under a non-adaptive
adversary.

1 Introduction

Data structures are one of the most basic objects in Computer Science. They
provide means to organize a large amount of data such that it can be queried
efficiently. In general, constructing efficient data structures is key to designing
efficient algorithms. Many efficient data structures use randomness, a resource
that allows them to bypass lower bounds on deterministic ones. In these cases,
their efficiency and/or correctness are analyzed in expectation or with high prob-
ability.
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To analyze randomized data structures one must first define the underlying
model of the analysis. Usually, the model assumes that the inputs and queries
are independent of the internal randomness of the data structure. That is, the
analysis is of the form: For any sequence of inputs, with high probability (or
expectation) over its internal randomness, the data structure will yield a correct
answer. This model is reasonable in a situation where the adversary picking
the inputs gets no information about the randomness of the data structure (in
particular, the adversary does not get the responses on previous inputs).

In this work, we consider data structures in a more robust model, which we
call the adversarial model. Roughly speaking, this model allows an adversary
to choose inputs and queries adaptively according to previous responses. That
is, the analysis is of the form: With high probability over the internal random-
ness of the data structure, for any adversary adaptively choosing a sequence of
inputs, the output of the data structure will be correct. Specifically, we consider
a data structure known as “Bloom filter” and prove a tight connection between
Bloom filters in this model and cryptography: We show that Bloom filters in an
adversarial model exist if and only if one-way functions exist.

Bloom Filters in Adversarial Environments. The approximate set membership
problem deals with succinct representations of a set S of elements from a large
universe U , where the price for succinctness is allowing some errors. A data struc-
ture solving this problem is required to answer queries in the following manner:
for any x ∈ S it should always answer ‘Yes’, and for any x /∈ S it should answer
‘Yes’ only with small probability. The latter are called false positive errors.

The study of the approximate set membership problem began with Bloom’s
1970 paper [4], introducing the so called “Bloom filter”, which provided a sim-
ple and elegant solution to the problem. (The term “Bloom filter” may refer to
Bloom’s original construction, but we use it to denote any construction solving
the problem.) The two major advantages of Bloom filters are: (i) they use signif-
icantly less memory (as opposed to storing S precisely) and (ii) they have very
fast query time (even constant query time). Over the years, Bloom filters have
been found to be extremely useful and practical in various areas. Some main
examples are distributed systems [32], networking [10], databases [19], spam fil-
tering [30], web caching [13], streaming algorithms [9,21] and security [17,31].
For a survey about Bloom filters and their applications see [6] and a more recent
one [28].

Following Bloom’s original construction many generalizations and variants
have been proposed and extensively analyzed, proving better memory consump-
tion and running time, see e.g. [1,8,24,27]. However, as discussed, all known
constructions of Bloom filters work under the assumption that the input query
x is fixed, and then the probability of an error occurs over the randomness of the
construction. Consider the case where the query results are made public. What
happens if an adversary chooses the next query according to the responses of pre-
vious ones? Does the bound on the error probability still hold? The traditional
analysis of Bloom filters is no longer sufficient, and stronger techniques are
required.
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Let us demonstrate this need with a concrete scenario. Consider a system
where a Bloom filter representing a white list of email addresses is used to filter
spam mail. When an email message is received, the sender’s address is checked
against the Bloom filter, and if the result is negative it is marked as spam.
Addresses not on the white list have only a small probability of being a false
positive and thus not marked as spam. In this case, the results of the queries
are public, as an attacker might check whether his emails are marked as spam1.
The attacker (after a sequence of queries) might be able to find a bulk of email
addresses that are not marked as spam although they are not in the white list,
and thus, bypass the security of the system and flood users with spam mail.

Alternatively, Bloom filters are often used for holding the contents of a cache.
For instance, a web proxy holds on a (slow) disk, a cache of locally available
webpages. To improve performance, it maintains in (fast) memory a Bloom filter
representing all addresses in the cache. When a user queries for a webpage, the
proxy first checks the Bloom filter to see if the page is available in the cache,
and only then does it search for the webpage on the disk. A false positive is
translated to a cache miss, that is, an unnecessary (slow) disk lookup. In the
standard analysis, one would set the error to be small such that cache misses
happen very rarely (e.g., one in a thousand requests). However, by timing the
results of the proxy, an adversary might learn the responses of the Bloom filter,
enabling her to cause a cache miss for almost every query and, eventually, causing
a Denial of Service (DoS) attack.

Under the adversarial model, we construct Bloom filters that are resilient to
the above attacks. We consider both efficient adversaries (that run in polynomial
time) and computationally unbounded adversaries that are only bounded in the
amount of queries they can make. We define a Bloom filter that maintains its
error probability in this setting and say it is adversarial resilient (or just resilient
for shorthand).

The security of an adversarial resilient Bloom filter is defined as a game
with an adversary. The adversary is allowed to make a sequence of t adaptive
queries to the Bloom filter and get their responses. Note that the adversary
has only oracle access to the Bloom filter and cannot see its internal memory
representation. Finally, the adversary must output an element x∗ (that was not
queried before) which she believes is a false positive. We say that a Bloom filter
is (n, t, ε)-adversarial resilient if when initialized over sets of size n then after t
queries the probability of x∗ being a false positive is at most ε. If a Bloom filter
is resilient for any polynomially many queries we say it is strongly resilient.

A simple construction of a strongly resilient Bloom filter (even against com-
putationally unbounded adversaries) can be achieved by storing S precisely.
Then, there are no false positives at all and no adversary can find one. The
drawback of this solution is that it requires a large amount of memory, whereas
Bloom filters aim to reduce the memory usage. We are interested in Bloom filters
that use a small amount of memory but remain nevertheless, resilient.
1 For example, the attacker can spam his personal email account and see if the mes-

sages are being filtered.
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1.1 Our Results

We introduce the notion of adversarial-resilient Bloom filter and show several
possibility results (constructions of resilient Bloom filters) and impossibility
results (attacks against any Bloom filter) in this context.

Our first result is that adversarial-resilient Bloom filters against computa-
tionally bounded adversaries that are non-trivial (i.e., they require less space
than the amount of space it takes to store the elements explicitly) must use
one-way functions. That is, we show that if one-way functions do not exist then
any Bloom filter can be ‘attacked’ with high probability.

Theorem 1 (Informal). Let B be a non-trivial Bloom filter. If B is strongly
resilient against computationally bounded adversaries then one-way functions
exist.

Actually, we show a trade-off between the amount of memory used by the Bloom
filter and the number of queries performed by the adversary. Carter et al. [7]
proved a lower bound on the amount of memory required by a Bloom filter. To
construct a Bloom filter for sets of size n and error rate ε one must use (roughly)
n log 1

ε bits of memory (and this is tight). Given a Bloom filter that uses m bits
of memory we get a lower bound for its error rate ε and thus a lower bound for
the (expected) number of false positives. As m is smaller the number of false
positives is larger and we prove that adversary can perform fewer queries.

In the other direction, we show that using one-way functions one can con-
struct a strongly resilient Bloom filter. Actually, we show that you can transform
any Bloom filter to be strongly resilient with almost exactly the same memory
requirements and at a cost of a single evaluation of a pseudorandom permutation
(which can be constructed using one-way functions). Specifically, we show:

Theorem 2. Let B be an (n, ε)-Bloom filter using m bits of memory. If pseudo-
random permutations exist, then for large enough security parameter λ there
exists an (n, ε+ neg(λ))-strongly resilient Bloom filter that uses m′ = m+λ bits
of memory.

Bloom filters consist of two algorithms: an initialization algorithm that gets
a set and outputs a compressed representation of the set, and a membership
query algorithm that gets a representation and an input. Usually, Bloom filters
have a randomized initialization algorithm but a deterministic query algorithm
that does not change the representation. We say that such Bloom filters have a
“steady representation”. We consider also Bloom filters with “unsteady repre-
sentation” where the query algorithm is randomized and can change the under-
lying representation on each query. A randomized query algorithm may be more
sophisticated and, for example, incorporate differentially private [12] algorithms
in order to protect the internal memory from leaking. Differentially private algo-
rithms are designed to protect a private database against adversarial and also
adaptive queries from a data analyst. One might hope that such techniques can
eliminate the need of one-way functions in order to construct resilient Bloom
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filters. However, we extend our results and show that they hold even for Bloom
filter with unsteady representations, which proves that this approach cannot gain
additional security.

In the context of unbounded adversaries, we show a positive result. For a set
of size n and an error probability of ε most constructions use about O(n log 1

ε )
bits of memory. We construct a resilient Bloom filter that does not use one-way
functions, is resilient against t queries, uses O(n log 1

ε + t) bits of memory, and
has query time O(log 1

ε ).

Theorem 3. For any n, t ∈ N, and ε > 0 there exists an (n, t, ε)-resilient Bloom
filter (against unbounded adversaries) that uses O(n log 1

ε + t) bits of memory.

1.2 Related Work

One of the first works to consider an adaptive adversary that chooses queries
based on the response of the data structure is by Lipton and Naughton [16],
where adversaries that can measure the time of specific operations in a dictionary
were addressed. They showed how such adversaries can be used to attack hash
tables. Hash tables have some method for dealing with collisions. An adversary
that can measure the time of an insert query, can determine whether there was
a collision and might figure out the precise hash function used. She can then
choose the next elements to insert accordingly, increasing the probability of a
collision and hurting the overall performance.

Mironov et al. [18] considered the model of sketching in an adversarial envi-
ronment. The model consists of several honest parties that are interested in com-
puting a joint function in the presence of an adversary. The adversary chooses
the inputs of the honest parties based on the common randomness shared among
them. These inputs are provided to the parties in an on-line manner, and each
party incrementally updates a compressed sketch of its input. The parties are
not allowed to communicate, they do not share any secret information, and any
public information they share is known to the adversary in advance. Then, the
parties engage in a protocol in order to evaluate the function on their current
inputs using only the compressed sketches. Mironov et al. construct explicit and
efficient (optimal) protocols for two fundamental problems: testing equality of
two data sets, and approximating the size of their symmetric difference.

In a more recent work, Hardt and Woodruff [14] considered linear sketch
algorithms in a similar setting. They consider an adversary that can adaptively
choose the inputs according to previous evaluations of the sketch. They ask
whether linear sketches can be robust to adaptively chosen inputs. Their results
are negative: They show that no linear sketch approximates the Euclidean norm
of its input to within an arbitrary multiplicative approximation factor on a
polynomial number of adaptively chosen inputs.

One may consider adversarial resilient Bloom filters in the framework of com-
putational learning theory. The task of the adversary is to learn the private mem-
ory of the Bloom filter in the sense that it is able to predict on which elements
the Bloom filter outputs a false positive. The connection between learning and
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cryptographic assumptions has been explored before (already in his 1984 paper
introducing the PAC model Valiant’s observed that the nascent pseudorandom
random functions imply hardness of learning [29]). In particular Blum et al. [5]
showed how to construct several cryptographic primitives (pseudorandom bit
generators, one-way functions and private-key cryptosystems) based on certain
assumptions on the difficulty of learning. The necessity of one-way functions for
several cryptographic primitives has been shown in [15].

2 Model and Problem Definitions

Our model considers a universe U of elements, and a subset S ⊂ U . We denote
the size of U by u, and the size of S by n. For the security parameter we use λ
(sometimes we omit the explicit use of the security parameter and assume it is
polynomial in n). We consider mostly the static problem, where the set is fixed
throughout the lifetime of the data structure. We note that the lower bounds
imply the same bounds for the dynamic case and the cryptographic upper bound
(Theorem 4) can be adapted to the dynamic case.

A Bloom filter is a data structure that is composed of a setup algorithm and
a query algorithm B = (B1,B2). The setup algorithm B1 is randomized, gets
as input a set S, and outputs a compressed representation of it B1(S) = M .
To denote the representation M on a set S with random string r we write
B1(S; r) = MS

r and its size in bits is denoted as |MS
r |.

The query algorithm answers membership queries to S given the compressed
representation M . Usually in the literature, the query algorithm is deterministic
and cannot change the representation. In this case we say B has a steady repre-
sentation. However, we also consider Bloom filters where their query algorithm
is randomized and can change the representation M after each query. In this
case we say that B has an unsteady representation. We define both variants.

Definition 1 (Steady-representation Bloom filter). Let B = (B1,B2) be
a pair of polynomial-time algorithms where B1 is a randomized algorithm that
gets as input a set S and outputs a representation, and B2 is a deterministic
algorithm that gets as input a representation and a query element x ∈ U . We
say that B is an (n, ε)-Bloom filter (with a steady representation) if for any set
S ⊂ U of size n it holds that:

1. Completeness: For any x ∈ S: Pr[B2(B1(S), x) = 1] = 1
2. Soundness: For any x /∈ S: Pr[B2(B1(S), x) = 1] ≤ ε,

where the probabilities are over the setup algorithm B1.

False Positive and Error Rate. Given a representation M of S, if x /∈ S and
B2(M,x) = 1 we say that x is a false positive. Moreover, we say that ε is the
error rate of B.

Definition 1 considers only a single fixed input x and the probability is taken
over the randomness of B. We want to give a stronger soundness requirement
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that considers a sequence of inputs x1, x2, . . . , xt that is not fixed but chosen
by an adversary, where the adversary gets the responses of previous queries and
can adaptively choose the next query accordingly. If the adversary’s probability
of finding a false positive x∗ that was not queried before is bounded by ε, then
we say that B is an (n, t, ε)-resilient Bloom filter (this notion is defined in the
challenge ChallengeA,t which is described below). Note that in this case, the setup
phase of the Bloom filter and the adversary get the security parameter 1λ as an
additional input (however, we usually omit it when clear from context). For a
steady representation Bloom filter we define:

Definition 2 (Adversarial-resilient Bloom filter with a steady repre-
sentation). Let B = (B1,B2) be an (n, ε)-Bloom filter with a steady represen-
tation (see Definition 1). We say that B is an (n, t, ε)-adversarial resilient Bloom
filter (with a steady representation) if for any set S of size n, for all sufficiently
large λ ∈ N and for any probabilistic polynomial-time adversary A we have that
the advantage of A in the following challenge is at most ε:

1. Adversarial Resilient: Pr[ChallengeA,t(λ) = 1] ≤ ε,

where the probabilities are taken over the internal randomness of B1 and A and
where the random variable ChallengeA,t(λ) is the outcome of the following game:

ChallengeA,t(λ):

1. M ← B1(S, 1λ).
2. x∗ ← AB2(M,·)(1λ, S) where A performs at most t queries x1, . . . , xt to the

query oracle B2(M, ·).
3. If x∗ /∈ S ∪ {x1, . . . , xt} and B2(M,x∗) = 1 output 1, otherwise output 0.

Unsteady representations. When the Bloom filter has an unsteady representa-
tion, then the algorithm B2 is randomized and moreover can change the rep-
resentation M . That is, B2 is a query algorithm that outputs the response to
the query as well as a new representation. Thus, the user or the adversary do
not interact directly with the B2(M, ·) but with an interface Q(·) (initialized
with M) to a process that on query x updates its representation M and out-
puts only the response to the query (i.e. it cannot issue successive queries to the
same memory representation but to one that keeps changing). Formally, Q(·)
initialized with M on input x acts as follows:

The interface Q(x) (initialized with M):

1. (M ′, y) ← B2(M,x).
2. M ← M ′.
3. Output y.

We define an analogue of the original Bloom filter for unsteady representations
and then define an adversarial resilient one.
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Definition 3 (Bloom filter with an unsteady representation). Let S ⊂ U
be a set of size n. Let B = (B1,B2) be a pair of probabilistic polynomial-time
algorithms such that B1 gets as input the set S and outputs a representation M0,
and B2 gets as input a representation and query x and outputs a new represen-
tation and a response to the query. Let Q(·) be the process initialized with M0.
We say that B is an (n, ε)-Bloom filter (with an unsteady representation) if for
any such set S the following two conditions hold:

1. Completeness: After any sequence of queries x1, x2, . . . performed to Q(·) we
have that for any x ∈ S: Pr[Q(x) = 1] = 1.

2. Soundness: After any sequence of queries x1, x2, . . . performed to Q(·) we have
that for any x /∈ S: Pr[Q(x) = 1] ≤ ε,

where the probabilities are taken over the internal randomness of B1 and B2.

Definition 4 (Adversarial-resilient Bloom filter with an unsteady rep-
resentation). Let B = (B1,B2) be an (n, ε)-Bloom filter with an unsteady rep-
resentation (see Definition 3). We say that B is an (n, t, ε)-adversarial resilient
Bloom filter (with an unsteady representation) if for any set S ⊂ U of size n, for
all sufficiently large λ ∈ N and for any probabilistic polynomial-time adversary
A it holds that:

1. Adversarial Resilient: Pr[ChallengeA,t(λ) = 1] ≤ ε,

where the probabilities are taken over the internal randomness of B1,B2 and A
and where the random variable ChallengeA,t(λ) is the outcome of the following
process:

ChallengeA,t(λ):

1. M0 ← B1(S, 1λ).
2. Initialize Q(·) with M0.
3. x∗ ← AQ(·)(1λ, S) where A performs at most t (adaptive) queries x1, . . . , xt

to the interface Q(·).
4. If x∗ /∈ S ∪ {x1, . . . , xt} and Q(x∗) = 1 output 1, otherwise output 0.

If B is not (n, t, ε)-resilient then we say there exists an adversary A that can
(n, t, ε)-attack B.

If B is resilient for any polynomial number of queries we say it is strongly resilient.

Definition 5 (Strongly resilient). We say that B is an (n, ε)-strongly resilient
Bloom filter, if for large enough security parameter λ and any polynomial t = t(λ)
we have that B is an (n, t, ε)-adversarial resilient Bloom filter.

Remark 1. Notice that in Definitions 2 and 4 the adversary gets the set S as
an additional input. This strengthens the definition of the resilient Bloom filter
such that even given the set S it is hard to find false positives. An alternative
definition might be to not give the adversary the set and also not require that
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x∗ /∈ S. However, our results of Theorem 1 hold even if the adversary does not
get the set. That is, the algorithm that predicts a false positive makes no use
of the set S, either then checking that x∗ /∈ S. Moreover, the construction in
Theorem 2 holds in both cases, even against adversaries that do get the set.

An important parameter is the memory use of a Bloom filter B. We say B uses
m = m(n, λ, ε) bits of memory if for any set S of size n the largest representa-
tion is of size at most m. The desired properties of Bloom filters is to have m as
small as possible and to answer membership queries as fast as possible. Let B be
a (n, ε)-Bloom filter that uses m bits of memory. Carter et al. [7] proved a lower
bound on the memory use of any Bloom filter showing that m ≥ n log 1

ε (or written
equivalently as ε ≥ 2−m

n ). This leads us to defining the minimal error of B.

Definition 6 (Minimal error). Let B be an (n, ε)-Bloom filter that uses m
bits of memory. We say that ε0 = 2−m

n is the minimal error of B.

Note that using Carter’s lower bound we get that for any (n, ε)-Bloom filter
its minimal error ε0 always satisfies ε0 ≤ ε. Also, a trivial Bloom filter can
always store the set S precisely using m = log

(
u
n

) ≈ n log
(

u
n

)
bits. Using the

m ≥ n log 1
ε lower bound we get that a Bloom filter is trivial if ε > n

u . Moreover,
if u is super-polynomial in n, and ε is negligible in n then any polynomial-time
adversary has only negligible chance in finding any false positive, and again we
say that the Bloom filter is trivial.

Definition 7 (Non-trivial Bloom filter). Let B be an (n, ε)-Bloom filter that
uses m bits of memory and let ε0 be the minimal error of B (see Definition 6). We
say thatB is non-trivial if there exists a constant c ≥ 1 such that ε0 > max

{
n
u , 1

nc

}
.

3 Our Techniques

3.1 One-Way Functions and Adversarial Resilient Bloom Filters

We present the main ideas and techniques of the equivalence of adversarial
resilient Bloom filters and one-way functions (i.e., the proof of Theorems 1 and 2).
The simpler direction is showing that the existence of one-way functions implies
the existence of adversarial resilient Bloom filters. Actually, we show that any
Bloom filter can be efficiently transformed to be adversarial resilient with essen-
tially the same amount of memory. The idea is simple and works in general for
other data structures as well: apply a pseudo-random permutation of the input
and then send it to the original Bloom filter. The point is that an adversary
has almost no advantage in choosing the inputs adaptively, as they are all ran-
domized by the permutation, while the correctness properties remain under the
permutation.

The other direction is more challenging. We show that if one-way functions
do not exist then any non-trivial Bloom filter can be ‘attacked’ by an efficient
adversary. That is, the adversary performs a sequence of queries and then outputs
an element x∗ (that was not queried before) which is a false positive with high
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probability. We give two proofs: One for the case where the Bloom filter has a
steady representation and one for an unsteady representation.

The main idea is that although we are given only oracle access to the Bloom
filter, we are able to construct an (approximate) simulation of it. We use tech-
niques from machine learning to (efficiently) ‘learn’ the internal memory of the
Bloom filter, and construct the simulation. The learning task for steady and
unsteady Bloom filters is quite different and each yield a simulation with dif-
ferent guarantees. Then we show how to exploit each simulation to find false
positives without querying the real Bloom filter.

In the steady case, we state the learning process as a ‘PAC learning’ [29] prob-
lem. We use what’s known as ‘Occam’s Razor’ which states that any hypothesis
consistent on a large enough random training set will have a small error. Finally,
we show that since we assume that one-way functions do not exist then we are
able to find a consistent hypothesis in polynomial-time. Since the error is small,
the set of false positive elements defined by the real Bloom filter is approximately
the same set of false positive elements defined by the simulator.

Handling Bloom filters with an unsteady representation is more challenging.
Recall that such Bloom filters are allowed to randomly change their internal
representation after each query. In this case, we are trying to learn a distribution
that might change after each sample. We describe two examples of Bloom filters
with unsteady representations which seem to capture the main difficulties of the
unsteady case.

The first example considers any ordinary Bloom filter with error rate ε/2,
where we modify the query algorithm to first answer ‘Yes’ with probability ε/2
and otherwise continue with its original behavior. The resulting Bloom filter has
an error rate of ε. However, its behaviour is tricky: When observing its responses,
elements can alternate between being false positive and negatives, which makes
the learning task much harder.

The second example consists of two ordinary Bloom filters with error rate
ε, both initialized with the set S. At the beginning only the first Bloom filter
is used, and after a number of queries (which may be chosen randomly) only
the second one is used. Thus, when switching to the second Bloom filter the
set of false positives changes completely. Notice that while first Bloom filter
was used exclusively, no information was leaked about the second. This example
proves that any algorithm trying to ‘learn’ the memory of the Bloom filter cannot
perform a fixed number of samples (as does our learning algorithm for the steady
representation case).

To handle these examples we apply the framework of adaptively changing
distributions (ACDs) presented by Naor and Rothblum [20], which models the
task of learning distributions that can adaptively change after each sample was
studied. Their main result is that if one-way functions do not exist then there
exists an efficient learning algorithm that can approximate the next activa-
tion of the ACD, that is, produce a distribution that is statistically close to
the distribution of the next activation of the ACD. We show how to facilitate
(a slightly modified version of) this algorithm to learn the unsteady Bloom filter
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and construct a simulation. One of the main difficulties is that since we get only
a statistical distance guarantee, then a false positive for the simulation need
not be a false positive for the real Bloom filter. Nevertheless, we show how to
estimate whether an element is a false positive in the real Bloom filter.

3.2 Computationally Unbounded Adversaries

In Theorem 3 we construct a Bloom Filter that is resilient against any unbounded
adversary for a given number (t) of queries. One immediate solution would be to
imitate the construction of the computationally bounded case while replacing the
pseudo-random permutation with a k = (t+n)-wise independent hash function.
Then, any set of t queries along with the n elements of the set would behave as
truly random under the hash function. The problem with this approach is that
the representation of the hash function is too large: It is O(k log |U |) which is
more than the number of bits needed for a precise representation of the set S.
Turning to almost k-wise independence does not help either. First, the memory
will still be too large (it can be reduced to O(n log n log 1

ε +t log n log 1
ε ) bits) and

second, almost k-wise guarantees works only for sets chosen in advance, where
the point of a resilient Bloom filter is to handle adaptively chosen sets.

Carter et al. [7] presented a general transformation from any exact dictionary
to a Bloom filter. The idea was simple: storing x in the Bloom filter translates to
storing g(x) in a dictionary for some (universal) hash function g : U → V , where
|V | = n

ε . The choice of the hash function and underlying dictionary are important
as they determine the performance and memory size of the Bloom filter. Notice
that, at this point replacing g with a k = (t+n)-wise independent hash function
(or an almost k-independent hash function) yields the same problems discussed
above. Nevertheless, this is our starting point where the final construction is
quite different. Specifically, we combine two main ingredients: Cuckoo hashing
and a highly independent hash function tailored for this construction.

For the underlying dictionary in the transformation we use the Cuckoo hash-
ing construction [25,26]. Using cuckoo hashing as the underlying dictionary was
already shown to yield good constructions for Bloom filters by Pagh et al. [24]
and Arbitman et al. [1]. Among the many advantages of Cuckoo hashing (e.g.,
succinct memory representation, constant lookup time) is the simplicity of its
structure. It consists of two tables T1 and T2 and two hash functions h1 and
h2 and each element x in the Cuckoo dictionary resides in either T1[h1(x)] or
T2[h2(x)]. However, we use this structure a bit differently. Instead of storing
g(x) in the dictionary directly (as the reduction of Carter et al. suggests) which
would resolve to storing g(x) at either T1[h1(g(x))] or T2[h2(g(x))] we store g(x)
at either T1[h1(x)] or T2[h2(x)]. That is, we use the full description of x to decide
where x is stored but eventually store only a hash of x (namely, g(x)). Since each
element is compared only with two cells, this lets us improve the analysis of the
reduction which reduce the size of V to O

(
1
ε

)
(instead of n

ε ).
To initialize the hash function g, instead of using a universal hash function we

use a very high independence function (which in turn is also constructed based
on cuckoo hashing) based on the work of Pagh and Pagh [23] and Dietzfelbinger
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and Woelfel [11]. They show how to construct a family G of hash functions such
that on any given set of k inputs it behaves like a truly random function with
high probability. Furthermore, a function in G can be evaluated in constant time
(in the RAM model), and its description can be stored using roughly O(k log |V |)
bits (where V is the range of the function).

Note that the guarantee of the function acting random holds only for sets
S of size k that are chosen in advance. In our case the set is not chosen in
advance but rather chosen adaptively and adversarially. However, Berman et al.
[3] showed that the same construction of Pagh and Pagh actually holds even
when the set of queries is chosen adaptively.

At this point, one solution would be to use the family of functions G setting
k = t + n, with the analysis of Berman et al. as the hash function g and the
structure of the Cuckoo hashing dictionary. To get an error of ε, we set |V | =
O

(
log 1

ε

)
and get an adversarial resilient Bloom filter that is resilient for t queries

and uses O
(
n log 1

ε + t log 1
ε

)
bits of memory. However, our goal is to get a

memory size of O
(
n log 1

ε + t
)
.

To reduce the memory of the Bloom filter even further, we use the family
G a bit differently. Let � = O

(
log 1

ε

)
, and set k = O (t/�). We define the func-

tion g to be a concatenation of � independent instances gi of functions from
G, each outputting a single bit (V = {0, 1}). Using the analysis of Berman
et al. we get that each of them behaves like a truly random function for any
sequence of k adaptively chosen elements. Consider an adversary performing t
queries. To see how this composition of hash functions helps reduce the inde-
pendence needed, consider the comparisons performed in a query between g(x)
and some value y being performed bit by bit. Only if the first pair of bits are
equal we continue to compare the next pair. The next query continues from
the last pair compared, in a cyclic order. For any set of k elements, the prob-
ability of the two bits to be equal is 1/2. Thus, with high probability, only a
constant number of bits will be compared during a single query. That is, in
each query only a constant number of functions gi will be involved and “pay” in
their independence, where the rest remain untouched. Altogether, we get that
although there are t queries performed, we have � different functions and each
function gi is involved in at most O(t/�) = k queries (with high probability).
Thus, the view of each function remains random on these elements. This results
in an adversarial resilient Bloom filter that is resilient for t queries and uses only
O(n log 1

ε + k log 1
ε ) = O(n log 1

ε + t) bits of memory.

4 Preliminaries

We start with some general notation. We denote by [n] the set of numbers
{1, 2, . . . , n}. We denote by neg : N → R a function such that for every positive
integer c there exists an integer Nc such that for all n > Nc, neg(n) < 1/nc.
Finally, throughout this paper we denote by log the base 2 logarithm.
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Definition 8 (One-Way Functions). A function f is said to be one-way if:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every
x ∈ {0, 1}∗.

2. For every probabilistic polynomial-time algorithm A′ and large enough n,

Pr[A′(1n, f(x)) ∈ f−1(f(x))] < neg(n),

where the probability is taken uniformly over x ∈ {0, 1}n and the internal
randomness of A′.

Definition 9 (Universal Hash Family). A family of functions H = {h : U →
[m]} is called universal if for any x1 
= x2: Prh∈H[h(x1) = h(x2)] ≤ 1

m .

5 Adversarial Resilient Bloom Filters and One-Way
Functions

In this section we show that adversarial resilient Bloom filters are (existentially)
equivalent to one-way functions (see Definition 8). We begin by showing that if
one-way functions do not exist, then any Bloom filter can be ‘attacked’ by an
efficient algorithm in a strong sense:

Theorem 4. Let B = (B1,B2) be any non-trivial Bloom filter of n elements
that uses m bits of memory and let ε0 be the minimal error of B. If one-way
function do not exist, then for any constant ε < 1, B is not (n, t, ε)-adversarial
resilient for t = O

(
m/ε20

)
.

We give two different proofs; The first is self contained (e.g. we do not even have
to use the Impagliazzo-Luby [15] technique of finding a random inverse), but,
deals only with Bloom filters with steady representations. The second handles
Bloom filters with unsteady representations, and uses the framework of adap-
tively changing distributions of [20].

5.1 A Proof for Bloom Filters with Steady Representations

Overview: We prove Theorem 4 for the case of steady representation (see Defi-
nition 1). Actually, for the steady case the theorem holds even for t = O(m/ε0).

Assume that there are no one-way functions. We want to construct an adver-
sary that can attack the Bloom filter. We define a function f to be a function that
gets a set S, random bits r, and elements x1, . . . , xt, computes M = B1(S; r)
and outputs these elements along with their evaluation on B2(M, ·) (i.e. for each
element xi the value B2(M,xi)). Since f is not one-way, there is an efficient
algorithm that can invert it with high probability2. That is, the algorithm is
2 The algorithm can invert the function for infinitely many input sizes. Thus, the

adversary we construct will succeed in its attack on the same (infinitely many)
input sizes.
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given a random set of elements labeled whether they are (false) positives or not
and it outputs a set S′ and bits r′. For M ′ = B1(S′; r′) the function B2(M ′, ·) is
consistent with B2(M, ·) for all the elements x1, . . . , xt. For a large enough set of
queries we show that B2(M ′, ·) is actually a good approximation of B2(M, ·) as a
boolean function. We use B2(M ′, ·) to find an input x∗ such that B2(M ′, x∗) = 1
and show that B2(M,x∗) = 1 as well with high probability. This contradicts B
being adversarial-resilient and proves that f is a (weak) one-way function. See
the full paper for more details [22].

5.2 Handling Unsteady Bloom Filters

We describe the proof of the general statement of Theorem 4, i.e., handle Bloom
filters with an unsteady-representation as well. A Bloom filter with an unsteady
representation (see Definition 3) has a randomized query algorithm and may
change the underlying representation after each query. We want to show that if
one-way functions do not exist then we can construct an adversary, Attack, that
‘attacks’ this Bloom filter. The proof of this case is more involved and we show
a simpler version that has an additional assumption (for the full proof see [22]).

Hard-core Positives. Let B = (B1,B2) be an (n, ε)-Bloom filter with an unsteady
representation that uses m bits of memory (see Definition 3). Let M and M ′

be two representations of a set S generated by B1. In the previous proof in
Sect. 5.1, given a representation M we considered B2(M, ·) as a boolean function.
We defined the function μ(M) to measure the number of positives in B2(M, ·)
and we defined the error between two representations err(M,M ′) to measure
the fraction of inputs that the two boolean functions agree on. These definitions
make sense only when B2 is deterministic and does not change the represen-
tation. However, in the case of Bloom filters with unsteady representations we
need to modify the definitions to have new meanings.

Given a representation M consider the query interface Q(·) initialized with
M . For an element x, the probability of x being a false positive is Pr[Q(x) =
1] = Pr[B2(M,x) = 1]. Recall that after querying Q(·), the interface updates
its representation and the probability of x being a false positive might change
(it could be higher or lower). We say that x is a ‘hard-core positive’ if after
any arbitrary sequence of queries we have that Pr[Q(x) = 1] = 1. That is, the
query interface will always response with a ‘Yes’ on x even after any sequence
of queries. Then, we define μ(M) to be the set of hard-core positive elements
in U . Note that over the time, the size of μ(M) might grow, but it can never
become smaller. The following claim proves that for almost all sets S the number
of hard-core positives is large (see [22] for the proof).

Claim. For any Bloom filter with minimal error ε0 it holds that:

Pr
S

[
∃r : μ

(
MS

r

) ≤ ε0
8

]
≤ 2−n

where the probability is taken a random set S of size n from the universe U .
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The distribution DM . As we can not talk about the function B2(M, ·) (as in the
steady case) we use terms of distributions. For any representation M define the
distribution DM : Sample k elements at random x1, . . . , xk (k will be determined
later), and output (x1, . . . , xk, Q(x1), . . . , Q(xk)). Note that the underlying rep-
resentation M changes after each query. Formally, the algorithm for DM is:

1. Sample x1, . . . , xk ∈ U uniformly at random.
2. For i = 1, . . . , k: compute yi = Q(xi).
3. Output (x1, . . . , xk, y1, . . . , yk).

Let M0 be a representation of a random set S generated by B1, and let ε0 be
the minimal error of B. Assume that one-way functions do not exists. Our goal
is to construct an algorithm Attack that will ‘attack’ B, that is, it is given access
to Q(·) initialized with M0 (M0 is secret and not known to Attack) it must find
an non-set element x∗ such that Pr[Q(x) = 1] ≥ 2/3.

Consider the distribution DM0 , and notice that given access to Q(·) we can
perform a single sample from DM0 . Let M1 be the random variable of the result-
ing representation after the sample. Then, we can sample from the distribution
DM1 , and then DM2 and so on. We describe a simplified version of the proof
where we assume that M0 is known to the adversary. This version seems to
captures the main ideas.

Attacking when M0 is known. Suppose that after activating DM0 for r rounds we
are given the initial state M0 (of course, in the actual execution M0 is secret and
later we show how to overcome this assumption). Let p1, . . . , pr be the outputs
of the rounds (that is, pi = (x1, . . . , xk, y1, . . . , yk)). For a specific output pi we
say that xj was labeled ‘1’ if yj = 1.

Denote by DM0(p0, . . . , pr) the distribution over the (r + 1)th activation of
DM0 conditioned on the first r activations resulting in the states p0, . . . , pr.
Computational issues aside, the distribution DM0(p0, . . . , pr) can be sampled by
enumerating all random strings such that when applied to DM0 yield the output
p0, . . . , pr, sampling one of them, and outputting the representations generated
by the random string chosen. Moreover, define DM0(p0, . . . , pr;x1, . . . , xk) to be
the distribution DM0(p0, . . . , pr) conditioned on that the elements chosen in the
sample are x1, . . . , xk. We also define D(p0, . . . , pr) to be the same distribution
as DM0(p0, . . . , pr) only where the representation M0 is also chosen at random
(according to B1(S)).

We define an (inefficient) adversary Attack (see Fig. 1) that (given M0) can
attack the Bloom filter, that is, find an element x∗ that was not queried before
and is a false positive with high probability.

Set k = 160/ε0 and � = 100k. Then we get the following claims.

Claim. There is a common xj : With probability 99/100 there exist a 1 ≤ j ≤ k
such that for all i ∈ [�] it holds that yij = 1, where the probability is over the
random choice of S and x1, . . . , xk.
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The Algorithm Attack

Given: The representation M0.

Input : 1λ.

1. Sample x1, . . . , xk ∈ U at random.
2. For i ∈ [�] sample DM0(p0, . . . , pr; x1, . . . , xk) to get yi1, . . . , yik.
3. If there exists an index j ∈ [k] such that for all i ∈ [�] it holds that yij = 1:

(a) Set x∗ = xj .
(b) Query Q(x1), . . . , Q(xj−1).

4. Otherwise set x∗ to be an arbitrary element in U .
5. Output x∗.

Fig. 1. The description of the algorithm Attack.

Proof. Let Mr be the resulting representation of the rth activation of DM0(p0
, . . . , pr;x1, . . . , xk). We have seen that with probability 1−2−n over the choice of
S for any M0 we have that the set of hard-core positives satisfy |μ(M0)| ≥ ε0/16.
By the definition of the hard-core positives, the set μ(M0) may only grow after
each query. Thus, for each sample from DM0(p0, . . . , pr;x1, . . . , xk) we have that
μ(M0) ⊆ μ(Mr). If xj ∈ μ(M0) then xj ∈ μ(Mr) and thus yij = 1 for all i ∈ [�].
The probability that all elements x1, . . . , xk are sampled outside the set μ(M0)
is at most (1 − ε0/16)k ≤ e−10 (over the random choices of the elements). All
together we get that probability of choosing a ‘good’ S and a ‘good’ sequence
x1, . . . , xt is at least 1 − 2−n + e−10 ≥ 99/100.

Claim. Let Mr be the underlying representation of the interface Q(·) at the time
right after sampling p0, . . . , pr. Then, with probability at least 98/100 the algo-
rithm Attack outputs an element x∗ such that Q(x∗) = 1, where the probability
is taken over the randomness of Attack, the sampling of p0, . . . , pr, and B.

Proof. Consider the distribution DM0(p0, . . . , pr;x1, . . . , xk) to work as follows:
First a representation M is sampled conditioned on starting from M0 and out-
putting the states p0, . . . , pr and then we compute yj = B2(M,xj). Let M ′

1, . . . ,
M ′

� be the representations chosen during the run of Attack. Note that Mr is
chosen from the same distribution that M ′

1, . . . ,M
′
� are sampled from. Thus, we

can think of Mr of being picked after the choice of x1, . . . , xk. That is, we sample
M ′

1, . . . ,M
′
�+1, and choose one of them at random to be Mr, and the rest are

relabeled as M ′
1, . . . ,M

′
�. Now, for any xj , the probability that for all i, M ′

i will
answer ‘1’ on xj but Mr will answer ‘0’ on xj is at most 1/�. Thus, the prob-
ability that there exist any such xj is at most k

� = k
100k = 1/100. Altogether,

the probability that A find such an xj that is always labeled ‘1’ and that Mr

answers ‘1’ on it, is at least 99/100 − 1/100 = 98/100.
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We are left to show how to construct the algorithm Attack so that it will run in
polynomial-time and perform the same tasks without knowing M0. One difficulty
(which was discussed in Sect. 3), is that the number of samples r must be chosen
as a function of the samples and cannot be fixed in advance. Algorithms for
such tasks were studied in the framework Naor and Rothblum [20] on adaptively
changing distributions. The full proof is given at [22].

5.3 A Construction Using Pseudorandom Permutations

We have seen that Bloom filters that are adversarial resilient require using one-
way functions. To complete the equivalence, we show that pseudorandom per-
mutations and functions can be used to construct adversarial resilient Bloom
filters. Actually, we show that any Bloom filter can be efficiently transformed to
be adversarial resilient with essentially the same amount of memory. The idea is
simple and can work in general for other data structures as well: On any input
x we compute a pseudo-random permutation of x and send it to the original
Bloom filter. The full proof is given at [22].

Theorem 5. Let B be an (n, ε)-Bloom filter using m bits of memory. If pseudo-
random permutations exist, then for any security parameter λ there exists an
(n, ε + neg(λ))-strongly resilient Bloom filter with memory m′ = m + λ.

6 Computationally Unbounded Adversary

In this section, we extend the discussion of adversarial resilient Bloom filters
to ones against computationally unbounded adversaries. First, notice that the
attack of Theorem 4 holds in this case as well, since an unbounded adversary
can invert any function (with probability 1). Formally, we get the following:

Corollary 1. Let B = (B1,B2) be any non-trivial Bloom filter of n elements
that uses m bits of memory and let ε0 be the minimal error of B. Then for
any constant ε < 1, B is not (n, t, ε)-adversarial resilient against unbounded
adversaries for t = O

(
m
ε2
0

)
.

As we saw, any (n, ε)-Bloom filter must use at least n log 1
ε bits of memory.

We show how to construct Bloom Filters that are resilient against unbounded
adversaries for t of queries while using only O

(
n log 1

ε + t
)

bits of memory (for
a discussion on the optimality of the number of queries t see the full paper [22]).

Theorem 6. For any n, t ∈ N, and ε > 0 there exists an (n, t, ε)-resilient Bloom
filter (against unbounded adversaries) that uses O(n log 1

ε + t) bits of memory.

Our construction uses two main ingredients: Cuckoo hashing and a very high
independence hash family G. We begin by describing these ingredients.
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The Hash Function Family G. Pagh and Pagh [23] and Dietzfelbinger and
Woelfel [11] (see also Aumuller et al. [2]) showed how to construct a family
G of hash functions g : U → V so that on any set of k inputs it behaves like
a truly random function with high probability (1 − 1/poly(k)). Furthermore, g
can be evaluated in constant time (in the RAM model), and its description can
be stored using (1 + α)k log |V | + O(k) bits (where here α is an arbitrarily small
constant).

Note that the guarantee of g acting as a random function holds for any set S
that is chosen in advance. In our case the set is not chosen in advance but chosen
adaptively and adversarially. However, Berman et al. [3] showed that the same
line of constructions, starting with Pagh and Pagh, actually holds even when
the set of queries is chosen adaptively. That is, for any distinguisher that can
adaptively choose k inputs, the advantage of distinguishing a function g ∈R G
from a truly random function is polynomially small3.

Set � = 4 log 1
ε . Our function g will be composed of the concatenation of � one

bit functions g1, g2, . . . g� where each gi is selected independently from a family
G where V = {0, 1} and k = 2t/ log 1

ε . For a random gi ∈R G:

– There is a constant c (which we can choose) so that for any adaptive dis-
tinguisher that issues a sequence of k adaptive queries gi the advantage of
distinguishing between gi and an exact k-wise independent function U → V
is bounded by 1

kc .
– gi can be represented using (1 + α)k� = O(t) bits.
– gi can be evaluated in constant time.

Thus, the representation of g requires O(t) bits. The evaluation of g at a
given point x takes O(�) = O

(
log 1

ε

)
time.

Cuckoo Hashing. Cuckoo hashing is a data structure for dictionaries introduced
by Pagh and Rodler [26]. It consists of two tables T1 and T2, each containing
r cells where r is slightly larger than n (that is, r = (1 + α)n for some small
constant α) and two hash functions h1, h2 : U → [r]. The elements are stored
in the two tables so that an element x resides at either T1[h1(x)] or T2[h2(x)].
Thus, the lookup procedure consists of one memory accesses to each table plus
computing the hash functions. (This description ignores insertions.)

We assume that n > log u (we can actually let n go as low as O(log log u)
using almost pair-wise independent hashing). Our construction of an adversarial
resilient Bloom filter is:

Setup. The input is a set S of size n. Sample a function g by sampling � functions
gi ∈R G and initialize a Cuckoo hashing dictionary D of size n (with α = 0.1)
as described above. That is, D has two tables T1 and T2 each of size 1.1n, two
hash functions h1 and h2, and each element x will reside at either T1[h1(x)] or
T2[h2(x)]. Insert the elements of S into D. Then, go over the two tables T1 and

3 Any exactly k-wise independent function is also good against k adaptive queries, but
this is not necessarily the case for almost k-wise.
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T2 and at each cell replace each x with g(x). That is, now for each x ∈ S we have
that g(x) resides at either T1[h1(x)] or T2[h2(x)]. Put ⊥ in the empty locations.
The final memory of the Bloom Filter is the memory of D and the representation
of g. The dictionary D consists of O(n) cells, each of size |g(x)| = O(log 1

ε ) bits
and therefore D and g together can be represented by O(n log 1

ε + t) bits.

Lookup. On input x we answer whether ‘Yes’ if either T1[h1(x)] = g(x) or
T2[h2(x)] = g(x). The full proof of this construction is given at [22].
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Abstract. Proofs of work (PoW) have been suggested by Dwork and
Naor (Crypto’92) as protection to a shared resource. The basic idea is to
ask the service requestor to dedicate some non-trivial amount of compu-
tational work to every request. The original applications included pre-
vention of spam and protection against denial of service attacks. More
recently, PoWs have been used to prevent double spending in the Bitcoin
digital currency system.

In this work, we put forward an alternative concept for PoWs –
so-called proofs of space (PoS), where a service requestor must dedi-
cate a significant amount of disk space as opposed to computation. We
construct secure PoS schemes in the random oracle model (with one
additional mild assumption required for the proof to go through), using
graphs with high “pebbling complexity” and Merkle hash-trees. We dis-
cuss some applications, including follow-up work where a decentralized
digital currency scheme called Spacecoin is constructed that uses PoS
(instead of wasteful PoW like in Bitcoin) to prevent double spending.

The main technical contribution of this work is the construction of
(directed, loop-free) graphs on N vertices with in-degree O(log log N)
such that even if one places Θ(N) pebbles on the nodes of the graph,
there’s a constant fraction of nodes that needs Θ(N) steps to be pebbled
(where in every step one can put a pebble on a node if all its parents
have a pebble).

1 Introduction

Proofs of Work (PoW). Dwork and Naor [16] suggested proofs of work (PoW)
to address the problem of junk emails (aka. Spam). The basic idea is to require
that an email be accompanied with some value related to that email that is
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moderately hard to compute but which can be verified very efficiently. Such a
proof could for example be a value σ such that the hash value H(Email, σ) starts
with t zeros. If we model the hash function H as a random oracle [8], then the
sender must compute an expected 2t hashes until she finds such a σ.1 A useful
property of this PoW is that there is no speedup when one has to find many
proofs, i.e., finding s proofs requires s2t evaluations. The value t should be chosen
such that it is not much of a burden for a party sending out a few emails per
day (say, it takes 10 s to compute), but is expensive for a Spammer trying to
send millions of messages. Verification on the other hand is extremely efficient,
the receiver will accept σ as a PoW for Email, if the hash H(Email, σ) starts with
t zeros, i.e., it requires only one evaluation of the hash funciton. PoWs have
many applications, and are in particular used to prevent double spending in the
Bitcoin digital currency system [38] which has become widely popular by now.

Despite many great applications, PoWs suffer from certain drawbacks.
Firstly, running PoW costs energy – especially if they are used on a massive
scale, like in the Bitcoin system. For this reason Bitcoin has even been labelled
an “environmental disaster” [3]. Secondly, by using dedicated hardware instead
of a general purpose processor, one can solve a PoW at a tiny fraction of the
hardware and energy cost, this asymmetry is problematic for several reasons.

Proofs of Space (PoS). From a more abstract point of view, a proof of work is
simply a means of showing that one invested a non-trivial amount of effort related
to some statement. This general principle also works with resources other than
computation like real money in micropayment systems [37] or human attention
in CAPTCHAs [12,46]. In this paper we put forward the concept of proofs of
space where the resource in question is disk space.

PoS are partially motivated by the observation that users often have a sig-
nificant amount of free disk space available, and in this case using a PoS is
essentially for free. This is in contrast to a PoW: even if one only contributes
computation by processors that would otherwise be idle, this will still waste
energy which usually does not come for free.

A PoS is a protocol between a prover P and a verifier V which has two
distinct phases. After an initialisation phase, the prover P is supposed to store
some data F of size N , whereas V only stores some small piece of information.
At any later time point V can initialise a proof execution phase, at the end of
which V outputs either reject or accept. We require that V is highly efficient in
both phases, whereas P is highly efficient in the execution phase providing he
stored and has random access to the data F .

As an illustrative application for a PoS, suppose that the verifier V is an
organization that offers a free email service. To prevent that someone registers a
huge number of fake-addresses for spamming, V might require users to dedicate
some nontrivial amount of disk space, say 100 GB, for every address registered.
Occasionally, V will run a PoS to verify that the user really dedicates this space.

1 The hashed Email should also contain the receiver of the email, and maybe also a
timestamp, so that the sender has to search for a fresh σ for each receiver, and also
when resending the email at a later point in time.
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The simplest solution to prove that one really dedicates the requested space
would be a scheme where the verifier V sends a pseudorandom file F of size
100 GB to the prover P during the initialization phase. Later, V can ask P to
send back some bits of F at random positions, making sure V stores (at least
a large fraction of) F . Unfortunately, with this solution, V has to send a huge
100 GB file to P, which makes this approach pretty much useless in practice.

We require from a PoS that the computation, storage requirement and com-
munication complexity of the verifier V during initialization and execution of the
PoS is very small, in particular, at most polylogarithmic in the storage require-
ment N of the prover P and polynomial in some security parameter γ. In order
to achieve small communication complexity, we must let the prover P generate a
large file F locally during an initialization phase, which takes some time I. Note
that I must be at least linear in N , our constructions will basically2 achieve this
lower bound. Later, P and V can run executions of the PoS which will be very
cheap for V, and also for P, assuming it has stored F .

Unfortunately, unlike in the trivial solution (where P sends F to V), now
there is no way we can force a potentially cheating prover P̃ to store F in-
between the initialization and the execution of the PoS: P̃ can delete F after
initialization, and instead only store the (short) communication with V during
the initialization phase. Later, before an execution of the PoS, P reconstructs F
(in time I), runs the PoS, and deletes F again once the proof is over.

We will thus consider a security definition where one requires that a cheating
prover P̃ can only make V accept with non-negligible probability if P̃ either uses
N0 bits of storage in-between executions of the PoS or if P̃ invests time T for
every execution. Here N0 ≤ N and T ≤ I are parameters, and ideally we want
them to be not much smaller than N and I, respectively. Our actual security
definition in Sect. 2 is more fine-grained, and besides the storage N0 that P̃ uses
in-between initialization and execution, we also consider a bound N1 on the total
storage used by P̃ during execution (including N0, so N1 ≥ N0).

High Level Description of Our Scheme. We described above why the simple
idea of having V send a large pseudorandom file F to P does not give a PoS as
the communication complexity is too large. Another simple idea that comes to
mind is to let V send a short description of a “randomly behaving”permutation
π : {0, 1}n → {0, 1}n to P, who then stores a table of N = n2n bits where
the entry at position i is π−1(i). During the execution phase, V asks for the
preimage of a random value y, which P can efficiently provide as the value
π−1(y) is stored at position y in the table. Unfortunately, this scheme is no
a good PoS because of time-memory trade-offs [27] which imply that one can
invert a random permutation over N values using only

√
N time and space.3 For

random functions (as opposed to permutations), it’s still possible to invert in
time and space N2/3. The actual PoS scheme we propose in this paper is based

2 One of our constructions will achieve the optimal I = Θ(N) bound, our second
construction achieves I = O(N log log N).

3 And initialising this space requires O(N log(N)) time.
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on hard to pebble graphs. During the initalisation phase, V sends the description
of a hash function to P, who then labels the nodes of a hard to pebble graph
using this function. Here the label of a node is computed as the hash of the
labels of its children. V then computes a Merkle hash of all the labels, and sends
this value to P. In the proof execution phase, V simply asks P to open labels
corresponding to some randomly chosen nodes.

Outline and Our Contribution. In this paper we introduce the concept of a
PoS, which we formally define in Sect. 2. In Sect. 3 we discuss and motivate the
model in which we prove our constructions secure (It is basically the random
oracle model, but with an additional assumption). In Sect. 4 we explain how
to reduce the security of a simple PoS (with an inefficient verifier) to a graph
pebbling game. In Sect. 5 we show how to use hash-trees to make the verifier
in the PoS from Sect. 4 efficient. In Sect. 6 we define our final construction and
prove its security in Sects. 6.1 and 6.2.

Our proof uses a standard technique for proving lower bounds on the space
complexity of computational problems, called pebbling. Typically, the lower
bounds shown using this method are obtained via the pebbling games played on
a directed graph. During the game a player can place pebbles on some vertices.
The game starts with some pebbles already on the graph. Informally, placing a
pebble on a vertex v corresponds to the fact that an algorithm keeps the label of
a vertex v in his memory. Removing a pebble from a vertex corresponds there-
fore to deleting the vertex label from the memory. A pebble can be placed on
a vertex v only if the vertices in-going to v have pebbles, which corresponds to
the fact that computing v’s label is possible only if the algorithm keeps in his
memory the labels of the in-going vertices (in our case this will be achieved by
defining the label of v to be a hash of the labels of its in-going vertices). The
goal of the player is to pebble a certain vertex of the graph. This technique was
used in cryptography already before [17,19,20]. For an introduction to the graph
pebbling see, e.g., [44].

In Sect. 6.1 we consider two different (infinite families of) graphs with differ-
ent (and incomparable) pebbling complexities. These graphs then also give PoS
schemes with different parameters (cf. Theorem 3). Informally, the construction
given in Theorem 1 proves a Ω(N/ log N) bound on the storage required by a
malicious prover. Moreover, no matter how much time he is willing to spend
during the execution of the protocol, he is forced to use at least Ω(N/ log N)
storage when executing the protocol. Our second construction from Theorem 2
gives a stronger bound on the storage. In particular, a successful malicious prover
either has to dedicate Θ(N) storage (i.e., almost as much as the N stored by
the honest prover) or otherwise it has to use Θ(N) time with every execution of
the PoS (after the initialization is completed). The second construction, whose
proof can be found in the full version of this paper [18], is based on superconcen-
trators, random bipartite expander graphs and on the graphs of Erdös, Graham
and Szemerédi [21] is quite involved and is the main technical contribution of
our paper.
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More Related Work and Applications. Dwork and Naor [16] pioneered
the concept of proofs of work as easy-to-check proofs of computational efforts.
More concretely, they proposed to use the CPU running time that is required to
carry out the proof as a measure of computational effort. In [1] Abadi, Burrows,
Manasse and Wobber observed that CPU speeds may differ significantly between
different devices and proposed as an alternative measure the number of times
the memory is accessed (i.e., the number of cache misses) in order to compute
the proof. This approach was formalized and further improved in [2,15,17,47],
which use pebbling based techniques. Such memory-hard functions cannot be
used as PoS as the memory required to compute and verify the function is the
same for provers and verifiers. This is not a problem for memory-hard functions
as the here the memory just has to be larger than the cache of a potential prover,
whereas in a PoS the storage is the main resource, and will typically be in the
range of terabytes.

Originally put forward to counteract spamming, PoWs have a vast number of
different applications such as metering web-site access [22], countering denial-of-
service attacks [6,30] and many more [29]. An important application for PoWs
are digital currencies, like the recent Bitcoin system [38], or earlier schemes like
the Micromint system of Rivest and Shamir [42]. The concept of using bounded
resources such as computing power or storage to counteract the so-called “Sybil
Attack”, i.e., misuse of services by fake identities, has already mentioned in the
work of Douceur [14].

PoW are used in Bitcoin to prevent double spending: honest miners must con-
stantly devote more computational power towards solving PoWs than a potential
adversary who tries to double spend. This results in a gigantic waste of energy [3]
devoted towards keeping Bitcoin secure, and thus also requires some strong form
of incentive for the miners to provide this computational power.4 Recently a
decentralized cryptocurrency called Spacecoin [39] was proposed which uses PoS
instead of PoW to prevent double spending. In particular, a miner in Spacecoin
who wants to dedicate N bits of disk space towards mining must just run the PoS
initialisation phase once, and after that mining is extremely cheap: the miner
just runs the PoS execution phase, which means accessing the stored space at a
few positions, every few minutes.

A large body of work investigates the concepts of proofs of storage and
proofs of retrievability (cf. [5,9,13,24,25,31] and many more). These are proof
systems where a verifier sends a file F to a prover, and later the prover can
convince the verifier that it really stored or received the file. As discussed above,
proving that one stores a (random) file certainly shows that one dedicates space,
but these proof systems are not good PoS because the verifier has to send at least
|F| bits to the verifier, and hence does not satisfy our polylogarithmic bound on
the communication complexity.

4 There are two mechanisms to incentivise mining: miners who solve a PoW get some
fixed reward, this is currently the main incentive, but Bitcoin specifies that this
reward will decrease over time. A second mechanism are transactions fees.
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Proof of Secure Erasure (PoSE) are related to PoS. Informally, a PoSE allows
a space restricted prover to convince a verifier that he has erased its memory
of size N . PoSE were suggested by Perito and Tsudik [41], who also proposed
a scheme where the verifier sends a random file of size N to the prover, who
then answers with a hash of this file. Dziembowski, Kazana and Wichs used
graph pebbling to give a scheme with small communication complexity (which
moreover is independent of N), but large Ω(N2) computation complexity (for
prover and verifier). Concurrently, and independently of our work, Karvelas and
Kiayias [32], and also Ateniese et al. [4] construct PoSE using graphs with high
pebbling complexity. Interestingly, their schemes are basically the scheme one
gets when running the initialisation and execution phase of our PoS (as in Eq. (7)
in Theorem 3).5 References [32] and [4] give a security proof of their construction
in the random oracle model, and do not make any additional assumptions as we
do. The reason is that to prove that our “collapsed PoS” (as described above)
is a PoSE it is sufficient to prove that a prover uses much space either during
initialisation or during execution. This follows from a (by now fairly standard)
“ex post facto” argument as originally used in [17]. We have to prove something
much stronger, namely, that the prover needs much space (or at least time) in
the execution phase, even if he makes an unbounded amount of queries in the
initialisation phase (we will discuss this in more detail in Sect. 3.1). As described
above, a PoS (to be precise, a PoS where the execution phase requires large
space, not just time) implies a PoSE, but a PoSE does not imply a PoS, nor
can it be used for any of the applications mentioned in this paper. The main
use-case for PoSE we know of is the one put forward by Perito and Tsudik [41],
namely, to verify that some device has erased its memory. A bit unfortunately,
Ateniese et al. [4] chose to call the type of protocols they construct also “proofs
of space” which led to some confusion in the past.

Finally, let us mention a recent beautiful paper [10] which introduces the
concept of “catalytic space”. They prove a surprising result showing that using
and erasing space is not the same relative to some additional space that is filled
with random bits and must be in its original state at the end of the computation
(i.e., it’s only used as a “catalyst”). Thus, relative to such catalytic space, proving
that one has access to some space as in a PoS, and proving that one has erased
it, like in PoSE, really can be different things.

2 Defining Proofs of Space

We denote with (outV, outP) ← 〈V(inV),P(inP)〉(in) the execution of an interac-
tive protocol between two parties P and V on shared input in, local inputs6 inP
5 There are some differences, the bounds in [4] are somewhat worse as they use hard-

to-pebble graphs with worse parameters, and [32] do not use a Merkle hash-tree to
make the computation of the verifier independent of N .

6 We use the expression “local input/output” instead the usual “private
input/output”, because in our protocols no values will actually be secret. The reason
to distinguish between the parties’ inputs is only due to the fact that P’s input will
be very large, whereas we want V to use only small storage.
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and inV, and with local outputs outV and outP, respectively. A proof of space
(PoS) is given by a pair of interactive random access machines,7 a prover P and
a verifier V. These parties run the PoS protocol in two phases: a PoS initial-
ization and a PoS execution as defined below. The protocols are executed with
respect to some statement id, given as common input (e.g., an email address in
the example from the previous section). The identifier id is only required to make
sure that P cannot reuse the same space to execute PoS for different statements.

Initialization is an interactive protocol with shared inputs an identifier id,
storage bound N ∈ N and potentially some other parameters, which we
denote with prm = (id, N, . . .). The execution of the initialization is denoted
by (Φ, S) ← 〈V,P〉(prm), where Φ is short and S is of size N . V can output
the special symbol Φ = ⊥, which means that it aborts (this can only be the
case if V interacts with a cheating prover).

Execution is an interactive protocol during which P and V have access to the
values stored during the initialization phase. The prover P has no output,
the verifier V either accepts or rejects.

({accept, reject}, ∅) ← 〈V(Φ),P(S)〉(prm)

In an honest execution the initialization is done once at the setup of the system,
e.g., when the user registers with the email service, while the execution can
be repeated very efficiently many times without requiring a large amount of
computation.

To formally define a proof of space, we introduce the notion of a (N0, N1, T )
(dishonest) prover P̃. P̃’s storage after the initiation phase is bounded by at most
N0, while during the execution phase its storage is bounded to N1 and its running
time is at most T (here N1 ≥ N0 as the storage during execution contains at
least the storage after initialization). We remark that P̃’s storage and running
time is unbounded during the the initialization phase (but, as just mentioned,
only N0 storage is available in-between the initialization and execution phase).

A protocol (P,V) as defined above is a (N0, N1, T )-proof of space, if it satisfies
the properties of completeness, soundness and efficiency defined below.

Completeness: We will require that for any honest prover P:

Pr[out = accept : (Φ, S) ← 〈V,P〉(prm) , (out, ∅) ← 〈V(Φ),P(S)〉(prm)] = 1.

Note that the probability above is exactly 1, and hence the completeness is
perfect.

Soundness: For any (N0, N1, T )-adversarial prover P̃ the probability that V
accepts is negligible in some statistical security parameter γ. More precisely,
we have

Pr[out = accept : (Φ, S) ← 〈V, P̃〉(prm), (out, ∅) ← 〈V(Φ), P̃(S)〉(prm)] ≤ 2−Θ(γ) (1)
7 In a PoS, we want the prover P to run in time much less than its storage size. For

this reason, we must model our parties as random access machines (and not, say
Turing machines), where accessing a storage location is assumed to take constant
(or at most polylogarithmic) time.
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The probability above is taken over the random choice of the public para-
meters prm and the coins of P̃ and V.8

Efficiency: We require the verifier V to be efficient, by which (here and below)
we mean at most polylogarithmic in N and polynomial in some security
parameter γ. Prover P must be efficient during execution, but can run in
time poly(N) during initialization.9

In the soundness definition above, we only consider the case where the PoS is
executed only once. This is without loss of generality for PoS where V is stateless
(apart from Φ) and holds no secret values, and moreover the honest prover P
uses only read access to the storage of size N holding S. The protocols in this
paper are of this form. We will sometimes say that a PoS is (N0, N1, T )-secure
if it is a (N0, N1, T )-proof of space.

It is instructive to observe what level of security trivially cannot be achieved
by a PoS. Below we use small letters n, t, c to denote values that are small, i.e.,
polylogarithmic in N and polynomial in a security parameter γ. If the honest
prover P is an (N,N + n, t) prover, where t, n denote the time and storage
requirements of P during execution, then there exists no

1. (N,N + n, t)-PoS, as the honest prover “breaks” the scheme by definition,
and

2. (c, I + t + c, I + t)-PoS, where c is the number of bits sent by V to P dur-
ing initialization. To see this, consider a malicious prover P̃ that runs the
initialization like the honest P, but then only stores the messages sent by V
during initialization instead of the entire large S. Later, during execution, P̃
can simply emulate the initialization process (in time I) to get back S, and
run the normal execution protocol (in time t).

3 The Model

We analyze the security and efficiency of our PoS in the random oracle (RO)
model [8], making an additional assumption on the behavior of adversaries,
which we define and motivate below. Recall that in the RO model, we assume
that all parties (including adversaries) have access to the same random function
H : {0, 1}∗ → {0, 1}L. In practice, one must instantiate H with a real hash func-
tion like SHA3. Although security proofs in the RO model are just a heuristic
argument for real-world security, and there exist artificial schemes where this
heuristic fails [11,23,34], the model has proven surprisingly robust in practice.
8 Our construction is based on a hash-function H, which will be part of prm and we

require to be collision resistant. As assuming collision resistance for a fixed function
is not meaningful [43], we must either assume that the probability of Eq. (1) is over
some distribution of identities id (which can then be used as a hash key), or, if we
model H as a random oracle, over the choice of the random oracle.

9 As explained in the introduction, P’s running time I during initialization must be
at least linear in the size N of the storage. Our construction basically match this
I = Ω(N) lower bound as mentioned in Footnote 2.
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Throughout, we fix the output length of our random oracle H : {0, 1}∗ →
{0, 1}L to some L ∈ N, which should be chosen large enough, so it is infeasible
to find collisions. As finding a collision requires roughly 2L/2 queries, setting
L = 512 and assuming that the total number of oracle queries during the entire
experiment is upper bounded by, say 2L/3, would be a conservative choice.

3.1 Modeling the Malicious Prover

In this paper, we want to make statements about adversaries (malicious provers)
P̃ with access to a random oracle H : {0, 1}∗ → {0, 1}L and bounded by three
parameters N0, N1, T . They run in two phases:

1. In a first (initialization) phase, P̃ makes queries10 A = (a1, . . . , aq) to H
(adaptively, i.e., ai can be a function of H(a1), . . . ,H(ai−1)). At the end of
this phase, P̃ stores a file S of size N0L bits, and moreover he must commit
to a subset of the queries B ⊆ A of size N (technically, we’ll do this by a
Merkle hash-tree).

2. In a second phase, P̃(S) is asked to output H(b) for some random b ∈ B. The
malicious prover P̃(S) is allowed a total number T of oracle queries in this
phase, and can use up to N1L bits of storage (including the N0L bits for S).

As H is a random oracle, one cannot compress its uniformly random outputs. In
particular, as S is of size N0L, it cannot encode more than N0 outputs of H. We
will make the simplifying assumption that we can explicitly state which outputs
these are by letting SH ⊂ {0, 1}L, |SH| ≤ N0 denote the set of all possible
outputs H(a), a ∈ A that P̃(S) can write down during the second phase without
explicitly querying H on input a in the 2nd phase.11 Similarly, the storage bound
N1L during execution implies that P̃ cannot store more than N1 outputs of H
at any particular time point, and we assume that this set of ≤ N1 inputs is well
defined at any time-point. The above assumption will allow us to bound the
advantage of a malicious prover in terms of a pebbling game.

The fact that we need the additional assumption outlined above and cannot
reduce the security of our scheme to the plain random oracle model is a bit
unsatisfactory, but unfortunately the standard tools (in particular, the elegant
“ex post facto”argument from [17]), typically used to reduce pebbling complexity
10 The number q of queries in this phase is unbounded, except for the huge exponential

2L/3 bound on the total number of oracle queries made during the entire experiment
by all parties mentioned above.

11 Let us stress that we do not claim that such an SH exists for every P̃, one can easily
come up with a prover where this is not the case (as we will show below). All we need
is that for every (N0, N1, T ) prover P̃, there exists another prover P̃′ with (almost)
the same parameters and advantage, that obeys our assumption.

An adversary with N0 = N1 = T = 1 not obeying our assumption is, e.g., a P̃
that makes queries 0 and 1 and stores S = H(0) ⊕ H(1) in the first phase. In the
second phase, P̃(S) picks a random b ← {0, 1}, makes the query b, and can write
down H(b), H(1 − b) = S ⊕ H(b). Thus, P̃(S) can write 2 > N0 = 1 values H(0) or
H(1) without quering them in the 2nd phase.
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to the number of random oracle queries, cannot be applied in our setting due
to the auxiliary information about the random oracle the adversary can store.
We believe that a proof exploiting the fact that random oracles are incompress-
ible using techniques developed in [26,45] can be used to avoid this additional
assumption, and we leave this question as interesting future work.

3.2 Storage and Time Complexity

Time Complexity. Throughout, we let the running time of honest and adver-
sarial parties be the number of oracle queries they make. We also take into
account that hashing long messages is more expensive by “charging”k queries
for a single query on an input of bit-length L(k − 1) + 1 to Lk. Just counting
oracle queries is justified by the fact that almost all computation done by honest
parties consists of invocations of the random-oracle, thus we do not ignore any
computation here. Moreover, ignoring any computation done by adversaries only
makes the security proof stronger.

Storage Complexity. Unless mentioned otherwise, the storage of honest and
adversarial parties is measured by the number of outputs y = H(x) stored.The
honest prover P will only store such values by construction; for malicious provers
P̃ this number is well defined under the assumption from Sect. 3.1.

4 PoS from Graphs with High Pebbling Complexity

The first ingredient of our proof uses graph pebbling. We consider a directed,
acyclic graph G = (V,E). The graph has |V | = N vertices, which we label with
numbers from the set [N ] = {1, . . . , N}. With every vertex v ∈ V we associate
a value w(v) ∈ {0, 1}L, and extend the domain of w to include also ordered
tuples of elements from V in the following way: for V ′ = (v1, . . . , vn) (where
vi ∈ V ) we define w(V ′) = (w(v1), . . . , w(vn)). Let π(v) = {v′ : (v′, v) ∈ E}
denote v’s predecessors (in some arbitrary, but fixed order). The value w(v) of
v is computed by applying the random oracle to the index v and the values of
its predecessors

w(v) = H(v, w(π(v))) . (2)

Note that if v is a source, i.e., π(v) = ∅, then w(v) is simply H(v). Our PoS will
be an extension of the simple basic PoS (P0,V0)[G,Λ] from Fig. 1, where Λ is
an efficiently samplable distribution that outputs a subset of the vertices V of
G = (V,E). This PoS does not yet satisfy the efficiency requirement from Sect. 2,
as the complexity of the verifier needs to be as high as the one of the prover. This
is because, in order to perform the check in Step 3 of the execution phase, the
verifier needs to compute w(C) himself. In our model, as discussed in Sect. 3.1,
the only way a malicious prover P̃0(S) can determine w(v) is if w(v) ∈ SH is
in the encoded set of size at most N0, or otherwise by explicitly making the
oracle query H(v, w(π(v))) during execution. Note that if w(i) �∈ SH for some
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Parameters prm = (id, N, G = (V, E), Λ), where G is a graph on |V | = N vertices and
Λ is an efficiently samplable distribution over V β (we postpone specifying β as well as
the function of id to Sect. 6).

Initialization (S, ∅) ← 〈P0,V0〉(prm) where S = w(V ).
Execution (accept/reject, ∅) ← 〈V(∅),P(S)〉(prm)

1. V0(∅) samples C ← Λ and sends C to P0.
2. P0(S) answers with A = w(C) ⊂ S.
3. V0(∅) outputs accept if A = w(C) and reject otherwise.

Fig. 1. The basic PoS (P0,V0)[G, Λ] (with inefficient verifier V0).

i ∈ π(v), then P̃0(S) will have to make even more queries recursively to learn
w(v). Hence, in order to prove (N0, N1, T )-security of the PoS (P0,V0)[G,Λ] in
our idealized model, it suffices to upper bound the advantage of Player 1 in the
following pebbling game on G = (V,E):

1. Player 1 puts up to N0 initial pebbles on the vertices of V.
2. Player 2 samples a subset C ← Λ of size α of challenge vertices.
3. Player 1 applies a sequence of up to T steps according to the following rules:

(i) it can place a pebble on a vertex v if (1) all its predecessors u ∈ π(v) are
pebbled and (2) there are currently less than N1 vertices pebbled.

(ii) it can remove a pebble from any vertex.
4. Player 1 wins if it places pebbles on all vertices of C.

In the pebbling game above, Step 1 corresponds to a malicious prover P̃0 choosing
the set SH. Step 3 corresponds to P̃0 computing values according to the rules in
Eq. (2), while obeying the N1 total storage bound. Putting a pebble corresponds
to invoking y = H(x) and storing the value y. Removing a pebble corresponds
to deleting some previously computed y.

5 Efficient Verifiers Using Hash Trees

The PoS described in the previous section does not yet meet our Definition from
Sect. 2 as V0 is not efficient. In this section we describe how to make the verifier
efficient, using hash-trees, a standard cryptographic technique introduced by
Ralph Merkle [35].

Using Hash Trees for Committing. A hash-tree allows a party P to compute
a commitment φ ∈ {0, 1}L to N data items x1, . . . , xN ∈ {0, 1}L using N − 1
invocations of a hash function H : {0, 1}∗ → {0, 1}L. Later, P can prove to a
party holding φ what the value of any xi is, by sending only L log N bits. For
example, for N = 8, P commits to x1, . . . , xN by hashing the xi’s in a tree like
structure as

φ = H( H( H(x1, x2),H(x3, x4) ),H( H(x5, x6),H(x7, x8) ) )
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We will denote with T H(x1, . . . , xN ) the 2N −1 values of all the nodes (including
the N leaves xi and the root φ) of the hash-tree, e.g., for N = 8, where we define
xab = H(xa, xb)

T H(x1, . . . , x8) = {x1, . . . , x8, x12, x34, x56, x78, x1234, x5678, φ = x12345678}
The prover P, in order to later efficiently open any xi, will store all 2N −1 values
T = T H(x1, . . . , xN ), but only send the single root element φ to a verifier V.
Later P can “open” any value xi to V by sending xi and the log N values, which
correspond to the siblings of the nodes that lie on the path from xi to φ, e.g., to
open x3 P sends x3 and open(T , 3) = (x12, x4, x5678) and the prover checks if

vrfy(φ, 3, x3, (x12, x4, x5678)) =
(
H(x12,H(x3, x4)), x56789)

?= φ
)

As indicated above, we denote with open(T , i) ⊂ T the log N values P must
send to V in order to open xi, and denote with vrfy(φ, i, xi, o) → {accept, reject}
the above verification procedure. This scheme is correct, i.e., for φ, T computed
as above and any i ∈ [N ], vrfy(φ, i, xi, open(T , i)) = accept.

The security property provided by a hash-tree states that it is hard to open
any committed value in more than one possible way. This “binding” property can
be reduced to the collision resistance of H: from any φ, i, (x, o), (x′, o′), x �= x′

where vrfy(φ, i, x, o) = vrfy(φ, i, x′, o′) = accept, one can efficiently extract a
collision z �= z′,H(z) = H(z′) for H.

We add an initialization phase to the graph based PoS from Fig. 1, where the
prover P(prm) commits to x1 = w(v1), . . . , xN = w(vN ) by computing a hash
tree T = T H(x1, . . . , xN ) and sending its root φ to V. In the execution phase,
the prover must then answer a challenge c not only with the value xc = w(c),
but also open c by sending (xc, open(T , c)) which P can do without any queries
to H as it stored T .

If a cheating prover P̃(prm) sends a correctly computed φ during the initial-
ization phase, then during execution P̃(prm, S) can only make V(prm, φ) accept
by either answering each challenge c with the correct value w(c), or by breaking
the binding property of the hash-tree (and thus the collision resistance of the
underlying hash-function).

We are left with the challenge to deal with a prover who might cheat and
send a wrongly computed Φ̃ �= φ during initialization. Some simple solutions are

– Have V compute φ herself. This is not possible as we want V’s complexity to
be only polylog in N .

– Let P prove, using a proof system like computationally sound (CS) proofs [36]
or universal arguments [7], that φ was computed correctly. Although these
proof systems do have polylogarithmic complexity for the verifier, and thus
formally would meet our efficiency requirement, they rely on the PCP theorem
and thus are not really practical.

Dealing with Wrong Commitments. Unless P̃ breaks the collision resistance
of H, no matter what commitment Φ̃ the prover P sends to V, he can later only
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open it to some fixed N values which we will denote x̃1, . . . , x̃N .12 We say that
x̃i is consistent if

x̃i = H(i, x̃i1 , . . . , x̃id) where π(i) = {i1, . . . , id} (3)

Note that if all x̃i are consistent, then Φ̃ = φ. We add a second initialization
phase to the PoS, where V will check the consistency of α random x̃i’s. This can
be done by having P̃ open x̃i and x̃j for all j ∈ π(i). If P̃ passes this check, we
can be sure that with high probability a large fraction of the x̃i’s is consistent.
More concretely, if the number of challenge vertices is α = εt for some ε > 0,
then P̃ will fail the check with probability 1 − 2−Θ(t) if more than an ε-fraction
of the x̃i’s are inconsistent.

A cheating P̃ might still pass this phase with high probability with an Φ̃ where
only 1 − ε fraction of the x̃i are consistent for some sufficiently small ε > 0. As
the inconsistent x̃i are not outputs of H, P̃ can chose their value arbitrarily, e.g.,
all being 0L. Now P̃ does not have to store this εN inconsistent values x̃j while
still knowing them.

In our idealized model as discussed in Sect. 3.1, one can show that this is
already all the advantage P̃ gets. We can model an εN fraction of inconsistent
x̃i’s by slightly augmenting the pebbling game from Sect. 4. Let the pebbles from
the original game be white pebbles. We now additionally allow player 1 to put
εN red pebbles (apart from the N0 white pebbles) on V during step 1. These
red pebbles correspond to inconsistent values. The remaining game remains the
same, except that player 1 is never allowed to remove red pebbles.

We observe that being allowed to initially put an additional εN red pebbles
is no more useful than getting an additional εN white pebbles (as white pebbles
are strictly more useful because, unlike red pebbles, they later can be removed.)
Translated back to our PoS, in order prove (N0, N1, T )-security of our PoS allow-
ing up to εN inconsistent values, it suffices to prove (N0 − εN,N1 − εN, T )-
security of the PoS, assuming that the initial commitment is computed honestly,
and there are no inconsistent values (and thus no red pebbles in the correspond-
ing game).

6 Our Main Construction

Below we formally define our PoS (P,V). The common input to P,V are the
parameters prm = (id, 2N, γ, G,Λ), which contain the identifier id ∈ {0, 1}∗, a
storage bound 2N ∈ N (i.e., 2NL bits),13 a statistical security parameter γ, the
description of a graph G(V,E) on |V | = N vertices and an efficiently samplable
distribution Λ which outputs some “challenge”set C ⊂ V of size α = α(γ,N).

Below H denotes a hash function, that depends on id: given a hash function
H′(.) (which we will model as a random oracle in the security proof), throughout

12 Potentially, P̃ cannot open some values at all, but wlog. we assume that it can open
every value in exactly one way.

13 We set the bound to 2N , so if we let N denote the number of vertices in the under-
lying graph, we must store 2N − 1 values of the hash-tree.
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we let H(.) denote H′(id, .). The reason for this is simply so we can assume that
the random oracles H′(id, .) and H′(id′, .) used in PoS with different identifiers
id �= id′ are independent, and thus anything stored for the PoS with identifier id
is useless to answer challenges in a PoS with different identifier id′.

Initialization (Φ, S) ← 〈V,P〉(prm):
1. P sends V a commitment φ to w(V )

– P computes the values xi = w(i) for all i ∈ V as in Eq. (2).
– P’s output is a hash-tree S = T H(x1, . . . , xN ), which requires

|S| = (2N − 1)L bits) as described in Sect. 5.
– P sends the root φ ∈ S to V.

2. P proves consistency of φ for α = α(γ,N) random values
– V picks a set of challenges C ← Λ where the size of C is α and

sends C to P.
– For all c ∈ C, P opens the value corresponding to c and all its

predecessors to V by sending, for all c ∈ C

{(xi, open(S, i)) : i ∈ {c, π(c)}}

– V verifies that P sends all the required openings, and they are
consistent, i.e., for all c ∈ C the opened values x̃c and x̃i, i ∈
π(c) = (i1, . . . , id) must satisfy x̃c = H(c, x̃i1 , . . . , x̃id), and the
verification of the opened commitments passes. If either check
fails, V outputs Φ = ⊥ and aborts. Otherwise, V outputs Φ = φ,
and the initialization phase is over.

Execution (accept/reject, ∅) ← 〈V(Φ),P(S)〉(prm):
P proves it stores the committed values by opening a random
β = Θ(γ) subset of them

– V picks a challenge set C ⊂ V of size |C| = β at random, and sends
C to P.

– P answers with {oc = (xc, open(S, c)) : c ∈ C}.
– V checks for every c ∈ C if vrfy(Φ, c, oc)

?= accept. V outputs accept
if this is the case and reject otherwise.

6.1 Constructions of the Graphs

We consider the following pebbling game, between a player and a challenger, for
a directed acyclic graph G = (V,E) and a distribution λ over V .

1. Player puts initial pebbles on some subset U ⊆ V of vertices.
2. Challenger samples a “challenge vertex” c ∈ V according to λ.
3. Player applies a sequence of steps according to the following rules:

(i) it can place a pebble on a vertex v if all its predecessors u ∈ π(v) are
pebbled.
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(ii) it can remove a pebble from any vertex.
4. Player wins if it places a pebble on c.

Let S0 = |U | be the number of initial pebbles, S1 be the total number of used
pebbles (or equivalently, the maximum number of pebbles that are present in the
graph at any time instance, including initialization), and let T be the number of
pebbling steps given in 3i). The definition implies that S1 ≥ S0 and T ≥ S1−S0.
Note, with S0 = |V | pebbles the player can always achieve time T = 0: it can
just place initial pebbles on V .

Definition 1. Consider functions f = f(N,S0) and g = g(N,S0, S1). A family
of graphs {GN = (VN , EN ) | |VN | = N ∈ N} is said to have pebbling complexity
Ω(f, g) if there exist constants c1, c2, δ > 0 and distributions λN over VN such
that for any player that wins the pebbling game on (GN , λN ) (as described
above) with probability 1 it holds that

Pr[ S1 ≥ c1f(N,S0) ∧ T ≥ c2g(N,S0, S1) ] ≥ δ (4)

Let G(N, d) be the set of directed acyclic graphs G = (V,E) with |V | = N
vertices and the maximum in-degree at most d. We now state our two main
pebbling theorems:

Theorem 1. There exists an explicit family of graphs GN ∈ G(N, 2) with peb-
bling complexity

Ω(N/ log N, 0) (5)

In the next theorem we use the Iverson bracket notation: [φ] = 1 if statement φ
is true, and [φ] = 0 otherwise.

Theorem 2. There exists a family of graphs GN ∈ G(N,O(log log N)) with
pebbling complexity

Ω(0, [S0 < τN ] · max{N,N2/S1}) (6)

for some constant τ ∈ (0, 1). It can be constructed by a randomized algorithm
with a polynomial expected running time that produces the desired graph with
probability at least 1 − 2−Θ(N/ log N).

Complete proofs of these theorems are given in the full version of this paper [18];
here we give a brief summary of our techniques. For Theorem 1 we use the con-
struction of Paul, Tarjan and Celoni [40], and derive the theorem as a corollary
of their Lemma 2. For Theorem 2 we use a new construction which relies on three
building blocks: (i) random bipartite graphs Rd

(m) ∈ G(2m, d) with m inputs and
m outputs; (ii) superconcentrator graphs C(m) with m inputs and m outputs;
(iii) graphs Dt = ([t], Et) of Erdös, Graham and Szemerédi [21] with dense long
paths. These are directed acyclic graphs with t vertices and Θ(t log t) edges (of
the form (i, j) with i < j) that satisfy the following for some constant η ∈ (0, 1)
and a sufficiently large t: for any subset X ⊆ [t] of size at most ηt graph Dt

contains a path of length at least ηt that avoids X. We show that family Dt can
be chosen so that the maximum in-degree is Θ(log t). The main component of
our construction is graph G̃d

(m,t) defined as follows:
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– Add mt nodes Ṽ = V1 ∪ . . . ∪ Vt to G̃d
(m,t) where |V1| = . . . = |Vt| = m. This

will be the set of challenges.
– For each edge (i, j) of graph Dt add a copy of graph Rd

(m) from Vi to Vj ,
i.e. identify the inputs of Rd

(m) with nodes in Vi (using an arbitrary permu-
tation) and the outputs of Rd

(m) with nodes in Vj (again, using an arbitrary
permutation).

We set d = Θ(1), t = Θ(log N) and m = Θ(N/t) (with specific constants), then
G̃d

(m,t)∈G(mt,O(log log N)).
Note that a somewhat similar graph was used by Dwork, Naor and Wee [17].

They connect bipartite graphs Rd
(m) consecutively, i.e. instead of graph Dt they use

a chain graph with t nodes. Dwork et al. give an intuitive argument that removing
at most τm nodes from each layer V1, . . . , Vt (for some constant τ < 1) always
leaves a graph which is “well-connected”: informally speaking, many nodes of
V1 are still connected to many nodes of Vt. (We give a formal treatment of their
argument in the full version of this paper [18].) However, this does not hold
if more than m = Θ(N/ log N) nodes are allowed to be removed: by placing
initial pebbles on, say, the middle layer Vt/2 one can completely disconnect V1

from Vt.
In contrast, in our construction removing any τ ′N nodes still leaves a graph

which is “well-connected”. Our argument is as follows. If constant τ ′ is sufficiently
small then there can be at most ηt layers with more than τm initial pebbles (for
a given constant τ < 1). By the property of Dt, there exists a sufficiently long
path P in Dt that avoids those layers. We can thus use the argument above for
the subgraph corresponding to P . We split P into three parts of equal size, and
show that many nodes in the first part are connected to many nodes in the third
part.

In this way we prove that graphs G̃d
(m,t) have pebbling complexity Ω(0, [S0 <

τN ] ·N). To get complexity Ω(0, [S0 < τN ] ·max{N,N2/S1}), we add mt extra
nodes V0 and a copy of superconcentrator C(mt) from V0 to Ṽ . We then use a
standard “basic lower bound argument” for superconcentrators [33].

Remark 1. As shown in [28], any graph G ∈ G(N,O(1)) can be entirely pebbled
using S1 = O(N/ log N) pebbles (without any initial pebbles). This implies that
expression N/ log N in Theorem 1 cannot be improved upon. Note, this still
leaves the possibility of a graph that can be pebbled using O(N/ log N) pebbles
only with a large time T (e.g. superpolynomial in N). Examples of such graph for
a non-interactive version of the pebble game can be found in [33]. Results stated
in [33], however, do not immediately imply a similar bound for our interactive
game.

6.2 Putting Things Together

Combining the results and definitions from the previous sections, we can now
state our main theorem.
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Theorem 3. In the model from Sect. 3.1, for constants ci > 0, the PoS from
Sect. 6 instantiated with the graphs from Theorem 1 is a

(c1(N/ log N), c2(N/ log N),∞) -secure PoS. (7)

Instantiated with the graphs from Theorem 2 it is a

(c3N,∞, c4N)-secure PoS. (8)

Efficiency, measured as outlined in Sect. 3.2, is summarized in the table below
where γ is the statistical security parameter

Communication Computation P Computation V

PoS Eq. (7) Initialization O(γ log2 N) 4N O(γ log2 N)

PoS Eq. (7) Execution O(γ log N) 0 O(γ log N)

PoS Eq. (8) Initialization O(γ log N log log N) O(N log log N) O(γ log N log log N)

PoS Eq. (8) Execution O(γ log N) 0 O(γ log N)

Equation (8) means that a successful cheating prover must either store a file of
size Ω(N) (in L bit blocks) after initialization, or make Ω(N) invocations to
the RO. Equation (7) gives a weaker Ω(N/ log N) bound, but forces a potential
adversary not storing that much after initialization, to use at least Ω(N/ log N)
storage during the execution phase, no matter how much time he is willing to
invest. This PoS could be interesting in contexts where one wants to be sure that
one talks with a prover who has access to significant memory during execution.

Below we explain how security and efficiency claims in the theorem were
derived. We start by analyzing the basic (inefficient verifier) PoS (P0,V0)[G,Λ]
from Fig. 1 if instantiated with the graphs from Theorems 1 and 2.

Proposition 1. For some constants ci > 0, if GN has pebbling complexity
Ω(f(N), 0) according to Definition 1, then the basic PoS (P0,V0)[GN , ΛN ]
as illustrated in Fig. 1, where the distribution ΛN samples Θ(γ) (for a sta-
tistical security parameter γ) vertices according to the distribution λN from
Definition 1, is

(S0, c1f(N),∞)-secure (for any S0 ≤ c1f(N)) (9)

If GN has pebbling complexity (0, g(N,S0, S1)), then for any S0, S1 the PoS
(P0,V0)[GN , ΛN ] is

(S0, S1, c2g(N,S0, S1))-secure. (10)

Above, secure means secure in the model from Sect. 3.1.

(The proof of appears in the full version [18].) Instantiating the above proposition
with the graphs GN from Theorems 1 and 2, we can conclude that the simple
(inefficient verifier) PoS (P0,V0)[GN , ΛN ] is

(c1N/ log N, c2N/ log N,∞) and (S0, S1, c3 · [S0 ≤ τN ] · max{N,N2/S1})
(11)
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secure, respectively (for constants ci > 0, 0 < τ < 1 and [S0 < τN ] = 1
if S0 ≤ τN and 0 otherwise). If we set S0 = �τN� = c4N , the right side
of Eq. (11) becomes (c4N,S1, c3 · max{N,N2/S1}) and further setting S1 =
∞ (c4N,∞, c3N) As explained in Sect. 5, we can make the verifier V0 efficient
during initialization, by giving up on εN in the storage bound. We can choose
ε ourselves, but must check Θ(γ/ε) values for consistency during initialization
(for a statistical security parameter γ). For our first PoS, we set ε = c1

2 log N and
get with c5 = c1/2 using c2 ≥ c1

(c1 · N/ log N − ε · N︸ ︷︷ ︸
=c5N/ log N

, c2 · N/ log N − ε · N︸ ︷︷ ︸
≥c5N/ log N

,∞)

security as claimed in Eq. (7). For the second PoS, we set ε = c4
2 which gives

with c6 = c4/2
(c4N − εN︸ ︷︷ ︸

≥c6N

,∞ − εN, c3N)

security, as claimed in Eq. (8). Also, note that the PoS described above are PoS
as defined in Sect. 6 if instantiated with the graphs from Theorems 1 and 2,
respectively.

Efficiency of the PoS Eq. (7). We analyze the efficiency of our PoS, mea-
suring time and storage complexity as outlined in Sect. 3.2. Consider the
(c1N/ log N, c2N/ log N,∞)-secure construction from Eq. (7). In the first phase
of the initialization, P needs roughly 4N = Θ(N) computation: using that the
underlying graph has max in-degree 2, computing w(V ) according to Eq. (2)
requires N hashes on inputs of length at most 2L+log N ≤ 3L, and P makes an
additional N − 1 hashes on inputs of length 2L to compute the hash-tree. The
communication and V’s computation in the first phase of initialization is Θ(1)
(as V just receives the root φ ∈ {0, 1}L).

During the 2nd phase of the initialization, V will challenge P on α (to be
determined) vertices to make sure that with probability 1 − 2−Θ(γ), at most an
ε = Θ(1/ log N) fraction of the x̂i are inconsistent. As discussed above, for this
we have to set α = Θ(γ log N). Because this PoS is based on a graph with degree
2 (cf. Theorem 1), to check consistency of a x̂i one just has to open 3 values.
Opening the values requires to send log N values (and the verifier to compute
that many hashes). This adds up to an O(γ log2 N) communication complexity
during initialization, V’s computation is of the same order.

During execution, P opens φ on Θ(γ) positions, which requires Θ(γ log N)
communication (in L bit blocks), and Θ(γ log N) computation by V.

Efficiency of the PoS Eq. (8). Analyzing the efficiency of the second PoS is
analogous to the first. The main difference is that now the underlying graph has
larger degree O(log log N) (cf. Theorem 2), and we only need to set ε = Θ(1).
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Abstract. Fully homomorphic encryption is an encryption method with
the property that any computation on the plaintext can be performed
by a party having access to the ciphertext only. Here, we formally define
and give schemes for quantum homomorphic encryption, which is the
encryption of quantum information such that quantum computations can
be performed given the ciphertext only. Our schemes allow for arbitrary
Clifford group gates, but become inefficient for circuits with large com-
plexity, measured in terms of the non-Clifford portion of the circuit (we
use the “π/8” non-Clifford group gate, also known as the T-gate).

More specifically, two schemes are proposed: the first scheme has a
decryption procedure whose complexity scales with the square of the
number of T-gates (compared with a trivial scheme in which the com-
plexity scales with the total number of gates); the second scheme uses a
quantum evaluation key of length given by a polynomial of degree expo-
nential in the circuit’s T-gate depth, yielding a homomorphic scheme for
quantum circuits with constant T-depth. Both schemes build on a clas-
sical fully homomorphic encryption scheme.

A further contribution of ours is to formally define the security of
encryption schemes for quantum messages: we define quantum indis-
tinguishability under chosen plaintext attacks in both the public- and
private-key settings. In this context, we show the equivalence of several
definitions. Our schemes are the first of their kind that are secure under
modern cryptographic definitions, and can be seen as a quantum ana-
logue of classical results establishing homomorphic encryption for circuits
with a limited number of multiplication gates. Historically, such results
appeared as precursors to the breakthrough result establishing classical
fully homomorphic encryption.

1 Introduction

An encryption scheme is homomorphic over some set of circuits S if any circuit
in S can be evaluated on an encrypted input. That is, given an encryption of
the message m, it is possible to produce a ciphertext that decrypts to the output
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 609–629, 2015.
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of the circuit C on input m, for any C ∈ S . In fully homomorphic encryption
(FHE), S is the set of all classical circuits. FHE was introduced in 1978 [26],
but the existence of such a scheme was an open problem for over 30 years. Some
early public-key encryption schemes were homomorphic over the set of circuits
consisting of only additions [18,23] or over the set of circuits consisting of only
multiplications [12]. Several steps were made towards FHE, with schemes that
were homomorphic over increasingly large circuit classes, such as circuits con-
taining additions and a single multiplication [4], or of logarithmic depth [29],
until finally in 2009, Gentry established a breakthrough result by giving the first
fully homomorphic encryption scheme [15]. Follow-up work showed that FHE
could be simplified [11], and based on standard assumptions, such as learning
with errors [5]. The advent of FHE has unleashed a series of far-reaching conse-
quences, such as delegating computations, and functional encryption [17]. For a
survey on FHE, see [32].

A number of works have studied the secure delegation of quantum computa-
tion [1,6–8,10,13,33]. None directly address the question of quantum homomor-
phic encryption, since they are interactive schemes, and the work of the client
is proportional to the size of the circuit being evaluated (and thus, they do
not satisfy the compactness requirement of FHE, even if we allow interaction).
Non-interactive approaches are given by [3,27] and [31]. However, none of these
approaches are applicable to universal circuit families. Furthermore, in the case
of [3], security is given only in terms of cheat sensitivity, while both [27] and [31]
only bound the leakage of their encoding schemes.

Recent work [36] examines the question of perfect security and correctness
for quantum fully homomorphic encryption (QFHE), concluding that the trivial
scheme is optimal in this context. In light of this result, it is natural to consider
computational assumptions in achieving QFHE. Indeed, the question of com-
putationally secure QFHE remains an open problem; our contribution makes
progress in this direction by presenting the first schemes that are homomorphic
for a large class of quantum circuits.

1.1 Summary of Contributions and Techniques

We introduce schemes for quantum homomorphic encryption (QHE), the quan-
tum version of homomorphic encryption; we are interested in the evaluation of
quantum circuits on encrypted quantum data. In terms of definitions, we con-
tribute by giving the first definition of quantum homomorphic encryption (QHE)
in the computational setting, in the case of both public-key and symmetric-key
cryptosystems. As a consequence, we give the first formal definition (and scheme)
for the public-key encryption of quantum information, where security is given in
terms of quantum indistinguishability under chosen plaintext attacks—for which
we show the equivalence of a number of definitions, including security for mul-
tiple messages. Prior work considered the computational setting for quantum
encryption of classical plaintexts only [20,22,35].

In terms of QHE schemes, we start by using straightforward techniques to
construct a scheme that is homomorphic for Clifford circuits. This can be seen



Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity 611

as an analogue to a classical scheme that is homomorphic for linear circuits (cir-
cuits performing only additions). While Clifford circuits are not universal for
quantum computation, this already yields a range of applications for quantum
information processing, including encoding and decoding into stabilizer codes.
Our quantum public-key encryption scheme is a hybrid of a classical public-key
fully homomorphic encryption scheme and the quantum one-time pad [2]. Intu-
itively, the scheme works by encrypting the quantum register with a quantum
one-time pad, and then encrypting the one-time pad encryption keys with a clas-
sical public-key FHE scheme. Since Clifford circuits conjugate Pauli operators
to Pauli operators, any Clifford circuit can be directly applied to the encrypted
quantum register; the homomorphic property of the classical encryption scheme
is used to update the encryption key. Of course, we specify that the classical FHE
scheme should be secure against quantum adversaries. By using, e.g., the scheme
from [5], we get security based on the learning with errors (LWE) assumption
[24,25]; this has been equated with worst-case hardness of “short vector prob-
lems”on arbitrary lattices [21], which is widely believed to be a quantum-safe
(or “post-quantum”) assumption.

For universal quantum computations, we must evaluate a non-Clifford gate,
for which we choose the “T” gate (also known as “R” or “π/8”). Applying the
above principle we run into trouble, since TXaZb = XaZa⊕bPaT. That is, con-
ditioned on the quantum one-time pad encryption key a, b ∈ {0, 1}, the output
picks up an undesirable non-Pauli error. Our main contribution is to present two
schemes, EPR and AUX, that deal with this situation in two different ways:

EPR: The main idea of EPR is to use entangled quantum registers to enable
corrections within the circuit at the time of decryption. This scheme is effi-
cient for any quantum circuit, however, it fails to meet a requirement for fully
homomorphic encryption called compactness, which requires that the com-
plexity of the decryption procedure be independent of the evaluated circuit.
More specifically, the complexity of the decryption procedure for EPR scales
with the square of the number of T-gates. This gives an advantage over the
trivial scheme whenever the number of T-gates in the evaluated circuit is less
than the squareroot of the number of gates. (The trivial scheme consists of
appending to the ciphertext a description of the circuit to be evaluated, and
specifying that it should be applied as part of the decryption procedure.)

AUX: Compared to EPR, the scheme AUX takes a more proactive approach to
performing the correction required for a T-gate: to do this, it uses a number of
auxiliary qubits that are given as part of the evaluation key. Intuitively, these
auxiliary qubits encode the required corrections. In order to ensure univer-
sality, a large number of possible corrections must be available — the length
of the evaluation key is thus given by a polynomial of degree exponential in
the circuit’s T-gate depth, yielding a homomorphic scheme that is efficient for
quantum circuits with constant T-depth.

The two main schemes are incomparable. The scheme EPR becomes less com-
pact (and therefore less interesting, since it approaches the trivial scheme),
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as the number of T-gates increases, while the scheme AUX becomes inefficient
(extremely rapidly) as the depth of T-gates increases.

Our results can be viewed as a quantum analogue of precursory results to clas-
sical fully homomorphic encryption, which established the homomorphic prop-
erty of encryption schemes that tolerate a limited amount of operations. One
difference is that, while these schemes started with the modest goal of just a sin-
gle multiplication (the addition operation being “easy”), we have already allowed
for at the very least a constant number, and, depending on the circuit, up to a
polynomial number of “hard” operations, namely of T-gates.

Our schemes use the existence of classical FHE, although at the expense of
a slightly more complicated exposition, a classical scheme that is homomorphic
only for linear circuits would actually suffice. We see the relationship between
our schemes and classical FHE as a strength of our result, via the following
interpretation: classical FHE is sufficient to enable QHE for a large family of
circuits, and perhaps by taking greater advantage of the fully homomorphic
property of the classical scheme in some as yet unknown way, our ideas might be
extended to larger classes of quantum circuits. With this in mind, and for ease
of exposition, we use a classical fully homomorphic encryption scheme for all of
our quantum homomorphic encryption schemes.

Some preliminaries and notation are given in Sect. 2. We give formal defini-
tions of quantum homomorphic encryption and related concepts, including secu-
rity definitions, in Sect. 3; this allows us to formally state our results in Sect. 4.
Section 5 contains a basic quantum homomorphic encryption scheme, CL, for
Clifford circuits that is used as a basis for EPR (Sect. 6), and AUX (Sect. 7).
Further details, including proofs of our main theorems, can be found in the full
version [9].

2 Preliminaries and Notation

A negligible function, denoted η(·), is a function such that for every polynomial
p(·), there exists an N such that for all integers n > N it holds that η(n) < 1

p(n) .
As a convention, if a is a classical plaintext, we denote its encryption by ã.
Throughout this work we use κ to indicate the security parameter.

A quantum register is a quantum system, which we view as a physical object
that stores quantum information. The contents of a quantum register are math-
ematically modelled as the set of trace-1, positive semidefinite operators, called
density operators, on X , where X is a complex Euclidean space. We denote the
set of density operators on any space X by D(X ).

Quantum registers are denoted with calligraphic typeset. Two quantum sys-
tems, X and Y, form a composite system by the tensor product, X ⊗ Y. If
ρ ∈ D(X ⊗Y) is a state on the joint system, we write ρX to denote TrY(ρ). If X
and Y have the same dimension, we denote this by X ≡ Y. The trace distance
between two states, ρ and σ, is defined Δ(ρ, σ) := Tr

(√
(ρ − σ)†(ρ − σ)

)
.

A density matrix that is diagonal in the computational basis corresponds
to a classical random variable. For a random variable X on some set ΣX , we
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define ρ(X) :=
∑

x∈ΣX
Pr[X = x]|x〉〈x|, the density matrix corresponding to X.

A classical-quantum state is a state of the form ρMA =
∑

x Pr[X = x]|x〉〈x|M
⊗ ρA

x .
One special quantum state on any system X is the completely mixed state,

1
dimX IX , which we will sometimes denote by $ (where X should be implicit
from the context). When X is interpreted as C

S for some finite set S, then $
corresponds to the uniform distribution on S.

A quantum channel Φ : D(A) → D(B) refers to any physically-realizable
mapping on quantum registers. The identity channel on register R is denoted IR.
Let Φ be a quantum channel acting on register A, and ρAE a quantum system
held in the joint registers A⊗E . Then to simplify notation, when it is clear from
the context, we write Φ(ρAE) to mean (Φ ⊗ I)(ρAE).

We work with the gate set {X,Z,P,CNOT,H}. This gate set applied to arbi-
trary wires (redundantly) generates the Clifford group, and adding any non-
Clifford gate, such as T, gives a generating set for all quantum circuits.

For a single-qubit register R, and a, b ∈ {0, 1}, we denote by QEnca,b :
R → R the quantum one-time pad encryption and by QDeca,b : R → R the
quantum one-time pad decryption [2], QEnca,b : ρ �→ XaZbρZbXa and QDeca,b =
QEnca,b. It is easy to see that QDeca,b ◦ QEnca,b = IR. By specifying that (a, b)
be chosen uniformly at random, we get that the encryption maps any input to
the completely mixed state (from the point of view of the adversary), since for
all ρ, 1

4

∑
a,b X

aZbρZbXa = I2
2 .

3 Definitions

We now formally define QHE schemes and their properties. In Sect. 3.1, we
define QHE in the public-key setting. Section 3.2 carefully defines the security of
QHE, giving two definitions for security under chosen plaintext attacks, shown in
the full version [9] to be equivalent. Section 3.3 defines correctness and compact-
ness for QHE, culminating in a complete definition of quantum fully homomor-
phic encryption. Section 3.4 deals with an important subtlety that arises in the
quantum case: due to the no-cloning theorem, when a large system is encrypted
with some auxiliary quantum information needed for decryption, that auxiliary
information cannot be copied and given to every subsystem, but rather, the sys-
tem must now be decrypted as a whole, rather than subsystem-by-subsystem.
We also define compactness and quasi-compactness in this context. Finally, one
of our schemes (AUX) must be used in the symmetric-key setting, defined in
Sect. 3.5. We do not address the issue of circuit privacy [16], leaving this ques-
tion for future work.

3.1 Classical and Quantum Homomorphic Encryption

Our schemes rely on a classical fully homomorphic encryption scheme. Since
our adversaries are modelled as being quantum polynomial-time, we need a fur-
ther security guarantee on the classical scheme, namely that it is secure against
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quantum adversaries (see Definition 1). Fortunately, much of classical fully homo-
morphic encryption uses lattice-based cryptography, which exploits one of the
few conjectured “quantum-safe” assumptions [21]. Among all known solutions,
the scheme of [5] appears to be the best for our purposes, as it bases its security
on the learning with errors (LWE) assumption [24,25], which has been equated
with worst-case hardness of “short vector problems” on arbitrary lattices.

Definition 1 (q-IND-CPA). A classical homomorphic encryption scheme HE
is q-IND-CPA secure if for any quantum polynomial-time adversary A , there
exists a negligible function η such that for (pk, evk, sk) ← HE.Keygen(1κ):

|Pr[A (pk, evk,HE.Encpk(0)) = 1] − Pr[A (pk, evk,HE.Encpk(1)) = 1]| ≤ η(κ) .

Although a classical scheme that is q-IND-CPA is also IND-CPA, the converse
may not be true. Note, however, that any proof that a scheme is IND-CPA can
potentially be turned into a proof for q-IND-CPA if all statements still hold when
“probabilistic polynomial-time adversary” is replaced by “quantum polynomial-
time adversary” (see [30]).

We now give our new definitions for quantum homomorphic encryption. In
our definitions, both pk, the public encryption key, and sk, the secret decryption
key, are classical, whereas the evaluation key is allowed to be a quantum state.

Definition 2 (QHE). A quantum homomorphic encryption scheme is a 4-tuple
of quantum algorithms (QHE.KeyGen,QHE.Enc,QHE.Eval,QHE.Dec):

Key Generation. QHE.KeyGen : 1κ → (pk, sk, ρevk). This algorithm takes a
unary representation of the security parameter as input and outputs a clas-
sical public encryption key pk, a classical secret decryption key sk and a
quantum evaluation key ρevk ∈ D(Revk).

Encryption. QHE.Encpk : D(M) → D(C). For every possible pk, the quantum
channel Encpk maps a state in the message space M to a state (the cipher-
state) in the cipherspace C.

Homomorphic Evaluation. QHE.EvalC : D(Revk ⊗ C⊗n) → D(C′⊗m). For
every quantum circuit C, with induced channel ΦC : D(M⊗n) → D(M⊗m),
we define a channel EvalC that maps an n-fold cipherstate to an m-fold cipher-
state, consuming the evaluation key in the process.

Decryption. QHE.Decsk : D(C′) → D(M). For every possible sk, Decsk is a
quantum channel that maps the state in D(C′) to a quantum state in D(M).

3.2 Security of Quantum Homomorphic Encryption

We now define a notion of security for QHE analogous to the classical notion of
indistinguishability under chosen plaintext attack. We note that, by taking the
evaluation key to be empty, our definitions are trivially applicable to the scenario
of quantum public-key encryption (i.e. without a homomorphic property).

The CPA indistinguishability experiment is given below and illustrated in
Fig. 1. The experiment interacts with an adversary A , which is a pair of
polynomial-time quantum algorithms (A1,A2) (which we also call adversaries).
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Fig. 1. The quantum CPA indistinguishability experiment

The quantum CPA indistinguishability experiment PubKcpa
A ,QHE(κ)

1. KeyGen(1κ) is run to obtain keys (pk, sk, ρevk).
2. Adversary A1 is given (pk, ρevk) and outputs a quantum state on M ⊗ E .
3. For r ∈ {0, 1}, let Ξcpa,r

QHE : D(M) → D(C) be: Ξcpa,0
QHE (ρ) = QHE.Encpk(|0〉〈0|)

and Ξcpa,1
QHE (ρ) = QHE.Encpk(ρ). A random bit r ∈ {0, 1} is chosen and Ξcpa,r

QHE

is applied to the state in M (the output being a state in C).
4. Adversary A2 obtains the system in C ⊗ E and outputs a bit r′.
5. The output of the experiment is defined to be 1 if r′ = r and 0 otherwise. In

case r = r′, we say that A wins the experiment.

Definition 3 (Quantum Indistinguishability under Chosen Plaintext
Attack (q-IND-CPA)). A quantum homomorphic encryption scheme QHE is
q-IND-CPA secure if for any quantum polynomial-time adversary A = (A1,A2)
there exists a negligible function η such that Pr[PubKcpa

A ,QHE(κ) = 1] ≤ 1
2 + η(κ).

In the case of classical cryptosystems, it is known that IND-CPA security, the
classical analogue of Definition 1, implies a seemingly stronger security against
an adversary who can send multiple messages to a challenger. In the quantum
case, we can analogously define an experiment similar to PubKcpa

A ,QHE, but where
the adversary prepares a state in M⊗t ⊗ M⊗t and sends it to the challenger,
who traces out either the first half or the second half of the system, before
applying an encryption map to each of the remaining subspaces. The adversary
must then decide which system was traced out. In the full version [9], we give a
formal definition of this notion of security, which we call q-IND-CPA-mult, and
prove the equivalence of q-IND-CPA and q-IND-CPA-mult. This strengthens our
results since security in the most general case (q-IND-CPA-mult) follows from
security for the simplest definition (q-IND-CPA).

3.3 Correctness and Compactness of QHE

Next, we give a notion that encapsulates correctness of both encryption and
evaluation, with respect to a class S of quantum circuits. In the classical context,
it is common to restrict attention to circuits that output a single bit, since any
deterministic string can be computed bit-by-bit. We cannot do this quantumly,
as a quantum state cannot be described qubit-by-qubit. We therefore consider
correctness as a global property of the output. Furthermore, as quantum data
can be entangled, we require that a correct scheme preserve this entanglement
and thus explicitly include an auxiliary space in the definition below.
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Definition 4 (S -homomorphic). Let S = {Sκ}κ∈N be a class of quantum
circuits. A quantum encryption scheme QHE is S -homomorphic (or homomor-
phic for S ) if for any sequence of circuits {Cκ ∈ Sκ}κ with induced channels
ΦCκ

: M⊗n(κ) → M⊗m(κ), and input ρ ∈ D(M⊗n(κ) ⊗ E), there exists a negli-
gible function η such that for (pk, sk, ρevk ) ← QHE.Keygen(1κ):

Δ
(
QHE.Dec

⊗m(κ)
sk

(
QHE.EvalCκ

(
ρevk,QHE.Enc⊗n

pk (ρ)
))

, ΦCκ
(ρ)

)
= η(κ) . (1)

We point out two properties of the above definition. First, we do not require
that ciphertexts be decryptable themselves, only that they become decryptable
after homomorphic evaluation, however, as long as QHE is homomorphic for
the class of identity circuits, we can effectively decrypt a ciphertext by first
homomorphically evaluating the identity. Second, we do not require that the
output of QHE.Eval be able to undergo additional homomorphic evaluations;
indeed, if the evaluation key ρevk is quantum, it will in general be “consumed” by
the QHE.Eval process, rendering any future applications of QHE.Eval impossible.

Analogously to the classical case, we define compactness, which requires that
the complexity of QHE.Dec be independent of the evaluated circuit, ruling out
schemes where applying the circuit is delayed until after decryption.

Definition 5 (S -compactness). Let S = {Sκ}κ∈N be a class of quantum
circuits. A quantum encryption scheme QHE is S -compact if there exists a
polynomial p such that for any sequence of circuits {Cκ ∈ Sκ}κ, the circuit
complexity of applying QHE.Dec to the output of QHE.EvalCκ is at most p(κ).

If QHE is S -compact for S the class of all quantum circuits over some
universal gate set, then we simply say that QHE is compact.

Although this work leaves open the question of quantum fully homomorphic
encryption, we have established all the machinery relevant for a formal definition:

Definition 6 (Quantum Fully Homomorphic Encryption). A scheme
is a quantum fully homomorphic encryption scheme if it is both compact and
homomorphic for the class of all quantum circuits over some universal gate set.

3.4 Indivisible Schemes

In general, a quantum system is not equal to the sum of its parts. Because of this,
for one of our schemes (as given in Sect. 6), it is convenient (if not necessary, by
the no-cloning theorem [34]) to define the output of QHE.Eval as containing, in
addition to a series of cipherstates corresponding to each qubit, some auxiliary
quantum register, possibly entangled with each cipherstate. Then the decryption
operation, QHE.Dec must operate on the entire quantum system, rather than
qubit-by-qubit. This is in contrast to a classical scheme, in which we could make
a copy of the auxiliary register for each encrypted bit, enabling the decryption
of individual bits, without decrypting the entire system.
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Definition 7. An indivisible quantum homomorphic encryption scheme is a
QHE scheme with QHE.Eval and QHE.Dec re-defined as:

Homomorphic Evaluation. QHE.EvalC : D(Revk ⊗ C⊗n) → D(Raux ⊗ C′⊗m).
Compared to QHE.Eval in a standard QHE, this algorithm outputs an addi-
tional auxiliary quantum register Raux. This extra information is used in the
decryption phase. Since the state of Raux may be entangled with the state of
each C′, the system in Raux ⊗ C′⊗m can no longer be considered subsystem-
by-subsystem.

Decryption. QHE.Decsk : D(Raux ⊗ C′⊗m) → D(M⊗m). For every possible
value of sk, Decsk is a quantum channel that maps an auxiliary register,
together with an m-fold cipherstate, to an m-fold message in D(M⊗m).

We need to define compactness for an indivisible scheme.

Definition 8 (S -compactness for an indivisible scheme). Fix a class
of quantum circuits, S = {Sκ}κ∈N. An indivisible QHE scheme QHE is
S -compact if there exists a polynomial p such that for any sequence of circuits
{Cκ ∈ Sκ}κ with channels ΦCκ

: M⊗n(κ) → M⊗m(κ), the circuit complexity of
applying QHE.Dec⊗m(κ) to the output of QHE.EvalCκ is at most p(κ,m(κ)).

The trivial quantum fully homomorphic encryption scheme, TRIV, is eas-
ily phrased as an indivisible scheme. Informally, TRIV is defined by taking
TRIV.KeyGen and TRIV.Enc from any public-key encryption scheme, letting
TRIV.EvalC append a description of C to the cipherstate, and TRIV.Dec decode
the cipherstate, and then apply C. Clearly, TRIV is homomorphic, but it is not
compact, since TRIV.Dec must evaluate the quantum circuit C, and so its com-
plexity scales with G(C), the number of gates in C.

Although a decryption procedure with any dependence on G, or any other
property of C, is not compact, it is still interesting to consider schemes whose
decryption procedure has complexity that scales sublinearly in G (such schemes
are called quasi-compact schemes [14]). We give a formal definition that quantifies
this notion for indivisible quantum homomorphic encryption schemes.

Definition 9 (quasi-compactness). Let S = {Sκ}κ be the set of all quantum
circuits over some fixed universal gate set. For any f : S → R≥0, an indivisible
QHE scheme QHE is f -quasi-compact if there exists a polynomial p such that
for any sequence of circuits {Cκ ∈ Sκ}κ with induced channels ΦCκ

: M⊗n(κ) →
M⊗m(κ), the circuit complexity of decrypting the output of QHE.EvalCκ is at
most f(Cκ)p(κ,m(κ)).

This definition allows us to consider schemes whose decryption complexity scales
with some property of the evaluated circuit. We consider such a scaling non-
trivial when it is smaller than G(C), the number of gates in C.
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3.5 Symmetric-Key Quantum Homomorphic Encryption

We have defined quantum homomorphic encryption as a public-key encryption
scheme. For technical reasons, our final scheme, AUX is given in the symmetric-
key setting, so in this section we define symmetric-key quantum homomorphic
encryption. In the case of classical FHE, symmetric-key encryption is known
to be equivalent to public-key encryption [28]. In the quantum case, this is not
known. This section also contains the definition of a bounded QHE scheme, which
we again require for technical reasons in our symmetric-key scheme, AUX.

Definition 10. A symmetric-key QHE scheme is a quantum homomorphic
encryption scheme with QHE.KeyGen and QHE.Enc re-defined as:

Key Generation. QHE.KeyGen : 1κ → (sk, ρevk). This algorithm takes a unary
representation of the security parameter as input and outputs a secret encryp-
tion/decryption key sk and a quantum evaluation key ρevk ∈ D(Revk).

Encryption. QHE.Encsk : D(M) → D(C). For every possible value of sk, the
quantum channel Decsk maps a state in the message space M to a state (the
cipherstate) in the cipherspace C.

Next, we define a quantum homomorphic encryption scheme that is bounded by
n, which forces the number of ciphertexts encrypted by sk to be at most n.
Furthermore, the scheme maintains a counter, d, of the number of previous
encryptions, which can be thought of as allowing the scheme to avoid key reuse.

Definition 11. A bounded symmetric-key QHE scheme is a symmetric-key
QHE scheme with QHE.KeyGen, QHE.Enc, and QHE.Dec re-defined as:

Key Generation. QHE.KeyGen : (1κ, 1n) → (sk, ρevk).
Encryption. QHE.Encsk,d : D(M) → D(C). Every time QHE.Encsk,d is called,

the register containing d is incremented: d ← d + 1. If d > n, QHE.Encsk,d

outputs ⊥, indicating an error.
Decryption. QHE.Decsk,d : D(C′) → D(M).

We can define q-IND-CPA security for the symmetric-key setting by allowing
the adversary access to an encryption oracle Encsk(·). We give details in [9].

4 Main Contributions

We now formally state our main results. Our first theorem, Theorem 1, estab-
lishes quantum homomorphic encryption for Clifford circuits.

Theorem 1. (Clifford scheme, CL). Let S be the class of Clifford circuits.
Then assuming the existence of a classical fully homomorphic encryption scheme
that is q-IND-CPA secure, there exists a quantum homomorphic encryption
scheme that is q-IND-CPA, compact and S -homomorphic.
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Next, we consider two variants of the scheme given by Theorem 1. Each variant
deals with non-Clifford T-gates in a different way. The first scheme, described
in Theorem 2 and formally defined in Sect. 6, uses entanglement to implement
T-gates, resulting in a QHE scheme in which the complexity of decryption scales
with the number of T-gates in the homomorphically evaluated circuit.

Theorem 2. (entanglement-based scheme, EPR). Let S be the set of all quan-
tum circuits over the universal gate set {X,Z,P,H,CNOT,T}. Then assuming
the existence of a classical fully homomorphic encryption scheme that is q-IND-
CPA secure, there exists an indivisible quantum homomorphic encryption scheme
that is q-IND-CPA, S -homomorphic and R2-quasi-compact, where R(C) is the
number of T-gates in a circuit C.

The compactness of the scheme EPR is nontrival for all circuits in which R2  G,
where G is the number of gates.

Our second scheme, formally defined in Sect. 7, is based on the use of auxiliary
qubits to implement T-gates, resulting in a QHE scheme that is homomorphic
for circuits with constant T-depth, as described in the following theorem:

Theorem 3. (auxiliary-qubit scheme, AUX). Fix a constant L. Let S be the
set of quantum circuits over the universal gate set {X,Z,P,H,CNOT,T} with
T-depth at most L. Then assuming the existence of a classical fully homo-
morphic encryption scheme that is q-IND-CPA secure, there exists a bounded
symmetric-key quantum homomorphic encryption scheme that is q-IND-CPA,
S -homomorphic and compact.

The QHE scheme in Theorem 3 can be seen as somewhat analogous to an impor-
tant building block in classical fully homomorphic encryption: a levelled fully
homomorphic scheme, which is a scheme that takes a parameter L, which is an
a-priori bound on the depth of the circuit that can be evaluated. However, we
note that in contrast to a levelled fully homomorphic scheme, in which opera-
tions are polynomial in L, the complexity of our scheme is a polynomial of degree
exponential in L, so we really require L to be constant.

As previously noted, Theorems 2 and 3 are complementary: the scheme EPR
becomes less compact as the number of T-gates increases, while the scheme AUX
becomes inefficient as the depth of T-gates increases.

5 Homomorphic Encryption for Clifford Circuits: CL

In this section, we present CL, a compact quantum homomorphic encryption
scheme for Clifford circuits. This is a building block for the schemes that follow
in Sects. 6 and 7. In the full version [9], we prove that CL is q-IND-CPA secure,
and homomorphic for Clifford circuits, hence proving Theorem1.

By definition, Clifford circuits conjugate Pauli operators to Pauli opera-
tors [19]. In other words, for any Clifford C, and any Pauli, Q, there exists a
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Pauli Q′ such that CQ = Q′C. Furthermore, applying a random Pauli opera-
tor is a perfectly secure symmetric-key quantum encryption scheme: the quan-
tum one-time pad. Thus, it is possible to perform any Clifford circuit on quan-
tum data that is encrypted using the quantum one-time pad. We can apply the
desired Clifford, C, to the encrypted state Q|ψ〉 to get Q′(C|ψ〉). Now decrypting
the state requires applying the Pauli Q′. If Q can be described by the encryp-
tion key (a1, . . . , an, b1, . . . , bn) — that is, Q = Xa1Zb1 ⊗ · · · ⊗ XanZbn — then
Q′ can be described by some key (a′

1, . . . , a
′
n, b′

1, . . . , b
′
n) depending on C and

(a1, . . . , an, b1, . . . , bn). We describe this dependence by a function fC : F2n
2 →

F
2n
2 , which we call a key update rule. We need only consider key update rules

for each gate in our gate set, which consists of the one- and two-qubit gates
in {X,Z,P,CNOT,H}. For a single-qubit gate C, since the only keys that are
affected are those corresponding to the wire to which C is applied, an update
rule can be more succinctly described by a pair of functions fC

a , fC
b : F2

2 → F2

such that when C is applied to the ith wire, a′
i = fC

a (ai, bi) and b′
i = fC

b (ai, bi):

XaiZbi |ψ〉 C Xa′
iZb′

iC|ψ〉 ai ← a′
i = fC

a (ai, bi), bi ← b′
i = fC

b (ai, bi)

For the CNOT-gate, the update rule is described by a 4-tuple of functions, since
CNOT acts on two wires. We give the key update rules for all gates in the full
version [9, App. C] (We also give key update rules for single-qubit measurement
and qubit preparation, so that our scheme is actually homomorphic for stabilizer
circuits.) By applying these rules after each gate, we can update the key so that
the output is correctly decrypted (since we are actually carrying out computa-
tions on encrypted quantum data—in contrast to merely simulating a quantum
computation—we note that all gates except the Pauli gates require quantum
operations). Such a technique was already used, e.g. in [6,10,13].

This solution, however, requires that the key updates be executed by the
party holding the encryption keys: an “easy” classical computation, but nev-
ertheless a computation that is polynomial in the size of the circuit. In the
context of quantum homomorphic encryption, the challenge is therefore to allow
the execution of arbitrary Clifford circuits, while maintaining the compactness
condition. Here, we present a quantum public-key encryption scheme which is
a hybrid of the quantum one-time pad and of a classical fully homomorphic
encryption scheme. This encryption scheme is used to perform key updates on
encrypted quantum one-time pad keys, enabling the computation of arbitrary
Clifford group circuits on the encrypted quantum states, while maintaining the
compactness condition. More precisely, to homomorphically evaluate a Clifford
circuit consisting of a sequence of gates c1, . . . , cG, we apply the gates to the
quantum one-time pad encrypted message, and homomorphically evaluate the
function f c1 ◦ · · · ◦f cG on the encrypted one-time pad keys a1, . . . , an, b1, . . . , bn,
where ◦ denotes function composition. To accomplish this, we keep track of func-
tions for each bit of the quantum one-time pad encryption key, {fa,i, fb,i}n

i=1.
Since each of the key update rules (see [9]) is linear, each fa,i and fb,i is a
linear polynomial in F2[a1, . . . , an, b1, . . . , bn] (from the perspective of the eval-
uation procedure, a1, . . . , an, b1, . . . , bn are unknowns), so we refer to them as
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key-polynomials. Before we begin to evaluate the circuit, the key polynomials are
the monomials fa,i = ai and fb,i = bi. As we evaluate each gate cj , we update
the key-polynomials corresponding to the affected wires by composing them
with the key update rules. To compute the new encrypted one-time pad keys once
the circuit is complete, we homomorphically evaluate each key-polynomial on
the old encrypted one-time pad keys. We note that since the key update rules
(see [9]) are all linear, for the scheme CL, the underlying classical fully homo-
morphic scheme only needs to be additively homomorphic.

We define our scheme CL as a QHE scheme. Here and throughout, we assume
HE to be a classical FHE scheme that is q-IND-CPA secure (see Definition 1).
As noted, such a scheme could be derived from [5]. All of our schemes operate on
qubit circuits, and encrypt qubit-by-qubit. Thus we fix M = C

{0,1}. Ciphertexts
consist of quantum states in C

{0,1}, combined with classical strings. Specifically,
if C is the output space of HE.Enc, and C ′ is the output space of HE.Eval, then
we define C = C

C×C ⊗ X , where X ≡ C
{0,1}, and C′ = C

C′×C′ ⊗ X .

Key Generation. CL.KeyGen(1κ). For key generation, execute (pk , sk , evk) ←
HE.Keygen(1κ). Output the obtained secret key, sk , and public key, pk . The
evaluation key ρevk takes the value of the classical state ρ(evk).

Encryption. CL.Encpk : D(M) → D(C). Encryption is defined as

CL.Encpk(ρM) =
∑

a,b∈{0,1}

1
4
ρ(HE.Encpk(a),HE.Encpk(b)) ⊗ QEnca,b(ρM).

Homomorphic Evaluation. CL.EvalC : D(Revk ⊗ C⊗n) → D(C′⊗m).
Suppose C = c1, . . . , cG is a Clifford circuit.
1. For all i ∈ [n], set fa,i ← ai, fb,i ← bi.
2. For j = 1, . . . , G such that cj is a gate or a measurement:

(a) Apply the gate cj to the state: ρ ← cjρc
−1
j .

(b) Compose the key update rules with the key-polynomials of the
affected wires: if cj is a single qubit gate or measurement acting
on the ith wire, update as (fa,i, fb,i) ← (fa,i ◦ f

cj
a , fb,i ◦ f

cj

b ). If cj is
a CNOT-gate acting on wires i and i′, update (fa,i, fa,i′ , fb,i, fb,i′).

3. Update the classical encryptions by computing

ci = (HE.Eval
fa,i

evk (ãi),HE.Eval
fb,i

evk(b̃i)).

4. Output (c1, . . . , cm, ρ).
Decryption. CL.Decsk : D(C′) → D(M). For ã, b̃ ∈ C ′, decryption is defined:

CL.Decsk : |ã〉〈ã| ⊗ |b̃〉〈b̃| ⊗ ρX �→ QDecHE.Decsk(ã),HE.Decsk(b̃)
(ρX ),

We prove the homomorphic and security properties of CL in [9].
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6 T-gate Computation Using Entanglement: EPR

In order to achieve universality for quantum circuits, we need to add a non-
Clifford group gate, such as the T-gate. As noted in Sect. 1.1, if we apply the
same technique as in Sect. 5 (i.e. to apply the T-gate on the encrypted quantum
data) we run into a problem, since TXaZb = XaZa⊕bPaT That is, conditioned
on a, the output picks up an undesirable P error, which cannot be corrected
by applying Pauli corrections. In [10], Childs arrives at the same conclusion,
and makes the observation that, in the case where a = 1, the evaluation algo-
rithm could be made to correct this erroneous P-gate. As long as the evaluation
algorithm does not find out if this correction is being executed or not, secu-
rity holds. The solution in [10] involves quantum interaction; this was recently
improved to a single auxiliary qubit, coupled with classical interaction [6,13].
As a proof technique (for establishing security), [6,13] considers an equivalent,
entanglement-based protocol. Here, we use the idea of exploiting entanglement
in order to delay the correction required for the evaluation of the T-gate on
encrypted data. The protocol is illustrated in Fig. 2. Correctness of Fig. 2 is
proven in the full version [9].

Xfa,iZfb,i |ψ〉 Xi T c

Xfa,i⊕cZfa,i⊕fb,i⊕kt⊕cfa,iT|ψ〉Xi|Φ+〉
Rt

ft ← fa,i

V ← V ∪ {kt}
fa,i ← fa,i ⊕ c

fb,i ← (1 ⊕ c)fa,i ⊕ fb,i ⊕ kt

Pft H kt

(Part of decryption)

Fig. 2. Evaluation protocol for the tth T-gate, on the ith wire. The key-polynomials
fa,i and fb,i are in F2[V ]. After the protocol, V gains a new variable corresponding
to the unknown measurement result kt. The dashed box shows part of the decryption,
which happens at some point in the future, after the complete evaluation is finished.

Figure 2 shows that, using the state |Φ+〉 = 1√
2
(|00〉+ |11〉), the conditional P

correction can be delayed. The cost of this is that the value of the measurement
result, kt, on auxiliary register Rt, is undetermined until later, when it is mea-
sured as part of the decryption. Thus we view the key updates as a symbolic
computation: each time a T-gate is applied, an extra variable, kt, is introduced.

For the first T-gate evaluation (t = 1), the evaluation procedure does not
have the knowledge to evaluate f1 = fa,i, where i is the wire upon which
the gate is performed, in order to perform the correction. It is possible (using
the classical scheme HE), to compute a classical ciphertext f̃1 that decrypts
to f1(a1, b1, . . . , an, bn). Thus, for this T-gate, the output part of the auxiliary
system contains both f̃1 and the register R1. As part of the decryption oper-
ation, compute f1 ← HE.Dec(f̃1), and apply Pf1 on R1 before measuring in
the Hadamard basis and obtaining k1. From the point of view of the evalu-
ation procedure, k1 is unknown and so it becomes an unknown part of the
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encryption key (in contrast with the previous keys, which are also “unknown”,
but to a lesser degree, since we have access to the classical encrypted val-
ues of these keys). The algorithm Eval continues in this fashion for values of
t up to R; each time, the set of unknown variables increasing by one. Note
that, according to Fig. 2, as well as the linearity of the key update rules, for
all t, ft ∈ F2[a1, . . . , an, b1, . . . , bn, k1, . . . , kt−1] is linear (since c is a known
constant), so we can write ft = fk

t + fab
t for fk

t ∈ F2[k1, . . . , kt−1] and
fab

t ∈ F2[a1, . . . , an, b1, . . . , bn].
The cost of this construction is that each T-gate adds to the complexity of

the decryption procedure, since, in particular, for each T-gate, we must perform
a possible P-correction and a measurement on an auxiliary qubit. In addition, we
cannot evaluate the key-polynomials, nor the ft, until the variables kt have been
measured, so this evaluation must take place in the decryption phase, increasing
the dependence on R, the number of T-gates, to O(R2) (see full version [9]).

We now formally define the indivisible QHE scheme, EPR. As in CL, we have
message space M = C

{0,1} and cipherspace C = C
C×C⊗X , where C is the output

space of HE.Enc and X ≡ C
{0,1}. Since EPR is indivisible, the output space of

EPR.EvalC has the form Raux⊗C′⊗m. In our case, we have Raux = R1⊗· · ·⊗RR⊗
(C{0,1}R+1

)⊗R ⊗ (CC′
)⊗R, where R is the number of T-gates, C ′ is the output

space of HE.Eval, and Rt ≡ C
{0,1}. The classical parts of the auxiliary space allow

us to output R linear polynomials in F2[k1, . . . , kR] corresponding to {fk
t }R

t=1,
each of which can be represented with R + 1 bits; as well as R HE.Eval outputs,
corresponding to encryptions of {fab

t (a1, . . . , an, b1, . . . , bn)}R
t=1. Similarly, we

have C′ = (C{0,1}R+1
)⊗2 ⊗ C

C′×C′ ⊗ X .
The key generation, EPR.KeyGen, and encryption, EPR.Enc, are defined

exactly as CL.KeyGen and CL.Enc. We now define EPR.Eval and EPR.Dec.

Evaluation. EPR.Evalevk. As in CL, apply gates in {X,Z,P,H,CNOT} directly
on the encrypted quantum registers. For the T-gate, use the gadget defined in
Fig. 2. This gadget differs from previous gadgets in that it uses an auxiliary Bell
state, |Φ+〉. After the system of the ith wire, Xi, is measured, relabel half of the
Bell state as Xi, and the other half as Rt, which is returned as part of Raux.
The full evaluation procedure is as follows.

1. Set V ← {ai, bi}i∈[n], and ∀ i ∈ [n], fa,i ← ai, fb,i ← bi.
2. Let g1, . . . , gG be a topological ordering of the gates in C. For j = 1, . . . , G,

evaluate gj using the appropriate gadget.
3. Let S be the set of output wires. Let L be the set of labels L = {(a, i), (b, i) :

i ∈ S} ∪ {1, . . . , R}. For each α ∈ L, we want to homomorphically evaluate
fα to obtain the actual (encrypted) key, but we can only actually evaluate
the part of fα that is in the variables {ai, bi}i — the {kt}t are still unknown.
Recall that we can write fα = fk

α + fab
α for fk

α ∈ F[k1, . . . , kR] and fab
α ∈

F2[a1, . . . , an, b1, . . . , bn]. Compute f̃ab
α ← HE.Eval

fab
α

evk(ã1, . . . , ãn, b̃1, . . . , b̃n).
4. Output: the m = |S| qubit registers {Xi : i ∈ S} corresponding to the

encrypted output of the circuit; the R qubit registers R1, . . . ,RR correspond-
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ing to auxiliary states created by T-gadgets; the polynomials {fk
α}α∈L ⊂

F2[k1, . . . , kR] and the homomorphically evaluated polynomials {f̃ab
α }α∈L.

Decryption. EPR.Decsk. In order to decrypt, measure the Rt in order from 1
to R, computing ft(k1, . . . , kt−1) as required. Formally:

1. For t = 1, . . . , R:
(a) Decrypt fab

t ← HE.Decsk(f̃ab
t ).

(b) Compute a ← fk
t (k1, . . . , kt−1) ⊕ fab

t and apply HPa to Rt.
(c) Measure Rt to get kt.

2. Let S be the set of indices of the output qubit registers. For i ∈ S:
(a) Decrypt fab

a,i ← HE.Decsk(f̃ab
a,i) and fab

b,i ← HE.Decsk(f̃ab
b,i).

(b) Compute ai ← fk
a,i(k1, . . . , kt) ⊕ fab

a,i and bi ← fk
b,i(k1, . . . , kt) ⊕ fab

b,i.
3. To each register Xi, apply the map QDecai,bi

. Output registers X1, . . . ,Xm.

We prove that EPR is homomorphic for all quantum circuits in the universal
gate set {X,Z,P,CNOT,H,T}, R2-quasi-compact, and q-IND-CPA, in [9].

7 T-gate Computation Using Auxiliary States: AUX

In the previous QHE scheme, we solved the problem of performing the P cor-
rection by delaying the correction via entanglement. In this section, we present
a quantum homomorphic encryption scheme, AUX, that takes a more proactive
approach to dealing with the P correction. At a high level, AUX can be under-
stood as the following: as part of the evaluation key, AUX.Keygen outputs a
number of auxiliary states. These states “encode” parts of the original encryp-
tion key, and are used to correct for the errors induced by the straightforward
application of the T-gate on the cipherstates. In more details, the auxiliary states
encode hidden versions of P corrections, such as |+a,k〉 := ZkPa|+〉 (where k is a
random bit and a is an encryption key) that are useful for the evaluation of the
T-gate (see Fig. 3). In general (after having applied prior gates), the exact aux-
iliary state will not be available; instead, the Eval procedure combines a number
of auxiliary states in order to create a single copy of a state that is useful for
performing the correction. This combination operation, however, is expensive as
it introduces new unknowns (in terms of new variables as well as “cross-terms”),
that need to be corrected in any future T-gate. Thus the size of the evaluation
key grows rapidly, as a polynomial whose degree is exponential in the T-depth.
We can thus tolerate only a constant T-gate depth for this scheme to be efficient.

We further specify that AUX is a symmetric-key encryption scheme. This is
because AUX.KeyGen generates auxiliary qubits that depend on the quantum
one-time pad encryption keys. Also, KeyGen takes an extra parameter 1n, where
n is an upper bound on the total number of qubits that can be encrypted (AUX
acts much like a classical one-time pad scheme that picks a fixed-length encryp-
tion key ahead of time). After this bound on the number of encryptions has been
attained, no further qubits can be encrypted. We will suppose without loss of
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Xi
Xfa,iZfb,i T c

|+fa,i,k〉
Xi

Xfa,i⊕cZfa,i⊕fb,i⊕k⊕cfa,iT

fa,i ← fa,i ⊕ c

fb,i ← fa,i ⊕ fb,i ⊕ k ⊕ cfa,i

V ← V ∪ var(k)

Fig. 3. A T-gadget for the scheme AUX consists of the above circuit and key-update
rules. We use var(k) to denote the set of variables in the polynomial k, which depends
on the construction of the auxiliary state |+fa,i,k〉, described below.

generality that a circuit being homomorphically evaluated is on n wires. Further-
more, the number and type of auxiliary qubits will depend on the T-depth of
the circuit to be evaluated, L. The scheme will not be able to homomorphically
evaluate circuits with T-depth greater than L. Fix a constant L. We will now
define a scheme AUX = AUXL that is homomorphic for all circuits with T-depth
at most L.

Providing the necessary auxiliary states for each T-gate would require
advance knowledge of the key fa,i at the time a T-gate is applied to the ith

wire. Since this depends on both the circuit being applied and prior measure-
ment results, we appear to be at an impasse. The key observation that allows
us to continue with this approach is that, given auxiliary states |+f1,k1〉 and
|+f2,k2〉, we can combine them to get |+f1⊕f2,k〉, for some k, using the following
circuit:

|+f1,k1〉
|+f2,k2〉

|+f1⊕f2,k1⊕k2⊕(f1⊕c)f2〉
c

By iterating this procedure, given auxiliary states |+f1,k1〉, . . . , |+fr,kr
〉, we can

construct |+f1⊕···⊕fr,k〉, where k =
⊕m

i=1 ki ⊕ ⊕r
i=2 cifi ⊕ ⊕r

i=1

⊕i−1
j=1 fifj for

known values ci. Thus, if we give many initial auxiliary states of the form
{|+ai,ka,i

〉, |+bi,kb,i
〉}i (with different keys for different copies), we can construct

|+f,k〉 for f a linear function of {ai, bi}i∈[n]. However, using an auxiliary state
|+fa,i,k〉 to facilitate a T-gate on the ith wire introduces the unknown k into
fb,i. In particular, suppose fa,i =

⊕r
j=1 tj for some monomial terms tj ∈ F2[V ].

Then we will need to construct it from auxiliary states |+t1,k1〉, . . . , |+tr,kr
〉,

to get |+fa,i,k〉 for k =
⊕m

i=1 ki ⊕ ⊕r
i=2 citi ⊕ ⊕r

i=1

⊕i−1
j=1 titj . Thus, after the

T-gadget, the new keys f ′
a,i, f

′
b,i are in unknowns V ∪{k1, . . . , kr}. Furthermore,

because of the cross terms titj , the degree of the key-polynomials increases, so
we can no longer assume they are linear. Since we can’t produce |+f1f2,k〉 from
|+f1,k1〉 and |+f2,k2〉, we need to provide additional auxiliary states for every
possible term. We discuss this more formally below and in the full version [9].

As in CL and EPR, we work with qubits: M ≡ C
{0,1}. In contrast to our

previous schemes, the classical encryptions of quantum one-time pad keys is part
of the evaluation key (for convenience only), so we have C ≡ C

{0,1}. However,
after evaluation, the classical encryption of the new one-time pad keys is needed
for decryption, so as in CL, we have C′ ≡ C

C′×C′ ⊗ X , where C ′ is the output
space of HE.Eval, and X ≡ C

{0,1}.
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Key Generation. AUX.Keygen(1κ, 1n). The evaluation key contains auxiliary
states that allow each of L layers of T-gates to be implemented. Thus, for each
layer, since every wire must have the possibility to implement a T-gate, for each
wire, we need to be able to construct an auxiliary state |+fa,i,k〉 for some k. Since
we can add auxiliary states, we can construct this auxiliary state if we have an
auxiliary state for each term in fa,i. Since fa,i depends on the circuit, which we
do not know in advance, we need to provide an auxiliary state for every term
that could possibly be in fa,i at the th layer of T-gates, for  = 1, . . . , L.

We now define sets of monomials T1, . . . , TL such that the keys in the th layer
consist of sums of terms from T�. Let V1 := {ai, bi}i∈[n], and define T1 ⊂ F2[V1] by
T1 := {ai, bi}i∈[n]. The monomials in T1 represent the possible terms in the key-
polynomials before the first layer of T-gates. Each of the up to n T-gates in the
first layer requires a copy of each of {|+

t,k
(1)
t

〉}t∈T1 , with independent random

keys for each, for a total of n|T1| auxiliary states. More generally, for the th

layer of T-gates, we let T� be the set of possible terms in the key-polynomials
before applying the th layer of T-gates. We can see from the T-gadget, as well
as the construction for adding auxiliary states that the keys from the previous
layer’s auxiliary states, {k

(�−1)
1,i , . . . , k

(�−1)
|T�−1|,i}n

i=1, may now be variables in the
key-polynomials, and that products of terms from the previous layer may now
be terms in the key-polynomials of the current layer. (This is caused by auxiliary
state addition. See [9] for details). Thus, for  > 1, we can define T� ⊂ F2[V�],
where V� := V�−1 ∪ {k(�−1)

1,i , . . . , k
(�−1)
|T�−1|,i}n

i=1, by

T� := T�−1 ∪ {tt′ : t, t′ ∈ T�−1, t �= t′} ∪
{

k
(�−1)
1,i , . . . , k

(�−1)
|T�−1|,i

}n

i=1
.

We then provide each of the n wires with an auxiliary state for each term in T�,
for  = 1, . . . , L. We now make this more precise.

To each T�, we associate a family of strings {s(�)(x)}x∈{0,1}V� in {0, 1}T� ,

defined so that for every f ∈ T�, the f -entry of s(�)(x) is s
(�)
f (x) = f(x). That is,

s(�)(x) represents evaluating every monomial in T� at x. For instance, we have,
for any strings a, b ∈ {0, 1}n, s(1)(a, b) = (a1, . . . , an, b1, . . . , bn).

For any strings s, k ∈ {0, 1}n, define σ(s, k) :=
⊗n

i=1 |+si,ki
〉〈+si,ki

|.
For any string s, let s∗n denote the concatenation of n copies of s. For any

a, b ∈ {0, 1}n and k = (k(1), . . . , k(L)) ∈ {0, 1}n|T1| × · · · × {0, 1}n|TL|, define

σa,b,k
aux := σ(s(1)(a, b)∗n, k(1)) ⊗ · · · ⊗ σ(s(L)(a, b, k(1), . . . , k(L−1))∗n, k(L)).

We can now define the procedure AUX.KeyGen(1κ, 1n):

1. Execute (pk, sk, evk) ← HE.KeyGen(1κ+n).
2. Choose uniform random a, b ∈ {0, 1}n and k = (k(1), . . . , k(L)) ∈ {0, 1}n|T1| ×

· · · × {0, 1}n|TL|.
3. Output secret key (sk, a, b, k).
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4. Output evaluation key: pk, evk, ã1 = HE.Encpk(a1), . . . , ãn = HE.Encpk(an),

b̃1 = HE.Encpk(b1), . . . , b̃n = HE.Encpk(bn),
(
k̃
(�)
i = HE.Encpk

(
k
(�)
j,i

))
�∈[L]
i∈[n]

j∈[|T�|]

,

and σa,b,k
aux .

Encryption. AUX.Enc(sk,a,b,k),d : D(M) → D(C). The encryption procedure
takes an extra parameter d that keeps track of the number of qubits already
encrypted (we assume d is initially 1 and not modified outside of AUX.Enc). If
d ≤ n, it applies the quantum one-time pad channel QEncad,bd

: D(M) → D(C).
The output is the cipherstate in register C; the parameter d is updated as d ←
d + 1. If d > n, then output ⊥ to indicate an error.

Decryption. AUX.Dec(sk,a,b,k),d : D(C′) → D(M). The decryption is defined
the same as CL.Decsk.

Homomorphic Evaluation. AUX.EvalC : D(Revk ⊗ C⊗n) → D(C′⊗m). For
Clifford group gates, we apply the gadgets as in CL.Eval. For T-gates, we apply
the gadget in Fig. 3. The full evaluation procedure is as follows:

1. Set V ← {ai, bi}i∈[n], and ∀ i ∈ [n], fa,i ← ai, fb,i ← bi.
2. Let g1, . . . , gG be a topological ordering of the gates in C. For i = 1, . . . , G,

evaluate gi using the appropriate gadget.
3. Let S be the set of output wire labels. For each i ∈ S:

(a) Homomorphically evaluate fa,i and fb,i to obtain updated (encrypted)
keys: ãi ← HE.Eval

fa,i

evk (ṽ : v ∈ V ) and b̃i ← HE.Eval
fb,i

evk(ṽ : v ∈ V ).
4. Output in C′

i the classical-quantum system given by:
– The encrypted keys {ãi, b̃i}i∈S .
– The output corresponding to the encrypted output qubit i of the circuit.

The correctness of this scheme depends on two facts, which we prove in [9]. First,
for every unknown v ∈ V , we have an encrypted copy of ṽ, encrypted using
HE.Enc. We need these to compute the final keys {ãi, b̃i} using fa,i, fb,i ∈ F2[V ].
Finally, for each level , for each wire label i, we need an auxiliary state |+t,k〉 for
every term that may appear in the key fa,i going into the th level. This allows
us to construct the auxiliary qubit required to execute each T-gadget. In the full
version [9], we prove that AUX requires O(n2L−1+1) auxiliary qubits, from which
it follows that AUX is homomorphic for quantum circuits with T-depth L. We
further show that AUX is q-IND-CPA and compact.

We remark that if we only had a classical encryption scheme that was homo-
morphic over linear circuits, and not fully homomorphic, then we could get the
same functionality from a slightly modified version of this scheme, in which we
include with every auxiliary qubit |+s,k〉〈+s,k|, HE.Encpk(s) — at the moment we
only include some of these, but not those auxiliary states arising from products
of terms, since we can compute products homomorphically. Since we have clas-
sical fully homomorphic encryption, we use this to slightly simplify the scheme,
however the observation that the fully homomorphic property is not fully taken
advantage of strengthens the idea that Clifford circuits are analogous to classical
linear circuits in the context of QHE.
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Abstract. Gentry, Sahai and Waters recently presented the first (lev-
eled) identity-based fully homomorphic (IBFHE) encryption scheme
(CRYPTO 2013). Their scheme however only works in the single-identity
setting; that is, homomorphic evaluation can only be performed on
ciphertexts created with the same identity. In this work, we extend their
results to the multi-identity setting and obtain a multi-identity IBFHE
scheme that is selectively secure in the random oracle model under the
hardness of Learning with Errors (LWE). We also obtain a multi-key
fully-homomorphic encryption (FHE) scheme that is secure under LWE
in the standard model. This is the first multi-key FHE based on a well-
established assumption such as standard LWE. The multi-key FHE of
López-Alt, Tromer and Vaikuntanathan (STOC 2012) relied on a non-
standard assumption, referred to as the Decisional Small Polynomial
Ratio assumption.

1 Introduction

Fully homomorphic encryption (FHE) is a cryptographic primitive that facil-
itates arbitrary computation on encrypted data. Since Gentry’s breakthrough
realization of FHE in 2009 [1], many improved variants have appeared in the
literature [2–6].

A leveled FHE scheme allows an evaluator to evaluate a circuit of limited
depth L. The parameter L must be specified in advance when generating the
public parameters of the scheme, whose size may depend on L. Furthermore, a
leveled homomorphic scheme allows L to be polynomial in the security parame-
ter. A “pure” fully homomorphic encryption scheme allows circuits of unlimited
depth to be evaluated. However, for many applications in practice, a leveled
scheme is adequate.

Identity-Based Encryption (IBE) is centered around the notion that a user’s
public key can be efficiently derived from an identity string and system-wide
public parameters / master public key. The public parameters are chosen by a
trusted authority (TA) along with a secret trapdoor (master secret key), which
is used to extract secret keys for user identities. The first secure IBE schemes
were presented in 2001 by Boneh and Franklin [7] (based on bilinear pairings),
and Cocks [8] (based on the quadratic residuosity problem).
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 630–656, 2015.
DOI: 10.1007/978-3-662-48000-7 31
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At Crypto 2013, Gentry, Sahai and Waters presented the first (leveled)
identity-based fully homomorphic encryption (IBFHE) scheme [6]. Their scheme
is secure under the hardness of the Learning with Errors (LWE) problem, a
problem introduced by Regev [9] that has received considerable attention in
cryptography due to a known worst-case reduction to a hard lattice problem.

Gentry, Sahai and Waters described a compiler [6], which we call the GSW
compiler, to transform an LWE-based IBE satisfying certain properties into
a leveled IBFHE. They showed that all known LWE-based IBE schemes are
compatible with their compiler. However, the GSW compiler only works in the
single-identity setting. In other words, the resulting IBFHE can only evaluate
on ciphertexts created with the same identity. Recently, a multi-identity IBFHE
was described in [10], but that construction relies heavily on indistinguishability
obfuscation [11], and is therefore highly inefficient at the present time. Further-
more, security cannot be based on a well-established computational problem.
Our construction does not require indistinguishability obfuscation and is the
first multi-identity IBFHE, to the best of our knowledge, whose security can be
based on well-established problem.

Remark 1. Like [6], we omit the qualifier “leveled” for the rest of this paper
since we focus only on leveled (IB)FHE in this work.

Note that our multi-identity and multi-key leveled IBFHE are 1-hop homomor-
phic insofar as after evaluation is complete, no further homomorphic evaluation
can be carried out.

1.1 Multi-identity Setting

Consider the following simplified scenario. Alice and Bob work in an organization
C that avails of a semi-trusted cloud server E. Let a and b denote the identity
strings of Alice and Bob respectively. Their organization C serves as a trusted
authority and issues them secret keys for their respective identity strings. Public
users can send confidential data to Alice and Bob by encrypting it with their
identity string and the master public key (public parameters) published by C.
Suppose this encrypted data is sent by external users to the cloud server E.
Furthermore, suppose some entity would like to perform some computation on
E using encrypted data intended for Alice and encrypted data intended for Bob.
The result should only be decryptable (assuming C is honest) by a collaborative
effort made by Alice and Bob; they can run a multi-party computation protocol
to collaboratively decrypt the result without leaking their secret keys to each
other.

Let ca and cb be ciphertexts created with identities a and b respectively.
The goal is to allow computation on ca and cb together. Assuming this could be
achieved, let c′ denote the ciphertext that encrypts the result of the computation.
Intuitively, we expect the size of c′ to depend on the number of distinct identities
(2 in our example above i.e. a and b) because information about each identity
must be “encoded” in c′. But like the single-identity setting, the size of c′ should
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be independent of the size of the circuit evaluated. Of course we can naturally
extend this notion to ciphertexts created under k distinct identities.

In the syntax of multi-identity IBFHE, a parameter D representing the num-
ber of distinct identities tolerated in an evaluation is specified in advance of
generating the public parameters. Like the parameter L (the circuit depth sup-
ported), the size of the public parameters may depend on D. A multi-identity and
multi-attribute IBFHE and ABFHE that rely on indistinguishability obfuscation
were described in [12].

Disjunctive Policies. There is another way of viewing multi-identity IBFHE,
which might be more useful in some settings. It was mentioned in [13]1 that
access policies consisting of disjunctions can be achieved with IBE. In this case,
to issue a secret key for a policy f̂(X) � X = “MATH” OR X = “CS”, the
TA issues a secret key for identity string “MATH” and a secret key for identity
string “CS”. In this case, we view the “identities” as attributes.

Suppose the TA issues a secret key SKf̂ = {sk“MATH”, sk“CS”} for f̂ to a
professor working in both the Mathematics and Computer Science departments
in a university; this secret key comprises an IBE secret key for identity string
“MATH” and an IBE secret key for identity string “CS”. The professor can
decrypt the result of computation performed on ciphertexts with both attributes.
This matches our intuition because her policy f̂ permits her access to both
attributes.

1.2 Our Results

Multi-identity IBFHE. Our central result in this paper is informally sum-
marized in the following theorem statement. The theorem is formally stated and
proven later in AppendixA.1.

Theorem 1 (Informal). There exists a multi-identity IBFHE scheme that is
selectively secure under the Learning With Errors problem in the random oracle
model.

Multi-key FHE. Our compiler for multi-identity IBFHE also works in the
public-key setting. As a result, we can obtain a multi-key FHE [14] from LWE
in the standard model. In fact, multi-identity IBFHE can be seen as an identity-
based analog to multi-key FHE. The syntax of multi-key FHE from [14] entails
a parameter M , which specifies the maximum number of independent keys tol-
erated in an evaluation. The size of the parameters and ciphertexts are allowed
to depend polynomially on M . Note that M is fixed and specified in advance of
generating the scheme’s parameters. To the best of our knowledge, our multi-key
FHE scheme is the first such scheme (for a non-constant number of keys) that
is based on a well-established problem such as LWE; the construction from [14]

1 The paper [13] attributes this observation to Brent Waters.
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relies on a non-standard computational assumption referred to therein as the
Decisional Small Polynomial Ratio (DSPR) assumption. Our scheme positively
answers the question raised in [14] as to whether other multi-key FHE schemes
exist supporting polynomially-sized M .

1.3 Our Approach: Intuition

We now give an informal sketch of our approach to achieving multi-identity
IBFHE. This section is intended to provide an intuition and many of the details
are deferred to later in the paper. We remind the reader that a matrix M is
denoted by an uppercase symbol written in boldface, and a vector v is denoted
by a lowercase symbol written in boldface. The i-th element of v is denoted by
vi. The inner product of two vectors a, b ∈ Z

n
q for some dimension n is written

as 〈a, b〉.

GSW Single-Identity IBFHE. We start by briefly discussing the homomor-
phic properties of the GSW IBFHE schemes from [6]. This discussion applies
to any IBFHE constructed with their compiler. A ciphertext in their scheme is
an N × N matrix C over Zq whose entries are “small” with respect to q. Note
that N is a parameter that will be discussed later. A secret key for an identity
id is an N -dimensional vector vid ∈ Z

N
q with at least one “large” coefficient; let

this coefficient (say the i-th one) be vid,i ∈ Zq. The scheme can encrypt “small”
messages μ; an example to keep in mind is a message in {0, 1}. We say the matrix
C encrypts μ under identity id if C · vid = μ · vid + e ∈ Z

N
q where e is a “small”

noise vector (i.e. roughly speaking, each of its coefficients is much less than q).
As such, vid is an approximate eigenvector for the matrix C with eigenvalue μ.

Homomorphic Operations
Suppose C1 and C2 encrypt μ1 and μ2 respectively; that is, Cj ·vid = μj ·vid+ej

for j ∈ {1, 2}. An additive homomorphism is supported. Let C+ = C1 + C2.
Then we have C+ ·vid = (μ1 +μ2) ·vid +(e1 +e2). The error only grows slightly
here, and as long as it remains “small”, we can recover the sum (μ1 + μ2).
A multiplicative homomorphism is also supported. Let C× = C1 · C2. Then we
have

C× · vid = C1 · (μ2 · vid + e2)
= μ2 · (μ1 · vid + e1) + C1 · e2
= μ1 · μ2 · vid + μ2 · e1 + C1 · e2
= μ1 · μ2 · vid + “small”.

Different Identities. Now we give a flavor of how our multi-identity scheme
operates. Suppose C1 encrypts μ1 under identity id1 and C2 encrypts μ2 under
identity id2. Let v1 and v2 be the secret key vectors for id1 and id2 respectively.
It holds that C1 ·v1 = μ1 ·v1 +e1 and C2 ·v2 = μ2 ·v2 +e2 where e1,e2 ∈ Z

N
q

are short vectors.
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We would like to be able to perform homomorphic computation on both C1

and C2 together; that is, use them both as inputs to the same circuit. Here we
denote the circuit by C ∈ C. Suppose we could produce a resulting 2N × 2N
ciphertext matrix Ĉ′ ∈ Z

2N×2N
q that encrypts μ′ = C(μ1, μ2). More precisely,

suppose that

Ĉ′ ·
[
v1

v2

]
= μ′ ·

[
v1

v2

]
+ e′

where e′ is “short”. Note that the size of Ĉ′ just depends (polynomially) on the
number of distinct identities (2 in this example).

Let v ∈ Z
2N
q be the vertical concatenation of the two vectors v1 and v2.

We could exploit the homomorphic properties described above to obtain Ĉ′ if
we could somehow transform C1 and C2 into 2N × 2N matrices Ĉ1 and Ĉ2

respectively such that Ĉj · v = μj · v + “small” for j ∈ {1, 2}. Technically this
transformation turns out to be difficult; we show how to abstractly accomplish
it in Sect. 3 and concretely in Sect. 4.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter λ, written
negl(λ), if it is asymptotically bounded from above by the reciprocal of all poly-
nomials in λ. We use the notation [k] for an integer k to denote the set {1, . . . , k}.

Distributions. For a probability distribution D, we denote by x
$←− D the

fact that x is sampled according to D. We overload the notation for a set S

i.e. y
$←− S denotes that y is sampled uniformly from S. Let D0 and D1 be

distributions. We denote by D0 ≈
C

D1 and the D0 ≈
S

D1 the facts that D0

and D1 are computationally indistinguishable and statistically indistinguishable
respectively.

Definition 1 (B-Bounded Distributions (Definition 2 [6])). A distribu-
tion ensemble {Dn}n∈N, supported over the integers, is called B-bounded if

Pr
e

$←−Dn

[|e| > B] = negl(n).

Matrices and Vectors. A matrix M is denoted by an uppercase symbol writ-
ten in boldface, and a vector v is denoted by a lowercase symbol written in
boldface. The i-th element of v is denoted by vi. The inner product of two
vectors a, b ∈ Z

n
q for some dimension n is written as 〈a, b〉.
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2.2 Multi-identity IBFHE

Definition 2. A Multi-Identity (Leveled) IBFHE scheme is defined with respect
to a message space M, an identity space I, a class of circuits C ⊆ M∗ → M and
ciphertext space C. A Multi-Identity IBHE scheme is a tuple of PPT algorithms
(Setup,KeyGen,Encrypt,Decrypt,Eval) defined as follows:

• Setup(1λ, L, D):
On input (in unary) a security parameter λ, a number of levels L (circuit
depth to support) and the number of distinct identities D that can be tolerated
in an evaluation, generate public parameters PP and a master secret key MSK.
Output (PP,MSK).

• KeyGen(MSK, id):
On input master secret key MSK and an identity id: derive and output a secret
key skid for identity id.

• Encrypt(PP, id,m):
On input public parameters PP, an identity id, and a message m ∈ M, output
a ciphertext c ∈ C that encrypts m under identity id.

• Decrypt(skid1 , . . . , skidd , c):
On input d ≤ D secret keys skid1 , . . . , skidd for (resp.) identities id1, . . . , idd and
a ciphertext c ∈ C, output m′ ∈ M if c is a valid encryption under identities
id1, . . . , idd ; output a failure symbol ⊥ otherwise.

• Eval(PP, C, c1, . . . , c�): On input public parameters PP, a circuit C ∈ C and
ciphertexts c1, . . . , c� ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, the scheme is required to satisfy the following properties:

• Over all choices of (PP,MSK) ← Setup(1λ), d ≤ D, id1, . . . , idd ∈ I, C :
M� → M ∈ {C ∈ C : depth(C) ≤ L}, j1, . . . , j� ∈ [d ], μ1, . . . , μ� ∈ M,
ci ← Encrypt(PP, idji

, μi) for i ∈ [�], and c′ ← Eval(PP, C, c1, . . . , c�):
• Correctness

Decrypt(sk1, . . . , skd , c′) = C(μ1, . . . , μ�) (2.1)

for any ski ← KeyGen(MSK, idi) for i ∈ [k]
• Compactness

|c′| ≤ poly(λ,L, d ) (2.2)

where d ≤ D is the number of distinct identities; that is, d = |{j1, . . . , i�}|.
The size of evaluated ciphertexts in our construction grows with d ≤ D.

The security definition for multi-identity IBFHE is the same as that for
single-identity IBFHE. In this work, we focus on IND-sID-CPA security whose
definition remains the same for the multi-identity setting.
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2.3 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [9]. The goal
of the computational form of the LWE problem is to determine an n-dimensional
secret vector s ∈ Z

n
q given a polynomial number of samples (ai, bi) ∈ Z

n+1
q where

ai is uniform over Z
n
q and bi ← 〈ai, s〉 + ei ∈ Zq is the inner product of ai and

si perturbed by a small error ei ∈ Z that is sampled from a distribution χ over
Z. We call the distribution χ an error distribution (or noise distribution). The
decision variant of the problem is to distinguish such samples (ai, bi) ∈ Z

n+1
q

from uniform vectors over Zn+1
q . The decisional variant is more commonly used in

cryptography, and is most relevant to our own work. As a result, without further
qualification, when we refer to LWE throughout this thesis we are referring to
the decisional variant.

Definition 3 ((Decisional) Learning with Errors (LWE) Problem [9]).
Let λ be a security parameter. For parameters n = n(λ), q = q(λ) ≥ 2, and
a distribution χ = χ(λ) over Z, the LWEn,q,χ problem is to distinguish the
following distributions:

• Distribution 0: The i-th sample (ai, bi) ∈ Z
n+1
q is computed by uniformly

sampling ai
$←− Z

n
q and bi

$←− Zq.

• Distribution 1: Generate uniform vector s
$←− Z

n
q . The i-th sample (ai, bi) ∈

Z
n+1
q is computed by uniformly sampling ai

$←− Z
n
q , sampling an error value

ei
$←− χ and computing bi ← 〈ai, s〉 + ei.

Definition 4 (B-Bounded Distributions (Definition 2 [6])). A distribu-
tion ensemble {Dn}n∈N, supported over the integers, is called B-bounded if

Pr
e

$←−Dn

[|e| > B] = negl(n).

Definition 5 (GapSVPγ). Let n be a lattice dimension, and let d be a real
number. Then GapSVPγ is the problem of deciding whether an n-dimensional
lattice has a nonzero vector shorter than d (an algorithm should accept in this
case) or no nonzero vector shorter than γ(n) · d (an algorithm should reject in
this case); an algorithm is allowed to error otherwise.

Theorem 2 (Theorem 1 [6]). Let q = q(n) ∈ N be either a prime power or a
product of small (poly(n)) distinct primes, and let B ≥ ω(log n) ·√n. Then there
exists an efficient sampleable B-bounded distribution χ such that if there is an
efficient algorithm that solves the average-case LWEn,q,χ problem, then:

• There is an efficient quantum algorithm that solves GapSVPÕ(nq/B) on any
n-dimensional lattice.

• If q>Õ(2n/2), then there is an efficient classical algorithm for GapSVPÕ(nq/B)

on any n-dimensional lattice.
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2.4 GSW Approximate Eigenvector Cryptosystem

Recall our brief overview of the GSW IBFHE construction earlier from Sect. 1.3.
The following exposition describes this construction in more detail. Note that
the public-key GSW scheme is similar to the identity-based variant. As such, to
simplify the notation, the following discussion deals with the public-key setting,
but the ideas apply to both.

Definition 6 (Sect. 1.3.2 from [6]). B-boundedness: Let B < q be an inte-
ger. Let C be a ciphertext matrix that encrypts μ. Let v be a secret key vector
such that C · v = μ · v + e. Then C is said to be B-bounded (with respect to v)
if the magnitude of μ is at most B, the magnitude of all the entries of C is at
most B, and ‖|e‖|∞ ≤ B.

Let C1 and C2 be two B-bounded ciphertext matrices. Then C+ = C1 + C2 is
2B-bounded. Furthermore, C× = C1 ·C2 is (N +1)B2

-bounded. As the authors
of [6] point out, the error grows worse than B2L

, where L is the multiplicative
depth of a circuit being evaluated. The modulus q can be chosen to exceed
this bound, but we must be careful to ensure that the ratio q/B is at most
subexponential in N to guarantee security (see Theorem 2). Hence, only circuits
of logarithmic multiplicative depth can be evaluated. This gives us a somewhat-
homomorphic scheme.

To evaluate deeper circuits, namely those with polynomial multiplicative
depth, we must keep the entries of the ciphertext matrices “small”. To achieve
this, Gentry, Sahai and Waters propose a technique called flattening. Consider
the following definition.

Definition 7 (Sect. 1.3.3 from [6]). B-strong-boundedness: Let B < q be
an integer. Let C be a ciphertext matrix that encrypts μ. Let v be a secret key
vector such that C ·v = μ ·v+e. Then C is said to be B-strongly-bounded (with
respect to v) if the magnitude of μ is at most 1, the magnitude of all the entries
of C is at most 1, and ‖|e‖|∞ ≤ B.

An example of a B-strongly-bounded ciphertext is a matrix C with binary entries
that encrypts a plaintext bit μ ∈ {0, 1}, provided the coefficients of its corre-
sponding e vector have magnitude at most B. Let C1 and C2 be ciphertext
matrices that encrypt μ1 ∈ {0, 1} and μ2 ∈ {0, 1} respectively. A NAND gate
can be evaluated on two ciphertexts C1 and C2 as follows:

C3 = IN − C1 · C2,

where IN is the N × N identity matrix. The matrix C3 encrypts μ1NANDμ2 ∈
{0, 1}. Now if C1 and C2 are B-strongly-bounded, then the coefficients of C3’s
error vector have magnitude at most (N +1)B, which is in contrast to (N +1)B2

above where C1 and C2 were just B-bounded. Suppose there were some way to
preserve strong-boundedness in C3 (i.e. to ensure the magnitude of its entries
remained at most 1). Then it would be the case that C3 is (N + 1)B-strongly-
bounded. As a result, the error level would grow to at most (N + 1)LB when
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evaluating a circuit of NAND gates of depth L. Therefore it would be possible to
evaluate circuits of polynomial depth by letting q/B be subexponential. However,
how can we preserve strong-boundedness? It is necessary to introduce some
basic operations to help describe how strong boundedness is preserved. These
operations serve as useful tools for our own constructions later.

Basic Operations. Let �q = �lg q� + 1. Let v ∈ Z
m′
q be a vector of some

dimension m′ over Zq. Let N = m′ · �q.

• BitDecomp(v): We define an algorithm BitDecomp that takes as input a vector
v ∈ Z

m′
q and outputs an N -dimensional vector (v1,0, . . . , v1,�q−1, . . . , vk,0, . . . ,

vk,�q−1) where vi,j is the j-th bit in vi’s binary representation (ordered from least
significant to most significant).

• BitDecomp−1(v′): We define an “inverse” algorithm BitDecomp−1 that takes
an N -dimensional vector v′ = (v′

1,0, . . . , v
′
1,�q−1, . . . , v

′
k,0, . . . , v

′
k,�q−1), and

outputs a m′-dimensional vector (
∑�q−1

j=0 2j · v′
1,j , . . . ,

∑�q−1
j=0 2j · v′

k,j). Note
that the input vector v′ need not be binary, the algorithm is well-defined for
any input vector in Z

N
q .

• Flatten(v′): The algorithm Flatten takes as input an N -dimensional vector v′ ∈
Z

N
q and outputs an N -dimensional binary vector BitDecomp(BitDecomp−1

(v′) ∈ {0, 1}N .
• Powersof2(v): The algorithm Powersof2 takes a m′-dimensional vector v ∈

Z
m′
q and outputs anN -dimensional vector (v1, 2v1, . . . , 2�q−1v1, . . . , vk, 2vk, . . . ,

2�q−1vk).

We also define BitDecomp, BitDecomp−1 and Flatten for matrix inputs; in this
case, the respective algorithm is applied to each row independently.

We restate the following straightforward facts from [6] (Sect. 1.3.3): Let a, b ∈
Z

m′
q be m′-dimensional vectors, and let a′ ∈ Z

N
q be an N -dimensional vector:

• 〈BitDecomp(a),Powersof2(b)〉 = 〈a, b〉.
• 〈a′,Powersof2(b)〉 = 〈BitDecomp−1(a′), b〉 = 〈Flatten(a′),Powersof2(b)〉.

Flattening. With the help of BitDecomp, BitDecomp−1, Powersof2 and Flatten,
we can tackle the problem of preserving strong boundedness after a NAND
operation. In order to make the coefficients of C3 above have magnitude at
most 1, Gentry, Sahai and Waters propose to apply Flatten to the matrix C3.
Thus, we compute CNAND ← Flatten(C3) to produce the output ciphertext of
the NAND gate. Now for this to work, the vector v must have a special form.
More precisely, v is computed as Powersof2(s) ∈ Z

N
q for some secret key vector

s ∈ Z
m′
q for some m′. Furthermore, the parameter N is defined as N = m′ · �q,

where �q = �lg q� + 1. With this form of secret key vector v, it holds that
Flatten(C) · v = C · v for any N × N matrix C. So CNAND will have entries in
{0, 1} and thus be strongly-bounded.
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2.5 GSW Compiler for IBE in the Single-Identity Setting

The Gentry, Sahai and Waters (GSW) compiler from Crypto 2013 [6] (Sect. 4)
allows transformation of an IBE scheme based on the Learning with Errors
(LWE) problem into a related IBFHE scheme, provided the IBE scheme satisfies
the following properties:

1. Property 1 (Ciphertext and Secret Key Vectors): The secret key for
identity id and a ciphertext created under id are vectors sid, cid ∈ Z

m′
q for

some m′. The first coefficient of sid is 1.
2. Property 2 (Small Dot Product): If cid encrypts 0, then 〈cid, sid〉 is

“small”.
3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform

vectors over Zq under the hardness of LWE.

As noted in [6] all known LWE-based IBE schemes satisfy the above properties
e.g.: [15–18].

Let E be an IBE satisfying the Properties 1-3 above. Then E can be trans-
formed into a single-identity IBFHE scheme E ′.

The public parameters PP generated by E .Setup includes a modulus q and
an integer m′ representing the length of both secret key and ciphertext vectors
in E . Let �q = �lg q� + 1 and N = m′ × �q.

To encrypt a message μ ∈ {0, 1} under identity id ∈ I, the encryptor
generates N encryptions of 0 using E . More precisely, she computes ei ←
E .Encrypt(PP, id, 0) ∈ Z

m′
q for every i ∈ [N ]. The set of N vectors e1, . . . ,eN

form the rows of an N ×m′ matrix E ∈ Z
N×m′
q . Finally the encryptor computes

the N × N ciphertext matrix C ∈ {0, 1}N×N as follows

C ← Flatten(μ · IN + BitDecomp(E))

where IN denotes the N × N identity matrix.
A secret key in E ′ for identity id is an N -dimensional vector vid derived from

a secret key sid for identity id in E . This is computed as vid ← Powersof2(sid).
Decryption of a ciphertext C with vid is as follows. By construction of vid, it
has at least one “large” coefficient; denote this by vid,i, To perform decryption,
we take the i-th row ci of matrix C, compute the inner product x ← 〈ci,vid〉 =
μ · vid,i + ei and output the plaintext μ ← �x/vid,i�. This is correct because

C · vid = μ · vid + E · sid = μ · vid + “small”

where E · sid is “small” as a consequence of Property 2. It is also easy to see
that semantic security for E ′ follows immediately from the fact that E satisfies
Property 3.

3 A Compiler for Multi-identity Leveled IBFHE

In this section, we present a new compiler that can transform an LWE-based IBE
into a multi-identity IBFHE. As we will see, achieving multi-identity IBFHE is
far more difficult than single-identity IBFHE.
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3.1 Intuition

Suppose E is an LWE-based IBE that satisfies properties 1 - 3 above. We can
apply the GSW compiler to yield an IBFHE scheme E ′ in the single-identity set-
ting. Our goal is to construct a compiler for the multi-identity setting. Consider
two ciphertexts C1 and C2 that encrypt μ1 and μ2 under identities id1 and id2
respectively. Let s1 and s2 be secret keys in the scheme E for identities id1 and
id2 respectively. Accordingly, a decryptor can compute v1 ← Powersof2(s1) and
v2 ← Powersof2(s2). It holds that C1 ·v1 = μ1 ·v1+e1 and C2 ·v2 = μ2 ·v2+e2
where e1,e2 ∈ Z

N
q are short vectors.

We would like to be able to perform homomorphic computation on both C1

and C2 together; that is, use them both as inputs in the same circuit. Here we
denote the circuit by C ∈ C. We expect the size of the resulting ciphertext to
grow if id1 �= id2. This is intuitive because the resulting ciphertext must encode
information about both identities. Assume that id1 �= id2. The compactness con-
dition of multi-identity IBFHE allows the size of the resulting ciphertext to
depend polynomially on the number of distinct identities d (in this case d = 2).
Suppose we could produce a resulting 2N × 2N ciphertext matrix C′ ∈ Z

2N×2N
q

that encrypts μ′ = C(μ1, μ2). More precisely, suppose that

C′ ·
[
v1

v2

]
= μ′ ·

[
v1

v2

]
+ e′

where e′ is “short”. The size of the ciphertext matrix is quadratic in the number
of distinct identities, and thus satisfies the compactness condition. How can such
a matrix C′ be computed?

The main idea behind our approach is to transform each input ciphertext
matrix (i.e. C1 and C2 in this example) into a corresponding d N ×d N “expanded
matrix” where d is the number of distinct identities (i.e. d = 2 in our example).

Consider any input ciphertext matrix C ∈ Z
N×N
q that encrypts a plaintext

μ under identity id1. We denote by Ĉ ∈ Z
2N×2N
q its corresponding “expanded

matrix”. We require this expanded matrix to satisfy

Ĉ ·
[
v1

v2

]
= μ ·

[
v1

v2

]
+ “small”.

Now Ĉ can be viewed as consisting of 2 × 2 submatrices in Z
N×N
q . We denote

the submatrix on row i and column j as Ĉi,j ∈ Z
N×N
q . To satisfy the “top” part

of the above equation, it is sufficient to set Ĉ1,1 ← C and Ĉ1,2 ← 0. To satisfy
the “bottom” part of the equation, we need to find matrices X,Y ∈ {0, 1}N×N

such that
X · v1 + Y · v2 = μ · v2 + “small”.

We refer to a pair of solution matrices (X,Y) as a “mask” because of the fact
that they hide the plaintext μ from a party that does not have a secret key for
the recipient identity. In this section, we will abstract over the process of finding
solution matrices X and Y with respect to arbitrary identities. Towards this
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goal, we introduce an abstraction called a masking system. In short, a masking
system allows an encryptor to produce information U ∈ {0, 1}∗ that allows an
evaluator to derive matrices X and Y that solve the above equation with respect
to any arbitrary identity. Informally, an adversary without a secret key for the
recipient identity (id1 in the above example) learns nothing about μ given U , but
can still efficiently derive solution matrices X and Y with respect to any chosen
identity. This notion is formalized in the next section, where we present our
compiler. A concrete construction of a masking system is presented in Sect. 4.2.

3.2 Abstract Compiler

We start by describing an abstract framework for multi-identity IBFHE from
Learning with Errors (LWE). Our compiler uses the aforementioned abstraction
which we call a masking system. An additional prerequisite for an IBE scheme E
(beyond Properties 1-3) to work with our compiler is that there exists a masking
system MSE for E . First we provide a formal definition of a masking system.

Definition 8. Let E be an IBE scheme satisfying Properties 1-3. A masking
system for E is a pair of PPT algorithms (GenUnivMask,DeriveMask) defined as
follows:

• GenUnivMask(PP, id, μ) takes as input public parameters PP for E, an identity
id ∈ I and a message μ ∈ {0, 1}, and outputs U ∈ {0, 1}∗ (referred to as a
universal mask).

• DeriveMask(PP, U, id′) takes as input public parameters PP for E, a universal
mask U ∈ {0, 1}∗ and an identity id′ ∈ I, and outputs a pair of matrices
(X,Y) ∈ (ZN×N

q )2.

A masking system (GenUnivMask,DeriveMask) must satisfy the following
properties:

• Correctness: Let w(·) be a polynomial associated with the masking system.
Let w = w(λ). We refer to w as the error expansion factor. For correctness,
it is required that for any (PP,MSK) ← E .Setup(1λ), any identities id, id′ ∈
I, any secret keys vid ← Powersof2(E .KeyGen(MSK, id)) ∈ Z

N
q and vid′ ←

Powersof2(E .KeyGen(MSK, id′)) ∈ Z
N
q , and any μ ∈ {0, 1}, and over all

• U ← GenUnivMask(PP, id, μ),
• (X,Y) ← DeriveMask(PP, U, id′)

it holds that
Xvid + Yvid′ = μ · vid′ + e (3.1)

where ‖|e‖|∞ ≤ w · B.
• Security: The masking system is said to be secure if all PPT adversaries have

a negligible advantage in the following modified IND-X-CPA game for E where
X ∈ {sID, ID}. The only change in the security game is that the adversary is
given U∗ ← GenUnivMask(PP, id∗, μb) in place of the challenge ciphertext in

the original game, where b
$←− {0, 1} is the challenger’s random bit, id∗ is the

adversary’s target identity, and μ0 and μ1 are the challenge messages chosen
by the adversary.
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Our compiler can compile an IBE scheme E into a IBFHE scheme E ′ if the
following conditions are met (for completeness, we restate Properties 1-3 above):

CP.1: (Ciphertext and secret key vectors): The secret key for identity id
and a ciphertext created under id are vectors sid, cid ∈ Z

m′
q for some m′.

The first coefficient of sid is 1.
CP.2: (Small Dot Product): If cid encrypts 0 under identity id, then e =

〈cid, sid〉 is “small” where sid is generated as in CP.1. Formally, e is
B-bounded; that is, ‖|e‖|∞ ≤ B.

CP.3: (Security): Encryptions of 0 are indistinguishable from uniform vectors
over Zq under the hardness of LWE.

CP.4: (Masking System): There exists a masking system (GenUnivMask,
DeriveMask) for E meeting the correctness and security conditions of
Definition 8.

Let MSE = (MSEGenUnivMask,MSEDeriveMask) be a masking system for E
that satisfies CP.4. A formal description is now given of a generic scheme, which
we call mIBFHE, that uses E and MSE . We have mIBFHE.Setup = E .Setup and
mIBFHE.KeyGen = E .KeyGen. The remaining algorithms are described as follows.

Encryption. To encrypt a message μ under identity id ∈ I, an encryptor
performs the following steps. The encryptor computes the universal mask

U ← MSE .GenUnivMask(PP, id, μ)

and outputs the ciphertext CT := (id, type := 0, enc := U). Setting the type
component of CT to 0 indicates a “fresh” ciphertext.

Evaluation. The evaluator is given as input a circuit C ∈ C and a collection of
� ciphertexts CT1 := (id1, type := 0, enc := U1), . . . ,CT� := (id�, type := 0, enc :=
U�).

Consider the set of distinct identities I = {id1, . . . , id�}. Suppose that |I| =
d ≤ � is the number of distinct identities. If d > D (i.e. the maximum sup-
ported number of distinct identities is exceeded), the evaluator aborts the eval-
uation. For simplicity we re-label the distinct identities as id1, . . . , idd . Thus,
each distinct identity in the collection is associated with a unique index in [d ].
Before evaluation can be performed, each ciphertext must be “transformed” into
a d N ×d N matrix, which we call an expanded matrix. This is achieved as follows.

Let (idr, type := 0, enc := U) be a ciphertext whose associated identity has
been assigned the index r ∈ [d ]. A matrix Ĉ ∈ Z

d N×d N
q is formed as follows.

Start by setting Ĉ to the zero matrix. Now Ĉ can be viewed as consisting of
d × d submatrices in Z

N×N
q . We denote the submatrix on row i and column j

as Ĉi,j ∈ Z
N×N
q .

For i ∈ [d ]:
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1. Run (Xi,Yi) ← MSE .DeriveMask(PP, U, idi).
2. Set Ĉi,i ← Yi.
3. Set Ĉi,r ← Flatten(Ĉi,r + Xi). (The reason for addition here is to handle the

special case of i = r).

This completes the process for computing the expanded matrix Ĉ. Consider an
example where r = 1 and d > 2. The expanded matrix looks like the following:

Ĉ =

⎛
⎜⎜⎜⎝

(Flatten(X1 + Y1)
X2 Y2
...

. . .
Xd Yd

⎞
⎟⎟⎟⎠

Perform the steps above to produce the expanded matrix Ĉ(i) for every input
ciphertext CTi. Then the circuit C ∈ C is evaluated gate-by-gate (NAND gates)
on the expanded matrices to yield a d N × d N matrix Ĉ′. Suppose each Ĉ(i)

encrypts μi ∈ {0, 1}. Then Ĉ′ encrypts C(μ1, . . . , μ�). Finally, the evaluation
algorithm outputs the tuple CT′ := (id1, . . . , idd , type := 1, enc := Ĉ′). Setting
the type component to 1 indicates an evaluated ciphertext. Note that the scheme
is 1-hop homomorphic.

Decryption. On input a ciphertext CT := (id1, . . . , idd , type, enc) and a sequence
of secret keys vid1 , . . . ,vidd ∈ Z

N
q where vidi is a secret key for idi for i ∈ [d ], the

decryptor performs the following steps. Form the column vector v as the vertical
concatenation of the column vectors vid1 , . . . ,vidd . If type = 0, parse enc as the
universal mask U , compute (X,Y) ← MSE .DeriveMask(PP, U, id1) and set C ←
X + Y. Else if type = 1, parse enc as Ĉ and set C ← Ĉ.

Let i be an index such that vi = 2i ∈ (q/4, q/2]. Compute di ← 〈ci,v〉 where
ci is the i-th row of C and output μ′ ← �di/vi� ∈ {0, 1}. This works to recover
the message because as a result of Eq. 3.1 (in Definition 8), we have

Cv = μ · v + e

with ‖|e‖|∞ ≤ w · B, where w is the error expansion factor associated with the
masking system MSE .

Lemma 1. Let B be a bound such that all freshly encrypted ciphertexts are B-
strongly-bounded. Let D and L be positive integers. If q > 8·w·B(DN+1)L2, then
the scheme mIBFHE is correct and can evaluate NAND-based Boolean circuits of
depth L with any number of distinct identities d ≤ D.

See AppendixB for the proof of Lemma1.

Theorem 3. Let E be an IBE scheme satisfying CP.1 - CP.4. Then E can be
transformed into a multi-identity IBFHE scheme E ′.
2 Note that N (which depends on n) is itself dependent on lg q. For security, it is

required that q/B = 2nε

for some ε ∈ (0, 1). A discussion on parameters is provided
in Appendix C.
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Proof. The proof of the theorem is constructive. By CP.4, there exists a mask-
ing system MSE for E . The multi-identity IBFHE scheme E ′ that we obtain is
mIBFHE instantiated with E and MSE . By Lemma 1, the scheme is correct. CP.4
implies that E ′ is IND-X-CPA secure for some X ∈ {sID, ID}.

4 Concrete Construction of Multi-identity Leveled
IBFHE

To exploit our compiler from the last section to obtain a multi-identity IBFHE,
we need to find an LWE-based IBE scheme E that satisfies CP.1 - CP.4. The
major obstacle is finding a scheme for which a secure masking system can be
constructed. A natural starting point is the IBE of Cash, Hofheinz, Kiltz and
Peikert (CHKP) [18], which is IND-ID-CPA secure in the standard model. This
IBE was adapted by Gentry, Sahai and Waters ([6] Appendix A.1) to work with
their compiler. There are difficulties however in developing a secure masking sys-
tem for this IBE. Instead, we consider the IBE of Gentry, Peikert and Vaikun-
tanathan (GPV) [15]. Unfortunately this scheme is only secure under LWE in
the random oracle model. On the plus side, we show that it enjoys the distinction
of admitting a secure masking system, and as a consequence of Theorem 3 can
be compiled into a multi-identity IBFHE scheme.

4.1 The Gentry, Peikert and Vaikuntanthan (GPV) IBE

In the GPV scheme, the TA needs to use a lookup table3 to store secret keys
that are issued to users in order to ensure that only a single unique secret key
is ever issued for a given identity. This is required for the security proof in the
random oracle model.

A hash function H : {0, 1}∗ → Z
n
q (modeled as a random oracle in the

security proof) is used to map an identity string id ∈ {0, 1}∗ to a vector zid ∈ Z
n
q .

Due to space constraints a formal description of the GPV scheme is deferred to
Appendix A. It is easy to see that GPV fulfills CP.1 and CP.2. Furthermore,
GPV can be shown to be IND-sID-CPA secure in the random oracle model [15]
under LWE, and CP.3 follows from the security proof. It remains to construct a
masking system for GPV.

4.2 A Masking System for GPV

Relaxation: Support for a Single Identity. As a warm up, we consider a
relaxation of a masking system. In this relaxation, it is sufficient to find X and Y
for only one identity id′, specified by the encryptor. More precisely, let id be the
recipient’s identity and let id′ �= id be another identity known to the encryptor.
3 Alternatively with the additional assumption of a PRF, a lookup table could be

avoided by deterministically deriving secret keys (i.e. obtaining random coins from
the PRF).
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Furthermore, let v be a secret key for id and let v′ be a secret key for id′. Then
the goal is to allow the evaluator to find matrices X and Y satisfying

X · v + Y · v′ = μ · v′ + “small”,

where μ is the plaintext. For every i ∈ N , we need to find row vectors xi and yi

with 〈xi,v〉 + 〈yi,v
′〉 = μ · v′ + “small”.

A trivial way to do this is for the encryptor to set xi ← 0 and yi ←
Flatten(( 0︸︷︷︸

1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp(E .Encrypt(PP, id′, 0)) ∈ {0, 1}N where

the latter is a GSW row encryption of μ under identity id′. Observe that such
an xi and yi serve as a solution to the above equation. However, it is easy to
see that such a trivial solution violates semantic security, since a decryptor with
a secret key v′ for id′ (and no secret key for id) can still recover the plaintext μ.

One strategy for remedying the above approach is to prevent a key holder for
identity id′ from recovering μ from yi by appropriately hiding some components
of yi. Let us take a look at the structure of yi when E is GPV. It is of the form

Flatten(( 0︸︷︷︸
1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((〈zid′ , r〉 + e, r · A + f) ∈ Z
m′
q )

where e
$←− χ, f $←− χm, r $←− Z

n
q and zid′ = H(id′) ∈ Z

n
q . Suppose we instead

generate yi as

yi ← Flatten(( 0︸︷︷︸
1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((0, r · A + f).

Now what we have done here is effectively set the first �q components of yi to
0 with the exception of the special case i ∈ [�q] which we will handle separately
later. As a result of this modification, we will have 〈yi,v

′〉 ≈ −〈zid′ , r〉 + μ ·
2i mod �q (the symbol ≈ denotes equality up to “small” differences). Therefore,
to cancel out the term −〈zid′ , 〉, we need to ensure that we set xi such that
〈xi,v〉 ≈ 〈zid′ , r〉.

The approach we take to achieve this is to blind the element 〈zid′ , r〉 with
a GPV encryption of zero under identity id such that it can only be unblinded
with a secret key for identity id (note that the value cannot be recovered out-
right; instead a noisy approximation is obtained). For simplicity we define the
algorithm Blind which takes an identity id and a value v ∈ Zq and outputs a
vector Flatten((c1 + v, c2, . . . , cm′)) where c ← E .Encrypt(PP, id, 0). So to pro-
vide an xi counterpart to the vector yi we generated above, we set xi ←
Blind(id, (〈zid′ , r〉) where r is the vector used in the generation of yi above.
It follows that 〈xi,v〉 + 〈yi,v

′〉 = μ · v′ + “small”.
There are subtleties that we have overlooked. For security reasons, we need

to change how we generate xi and yi for i ∈ [�q]. This is because for the first
�q components of yi as generated above, the plaintext μ is not hidden; it is
effectively sent in the clear. However we can resolve this issue by setting xi ←
Blind(id, μ · 2i−1 yi ← 0 and simply setting yi ← 0.
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However there is still a major weakness in this approach. Suppose a decryptor
has access to two decryption vectors u′,v′ ∈ Z

N
q that decrypt ciphertexts with

identity id′. For example, the TA might have generated distinct secret key vectors
when issuing keys to different parties, and the parties may have shared that
information.

It is easy to see that

Y · u′ − Y · v′ = μ · (u′ − v′) + “small”,

which allows the decryptor to easily determine μ ∈ {0, 1}. Hence a necessary
condition for the approach to work is that there be a unique secret key vector for
every identity. In fact, this is the primary reason our techniques do not work for
ABE. Technically, this restriction means that the system can only support simple
classes of access policies, namely classes of predicates with disjoint support sets,
which includes the special case of IBE. Fortunately, in the GPV scheme, only a
single secret key is ever issued for a given identity.

Support for All Identities. The algorithm above allows an encryptor to create
a secure “mask” for a specific identity that he knows. But how can we create
a succinct “universal mask” from which “masks” for arbitrary identities can be
derived? To achieve this, we need to take a look at the structure of vector xi

in our masking system, which is constructed as xi ← Blind(id, 〈zid′ , r〉) where
id′ is known to the encryptor. But what if id′ is an arbitrary identity (i.e. not
simply one that is known beforehand by the encryptor but one that is chosen
by the evaluator at evaluation time)? In this case, we need to obtain an xi that
blinds 〈zid′ , r〉. Our goal is to include information in the universal mask that we
derive so that for any identity id′ one can derive an xi that blinds 〈zid′ , r〉 where
zid′ = H(id′).

Recall the following property of BitDecomp from Sect. 2.4:

〈zid′ , r〉 = 〈BitDecomp(zid′),Powersof2(r)〉.

Our approach is to blind each coefficient of Powersof2(r), whose length is �q·n. We
produce a matrix B(i) ∈ Z

(�q·n)×m′
q by letting b

(i)
j ← BitDecomp−1(Blind(id, pj))

where pj be the j-th coefficient of Powerof2(r). Then to generate xi, one com-
putes xi ← Flatten(BitDecomp(zid′) · B(i)). Note that yi is generated as before.

More precisely what we have is shown is how to generate B(i) and yi for
i ∈ [�q]. Recall that in our previous masking system we generated xi and yi

differently for i ∈ [�q]. This will also apply here. Instead of computing B(i) for
i ∈ [�q], we instead merely compute xi ← Blind(id, μ · 2i−1) and yi ← 0. This
completes the description of our masking system.

We now formally present our masking system for GPV. (which we call MSGPV).
Let η = �q · n.

MSGPV.GenUnivMask(PP, id, μ) :
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1. For i ∈ [�q]:
(a) Set xi ← Blind(id, μ · 2i−1)
(b) Set yi ← 0

2. For �q < i ≤ N :
(a) Generate r

$←− Z
n
q and sample a short error vector e

$←− χm′
.

(b) For j ∈ [η] :
(i) Set b

(i)
j ← BitDecomp−1(Blind(id, pj)) ∈ Z

m′
q where pj be the j-th

coefficient of Powerof2(r)
(c) Form matrix B(i) from rows b

(i)
1 , . . . , b(i)η .

(d) Set yi ← Flatten(( 0︸︷︷︸
1,...,i−1

, μ, 0︸︷︷︸
i+1,...,N

) + BitDecomp((0, r · A + f)))

3. Form matrix Y from rows y1, . . . ,yN .
4. Output U := (x1, . . . ,x�q ,Y,B(�q+1), . . . ,B(N)).

MSGPV.DeriveMask(PP, U, id′) :

1. Parse U as (x1, . . . ,x�q ,Y,B(�q+1), . . . ,B(N)).
2. Compute zid′ ← H(id′).
3. For �q < i ≤ N :

(a) Set xi ← Flatten(BitDecomp(zid′) · B(i))
4. Form X ∈ {0, 1}N×N from x1, . . . ,xN .
5. Output (X,Y).

It is easy to see from the definition of MSGPV.DeriveMask that the error
expansion factor is w = η + 1. This is because each row in an expanded matrix
is formed from a row of X and a row of Y. But the former decomposes into a
sum of η ciphertexts (and hence error terms).

Theorem 4. [Informal] The masking system MSGPV is selectively secure in the
random oracle model (i.e. MSGPV meets the security condition of Definition 8).

A formal statement of Theorem 4 along with the proof is given in AppendixE.
See AppendixA.1 on how to apply the compiler.

5 Multi-key FHE

If we replace the GPV IBE with the Dual-Regev public-key encryption scheme
from [15], then we can obtain a multi-key FHE. The only change in the masking
system is that identity vectors (i.e. zid = H(id) ∈ Z

n
q ) are replaced with public-

key vectors in Z
n
q . As a result, the random oracle H is no longer needed, and

security holds in the standard model. Our multi-key scheme is the first to the
best of our knowledge that is based on well-established problem such as LWE in
the standard model (recall that the scheme from [14] requires the non-standard
Decisional Small Polynomial Ratio (DSPR) problem). See the full version [19] of
this work for a description of an adaptation of our masking systm to the RLWE
setting.

Acknowledgments. We would like to thank the anonymous reviewers of for their
helpful comments. The authors would like to thank Fuqun Wang for pointing out
errors in an earlier version of this paper.
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A The Gentry, Peikert and Vaikuntanthan (GPV) IBE

Note that this variant has been adapted in the same manner as CHKP in [6] for
compatibility with the GSW compiler.

Let A ∈ Z
n×m
q be a matrix. We define the lattice Λ⊥(A) = {x ∈ Z

m : A·x =
0 mod q} as the space of vectors orthogonal to the rows of A modulo q. GPV
depends on two efficient probabilistic algorithms, which are informally presented
as follows:

• TrapGen(n,m, q): [21,22] Generate a statistically uniform matrix A ∈ Z
n×m
q

together with a short basis S ∈ Z
m×m for Λ⊥(A). Output (A,S).

• SamplePre(S,A,u): [15] Generate a “short” solution x ∈ Z
m
q to the equation

A · x = u ∈ Z
n
q .

See AppendixC.1 for more background on these algorithms. Furthermore, see
AppendixC for a discussion on suitable parameter settings.

GPV.Setup(1λ): Choose parameters n = n(λ), m = m(λ), q = q(λ), a noise
distribution χ : Z. Let m′ = m + 1. These parameters are implicit in the public
parameters PP below. Generate statistically uniform A ∈ Z

n×m
q together with a

short basis S ∈ Z
m×m of Λ⊥(A) by running (A,S) ← TrapGen(n,m, q). Choose

a collision-resistant hash function H : {0, 1}t → Z
n
q . Output PP := (A,H) and

MSK := S.

GPV.KeyGen(MSK, id ∈ {0, 1}∗): If (id, sid) ∈ store, output sid and abort.
Compute zid ← H(id) ∈ Z

n
q . Compute wid ← SamplePre(S,A,zid) ∈ Z

m
q . Set

sid ← (1,−wid) ∈ Z
m′
q . Add (id, sid) to store. Output sid.

Let A′
id = zid ‖ A ∈ Z

m′
q . Observe that A′

id · sid = 0 ∈ Z
n
q .

GPV.Encrypt(PP, id ∈ {0, 1}∗, μ ∈ {0, 1}): Compute zid ← H(id) ∈ Z
n
q . Let

A′
id = zid ‖ A ∈ Z

m′
q . Let µ ∈ Z

m′
q be the vector of 0’s except with μ · �q/2� in

the first coefficient. Choose random r
$←− Z

n
q and small error vector e

$←− χm′
.

Output cid ← r · A′
id + e + µ ∈ Z

m′
q .

GPV.Decrypt(sid, cid): Set δ ← 〈cid, sid〉 ∈ Zq. If δ is small, output 0; if δ − q/2
mod q is small, output 1; otherwise, output ⊥.

A.1 Proof of Theorem 1

It is now possible to put all the pieces together. In more detail, we can now apply
our compiler to the IBE scheme GPV with the masking system MSGPV to yield
an IND-sID-CPA secure multi-identity IBFHE in the random oracle model.

Theorem 1. There exists a multi-identity leveled IBFHE scheme that is IND-
sID-CPA secure in the random oracle model under the hardness of LWE.
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Proof. Let D be a maximum degree of composition to support, and let L be a
desired number of levels. Let λ be the security parameter. We show there exists
a leveled IBFHE scheme with maximum degree of composition D, maximum
circuit depth L and security parameter λ.

Choose dimension parameter n = n(λ,L) and bound B = B(n). Lemma 1
requires

q > 8 · w · B(DN + 1)L (A.1)

to ensure correctness. Note that w is the expansion factor of the masking system.
Now the error expansion factor of MSGPV is w = η+1. But this can be simplified
to N4. Theorem 4 requires m ≥ 2n lg q, and we have N = (m + 1) lg q. We
need to set q first before setting these parameters (m and N) because of their
dependence on q. To do so, q must be expressed without dependence on N .
It can be straightforwardly derived from the inequality A.1 that a suitable q is
given by

q = B · 2O(L lg nD)

with additional care taken to ensure q/B is subexponential in n.
Our parameter settings ensure that the GPV scheme meets CP.1, CP.2 and

CP.3, three of the prerequisites for our compiler in Sect. 3. Furthermore, the
masking system MSGPV is secure (via Theorem 4). As a result, CP.4 is addition-
ally satisfied. Therefore, Theorem 3 ensures there exists a secure leveled IBFHE
scheme, which by virtue of our parameter settings above (which meet Lemma 1),
can correctly evaluate L-depth circuits over ciphertexts with at most D distinct
identities.

B Proof of Lemma1

Lemma 1. Let B be a bound such that all freshly encrypted ciphertexts are
B-strongly-bounded. Let D and L be positive integers. If q > 8 ·w ·B(DN + 1)L5,
then the scheme mIBFHE is correct and can evaluate NAND-based Boolean cir-
cuits of depth L with any number of distinct identities d ≤ D.

Proof. Let the d ≤ D distinct identities involved in an evaluation be id1, . . . , idd .
Consider an expanded matrix derived from a “fresh” ciphertext CT=(idi, type :=
0, enc := U) associated with identity idi for some i ∈ [d ]. Let vj be a secret key
that decrypts ciphertexts with identity idj for j ∈ [d ]. Let v̂ be the column
vector consisting of the concatenation of v1, . . . ,vd . Let Ĉ be the expanded
matrix for CT computed with respect to identities id1, . . . , idd and (Xj,Yj) ←
MSE .DeriveMask(PP, U, idj) for j ∈ [d ] . Now by construction, Ĉ consists of d ×d
submatrices in Z

N×N
q . There are 2 non-zero submatrices on N − 1 rows when Ĉ

4 w = η + 1 = �q · n + 1 ≤ �q · m < N .
5 Note that N (which depends on n) is itself dependent on lg q. For security, it is

required that q/B = 2nε

for some ε ∈ (0, 1). A discussion on parameters is provided
in Appendix C.
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is viewed as d × d matrix over Z
N×N
q , and one non-zero submatrix on the i-th

row. The correctness condition for the masking system MSE gives us
⎛
⎜⎜⎜⎜⎜⎜⎝

Y1 X1
. . .

...
Flatten(Xi + Yi)

...
. . .

Xd Yd

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
...
vi

...
vd

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

X1v1 + Y1v1
...

Xivi + Yivi

...
Xd vd + Yd vd

⎤
⎥⎥⎥⎥⎥⎥⎦

=μ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
...
vi

...
vd

⎤
⎥⎥⎥⎥⎥⎥⎦

+’small’.

Since each of these submatrices is B-strongly-bounded, it follows that Ĉ · v̂ =
μ·v̂+ê where the coefficients of the error vector ê are bounded by w·B.Therefore,
Ĉ is w · B-strongly-bounded. Multiplying two d N × d N expanded matrices in
a NAND operation produces a matrix that is w · B(d N + 1)-strongly-bounded.
After L successive levels, the bound on the error is w·B(d N+1)L. For correctness
of decryption we need w · B(d N + 1)L < q/8. Since we have d ≤ D, it follows
that

w · B(d N + 1)L ≤ w · B(DN + 1)L ≤ 8 · w · B(DN + 1)L

8
<

q

8
.

��

C Parameters for Our Scheme

Before discussing how parameters are chosen for our scheme, more background
is needed on preimage sampling.

C.1 Background on Preimage Sampling

Let A ∈ Z
n×m
q be a matrix. We define the lattice Λ⊥(A) = {x ∈ Z

m : A ·x = 0
mod q} as the space of vectors orthogonal to the rows of A modulo q. There
exist efficient algorithms to generate a statistically uniform matrix A ∈ Z

n×m
q

together with a short basis S ∈ Z
m×m for Λ⊥(A) [21,22]. Such an algorithm will

be simply called TrapGen here; that is, we will write (A,S) ← TrapGen(n,m, q).
We denote by S̃ the Gram-Schmidt orthonormalization of a basis S. Let L = ‖S̃‖
be the norm of S. There are instances of TrapGen that achieve L = m1+ε for any
ε > 0 [15], although this has been improved upon in other works [23]. Hence,
our setting of L later will be a conservative choice.

Let d and t be positive integers with d ≤ t. Let B ∈ R
d×t be a basis for

a d-dimensional lattice Λ(B) ⊂ R
t. Then the discrete Gaussian distribution on

Λ(B) with center c ∈ R
t and standard deviation σ ∈ R is denoted by DΛ(B),s,c.

When c is understood to be zero, the center parameter is omitted.
Gentry, Peikert and Vaikuntanthan [15] describe an algorithm to sample from

a discrete Gaussian distribution on an arbitrary lattice. They describe an efficient
probabilistic algorithm SampleD(B, σ, c) that samples from a distribution that
is statistically close to DΛ(B),σ,c, provided σ ≥ ‖B̃‖ · ω(

√
log d).
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Consider the function fA : Zm
q → Z

n
q defined by f(x) = A · x ∈ Z

n
q . Given

any vector u ∈ Z
n
q , a preimage of u under fA is any x ∈ Z

m
q with fA(x) = u.

It turns out SampleD can be used to efficiently to find short preimages x ∈ Z
m
q

such that A ·x = u ∈ Z
n
q for an arbitrary vector u ∈ Z

n
q . Consider the following

algorithm SamplePre from [15]. Note that s is a parameter for which possible
settings are given in the next section.

• SamplePre(S,A,u): Find an arbitrary solution t ∈ Z
m
q (via linear algebra)

such that A · t = u mod q. Sample a vector e
$←− DΛ⊥(A),s,−t by running

e ← SampleD(S, s,−t), and output the vector x ← e + t.

We remind the reader that there are improved variants of SamplePre in the
literature [23].

C.2 Preimage Distribution

We need s ≥ L ·ω(
√

log m) to satisfy Theorem 5.9 of [15]. Let Bpreimage ≥ √
n · s.

Then the probability of the magnitude of any coefficient of a preimage vector
exceeding Bpreimage is exponentially small in n via a standard tail inequality for a
normal distribution6. One possible setting is s = L · log m, and Bpreimage =

√
n ·s.

C.3 Noise Distribution

To satisfy Theorem 2, we need the noise distribution χ to be Bχ-bounded for
some Bχ (to satisfy Theorem 2, we require q/Bχ to be at most subexponential).
Setting χ ← DZ,r with r = log m and Bχ ≥ √

n ·r ensures that χ is Bχ-bounded,

since by the aforementioned tail inequality, we have that Pr[x $←− DZ,r, |x| > Bχ]
is exponential in n.

C.4 Parameter B (B-Strong-Boundedness)

“Fresh” ciphertexts in our scheme are B-strongly-bounded. The parameter B is
derived from the product of Bpreimage and Bχ, since when the ciphertext matrix
is multiplied by a secret key vector, the resulting error vector is formed from the
inner product of the noise vector in the ciphertext (drawn from χ) and the secret
key (a sampled preimage). Concretely, with the suggested parameter setting, we
have B = L · n · log2 m. It is necessary that q/B1 is at most subexponential in
N . However, our analysis simplifies this by taking q/B to be subexponential;
however, since Bpreimage is polynomial in N , it also holds that q/Bχ is subexpo-
nential.
6 A normal variable with standard deviation σ is within t · σ standard deviations of

its mean, except with probability at most 1
t

· 1

et2/2 [15].
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C.5 Sample Parameters and Ciphertext Size

Gentry, Sahai and Waters simplify their analysis by taking n to be a fixed para-
meter. This is a simplification because q/B must be subexponential in n, and q
depends on L; therefore in actuality n depends on L.

Let L be the desired number of levels and let D be the desired maximum
number of distinct identities to support in an evaluation. According to Lemma1,
correctness requires that

q > 8 · w · B(DN + 1)L. (C.1)

In AppendixC.1, it was mentioned that L ≈ m. Putting this together with
the derivation of B above in AppendixC.4 gives B = mn · log2 m, where m ≥
2n lg q from Theorem 4. Choosing B in this way means that it is not too large
and allows us to derive lg q from the inequality C.1 above as follows: lg q =
O(L(lg D + lg n)).

Consider the following concrete parameters. Suppose we require a circuit
depth of L = 40 and a number of distinct identities up to D = 100. We can
satisfy the correctness constraint given by C.1 by setting lg q = �c · L(lg D +
lg L) = 4 · 40(lg 100 + lg 40)� = 1915 (the constant c = 4 was chosen to meet the
condition) and choosing the dimension to be n = 2000. However the size of freshly
encrypted ciphertexts in our leveled IBFHE scheme with these parameters is
greater than one exabyte (i.e. > 230 gigabytes) per bit of plaintext, which is
extremely impractical. This illustrates the impracticality of our scheme, but it
also highlights the impracticality at the present time of the GSW leveled IBFHE
and ABFHE schemes.

D Size of Evaluated Ciphertexts

As mentioned in the previous section, n is not a fixed parameter that depends
solely on the security level λ. Instead n grows with both L and D because q/B
must be subexponential in n to guarantee security. There is an optimization that
applies to both our construction and the GSW constructions in terms of the size
of evaluated ciphertexts. Decryption only requires a single row of a ciphertext
matrix (see Sect. 3.2), so an evaluated ciphertext can have size d · N where d is
the number of distinct identities in the evaluation. Let this vector be denoted by
ĉ ∈ {0, 1}d ·N . Applying BitDecomp−1, the vector c ← BitDecomp−1(ĉ) ∈ Z

m′
q is

obtained. As explained in [6], if we include additional information in the public
parameters, the technique of modulus reduction [5] can be employed to each
coefficient in c so that the size of each coefficient can be made independent of
D and L; their size must still depend on d to ensure correctness, but this is
allowed for by the compactness condition. However, while every coefficient can
be reduced, the dimension cannot be reduced. This is because the technique
of dimension reduction [5] appears to be only compatible with the public key
setting since it relies on publishing encryptions of the secret key. We defer the
details to [5]. So the length of the ciphertext vector is the length of c, namely
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m′, which in turn depends on both L and D. Therefore, technically speaking, our
multi-identity IBFHE in addition to both the IBFHE and ABFHE constructions
of Gentry, Sahai and Waters are not leveled in the strict sense of the size of an
evaluated ciphertext being independent of L.

E Proof of Theorem4

Corollary 1 (Corollary 5.4 [15]). Let n be a positive integer, and let q be a
prime. Let m ≥ 2n lg q. Then for all but a 2q−n fraction of all A ∈ Z

n×m
q and

for any s ≥ ω(
√

log m), the distribution of the syndrome u = Ae mod q is
statistically close to uniform over Z

n
q , where e ∼ DZm,s.

Theorem 4. Let n,m, q be chosen to meet Corollary 1. Let χ be a Bχ-bounded
distribution where Bχ satisfies Theorem2. Let TrapGen be an algorithm that
generates a statistically uniform matrix A ∈ Z

n×m
q together with a basis S ∈

Z
m×m such that ‖S̃‖ ≤ L except with negligible probability. Let s ≥ L·ω(

√
log m).

Let the scheme GPV be instantiated with TrapGen and the SamplePre algorithm
(with parameter s) described in AppendixC.1.

Then the masking system MSGPV is selectively secure in the random oracle
model (i.e. MSGPV meets the security condition of Definition 8) under the hard-
ness of LWEn,q,χ.

Proof. We prove the theorem by means of a hybrid argument.
Game 0: This is the standard selective security game described in Definition 8.

Game 1: The following changes are made in this game. Let id∗ ∈ I be the
adversary’s target identity.

1. The matrix A $←− Z
n×m
q is generated as uniformly random.

2. The vector zid∗
$←− Z

n
q is generated as uniformly random.

3. The random oracle H is simulated as follows: if the adversary A queries H
on identity id ∈ I, run:
(a) If id = id∗, then return zid∗ .
(b) Else if (id, sid,zid) ∈ store, return zid.

(c) Else sample tid
$←− D

Zm′−1,s, compute zid ← A · tid mod q, set sid ←
(1,−tid) ∈ Z

m′
q , add (id, sid,zid) to store and return zid.

(d) Secret key queries are answered as follows. Suppose A queries a secret
key for identity id �= id∗. We assume w.l.o.g. that A has first queried H
on id. In response to the query, sid is returned where (id, sid,zid) ∈ store.

We claim that A’s view in Game 0 is statistically close to A′s view in
Game 1. The first two changes above follow immediately from the definition
of GPV (in particular, the trapdoor basis generation algorithm employed guar-
antees that a near uniform A can be generated). In regard to the simulation
of H, Corollary 1 implies that the vector H(id) when id �= id∗ is statistically close
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to uniform. Finally, with regard to the distribution of secret keys, Lemma 5.2
from [15] states that a preimage tid sampled with SamplePre (with parameter
s) in GPV.KeyGen is identically distributed to tid ∼ D

Zm′−1,s conditioned on
Aid ·tid = zid mod q. It follows that the secret keys sid in Game 1 have the same
distribution as Game 0.
For i ∈ [�q]:

Game i + 1: This game is the same as the previous game except that Step 1a
of MSGPV.GenUnivMask for iteration i (only) is replaced with

xi ← BitDecomp(t).

where t
$←− Z

m′
q .

Given an LWE instance x∗ ∈ Z
m′
q , one can easily generate xi according to

Game i or Game i+1. Suppose a distinguisher D has a non-negligible advantage
distinguishing between Game i and Game i + 1. We can use D to construct an
algorithm B that can solve an LWE instance. Given an appropriate number of
samples from either the distribution D0 := {{(uj , 〈uj , s〉+ej) : uj

$←− Z
n
q , e)j

$←−
χ} : s

$←− Z
n
q } or the distribution D1 := {{(uj ,vj) : uj ,vj

$←− Z
n
q }}, the uj

are used to construct A ∈ Z
n×m
q and zid∗ ∈ Z

n
q . The algorithm B simulates

the random oracle H as explained above, and answers secret key queries in
the manner described above. Note that the distribution of A and zid∗ remain
unchanged.

The algorithm B runs the same variant of MSGPV.GenUnivMask as the previ-
ous game. The only difference is that on the i-th iteration, it replaces Step 1a
with

xi ← BitDecomp(x∗ + (μ · 2i, 0, . . . , 0))

where x∗ ∈ Z
m′
q is an LWE challenge vector that is either s · zid∗ ‖ A + e ∈ Z

m′
q

or a uniformly random t∗ ∈ Z
m′
q . In the former case, the view is statistically

close to Game i whereas the view in the latter case is statistically close to Game
i + 1. It follows that B can output D’s guess to solve an LWE instance. The
games are thus indistinguishable by the hypothesized hardness of LWE.

As a shorthand for Game (�q + 1) + (i − �q − 1) · (η + 1) + j, we use the
notation Game (i, j) for �q < i ≤ N and j ∈ [η + 1].

For �q < i ≤ N :

For j ∈ [η]:

• Game (i, j): This game is the same as the previous game except that we
change the way that the j-th row of B(i) is generated in MSGPV.GenUnivMask.
More precisely, Step 2(b)i of algorithm MSGPV.GenUnivMask is replaced with

b
(i)
j ← BitDecomp(t)

with t
$←− Z

m′
q . for the specific case of the i-th iteration of the outer loop and

the j-th iteration of the inner loop.
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An analogous argument to the argument made above concerning the indis-
tinguishability of Game i and i + 1 for i ∈ [�q] can be made here to show
that a non-negligible advantage distinguishing between the games implies a
non-negligible advantage against LWE.

Remark 2. At this stage, note that B(i) from MSGPV.GenUnivMask is uniform
over Zη×m′

q ; in particular it does not rely on any r associated with a yi nor does
it rely on μ.

Game (i, η + 1): The modification in this game is as follows. Step 2d of
MSGPV.GenUnivMask for the i-th iteration is replaced with

yi ← Flatten((BitDecomp((0, t)).

with t
$←− Z

m′
q .

Once again an analogous LWE-based argument to that above shows that one
can embed an LWE challenge when generating yi such that indistinguishability
between the games implies a non-negligible advantage against LWE.

We conclude the proof by observing that in Game (N, η + 1), the plaintext
bit μ has been eliminated entirely from the generation of the universal mask U .
It follows that an adversary has a zero advantage guessing the challenger’s bit
b, since no information about b is incorporated in the universal mask U given to
the adversary. ��
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Abstract. In a functional encryption (FE) scheme, the owner of the
secret key can generate restricted decryption keys that allow users to
learn specific functions of the encrypted messages and nothing else. In
many known constructions of FE schemes, security is guaranteed only
for messages that are fixed ahead of time (i.e., before the adversary even
interacts with the system). This so-called selective security is too restric-
tive for many realistic applications. Achieving adaptive security (also
called full security), where security is guaranteed even for messages that
are adaptively chosen at any point in time, seems significantly more chal-
lenging. The handful of known adaptively-secure schemes are based on
specifically tailored techniques that rely on strong assumptions (such as
obfuscation or multilinear maps assumptions).

We show that any sufficiently-expressive selectively-secure FE scheme
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can be transformed into an adaptively-secure one without introducing any
additional assumptions. We present a black-box transformation, for both
public-key and private-key schemes, making novel use of hybrid encryp-
tion, a classical technique that was originally introduced for improving
the efficiency of encryption schemes. We adapt the hybrid encryption
approach to the setting of functional encryption via a technique for embed-
ding a “hidden execution thread” in the decryption keys of the underly-
ing scheme, which will only be activated within the proof of security of
the resulting scheme. As an additional application of this technique, we
show how to construct functional encryption schemes for arbitrary circuits
starting from ones for shallow circuits (NC1 or even TC0).

Keywords: Functional encryption · Adaptive security · Generic con-
structions

1 Introduction

Traditional notions of public-key encryption provide all-or-nothing access to
data: owners of the secret key can recover the entire message from a cipher-
text, whereas those who do not know the secret key learn nothing at all. Func-
tional encryption, a revolutionary notion originating from the work of Sahai
and Waters [SW05], is a modern type of encryption scheme where the owner of
the (master) secret key can release function-specific secret keys skf , referred to
as functional keys, which enable a user holding an encryption of a message x to
compute f(x) but nothing else (see [KSW08,LOS+10,BSW11,O’N10] and many
others). Intuitively, in terms of indistinguishability-based security, encryptions
of any two messages, x0 and x1, should be computationally indistinguishable
given access to functional keys for any function f such that f(x0) = f(x1).

While initial constructions of functional encryption schemes [BF03,BCO+04,
KSW08,LOS+10] were limited to restricted function classes such as point func-
tions and inner products, recent developments have dramatically improved the
state of the art. In particular, the works of Sahai and Seyalioglu [SS10] and
Gorbunov, Vaikuntanathan and Wee [GVW12] showed that a scheme support-
ing a single functional key can be based on any semantically-secure encryption
scheme. This result can be extended to the case where the number of func-
tional keys is polynomial and known a-priori [GVW12]. Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [GKP+13] constructed a scheme with succinct
ciphertexts based on a specific hardness assumption (Learning with Errors).

The first functional encryption scheme that supports a-priori unbounded
number of functional keys was constructed by Garg, Gentry, Halevi, Raykova,
Sahai and Waters [GGH+13], based on the existence of a general-purpose indis-
tinguishability obfuscator (for which a heuristic construction is presented in the
same paper). Garg et al. showed that given any such obfuscator, their functional
encryption scheme is selectively secure. At a high level, selective security guar-
antees security only for messages that are fixed ahead of time (i.e., before the
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adversary even interacts with the system). Whereas security only for such mes-
sages may be justified in some cases, it is typically too restrictive for realistic
applications. A more realistic notion is that of adaptive security (often called full
security), which guarantees security even for messages that can be adaptively
chosen at any point in time.

Historically, the first functional encryption schemes were only proven selec-
tively secure [BB04,GPS+06,KSW08,GVW13,GKP+13]. The problem of con-
structing adaptively secure schemes seems significantly more challenging and
only few approaches are known. A simple observation is that if a selectively-
secure scheme’s message space is not too large, e.g., {0, 1}n for a relatively small
n, then any adaptively-chosen message x can be guessed ahead of time with
probability 2−n. Starting with a sub-exponential hardness assumption, and tak-
ing the security parameter to be polynomial in n allows us to argue that the
selectively-secure scheme is in fact also adaptively secure. This observation is
known as “complexity leveraging” and is clearly not satisfactory in general.

The powerful “dual system” approach, put forward by Waters [Wat09], has
been used to construct adaptively-secure attribute-based encryption scheme
(a restricted notion of functional encryption) for formulas, as well as an
adaptively-secure functional encryption scheme for linear functions [LOS+10].
However, this method is a general outline, and each construction was so far
required to tailor the solution based on its specialized assumption. In some
cases, such as attribute-based encryption for circuits, it is still not known how to
implement dual system encryption to achieve adaptive security (although Garg,
Gentry, Halevi and Zhandry [GGH+14a] show how to do this with custom-built
methods and hardness assumptions).

Starting with [GGH+13], there has been significant effort in the research
community to construct an adaptively-secure general-purpose functional encryp-
tion scheme with an unbounded number of functional keys. Boyle, Chung and
Pass [BCP14] constructed an adaptively secure scheme, under the assump-
tion that differing-input obfuscators exist (these are stronger primitives than
the indistinguishability obfuscators used by [GGH+13]). Following their work,
Waters [Wat14] and Garg, Gentry, Halevi and Zhandry [GGH+14b] constructed
specific adaptively-secure schemes assuming indistinguishability obfuscation and
assuming non-standard assumptions on multilinear maps, respectively. Despite
this significant progress, each of these constructions relies on somewhat tailored
methods and techniques.

1.1 Our Results: From Selective to Adaptive Security

We show that any selectively-secure functional encryption scheme implies an
adaptively-secure one, without relying on any additional assumptions. Our trans-
formation applies equally to public-key schemes and to private-key ones, where
the resulting adaptive scheme inherits the public-key or private-key flavor of
the underlying scheme. The following theorem informally summarizes our main
contribution.
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Theorem 1.1 (Informal). Given any public-key (resp. private-key) selectively-
secure functional encryption scheme for the class of all polynomial size circuits,
there exists an adaptively-secure public-key (resp. private-key) functional encryp-
tion scheme with similar properties.

Specifically, the adaptive scheme supports slightly smaller circuits than those
supported by the selective scheme we started with.

Our transformation can be applied, in particular, to the selectively-secure
schemes of Garg et al. [GGH+13] and Waters [Wat14], resulting in adaptively-
secure schemes based on indistinguishability obfuscation (and one-way func-
tions).1

We view the significance of our result in a number of dimensions. First of
all, it answers the basic call of cryptographic research to substantiate the exis-
tence of rather complex primitives on that of somewhat simpler ones. We feel
that this is of special interest in the case of adaptive security, where it seemed
that ad-hoc methods were required. Secondly, our construction, being of fairly
low overhead, will allow to focus the attention of the research community in
studying selectively-secure functional encryption schemes, rather than investing
unwarranted efforts in obtaining adaptively-secure ones. Lastly, we hope that our
methods will be extended towards weaker forms of functional encryption schemes
for which adaptive security is yet unattained generically, such as attribute-based
encryption for all polynomial-size circuits.

1.2 Our Techniques

Our result is achieved by incorporating a number of techniques which will be
explained in this section. In a nutshell, our main observation is that hybrid
encryption (a.k.a key encapsulation) can be employed in the context of func-
tional encryption, and has great potential in going from selective to adaptive
security of encryption schemes. At a first glance, hybrid functional encryption
should lead to a selective-to-adaptive transformation, given an additional weak
component: A symmetric FE which is adaptively secure when only a single mes-
sage query is allowed. We show that the latter can be constructed from any
one-way function as a corollary of [GVW12,BS15]. However, the intuitive rea-
soning fails to translate into a proof of security. To resolve this issue, we use
a technique we call The Trojan Method, which originates from De Caro et al.’s
“trapdoor circuits” [CIJ+13] (similar ideas had been since used by Gentry et al.
[GHR+14] and Brakerski and Segev [BS15]).

We conclude this section with a short comparison of our technique with
the aforementioned “dual system encryption” technique that had been used to
achieve adaptively secure attribute based encryption.

Hybrid Functional Encryption. Hybrid encryption is a veteran technique in
cryptography and has been used in a variety of settings. We show that in the
context of functional encryption it is especially powerful.
1 Waters [Wat14] also constructed an adaptively-secure scheme, but using specific

ad-hoc techniques and in a significantly more complicated manner.
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The idea in hybrid encryption is to combine two encryption schemes: An
“external” scheme (sometimes called KEM – Key Encapsulation Mechanism)
and an “internal” scheme (sometimes called DEM – Data Encapsulation Mech-
anism). In order to encrypt a message in the hybrid scheme, a fresh key is
generated for the internal scheme, and is used to encrypt the message. Then
the key itself is encrypted using the external scheme. The final hybrid ciphertext
contains the two ciphertexts: (Encext(k),Encint,k(m)) (all external ciphertexts use
the same key). To decrypt, one first decrypts the external ciphertext, retrieves
k and applies it to the internal ciphertext. Note that if, for example, the exter-
nal scheme is public-key and the internal is symmetric key, then the resulting
scheme will also be public key. Hybrid encryption is often used in cases where the
external scheme is less efficient (e.g. in encrypting long messages) and thus there
is an advantage in using it to encrypt only a short key, and encrypt the long
message using the more efficient internal scheme. Lastly, note that the internal
scheme only needs to be able to securely encrypt a single message.

The intuition as to why hybrid encryption may be good for achieving adaptive
security is that the external scheme only encrypts keys for the internal scheme.
Namely, it only encrypts messages from a predetermined and known distribution,
so selective security should be enough for the external scheme. The hardness of
adaptive security is “pushed” to the internal scheme, but there the task is easier
since the internal scheme only needs to be able to encrypt a single message, and
it can be private-key rather than public-key.

Let us see how to employ this idea in the case where both the internal and
external schemes are FE schemes. To encrypt, we will generate a fresh master
secret key for the internal scheme, and encrypt it under the external scheme. To
generate a key for the function f , the idea is to generate a key for the function
Gf (mskint) which takes a master key for the internal scheme, and outputs a
secret key for function f under the internal scheme, using mskint (randomness is
handled using a PRF). This will allow to decrypt in a two-step process as above.
First apply the external secret-key for Gf to the external ciphertext, this will
give you an internal secret key for f , which is in turn applied to the internal
ciphertext to produce f(x).

For the external scheme, we will use a selectively secure FE scheme (for the
sake of concreteness, let us say public-key FE). As explained above, selective
security is sufficient here since all the messages encrypted using the external
scheme can be generated ahead of time (i.e. they do not depend on the actual
x’s that the user wishes to encrypt).

For the internal scheme, we require an FE scheme that is adaptively secure,
but only supports the encryption of a single message. Fortunately, such a primi-
tive can be derived from the works of [GVW12,BS15]. In [GVW12], the authors
present an adaptively secure one-time bounded FE scheme. This scheme allows
to only generate a key for one function, and to encrypt as many messages as
the user wishes. This construction is based on the existence of semantically
secure encryption, so the public-key version needs public-key encryption and
the symmetric version needs symmetric encryption. While this primitive seems
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dual to what we need for our purposes, [BS15] shows how to transform private-
key FE schemes into function private FE. In function-private FE, messages
and functions enjoy the same level of privacy, in the sense that a user that
produces x0, x1, f0, f1 such that f0(x0) = f1(x1) cannot distinguish between
(Enc(x0), skf0) and (Enc(x1), skf1). Therefore, after applying the [BS15] trans-
formation, we can switch the roles of the functions and messages, and obtain a
symmetric FE scheme which is adaptively secure for a single message and many
functions. (We note that the symmetric version of the [GVW12] scheme can be
shown to be function private even without the [BS15] transformation, however
since this claim is not made explicitly in the paper we choose not to rely on it.)

Whereas intuitively this should solve the problem, it is not clear how to prove
security of the new construction. Standard security proofs for hybrid encryption
follow by first relying on the security of the external scheme and removing the
encapsulated key, and then relying on the security of the internal scheme and
removing the message. However, in our case, removing the encapsulated key is
easily distinguishable, since the adversary is allowed to obtain functional keys
and apply them to the ciphertext (so long as f(x0) = f(x1)). Without the
internal key, the decryption process no longer works. To resolve this difficulty,
we use the Trojan method.

Before we describe the Trojan method, we pause to note that our idea so far
can be thought of as “boosting” a single-message, many-key, adaptive symmetric-
key FE into a many-message, many-key, adaptive public-key FE (using a selective
public-key FE as a “catalyst”). The recent work of Waters [Wat14] proceeds
along a similar train of thought, and indeed, motivated our approach. However,
while our transformation is simple and general, Waters has to rely on a powerful
catalyst, namely an indistinguishability obfuscator.

The Trojan Method. The Trojan Method, which is a generalization of tech-
niques used in [CIJ+13] and later in [GHR+14,BS15], is a way to embed a
hidden functionality thread in an FE secret-key that can only be invoked by
special ciphertexts generated using special (secret) back-door information. This
thread remains completely unused in the normal operation of the scheme (and
can be instantiated with meaningless functionality). In the proof, however, the
secret thread will be activated by the challenge ciphertext in such a way that
is indistinguishable to the user (= attacker). Namely, the user will not be able
to tell that it is executing the secret thread and not the main thread. This will
be extremely beneficial to prove security. We wish to argue that in the view of
the user, the execution of the main thread does not allow to distinguish between
the encryption of two messages x0, x1. The problem is that for functionality
purposes, the main thread has to know which input it is working on. This is
where the hidden thread comes into the play. We will design the hidden thread
so that in the eyes of the user, it is computationally indistinguishable from the
main thread on the special messages x0, x1. However, in the hidden thread, the
output can be computed in a way that does not distinguish between x0 and
x1 (either by a statistical or a computational argument), which will allow us to
conclude that encryptions of x0, x1 are indistinguishable.
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In particular, this method will resolve the aforementioned conundrum in our
proof outline above. In the proof, we will use the Trojan method to embed
a hidden thread in which mskint is not used at all, but rather Gf produces a
precomputed internal skf . This will allow us to remove mskint from the challenge
ciphertext and use the security properties of the internal scheme to argue that
a internal encryption of x0, x1 are identical so long as f(x0) = f(x1).

We note that an important special case of the above outline is when the trojan
thread is a constant function. This had been the case in [CIJ+13,GHR+14], and
this is the case in this work as well. However, we emphasize that our description
here allows for greater generality since we allow the trojan thread to implement
functionality that depends on the input x. We feel that this additional power
may be useful for future applications.

Technically, the hidden thread is implemented using (standard) symmetric-
key encryption, which in turn can be constructed starting with any one-way
function. In the functional secret-key generation process for a function f , the
secret-key generation process will produce a symmetric-key ciphertext c (which
can just be encryption of 0 or another fixed message, since it only needs to have
meaningful content in the security proof). It will then consider the function Gf,c

that takes as input a pair (x, s), and first checks whether it can decrypt c using s
as a symmetric key. If it cannot, then it just runs f on x and returns the output.
If s actually decrypts c, we consider f∗ = Decs(c) (i.e. c encrypts a description
of a function), and the output is the execution of f∗(x). The value c is therefore
used as a Trojan Horse: Its contents are hidden from the users of the scheme,
however given a hidden command (in the form of the symmetric s) it can embed
functionality that “takes over” the functional secret-key.

We note that in order to support the Trojan method, the decryption keys of
our FE scheme need to perform symmetric decryption, branch operations, and
execution of the function f∗. Thus we need to start with an FE scheme which
allows for the generation of sufficiently expressive keys.

Our Trojan method can be seen as a weak form of function privacy in FE,
but one that can be applied even in the context of public-key FE. In essence,
we cannot hide the main thread of the evaluated function (this is unavoidable
in public-key FE). However, we can hide the secret thread and thus allow the
function to operate in a designated way for specially generated ciphertexts. (This
interpretation is not valid for previous variants of this method such as “trapdoor
circuits” [CIJ+13].)

A simple application of the Trojan method is our reduction in Sect. 4, show-
ing that FE that only supports secret-keys for functions with shallow circuits
(e.g. logarithmic depth) implies a scheme that works for circuits of arbitrary
depth (although with a size bound). Essentially, instead of producing a secret
key for the desired functionality, we output a key for the function that com-
putes a randomized encoding of that functionality. A (computational) random-
ized encoding [IK00,AIK05] of an input-function pair RE(f, x) is, in a nutshell,
a representation of f(x) that reveals no information except f(x) on one hand,
but can be computed with less resources on the other (in our case, lower depth).
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To make the proof work, the Trojan thread will contain a precomputed RE(f, x0)
value, which will allow us to use the security property of the encoding scheme
and switch it to RE(f, x1). See Sect. 4 for details. We note that a similar approach
is used in [GHR+14] to achieve FE that works for RAM machines.

Relation to Dual-System Encryption. Our approach takes some resem-
blance to the “Dual-System Encryption” method of Waters [Wat09] and followup
works [LW10,LW12]. This method had been used to prove adaptive security for
Identity Based Encryption and Attribute Based Encryption, based on the hard-
ness of some problems on groups with bilinear-maps. In broad terms, in their
proof the distribution of the ciphertext is changed into “semi-functional” mode
in a way that is indiscoverable by an observer. A semi-functional ciphertext is
still decryptable by normal secret keys. Then, the secret-keys are modified into
semi-functional form, which is useless in decrypting semi-functional ciphertexts.
This is useful since in IBE and ABE, the challenge ciphertext is not supposed
to be decryptable by those keys given to the adversary. Still, a host of alge-
braic techniques are used to justify the adversary’s inability to produce other
semi-functional ciphertexts in addition to the challenge, which would foil the
reduction.

Our proof technique also requires changing the distributions of the keys
and challenge ciphertext. However, there are also major differences. Our mod-
ified ciphertext is not allowed to interact with properly generated secret keys,
and therefore the distinction between “normal” and “semi-functional” does not
fit here. Furthermore, in Identity Based and Attribute Based Encryption, the
attacker in the security game is not allowed to receive keys that reveal any infor-
mation on the message, which allows to generate semi-functional ciphertexts
that do not contain any information, whereas in our case, there is a structured
and well-defined output for any ciphertext and any key. This means that the
information required for decryption (which can be a-priori unbounded) needs
to be embedded in the keys. Lastly, our proof is completely generic and does
not rely on the algebraic structure of the underlying hardness assumption as in
previous implementations of this method.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x ← X the process of sampling a value
x from the distribution X. Similarly, for a set X we denote by x ← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). A function negl : N → R is negligible if
for any polynomial p(λ) it holds that negl(λ) < 1/p(λ) for all sufficiently large
λ ∈ N.
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2.1 Pseudorandom Functions and Symmetric Encryption

Pseudorandom Functions. We rely on the following standard notion of a
pseudorandom function family [GGM86], asking that a pseudorandom function
be computationally indistinguishable from a truly random function via oracle
access.

Definition 2.1. A family F =
{
PRFK : {0, 1}n → {0, 1}m : K ∈ K}

of
efficiently-computable functions is pseudorandom if for every PPT adversary
A there exists a negligible function negl(·) such that

∣∣∣∣ Pr
K←K

[
APRFK(·)(1λ) = 1

]
− Pr

R←U

[
AR(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where U is the set of all functions from {0, 1}n

to {0, 1}m.

We say that a pseudorandom function family F is implementable in NC1 if
every function in F can be implemented by a circuit of depth c · log(n), for
some constant c. We also consider the notion of a weak pseudorandom function
family, asking that the above definition holds for adversaries that may access
the functions on random inputs (that is, the oracles PRFK(·) and R(·) take no
input, and on each query they sample a uniform input r and output PRFK(r)
and R(r), respectively).

Symmetric Encryption with Pseudorandom Ciphertexts. A symmetric
encryption scheme consists of a tuple of PPT algorithms (Sym.Setup,Sym.Enc,
Sym.Dec). The algorithm Sym.Setup takes as input a security parameter λ in
unary and outputs a key KE . The encryption algorithm Sym.Enc takes as input
a symmetric key KE and a message m and outputs a ciphertext CT. The decryp-
tion algorithm Sym.Dec takes as input a symmetric key KE and a ciphertext CT
and outputs the message m.

In this work, we require a symmetric encryption scheme Π where the cipher-
texts produced by Sym.Enc are pseudorandom strings. Let OEncK(·) denote the
(randomized) oracle that takes as input a message m, chooses a random string r
and outputs Sym.Enc(Sym.K,m; r). Let R�(λ)(·) denote the (randomized) oracle
that takes as input a message m and outputs a uniformly random string of length
�(λ) where �(λ) is the length of the ciphertexts. More formally, we require that
for every PPT adversary A the following advantage is negligible in λ:

AdvsymPR
Π,A (λ) =

∣∣∣Pr[AOEncSym.K(·)(1λ) = 1
] − Pr

[AR�(λ)(·)(1λ) = 1
]∣∣∣

where the probability is taken over the choice of Sym.K ← Sym.Setup(1λ), and
over the internal randomness of A, OEnc and R�(λ).

We note that such a symmetric encryption scheme with pseudorandom
ciphertexts can be constructed from one-way functions, e.g. using weak pseudo-
random functions by defining Sym.Enc(K,m; r) = (r,PRFK(r) ⊕ m) (see [Gol04]
for more details).
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2.2 Public-Key Functional Encryption

A public-key functional encryption (FE) scheme ΠPub over a message space M =
{Mλ}λ∈N and a function space F = {Fλ}λ∈N is a tuple (Pub.Setup,Pub.KeyGen,
Pub.Enc,Pub.Dec) of PPT algorithms with the following properties:

– Pub.Setup(1λ): The setup algorithm takes as input the unary representation
of the security parameter, and outputs a public key MPK and a secret key
MSK.

– Pub.KeyGen(MSK, f): The key-generation algorithm takes as input a secret
key MSK and a function f ∈ Fλ, and outputs a functional key skf .

– Pub.Enc(MPK,m): The encryption algorithm takes as input a public key MPK
and a message m ∈ Mλ, and outputs a ciphertext CT.

– Pub.Dec(skf ,CT): The decryption algorithm takes as input a functional key
skf and a ciphertext CT, and outputs m′ ∈ Mλ ∪ {⊥}.

We say that such a scheme is defined for a complexity class C if it supports
all the functions that can be implemented in C. In terms of correctness, we
require that there exists a negligible function negl(·) such that for all sufficiently
large λ ∈ N, for every message m ∈ Mλ, and for every function f ∈ Fλ it
holds that Pr [Pub.Dec(Pub.KeyGen(MSK, f),Pub.Enc(MPK,m)) = f(m)] ≥ 1 −
negl(λ), where (MPK,MSK) ← Pub.Setup(1λ), and the probability is taken over
the random choices of all algorithms.

We consider the standard selective and adaptive indistinguishability-based
notions for functional encryption (see, for example, [BSW11,O’N10]). Intuitively,
these notions ask that encryptions of any two messages, m0 and m1, should
be computationally indistinguishable given access to functional keys for any
function f such that f(m0) = f(m1). In the case of selective security, adversaries
are required to specify the two messages in advance (i.e., before interacting with
the system). In the case of adaptive security, adversaries are allowed to specify
the two messages even after obtaining the public key and functional keys.2

Definition 2.2. (Selective Security). A public-key functional encryption
scheme Π = (Sel.Setup,Sel.KeyGen,Sel.Enc,Sel.Dec) over a function space F =
{Fλ}λ∈N and a message space M = {Mλ}λ∈N is selectively secure if for any
PPT adversary A there exists a negligible function negl(·) such that

AdvSelΠ,A(λ) =
∣∣∣Pr[ExptSelΠ,A(λ, 0) = 1] − Pr[ExptSelΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the exper-
iment ExptSelΠ,A(λ, b), modeled as a game between the adversary A and a chal-
lenger, is defined as follows:

1. Setup phase: The challenger samples (Sel.MPK,Sel.MSK) ← Sel.Setup(1λ).
2 Our notions of security consider a single challenge, and in the public-key setting

these are known to be equivalent to their multi-challenge variants via a standard
hybrid argument.
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2. Challenge phase: On input 1λ the adversary submits (m0,m1), and the
challenger replies with Sel.MPK and CT ← Sel.Enc(Sel.MPK,mb).

3. Query phase: The adversary adaptively queries the challenger with any func-
tion f ∈ Fλ such that f(m0) = f(m1). For each such query, the challenger
replies with Sel.skf ← Sel.KeyGen(Sel.MSK, f).

4. Output phase: The adversary outputs a bit b′ which is defined as the output
of the experiment.

Definition 2.3. (Adaptive Security). A public-key functional encryption
scheme Π = (Ad.Setup,Ad.KeyGen,Ad.Enc,Ad.Dec) over a function space F =
{Fλ}λ∈N and a message space M = {Mλ}λ∈N is adaptively secure if for any
PPT adversary A there exists a negligible function negl(·) such that

AdvAdΠ,A(λ) =
∣∣∣Pr[ExptAdΠ,A(λ, 0) = 1] − Pr[ExptAdΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the exper-
iment ExptAdΠ,A(1λ, b), modeled as a game between the adversary A and a chal-
lenger, is defined as follows:

1. Setup phase: The challenger samples (Ad.MPK,Ad.MSK) ← Ad.Setup(1λ),
and sends Ad.MPK to the adversary.

2. Query phase I: The adversary adaptively queries the challenger with any
function f ∈ Fλ. For each such query, the challenger replies with Ad.skf ←
Ad.KeyGen(Ad.MSK, f).

3. Challenge Phase: The adversary submits (m0,m1) such that f(m0) =
f(m1) for all function queries f made so far, and the challenger replies with
CT ← Ad.Enc(Ad.MSK,mb).

4. Query phase II: The adversary adaptively queries the challenger with any
function f ∈ Fλ such that f(m0) = f(m1). For each such query, the chal-
lenger replies with Ad.skf ← Ad.KeyGen(Ad.MSK, f).

5. Output phase: The adversary outputs a bit b′ which is defined as the output
of the experiment.

3 Our Transformation in the Public-Key Setting

In this section we present our transformation from selective security to adap-
tive security for public-key functional encryption schemes. In addition to any
selectively-secure public-key functional encryption scheme (see Definition 2.2),
our transformation requires a private-key functional encryption scheme that is
adaptively-secure for a single message query and many function queries. Based
on [GVW12,BS15], such a scheme can be based on any one-way function3.
3 Gorbunov et al. [GVW12] constructed a private-key functional encryption scheme

that is adaptively secure for a single function query and many message queries based
on any private-key encryption scheme (and thus based on any one-way function).
Any such scheme can be turned into a function private one using the generic trans-
formation of Brakerski and Segev [BS15], and then one can simply switch the roles of
functions and messages [AAB+13,BS15]. This results in a private-key scheme that
is adaptively secure for a single message query and many function queries.
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More specifically, we rely on the following building blocks (all of which are
implied by any selectively-secure public-key functional encryption scheme):

1. A selectively-secure public-key functional encryption scheme Sel = (Sel.Setup,
Sel.KeyGen,Sel.Enc,Sel.Dec).

2. An adaptively-secure single-ciphertext private-key functional encryption sch-
eme4 OneCT = (OneCT.Setup,OneCT.KeyGen,OneCT.Enc,OneCT.Dec).

3. A symmetric encryption scheme with pseudorandom ciphertexts SYM =
(Sym.Setup,Sym.Enc,Sym.Dec).

4. A pseudorandom function family F with a key space K.

Our adaptively-secure scheme Ad = (Ad.Setup,Ad.KeyGen,Ad.Enc,Ad.Dec)
is defined as follows.

– The setup algorithm: On input 1λ the setup algorithm Ad.Setup samples
(Sel.MPK,Sel.MSK) ← Sel.Setup(1λ), and outputs Ad.MPK = Sel.MPK and
Ad.MSK = Sel.MSK.

– The key-generation algorithm: On input the secret key Ad.MSK =
Sel.MSK and a function f , the key-generation algorithm Ad.KeyGen first sam-
ples CE ← {0, 1}�1(λ) and τ ← {0, 1}�2(λ) uniformly and independently. Then,
it computes and outputs Ad.skf = Sel.skG ← Sel.KeyGen(Sel.MSK, Gf,CE ,τ ),
where the function Gf,CE ,τ is defined in Fig. 1.

– The encryption algorithm: On input the public key Ad.MPK = Sel.MPK
and a message m, the encryption algorithm Ad.Enc first samples K ← Kλ and
OneCT.MSK ← OneCT.Setup(1λ). Then, it outputs CT = (CT0,CT1), where

CT0 ←OneCT.Enc(OneCT.MSK,m) and

CT1 ←Sel.Enc(Sel.MPK, (OneCT.MSK,K, 0λ, 0)).

– The decryption algorithm: On input a functional key Ad.skf = Sel.skG

and a ciphertext CT = (CT0,CT1), the decryption algorithm Ad.Dec first
computes OneCT.skf ← Sel.Dec(Sel.skG,CT1). Then, it computes m ←
OneCT.Dec(OneCT.skf ,CT0) and outputs m.

Gf,CE,τ (OneCT.MSK,K, Sym.K, β):

1. If β = 1 output OneCT.skf ← Sym.Dec(Sym.K, CE).
2. Otherwise, output OneCT.skf ← OneCT.KeyGen(OneCT.MSK, f ;PRFK(τ)).

Fig. 1. The function Gf,CE ,τ .

The correctness of the above scheme easily follows from that of its underlying
building blocks, and in the remainder of this section we prove the following
theorem:
4 That is, a private-key functional encryption scheme that is adaptively-secure for a

single message query and many function queries (as discussed above).
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Theorem 3.1. Assuming that: (1) Sel is a selectively-secure public-key func-
tional encryption scheme, (2) OneCT is an adaptively-secure single-ciphertext
private-key functional encryption scheme, (3) SYM is a symmetric encryption
scheme with pseudorandom ciphertexts, and (4) F is a pseudorandom function
family, then Ad is an adaptively-secure public-key functional encryption scheme.

Proof. We show that any PPT adversary A succeeds in the adaptive security
game (see Definition 2.3) with only negligible probability. We will show this in
a sequence of hybrids. The advantage of the adversary in Hybridi.b is defined
to be probability that the adversary outputs 1 in Hybridi.b and this quantity is
denoted by AdvA

i.b. For b ∈ {0, 1}, we define the following hybrids.

Hybrid1.b: This corresponds to the real experiment when the challenger encrypts
the message mb. More precisely, the challenger produces an encryption CT =
(CT0,CT1) where

CT0 ←OneCT.Enc(OneCT.MSK,m) and

CT1 ←Sel.Enc(Sel.MPK, (OneCT.MSK,K, 0λ, 0)).

Hybrid2.b: The challenger replaces the hard-coded ciphertext CE in every func-
tional key corresponding to a query f made by the adversary, with a symmetric
key encryption of OneCT.skf (note that each key has its own different CE).
Here, OneCT.skf is the output of OneCT.KeyGen(OneCT.MSK∗, f ;PRFK∗(τ))
and K∗ is a PRF key drawn from the key space K. Further, the symmet-
ric encryption is computed with respect to Sym.K∗, where Sym.K∗ is the
output of Sym.Setup(1λ) and τ is the tag associated to the functional key
of f . The same Sym.K∗ and K∗ are used while generating all the func-
tional keys, and K∗ is used for generating the challenge ciphertext CT∗ =
(CT∗

0,CT
∗
1) (that is, CT∗

0 ← OneCT.Enc(OneCT.MSK∗,mb) and CT∗
1 ←

Sel.Enc(Sel.MSK, (OneCT.MSK∗,K∗, 0λ, 0))). The rest of the hybrid is the same
as the previous hybrid, Hybrid1.b.

Note that the symmetric key Sym.K∗ is not used for any purpose other than
generating the values CE . Therefore, the pseudorandom ciphertexts property of
the symmetric scheme implies that Hybrid2.b and Hybrid1.b are indistinguishable.

Claim 3.2. Assuming the pseudorandom ciphertexts property of SYM, for each
b ∈ {0, 1} we have |AdvA

1.b − AdvA
2.b| ≤ negl(λ).

Proof. Suppose there exists an adversary such that the difference in the advan-
tages is non-negligible, then we construct a reduction that can break the security
of SYM. The reduction internally executes the adversary by simulating the role
of the challenger in the adaptive public-key FE game. It answers both the mes-
sage and the functional queries made by the adversary as follows. The reduc-
tion first executes OneCT.Setup(1λ) to obtain OneCT.MSK∗. It then samples
K∗ from K. Further, the reduction generates Sel.MSK, which is the output of
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Sel.Setup(1λ) and Sym.K∗, which is the output of Sym.Setup(1λ). When the
adversary submits a functional query f , the reduction first picks τ at ran-
dom. The reduction executes OneCT.KeyGen(OneCT.MSK∗, f ;PRF(K∗(τ))) to
obtain OneCT.skf . It then sends OneCT.skf to the challenger of the symmetric
encryption scheme. The challenger returns back with CE , where CE is either
a uniformly random string or it is an encryption of OneCT.skf . The reduction
then generates a selectively-secure FE functional key of Gf,CE ,τ and denote the
result by Sel.skG which is sent to the adversary. The message queries made
by the adversary are handled as in Hybrid1. That is, the adversary submits
the message-pair query (m0,m1) and the reduction sends CT∗ = (CT∗

0,CT
∗
1)

back to the adversary, where CT∗
0 = OneCT.Enc(OneCT.MSK∗,mb) and CT∗

1 =
Sel.Enc(Sel.MSK, (OneCT.MSK∗,K∗, 0λ, 0)).

If the challenger of the symmetric key encryption scheme sends a uniformly
random string back to the reduction every time the reduction makes a query
to the challenger then we are in Hybrid1.b, otherwise we are in Hybrid2.b. Since
the adversary can distinguish both the hybrids with non-negligible probability,
we have that the reduction breaks the security of the symmetric key encryption
scheme with non-negligible probability. From our hypothesis, we have that the
reduction breaks the security of the symmetric key encryption scheme with non-
negligible probability. This proves the claim. 
�

Hybrid3.b: The challenger modifies the challenge ciphertext CT∗ = (CT∗
0,CT

∗
1)

so that CT∗
1 is an encryption of (0λ, 0λ,Sym.K∗, 1). The ciphertext component

CT∗
0 is not modified (i.e., CT∗

0 = OneCT.Enc(OneCT.MSK∗,mb)). The rest of the
hybrid is the same as the previous hybrid, Hybrid2.b.

Note that the functionality of the functional keys generated using the under-
lying selectively-secure scheme is unchanged with the modified CT∗

1. Therefore,
its selective security implies that Hybrid3.b and Hybrid2.b are indistinguishable.

Claim 3.3. Assuming the selective security of Sel, for each b ∈ {0, 1} we have
|AdvA

2.b − AdvA
3.b| ≤ negl(λ).

Proof. Suppose the claim is not true for some adversary A, we construct a
reduction that breaks the security of Sel. Our reduction will internally execute
A by simulating the role of the challenger of the adaptive FE game.

Our reduction first executes OneCT.Setup(1λ) to obtain OneCT.MSK∗.
It then samples K∗ from K. It also executes Sym.Setup(1λ) to obtain
Sym.K∗. The reduction then sends the message pair

(
(OneCT.MSK∗,K∗, 0λ, 0),

(0λ, 0λ,Sym.K∗, 1)
)

to the challenger of the selective game. The challenger replies
back with the public key Sel.MPK and the challenge ciphertext CT∗

1. The reduc-
tion is now ready to interact with the adversary A. If A makes a functional
query f then the reduction constructs the circuit Gf,CE ,τ as in Hybrid2.b. It then
queries the challenger of the selective game with the function G and in return
it gets the key Sel.skG. The reduction then sets Ad.skf to be Sel.skG which it
then sends back to A. If A submits a message pair (m0,m1), the reduction exe-
cutes OneCT.Enc(OneCT.MSK∗,m0) to obtain CT∗

0. It then sends the ciphertext
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CT∗ = (CT∗
0,CT

∗
1) to the adversary. The output of the reduction is the output

of A.
We claim that the reduction is a legal adversary in the selective security

game of Sel, i.e., for challenge message query (M0 = (OneCT.MSK∗,K∗, 0λ, 0),
M1 = (0λ, 0λ,Sym.K∗, 1)) and every functional query of the form Gf,CE ,τ made
by the reduction, we have that Gf,CE ,τ (M0) = Gf,CE ,τ (M1): By definition,
Gf,CE ,τ (M0) is the functional key of f , with respect to key OneCT.MSK∗ and
randomness PRFK∗(τ). Further, Gf,CE ,τ (M1) is the decryption of CE which is
nothing but the functional key of f , with respect to key OneCT.MSK∗ and ran-
domness PRFK∗(τ). This proves that the reduction is a legal adversary in the
selective security game.

If the challenger of the selective game sends back an encryption of
(OneCT.MSK∗,K∗, 0λ, 0) then we are in Hybrid2.b else if the challenger encrypts
(0λ, 0λ,Sym.K∗, 1) then we are in Hybrid3.b. By our hypothesis, this means the
reduction breaks the security of the selective game with non-negligible probabil-
ity that contradicts the security of Sel. This completes the proof of the claim.

Hybrid4.b: For every function query f made by the adversary, the challenger
generates CE by executing Sym.Enc(Sym.K∗,OneCT.skf ), with OneCT.skf being
the output of OneCT.KeyGen(OneCT.MSK∗, f ;R), where R is picked at random.
The rest of the hybrid is the same as the previous hybrid.

Note that the PRF key K∗ is not explicitly needed in the previous hybrid,
and therefore the pseudorandomness of F implies that Hybrid4.b and Hybrid3.b

are indistinguishable.

Claim 3.4. Assuming that F is a pseudorandom function family, for each b ∈
{0, 1} we have |AdvA

3.b − AdvA
4.b| ≤ negl(λ).

Proof. Suppose the claim is false for some PPT adversary A, we construct a
reduction that internally executes A and breaks the security of the pseudoran-
dom function family F . The reduction simulates the role of the challenger of the
adaptive game when interacting with A. The reduction answers the functional
queries, made by the adversary as follows; the message queries are answered
as in Hybrid3.b (or Hybrid4.b). For every functional query f made by the adver-
sary, the reduction picks τ at random which is then forwarded to the chal-
lenger of the PRF security game. In response it receives R∗. The reduction
then computes CE to be Sym.Enc(Sym.K∗,OneCT.skf ), where OneCT.skf =
OneCT.KeyGen(OneCT.MSK∗, f ;R∗). The reduction then proceeds as in the pre-
vious hybrids to compute the functional key Ad.skf which it then sends to A.

If the challenger of the PRF game sent R∗ = PRFK∗(τ) back to the reduction
then we are in Hybrid3.b else if R∗ is generated at random by the challenger then
we are in Hybrid4.b. From our hypothesis this means that the probability that the
reduction distinguishes the pseudorandom value from random (at the point τ) is
non-negligible, contradicting the security of the pseudorandom function family.
�
We now conclude the proof of the theorem by showing that Hybrid4.0 is compu-
tationally indistinguishable from Hybrid4.1 based on the adaptive security of the
underlying single-ciphertext scheme.
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Claim 3.5. Assuming the adaptive security of the scheme OneCT, we have
|AdvA

4.0 − AdvA
4.1| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A, such that the claim is false. We
design a reduction B that internally executes A to break the adaptive security
of OneCT.

The reduction simulates the role of the challenger of the adaptive public-
key FE game. It answers both the functional as well as message queries made
by the adversary as follows. If A makes a functional query f then it forwards
it to the challenger of the adaptively-secure single-ciphertext FE scheme. In
return it receives OneCT.skf . It then encrypts it using the symmetric encryption
scheme, where the symmetric key is picked by the reduction itself, and denote the
resulting ciphertext to be CE . The reduction then constructs the circuit Gf,CE ,τ ,
with τ being picked at random, as in the previous hybrids. Finally, the reduction
computes the selective public-key functional key of Gf,CE ,τ , where the reduction
itself picks the master secret key of selective public-key FE scheme. The resulting
functional key is then sent to A. If A makes a message-pair query (m0,m1), the
reduction forwards this message pair to the challenger of the adaptive game. In
response it receives CT∗

0. The reduction then generates CT∗
1 on its own where

CT∗
1 is the selective FE encryption of (0λ, 0λ,Sym.K∗, 1). The reduction then

sends CT∗ = (CT∗
0,CT

∗
1) to A. The output of the reduction is the output of A.

We note that the reduction is a legal adversary in the adaptive game of
OneCT, i.e., for every challenge message query (m0,m1), functional query f ,
we have that f(m0) = f(m1): this follows from the fact that (i) the functional
queries (resp., challenge message query) made by the adversary (of Ad) is the
same as the functional queries (resp., challenge message query) made by the
reduction, and (ii) the adversary (of Ad) is a legal adversary. This proves that
the reduction is a legal adversary in the adaptive game.

If the challenger sends an encryption of m0 then we are in Hybrid4.0 and if
the challenger sends an encryption of m1 then we are in Hybrid4.1. From our
hypothesis, this means that the reduction breaks the security of OneCT. This
proves the claim. 
�

4 From Shallow Circuits to All Circuits

In this section we show that a functional encryption scheme that supports func-
tions computable by shallow circuits can be transformed into one that supports
functions computable by arbitrarily deep circuits. In particular, the shallow class
can be any class in which weak pseudorandom functions can be computed and
has some composition properties.5 For concreteness we consider here the class
NC1, which can compute weak pseudorandom functions under standard cryp-
tographic assumptions such as DDH or LWE (a lower complexity class such as
TC0 is also sufficient under standard assumptions). We focus here on private-key

5 Similarly to the class WEAK defined in [App14].
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functional encryption schemes, and note that an essentially identical transfor-
mation applies for public-key scheme.

While we present a direct reduction below, we notice that this property
can be derived from the transformation in Sect. 3, by recalling some properties
of Gorbunov et al.’s [GVW12] single-key functional encryption scheme. One
can verify that their setup algorithm can be implemented in NC1 (under the
assumption that it can evaluate weak pseudorandom functions), regardless of
the depth of the function being implemented. This property carries through
even after applying the function privacy transformation of Brakerski and Segev
[BS15]. Lastly, to implement our approach we need a symmetric encryption
scheme with decryption in NC1, which again translates to the evaluation of a
weak pseudorandom function [NR04,BPR12].

(Computational) Randomized Encodings [IK00,AIK05]. A (computa-
tional) randomized encoding scheme for a function class F consists of two PPT
algorithms (RE.Encode,RE.Decode). The PPT algorithm RE.Encode takes as
input (1λ, F, x, r), where λ is the security parameter, F : {0, 1}λ → {0, 1} is
a function in F , instance x ∈ {0, 1}λ and randomness r. The output is denoted
by F̂ (x; r). The PPT algorithm RE.Decode takes as input F̂ (x; r) and outputs
y = F (x).

The security property states that there exists a PPT algorithm RE.Sim
that takes as input (1λ, F (x)) and outputs SimOutF (x) such that any PPT
adversary cannot distinguish the distribution {F̂ (x; r)} from the distribution
{SimOutF (x)}. The following corollary is derived from applying Yao’s garbled
circuit technique using a weak PRF based encryption algorithm.

Corollary 4.1. Assuming a family of weak pseudorandom functions that can
be evaluated in NC1, there exists a randomized encoding scheme (RE.Encode,
RE.Decode) for the class of polynomial size circuits, such that RE.Encode is com-
putable in NC1.

Our Transformation. Let NCFE = (NCFE.Setup,NCFE.KeyGen,NCFE.Enc,
NCFE.Dec) be a private-key functional encryption scheme for the class NC1. We
assume that NCFE supports functions with multi-bit outputs, as otherwise it
is always possible to produce a functional key for each output bit separately.
We also use a pseudorandom function family denoted by F = {PRFK(·)}K∈K
and a symmetric encryption scheme SYM = (Sym.Setup,Sym.Enc,Sym.Dec).
We construct a private-key functional encryption scheme PFE = (PFE.Setup,
PFE.KeyGen,PFE.Enc,PFE.Dec) as follows.

– The setup algorithm: On input 1λ the algorithm PFE.Setup samples and
outputs MSK ← NCFE.Setup(1λ).

– The key-generation algorithm: On input the secret key MSK and a
circuit F , the algorithm PFE.KeyGen first samples CE ← {0, 1}�1(λ) and
τ ← {0, 1}λ uniformly and independently. Then, it computes a functional
key SKG ← NCFE.KeyGen(MSK,GF,CE ,τ ), where the function GF,CE ,τ is
defined in Fig. 2, and outputs SKG.
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– The encryption algorithm: On input the secret key MSK and a message
x, the algorithm PFE.Enc first samples KP ← {0, 1}λ, and then computes and
outputs C ← NCFE.Enc(MSK, (x,KP , 0λ, 0)).

– The decryption algorithm: On input a functional key SKF = SKG,
and a ciphertext C, the decryption algorithm PFE.Dec computes F̂ (x) ←
NCFE.Dec(SKG, C) and then outputs RE.Decode(F̂ (x)).

GF,CE,τ (x, KP , KE, β):

1. If β = 1 output Sym.DecKE
(CE).

2. Otherwise, output F̂ (x;PRFKP (τ)) = RE.Encode(F, x;PRFKP (τ)).

Fig. 2. The function GF,CE ,τ .

The correctness of the above scheme easily follows from that of its underlying
building blocks, and in the remainder of this section we provide a sketch for
proving the following theorem:

Theorem 4.2. Assuming that: (1) NCFE is a selectively-secure private-key
functional encryption scheme for NC1, (2) SYM is a symmetric encryption
scheme with pseudorandom ciphertexts whose decryption circuit is in NC1, (3)
PRF is a weak pseudorandom function family which can be evaluated in NC1, and
(4) (RE.Encode,RE.Decode) is a randomized encoding scheme with encoding in
NC1, then PFE is a selectively-secure private-key functional encryption scheme
for P .

Proof Sketch. The proof proceeds by a sequence of hybrids. For simplicity, we
consider the case when the adversary submits a single challenge pair (m0,m1),
and the argument can be easily generalized to the case of multiple challenges.

Hybrid0: This corresponds to the real experiment where the challenger sends an
encryption of m0 to the adversary.

Hybrid1: For every functional query F , the challenger replaces CE with a sym-
metric encryption Sym.Enc(KE , F̂ (m0;PRFKP

(t)) in the functional key for F . By
a sequence of intermediate hybrids (as many as the number of function queries),
Hybrid1 can be shown to be computationally indistinguishable from Hybrid0 based
on the pseudorandom ciphertexts property of the symmetric encryption scheme.

Hybrid2: The challenge ciphertext will consist of an encryption of (m0, 0,KE , 1)
instead of (m0,KP , 0λ, 0). This hybrid is computationally indistinguishable from
Hybrid1 by the security of the underlying functional encryption scheme.
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Hybrid3: For every function query F , the challenger replaces CE in all the func-
tional keys with Sym.Enc(KE , F̂ (m0; r)) for a uniform r. By a sequence of inter-
mediate hybrids (as many as the number of function queries), Hybrid3 can be
shown to be computationally indistinguishable from Hybrid2 based on the secu-
rity of PRF.

Hybrid4: Finally, for every function query F , the challenger replaces F̂ (m0; r) in
the ciphertext hardwired in the functional key for F by the simulated randomized
encoding RE.Sim(1λ, F (m0)). By a sequence of intermediate hybrids (as many
as the number of function queries), Hybrid4 can be shown to be computationally
indistinguishable from Hybrid3 based on the security of randomized encodings.
Note that the this hybrid does not depend on whether m0 or m1 was encrypted
since for all function queries F it holds that F (m0) = F (m1), and this proves
the security of PFE .
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Abstract. We propose the first construction for achieving adaptively
secure functional encryption (FE) for poly-sized circuits (without com-
plexity leveraging) from indistinguishability obfuscation (iO). Our reduc-
tion has polynomial loss to the underlying primitives. We develop a
“punctured programming” approach to constructing and proving sys-
tems where outside of obfuscation we rely only on primitives realizable
from pseudo random generators.

Our work consists of two constructions. Our first FE construction is
provably secure against any attacker that is limited to making all of its
private key queries after it sees the challenge ciphertext. (This notion
implies selective security.) Our construction makes use of an we intro-
duce called puncturable deterministic encryption (PDE) which may be
of independent interest. With this primitive in place we show a simple
FE construction.

We then provide a second construction that achieves adaptive secu-
rity from indistinguishability obfuscation. Our central idea is to achieve
an adaptively secure functional encryption by bootstrapping from a one-
bounded FE scheme that is adaptively secure. By using bootstrapping
we can use “selective-ish” techniques at the outer level obfuscation level
and push down the challenge of dealing with adaptive security to the one-
bounded FE scheme, where it has been already been solved. We combine
our bootstrapping framework with a new “key signaling” technique to
achieve our construction and proof. Altogether, we achieve the first con-
struction and proof for adaptive security for functional encryption.

1 Introduction

In traditional encryption systems a message, m, is encrypted with a particular
user’s public key PK. Later a user that holds the corresponding secret key will
be able to decrypt the ciphertext and learn the contents of the message. At
the same time any computationally bounded attacker will be unable to get any
additional information on the message.
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While this communication paradigm is appropriate for many scenarios such
as targeted sharing between users, there exist many applications that demand a
more nuanced approach to sharing encrypted data. For example, suppose that
an organization encrypts video surveillance images and stores these ciphertexts
in a large online database. Later, we would like to give an analyst the ability
to view all images that match a particular pattern such as ones that include a
facial image that pattern matches with a particular individual. In a traditional
encryptions system we would be forced to either give the analyst the secret key
enabling them to view everything or give them nothing and no help at all.

The concept of functional encryption (FE) was proposed to move beyond
this all or nothing view of decryption. In a functional encryption system a secret
key SKf is associated with a function f . When a user attempts to decrypt
a ciphertext CT encrypted for message m with secret key SKf , he will learn
f(m). The security of functional encryption states that an attacker that receives
keys for any polynomial number of functions f1, . . . , fQ should not be able to
distinguish between an encryption of m0,m1 as long as ∀i fi(m0) = fi(m1).

The concept of functional encryption first appeared under the guise of pred-
icate encryption [BW07,KSW08] with the nomenclature later being updated
[SW08,BSW11] to functional encryption. In addition, functional encryption has
early roots in Attribute-Based Encryption [SW05] and searching on encrypted
data [BCOP04].

A central challenge is to achieve functional encryption for as expressive
functionality classes as possible — ideally one would like to achieve it for
any poly-time computable function. Until recently, the best available was
roughly limited to the inner product functionality proposed by Katz, Sahai, and
Waters [KSW08]. This state of affairs changed dramatically with the introduc-
tion of a candidate indistinguishability obfuscation [BGI+12] system for all poly-
size circuits by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13]
(GGHRSW). The authors showed that a functional encryption system for any
poly-sized circuits can be built from an indistinguishability obfuscator plus pub-
lic key encryption and statistically simulation sound non-interactive zero knowl-
edge proofs.

Thinking of Adaptive Security. While the jump from inner product functional-
ity to any poly-size circuit is quite significant, one limitation of the GGHRSW
functional encryption system is that it only offers a selective proof of security
where the attacker must declare the challenge messages before seeing the parame-
ters of the FE system. Subsequently, Boyle, Chung and Pass [BCP14] proposed
an FE construction based on an obfuscator that is differing inputs secure. We
briefly recall that an obfuscator O is indistinguishability secure if it is compu-
tationally difficult for an attacker to distinguish between obfuscations O(C0)
and O(C1) for any two (similar sized) circuits that are functionally equivalent
(i.e. ∀x C0(x) = C1(x)). Recall, that differing inputs [BCP14,ABG+13] secu-
rity allows for an attacker to use circuits C0 and C1 that are not functionally
equivalent, but requires that for any PPT attacker that distinguishes between
obfuscations of the two circuits there must a PPT extraction algorithm that
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finds some x such that C0(x) �= C1(x). Thus, differing inputs obfuscation is
in a qualitatively different class of “knowledge definitions”. Furthermore, there
is significant evidence [GGHW14] that there exist certain functionalities with
auxiliary input that are impossible to build obfuscate under the differing inputs
definition.

Our goal is to build adaptively secure functional encryption systems from
indistinguishability obfuscation. We require that our reductions have polynomial
loss of security relative to the underlying primitives. (In particular, we want to
avoid the folklore complexity leveraging transformation of simply guessing the
challenge messages with an exponential loss.) In addition, we want to take a min-
imalist approach to the primitives we utilize outside of obfuscation. In particular,
we wish to avoid the use of additional “strong tools” such as non-interactive zero
knowledge proofs or additional assumptions over algebraic groups. We note that
our focus is on indistinguishability notions of functional encryption as opposed
to simulation definitions [BSW11,O’N10].

Our Results. In this work we propose two new constructions for achieving
secure functional encryption (for poly-sized circuits) from indistinguishability
obfuscation. We develop a “punctured programming” approach [SW14] to con-
structing and proving systems where our main tools in addition to obfuscation
are a selectively secure puncturable pseudo random functions. We emphasize
puncturable PRFs are themselves constructible from pseudo random genera-
tors [GGM84,BW13,BGI13,KPTZ13].

We start toward our FE construction which is provably secure against any
attacker that is limited to making all of its private key queries after it sees the
challenge ciphertext.1 While this is attacker is still restricted relative to a fully
adaptive attacker, we observe that such a definition is already stronger than the
commonly used selective restriction.

To build our system we first introduce an abstraction that we call punc-
turable deterministic encryption (PDE). The main purpose of this abstrac-
tion is to serve in some places as a slightly higher level and more convenient
abstraction to work with than puncturable PRFs. A PDE system is a symmet-
ric key and deterministic encryption scheme and consists of four algorithms:
SetupPDE(1λ),EncryptPDE(K,m), DecryptPDE(K,CT), and PuncturePDE

(K,m0,m1). The first three algorithms have the usual correctness semantics. The
fourth puncture algorithm takes as input a master key and two messages (m0,m1)
and outputs a punctured key that can decrypt all ciphertexts except for those
encrypted for either of the two messages — recall encryption is deterministic so
there are only two such ciphertexts. The security property of PDE is stated as
a game where the attacker gives two messages (m0,m1) to the attacker and then
returns back a punctured key as well as two ciphertexts, one encrypted under each
message. In a secure system no PPT attacker will be able to distinguish which
ciphertext is associated with which message.

1 This model has been called semi-adaptive in other contexts [CW14].
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Our PDE encryption mechanism is rather simple and is derived from the
hidden trigger mechanism from the Sahai-Waters [SW14] deniable encryption
scheme. PDE Ciphertexts are of the form:

CT = (A = F1(K1,m), B = F2(K2, A) ⊕ m).

where F1 and F2 are puncturable pseudo random functions, with F1 being an
injective function. Decryption requires first computing m′ = B ⊕ F2(K2, A) and
then checking that F1(K1,m

′) = A.2

With this tool in place we are now ready to describe our first construction.
The setup algorithm will first choose a puncturable PRF key K for function F .
Next, it will create the public parameters PP as an obfuscation of a program
called InitialEncrypt. The InitialEncrypt program will take in randomness
r and compute a tag t = PRG(r). Then it will output t and a PDE key k that is
derived from F (K, t). The encryption algorithm can use this obfuscated program
to encrypt as follows. It will simply choose a random value r ∈ {0, 1}λ, where λ
is the security parameter. It then runs the obfuscated program on r to receive
(t, k) and then creates the ciphertext CT as (t, c = EncryptPDE(k,m)).

The secret key SKf for a function f will be created as an obfuscated program.
This program will take as input a ciphertext CT = (t, c). The program first
computes k from F (K, t), then uses k to decrypt c to a message m and outputs
f(m). The decryption algorithm is simply to run the obfuscated program on the
ciphertext.

The proof of security of our first system follows what we can a “key-
programming” approach. The high level idea is that for each key we will hardwire
in the decryption response into each secret key obfuscated program for when the
input is the challenge ciphertext. For all other inputs the key computes decryp-
tion normally. Our key-programming approach is enabled by two important fac-
tors. First, in the security game there is a single challenge ciphertext so only
one hardwiring needs to be done per key. Second, since all queries come after
the challenge messages (m0,m1) are declared we will know where we need to
puncture to create our hardwiring.

Intuitively, our proof can be broken down into two high level steps. First, we
will perform a set of steps that allow us to hardwire the decryption answers to
all of the secret keys for the challenge ciphertext. Next, we use PDE security
to move from encrypting mb for challenge bit b ∈ {0, 1} to always encrypting
m0— independent of the bit b. (The actual proof contains multiple hybrids and
is more intricate.)

Handling Full Security. We now move to dealing with full security where we
need to handle private key queries on both sides of the challenge ciphertext. At
this point it is clear that relying only on key-programming will not suffice. First,
a pre-challenge ciphertext key for function f will need to be created before the
2 Despite sharing the term deterministic, our security definition of PDEs does not

have much in common with deterministic encryption [BFO08,BFOR08] which has a
central goal of hiding information among message distributions of high entropy.
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challenge messages (m0,m1) are declared, so it will not even be known at key
creation time what f(m0) = f(m1) will be.

Our central idea is to achieve an adaptively secure functional encryption by
bootstrapping from a one-bounded FE scheme that is adaptively secure. At a
high level a ciphertext is associated with a tag t and a private key with a tag y.
From the pair of tags (t, y) one can (with the proper key material) pseudoran-
domly derive a master secret key k for a one bounded FE system. The ciphertext
will be equipped with an obfuscated program, C, which on input of a key tag
y will generate the one bounded key k (associated with the pair (t, y)) and
then uses this to create an encryption of the message m under the one-bounded
scheme with key k. Likewise, the private key for functionality f comes equipped
with an obfuscated program Pf which on input of a ciphertext tag t derives the
one bounded secret key k and uses this to create a one-bounded secret key.

The decryption algorithm will pass the key tag y to the ciphertext program
to get a one bounded ciphertext CTOB and the ciphertext tag t to the key
program to get a one bound key SKOB. Finally, it will apply the one bounded
decryption algorithm as DecryptOB(CTOB,SKOB) to learn the message m. The
one bounded key and ciphertext are compatible since they are both derived
psuedorandomly from the pair (t, y) to get same one-bounded key k. (Note a
different pair (t′, y′) �= (t, y) corresponds to a different one bounded FE key k′

with high probability.)
Our bootstrapping proof structure allows us to develop “selective-ish” tech-

niques at the outer level since in our reductions the ciphertext and private key
tags can be chosen randomly ahead of time before the challenge message or any
private key queries are known. Then the challenge of dealing with adaptive secu-
rity is then “pushed down” to the one bounded FE scheme, where it has been
solved in previous work [GVW12].

In the description above we have so far omitted one critical ingredient. In
addition to generating a one bounded secret key on input t, the program Pf on
input t will also generate an encrypted signal a that is passed along with the
tag y to the ciphertext program C on decryption to let it know that it is “okay”
to generate the one-bounded ciphertext for the pair (t, y). In the actual use of
the system, this is the only functionality of the signal. However, looking ahead
to our proof we will change the signal encrypted to tell the program C to switch
the message for which it generates one bounded encryption encryptions of.

Our proof replaces key programming with a method we call “key-signaling”.
In a key-signaling system a normal ciphertext will be associated with a single
message m which we refer to as an α-message. The decryption algorithm will use
the secret key to prepare an α-signal for the ciphertext which will enable normal
decryption. However, the ciphertext can also have a second form in which it is
associated with two messages mα and mβ . The underlying semantics are that if
it receives an α-signal it uses mα and if it receives a β-signal it uses mβ .

These added semantics open up new strategy for proving security. In the
initial security game the challenge ciphertext encrypts mb for challenge bit b.
It will only receive α-signals from keys. Next we (indistinguishably) move the
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challenge ciphertext to encrypt mb as the α-message and m0 as the β-message.
All keys still send only α-signals. Now one by one we change each key to send
an β-signal to the challenge ciphertext as opposed to an α-signal. This step is
feasible since for any queried function f we must have that f(mb) = f(m0).
Finally, we are able to erase the message mb since no key is signaling for it.

Stepping back we can see that instead of storing the response of decryption
for the challenge ciphertext at each key, we are storing the fact that it is using
the second message in decryption.

We note that we can instantiate the one-bounded system using the construc-
tion of Gorbunov, Vaikuntanathan and Wee [GVW12] (GVW) who proved adap-
tive security of a public key FE 1-bounded scheme from IND-CPA secure public
key encryption. Since we actually only need master key encryption, we observe
that this can be achieved from IND-CPA symmetric key encryption. Thus, we
maintain our goal of not using heavy weight primitives outside of obfuscation.
One important fact is that the GVW scheme is proven to be 1-bounded adap-
tively secure regardless of whether the private key query comes before or after
the challenge ciphertext. We note that the GVW system actually allows for a
single key, but many ciphertexts; however, we only require security for a single
ciphertext. The actual proof of security requires several hybrid steps and we
defer further details to Sect. 5.

Recent Work. Recently, Garg, Gentry, Halevi, and Zhandry [GGHZ14a] showed
how to realize adaptively secure Attribute-Based Encryption from multilinear
graded encodings. It is based on U-graded encodings.

Subsequent to both of these works, the same authors [GGHZ14b] gave a con-
struction of Functional Encryption from multilinear encodings. This construc-
tion required a new multilinear encoding functionality of allowing the “encoding
grades” to be dynamically extended by any party using just the public parame-
ters. Their scheme crucially leverages this capability and is also reflected in the
assumption.

There are different tradeoffs between and pure indistinguishability obfusca-
tion approach and that used in [GGHZ14b]. On one hand the approach of
[GGHZ14b] allows one to directly get to mutlilinear encodings. On the other
hand the novel use of extensions of grades both gives a novel technical idea,
but possibly presents new risks. For example, there has been a flurry of recent
activity consisting of attacks and responses to certain candidate constructions
and assumptions of multilinear enocdings [CHL+14,BWZ14,GHMS14,CLT14].

If one reduces to indistinguishability obfuscation, it can potentially be real-
ized from different types of assumptions, including different forms of multilinear
encodings or potentially entirely different number theory. An interesting open
question is whether indistinguishability obfuscation or some close variant of it
can be reduced to a basic number theoretic assumption that does not rely on
sub exponential hardness. One interesting variant of this direction is to consider
different variations of iO that are more amenable to such proofs, but can be
leveraged in similar ways.
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Bootstrapping with a Flipped One-time FE Scheme. More recently, Ananth,
Brakerski, Segev and Vaikuntanathan [ABSV14] showed an eloquent adaptation
of our technique of bootstrapping from an adaptive 1-bounded scheme. Instead
of starting with the 1-bounded FE scheme of GVW, they use a simple transfor-
mation on GVW due Brakerski and Segev [BS14] and applying universal circuits
to create a flipped version of it. While the GVW scheme we used can handle a
single key and many ciphertexts, the flipped version does the opposite. It can
handle multiple keys, but only generating one ciphertext (this is done with secret
key encryption).

They go on to show that using the flipped version of one-bounded FE for
bootstrapping enables simplifications in the construction and proof. Instead of
having attaching an obfuscated program to the ciphertext to generate one-
bounded ciphertexts, the composite ciphertext contains a single 1-bounded
ciphertext. In addition, it has a separate (“trojan”) component that allows for
transmitting the 1-bounded secret key used create a ciphertext to a program on
the key side. Taken together the flipping and the trojan transmission allow for
the private key to consist of a selectively secure functional encryption system.

2 Functional Encryption

Definition 1 (Functional Encryption). A functional encryption scheme for
a class of functions F = F(λ) over message space M = M(λ) consists of four
algorithms FE = {Setup,KeyGen,Encrypt,Decrypt}:
Setup(1λ) – a polynomial time algorithm that takes the unary representation of

the security parameter λ and outputs public parameters PP and a master
secret key MSK.

KeyGen(MSK, f) – a polynomial time algorithm that takes as input the master
secret key MSK and a description of function f ∈ F and outputs a corre-
sponding secret key SKf .

Encrypt(PP, x) – a polynomial time algorithm that takes the public parameters
PP and a string x and outputs a ciphertext CT.

Decrypt(SKf ,CT) – a polynomial time algorithm that takes a secret key SKf

and ciphertext encrypting message m ∈ M and outputs f(m).

A functional encryption scheme is correct for F if for all f ∈ F and all
messages m ∈ M:

Pr[ (PP,MSK) ← Setup(1λ);

Decrypt(KeyGen(MSK, f),Encrypt(PP,m)) �= f(m) ] = negl(λ).

Indistinguishability Security for Functional Encryption. We describe
indistinguishability security as a multi-phased game between an attacker A and
a challenger.

Setup: The challengers runs (PP,MSK) ← Setup(1λ) and gives PP to A.
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Query Phase 1: A adaptively submits queries f in F and is given SKf ←
KeyGen(MSK, f). This step can be repeated any polynomial number of times
by the attacker.

Challenge: A submits two messages m0,m1 ∈ M such that f(m0) = f(m1) for
all functions f queried in the key query phase. The challenger then samples
CT∗ ← Encrypt(PP,mb) for the attacker.

Query Phase 2: A continues to issue key queries as before subject to the
restriction that any f queried must satisfy f(m0) = f(m1).

Guess: A eventually outputs a bit b′ in {0, 1}.

The advantage of an algorithm A in this game is AdvA = Pr[b′ = b] − 1
2 .

Definition 2. A functional encryption scheme is indistinguishability secure if
for all poly-time A the function AdvA(λ) is negligible.

Definition 3. In the above security game we define a post challenge ciphertext
attacker as one that does not make any key queries in Phase 1. We define a
functional encryption scheme to be post challenge ciphertext indistinguishability
secure if for any poly-time algorithm A that is a post challenge ciphertext attacker
the advantage of A is negligible in the indistinguishability security game.3

3 Puncturable Deterministic Encryption

In this section we define a primitive of puncturable deterministic encryption and
show how to build it from (injective) puncturable PRFs. The main purpose of
this abstraction is to give a slightly higher level tool (relative to puncturable
PRFs) to work with in our punctured programming construction and proofs.

Definition 4 (Puncturable Deterministic Encryption). A puncturable
deterministic encryption (PDE) scheme is defined over a message space
M = M(λ) and consists of four algorithms: (possibly) randomized algorithms
SetupPDE, and PuncturePDE along with deterministic algorithms EncryptPDE and
DecryptPDE. All algorithms will be poly-time in the security parameter.

SetupPDE(1λ) The setup algorithm takes a security parameter and uses its ran-
dom coins to generate a key K from a keyspace K.

EncryptPDE(K,m) The encrypt algorithm takes as input a key K and a message
m. It outputs a ciphertext CT. The algorithm is deterministic.

DecryptPDE(K,CT) The decrypt algorithm takes as input a key K and ciphertext
CT. It outputs either a message m ∈ M or a special reject symbol ⊥.

PuncturePDE(K,m0,m1) The puncture algorithm takes as input a key K ∈ K as
well as two messages m0,m1. It creates and outputs a new key K(m0,m1) ∈
K. The parentheses are used to syntactically indicate what is punctured.

3 We remark that any system that is post challenge ciphertext secure must also be
selectively secure.
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Correctness. A punctured deterministic encryption scheme is correct if there
exists a negligible function negl such that the following holds for all λ and all
pairs of messages m0,m1 ∈ M(λ).

Let K = SetupPDE(1λ) and K(m0,m1) ← PuncturePDE(K,m0,m1). Then for
all m �= m0,m1

Pr[DecryptPDE(K(m0,m1),EncryptPDE(K,m)) �= m] = negl(λ).

In addition, we have that for all m (including m0,m1)

Pr[DecryptPDE(K,EncryptPDE(K,m)) �= m] = negl(λ).

Definition 5. We say that a correct scheme is perfectly correct if the above
probability is 0 and otherwise say that it is statistically correct.

(Selective) Indistinguishability Security for Punctured Deterministic
Encryption. We describe indistinguishability security as a multi-phased game
between an attacker A and a challenger.

Setup: The attacker selects two messages m0,m1 ∈ M and sends these to
the challenger. The challenger runs K = SetupPDE(1λ) and K(m0,m1) =
PuncturePDE(K,m0,m1). It then chooses a random bit b ∈ {0, 1} and com-
putes

T0 = EncryptPDE(K,mb), T1 = EncryptPDE(K,m1−b).

It gives the punctured key K(m0,m1) as well as T0, T1 to the attacker.
Guess: A outputs a bit b′ in {0, 1}.

The advantage of an algorithm A in this game is AdvA = Pr[b′ = b] − 1
2 .

Definition 6. A puncturable deterministic encryption scheme is indistinguisha-
bility secure if for all poly-time A the function AdvA(λ) is negligible.

Sampling Master Keys. At times instead of running the SetupPDE(1λ) algorithm
to generate the master key for a PDE scheme we will generate the master key by
simply sampling a uniformly random string k ∈ {0, 1}λ where λ is the security
parameter. We can also do this without loss of generality.

In our full version [Wat14] we give a construction of puncturable deterministic
encryption puncturable PRFs. This follows the hidden triggers construction from
[SW14].

4 A Post Challenge Ciphertext Secure Construction

We now describe our construction for a functional encryption (FE) scheme that
is post challenge ciphertext secure. We let the message space M = M(λ) =
{0, 1}�(λ) for some polynomial function � and the function class be F = F(λ).
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We will use a puncturable PRF F (·, ·) such that when we fix the key K we
have that F (K, ·) takes in a 2λ bit input and outputs λ bits. In addition, we
use a puncturable deterministic encryption scheme (PDE) where the message
space M is the same as that of the (FE) system. In our PDE systems master
(non-punctured) keys are sampled uniformly at random from {0, 1}λ. Finally,
we use an indistinguishability secure obfuscator and a length doubling pseudo
random generator PRG : {0, 1}λ → {0, 1}2λ.

Our Construction. In our system the setup algorithm will produce an obfuscated
program P that serves as the public parameters. Encryption proceeds in two
steps. First the encryptor will choose a random string r and run P (r). The
obfuscated program will first use r to generate a tag t. Next the program will
apply a (puncturable) psuedorandom function on t with global key K to generate
a PDE key k. The program outputs both the tag t and PDE key k to the
encryptor. Finally, the encryptor will use k to perform an encryption of the
actual message m getting PDE ciphertext c. The (total) ciphertext CT consists
of the tag t and c. Intuitively, the ciphertext component c is the “core encryption”
of the message and the tag t tells how one can derive the PDE key k (if one knows
the system’s puncturable PRF key).

The authority generates a private key for function f as an obfuscated program
Pf . To decrypt a ciphertext CT = (t, c) the decrypt or simply runs Pf (t, c). The
obfuscated program will first generate the same PDE key k that was used to
encrypt the ciphertext.

We make two intuitive remarks about security. First, we note that the sys-
tem’s puncturable PRF key K only appears in obfuscated programs and not in
the clear. Second, it is not necessarily a problem perform the core encryption
of the message under a deterministic scheme. The reason is that the encryption
procedure implicitly chooses a fresh k so with high probability any single PDE
key should only be used once. (Clearly, performing a deterministic encryption
step more than once with the same key would be problematic.)

We now give our construction in detail.

Setup(1λ)
The setup algorithm first chooses a random punctured PRF key K ← KeyF (1λ)
and sets this as the master secret key MSK. Next it creates an obfuscation of the
program Initial-Encrypt as P ← iO(1λ, Initial-Encrypt:1[K]).4 (See Fig. 1)
This obfuscated program, P , serves as the public parameters PP.

Encrypt(PP = P (·),m ∈ M)
The encryption algorithm chooses random r ∈ {0, 1}λ. It then runs the obfus-
cated program P on r to get:

(t, k) ← P (r).

It then computes EncryptPDE(k,m) = c. The output ciphertext is CT = (t, c).
4 The program Initial-Encrypt:1 is padded to be the same size as Initial-
Encrypt:2.
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KeyGen(MSK, f ∈ F(λ)) The KeyGen algorithm produces an obfuscated pro-
gram Pf by obfuscating5

Pf ← iO(Key-Eval:1[K, f ]).

Decrypt(CT = (t, c),SK = Pf ) The decryption algorithm takes as input a cipher-
text CT and a secret key SK which is an obfuscated program Pf . It runs Pf (t, c)
and outputs the response.

Correctness. Correctness follows in a rather straightforward manner from the
correctness of the underlying primitives. We briefly sketch the correctness argu-
ment. Suppose we call the encryption algorithm for message m with randomness
r. The obfuscated program generates (t, k) = (PRG(r), F (K, t)). Then it creates
the ciphertext CT = (t, c = EncryptPDE(k,m)). Now let’s examine what occurs
when Decrypt(CT = (t, c),SKf = Pf ) is called where Pf was a secret key cre-
ated from function f . The decryption algorithm calls Pf (t, c). The (obfuscated)
program will compute the same PDE key k = F (K, t) as used to create the
ciphertext. Then it will use the PDE decryption algorithm and obtain m. This
follows via the correctness of the PDE scheme. Finally, it outputs f(m) which
is the correct output.

Initial-Encrypt:1

Constants: Puncturable PRF key K.
Input: Randomness r ∈ {0, 1}λ.

1. Let t = PRG(r).
2. Compute: k = F (K, t).
3. Output: (t, k).

Fig. 1. Program Initial-Encrypt:1

4.1 Proof of Security

Before delving into our formal security proof we give a brief overview with some
intuition. In our system a challenge ciphetext CT∗ will be a pair (t∗, c∗) of a tag
and PDE ciphertext. The first step of our proof is to use pseudorandom generator
security to (indetectably) move t∗ out of the set of tags T that might be generated
from the program P . (Note the set T corresponds to the possible outputs of the
pseudorandom generator.) This then enables us to perform multiple puncturing
and hardwiring steps detailed below. Eventually, instead deriving the PDE key
k∗ as F (K, t∗), it will be chosen uniformly at random. (Here k∗ is the PDE key
used in creating the challenge ciphertext.)
5 The program Key-Eval:1 (of Fig. 2) is padded to be the same size as Key-Eval:2.
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Key-Eval:1

Constants: PRF key K, function description f ∈ F .
Input: (t, c).

1. Compute: k = F (K, t).
2. Output f(DecryptPDE(k, c)). (If DecryptPDE(k, c) evaluates to ⊥

the program outputs ⊥.)

Fig. 2. Program Key-Eval:1

Furthermore, instead of putting the PDE key k∗ into the obfuscated programs
given out as keys we will put a punctured version k′. This punctured version is
can decrypt all ciphertexts except it cannot tell the difference between a PDE
encryption of the challenge message m0 from m1. However, by the rules of the
security game it must be the case that the bit df = f(m0) = f(m1) for any
queried private key function f . Therefore, an obfuscated program for private
key f can output df when either of the two PDE ciphertexts arises without
knowing which one is which. We note that the reduction knows which messages
(m0,m1) to puncture the PDE key k at since in this security game all keys are
given out after the challenge ciphertext is generated.

Finally, at this stage we can simply apply the PDE security game to argue
that the message is hidden. We note that the first steps of the proof have similar-
ities to prior programming puncturing proofs [SW14], but we believe the intro-
duction of and the way we utilize puncturable deterministic encryption are novel
to this construction. Details of our formal proof are in our full version [Wat14].

5 An Adaptively Secure Construction

We now describe our construction of a functional encryption (FE) scheme that is
adaptively secure. We let the message space M = {0, 1}�(λ) for some polynomial
function � and the function class be F(λ) = F .

We will use two puncturable PRFs F1, F2 such that when we fix the keys
K we have that F1(K, ·) takes in a 2λ bit input and outputs two bit strings
of length λ and F2(K, ·) takes λ bits to five bitstrings of length λ. In addition,
we use a puncturable deterministic encryption scheme where the message space
is {0, 1}λ. In our Puncturable PRF and PDE systems master keys are sampled
uniformly at random from {0, 1}λ. Finally, we use an indistinguishability secure
obfuscator and an injective length doubling pseudo random generator PRG :
{0, 1}λ → {0, 1}2λ.

Finally, we use a one-bounded secure functional encryption system with mas-
ter key encryption consisting of algorithms: KeyGenOB,EncryptOB,DecryptOB.
We assume without loss of generality that the master key is chosen uniformly
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from {0, 1}λ. The message space M and key description space f ∈ F of the one
bounded scheme is the same as the scheme we are constructing.

Our Construction. Our construction achieves an adaptively secure functional
encryption by bootstrapping from a one-bounded FE scheme that is adaptively
secure. At a high level a ciphertext is associated with a tag t and a private key
with a tag y. From the pair of tags (t, y) one can (with the proper key material)
pseudorandomly derive a master secret key k for a one bounded FE system.
The ciphertext will be equipped with an obfuscated program, C, which on input
of a key tag y will generate the one bounded key k (associated with the pair
(t, y)) and then uses this to create an encryption of the message m under the
one-bounded scheme with key k. Likewise, the private key for functionality f
comes equipped with an obfuscated program Pf which on input of a ciphertext
tag t derives the one bounded secret key k and uses this to create a one-bounded
secret key.

The decryption algorithm will pass the key tag y to the ciphertext program
to get a one bounded ciphertext CTOB and the ciphertext tag t to the key
program to get a one bound key SKOB. Finally, it will apply the one bounded
decryption algorithm as DecryptOB(CTOB,SKOB) to learn the message m. The
one bounded key and ciphertext are compatible since they are both derived
psuedorandomly from the pair (t, y) to get same one-bounded key k. (Note a
different pair (t′, y′) �= (t, y) corresponds to a different one bounded FE key k′

with high probability.)
Our bootstrapping proof structure allows us to develop “selective-ish” tech-

niques at the outer level since in our reductions the ciphertext and private key
tags can be chosen randomly ahead of time before the challenge message or any
private key queries are known. Then the challenge of dealing with adaptive secu-
rity is then “pushed down” to the one bounded FE scheme, where it has been
solved in previous work [GVW12].

In the description above we have so far omitted one critical ingredient. In
addition to generating a one bounded secret key on input t, the program Pf on
input t will also generate an encrypted signal a that is passed along with the
tag y to the ciphertext program C on decryption to let it know that it is “okay”
to generate the one-bounded ciphertext for the pair (t, y). In the actual use of
the system, this is the only functionality of the signal. However, looking ahead
to our proof we will change the signal encrypted to tell the program C to switch
the message for which it generates one bounded encryption encryptions of.

Setup(1λ)
The algorithm first chooses a random punctured PRF key K ← KeyF1

(1λ)
which is set as the master secret key MSK. Next it creates an obfuscation of the
program Initial-Encrypt as P ← iO(1λ, Initial-Encrypt:1[K]).6

Encrypt(PP = P (·),m ∈ M)
The encryption algorithm performs the following steps in sequence.
6 The program Initial-Encrypt:1 is padded to be the same size as Initial-
Encrypt:2.) This obfuscated program, P serves as the public parameters PP.
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1. Chooses random r ∈ {0, 1}λ.
2. Sets (t,Kt, α) ← P (r).
3. Sets α̃ = PRG(α).
4. Creates the program C ← iO(1λ,CT-Eval:1[Kt, α̃,m]).7

5. The output ciphertext is CT = (t, C).

KeyGen(MSK, f ∈ F(λ))
The KeyGen algorithm first chooses a random y ∈ {0, 1}λ. It next produces an
obfuscated program Pf by obfuscating Pf ← iO(Key-Signal:1[K, f, y]).8

The secret key is SK = (y, Pf ).

Decrypt(CT = (t, C),SK = (y, Pf ))
The decryption algorithm takes as input a ciphertext CT = (t, C) and a secret
key SK = (y, Pf ). It first computes (a,SKOB) = Pf (t). Next it computes
CTOB = C(a, y). Finally, it will use the produced secret key to decrypt the
produced ciphertext as DecryptOB(CTOB,SKOB) and outputs the result.

Correctness. We briefly sketch a correctness argument. Consider a cipher-
text CT = (t, C) created for message m that is associated with tag t and
a key for function f that is associated with tag y. On decryption the algo-
rithm first calls (a,SKOB) = Pf (t). Here the obfuscated program computes:
(Kt, α) = F1(K, t), (d, k, s1, s2, s3) = F2(Kt, y), and a = EncryptPDE(d, α) and
SKOB = KeyGenOB(k, f ; s2).

Next, it calls CTOB = C(a, y), where C was generated as an obfuscation
of program CT-Eval:1[Kt, α̃,m] where α̃ = PRG(α). This obfuscated program
will compute the same values of (d, k, s1, s2, s3) = F2(Kt, y) as the key signal pro-
gram. By correctness of the PDE system we will have that DecryptPDE(d, a) = α
and thus the program will output EncryptOB(k,m; s1). At this point the decryp-
tion algorithm has a one bounded private key for function f and a one bounded
ciphertext for message m both created under the same master key k. Therefore,
running the one-bounded decryption algorithm will produce f(m) (Figs. 3, 4
and 5).

5.1 Proof of Security

Before delving into our formal security proof we will give a brief intuitive
overview of its structure and sequence of games steps. In the first steps of our
sequence of games proof we will use pseudorandom generator security to (inde-
tectably) move t∗ out of the set of tags T that might be generated from the
program P .9 Then we use use puncturing techniques to remove the key mate-
rial, K∗

t∗ , associated with t∗ from the obfuscated program given in the public
parameters. In addition, the proof will hardwire in the response of all private
7 The program CT-Eval:1 is padded to be the same size as the maximum of CT-
Eval:2 and CT-Eval:3.

8 The program Key-Signal:1 is padded to be the same size as Key-Signal:2.
9 Note the set T corresponds to the possible outputs of the pseudorandom generator.
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Initial-Encrypt:1

Constants: Puncturable PRF key K.
Input: Randomness r ∈ {0, 1}λ.

1. Let t = PRG(r).
2. Compute (Kt, α) = F1(K, t).
3. Output: (t, Kt, α).

Fig. 3. Program Initial-Encrypt:1

CT-Eval:1

Constants: PRF key Kt, α̃ ∈ {0, 1}2λ, message m ∈ M.
Input: PDE ciphertext a and value y ∈ {0, 1}λ.

1. Compute (d, k, s1, s2, s3) = F2(Kt, y).
2. Compute e = DecryptPDE(d, a).
3. If PRG(e) = α̃ output EncryptOB(k, m; s1).
4. Else output a rejecting ⊥.

Fig. 4. Program CT-Eval:1

Key-Signal:1

Constants: PRF key K, function description f ∈ F , tag y ∈ {0, 1}λ.
Input: t ∈ {0, 1}2λ.

1. Compute (Kt, α) = F1(K, t).
2. Compute (d, k, s1, s2, s3) = F2(Kt, y).
3. Compute and output a = EncryptPDE(d, α) and SKOB =

KeyGenOB(k, f ; s2).

Fig. 5. Program Key-Signal:1

keys Pf1 , . . . , PfQ
to the input of t∗, where Q is the number of queries issued.

These actions are covered in moving from Game 1 to Game 5.
In the next grouping of steps we will introduce a second alternative message

m0 into the challenge ciphertext program C∗ to go along with the message mb

for b ∈ {0, 1}. The behavior of the obfuscated program is now (by Game 7) such
that if C∗ receives an an “α-signal” as input it will output a one-bounded FE
encryption of mb and if it receives a “β-signal” it will output a one-bounded FE
encryption of m0. However, the private key programs Pfi

are only set to generate
α signals. Before this grouping of steps was executed only α-signals existed.

Subsequently, each private key program Pf is transformed one by one such
that they are programmed to send out β-signals upon receiving the tag t∗.
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When used in decryption this will cause the challenge ciphertext to output one
time encryptions of m0 instead of m1. Intuitively, this is undetectable because
f(mb) = f(m0) for all private key functions f that can legally be requested.
Executing this transformation requires multiple sub steps and is the most com-
plex piece of the proof. It is also where the security one bounded FE scheme is
invoked.

Finally, after the above transformations are made we are able to execute two
final cleanup steps that remove the message mb from the ciphertext program
C∗. At this point all information about the bit b is removed from the challenge
ciphertext and the advantage of any attacker is 0.

Theorem 1. The above functional encryption scheme is adaptively secure if
instantiated with a secure punctured PRF, puncturable deterministic encryption
scheme, pseudo random generator, an adaptively secure one-bounded functional
encryption scheme and indistinguishability secure obfuscator.

To prove the above theorem, we first define a sequence of games where the first
game is the original FE security game. We begin by with describing Game 1
in detail, which is the adaptive FE security game instantiated with our con-
struction. From there we describe the sequence of games, where each game is
described by its modification from the previous game.

In the main body we describe the proof hybrid structure. In our full ver-
sion [Wat14] we provide the lemmas showing that any poly-time attacker’s
advantage in each game must be negligibly close to that of the previous game
(based on the security of different primitives).

Game 1 The first game is the original security game instantiated for our con-
struction.

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the chal-

lenge bit b ∈ {0, 1}.
2. Challenger chooses random r∗ ∈ {0, 1}λ and computes t∗ = PRG(r∗).
3. Challenger computes K∗

t∗ , α∗ = F1(K, t∗).
4. Challenger sets α̃∗ = PRG(α∗).
5. Challenger creates P ← iO(1λ, Initial-Encrypt:1[K]) and passes P to

attacker.
6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

Choose random yj ∈ {0, 1}λ. Generate the j-th private key by computing
Pfj

← iO(Key-Signal:1[K, fj , yj ]). Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈ M to challenger.
8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗

t∗ , α̃∗,mb]).
9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.
11. The attacker gives a bit b′ and wins if b′ = b.

Game 2
2. Challenger chooses random t∗ ∈ {0, 1}2λ.
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Game 3
2. Challenger chooses random t∗ ∈ {0, 1}2λ and sets K(t∗) = PunctureF (K, t∗).
5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to

attacker.

Game 4
6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.
(b) Compute (d∗

j , k
∗
j , s∗

1,j , s
∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) Compute a∗
j = EncryptPDE(d∗

j , α
∗) and SK∗

OB,j = KeyGenOB(k∗
j , fj ; s∗

2,j).
(d) Compute Pfj ← iO(Key-Signal:2[K(t∗), t∗, a∗

j , SK∗
OB,j , fj , yj ]).

(e) Output the key as (yj , Pfj
).

10. Phase 2 Queries: Same as Phase 1 in step 6. (These are also changed as
described above.)

Game 5
3. Challenger chooses random K∗

t∗ , α∗.

Game 6
4. Challenger sets α̃∗ = PRG(α∗) and chooses random β̃∗ ∈ {0, 1}2λ.
8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:2[K∗

t∗ , α̃∗, β̃∗, mb, m0]).

Game 7
4. Challenger sets α̃∗ = PRG(α∗), chooses β∗ ∈ {0, 1}λ at random and
sets β̃∗ = PRG(β∗).

Game 8, i Defined for i = 0 to Q. (Q is number of key queries.)

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.
(a) Choose random yj ∈ {0, 1}λ.
(b) Compute (d∗

j , k
∗
j , s∗

1,j , s
∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i then set a∗
j = EncryptPDE(d∗

j , α
∗); otherwise if j ≤ i set a∗

j =
EncryptPDE(d∗

j , β
∗).

Let SK∗
OB,j = KeyGenOB(k∗

j , fj ; s∗
2,j).

(d) Compute Pfj ← iO(Key-Signal:2[K(t∗), t∗, a∗
j , SK∗

OB,j , fj , yj ]).
(e) Output the key as (yj , Pfj

).

Game 9
4. Challenger chooses α̃∗ ∈ {0, 1}2λ at random, chooses β∗ ∈ {0, 1}λ at random

and sets β̃∗ = PRG(β∗).
6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.
(b) Compute (d∗

j , k
∗
j , s∗

1,j , s
∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) Set a∗
j = EncryptPDE(d∗

j , β
∗). Let SK∗

OB,j = KeyGenOB(k∗
j , fj ; s∗

2,j).
(d) Compute Pfj

← iO(Key-Signal:2[K(t∗), t∗, a∗
j , SK∗

OB,j , fj , yj ]).
(e) Output the key as (yj , Pfj

).
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Initial-Encrypt:2

Constants: Puncturable PRF key K(t∗).
Input: Randomness r.

1. Let t = PRG(r).
2. Compute (Kt, α) = F1(K(t∗), t).
3. Output: (t, Kt, α).

Fig. 6. Program Initial-Encrypt:2

Key-Signal:2

Constants: PRF key K(t∗), t∗, a∗, SK∗
OB, function description f , tag

y ∈ {0, 1}λ.
Input: t ∈ {0, 1}2λ.

1. If t = t∗ output a∗, SK∗
OB.

2. Compute (Kt, α) = F1(K(t∗), t).
3. Compute (d, k, s1, s2, s3) = F2(Kt, y).
4. Compute and output a = EncryptPDE(d, α) and SKOB =

KeyGenOB(k, f ; s2)

Fig. 7. Program Key-Signal:2

CT-Eval:2

Constants: PRF key Kt, α̃, β̃ ∈ {0, 1}2·λ, messages m, mfixed ∈ M.
Input: (a, y).

1. Compute (d, k, s1, s2, s3) = F2(Kt, y).
2. Compute e = DecryptPDE(d, a).
3. If PRG(e) = α̃ output EncryptOB(k, m; s1).
4. If PRG(e) = β̃ output EncryptOB(k, mfixed; s3).
5. Else output a rejecting ⊥.

Fig. 8. Program CT-Eval:2

Game 10
8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗

t∗ , β̃∗, m0]).

We observe at this stage the interaction with the challenger is completely
independent of b — note the message m0 is encrypted regardless of b — and
thus the attacker’s advantage is 0 in this final game (Figs. 6, 7 and 8).
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Abstract. Correlated secret randomness is an essential resource for
information-theoretic cryptography. In the context of secure two-party
computation, the high level of efficiency achieved by information-
theoretic protocols has motivated a paradigm of starting with corre-
lated randomness, specifically random oblivious transfer (OT) correla-
tions. This correlated randomness can be generated and stored during
an offline preprocessing phase, long before the inputs are known. But
what if some information about the correlated randomness is leaked to
an adversary or to the other party? Can we still recover “fresh” corre-
lated randomness after such leakage has occurred?

This question is a direct analog of the classical question of privacy
amplification, which addresses the case of a shared random secret key, in
the setting of correlated random secrets. Remarkably, despite decades of
study of OT-based secure computation, very little is known about this
question. In particular, the question of how much leakage is tolerable
when recovering OT correlations has remained wide open. In our work,
we resolve this question.

Prior to our work, the work of Ishai, Kushilevitz, Ostrovsky, and
Sahai (FOCS 2009) obtained an initial feasibility result, tolerating only
a tiny constant leakage rate. In our work, we show that starting with n
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random OT correlations, where each party holds 2n bits, up to (1 − ε)n
2

bits of leakage are tolerable. This result is optimal, by known negative
results on OT combiners.

We then ask the same question for other correlations: is there a cor-
relation that is more leakage-resilient than OT correlations, and also
supports secure computation? We answer in the affirmative, by showing
that there exists a correlation that can tolerate up to 1/2 − ε fractional
leakage, for any ε > 0 (compared to the optimal 1/4 fractional leakage
for OT correlations).

1 Introduction

Secure two-party computation [17,39] allows two mutually distrusting parties
to perform secure computation using their private inputs without revealing any
extra information to each other. It is known that even against semi-honest adver-
saries, i.e. adversaries who follow the prescribed protocol but are curious to
find additional information, achieving information theoretic security in the plain
model is impossible for most tasks [2,3,27,29,30]. For example, even the seem-
ingly simple task of securely computing the AND of two bits is not possible. On
the other hand, if suitable correlated randomness is provided as setup to the
parties, then general secure two-party computation becomes possible [8,26,28].
A particularly useful type of correlated randomness is the random oblivious
transfer (OT) correlation, where the sender gets two random bits (s0, s1) and
the receiver gets (c, sc), where c is a random bit.

One reason for the usefulness of OT correlations is the existence of highly
efficient OT-based secure computation protocols both in theory and in practice.
Indeed, protocols such as TinyOT [35] have popularized the approach of start-
ing with random bit OT correlations for obtaining practically efficient secure
computation protocols. Random OT correlations can be distributed or securely
generated in an offline phase, long before the inputs are known, and later used
in an online phase to perform a desired secure computation. But what if some
information about the correlated randomness is leaked to an adversary? Can we
still extract “fresh” correlated randomness after such leakage has occurred?

This question is a direct analog of the classical question of privacy amplifi-
cation [4,5] that arose in the context of secure communication. Privacy ampli-
fication asks the following question: given shared secret randomness which has
been partially leaked to an eavesdropper, can parties agree upon a common
key which remains hidden from the eavesdropper? In our setting, we ask the
same question for correlated randomness, which is useful for secure computation.
Note, however, that participants in a privacy amplification protocol protect their
secret only from an outsider. Instead, in our setting, each party must protect its
secrets against the other party. For example, a fresh oblivious transfer correla-
tion ensures that the bit c is hidden from the sender and the bit s1−c is hidden
from the receiver.

Quite surprisingly, very little is known about our question. This is in sharp
contrast to the problem of privacy amplification, and despite decades of study of
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OT-based secure computation. In particular, the question of how much leakage
can be tolerated when recovering OT correlations has remained wide open. In
our work, we resolve this question.

Prior to our work, Ishai, Kushilevitz, Ostrovsky and Sahai [24] studied this
question, introducing the notion of correlation extractors. Concretely, they con-
sider the setting of extracting fresh OT correlations from n independent copies
of random OT correlations that have been subject to leakage. (One can either
consider a deterministic leakage, captured by an arbitrary function f with t
bits of output, or general probabilistic leakage, subject to the constraint that
the secret has expected min-entropy of t bits conditioned on the leakage.) The
main result of [24] is an interactive protocol for extracting OT correlations that
remains secure even when some constant fraction of the 2n secret bits of each
party can be leaked to the other party. Unfortunately, the concrete fractional
leakage tolerated by this protocol is extremely small, approximately 10−7. So,
at best, this result serves as a proof of concept.

Since their work in 2009, there has not been any progress on this problem.
In our work, we show that given n OT correlations as setup, one can tolerate
(1 − ε)n/2 bits of leakage, for an arbitrarily small constant ε > 0, with negli-
gible error. This leakage rate is near-optimal [25]. Moreover, in contrast to the
previous protocol of [24], our protocol uses a minimal amount of interaction,
requiring only two messages as opposed to the 4 messages that are inherently
required by the technique from [24]. Finally, our protocol is conceptually simpler,
completely avoiding the use of Algebraic-Geometric codes [16,19] needed in [24]
and replacing them with simple families of binary linear codes.

Having settled the question of leakage-resilience for OT correlations, we then
step back, and consider the question more broadly. While OT correlations are
extremely useful and have a long history of applicability, perhaps there are other
correlations that are better with respect to leakage-resilience, and still allow for
secure computation. More precisely, we ask if there are correlations (X,Y ) such
that both parties receive 2n bits but where even after greater than n/2 bits of
leakage, it is still possible to produce fresh secure OT correlations. We answer this
question in the affirmative. We show that the so-called inner product correlation,
where parties receive random binary vectors and additive shares of their inner
product, can tolerate a significantly higher fractional leakage. Concretely, we
show how to extract a fresh OT from such an inner product correlation while
tolerating up to 1/2−ε fractional leakage, for any ε > 0 (compared to the optimal
leakage rate of 1/4 for OT correlations). This opens up a new set of questions
to explore in future work (for more discussion refer to the full version of the
paper [20]).

Finally, we note that while the primary focus of this work is on the
information-theoretic setting for secure computation, the problem we consider
is well motivated even in the setting of computational security. The reason is
twofold. First, the fresh OTs produced by our extraction procedures can be used
by computationally secure OT-based protocols such as those based on garbled
circuits [39]. Second, these extraction procedures can be applied even when a
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computationally secure protocol is used for realizing the offline generation of
correlated randomness. Suppose that a computationally secure two-party pro-
tocol Π is used for this purpose. If the leakage occurs after the execution of Π
terminates (and the two parties erase everything but the output), then our pro-
tocols are guaranteed to produce clean OTs that can be consumed by subsequent
(computational or information-theoretic) protocols. Moreover, if Π is so-called
“leakage-tolerant” [6,7,21], then the same holds even if leakage can occur during
the execution of Π. Such leakage-tolerant protocols can be constructed under
standard intractability assumptions.

1.1 Our Contribution

In this section we give a more detailed overview of our main results.

Oblivious Transfer Correlation Extractor. We present our results in the
terminology of “random oblivious transfer extractors.” A random oblivious
transfer (ROT) is a two party primitive where client S receives random bits
(s0, s1); and the client R receives random bit c and sc. Random oblivious trans-
fer correlations can be easily converted into standard oblivious transfers, where
a receiver R selects one of two bits held by a sender S. The latter can serve as
a basis for general secure multiparty computation.

More concretely, Oblivious Transfer (OT) is a two-party functionality where
client S (sender) has inputs (s0, s1), client R (receiver) has input c, and client
R obtains output sc. A Random OT correlation, referred to as ROT, provides
(s0, s1) to one party and (c, sc) to the other party, where s0, s1, c are uniform
random bits. We work in the ROTn-hybrid model, that is, there are n copies of
ROT correlation provided to the two parties. A semi-honest client S can leak
tS bits from the correlation and a semi-honest client R can leak tR bits from
the correlation, where by default we define t bits of leakage as the output of
an adversarially chosen function with t output bits. (However, all of our results
extend to leakage measured in terms of average conditional min-entropy.) An
(n, tS , tR, ε) OT extractor is a two-party protocol between client S and client
R such that it produces a (1 − ε)-secure copy of oblivious transfer despite prior
leakage obtained by the clients.

Our first result shows the following feasibility result:

Theorem 1 (OT Extractor). For any n, tS , tR ∈ N, there exists a 2-message
(n, tS , tR, ε) OT Extractor protocol which produces a secure OT, such that ε ≤
2−(g/4)+1 where g := n − (tS + tR).

Note that our result shows that if there is sufficient gap between n and the
total leakage (tS + tR), then we can securely extract one oblivious transfer.
Further, the simulation error decreases exponentially in the gap. For example,
tS = tR = 0.49n leakage tolerant extractors exist by our result. Contrast this to
the result of [24] who can tolerate leakage up to cn bits of leakage where c is a
minuscule small constant. Thus, ours is the first feasibility result in the regime
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of high leakage tolerance. Moreover, our leakage resilience is (near) optimal due
to the negative result of [25]. The negative result states that there does not exist
any OT combiner (let alone an extractor) which can tolerate up to n/2 − O(1)
bits of leakage. Our protocol also improves upon the round complexity of [24]
from 4 messages to 2 messages, which are clearly necessary.

We show that if the gap g = n − (tS + tR) is at least cn, for some constant
c ∈ (0, 1), then we can trade off simulation error and increase the production rate
of our extractor. That is, in the leaky ROTn hybrid, we can produce large number
of secure independent copies of oblivious transfer. Our result is summarized in
the following theorem:

Theorem 2 (High Production). For every n, tS , tR ∈ N, such that g =
n − (tS + tR) = Θ(n), and ρ = ω(log n), there exists a 2-message (n, tS , tR) OT
Extractor with production p = n/ρ and ε ≤ negl(n).

Intuitively, this theorem states that if the gap is linear in n then we can obtain
slightly sub-linear number of secure oblivious transfers while incurring negligible
security error. Although our production rate is sub-constant, we show that it is
possible to extract large number of secure oblivious transfers even if parties are
permitted to perform tS = tR = 0.49n bits of leakage. Contrasting this with
the result of [24], for practical and typical n the number of oblivious transfers
produced in our scheme surpasses the number of oblivious transfers produced
in their protocol. Because their production rate, although linear, is a very small
constant; even a generous estimate of the rate of production puts it below 1.2 ·
10−7. The hidden constant in our asymptotic production rate is small, say upper
bounded by 10−1. So, in concrete terms, our production rate is ∼ (g/n)/10 log2 n,
which is higher than the rate achieved by [24] for a practical range of parameters
(we use ρ = log2 n to derive this bound). An obvious open problem is to explore
whether our approach can be extended to achieve the ideal goal of producing
a linear number of secure OTs even if the gap is an arbitrarily small linear
function of n.

Overall, our construction significantly simplifies the prior construction of [24]
at a conceptual level by forgoing usage of Algebraic Geometric [16,19] codes and
instead relying on binary linear codes generated by generator matrices whose
parity check matrices are random Toeplitz matrices.

Unlike [24], we do not achieve constant (multiplicative) communication over-
head per instance of oblivious transfer produced. Our communication complexity
overhead per oblivious transfer produced is linear in n. We also do not consider
the problem of error tolerance, another important area of exploration in future
work.

Restriction to Combiners. Combiners are special types of extractors where
parties’s leakage functions are restricted. Parties are allowed to only indicate
T ⊆ [n] as their leakage function. The client S can send |T | ≤ tS and client R
can send |T | ≤ tR. The leakage provided is (s0, s1, c, sc) of all ROT correlations
indexed by T . Note that the actual information learned by the clients is one-bit
per index (because all bits can be reconstructed from input and one bit leakage).
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We show that our construction yields slightly better simulation error than the
general analysis of Theorem 1.

Theorem 3 (OT Combiner). For any n, tS , tR ∈ N, there exists a 2-message
(n, tS , tR, ε) OT-Combiner which produces one secure OT using O(n) bits of
communication, where ε ≤ 2−g/2 and g := n − (tS + tR).

Note that the construction presented in [25] achieves similar bounds but the
communication complexity in their construction is quadratic in n; while ours is
linear in n. We emphasize that the higher production result of Theorem2 also
applies to the setting of combiners.

Large Correlations. We show that, in fact, there are correlations that can
tolerate a fractional leakage close to 1/2.

Theorem 4 (High Tolerance). For any s, t ∈ N, there exists a correlation
(X,Y ) over a pair of (s + 1)-bit strings such that, even after any party leaks
t bits on the correlation (X,Y ), they can securely realize OT using 2-message
communication with simulation error ε ≤ 2−(g/2+1), where g := s/2 − t.

The correlation (X,Y ) used to prove the above theorem is the so-called inner-
product correlation, where each party receives a random s-bit vector and the
mod-2 inner product of the two vectors is secret-shared between the parties.
Moreover, it is not hard to show that our protocol cannot tolerate leakage rate
bigger than 1/2. We leave open the question whether the 1/2 leakage rate is
optimal for arbitrary correlations.

1.2 Prior Related Works

Most relevant work to our work is the work of Ishai, Kushilevitz, Ostrovsky,
and Sahai [24], where the notion of correlation extractors was proposed. They
showed that if the parties are allowed to leak a small linear amount of leakage,
then a small linear number of correlations can be extracted. Both the leakage and
production rates are a minuscule fraction of the initial number of correlations.

A closely related concept is the notion of OT combiners, which are a restricted
variant of OT extractors in which leakage is limited to local information about
individual OT correlations and there is no global leakage. The study of OT
combiners was initiated by Harnik et al. [23]. Since then, there has been work
on several variants and extensions of OT combiners [22,26,32,33,37].

Recently, [25] constructed OT combiners with nearly optimal leakage para-
meters. Our protocols were inspired by the OT combiners from [25], but the
results we achieve are stronger in several imporant ways. First, whereas [25]
only considers t physical bits of leakage, we tolerate a arbitrary bits of leakage
(similarly to [24], though with a much better leakage rate). Second, even in the
case of physical leakage, our solutions improve over [25] by reducing the com-
munication and randomness complexity from quadratic to linear. Finally, our
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protocols can be used to produce a near-linear number of OTs without signif-
icantly compromising the leakage rate, whereas [25] only considers the case of
producing a single OT.

Another related work is that of Dziembowski and Faust [14] which (similarly
to our Theorem 4) obtains some form of leakage-resilient secure computation
from the inner product correlation. However, the construction from [14] requires
multiple independent instances of an inner product correlation even for produc-
ing just a single OT, and moreover the model considered in [14] assumes that
the leakage applies individually to each instance. Even if the analysis of [14]
could somehow be strengthened to tolerate some amount of global leakage, the
tolerable leakage rate must inevitably be small (since even with a leakage rate
of 1/4, one can entirely compromise one of the inner product instances in [14]).
Thus, the approach of [14] does not seem relevant to our goal of maximizing the
leakage rate.

1.3 Technical Overview

We provide a short overview of our construction which proves Theorem1. Our
construction is inspired by the Massey secret sharing scheme [31]. Our construc-
tion is closely related to the constructions of [24,25]. The central novelty in
our construction approach is that we choose a different class of matrices (thus,
reducing communication complexity of our algorithm), but the primary techni-
cal contribution of our work is our new analysis in the context of leakage. We
consider general leakage (unlike the setting of [25] which considers physical bits
of leakage) and, hence, lose a small quadratic factor in simulation error. But
the same construction when used in the setting of combiners yields identical
simulation error as [25].

For i ∈ [n], suppose the client S receives random pair of bits (ai, bi) and client
R receives (xi, zi), such that xi is a random bit and zi = aixi⊕bi, from the setup.
Client S picks a random codeword (u0, u1, . . . , un) in a binary linear code C of
length (n + 1). Client R picks a random codeword (r0, r1, . . . , rn) in the binary
linear code C⊥ of length (n+1). Note that the set of all component-wise product
of such codewords has non-trivial distance. Hence, they can correct one erasure.
In particular, u0r0 =

∑
i∈[n] uiri. Hence, the clients need not explicitly compute

u0r0; but, instead, it suffices to compute uiri for all i ∈ [n] and recovering one
erasure thereafter.

For this section, we shall only consider privacy of client R against a semi-
honest client S. Consider the following protocol: For each i ∈ [n],

1. Client R sends mi = xi ⊕ ri.
2. Client S sends αi = ai ⊕ ui. Client S sends βi = aimi ⊕ bi.

Note that client R can compute βi ⊕αiri ⊕zi = uiri. To argue the privacy of
client R, we need to show that r0 remains hidden from the view of client S. Let
H be the generator matrix of C⊥ and H is interpreted as [H0|H ′], where H0 is
the first column of H and H ′ is the remaining n columns. Note that the ability
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of client S to predict r0 can be abstracted out as follows: For λ uniform random
vector, given (λH ′ ⊕ x[n],H), client S needs to predict λH0.

Note that since client S is permitted to perform tS bits of leakage on x[n], we
have the guarantee that x[n] has high min-entropy on average. Now, the exper-
iment is reminiscent of min-entropy extraction from high min-entropy sources
via masking with small bias distributions. But, the uniform distribution over
codes of a fixed binary linear codespace C⊥ is not a small-bias source (projection
on every dual codewords has full bias). So, we consider a set of codes (CI , C⊥

I ),
where I is the index, such that on average these codewords have small bias. Such
a distribution suffices in our setting, because leakage is performed in an offline
phase and the random linear code or CI is chosen only in the online phase. The
class of matrices chosen are binary matrices in systematic form whose parity
check matrices are uniformly chosen Toeplitz matrices. This, intuitively, is the
basic argument which all our proofs reduce to.

Theorem 2 is obtained by sampling {S1, . . . , Sm} such that they are all dis-
joint and each Si indexes a set of servers. One OT is extracted by applying
Theorem 1 on each index set Si.

2 Preliminaries

Notations. We represent random variables by capital letters, for example X,
and the values they take by small letters, for example Pr[X = x]. The set
{1, . . . , n} is represented by [n], for n ∈ N. Given a vector v = (v1, . . . , vn) and
T = {i1, . . . , i|T |} ⊆ [n], we represent

(
vi1 , . . . , vi|T |

)
by vT . Similarly, given a

k × n matrix G, we represent by GT the sub-matrix of G formed by columns
indexed by T . For brevity, we use Gi instead of G{i}, where i ∈ [n].

Probability Basics. The support of a probability distribution X, represented
as Supp(X) is the set of elements in the sample space which are assigned non-
zero probability by X. A uniform distribution over a set S is represented by
US . A probability distribution X over a universe U is a flat source if there
exists a constant c ∈ (0, 1] such that Pr[X = x] is either 0 or c, for all x ∈ U .
Further, we say that X is a flat-source of size 1/c. Given a joint distribution
(X,Y ) over sample space U × V , the conditional distribution (X|y) represents
the distribution over sample space U such that the probability of x ∈ U is
Pr[X = x|Y = y].

The statistical distance between two distributions X and Y over a finite
sample space U is defined to be: 1

2

∑
u∈U |Pr[X = u] − Pr[Y = u]|.

Entropy Definitions. For a probability distribution X over a sample space U ,
we define entropy of x as HX(x) := −lg Pr[X = x], for every x ∈ U . The entropy
of X, represented by H(X), is defined to be E[HX(x)]. The min-entropy of X,
represented by H∞(X), is defined to be minx∈Supp(X) HX(x). If H∞(X) ≥ n,
then X can be written as convex linear combination of distributions, each of
which are flat sources of size ≥ 2n. The average min-entropy [10], represented by
H̃∞(X|Y ), is defined to be − lgEy∼Y

[
2−H∞(X|y)]. Following lemma is useful for

lower bounding average min-entropy after leakage on a high min-entropy source.
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Lemma 1 (Chain Rule [10]). If H∞(X) ≥ n and L be arbitrary �-bit leakage
on X, then H̃∞(X|L) ≥ n − �.

2.1 Elementary Fourier Analysis

We define character χS(x) = (−1)
∑

i∈S xi , where S ⊆ [n] and x ∈ {0, 1}n. The
inner product of two functions f : {0, 1}n → R and g : {0, 1}n → R is defined by
E

x
$←{0,1}n

[f(x)g(x)]. Given a probability distribution M over the sample space

{0, 1}n, the function f = M represents the function f(x) = Pr[M = x].

Definition 1 (Bias of a Distribution). Let f : {0, 1}n → R be a probability
function. The bias of f with respect to subset S ⊆ [n] is defined to be:

BiasS(f) :=
∣∣∣∣ Pr
x∼f

[χS(x) = 1] − Pr
x∼f

[χS(x) = −1]
∣∣∣∣

Definition 2 (Small-bias Distribution Family [11]). Let F = {F1, . . . , Fk}
be a family of distributions over sample space {0, 1}n such that for every ∅ 
=
S ⊆ [n], we have:

E
i

$←[k]

[
BiasS(Fi)2

] ≤ δ2

Then the distribution family F is called an δ2-biased family.

Lemma 2 (Min-entropy Extraction [1,11,18,34]). Let F = {F1, . . . , Fμ}
be δ2-biased family of distributions over the sample space {0, 1}n. Let (M,L) be
a joint distribution such that the marginal distribution M is over {0, 1}n and
H̃∞(M |L) ≥ m. Then, the following holds:

SD
(
(FI ⊕ M,L, I),

(
U{0,1}n , L, I

)) ≤ δ

2

(
2n

2m

)1/2

,

where I is a uniform distribution over [μ].

2.2 Functionalities

We introduce some useful functionalities in this section.

Oblivious Transfer. A 2-choose-1 bit Oblivious Transfer (referred to as OT)
is a two party functionality which takes input (s0s1) ∈ {0, 1}2 from the sender
and input c ∈ {0, 1} from the receiver and outputs sc to the receiver.

Random Oblivious Transfer. A random 2-choose-1 bit Oblivious Transfer
(referred to as ROT) is an input-less two party functionality which samples
uniformly random bits s0, s1, c and outputs (s0, s1) to the sender and (c, sc) to
the receiver. The joint distribution of sender-receiver outputs is called an ROT-
correlation.
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Oblivious Linear-Function Evaluation. Let (F,+, ·) be an arbitrary field.
An Oblivious Linear-function Evaluation over F is a two party functionality
which takes inputs (u, v) ∈ F

2 from the sender and x ∈ F from the receiver and
outputs u · x + v to the receiver. This functionality is referred to as OLE(F). A
random oblivious linear-function evaluation (ROLE) can be defined analogous
to ROT.

The special case when F = GF(2), is simply referred to as OLE and is
equivalent to OT.

Random Inner Product Correlation. This is an input-less two party func-
tionality which samples x[n], y[n]

$← {0, 1}n, a
$← {0, 1} and b = a +

〈
x[n], y[n]

〉
. It

outputs (x[n], a) to party A and (y[n], b) to party B. Note that for n = 1, this is
equivalent to random oblivious transfer correlation and oblivious linear function
evaluation.

2.3 Combiners and Extractors

In this section, we define oblivious transfer combiners and extractors.

Definition 3 ((n, p, tS , tR, ε) (SingleUse) OT-Combiner). An (n, p, tS , tR, ε)
(single use) OT-Combiner is an interactive protocol in the clients-servers setting.
There are two clients S and R; and n servers. Each server implements one instance
of oblivious transfer on inputs from S and R. We consider a semi-honest adver-
sary who can either corrupt the client S and tS servers or client R and tR servers.
The protocol implements p independent copies of secure oblivious transfer instances
with correctness and simulation error at most ε.

The correctness conditions for the protocol says that the receiver’s output is
correct in all p-instances of OT with probability at least (1 − ε).

The privacy requirement says that the adversary should not learn more than
it should. Let (s(i)0 , s

(i)
1 ) and c(i) be the inputs of the sender and the receiver,

respectively, in ith copy of OT produced. Then a corrupt sender (resp., corrupt
receiver) cannot output c(i) (resp., s

(i)
1−c) with probability more than 1

2 + ε for
any instance of OT produced.

Leakage Model and Correlation Extractors. Here we begin by describing
our leakage model for ROLE correlations formally followed by defining correla-
tion extractors for OLE. Recall that OT and OLE are just local renaming of
each other. Our leakage model is as follows:

1. n-Random OLE Correlation Generation phase: For i ∈ [n], the sender
S gets random (ai, bi) ∈ {0, 1}2 and receiver R gets (xi, zi), where xi ∈ {0, 1}
is chosen uniformly at random and zi = aixi + bi.

2. Corruption and leakage phase. A semi-honest adversary corrupts either
the sender and sends a leakage function L : {0, 1}n → {0, 1}tS . It receives
L({xi}i∈[n]). Or, it corrupts the receiver and send a leakage function L :
{0, 1}n → {0, 1}tR . It receives L({ai}i∈[n]).

Note that without loss of generality any leakage on sender (resp., receiver)
can be seen as a leakage on {ai} (resp., {xi}).
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Let (X,Y ) be the random OT correlation. We denote (tS , tR)-leaky version of
(X,Y )n described above as ((X,Y )n)[tS ,tR].

Definition 4 ((n, p, tS , tR, ε) OT-Extractor). An (n, p, tS , tR, ε) OT-Extractor
is an interactive protocol between two parties S and R in the ((X,Y )n)[tS ,tR] hybrid
described above. The protocol implements p independent copies of secure oblivious
transfer instances with simulation error ε.

The correctness and privacy requirements are same as those defined above
for (n, p, tS , tR, ε) (Single Use) OT-Combiner.

Note that in our setting, in (X,Y )n hybrid, parties only get one sample
from this correlation; unlike the typical setting where parties can invoke the
trusted functionality of the hybrid multiple times. The maximum fractional leak-
age resilience is defined by the ordered tuple (tS/n, tR/n); and the production
rate is defined by p/n.

Remark: An (n, p, tS , tR, ε) OT extractor is also an (n, p, tS , tR, ε) OT combiner.

Noisy Leakage Model. The leakage model described above is referred to as
the “bounded leakage” model since we restrict the number of bits output by
the leakage function. But this model is sometimes too restrictive and does not
capture many side channel attacks, which are the main cause of leakage in real
world applications. A more realistic assumption one can make is to assume that
leakages are sufficiently noisy. It is observed via experiments that the real-world
physical leakages are inherently noisy. There have been many works trying to
model noisy leakage and present solutions in this setting [9,12,13,15,36]. At a
high level the noisy feature of a leakage function f is captured by assuming that
an observation of f(x) only implies a bounded bias in the probability distribution
of x. More formally, f is said to be δ-noisy if

δ = SD ((X), (X|f(X))) .

Note that if H∞(X) ≥ n then for any k < n, we can choose appropriate δ,
such that H̃∞(X|f(X)) ≥ k, where f is a δ-noisy channel.

We emphasize that all our protocols only rely on the fact that the initial
correlation given to any party has high average min-entropy (H̃∞) after the
leakage. Hence, all our protocols directly work even in the general setting of
noisy leakage.

2.4 Distribution over Matrices

An k × n matrix M with {0, 1} entries is in systematic form if M = [Ik×k‖P ],
where Ik×k is the identity matrix of dimension k and P is the parity check matrix
of dimension k × (n − k). The matrix P is a Toeplitz matrix if Pi,j = Pi−1,j−1,
for all i ∈ (1, k] and j ∈ (1, n − k]. So, a Toeplitz matrix is uniquely defined by
its first row and first column. We shall consider uniform distribution over k × n
binary matrices in systematic form such that their parity check matrices are
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uniformly chosen Toeplitz matrices. A salient feature of family of such matrices
is proved in Lemma 3.

Let T(k,n) is a uniform distribution over matrices M of the following form.
Let M ≡ [

Ik×k

∣∣Pk×(n−k)

]
, where P is a binary Toeplitz matrix of dimension

k × (n − k).
Define T⊥,(k,n) is a uniform distribution over matrices M of the following

form. Let M ≡ [
Pk×(n−k)

∣∣Ik×k

]
, where P is a binary Toeplitz matrix of dimen-

sion k × (n − k).
Note that there exists an bijection between the matrices in T(k,n) and

T⊥,(n−k,n) established by the function which maps dual matrices to each other.
For a given G ∈ T(k,n), the distribution FG corresponds to a uniform distrib-

ution over the codewords generated by G. We have the following lemma, which
will be used to prove the main unpredictability lemma in the next section.

Lemma 3. For the distribution of matrices T(k,n), the following holds. For any
∅ 
= T ⊆ [n],

E
G

$←T(k,n)

[
BiasT (FG)2

] ≤ 2−k

Proof. Since FG is a uniform distribution of codewords over a linear code, for
any G, either BiasT (FG)2 is either 0 or 1. Moreover, BiasT (FG)2 = 1 if and only
if

∑
i∈T Gi = 0k. Hence, it suffices to show the following: For any fixed column

c ∈ {0, 1}k and non-empty set T ⊆ [n], Pr[
∑

i∈T Gi = c] ≤ 2−k. We prove this
using a sequence of observations.

Note that: Gi = c, for i > k, happens with probability 2−k.
Next, we claim that: Gi + Gj = c, for i > j > k, happens with probability

2−k. This is so because the probability that the Gi,k + Gj,k = ck happens with
probability 1/2. Fixing the values of Gi,k and Gj,k, the probability that we have
Gi,k−1 + Gj,k−1 = ck−1 is 1/2; because the random variable Gj,k−1 is not fixed
(columns {k + 1, . . . , n} form a Toeplitz matrix). Extending this argument, we
get for any T ′ ⊆ {k + 1, . . . , n}, Pr[

∑
i∈T ′ Gi = c] ≤ 2−k.

To prove full claim, note that Pr[
∑

i∈T Gi = c] = Pr[
∑

i∈T :i>k Gi = c +∑
i∈T ′:i≤k Gi] ≤ 2−k using the above conclusion.

3 Unpredictability Lemma

In this section we present the main unpredictability lemma.

Lemma 4 (Unpredictability Lemma). Let G ∈ {
T(k,n+1),T⊥,(k,n+1)

}
.

Consider the following game between a honest challenger H and an adversary
A:

1. H samples m[n] ∼ U{0,1}n .
2. A sends a leakage function L : {0, 1}n → {0, 1}t.
3. H sends L(m[n]) to A. H samples x[k] ∼ U{0,1}k , G ∼ G; and computes

y{0}∪[n] = x · G ⊕ (0,m[n]). H sends (y[n], G) to A.
4. A outputs a bit ỹ.
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The adversary A wins the game if y0 = ỹ. For any A, the advantage of the
adversary, i.e. Adv(A) = Pr(y0 = ỹ) − 1/2 ≤ 1

2

√
2

2k−t .

Proof. Let G be the distribution T(k,n+1). The proof for the other case will work
similarly.

Given a G ∈ G, the distribution FG corresponds to a uniform distribution
over the codewords generated by G. Note that over choice of G, they form a
δ2 = 2−k biased family of distributions (by Lemma3).

By Lemma 1, H̃∞(M[n]|L(M[n])) ≥ n − t. Let M = (0,M[n]), then putting
these in Lemma 2, we get

SD
(
(FG ⊕ M,L,G),

(
U{0,1}n+1 , L,G

))
≤ 1

2

√
2n+1

2k+n−t

The lemma follows by noting that Adv(A) ≤ SD
(
(FG ⊕ M,L,G

)
,(

U{0,1}n+1 , L,G
))

.

All our security proofs will directly reduce to this unpredictability lemma,
i.e. Lemma 4.

4 Oblivious Transfer Extractor

4.1 Extracting One Oblivious Transfer

In this section, we shall prove Theorem 1 by presenting our (n, tS , tR, ε) OT
extractor which extracts one copy of secure OT. For ease of presentation, we
provide our construction in the random oblivious linear evaluation (ROLE) cor-
relation hybrid; and also produce one secure copy of oblivious linear evalua-
tion. Recall that a ROLE correlation provides (a, b) $← {0, 1}2 to the sender and
(x, z = ax ⊕ b), where x

$← {0, 1}, to the receiver. The security requirement
insists that the sender cannot predict x and the receiver cannot predict a. Note
that (s0 ⊕ s1)c ⊕ s0 is identical to oblivious transfer. So, oblivious transfer and
OLE are equivalent to each other; consequently, it suffices to construct a OLE
extractor in ROLEn hybrid.

The construction provided here is similar to the construction provided in [25].
But we deal with general leakage, instead of restricted leakage of physical bits
in the combiner setting, using more sophisticated analysis tools. We also achieve
lower communication complexity. In particular, we improve the communication
complexity from Θ(n2) in [25] to Θ(n) in the current work. When analyzed
appropriately for the combiner setting, our current protocol achieves identical
simulation error as in that paper (but reduces the communication complexity to
linear from quadratic).

Note that after the correlation generation step, the protocol is only two
rounds, i.e. client R sends one message (by combining steps 1 and 2.c) and
client S replies with one message (step 2.d).
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Extract-One (n, tS , tR):
Define g := n − (tS + tR).
Private Inputs: The clients S and R have private inputs (s0, s1) ∈ {0, 1}2 and c ∈
{0, 1}, respectively.
Hybrid (Random Correlations): For i ∈ [n], client S gets random (ai, bi) ∈ {0, 1}2

and client R gets (xi, zi), such that xi ∈ {0, 1} is chosen uniformly at random and
zi = aixi ⊕ bi.

1. Random Code Generation. Client R picks a binary matrix G = [Ik×k‖Pk×(n+1−k)]
of dimension k × (n + 1), where k = �tR + g/2� and Pk×(n+1−k) is a uniformly
random Toeplitz matrix. Let C be the code generated by the generator matrix
G; and H be a generator matrix for the dual code C⊥. If the first column of H
is all-zero column then abort; otherwise continue.

2. Random OLE Extraction.
(a) Client S picks a random (u0, . . . , un) ∈ C. Let Cparity ⊆ {0, 1}n+1 be the

(linear) code consisting of every length (n + 1) string of even parity. Client
S picks a random (v0, . . . , vn) ∈ Cparity.

(b) Client R picks a random (r0, . . . , rn) ∈ C⊥.
(c) For each i ∈ [n], client R sets mi = xi ⊕ ri. Client R also sets m = r0 ⊕ c.

Client R sends ({mi}i∈[n], m) to client S.
(d) For each i ∈ [n], client S sets αi = ai⊕ui and βi = aimi⊕bi⊕vi. Client S also

sets α = u0 ⊕ s0 and β = u0m ⊕ v0 ⊕ s1. Client S sends ({(αi, βi)}i∈[n], α, β)
to client R.

(e) Client R computes ti = βi ⊕ αiri ⊕ zi and z = ⊕i∈[n] ti. Finally, client R
outputs y = β ⊕ αc ⊕ z.

Fig. 1. Round optimal correlation extractor protocol which extracts one copy of Obliv-
ious Linear Function Evaluation from n copies of Random Oblivious Linear Functions
Evaluations.

No Corruption Case. We will first prove the correctness of the protocol pre-
sented in Fig. 1 for the case when all clients and servers are honest and there is
no leakage.

The construction does not output abort with probability 1 − 2−(n+1−k),
because the algorithm aborts if and only if the first row of the parity check
matrix of G is all 0s. Conditioned on not aborting, we show that the protocol is
perfectly correct. Following lemma proves correctness.

Lemma 5. In the protocol in Fig. 1 the client R outputs y = s0c ⊕ s1.

Proof. We first show that ti = uiri ⊕ vi.

ti = βi ⊕ αiri ⊕ zi = (aimi ⊕ bi ⊕ vi) ⊕ (airi ⊕ uiri) ⊕ zi

= aixi ⊕ airi ⊕ bi ⊕ vi ⊕ airi ⊕ uiri ⊕ aixi ⊕ bi = uiri ⊕ vi
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This shows that z = ⊕i∈[n]ti = u0r0 ⊕ v0. This follows from ⊕n
i=0 ui · ri = 0 and

⊕n
i=0vi = 0. Now for y we have the following:

y = β ⊕ αc + z = (u0m ⊕ v0 ⊕ s1) ⊕ (u0c ⊕ s0c) ⊕ z

= u0r0 ⊕ u0c ⊕ v0 ⊕ s1 ⊕ u0c ⊕ s0c ⊕ u0r0 ⊕ v0 = s0c ⊕ s1.

Sender Privacy and Receiver Privacy. In order to give a modular analysis,
we consider a simpler protocol of 4-rounds which is equivalent to the protocol
presented in Fig. 1. In the simpler protocol, the first two rounds correspond to
ROLE extraction, where the receiver sends the messages {mi}i∈[n] and receives
{(αi, βi)}i∈[n] and computes ROLE z = u0r0 ⊕ v0. In the following, we will refer
to this as ROLE extraction phase. In the next two rounds, it uses this ROLE to
compute the OLE on inputs s0, s1, c as follows: Receiver sends message m and
gets back α, β and computes y. Note that since we only consider semi-honest
adversaries and leakage only occurs before the start of the protocol, these two
protocols are equivalent in correctness and security guarantees.

Below, in order to prove the sender and receiver privacy we analyze this
protocol. For security of both sides, it is sufficient to prove that extracted ROLE
is secure in first phase.

Receiver Privacy. In order to prove receiver privacy, we need to show that
the choice bit c is hidden from the semi-honest sender who can obtain tS bits of
leakage. We note that it suffices to show that at the end of the ROLE extraction
phase (described above), the choice bit r0 is hidden.

Let L denote the random variable for leakage obtained by the semi-honest
sender. We will denote the random variable for the choice bit vector x[n] for the
receiver in the correlation generation phase by X[n]. Note that X[n] is identical
to uniform distribution over {0, 1}n. Note that L has at most tS bits of leakage
on X[n].

The view of client S at the end of the random correlation extraction phase is:

ϑ = (a[n], b[n], G, (u0, . . . , un), (v0, . . . , vn),m[n], L = �)

Below we show that for any semi-honest client S, we have Pr(S(ϑ) = r0) is
at most 1/2 + 2−g/4−1.

Note that Pr(S(ϑ) = r0) = Pr(S(H,m[n], L) = r0), where H is the generator
matrix for C⊥. Recall that H ∈ T⊥,(n+1−k,n+1), where k = tR + g/2. In Fig. 1,
the client R picks a random codeword (r0, . . . , rn) ∈ C⊥. Alternatively, this can
be done by picking w

$← {0, 1}n+1−k and (r0, . . . , rn) = w · H, where H is the
generator matrix for C⊥. Note that m[n] = (w · H)[n] ⊕ x[n] and r0 = 〈H0, w〉.

Since, the sender can leak tS bits on x[n], we have: H̃∞(X[n]|L) ≥ m =
(n − tS). By Lemma 4, the advantage of predicting 〈H0, w〉 is at most: 2−g/4−1.

Sender Privacy. In order to prove sender privacy for Fig. 1, we need to show
that the bit s0 is hidden from the receiver after the protocol. Note that it suffices
to show that at the end of the ROLE extraction phase (for the simpler protocol
described above) bit u0 is hidden.
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Let L denote the random variable for leakage on vector a[n] obtained by the
semi-honest adversary who corrupts the receiver after the random correlation
generation phase. We will denote the random variable for the bit vector a[n] for
the sender in the correlation generation phase by A[n]. Note that A[n] is identical
to uniform distribution over {0, 1}n and L has at most tR bits of leakage on A[n].
So, we get H̃∞(A[n]|L) ≥ m = n − tR.

The view of client R at the end of the random correlation extraction phase is:

ϑ = (x[n], z[n], G, (r0, . . . , rn),m[n], α{0,1},[n], L = �)

H A′

A

Pick a[n]
$← {0, 1}n

Let x[n] ∈ {0, 1}n

Pick z[n]
$← {0, 1}n

x[n], z[n]

)
L(·)

� = L(a[n])

Pick [G0|G′] ≡ G ∼ G

G
m[n]

Pick λ
$← {0, 1}1×k

Compute α[n] = λG′ ⊕ a[n]

α[n]

Pick β[n]
$← {0, 1}n

β[n]

b̃

Fig. 2. Simulator for Sender Privacy. The distribution G is uniform distribution over
k× (n+1) binary matrices in systematic form whose parity check matrices are uniform
Toeplitz matrices.

Let U0 denote the random variable for u0. We are interested in the condi-
tional distribution (U0|ϑ). Below we will show that for any semi-honest client R,
Pr(R(ϑ) = u0) is at most 1/2 + 2−(g/4).

We show this via a reduction to Lemma 4 in Fig. 2. Given any adversary
A who can predict u0, we convert it into an adversary A′ against the honest
challenger H of Lemma 4 with identical advantage. It is easy to see that this
reduction is perfect. Note that the only difference in the simulator from the
actual protocol is that the generator matrix G is being generated by the honest
party H instead of being obtained from A. This does not cause any issues,
because we are only dealing with semi-honest adversaries. At the end of random
correlation extraction phase, the advantage in predicting U0 is at most: 2−(g/4).

Note that our simulation works even for arbitrary choice of x[n] and m[n]. In
particular, it works when these vectors are chosen uniformly at random.
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4.2 Trading Off Simulation Error with Production Rate

In this section we use sub-sampling techniques to trade-off simulation-error to
get improved production rate. The main idea is to sample small subsets of dis-
joint correlations and, subsequently, run the protocol in Fig. 1 on those subsets
independently. This increases the simulation error (due to smaller number of
OTs used to output each fresh OT i.e. smaller value of n), but yields higher
production rates.

In our case, we use the trivial sub-sampling technique of picking indices at
random with suitable probability; in case of a sample repeating itself, we discard
it and re-sample. This technique yields distinct samples and has identical proper-
ties as the näıve subsampling technique (see [38]). The sophisticated techniques
of [38] are also relevant to our setting; but they do not yield any reduction in
“simulation error increase.” They are useful only to reduce the communication
complexity of the protocols.

We only work in the setting where g = n − (tS + tR) is at least cn, for some
constant c ≤ 1. In general c could have been a function of n, but we forgo those
cases. The main technical lemma is the following:

Lemma 6 (Sub-sampling [38]). Let (A[n], L) be a joint distribution such
that, there exists a constant μ ∈ (0, 1) such that, H̃∞(A[n]|L) ≥ μn. For every
constant ε ∈ (0, μ) and ρ = ω(log n), there exists an efficient algorithm which
outputs (S1, . . . , Sm) ∈ (

2[n]
)m

such that m = n/ρ and with probability 1 −
negl(n), the following holds:

1. Large and Distinct: There exists a constant λ ∈ (0, 1) such that |Si| = λρ.
We have Si ∩ Sj = ∅, for all i, j ∈ [m] and i 
= j.

2. High Entropy: H̃∞(Si+1|S[i], L) ≥ (μ − ε) |Si+1|.
Obtaining the Result of Theorem 2. We obtain this theorem as a direct
application of Lemma 6. Recall that we will be working in the setting when
g = n − (tS + tR) ≥ cn for some constant c ∈ (0, 1]. Now we apply Lemma 6 to
obtain the disjoint sets S1, . . . , Sm for m = n/ρ where ρ = ω(log n). Next, we
apply the protocol in Fig. 1 to each of the sets independently for the following
choice of parameters: n′ = |Si|, t′S = ( tS

n + ε) |Si|, and t′R = ( tR
n + ε) |Si|. Note

that new gap g′ = ( g
n − 2ε) |Si|. The simulation error obtained for any OT

produced will be bounded by 2−Θ(g′) = negl(n).
We observe that the approach of subsampling to obtain “disjoint subsets” while

preserving min-entropy is unlikely to yield constant production rate extractors.

5 Inner Product Correlation

In this section we prove Theorem 4. Our protocol is provided in Fig. 3.
When both parties are honest, we need to prove the correctness of the pro-

tocol which trivially follows.

Sender Corrupt. Suppose a semi-honest client A can leak t bits on information
from (y[n], b). In this case, we have H̃∞(Y[n]|L) ≥ m = n − t. For security, we
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Extract-IP (n):
Hybrid (Random Correlations): Client A gets random (x[n], a) ∈ {0, 1}n+1 and client

B gets random (y[n], b) ∈ {0, 1}n+1, such that a + b =
〈
x[n], y[n]

〉
.

1. Random Code Generation. Client R picks a binary matrix G = [Ik×k‖Pk×(n+1−k)]
of dimension k × (n + 1), where k = n/2 and Pk×(n+1−k) is a uniformly chosen
random Toeplitz matrix. Let C be the code generate by the generator matrix G;
and H be a generator matrix for the dual code C⊥. If the first column of H is
all-zero column then abort; otherwise continue.

2. Random ROLE Extraction.
(a) Client A picks a random (u0, . . . , un) ∈ C and a random v0 ∈ {0, 1}.
(b) Client B picks a random (r0, . . . , rn) ∈ C⊥.
(c) Client B sends m[n] = y[n] ⊕ r[n] to client A.
(d) Client A sends α[n] = x[n] ⊕ u[n] and β =

〈
x[n], m[n]

〉 ⊕ a ⊕ v0 to client B.
(e) Client B computes z = β ⊕ b ⊕ 〈

α[n], r[n]

〉
.

(f) Client A outputs (u0, v0) and client B outputs (r0, z).
Note that z = u0r0 ⊕ v0, because

〈
u[n], r[n]

〉
= u0r0.

Fig. 3. Random oblivious function evaluation extractor from one inner product corre-
lation over n-bits.

need to prove the hiding of the bit r0 given r[n] ⊕ y[n], where r[n] is a uniformly
chosen codeword from the image of “H with its first column punctured.” Now, we
can directly invoke Lemma 4 and get that the distribution (R0|ϑ) is = 2−(g/2+1)

close to the uniform distribution over {0, 1}, where ϑis the view of client A at
the end of the protocol and g = n/2 − t.

Receiver Corrupt. For this case, we construct a reduction similar to the reduc-
tion provided in Fig. 2. Again, in this case we assume that client A sends the
matrix G instead of client B (which is acceptable because the adversaries are
semi-honest). Suppose there exists an adversary A which can distinguish U0 from
a uniformly random bit with certain advantage. We shall construct an adver-
sary A′ which uses A to break the unpredictability experiment of Lemma4 with
identical advantage using a simulation similar to Fig. 2.

Note that as before this will be a perfect simulation of the view of A because
the bit v0 is uniformly random in the actual protocol. Thus, if A can predict
u0 = λG0 then the adversary A′ can also predict λG0 with identical advantage.
By Lemma 4, the distribution (U0|ϑ) is at most 2−(g/2+1) far from the uniform
distribution over {0, 1}.
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Abstract. A central problem in cryptography is that of converting pro-
tocols that offer security against passive (or semi-honest) adversaries into
ones that offer security against active (or malicious) adversaries. This
problem has been the topic of a large body of work in the area of secure
multiparty computation (MPC). Despite these efforts, there are still big
efficiency gaps between the best protocols in these two settings. In two
recent works, Genkin et al. (STOC 2014) and Ikarashi et al. (ePrint
2014) suggested the following new paradigm for efficiently transform-
ing passive-secure MPC protocols into active-secure ones. They start by
observing that in several natural information-theoretic MPC protocols,
an arbitrary active attack on the protocol can be perfectly simulated in
an ideal model that allows for additive attacks on the arithmetic circuit
being evaluated. That is, the simulator is allowed to (blindly) modify
the original circuit by adding an arbitrary field element to each wire.
To protect against such attacks, the original circuit is replaced by a so-
called AMD circuit, which can offer protection against such attacks with
constant multiplicative overhead to the size.

Our motivating observation is that in the most efficient known
information-theoretic MPC protocols, which are based on packed secret
sharing, it is not the case that general attacks reduce to additive attacks.
Instead, the corresponding ideal attack can include limited forms of linear
combinations of wire values. We extend the AMD circuit methodology to
so-called secure SIMD circuits, which offer protection against this more
general class of attacks.

We apply secure SIMD circuits to obtain several asymptotic and con-
crete efficiency improvements over the current state of the art. In par-
ticular, we improve the additive per-layer overhead of the current best
protocols from O(n2) to O(n), where n is the number of parties, and
obtain the first protocols based on packed secret sharing that “natively”
achieve near-optimal security without incurring the high concrete cost of
Bracha’s committee-based security amplification method.

Our analysis is based on a new modular framework for proving reduc-
tions from general attacks to algebraic attacks. This framework allows
us to reprove previous results in a conceptually simpler and more unified
way, as well as obtain our new results.
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1 Introduction

1.1 Overview

Secure multiparty computation (MPC) is a central research area in cryptography.
An MPC protocol allows n ≥ 2 parties to compute a function of their inputs
without compromising the privacy of the inputs or the correctness of the outputs.
This should hold even if some of the parties are corrupted by an adversary. Since
its introduction in the 1980s [2,7,12,20], there has been a rich body of work
dealing with many aspects of the problem, with a major focus on efficiency.

The difficulty of designing MPC protocols depends largely on the power of
the adversary. An important distinction is between MPC protocols that offer
security against passive (or semi-honest) adversaries, who follow the protocol’s
specification but try to learn information from messages they receive, and secu-
rity against active (or malicious) adversaries, who are allowed to deviate from
the protocol’s specification in arbitrary ways. The security guarantees in the
passive case are weaker, but the protocols are simpler and more efficient.

A common paradigm for designing actively secure MPC protocols (namely,
ones that are secure against active adversaries) is to start with a passively secure
protocol and then convert it into an actively secure protocol. Some relevant
techniques include general-purpose “GMW-style” compilers that employ zero-
knowledge proofs [6,12], ad-hoc protocols for verifying the correct execution of
subprotocols [2,7], cut-and-choose techniques [18], or “MPC in the head” [15,16].
These techniques typically involve a significant overhead.

A different technique, which in some cases provides better results, was
recently proposed independently by Genkin et al. [11] and Ikarashi et al. [14].
These works observe that in several known passively secure protocols for evaluat-
ing arithmetic circuits, the effect of any active adversary is limited to an additive
attack on the circuit wires. That is, everything that an adversary can achieve
by attacking the real protocol for evaluating C he could have also achieved by
attacking an ideal circuit evaluation process in which he can blindly add a field
element of his choice to each wire in C. In the following, we refer to such proto-
cols as additively corruptible protocols. To secure such a protocol against active
adversaries, it is enough to run it on a so-called AMD circuit C – a randomized
circuit which is functionally equivalent to C but additionally offers resistance
against additive attacks.1 The results of [11,14] simplify feasibility results in the
information-theoretic setting and obtain efficiency improvements, closing some
previous asymptotic efficiency gaps between passively secure and actively secure
protocols. This applies to the best known protocols that tolerate an optimal
number of corrupted parties (i.e., t < n/2 parties using secure point-to-point
channels or t < n parties in a suitable hybrid model).

Our motivating observation is that the best information-theoretic MPC pro-
tocols that tolerate a slightly sub-optimal number of corrupted parties (e.g.,
1 The work of [14] does not explicitly construct AMD circuits, but implicitly relies

on a simple construction of AMD circuits that tolerate a restricted class of additive
attacks which suffices in some cases.
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t < 0.49n) are not additively corruptible. These protocols replace the standard
secret sharing used in optimally resilient protocols by a more efficient packed
secret sharing technique, and as a result provide better asymptotic efficiency.
The ideal attack corresponding to an active adversary attacking these protocols
can include a limited form of linear combinations that combine multiple wire
values.2 As a result, the techniques of [11,14] do not apply to such protocols. In
the following, we refer to such protocols linearly corruptible protocols.

A second disadvantage of the techniques of [11,14] is that they are tailored
to specific protocols. In particular, the part of the analysis that maps general
attacks to additive attacks is done in an ad-hoc way per protocol without a
unified framework that captures all additively corruptible protocols.

1.2 Our Contribution

In this paper we address both issues outlined above. First, we present a new gen-
eral framework for proving that a passively secure protocol is additively or lin-
early corruptible. This framework is used to reprove previous results from [11] in
a more unified way, and is also used to prove our new results. Second, we extend
the AMD circuit constructions from [11] to offer security against linear attacks.
We use these two types of results to close previous efficiency gaps between pas-
sively secure and actively secure information-theoretic protocols based on packed
secret sharing.

We consider two regimes for such protocols: the single input, single circuit
regime and the Franklin and Yung (FY) [10] regime for simultaneously evaluating
� copies of the circuit on different inputs. Notice that the latter is a special case
of the former that allows for simpler and more efficient solutions. Currently, all
actively secure protocols that rely on packed secret sharing (in both regimes)
employ verification methods that introduce at least a quadratic overhead in the
number of parties n, for each circuit layer. We reduce this overhead to quasi-
linear (or linear in the FY regime), as in the best previous passively secure
protocols. In the FY regime, by evaluating the circuit on � = Ω(n) inputs, the
amortized per-layer overhead is reduced to constant, leading to the first actively
secure protocols whose amortized communication complexity is only O(|C| + n)
even for circuits that are very narrow and deep. See Table 1 for a more detailed
account of our results and a comparison with previous results.

In addition, we point out that the concrete efficiency of DIK-style proto-
cols [1,8] (see [17]c entry of Table 1) involves prohibitively large constants when
applied with near-optimal security threshold. Indeed, the threshold obtained
directly by [8] is t < n/4 which is quite far from the optimal bound of n/2. To
improve on this threshold, a general technique due to Bracha [5] is applied for
boosting the resilience. The basic idea is that a constant-size committee runs an
optimally resilient protocol to emulate the role of each server in the low-threshold
protocol. While this technique can be implemented with a constant multiplica-
tive overhead, this constant is very large. Our actively secure protocols natively
2 In the full version we illustrate the necessity of extending the attack model to linear.
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achieve a near-optimal security threshold with a low overhead, inheriting this
feature from the passively secure protocols on which they are based.

Table 1. Comparison of information-theoretic MPC protocols for arithmetic circuits.
Below, n is the number of parties, ε is an arbitrary small positive constant, C is an
arithmetic circuit or an SIMD circuit, dC is the multiplicative depth of C, and T is the
set of corrupted parties such that |T | ≤ t. The copies column indicates the number
of simultaneously evaluated circuit copies. Passively secure protocols achieve perfect
security while actively secure protocols realize C (with abort) with at most O(1/|F|)
simulation error. The communication complexity column counts the total number of
field elements exchanged between the parties. For the case of simultaneous evaluation
of multiple copies, we count the amortized cost for evaluating a single copy of C. The
protocols having resilience |T | < n are constructed on the OT or OLE hybrid model.

Note that the ˜O notation suppresses logarithmic factors.

Ref. Adv. Copies Resilience Communication complexity

[12] passive 1 |T | < n O(n2|C|) for boolean circuits

[17] passive 1 |T | < n O(n2|C|)
[2] passive 1 |T | < n/2 O(n2|C|)
[9] passive 1 |T | < n/2 O(n|C| + n2)

[10] passive Θ(n) |T | < (1/2 − ε)n O(n|C|)
[8]a passive Θ(n) |T | < (1/2 − ε)n O(|C| + n)

[8]b passive 1 |T | < (1/2 − ε)n ˜O(|C| + n · dC)

[17]a active 1 |T | < n O(n2|C| + log |F| · dC)

[11] active 1 |T | < n O(n2|C|)
this work active 1 |T | < n O(n2|C|)
[3] active 1 |T | < n/2 O(n|C| + n2 log n · dC) + poly(n)

[11] active 1 |T | < n/2 O(n|C| + n2)

this work active 1 |T | < n/2 O(n|C| + n2)

[17]b active Θ(n) |T | < (1/2 − ε)n O(|C| + n · dC)

[17]c active Θ(n) |T | < (1/2 − ε)n O(|C| + m · dC)
a

this work active Θ(n) |T | < (1/2 − ε)n O(|C| + n)

[8]c active 1 |T | < (1/2 − ε)n ˜O(|C| + n2 · dC)

this work active 1 |T | < (1/2 − ε)n ˜O(|C|+n · dC + n2)
aIn the client-server model, where m (n) is the number of clients (servers).

A key ingredient in our results is an extension of the additive attacks model
considered in [11,14], which we now explain in more detail. Protocols that utilize
packed secret sharing typically operate on SIMD circuits. An SIMD circuit is a
generalization of arithmetic circuits, composed by �-gates which get as input
two wire bundles of size � output a wire output bundle of size � obtained by
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performing � point-wise multiplications, additions and subtractions in parallel.
Thus, SIMD circuits simultaneously evaluate � copies of the same arithmetic
circuit, on different inputs. Next, for protocols based on packed secret sharing,
the ideal attack corresponding to deviations made by an active adversary can
include a limited form of linear combinations of wire values. Thus, we extend the
additive attacks considered in [11] to capture a stronger class of attacks, called
linear attacks, applied to SIMD circuits.

A linear attack on an SIMD circuit changes the computation of a multiplica-
tion �-gate by adding to the gate’s output bundle a linear functionf : F2� → F

�

of all the wires in the gate’s two input bundles. In addition, we also allow a linear
attack to specify an additive attack on all wire bundles inside the SIMD circuit.
We note that for the case where � = 1 linear attacks are equivalent to additive
attacks (see Sect. 2.2 for details).

In the sequel, we prove that for natural protocols based on packed secret
sharing, any deviation made by an active adversary actually corresponds to a
linear attack on the underlying SIMD circuit.

2 Detailed Overview of Results

2.1 Actively Secure MPC Protocols from AMD/SIMD Circuits

Our approach for constructing actively secure MPC protocols is as follows. We
present a general framework and prove that any passively secure protocol π, sat-
isfying the framework’s requirements is indeed additively or linearly corruptible
depending on whether π uses packed secret sharing or not. Next, in order to
transform any passively secure protocol for evaluating a circuit C, which meets
the framework’s requirement, into an actively secure protocol, we apply the same
passive protocol on a different circuit C

AUG
which is essentially the secure version

of C. We thus transfer the responsibility of handling the consequences resulting
from an active adversary deviating from the protocol, to C

AUG
.

We now describe different applications of our framework for existing MPC
protocols. See Table 1 for a concise summary.

Applying our framework to an arithmetic version of the passively secure
GMW protocol [12,17], in Theorem 10 we match the results of [11, Theorem 1.5]
obtaining an actively secure protocol for computing a circuit C, without an
honest majority, using O(n2|C|) calls to an OLE-oracle.3 In the honest majority
setting, applying our framework to the passively secure DN protocol [9], we match
the results of [11, Theorem 1.4] and [14] obtaining an actively secure protocol
with communication complexity of O(n|C| + n2) field elements.

Next, in the FY regime, by applying our framework to the passively secure
DIK protocol ([8]a), we improve the result of [17]b by eliminating the dependence
of the additive term on the depth of the circuit.
3 In fact, we slightly improve the construction of [11] by reducing the statistical sim-

ulation error from O(|C|/|F|) to O(1/|F|).
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Theorem 1. Let n, t, � be positive integers such that n = 2t+2�−1 and let C be
an n-party SIMD �-circuit over a finite field F. Then, there exists a protocol π,
in the FY regime, that (t, ε)-securely computes C with abort for ε = O(� log �/|F|)
and with communication complexity of O(n|C| + n2) field elements. Setting � =
Θ(n) yields an amortized communication complexity of O(|C|+n) field elements.

Finally, applying our framework to the passively secure DIK protocol in the
single input single circuit regime ([8]b), we improve the actively secure protocol
of [8]c by reducing its additive term from Õ(n2 · dC) to Õ(n · dC + n2).

Theorem 2. Let n, t, � be positive integers such that n = 2t + 2� − 1 and
let C be an n-party circuit over a finite field F. Then there exists an n-party
protocol π, in the single circuit single input regime, that (t, ε)-securely com-
putes C with abort for ε = O(� log �/|F|) and with communication complexity
Õ

(
(|C|n + n2 · dC)/� + n2

)
field elements. By setting � = Θ(n) we obtain that

the communication complexity of π is Õ
(|C| + n · dC + n2

)
field elements.

2.2 Additive and Linear Attack Secure AMD/SIMD Circuits

We now define the notion of linear-attack security. Let C be a circuit to be
computed. We say that a randomized SIMD circuit C is an ε-linear-attack secure
implementation of C if C correctly computes C, when not attacked, and moreover
any linear attack on C has the same effect on the outputs of C (up to ε statical
error) as applying some additive attack on the inputs and outputs of C alone.

Definition 1 (Linear-attack and additive-attack security). A randomized
SIMD circuit C is said to be an ε-linear-attack secure implementation of a (pos-
sibly randomized) circuit C : (F�)n → (F�)k if the following holds:

– Completeness. For all x ∈ (F�)n it holds that C(x) ≡ C(x).
– Linear-Attack security. For any circuit C

L
obtained by subjecting C to a linear

attack L, there exists ain ∈ (F�)n and a distribution Aout over (F�)k such that
for any x ∈ (F�)n it holds that SD(C

L
(x),C(x + ain) + Aout) ≤ ε, where SD

denotes statistical distance between two distributions.

Finally, we say that C is an additive-attack-secure implementation of C if
C has the same completeness property as above as well as the same security
property with the linear attack L replaced by an additive attack A.

Notice that restricting Definition 1 for � = 1 yields exactly the model consid-
ered in [11]. This is the case since for non-SIMD circuits, any additive attack can
be converted into a linear attack. Conversely, we notice that a linear attack on
the output of a multiplication gate can be easily converted to an additive attack
on its two inputs. Notice that this equivalence does not hold when � > 1.

In Sect. 5, we present a construction for securing circuits against additive
attacks. While our construction has the same asymptotic efficiency as the con-
struction of [11], it has much better concrete efficiency, as well as an improved
soundness error of O(1/|F|) (compared to O(|C|/|F|) in [11]).
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Theorem 3 (Cf. Theorem 6). For any arithmetic circuit C : Fn → F
k there

exists a randomized circuit C : Fn → F
k such that C is an ε-additive-attack secure

implementation of C where ε = O(1/|F|) and |C| = O(|C|).
Next, departing from the case of � = 1, in the full version we present a

construction for securing SIMD circuits against linear attacks.

Theorem 4. For any SIMD circuit C :
(
F

�
)n → (

F
�
)k there exists a randomized

SIMD circuit C such that C is an ε-linear-attack secure implementation of C where
ε = O (� log �/|F|) and |C| = O(|C| + log �).

3 Our Techniques

3.1 Constructing Actively Secure MPC Protocols

Our framework for proving that a passively secure protocol π is in fact additively
or linearly corruptible, consists of three steps. We point out that while these steps
modify the original protocols, are only a thought-experiment used to prove the
main claim about the effect of an active adversary on the underlying circuit
that parties try to evaluate. The only real modification required to the protocol
in order to transform it to an actively secure protocol, is to execute it on an
additive-attack or linear-attack secure circuit (see below).

Step 1: Protocol Randomization. In order to convert an active adversary
controlling a set of parties T to an additive attack, we first transform a protocol
π to another protocol πT such that all the messages mT ,T sent by the parties in
T to the parties in T (except during the last communication round) syntactically
depend only on the randomness of π. In particular, we require that mT ,T does not
depend on the inputs xT of the parties in T or on the messages that the parties
in T receive during the protocol. In such case we say that πT is T -randomized.

We first show that for many natural MPC protocols, for any set of parties
T , such that |T | is below the privacy threshold of a protocol, it is possible to
construct a T -randomized protocol, πT , such that any deviation from π made by
an active adversary has the same effect as performing the same deviation from
πT . In this case we say that πT is T -equivalent to π. See Definition 3.

Notice that T -randomization requirement is stronger than privacy. This is
since T -randomization requires that the values of mT ,T do not depend on the
inputs of the parties in T or on messages that parties in T received as opposed
to privacy which makes a similar requirement on the distribution of mT ,T . See
Step 2 for the necessity of the T -randomization requirement.

Step 2: From General Adversaries to Additive Attacks. We now reduce
any adversary controlling a set of parties T , attacking a T -randomized pro-
tocol π, to an additive attack on the protocol circuit Cπ where Cπ is a direct
implementation of the arithmetic operations performed by π. Cπ gets as input
the inputs x of the parties in π as well the randomness r used in π. It then
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evaluates π on inputs (x; r) and outputs the outputs of all the parties following
an execution of π(x; r).

Since π is T -randomized we can simulate from the randomness r for π and
from the inputs xT , the view ũT (except during the last round) of the parties in
T . Next, we determine the additive attack on Cπ corresponding to an adversary
Adv controlling the parties in T as follows. We first honestly simulate the parties
in T on their view ũT and obtain the messages m̃T ,T sent by the parties in T
to the parties in T during an honest execution of π. Next, we invoke Adv on the
view ũT and obtain the messages m̃Adv

T ,T sent by the parties in T to the parties

in T during a real execution of π in the presence of Adv. Finally we determine
the additive attack A on Cπ by computing A ← m̃Adv

T ,T − m̃T ,T .
Since π is T -randomized, it is the case that inside Cπ under the additive

attack A it holds that m̃Adv
T ,T = m̃T ,T + A, for any input xT of the parties in T

as well as for any messages that these parties receive during π. We thus correctly
simulate, inside Cπ, the effect of Adv on π. Notice that this is not necessary true
in case π is T -private since for any selection of the randomness r, the specific
values of the messages sent by the parties in T to Adv might depend on their
inputs xT to π. Since xT is not known to the simulator, it cannot generate the
correct view ũT required in order to compute m̃Adv

T ,T and m̃T ,T .

Step 3: Translate Attacks on Cπ to Attacks on C. We translate additive
attacks on Cπ to equivalent attack on C. In Sect. 7, we present the notion of
homomorphic circuits and prove that if a circuit C′ is homomorphic to a circuit
C then for any additive attack A′ on C′ there exists an equivalent additive attack
A on C such that CA(x) = C′A′

(x), for all x. Next, extending the notion of
circuit homomorphism to SIMD circuits, in the full version we define the notion
of �-homomorphic circuits and prove that if a circuit C′ is �-homomorphic to an
SIMD circuit C, then for any additive attack A′ on C′ there exists an equivalent
linear attack on C such that CL(x) = C′A′

(x) for all x.

Application to Natural MPC Protocols. In Sect. 8 we apply the above
transformations on the arithmetic version of the passively secure GMW protocol,
proving that it is additively corruptible. Next, in the full version we apply the
above transformations to the passively secure DN and DIK protocols, proving
that these protocols are additively and linear corruptible, respectively.

MPC Protocols Using Linear or Additive Attack Secure Circuits. The
notions of linear and additive-attack security only require that any attack will be
equivalent to an additive attack on the inputs and the outputs of the evaluated
circuit. Thus, directly executing an additively or linearly corruptible MPC pro-
tocol over an additive-attack secure or linear-attack secure circuit C still leaves
the inputs and the outputs of C unprotected. Instead, before securing C against
additive or linear attacks, we first modify C to CAUG which gets as inputs an
AMD encoding of C’s inputs and produces an encoding of C’s outputs. We then
transform CAUG to an additive-attack or linear-attack secure circuit C

AUG
and
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evaluate C
AUG

using a passively secure protocol, asking each party to locally
compute an AMD encoding of the inputs as well as locally decode the outputs.

3.2 Securing Circuits Against Additive and Linear Attacks

We first present our techniques for additive-attack security (see Sect. 5). Given
a circuit C, in the additive-attack secure version C of C, every wire of C is
paired with a wire that carries a corresponding MAC tag. Next, each gate in C
is replaced by a small gadget computing the gate’s result as well as its corre-
sponding MAC tag. In addition, this gadget also gets as inputs the MAC tags
corresponding to the gate’s inputs. Using these tags, the gadget verifies that the
gate’s result was computed correctly. Notice that the MAC tag verification itself
is also vulnerable to additive (and later linear) attacks. However, we construct
the verification circuit in such a way that even in the presence of attacks, it
outputs a random value if the MAC computation or MAC verification fails for
some gate.

The Basic Additive-Attack Secure Circuit Compiler. Similar to [4,11]
we use a multiplicative MAC in order to additive-attack secure the output of
each gate. Concretely, for each input gate a, its corresponding MAC tag will be
a′ = a · v where v is a randomly selected field element acting as the MAC key
(fixed to be the same value for all gates). Next, for every addition gate c = a+b
with inputs a, b and associated MAC tags a′, b′, we compute the MAC tag c′

associated with c directly by computing c′ = a′ + b′.
For every multiplication gate c = a · b with inputs a, b and associated MAC

tags a′, b′, we need to ensure the correct computation of c = a · b. Given a
MAC tag of the expected result of c and the MAC tags of a, b, we could have
verified that under an additive attack indeed c · v = a · b · v. Thus, we must
somehow combine the (assumed to be correct) MAC tag values a′ = a · v and
b′ = b · v in order to generate the tag of the expected result a · b · v. Moreover,
this tag generation must be done in such a way that ensures that no combination
of attacks on the tag generation circuit and on the multiplication gate’s actual
computation, can produce an incorrect result without being detected.

In [11], this was solved by setting the MAC tag c′ to be c′ = a′ ·b′ = a ·b ·v2.
The construction of [11] was based on the fact that an additive attack A on the
computation of c′A = (a′ + Aa′,c′)(b′ + Ab′,c′) introduces additional monomials
of the form Ab′,c′ ·a′ = Ab′,c′ ·av or Aa′,c′ ·b′ = Aa′,c′ ·bv and it cannot introduce
additional monomials of the form a′ · b′ = a · b · v2, where Aa′,c′ denotes the
attack A restricted to the wire connecting the gates a′, c′ inside C. Next, in [11]
it was shown that in case these additional monomials are present, they cannot
be canceled out by any other combination of additive attacks, thereby making C
abort the computation by masking its results with a completely random value.

The main problem with the basic construction of [11] is that even when no
attacks are present, the degree of the MAC key v inside c′ increases from v to
v2. This limits the construction of [11] to only low-degree circuits as well as
requiring complicated ad-hoc gadgets to support addition and subtraction gates
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with MAC tags having different degrees of v. Finally, in order to additive-attack
secure arbitrary-degree circuits, [11] employs a degree reduction procedure vastly
increasing the concrete overhead of the overall construction.

An Efficient MAC Combination Gadget. In Construction 1, we solve the
problem of combining MAC tags in a different way. Let a′ = a · v and b′ = b · v.
We first compute c′ as c′ = a′ · b = (a · v) · b. Moreover, we also compute
c′′ = a ·b′ = a · (b ·v). Therefore, if no additive attack is present, it is always the
case that c′ − c′′ = 0. However, notice that an additive attack on c′ can only
produce monomials of the form Aa′,c′ ·b or of the from Ab,c′ · (a ·v). In contrast,
notice that any additive attack on c′′ can only produce monomials of the form
Aa,c′ · (b ·v) and Ab,c′ ·a which cannot be canceled out by any of the monomials
produced by the attack on c′. Thus, by checking that c′ − c′′ = 0, we either
obtain that c′ − c′′ is non-zero with high probability (making the entire circuit
to abort) or that no attack was mounted on the circuits computing c′ and c′′.
In the latter case, we obtain that c′ = a · b · v, which is the correct MAC tag of
the expected result of the multiplication gate c = a · b under the key v.

Computing Multiplication Gates. Next, we use the MAC tag c′ computed
previously in order to verify the correct computation of c. We achieve this by
computing the output of c and then MAC it by multiplying with the MAC key
v. Next, we check that the above result matches the known-good MAC tag c′.
This last check is implemented by computing c · v − c′ and having C abort in
case c ·v−c′ �= 0. Notice that any additive attack on c can only introduce (after
the multiplication by the MAC key) monomials of the from a · v or b · v which
cannot be canceled-out by the MAC tag a · b · v. Hence, we conclude that in the
presence of an additive attack the gate output check fails, making C abort.

Computing Addition Gates. Notice that in the above described construction,
the degree of the used MAC key v is always 1 and in particular it does not increase
after the computation of multiplication gates. Therefore, given an addition gate
c = a + b, we can compute the MAC tag for c by computing c′ = a′ + b′. This
avoids the ad-hoc gadget of [11] for additive-attack securely computing MAC
tags where the inputs of the addition gate are of different degrees. Eliminating
this gadget also simplifies the circuit randomization process (see below).

Avoiding Degree-Reduction. Next, since the degree of the key does not
increase after the execution of each multiplication, this allows us to directly
additive-attack secure arbitrary circuits without the need to reduce the degree
(as opposed to the construction of [11]). This, together with a simplified cir-
cuit randomization process (described below), induces a big improvement in the
concrete overhead of the construction compared to the construction of [11].

Circuit Randomization Process. The above described construction only
achieves additive-attack security for the case where the inputs to each multipli-
cation gate are almost random (See Definition 5). Moreover, it is also required
that each input of C is also almost random (individually). We force the inputs of
a multiplication gate c = a·b to be almost random as follows. First, we additively
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secret share a and b to (a−r1, r1) and (b−r2, r2). We then compute the output
of c by c = (a− r1)(b− r2) + (a− r1) · r2 + r1 · (b− r2) + r1 · r2 = a · b. Notice
that in this case, the inputs of every multiplication gate are uniformly random.
Randomizing the inputs of C is done similarly, see full version for details.

Protecting SIMD Circuits Against Linear Attacks. As described above,
a linear attack L on a multiplication gate c with input gates a and b specifies
a linear function f : F

2� → F
� (in the gate’s input bundles) to be added to

the gate’s output bundle. We specify f using two � × � matrices La,c and Lb,c,
changing the computation performed by c to be c = a 	 b + La,c · a + Lb,c · b.
Notice that L only introduces monomials of the form La,c · a, Lb,c · b but not
of the form a	 b, where 	 denotes �-wide point-wise multiplication of two wire
bundles. In the full version, we extend the high-level ideas of the above described
construction to handle SIMD circuits and linear attacks.

Next, our basic construction for transforming an SIMD circuit C to a
functionally-equivalent linear-attack secure SIMD circuit C guarantees that every
linear attack on C is either equivalent to an additive attack on the inputs and
outputs of C, or some wire in a special bundle f, which denotes an error flag
inside C, becomes non-zero. In such a case, we would like another bundle f ′ to
be almost random. In the full version, we design a special-purpose gadget, called
Mix circuit, which satisfies the above property, even in the presence of linear
attacks.

4 Preliminaries

Arithmetic Circuits. Following [11], an arithmetic circuit C is a directed
acyclic graph whose vertices are called gates and whose edges are called wires.
Every in-degree 0 gate in C is labeled by a variable from a set of variables
X= {x1, · · · , xn} and is referred to as an input gate. All other gates have in-
degree 2, are labeled by elements from {+,−,×} and referred to as add, sub and
mult gates, respectively. Every gate of out-degree 0 is called an output gate. We
assume that the output gates are ordered. In some cases we also allow in-degree
0 gates labeled by rand referred to as randomness gates. A circuit containing
rand gates is called a randomized circuit. For a (possibly randomized) circuit C
and for a gate g of C we denote by gx the distribution of the output value of g
(defined in a natural way) when C is being evaluated on an input x.

SIMD Circuits. An SIMD circuit with bundle size � is defined similar to arith-
metic circuits. We refer to the edges of an SIMD circuit C as wire bundles or bun-
dles and to vertices of an SIMD circuits as �-gates. We write C :

(
F

�
)n → (

F
�
)k

to indicate that C is an SIMD circuit with n input bundles and k output bun-
dles. Each multiplication, addition or subtraction �-gate of an SIMD circuit gets
as input two wire bundles of size � and outputs a bundle of size � obtained by
performing � point-wise multiplications, additions or subtractions in parallel.4

4 Notice that for the case of SIMD circuits, the notion of in-degree of a gate corresponds
to the number of its input wire-bundles (as opposed to individual wires). Thus the
in-degree of {×, +, −} gates is 2. The notion of out-degree is defined similarly.
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We also allow SIMD circuits to contain an additional type of �-gates with
in-degree and out-degree 1, referred to as routing �-gates. Each routing �-gate is
labeled by a function ρ : [�] → [�]. We shall sometimes refer to these routing �-
gates as ρ-gates. A ρ-gate on an input bundle a = (a1, · · · , a�) outputs a bundle
b = (b1, · · · , b�) such that bi = aρ(i) for all 1 ≤ i ≤ �.

Additive Attacks. An additive attack A changes the computation performed
by a circuit C by specifying for every wire in C, connecting gates a and b, a
value to be added to the output of a. The derived value is then used for the
computation of b. In addition, A specifies values to be added to the outputs of
C. Note that an additive attack on a circuit C is a fixed vector of field elements
which is independent from the inputs and internal values of C.

Linear Attacks. A linear attack L on an SIMD circuit changes the computation
of a multiplication �-gate by adding to each wire in the gate’s output bundle a
linear function of all the wires in the gate’s two input bundles. In particular,
for any multiplication �-gate c with input bundles a and b, a linear attack L
specifies a linear function f : F2� → F

� such that the output bundle of c is equal
to c = a 	 b + f(a,b), where 	 denotes point-wise multiplication of two wire
bundles. In addition, similar to additive attacks, we allow a linear attack L to
specify an additive attack Lout on the outputs of the SIMD circuit C.

Attacks on Addition and Subtraction Gates. We do not allow linear
attacks on addition and subtraction gates. This is since mounting an attack
of the form f(a, b) = −a−b the adversary is able to fix an output of an addition
gate c = a + b − a − b to be always zero. Therefore, allowing for such attacks
means that it is possible to override the output of these gates to be an arbitrary
value. Such attacks are not supported by our constructions.5

Additive Attacks on SIMD Circuits. Note that allowing additive attacks on
wire bundles of SIMD circuits (in addition to linear attacks) will not provide the
adversary with additional capabilities in modifying the circuit’s computation.
This is since for any pair of attacks (A,L) on an SIMD circuit C where A is
an additive attack and L is a linear attack there exists a functionally-equivalent
linear attack L′. The linear attack L′ can be constructed as follows. First, the
additive attacks specified by A can be pushed “downstream” through the circuit
till the inputs of the multiplication gates and the outputs of the output gates.
Next, additive attacks on inputs of a multiplication gate c, can be added to the
diagonal of the appropriate matrices as specified by L, yielding L′.

Additive Attacks in Secure Multi-party Computation. In the following
we define the notion of additively corruptible versions of a functionality. With-
out loss of generality, we only consider functionalities where only P1 gets an
output. That is, functionalities of the form f : F

I1 × · · · × F
In → F

O1 where
(I1, · · · , In, O1) are positive integers. Note that we can move to individual out-
puts using a standard transformation (See [13, Sect. 2.5.2]).

5 Note that linear attacks on multiplication gates suffice to achieve MPC tasks.
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Definition 2. Let C be an n-party circuit. We define the additively corruptible
version of C to be an n-party functionality fA

C that takes additional input from
the adversary representing an additive attack, A, on C. For an input x and
additive attack A, fA

C outputs CA(x). The notion of a linearly corruptible circuit
is defined similarly, replacing the additive attack A with a linear attack L.

Next, we define the notion of T -equivalent protocols.

Definition 3. Let π and π′ be two protocols for computing an n-party circuit C
in the f and f ′ hybrid models respectively. We say that π is T -equivalent to π′

if for any adversary Adv controlling a set of parties T ⊆ P and for any input x
it holds that RealAdv,fπ,T (x) ≡ RealAdv,f

′
π′,T (x).

5 Additive Security for Arithmetic Circuits

In this section we simplify the construction of [11] improving its additive-attack
security from O(|C|/|F|) to O(1/|F|), as well as improving its concrete efficiency.
Following the approach of [11], we first present a simpler construction whose
security holds only when the circuit’s wire values satisfy some local randomness
property (Construction 1). In the full version, we show how to eliminate this
assumption by applying general transformations to the circuit.

We begin by defining additive-attack security for specific input distributions.

Definition 4. Let F be a finite field, C : Fn → F
k an arithmetic circuit, and I a

distribution over F
n. We say that a circuit C : Fn → F

k+1 is an ε-additive-attack
secure implementation of C with respect to I if the following holds:

– Completeness. For all x ∈ F
n, C(x) ≡ C(x).

– Security with respect to I. For any additive attack A, there exists ain ∈ F
n

and a distribution Aout over F
k such that SD(C

A
(I),C(I + ain) + Aout) ≤ ε.

The construction guarantees security as defined in Definition 1 with ε =
O (1/|F|), under the assumption that the inputs of the circuit as well as the
inputs of each multiplication gate are sufficiently random. Unlike the basic con-
struction of [11], the construction described in this section does not require the
randomization of the inputs of addition and subtraction gates. Thus, below we
define a weaker notion of locally random circuits compared to the one used in [11],
by not imposing any requirement about the inputs of addition and subtraction
gates. This also greatly simplifies the construction of such circuits.

Definition 5 (Locally Random Circuits). Let F be a finite field, C be a
randomized arithmetic circuit. We say that C is locally ε-random with respect to
a distribution I if the following two properties hold.

1. Local Randomization of Input Gates. For any y ∈ F and for any 1 ≤
i ≤ n the probability over selecting x ← I that xi = y is at most |F| · ε.
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2. Local Randomization of Multiplication Gates. For any (y, z) ∈ F
2 and

any pair of gates (a, b), whose outputs are the inputs to some multiplication
gate in C, it holds that the probability, over the internal randomness of C and
the selection x ← I, that (ax, bx) = (y, z) is at most ε.

We now present our basic construction for constructing additive-attack circuits.

Construction 1. Let C : Fn → F
k be a circuit. Define a circuit C that on input

x computes z = C(x) and then performs the following:

MAC Generation Circuit:

1. Generate a random elements r, v ∈ F and compute r′ ← r · v.
2. For each input gate c, compute the value c′ ← c · v.
3. For each non-input gate c let a, b be its inputs and let a′, b′ be the MAC tags

corresponding to a and b. Compute the MAC tag c′ as follows:
(a) If c is a multiplication gate, let c′ ← a′ · b and let c′′ ← a · b′.
(b) If c is an addition gate let c′ ← a′ + b′. Similarly, if c is a subtraction

gate let c′ ← a′ − b′.

MAC Checking Circuit:

4. For every input gate c in C, generate a random element tc and compute
gc ← c + r, h′c ← c′ + r′, g′c ← gc · v, fc ← h′c − g′c.

5. Compute f1 ← ∑
c∈inptC

tc · fc where inptC is the set of the input gates of C.
6. For every multiplication gate c, generate two random field elements tc, wc and

compute fc ← c′ − c′′, gc ← c · v, hc ← gc − c′.
7. Let mulC be the set of all multiplication gates in C, compute f2 ← ∑

c∈mulC
wc ·

fc and f3 ← ∑
c∈mulC

tc · hc.
8. Compute f ← f1 · s1+f2 · s2+f3 · s3 where s1, s2, s3 are random field elements.

Output Generation: Output z + f · r where r is a random vector from F
k.

In the full version we prove the following theorems.

Theorem 5. Let C : F
n → F

k be a randomized arithmetic circuit which is
locally ε-random with respect to and input distribution I. Then the circuit C
obtained by applying Construction 1 to C is a (|F| · ε + 1/|F|)-additive-attack
secure implementation of C with respect to I. Moreover, |C| = O(|C|).
Theorem 6 (Additive-attack Security). For any arithmetic circuit C :
F

n → F
k there exists a randomized circuit C : F

n → F
k such that C is an

ε-additive-attack secure implementation of C where ε = O(1/|F|). Moreover,
|C| = O(|C|).

Notice that unlike the work of [11], the error parameter of the construction
is O(1/|F|). This matches the result of [14], but in a stronger attack model.
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6 From General Adversaries to Additive Attacks

In this section we reduce any general adversary attacking a randomized protocol
π to an additive attack on the protocol circuit Cπ defined as follows. We compile
a protocol π into a circuit, Cπ, by writing all local computations performed by
the parties as circuits and whenever a party Pi sends a message to Pj , we connect
the corresponding parts of the circuits representing Pi and Pj using wires. Notice
that for every input x and randomness r, it holds that π(x; r) = Cπ(x, r).

We now define the notion of a last-round-private protocol.

Definition 6. Let T be a set of corrupted parties and let π be a T -randomized
n-party protocol for computing an n-input circuit C : FI1 × · · · ×F

In → F
O1 . We

say that π is T -last-round-private if the following hold.

1. Structure of the Last Round. During the last round, only P1 computes the
output vector z, in the following way. Let T ′ ⊆ T be the set of parties from
T sending messages to P1 during the last round. Each output {zi}1≤i≤O1

is computed by P1 evaluating two linear functions FT and FT ′ such that
zi = FT (liT ,P1

) + FT ′(liT ′
,P1

) where the messages liT ,P1
, liT ′

,P1
are the shares

corresponding to zi received by P1 from the parties in T and T ′
, respectively.

2. Privacy of the Last Round. Fix an input xT and randomness rT to the
circuit Cπ for the parties in T . In addition, fix an additive attack A on Cπ

and fix a view ûT of the parties in T during an execution of CA
π on (xT , rT ).

Let Z be the distribution of outputs in CA
π conditioned on (xT , rT ,A, ûT )

and fix z from the support of Z. Finally, let l̂T ,P1 be the messages received by
P1 from the parties in T during the last round of CA

π as uniquely defined by
(xT , rT , ûT ). We require that the distribution of the messages l̂T ′

,P1
, over the

unfixed randomness rT is uniform conditioned on FT ′(l̂T ′
,P1

) = z−FT (l̂T ,P1).

In the full version we prove the following theorem.

Theorem 7. Let π be a T -last-round-private and T -randomized protocol. Then
for any active adversary Adv controlling the parties in T there exists a simulator
Sim such that for any input x it holds that IdealSimfA

Cπ
,T (x) ≡ RealAdvπ,T (x).

7 Homomorphism for Standard Circuits

In this section we prove that if two circuits C and C′ meet certain properties,
then for any additive attack on C′ there exists an equivalent additive attack
on C. Applying this approach to Cπ, we prove that any additive attack on Cπ

corresponds to an additive attack on C.
Without loss of generality, we express every multiplication gate as a prod-

uct of its inputs where each input is an arbitrary fixed linear combination of
the preceding addition and subtraction gates up to the depth of the preceding
multiplication gate.
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Definition 7. Let C be a randomized circuit and let c be an in-degree 2 multi-
plication gate inside C.We define two ordered sets leftc and rightc, as follows.

leftc =
{
a ∈ {×, input}

:
∃path from a to the first input of c
which only contains gates from the set {+,−}

}

rightc =
{
a ∈ {×, input}

:
∃path from a to the second input of c
which only contains gates from the set {+,−}

}

The ordered sets leftc and rightc naturally define two linear functions lc : F|leftc| →
F and rc : F|rightc| → F representing the output of c as a function of the outputs
of the preceding mult and input gates. More specifically, for any input x to C it
holds that cx = lc(ax) · rc(bx) where a = leftc and b = rightc.

We now express every output gate which is an addition or subtraction gate as
a fixed linear combination of the output of the proceeding multiplication gates.

Definition 8. Let C be a deterministic circuit and let c be an output gate that
is an add or sub gate. We define the ordered set inc as follows.

inc =
{
a ∈ {×, input}

:
∃path from a to either of the two inputs of c
which only contains gates from the set {+,−}

}

The set inc naturally defines a linear function fc : F|inc| → F representing the
output of c as a function of the outputs of the preceding mult and input gates.
More specifically, for any input x to C it holds that cx = fc(ax) where a = inc.

We now define the notion of circuit homomorphism. Later, we prove that if
a circuit C′ is homomorphic to a circuit C then any additive attack on C′ can be
simulated by an additive attack on C. Applying the above on MPC protocols,
as long as the circuit Cπ of a protocol π is homomorphic to C, then any additive
attack on Cπ can be simulated by an additive attack on C. Combining this with
the result of Sect. 6, we obtain that for any protocol π computing a circuit C,
which is T -randomized, T -last-round-private and homomorphic to C, any attack
mounted by an active adversary is equivalent to an additive attack on C.

Definition 9 (Circuit Homomorphism). Let C be a deterministic circuit.
A circuit C′ is said to be homomorphic to C if there exists a mapping H from
the input and mult gates of C to the gates of C′ such that the following properties
hold. Below, for any gate c of C we denote the output of H(c) by c′.

1. Input. For any input gate c of C and for any input x it holds that cx = c′
x.

2. Multiplications. For any mult gate c we require that there exists constant
λc ∈ F with the following properties for any input x:
(a) It holds that c′

x + λc = lc ((a′
x + λa)a∈leftc) · rc

(
(b′

x + λb)b∈rightc

)
.

(b) For every mult gate used for the computation of the output of c′ inside
C′, the left input is a linear function of lc ((a′

x)a∈leftc) and the right input
is a linear function of rc

(
(b′

x)b∈rightc

)
.
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3. Outputs. We first require that both C and C′ have the same number of output
gates. Let c be the i-th gate of C, we distinguish two different cases.
(a) Let o′ be the i-th output gate of C′. If c is a mult gate, then o′

x = c′
x+λc.6

(b) If c is an add, or sub gate then the i-th output of C′, o′
x is equal to

o′
x = fc ((a′

x + λa)a∈inc) for all input x.

Moreover, we require that the recovery of the output from the gates o′ of C ′

is performed without computing any mult gates.

Remark 1 Given two circuits C, C′, a mapping H, a constant λc and functions
lc and rc for every mult gate c in C, it is possible to decide in polynomial time
if C′ is homomorphic to C. Checking that the requirements of Definition 9 hold
can be done symbolically using the gate’s output as variables.

For simplicity of exposition, Definition 9 is tailored to protocols working on
additive secret sharing such as the GMW protocol. A simple generalization of
Definition 9 captures protocols working on any linear secret sharing scheme, such
as the DN and DIK. See full version for details.

Lemma 1 Let C be a deterministic circuit and let C′ be a circuit homomorphic
to C. Then for any additive attack A′ on C′ there exists an additive attack A on
C such that for any input x it holds that C′A′

(x) = CA(x).

We now extend Lemma 1 to handle n-party circuits computed during an
MPC protocol. We begin by defining the notion of T -homomorphic circuits.

Definition 10 Let π be an n-party protocol, C be an n-party circuit and let T be
a set of parties. We say that Cπ is T -homomorphic to C if for any input xT for
the parties in T and for every randomness r, the circuit Cπ((xT , ·), r) obtained
by fixing the inputs xT and r inside Cπ is homomorphic to C(xT , ·).

In the full version we prove the following theorem.

Theorem 8 Let π be an n-party protocol for computing a circuit C : FI1 ×· · ·×
F

In → F
O1 in the f-hybrid model and let T be a set of parties such that π is

T -randomized, T -last-round-private and Cπ is T -homomorphic to C. Then for
any active adversary Adv controlling the parties in T there exists a simulator
Sim such that for any input x it holds that IdealSimfA

C ,T (x) ≡ RealAdv,fπ,T (x).

8 The GMW Protocol

In this section we prove that an arithmetic generalization of the passively secure
GMW protocol [12] is additively corruptible. We first extend the GMW protocol
to the arithmetic setting [17], where the OT oracle is replaced by oblivious linear
function evaluation (OLE) [19].

6 Notice that here we do not require that H(c) = o′. This is since already H(c) = c′

and moreover there exists a gate o′ such that o′ = c′
x + λc.
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Definition 11 (The OLE functionality). Let F be a finite field. We define
the functionality fOLE that on inputs (a, b) ∈ F

2 from the sender and x ∈ F from
the receiver outputs ⊥ to the sender and a · x + b to the receiver.

We now proceed describing an arithmetic version of the GMW protocol in
the OLE-hybrid model [12,17]. We begin by describing the Input-ShareGMW and
MultGMW protocols used to evaluate input and multiplication gates.

Construction 2 (Subprotocol Input-ShareGMW). The subprotocol Input-
ShareGMW is defined as follows. Each party Pi on input x computes a random
additive sharing of x, denoted by [x]add = (x1, . . . , xn), and deals it among all
the parties.

Construction 3 (Subprotocol MultGMW). The subprotocol MultGMW gets as
input additive sharings [a]add, [b]add and outputs an additive sharing [c]add such
that c = a · b. The protocol proceeds as follows.

1. Each ordered pair of parties Pi, Pj, such that i �= j, performs the following.
(a) Pi generates a random value ri,j and acting as a sender sends (ai, ri,j) to

the OLE oracle. Pj acting as a receiver sends bj to the OLE oracle.
(b) The OLE oracle responds with si,j = ai · bj + ri,j to Pj.

2. Each party Pi computes ci ← ai · bi +
∑n

j=1
j �=i

(sj,i − ri,j).

We now proceed in describing the passively secure GMW protocol.

Construction 4 (Passively secure GMW protocol). Let C : F
I1 × · · · ×

F
In → F

O1 be an n-party circuit. The protocol GMWC for C proceeds as follows:

1. Input sharing phase. For each input gate associated to party Pi, party Pi

executes the protocol Input-ShareGMW described in Construction 2.
2. Circuit evaluation phase. For each gate c in C with input sharings

[a]add = (a1, . . . , an) and [b]add = (b1, . . . , bn) proceed as follows:

Evaluating addition and subtraction gates. For the case of addition
gates, all parties locally compute [c]add ← [a]add + [b]add. Similarly, for sub-
traction gates, all parties locally compute [c]add ← [a]add − [b]add.

Evaluating multiplication gates. All the parties execute the MultGMW pro-
tocol described in Construction 3 on inputs [a]add and [b]add.

3. Output recovery phase. At the end of the computation, for each output
gate c of C all the parties hold a sharing [c]add corresponding to its value.
For each output gate c, the parties generate a random sharing [z]add of 0 and
compute [c′]add ← [c]add + [z]add. Parties {P2, · · · , Pn} send their shares of
[c′]add to P1. Then P1 recovers the output c by computing c ← ∑n

i=1 c′
i.

The works of [12,17] analyzed the passively secure GMW protocol.

Theorem 9 ([12,17]). For any n-party circuit C : FI1 × · · · × F
In → F

O1 , the
protocol GMWC in the OLE hybrid model is passively secure against any adversary
controlling at most n − 1 parties. Moreover, the communication complexity (in
field elements) as well as the number of oracle calls of GMWC is O(n2|C|).
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8.1 Randomizing the GMW Protocol

Note that the protocol Input-ShareGMW is already randomized. This is since addi-
tive secret sharing is done by having the party Pi, holding the input x, send ran-
dom shares rj to all other parties and then compute his share to be x − ∑

j rj .
Therefore, the messages exchanged during the input sharing phase are already
input-independent. We now describe how to randomize the evaluation of multi-
plication gates in GMW protocol. In the MultGMW protocol, all messages received
by the parties are sent by the fOLE oracle. We thus construct the fT

OLE oracle
which sends messages to the parties in T which only depend syntacticly on the
randomness of the protocol and not on the inputs of the parties in T .

Construction 5 (The fT
OLE Functionality). Let T be a set of parties. We

define the functionality fT
OLE that on inputs (a, b) from a party Pi acting as a

sender and x ∈ F from a party Pj acting as a receiver performs the following.

1. Pj ∈ T and Pi ∈ T . Let Ph be the first party not in T . fT
OLE generates a

random value e, sends ⊥ to Pi and e to Pj and ax + b − e to Ph.
2. Otherwise. In this case fT

OLE sends ⊥ to Pi and ax + b to Pj.

In the following we describe the MultTGMW protocol in the fT
OLE hybrid model.

Construction 6 (Subprotocol MultTGMW). Let T be a set of parties and let
Ph be the first party not in T . The subprotocol MultTGMW, in the fT

OLE hybrid
model, gets as input additive sharings of [a]add, [b]add and outputs an additive
sharing [c]add such that c = a · b. The protocol proceeds as follows.

1. Each ordered pair of parties Pi, Pj, such that i �= j, performs the following.
(a) Pi generates a random value ri,j and acting as a sender sends (ai, ri,j)

to the fT
OLE oracle. Pj acting as a receiver sends bj to the fT

OLE oracle.
(b) The fT

OLE oracle responds with si,j to Pj, and with s′
i,j to Ph in case that

Pj ∈ T and Pi ∈ T .
2. Each party Pi ∈ T computes ci ← ai · bi +

∑n
j=1
j �=i

(sj,i − ri,j).

3. Each party Pi ∈ T , such that Pi �= Ph, generates his share ci of c uniformly
at random, computes di ← ai · bi +

∑n
j=1
j �=i

(sj,i − ri,j) and sends (ci, di) to Ph.
4. Party Ph computes ch ← ah · bh +

∑
Pi∈T

Pi �=Ph

(di − ci) +
∑

Pi∈T
Pj∈T

s′
i,j.

Next, we describe the GMWT
C protocol. In the full version we prove that

GMWT
C is T -randomized and T -equivalent to GMWC.

Construction 7 (GMWT
C Protocol). Let C : FI1 × · · · × F

In → F
O1 be an n-

party circuit and let T be a set of parties such that |T | < n. The protocol GMWT
C

for C is defined to be the same as the GMWC protocol form Construction 4 except
that the parties execute the MultTGMW protocol instead of MultGMW.

Lemma 2. Let C be an n-party circuit. For any set of parties T such that |T | <
n the protocol GMWT

C is T -randomized and is T -equivalent to GMWC.
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8.2 The GMW Protocol in the Presence of an Active Adversary

In this section we prove that the execution of the passively secure GMW pro-
tocol is additively corruptible. We begin by stating that GMWT

C defined in
Construction 4 is T -last-round-private as well as T -homomorphic to C.

Lemma 3. Let n be positive integer and let C be an n-party circuit. Then for
any set of parties T such that |T | < n it holds that the protocol GMWT

C for
computing C is T -last-round-private as well as T -homomorphic to C.

Proof (sketch). The T -last-round-private property follows from the fact that dur-
ing the output recovery phase of the GMWT

C , all the parties locally re-randomize
their shares with random sharings of 0. We now prove that CGMWT

C
is indeed

T -homomorphic to C. Fix randomness r for CGMWT
C
. Next, for any input gate

c of C, we set the homomorphism H to map c to the corresponding input gate
in CGMWT

C
. Finally, for every multiplication gate c of C, we set H to map c to

a wire in CGMWT
C

corresponding to the share ch, held by the party Ph in step 4
of the MultTGMW protocol. Finally, we set λc to be the sum of all the shares ci

generated during steps 2 and 3 of MultTGMW. Notice that since MultTGMW is T -
randomized, λc can be uniquely determined from r. It can be easily verified that
for every choice of r the homomorphism H as well as the constants λc, where c
is a multiplication gate, satisfy all the requirements of Definition 9. �
Combining the results of Lemmas 2 and 3 and Theorem 8 with additive-attack
constructions in Sect. 5 we obtain the following theorem.

Theorem 10 (Cf. Theorem 1.5 in [11]). For any n-party circuit C : FI1 ×
· · ·×F

In → F
O1 there exists a protocol π for O(1/|F|)-securely computing C with

abort in the OLE hybrid model. Moreover π invokes the OLE oracle O(n2|C|)
times and has a total communication complexity of O(n2|C|) field elements.
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Abstract. We present the first efficient (i.e., polylogarithmic overhead)
method for securely and privately processing large data sets over mul-
tiple parties with parallel, distributed algorithms. More specifically, we
demonstrate load-balanced, statistically secure computation protocols
for computing Parallel RAM (PRAM) programs, handling (1/3−ε) frac-
tion malicious players, while preserving up to polylogarithmic factors the
computation, parallel time, and memory complexities of the PRAM pro-
gram, aside from a one-time execution of a broadcast protocol per party.
Additionally, our protocol has polylog communication locality—that is,
each of the n parties speaks only with polylog(n) other parties.

1 Introduction

Large data sets, such as medical data, genetic data, transaction data, the web
and web access logs, and network traffic data, are now in abundance. Much of the
data is stored or made accessible in a distributed fashion, having necessitated the
development of efficient distributed protocols that compute over such data. In
particular, novel programming models for processing large data sets with parallel,
distributed algorithms, such as MapReduce (and its implementation Hadoop) are
emerging as crucial tools for leveraging this data in important ways.

But these methods require that the data itself is revealed to the participating
servers performing the computation—and thus blatantly violate the privacy of
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potentially sensitive data. As a consequence, such methods cannot be used in
many critical applications (e.g., discovery of causes or treatments of diseases
using genetic or medical data).

In contrast, methods such as secure multi-party computation (MPC), intro-
duced in the seminal works of Yao [Yao86] and Goldreich, Micali and Wigder-
son [GMW87], enable securely and privately performing any computation on
individuals private inputs (assuming some fraction of the parties are honest).
However, despite great progress in developing these techniques, there are no
MPC protocols whose efficiency and communication requirements scale to the
modern regime of large-scale distributed, parallel data processing.

We are concerned with merging these two approaches. In particular,

We seek MPC protocols that efficiently (technically, with
polylogarithmic overhead) enable secure and private processing of large

data sets with parallel, distributed algorithms.

Explicitly, in this large-scale regime, the following properties are paramount:

1. Exploiting Random Access. Computations on large data sets are frequently
“lightweight”: accessing a small number of dynamically chosen data items,
relying on conditional branching, and/or maintaining small memory. This
means that converting a program first into a circuit to enable its secure com-
putation, which immediately obliterates these gains, will not be a feasible
option.

2. Exploiting Parallelism. In fact, as mentioned, to effectively solve large-scale
problems, modern programming models heavily leverage parallelism. The
notion of a Parallel RAM (PRAM) better captures such computing models.
In the PRAM model of computation, several (polynomially many) CPUs run
simultaneously, potentially communicating with one another, while accessing
the same shared external memory. We consider a PRAM model with a variable
number of CPUs but with a fixed activation structure (i.e., what processors
are activated at which time steps is fixed). Note that such a model simul-
taneously captures RAMs (a single CPU) and circuits (the circuit topology
dictates the CPU activation structure).

3. Exploiting Plurality of Users. In the setting of MPC we would like to leverage
not only parallelism within a single party (i.e., if a party has multiple CPUs
that may run in parallel), but also that we have a large number of parties
that can run in parallel. So, if we have n parties, each with k processors, we
ideally would like to securely compute PRAMs that use nk CPUs (as opposed
to just k CPUs).

Additionally, the following desiderata are often of importance:

4. Load balancing. When the data set contains tens or hundreds of thousands
of users’ data, it is often unreasonable to assume that any single user can
provide memory, computation, or communication resources on the order of
the data of all users. Rather, we would like to balance the load across nodes.
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5. Communication Locality. In many cases, establishing a secure communication
channel with a large number of distinct parties may be costly, and thus we
would like to minimize the locality of communication [BGT13]: that is, the
number of total parties that each party must send and receive message to
during the course of the protocol.

To date, no existing work addresses secure computation of Parallel RAM pro-
grams. Indeed, nearly all results in MPC require a circuit model for the function
being evaluated (including the line of work on scalable MPC [DI06,DIK+08,
DKMS12,ZMS14]), and thus inherit resource requirements that are linear in the
circuit size. Even for (sequential) RAM, the only known protocols either only
handle two parties [OS97,GKK+11,LO13,GGH+13], or in the context of multi-
party computation require all parties to store all inputs [DMN11], rendering the
protocol useless in a large-scale setting (even forgetting about computation load
balancing and locality).

1.1 Our Results

We present a statistically secure MPC for (any sequence of) PRAMs handling
(1/3 − ε) fraction static corruptions in a synchronous communication network,
with secure point-to-point channels. In addition, our protocol is strongly load
balanced and communication local (i.e., polylog(n) locality). We state our theorem
assuming each party itself is a k-processor PRAM, for parameter k.

Theorem 1 (Informal – Main Theorem). For any constant ε > 0 and
polynomial parallelism parameter k = k(n), there exists an n-party statistically
secure (with error negligible in n) protocol for computing any adaptively chosen
sequence of PRAM programs Πj with fixed CPU activation structures (and that
may have bounded shared state), handling (1/3 − ε) fraction static corruptions
with the following complexities, where each party is a k-processor PRAM (and
where |x|, |y| denote per-party input and output size,1 space(Π), comp(Π), and
time(Π) denote the worst-case space, computation, and (parallel) runtime of Π,
and CPUs(Π) denotes the number of CPUs of Π):

– Computation per party, per Πj: Õ
(
comp(Πj)/n + |y|).

– Time steps, per Πj: Õ
(
time(Πj) · max

{
1, CPUs(Π)

nk

})
.

– Memory per party: Õ
(|x| + |y| + maxN

j=1 space(Πj)/n
)
.

– Communication Locality: Õ(1).

given a one-time preprocessing phase with complexity:

– Computation per party: Õ(|x|), plus single broadcast of Õ(1) bits.
– Time steps: Õ

(
max

{
1, |x|

k

})
.

1 For simplicity of exposition, we assume all parties have the same input size and
receive the same output.
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Additionally, our protocol achieves a strong “online” load-balancing guarantee: at
all times during the protocol, all parties’ communication and computation loads
vary by at most a constant multiplicative factor (up to a polylog(n) additive
term).

Remark 1 (Round complexity). As is the case with all general MPC protocols in
the information-theoretic setting to date, the round complexity of our protocol
corresponds directly with the time complexity (as when restricted to circuits,
parallel complexity corresponds to circuit depth). That is, for each evaluated
PRAM program Πj , the protocol runs in Õ(time(Πj)) sequential communication
rounds to securely evaluate Πj .

Remark 2 (On the achieved parameters). Note that in terms of memory, each
party only stores her input, output, and her “fair” share of the required space
complexity, up to polylogarithmic factors. In terms of computation (up to poly-
logarithmic factors), each party does her “fair” share of the computation, receives
her outputs, and in addition is required to read her entire input at an initial pre-
processing stage (even though the computations may only involve a subset of
the input bits; this additional overhead of “touching” the whole input once is
necessary to achieve security).2 Finally, the time complexity corresponds to the
parallel complexity of the PRAM being computed, as long as the combined num-
ber of available processors nk from all parties matches or exceeds the number of
required parallel processes of the program (and degrades with the corresponding
deficit).

Remark 3 (Instantiating the single-use broadcast). The broadcast channel can
be instantiated either by the O(

√
n)-locality broadcast protocol of King

et al. [KSSV06], or the polylog(n)-average locality protocol of [BSGH13] at the
expense of a cost of a one-time per-party computational cost of O(

√
n), or aver-

age cost of polylog(n), respectively. We separate the broadcast cost from our pro-
tocol complexity measures to emphasize that any (existing or future) broadcast
protocol can be directly plugged in, yielding associated desirable properties.3

1.2 Construction Overview

Our starting point is an Oblivious PRAM (OPRAM) compiler [BCP14b,GO96],
a tool that compiles any PRAM program into one whose memory access patterns
2 For general secure computation, and even if we restrict to functionalities that only

access a few parties’ inputs, and only a few bits of their data, essentially all parties
must perform computation at least Ω(|x|). To see this, consider secure computation
of a “multi-party Private Information Retrieval (PIR)” functionality: each party
i > 1 has as input some “big data” xi, and party 1 has as input a party index i
and an index j into their data xi. The functionality returns xi[j] (i.e., the j’th bit
of party i’s data) to party 1 and nothing to everyone else. We claim that each party
i > 1 must access every bit of xi; if not, it learns that particular bit of its data was
not requested, which it cannot learn in an ideal execution of the functionality.

3 For instance, it remains open to achieve statistically secure broadcast with worst-case
polylog(n) locality.
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are independent of the data (i.e., “oblivious”). Such a compiler (with polyloga-
rithmic overhead) was recently attained by [BCP14b].

Indeed, it is no surprise that such a tool will be useful toward our goal.
It has been demonstrated in the sequential setting that Oblivious (sequential)
RAM (ORAM) compilers can be used to builds secure 2-party protocols for RAM
programs [OS97,GKK+11,LO13,GGH+13]. Taking a similar approach, building
upon the OPRAM compiler of [BCP14b] directly yields 2-party protocols for
PRAMs.

However, OPRAM on its own does not directly provide a solution for multi-
party computation (when there are many parties). While this approach gives
protocols whose complexities scale well with the RAM (or PRAM) complexity of
the programs, the complexities grow poorly with the number of parties. Indeed,
the only current technique for securely evaluating a RAM program on multiple
parties’ inputs [DMN11] is for all parties to hold secret shares of all parties’
inputs, and then jointly execute (using standard MPC for circuits) the trusted
CPU instructions of the ORAM-compiled version of the program. This means
each party must communicate and maintain information of size equivalent to all
parties’ inputs, and everyone must talk to everyone else for every time step of
the RAM program evaluation.

One may attempt to improve the situation by first electing a small polylog(n)-
size representative committee of parties, and then only performing the above
steps within this committee. This approach drops the total communication and
computation of the protocol to reasonable levels. However, this approach does
not save the subset of elected parties from carrying the burden of the entire
computation. In particular, each elected party must memory storage equal to
the size of all parties’ inputs combined, making the protocol unusable for “large-
scale” computation.

In this paper, we provide a new approach for dealing with this issue. We show
how to use an OPRAM in a way that achieves balancing of memory, computation,
and communication across all parties.

Our MPC construction proceeds in the following steps:

1. From OPRAM to MPC. Given an OPRAM, we begin by considering MPC
in a “benign” adversarial setting, which we refer to as oblivious multi-party
computation, where all parties are assumed to be honest, and we only require
that an external attacker that views communication and activation (including
memory and computation usages) patterns does not learn anything about the
inputs. We show:
(a) OPRAM yields efficient memory-balanced oblivious MPC for PRAM.
(b) Using committee election techniques (à la [KLST11,DKMS12,BGT13]),

any oblivious multi-party computation can be compiled into a standard
secure MPC with only polylog overhead (and a one-time use of a broadcast
channel per party).

2. Load Balancing & Communication Locality. We next show semi-generic
compilers for “nice” (formally defined) oblivious multi-party protocols, each
introducing only polylog(n) overhead:
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(a) From any “nice” protocol to one whose computation and communication
are load-balanced.

(b) From any “nice” protocol to one that is both load-balanced and commu-
nication local (i.e., polylog(n) locality).

Our final result is obtained by combining the above steps and observing that
Step 1(b) preserves load-balancing and communication locality (and thus can be
applied after Step 2). Let us mention that just Step 1 (together with existing
construction of ORAMs) already yields the first MPC protocol for (sequential)
RAM programs in which no party must store all parties’ inputs. Additionally,
just Step 1 (together with the OPRAM construction of [BCP14b]) yields the
first MPC for PRAMs.

We now expand upon each of these steps.

MPC from OPRAM. Recall that our construction proceeds via an interme-
diate notion of oblivious security, in which we do not require security against
corrupted parties, but rather against an external adversary who sees the acti-
vation patterns (i.e., accessed memory addresses and computation times) and
communication patterns (i.e., sender/receiver ids and message lengths) of par-
ties throughout the protocol.

Oblivious MPC from OPRAM. At a high level, our protocol will emulate a dis-
tributed OPRAM4 structure, where the CPUs and memory cells in the OPRAM
are each associated with parties. (Recall that we need only achieve “oblivious”
security, and thus can trust individual parties with these tasks). The “CPU”
parties will control the evaluation flow of the (OPRAM-compiled) program, com-
municating with the parties emulating the role of the appropriate memory cells
for each address to be accessed in the (OPRAM-compiled) database.

The distributed OPRAM structure will enable us to evenly spread the mem-
ory burden across parties, incurring only polylog(n) overhead in total mem-
ory and computation, and while guaranteeing that the communication patterns
between committees (corresponding to data access patterns) do not reveal infor-
mation on the underlying secret values.

This framework shares a similar flavor to the protocols of [DKMS12,
BGJK12], which assign committees to each of the gates of a circuit being eval-
uated, and to [BGT13], which uses CPU and input committees to direct pro-
gram execution and distributedly store parties’ inputs. The distributed OPRAM
idea improves and conceptually simplifies the input storage handling of Boyle
et al. [BGT13], in which n committees holding the n parties’ inputs execute
a distributed “oblivious input shuffling” procedure to break the link between
which committees are communicating and which inputs are being accessed in
the computation.
4 We remark that the term “distributed ORAM” was used with a different meaning

in [LO13], in regard to an ORAM that was split across two users.
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Compiling from“Oblivious” Security toMalicious Security. Wenext present a gen-
eral compiler taking an oblivious protocol to one that is secure against (1/3 − ε)n
statically corrupted malicious parties. (This step can be viewed as a refinement and
generalization of ideas from [KLST11,DKMS12,BGT13].) We ensure the compiler
tightly preserves the computation, memory, load-balancing, and communication
locality of the original protocol, up to polylog(n) factors (modulo a one-time broad-
cast per party). This enables us to apply the transformation to any of the oblivi-
ous protocols resulting from the intermediate steps in our progression.

At a high level, the compiler takes the following form: (1) First, the parties
collectively elect a large number of “good” committees, each of size polylog(n),
where “good” means each committee is composed of at least 2/3 honest parties,
and that parties are spread roughly evenly across committees. (2) Each party
will verifiably secret share his input among the corresponding committee Ci.
(3) From this point on, the role of each party Pi in the original protocol will be
emulated by the corresponding committee Ci. That is, each local Pi computation
will be executed via a small-scale MPC among Ci, and each communication from
Pi to Pj will be performed via an MPC among committees Ci and Cj .

The primary challenge in this step is how to elect such committees while
incurring only polylog(n) locality and computation per party. To do so, we
build atop the “almost-everywhere” scalable committee election protocol of King
et al. [KSSV06] to elect a single good committee, and then show that one may
use a polylog(n)-wise independent function family {Fs}s∈S to elect the remaining
committees with small description size (in the fashion of [KLST11,BGT13], for
the case of combinatorial samplers and computational pseudorandom functions),
with committee i defined as Ci := Fs(i) for fixed random seed s.

We remark that, aside from the one-time broadcast, this compiler preserves
load balancing and polylog(n) locality. Indeed, load balancing is maintained since
the committee setup procedure is computationally inexpensive, and each party
appears in roughly the same number of “worker” committees. The locality of the
resulting protocol increases by an additive polylog(n) for the committee setup,
and a multiplicative polylog(n) term since all communications are now performed
among polylog(n)-size committees instead of individual parties.

Load Balancing Distributed Protocols

Load-Balancing (Without Locality). We now show how to modify our proto-
col such that the total computational complexity and memory balancing are
preserved, while additionally achieving a strong computation load balancing
property—with high probability, at all times throughout the protocol execu-
tion, every party performs close to 1/n fraction of current total work, up to
an additive polylog(n) amount of work. This will hold simultaneously for both
computation and communication.5

5 Note that while our current protocol is memory balanced, it is currently rather
imbalanced in computation: e.g., the parties emulating OPRAM CPUs are required
to perform computation that is proportional to the whole PRAM computation.
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We present and analyze our load-balancing solution in the intermediate obliv-
ious MPC security setting (recall that one can then apply the compiler from
Step 2(b) above to obtain malicious MPC with analogous load-balancing). Let
us mention that there is a huge literature on “load-balanced distributed com-
putation” (e.g., [ACMR95,MPS02,MR98,AAK08]): As far as we can tell, our
setting differs from the typical studied scenarios in that we must load balance an
underlying distributed protocol, as opposed to a collection of independent “non-
communicating jobs”. Indeed, the main challenge in our setting is to deal with
the fact that “jobs” talk to one another, and this communication must remain
efficient also be made load balanced. Furthermore, we seek a load-balanced solu-
tion with communication locality.

We consider a large class of arbitrary (potentially load-unbalanced and large-
locality) distributed protocols Π, where we view each party in this underlying
protocol as a “job”. Our goal is to load-balance Π by passing “jobs” between
“workers” (which will be the actual parties in the new protocols). More precisely,
we start off with any protocol Π that satisfies the following (natural) “nice”
properties:

– Each “job” has polylog(n) size state;
– In each round, each “job” performs at most polylog(n) computation and com-

munication;
– In each round, each “job” communicates (either sending or receiving a mes-

sage) to at most one other “job”.

It can be verified that these properties hold for our oblivious MPC for PRAM
protocol.

Our load-balanced version of such a protocol first randomly6 efficiently
assigns “workers” (i.e., parties) to “jobs”. Next, whenever a worker W has per-
formed “enough” work for a particular job J , it randomly selects a replacement
worker W ′ and passes the job over to it (that is, it passes over the state of the
job J—which is “small” by assumption). The key obstacle in our setting is that
the job J may later communicate with many other jobs, and all the workers
responsible for those jobs need to be informed of the switch (and in particular,
who the new worker responsible for the job J is). Since the number of jobs is
Ω(n), workers cannot afford to store a complete directory of which worker is
currently responsible for each job.

We overcome this obstacle by first modifying Π to ensure that it has small
locality—this enables each job to only maintain a short list of the workers cur-
rently responsible for the “neighboring” jobs. We achieve this locality by requir-
ing that parties (i.e., jobs) in the original protocol Π route their messages along
the hypercube. Now, whenever a worker W for a job J is being replaced by some
worker W ′, W informs all J ’s neighboring jobs (i.e., the workers responsible for
them) of this change. We use the Valiant-Brebner [VB81] routing procedure to
implement the hypercube routing because it ensures a desirable “low-congestion
6 In the actual analysis, we show that it also suffices to use polylog(n)-wise independent

randomness to pick this and subsequent assignments.
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property,” which in our setting translates to ensuring that the overhead of rout-
ing is not too high for any individual worker.

The above description has not yet mentioned what it means for a worker to
have done “enough” work for a job J . Each round a job is active (i.e., performing
some computation), its “cost” increases by 1—we refer to this as an emulation
cost. Additionally, each time a worker W is switched out from a job J , then J ’s
and each of J ’s neighboring jobs’ costs are increased by 1—we refer to this as a
switch cost. Finally, once a job’s (total) cost has reached a particular threshold
τ , its cost is reset to 1 and the worker responsible for the job is switched out.
The threshold τ is set to 2 log M + 1 where M is the number of jobs.

We show: (1) This switching does not introduce too much overhead. We, in
fact, show that the total induced switching cost is bounded above by the emula-
tion cost. (2) The resulting total work is load balanced across workers—we show
this by first demonstrating that the protocol is load-balanced in expectation, and
then using concentration to argue our stronger online load-balancing property.

Finally, note that although communication between jobs is being routed
through the hypercube, and thus the job communication protocol has small
locality, the final load-balanced protocol, being run by workers, does not have
small locality. This is because workers are assigned the role of many different jobs
over time, and may possibly speak to a new set of neighbors for each position.
(Indeed, over time, each worker will eventually need to speak to every other
worker). We next show how to modify this protocol to achieve locality, while
preserving load-balancing.

Achieving Both Load-Balancing and Locality. In our final step, we show how
to modify the above-mentioned protocol to also achieve locality. We modify the
protocol to also let workers route messages through a low-degree network (on
top of the routing in the previous step). This immediately ensures locality. But,
we must be careful to ensure that the additional message passing does not break
load-balancing.

A natural idea is to again simply pass messages between workers along a low-
degree hypercube network via Valiant-Brebner (VB) routing [VB81]. Indeed, the
low-congestion property will ensure (as before) that routing does not incur too
large an overhead for each worker.

However, when analyzing the overall load balance (for workers), we see an
inherent distinction between this case and the previous. Previously, the nodes
of the hypercube corresponded to jobs, each emulated by workers who swap in
and out over time. When the underlying jobs protocol required job s to send
a message to job t, the resulting message routing induced a cost along a path
of neighboring jobs (that is, the workers emulating them), independent of which
workers are currently emulating them. This independence, together with the
fact that a worker passes his job after performing “enough” work for it, enabled
us to obtain concentration bounds on overall load balancing over the random
assignment of workers to jobs.

Now, the nodes correspond directly to workers. When the underlying jobs
protocol requires a message transferred from job s to job t, routing along the
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workers’ graph must traverse a path from the worker currently emulating job
s to the worker currently emulating job t, removing the crucial independence
property from above. Even worse, workers along the routing path can now incur
costs even if they are not assigned to any job. In this case, it is not even clear
that job passing in of itself will be sufficient to ensure balancing.

To get around these issues, we add an extra step in the VB routing procedure
(itself inspired by [VB81]) to break potential bad correlations. The idea is as
follows: To route from the worker Ws emulating job s to the worker Wt emulating
job t, we first route (as usual) from Ws to a random worker Wu, and then from
Wu to Wt; i.e., travel from Ws to Wt by “walking into the woods” and back. We
may now partition the cost of routing into these two sub-parts, each associated
with a single active job (s or t). Now, although workers along the worker-routing
path will still incur costs from this routing (even though their jobs may be
completely unrelated), the distribution of these costs on workers depends only
on the identity of the initiating worker (Ws or Wt). We may thus generalize the
previous analysis to argue that if the expectation of work is load-balanced, then
it still has concentration in this case.

For a modular analysis, we formalize the required properties of the under-
lying communication network and routing algorithm (to be used for the s-to-u
and u-to-t routing) as a local load-balanced routing network, and show that the
hypercube network together with VB routing satisfies these conditions.

1.3 Discussion and Future Work

With the explosive growth of data made available in a distributed fashion, and
the growth of efficient parallel, distributed algorithms (such as those enabled
by MapReduce) to compute on this data, ensuring privacy and security in such
large-scale parallel settings is of fundamental importance. We have taken the first
steps in addressing this problem by presenting the first protocols for secure multi-
party computation, that with only polylogarithmic overhead, enable evaluating
PRAM programs on a (large) number of parties’ inputs. Our work leaves open
several interesting open problems:

Honest Majority. We have assumed that 2/3 of the players are honest. In the
absence of a broadcast channel,7 it is known that this is optimal. But if we
assume the existence of a broadcast channel, it may suffice to assume 1/2
fraction honest players.

Asynchrony. Our protocol assumes a synchronous communication network. We
leave open the handling of asynchronous communication.

Trading efficiency for security. An interesting avenue to pursue are various
tradeoffs between boosted efficiency and partial sacrifices in security. For
example, in some settings, it is not detrimental to leak which parties’ inputs
were used within the computation; in such scenarios, one could then hope

7 While the statement of our result makes use of a broadcast channel, as we mention,
this channel can also be instantiated with known protocols.
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to remove the one-time Θ(n|x|) input preprocessing cost. Similarly, it may
be acceptable to reveal the input-specific resources (runtime, space) required
by the program on parties inputs; in such cases, we may modify the protocol
to take only input-specific runtime and use input-specific memory.

In this work we focus only on achieving standard “full” security. How-
ever, we remark that our protocol can serve as a solid basis for achieving
such tradeoffs (e.g., a straightforward tweak to our protocol results in input-
specific resource use).

Communication complexity. As with all existing generic multi-party com-
putation protocols in the information-theoretic setting, the communication
complexity of our protocol is equal to its computation complexity. In con-
trast, in the computational setting (based on cryptographic assumptions),
protocols with communication complexity below the complexity of the eval-
uated function have been constructed by relying on fully homomorphic
encryption (FHE) [Gen09] (e.g., [Gen09,AJLA+12,MSS13]). We leave as
an interesting open question whether FHE-style techniques can be applied
also to our protocol to improve the communication complexity, based on
computational assumptions.

1.4 Overview of the Paper

Section 2 contains preliminaries. In Sect. 3 we provide our ultimate theorem, and
the sequence of intermediate notions and theorems which combine to yield this
final result. We refer the reader to the full version of this work [BCP14a] for a
complete descriptions and proofs.

2 Preliminaries

2.1 Multi-party Computation (MPC)

Protocol Syntax. We model parties as (parallel) RAM machines. An n-party pro-
tocol Φ is described as a collection of n (parallel) RAM programs (Pi)i∈[n], to be
executed by the respective parties, containing additional special communication
instructions Comm(i,msg), indicating for the executing party to send message
msg to party i.

The per-party space, computation, and time complexities of the protocol Φ =
(Pi)i∈[n] are defined directly with respect to the corresponding party’s PRAM
program Pi, where each Comm is charged as a single computation time step. (See
Sect. 2.2 for a definition of CPUs(P ), space(P ), comp(P ), time(P ) for PRAM
P ). The analogous total protocol complexities are defined as expected: Namely,
space(Φ) and comp(Φ) are the sums, space(Φ) =

∑
i∈[n] space(Pi), comp(Φ) =∑

i∈[n] comp(Pi), and time(Φ) is the maximum, time(Φ) = maxi∈[n] time(Pi).

MPC Security. We consider the standard notion of (statistical) MPC security.
We refer the reader to e.g. [BGW88] for more a more complete description of
MPC security within this setting.
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2.2 Parallel RAM (PRAM) Programs

A Concurrent Read Concurrent Write (CRCW) m-processor parallel random-
access machine (PRAM) with memory size n consists of numbered processors
CPU1, . . . , CPUm, each with local memory registers of size log n, which operate
synchronously in parallel and can make access to shared “external” memory of
size n.

A PRAM program Π (given m,n, and some input x stored in shared memory)
provides CPU-specific execution instructions, which can access the shared data
via commands Access(r, v), where r ∈ [n] is an index to a memory location, and
v is a word (of size log n) or ⊥. Each Access(r, v) instruction is executed as:

1. Read from shared memory cell address r; denote value by vold.
2. Write value v �= ⊥ to address r (if v = ⊥, then take no action).
3. Return vold.

In the case that two or more processors simultaneously initiate Access(r, vi) with
the same address r, then all requesting processors receive the previously existing
memory value vold, and the memory is rewritten with the value vi corresponding
to the lowest-numbered CPU i for which vi �= ⊥.

We more generally support PRAM programs with a dynamic number of
processors (i.e., mi processors required for each time step i of the computation),
as long as this sequence of processor numbers m1,m2, . . . is fixed, public infor-
mation. The complexity of our OPRAM solution will scale with the number of
required processors in each round, instead of the maximum number of required
processors.

We consider the following worst-case metrics of a PRAM (over all inputs):

– CPUs(Π): number of parallel processors required by Π.
– space(Π): largest database address accessed by Π.
– time(Π): maximum number of time steps taken by any processor to evaluate

Π (where each Access is charged as a single step).8

– comp(Π): the total sum of all computation steps of active CPUs evaluating
Π (which, for programs with fixed activation schedules as we consider, is a
fixed value).

3 Local, Load-Balanced MPC for PRAM

Ultimately, we construct a protocol that securely realizes the ideal functionality
FPRAMs (Fig. 1) for evaluating a sequence of PRAM programs (with bounded
state maintained between program) on parties’ fixed inputs. For simplicity of
exposition, we assume each party has equal input size and receives the same
8 We remark that the PRAM time complexity of any function f is bounded above

by its circuit depth complexity (where the PRAM complexity of f is defined as the
minimal value of time(Π) of any PRAM Π which evaluates f).



754 E. Boyle et al.

output. We further assume the total remnant state from one program execution
to the next is bounded in size by the combined input size of all parties.9

Theorem 2 (Main Theorem). For any constant ε > 0 and polynomial paral-
lelism parameter k = k(n), there exists an n-party statistically secure (with error
negligible in n) protocol realizing the functionality FPRAMs, handling (1/3 − ε)
fraction static corruptions with the following complexities, where each party is
a k-processor PRAM (and where |x|, |y| denote per-party input and output size,
space(Π), comp(Π), and time(Π) denote the worst-case space, computation, and
(parallel) runtime of Π, and CPUs(Π) denotes the number of CPUs of Π):

– Computation per party, per Πj: Õ
(
comp(Πj)/n + |y|).

– Time steps, per Πj: Õ
(
time(Πj) · max

{
1, CPUs(Π)

nk

})
.

– Memory per party: Õ
(|x| + |y| + maxN

j=1 space(Πj)/n
)
.

– Communication Locality: Õ(1).

given a one-time preprocessing phase with complexity:

– Computation per party: Õ(|x|), plus single broadcast of Õ(1) bits.
– Time steps: Õ

(
max

{
1, |x|

k

})
.

Additionally, the protocol achieves polylog(n) communication locality, and a
strong “online” load-balancing guarantee:

Online Load Balancing: For every constant δ > 0, with all but negligible
probability in n, the following holds at all times during the protocol: Let cc and
cc(Wj) denote the total communication complexity and communication complex-
ity of party Pj, comp and comp(Pj) denote the total computation complexity and
computation complexity of party Pj, we have

(1 − δ)
n

cc − polylog(n) ≤ cc(Pj) ≤ (1 + δ)
n

cc + polylog(n)

(1 − δ)
n

comp − polylog(n) ≤ comp(Pj) ≤ (1 + δ)
n

comp + polylog(n).

3.1 Proof of Main Theorem

At a very high level, the proof takes three steps: We first obtain MPC realizing
FPRAMs with a weaker notion of oblivious security. We then show how to attain
communication locality and load balancing, while preserving oblivious security.
(This combines two steps described within the introduction). Finally, we convert
the obliviously secure protocol to one secure in the malicious setting. We now
proceed to describe these steps in greater technical detail.
9 To support larger shared state size spaceRemnant, the memory requirements of the

protocol must grow with an extra additive Õ(spaceRemnant).



Multi-party Computation for (Parallel) RAM Programs 755

Ideal Functionality FPRAMs:
FPRAMs running with parties P1, . . . , Pn and an adversary proceeds as follows. The
functionality maintains longterm storage of parties’ inputs {xi}i∈[n] (each of equal size
|x|), per-CPU state information statei, and remnant memory dataRemnant of total size
spaceRemnant ∈ O(n · |x|) transferred from computation to computation.

– Initialize dataRemnant ← ∅ and statei ← ∅ for each processor i ∈ [m].
– Input Submission: Upon receiving an input (commit, sid, input, xi) from party Pi,

record the value xi as the input of Pi.
– Computation: Upon receiving a tuple (compute, sid, Π, space, time) consist-

ing of an m-processor PRAM program Π, a space bound space, and
a time bound time, execute Π as (output, state1, . . . , statem, dataRemnant) ←
Π(x1, . . . , xn, state1, . . . , statem, dataRemnant) with the current value of statei for
each CPU i ∈ [m]. Send output to all parties.

Fig. 1. The ideal functionality FPRAMs, corresponding to secure computation of a
sequence of adaptively chosen PRAMs on parties’ inputs.

Step 1: Oblivious-Secure MPC for PRAM. Intuitively, an adversary in the obliv-
ious model is not allowed to corrupt any parties, and instead is restricted to see-
ing the “externally measurable” properties of the protocol (e.g., party response
times, communication patterns, etc.).

Definition 1 Oblivious Secure MPC). Secure realization of a functionality
F by a protocol in the oblivious model is defined by the following real-ideal world
scenario:

Ideal World: Same as standard MPC without corrupted parties. That is, the
adversary learns only public outputs of the functionality F evaluated on
honest-party inputs.

Real World: Instead of corrupting parties, viewing their states, and controlling
their actions (as in the standard malicious adversarial setting), the adver-
sary is now limited as an external observer, and is given access only to the
following information:
– Activation Patterns: Complete list of tuples of the form

• (timestep, party-id, compute-time): Specifying all local computation
times of parties.

• (timestep, party-id, local-mem-addr): Specifying all memory access
patterns of parties.

– Communication Patterns: Complete list of tuples of the form
• (timestep, sndr-id, rcvr-id,msg-len): Specifying all sender-receiver

pairs, in addition to the corresponding communicated message bit-
length.

The output of the real-world experiment consists of the outputs of the (honest)
parties, in addition to an arbitrary PPT function of the adversary’s view at
the conclusion of the protocol.
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(Statistical) Security: For every PPT adversary A in the real-world execution,
there exists a PPT ideal-world adversary § for which for every environment

Z, we have outputReal(1k,A,Z)
s∼= outputIdeal(1k, §,Z).

Toward our result, it will be advantageous to think of computations as com-
posed of several sub-parts, or “jobs,” that each maintain and compute on small
polylogarithmic-size state (Note that this is natural in the PRAM setting, where
each CPU has polylogarithmic-size local memory). Later, to achieve load balanc-
ing, jobs will be assigned to and passed around between “workers,” so that each
worker roughly performs the same amount of work. (The small state requirement
per job will guarantee that “job passing” is not too expensive). Then, to obtain
malicious security, each worker will ultimately be emulated by a committee of
parties via small-scale MPCs; because of the polynomial overhead in the under-
lying MPC protocol, it will be important that this is only done for computations
of polylog(n) size on polylog(n)-size memory.

We now define the notion of a protocol in the jobs model.

Definition 2 (Jobs Model). Let n be a security parameter. A jobs protocol
consists of a poly(n)-size set Jobs of agents (called jobs), and a distributed pro-
tocol description ΠJ , instructing each job to perform local computations and to
communicate over a synchronized network (via point-to-point communication),
with the following properties:

– Bounded memory: each job’s space complexity is w ∈ polylog(n).
– Bounded per-round computation and communication: the computation and

communication complexity of each job at each round is upper bounded by
w ∈ polylog(n).

A job is active in a round if it performs computation within this round.
A jobs protocol is further said to have injective communication if the following

property is satisfied:

– Injective communication: each round, a set of jobs are activated, and each
sends a single polylog(n)-sized message to a distinct job.

By convention, we assume the first min jobs of a jobs protocol are input jobs,
the last mout are output jobs, and the remaining jobs are helper jobs. Each input
job Ji holds a single-word input xi ∈ {0, 1}w (for w ∈ polylog(n)); output and
helper jobs have no input. We then have a canonical correspondence between
functionalities in the standard n-party setting and the equivalent functionalities
in the Worker-Jobs Model:

– Functionality F : In the n-party setting. Accepts inputs xi from each party Pi,
evaluates y ← F (x1|| · · · ||xn), outputs the resulting value y to all parties Pi.

– Functionality FJobs: In the Jobs Model. Accepts (short) inputs xi
u from each

Input Job, evaluates y ← F (x1|| · · · ||x�), and distributes the resulting value
y (in short pieces) to the Output Jobs.
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We may analogously define oblivious security of a jobs protocol (where jobs are
honest and the adversary sees only “externally measurable” properties of the
protocol, as in Definition 1). Within the jobs model, we thus wish to securely
realize the functionality FJobs

PRAMs, equivalent to FPRAMs with the above syntactic
change. Note that in the regime of oblivious security, a jobs protocol yields a
memory-balanced protocol in the standard n-party model, by simply assigning
jobs to the n parties evenly.

Theorem 3. There exists an oblivious-secure protocol in the Jobs Model realiz-
ing the functionality FJobs

PRAMs for securely computing a sequence of N adaptively
chosen PRAM programs Πj, with the following complexities (where n · |x|, |y|
denote the total input and output size, and space(Π), comp, and time(Π) denote
the worst-case space, computation, and (parallel) runtime of Π over all inputs):

– Number of jobs: Õ
(
n · |x| + |y| + maxj∈[N ] space(Πj)

)
.

– Computation complexity, per Πj: Õ
(
comp(Πj)

)
.

– Time steps, per Πj: Õ (time(Πj)).
– The number of active jobs in each round is O(maxj∈[N ] CPUs(Πj)).

given a one-time preprocessing phase with complexity

– Computation complexity: Õ(n · |x|).
– Time steps: Õ(1).

Further, the protocol has injective communication: in each round, each activated
job sends a single polylog(n)-size message to a distinct job.

Recall within the Jobs Model each job is limited to maintaining state of size
polylog(n); thus the memory requirement of the above protocol is

Õ
(
n · |x| + |y| + max

j∈[N ]
space(Πj)

)
,

based on the number of required jobs.

Idea of proof. The result builds upon the existence of an Oblivious PRAM com-
piler with polylog(n) time and space overhead that is collision-free (i.e., where no
two CPUs must access the same memory address in the same timestep), which
is guaranteed to exist unconditionally based on [BCP14b]. In addition to the
standard Input and Output jobs, our protocol will have one Helper job for each
of the CPUs and each memory cell in the database of the OPRAM-compiled
program. The CPU jobs store the local state and perform the computations of
their corresponding CPU. In each round that the ith CPU’s instructions dic-
tate a memory access at location addr(i), the CPU job i will communicate with
the Memory job addr(i) to perform the access. (Thus, in each round, at most
2 ·CPUs(OPRAM(Π)) jobs are active, where OPRAM(Π) denotes the OPRAM-
compilation of Π). Activation and communication patterns in the resulting pro-
tocol are simulatable directly by the OPRAM security. The preprocessing phase
of the protocol corresponds to inserting all inputs into the OPRAM-protected
database in parallel (i.e., emulating the OPRAM-compiled input insertion pro-
gram that simply inserts each input xi into address i of the database).
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Step 2: Locality and Load Balancing. This step attains polylog(n) communica-
tion locality,10 and computation load balancing from any jobs protocol ΠJ with
injective communication. We do so by emulating ΠJ by a fixed set of parties
(which we sometimes refer to as “workers”), where each worker is assigned sev-
eral jobs, and will pass jobs to other workers once he has performed a certain
amount of work. This yields a standard N -party protocol with a special decom-
posable state structure: i.e., parties’ memory can be decomposed into separate
polylog(n)-size memory blocks, which are only ever computed on independently
or in pairs, in steps of polylog(n) computation per round. This is because parties’
computation is limited to individual jobs to which it was assigned.11

Definition 3 (Decomposable State). An N -party protocol Π is said to have
decomposable state if for every party P , the local memory mem of P can be
decomposed into polylog(n)-size blocks mem = (mem1,mem2, . . . ,memm) such
that: In each round of Π, the (parallel) local computation performed by party P
is described as a list {(i, j, fi,j)}(i,j)∈I for some I ⊆ [m]× [m], such that each fi,j

has complexity polylog(n). For each (i, j) ∈ I, party P executes (memi,memj) ←
fi,j(memi,memj).12 By convention, received communication messages are stored
in local memory.

We achieve the following “fully load-balanced” properties. Note that the first two
properties correspond directly to our final load-balancing goal. The final property
will be used to ensure that no individual worker is ever assigned drastically more
than the expected number of simultaneous parallel computation tasks; this is
important since workers will eventually be emulated by (technically, committees
of) parties, who themselves may have bounded parallelism capability (i.e., small
number of CPUs).

Definition 4 (Fully Load Balanced). An N -party protocol Π is said to be
fully load balanced with respect to security parameter n if the following properties
hold:

– Memory load balancing: Let space(Π) denote the total space complexity of
protocol Π. For every constant δ > 0, with all but negligible probability in n,
every party Pj has space complexity

space(Pj) ≤ (1 + δ)
N

space(Π) + polylog(n).

– Online computation/communication load balancing: For every constant δ > 0,
with all but negligible probability in n, the following holds at all times during

10 Recall a protocol has (communication) locality �(n) if during the course of the pro-
tocol every party communicates with at most �(n) other parties.

11 Looking ahead, pairwise computation will be used when emulating job-to-job com-
munication, and will be sufficient when the original jobs protocol has injective com-
munication, so that each job communicates with at most one other job per round.

12 With some canonical resolution for write conflicts. (In our constructions, the sets
(i, j) will be disjoint).
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the protocol: Let cc and cc(Pj) denote the total communication complexity and
communication complexity of party Pj, comp and comp(Pj) denote the total
computation complexity and computation complexity of party Pj, we have

(1 − δ)
N

cc − polylog(n) ≤ cc(Pj) ≤ (1 + δ)
N

cc + polylog(n)

(1 − δ)
N

comp − polylog(n) ≤ comp(Pj) ≤ (1 + δ)
N

comp + polylog(n).

– Per-round per-party efficiency:13 Let A be an upper bound on the number of
active jobs at each round in ΠJ . With all but negligible probability in n, the
per-round per-party computation complexity is upper bounded by Õ(1+(A/N)).

Theorem 4. Let ΠJ be an M -job protocol with computation complexity comp
and injective communication, realizing functionality FJobs. Then there exists
a fully load-balanced (Definition 4) Õ(n)-party protocol ΠW with decompos-
able states (Definition 3) that realizes F with total computation Õ(comp), space
complexity Õ(M), and polylog(n) locality. If ΠJ satisfies oblivious security, so
does ΠW .

Idea of proof. Recall that in our construction of ΠW (in the introduction), at any
point of the protocol execution, each job is assigned to a random worker14 and is
stored in at most 2 workers. This is sufficient to imply memory load balancing by
standard concentration and union bounds. Online computation/communication
load balancing follows by observing that (i) the job-passing pattern is indepen-
dent of the worker-job assignment, and (ii) jobs are passed frequently enough
before accumulating large cost. This allows us to think of the execution as par-
titioned into “job chunks” each of which is assigned to a random worker, thus
amenable to concentration bounds. The last load-balanced property follows again
by the fact that each job is independently assigned to a random worker and that
each job only performs polylog(n) amount of work per round. To obtain locality,
we consider a fixed low-degree communication network between workers, and
pass messages using a load-balanced routing algorithm. Load balancing of this
modified scheme follows by similar, but more delicate analysis.

The resulting protocol has decomposable state, since parties’ memory and
computation are completely local to individual jobs, or pairs of jobs in the case
of emulating job-to-job communication (since the starting jobs protocol has injec-
tive communication).

Step 3: From Oblivious to Malicious Security. Finally, we present a general
transformation that produces an n-party MPC protocol securely realizing a func-
tionality F against (1/3 − ε)n static corruptions, given any Θ̃(n)-party protocol
13 We note that the last two properties are related but incomparable. The online load

balancing property focuses on accumulated work, whereas the per-round per-party
efficiency concerns upper bounds on per-round work, which is used to bound the
required amount of parallelism to execute the protocol with efficient parallel time.

14 Technically, the initial job-worker assignment is only K-wise independent for K =
log3 n. Nevertheless, this is sufficient for concentration bounds to go through.
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with decomposable states (see Definition 3) realizing the corresponding jobs-
model functionality F jobs with only oblivious security. This step can be viewed
as a refinement and generalization of ideas from [KLST11,DKMS12,BGT13].

Theorem 5 (From Oblivious Security to Malicious Security). Suppose
there exists an N ∈ Θ(n · polylog(n))-party oblivious protocol with decomposable
state, realizing functionality F jobs in space, computation, and (parallel) time com-
plexity space, comp, time. Then for any constant ε > 0 there exists an n-party
MPC protocol (with error negligible in n) securely realizing the corresponding
functionality F against (1/3 − ε)n static corruptions, with the following com-
plexities (where each party is a PRAM with possibly many processors), given a
one-time preprocessing phase with a single broadcast of Õ(1) bits per party:

– Per-party memory: Õ(space/n).
– Total computation: Õ(comp).
– Time complexity: Õ(time).

In addition, if the original protocol has Õ(1) locality and is fully load-balanced
(i.e., satisfying all properties of Definition 4), then the resulting protocol addi-
tionally possesses the following properties:

– Communication locality Õ(1).
– Online computation load balancing, as in Definition 4(c).
– Time complexity Õ

(
time · max

{
1, A

nk

})
when each party is limited to being a

k-processor PRAM, where A denotes the maximum per-round per-party com-
putation complexity of any party in the original oblivious-secure protocol.15

Idea of Proof. The compiler takes the following form: First, parties collectively
elect a large number of “good” committees, each of size polylog(n), where “good”
means each committee is composed of at least 2/3 honest parties, and that par-
ties are spread roughly evenly across committees. The one-time broadcast is
used to reach full agreement on the first committee. These committees will then
emulate each of the decomposable sub-computations of the original protocol Π
(see Definition 3), via small-scale MPCs. That is, committees are initialized with
inputs by having the parties in Π ′ split their inputs into polylog(n)-size pieces
and verifiably secret share them to the appropriate committee(s). Each local
computation (and communication) in Π decomposes as a collection of fi,j , each
affecting only two committees (emulating memi and memj). Since committees
are only size polylog(n), and each small-scale MPC has only polylog(n) mem-
ory and computation (because of decomposability), the memory, computation,
and time complexity overhead is small. Since parties are spread across com-
mittees, the protocol remains load balanced. Finally, by using a perfectly secure
underlying MPC protocol (such as [BGW88]), the only information revealed cor-
responds directly to the “observable” properties (communication patterns, etc.),
thus reducing directly to oblivious security (as per Definition 1).
15 In particular, for our MPC for PRAMs protocol formed by combining Steps 1 and 2,

the parameter A will correspond to the number of CPUs required in the evaluated
PRAM Π, with polylog overhead.
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Abstract. Composable notions of incoercibility aim to forbid a coercer
from using anything beyond the coerced parties’ inputs and outputs
to catch them when they try to deceive him. Existing definitions are
restricted to weak coercion types, and/or are not universally composable.
Furthermore, they often make too strong assumptions on the knowledge
of coerced parties—e.g., they assume they known the identities and/or
the strategies of other coerced parties, or those of corrupted parties—
which makes them unsuitable for applications of incoercibility such as
e-voting, where colluding adversarial parties may attempt to coerce hon-
est voters, e.g., by offering them money for a promised vote, and use
their own view to check that the voter keeps his end of the bargain.

In this work we put forward the first universally composable notion of
incoercible multi-party computation, which satisfies the above intuition
and does not assume collusions among coerced parties or knowledge of
the corrupted set. We define natural notions of UC incoercibility corre-
sponding to standard coercion-types, i.e., receipt-freeness and resistance
to full-active coercion. Importantly, our suggested notion has the unique
property that it builds on top of the well studied UC framework by
Canetti instead of modifying it. This guarantees backwards compatibil-
ity, and allows us to inherit results from the rich UC literature.

We then present MPC protocols which realize our notions of UC inco-
ercibility given access to an arguably minimal setup—namely honestly
generate tamper-proof hardware performing a very simple cryptographic
operation—e.g., a smart card. This is, to our knowledge, the first pro-
posed construction of an MPC protocol (for more than two parties) that
is incoercibly secure and universally composable, and therefore the first
construction of a universally composable receipt-free e-voting protocol.

Keywords: Multi-party computation · Universal composition ·
Receipt-freeness

V. Zikas—Research partly done while the author was at UCLA.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 763–780, 2015.
DOI: 10.1007/978-3-662-48000-7 37



764 J. Alwen et al.

1 Introduction

Secure multi-party computation (MPC) allows n mutually distrustful parties to
securely perform some joint computation on their inputs even in the presence
of cheating parties. To capture worst-case (collaborative) cheating, a central
adversary is assumed who gets to corrupt parties and uses them to attack the
MPC protocol. Roughly speaking, security requires that the computation leaks
no information to the adversarial parties about the inputs and outputs of uncor-
rupted, aka honest, parties (privacy) and that the corrupted parties cannot affect
the output any more than choosing their own inputs (correctness).

The seminal works on MPC [3,12,18,36] established feasibility for arbitrary
functions and started a rich and still evolving literature. Along the way, additional
desired properties of MPC were investigated. Among these, universal composabil-
ity guarantees that the protocol preserve its security even when executed within
an online adversarial environment, e.g., along-side other (potentially insecure)
protocols. Various frameworks for defining universal composability have been sug-
gested [2,30], with Canneti’s UC framework [6] being the most common.

The above frameworks make use of the so called simulation-based paradigm
for defining security which, in a nutshell, can be described as follows: Let f
denote a specification of the task that the parties wish to perform. Security of
a protocol Π for f is defined by comparing its execution with an ideal scenario
in which the parties have access to a fully trusted third party, the functionality,
which takes their inputs, locally computes f , and returns to the parties their
respective outputs. More concretely, a protocol Π is secure if for any adver-
sary A attacking Π, there exists an ideal adversary S attacking the above ideal
evaluation scenario, which simulates the attack (and view) of A towards any
environment Z that gets to choose the parties’ inputs and see their outputs.1

Arguably, UC security captures most security guarantees that one would
expect from a multi-party protocol. Nonetheless, it does not capture incoercibility
a property which is highly relevant for one of a prototypical application of MPC,
namely secure e-voting. Intuitively, incoercibility ensures that even when some
party is forced (or coerced) by some external entity into executing a strategy
other than its originally intender, e.g., coerced to use a different input or even a
different protocol, then the party can disobey (i.e., deceive) its coercer, e.g., use
its originally intended input, without the coercer being able to detect it.

In the special case of e-voting, where parties are voters, this would mean that
a coercer, e.g., a vote buyer that offers a voter money in exchange of his vote
for some candidate c, is not able to verify whether the voter indeed voted for c
or for some other candidate. In other words, the voter cannot use his transcript
as a receipt that he voted for c, which is why in the context of voting the above
type of incoercibility is often referred to as receipt-freeness.

1 In strong (UC) definitions, it is required that this simulation is sound even in an
on-line manner, i.e., S is not only required to simulated the view of A but has to do
so against an online environment that might talk to the adversary at any point.
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Which guarantees can we expect from a general definition of incoercibility?
Clearly, if the coercer can use the outputs of the function to be computed to
check upon the coerced party it is impossible to deceive him. Considering our
voting scenario (concretely, majority election) if there are two candidates c1 and
c2 and a set V of voters with |V | = 2m+1 for some m, and the coercer coercing
vi ∈ V knows that half of the parties in V \ {vi} voted for c1 and the other half
voted for c2, then vi cannot deceive its coercer, as his input uniquely defines the
outcome of the election. Therefore, composable notions of incoercibility [9,35]
aim for the next best thing, namely allow the parties to deceive their coercer
within the “space of doubt” that the computed function allows them. In other
words, an informal description of incoercibility requires that the parties can
deceive their coercer when they are executing the protocol as good as they can
deceive someone who only observes the inputs and outputs of the computation.

Of course, the above intuition becomes tricky to formulate when the protocol
is supposed to be incoercible and simultaneously tolerate malicious adversaries.
There are several parameters to take into account when designing such a defin-
ition. In the following we sketch those that, in our opinion, are most relevant.

Coercion Type. This specifies the power that the coercer has on the coerced
party. Here we one can distinguish several types of coercion: I/O-coercion allows
the coercer to provide an input to the party and only use its output. This is
the simplest (and weakest) form of coercion as it is implied by UC security.
A stronger type is receipt-freeness or semi-honest coercion; here, the coercer
gets to provide an input to the coerced party, but expects to see a transcript
which is consistent to this input. This type corresponds to the notion of coercion
introduced in [9,10] and abstracts the receipt-freeness requirement in the voting
literature [19,20,23,27,28,31–33].2 Finally, active coercion is the strongest notion
of coercion, where the adversary instructs the coerced party which messages to
send in the protocol and expects to see all messages he receives (also in an online
fashion). This type of coercion has been considered, explicitly or implicitly, in the
stand-alone setting (i.e., without universal composition) by Moran and Naor [32]
and more recently in the UC setting by Unruh and Müller-Quade [35].

Adaptive vs. Static. As with corruption, we can consider coercers who choose
the set of parties to coerce at the beginning of the protocol execution, i.e., in a
static manner, or adaptively during the protocol execution depending on their
view so far—e.g., by observing the views of other coerced parties.

Coercer/Deceiver-Collusions. The vast majority of works in the multi-party lit-
erature assumes a so called monolithic adversary who coordinates the actions
of corrupted parties. This naturally captures the worst-case scenario in which
cheaters work together to attack the protocol. Analogously, works on incoercible
computation [9,10,32,35] assume a monolithic coercer, i.e., a single entity which
is in charge of coordinating coerced parties. This has the following counter-
intuitive side-effect: in order for a coerced party to be able to deceive any such
2 For the special case of encryption, resiliency to semi-honest coercion corresponds to

the well-known concept of deniability [8].
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a monolithic coercer it needs to coordinate its deception strategy with other
coerced (or with honest) parties. In fact, in recent universally composable notions
of incoercibility this deceiver coordination is explicit. For example, in [35] an
even stronger requirement is assumed: the coerced parties which attempt a decep-
tion know the identities and deception strategies of other coerced parties, and
even the identities of all corrupted parties. This is an unrealistic assumption in
scenarios such as e-voting, where a potential vote-seller is most likely oblivious
to who is cheating or to who else is selling its vote.

In order to avoid the above counter intuitive situation, in this work we
assume that deception (therefore also coercion) is local to each coerced party, i.e.,
coercers of different parties are not by default colluding. Alas, casting our defi-
nition in the UC framework makes coercer collusion explicit: Although coercers
are local, they can still be coordinated via an external channel, e.g., through
the environment. In fact, in our definition the worst-case environment implicitly
specifies such a worst-case coercion scenario.

Informants and Dependency between Corruption and Deception. Another ques-
tion which is highly relevant for incoercibility, is whether or not coerced parties
know the identities of the cheaters/adversaries. In particular, a worst case coer-
cion scenario is the one in which the coercer and the adversary work together
to check on the coerced parties—stated differently, the coercer uses corrupted
parties as informants against coerced parties to detect if they are attempting
to deceive him. (In the context of receipt-free voting, this corresponds to check-
ing the view/receipt of vote sellers against the corresponding views of malicious
parties.) Clearly, if a coerced party knows who are the informants then it is
easier to deceive its coercer. (This is the approach taken in [35], where the iden-
tities of corrupted parties are accessible to the deceivers via a special register.)
Arguably, however, this is not a realistic assumption as it reduces the effect of
using informants—a vote buyer is unlikely to tell the vote seller how he can
check upon him. The modeling approach taken in this work implies that real-
world deceivers have no information on who is corrupted (or coerced).

Our Contributions. In this work we provide the first security definition of
incoercible multi-party computation which is universally composable (UC) and
makes minimal assumptions on the coerced parties’ ability to deceive their
coercer. Our definition offers the same flexibility on addressing different classes
of coercion as standard security notion offers for corruptions. Indicatively, by
instantiating it with different types of coercion we devise definitions of UC inco-
ercibility against semi-honest coercions—corresponding to the classical notion of
receipt-freeness—as well as of the more powerful active coercions corresponding
to the strong receipt-freeness notion introduced in [32]. As a sanity check, we
show that if the coercers only see the output of coerced parties (a notion which
we call I/O-incoercibility), then any UC secure protocol is also incoercible.

In addition to flexibility, our definition has the following intuitive properties:

Universal composability and compatibility with standard UC. We prove uni-
versal composition theorems for all the suggested types of incoercibility,
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which imply that an incoercible protocol can be composed with any other
incoercible protocol. Because our definition builds on top of the UC frame-
work instead of modifying is (e.g., as in [10,35]), our protocols are automat-
ically also universally composable with standard (coercible) UC protocols,
at the cost, of course, of giving up incoercibility; that is, when composing an
incoercibly UC protocol with a standard (coercible) UC protocol, we still get
a UC secure protocol. We note in passing that defining incoercibility in UC
has the additional advantage that it protects even against on-line coercer,
e.g., vote-buyer that expect the receipt to be transmitted to them while the
party is voting.
Minimal-knowledge deceptions. The deceivers in the real-world have no
knowledge of who is coerced or corrupted, nor do they know which strategy
other coerced parties will follow. Thus they need to deceive assuming that
any party might be an informant.

Last but not least, we present a UC incoercible protocol for arbitrary multi-
party computation which tolerates any number of actively corrupted and any
number of coerced parties (for both semi-honest and active coercion), as long
as there is at least one honest party. Our protocols make use of an arguably
minimal and realistic assumption (see the discussion below), i.e., access to a
simple honestly generated hardware token. To our knowledge, ours is the first
protocol construction, which implements any functionality in the multi-party
(n > 2 parties) setting. In fact, our construction can be seen a compiler, in this
token-hybrid model, of UC secure to incoercible UC secure protocols. Therefore,
when instantiated with a fast UC secure protocol it yields a realistic candidate
for construction for UC secure incoercible e-voting.

Our protocol is proved secure against static coercion/corruption, but our
proofs carry through (with minimal modifications) to the adaptive setting. In
fact, our protocols realize an even stronger security definition in which the
coercers, but not the coerced parties (i.e., the deceivers), might coordinate their
strategies. However, we chose to keep the definition somewhat weaker, to leave
space for more solutions or possibly different assumptions.3

The Ideal Token Assumption. Our protocols assume that each party has access
to a hardware token which might perform fresh encryptions with to some hid-
den keys that are shared among the parties. The goal of the token is to offer
the parties a source of hidden randomness that allows them to deceive their
coercer. A setup of this type seems to be necessary for such a strong incoercibil-
ity notion when nearly everyone might be corrupted, since if the coerced parties
have no external form of hidden randomness, then it seems impossible for them
to deceive—the coercer might request their entire state and compare it with
messages received by its informants, which would require the coerced party to
align its lie with message it sends to the informants (whose the identities are
unknown).

3 Recall that our definition does allow coercer coordination through the environment.
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On top of being minimal in the above sense, our encryption token assumption
is also very easy to implement in reality for a system with a bounded number
of participants—this is typically the case in elections: Let N be an upper bound
on the voters; the voting registration authority (i.e., the token creator and dis-
tributor) computes N keys k1, . . . , kN , one for every potential voter; every pi

who registers receives his ith token along with a vector of N random strings
(k1i, . . . , kNi), corresponding to his keys-shares; the last pi who registers (i.e., the
last to be in the registration desk before it closes) receives his token, say the n-th
token, along with the vector (k1n, . . . , kNn) = (k1, . . . , kn)⊕⊕n

i=1(k1i, . . . , kNi),
where ⊕ denotes the component-wise application of the bit-wise xor operation.
Note that the assumption of a hardware token (capturing pre-distributed smart
cards) has been used extensively in practice, e.g., in the university elections in
Austria and even the national elections in Finland and Estonia [14].

Related Literature. The incoercibility literature can roughly be split in two
classes: works that look at the special case of receipt-free voting [1,4,15,16,19,
20,22,23,26–28,31,33,34] and works that look at the more general problem of
incoercible realization of arbitrary multi-party functions [9,10,32,35]. Below, we
focus on the second class which is closer to our goal and refer the reader to the
full version of this work for a short survey of the voting-specific literature.

The first to consider incoercibility in the setting of general MPC were Canneti
and Gennaro [9]. They put forth a notion of incoercibility for static off-line semi-
honest coercions. Unfortunately their notion is only known to be sequentially
composable and moreover the definition is not compatible with the more general
setting of computing reactive functionalities. On the positive side, deception
strategies are both split and oblivious of other deceivers, and [9] does provide a
construction realizing a large class of (non-reactive) functions f .

Building on the idea of [9], Moran and Naor [32] define a stronger version
of incoercibility against adaptive active coercions using split oblivious deception
strategies. They go on to provide a construction implementing a voting function-
ality. Their model of communication and execution is based on that of [5] and,
thus, provides sequential (but not concurrent or universal) composability [6];
also, similarly to [9], it is not clear how to extend the model in [32] to reactive
functionalities (such as say a commitment scheme).

More recently Unruh and Müller-Quade [35] provided the first universally
composable notion of incoercibility. Due to similarity in goals with our work, we
provide a comparison with our definition and results. In a nutshell, the defini-
tion in [35] specifies the deception strategy D as an extra form of adversary-like
machine. The requirement is that for any such deceiver D in the ideal world,
there exists a corresponding real-world deceiver DS (in [35] DS is called deceiver
simulator) such that for any (real-world) adversary A there exists and (ideal-
world) simulator S that makes the ideal world where D controls the coerced
and S the corrupted parties, indistinguishable from the real world where DS

controls the coerced and A the corrupted parties, in the presence of any envi-
ronment Z.4 Importantly, in [35] it is explicitly assumed that the deceiver has
4 In fact, the model of [35] builds on the externalized UC (EUC) model of Canetti

et al. [7] which is designed to allow for deniable protocols.
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access to a public register indicating which parties are corrupted and which are
deceiving. As already mentioned, the above modelling choices of [35] have the
following side-effects: (1) the real-world deceiving parties are explicitly allowed
out-of-band communication (since deception is coordinated by the monolithic
DS) and (2) they know the identities of the corrupted parties, i.e., of the poten-
tially informants. As discussed above these assumptions are not realistic for
e-voting. Furthermore, the model of execution in [35] considerably deviates from
the GUC model, e.g., it modifies the number of involved ITMs and the cor-
ruption mechanism, which can lead to syntactical incompatibilities with GUC
protocols and issues with composition with (coercible) GUC protocols.5

An alternative approach to universally composable incoercibility was taken in
the most recent revision of Canetti’s UC paper, and adopted in [10] for the two-
party setting. This definition builds on the idea from [9] and is for semi-honest
coercions. Furthermore, the coercion mechanism in the multi-party setting is
unspecified and no composition theorem is proved.6

In terms of protocols, in [10] a two-party protocol in the semi-honest coercion
and corruption model is suggested assuming indistinguishability obfuscation [17].
Their approach is based on Yao’s garble circuits and is specifically tailored to the
two party setting; as they argue, their protocols are not universally composable
under active corruption. On the other hand, in [35] a two-party protocol for
computing a restricted class of two-party functionalities was suggested; also here
it is unclear whether or not this approach can yield a protocol in the multi-party
setting or for a wider class of two-party functionalities. Thus ours is the first
UC secure incoercible multi-party protocol, which can be, for example, used for
receipt-free voting—an inherently multi-party functionality.7

Outline of the Remainder of the Paper. In Sect. 2 we present our UC
incoercibility definition. Subsequently, in Sect. 3 we describe instances of our defi-
nitions corresponding to the three standard coercion types, namely, I/O, receipt-
freeness, and active coercion and corresponding composition theorems. Following
that, in Sect. 4 we provide our UC receipt-free protocol for computing any given
function. Our protocol is simple enough to be considered a good starting point for
an alternative approach to existing e-voting protocol. Finally, in Sect. 5 we prove
that our receipt-free protocol can withhold even active coercion attacks. Due to
space limitation, the proofs have been moved to the full version of this work.

Preliminaries and Notation. Our definition of incoercibility builds on the
Universal Composition framework of Canetti [6] from which we inherit the proto-
col execution model along with the (adaptive) corruption mechanism. We assume
the reader has some familiarity with the UC framework [6] but in the follow-
ing we recall some basic notation and terminology. We denote by ITM the set
5 For example, the corruption mechanism as described in [35] does not specify that (let

alone how) the deceiver simulates deception towards the corresponding adversary.
6 Note that the Definition in [10] also changes the underlying model of computation,

which makes it necessary to re-prove composition.
7 Our protocol uses the CLOS protocol [11] in a black-box manner, and it remains

secure even when CLOS is replaced by more efficient protocols, e.g., the IPS proto-
col [21] in the pre-processing model.
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of efficient (e.g. poly-time) ITMs and by [n] the set of integers {1, . . . , n}. For
simplicity, we use the notations “pi” and “party i” interchangeably to refer to
the party with identity i. For a set J ⊆ [n] if for each i ∈ J the ITM πi is
a protocol machine for party i then we use the shorthand πJ to refer to the
|J |-tuple (πi1 , . . . , πi|J |). In particular we simply write π to denote π[n].

A protocol π UC emulates ρ if π can replace ρ in any environment in which
it is executed; similarly, a protocol UC realizes a given functionality F if it UC
emulated the the dummy F-hybrid protocol φ, which simply relays inputs from
the environment to F and vice versa. In [6] protocols come with their hybrids
(so the hybrids are not written in the protocol notation); but for sake of clarity
in order to make the hybrid-functionality explicit, we at times write it as a
superscript of the protocol, e.g., we might denote a G-hybrid protocol π as πG .

Finally, we use the following standard UC terminology: we say that a party
(or functionality) P issues a delayed message x for another party P ′ (where x
can be an input or an output for some functionality) to refer to the process in
which P prepares x to be sent to P ′, but requests for the simulator’s approval
before actually sending it. Depending on whether or not this approval request
includes the actual message, we refer to the delayed output as public or private,
respectively. For details on delayed messages we refer to [6].

2 Our UC Incoercibility Definition

Our security notion aims to capture the intuition that deceiving one’s coercer is
as easy as the function we are computing allows it to be. Intuitively, this means
that for any (ideal-world) deception strategy that the coerced party would follow
in the ideal world—where the functionality takes care of the computation—there
exists a corresponding (real-world) deception strategy that he can play in the real
world which satisfies the following property:

The distinguishing advantage of any set of coercers in distinguishing
between executions in which parties deceive and ones where they do not
deceive is the same in the ideal world (where coerced parties follow their
ideal deception strategy DI) as it is in the real world (where parties follow
their corresponding real-world deception strategy DR).

To capture worst-case incoercibility (and get composition) we let the envi-
ronment play the role of the coercer. This makes the ability of coercers to collude
explicit while capturing worst-case and on-line coercion strategies. However, in
order to provide a flexible definition, which for example captures the standard
notion of receipt-freeness, where coerced parties follow their protocol, we define
the effect of a party’s coercion as a transformation applied on its protocol, which
specifies the control the environment/coercer has on a corrupted party. For exam-
ple, in the case of receipt-freeness this transformation internally logs the state
of the coerced party, and upon reception of a special message from Z requesting
a “receipt” it hands Z this state. We refer to the next section for a detailed
definition of different coercion types.



Incoercible Multi-party Computation and Universally Composable 771

Fig. 1. The incoercibility definition. For clarity we explicitly write the hybrids F and
G. The interfaces on the right of F (resp. G) correspond to interfaced of honest parties.
Parties i and j are coerced according to the coercer C. Dashed lines denote communi-
cation tapes to the adversary implicitly modeling a network of insecure channels.

The above idea is demonstrated in Fig. 1, were the following four worlds are
illustrated: the ideal world where coerced parties follow their coercer’s instruc-
tions (top left), the ideal world where coerced parties attempt a deception (bot-
tom left), the real world where coerced parties follow their coercer’s instructions
(top right), and the real world where the coerced parties attempt a deception
(bottom right). As sketched above, incoercibility requires that if the advantage
of the best environment (i.e., the one that maximizes its advantage) in distin-
guishing the top-left world from the bottom-left world is 0 ≤ Δ ≤ 1, then the
advantage of the best environment in distinguishing the top-right world from
the bottom-right world is also Δ′ = Δ (plus/minus some negligible quantity).

The above paradigm captures the intuition of incoercibility, but in order to
get a more meaningful statement we need the incoercible protocol to also be
secure, i.e., implements its specification. This means that when parties do follow
their coercion instructions, the protocol should be a secure implementation of the
given functionality. In the above terminology, there should be a simulator which
makes the top-right world indistinguishable from the top-left world. This has
two implications: First, together with the previous requirement, i.e., that Δ′ =
Δ±negl. it implies that the bottom-right world should also be indistinguishable
from the bottom-left world for the same simulator.

Second, to ensure that the top two worlds are indistinguishable for natural
coercions, e.g., for receipt-freeness, we need that when the environment sends a
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coercion-related message—e.g., a receipt-request—to a coerced party, this mes-
sage is actually answered wether in the real or in the ideal world. In the real
world the coerced protocol will take care of this. Therefore, in the ideal world
we assign this task to the simulator: any messages which is not for the function-
ality is re-routed to the simulator who can then reply with a (simulated) receipt;
formally, this is done by applying a “dummy” ideal-coercion strategy which just
performs the above rerouting. Importantly, to make sure that the receipt is inde-
pendent of the actual protocol execution, and in particular independent of the
ideal deception strategy, we do not allow the simulation knowledge of the inputs
of coerced parties, or of the deception strategy (formally, the latter is guaranteed
by ensuring that the ideal deception strategy is applied on messages that are not
given to the simulator.) The detailed definition follows.

Coercions and Deceptions. For a given protocol machine πi we define a coer-
cion C to be a special a mapping from ITMs to ITMs with the same set of
communication tapes. In particular the ITM C(πi) has the same set of com-
munication tapes as πi and it models the behavior the coercer is attempting
to enforce upon party pi running protocol π. Different types of coercions from
the literature can be captured by different types of mappings. In the following
section we specify three examples corresponding to the most common coercion
types in the literature.

To model the ideal-world behavior (intuitively the “effective” behavior) of
a coerced party when obeying its coercer, we use the protocol ITM dum called
the dummy coercion (we at times refer to dum as the extended dummy protocol).
As sketched above, dum ensures that the simulator handles all messages that are
not intended for the functionality. More concretely, the following describes the
behaviour of dum upon receiving a message from various parties.

From Z: If the message has the form (x, fid) intended for delivery to function-
ality F, dum forwards x to F using a private delayed input (c.f. Page 7). All
other messages from Z are forwarded to the simulator.

From F: Any message from F is delivered to the simulator.
From S: If the message has the form (x, fid) then dum forwards x to F. Otherwise

it forwards the message to Z.

An ideal-world deception strategy corresponds to an attempt of a coerced
party to lie to the environment about its interaction with the ideal functional-
ity F. Thus, it can be described as a mapping applied on the messages that the
deceiving party exchanges with the functionality and with the environment. To
keep our assumptions minimal, we require the real-world (protocol) deception
strategy to also have the same structure, i.e., be described it as mappings applied
on the messages that the deceiving party pi running a protocol exchanges with
its hybrids and with the environment.8

Thus, to capture deception by party pi running ITM πi, we define a deception
strategy, denoted by Di(πi), to be an ITM which can be described via a triple
8 A more liberal, but weaker, definition could allow the real-world deception strategy

to be an arbitrary Turing machine with the same hybrids as pi.
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(D1i , πi, D2i ) of interconnected ITMs behaving as follows: πi’s messages to/from
the adversary are not changed, but we place D1i between πi and Z while we place
D2i between πi and its hybrids. For notational simplicity we, at times, omit the
argument from Di(·) and write Di instead of Di(πi) when the argument is already
clear from the context.

Using these concepts we can now somewhat sharpen the above intuition on
our definition. Informally, a protocol π UC incoercibly realized a functionality
F with respect to a coercion C (in short: π C-IUC realizes F) if the following
two conditions are satisfied: (1) for any set J ⊆ [n] of coerced parties, when
replacing the honest protocol πi with the wrapped protocol π̂i = Ci(π) for all
i ∈ J the resulting network UC realizes the F-dummy protocol φ, where the
parties i ∈ J use Ci instead of φ; and (2) for any player and their ideal deception
DIi = Di(dumi) there exists a real deceiving strategy DRi = D′

i(Ci(π)) such that
no environment can catch coerced parties lying with DIi in ρ with probability
better than catching them lying with DRi in π.

To make the above intuition formal, we need the following notation. Let
J ⊆ [n] denote the set of coerced parties. (To avoid unnecessarily complicated
statements, we restrict to static coercion, so the set J is chosen by Z at the
beginning of the protocol execution.) The execution of protocol π with coercion
C corresponds to executing, in the UC model of execution, the protocol which
results by replacing for each party j ∈ J it’s protocol machine πj with the
above described Cj(π). Much like UC, we write {Execπ,C,A,Z(λ, z)}λ∈N,z∈{0,1}∗

to denote the ensemble of the outputs of the environment Z when execut-
ing protocol π with the above modifications, in the presence of adversary A.
Consistently with the UC literature, we often write Execπ,C,A,Z instead of
{Execπ,C,A,Z(λ, z)}λ∈N,z∈{0,1}∗ . We also use the notation UC-Execπ,A,Z to
denote the analogous ensemble of outputs for a standard UC execution. For
clarity, for the dummy F-hybrid protocol φ we might write ExecF,C,S,Z and
UC-ExecF,S,Z instead of Execφ,C,A,Z and UC-Execφ,A,Z , respectively.

Definition 1 (UC Incoercibility). Let π be an n-party protocol and for an
n-party functionality F let φ denote the dummy F-hybrid protocol, and let C
be a coercion. We say that π C-IUC realizes F if for every i ∈ [n] and every
ideal deception strategy DIi there exists an real deception strategy DRi with the
following property. For every adversary A there exists a simulator S such that
for any set DIJ = {DIi : i ∈ J } and every environments Z:

Execφ,dumJ ,S,Z
c≈ Execπ,CJ ,A,Z (1)

Execφ,DIJ ,S,Z
c≈ Execπ,DRJ ,A,Z (2)

where dum denotes the dummy coercer described above.

We observe that when no party is coerced, i.e., J = ∅, then the definition
coincides with UC security which shows that incoercibility with respect to any
type of coercion also implies standard UC security.
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3 Types of Coercion

Using our definition we can capture the types of coercion previously considered
(mainly in the e-voting) literature. These types are specified in this section,
where we also prove the composability of the corresponding definitions.

I/O Coercion. As a sanity check we look at a particularly weak form of coer-
cion called input/output (I/O) coercion. Intuitively, this corresponds to a setting
where a party is being coerced to use a particular input and must return the
output of the protocol to the coercer as evidence of it’s actions. We capture this
formally by defining the I/O coercion Cio to be identical to the dummy coercion;
that is for any protocol machine πi Cio(πi) = dum(πi) = πi. In particular it faith-
fully uses the input to πi supplied by Z and follows the code of πi during the
entire execution, and eventually returns the output back to Z.

Not surprisingly, we already have I/O-incoercible protocols for a wide variety
of functionalities since standard UC realization is equivalent to I/O-incoercible
realization.

Theorem 1. In the static corruption model protocol π UC realizes functionality
F with static corruptions if and only if π Cio-IUC realizes F.

An immediate consequence of Theorem 1 and the UC composition theorem in [6]
is that I/O-incoercibility is a composable notion.

Semi-honest Coercion (Receipt-Freeness). The type of incoercibility that
has been mostly considered in the literature is the so-called receipt-freeness. The
idea there is that the coercer expects to be provided with additional evidence of
that a specific input was used. In the most severe case such a proof could, for
example, be the entire view of a coerced party in the protocol execution.

In the following, we define the semi-honest coercion Csh, which captures
receipt freeness: at a high-level, for a given protocol machine πi the ITM Csh(πi)
behaves identically to πi with the only difference that upon being asked by Z,
ITM Csh(πi) outputs all messages it has received from the adversary and it
hybrids as well as it’s random coins (i.e., the contents of his random tape). Note
that, as Z already knows the messages it previously sent to Csh(πi), it can now
reconstruct the entire view of pi in the protocol.

Intuitively, the output of Csh(πi) can be used as a receipt that pi is running πi

on the inputs chosen by Z as follows. On the one hand, any message pi claims to
have received over the insecure channels can be confirmed to Z by the informant.
On the other hand, for any prefix of receipt causing πi to send a message over the
insecure channel, Z can check with it’s informant if indeed exactly that message
was sent by pi at that point.

Theorem 2. Let C be a semi-honest coercer, i.e., C = Csh. If protocol π C-IUC-
realizes functionality F , and protocol σ C-IUC-realizes functionality H in the
F-hybrid world, then the composed protocol σπ C-IUC-realizes functionality H.
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Active Coercion. We next turn to defining active coercion. Here, instead of
simply requiring a receipt, the coercer takes complete control over the actions of
coerced parties. We capture this by introducing the fully-invasive—also referred
to as active coercion CA which allows the environment full control over the
coerced party’s interfaces. Formally, for any (set of) functionalities G and any
G-hybrid protocol π C(πi) = φ̄i where φ̄i is the G-hybrid dummy coercer’s pro-
tocol, i.e., φ̄i = dumG

i . A universal composition theorem for incoercibility against
active coercion can be proved along the lines of Theorem 2.

4 Receipt-Free-Incoercible Multi-party Computation

In this section we describe a protocol for IUC realizing any (well-formed [11])
n-party functionalities F in the presence of semi-honest (i.e. receipt-free) coer-
cions. Our construction makes black-box use of the UC secure protocol by
Canetti et al. [11] but it can be instantiated also with other (faster) UC secure
protocols. In fact, our construction can be seen as a compiler of UC secure pro-
tocols to IUC secure protocols in the honestly generated hardware-token setting.
Thus, by replacing the call to the protocol in [11] with a call to a faster UC secure
protocol we obtain a reasonably efficient candidate for universally composable
receipt-free voting.

Our protocol (compiler) assumes access to honestly-generated tamper resis-
tant hardware tokens that perform encryption under a key which is secret shared
among the parties.

Intuitively, the receipt-freeness of the protocol ΠF can be argued as fol-
lows: because the token does not reveal the encryption keys to anyone, the CPA
security of the encryption scheme ensures that the adversary cannot distinguish
encryptions of some xi from encryption of an x′

i �= xi. Thus the real deceiver DRi

for a coerced pi can simply change the input it provides the token according to
the ideal deceiver DIi and report back to Z (as part of the receipt) the actual
reply to the token. Since we assume t + t′ < n there is at least one share of
the decryption key unknown to Z and so it can not immediately detect that
the ciphertext given in the receipt doesn’t encrypt xi. At this point DRi can fol-
low the rest of the protocol honestly and can report the remainder of it’s view
honestly in the receipt. A formal theorem and proof follow.

The Construction. For simplicity we restrict ourselves to non-reactive func-
tionalities, also known as secure function evaluation (SFE). (The general case
can be reduced to this case by using a suitable form of secret sharing for main-
taining the secret state of the reactive functionality.) Moreover, we describe
our protocols as synchronous protocols, i.e., round-based protocols where mes-
sages sent in some round are delivered by the beginning of the next round;
such protocols can be executed in UC as demonstrated in [24,25]. We point
out that the protocols in [24] assume a global synchronizing clock; however, as
noted in [24,25], when we do not require guaranteed termination, e.g., in fully
asynchronous environments, the clock can be emulated by the parties exchang-
ing dummy synchronization messages. We further assume that the parties have
access to a broadcast channel.
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Without loss of generality, we assume that the functionality F being com-
puted has a global output obtained by evaluating the function f on the vector of
inputs. The case of local (a.k.a. private) and/or randomized functionalities can
be dealt with by using standard techniques (c.f. [29].) Furthermore, as is usual
with UC functionalities, we assume that F delivers its outputs in a delayed
manner—whenever an output is ready for some party the simulator S is notified
and F waits for S’s permission to deliver the output.9 Finally, to ensure prop-
erly synchronized simulation, we need to allow S to know when honest parties
hand their input to the functionality. Thus we assume that the functionality F
informs the simulator upon reception of any input xi from an honest party pi.
We point out that as we allow a dishonest majority, we are restricted to security
with abort, i.e., upon receiving a special message (abort) from the simulator,
the functionality F sets all outputs of honest parties to a special symbol ⊥.

Finally, our protocols makes use of an authenticated additive n-out-of-n secret
sharing. Informally, this is an additive secret sharing where each share is authen-
ticated by a digital signature for which every party knows the verification key,
buy no party knows the signing key. We refer to the full version for a formal
specification of our scheme.

In the remainder of this section we present our protocol and prove its security.
We start by describing the hardware token that our protocol needs. The token
functionality TThEnc captures a threshold authenticated encryption token and is
described in Fig. 2. The token is parameterized by an IND-CPA secure symmetric
key encryption scheme (Gen, Enc, Dec) and an existentially unforgeable signature
scheme (Gen′, Sign, Ver). Initially the token generates signature key pair (sk, vk).
Then upon request from any party i (or the adversary when pi is corrupt) it
generates a random encryption key ki for pi and uses vk to compute an n-
out-of-n authenticated sharing ki. Each party j ∈ [n] requests it’s share 〈ki〉j .
Subsequently, whenever pi requests an encryption of some message m from the
token, TThEnc computes a fresh encryption of m under key ki and hands the result
to pi.

Given hybrid access to TThEnc (P), our protocol πF for Csh-incoercibly (UC)
securely realizing any given functionality F proceeds in three sequential phases:

1. In the setup phase, for each player (at their behest) an encryption key is gen-
erated and shared with an n-out-of-n authenticated secret sharing. Formally,
for each i ∈ [n] a message (keygen, i) is sent by pi to the token.10 Shares are
then delivered to parties when they send a keyShare to TThEnc.

2. In the second phase, each pi asks the token to encrypt its inputs xi under key
ki, i.e., inputs (encrypt, xi, i) to the token TThEnc (P).

3. Finally, in a third phase, the parties invoke a UC secure SFE protocol, e.g., the
one from [11] denoted by ΠCLOS, to implement the functionality F̂. Roughly

9 Because we restrict to public-output functions, we can wlog assume that the output
is issued in a public delayed manner (c.f., Sect. 1).

10 Presumably in a real world setting this phase will be executed on behalf of the
players by the authority in charge of running the election. Then the tokens with an
initialized state can be distributed to the players.
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speaking, F̂ receives from each player as input a ciphertext and one key-share
for each of the decryption keys k1, . . . , kn, reconstructs the decryption keys
from the shares, and uses them to decrypt the ciphertexts to obtain plaintexts
{xi}i∈[n]. If either reconstruction (i.e. signature verification) or decryption
fails then F outputs ⊥. Otherwise it computes and outputs a fresh n-out-of-n
authenticated sharing of the value f(x1, . . . , xn). We refer to the full version
for a formal description of protocol ΠF and functionality F̂.

Fig. 2. Threshold encryption token functionality

The security of protocol ΠF is argued as follows: As long as there is at
least one honest party, the adversary will not get information about any of the
encryption keys ki. This follows from the security of the encryption scheme
(Gen, Enc, Dec) used by the token and the privacy of the protocol ΠCLOS. Thus
the simulator can simulate the entire protocol execution by simply using encryp-
tions of random messages to simulate the tokens responses and storing local
(simulated) copied of coerced parties. The unforgeability of the signatures used
by the token to authenticate the shares will guarantee that the adversary can-
not alter the input of honest or coerced parties by giving faulty inputs to the
execution of ΠCLOS.

Theorem 3. Let F be a n-party well-formed functionality as above. Further
let (Gen, Enc, Dec) be an encryption scheme secure against chosen plaintext
attacks (IND-CPA) and (Gen′, Sign, Ver) be an existentially unforgeable signa-
ture scheme. Then the protocol ΠF Csh-incoercibly (UC) securely realizes the
functionality F in the static corruption model in the presence of any t corrupted
and t′ coerced parties where t + t′ < n.
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5 Active-Incoercible Multi-party Computation

In this section we consider the strongest form of coercion, namely active coer-
cions. Recall that these essentially turn a coerced party into a dummy party
with all interaction driven by Z. It turns out that the protocol from the pre-
vious section achieving semi-honest-incoercibility can also be shown to achieve
full active-incoercibility. There are two key differences between the two security
notions which must be addressed in the proof.

1. In a simulation for a semi-honest coerced party pi, the simulator S must
maintain a simulated internal state of pi so that it can always respond to
a receipt request from Z. However no such requirement is placed on S for
active coercions making the job of S easier in this respect.

2. On the other hand, say Z instructs a coerced (non-deceiving) party pi to give
input x to F. In both the semi-honest and active case in the ideal worlds pi

will forward x to F. Moreover in the semi-honest case pi would use x as input
to the honest protocol. However case of an active coercion Z is essentially
running the protocol on behalf of pi as it wishes. Thus their is no guarantee
that x will be the effective input of pi in such a protocol execution. So S must
now extract the effective input of pi during the protocol execution and force
pi to submit that as input to F in place of x. (Indeed, this is where S uses
the property that parties have delayed input to F.) Otherwise the two world
would, in general, be distinguishable.

Theorem 4 (Active-Incoercibility). Let F be a n-party well-formed func-
tionality as above. Further let (Gen, Enc, Dec) be an encryption scheme secure
against chosen plaintext attacks (IND-CPA) and (Gen′, Sign, Ver) be an existen-
tially unforgeable signature scheme. Then the protocol ΠF CA-incoercibly (UC)
securely realizes the functionality F in the static corruption model in the presence
of any t corrupted and t′ coerced parties where t + t′ < n.

Acknowledgements. Joël Alwen was supported by the ERC starting grant (259668-
PSPC). Rafail Ostrovsky was supported in part by NSF grants 09165174, 1065276,
1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research
Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick
Foundation Award, Teradata Research Award, Lockheed-Martin Corporation Research
Award, and the Defense Advanced Research Projects Agency through the U.S. Office
of Naval Research under Contract N00014 -11 -1-0392. The views expressed are those
of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. Vassilis Zikas was supported in part by the Swiss
National Science Foundation (SNF) via the Ambizione grant PZ00P-2142549.

References

1. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: CSF, pp. 195–209. IEEE Computer
Society (2008)



Incoercible Multi-party Computation and Universally Composable 779

2. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685–1720 (2007)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

4. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In: 26th ACM STOC, pp. 544–553. ACM Press, May 1994

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007)

8. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

9. Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended abstract).
In: FOCS, pp. 504–513. IEEE Computer Society (1996)

10. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015)

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002
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