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Abstract. S-Boxes are the key components of many cryptographic
primitives and designing them to improve resilience to attacks such as
linear or differential cryptanalysis is well understood. In this paper, we
investigate techniques that can be used to reverse-engineer S-box design
and illustrate those by studying the S-Box F of the Skipjack block cipher
whose design process so far remained secret. We first show that the lin-
ear properties of F are far from random and propose a design criteria,
along with an algorithm which generates S-Boxes very similar to that of
Skipjack. Then we consider more general S-box decomposition problems
and propose new methods for decomposing S-Boxes built from arith-
metic operations or as a Feistel Network of up to 5 rounds. Finally, we
develop an S-box generating algorithm which can fix a large number
of DDT entries to the values chosen by the designer. We demonstrate
this algorithm by embedding images into the visual representation of
S-box’s DDT.

Keywords: S-box design criteria · Skipjack · Linearity · Functional
decomposition problem · Efficient implementation

1 Introduction

Non-linearity in cryptographic primitives is usually provided by so-called
S-Boxes, functions which map a few inputs bits to a few output bits and which
are often specified as look-up tables. These have been a topic of intensive research
since their properties are crucial for resilience of a cipher against differential [1–3]
and linear [4,5] attacks. Further, the structure or the method used to build the
S-Box can provide other benefits.

Indeed, the structure of an S-Box can be leveraged for instance to improve
the implementation of a primitive using it. The hash function Whirlpool [6]
and the block ciphers Khazad [7], Fantomas, Robin [8] and Zorro [9] among
others use 8 × 8 bits S-Boxes built from smaller 4 × 4 ones, since storing several
4 × 4 permutations as tables of 16 4-bits nibbles is more memory efficient than
storing one 8×8 permutation as a table of 256 bytes. Except for implementation
advantage, knowledge of the internal structure helps to produce more efficient
masked implementations against side-channel attacks, a notable example here
being the AES [10] with its algebraic S-box based on a power function.
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In some cases the design process of an S-Box might be kept secret for the
purpose of implementing white-box cryptography, as described e.g. in [11]. In this
paper, Biryukov et al. describe a memory-hard white-box encryption scheme
based on a Substitution-Permutation Network where the S-Boxes are very large
and are built using a so-called ASASA or ASASASA structure where “A” denotes
an affine layer and “S” a non-linear S-Box layer. Preventing an adversary from
decomposing these S-Boxes into their “A” and “S” layers is at the core of the
security claims for this scheme.

Moreover such memory-hard white-box implementations with hidden struc-
ture of components can be of use in crypto-currencies, for example in cases where
an entity is interested in issuing a crypto-currency of its own. One of the dan-
gers is that powerful adversaries may launch a 51 % attack taking control of the
mining process. Memory hard S-Boxes with hidden structure can offer a distinct
advantage in such setting since efficient implementation of the proof-of-work
function may be kept secret by the owners of the currency.

Examples of algorithms for which the components are known but the ratio-
nale behind their choice is not (at least at the time of release), are the block
ciphers designed by or with the help of the US National Security Agency (NSA),
namely the DES [12], Skipjack [13], SIMON and SPECK [14] (the last two do
not use S-Boxes though). Although the design criteria for the S-Boxes of DES
were later released [15] they were kept secret for 20 years in order to hide the
existence of differential cryptanalysis, a technique only known by IBM and NSA
at the time. Skipjack also uses an S-Box, denoted F , which is a permutation of
{0, 1}8. However, nothing was known so far about how this S-Box was chosen.

Our Contribution. Different methods can be used to recover the hidden structure
of an S-Box. We propose that a cryptanalyst follows the strategy given below to
try and decompose an unknown S-Box S:

1. Draw the “Pollock” visual representation of the LAT and DDT of S (see
Sect. 4).

2. Check whether the linear and differential properties of S are compatible with
a random function/permutation (see Sect. 2).

3. Compute the signature σ(S) of S.
4. If σ(S) is even, you may:

(a) Try an attack on SASAS [16],
(b) Try to distinguish S from a Feistel Network with XOR, using the distin-

guishers in [17],
(c) If one of the Feistel Network distinguishers worked, run DecomposeFeistel

(S,R,⊕) for an appropriate R (see Sect. 3.2).
5. Regardless of σ(S), run DecomposeFeistel(S,R,�) for R ∈ [2, 5] (see

Sect. 3.2).
6. Regardless of σ(S), run BreakArithmetic(S) (see Sect. 3.1).

We study in Sect. 2 the seemingly average linear properties of F . After a
careful investigation and despite the fact that these properties are not impressive,
we show that the probability for a random permutation of {0, 1}8 to have linear
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properties at least as good as those of F is negligible. This implies three things.
First, F was not chosen uniformly at random. Second, F is very unlikely to
have been picked among random candidates according to some criteria. Third,
the method used to build it improved the linear properties. We also provide a
candidate algorithm which can be used to generate S-Boxes with very similar
differential and linear properties.

In Sect. 3 we consider a general problem of decomposition of an S-box with
hidden structure and describe two algorithms which can be used to decompose
S-Boxes based on: (a) multiple iterations of simple arithmetic operations (for
ex. like those found in a typical microprocessor) and (b) Feistel Networks with
up to five independent rounds. The first algorithm is an optimised tree-search
and the second one involves a SAT-solver.

Finally, we show in Sect. 4 how visual representations of the difference dis-
tribution table (DDT) or the linear approximation table (LAT) of an S-Box
can help a cryptographer to spot non-randomness at a glance. As a bonus, we
present an algorithm which generates non-bijective S-Boxes such that large set
of entries in their DDT are set according to the designer’s choices. We illustrate
it by embedding images in the visual representation of the S-Box’s DDT.

2 Partially Reverse-Engineering the S-Box of Skipjack

2.1 Overview of the S-Box of Skipjack and Useful Definitions

Skipjack is a block cipher with a block size of 64 bits and key size of 80 bits. The
interested reader may refer to the official specification [13] or to the best attack
on the cipher [18], an impossible differential attack leveraging its particular round
structure. Further analysis trying to discover the design criteria of Skipjack is
given in [19,20].

Skipjack’s specification contains and 8× 8 bit bijective S-box which is called
“F-Table” and which is given as a lookup table (we list it in the Appendix A).
In order to study it we need to introduce the following concepts.

Definition 1 (Permutations Set). We denote S2n the set of all the permu-
tations of {0, 1}n.

Definition 2 (Difference Distribution Table). Let s : {0, 1}n → {0, 1}n be
a function. Its difference distribution table (DDT) is a 2n ×2n matrix where the
number at line i and column j is

di,j = #{x ∈ {0, 1}n|s(x ⊕ i) ⊕ s(x) = j}.

The maximum coefficient in this table (minus the first line and column) is the
differential uniformity of s which we denote Δ(s): Δ(s) = maxi>0,j>0(di,j).

Differential cryptanalysis relies on finding differential transitions with high
probabilities, i.e. pairs (a, b) such that s(x ⊕ a) ⊕ s(x) = b has many solutions
which is equivalent to da,b being high. Therefore, cryptographers usually attempt
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to use S-Boxes s with as low a value of Δ(s)) as possible. A function differentially
2-uniform, the best possible, is called Almost Perfect Nonlinear (APN). The
existence of APN permutations of GF (2n) for even n was only proved recently
by Browning1 et al. [21] in the case n = 6, while the case n = 8 and beyond still
remains an open problem. Hence, the differential uniformity of the S-Boxes of
the AES [10] and of most modern S-Box based ciphers is equal to 4.

The distribution of the coefficients in the DDT of Skipjack is summarized
in Table 1 along with the theoretical distribution identified in [22] for a random
permutation of GF (28). As we can see it is differentially 12-uniform, the same
as you would expect from a random permutation, which is surprising since min-
imizing the differential uniformity is usually one of the corner stones of provable
resilience against differential attacks.

Table 1. Distribution of the coefficients in the DDT of F .

Coefficient Number Proportion (%) in F Poisson(1/2) (%)

0 39104 60.14 60.65

2 20559 31.62 30.33

4 4855 7.467 7.582

6 686 1.055 1.264

8 69 0.106 0.158

10 5 0.008 0.016

12 2 0.003 0.002

We briefly mention the linear properties of F before studying them thor-
oughly in Sect. 2.2. In particular, we define the Linear Approximations Table of
an S-Box.

Definition 3 (Linear Approximations Table). Let s : {0, 1}n → {0, 1}n be
a function. Its linear approximations table (LAT) is a 2n × 2n matrix where the
number at line i and column j is

ci,j = #{x ∈ {0, 1}n|x · i = s(x) · j} − 2n−1 =
1
2

∑

x∈{0,1}m

(−1)i·x⊕j·s(x)

with “·” denoting the scalar product. The maximum absolute value of the ci,j is
the linearity of s, Λ(s), where Λ(s) = maxi>0,j>0(|ci,j |).
The quantity ci,j has different names in the literature. It is called “bias” or
“Imbalance” of the Boolean function x �→ i · x ⊕ j · s(x) in, for example, [22].
In papers from the Boolean functions community, it is more often defined in
terms of Walsh Spectrum, the Walsh Spectrum of a Boolean function being the
1 The fact that Browning works at the NSA shows that this agency values theoretical

considerations, which makes the simplicity of F all the stranger.
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multiset {ci,j/2}i≥0,j≥0. The maximum coefficient in the LAT of F is Λ(F ) = 28
and it occurs in absolute value 3 times.

For the sake of completeness, we also give the sizes of the cycles in which F
can be decomposed: 2, 10, 45, 68, 131.

2.2 The Linear Properties are Too Good to be True

Figure 1 contains the distribution of the value of the coefficients of the LAT
(minus the first line and column) along with the theoretical proportions for a
random permutation of GF (28) described below.

Fig. 1. Coefficients of the LAT of F , random permutations and some outputs of
Improve-R(s).

The probability distribution for the coefficients ci,j in the LAT of a permu-
tation of S2n is described in [23]:

P [ci,j = 2z] =

(
2n−1

2n−2+z

)2
(

2n

2n−1

) .

Using Sect. 3.4 of [22], we derived that Λ(s) has a mean over all permutations s ∈
S28 of approximately 34.8 which is notably larger than for F since Λ(F ) = 28.

Given the probability distribution of the coefficients of the LAT, it is easy to
compute the probability that Λ(f) ≤ 28 assuming that f is a permutation chosen
uniformly at random and that the coefficients’ values correspond to independent
sample of the same distribution. Note that there are only (28 − 1)2 such trials
because the first line and column are ignored here.

P [Λ(f) ≤ 28] =
( 14∑

j=−14

P [ci,j = 2j])
)(28−1)2

≈ 2−25.62.
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This probability is low but it would be feasible to generate a set of about 226

random permutations from S28 and compute the LAT for each of them. In such
a set, the best S-Box s should verify Λ(s) = 28. However, we must also take into
account that in order to resist linear cryptanalysis it is not only best to have a
low maximum value, it is also better to have a low number of occurrences of it.
In this regard, F and its only three occurrences of 28 could almost be considered
as having a maximum value of 26 for which P [Λ(f) = 26] = 2−66.4.

More rigorously, we compute the probability to have at most q coefficients
equal to 28 in the LAT of a permutation picked uniformly at random from S28 .
If we let p(2i) = P [ci,j = 2i], then this probability is equal to P28,q where

P28,q =
q∑

j=0

[((28 − 1)2

j

)(
p(28) + p(−28)

)j
( 13∑

k=−13

p(2k)
)(28−1)2−j]

.

Unsurprisingly, we find that this probability is equal to 2−66.4 for q = 0, i.e.
the probability to have Λ(s) ≤ 26. It also converges to 2−25.6 = P [Λ(s) ≤ 28]
when q increases. For q = 3, the case of Skipjack’s F , we find:

P28,3 = 2−54.4.

The probability for a random permutation to have linear properties comparable
to those of Skipjack’s F is thus at most 2−54.4. Hence, we claim:

– F was not chosen uniformly at random in S28 ,
– the designers of Skipjack did not generate many random permutation to then

pick the best according to some criteria as they would need to have generated
at least about 255 S-Boxes,

– the method used to build F improved its linear properties.

2.3 A Possible Design Criteria

We tried to create an algorithm capable of generating S-Boxes with linear and
differential properties similar to those of F . It turns out that such an algorithm
is easy to write. First, we introduce a quantity we denote R(f) and define as
follows:

R(f) =
∑

�≥0

N� · 2�,

where N� counts coefficients with absolute value � in the LAT of f : N� = #{ci,j ∈
(LAT of f), |ci,j | = �}.

Algorithm 1 starts from a random permutation s of S28 and returns a new
permutation s′ such that R(s′) < R(s) and such that s′ is identical to s except for
two entries x and y which are swapped: s′(x) = s(y) and s′(y) = s(x). It works
by identifying one of the highest coefficient in the LAT, removing it through
swapping two entries and checking whether R(s) was actually improved. This
algorithm can be used in two different ways: either we keep iterating it until it
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Algorithm 1. Improve-R(s)
c := LAT of s
Find a, b such that |ca,b| = Λ(s)
L := empty list
for all x ∈ {0, 1}8 do

if a · x = b · f(x) then
Append x to L

end if
end for
for all (x, y) ∈ L2, x �= y do

s′ = s ; s′(x) = s(y) ; s′(y) = s(x)
if R(s′) < R(s) then

return s′

end if
end for
return Fail

reaches a point at which no swap can improve R(s) or we stop as soon as R(s)
is below an arbitrary threshold.

We implemented both variants. For the second one, we stop when R(s) < 1010

because R(F ) ≈ 109.92. We denote N� the average number of coefficient with
absolute value � in the LAT or the DDT of the S-Boxes obtained. For the LAT,
log2(N�) is given in Table 2 and in Fig. 1; for the DDT it is in Table 3. “Random”
corresponds to the average over 200 S-Boxes picked uniformly at random in S28 ;
“F” to the distribution for the S-Box of Skipjack; “F -like” to the average over
100 S-Boxes obtained using Improve-R() and stopping when R(s) < 1010; “best”
to the average over 100 S-Boxes obtained using Improve-R() and stopping only
when it fails.

Table 2. Distribution of log2(N�) in the LAT of different S-Boxes.

� Random F F -like best R()

20 9.164 9.147 9.230 9.311

22 8.220 8.308 8.336 8.247

24 7.173 7.267 7.280 6.400

26 6.041 5.755 5.688 0.000

28 4.826 1.585 1.157 -

30 3.506 - - -

32 2.146 - - -

34 0.664 - - -

Using Improve-R() with an appropriate threshold allows us to create
S-Boxes with both linear and differential properties very close to F . However,
in order to achieve this, we need to choose a threshold value computed from F
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Table 3. Distribution of log2(N�) in the DDT of different S-Boxes.

� Random F F -like Best R()

0 15.265 15.246 15.250 15.227

2 14.270 14.327 14.314 14.380

4 12.277 12.245 12.257 12.210

6 9.693 9.422 9.492 9.126

8 6.701 6.109 6.198 5.265

10 3.374 2.322 2.287 0.714

12 −0.059 1.000 −1.786 −5.059

14 −4.059 - −5.059 -

and which does not correspond to anything specific. In fact, to the best of our
knowledge, the quantity R(s) does not have any particular importance unlike
for instance the linearity Λ(s). Still, replacing R(s) by the linearity Λ(s) or a
pair (Λ(s),#{(i, j), ci,j = Λ(s)}) yields S-Boxes which are very different from F .
Such S-Boxes indeed have a value of NΛ(s)−2 much higher than in the random
case, which is not the case for F .

While our definition of R(s) may seem arbitrary, it is the only one we could
find that leads to linear properties similar to those of F . For instance it may have
been tempting to base R(s) on the square of � which is used when computing
the correlation potential of a linear trail, a quantity useful when looking for
linear attacks. We would thus define R(s) =

∑
�≥0 N��

2. However this quantity
is worthless as an optimization criteria since it is constant: Parseval’s equality
on the Walsh spectrum of a Boolean function imposes that the sum of the (ci,j)2

over each column is equal to 22n−2.
To conclude: we have found new non-random properties of the S-box of Skip-

jack which are improving its strength against linear cryptanalysis and we devel-
oped and algorithm which could be used to generate such S-boxes.

2.4 Public Information About the Design of Skipjack

The only information indirectly published by the NSA on Skipjack corresponds
to an “Interim Report” [24] written by external cryptographers and it contains
no information on the specifics of the design. The most relevant parts of this
report as far as the S-Box is concerned are the following ones.

SKIPJACK was designed to be evaluatable [...]. In summary, SKIPJACK
is based on some of NSA’s best technology. Considerable care went into
its design and evaluation in accordance with the care given to algorithms
that protect classified data.
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Furthermore, after the “leakage” of an alleged version of Skipjack to usenet2,
Schneier replied with a detailed analysis of the cipher [26] which contained in
particular the following quote indicating that the S-box was changed in August
1992.

The only other thing I found [through documents released under FOIA]
was a SECRET memo. [...] The date is 25 August 1992. [...] [P]aragraph 1
reads:
1. (U) The enclosed Informal Technical Report revises the F-table in

SKIPJACK
2. No other aspect of the algorithm is changed.

Note also that the first linear cryptanalysis of DES [4] had not been published
yet in August 1992 when the F-Table was changed. Gilbert et al. suggested at
CRYPTO’90 [27] to use linear equation to help with key guessing in differential
attack to attack FEAL. This block cipher was later attacked at CRYPTO’91 [28]
and EUROCRYPT’92 [29] using directly some linear equations involving plain-
text, ciphertext and key bits. We can but speculate about a connection between
these papers and the change of S-Box of Skipjack.

3 Algorithm Decomposing Particular Structures

A powerful tool able to discard quickly some possible structures for an S-Box is
its signature, as shown in Lemma 1.

Definition 4 (Permutation Signature). A permutation s of {0, 1}n has an
odd signature if and only if it can be decomposed into an odd number of trans-
positions, a transposition being a function permuting two elements of {0, 1}n.
Otherwise, its signature is even.

The signature of f ◦ g is even if and only if f and g have the same signature.

Lemma 1. The following b × b permutations always have an even signature:

– Feistel Networks using XOR to combine the output of the Feistel function with
the other branch,

– Substitution-Permutation Networks for which the diffusion layer is linear in
GF (2)b or can be decomposed into a sequence of permutations ignoring a
fraction of the internal state.

Proof. Let b be the block size of the block ciphers considered. The proof for the
case of Feistel Networks with XOR can be found in [30].

2 An anonymous member of sci.crypt posted what they claimed to be Skipjack at a
time when this algorithm was still classified [25]. Although the algorithm described,
“S-1”, turned out to be different from Skipjack as we know it, it used similar nota-
tions — the S-Box is called “F-Table” — and the key-schedule leads to identical
round keys being used every 5 rounds, just like in the actual Skipjack.
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Let us look at substitution permutation networks. An S-Box layer consists
in the parallel application of several invertible S-Boxes operating on n bits, with
n dividing b. This operation can be seen as the successive application of the
S-Box on each n bit block, one after another. Such an operation ignores 2b−n

bits, meaning that its cycle decomposition consists in 2b−n replicas of the same
set of cycles. Since 2b−n is even, the application of each S-Box is even; which in
turn implies that the successive application of the S-Box on each block is even.
More generally, any permutation which can be decomposed into a sequence of
sub-permutations ignoring a fraction of the internal state is even. The fact that
permutations linear in GF (2)b are even is showed in the proof of Lemma 2
in [31]. 	

The restriction put on the diffusion layer of SPN’s is usually not important, e.g.
the diffusion layer of the AES fits the requirement. However, for small block
sizes, it must be taken into account.

So far, we have proved that F has been built in contrast to being picked out
of a set of random S-Boxes according to some criteria. The signature of F is odd
so Lemma 1 implies that F cannot be a Feistel Network with XOR. The generic
attack on the SASAS structure [16] fails on F , meaning that it is not a simple
SPN either. Finally, F is not affine equivalent to a monomial of GF (2n) like for
instance the S-Box of the AES. Indeed, such functions have the same coefficients
in the lines of their DDT, only the order is different. This observation lead to
the definition of the differential spectrum by Blondeau et al. [32]. It also implies
that, for a monomial, the number of coefficients equal to d in its DDT must
divide 2n − 1. As it is not the case for F , we can also rule out this structure.

However, this is not sufficient to conclude that F does not have a particular
structure. It could be based on simple operations such as rotations, addition
modulo 2n and multiplication available in a typical microprocessor (thus offer-
ing the designer a benefit of memory-efficient implementation) or on a Feistel
Network which uses modular addition to combine the output of the Feistel func-
tion with the other branch. We study these two possibilities in this section by
first describing an algorithm capable of decomposing S-Boxes built from multi-
ple simple arithmetic operations and then by presenting a new attack recovering
all Feistel functions of a small Feistel Network of up to 5-rounds regardless of
whether XOR or modular addition is used.

The purpose of the algorithms we present in this section can be linked to the
more general Functional Decomposition Problem (FDP) tackled notably over two
rounds in [33]. In this paper, Faugère et al. introduce a general algorithm capable
of decomposing h = (h1, ..., hu) into

(
f1(g1, ..., gn), ..., fu(g1, ..., gn)

)
where the

hi’s, fi’s and gi’s are polynomials of n variables. The time complexity of this
algorithm (see Theorem 3 of [33]) is lower bounded by O

(
n3·(dfdg−1)

)
where df

(respectively dg) is the maximum algebraic degree of the fi’s (respectively the
gi’s). Note that this lower bound on the time complexity is not tight. In fact,
the ratio n/u of the number of input variables over the number of coordinates
of h is also of importance, the lower being the better.
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3.1 Iterated Simple Arithmetic Permutation

A plausible assumptions for an efficient yet compact S-box design is that the
S-box is constructed using a formula containing basic instructions available in
the microprocessor. Indeed, a simple code:

for (i = 0; i < 3; i++) {
y = a * (ROTL8((b * y) ^ c, d)) ^ e;

}

generates an S-box which may have a differential uniformity better than Skip-
jack’s F ’s for a proper choice of constants a, b, c, d and e.

We introduce BreakArithmetic(s), an optimized tree-search capable of
recovering the simple operations used to create such an S-Box constructed as
an arbitrary sequence of basic processor instructions. It is based on the fol-
lowing observation. Suppose that s = φr ◦ ... ◦ φ1, where the φi’s are one of
the following algebraic operations: constant XOR, constant addition modulo 2n,
multiplication by a constant modulo 2n and bit rotation by a constant. Then
s◦φ−1

1 =
(
φr ◦ ...◦φ1

)◦φ−1
1 = φr ◦ ...◦φ2, meaning that s◦φ−1

1 is “less complex”,
“closer from the identity” than s itself. The aim of this algorithm is to peel of
the φi’s one after another by performing a tree-search among all possible simple
operations which selects operations to consider first based on how closer they
get us to the identity.

In order for this to work, we need to capture the concept of “distance to the
identity” using an actual metric which can be implemented efficiently. We chose
to base this metric on the DDT since it is less expensive to compute than the
LAT3. We define the following metric: M(s) =

∑
�≥2 N�(�−2)2. Our tree-search

privileges candidates φ1 such that M(s ◦ φ−1
1 ) is closer from M(Id), where Id is

the identity function.
Our implementation of this algorithm is for example capable of recovering

the decomposition of s : x �→ ψ
(
ψ

(
ψ(x)

))
with ψ : x �→ 0xa7·((3·x⊕0x53) >>>

4
) ⊕ 0x8b. However, our algorithm could not find any such decomposition for

Skipjack’s F despite running for 96 hours on a CUDA computer with more than
1000 cores for fast computation of the DDT.

3.2 Decomposing Feistel Structures

Another possible structure for F which is compatible with its having an odd
signature is a Feistel Network where the XOR is replaced by a modular addition.
In this section, we describe an algorithm which uses a SAT-solver to recover the
Feistel functions of small Feistel Networks which use either XOR or modular
addition. We describe below the key idea of this attack, namely the encoding of
the truth table of each Feistel function using Boolean variables and then how we
can use this encoding to actually decompose a small Feistel Network.
3 One can also notice that linear operations do not alter the DDT profile of the per-

mutation and thus one has to recompute the metric only after non-linear operations.
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Methods to distinguish Feistel Networks from random permutations have
been actively investigated, notably in the work by Luby and Rackoff [34] as
well as by Patarin [35,36]. Here, we present a method which goes beyond dis-
tinguishing: it actually recovers all the Feistel functions for up to 5-rounds of
Feistel Networks with low branch width.

Encoding of the Feistel Function. Let f : {0, 1}n → {0, 1}n be an unknown
function. We associate to each of its output bits i on each possible input x a
unique variable zx

i . The truth-table of f is thus as shown in Table 4 for n = 3.
We encode the fact that a vector of Boolean variables yi, i ∈ [0, n − 1] is the
output of f given input variables xi, i ∈ [0, n − 1] using the truth-table of f by
building a CNF4 involving {xi}i<n, {yi}i<n and {zx

i }i<n, x<2n which is true if
and only if (yn−1, ..., y0) = f(xn−1, ..., x0).

Table 4. The variables used to encode an unknown function f : {0, 1}3 → {0, 1}3,
where (y2, y1, y0) = f(x2, x1, x0).

x2 x1 x0 y2 y1 y0

0 0 0 z0
2 z0

1 z0
0

0 0 1 z1
2 z1

1 z1
0

... ... ... ... ... ...

1 1 1 z7
2 z7

1 z7
0

We denote biti(b) the i-th of the binary expansion of any integer b < 2n in
little-endian notation so that b =

∑
i<n biti(n)2n−i. We also denote a1 the vari-

able a itself and a0 its negation. The procedure used to build this CNF is based
on the following implication: if {xi}i<n corresponds to the binary expansion of
an integer x < 2n and {yi}i<n to the binary expansion of the integer y = f(x),
then yi ⊕ zx

i = 0 for all i < n. Using the notations we just introduced, this idea
can be written as n implications, the conjunction of which for j < n must hold:

( ∧

i<n

x
biti(x)
i

)
=⇒ (

yj ⊕ zx
j = 0

)
.

Each of these can be turned into a CNF made of two clauses using that
(a =⇒ b) ≡ (a0 ∨ b1), that (a ⊕ b = 0) ≡ (

(a1 ∨ b0) ∧ (a0 ∨ b1)
)

and basic linear
algebra as follows:

(( ∨

i<n

x
1−biti(x)
i

) ∨ y1
j ∨ z0j

)
∧

(( ∨

i<n

x
1−biti(x)
i

) ∨ y0
j ∨ z1j

)
.

If we concatenate the CNF generated in this way for all values of x < 2n, we
obtain a CNF which we denote “CNF

(
f, {xi}, {yi}

)
” with 2n2n clauses involving

n2n +2n variables. It holds if and only if the assignment of the variables {xi}i<n

and {yi}i<n is such that (yn−1, ..., y0) = f(xn−1, ..., x0).
4 A formula in Conjunctive Normal Form is the conjunction of multiple clauses, each

of them being the disjunction of some possibly negated variables.
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Generating the Full CNF and Solving. Using CNF
(
f, {xi}, {yi}

)
, a SAT-

solver and the full codebook of a S-Box S : {0, 1}2n → {0, 1}2n, we can
recover the Feistel functions used to generate S if it was indeed generated using
a Feistel network or prove that it was not constructed in this fashion using
DecomposeFeistel(S,R, operation) (see Algorithm 2). To describe it, we intro-
duce variables {xr

i }i<2n, {yr
i }i<n and, if the combining function is a modular

addition instead of a XOR, {cr
i }i<n for r < R where R is the number of rounds

we consider were used. These are summarized in Fig. 2.

xr
i , i < 2n

xr+1
i , i < 2n

Sr
yr
i ,

i < n

cri ,
i < n

Fig. 2. The variables used to encode round r of a Feistel Network operating on blocks
of 2n bits.

The general idea consists in building the CNF representation of the fact that
S(p) = c for each input/output pair (p, c) separately, concatenate these CNF’s
and then have a SAT-solver solve the CNF obtained in this fashion. To each
Feistel functions is associated a unique set of n2n variables as described in the
previous section. These are used when encoding that half of the internal state
at round r + 1 of the Feistel Network goes through the corresponding Feistel
function. The only difficulty left is the combination of the left branch with the
output of the Feistel function. In the case where a XOR is used, we can simply
encode that xr+1

i = yr
i ⊕xr

i+n separately for each bit i. However, in the case of a
modular addition, we need to introduce a new set of variables for each evaluation
of the addition corresponding to the carry bits: {cr

i }i<n. The addition is then
encoded into a CNF using the CNF encoding of the following equations:

xr
i+1 = cr

i ⊕ xr
i+n ⊕ yr

i ,

cr
i+1 =

(
cr
i ∧ xr

i+n

) ∨ (
yr

i ∧ xr
i+n

) ∨ (
cr
i ∧ yr

i

)
.

A useful heuristic when trying to decompose more than 4 rounds is to look
for decompositions with particular patterns in the sequence of the Feistel func-
tions. For instance, decomposing a 5-rounds Feistel Network with round func-
tions (Sa, Sb, Sc, Sd, Sa) is easier than decomposing a similar structure with
round functions (Sa, Sb, Sc, Sd, Se) if this knowledge is hard-coded in the CNF
by using the same sets of variables to encode both Se and Sa. In this case,



On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 129

Algorithm 2. DecomposeFeistel(S,R, operation)
C := empty CNF
for all p ∈ [0, 2n − 1] do

for all r ∈ [0, R − 1] do
{xp,r+1

i+n }i<n = {xp,r
i }i<n

C := Concatenation of CNF
(
Sr, {xp,r

i }i<n, {yp,r
i }) and C

if operation is ⊕ then
Append CNF repr. of {xp,r+1

i }i<n = {yp,r
i }i<n ⊕ {xp,r

i+n}i<n to C
else

Append CNF repr. of {xp,r+1
i }i<n = {yp,r

i }i<n � {xp,r
i+n}i<n to C

end if
end for
for all i ∈ [0, n − 1] do

Append clause only made of literal (xp,0
i )biti(p) to C

Append clause only made of literal (xp,R
i )biti(S(p)) to C

end for
end for
Run SAT-solver on C
if C is satisfiable then

Extract truth-table of all Sr’s from the variable assignment
return “Feistel Network with R rounds”

else
return “Not a Feistel Network with R rounds”

end if

DecomposeFeistel(S,R, operation) also takes the assumed sequence of the
S-Boxes as an additional input.

Another improvement comes from the observation that constants can be
XOR-ed (or added/subtracted) in the input of Feistel functions in the first R−2
rounds — provided they are cancelled by XOR-ing (or adding/substracting) in
the later rounds — without changing the output of the function. Using this, we
can arbitrarily decide that the first Feistel functions all map, say, 0 to 0. This
simplification of the CNF helps the SAT-solver a lot and is actually necessary
to attack 5 independent rounds.

We implemented Algorithm 2 and used the SAT-solver Minisat [37] to solve
the CNF formula generated. The time taken to decompose S-Boxes actually
made of small Feistel Networks is smaller than the time taken to discard an
S-Box which is not based on such a structure. Decomposing 8 × 8 S-Boxes built
using 4-rounds Feistel Networks, regardless of whether ⊕ or � is used, takes less
than a second on a regular desktop PC5 and discarding S-Boxes built in other
ways requires about 5 seconds. Decomposing 5-rounds requires a bit less than
a minute but discarding this structure takes longer, for instance 3 min to prove
that F is not a 5-rounds ⊕-Feistel and 23 min to show that is it not a 5-rounds
�-Feistel. It is also possible to attack larger instances provided enough RAM is
5 The PC used for the experiments has a Intel(R) Core(TM) i7-3770 CPU (3.40GHz)

for a cpu and 8 Go of RAM.
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available. A 4-rounds Feistel Network corresponding to a 14 × 14 S-Box can be
broken in about 2 hours using up to about 38 Go of RAM6.

The CNF formulas equivalent to F being a Feistel Network with 3,4 or 5
rounds, using either ⊕ or � are all unsatisfiable, meaning that F is not a Feistel
Network with at most 5 rounds.

For the sake of completeness, we mention the existence of another time
efficient attack on 5-round Feistel Networks by Gaëtan Leurent based on a
boomerang-like property [38]. Indeed one of the open problems is how far crypt-
analytic techniques can go in analysis of ciphers with small block, where the full
code-book is available to the attacker.

4 From an S-Box to a Picture and Back Again

In order to distinguish an S-Box from a random one we propose a new method
which we call Pollock’s Pattern Recognition7. It is based on turning the DDT
and the LAT of the S-Box into a picture and then use the natural pattern finding
power of the human eye to identify not-random properties. We also describe a
method to perform (partially) the inverse operation: Seurat’s Steganography8. It
creates an S-Box such that an image is embeded in the picture representation of
its DDT.

4.1 Pollock’s Pattern Recognition

As is clear from Sect. 2, the distribution of the coefficients in the LAT of an
S-Box provides a powerful tool to distinguish a random-looking S-Box from a
permutation chosen uniformly at random from the set of all permutations. We
suggest here another method for looking at these coefficients which can also be
applied to the DDT. The idea is to look at the whole table at once, be it a DDT
or LAT, and then rely on the pattern matching capabilities of the pair human
eye/human brain to possibly discard that the S-Box was chosen uniformly at
random. In order to look at the whole table, we associate to the values of the
coefficients different colors. Exactly which color scale to use is a question which
can only be answered by trying different ones. As an illustration of the power
of this method, we provide pictures allowing us to discard the randomness of 4
S-Boxes using merely a quick glance in Appendix B.

Zorro. The S-Box of this cipher [9] is based on a 4-rounds Feistel Network
with a complex diffusion layer. As a consequence, the algorithm presented in

6 This experiment was performed on a single core of a dedicated server with 500 Go
of RAM.

7 The pictures obtained in this fashion have a strong abstract feel to them, hence a
name refering to the painter Jackson Pollock for this algorithm.

8 As will be explained later, this algorithm works by drawing the image to embed
point after point just like in a pointillist painting, hence the name of the painter
who invented this method.
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Sect. 3.2 fails on it. The picture representation of its LAT, given in Fig. 4a,
contains “stripes”. These correspond to coefficients equal to 6 (orange) and
2 (green). These never appear for half of the input masks according to a
repeating pattern. Such a behaviour is not expected from a random permu-
tation. The color scheme was chosen so as to highlight this property. We note
that the congruence modulo 2k for some k of the coefficients of the LAT is
related to the algebraic degree of i · x ⊕ j · S(x) as explained for example
in [39] (Proposition 6.1).

CLEFIA. This block cipher [40] uses two distinct S-Boxes. The one denoted
S0 has a particular structure based on smaller 4× 4 S-Boxes. The LAT of
this S-Box is given in Fig. 4b: note the “dents” on the top and left side of
the picture as well as the low number of colors compared to Fig. 4c which
also depicts a LAT and uses the same color-scale. This low number of colors
is a consequence of the fact that no coefficient in the LAT is congruent to 2
modulo 4 which in turn is related to this S-Box having an algebraic degree
equal to 6 on all of its coordinates. Neither this nor the “dents” are expected
from a random permutation.

SAFER+. This block cipher [41] uses an S-Box based on exponentiation in
Z/256Z. Its LAT is given in Fig. 4c; note in particular the vertical lines whih
appear in this representation.

Arithmetic. The DDT can also be used in the same fashion. For example,
we can look at the DDT of an S-Box generated using a simple algebraic
expression similar to those discussed in Sect. 3.1, namely s : x �→ ψ

(
ψ(x)

)

with ψ : x �→ 3 ·((3 ·x⊕0x53) >>> 4
)⊕0x8b. The representation of its DDT

is in Fig. 4d. Note the white rectangles corresponding to subsets of impossible
differentials and the loose similarity between the top left and bottom right
quadrants on one hand and the top right and bottom left quadrants on the
other hand. None of these characteristics are expected from the DDT of a
random permutation. Note that with 3 iterations of φ this S-box becomes
reasonably good.

We however were not able to spot any particular pattern in the Pollock repre-
sentation of neither the DDT nor the LAT of Skipjack’s F . Such representations
are given respectively in Figs. 3a and b in Appendix B. We used the function
matrix plot from the SAGE [42] software package to draw the Pollock repre-
sentations.

4.2 Seurat’s Steganography

In this section, we present an algorithm allowing the creation of a non-bijective
S-Box such that the picture representation of its DDT contains a particular
image. Since we draw this image dot after dot like in pointillism and since it
hides said image, we call the method we present below Seurat’s Steganography.
The pictures we embed are black and white, the white parts corresponding to
places where differentials are impossible and black parts to places where the
differentials have non-zero probability.
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The Algorithm. We define white and black equations as those giving the
corresponding pixel color in the Pollock representation of the DDT of an S-Box.

White Equations. Wa,b : ∀x ∈ {0, 1}m, S(x + a) + S(x) �= b.

Black Equations. Ba,b : ∃x ∈ {0, 1}m, S(x + a) + S(x) = b.

The inputs considered in this Section are:

B The complete list of the black equations.
Tw A table of booleans of size u×v (the dimensions of the image) where Tw[a, b]

is false if and only if the pixel at (a, b) cannot be white.
S A partially unspecified S-Box such that all equations Bj for j < i hold and

such that none of the Wj has a solution for any j.
i The index of the equation in B for which we need to find a solution.

We first need a sub-routine checking if adding an entry S(x) = y to a partially
assigned S-Box, i.e. an S-Box for which some of the outputs are unspecified, leads
to at least one of the white equations not holding anymore. It is described in
Algorithm 3.

Algorithm 3. checkW(S, x, y, Tw).
for all a ∈ {0, 1}m, if S(x + a) is specified, do

if Tw[a, S(x + a) + S(x)] is false then return false

end for
return true

We now describe Seurat’s Steganoraphy, namely Algorithm 4, which uses
two lists of equations to iteratively build an S-Box such that a particular picture
appears in its DDT. It works by first making a list L of all the ways entries
could be added to the S-Box in order to satisfy the black equation Bi. If none
are found, the function fails. The function is finally called recursively on the
candidates found to look for a solution for the next equation. If no solution are
found for the next equation, the function fails.

Some optimizations are possible. First of all, it is not necessary to write
this algorithm using recursion. It is also not necessary to let L be as large as
possible. In fact |L| ≤ 2 is sufficient, although |L| = 1 does not work unless
the picture is very simple. It is also possible to allow some noise by tweaking
CheckW(S, x, y, Tw) to return true with low probability for pairs (x, y) even if
they blacken a white pixel.

Two outputs of this algorithm are presented in Appendix C: the S-Boxes are
given along with the Pollock representation of their DDT which clearly show
the pictures we chose to embed in them. The differential and linear properties
of the S-Box described in Table 6 are close from what would be expected from a
random function (differential uniformity of 14, linearity of 39), meaning that it
could be used in a context were a 8 × 8 random function would be sufficient.
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Algorithm 4. Seurat(S,B, Tw, i).
δin := input difference in Bi

δout := output difference in Bi

L := empty list of S-Boxes
if Bi is already satisfied by S then

Append S to L and return L
end if
for all x ∈ {0, 1}m do

if S(x) is not defined but S(x + δin) is defined then
y = S(x + δin) + δout
if CheckW(S, x, y, Tw) then

S′ = S ; S′(x) = y
Append S′ to L

end if
else if S(x + δin) is not defined either then

for all y ∈ {0, 1}n do
if CheckW(S, x, y, Tw) and CheckW(S, x + δin, y + δout, Tw) then

S′ = S ; S′(x) = y ; S′(x + δin) = y + δout
Append S′ to L

end if
end for

end if
end for
If L is still empty then return Fail

for all S′ ∈ L do
If Seurat(S′, B, Tw, i + 1) does not fail then return S′

end for
return Fail

Counting Possible S-Boxes. Let S be a random function from {0, 1}m to
{0, 1}n. Then Wa,b holds if and only if da,b = 0, which happens with prob-
ability P [da,b = 0] = exp

( − 2m−n−1
)

because the coefficients in the DDT
of a random function follow approximately a Poisson distribution with para-
meter 1/2 (see [22]). Hence, if we have b black equations, w white ones and
if we consider that their having solutions are independent events, then the
probability that an S-Box has the correct image at the center of its DDT is
Psuccess =

(
exp(−2m−n−1)

)w × (
1− exp(−2m−n−1)

)b. In the case where m = n,
we use that log2(exp(−1/2)) ≈ −1.35 and that log2(1 − exp(−1/2)) ≈ −0.72 to
approximate this probability by

Psuccess = 2−(0.72·w+1.35·b).

As there are 2n2n possible n×n S-Boxes, we expect to have very roughly the
following amount of solutions:

NSolutions = 2n2n−(0.72·w+1.35·b).



134 A. Biryukov and L. Perrin

Therefore, we need 0.72 · w + 1.35 · b < n2n in order to have a non-empty set
of S-Box with the image we want inside their DDT. Black pixels are about twice
as expensive as white ones according to this model. However, in practice, it is
only possible to build a S-Box such that its DDT contains a black square of size
22×22 or a white one of size 62×62 without any noise, meaning that black pixels
are, from our algorithm’s point of view, about 8 times more expensive. Stirling’s
equation gives an approximate number of 2(n−1.44)·2n permutations of {0, 1}n, so
we need that 0.72 ·w +1.35 · b < (n− 1.44)2n in order for permutations with the
correct black/white pixels to exist with non negligible probability. However, our
algorithm will require significant changes in order to search for permutations.

Since our algorithm does not require the pixels to be organised inside a
square, we can also use it to force white or black pixels to appear anywhere
in the DDT of an S-Box. This could be used to place a sort of trapdoor by
for instance ensuring that a truncated differential compatible with the general
structure of a cipher is present. Another possible use could be to “sign” a S-Box:
Alice would agree with Bob to generate a S-Box for him and tell him before
hand where some black/white pixels will be. Bob can then check that those are
placed as agreed.

5 Conclusion

Knowledge of the internal structure of an S-box gives clear advantages to the
designer of a cipher in terms of efficient or side-channel resistant implementa-
tion. It is also crucial in the white-box or crypto-currency setting. Hiding the
S-box’s structure can be also a way to hide superior cryptanalysis techniques or
trapdoors.

In this paper we have introduced several approaches and algorithms to
decompose an S-Box with unknown structure and we illustrated them by study-
ing the S-Box of the NSA’s block cipher Skipjack. This allowed us to rule out
some possible structure, and to prove that its linear properties are too unlikely to
have happened at random. We also provided an algorithm capable of generating
very similar S-Boxes (Table 5).

An open problem related to this work is the study of block ciphers with small
block sizes: how far can cryptanalysis go given a whole codebook? How many
rounds of small-block Feistel Network or SPN is it feasible to break?
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and congruence of the coefficient of the LAT modulo 2k. The work of Léo Perrin is
supported by the CORE ACRYPT project (ID C12-15-4009992) funded by the Fonds
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On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 135

A The S-Box of Skipjack

Table 5. Skipjack’s S-Box, F , in hexadecimal notation. For example, F (7a) = d6.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. a3 d7 09 83 f8 48 f6 f4 b3 21 15 78 99 b1 af f9

1. e7 2d 4d 8a ce 4c ca 2e 52 95 d9 1e 4e 38 44 28

2. 0a df 02 a0 17 f1 60 68 12 b7 7a c3 e9 fa 3d 53

3. 96 84 6b ba f2 63 9a 19 7c ae e5 f5 f7 16 6a a2

4. 39 b6 7b 0f c1 93 81 1b ee b4 1a ea d0 91 2f b8

5. 55 b9 da 85 3f 41 bf e0 5a 58 80 5f 66 0b d8 90

6. 35 d5 c0 a7 33 06 65 69 45 00 94 56 6d 98 9b 76

7. 97 fc b2 c2 b0 fe db 20 e1 eb d6 e4 dd 47 4a 1d

8. 42 ed 9e 6e 49 3c cd 43 27 d2 07 d4 de c7 67 18

9. 89 cb 30 1f 8d c6 8f aa c8 74 dc c9 5d 5c 31 a4

a. 70 88 61 2c 9f 0d 2b 87 50 82 54 64 26 7d 03 40

b. 34 4b 1c 73 d1 c4 fd 3b cc fb 7f ab e6 3e 5b a5

c. ad 04 23 9c 14 51 22 f0 29 79 71 7e ff 8c 0e e2

d. 0c ef bc 72 75 6f 37 a1 ec d3 8e 62 8b 86 10 e8

e. 08 77 11 be 92 4f 24 c5 32 36 9d cf f3 a6 bb ac

f. 5e 6c a9 13 57 25 b5 e3 bd a8 3a 01 05 59 2a 46

B Picture Representation of the DDT and LAT of Some
S-Boxes

(a) The LAT of Skipjack’s F (b) The DDT of Skipjack’s F

Fig. 3. The Pollock representations of the LAT and DDT of Skipjack’s F . For both, 0
is in white and anything equal to or above 10 is black.
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(a) The LAT of the S-Box of Zorro (b) The LAT of the S-Box S0 of CLEFIA

(c) The LAT of the S-Box of SAFER+ (d) The DDT of a simple S-Box

Fig. 4. The Pollock representation of the LAT or DDT of different S-Boxes. The scales
all go from 0 to 10 (anything above 10 is treated as equal to 10).

(a) The DDT of the S-Box in Table 6 (b) The DDT of the S-Box in Table 7

Fig. 5. The DDT of some outputs of Seurat’s Steganography: |di,j | = 0 is in white,
|di,j | ≥ 2 is in black.
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C S-Boxes Built from Pictures

The S-Box described in Tables 6 and 7 were built using the method described in
Sect. 4.2. Note that these are not bijections. The picture representations of their
DDT are given in Figs. 5a and b.

Table 6. An output of the algorithm described in Sect. 4.2.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 7a b3 b9 b6 53 b1 26 6e b9 43 86 ec 94 4b 9e 43

1. 5d 83 d5 57 16 4c 44 d5 5d 81 7f 79 b3 8d e6 f8

2. 0d 59 b3 8d 04 4c 8d ec d9 ff 7f 7a 7e 9a 92 61

3. 05 fc e3 1a ed 12 1e 52 1a e5 30 34 ef e5 97 e5

4. 9e 69 29 d6 29 cd b8 3a d2 c4 1b d1 1c 17 c3 3b

5. 44 ba bd 19 57 0c 5a 5f bb 55 b7 4a 5e 3f a6 fe

6. 7f c8 7e 65 be 1e b3 bf 8b 85 83 83 87 12 b2 26

7. a6 b4 bc ef 9e 9d 6c 9e 90 5e 68 25 30 97 9f 71

8. bf 64 65 9a 77 18 da 60 05 97 58 b2 88 d5 25 a1

9. 58 00 db 85 ca 9f 8d 42 db bc b2 b6 e7 85 44 78

a. ac be 5b 21 45 e9 40 4d 73 5f af 93 4b bd 45 42

b. 55 37 e2 c8 c8 20 d1 ee 7e 36 c5 28 32 37 2f d4

c. 86 21 79 70 08 b6 91 89 e3 e5 10 e5 c6 cf 02 ca

d. cc b9 e1 9a 8c 8c f3 70 ec 13 0f 00 17 7e 57 5c

e. 09 27 27 85 a0 87 3f 53 74 e3 b1 bd de b1 8d 61

f. 4b 84 9c f3 72 04 7e 9c 25 3e 98 9e 43 8d b2 9d
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Table 7. An output of the algorithm described in Sect. 4.2.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 1b 1e e7 1b 00 1b 4f e7 07 a8 b7 1c 00 06 1c 1c

1. 30 a9 ab af 54 50 36 57 65 01 17 7c 53 99 fb 65

2. 86 b5 33 78 c9 80 f5 7f 79 7d 87 7a 4d 14 49 2b

3. 66 d5 c8 54 a9 57 54 ab aa 98 a8 a8 32 17 d2 cb

4. d4 e7 73 1b 51 b3 af 50 51 68 ac 6b d7 52 1b d5

5. 71 75 8a 97 c8 36 37 33 74 ce 75 4a 77 88 8f 77

6. 1b ff e4 b5 ff 1f 1e fa b3 4a b1 4c fd fc 4b 01

7. ca c8 a0 5b 5e a1 5b a6 9d c8 98 84 cb 31 ca cb

8. 33 ca 33 cc 7b 83 98 cb a2 7f a3 ce 34 33 cb cd

9. e7 fd ff 03 7f 2d 00 b5 05 e5 ff 02 03 06 fc 06

a. 88 8e 74 8b 8c 8e 8c 51 c9 03 88 c9 8a c9 70 fc

b. 94 2b d4 29 ae 69 6b af b7 91 b7 b7 8b 89 d4 75

c. d1 c9 98 99 61 ab aa 61 99 66 12 65 15 2d 2d 33

d. b3 b3 7c 86 83 7a 7f 78 cf 98 81 30 7e cf c9 c9

e. 01 a9 57 ad e3 80 ad 61 56 53 53 28 56 a8 c8 ae

f. 18 1d 00 06 df 52 52 af 1d 61 e2 60 e2 e6 fa e2
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