
Rosario Gennaro
Matthew Robshaw (Eds.)

 123

LN
CS

 9
21

5

35th Annual Cryptology Conference
Santa Barbara, CA, USA, August 16–20, 2015
Proceedings, Part I

Advances in Cryptology –
CRYPTO 2015

Lecture Notes in Computer Science 9215

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Rosario Gennaro • Matthew Robshaw (Eds.)

Advances in Cryptology –

CRYPTO 2015
35th Annual Cryptology Conference
Santa Barbara, CA, USA, August 16–20, 2015
Proceedings, Part I

123

Editors
Rosario Gennaro
City College of New York
New York, NY
USA

Matthew Robshaw
Impinj, Inc.
Seattle, WA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-47988-9 ISBN 978-3-662-47989-6 (eBook)
DOI 10.1007/978-3-662-47989-6

Library of Congress Control Number: 2015944435

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Heidelberg New York Dordrecht London
© International Association for Cryptologic Research 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

CRYPTO 2015, the 35th Annual International Cryptology Conference, was held
August 16–20, 2015, on the campus of the University of California, Santa Barbara. The
event was sponsored by the International Association for Cryptologic Research (IACR)
in cooperation with the UCSB Computer Science Department.

The program of CRYPTO 2015 reflects significant advances and trends in all areas
of cryptology. Seventy-four papers were included in the program; this two-volume
proceedings contains the revised versions of these papers. The program also included
two invited talks: Shai Halevi on ‘The state of cryptographic multilinear maps’ and Ed
Felten on ‘Cryptography, Security, and Public Safety: A Policy Perspective’. The paper
“Integral Cryptanalysis on Full MISTY1” by Yosuke Todo was selected for both the
best paper award and the award for the best paper authored by a young researcher.

This year we received a record number of submissions (266), and in an effort to
accommodate as many high-quality submissions as possible, the conference ran in two
parallel sessions.

The papers were reviewed by a Program Committee (PC) consisting of 40 leading
researchers in the field, in addition to the two co-chairs. Each PC member was allowed
to submit two papers. Papers were reviewed in a double-blind fashion, with each paper
assigned to three reviewers (four for PC-authored papers). During the discussion phase,
when necessary, extra reviews were solicited.

We would like to sincerely thank the authors of all submissions—those whose
papers made it into the program and those whose papers did not. Our deep appreciation
also goes out to the PC members, who invested an extraordinary amount of time in
reviewing papers, and to the many external reviewers who significantly contributed to
the comprehensive evaluation of the submissions. A list of PC members and external
reviewers follows. Despite all our efforts, the list of external reviewers may contain
errors or omissions; we apologize for that in advance.

We would like to thank Tom Ristenpart, the general chair, for working closely with
us throughout the whole process and providing the much-needed support at every step,
including artfully creating and maintaining the website and taking care of all aspects
of the conference’s logistics—particularly the novel double-track arrangements.

As always, special thanks are due to Shai Halevi for providing his tireless support
of the websubrev software, which we used for the whole conference planning and
operation, including paper submission and evaluation, interaction among PC members,
and communication with the authors. Alfred Hofmann and his colleagues at Springer
provided a meticulous service for the timely production of this volume.

Finally, we would like to thank Qualcomm, NSF, and Microsoft for sponsoring the
conference, and Cryptography Research for their continuous support.

August 2015 Rosario Gennaro
Matthew Robshaw

CRYPTO 2015

The 35th IACR International Cryptology Conference

University of California, Santa Barbara, CA, USA
August 16–20, 2015

Sponsored by the International Association for Cryptologic Research

General Chair

Thomas Ristenpart Cornell Tech, New York, USA

Program Chairs

Rosario Gennaro The City College of New York, USA
Matthew Robshaw Impinj, USA

Program Committee

Michel Abdalla École Normale Supérieure and CNRS, France
Masayuki Abe NTT Labs, Japan
Paulo Barreto University of Sao Paulo, Brazil
Colin Boyd University of Science and Technology, Norway
Zvika Brakerski Weizmann Institute of Science, Israel
Emmanuel Bresson Airbus Cybersecurity, France
Anne Canteaut Inria, France
Dario Catalano Università di Catania, Italy
Nishanth Chandran Microsoft Research, India
Melissa Chase Microsoft Research, USA
Joan Daemen ST Microelectronics, Belgium
Orr Dunkelman University of Haifa, Israel
Karim ElDefrawy HRL Laboratories, USA
Dario Fiore IMDEA Software Institute, Spain
Steven Galbraith Auckland University, New Zealand
Sanjam Garg University of California, Berkeley, USA
Carmit Hazay Bar-Ilan University, Israel
Tetsu Iwata Nagoya University, Japan
Stas Jarecki University of California, Irvine, USA
Thomas Johansson Lund University, Sweden
Lars R. Knudsen Technical University of Denmark

Gregor Leander Ruhr-Universität Bochum, Germany
Allison B. Lewko Columbia University, USA
Huijia (Rachel) Lin University of California, Santa Barbara, USA
Mitsuru Matsui Mitsubishi Electric, Japan
Sarah Meiklejohn University College London, UK
Daniele Micciancio University of California, San Diego, USA
Steve Myers Indiana University, USA
Bryan Parno Microsoft Research, USA
Giuseppe Persiano Università di Salerno, Italy
Thomas Peyrin Nanyang Technological University, Singapore
Josef Pieprzyk Queensland University of Technology, Australia
Axel Poschmann NXP Semiconductors, Germany
Bart Preneel KU Leuven, Belgium
Mariana Raykova SRI International, USA
Carla Ràfols Ruhr-Universität Bochum, Germany
Palash Sarkar Indian Statistical Institute, India
Nigel Smart University of Bristol, UK
Franois-Xavier

Standaert
Université catholique de Louvain, Belgium

John Steinberger Tsinghua University, China

Additional Reviewers

Divesh Aggarwal
Shashank Agrawal
Shweta Agrawal
Martin Albrecht
Mehrdad Aliasgari
Prabhanjan Ananth
Elena Andreeva
Kazumaro Aoki
Daniel Apon
Benny Applebaum
Frederik Armknecht
Hassan Asghar
Gilad Asharov
Gilles Van Assche
Nuttapong Attrapadung
Jean-Philippe Aumasson
Shi Bai
Josep Balasch
Foteini Baldimtsi
Achiya Bar-On
Joshua Baron

Harry Bartlett
Georg Becker
Christof Beierle
Sonia Belaid
Mihir Bellare
Fabrice Benhamouda
Guido Bertoni
Nir Bitansky
Olivier Blazy
Celine Blondeau
Florian Boehl
Sonia Bogos
Jonathan Bootle
Joppe Bos
Christina Boura
Elette Boyle
Cerys Bradley
Anne Broadbent
Andre Chailloux
Christian Cachin
Seyit Camtepe

Ran Canetti
Angelo De Caro
David Cash
Debrup Chakraborty
Eshan Chattopadhyay
Binyi Chen
Jie Chen
Mahdi Cheraghchi
Céline Chevalier
Chongwon Cho
Joo Yeon Cho
Ashish Choudhury
Michele Ciampi
Ran Cohen
Dana Dachman-Soled
Hani T. Dawoud
Ed Dawson
Yi Deng
Claus Diem
Itai Dinur
Yevgeniy Dodis

VIII CRYPTO 2015

Alexandre Duc
Leo Ducas
Stefan Dziembowski
Oriol Farràs
Sebastian Faust
Serge Fehr
Joan Feigenbaum
Ben Fisch
Marc Fischlin
Christopher Fletcher
Georg Fuchsbauer
Thomas Fuhr
Eiichiro Fujisaki
Marc Fyrbiak
Romain Gay
Ran Gelles
Craig Gentry
Hossein Ghodosi
Kristian Gjøsteen
Florian Gopfert
Vincent Grosso
Jian Guo
Divya Gupta
Shai Halevi
Brett Hemenway
Nadia Heninger
Javier Herranz
Ryo Hiromasa
Shoichi Hirose
Viet Tung Hoang
Justin Holmgren
Naofumi Homma
Yan Huang
Vincenzo Iovino
Yuval Ishai
Zahra Jafargholi
Tibor Jager
Abhishek Jain
Jrmy Jean
Anthony Journault
Saqib A. Kakvi
Pierre Karpman
Elham Kashefi
Aniket Kate
Jonathan Katz
Stefan Katzenbeisser

Marcel Keller
Nathan Keller
Carmen Kempka
Sotirios Kentros
Dmitry Khovratovich
Dakshita Khurana
Aggelos Kiayias
Hyun-Jin (Tiffany) Kim
Susumu Kiyoshima
Miroslav Knezevic
Markulf Kohlweiss
Ilan Komargodski
Venkata Koppula
Luke Kowalczyk
Thorsten Kranz
Ranjit Kumaresan
Junichiro Kume
Eyal Kushilevitz
Tatsuya Kyogoku
Thijs Laarhoven
Mario Lamberger
Joshua Lampkins
Martin Mehl Lauridsen
Tancrède Lepoint
Gaëtan Leurent
Anthony Leverrier
Benoit Libert
Fuchun Lin
Zhen Liu
Steve Lu
Atul Luykx
Anna Lysyanskaya
Vadim Lyubashevsky
Mohammad Mahmoody
Antonio Marcedone
Daniel Masny
Alexander May
Willi Meier
Carlos Aguilar Melchor
Florian Mendel
Bart Mennink
Peihan Miao
Eric Miles
Brice Minaud
Kazuhiko Minematsu
Ilya Mironov

Rafael Misoczki
Payman Mohassel
Amir Moradi
Pawel Morawiecki
Paz Morillo
Nicky Mouha
Pratyay Mukherjee
Sean Murphy
Michael Naehrig
Preetum Nakkiran
Chanathip Namprempre
Mara Naya-Plasencia
Phong Nguyen
Jesper Buus Nielsen
Ivica Nikolic
Ventzi Nikov
Svetla Nikova
Ryo Nishimaki
Luca Nizzardo
Adam O’Neill
Miyako Ohkubo
Olya Ohrimenko
Tatsuaki Okamoto
Claudio Orlandi
Rafail Ostrovsky
Carles Padro
Jiaxin Pan
Omer Paneth
Saurabh Panjwani
Alain Passelègue
Valerio Pastro
Arpita Patra
Michaël Peeters
Roel Peeters
Chris Peikert
Christopher Peikert
Olivier Pereira
Thomas Peters
Duong Hieu Phan
Krzysztof Pietrzak
Benny Pinkas
Oxana Poburinnaya
David Pointcheval
Joop van de Pol
Antigoni Polychroniadou
Christopher Portmann

CRYPTO 2015 IX

Romain Poussier
Manoj Prabhakaran
Emmanuel Prouff
Orazio Puglisi
Elizabeth Quaglia
Kenneth Radke
Mario Di Raimondo
Somindu C. Ramanna
Vanishree Rao
Micha Ren
Renato Renner
Oscar Reparaz
Vincent Rijmen
Thomas Ristenpart
Florentin Rochet
Phil Rogaway
Mike Rosulek
Ron Rothblum
Arnab Roy
Kikuchi Ryo
Rei Safavi-Naini
Amit Sahai
Louis Salvail
Palash Sarkar
Yu Sasaki
Alessandra Scafuro
Benedikt Schmidt
Tobias Schneider
Peter Scholl
Dominique Schroeder
Gil Segev

Karn Seth
Yannick Seurin
Barak Shani
Kyoji Shibutani
Adam Shull
Marcos A. Simplicio Jr.
Luisa Siniscalchi
Boris Skoric
Adam Smith
Douglas Stebila
Igors Stepanovs
Marc Stoettinger
Takeshi Sugawara
David Sutter
Daisuke Suzuki
Bjorn Tackmann
Katsuyuki Takashima
Sid Telang
Sidharth Telang
Stefano Tessaro
Susan Thomson
Mehdi Tibouch
Elmar Tischhauser
Toyohiro Tsurumaru
Dominique Unruh
Berkant Ustaoglu
Vinod Vaikuntanathan
Kerem Varici
Vesselin Velichkov
M. Venkitasubramaniam
Daniele Venturi

Damien Vergnaud
Thomas Vidick
Jorge L. Villar
D. Vinayagamurthy
Ivan Visconti
Shabsi Walfish
Michael Walter
Lei Wang
Meiqin Wang
Xiao Wang
Hoeteck Wee
Carolyn Whitnall
Daniel Wichs
Cyrille Wielding
David Wu
Keita Xagawa
Sophia Yakoubov
Shota Yamada
Takashi Yamakawa
Jun Yan
Yanqing Yao
Kazuki Yoneyama
Yu Yu
Samee Zahur
Mahdi Zamani
Mark Zhandry
Bingsheng Zhang
Hong-Sheng Zhou
Vassilis Zikas

X CRYPTO 2015

Contents – Part I

Lattice-Based Cryptography

Sieving for Shortest Vectors in Lattices Using Angular
Locality-Sensitive Hashing . 3

Thijs Laarhoven

Coded-BKW: Solving LWE Using Lattice Codes . 23
Qian Guo, Thomas Johansson, and Paul Stankovski

An Improved BKW Algorithm for LWE with Applications to Cryptography
and Lattices . 43

Paul Kirchner and Pierre-Alain Fouque

Provably Weak Instances of Ring-LWE . 63
Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange

Cryptanalytic Insights

Links Among Impossible Differential, Integral and Zero Correlation
Linear Cryptanalysis . 95

Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng,
Qingju Wang, Hoda Alkhzaimi, and Chao Li

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure. 116
Alex Biryukov and Léo Perrin

Capacity and Data Complexity in Multidimensional Linear Attack 141
Jialin Huang, Serge Vaudenay, Xuejia Lai, and Kaisa Nyberg

Observations on the SIMON Block Cipher Family 161
Stefan Kölbl, Gregor Leander, and Tyge Tiessen

Modes and Constructions

Tweaking Even-Mansour Ciphers . 189
Benoît Cogliati, Rodolphe Lampe, and Yannick Seurin

Multi-key Security: The Even-Mansour Construction Revisited 209
Nicky Mouha and Atul Luykx

http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1007/978-3-662-47989-6_1
http://dx.doi.org/10.1007/978-3-662-47989-6_2
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-662-47989-6_4
http://dx.doi.org/10.1007/978-3-662-47989-6_5
http://dx.doi.org/10.1007/978-3-662-47989-6_5
http://dx.doi.org/10.1007/978-3-662-47989-6_6
http://dx.doi.org/10.1007/978-3-662-47989-6_7
http://dx.doi.org/10.1007/978-3-662-47989-6_8
http://dx.doi.org/10.1007/978-3-662-47989-6_9
http://dx.doi.org/10.1007/978-3-662-47989-6_10

Reproducible Circularly-Secure Bit Encryption: Applications
and Realizations . 224

Mohammad Hajiabadi and Bruce M. Kapron

Multilinear Maps and IO

Zeroizing Without Low-Level Zeroes: New MMAP Attacks
and Their Limitations . 247

Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint,
Hemanta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai,
and Mehdi Tibouchi

New Multilinear Maps Over the Integers . 267
Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi

Constant-Round Concurrent Zero-Knowledge from Indistinguishability
Obfuscation . 287

Kai-Min Chung, Huijia Lin, and Rafael Pass

Indistinguishability Obfuscation from Compact Functional Encryption 308
Prabhanjan Ananth and Abhishek Jain

Pseudorandomness

Efficient Pseudorandom Functions via On-the-Fly Adaptation 329
Nico Döttling and Dominique Schröder

The Iterated Random Permutation Problem with Applications
to Cascade Encryption . 351

Brice Minaud and Yannick Seurin

The Exact PRF Security of Truncation: Tight Bounds for Keyed Sponges
and Truncated CBC. 368

Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro

An Algebraic Framework for Pseudorandom Functions and Applications
to Related-Key Security . 388

Michel Abdalla, Fabrice Benhamouda, and Alain Passelègue

Block Cipher Cryptanalysis

Integral Cryptanalysis on Full MISTY1 . 413
Yosuke Todo

New Attacks on Feistel Structures with Improved Memory Complexities 433
Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-47989-6_11
http://dx.doi.org/10.1007/978-3-662-47989-6_11
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/978-3-662-47989-6_14
http://dx.doi.org/10.1007/978-3-662-47989-6_14
http://dx.doi.org/10.1007/978-3-662-47989-6_15
http://dx.doi.org/10.1007/978-3-662-47989-6_16
http://dx.doi.org/10.1007/978-3-662-47989-6_17
http://dx.doi.org/10.1007/978-3-662-47989-6_17
http://dx.doi.org/10.1007/978-3-662-47989-6_18
http://dx.doi.org/10.1007/978-3-662-47989-6_18
http://dx.doi.org/10.1007/978-3-662-47989-6_19
http://dx.doi.org/10.1007/978-3-662-47989-6_19
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-47989-6_21

Known-Key Distinguisher on Full PRESENT . 455
Céline Blondeau, Thomas Peyrin, and Lei Wang

Key-Recovery Attack on the ASASA Cryptosystem with Expanding
S-Boxes . 475

Henri Gilbert, Jérôme Plût, and Joana Treger

Integrity

Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance . . . 493
Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway,
and Damian Vizár

Relational Hash: Probabilistic Hash for Verifying Relations, Secure
Against Forgery and More . 518

Avradip Mandal and Arnab Roy

Explicit Non-malleable Codes Against Bit-Wise Tampering
and Permutations. 538

Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey,
and Manoj Prabhakaran

Assumptions

Cryptanalysis of the Co-ACD Assumption . 561
Pierre-Alain Fouque, Moon Sung Lee, Tancrède Lepoint,
and Mehdi Tibouchi

Last Fall Degree, HFE, and Weil Descent Attacks on ECDLP 581
Ming-Deh A. Huang, Michiel Kosters, and Sze Ling Yeo

A Quasipolynomial Reduction for Generalized Selective Decryption
on Trees . 601

Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak

Hash Functions and Stream Cipher Cryptanalysis

Practical Free-Start Collision Attacks on 76-step SHA-1 623
Pierre Karpman, Thomas Peyrin, and Marc Stevens

Fast Correlation Attacks over Extension Fields, Large-Unit Linear
Approximation and Cryptanalysis of SNOW 2.0 . 643

Bin Zhang, Chao Xu, and Willi Meier

Cryptanalysis of Full Sprout . 663
Virginie Lallemand and María Naya-Plasencia

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-662-47989-6_22
http://dx.doi.org/10.1007/978-3-662-47989-6_23
http://dx.doi.org/10.1007/978-3-662-47989-6_23
http://dx.doi.org/10.1007/978-3-662-47989-6_24
http://dx.doi.org/10.1007/978-3-662-47989-6_25
http://dx.doi.org/10.1007/978-3-662-47989-6_25
http://dx.doi.org/10.1007/978-3-662-47989-6_26
http://dx.doi.org/10.1007/978-3-662-47989-6_26
http://dx.doi.org/10.1007/978-3-662-47989-6_27
http://dx.doi.org/10.1007/978-3-662-47989-6_28
http://dx.doi.org/10.1007/978-3-662-47989-6_29
http://dx.doi.org/10.1007/978-3-662-47989-6_29
http://dx.doi.org/10.1007/978-3-662-47989-6_30
http://dx.doi.org/10.1007/978-3-662-47989-6_31
http://dx.doi.org/10.1007/978-3-662-47989-6_31
http://dx.doi.org/10.1007/978-3-662-47989-6_32

Higher-Order Differential Meet-in-the-middle Preimage Attacks on SHA-1
and BLAKE . 683

Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman

Implementations

Decaf: Eliminating Cofactors Through Point Compression 705
Mike Hamburg

Actively Secure OT Extension with Optimal Overhead 724
Marcel Keller, Emmanuela Orsini, and Peter Scholl

Algebraic Decomposition for Probing Security . 742
Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche

Consolidating Masking Schemes . 764
Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs,
and Ingrid Verbauwhede

Author Index . 785

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-662-47989-6_33
http://dx.doi.org/10.1007/978-3-662-47989-6_33
http://dx.doi.org/10.1007/978-3-662-47989-6_34
http://dx.doi.org/10.1007/978-3-662-47989-6_35
http://dx.doi.org/10.1007/978-3-662-47989-6_36
http://dx.doi.org/10.1007/978-3-662-47989-6_37

Contents – Part II

Multiparty Computation I

A Simpler Variant of Universally Composable Security for Standard
Multiparty Computation . 3

Ran Canetti, Asaf Cohen, and Yehuda Lindell

Concurrent Secure Computation via Non-Black Box Simulation 23
Vipul Goyal, Divya Gupta, and Amit Sahai

Concurrent Secure Computation with Optimal Query Complexity 43
Ran Canetti, Vipul Goyal, and Abhishek Jain

Constant-Round MPC with Fairness and Guarantee of Output Delivery 63
S. Dov Gordon, Feng-Hao Liu, and Elaine Shi

Zero-Knowledge

Statistical Concurrent Non-malleable Zero-Knowledge
from One-Way Functions . 85

Susumu Kiyoshima

Implicit Zero-Knowledge Arguments and Applications
to the Malicious Setting . 107

Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval,
and Hoeteck Wee

Impossibility of Black-Box Simulation Against Leakage Attacks. 130
Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti

Efficient Zero-Knowledge Proofs of Non-algebraic Statements
with Sublinear Amortized Cost . 150

Zhangxiang Hu, Payman Mohassel, and Mike Rosulek

Theory

Parallel Hashing via List Recoverability . 173
Iftach Haitner, Yuval Ishai, Eran Omri, and Ronen Shaltiel

Cryptography with One-Way Communication . 191
Sanjam Garg, Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky,
and Amit Sahai

http://dx.doi.org/10.1007/978-3-662-48000-7_1
http://dx.doi.org/10.1007/978-3-662-48000-7_1
http://dx.doi.org/10.1007/978-3-662-48000-7_2
http://dx.doi.org/10.1007/978-3-662-48000-7_3
http://dx.doi.org/10.1007/978-3-662-48000-7_4
http://dx.doi.org/10.1007/978-3-662-48000-7_5
http://dx.doi.org/10.1007/978-3-662-48000-7_5
http://dx.doi.org/10.1007/978-3-662-48000-7_6
http://dx.doi.org/10.1007/978-3-662-48000-7_6
http://dx.doi.org/10.1007/978-3-662-48000-7_7
http://dx.doi.org/10.1007/978-3-662-48000-7_8
http://dx.doi.org/10.1007/978-3-662-48000-7_8
http://dx.doi.org/10.1007/978-3-662-48000-7_9
http://dx.doi.org/10.1007/978-3-662-48000-7_10

(Almost) Optimal Constructions of UOWHFs from 1-to-1, Regular
One-Way Functions and Beyond. 209

Yu Yu, Dawu Gu, Xiangxue Li, and Jian Weng

Signatures

Practical Round-Optimal Blind Signatures in the Standard Model 233
Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig

Programmable Hash Functions Go Private: Constructions and Applications
to (Homomorphic) Signatures with Shorter Public Keys 254

Dario Catalano, Dario Fiore, and Luca Nizzardo

Structure-Preserving Signatures from Standard Assumptions, Revisited 275
Eike Kiltz, Jiaxin Pan, and Hoeteck Wee

Short Group Signatures via Structure-Preserving Signatures: Standard
Model Security from Simple Assumptions . 296

Benoît Libert, Thomas Peters, and Moti Yung

Multiparty Computation II

Efficient Constant Round Multi-party Computation Combining BMR
and SPDZ . 319

Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai

Round-Optimal Black-Box Two-Party Computation. 339
Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro

Secure Computation with Minimal Interaction, Revisited 359
Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz,
and Anat Paskin-Cherniavsky

PoW-Based Distributed Cryptography with No Trusted Setup. 379
Marcin Andrychowicz and Stefan Dziembowski

Non-signaling and Information-Theoretic Crypto

Multi-prover Commitments Against Non-signaling Attacks. 403
Serge Fehr and Max Fillinger

Arguments of Proximity [Extended Abstract] . 422
Yael Tauman Kalai and Ron D. Rothblum

Distributions Attaining Secret Key at a Rate of the Conditional
Mutual Information . 443

Eric Chitambar, Benjamin Fortescue, and Min-Hsiu Hsieh

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-662-48000-7_11
http://dx.doi.org/10.1007/978-3-662-48000-7_11
http://dx.doi.org/10.1007/978-3-662-48000-7_12
http://dx.doi.org/10.1007/978-3-662-48000-7_13
http://dx.doi.org/10.1007/978-3-662-48000-7_13
http://dx.doi.org/10.1007/978-3-662-48000-7_14
http://dx.doi.org/10.1007/978-3-662-48000-7_15
http://dx.doi.org/10.1007/978-3-662-48000-7_15
http://dx.doi.org/10.1007/978-3-662-48000-7_16
http://dx.doi.org/10.1007/978-3-662-48000-7_16
http://dx.doi.org/10.1007/978-3-662-48000-7_17
http://dx.doi.org/10.1007/978-3-662-48000-7_18
http://dx.doi.org/10.1007/978-3-662-48000-7_19
http://dx.doi.org/10.1007/978-3-662-48000-7_20
http://dx.doi.org/10.1007/978-3-662-48000-7_21
http://dx.doi.org/10.1007/978-3-662-48000-7_22
http://dx.doi.org/10.1007/978-3-662-48000-7_22

Privacy with Imperfect Randomness . 463
Yevgeniy Dodis and Yanqing Yao

Attribute-Based Encryption

Communication Complexity of Conditional Disclosure of Secrets
and Attribute-Based Encryption . 485

Romain Gay, Iordanis Kerenidis, and Hoeteck Wee

Predicate Encryption for Circuits from LWE . 503
Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee

Bilinear Entropy Expansion from the Decisional Linear Assumption 524
Lucas Kowalczyk and Allison Bishop Lewko

New Primitives

Data Is a Stream: Security of Stream-Based Channels 545
Marc Fischlin, Felix Günther, Giorgia Azzurra Marson,
and Kenneth G. Paterson

Bloom Filters in Adversarial Environments . 565
Moni Naor and Eylon Yogev

Proofs of Space . 585
Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov,
and Krzysztof Pietrzak

Fully Homomorphic/Functional Encryption

Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity 609
Anne Broadbent and Stacey Jeffery

Multi-identity and Multi-key Leveled FHE from Learning with Errors 630
Michael Clear and Ciarán McGoldrick

From Selective to Adaptive Security in Functional Encryption 657
Prabhanjan Ananth, Zvika Brakerski, Gil Segev,
and Vinod Vaikuntanathan

A Punctured Programming Approach to Adaptively Secure Functional
Encryption . 678

Brent Waters

Multiparty Computation III

Secure Computation from Leaky Correlated Randomness 701
Divya Gupta, Yuval Ishai, Hemanta K. Maji, and Amit Sahai

Contents – Part II XVII

http://dx.doi.org/10.1007/978-3-662-48000-7_23
http://dx.doi.org/10.1007/978-3-662-48000-7_24
http://dx.doi.org/10.1007/978-3-662-48000-7_24
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-662-48000-7_26
http://dx.doi.org/10.1007/978-3-662-48000-7_27
http://dx.doi.org/10.1007/978-3-662-48000-7_28
http://dx.doi.org/10.1007/978-3-662-48000-7_29
http://dx.doi.org/10.1007/978-3-662-48000-7_30
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-48000-7_33
http://dx.doi.org/10.1007/978-3-662-48000-7_33
http://dx.doi.org/10.1007/978-3-662-48000-7_34

Efficient Multi-party Computation: From Passive to Active Security
via Secure SIMD Circuits . 721

Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou

Large-Scale Secure Computation: Multi-party Computation for (Parallel)
RAM Programs. 742

Elette Boyle, Kai-Min Chung, and Rafael Pass

Incoercible Multi-party Computation and Universally Composable
Receipt-Free Voting . 763

Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas

Author Index . 781

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-662-48000-7_35
http://dx.doi.org/10.1007/978-3-662-48000-7_35
http://dx.doi.org/10.1007/978-3-662-48000-7_36
http://dx.doi.org/10.1007/978-3-662-48000-7_36
http://dx.doi.org/10.1007/978-3-662-48000-7_37
http://dx.doi.org/10.1007/978-3-662-48000-7_37

Lattice-Based Cryptography

Sieving for Shortest Vectors in Lattices Using
Angular Locality-Sensitive Hashing

Thijs Laarhoven(B)

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

mail@thijs.com

Abstract. By replacing the brute-force list search in sieving algorithms
with Charikar’s angular locality-sensitive hashing (LSH) method, we get
both theoretical and practical speedups for solving the shortest vector
problem (SVP) on lattices. Combining angular LSH with a variant of
Nguyen and Vidick’s heuristic sieve algorithm, we obtain heuristic time
and space complexities for solving SVP of 20.3366n+o(n) and 20.2075n+o(n)

respectively, while combining the same hash family with Micciancio and
Voulgaris’ GaussSieve algorithm leads to an algorithm with (conjectured)
heuristic time and space complexities of 20.3366n+o(n). Experiments with
the GaussSieve-variant show that in moderate dimensions the proposed
HashSieve algorithm already outperforms the GaussSieve, and the practi-
cal increase in the space complexity is much smaller than the asymptotic
bounds suggest, and can be further reduced with probing. Extrapolating
to higher dimensions, we estimate that a fully optimized and parallelized
implementation of the GaussSieve-based HashSieve algorithm might need
a few core years to solve SVP in dimension 130 or even 140.

Keywords: Lattices · Shortest vector problem (SVP) · Sieving algo-
rithms · Approximate nearest neighbor problem · Locality-sensitive
hashing (LSH)

1 Introduction

Lattice Cryptography. Over the past few decades, lattice-based cryptography
has attracted wide attention from the cryptographic community, due to e.g. its
presumed resistance against quantum attacks [10], average-case hardness guaran-
tees [3], the existence of lattice-based fully homomorphic encryption schemes [16],
and efficient cryptographic primitives like NTRU [17]. An important problem
related to lattice cryptography is to estimate the hardness of the underlying
hard lattice problems, such as finding short vectors; a good understanding is
critical for accurately choosing parameters in lattice cryptography [28,39].

Finding Short Vectors. Given a basis {b1, . . . , bn} ⊂ R
n of an n-dimensional

lattice L =
∑n

i=1 Zbi, finding a shortest non-zero lattice vector (with respect to
the Euclidean norm) or approximating it up to a constant factor is well-known
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 3–22, 2015.
DOI: 10.1007/978-3-662-47989-6 1

4 T. Laarhoven

to be NP-hard under randomized reductions [4,21]. For large approximation
factors, various fast algorithms for finding short vectors are known, such as the
lattice basis reduction algorithms LLL [26] and BKZ [43,44]. The latter has a
block-size parameter β which can be tuned to obtain a trade-off between the time
complexity and the quality of the output; the higher β, the longer the algorithm
takes and the shorter the vectors in the output basis. BKZ uses an algorithm
for solving the exact shortest vector problem (SVP) in lattices of dimension β
as a subroutine, and the runtime of BKZ largely depends on the runtime of this
subroutine. Estimating the complexity of solving exact SVP therefore has direct
consequences for the estimated hardness of solving approximate SVP with BKZ.

Finding Shortest Vectors. In the original description of BKZ, enumeration was
used as the SVP subroutine [14,20,38,44]. This method has a low (polyno-
mial) space complexity, but its runtime is superexponential (2Ω(n log n)), which
is known to be suboptimal: sieving [5], the Voronoi cell algorithm [32], and the
recent discrete Gaussian sampling approach [2] all run in single exponential time
(2O(n)). The main drawbacks of the latter methods are that their space com-
plexities are exponential in n as well, and due to larger hidden constants in the
exponents enumeration is commonly still considered more practical than these
other methods in moderate dimensions n [34].

Sieving in Arbitrary Lattices. On the other hand, these other SVP algorithms
are relatively new, and recent improvements have shown that at least sieving
may be able to compete with enumeration in the future. While the original
work of Ajtai et al. [5] showed only that sieving solves SVP in time and space
2O(n), later work showed that one can provably solve SVP in arbitrary lattices
in time 22.47n+o(n) and space 21.24n+o(n) [35,40]. Heuristic analyses of sieving
algorithms further suggest that one may be able to solve SVP in time 20.42n+o(n)

and space 20.21n+o(n) [7,33,35], or optimizing for time, in time 20.38n+o(n) and
space 20.29n+o(n) [7,45,46]. Other works have shown how to speed up sieving in
practice [11,15,19,29,30,41], and sieving recently made its way to the top 25 of
the SVP challenge hall of fame [42], using the GaussSieve algorithm [23,33].

Sieving in Ideal Lattices. The potential of sieving is further illustrated by recent
results in ideal lattices [11,19]; while it is not known how to use the additional
structure in ideal lattices (commonly used in lattice cryptography) for enumera-
tion or other SVP algorithms, sieving does admit significant polynomial speedups
for ideal lattices, and the GaussSieve was recently used to solve SVP on an ideal
lattice in dimension 128 [11,19,37]. This is higher than the highest dimension for
which enumeration was used to find a record in either lattice challenge [37,42],
which further illustrates the potential of sieving and the possible impact of fur-
ther improvements to sieving and, in particular, the GaussSieve algorithm.

Contributions. In this work we show how to obtain exponential trade-offs and
speedups for sieving using (angular) locality-sensitive hashing [12,18], a tech-
nique from the field of nearest neighbor searching. In short, for each list vec-
tor w we store low-dimensional, lossy sketches (hashes), such that vectors that

Sieving for Shortest Vectors in Lattices Using Angular LSH 5

Ti
me

= S
pa
ce

NV
'08

M
V'1
0

W
LT
B'1
1

ZP
H'
13

BGJ'
14BG

J'1
4

HashSieve

HashSieve (NV)

estimate using 90 o- assumption

20.20 n 20.25 n 20.30 n 20.35 n 20.40 n
20.30 n

20.35 n

20.40 n

20.45 n

Space complexity

Ti
m
e
co
m
pl
ex
it
y

Fig. 1. The heuristic space-time trade-off of various heuristic sieves from the literature
(red), and the heuristic trade-off between the space and time complexities obtained
with the HashSieve (blue curve). For the NV-sieve, we can further process the hash
tables sequentially to obtain a speedup rather than a trade-off (blue point). The dashed,
gray line shows the estimate for the space-time trade-off of the HashSieve obtained by
assuming that all reduced vectors are orthogonal (cf. Proposition 1). The referenced
works are: NV’08 [35]; MV’10 [33]; WLTB’11 [45]; ZPH’13 [46]; BGJ’14 [7] (Color
figure online).

are nearby have a higher probability of having the same sketch (hash value) than
vectors which are far apart. To search the list for nearby vectors we then do not
go through the entire list of lattice vectors, but only consider those vectors that
have at least one matching sketch (hash value) in one of the hash tables. Storing
all list vectors in exponentially many hash tables requires exponentially more
space, but searching for nearby vectors can then be done exponentially faster as
well, as many distant vectors are not considered for reductions. Optimizing for
time, the resulting HashSieve algorithm has heuristic time and space complexi-
ties both bounded by 20.3366n+o(n), while tuning the parameters differently, we
get a continuous heuristic trade-off between the space and time complexities as
illustrated by the solid blue curve in Fig. 1.

From a Tradeoff to a Speedup. Applying angular LSH to a variant of the Nguyen-
Vidick sieve [35], we further obtain an algorithm with heuristic time and space
complexities of 20.3366n+o(n) and 20.2075n+o(n) respectively, as illustrated by the
blue point in Fig. 1. The key observation is that the hash tables of the HashSieve
can be processed sequentially (similar to [8]), storing one hash table at a time.
The resulting algorithm achieves the same heuristic speed-up, but the asymptotic

6 T. Laarhoven

space complexity remains the same as in the original NV-sieve algorithm. This
improvement is explained in detail in the full version. Note that this speedup does
not appear to be compatible with the GaussSieve and only works with the NV-
sieve, which may make the resulting algorithm slower in moderate dimensions,
even though the memory used is much smaller.

Experimental Results. Practical experiments with the (GaussSieve-based) Hash-
Sieve algorithm validate our heuristic analysis, and show that (i) already in low
dimensions, the HashSieve outperforms the GaussSieve; and (ii) the increase in
the space complexity is significantly smaller than one might guess from only
looking at the leading exponent of the space complexity. We also show how to
further reduce the space complexity at almost no cost by a technique called
probing, which reduces the required number of hash tables by a factor poly(n).
In the end, these results will be an important guide for estimating the hardness
of exact SVP in moderate dimensions, and for the hardness of approximate SVP
in high dimensions using BKZ with sieving as the SVP subroutine.

Main Ideas. While the use of LSH was briefly considered in the context of sieving
by Nguyen and Vidick [35, Sect. 4.2.2], there are two main differences:

– Nguyen and Vidick considered LSH families based on Euclidean distances [6],
while we will argue that it seems more natural to consider hash families based
on angular distances or cosine similarities [12].

– Nguyen and Vidick focused on the worst-case difference between nearby and
faraway vectors, while we will focus on the average-case difference.

To illustrate the second point: the smallest angle between pairwise reduced vec-
tors in the GaussSieve may be only slightly bigger than 60◦ (i.e. hardly any
bigger than angles of non-reduced vectors), while in high dimensions the average
angle between two pairwise reduced vectors is actually close to 90◦.

Outlook. Although this work focuses on applying angular LSH to sieving, more
generally this work could be considered the first to succeed in applying LSH to
lattice algorithms. Various recent follow-up works have already further inves-
tigated the use of different LSH methods and other nearest neighbor search
methods in the context of lattice sieving [8,9,25,31], and an open problem is
whether other lattice algorithms (e.g. provable sieving algorithms, the Voronoi
cell algorithm) may benefit from related techniques as well.

Roadmap. In Sect. 2 we describe the technique of (angular) LSH for finding
near(est) neighbors, and Sect. 3 describes how to apply these techniques to the
GaussSieve. Section 4 states the main result regarding the time and space com-
plexities of sieving using angular LSH, and describes the technique of probing.
In Sect. 5 we finally describe experiments performed using the GaussSieve-based
HashSieve, and possible consequences for the estimated complexity of SVP in
high dimensions. The full version [24] contains details on how angular LSH may
be combined with the NV-sieve, and how the memory can be reduced to obtain
a memory-wise asymptotically superior NV-sieve-based HashSieve.

Sieving for Shortest Vectors in Lattices Using Angular LSH 7

2 Locality-Sensitive Hashing

2.1 Introduction

The near(est) neighbor problem is the following [18]: Given a list of n-dimensional
vectors L = {w1,w2, . . . ,wN} ⊂ R

n, preprocess L in such a way that, when later
given a target vector v /∈ L, one can efficiently find an element w ∈ L which is
close(st) to v. While in low (fixed) dimensions n there may be ways to answer these
queries in time sub-linear or even logarithmic in the list size N , in high dimen-
sions it seems hard to do better than with a naive brute-force list search of time
O(N). This inability to efficiently store and query lists of high-dimensional objects
is sometimes referred to as the “curse of dimensionality” [18].

Fortunately, if we know that the list of objects L has a certain structure, or
if we know that there is a significant gap between what is meant by “nearby”
and “far away,” then there are ways to preprocess L such that queries can be
answered in time sub-linear in N . For instance, for the Euclidean norm, if it is
known that the closest point w∗ ∈ L lies at distance ‖v − w∗‖ = r1, and all
other points w ∈ L are at distance at least ‖v − w‖ ≥ r2 = (1 + ε)r1 from v,
then it is possible to preprocess L using time and space O(N1+ρ), and answer
queries in time O(Nρ), where ρ = (1 + ε)−2 < 1 [6]. For ε > 0, this corresponds
to a sub-linear time and sub-quadratic (super-linear) space complexity in N .

2.2 Hash Families

The method of [6] described above, as well as the method we will use later, relies
on using locality-sensitive hash functions [18]. These are functions h which map
an n-dimensional vector v to a low-dimensional sketch of v, such that vectors
which are nearby in R

n have a high probability of having the same sketch, while
vectors which are far away have a low probability of having the same image
under h. Formalizing this property leads to the following definition of a locality-
sensitive hash family H. Here, we assume D is a certain similarity measure1,
and the set U below may be thought of as (a subset of) the natural numbers N.

Definition 1. [18] A family H = {h : Rn → U} is called (r1, r2, p1, p2)-sensitive
for a similarity measure D if for any v,w ∈ R

n we have

– If D(v,w) ≤ r1 then Ph∈H[h(v) = h(w)] ≥ p1.
– If D(v,w) ≥ r2 then Ph∈H[h(v) = h(w)] ≤ p2.

Note that if we are given a hash family H which is (r1, r2, p1, p2)-sensitive with
p1 � p2, then we can use H to distinguish between vectors which are at most r1
away from v, and vectors which are at least r2 away from v with non-negligible
probability, by only looking at their hash values (and that of v).

1 A similarity measure D may informally be thought of as a “slightly relaxed” distance
metric, which may not satisfy all properties associated to distance metrics.

8 T. Laarhoven

2.3 Amplification

Before turning to how such hash families may actually be constructed or used
to find nearest neighbors, note that in general it is unknown whether efficiently
computable (r1, r2, p1, p2)-sensitive hash families even exist for the ideal setting
of r1 ≈ r2 and p1 ≈ 1 and p2 ≈ 0. Instead, one commonly first constructs an
(r1, r2, p1, p2)-sensitive hash family H with p1 ≈ p2, and then uses several AND-
and OR-compositions to turn it into an (r1, r2, p′

1, p
′
2)-sensitive hash family H′

with p′
1 > p1 and p′

2 < p2, thereby amplifying the gap between p1 and p2.

AND-composition. Given an (r1, r2, p1, p2)-sensitive hash family H, we can
construct an (r1, r2, pk

1 , p
k
2)-sensitive hash family H′ by taking k different,

pairwise independent functions h1, . . . , hk ∈ H and a one-to-one mapping
f : Uk → U , and defining h ∈ H′ as h(v) = f(h1(v), . . . , hk(v)). Clearly
h(v) = h(w) iff hi(v) = hi(w) for all i ∈ [k], so if P[hi(v) = hi(w)] = pj for
all i, then P[h(v) = h(w)] = pk

j for j = 1, 2.
OR-composition. Given an (r1, r2, p1, p2)-sensitive hash family H, we can con-

struct an (r1, r2, 1−(1−p1)t, 1−(1−p2)t)-sensitive hash family H′ by taking t
different, pairwise independent functions h1, . . . , ht ∈ H, and defining h ∈ H′

by the relation h(v) = h(w) iff hi(v) = hi(w) for at least one i ∈ [t]. Clearly
h(v)
= h(w) iff hi(v)
= hi(w) for all i ∈ [t], so if P[hi(v)
= hi(w)] = 1 − pj

for all i, then P[h(v)
= h(w)] = (1 − pj)t for j = 1, 2.2

Combining a k-wise AND-composition with a t-wise OR-composition, we can
turn an (r1, r2, p1, p2)-sensitive hash family H into an (r1, r2, 1 − (1 − pk

1)
t, 1 −

(1 − pk
2)

t)-sensitive hash family H′ as follows:

(r1, r2, p1, p2)
k−AND−−−−→(r1, r2, pk

1 , p
k
2)

t−OR−−−−→(r1, r2, (1 − pk
1)

t, (1 − pk
2)

t).

As long as p1 > p2, we can always find values k and t such that p∗
1 = 1−(1−pk

1)
t ≈

1 is close to 1 and p∗
2 = 1 − (1 − pk

2)
t ≈ 0 is very small.

2.4 Finding Nearest Neighbors

To use these hash families to find nearest neighbors, we may use the following
method first described in [18]. First, we choose t · k random hash functions
hi,j ∈ H, and we use the AND-composition to combine k of them at a time
to build t different hash functions h1, . . . , ht. Then, given the list L, we build t
different hash tables T1, . . . , Tt, where for each hash table Ti we insert w into
the bucket labeled hi(w). Finally, given the vector v, we compute its t images
hi(v), gather all the candidate vectors that collide with v in at least one of these
hash tables (an OR-composition) in a list of candidates, and search this set of
candidates for a nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends
on the quality of the underlying hash family H and on the parameters k and t.
2 Note that h is strictly not a function and only defines a relation.

Sieving for Shortest Vectors in Lattices Using Angular LSH 9

Larger values of k and t amplify the gap between the probabilities of finding
‘good’ (nearby) and ‘bad’ (faraway) vectors, which makes the list of candidates
shorter, but larger parameters come at the cost of having to compute many
hashes (both during the preprocessing and querying phases) and having to store
many hash tables in memory. The following lemma shows how to balance k and
t so that the overall time complexity is minimized.

Lemma 1. [18] Suppose there exists a (r1, r2, p1, p2)-sensitive hash family H.
Then, for a list L of size N , taking

ρ =
log(1/p1)
log(1/p2)

, k =
log(N)

log(1/p2)
, t = O(Nρ), (1)

with high probability we can either (a) find an element w∗ ∈ L that satisfies
D(v,w∗) ≤ r2, or (b) conclude that with high probability, no elements w ∈ L
with D(v,w) > r1 exist, with the following costs:

(1) Time for preprocessing the list: Õ(kN1+ρ).
(2) Space complexity of the preprocessed data: Õ(N1+ρ).
(3) Time for answering a query v: Õ(Nρ).

(3a) Hash evaluations of the query vector v: O(Nρ).
(3b) List vectors to compare to the query vector v: O(Nρ).

Although Lemma 1 only shows how to choose k and t to minimize the time
complexity, we can also tune k and t so that we use more time and less space.
In a way this algorithm can be seen as a generalization of the naive brute-force
search solution for finding nearest neighbors, as k = 0 and t = 1 corresponds to
checking the whole list for nearby vectors in linear time and linear space.

2.5 Angular Hashing

Let us now consider actual hash families for the similarity measure D that we are
interested in. As argued in the next section, what seems a more natural choice
for D than the Euclidean distance is the angular distance, defined on R

n as

D(v,w) = θ(v,w) = arccos
(

vTw

‖v‖ · ‖w‖
)

. (2)

With this similarity measure, two vectors are ‘nearby’ if their common angle
is small, and ‘far apart’ if their angle is large. In a sense, this is similar to
the Euclidean norm: if two vectors have similar Euclidean norms, their distance
is large iff their angular distance is large. For this similarity measure D, the
following hash family H was first described in [12]:

H = {ha : a ∈ R
n, ‖a‖ = 1}, ha(v) def=

{
1 if aTv ≥ 0;
0 if aTv < 0.

(3)

10 T. Laarhoven

Intuitively, the vector a defines a hyperplane (for which a is a normal vector),
and ha maps the two regions separated by this hyperplane to different bits.

To see why this is a non-trivial locality-sensitive hash family for the angu-
lar distance, consider two vectors v,w ∈ R

n. These two vectors lie on a two-
dimensional plane passing through the origin, and with probability 1 a hash
vector a does not lie on this plane (for n > 2). This means that the hyperplane
defined by a intersects this plane in some line �. Since a is taken uniformly at
random from the unit sphere, the line � has a uniformly random ‘direction’ in
the plane, and maps v and w to different hash values iff � separates v and w in
the plane. Therefore the probability that h(v)
= h(w) is directly proportional
to their common angle θ(v,w) as follows [12]:

Pha∈H
[
ha(v) = ha(w)

]
= 1 − θ(v,w)

π
. (4)

So for any two angles θ1 < θ2, the family H is (θ1, θ2, 1 − θ1
π , 1 − θ2

π)-sensitive.
In particular, Charikar’s hyperplane hash family is (π

3 , π
2 , 2

3 , 1
2)-sensitive.

3 From the GaussSieve to the HashSieve

Let us now describe how locality-sensitive hashing can be used to speed up
sieving algorithms, and in particular how we can speed up the GaussSieve of
Micciancio and Voulgaris [33]. We have chosen this algorithm as our main focus
since it seems to be the most practical sieving algorithm to date, which is further
motivated by the extensive attention it has received in recent years [15,19,23,
29,30,41] and by the fact that the highest sieving record in the SVP challenge
database was obtained using (a modification of) the GaussSieve [23,42]. Note
that the same ideas can also be applied to the Nguyen-Vidick sieve [35], which
has proven complexity bounds. Details on this combination are in the full version.

3.1 The GaussSieve Algorithm

A simplified version of the GaussSieve algorithm of Micciancio and Voulgaris is
described in Algorithm 1. The algorithm iteratively builds a longer and longer
list L of lattice vectors, occasionally reducing the lengths of list vectors in the
process, until at some point this list L contains a shortest vector. Vectors are
sampled from a discrete Gaussian over the lattice, using e.g. the sampling algo-
rithm of Klein [22,33], or popped from the stack. If list vectors are modified or
newly sampled vectors are reduced, they are pushed to the stack.

In the GaussSieve, the reductions in Lines 5 and 6 follow the rule:

Reduce u1with u2 : if ‖u1 ± u2‖ < ‖u1‖ then u1 ← u1 ± u2. (5)

Throughout the execution of the algorithm, the list L is always pairwise reduced
w.r.t. (5), i.e., ‖w1 ± w2‖ ≥ max{‖w1‖, ‖w2‖} for all w1,w2 ∈ L. This implies
that two list vectors w1,w2 ∈ L always have an angle of at least 60◦; otherwise

Sieving for Shortest Vectors in Lattices Using Angular LSH 11

Algorithm 1. The GaussSieve algorithm (simplified)
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do
5: Reduce v with w
6: Reduce w with v
7: if w has changed then
8: Remove w from the list L
9: Add w to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L
14: until v is a shortest vector

one of them would have been used to reduce the other before being added to
the list. Since all angles between list vectors are always at least 60◦, the size of
L is bounded by the kissing constant in dimension n: the maximum number of
vectors in R

n one can find such that any two vectors have an angle of at least
60◦. Bounds and conjectures on the kissing constant in high dimensions lead us
to believe that the size of the list L will therefore not exceed 20.2075n+o(n) [13].

While the space complexity of the GaussSieve is reasonably well understood,
there are no proven bounds on the time complexity of this algorithm. One might
estimate that the time complexity is determined by the double loop over L: at
any time each pair of vectors w1,w2 ∈ L was compared at least once to see if
one could reduce the other, so the time complexity is at least quadratic in |L|.
The algorithm further seems to show a similar asymptotic behavior as the NV-
sieve [35], for which the asymptotic time complexity is heuristically known to be
quadratic in |L|, i.e., of the order 20.415n+o(n). One might therefore conjecture
that the GaussSieve also has a time complexity of 20.415n+o(n), which closely
matches previous experiments with the GaussSieve in high dimensions [23].

3.2 The GaussSieve with Angular Reductions

Since the heuristic bounds on the space and time complexities are only based
on the fact that each pair of vectors w1,w2 ∈ L has an angle of at least 60◦,
the same heuristics apply to any reduction method that guarantees that angles
between vectors in L are at least 60◦. In particular, if we reduce vectors only if
their angle is at most 60◦ using the following rule:

Reduce u1with u2 :
if θ(u1,±u2) < 60◦ and ‖u1‖ ≥ ‖u2‖ then u1 ← u1 ± u2, (6)

then we expect the same heuristic bounds on the time and space complexities
to apply. More precisely, the list size would again be bounded by 20.208n+o(n),

12 T. Laarhoven

Algorithm 2. The GaussSieve-based HashSieve algorithm
1: Initialize an empty list L and an empty stack S
2: Initialize t empty hash tables Ti

3: Sample k · t random hash vectors ai,j

4: repeat
5: Get a vector v from the stack (or sample a new one if S = ∅)
6: Obtain the set of candidates C =

⋃t
i=1 Ti[hi(v)]

7: for each w ∈ C do
8: Reduce v with w
9: Reduce w with v

10: if w has changed then
11: Remove w from the list L
12: Remove w from all t hash tables Ti

13: Add w to the stack S (unless w = 0)

14: if v has changed then
15: Add v to the stack S (unless v = 0)
16: else
17: Add v to the list L
18: Add v to all t hash tables Ti

19: until v is a shortest vector

and the time complexity may again be estimated to be of the order 20.415n+o(n).
Basic experiments show that, although with this notion of reduction the list size
increases, this factor indeed appears to be sub-exponential in n.

3.3 The HashSieve with Angular Reductions

Replacing the stronger notion of reduction of (5) by the weaker one of (6), we
can clearly see the connection with angular hashing. Considering the GaussSieve
with angular reductions, we are repeatedly sampling new target vectors v (with
each time almost the same list L), and each time we are looking for vectors
w ∈ L whose angle with v is at most 60◦. Replacing the brute-force list search
in the original algorithm with the technique of angular locality-sensitive hashing,
we obtain Algorithm 2. Blue lines in Algorithm 2 indicate modifications to the
GaussSieve. Note that the setup costs of locality-sensitive hashing are spread
out over the various iterations; at each iteration we only update the parts of the
hash tables that were affected by updating L. This means that we only pay the
setup costs of locality-sensitive hashing once, rather than once for each search.

3.4 The (GaussSieve-Based) HashSieve Algorithm

Finally, note that there seems to be no point in skipping potential reductions in
Lines 8 and 9. So while for our intuition and for the theoretical motivation we
may consider the case where the reductions are based on (6), in practice we will
again reduce vectors based on (5). The algorithm is illustrated in Fig. 2.

Sieving for Shortest Vectors in Lattices Using Angular LSH 13

w1

w2

w3

w4
w5

w6

w8

w7

w9

w10
v

1000

10 11

00 01

10 11

1000

10 11

w9, w10

Hash table 1 (T1)

w8

Hash table 2 (T2)

w6, w7, w8

Hash table t (Tt)

. . .

. . .

00
01
10
11

w1, w2

w3, w4, w5

w6, w7, w8

w1, w2, w6, w7

w3

w4, w5, w9, w10

w1, w2

w3, w4, w5, w9

w10

00
01
10
11

00
01
10
11

Fig. 2. An example of the HashSieve, using k = 2 hyperplanes and 2k = 4 buckets in
each hash table. Given 10 list vectors L = {w1, . . . ,w10} and a target vector v, for
each of the t hash tables we first compute v’s hash value (i.e. compute the region in
which it lies), look up vectors with the same hash value, and compare v with those
vectors. Here we will try to reduce v with C = {w6,w7,w8,w9,w10} and vice versa.

3.5 Relation with Leveled Sieving

Overall, the crucial modification going from the GaussSieve to the HashSieve is
that by using hash tables and looking up vectors to reduce the target vector with
in these hash tables, we make the search space smaller; instead of comparing a
new vector to all vectors in L, we only compare the vector to a much smaller
subset of candidates C ⊂ L, which mostly contains good candidates for reduc-
tion, and does not contain many of the ‘bad’ vectors in L which are not useful
for reductions anyway.

In a way, the idea of the HashSieve is similar to the technique previously
used in two- and three-level sieving [45,46]. There, the search space of candidate
nearby vectors was reduced by partitioning the space into regions, and for each
vector storing in which region it lies. In those algorithms, two nearby vectors in

14 T. Laarhoven

adjacent regions are not considered for reductions, which means one needs more
vectors to saturate the space (a higher space complexity) but less time to search
the list of candidates for nearby vectors (a lower time complexity). The key
difference between leveled sieving and our method is in the way the partitions
of Rn are chosen: using giant balls in leveled sieving (similar to the Euclidean
LSH method of [6]), and using intersections of half-spaces in the HashSieve.

4 Theoretical Results

For analyzing the time complexity of sieving with angular LSH, for clarity of
exposition we will analyze the GaussSieve-based HashSieve and assume that
the GaussSieve has a time complexity which is quadratic in the list size, i.e.
a time complexity of 20.415n+o(n). We will then show that using angular LSH,
we can reduce the time complexity to 20.337n+o(n). Note that although practical
experiments in high dimensions seem to verify this assumption [23], in reality it
is not known whether the time complexity of the GaussSieve is quadratic in |L|.
At first sight this therefore may not guarantee a heuristic time complexity of the
order 20.337n+o(n). In the full version we illustrate how the same techniques can
be applied to the sieve of Nguyen and Vidick [35], for which the heuristic time
complexity is in fact known to be at most 20.415n+o(n), and for which we get the
same speedup. This implies that indeed, with sieving we can provably solve SVP
in time and space 20.337n+o(n) under the same heuristic assumptions of Nguyen
and Vidick [35]. For clarity of exposition, in the main text we will continue
focusing on the GaussSieve due to its better practical performance, even though
theoretically one might rather apply this analysis to the algorithm of Nguyen
and Vidick due to their heuristic bounds on the time and space complexities.

4.1 High-Dimensional Intuition

So for now, suppose that the GaussSieve has a time complexity quadratic in |L|
and that |L| ≤ 20.208n+o(n). To estimate the complexities of the HashSieve, we
will use the following assumption previously described in [35]:

Heuristic 1. The angle Θ(v,w) between random sampled/list vectors v and w
follows the same distribution as the distribution of angles Θ(v,w) obtained by
drawing v,w ∈ R

n at random from the unit sphere.

Note that under this assumption, in high dimensions angles close to 90◦ are much
more likely to occur between list vectors than smaller angles. So one might guess
that for two vectors w1,w2 ∈ L (which necessarily have an angle larger than
60◦), with high probability their angle is close to 90◦. On the other hand, vectors
that can reduce one another always have an angle less than 60◦, and by similar
arguments we expect this angle to always be close to 60◦. Under the extreme
assumption that all ‘reduced angles’ between vectors that are unable to reduce
each other are exactly 90◦ (and non-reduced angles are at most 60◦), we obtain
the following estimate for the costs of the HashSieve algorithm.

Sieving for Shortest Vectors in Lattices Using Angular LSH 15

Proposition 1. Assuming that reduced vectors are always pairwise orthogonal,
the HashSieve with parameters k = 0.2075n+o(n) and t = 20.1214n+o(n) heuristi-
cally solves SVP in time and space 20.3289n+o(n). We further obtain the trade-off
between the space and time complexities indicated by the dashed line in Fig. 1.

Proof. If all reduced angles are 90◦, then we can simply let θ1 = π
3 and θ2 = π

2
and use the hash family described in Sect. 2.5 with p1 = 2

3 and p2 = 1
2 . Applying

Lemma 1, we can perform a single search in time Nρ = 20.1214n+o(n) using t =
20.1214n+o(n) hash tables, where ρ = log(1/p1)

log(1/p2)
= log2(

3
2) ≈ 0.585. Since we need

to perform these searches Õ(|L|) = Õ(N) times, the time complexity is of the
order Õ(N1+ρ) = 20.3289n+o(n). �

4.2 Heuristically Solving SVP in Time and Space 20.3366n+o(n)

Of course, in practice not all reduced angles are actually 90◦, and one should
carefully analyze what is the real probability that a vector w whose angle with
v is more than 60◦, is found as a candidate due to a collision in one of the hash
tables. The following central theorem follows from this analysis and shows how
to choose the parameters to optimize the asymptotic time complexity. A rigorous
proof of Theorem1 based on the NV-sieve can be found in the full version.

Theorem 1. Sieving with angular locality-sensitive hashing with parameters

k = 0.2206n + o(n), t = 20.1290n+o(n), (7)

heuristically solves SVP in time and space 20.3366n+o(n). Tuning k and t differ-
ently, we further obtain the trade-off indicated by the solid blue line in Fig. 1.

Note that the optimized values in Theorem 1 and Proposition 1, and the asso-
ciated curves in Fig. 1 are very similar. So the simple estimate based on the
intuition that in high dimensions “everything is orthogonal” is not far off.

4.3 Heuristically Solving SVP in Time 20.3366n and Space 20.2075n

For completeness let us briefly explain how for the NV-sieve [35], we can in fact
process the hash tables sequentially and eliminate the need of storing exponen-
tially many hash tables in memory, for which full details are given in the full
version. To illustrate the idea, recall that in the Nguyen-Vidick sieve we are
given a list L of size 20.21n+o(n) of vectors of norm at most R, and we want to
build a new list L′ of similar size 20.21n+o(n) of vectors of norm at most γR with
γ < 1. To do this, we look at (almost) all pairs of vectors in L, and see if their
difference (sum) is short; if so, we add it to L′. As the probability of finding a
short vector is roughly 2−0.21n+o(n) and we have 20.42n+o(n) pairs of vectors, this
will result in enough vectors to continue in the next iterations.

The natural way to apply angular LSH to this algorithm would be to add all
vectors in L to t independent hash tables, and to find short vectors to add to

16 T. Laarhoven

L′ we then compute a new vector v’s hash value for each of these t hash tables,
look for potential short vectors v±w by comparing v with the colliding vectors
w ∈ ⋃t

i=1 Ti[hi(v)], and process all vectors one by one. This results in similar
asymptotic time and space complexities as illustrated above.

The crucial modification that we can make to this algorithm (similar to [8])
is that we process the tables one by one; we first construct the first hash table,
add all vectors in L to this hash table, and look for short difference vectors inside
each of the buckets of L to add to L′. The cost of building and processing one
hash table is of the order 20.21n+o(n), and the number of vectors found that can
be added to L′ is of the order 20.08n+o(n). By then deleting the hash table from
memory and building new hash tables over and over (t = 20.13n+o(n) times) we
keep building a longer list L′ until finally we will again have found 20.21n+o(n)

short vectors for the next iteration. In this case however we never stored all hash
tables in memory at the same time, and the memory increase compared to the
NV-sieve is asymptotically negligible. This leads to the following result.

Theorem 2. Sieving with angular locality-sensitive hashing with parameters

k = 0.2206n + o(n), t = 20.1290n+o(n), (8)

heuristically solves SVP in time 20.3366n+o(n) and space 20.2075n+o(n). These com-
plexities are indicated by the left-most blue point in Fig. 1.

Note that this choice of parameters balances the costs of computing hashes and
comparing vectors; the fact that the blue point in Fig. 1 does not lie on the
“Time = Space”-line does not mean we can further reduce the time complexity.

4.4 Reducing the Space Complexity with Probing

Finally, as the above modification only seems to work with the less practical NV-
sieve (and not with the GaussSieve), and since for the GaussSieve-based Hash-
Sieve the memory requirement increases exponentially, let us briefly sketch how
we can reduce the required amount of memory in practice for the (GaussSieve-
based) HashSieve using probing [36]. The key observation here is that, as illus-
trated in Fig. 2, we only check one bucket in each hash table for nearby vectors,
leading to t hash buckets in total that are checked for candidate reductions.
This seems wasteful, as the hash tables contain more information: we also know
for instance which hash buckets are next-most likely to contain nearby vectors,
which are buckets with very similar hash values. By also probing these buckets
in a clever way and checking multiple hash buckets per hash table, we can sig-
nificantly reduce the number of hash tables t in practice such that in the end we
still find as many good vectors. Using � levels of probing (checking all buckets
with hash value at Hamming distance at most � to h(v)) we can reduce t by a
factor O(n�) at the cost of increasing the time complexity by a factor at most
2�. This does not constitute an exponential improvement, but the polynomial
reduction in memory may be worthwhile in practice. More details on probing
can be found in the full version.

Sieving for Shortest Vectors in Lattices Using Angular LSH 17

5 Practical Results

5.1 Experimental Results in Moderate Dimensions

To verify our theoretical analysis, we implemented both the GaussSieve and the
GaussSieve-based HashSieve to try to compare the asymptotic trends of these
algorithms. For implementing the HashSieve, we note that we can use various
simple tweaks to further improve the algorithm’s performance. These include:

(a) With the HashSieve, maintaining a list L is no longer needed.
(b) Instead of making a list of candidates, we go through the hash tables one

by one, checking if collisions in this table lead to reductions. If a reducing
vector is found early on, this may save up to t · k hash computations.

(c) As hi(−v) = −hi(v) the hash of −v can be computed for free from hi(v).
(d) Instead of comparing ±v to all candidate vectors w, we only compare +v

to the vectors in the bucket hi(v) and −v to the vectors in the bucket
labeled −hi(v). This further reduces the number of comparisons by a factor
2 compared to the GaussSieve, where both comparisons are done for each
potential reduction.

(e) For choosing vectors ai,j to use for the hash functions hi, there is no reason
to assume that drawing a from a specific, sufficiently large random subset
of the unit sphere would lead to substantially different results. In particular,
using sparse vectors ai,j makes hash computations significantly cheaper,
while retaining the same performance [1,27]. Our experiments indicated that
even if all vectors ai,j have only two equal non-zero entries, the algorithm
still finds the shortest vector in (roughly) the same number of iterations.

(f) We should not store the actual vectors, but only pointers to vectors in each
hash table Ti. This means that compared to the GaussSieve, the space com-
plexity roughly increases from O(N ·n) to O(N ·n+N ·t) instead of O(N ·n·t),
i.e., an asymptotic increase of a factor t/n rather than t.

With these tweaks, we performed several experiments of finding shortest vectors
using the lattices of the SVP challenge [42]. We generated lattice bases for dif-
ferent seeds and different dimensions using the SVP challenge generator, used
NTL (Number Theory Library) to preprocess the bases (LLL reduction), and
then used our implementations of the GaussSieve and the HashSieve to obtain
these results. For the HashSieve we chose the parameters k and t by rounding
the theoretical estimates of Theorem 1 to the nearest integers, i.e., k = �0.2206n�
and t = �20.1290n� (see Fig. 3a). Note that clearly there are ways to further speed
up both the GaussSieve and the HashSieve, using e.g. better preprocessing, vec-
torized code, parallel implementations, optimized samplers, etc. The purpose of
our experiments is only to obtain a fair comparison of the two algorithms and
to try to estimate and compare the asymptotic behaviors of these algorithms.
Details on a more optimized implementation of the HashSieve are given in [31].

Computations. Figure 3b shows the number of inner products computed by
the HashSieve for comparing vectors and for computing hashes. We have chosen

18 T. Laarhoven

(a) Parameters used in HashSieve experiments, without (t) and with (t1) probing

Hashes
Comparisons

40 50 60 70 80
106

107

108

109

1010

1011

1012

Dimension n

C
om

pu
ta
tio

ns
(in

ne
r
pr
od

uc
ts
)

co
mp
ari
so
ns

2
0.4
2 n

+4

ha
sh
es

2
0.4
3 n

+5

(b) HashSieve computations (no prob.)

GaussSieve
HashSieve
HSwith probing

40 50 60 70 80
10

100

1000

104

105

106

107

Dimension n

Li
st

si
ze

(v
ec

to
rs
)

list s
ize

20
.21 n 1

list s
ize

20
.21 n+1.

8

list s
ize

20
.21 n+1.

7

(c) List sizes

GaussSieve
HashSieve
HSwith probing

40 50 60 70 80
1

10

100

1000

104

105

Dimension n

Ti
m
e

(s
ec

on
ds

)

tim
e

2
0.5
2
n-
21

tim
e

2
0.4
5 n

- 1
9

tim
e

2
0.4
5 n

- 1
8.5

(d) Time complexities

GaussSieve
HashSieve
HSwith probing

40 50 60 70 80
104

105

106

107

108

109

Dimension n

M
em

or
y

by
te
s

mem
ory

2
0.24

n+7
mem

ory
2
0.27

n+7

me
mo

ry
2
0.3

1 n
+6

(e) Space complexities

Fig. 3. Experimental data for the GaussSieve and the HashSieve (with/without
probing). Markers indicate experiments, lines and labels represent least-squares fits.
Figure 3b shows the time spent on hashing and comparing vectors in the HashSieve.
Figure 3c confirms our intuition that if we miss a small fraction of the reducing vectors,
the list size increases by a small factor. Figure 3d compares the time complexities of the
algorithms, confirming our theoretical analysis of a speedup of roughly 20.07n over the
GaussSieve. Figure 3e illustrates the space requirements of each algorithm. Note that
probing decreases the required memory at the cost of a small increase in the time. Also
note that the step-wise behavior of some curves in Fig. 3 is explained by the fact that
k is small but integral, and increases by 1 only once every four/five dimensions.

Sieving for Shortest Vectors in Lattices Using Angular LSH 19

k and t so that the total time for each of these operations is roughly balanced, and
indeed this seems to be the case. The total number of inner products for hashing
seems to be a constant factor higher than the total number of inner products
computed for comparing vectors, which may also be desirable, as hashing is
significantly cheaper than comparing vectors using sparse hash vectors. Tuning
the parameters differently may slightly change this ratio.

List Sizes. In the analysis, we assumed that if reductions are missed with
a constant probability, then the list size also increases by a constant factor.
Figure 3c seems to support this intuition, as indeed the list sizes in the HashSieve
seem to be a (small) constant factor larger than in the GaussSieve.

Time Complexities. Figure 3d compares the timings of the GaussSieve and
HashSieve on a single core of a Dell Optiplex 780, which has a processor speed
of 2.66 GHz. Theoretically, we expect to achieve a speedup of roughly 20.078n

for each list search, and in practice we see that the asymptotic speedup of the
HashSieve over the GaussSieve is close to 20.07n using a least-squares fit.

Note that the coefficients in the least-squares fits for the time complexities
of the GaussSieve and HashSieve are higher than theory suggests, which is in
fact consistent with previous experiments in low dimensions [15,19,29,30,33].
This phenomenon seems to be caused purely by the low dimensionality of our
experiments. Figure 3d shows that in higher dimensions, the points start to devi-
ate from the straight line, with a better scaling of the time complexity in higher
dimensions. High-dimensional experiments of the GaussSieve (80 ≤ n ≤ 100) and
the HashSieve (86 ≤ n ≤ 96) demonstrated that these algorithms start following
the expected trends of 20.42n+o(n) (GaussSieve) and 20.34n+o(n) (HashSieve) as n
gets larger [23,31]. In high dimensions we therefore expect the coefficient 0.3366
to be accurate. For more details, see [31].

Space Complexities. Figure 3e illustrates the experimental space complexities
of the tested algorithms for various dimensions. For the GaussSieve, the total
space complexity is dominated by the memory required to store the list L. In our
experiments we stored each vector coordinate in a register of 4 bytes, and since
each vector has n entries, this leads to a total space complexity for the GaussSieve
of roughly 4nN bytes. For the HashSieve the asymptotic space complexity is
significantly higher, but recall that in our hash tables we only store pointers to
vectors, which may also be only 4 bytes each. For the HashSieve, we estimate
the total space complexity as 4nN +4tN ∼ 4tN bytes, i.e., roughly a factor t

n ≈
20.1290n/n higher than the space complexity of the GaussSieve. Using probing,
the memory requirement is further reduced by a significant amount, at the cost
of a small increase in the time complexity (Fig. 3d).

5.2 High-Dimensional Extrapolations

As explained at the start of this section, the experiments in Sect. 5.1 are aimed at
verifying the heuristic analysis and at establishing trends which hold regardless
of the amount of optimization of the code, the quality of preprocessing of the

20 T. Laarhoven

input basis, the amount of parallelization etc. However, the linear estimates in
Fig. 3 may not be accurate. For instance, the time complexities of the GaussSieve
and HashSieve seem to scale better in higher dimensions; the time complexities
may well be 20.415n+o(n) and 20.337n+o(n) respectively, but the contribution of
the o(n) only starts to fade away for large n. To get a better feeling of the actual
time complexities in high dimensions, one would have to run these algorithms in
higher dimensions. In recent work, Mariano et al. [31] showed that the HashSieve
can be parallelized in a similar fashion as the GaussSieve [29]. With better
preprocessing and optimized code (but without probing), Mariano et al. were
able to solve SVP in dimensions up to 96 in less than one day on one machine
using the HashSieve3. Based on experiments in dimensions 86 up to 96, they
further estimated the time complexity to lie between 20.32n−15 and 20.33n−16,
which is close to the theoretical estimate 20.3366n+o(n). So although the points in
Fig. 3d almost seem to lie on a line with a different leading constant, these leading
constants should not be taken for granted for high-dimensional extrapolations;
the theoretical estimate 20.3366n+o(n) seems more accurate.

Finally, let us try to estimate the highest practical dimension n in which
the HashSieve may be able to solve SVP right now. The current highest dimen-
sion that was attacked using the GaussSieve is n = 116, for which 32 GB RAM
and about 2 core years were needed [23]. Assuming the theoretical estimates for
the GaussSieve (20.4150n+o(n)) and HashSieve (20.3366n+o(n)) are accurate, and
assuming there is a constant overhead of approximately 22 of the HashSieve com-
pared to the GaussSieve (based on the exponents in Fig. 3d), we might estimate
the time complexities of the GaussSieve and HashSieve to be G(n) = 20.4150n+C

and H(n) = 20.3366n+C+2 respectively. To solve SVP in the same dimension
n = 116, we therefore expect to use a factor G(116)/H(116) ≈ 137 less time
using the HashSieve, or five core days on the same machine. With approxi-
mately two core years, we may further be able to solve SVP in dimension 138
using the HashSieve, which would place sieving near the very top of the SVP hall
of fame [42]. This does not take into account the space complexity though, which
at this point may have increased to several TBs. Several levels of probing may sig-
nificantly reduce the required amount of RAM, but further experiments have to
be conducted to see how practical the HashSieve is in high dimensions. As in high
dimensions the space requirement also becomes an issue, studying the memory-
efficient NV-sieve-based HashSieve (with space complexity 20.2075n+o(n)) may be
an interesting topic for future work.

Acknowledgments. The author is grateful to Meilof Veeningen and Niels de Vreede
for their help and advice with implementations. The author thanks the anonymous
reviewers, Daniel J. Bernstein, Marleen Kooiman, Tanja Lange, Artur Mariano, Joop
van de Pol, and Benne de Weger for their valuable suggestions and comments. The
author further thanks Michele Mosca for funding a research visit to Waterloo to col-
laborate on lattices and quantum algorithms, and the author thanks Stacey Jeffery,
Michele Mosca, Joop van de Pol, and John M. Schanck for valuable discussions there.
The author also thanks Memphis Depay for his inspiration.

3 At the time of writing, Mariano et al.’s highest SVP challenge records obtained using
the HashSieve are in dimension 107, using five days on one multi-core machine.

Sieving for Shortest Vectors in Lattices Using Angular LSH 21

References

1. Achlioptas, D.: Database-friendly random projections. In: PODS (2001)
2. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-

est vector problem in 2n time via discrete Gaussian sampling. In: STOC (2015)
3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:

STOC, pp. 99–108 (1996)
4. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions

(extended abstract). In: STOC, pp. 10–19 (1998)
5. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice

vector problem. In: STOC, pp. 601–610 (2001)
6. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. In: FOCS, pp. 459–468 (2006)
7. Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. In: ANTS,

pp. 49–70 (2014)
8. Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without increasing the

memory, using sub-quadratic nearest neighbor search. Preprint (2015)
9. Becker, A., Laarhoven, T.: Efficient sieving in (ideal) lattices using cross-polytopic

LSH. Preprint (2015)
10. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.

Springer, Heidelberg (2009)
11. Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors in ideal lattices:

a practical perspective. Cryptology ePrint Archive, Report 2014/880 (2014)
12. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:

STOC, pp. 380–388 (2002)
13. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer,

New York (1999)
14. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in

a lattice. Math. Comput. 44(170), 463–471 (1985)
15. Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F., Mariano, A.,

Yang, B.-Y.: Tuning GaussSieve for speed. In: Aranha, D.F., Menezes, A. (eds.)
LATINCRYPT 2014. LNCS, vol. 8895, pp. 288–305. Springer, Heidelberg (2015)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-

tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

18. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC, pp. 604–613 (1998)

19. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel gauss sieve algorithm:
solving the svp challenge over a 128-dimensional ideal lattice. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 411–428. Springer, Heidelberg (2014)

20. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: STOC, pp. 193–206 (1983)

21. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In:
FOCS, pp. 126–135 (2004)

22. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: SODA,
pp. 937–941 (2000)

23. Kleinjung, T.: Private Communication (2014)
24. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-

sensitive hashing (2015). Full version at http://eprint.iacr.org/2014/744

http://eprint.iacr.org/2014/744

22 T. Laarhoven

25. Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using spher-
ical locality-sensitive hashing. In: LATINCRYPT (2015)

26. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

27. Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: KDD, pp.
287–296 (2006)

28. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

29. Mariano, A., Timnat, S., Bischof, C.: Lock-free GaussSieve for linear speedups in
parallel high performance SVP calculation. In: SBAC-PAD (2014)

30. Mariano, A., Dagdelen, Ö., Bischof, C.: A comprehensive empirical comparison of
parallel ListSieve and GaussSieve. In: Lopes, L., et al. (eds.) Euro-Par 2014: Parallel
Processing Workshops, Part I. LNCS, vol. 8805, pp. 48–59. Springer, Switzerland
(2014)

31. Mariano, A., Laarhoven, T., Bischof, C.: Parallel (probable) lock-free HashSieve:
a practical sieving algorithm for the SVP. In: ICPP (2015)

32. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. In: STOC (2010)

33. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: SODA, pp. 1468–1480 (2010)

34. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: SODA, pp. 276–294 (2015)

35. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Crypt. 2(2), 181–207 (2008)

36. Panigraphy, R.: Entropy based nearest neighbor search in high dimensions. In:
SODA, pp. 1186–1195 (2006)

37. Plantard, T., Schneider, M.: Ideal lattice challenge. http://latticechallenge.org/
ideallattice-challenge/ (2014)

38. Pohst, M.E.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. ACM Bull. 15(1), 37–44 (1981)

39. van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional lattice-based
systems. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 290–303. Springer,
Heidelberg (2013)

40. Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 22.465n.
Cryptology ePrint Archive, Report 2009/605 (2009)

41. Schneider, M.: Sieving for shortest vectors in ideal lattices. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 375–391.
Springer, Heidelberg (2013)

42. Schneider, M., Gama, N., Baumann, P., Nobach, L.: SVP challenge (2014). http://
latticechallenge.org/svp-challenge

43. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoret. Comput. Sci. 53(2), 201–224 (1987)

44. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Programming 66(2), 181–199 (1994)

45. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algo-
rithm for shortest vector problem. In: ASIACCS, pp. 1–9 (2011)

46. Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest vector
problem. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 29–47. Springer, Heidelberg (2014)

http://latticechallenge.org/ideallattice-challenge/
http://latticechallenge.org/ideallattice-challenge/
http://latticechallenge.org/svp-challenge
http://latticechallenge.org/svp-challenge

Coded-BKW: Solving LWE Using Lattice Codes

Qian Guo1,2, Thomas Johansson1(B), and Paul Stankovski1

1 Department of Electrical and Information Technology, Lund University,
Lund, Sweden

{qian.guo,thomas.johansson,paul.stankovski}@eit.lth.se
2 Shanghai Key Laboratory of Intelligent Information Processing,
School of Computer Science, Fudan University, Shanghai, China

Abstract. In this paper we propose a new algorithm for solving the
Learning With Errors (LWE) problem based on the steps of the famous
Blum-Kalai-Wasserman (BKW) algorithm. The new idea is to introduce
an additional procedure of mapping subvectors into codewords of a lattice
code, thereby increasing the amount of positions that can be cancelled in
each BKW step. The procedure introduces an additional noise term, but
it is shown that by using a sequence of lattice codes with different rates
the noise can be kept small. Developed theory shows that the new app-
roach compares favorably to previous methods. It performs particularly
well for the binary-LWE case, i.e., when the secret vector is sampled
from {0, 1}∗.

Keywords: LWE · binary-LWE · BKW · Coded-BKW · Lattice codes

1 Introduction

Learning with Errors (LWE) is a problem that has received a lot of attention
recently and can be considered as a generalization of the Learning Parity with
Noise (LPN) problem. Regev introduced LWE in [31], and it has proved to be
a very useful tool for constructing cryptographic primitives. Although a great
number of different constructions of cryptographic primitives have been given
since the introduction of the LWE problem, one of the most interesting ones is
the work on constructing fully homomorphic encryption schemes [8,10,19,20].

There are several motivating reasons for the interest in LWE-based cryp-
tography. One is the simplicity of the constructions, sometimes giving rise to
very efficient implementations which run much faster than competing alterna-
tive solutions. Another reason is the well-developed theory on lattice problems,
which gives insights into the hardness of the LWE problem. There are theo-
retical reductions from worst-case lattice problems to average-case LWE [31].

Q. Guo—Supported in part by Shanghai Key Program of Basic Research (No.
12JC1401400), the National Defense Basic Research Project (No. JCYJ-1408).
T. Johansson and P. Stankovski—Supported by the Swedish Research Council
(Grants No. 621-2012-4259).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 23–42, 2015.
DOI: 10.1007/978-3-662-47989-6 2

24 Q. Guo et al.

A third motivating reason is the fact that LWE-based cryptography is one of
the areas where a quantum computer is not known to be able to break the
primitives (contrary to factoring-based and discrete log-based primitives). This
is sometimes referred to as being a tool in post-quantum cryptography.

Let us state the LWE problem.

Definition 1. Let n be a positive integer, q an odd prime, and let X be an error
distribution selected as the discrete Gaussian distribution on Zq. Fix s to be a
secret vector in Z

n
q , chosen according to a uniform distribution. Denote by Ls,X

the probability distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly

at random, choosing an error e ∈ Zq according to X and returning

(a, z) = (a, 〈a, s〉 + e)

in Z
n
q × Zq. The (search) LWE problem is to find the secret vector s given a

fixed number of samples from Ls,X .

The definition above gives the search LWE problem, as the problem description
asks for the recovery of the secret vector s. Another variant is the so-called
decision LWE problem. In this case the problem is to distinguish samples drawn
from Ls,X and samples drawn from a uniform distribution on Z

n
q ×Zq. Typically,

we are then interested in distinguishers with non-negligible advantage.
The parameters of an LWE instance are typically chosen with some internal

relations. The prime q is chosen as a polynomial in n, and the discrete Gaussian
distribution X has mean zero and standard deviation σ = α · q for some small
α. For example, in [31], Regev proposed to use parameters q ≈ n2 and α =
1/(

√
2πn · log22 n).

1.1 Previous Work

A number of algorithms for solving the LWE problem have been given, using dif-
ferent approaches. As there is a strong connection to lattice problems, a direction
for a subset of the algorithms has been to either rewrite the LWE problem as
the problem of finding a short vector in a dual lattice, the Short Integer Solution
(SIS) problem, or to solve the Bounded Distance Decoding (BDD) problem. Lat-
tice reduction algorithms may be applied to solve these problems. Even though
there has been a lot of research devoted to the study of lattice reduction algo-
rithms, there still seems to be quite some uncertainty about the complexity and
performance of such algorithms for higher dimensions.

Another very interesting approach was given by Arora and Ge in [5], where
they proposed a novel algebraic approach to solve the LWE problem. The asymp-
totic complexity of this algorithm is subexponential when σ ≤ √

n, but fully
exponential otherwise. The algorithm is mainly of asymptotic interest as apply-
ing it on specific instances gives higher complexity than other solvers.

Finally, much work has been done on combinatorial algorithms for solving
LWE, all taking the famous Blum-Kalai-Wasserman (BKW) algorithm [7] as
a basis. The BKW algorithm resembles the generalized birthday approach by

Coded-BKW: Solving LWE Using Lattice Codes 25

Wagner [34] and was originally given as an algorithm for solving the LPN prob-
lem. These combinatorial algorithms have the advantage that their complex-
ity can be analyzed in a standard way and we can get explicit values on the
complexity for different instantiations of the LWE problem. Even though we
use approximations in the analysis, the deviation between theoretical analysis
and actual performance seems to be small [3,17]. This approach tends to give
algorithms with the best performance for some important parameter choices. A
possible drawback with BKW-based algorithms is that they usually require a
huge amount of memory, often of the same order as the time complexity. Some
recent work in this direction is [1,3,17].

1.2 Motivation and Contributions

We know that the theoretical hardness of the LWE problem is well-established,
through reductions to hard lattice problems [9,30,31]. This can be transferred
to asymptotic statements on the security. In fact, most proposals of LWE-based
cryptographic primitives rely only on asymptotics when arguing about security.

But there is also a huge interest in studying the actual hardness of specific
instances of the LWE problem. How does the choice of parameters (n, q, σ)
influence the complexity of solving LWE? What are the smallest parameters we
can have and still achieve, say, 80-bit security?

In this paper we introduce a new algorithm for the LWE problem which
again uses the BKW algorithm as a basis. The novel idea is to introduce a mod-
ified BKW step, we call it a coded-BKW step, that allows us to cancel out more
positions in the a vectors than a traditional BKW step. The coded-BKW step
involves mapping the considered part of an a vector into a nearest codeword
in a lattice code (a linear code over Zq, where the distance is the Euclidean
norm). The mapping to the nearest codeword introduces some noise, but with

Table 1. Time complexity comparison for solving various LWE instances.

n q σ Complexity (log2 #Zq)

This paper
(Sect. 5)

Duc et al. [17] NTL-BKZ
Lindner-Peikert
model [1,25]

BKZ 2.0
Simulator
Model
[1,11,26]

Regev [31]

128 16,411 11.81 84.5 95.0 61.6 61.9

256 65,537 25.53 145.1 178.7 175.5 174.5

512 262,147 57.06 287.6 357.5 386.8 518.6

Lindner & Peikert [25]

128 2,053 2.70 69.7 83.7 54.5 57.1

256 4,099 3.34 123.8 154.2 156.2 151.2

512 4,099 2.90 209.2 271.8 341.9 424.5

26 Q. Guo et al.

Table 2. Time complexity comparison for solving various binary-LWE instances.

n q σ Complexity (log2 #Z2)

This paper
(Sect. 7)

Albrecht et al. [3] NTL-BKZ
L-P model
[1,25]

BKZ
2.0 Sim.
model
[1,11,26]

w/o
Unnatural
Selection

Improved
version

Regev [31]

128 16,411 11.81 58.8 78.2 74.2 65.4 65.7

256 65,537 25.53 97.9 142.7 132.5 179.5 178.5

512 262,147 57.06 163.7 251.2 241.8 390.9 522.8

a proper selection of parameters this can be kept bounded and small enough
not to influence the total noise in the BKW procedure too much. Whenever any
pair of a vectors map to the same codeword, they are added together creating
a new sample with a part of the a vector cancelled, as is the usual result of a
BKW step. These samples are the input to the next step in the BKW proce-
dure. The algorithm also contains some additional new steps using the discrete
Fast Fourier Transform (FFT) to provide some additional improvement. The
new ideas have some connection to the recent paper on LPN [22], but in that
paper a binary covering code (see [12] for definition) was used after the BKW
steps. Also the recent work [3] has some connections as it introduces additional
noise in the BKW steps by the so-called lazy modulus switching. Still, the new
algorithm outperforms previous BKW-type algorithms for solving LWE — even
when compared with the most recent work [17], we improve significantly (as
detailed in Table 1).

We also apply the algorithm in a slightly modified form on the binary-
LWE problem. The binary-LWE problem is the LWE problem when the secret
vector s is chosen uniformly from {0, 1}n. In this case we have a huge improve-
ment (see Table 2) in performance compared with other algorithms.

Tables 1 and 2 show comparisons of different algorithms for solving various
LWE and binary-LWE instances, respectively. We compare the performance of
the new algorithm with the previous best BKW variant (i.e., Duc et al. [17] for
LWE or Albrecht et al. [3] for binary-LWE) and the estimates (under certain
models [11,25,26,29]) for distinguishing LWE (or binary-LWE) samples from
uniform using lattice reduction algorithms, when LWE is reduced to SIS. The
results consolidate the understanding that BKW is asymptotically efficient. For
the toy LWE instances with n = 128, the SIS approach still beats all the BKW
variants, including ours; but the recent variant has greatly narrowed the gap.
The situation alters when the parameter n increases.

We also obtain a significant improvement (i.e., with a factor of more than
211 in time) on solving an LWE (136, 2003, 5.19)-instance, which first appeared

Coded-BKW: Solving LWE Using Lattice Codes 27

in [29] and was then adopted as an example in [25], compared with the estimates
in [1] that use the BDD approach.

Thus, we are close to a conclusion that, when choosing LWE instances for
today’s cryptosystems (e.g., achieving an 80-bit or higher security level), thwart-
ing of BKW-type attacks must be taken into consideration.

The remainder of the paper is organized as follows. In Sect. 2 we describe the
basic theory around the LWE problem. We give a short description of the BKW
algorithm in Sect. 3, and then present the novel modification in the next section.
We detail the algorithm in Sect. 5, analyze its complexity in Sect. 6, and then
propose a variant for binary-LWE in Sect. 7. This is followed by the sections
of implementation and results. We finally concludes this paper in Sect. 10.

2 Background

On an n-dimensional Euclidean space R
n, the intuitive notion of length of a

vector x = (x1, x2, . . . , xn) is captured by the L2-norm; ||x|| =
√

x2
1 + · · · + x2

n.
The Euclidean distance between two vectors x and y in R

n is defined as ||x−y||.
For a given set of vectors L, the minimum mean square error (MMSE) estimator
assigns each vector in R

n to the vector l ∈ L such that ||x − l|| is minimized.
Let us shortly introduce the discrete Gaussian distribution.

2.1 Discrete Gaussian Distribution

Let x ∈ Z. The discrete Gaussian distribution on Z with mean 0 and variance σ2,
denoted DZ,σ, is the probability distribution obtained by assigning a probability
proportional to exp(−x2/2σ2) to each x ∈ Z. The X distribution1 with variance
σ2 is the distribution on Zq obtained by folding DZ,σ mod q, i.e., accumulating the
value of the probability mass function over all integers in each residue class modq.
Similarly, we define the discrete Gaussian over Z

n with variance σ2, denoted
DZn,σ, as the product distribution of n independent copies of DZ,σ.

In general, the discrete Gaussian distribution does not exactly inherit the
usual properties from the continuous case, but in our considered cases it will be
close enough and we will use properties from the continuous case, as they are
approximately correct. For example, if X is drawn from Xσ1 and Y is drawn
from Xσ2 , then we consider X + Y to be drawn from X√

σ2
1+σ2

2
. This follows the

path of previous work [1].
A central point in cryptanalysis is to estimate the number of samples required

to distinguish between two distributions, in our case the uniform distribution on
Zq and Xσ. The solution to this distinguishing problem leads to an efficient key
recovery: we assume that for a right guess, the observed symbol is Xσ distributed;
otherwise, it is uniformly random. Thus, we need to distinguish the secret from
Q candidates. We follow the theory from linear cryptanalysis [6] (also similar to
that in correlation attacks [15]), that the number M of required samples to test

1 It is also denoted Xσ, and we omit σ if there is no ambiguity.

28 Q. Guo et al.

is about O
(

ln(Q)
Δ(Xσ‖U)

)
, where Δ(Xσ‖U) is the divergence2 between Xσ and the

uniform distribution U in Zq.

2.2 LWE Problem Description

We already gave the definition of the search LWE problem in Definition 1. As
we will focus on this problem, we skip giving a more formal definition of the
decision version of LWE. Instead we reformulate the search LWE problem a bit.
Assume that we ask for m samples from the LWE distribution Ls,X and the
response is denoted as

(a1, z1), (a2, z2), . . . , (am, zm),

where ai ∈ Z
n
q , zi ∈ Zq. We introduce z = (z1, z2, . . . , zm) and y =

(y1, y2, . . . , ym) = sA. We can then write A =
[
aT1 aT2 · · · aTn

]
and z = sA + e,

where zi = yi + ei = 〈s,ai〉 + ei and ei
$← X is the noise. We see that the prob-

lem has been reformulated as a decoding problem. The matrix A serves as the
generator matrix for a linear code over Zq and z is the received word. Finding
the codeword y = sA such that the distance ||y − z|| is minimum will give the
secret vector s.

If the secret vector s is drawn from the uniform distribution, there is a simple
transformation [4,23] that can be applied, namely, we may through Gaussian
elimination transform A into systematic form. Assume that the first n columns
are linearly independent and form the matrix A0. Define D = A0

−1. With a
change of variables ŝ = sD−1 − (z1, z2, . . . , zn) we get an equivalent problem
described by Â = (I, âTn+1, â

T
n+2, · · · , âTm), where Â = DA. We compute

ẑ = z − (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

After this initial step, each entry in the secret vector ŝ is now distributed accord-
ing to X .

2.3 Lattice Codes and Construction A

A lattice Λ is a discrete additive subgroup of Rn. Reformulated, Λ is a lattice
iff there are linearly independent vectors v1, . . . ,vm ∈ R

n, such that any y ∈ Λ
can be written as y =

∑m
i=1 αivi, where αi ∈ Z. The set v1, . . . ,vm is called a

basis for Λ. A matrix whose columns are these vectors is said to be a generator
matrix for Λ.

Furthermore, let V ol(·) denote the volume of a closed set in R
n and let V be

the fundamental Voronoi region of Λ, i.e.,

V = {x ∈ R
n : ||x|| ≤ ||x − w||,∀w ∈ Λ}.

2 Divergence has a couple of aliases in literature: relative entropy, information diver-
gence, Kullback-Leibler divergence, etc. We refer the interested reader to [15] for
the rigorous definition. In this paper, the divergence Δ(Xσ‖U) will be computed
numerically.

Coded-BKW: Solving LWE Using Lattice Codes 29

We will be interested in a more narrow class of lattices based on q-ary linear
codes. If C is a linear [N, k] code over the alphabet of size q, where q is a prime,
then a lattice over this code is

Λ(C) = {λ ∈ R
n : λ = (cmod q), c ∈ C}.

The mapping from the code to the lattice is often referred to as Construction
A [14]. The lattice Λ(C) is called the q-ary lattice associated with C.

A typical application is to use the lattice Λ(C) as a codebook for quantization
of sequences x ∈ R

n. Let Q(x) be the lattice point closest to x if the squared
error is used as a fidelity criterion. We call Q(x) an MSE quantizer. The second
moment of Λ, denoted by σ2 = σ2(Λ), is defined as the second moment per
dimension of a uniform distribution over its fundamental region V, i.e.,

σ2 =
1
n

·
∫

V
||x||2 1

V ol(V)
dx. (1)

From the literature [13,14] of lattice codes, we know that the value σ2 can
be represented as

σ2 = G(Λ) · V ol(V)
2
n , (2)

where G(Λ) is called the normalized second moment, which represents a figure
of merit of a lattice quantizer with respect to the MSE distortion measure. We
denote the minimum possible value of G(Λ) over all lattices in R

n by G(Λn) and
it is known that

1
2πe

< G(Λn) ≤ 1
12

, (3)

where the upper bound is achieved when the lattice is generated by Z
n, and the

lower one is achieved asymptotically by lattices generated by Construction A
from q-ary random linear codes [18,27,35].

3 The BKW Algorithm

The BKW algorithm was proposed by Blum et al. [7] and was originally targeting
the LPN problem. However, it is trivially adopted also to the LWE problem.

As with Wagner’s generalized birthday algorithm, the BKW approach uses
an iterative collision procedure on the columns in the generator matrix A, which
step by step reduces the dimension of A. Summing together columns that collide
in some subset of positions and keeping them as columns in a new matrix reduces
the dimension but increases the size of the noise.

A brief description inspired by the notation in [22] follows. Initially, one
searches for all combinations of two columns in A with the same last b entries.
Assume that one finds two columns aTi1 ,a

T
i2

such that

ai1 − ai2 = (∗ ∗ · · · ∗ 0 0 · · · 0
︸ ︷︷ ︸
b symbols

),

30 Q. Guo et al.

where ∗ means any value. Then a new vector a(2)1 = ai1 − ai2 is formed. An
“observed symbol” is also formed, corresponding to this new column by forming
z
(2)
1 = zi1 − zi2 . If y

(2)
1 =

〈
s,a(2)1

〉
, then z

(2)
1 = y

(2)
1 + e

(2)
1 , where now e

(2)
1 =

ei1 −ei2 . Recall that noise like ei1 follows the Gaussian distribution with variance
σ2, so e

(2)
1 = ei1 −ei2 is considered to be Gaussian distributed with variance 2σ2.

There is also a second obvious way of getting collisions, namely, combining any
two vectors where the sum of the collision sets is zero. The procedure is analog
to the above, just replacing subtraction with addition.

There are different approaches to realizing the above merging procedure. We
consider the approach called LF1 in [24], which computes the difference between
one fixed column and any other column with the same last b entries (in absolute
value), and forwards this to the next BKW step.

Put all such new columns in a matrix A2,

A2 = (a(2)T1 a(2)T2 . . . a(2)Tm2
).

If m is the number of columns in A, then we have the number of columns in A2

to be m2 = m − qb−1
2 . Hence, using the LF1 approach, the number of samples

(columns) forwarded to the next step of BKW is slowly decreasing (by qb−1
2

for each step). It is known from simulation, that the LF2 approach [24] which
gives more surviving samples, performs well and could be chosen in an actual
implementation.

Now the last b entries of columns in A2 are all zero. In connection to this
matrix, the vector of observed symbols is

z2 = (z(2)1 z
(2)
2 · · · z(2)

m− qb−1
2

),

where z
(2)
i −y

(2)
i are assumed Gaussian with variance 2σ2, for 1 ≤ i ≤ m− qb−1

2 .
This completes one step of the BKW algorithm.

We then iterate the same for i = 2, 3, . . . , t, picking a new collision set of size
qb−1
2 and finding colliding columns in Ai, giving new vectors with an additional

b entries being zero, forming the columns of Ai+1. Repeating the same procedure
an additional t−2 times will reduce the number of unknowns in the secret vector
s to n − bt in the remaining problem.

For each iteration the noise is increased. After t BKW steps the noise con-
nected to each column is of the form

e =
2t

∑

j=1

eij
,

and the total noise is approximately Gaussian with variance 2t · σ2.
Altogether we have reduced the LWE instance to a smaller instance, where

now the length of the secret vector is n′ = n − tb, but the noise has variance
2t · σ2. The remaining unknown part of the secret vector s is guessed (a total

Coded-BKW: Solving LWE Using Lattice Codes 31

of qn−tb) and for each guess we check through a hypothesis test whether the
remaining samples follow the Gaussian distribution. The number of remaining
samples is at least m − t · qb−1

2 .
Note that there is an improved version of BKW using lazy modulus reduc-

tion [3] and the very recent improvement in [17].

4 A Modified BKW Algorithm for the LWE Problem

The new algorithm we propose uses the same structure as the BKW algorithm.
The new idea involves changing the BKW step to a more advanced step that
can remove more positions in the treated vectors at the expense of leaving an
additional noise term.

We introduce some additional notation. For the index set I, we make use of
vI to denote the vector with entries indexed by I. Alternatively, we utilize the
symbol v[1,...,n] to denote the vector containing the first n entries of v, etc.

4.1 A New BKW Step

Recall the BKW step, taking a large number of vectors ai and trying to collide
them in a set of positions determined by an index set I. This part of the vector
a is written as aI . The size of the collision set (qb−1

2) and the number of vectors
have to be of the same order, which essentially determines the complexity of the
BKW algorithm, as the number of steps we can perform is determined by the
variance of the noise.

We propose to do the BKW step in a different manner. Assuming that we
are considering step i in the BKW process, we fix a q-ary linear code with
parameters (Ni, b), called Ci. The code gives rise to a lattice code. Now, for any
given vector aI as input to this BKW step, we approximate the vector by one
of the codewords in the code Ci.

We rewrite aI into two parts, the codeword part cI ∈ Ci and an error part
eI ∈ Z

Ni
q , i.e.,

aI = cI + eI . (4)

Clearly, we desire the error part to be as small as possible, so we adopt a decoding
procedure to find the nearest codeword in the chosen code Ci using the Euclidean
metric. Here, we utilize syndrome decoding by maintaining a large syndrome
table, and details will be discussed thoroughly later.

Each vector aI is then sorted according to which codeword it was mapped
to. Altogether, there are qb possible codewords. Finally, generate new vectors for
the next BKW step by subtracting vectors mapped to the same codeword (or
adding to the zero codeword).

The inner product 〈sI ,aI〉 is equal to

〈sI ,aI〉 = 〈sI , cI〉 + 〈sI , eI〉 .

By subtracting two vectors mapped to the same codeword we cancel out the
first part of the right hand side and we are left with the noise. The latter term
is referred to as the error term introduced by coding.

32 Q. Guo et al.

Let us examine the samples we have received after t BKW steps of this
kind. In step i we have removed Ni positions, so in total we have now removed∑t

i=1 Ni positions (Ni ≥ b). The received samples are created from summing 2t

original samples, so after guessing the remaining symbols in the secret vector
and adjusting for its contribution, a received symbol z can be written as a sum
of noise variables,

z =
2t

∑

j=1

eij
+

n∑

i=1

si(E
(1)
i + E

(2)
i + · · · + E

(t)
i), (5)

where E
(h)
i =

∑2t−h+1

j=1 ê
(h)
ij

and ê
(h)
ij

is the coding noise introduced in step h of
the modified BKW algorithm. Note that on one position i, at most one error
term E

(h)
i is non-zero.

We observe that noise introduced in early steps is increased exponentially in
the remaining steps, so the procedure will use a sequence of codes with decreasing
rate. In this way the error introduced in early steps will be small and then it
will eventually increase.

4.2 Analyzing the Error Distribution

There are many approaches to estimating the error distribution introduced by
coding. The simplest way is just assuming that the value is a summation of sev-
eral independent discrete Gaussian random variables. This estimation is easily
performed and fairly accurate. A second approach is to compute the error dis-
tribution accurately (to sufficient precision) by computer. We should note that
the error distribution is determined from the linear code employed. We now rely
on some known result on lattice codes to provide a good estimate on the size of
the noise introduced by coding.

We assume that the error vector e introduced by the coding technique
remains discrete Gaussian, and their summation is discrete Gaussian as well,
just as in previous research. As the error is distributed symmetrically we should
estimate the value E[||e||2] to bound the effect of the error, where e is the error
vector distributed uniformly on the integer points inside the fundamental region
V of the lattice generated by Construction A.

Thus, the problem of decoding transforms to an MMSE quantizing problem
over the corresponding lattice. For simplicity of analysis, we change the hypoth-
esis and assume that the error vector e is distributed uniformly and continuously
on V. Thus we can utilize the theory on lattice codes to give a fairly accurate esti-
mation of the value 1

N E[||e||2], which exactly corresponds to the second moment
of the lattice σ2. As given in Eq. (2), we can write it as,

σ2 = G(Λ) · V ol(V)
2
N .

In our scheme, although we employ several different linear codes with different
rates, we also try to make the contribution of every dimension equal. We generate
a lattice Λ by Construction A, given a linear code. We denote the minimum

Coded-BKW: Solving LWE Using Lattice Codes 33

possible value of G(Λ) over all lattices Λ in Z
n generated by Construction A

from an [N, k] linear code as G(ΛN,k).
Definitely G(ΛN,k) is no less than G(ΛN); thus it is lower bounded by the

value 1
2πe and this bound can be achieved asymptotically. For the lattice gen-

erated by Z
N , i.e., employing a trivial linear code without redundancy, its nor-

malized second moment is 1
12 . Therefore, the value G(ΛN,k) satisfies

1
2πe

< G(ΛN,k) ≤ 1
12

.

We set G(ΛN,k) to be 1
12 and surely this is a pessimistic estimation. Since the

lattice is built from a linear code by Construction A, the volume of V is qN−k.
Thus, we can approximate σ by

σ ≈ q1−k/N ·
√

G(ΛN,k) =
q1−k/N

√
12

. (6)

We have numerically tested the smallest possible variance of errors introduced
by coding, given several small sizes of N, k and q, (e.g., [N, k] is [3, 1] or [2, 1], q
is 631, 2053 or 16411) and verified that the above estimation works (see Table 3,
where 1/G is bounding 1/G(ΛN,k)). We choose [N, 1] codes since for the covering
or MMSE property, lower rate means worse performance.

It is folklore that the value G will decrease when the dimension and length
becomes larger, and all the cases listed in Table 3 fully obey the rule. Thus
we believe that we may have even better performance when employing a more
complicated code for a larger problem. Actually, the values without a † sign in
Table 3 is computed using randomly chosen linear codes, and they still outper-
form our estimation greatly. This observation fits the theory well that when the
dimension n is large, a random linear code may act nearly optimally.

From Eq. (6) we know the variance of the error term from the coding part.
Combining this with Eq. (5), we get an estimation of the variance of the total
noise for the samples that we create after t modified BKW steps.

4.3 Decoding Method and Constraint

Here we discuss details of syndrome decoding and show that the additional cost
is under control. Generally, we characterize the employed [N, k] linear code by a
systematic generator matrix M =

[
IF′]

k×N
. Thus, a corresponding parity-check

matrix H =
[
F′T I

]
(N−k)×N

is directly obtained.

Table 3. Numerical evaluations on 1/G

q 631 2053 16411

code [2,1] [3,1] [4,1] [2,1] [3,1] [4,1] [2,1] [3,1]

E[||e||2] 101.26† 1277.31 4951.53 329.24† 6185.67 29107.73 2631.99† 99166.25

1/G 12.46 12.71 12.80 12.47 12.65 12.78 12.47 12.62

The value with a † sign means that it is optimal.

34 Q. Guo et al.

The syndrome decoding procedure is described as follows. (1) We construct
a constant-time query table containing qN−k items, in each of which we store
the syndrome and its corresponding error vector with minimum Euclidean dis-
tance. (2) When the syndrome is computed, by checking the table, we locate its
corresponding error vector and add them together, thereby yielding the desired
nearest codeword.

We generalize the method in [22] to the non-binary case Zq for computing
the syndrome efficiently. Starting by sorting the vectors aI by the first k entries,
we then partition them accordingly; thus there are qk partitions denoted Pj , for
1 ≤ j ≤ qk. We can read the syndrome from its last N − k entries directly if
the vector aI belongs to the partition with the first k entries all zero. Then we
operate inductively. If we know one syndrome, we can compute another one in
the same partition within 2(N − k) Zq operations, or compute one in a different
partition whose first k entries with distance 1 from that in the known partition
within 3(N − k) Zq operations. Suppose we have mdec vectors to decode here
(generally, the value mdec is larger than qk), then the complexity of this part
is bounded by (N − k)(2mdec + qk) < 3mdec(N − k). Since the cost of adding
error vectors for the codewords is mdecN , we can give an upper bound for the
decoding cost, which is roughly 4mdecN .

Concatenated Constructions. The drawback of the previous decoding strat-
egy is that a large table is required to be stored with size exponential in N − k.
On the other hand, there is an inherent memory constraint, i.e., O (

qb
)
, when

the size b is fixed, which dominates the complexity of the BKW-type algorithm.
We make use of a narrow sense concatenated code defined by direct sum-

ming several smaller linear codes to simplify the decoding procedure, when the
decoding table is too large. This technique is not favored in coding theory since
it diminishes the decoding capability, but it works well for our purpose.

5 Algorithm Description

We present a detailed description of the new algorithm in this section, containing
five steps. This is illustrated in Algorithm 1 below.

5.1 Gaussian Elimination

The goal of this step is to transform the distribution of secret vector s to be that
of the error (c.f. [4,23] for similar ideas). We refer to the full version for details
on deriving the complexity of this step.

The complexity of this step is as follows,

C0 = (m − n′) · (n + 1) · n′

b − 1
� < m(n + 1) · n′

b − 1
�, (7)

where n′ = n − t1b.

Coded-BKW: Solving LWE Using Lattice Codes 35

Algorithm 1. New LWE solving algorithm (main steps)

5.2 Standard BKW Reductions

The previously described coded-BKW in Sect. 4 introduces noise that grows with
each iteration, so it makes sense to start with a number of pure BKW reductions.
We start by performing t1 standard BKW steps to balance the two noise parts,
i.e., the noise increased by merging and the noise introduced by coding. This
step zeros out the bottom t1 · b bits. We now explain the details.

Given the output of the Gaussian elimination, i.e., ẑ and Â = (IL0), we
process only on the non-systematic part of Â, denoted by L0. Similar as the other
BKW procedures [7], in each step we sort the vector by the last b unprocessed
entries and thus divide the total samples into at most qb−1

2 classes. Then, we
merge (adding or subtracting) those in the same class to zero the considered b
entries, forming new samples as the input to the next BKW step, L1,L2, etc.

The output of this step is a matrix (ILt), where all t1b last entries in each
column of Lt are zero. Collecting the first n − t1b rows of the matrix Lt and
appending the identity matrix in front, we have a series of new LWE samples
with dimension n − t1b. The complexity of this step is

C1 =
t1∑

i=1

(n + 1 − ib)(m − i(qb − 1)
2

). (8)

5.3 Coded-BKW Reductions

We next continue to perform t2 coded-BKW steps, in each of which an [Ni, b]
q-ary linear code is utilized. Here various rates are employed to equalize the error
contribution per dimension. The code length Ni in the (t2− i+1)th coded-BKW
step is a function of a preset variance value σ2

set which is determined by the error
level introduced by the codes utilized in the last phase — subspace hypothesis
testing. We know that in the final error expression there are 2t2−i+1 error terms
from the i-th coded BKW step. Thus, we have the following equation,

σ2
set =

2iq
2(1− b

Ni
)

12
.

36 Q. Guo et al.

Thus, the code length Ni is chosen as,

Ni =

⌊
b

1 − 1
2 logq(12 · σ2

set

2i)

⌋

.

By ncod we denote the total number of positions canceled by the coded-
BKW steps, i.e., ncod =

∑t2
i=1 Ni. We denote the number of samples after the

last coded-BKW step by M . Following Sect. 4.3, the decoding cost is upper
bounded by

C ′
2 =

t2∑

i=1

4(M +
i(qb − 1)

2
)Ni,

where (M + i(qb−1)
2) is the number of samples processed in the (t2 − i + 1)-th

step. Thus, the overall complexity of this step is

C2 = C ′
2 +

t2∑

i=1

(ntop + ntest +
i∑

j=1

Nj)(M +
(i − 1)(qb − 1)

2
). (9)

5.4 Partial Guessing

The previous step outputs samples with smaller dimension but higher noise
variance. In order to deal with the remaining unknowns in the secret ŝ vector, we
use a combination of testing all values by guessing and performing a hypothesis
test using an FFT.

In this step we perform a simple partial guessing technique, which balances
the complexity of the previous steps and the later FFT testing phase. We exhaust
the top ntop entries of ŝ with the absolute value less than d; thus there are
(2d+1)ntop candidates. Thus, the complexity of this step is just that of updating
the observed symbol, i.e.,

C3 = Mntop(2d + 1)ntop . (10)

The upcoming last step is performed for each such guess.

5.5 Subspace Hypothesis Testing

Here we generalize the subspace hypothesis testing technique first proposed in
[22] to Zq case, and then combine with Fast Fourier Transform to calculate the
occurrences of different symbols in Zq efficiently. This information would yield
an optimal distinguisher with a small additional cost.

We use a polynomial in the quotient ring Z[X]/(Xq −1) to record the occur-
rences. The modulus (Xq − 1) is determined by the group property of Zq. We
employ an [ntest, l] systematic linear code, group the samples (â′

i, ẑ
′
i) from the

previous steps in sets L(ci) according to their nearest codewords and define the
function fci

L (X) as
fci

L (X) =
∑

(a′
i,z

′
i)∈L(ci)

X ẑ′
i(mod q).

Coded-BKW: Solving LWE Using Lattice Codes 37

Due to the systematic feature of the code utilized, we rewrite fci

L (X) as a
function of the information part u of the codeword ci, denoted by hu(X) =
fci

L (X), and later we exhaust all the ql possible values of the vector u. Define

Hy(X) =
∑

u∈Zl
q

hu(X) · X−〈y,u〉.

Here we exhaust all candidates of y ∈ Z
l
q. Then, there exits a unique vector y ∈

Z
l
q, s.t., 〈y,u〉 = 〈ŝ, ci〉 . For the right guess, the polynomial Hy(X) will record

the occurrences of the error symbols which are discrete Gaussian distributed;
otherwise, it should be uniformly distributed.

The calculation of the polynomial Hy(X) can be accelerated by Fast Fourier
Transform. Let ω be a primitive q-th root of unity in the complex field C. We can
interpolate the polynomial Hy(X) if we know its q values at the q different points
(1, ω, ω2, . . . , ωq−1) with complexity about O (q log2(q)). Thus, the problem is
transformed to a polynomial evaluation problem.

We first evaluate ql polynomials hu(X) on q different points (1, ω, ω2, . . . ,
ωq−1) with the complexity O (

ql · q log2 q
)
. Then with these values stored, we can

evaluate the polynomial Hy(X) using q FFTs, each of which costs O (
ql log2(ql)

)
.

If the symbol occurrences are known, then we obtain the belief levels of all
the candidates using a Neyman-Pearson test [15]. We choose the one with the
highest rank and output it. This testing adds O (

ql+1
)
Zq-operations. Similar

to that in the LPN case [22], recovering the remaining information can be done
by iteratively employing this procedure to solve smaller LWE instances whose
complexity is negligible compared to that of knowing the first part.

The employed [ntest, l] linear code brings in an error with variance per dimen-
sion q2(1−l/ntest)

12 . We denote it by σ2
set, which is manipulated as a preset parame-

ter in the previous coded-BKW phase to control the code sizes. As before, the
decoding cost in this step is upper bounded by

C ′
4 = 4Mntest.

We introduce a new notation ntot = ncod + ntest to denote the total length of
the subvectors affected by coding. The overall complexity of this step is given as

C4 = C ′
4 + (2d + 1)ntop(CFFT · ql+1(l + 1) log2 q + ql+1). (11)

Here CFFT is the constant before the complexity order of an FFT.

6 Analysis of the New Approach for BKW

We denote by P (d) the probability that the absolute value of one guessed symbol

ŝi is smaller than d, where ŝi
$← Xσ. Here we obtain a lower bound of P (d) by

ignoring the folding feature of the distribution as P (d) > erf(d√
2σ

), where erf is

the error function erf(x) = 2√
π

∫ x

0
e−t2dt.

38 Q. Guo et al.

In the testing step, we preset a noise level γ2σ2σ2
setntot to be the variance

of the noise introduced by coding, and then compute the required number of
samples to perform a successful distinguishing. The process may fail if the size of
the information subvector to be tested, denoted ŝtest, is too large to distinguish.
Thus we need a new notion, Ptest, to denote the probability that the Euclidean
length of ŝtest is less than a preset value γ

√
ntotσ. Using the following lemma

from [28], which is a tail bound on discrete Gaussians, we can upper bound the

failure probability by (γe
1−γ2

2)ntot .

Lemma 1. For any γ ≥ 1, Pr[||v|| > γσ
√

n;v $← DZn,σ] < (γe
(1−γ2)

2)n.

Later we set the value γ to be 1.2. Then, the estimated success probability is
larger than 97.5% in most of the applications. We summarize our findings in the
following theorem.

Theorem 1 (The Complexity of Algorithm 1). Let (n, q, σ) be the parame-
ters of the chosen LWE instance. Let d, t1, t2, b, l, ntest be algorithm parameters.
The number of Zq operations required for a successful run of the new attack is

C =
C0 + C1 + C2 + C3 + C4

(P (d))ntop · Ptest
, (12)

with C0, . . . , C4 as in Eqs. (7)–(11).
The required number of samples M for testing is set to be3

M =
4 ln((2d + 1)ntopql)

Δ(Xσfinal
‖U)

,

where U is the uniform distribution in Zq and σ2
final = 2t1+t2σ2 + γ2σ2σ2

setntot.
Thus, the number of calls to the LWE oracle is

m =
(t1 + t2)(qb − 1)

2
+ M.

Proof. The cost for one iteration is C0 + C1 + C2 + C3 + C4, which should be
divided by its expected success probability (P (d))ntop · Ptest.

7 A Variant of Coded-BKW for Binary-LWE

We can derive an efficient algorithm for binary-LWE by modifying certain steps
accordingly. First, the distribution of the information vector is already of small
size in Zq; therefore we skip the Gaussian elimination step. In addition, since
the prime q is a relatively large symbol, it is beneficial to replace the step of
the FFT hypothesis testing by a simple step exhausting all the combinations of
the top ntop entries, which are uniformly chosen from the binary set {0, 1}ntop .
The variant is similar to Algorithm 1, so we omit it here and refer the interested
reader to the full version for details.
3 The constant factor in the formula is chosen as 4. According to some estimates on

linear and differential cryptanalysis (e.g., [6,33]), its failure probability is fairly low.

Coded-BKW: Solving LWE Using Lattice Codes 39

15 30 45 60

5

10

15

20 varianceroof

standardBKW

coded-BKWtheory

coded-BKWsimulation

w/unnaturalselection

Fig. 1. Number of eliminated rows vs. log2 of error variance.Number of eliminated rows
vs. log2 of error variance.

8 Simulation

We have performed simulations to support our theoretical results. A simulation
with parameters (q, σ, #samples) =

(
2053, 2.70, 225

)
is shown in Fig. 1, plotting

the number of eliminated rows vs. log2 of the variance of the samples errors. Four
standard 2-row BKW steps were used initially, followed by three iterations each
of [3,2]-, [4,2]-, [5,2]- and [6,2]-coding steps. The dashed horizontal line shows the
variance of the corresponding uniform distribution (variance roof) of the errors,
setting an upper bound for variance in simulations. The four curves show the
performances of 2-step BKW (theoretical), theoretical coded-BKW (according
to Sect. 6), coded-BKW simulation, and coded-BKW simulation when employing
the unnatural selection heuristic (see [3]).

It is clear that coded-BKW significantly outperforms plain BKW. Further-
more, it can be seen that the developed theoretical estimations for coded-BKW
very closely match actual simulation performance.

Last but not least, the unnatural selection heuristic can be employed by
producing more samples, but retaining only the ones with the smallest coding
errors. Instead of producing 225 samples, 227 were produced at each step. There
is a clear gain in variance performance, and that gain is even larger when the
sample factor is increased. These results will be detailed in the full version.

9 Summary of Results

We now present numerical results, as shown in Tables 1 and 2, using the new
algorithms to solve the LWE and binary-LWE problems for various parameter
settings, including instances from Regev’s cryptosystem [31] or from Lindner
and Peikert’s paper [25]. As in [17], we consider operations over C to have the
same complexity as the operation in Zq, and set CFFT to be 1, which is the best
we can obtain for an FFT. We also set γ = 1.2 and d = 3σ.

As in [1], we apply the new method to the instances proposed in a somewhat
homomorphic encryption scheme [2], which can be considered as LWE instances
using linearization. Our method yields substantial improvements in all cases

40 Q. Guo et al.

and especially solves an instance with the number of variables in the linearized
system n = 153 (targeting 128-bit security [1]), in about 2119 bit operations,
thereby breaking the claimed security level.

We present here additional information about the comparisons in Tables 1
and 2. Firstly, only the new algorithms and the algorithm proposed in [17] are
key-recovery attacks; all the others belong to the class of distinguishing attacks.
Secondly, the counterpart proposed by Albrecht et al. [3] is the version without
unnatural selection, since we can also improve our algorithm by this heuristic.
Thus, we accelerate the BKW-type binary-LWE solver by a factor of almost
220, for the toy instance n = 128 in Regev’s parameter setting. Last, we adopt
the estimating model in [1,3] using data from the implementations in [11,25,26]
to evaluate the performance of the lattice reduction distinguisher, when LWE is
reduced to SIS. We refer the interested readers to these two papers for details.

When reducing LWE to BDD, also named “Decode” in [25], Lindner and
Peikert reported the running time of this attack on two LWE instances. Albrecht
et al. [1] multiplied the time by the clock speed of the CPU used, compared with
their BKW variant, and finally reached the conclusion that the BDD approach
would yield substantially lower complexity. Specifically, their estimation about
this “Decode” approach on one (with parameter (136, 2003, 5.19)) of the two
instances is about 291.4

Zq operations. We obtain a much better time complexity
of about 280.6 operations over Zq, when applying Algorithm 1 to this instance.

As Ring-LWE is a sub-problem of LWE, the new algorithm can be employed
to attack some recent Ring-LWE-based cryptosystems [16,21,32]. We solve
the underlying Ring-LWE (256, 7681, 4.51) and Ring-LWE (512, 12289, 4.86)
instantiations in 2123 and 2225 bit-operations, respectively, thereby breaking the
claimed 128-bit and 256-bit security levels.

10 Conclusion

We have proposed a new algorithm to solve the LWE problem by modifying
the steps of the BKW algorithm using lattice codes. Our algorithm outperforms
the previous BKW variants for all instantiations we considered and also all the
lattice reduction approaches from some size of instances and onwards. To the
best of our knowledge, it is the best LWE solver when the dimension n is large
enough and it seems to cover the choices of today’s and future security levels.
Another application is that it outperforms all the other approaches drastically
on the binary-LWE problem.

References

1. Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the Com-
plexity of the BKW Algorithm on LWE. Desig. Codes Crypt. 74, 1–30 (2013)

2. Albrecht, M.R., Farshim, P., Faugère, J.-C., Perret, L.: Polly cracker, revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 179–196.
Springer, Heidelberg (2011)

Coded-BKW: Solving LWE Using Lattice Codes 41

3. Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus switching
for the BKW algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 429–445. Springer, Heidelberg (2014)

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

6. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

7. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

8. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012)

9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing, STOC 2013, pp. 575–584. ACM (2013)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pp. 97–106. IEEE Computer Society (2011)

11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

12. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes, vol. 54. Elsevier,
Amsterdam (1997)

13. Conway, J., Sloane, N.: Voronoi regions of lattices, second moments of polytopes,
and quantization. IEEE Trans. Inf. Theory 28(2), 211–226 (1982)

14. Conway, J.H., Sloane, N.J.A., Bannai, E., Leech, J., Norton, S., Odlyzko, A.,
Parker, R., Queen, L., Venkov, B.: Sphere Packings, Lattices and Groups, vol.
3. Springer, New York (1993)

15. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(2012)

16. De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of Ring-LWE Encryption. In: Design, Automation and Test in Europe
(DATE 2015) (2015)

17. Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–
202. Springer, Heidelberg (2015)

18. Erez, U., Litsyn, S., Zamir, R.: Lattices which are good for (almost) everything.
IEEE Trans. Inf. Theory 51(10), 3401–3416 (2005)

19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

42 Q. Guo et al.

21. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012)

22. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer,
Heidelberg (2014)

23. Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive,
Report 2011/377 (2011)

24. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

25. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

26. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

27. Loeliger, H.A.: Averaging bounds for lattices and linear codes. IEEE Trans. Inf.
Theory 43(6), 1767–1773 (1997)

28. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

29. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191.
Springer, Berlin Heidelberg (2009)

30. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Comput-
ing, pp. 333–342. ACM (2009)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

32. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact
Ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 371–391. Springer, Heidelberg (2014)

33. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Crypt. 21(1), 131–147 (2008)

34. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 288. Springer, Heidelberg (2002)

35. Zamir, R., Feder, M.: On lattice quantization noise. IEEE Trans. Inf. Theory 42(4),
1152–1159 (1996)

An Improved BKW Algorithm for LWE
with Applications to Cryptography and Lattices

Paul Kirchner1 and Pierre-Alain Fouque2(B)

1 École Normale Supérieure, Paris, France
paul.kirchner@ens.fr

2 Université de Rennes 1 and Institut Universitaire de France, Rennes, France
pierre-alain.fouque@ens.fr

Abstract. In this paper, we study the Learning With Errors problem
and its binary variant, where secrets and errors are binary or taken in
a small interval. We introduce a new variant of the Blum, Kalai and
Wasserman algorithm, relying on a quantization step that generalizes
and fine-tunes modulus switching. In general this new technique yields
a significant gain in the constant in front of the exponent in the over-
all complexity. We illustrate this by solving within half a day a LWE
instance with dimension n = 128, modulus q = n2, Gaussian noise
α = 1/(

√
n/π log2 n) and binary secret, using 228 samples, while the

previous best result based on BKW claims a time complexity of 274 with
260 samples for the same parameters.

We then introduce variants of BDD, GapSVP and UniqueSVP, where
the target point is required to lie in the fundamental parallelepiped, and
show how the previous algorithm is able to solve these variants in subex-
ponential time. Moreover, we also show how the previous algorithm can
be used to solve the BinaryLWE problem with n samples in subexpo-
nential time 2(ln 2/2+o(1))n/ log logn. This analysis does not require any
heuristic assumption, contrary to other algebraic approaches; instead, it
uses a variant of an idea by Lyubashevsky to generate many samples
from a small number of samples. This makes it possible to asymptoti-
cally and heuristically break the NTRU cryptosystem in subexponential
time (without contradicting its security assumption). We are also able
to solve subset sum problems in subexponential time for density o(1),
which is of independent interest: for such density, the previous best algo-
rithm requires exponential time. As a direct application, we can solve
in subexponential time the parameters of a cryptosystem based on this
problem proposed at TCC 2010.

1 Introduction

The Learning With Errors (LWE) problem has been an important problem in
cryptography since its introduction by Regev in [34]. Many cryptosystems have
been proven secure assuming the hardness of this problem, including Fully Homo-
morphic Encryption schemes [11,16]. The decision version of the problem can be
described as follows: given m samples of the form (a, b) ∈ (Zq)n×Zq, where a are
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 43–62, 2015.
DOI: 10.1007/978-3-662-47989-6 3

44 P. Kirchner and P.-A. Fouque

uniformy distributed in (Zq)n, distinguish whether b is uniformly chosen in Zq or
is equal to 〈a, s〉+ e for a fixed secret s ∈ (Zq)n and e a noise value in Zq chosen
according to some probability distribution. Typically, the noise is sampled from
some distribution concentrated on small numbers, such as a discrete Gaussian
distribution with standard deviation αq for α = o(1). In the search version of
the problem, the goal is to recover s given the promise that the sample instances
come from the latter distribution. Initially, Regev showed that if αq ≥ 2

√
n,

solving LWE on average is at least as hard as approximating lattice problems
in the worst case to within Õ(n/α) factors with a quantum algorithm. Peikert
shows a classical reduction when the modulus is large q ≥ 2n in [32]. Finally,
in [10], Brakerski et al. prove that solving LWE instances with polynomial-size
modulus in polynomial time implies an efficient solution to GapSVP.

There are basically three approaches to solving LWE: the first relies on lat-
tice reduction techniques such as the LLL [23] algorithm and further improve-
ments [12] as exposed in [25,26]; the second uses combinatorial techniques [9,35];
and the third uses algebraic techniques [6]. According to Regev in [1], the best
known algorithm to solve LWE is the algorithm by Blum, Kalai and Wasser-
man in [9], originally proposed to solve the Learning Parities with Noise (LPN)
problem, which can be viewed as a special case of LWE where q = 2. The time
and memory requirements of this algorithm are both exponential for LWE and
subexponential for LPN in 2O(n/ log n). During the first stage of the algorithm,
the dimension of a is reduced, at the cost of a (controlled) decrease of the bias
of b. During the second stage, the algorithm distinguishes between LWE and
uniform by evaluating the bias.

Since the introduction of LWE, some variants of the problem have been pro-
posed in order to build more efficient cryptosystems. Some of the most interesting
variants are Ring-LWE by Lyubashevsky, Peikert and Regev in [29], which aims
to reduce the space of the public key using cyclic samples; and the cryptosystem
by Döttling and Müller-Quade [14], which uses short secret and error. In 2013,
Micciancio and Peikert [30] as well as Brakerski et al. [10] proposed a binary
version of the LWE problem and obtained a hardness result.

Related Work. Albrecht et al. have presented an analysis of the BKW algo-
rithm as applied to LWE in [3,4]. It has been recently revisited by Duc et al., who
use a multi-dimensional FFT in the second stage of the algorithm [15]. However,
the main bottleneck is the first BKW step and since the proposed algorithms do
not improve this stage, the overall asymptotic complexity is unchanged.

In the case of the BinaryLWE variant, where the error and secret are binary
(or sufficiently small), Micciancio and Peikert show that solving this problem
using m = n(1 + Ω(1/ log(n))) samples is at least as hard as approximating lat-
tice problems in the worst case in dimension Θ(n/ log(n)) with approximation
factor Õ(

√
nq). We show in the full version that existing lattice reduction tech-

niques require exponential time. Arora and Ge describe a 2Õ(αq)2-time algorithm
when q > n to solve the LWE problem [6]. This leads to a subexponential time
algorithm when the error magnitude αq is less than

√
n. The idea is to trans-

form this system into a noise-free polynomial system and then use root finding

An Improved BKW Algorithm for LWE with Applications to Cryptography 45

algorithms for multivariate polynomials to solve it, using either relinearization
in [6] or Gröbner basis in [2]. In this last work, Albrecht et al. present an algo-
rithm whose time complexity is 2

(ω+o(1))n log log log n
8 log log n when the number of samples

m = (1 + o(1))n log log n is super-linear, where ω < 2.3728 is the linear algebra
constant, under some assumption on the regularity of the polynomial system of
equations; and when m = O(n), the complexity becomes exponential.

Contribution. Our first contribution is to present in a unified framework the
BKW algorithm and all its previous improvements in the binary case [8,18,21,24]
and in the general case [4]. We introduce a new quantization step, which gener-
alizes modulus switching [4]. This yields a significant decrease in the constant of
the exponential of the complexity for LWE. Moreover our proof does not require
Gaussian noise, and does not rely on unproven independence assumptions. Our
algorithm is also able to tackle problems with larger noise.

We then introduce generalizations of the BDD, GapSVP and UniqueSVP prob-
lems, and prove a reduction from these variants to LWE. When particular para-
meters are set, these variants impose that the lattice point of interest (the point
of the lattice that the problem essentially asks to locate: for instance, in the case
of BDD, the point of the lattice closest to the target point) lie in the fundamental
parallelepiped; or more generally, we ask that the coordinates of this point rela-
tive to the basis defined by the input matrix A has small infinity norm, bounded
by some value B. For small B, our main algorithm yields a subexponential-time
algorithm for these variants of BDD, GapSVP and UniqueSVP.

Through a reduction to our variant of BDD, we are then able to solve the
subset-sum problem in subexponential time when the density is o(1), and in time
2(ln 2/2+o(1))n/ log log n if the density is O(1/ log n). This is of independent inter-
est, as existing techniques for density o(1), based on lattice reduction, require
exponential time. As a consequence, the cryptosystems of Lyubashevsky, Palacio
and Segev at TCC 2010 [28] can be solved in subexponential time.

As another application of our main algorithm, we show that BinaryLWE with
reasonable noise can be solved in time 2(ln 2/2+o(1))n/ log log n instead of 2Ω(n); and
the same complexity holds for secret of size up to 2logo(1) n. As a consequence,
we can heuristically recover the secret polynomials f ,g of the NTRU problem
in subexponential time 2(ln 2/2+o(1))n/ log log n (without contradicting its security
assumption). The heuristic assumption comes from the fact that NTRU samples
are not random, since they are rotations of each other: the heuristic assumption
is that this does not significantly hinder BKW-type algorithms. Note that there
is a large value hidden in the o(1) term, so that our algorithm does not yield
practical attacks for recommended NTRU parameters.

Our results are extended to the case where the secret is small with respect
to the L2 norm in the full version.

2 Preliminaries

We identify any element of Z/qZ to the smallest of its equivalence class, the
positive one in case of tie. Any vector x ∈ (

Z/qZ
)n has an Euclidean norm

46 P. Kirchner and P.-A. Fouque

||x|| =
√∑n−1

i=0 x2
i and ||x||∞ = maxi|xi|. A matrix B can be Gram-Schmidt

orthogonalized in B̃, and its norm ||B|| is the maximum of the norm of its
columns. We denote by (x|y) the vector obtained as the concatenation of vectors
x,y. Let I be the identity matrix and we denote by ln the neperian logarithm and
log the binary logarithm. A lattice is the set of all integer linear combinations
Λ(b1, . . . ,bn) =

∑
i bi ·xi (where xi ∈ Z) of a set of linearly independent vectors

b1, . . . ,bn called the basis of the lattice. If B = [b1, . . . ,bn] is the matrix basis,
lattice vectors can be written as Bx for x ∈ Z

n. Its dual Λ∗ is the set of x ∈ R
n

such that 〈x,Λ〉 ⊂ Z
n. We have Λ∗∗ = Λ. We borrow Bleichenbacher’s definition

of bias [31].

Definition 1. The bias of a probability distribution φ over Z/qZ is

Ex∼φ[exp(2iπx/q)].

This definition extends the usual definition of the bias of a coin in Z/2Z: it
preserves the fact that any distribution with bias b can be distinguished from
uniform with constant probability using Ω(1/b2) samples, as a consequence of
Hoeffding’s inequality; moreover the bias of the sum of two independent variable
is still the product of their biases. We also have the following simple lemma:

Lemma 1. The bias of the Gaussian distribution of mean 0 and standard devi-
ation qα is exp(−2π2α2).

Proof. The bias is the value of the Fourier transform at −1/q. �	
We introduce a non standard definition for the LWE problem. However as

a consequence of Lemma 1, this new definition naturally extends the usual
Gaussian case (as well as its standard extensions such as the bounded noise
variant [10, Definition 2.14]), and it will prove easier to work with.

Definition 2. Let n ≥ 0 and q ≥ 2 be integers. Given parameters α and ε, the
LWE distribution is, for s ∈ (Z/qZ)n, a distribution on pairs (a, b) ∈ (Z/qZ)n ×
(R/qZ) such that a is sampled uniformly, and for all a,

|E[exp(2iπ(〈a, s〉 − b)/q)|a] exp(α′2) − 1| ≤ ε

for some universal α′ ≤ α.
For convenience, we define β =

√
n/2/α. In the remainder, α is called the

noise parameter1, and ε the distortion parameter. Also, we say that a LWE dis-
tribution has a noise distribution φ if b is distributed as 〈a, s〉 + φ.

Definition 3. The Decision-LWE problem is to distinguish a LWE distribution
from the uniform distribution over (a, b). The Search-LWE problem is, given sam-
ples from a LWE distribution, to find s.

1 Remark that it differs by a constant factor from other authors’ definition of α.

An Improved BKW Algorithm for LWE with Applications to Cryptography 47

Definition 4. The real λi is the radius of the smallest ball, centered in 0, such
that it contains i vectors of the lattice Λ which are linearly independent.

We define ρs(x) = exp(−π||x||2/s2) and ρs(S) =
∑

x∈S ρs(x) (and similarly
for other functions). The discrete Gaussian distribution DE,s over a set E and of
parameter s is such that the probability of DE,s(x) of drawing x ∈ E is equal to
ρs(x)/ρs(E). To simplify notation, we will denote by DE the distribution DE,1.

Definition 5. The smoothing parameter ηε of the lattice Λ is the smallest s such
that ρ1/s(Λ∗) = 1 + ε.

Now, we will generalize the BDD, UniqueSVP and GapSVP problems by using
another parameter B that bounds the target lattice vector. For B = 2n, we
recover the usual definitions if the input matrix is reduced.

Definition 6. The BDD
||.||∞
B,β (resp. BDD||.||

B,β) problem is, given a basis A of the
lattice Λ, and a point x such that ||As − x|| ≤ λ1/β < λ1/2 and ||s||∞ ≤ B
(resp. ||s|| ≤ B), to find s.

Definition 7. The UniqueSVP
||.||∞
B,β (resp. UniqueSVP

||.||
B,β) problem is, given a

basis A of the lattice Λ, such that λ2/λ1 ≥ β and there exists a vector s such
that ||As|| = λ1 with ||s||∞ ≤ B (resp. ||s|| ≤ B), to find s.

Definition 8. The GapSVP
||.||∞
B,β (resp. GapSVP||.||

B,β) problem is, given a basis A
of the lattice Λ to distinguish between λ1(Λ) ≥ β and if there exists s �= 0 such
that ||s||∞ ≤ B (resp. ||s|| ≤ B) and ||As|| ≤ 1.

Definition 9. Given two probability distributions P and Q on a finite set S,
the Kullback-Leibler (or KL) divergence between P and Q is

DKL(P ||Q) =
∑

x∈S

ln
(

P (x)
Q(x)

)

P (x) with ln(x/0) = +∞ if x > 0.

The following two lemmata are proven in [33]:

Lemma 2. Let P and Q be two distributions over S, such that for all x, |P (x)−
Q(x)| ≤ δ(x)P (x) with δ(x) ≤ 1/4. Then:

DKL(P ||Q) ≤ 2
∑

x∈S

δ(x)2P (x).

Lemma 3. Let A be an algorithm which takes as input m samples of S and
outputs a bit. Let x (resp. y) be the probability that it returns 1 when the input
is sampled from P (resp. Q). Then:

|x − y| ≤
√

mDKL(P ||Q)/2.

Finally, we say that an algorithm has a negligible probability of failure if its
probability of failure is 2−Ω(n).2

2 Some authors use another definition.

48 P. Kirchner and P.-A. Fouque

2.1 Secret-Error Switching

At a small cost in samples, it is possible to reduce any LWE instance to an
instance where the secret follows the same distribution as the error [5,10].

Theorem 1. Given an oracle that solves LWE with m samples in time t with the
secret coming from the rounded error distribution, it is possible to solve LWE with
m+O(n log log q) samples with the same error distribution (and any distribution
on the secret) in time t + O(mn2 + (n log log q)3), with negligible probability of
failure.

Furthermore, if q is prime, we lose n + k samples with probability of failure
bounded by q−1−k.

Proof. First, select an invertible matrix A from the vectorial part of
O(n log log q) samples in time O((n log log q)3) [10, Claim 2.13].

Let b be the corresponding rounded noisy dot products. Let s be the LWE
secret and e such that As + e = b. Then the subsequent m samples are trans-
formed in the following way. For each new sample (a′, b′) with b′ = 〈a′, s〉 + e′,
we give the sample (−tA−1a′, b′ − 〈tA−1a′,b〉) to our LWE oracle.

Clearly, the vectorial part of the new samples remains uniform and since

b′ − 〈tA−1a′,b〉 = 〈−tA−1a′,b − As〉 + b′ − 〈a′, s〉 = 〈−tA−1a′, e〉 + e′

the new errors follow the same distribution as the original, and the new secret
is e. Hence the oracle outputs e in time t, and we can recover s as s = A−1(b−e).

If q is prime, the probability that the n + k first samples are in some hyper-
plane is bounded by qn−1q−n−k = q−1−k. �	

2.2 Low Dimension Algorithms

Our main algorithm will return samples from a LWE distribution, while the bias
decreases. We describe two fast algorithms when the dimension is small enough.

Theorem 2. If n = 0 and m = k/b2, with b smaller than the real part of the
bias, the Decision-LWE problem can be solved with advantage 1 − 2−Ω(k) in time
O(m).

Proof. The algorithm Distinguish computes x = 1
m

∑m−1
i=0 cos(2iπbi/q) and

returns the boolean x ≥ b/2. If we have a uniform distribution then the average
of x is 0, else it is larger than b/2. The Hoeffding inequality shows that the
probability of |x − E[x]| ≥ b/2 is 2−k/8, which gives the result. �	

Lemma 4. For all s �= 0, if a is sampled uniformly, E[exp(2iπ〈a, s〉/q)] = 0.

Proof. Multiplication by s0 in Zq is a gcd(s0, q)-to-one map because it is a
group morphism, therefore a0s0 is uniform over gcd(s0, q)Zq. Thus, by using
k = gcd(q, s0, . . . , sn−1) < q, 〈a, s〉 is distributed uniformly over kZq so

E[exp(2iπ〈a, s〉/q)] =
q

k

q/k−1∑

j=0

exp(2iπjk/q) = 0. �	

An Improved BKW Algorithm for LWE with Applications to Cryptography 49

Algorithm 1. FindSecret
function FindSecret(L)

for all (a, b) ∈ L do
f [a] ← f [a] + exp(2iπb/q)

end for
t ← FastFourierTransform(f)
return argmaxs∈(Z/qZ)n�(t[s])

end function

Theorem 3. The algorithm FindSecret, when given m > (8n log q + k)/b2

samples from a LWE problem with bias whose real part is superior to b returns
the correct secret in time O(m + n log2(q)qn) except with probability 2−Ω(k).

Proof. The fast Fourier transform needs O(nqn) operations on numbers of bit
size O(log(q)). The Hoeffding inequality shows that the difference between t[s′]
and E[exp(2iπ(b − 〈a, s′〉)/q)] is at most b/2 except with probability at most
2 exp(−mb2/2). Consequently, it holds for all s′ except with probability at most
2qn exp(−mb2/2) = 2−Ω(k) using the union bound. Then t[s] ≥ b − b/2 = b/2
and for all s′ �= s, t[s′] < b/2 so the algorithm returns s. �	

3 Main Algorithm

In this section, we present our main algorithm, prove its asymptotical complexity,
and present practical results in dimension n = 128.

3.1 Rationale

A natural idea in order to distinguish between an instance of LWE (or LPN) and
a uniform distribution is to select some k samples that add up to zero, yielding
a new sample of the form (0, e). It is then enough to distinguish between e and a
uniform variable. However, if δ is the bias of the error in the original samples, the
new error e has bias δk, hence roughly δ−2k samples are necessary to distinguish
it from uniform. Thus it is crucial that k be as small a possible.

The idea of the algorithm by Blum, Kalai and Wasserman BKW is to perform
“blockwise” Gaussian elimination. The n coordinates are divided into k blocks
of length b = n/k. Then, samples that are equal on the first b coordinates are
substracted together to produce new samples that are zero on the first block.
This process is iterated over each consecutive block. Eventually samples of the
form (0, e) are obtained.

Each of these samples ultimately results from the addition of 2k starting
samples, so k should be at most O(log(n)) for the algorithm to make sense. On
the other hand Ω(qb) data are clearly required at each step in order to generate
enough collisions on b consecutive coordinates of a block. This naturally results
in a complexity roughly 2(1+o(1))n/ log(n) in the original algorithm for LPN. This
algorithm was later adapted to LWE in [3], and then improved in [4].

50 P. Kirchner and P.-A. Fouque

The idea of the latter improvement is to use so-called “lazy modulus switch-
ing”. Instead of finding two vectors that are equal on a given block in order
to generate a new vector that is zero on the block, one uses vectors that are
merely close to each other. This may be seen as performing addition modulo p
instead of q for some p < q, by rounding every value x ∈ Zq to the value nearest
xp/q in Zp. Thus at each step of the algorithm, instead of generating vectors
that are zero on each block, small vectors are produced. This introduces a new
“rounding” error term, but essentially reduces the complexity from roughly qb

to pb. Balancing the new error term with this decrease in complexity results in
a significant improvement.

However it may be observed that this rounding error is much more costly
for the first few blocks than the last ones. Indeed samples produced after, say,
one iteration step are bound to be added together 2a−1 times to yield the final
samples, resulting in a corresponding blowup of the rounding error. By contrast,
later terms will undergo less additions. Thus it makes sense to allow for progres-
sively coarser approximations (i.e. decreasing the modulus) at each step. On the
other hand, to maintain comparable data requirements to find collisions on each
block, the decrease in modulus is compensated by progressively longer blocks.

What we propose here is a more general view of the BKW algorithm that
allows for this improvement, while giving a clear view of the different complexity
costs incurred by various choice of parameters. Balancing these terms is the key
to finding an optimal complexity. We forego the “modulus switching” point of
view entirely, while retaining its core ideas. The resulting algorithm generalizes
several variants of BKW, and will be later applied in a variety of settings.

3.2 Quantization

The goal of quantization is to associate to each point of R
k a center from a small

set, such that the expectancy of the distance between a point and its center is
small. We will then be able to produce small vectors by substracting vectors
associated to the same center.

Modulus switching amounts to a simple quantizer which rounds every coor-
dinate to the nearest multiple of some constant. Our proven algorithm uses a
similar quantizer, except the constant depends on the index of the coordinate.

It is possible to decrease the average distance from a point to its center by
a constant factor for large moduli [17], but doing so would complicate our proof
without improving the leading term of the complexity. When the modulus is
small, it might be worthwhile to use error-correcting codes as in [18].

3.3 Main Algorithm

Let us denote by L0 the set of starting samples, and Li the sample list after
i reduction steps. The numbers d0 = 0 ≤ d1 ≤ · · · ≤ dk = n partition the n
coordinates of sample vectors into k buckets. Let D = (D0, . . . , Dk−1) be the
vector of quantization coefficients associated to each bucket.

An Improved BKW Algorithm for LWE with Applications to Cryptography 51

Algorithm 2. Main resolution
1: function Reduce(Lin,Di,di,di+1)
2: Lout ← ∅

3: t[] ← ∅

4: for all (a, b) ∈ Lin do

5: r = � (adi
,...,adi+1−1)

D
�

6: if t[r] = ∅ then
7: t[r] ← (a, b)
8: else
9: Lout ← Lout::{(a, b) − t[r]}

10: t[r] ← ∅

11: end if
12: end for
13: return Lout

14: end function
15: function Solve(L0,D,(di))
16: for 0 ≤ i < k do
17: Li+1 ← ReduceLi, Di, di, di+1

18: end for
19: return Distinguish{b|(a, b) ∈ Lk}
20: end function

In order to allow for a uniform presentation of the BKW algorithm, applicable
to different settings, we do not assume a specific distribution on the secret.
Instead, we assume there exists some known B = (B0, . . . , Bn−1) such that∑

i(si/Bi)2 ≤ n. Note that this is in particular true if |si| ≤ Bi. We shall
see how to adapt this to the standard Gaussian case later on. Without loss of
generality, B is non increasing.

There are a phases in our reduction: in the i-th phase, the coordinates from
di to di+1 are reduced. We define m = |L0|.
Lemma 5. Solve terminates in time O(mn log q).

Proof. The Reduce algorithm clearly runs in time O(|L|n log q). More-
over, |Li+1| ≤ |Li|/2 so that the total running time of Solve is
O(n log q

∑k
i=0 m/2i) = O(mn log q). �	

Lemma 6. Write L′
i for the samples of Li where the first di coordinates of each

sample vector have been truncated. Assume |sj |Di < 0.23q for all di ≤ j <
di+1. If L′

i is sampled according to the LWE distribution of secret s and noise
parameters α and ε ≤ 1, then L′

i+1 is sampled according to the LWE distribution
of the truncated secret with parameters:

α′2 = 2α2 + 4π2

di+1−1∑

j=di

(sjDi/q)2 and ε′ = 3ε.

On the other hand, if Di = 1, then α′2 = 2α2.

52 P. Kirchner and P.-A. Fouque

Proof. The independence of the outputted samples and the uniformity of their
vectorial part are clear. Let (a, b) be a sample obtained by substracting two
samples from Li. For a′ the vectorial part of a sample, define ε(a′) such that
E[exp(2iπ(〈a′, s〉 − b′)/q)|a′] = (1 + ε(a′)) exp(−α2). By definition of LWE,
|ε(a′)| ≤ ε, and by independence:

E[exp(2iπ(〈a, s〉 − b)/q)|a] = exp(−2α2)Ea′−a′′=a[(1 + ε(a′))(1 + ε(a′′))],

with |Ea′−a′′=a[(1 + ε(a′))(1 + ε(a′′))] − 1| ≤ 3ε.
Thus we computed the noise corresponding to adding two samples of Li. To

get the noise for a sample from Li+1, it remains to truncate coordinates from di

to di+1. A straightforward induction on the coordinates shows that this noise is:

exp(−2α2)Ea′−a′′=a[(1 + ε(a′))(1 + ε(a′′))]
di+1−1∏

j=di

E[exp(2iπajsj/q)].

Indeed, if we denote by a(j) the vector a where the first j coordinates are trun-
cated and αj the noise parameter of a(j), we have:

|E[exp(2iπ(〈a(j+1), s(j+1)〉 − b)/q)|a(j+1)] − exp(−α2
n)E[exp(2iπajsj/q)]|

= |E[exp(−2iπajsj/q)(exp(2iπ(〈a(j), s(j)〉 − b)/q) − exp(−α2
j))]|

≤ ε′ exp(−α2
j)E[exp(2iπajsj/q)].

It remains to compute E[exp(2iπajsj/q)] for di ≤ j < di+1. Let D = Di.
The distribution of aj is even, so E[exp(2iπajsj)] is real. Furthermore, since
|aj | ≤ D,

E[exp(2iπajsj/q)] ≥ cos(2πsjD/q).

Assuming |sj |D < 0.23q, simple function analysis shows that

E[exp(2iπajsj/q)] ≥ exp(−4π2s2
jD

2/q2).

On the other hand, if Di = 1 then aj = 0 and E[exp(2iπajsj/q)] = 1. �	
Finding optimal parameters for BKW amounts to balancing various costs:

the baseline number of samples required so that the final list Lk is non-empty,
and the additional factor due to the need to distinguish the final error bias. This
final bias itself comes both from the blowup of the original error bias by the
BKW additions, and the “rounding errors” due to quantization. Balancing these
costs essentially means solving a system.

For this purpose, it is convenient to set the overall target complexity as
2n(x+o(1)) for some x to be determined. The following auxiliary lemma essentially
gives optimal values for the parameters of Solve assuming a suitable value of
x. The actual value of x will be decided later on.

An Improved BKW Algorithm for LWE with Applications to Cryptography 53

Lemma 7. Pick some value x (dependent on LWE parameters). Choose:

k ≤
⌊

log
(

nx

6α2

)⌋

m = n2k2nx

Di ≤ q
√

x/6
πBdi

2(a−i+1)/2
di+1 = min

(

di +
⌊

nx

log(1 + q/Di)

⌋

, n

)

.

Assume dk = n and ε ≤ 1/(β2x)log 3, and for all i and di ≤ j < di+1, |sj |Di <
0.23q. Solve runs in time O(mn) with negligible failure probability.

Proof. Remark that for all i,

|Li+1| ≥ (|Li| − (1 + q/Di)di+1−di)/2 ≥ (|Li| − 2nx)/2.

Using induction, we then have |Li| ≥ (|L0| + 2nx)/2i − 2nx so that |Lk| ≥ n2nx.
By induction and using the previous lemma, the input of Distinguish is

sampled from a LWE distribution with noise parameter:

α′2 = 2kα2 + 4π2
k−1∑

i=0

2k−i−1

di+1−1∑

j=di

(sjDi/q)2.

By choice of k the first term is smaller than nx/6. As for the second term, since
B is non increasing and by choice of Di, it is smaller than:

4π2
k−1∑

i=0

2k−i−1 x/6
π22k−i+1

di+1−1∑

j=di

(sj

Bj

)2

≤ (x/6)
n−1∑

j=0

(sj

Bj

)2

≤ nx/6.

Thus the real part of the bias is superior to exp(−nx/3)(1 − 3aε) ≥ 2−nx/2, and
hence by Theorem 2.2, Distinguish fails with negligible probability. �	
Theorem 4. Assume that for all i, |si| ≤ B, B ≥ 2, max(β, log(q)) = 2o(n/ log n),
β = ω(1), and ε ≤ 1/β4. Then Solve takes time 2(n/2+o(n))/ ln(1+log β/ log B).

Proof. We apply Lemma 7, choosing

k = log(β2/(12 ln(1 + log β)))� = (2 − o(1)) log β ∈ ω(1)

and we set Di = q/(Bk2(k−i)/2). It now remains to show that this choice of
parameters satisfies the conditions of the lemma.

First, observe that BDi/q ≤ 1/k = o(1) so the condition |sj |Di < 0.23q is
fulfilled. Then, dk ≥ n, which amounts to:

k−1∑

i=0

x

(k − i)/2 + log O(kB)
≥ 2x ln(1 + k/2/ log O(kB)) ≥ 1 + k/n = 1 + o(1)

If we have log k = ω(log log B) (so in particular k = ω(log B)), we get ln(1 +
k/2/ log O(kB)) = (1 + o(1)) ln(k) = (1 + o(1)) ln(1 + log β/ log B).

54 P. Kirchner and P.-A. Fouque

Else, log k = O(log log B) = o(log B) (since necessarily B = ω(1) in this
case), so we get ln(1 + k/2/ log O(kB)) = (1 + o(1)) ln(1 + log β/ log B).

Thus our choice of x fits both cases and we have 1/x ≤ 2 ln(1+log β). Second,
we have 1/k = o(

√
x) so Di, ε and k are also sufficiently small and the lemma

applies. Finally, note that the algorithm has complexity 2Ω(n/ log n), so a factor
n2k log(q) is negligible. �	

This theorem can be improved when the use of the given parameters yields
D < 1, since D = 1 already gives a lossless quantization.

Theorem 5. Assume that for all i, |si| ≤ B = nb+o(1). Let β = nc and
q = nd with d ≥ b and c + b ≥ d. Assume ε ≤ 1/β4. Then Solve takes time
2n/(2(c−d+b)/d+2 ln(d/b)−o(1)).

Proof. Once again we aim to apply Lemma 7, and choose k as above:

k = log(β2/(12 ln(1 + log β))) = (2c − o(1)) log n

If i < �2(c − d + b) log n�, we take Di = 1, else we choose q/Di = Θ(B2(a−i)/2).
Satisfying da ≥ n − 1 amounts to:

2x(c − d + b) log n/ log q +
a−1∑

i=�2(c−d+b) log n	

x

(a − i)/2 + log O(B)

≥ 2x(c − d + b)/d + 2x ln((a − 2(c − d + b) log n + 2 log B)/2/ log O(B))
≥ 1 + a/n = 1 + o(1)

So that we can choose 1/x = 2(c − d + b)/d + 2 ln(d/b) − o(1). �	
Corollary 1. Given a LWE problem with q = nd, Gaussian errors with β = nc,
c > 1/2 and ε ≤ n−4c, we can find a solution in 2n/(1/d+2 ln(d/(1/2+d−c))−o(1))

time.

Proof. Apply Theorem 1: with probability 2/3, the secret is now bounded by B =
O(q

√
n/β

√
log n). The previous theorem gives the complexity of an algorithm

discovering the secret, using b = 1/2 − c + d, and which works with probability
2/3−2−Ω(n). Repeating n times with different samples, the correct secret will be
outputted at least n/2+1 times, except with negligible probability. By returning
the most frequent secret, the probability of failure is negligible. �	
In particular, if c ≤ d, it is possible to quantumly approximate lattice
problems within factor O(nc+1/2) [34]. Setting c = d, the complexity is
2n/(1/c+2 ln(2c)−o(1)), so that the constant slowly converges to 0 when c goes
to infinity.

A simple BKW using the bias would have a complexity of 2d/cn+o(n), the
analysis of [4] or [3] only conjectures 2dn/(c−1/2)+o(n) for c > 1/2. In [4], the
authors incorrectly claim a complexity of 2cn+o(n) when c = d, because the
blowup in the error is not explicitely computed.

Finally, if we want to solve the LWE problem for different secrets but with
the same vectorial part of the samples, it is possible to be much faster if we work
with a bigger final bias, since the Reduce part needs to be called only once.

An Improved BKW Algorithm for LWE with Applications to Cryptography 55

3.4 Experimentation

We have implemented our algorithm, in order to test its efficiency in practice, as
well as that of the practical improvements in the appendix of the full version. We
have chosen dimension n = 128, modulus q = n2, binary secret, and Gaussian
errors with noise parameter α = 1/(

√
n/π log2 n). The previous best result for

these parameters, using a BKW algorithm with lazy modulus switching, claims
a time complexity of 274 with 260 samples [4].

Using our improved algorithm, we were able to recover the secret using m =
228 samples within 13 hours on a single PC equipped with a 16-core Intel Xeon.
The computation time proved to be devoted mostly to the computation of 9·1013

norms, computed in fixed point over 16 bits in SIMD.
In appendix of the full version, we compare the different techniques to solve

the LWE problem when the number of samples is large or small. We were able to
solve the same problem using BKZ with block size 40 followed by an enumeration
in two minutes.

4 Applications to Lattice Problems

We first show that BDD
||.||∞
B,β is easier than LWEB,β for some large enough mod-

ulus and then that UniqueSVP
||.||∞
B,β and GapSVP

||.||∞
B,β are easier than BDD

||.||∞
B,β .

In appendix of the full version, we prove the same result for BDD
||.||
B,β .

4.1 Variant of Bounding Distance Decoding

The main result of this subsection is close to the classic reduction of [34]. How-
ever, our definition of LWE allows to simplify the proof, and gain a constant factor
in the decoding radius. The use of the KL divergence instead of the statistical
distance also allows to gain a constant factor, when we need an exponential
number of samples, or when λ∗

n is really small.
The core of the reduction lies in Lemma 8, assuming access to a Gaussian

sampling oracle. This hypothesis will be taken care of in Lemma 9.

Lemma 8. Let A be a basis of the lattice Λ of full rank n. Assume we are
given access to an oracle outputting a vector sampled under the law DΛ∗,σ and
σ ≥ qηε(Λ∗), and to an oracle solving the LWE problem in dimension n, modulus
q ≥ 2, noise parameter α, and distortion parameter ξ which fails with negligible
probability and use m vectors if the secret s verifies |si| ≤ Bi.

Then, if we are given a point x such that there exists s with v = As − x,
||v|| ≤ √

1/παq/σ, |si| ≤ Bi and ρσ/q(Λ \ {0} +v) ≤ ξ exp(−α2)/2, we are able
to find s in at most mn calls to the Gaussian sampling oracle, n calls to the
LWE solving oracle, with a probability of failure n

√
mε + 2−Ω(n) and complexity

O(mn3 + nc) for some c.

56 P. Kirchner and P.-A. Fouque

In the previous lemma, we required access to a DΛ∗,σ oracle. However, for
large enough σ, this hypothesis comes for free, as shown by the following lemma,
which we borrow from [10].

Lemma 9. If we have a basis A of the lattice Λ, then for σ ≥ O(
√

log n||Ã||),
it is possible to sample in polynomial time from DΛ,σ.

We will also need the following lemma, due to Banaszczyk [7]. For complete-
ness, a proof is provided in the appendix of the full version.

Lemma 10. For a lattice Λ, c ∈ R
n, and t ≥ 1,

ρ
(
(Λ + c) \ B(

0, t
√

n
2π

))

ρ(Λ)
≤ exp

(− n(t2 − 2 ln t − 1)/2
) ≤ exp

(− n(t − 1)2/2
)
.

Theorem 6. Assume we have a LWE solving oracle of modulus q ≥ 2n, para-
meters β and ξ which needs m samples.

If we have a basis A of the lattice Λ, and a point x such that As−x = v with
||v|| ≤ (1−1/n)λ1/β/t < λ1/2 and 4 exp(−n(t−1/β−1)2/2) ≤ ξ exp(−n/2/β2),
then with n2 calls to the LWE solving oracle with secret s, we can find s with
probability of failure 2

√
m exp(−n(t2 − 2 ln t − 1)/2) for any t ≥ 1 + 1/β.

Proof. Using Lemma 10, we can prove that σ = t
√

n/2/π/λ1 ≤ ηε(Λ∗) for ε =
2 exp(−n(t2 − 2 ln t − 1)/2) and

ρ1/σ

(
Λ \ {0} + v

) ≤ 2 exp
(− n(t(1 − 1/β/t) − 1)2/2

)
.

Using LLL, we can find a basis B of Λ so that ||B̃∗|| ≤ 2n/2/λ1, and therefore,
it is possible to sample in polynomial time from DΛ,qσ since q ≥ 2n for sufficiently
large n.

The LLL algorithm also gives a non zero lattice vector of norm � ≤ 2nλ1. For
i from 0 to n2, we let λ = �(1 − 1/n)i, we use the algorithm of Lemma 8 with
standard deviation tq

√
n/2/π/λ, which uses only one call to the LWE solving

oracle, and return the closest lattice vector of x in all calls.
Since �(1 − 1/n)n2 ≤ 2n exp(−n)λ1 ≤ λ1, with 0 ≤ i ≤ n2 be the smallest

integer such that λ = �(1 − 1/n)i ≤ λ1, we have λ ≥ (1 − 1/n)λ1. Then the
lemma applies since

||v|| ≤ (1 − 1/n)λ1/β/t ≤
√

1/π
√

n/2/βq/(tq
√

n/2/π/λ) = λ/t/β.

Finally, the distance bound makes As the unique closest lattice point of x. �	
Using self-reduction, it is possible to remove the 1 − 1/n factor [27].

Corollary 2. It is possible to solve BDD
||.||∞
B,β in time 2(n/2+o(n))/ ln(1+log β/ log B)

if β = ω(1), β = 2o(n/ log n) and log B = O(log β).

Proof. Apply the previous theorem and Theorem 4 with some sufficiently large
constant for t, and remark that dividing β by some constant does not change
the complexity. �	

Note that since we can solve LWE for many secrets in essentially the same
time than for one, we have the same property for BDD.

An Improved BKW Algorithm for LWE with Applications to Cryptography 57

4.2 UniqueSVP and GapSVP

In this section, we show how GapSVP
||.||∞
B,β and UniqueSVP

||.||∞
B,β can be reduced

to BDD
||.||∞
B,β , and hence to LWE. Proofs are provided in the appendix of the full

version.

Theorem 7. Given a BDD
||.||∞
B,β oracle, it is possible to solve UniqueSVP

||.||∞
B,β in

polynomial time of n and β.

Theorem 8. We can solve any GapSVP
||.||∞
o(B

√
log log log β/ log log β),β

instances in

time 2(n/2+o(n))/ ln(1+log β/ log B) for β = 2o(n/ log n), β = ω(1), B ≥ 2.

Corollary 3. It is possible to solve any GapSVP
||.||∞
2

√
log n,nc with c > 0 in time

2(n+o(n))/ ln ln n.

Proof. Use Theorem 8 with B = 2
√

log n log log n and β = nc. �	
Theorem 9. If it is possible to solve BDD

||.||∞
B,β in polynomial time, then it is

possible to solve in randomized polynomial time GapSVP
||.||∞
B/

√
n,β

√
n/ log n

.

5 Other Applications

5.1 Low Density Subset-Sum Problem

Definition 10. We are given a vector a ∈ Z
n whose coordinates are sampled

independently and uniformly in [0;M), and 〈a, s〉 where the coordinates of s are
sampled independently and uniformly in {0, 1}. The goal is to find s. The density
is defined as d = n

log M .

Note that this problem is trivially equivalent to the modular subset-sum problem,
where we are given 〈a, s〉 mod M by trying all possible 〈a, s〉/M�.

In [13,22], Lagarias et al. reduce the subset sum problem to UniqueSVP, even
though this problem was not defined at that time. We will show a reduction
to BDD

||.||∞
1,Ω(21/d)

, which is essentially the same. First, we need two geometric
lemmata.

Lemma 11. Let Bn(r), the number of points of Z
n of norm smaller than r, and

Vn the volume of the unit ball. Then,

Bn(r) ≤ Vn

(

r +
√

n

2

)n

.

Proof. For each x ∈ Z
n, let Ex be a cube of length 1 centered on x. Let E be

the union of all the Ex which have a non empty intersection with the ball of
center 0 and radius r. Therefore vol(E) ≥ Bn(r) and since E is included in the
ball of center 0 and radius r +

√
n

2 , the claim is proven. �	

58 P. Kirchner and P.-A. Fouque

Lemma 12. For n ≥ 4 we have

Vn =
πn/2

(n/2)!
≤ (

√
πe/n)n.

Theorem 10. Using one call to a BDD
||.||∞
1,c21/d oracle with any c <

√
2/π/e and

d = o(1), and polynomial time, it is possible to solve a subset-sum problem of
density d, with negligible probability of failure.

Proof. With the matrix:

A =
(

I
Ca

)

for some C > c21/d
√

n/2 and b = (1/2, . . . , 1/2, C〈a, s〉), return BDD(A,b). It
is clear that ||As − b|| =

√
n/2. Now, let x such that ||Ax|| = λ1. If 〈a,x〉 �= 0,

then λ1 = ||Ax|| ≥ C therefore β ≥ c21/d. Else, 〈a,x〉 = 0. Without loss of
generality, x0 �= 0, we let y = −(

∑
i>0 aixi)/x0 and the probability over a that

〈a,x〉 = 0 is:

Pr[〈a,x〉 = 0] = Pr[a0 = y] =
M−1∑

z=0

Pr[y = z] Pr[a0 = z] ≤ 1
M

.

Therefore, the probability of failure is at most, for sufficiently large n,

Bn(β
√

n/2)/M ≤(
√

πe/n)n(c21/d
√

n/2 +
√

n/2)n/2n/d

=
(√

πe/2(c + 2−1/d)
)n = 2−Ω(n). �	

Corollary 4. For any d = o(1) and d = ω(log n/n), we can solve the
subset-sum problem of density d with negligible probability of failure in time
2(n/2+o(n))/ ln(1/d).

The cryptosystem of Lyubashevsky et al. [28] uses 21/d > 10n log2 n and is
therefore broken in time 2(ln 2/2+o(1))n/ log log n. Current lattice reduction algo-
rithms are slower than this one when d = ω(1/(log n log log n)).

5.2 Sample Expander and Application to LWE with Binary Errors

Definition 11. Let q be a prime number. The problem Small-DecisionLWE is
to distinguish (A,b) with A sampled uniformly with n columns and m rows,
b = As + e such that ||s||2 + ||e||2 ≤ nk2 and ||s||∞ ≤ B from (A,b) sampled
uniformly. Also, the distribution (s, e) is efficiently samplable.

The problem Small-SearchLWE is to find s given (A,b) with A sampled uni-
formly and b = As + e with the same conditions on s and e.

These problems are generalizations of BinaryLWE where s and e have coordi-
nates sampled uniformly in {0, 1}. In this case, remark that each sample is a root
of a known quadratic polynomial in the coordinates of s. Therefore, it is easy

An Improved BKW Algorithm for LWE with Applications to Cryptography 59

to solve this problem when m ≥ n2. For m = O(n), a Gröbner basis algorithm
applied on this system will (heuristically) have a complexity of 2Ω(n) [2]. For
m = O(n/ log n) and q = nO(1), it has been shown to be harder than a lattice
problem in dimension Θ(n/ log n) [30].

In appendix of the full version, we prove the following theorem3, with the
coordinates of x and y distributed according to a samplable D:

Theorem 11. Assume there is an efficient distinguisher which uses k samples
for Decision-LWE (respectively a solver for Search-LWE) with error distribution
〈s,y〉 + 〈e,x〉 of advantage (resp. success probability) ε.

Then, either there is an efficient distinguisher for Decision-LWE with samples
and secret taken uniformly, and error distribution D in dimension m−1 and with
n+m samples of advantage ξ

4qk −q−n−q−m; or there is an efficient distinguisher
of advantage ε−ξ for Small-Decision-LWE (resp. solver of success probability ε−ξ
for Small-Search-LWE).

Lemma 13. Let D = DZ,σ for σ ≥ 1. Then, the advantage of a distinguisher
for Decision-LWE of dimension m with m + n samples of noise distribution D is
at most

√
qn/σn+m. Furthermore, the bias of 〈(s|e), (x|y)〉, for fixed s and e, is

at least exp(−π(||s||2 + ||e||2)σ2/q2).

Proof. We have Dm+n(a) ≤ D(0)m+n = 1/ρσ(Z)m+n and ρσ(Z) = σρ1/σ(Z) ≥ σ
using a Poisson summation. The first property is then a direct application of the
leftover hash lemma, since q is prime.

The bias of λD can be computed using a Poisson summation as:
∑

a∈Z

ρσ(a) cos(2πλa/q) = ρ1/σ(Z + λ/q) ≥ exp(−πλ2σ2/q2).

Therefore, the second property follows from the independency of the coordinates
of x and y. �	
Corollary 5. Let q, n and m such that m log q/(n + m) = o(n/ log n), then
(m − 3) log q/(n + m) − log k = ω(log B) and m = ω(1). Then, we can solve the
Small-Decision-LWE problem in time

2(n/2+o(n))/ ln((m log q/(n+m)−log k)/ log B)

with negligible probability of failure.

Proof. We use the previous lemma with σ = 2q(n+2)/(n+m−1), so that we have
β = Ω(q(m−3)/(n+m)/k). The algorithm from Theorem 4 needs 2o(n) samples, so
the advantage of the potential distinguisher for Decision-LWE is 2−(1/4+o(1))n/q
for ξ = 2−n/4; while the previous lemma proves it is less than 2−n/2/q. �	

3 The authors of [15] gave a short justification of a similar claim which is far from
proven.

60 P. Kirchner and P.-A. Fouque

The NTRU cryptosystem [20] is based on the hardness of finding two
polynomials f and g whose coefficients are bounded by 1 given h = f/g
mod (Xn − 1, q). Since hg = 0 with an error bounded by 1, we can apply
previous algorithms in this section to heuristically recover f and g in time
2(n/2+o(n))/ ln ln q. This is the first subexponential time algorithm for this problem
since it was introduced back in 1998.

Corollary 6. Assume we have a Search-LWE problem with n log q + Ω(n/ log q)
samples and Gaussian noise with α = n−c and q = nd. Then, we can solve it in
time 2n/(2 ln(d/(d−c))−o(1)) for any failure probability in 2−no(1)

.

Proof. First, apply a secret-error switching (Theorem 1). Apply the previous
corollary with B = nd−c+o(1) which is a correct bound for the secret, except with
probability 2−no(1)

. Lemma 10 shows that k2 ≤ log qσ2, except with probability
2−Ω(n), so that β = nc+o(1). We can then use σ = Θ(1) and apply Theorem4.�	
Note that this corollary can in fact be applied to a very large class of distri-
butions, and in particular to the learning with rounding problem, while the
distortion parameter is too large for a direct application of Theorem4.

Also, if the reduction gives a fast (subexponential) algorithm, one may use
σ = 2

√
n and assume that there is no quantum algorithm solving the corre-

sponding lattice problem in dimension m.
Even more heuristically, one can choose σ to be the lowest such that if the

reduction does not work, we have an algorithm faster than the best known algo-
rithm for the same problem.

References

1. Proceedings of the 25th Annual IEEE Conference on Computational Complexity,
CCC 2010, Cambridge, Massachusetts, 9–12 June 2010. IEEE Computer Society
(2010)

2. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems. IACR Cryptology ePrint Arch. 2014, 1018 (2014)

3. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

4. Albrecht, M.R., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Lazy modulus switching
for the BKW algorithm on LWE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 429–445. Springer, Heidelberg (2014)

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi [19],
pp. 595–618

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

7. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625–635 (1993)

8. Bernstein, D.J., Lange, T.: Never trust a bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013).
https://eprint.iacr.org/2012/355.pdf

https://eprint.iacr.org/2012/355.pdf

An Improved BKW Algorithm for LWE with Applications to Cryptography 61

9. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hard-
ness of learning with errors. In: Symposium on Theory of Computing Con-
ference, STOC 2013, pp. 575–584 (2013. http://perso.ens-lyon.fr/damien.stehle/
downloads/LWE.pdf

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

12. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

13. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C., Stern, J.:
Improved low-density subset sum algorithms. Comput. Complex. 2, 111–128 (1992)

14. Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the learning-
with-errors problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 18–34. Springer, Heidelberg (2013)

15. Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for lwe and LWR. Cryptology
ePrint Archive, Report 2015/056 (2015). http://eprint.iacr.org/

16. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

17. Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theor. 44(6), 2325–
2383 (1998)

18. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 1–20. Springer,
Heidelberg (2014)

19. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)
20. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-

tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

21. Kirchner, P.: Improved generalized birthday attack. IACR Cryptology ePrint Arch.
2011, 377 (2011). http://eprint.iacr.org/2011/377.pdf

22. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM
32(1), 229–246 (1985)

23. Lenstra, A., Lenstra, J.H., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Mathe. Ann. 261, 515–534 (1982)

24. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

25. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

26. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

27. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi [19], pp. 577–594

28. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 382–400. Springer, Heidelberg (2010)

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

http://perso.ens-lyon.fr/damien.stehle/downloads/LWE.pdf
http://perso.ens-lyon.fr/damien.stehle/downloads/LWE.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/2011/377.pdf

62 P. Kirchner and P.-A. Fouque

30. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013)

31. Mulder, E.D., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s solu-
tion to the hidden number problem to attack nonce leaks in 384-bit ECDSA:
extended version. J. Crypt. Eng. 4(1), 33–45 (2014)

32. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31–June 2 2009, pp. 333–342. ACM (2009)

33. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures
on reconfigurable hardware. IACR Cryptology ePrint Arch. 2014, 254 (2014).
https://eprint.iacr.org/2014/254.pdf

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM (JACM) 56(6), 34 (2009). http://www.cims.nyu.edu/regev/
papers/qcrypto.pdf

35. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

https://eprint.iacr.org/2014/254.pdf
http://www.cims.nyu.edu/regev/papers/qcrypto.pdf
http://www.cims.nyu.edu/regev/papers/qcrypto.pdf

Provably Weak Instances of Ring-LWE

Yara Elias1, Kristin E. Lauter2(B), Ekin Ozman3, and Katherine E. Stange4

1 Department of Mathematics and Statistics,
McGill University, Montreal, QC, Canada

yara.elias@mail.mcgill.ca
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

klauter@microsoft.com
3 Department of Mathematics, Faculty of Arts and Science, Bogazici University,

34342 Bebek-Istanbul, Turkey
ekin.ozman@boun.edu.tr

4 Department of Mathematics, University of Colorado, Campux Box 395,
Boulder, CO 80309-0395, USA
kstange@math.colorado.edu

Abstract. The ring and polynomial learning with errors problems
(Ring-LWE and Poly-LWE) have been proposed as hard problems to
form the basis for cryptosystems, and various security reductions to hard
lattice problems have been presented. So far these problems have been
stated for general (number) rings but have only been closely examined for
cyclotomic number rings. In this paper, we state and examine the Ring-
LWE problem for general number rings and demonstrate provably weak
instances of the Decision Ring-LWE problem. We construct an explicit
family of number fields for which we have an efficient attack. We demon-
strate the attack in both theory and practice, providing code and running
times for the attack. The attack runs in time linear in q, where q is the
modulus.

Our attack is based on the attack on Poly-LWE which was presented
in [EHL]. We extend the EHL-attack to apply to a larger class of number
fields, and show how it applies to attack Ring-LWE for a heuristically
large class of fields. Certain Ring-LWE instances can be transformed
into Poly-LWE instances without distorting the error too much, and
thus provide the first weak instances of the Ring-LWE problem. We also
provide additional examples of fields which are vulnerable to our attacks
on Poly-LWE, including power-of-2 cyclotomic fields, presented using the
minimal polynomial of ζ2n ± 1.

1 Introduction

Lattice-based cryptography has become a very hot research topic recently with
the emergence of new applications to homomorphic encryption. The hardness of
the Ring-LWE problem was related to various well-known hard lattice prob-
lems [R,MR09,MR04,LPR,BL+], and the hardness of the Poly-LWE prob-
lem was reduced to Ring-LWE in [LPR,DD]. The hardness of the Poly-LWE

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 63–92, 2015.
DOI: 10.1007/978-3-662-47989-6 4

64 Y. Elias et al.

problem is used as the basis of security for numerous cryptosystems, includ-
ing [BV,BGV,GHS]. The hardness of Ring-LWE was also shown [SS] to form a
basis for the proof of security of a variant of NTRU [HPS,IEEE].

In [EHL], the first weaknesses in the Poly-LWE problem were discovered
for classes of number fields satisfying certain properties. In addition, a list of
properties of number fields were identified which are sufficient to guarantee a
reduction between the Ring-LWE and the Poly-LWE problems, and a search-to-
decision reduction for Ring-LWE. Unfortunately, in [EHL], no number fields were
found which satisfied both the conditions for the attack and for the reductions.
Thus [EHL] produced only examples of number fields which were weak instances
for Poly-LWE.

The contributions of this paper at a high level are as follows: In Sect. 3 we
strengthen and extend the attacks presented in [EHL] in several significant ways.
In Sect. 4, most importantly, we show how the attacks can be applied also to the
Ring-LWE problem. In Sect. 5, we construct an explicit family of number fields for
which we have an efficient attack on the Decision Ring-LWE Problem. This rep-
resents the first successful attacks on the Decision Ring-LWE problem for number
fields with special properties. For Galois number fields, we also know that an attack
on the decision problem gives an attack on the search version of Ring-LWE [EHL].
In addition, in Sect. 9, we present the first successful implementation of the
EHL attack at cryptographic sizes and attack both Ring-LWE and Poly-LWE
instances. For example for n = 1024 and q = 231 − 1, the attack runs in about
13 hours. Code for the attack is given in Appendix A. In Sect. 6 we give a more
general construction of number fields such that heuristically a large percentage
of them will be vulnerable to the attacks on Ring-LWE.

In more detail, we consider rings of integers in number fields K = Q[x]/(f(x))
of degree n, modulo a large prime number q, and we give attacks on Poly-LWE
which work when f(x) has a root of small order modulo q. The possibility of such
an attack was mentioned in [EHL] but not explored further. In Sects. 3.1 and 3.2,
we give two algorithms for this attack, and in Sects. 7 and 7.3 we give many exam-
ples of number fields and moduli, some of cryptographic size, which are vulnerable
to this attack. The most significant consequence of the attack is the construction
of the number fields which are weak for the Ring-LWE problem (Sect. 6).

To understand the vulnerability of Ring-LWE to these attacks, we state and
examine the Ring-LWE problem for general number rings and demonstrate prov-
ably weak instances of Ring-LWE. We demonstrate the attack in both theory
and practice for an explicit family of number fields, providing code and running
times for the attack. The attack runs in time linear in q, where q is the modulus.
The essential point is that Ring-LWE instances can be mapped into Poly-LWE
instances, and if the map does not distort the error too much, then the instances
may be vulnerable to attacks on Poly-LWE. The distortion is governed by the
spectral norm of the map, and we compute the spectral norm for the explicit
family we construct in Sect. 5 and analyze when the attack will succeed. For the
provably weak family which we construct, the feasibility of the attack depends
on the ratio of

√
q/n. We prove that the attack succeeds when

√
q/n is above a

certain bound, but in practice we find that we can attack instances where the

Provably Weak Instances of Ring-LWE 65

ratio is almost 100 times smaller than that bound. Even for Ring-LWE examples
which are not taken from the provably weak family, we were able to attack in
practice relatively generic instances of number fields where the spectral norm
was small enough (see Sect. 9).

We investigate cyclotomic fields (even 2-power cyclotomic fields) given by an
alternate minimal polynomial, which are weak instances of Poly-LWE for that
choice of polynomial basis. Section 7.3 contains numerous examples of 2-power
cyclotomic fields which are vulnerable to attack when instantiated using an alter-
native polynomial basis, thus showing the heavy dependence in the hardness of
these lattice-based problems on the choice of polynomial basis. In addition, we
analyze the case of cyclotomic fields to understand their potential vulnerability
to these lines of attack and we explain why cyclotomic fields are immune to
attacks based on roots of small order (Sect. 8). Finally, we provide code in the
form of simple routines in SAGE to implement the attacks and algorithms given
in this paper and demonstrate successful attacks with running times (Sect. 9).

As a consequence of our results, one can conclude that the hardness of Ring-
LWE is both dependent on special properties of the number field and sensitive to
the particular choice of q, and some choices may be significantly weaker than oth-
ers. In addition, for applications to cryptography, since our attacks on Poly-LWE
run in time roughly O(q) and may be applicable to a wide range of fields, includ-
ing even 2-power cyclotomic fields with a bad choice of polynomial basis, these
attacks should be taken into consideration when selecting parameters for Poly-
LWE-based systems such as [BV,BGV] and other variants. For many important
applications to homomorphic encryption (see for example [GLN,BLN]), these
attacks will not be relevant, since the modulus q is chosen large enough to allow
for significant error growth in computation, and would typically be of size 128
bits up to 512 bits. For that range, the attacks presented in this paper would not
run. However, in other applications of Ring-LWE to key exchange for the TLS
protocol [BCNS], parameters for achieving 128-bit security are suggested where
n = 210 and q = 232 − 1, with σ ≈ 3, and these parameters would certainly be
vulnerable to our attacks for weak choices of fields and q.

2 Background on Poly-LWE

Let f(x) be a monic irreducible polynomial in Z[x] of degree n, and let q be a
prime such that f(x) factors completely modulo q. Let P = Z[x]/f(x) and let
Pq = P/qP = Fq[x]/f(x). Let σ ∈ R

>0. The uniform distribution on P � Z
n

will be denoted U . By Gaussian distribution of parameter σ we refer to a discrete
Gaussian distribution of mean 0 and variance σ2 on P , spherical with respect
to the power basis. This will be denoted Gσ. It is important to our analysis that
we assume that in practice, elements are sampled from Gaussians of parameter
σ truncated at width 2σ.

There are two standard Poly-LWE problems. Our attack solves the decision
variant, but it also provides information about the secret.

66 Y. Elias et al.

Problem 1 (Decision Poly-LWE Problem). Let s(x) ∈ P be a secret. The decision
Poly-LWE problem is to distinguish, with non-negligible advantage, between the
same number of independent samples in two distributions on P ×P . The first con-
sists of samples of the form (a(x), b(x) := a(x)s(x)+e(x)) where e(x) is drawn from
adiscreteGaussian distribution of parameterσ, and a(x) is uniformly random.The
second consists of uniformly random and independent samples from P × P .

Problem 2 (Search Poly-LWE Problem). Let s(x) ∈ P be a secret. The search
Poly-LWE problem, is to discover s given access to arbitrarily many independent
samples of the form (a(x), b(x) := a(x)s(x) + e(x)) where e(x) is drawn from a
Discrete Gaussian of parameter σ, and a(x) is uniformly random.

The polynomial s(x) is called the secret and the polynomials ei(x) are called the
errors.

2.1 Parameter Selection

The selection of parameters for security is not yet a well-explored topic. Gen-
erally parameter recommendations for Poly-LWE and Ring-LWE are just based
on the recommendations for general LWE, ignoring the extra ring structure e.g.
[PG,RV+,BCNS]. Sample concrete parameter choices have been suggested,
where w is the width of the Gaussian error distribution (precisely, w =

√
2πσ):

1. PLP1 = (n, q, w) = (192, 4093, 8.87), PLP2 = (256, 4093, 8.35), PLP3 =
(320, 4093, 8.00) for low, medium and high security, recommended by Lindner
and Peikert in [LP];

2. PGF = (n, q, w) = (512, 12289, 12.18) for high security used in [GF+];
3. PBCNS = (n, q, w) = (1024, 231 − 1, 3.192) suggested in [BCNS] for the TLS

protocol. Here, q = 232 − 1 was actually suggested but it is not prime. Here,
the authors remark that q is taken to be large for correctness but could
potentially be decreased.

3 Attacks on Poly-LWE

The attack we are concerned with is quite simple. It proceeds in four stages:

1. Transfer the problem to Fq via a ring homomorphism φ : Pq → Fq.
2. Loop through guesses for the possible images φ(s(x)) of the secret.
3. Obtain the values φ(ei(x)) under the assumption that the guess at hand is

correct.
4. Examine the distribution of the φ(ei(x)) to determine if it is Gaussian or

uniform.

If f is assumed to have a root α ≡ 1 mod q or α of small order modulo q,
then this attack is due to Eisentraeger-Hallgren-Lauter [EHL].

Provably Weak Instances of Ring-LWE 67

The first part is to transfer the problem to Fq. Write f(x) =
∏n

i=1(x − αi)
for the factorization of f(x) over Fq which is possible by assumption. By the
Chinese remainder theorem, if f has no double roots, then

Pq �
n∏

i=1

Fq[x]/(x − αi) � F
n
q

There are n ring homomorphisms

φ : Pq → Fq[x]/(x − αi) � Fq, g(x) �→ g(αi).

Fix one of these, by specifying a root α = αi of f(x) in Fq. Apply the
homomorphism to the coordinates of the � samples (ai(x), bi(x)), obtaining
(ai(α), bi(α))i=1,...,�.

Next, loop through all g ∈ Fq. Each value g is to be considered a guess
for the value of s(α). For each guess g, assuming that it is a correct guess and
g = s(α), then

ei(α) = bi(α) − ai(α)g = bi(α) − ai(α)s(α).

In the case that the samples were LWE samples and the guess was correct,
then this produces a collection (ei(α)) of images of errors chosen according to
some distribution. If the distributions φ(U) and φ(Gσ) are distinguishable, then
we can determine whether the distribution was uniform or Gaussian. Note that
φ(U) will of course be uniform on Fq. If our guess is incorrect, or if the samples
are not LWE samples, then the distribution will appear uniform.

Therefore, after looping through all guesses, if all the distributions appeared
uniform, then conclude that the samples were not LWE samples; whereas if one of
the guesses worked for all samples and always yielded an error distribution which
appeared Gaussian, assume that particular g was a correct guess. In the latter case
this also yields one piece of information about the secret: g = s(α) mod q.

The attack will succeed whenever

1. q is small enough to allow looping through Fq,
2. φ(U) and φ(Gσ) are distinguishable.

Our analysis hinges on the difficulty of distinguishing φ(U) from φ(Gσ), as a
function of the parameters σ, n, �, q, and f . Distinguishability becomes easier
when σ is smaller (so U and Gσ are farther apart to begin with), n is smaller and
q is larger (since then less information is lost in the map φ), and � is larger (since
there are more samples to test the distributions). The dependence on f comes
primarily as a function of its roots αi modulo q, which may have properties that
make distinguishing easier.

Ideally, for higher security, onewill choose parameters thatmake distinguishing
nearly impossible, i.e. such that φ(Gσ) appears very close to uniform modulo q.

Example ([EHL]). We illustrate the attack in the simplest case α = 1. Assume
f(1) ≡ 0 mod q, and consider the distinguishability of the two distributions φ(U)

68 Y. Elias et al.

and φ(Gσ). Given (ai(x), bi(x)), make a guess g ∈ Fq for the value of s(1) and
compute bi(1) − g · ai(1). If bi is uniform, then bi(1) − g · ai(1) is uniform for
all g. If bi = ais + ei, then there is a guess g for which bi(1) − gai(1) = ei(1)
where ei(x) =

∑n
j=1 eijx

j and g = s(1). Since ei(1) =
∑n

j=1 eij , where eij are
chosen from Gσ, it follows that ei(1) are sampled from G√

nσ where nσ2 << q.
The attack can be described loosely as follows: for each sample, test each guess
g in Fq to see if bi(1) − g · ai(1) is small modulo q, and only keep those guesses
which pass the test. Repeat with the next sample and continue to keep only the
guesses which pass.

3.1 Attack Based on a Small Set of Error Values Modulo q

In this section, we assume that there exists a root α of f such that α has small
order r modulo q, that is αr ≡ 1 mod q. Then

e(α) =

n−1∑

i=0

eiα
i = (e0+er+e2r+· · ·)+α(e1+er+1+· · ·)+· · ·+αr−1(er−1+e2r−1+· · ·). (1)

If r is small enough, then e(α) takes on only a small number of values modulo q.
If so, then we can efficiently distinguish whether a value modulo q belongs to that
subset.

Let S be the set of possible values of e(α) modulo q. We assume for simplicity
that n is divisible by r. Then the coefficients ej + ej+r + · · · + en−r+j of (1) fall
into a subset of Z/qZ of size at most 4σn/r. We sum over r terms, hence,
|S| = (4σn/r)r residues modulo q. For r = 2, this becomes (2nσ)2.

Algorithm 1. Small set of error values
Input: A collection of � Poly-LWE samples.
Output: A guess g for s(α), the value of the secret polynomial at α; or else NOT PLWE;
or INSUFFICIENT SAMPLES.
The value NOT PLWE indicates that the collection of samples were definitely not
Poly-LWE samples.
The value INSUFFICIENT SAMPLES indicates that there were not enough samples to
determine a single guess s(α). In this case, the algorithm may be continued on a new set of
samples by looping the remaining surviving guesses on the new samples.

Create an ordered list of elements of S.
Let G be an empty list.
for g from 0 to q − 1 do

for (a(x), b(x)) in the collection of samples do
if b(α) − ga(α) does not equal an element of S then

break (i.e. begin next value of g)
append g to G (note: occurs only if the loop of samples completed without a break)

if G is empty then
return NOT PLWE

if G = {g} then
return g

if #G > 1 then

return INSUFFICIENT SAMPLES

Provably Weak Instances of Ring-LWE 69

The attack described below succeeds with high probability if |S| << q, that is

(4σn/r)r << q.

Proposition 1. Assume that

(4σn/r)r < q. (2)

Algorithm 1 terminates in time at most Õ(�q + nq), where the Õ notation hides
the log(q) factors and the implied constant depends upon r. Furthermore, if the
algorithm returns NOT PLWE, then the samples were not valid Poly-LWE
samples. If it outputs anything other than NOT PLWE, then the samples are
valid Poly-LWE samples with probability 1−(#S

q)�. In particular, this probability
tends to 1 as � grows.

Proof. As discussed above, there are at most q possible values for the elements
of S under the assumption (2). To compute each one takes n additions per
coefficient (of which there are r), combined with an additional r multiplications
and r additions. (Here we have assumed the αi have been computed; this takes
r multiplications.) Each addition or multiplication takes time at most log q.
Therefore, computing S takes time at most Õ(qnr). For sorting, it is best to sort
as S is computed; placing each element correctly takes log q time.

The principal double loop takes time at most Õ(�q). If b(α) and a(α) are
precomputed, then for each guess g, the computation of b(α) − ga(α) only costs
one multiplication and one subtraction modulo q (i.e. 2 log q) while it requires
only log q bit comparisons to decide whether this is in the set S.

In Step 4, for later samples, only guesses which were successful in the previous
samples (i.e. gave a value which was in the set S) are considered. For a sample
chosen uniformly at random, one expects the number of successful guesses to
be roughly #S

q . Thus for the second sample, we repeat the above test for only
(#S) guesses. At the �th sample, retaining only guesses which were successful for
all previous samples, we expect to test only (#S

q)�q guesses, which very quickly
goes to zero. Hence, if we examine � samples, our tolerance for false positives is
proportional to (#S

q)�.

3.2 Attack Based on the Size of the Error Values

In this section, we describe the most general φ : Pq → Fq attack on the Poly-
LWE problem, one which can be carried out in any situation. The rub is that the
probability of success will be vanishingly small unless we are in a very special
situation. Therefore our analysis actually bolsters the security of Poly-LWE.

Suppose that f(α) ≡ 0 mod q. Let Ei be the event that bi(α) − gai(α)
mod q is in the interval [−q/4, q/4) for some sample i and guess g for s(α)
mod q. The main idea is to compare P (Ei | D = U) and P (Ei | D = Gσ).
If D = U , then bi(α) − gai(α) is random modulo q for all guesses g, that is,

70 Y. Elias et al.

P (Ei | D = U) = 1
2 . If D = Gσ, then bi(α) − s(α)ai(α) = ei(α) mod q. We

consider

ei(α) =
n−1∑

j=0

eijα
j ,

where eij is chosen according to the distribution Gσ (truncated at 2σ) and dis-
tinguish two cases:

1. α = ±1
2. α 	= ±1 and α has small order r ≥ 3 modulo q

Case 1 (α = ±1).
The error ei(α) is chosen according to the distribution Gσ

√
n truncated at

2σ
√

n. Hence
−2σ

√
n ≤ ei(α) ≤ 2σ

√
n.

Therefore, assuming that
2σ

√
n <

q

4
,

we obtain P (Ei | D = Gσ) = 1 for g = s(α). Hence U and Gσ are distinguishable.

Case 2 (α 	= ±1 and α has small order r ≥ 3 modulo q).
The error can be written as

e(α) =
r−1∑

i=0

eiα
i = (e0+er+· · ·)+α(e1+er+1+· · ·)+· · ·+αr−1(er−1+e2r−1+· · ·)

where we assume that n is divisible by r for simplicity. For j = 0, · · · , r − 1, we
have that ej + ej+r + · · ·+ ej+n−r is chosen according to the distribution G√

n
r σ

.

As a consequence e(α) is sampled from Gσ̄ where

σ̄2 =
r−1∑

i=0

n

r
σ2α2i =

n

r
σ2α2r − 1

α2 − 1
.

Hence

−2
√

n√
r
σ

√
α2r − 1√
α2 − 1

≤ e(α) ≤ 2
√

n√
r
σ

√
α2r − 1√
α2 − 1

.

Therefore, assuming that

2
√

n√
r
σ

√
α2r − 1√
α2 − 1

<
q

4
, (3)

we obtain P (Ei | D = Gσ) = 1 for g = s(α), and uniform and Gaussian are
distinguishable. Note that Hypothesis (2) implies in particular that αr > q.

In each of the two cases, we have given conditions on the size of σ under
which U and Gσ are distinguishable and an attack is likely to succeed. We now
elaborate on the algorithm that would be used.

Provably Weak Instances of Ring-LWE 71

Algorithm 2. Small error values
Input: A collection of � Poly-LWE samples.

Output: A guess g for s(α); or else NOT PLWE; or INSUFFICIENT SAMPLES.
The output INSUFFICIENT SAMPLES indicates that more samples are needed to
make a determination. In this case, the algorithm can be continued by looping through
remaining surviving guesses on new samples.

Let G be an empty list.
for g from 1 to q − 1 do

for (a(x), b(x)) in the collection of samples do
if the minimal residue b(α) − ga(α) does not lie in [−q/4, q/4) then

break (i.e. begin next value of g)
append g to G (note: occurs only if the loop of samples completed without a break)

if G is empty then
return NOT PLWE

if G = {g} then
return g

if #G > 1 then

return INSUFFICIENT SAMPLES

We denote by � the number of samples observed. For each guess g mod q,
we compute bi − gai for i = 1, . . . , �. If there is a guess g mod q for which the
event Ei occurs for all i = 1, . . . , �, then the algorithm returns the guess if it
is unique and INSUFFICIENT SAMPLES otherwise; the samples are likely
valid Poly-LWE samples. Otherwise, it reports that they are certainly not valid
Poly-LWE samples.

Proposition 2. Assume that we are in one of the following cases:

1. α = ±1 and
8σ

√
n < q.

2. α has small order r ≥ 3 modulo q, and

8σ

√
n√
r

√
α2r − 1√
α2 − 1

< q.

Then Algorithm 2 terminates in time at most Õ(�q), where the implied con-
stant is absolute. Furthermore, if the algorithm returns NOT PLWE, then the
samples were not valid Poly-LWE samples. If it outputs anything other than
NOT PLWE, then the samples are valid Poly-LWE samples with probability at
least 1 − (12)�.

Proof. The proof is as in Proposition 1, without the first few steps.

We remark that Propositions and Algorithms 1 and 2 overlap in some cases.
For α = ±1, Algorithm 2 is more applicable (i.e. more parameter choices are
susceptible), while for α of other small orders, Algorithm 1 is more applicable.

72 Y. Elias et al.

4 Moving the Attack from Poly-LWE to Ring-LWE

We use the term Poly-LWE to refer to LWE problems generated by working in a
polynomial ring, and reserve the term Ring-LWE for LWE problems generated by
working with the canonical embedding of a number field as in [LPR,LPR13]. In
the previous sections we have expanded upon Eisenträger, Hallgren and Lauter’s
observation that for certain distributions on certain lattices given by Poly-LWE,
the ring structure presents a weakness. We will now consider whether it is pos-
sible to expand that analysis to LWE instances created through Ring-LWE for
number fields besides cyclotomic ones.

In particular, the necessary ingredient is that the distribution be such that
under the ring homomorphisms of Sect. 3, the image of the errors is a ‘small’
subset of Z/qZ, either the error values themselves are small, or they form a
small, identifiable subset of Z/qZ. Assuming a spherical Gaussian in the canon-
ical embedding of R or R∨, we describe a class of number fields for which this
weakness occurs. A similar analysis would apply without the assumption that
the distribution is spherical in the canonical embedding.

Here, we setup the key players (a number field and its canonical embedding,
etc.) for general number fields so that these definitions specialize to those in
[LPR13]. There are some choices inherent in our setup: it may be possible to
generalize Ring-LWE to number fields in several different ways. We consider the
two most natural ways.

4.1 The Canonical Embedding

Let K be a number field of degree n with ring of integers R whose dual is R∨.
We will embed the field K in R

n. Note that our setup is essentially that of [DD],
rather than [LPR13], but the difference is notational.

Let σ1, . . . , σn be the n embeddings of K, ordered so that σ1 through σs1 are
the s1 real embeddings, and the remaining n − s1 = 2s2 complex embeddings
are paired in such a way that σs1+k = σs1+s2+k for k = 1, . . . , s2 (i.e. list s2 non-
pairwise-conjugate embeddings and then list their conjugates following that).

Define a map θ : K → R
n given by

θ(r) = (σ1(r), . . . , σs1 (r), Re(σs1+1(r)), . . . , Re(σs1+s2 (r)), Im(σs1+1(r)), . . . , Im(σs1+s2 (r))).

The image of K is the Q-span of θ(ωi) for any basis ωi for K over Q. This is not
the usual Minkowski embedding, but it has the virtues that (1) the codomain is
a real, not complex, vector space; and (2) the spherical or elliptical Gaussians
used as error distributions in [LPR13] are, in our setup, spherical or elliptical
with respect to the usual inner product. We denote the usual inner product by
〈·, ·〉 and the corresponding length by |x| =

√〈x, x〉. It is related to the trace
pairing on K, i.e. 〈θ(r), θ(s)〉 = Tr(rs).

Then R and R∨ form lattices in R
n.

Provably Weak Instances of Ring-LWE 73

4.2 Spherical Gaussians and Error Distributions

We define a Ring-LWE error distribution to be a spherical Gaussian distrib-
ution in R

n. That is, for a parameter σ > 0, define the continuous Gaussian
distribution function Dσ : R

n → (0, 1] by

Dσ(x) := (
√

2πσ)−n exp
(−|x|2/(2σ2)

)
.

This gives a distribution Ψ on K ⊗ R, via the isomorphism θ to R
n. By

approximating K ⊗R by K to sufficient precision, this gives a distribution on K.
From this distribution we can generate the Ring-LWE error distribution on

R, respectively R∨, by taking a valid discretization �Ψ�R, respectively �Ψ�R∨ ,
in the sense of [LPR13]. Now we have at hand a lattice, R, respectively R∨,
and a distribution on that lattice. The parameters (particularly σ) are generally
advised to be chosen so that this instance of LWE is secure against general
attacks on LWE (which do not depend on the extra structure endowed by the
number theory).

4.3 The Ring-LWE Problems

Write Rq := R/qR and R∨
q = R∨/qR∨. The standard Ring-LWE problems are

as follows, where K is taken to be a cyclotomic field [LPR,LPR13].

Definition 1 (Ring-LWE Average-Case Decision [LPR]). Let s ∈ R∨
q be

a secret. The average-case decision Ring-LWE problem, is to distinguish with
non-negligible advantage between the same number of independent samples in two
distributions on Rq ×R∨

q . The first consists of samples of the form (a, b := as+e)
where e is drawn from χ := �Ψ�R∨ and a is uniformly random, and the second
consists of uniformly random and independent samples from Rq × R∨

q .

Definition 2 (Ring-LWE Search [LPR]). Let s ∈ R∨
q be a secret. The search

Ring-LWE problem, is to discover s given access to arbitrarily many independent
samples of the form (a, b := as + e) where e is drawn from χ := �Ψ�R∨ and a is
uniformly random.

In proposing general number field Ring-LWE, one of two avenues may
be taken:

1. preserve these definitions exactly as they are stated, or
2. eliminate the duals, i.e. replace every instance of R∨ with R in the definitions

above.

To distinguish these two possible definitions, we will refer to dual Ring-LWE
and non-dual Ring-LWE. Lyubashevsky, Peikert and Regev remark that for
cyclotomic fields, dual and non-dual Ring-LWE lead to computationally equiv-
alent problems [LPR, Sect. 3.3]. They go on to say that over cyclotomics, for
implementation and efficiency reasons, dual Ring-LWE is superior.

74 Y. Elias et al.

Generalising dual Ring-LWE to general number fields is the most naive app-
roach, but it presents the problem that working with the dual in a general number
field may be difficult. Still, it is possible there are families of accessible number
fields for which this may be the desired avenue.

We will analyse the effect of the Poly-LWE vulnerability on both of these can-
didate definitions. In fact, the analysis will highlight some potential differences
in their security, already hinted at in the discussion in [LPR, Sect. 3.3].

4.4 Isomorphisms from θ(R) to a Polynomial Ring

Suppose K is a monogenic number field, meaning that R is isomorphic to a
polynomial ring P = Z[X]/f(X) for some monic irreducible polynomial f (f is
a monogenic polynomial). In this case, we obtain R = γR∨, for some γ ∈ R (here,
γ is a generator of the different ideal), so that θ(R∨) and θ(R) are related by a
linear transformation. Thus a (dual or non-dual) Ring-LWE problem concerning
the lattice θ(R) or θ(R∨) can be restated as a Poly-LWE problem concerning P .

Let α be a root of f . Then R is isomorphic to P , via α �→ X.
An integral basis for R is 1, α, α2, . . . , αn−1. An integral basis for R∨ is
γ−1, γ−1α, γ−1α2, . . . , γ−1αn−1. Let Mα be the matrix whose columns are
{θ(αi)}. Let M∨

α be the matrix whose columns are {θ(γ−1αi)}. If v is a vec-
tor of coefficients representing some β ∈ K in terms of the basis {αi} for K/Q,
then θ(β) = Mαv. In other words, Mα : P → θ(R) is an isomorphism (where
P is represented as vectors of coefficients). Similarly, M∨

α : P → θ(R∨) is an
isomorphism.

4.5 The Spectral Norm

Given an n × n matrix M , its spectral norm ρ = ||M ||2 is the �2 norm on its
n2 entries. This is equal to the largest singular value of M . This is also equal to
the largest radius of the image of a unit ball under M . This last interpretation
allows one to bound the image of a spherical Gaussian distribution of parameter
σ on the domain of M by another of parameter ρσ on the codomain of M (in
the sense that the image of the ball of radius σ will map into a ball of radius ρσ
after application of M).

The normalized spectral norm of M is defined to be ρ′ = ||M ||2/det(M)1/n.
The condition number of M is k(M) = ||M ||2||M−1||2.

4.6 Moving the Attack from Poly-LWE to Ring-LWE

Via the isomorphism M := M−1
α (respectively M := (M∨

α)−1), an instance of
the non-dual (respectively dual) Ring-LWE problem gives an instance of the
Poly-LWE problem in which the error distribution is the image of the error
distribution in θ(R) (respectively θ(R∨)). In general, this may be an elliptic
Gaussian distorted by the isomorphism. If the distortion is not too large, then
it may be bounded by a spherical Gaussian which is not too large. In that

Provably Weak Instances of Ring-LWE 75

case, a solution to the Poly-LWE problem with the new spherical Gaussian error
distribution may be possible. If so, it will yield a solution to the original Ring-
LWE problem.

This is essentially the same reduction described in [EHL]. However, those
authors assume that the isomorphism is an orthogonal linear map; we are loos-
ening this condition. The essential question in this loosening is how much the
Gaussian distorts under the isomorphism. Our contribution is an analysis of the
particular basis change.

This distortion is governed by the spectral norm ρ of M . If the continuous
Gaussian in R

n is of parameter σ (with respect to the standard basis of R
n), then

the new spherical Gaussian bounding its image is of parameter ρσ with respect
to P (in terms of the coefficient representation). The appropriate analysis for
discrete Gaussians is slightly more subtle. Loosely speaking, we find that a Ring-
LWE instance is weak if the following three things occur:

1. K is monogenic.
2. f satisfies f(1) ≡ 0 (mod q).
3. ρ and σ are sufficiently small.

The first condition guarantees the existence of appropriate isomorphisms to
a polynomial ring; the second and third are required for the Poly-LWE attack
to apply. The purpose of the third requirement is that the discrete Gaussian
distribution in R

n transfers to give vectors e(x) in the polynomial ring having the
property that e(1) lies in the range [−q/4, q/4) except with negligible probability;
this allows Algorithm 2 and the conclusions of Proposition 2 to apply.

Let us now state our main result.

Theorem 1. Let K be a number field such that K = Q(β), and the ring of
integers of K is equal to Z[β]. Let f be the minimal polynomial of β and suppose
q is a prime such that f has root 1 modulo q. Finally, suppose that the spectral
norm ρ of M−1

β satisfies

ρ <
q

4
√

2πσn
.

Then the non-dual Ring-LWE decision problem for K, q, σ can be solved in time
Õ(�q) with probability 1 − 2−�, using a dataset of � samples.

Proof. Sampling a discrete Gaussian with parameter σ results in vectors of norm
at most

√
2πσ

√
n except with probability at most 2−2n [LPR13, Lemma 2.8].

Considering the latter to be negligible, then we can expect error vectors to satisfy
||v||2 <

√
2πσ

√
n and their images in the polynomial ring to satsify

|e(1)| = ||e(x)||1 <
√

n||e(x)||2 <
√

nρ
√

2πσ
√

n = ρ
√

2πσn.

Therefore, if
ρ
√

2πσn < q/4,

then we may apply the attack of Sect. 3.2 that assumes f(1) ≡ 0 (mod q) and
that error vectors lie in [−q/4, q/4).

76 Y. Elias et al.

In what follows, we find a family of polynomials satisfying the conditions
of the theorem, and give heuristic arguments that such families are in fact very
common. The other cases (other than α = 1) appear out-of-reach for now, simply
because the bounds on ρ are much more difficult to attain. We will not examine
them closely.

4.7 Choice of σ

The parameters of Sect. 2.1 are used in implementations where the Gaussian
is taken over (Z/qZ)n, and security depends upon the proportion of this space
included in the ‘bell,’ meaning, it depends upon the ratio q/σ. In the case of
Poly-LWE, sampling is done on the coefficients, which are effectively living in
the space (Z/qZ)n, so this is appropriate. However, in Ring-LWE, the embedding
θ(R) in R

n may be very sparse (i.e. θ(R∨) may be very dense). Still, the security
will hinge upon the proportion of θ(R)/qθ(R) that is contained in the bell. We
have not seen a discussion of security parameters for Ring-LWE in the literature,
and so we propose that the appropriate meaning of the width of the Gaussian,
w, in this case is

w :=
√

2πσ′ :=
√

2πσdet(Mα)1/n
, (4)

where σ′ is defined by the above equality. The reason for this choice is that θ(R)
has covolume det(Mα); a very sparse lattice (corresponding to large determinant)
needs a correspondingly large σ so that the same proportion of its vectors lie in
the bell.

If ρ represents the spectral norm of M−1
α (which has determinant det(Mα)−1),

then
ρ′ := ρ det(Mα)1/n

is the normalized spectral norm. Therefore ρ/σ = ρ′/σ′. Hence the bound of
Theorem 1 becomes

ρ′ <
q

4wn
. (5)

5 Provably Weak Ring-LWE Number Fields

Consider the family of polynomials

fn,q(x) = xn + q − 1

for q a prime. These satisfy f(1) ≡ 0 (mod q). By the Eisenstein criterion, they
are irreducible whenever q − 1 has a prime factor that appears to exponent 1.
These polynomials have discriminant [M] given by

(−1)
n2−n

2 nn(q − 1)n−1.

Proposition 3. Let n be power of a prime �. If q − 1 is squarefree and �2 �

((1 − q)n − (1 − q)) then the polynomials fn,q are monogenic.

Provably Weak Instances of Ring-LWE 77

Proof. This is a result of Gassert in [G, Theorem 5.1.4]. As stated, Theorem 5.1.4
of [G] requires � to be an odd prime. However, for the monogenicity portion of
the conclusion, the proof goes through for p = 2.

Proposition 4. Suppose that fn,q is irreducible, and the associated number field
has r2 complex embeddings. Then r2 = n/2 or (n−1)/2 (whichever is an integer),
and the normalized spectral norm of M−1

α is exactly

2−r2/n

√

(q − 1)1− 1
n .

Proof. Let a be a positive real n-th root of q−1. Then the roots of the polynomial
are exactly aζj

2n for j odd such that 1 ≤ j < 2n. The embeddings take aζ2n to
each of the other roots. There is r1 = 1 real embedding if n is odd (otherwise
r1 = 0), and the rest are r2 complex conjugate pairs, so that n = r1 +2r2. Then
the dot product of the r-th and s-th columns of M−1

α is

n−1∑

k=0

ar+sζ
(r−s)(2k+1)
2n = 0

Therefore, the columns of the matrix are orthogonal to one another. Hence,
the matrix is diagonalizeable, and its eigenvalues are the lengths of its column
vectors, which is for the r-th column,

(
n−1∑

k=0

||arζ2k+1
2n ||2

)1/2

=
√

nar

Therefore the smallest singular value of Mα is
√

n and the largest is
√

nan−1.
Correspondingly, the largest singular values of M−1

α is 1/
√

n.
A standard result of number theory relates the determinant of Mα to the

discriminant of K via

det(Mα) = 2−r2

√
disc(fn,q),

where r2 ≤ n
2 is the number of complex embeddings of K. Combining the small-

est singular value with this determinant (the discriminant is given explicitly at
the beginning of this section) gives the result.

Theorem 2. Suppose q is prime, n is an integer and f = fn,q satisfies

1. n is a power of the prime �,
2. q − 1 is squarefree,
3. �2 � ((1 − q)n − (1 − q)),
4. we have τ > 1, where

τ :=
q

2
√

2wn(q − 1)
1
2− 1

2n

.

78 Y. Elias et al.

Then the non-dual Ring-LWE decision problem for f and w (defined by (4)) can
be solved in time Õ(�q) with probability 1 − 2−�, using a dataset of � samples.

Proof. Under the stated conditions, f has a root 1 modulo q, and therefore Poly-
LWE is vulnerable to the attack specified in Algorithm 2. The other properties
guarantee the applicability of Theorem 1 via Propositions 3 and 4.

Under the assumption that q − 1 is infinitely often squarefree, this provides
a family of examples which are susceptible to attack (taking, for example, n as
an appropriate power of 2; note that in this case item (3) is automatic).

Interestingly, their susceptibility increases as q increases relative to n. It is
the ratio

√
q/n, rather than their overall size, which controls the vulnerability (at

least as long as q is small enough to run a loop through the residues modulo q).
The quantity τ can be considered a measure of security against this attack; it

should be small to indicate higher security. For the various parameters indicated
in Sect. 2.1, the value of τ is:

Parameters PLP1 PLP2 PLP3 PGF PBCNS

τ 0.0136 0.0108 0.0090 0.0063 5.0654

The bound on τ in Theorem 1 is stronger than what is required in practice
for the attack to succeed. In particular, the spectral norm of the transformation
M−1

α does not accurately reflect the average behaviour; it is worst case. As n
increases, it is increasingly unlikely that error samples happen to lie in just
the right direction from the origin to be inflated by the full spectral norm.
Furthermore, we assumed in the analysis of Theorem 1 an overly generous bound
on the error vectors.

The proof is in the pudding: in Sect. 9 we have successfully attacked parame-
ters for which τ < 0.02, including PLP1.

6 Heuristics on the Prevalence of Weak Ring-LWE
Number Fields

In this section, we argue that many examples satisfying Theorem 1 are very likely
to exist. In fact, each of the individual conditions is fairly easy to attain. We will
see in what follows that given a random monogenic number field, there is with
significant probability at least one prime q for which Ring-LWE is vulnerable
(i.e. the bound (5) is attained) for parameters comparable to those of PBNCS .
Note that in this parameter range, the spectral norm is expensive to compute
directly.

6.1 Monogenicity

Monogenic fields are expected to be quite common in the following sense. If
f of degree n ≥ 4 is taken to be a random polynomial (i.e. its coefficients
are chosen randomly), then it is conjecturally expected that with probability

Provably Weak Instances of Ring-LWE 79

� 0.307, P will be the ring of integers of a number field [K]. In particular, if f
has squarefree discriminant, this will certainly happen. Furthermore, cyclotomic
fields are monogenic, as are the families described in the last section.

However, at degrees n ∼ 210, the discriminant of f is too large to test for
squarefreeness, so testing for monogenicity may not be feasible. Kedlaya has
developed a method for constructing examples of arbitrary degree [K].

6.2 Examples, n = 210, q ∼ 232

Consider the following examples:

f(x) = x1024 + (231 + 14)x + 231, q = 4294967311,

f(x) = x1024 + (231 + 230 + 22)x + (231 + 230), q = 6442450967,

f(x) = x1024 + (231 + 230 + 29)x + (231 + 230 + 5), q = 6442450979.

These examples are discussed at greater length in Sect. 7.2, where the method
for constructing them is explained. In each case, f(1) ≡ 0 (mod q).

In this size range, we were not able to compute the spectral norm of K
directly in a reasonable amount of time. In the next few sections we will make
persuasive heuristic arguments that it can be expected to have ρ′ well within the
required bound (5), i.e. ρ′ < 217. That is, we expect these examples and others
like them to be vulnerable.

6.3 Heuristics for the Spectral Norm

To find large q requires taking more complex polynomials f , which in turn may
inflate the spectral norm, so the complexity of f must be balanced.

One approach is to consider polynomials of the form f(x) = xn + ax+ b. Let
us recall a standard result of number theory. For a number field K with r1 real
embeddings and r2 conjugate pairs of complex embeddings, the determinant
of the canonical embedding is

√
ΔK2−r2 . Therefore, if ΔK > 22r2 (call this

Assumption A), we obtain det(Mf) > 1. Then ||Mf ||2 > 1. We are interested in
the spectral norm of the inverse:

||M−1
f ||2 ≤ k(Mf)/||Mf ||2 ≤ k(Mf),

where k(Mf) represents the condition number of Mf . Now,

ρ′ = ||M−1
f ||2 det(Mf)1/n.

As mentioned above, det(Mf) is given in terms of ΔK . Under the assumption
that Z[X]/f(X) is indeed a ring of integers, ΔK = Disc(f) (call this Assump-
tion B). By [M],

Disc(f) = (n − 1)n−1an + (−1)n−1nn(b + 1)n−1.

80 Y. Elias et al.

It is evident that by judicious choice of a and b, it is possible to obtain a range
of discriminant sizes. We can expect there to be plenty of examples in the range
n2 < ΔK < n3 (in this range, Assumption A is satisfied). Then we obtain

ρ′ ≤ 2k(Mf).

The condition number of Mf is hard to access theoretically, but heuristi-
cally, for random perturbations of any fixed matrix, most perturbations are
well-conditioned (having small condition number) [TV]. The matrix Mf is a
perturbation of Mp for p = xn + 1. The extent of this perturbation can be
bounded in terms of the coefficients a and b, since the perturbation is controlled
by the perturbation in the roots of the polynomial. It is a now-standard result
in numerical analysis, due to Wilkinson, that roots may be ill-conditioned in
this sense, but the condition number can be bounded in terms of the coeffi-
cients a and b. This implies that, heuristically, k(Mf) is likely to be small quite
frequently.

In conclusion, we expect to find that many f(x) will have ρ′ quite small.

6.4 Experimental Evidence for the Spectral Norm

We only ran experiments in a small range due to limitations of our Sage imple-
mentation [S]. The polynomials x32 + ax + b, −60 ≤ a, b ≤ 60 were plotted on a
max{a, b}-by-ρ′ plane. The result is as follows:

There are some examples with quite high ρ′, but the majority cluster low.
The grey line is y =

√
x. Therefore, we may conjecture based on this experiment,

that we may expect to find plenty of f satisfying ρ′ <
√

max{a, b}.

Provably Weak Instances of Ring-LWE 81

Experimentally, we may guess that the examples of Sect. 6.2, for which
n = 210 and max{a, b} ≤ 230, will frequently satisfy ρ′ < 215, which is the range
required by Theorem 1. (Note that the coefficients cannot be taken smaller if f
is to have root 1 modulo a prime q ∼ 231.)

7 Weak Poly-LWE Number Fields

7.1 Finding f and q with Roots of Small Order

It is relatively easy to generate polynomials f and primes q for which f has a
root of given order modulo q. There are two approaches: given f , find suitable
q; and given q, find suitable f . Since there are other conditions one may require
for other reasons (particularly on f), we focus on the first of these.

Given f , in order to find q such that f has a root of small order (this includes
the cases α = ±1), the following algorithm can be applied.

Algorithm 3. Finding primes q such that f(x) has a root of small order modulo q

Input: A non-cyclotomic irreducible polynomial f(X) ∈ Z[X]; and an integer m ≥ 1.
Output: A prime q such that f(X) has a root of order m modulo q.

1. Let Φm(X) be the cyclotomic polynomial of degree m. Apply the extended Euclidean
algorithm to f(X) and Φm(X) over the ring Q[X] to obtain a(X), b(X) such that

a(X)f(X) + b(X)Φm(X) = 1.

(Note that 1 is the GCD of f(X) and Φm(X) by assumption.)
2. Let d be the least common multiple of all the denominators of the coefficients of a and b.
3. Factor d.
4. Return the largest prime factor of d.

It is also possible to generate examples by first choosing q and searching for
appropriate f . For example, taking f(x) = Φm(x)g(x) + q where g(x) is monic
of degree m − n suffices. Both methods can be adapted to find f having any
specified root modulo q.

7.2 Examples, n ∼ 210, q ∼ 232

For the range n ∼ 210, we hope to find q ∼ 232. Examples were found by applying
Algorithm 3 to polynomials f(x) of the form xn + ax + b for a, b chosen from a
likely range. Examples are copious and not difficult to find (see Appendix A.2
for code).

Case α = 1. A few typical examples of irreducible f with 1 as a root modulo q are:

f(x) = x1024 + (231 + 14)x + 231, q = 4294967311,

f(x) = x1024 + (231 + 230 + 22)x + (231 + 230), q = 6442450967,

f(x) = x1024 + (231 + 230 + 29)x + (231 + 230 + 5), q = 6442450979.

82 Y. Elias et al.

These examples satisfy condition 1 of Proposition 2 with σ = 3, hence are
vulnerable.

Case α = −1. Here is an irreducible f with root −1:

f(x) = x1024 + (231 + 9)x − (231 + 7), q = 4294967311 ∼ 232.

This example similarly satisfies condition 1 of Proposition 2 and so is vulnerable.

Case α Small Order. Here is an irreducible f with a root of order 3:

f(x) = x1024 + (216 + 2)x − 216, q = 1099514773507 ∼ 240.

This example has q ∼ 240; taking this larger q allows us to satisfy (2) of Propo-
sition 1 and hence it is vulnerable to Algorithm 1.

7.3 Examples of Weak Poly-LWE Number Fields with Additional
Properties

In this section we will give examples of number fields K = Q[x]/(f(x)) which
are vulnerable to our attack on Poly-LWE. They will be vulnerable by satisfying
one of the following two possible conditions:

R f(1) ≡ 0 (mod q).
R′ f has a root of small order modulo q.

We must also require:

Q The prime q can be chosen suitably large.

The examples we consider are cyclotomic fields and therefore Galois and
monogenic. One should note that guaranteeing these two conditions together is
nontrivial in general. In addition to these, there are additional conditions for the
attack explained in [EHL]. The desirable conditions are:

G K is Galois.
M K is monogenic.
S The ideal (q) splits completely in the ring of integers R of K, and q � [R : Z[β]].
O The transformation between the canonical embedding of K and the power

basis representation of K is given by a scaled orthogonal matrix.

Conditions G and S are needed for the Search-to-Decision reduction and Con-
ditions M and O are needed for the Ring-LWE to Poly-LWE reduction in [EHL].

Note that checking the splitting condition for fields of cryptographic size is
not computationally feasible in general. However, we are able to give a sufficient
condition for certain splittings which is quite fast to check.

Proposition 5. Using the notation as above, if f(2) ≡ 0 mod q then q splits
in R.

Provably Weak Instances of Ring-LWE 83

Proof. Since 22
k−1 ≡ −1 (mod q), it follows that (2α)2

k−1 ≡ (−1)α ≡ −1
(mod q) for all odd α in Z. We’ll show that 2, 23, 25, . . . , 2m where m = 2k − 1
are all distinct mod q, hence showing that f(x) has 2k−1 distinct roots mod q
i.e. f(x) splits mod q. Assume that 2i ≡ 2j (mod q) for some 1 ≤ i < j ≤ 2k −1.
Then 2j−i ≡ 1 (mod q), which means that the order of 2 modulo q divides j − i.
However, by the fact below (Lemma 1), the order of 2 mod q is 2k, which is a
contradiction since j − i < 2k.

Lemma 1. Let q be a prime such that 22
k−1 ≡ −1 (mod q) for some integer k.

Then the order of 2 modulo q is 2k.

Proof. Let a be the order of 2 modulo q. By assumption (22
k−1

)2 ≡ 22
k ≡ 1

(mod q). Then a|2k i.e. a = 2α for some α ≤ k. Say α ≤ k − 1. Then 1 =
(22

α

)2
k−1−α

= 22
k−1 ≡ −1 (mod q), a contradiction.

The converse of Proposition 5 does not hold. For instance, let K be the
splitting field of the polynomial x8 +1 and q = 401. Then q splits in R. However
f(2) = 257 	≡ 0 (mod q).

We now present a family of examples for which α = −1 is a root of f of
order two. Conditions G, M, S, R′ (order 2) and Q are all satisfied. The field
K is the cyclotomic number field of degree φ(2k) = 2k−1, but instead of the
cyclotomic polynomial we take the minimal polynomial of ζ2k + 1. In each case,
q is obtained by factoring 22

k−1
+1 for various values of k and splitting is verified

using Proposition 5.

k 2 3 4 5 6 7 7 8 8

q 5 17 257 65537∼ 216 6700417 ∼ 222 274177 ∼ 218 q5 ∼ 245 q6 ∼ 255 q1 ∼ 272

k 9 9 10 10 10 11 11 11

q q7 ∼ 250 q2 ∼ 2205 2424833∼ 221 q3 ∼ 2162 q4 ∼ 2328 q8 ∼ 225 q9 ∼ 232 q10 ∼ 2131

Several of these examples are of cryptographic size1, i.e. the field has degree
210 and the prime is of size ∼ 232 or greater. These provide examples which are
weak against our Poly-LWE attack, by Proposition 2.

8 Cyclotomic (in)vulnerability

One of our principal observations is that the cyclotomic fields, used for Ring-
LWE, are uniquely protected against the attacks presented in this paper. The
next proposition states that the polynomial ring of the m-th cyclotomic polyno-
mial Φm will never be vulnerable to the attack based on a root of small order.
1 q1 = 5704689200685129054721, q2 = 9346163971535797776916355819960689658405

1237541638188580280321,
q3 = 7455602825647884208337395736200454918783366342657, q5 = 67280421310721,
q6 = 59649589127497217
q4 = 74164006262753080152478714190193747405994078109751902390582131614441
5759504705008092818711693940737
q7 = 1238926361552897, q8 = 45592577, q9 = 6487031809, q10 = 46597757852200185
43264560743076778192897.

84 Y. Elias et al.

Proposition 6. The roots of Φm have order m modulo every split prime q.

Proof. Consider the field Fq, q prime. Since Fq is perfect, the cyclotomic poly-
nomial Φm(x) has φ(m) roots in an extension of Fq. This polynomial has no
common factor with xk − 1 for k < m. However, it divides xm − 1. Therefore
its roots have order dividing m, but not less than m. That is, its roots are all of
order exactly m in the field in which they live. Now, if we further assume that
Φm(x) splits modulo q, then its φ(m) roots are all elements of order m modulo
q, so in particular, m | q − 1. The roots of Φm(x) are all elements of Z/qZ of
order exactly m.

The question remains whether there is another polynomial representation
for the ring of cyclotomic integers for which f does have a root of small order.
This may in fact be the case, but the error distribution is transformed under
the isomorphism to this new basis, so this does not guarantee a weakness in
Poly-LWE for Φm.

However, it is not necessary to search for all such representations to rule
out the possibility that this provides an attack. The ring Rq

∼= F
n
q has exactly

n = φ(m) homomorphisms to Z/qZ. If Rq can be represented as (Z/qZ)[X]/f(X)
with f(α) = 0, then the map Rq → Z/qZ is given by p �→ p(α) is one of these
n maps. It suffices to write down these n maps (in terms of any representation!)
and verify that the errors map to all of Z/qZ instead of a small subset. It is a
special property of the cyclotomics that these n homomorphisms coincide. Thus
we are reduced to the case above.

9 Successfully Coded Attacks

The following table documents Ring-LWE and Poly-LWE parameters that were
successfully attacked on a Thinkpad X220 laptop with Sage Mathematics Soft-
ware [S], together with approximate timings. For code, see Appendix A. The first
row indicates that cryptographic size is attackable in Poly-LWE. The second row
indicates that a generic example attackable by Poly-LWE is also susceptible to
Ring-LWE (see Sect. 6). We were unable to test the Ring-LWE attack for n > 256
only because Sage’s built-in Discrete Gaussian Sampler was not capable of ini-
tializing (thus we were unable to produce samples to test). The last two rows
illustrate the τ of Theorem 1 that is required for security in practice (approxi-
mately τ < 0.013 instead of τ < 1 in theory). In the Ring-LWE rows, parameters
were chosen to illustrate the boundary of feasibility for a fixed n. Since the feasi-
bility of the attack depends on the ratio

√
q/n, there is no reason to think larger

n are invulnerable (provided q also grows), but we were unable to produce sam-
ples to test against. The Poly-LWE example illustrates that runtime for large q
is feasible (runtimes for Poly-LWE and Ring-LWE are the same; it is only the
samples which differ).

Provably Weak Instances of Ring-LWE 85

Case f q w τ Samples Successful Time
per run runs per run

Poly-LWE x1024 + 231 − 2 231 − 1 3.192 N/A 40 1 of 1 13.5 hrs

Ring-LWE x128+524288x+524285 524287 8.00 N/A 20 8 of 10 24 sec

Ring-LWE x192 + 4092 4093 8.87 0.0136 20 1 of 10 25 sec

Ring-LWE x256 + 8189 8190 8.35 0.0152 20 2 of 10 44 sec

Acknowledgments. The authors are indebted to the organizers of the research con-
ference Women in Numbers 3 (Rachel Pries, Ling Long and the fourth author), as well
as to the Banff International Research Station, for bringing together this collaboration.
The authors would also like to thank Martin Albrecht for help with Sage.

A Appendix: Code

A.1 Proof of Concept for Ring-LWE and Poly-LWE Attacks

The following Sage Mathematical Software [S] code verifies that Algorithm 2
succeeds on the Poly-LWE and Ring-LWE examples of Sect. 9. Note that Algo-
rithm 1 is a minor modification of Algorithm 2.

This code relies on DiscreteGaussianDistributionLatticeSampler, an
inbuilt package in Sage. The sampler is incapable of initializing in sufficiently
large dimension to fully test the attacks in this paper. See the related trac ticket
http://trac.sagemath.org/ticket/17764.

Built into the code are several error checks that will be triggered if insufficient
precision is not used.

This code is available in electronic form at http://math.colorado.edu/
∼kstange/scripts.html.

##

RING-LWE ATTACK

##

General preparation of Sage: Create a polynomial ring and import GaussianSampler, Timer

P.<y> = PolynomialRing(RationalField(),’y’)

from sage.stats.distributions.discrete_gaussian_lattice import DiscreteGaussianDistributionLatticeSampler

RP = RealField(300) # this sets the precision; if it is insufficient, the implementation won’t be valid

from sage.doctest.util import Timer

Give the Minkowski lattice for a given ring determined by a polynomial.

Also gives a key to which are real embeddings.

def cmatrix(): # returns a matrix, columns basis 1, x, x^2, x^3, ... given in the canonical embedding

global N, a

N.<a> = NumberField(f)

fdeg = f.degree()

key = [0 for i in range(fdeg)] # 0 = real, 1 = real part of complex emb, 2 = imaginary part

embs = N.embeddings(CC)

M = matrix(RP,fdeg,fdeg)

print"Preparing an embedding matrix: computing powers of the root."

apows = [a^j for j in range(n)]

print"Finished computing the powers of the root."

i = 0

while i < n:

em = embs[i]

if Mod(i,20)==Mod(0,20) or Mod(i,20)==Mod(1,20):

print"Embedding matrix: ", i," rows out of ", n," complete."

http://trac.sagemath.org/ticket/17764
http://math.colorado.edu/~kstange/scripts.html
http://math.colorado.edu/~kstange/scripts.html

86 Y. Elias et al.

if em(a).imag() == 0:

key[i] = 0

for j in range(n):

M[i,j] = em(apows[j]).real()

i = i + 1

else:

key[i] = 1

key[i+1] = 2

for j in range(n):

M[i,j] = em(apows[j]).real()

M[i+1,j] = (em(apows[j])*I).real()

i = i + 2

return M, key

Produce a random vector from (Z/qZ)^n

def random_vec(q, dim):

return vector([ZZ.random_element(0,q) for i in range(dim)])

Useful function for real numbers modulo q

def modq(r,q):

s = r/q

t = r/q - floor(r/q)

return t*q

Call sampler

def call_sampler():

e = sampler().change_ring(RP)

return e

Create samples using a lattice (given by latmat and its inverse),

a Gaussian sampler on that lattice, secret, prime

def get_sample(latmat, latmatinv, sec, qval, keyval):

e = call_sampler() # create error, in R^n

dim = latmat.dimensions()[0] # detect dimension of lattice

pre_a = random_vec(qval, dim) # create a uniformly randomly in terms of basis in cm

a = latmat*pre_a # create a, in R^n

b = vecmul_poly(a,sec,latmat,latmatinv) + e # create b, in R^n

pre_b = latmatinv*b # move to basis in cm in order to reduce mod q

pre_b_red = vector([modq(c,qval) for c in pre_b])

b = latmat*pre_b_red

return [a, b]

Global choices: setup a field and prime, sampler.

Set to dummy values that will be altered when an attack is run

q = 1

n = 1

sig = 1/sqrt(2*pi)

Zq = IntegerModRing(q)

R.<x> = PolynomialRing(Zq)

f = y + 1

N.<a> = NumberField(f)

S.<z> = R.quotient(f) # This is P_q

cm,key = cmatrix()

cmi = cm.inverse()

cm

cm53 = cm.change_ring(RealField(10))

cmqq = cm53.change_ring(QQ)

sampler = DiscreteGaussianDistributionLatticeSampler(cmqq.transpose(), sig)

Set the parameters for the attack

def setup_params(fval,qval,sval):

global q,n,sig,f,S,x,z,Zq

f = fval

n = f.degree()

q = qval

Zq = IntegerModRing(q)

R.<x> = PolynomialRing(Zq)

sig = sval/sqrt(2*pi)

S.<z> = R.quotient(f)

print"Setting up parameters, polynomial = ", f," and prime = ", q," and sigma = ", sig

print"Verifying properties: "

print"Prime?", q.is_prime()

Provably Weak Instances of Ring-LWE 87

print"Irreducible? ", f.is_irreducible()

print"Value at 1 modulo q?", Mod(f.subs(y=1),q)

return True

Compute the lattices in Minkowski space

def prepare_matrices():

global cm, key, cmi, cmqq

print"Preparing matrices."

cm,key = cmatrix()

print"Embedding matrix prepared."

cmi = cm.inverse()

print"Inverse matrix found."

cm53 = cm.change_ring(RealField(10))

cmqq = cm53.change_ring(QQ)

print"All matrices prepared."

return True

Make a vector in R^n into a polynomial, given change of basis matrix and variable to use

def make_poly(a,matchange,var):

coeffs = matchange*a #coefficients of the polynomial are given by the change of basis matrix

pol = 0

for i in range(n):

pol = pol + ZZ(round(coeffs[i]))*var^i # var controls where it will live (what poly ring)

return pol

Make a polynomial into a vector in Minkowski space

def make_vec(fval,matchange):

if fval == 0:

coeffs = [0 for i in range(n)]

else:

coeffs = [0 for i in range(n)]

colist = lift(fval).coefficients()

for i in range(len(colist)):

coeffs[i] = ZZ(colist[i])

return matchange*vector(coeffs)

Multiplication in the Minkowski space via moving to polynomial ring

def vecmul_poly(u,v,mat,matinv):

poly_u = make_poly(u,matinv,z)

poly_v = make_poly(v,matinv,z)

poly_prod = poly_u*poly_v

return make_vec(poly_prod,mat)

Create the sampler on the lattice embedded in R^n

def initiate_sampler():

global sampler

print"Initiating Sampler."

sampler = DiscreteGaussianDistributionLatticeSampler(cmqq.transpose(), sig)

print"Sampler initiated with sigma", RDF(sig)

return True

Produce error vectors, just a test to see how they look

def error_test(num):

print"Testing the error vector production by producing ", num," errors."

errorlist = [sampler().norm().n() for _ in range(num)]

meannorm = mean(errorlist) # average norm

maxnorm = max(errorlist) # maximum norm

print"The average error norm is ", RDF(meannorm/(sqrt(n)*sampler.sigma*sqrt(2*pi)))," times sqrt(n)*s."

maxratio = RDF(maxnorm/(sqrt(n)*sampler.sigma*sqrt(2*pi)))

print"The maximum error norm is ", maxratio," times sqrt(n)*s."

if maxratio > 1:

print"~~~~~~~~~~~~~~~~~~~~~~~ ERROR ~~~~~~~~~~~~~~~~~~~~~~~~~"

print"The errors do not satisfy a proven upper bound in norm."

return True

Create the secret

secret = 0

def create_secret():

global secret

secret = cm*random_vec(q,n)

return True

Produce samples

88 Y. Elias et al.

samps = []

numsamps = 1

def create_samples(numsampsval):

global samps, numsamps

samps = []

print"Creating samples"

for i in range(numsampsval):

print"Creating sample number ", i

samp = get_sample(cm, cmi, secret, q, key)

samps.append(samp)

numsamps = len(samps)

print"Done creating ", numsamps,"samples."

return True

Function for going down to q

def go_to_q(a,matchange):

pol = make_poly(a,matchange,x)

#print"debug got pol:", pol

pol_eval = pol.subs(x=1)

#print"debug eval’d to:", pol_eval," and then ", Zq((pol_eval))

return Zq(pol_eval)

Check to make sure moving to q preserves product -- the last two lines should be equal

def sanity_check():

print"Initiating sanity check"

mat = cmi

pvec1 = random_vec(q,n)

vec1 = cm*pvec1

pvec2 = random_vec(q,n)

vec2 = cm*pvec2

vprod2 = vecmul_poly(vec1,vec2,cm,cmi)

first_thing = go_to_q(vprod2,mat)

second_thing = go_to_q(vec1,mat)*go_to_q(vec2,mat)

if first_thing == second_thing:

print"Sanity confirmed."

else:

print"~~~~~~~~~~~~~~~~~~~~~~~ ERROR ~~~~~~~~~~~~~~~~~~~~~~~~~"

print"Sanity problem:", first_thing," is not equal to ", second_thing,"."

print"Are you sure your ring has root 1 mod q?"

return True

Given a list of elements of Z/qZ, make a histogram and zero count

def histoq(data):

hist = [0 for i in range(10)] # empty histogram

zeroct=0 # count of zeroes mod q

for datum in data:

e = datum

if e == 0:

zeroct = zeroct+1

histbit = floor(ZZ(e)*10/q)

hist[histbit]=hist[histbit]+1

return [hist, zeroct]

Given a list of vectors in R^n, create a histogram of their

values in Z/qZ under make_poly, together with a zero count

def histo(data,cmi):

return histoq([go_to_q(datum,cmi) for datum in data])

Create a histogram of error vectors, transported to polynomial ring

def histogram_of_errors():

print"Creating a histogram of errors mod q."

errs = []

for i in range(80):

errs.append(sampler())

hist = histo(errs,cmi)

print"The number of error vectors that are zero:", hist[1]

bar_chart(hist[0], width=1).show(figsize=2)

return True

Create a histogram of the a’s in the samples, transported to polynomial ring

def histogram_of_as():

print"Creating a histogram of sample a’s mod q."

a_vals = [samp[0] for samp in samps]

Provably Weak Instances of Ring-LWE 89

hist = histo(a_vals,cmi)

print"The number of a’s that are zero:", hist[1]

bar_chart(hist[0], width=1).show(figsize=2)

return True

Create a histogram of errors by correct guess

def histogram_of_errors_2():

print"Creating a histogram of supposed errors if sample is guessed, mod q."

hist = histoq([lift(Zq(go_to_q(sample[1],cmi) - go_to_q(sample[0],cmi)*go_to_q(secret,cmi))) for sample in samps])

print"The number of such that are zero:", hist[1]

bar_chart(hist[0], width=1).show(figsize=2)

return True

Create the secret mod q

lift_s = 0

def secret_mod_q():

global lift_s

lift_s = go_to_q(secret,cmi)

print"Storing the secret mod q. The secret is ", secret," which becomes ", lift_s

return True

Algorithm 2

reportrate controls how often it updates the status of the loop; larger = less frequently

quickflag = True will run only the secret and a few other values to give a quick idea if it works

def alg2(reportrate, quickflag = False):

print"Beginning algorithm 2."

numsamps = len(samps)

a = [0 for i in range(numsamps)]

b = [0 for i in range(numsamps)]

print"Moving samples to F_q."

for i in range(numsamps):

sample = samps[i]

a[i] = go_to_q(sample[0],cmi)

b[i] = go_to_q(sample[1],cmi)

possibles = []

winner = [[],0]

print"Samples have been moved to F_q."

for i in range(2):

if i == 0:

print"!!!!! ROUND 1: !!!!! First, checking how many samples the secret survives (peeking ahead)."

iterat = [lift_s]

if i == 1:

print"!!!!! ROUND 2: !!!!! Now, running the attack naively."

possibles = []

if quickflag:

print"We are doing it quickly (not a full test)."

iterat = xrange(1000)

else:

iterat = xrange(q)

for g in iterat:

if Mod(g,reportrate) == Mod(0,reportrate):

print"Currently checking residue ", g

g = Zq(g)

potential = True

ctr = 0

while ctr < numsamps and potential:

e = abs(lift(Zq(b[ctr]-g*a[ctr])))

if e > q/4 and e < 3*q/4:

potential = False

if ctr == winner[1]:

winner[0].append(g)

print"We have a new tie for longest chain:", g," has survived ", ctr," rounds."

if ctr > winner[1]:

winner = [[g],ctr]

print"We have a new longest chain of samples survived:", g," has survived ", ctr," rounds."

ctr = ctr + 1

if potential == True:

print"We found a potential secret: ", g

possibles.append(g)

if g == lift_s:

if i == 0:

print"The real secret survived ", ctr,"samples."

90 Y. Elias et al.

#break

print"Full list of survivors of the ", numsamps," samples:", possibles

print"The real secret mod q was: ", lift_s

if len(possibles) == 1 and possibles[0] == lift_s:

print"Success!"

return True

else:

print"Failure!"

return False

Run a simulation.

def shebang(fval,qval,sval,numsampsval,numtrials,quickflag=False):

global sig

print"Welcome to the Ring-LWE Attack."

n = fval.degree()

print"The attack should theoretically work if the following quantity is greater than 1."

print"Quantity: ", RDF(qval/(2*sqrt(2)*sval*n*(qval-1)^((n-1)/2/n)))

timer = Timer()

timer2 = Timer()

timer.start()

print"********** PHASE 1: SETTING UP SYSTEM "

setup_params(fval,qval,sval)

prepare_matrices()

print"Computing the adjustment factor for s."

cembs = (n - len(N.embeddings(RR)))/2

detscale = RP((2^(-cembs)*sqrt(abs(f.discriminant())))^(1/n)) # adjust the sigma,s

sval = sval*detscale

sig = sig*detscale

print"Adjusted s for use with this embedding, result is ", sval

initiate_sampler()

print"The sampler has been created with sigma = ", sampler.sigma

print"Sampled vectors will have expected norm ", RDF(sqrt(n)*sampler.sigma)

error_test(5)

print"Time for Phase 1: ", timer.stop()

timer.start()

count_successes = 0

timer2.start()

for trialnum in range(numtrials):

print"*~*~*~*~*~*~*~*~*~*~*~*~* TRIAL NUMBER ", trialnum,"*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~"

print"********** PHASE 2: CREATE SECRET AND SAMPLES"

create_secret()

create_samples(numsampsval)

sanity_check()

print"Time for Phase 2: ", timer.stop()

timer.start()

print"********** PHASE 3: HISTOGRAMS"

histogram_of_errors()

print"The histogram of errors (above) should be clustered at edges for success."

histogram_of_as()

print"The histogram of a’s (above) should be fairly uniform."

histogram_of_errors_2()

print"The histogram of sample errors (above) should be clustered at edges for success."

print"Time for Phase 3: ", timer.stop()

timer.start()

print"********** PHASE 4: ATTACK ALGORITHM"

secret_mod_q()

result = alg2(10000,quickflag)

print"Result of Algorithm 2:", result

print"Time for Phase 4: ", timer.stop()

if result == True:

count_successes = count_successes + 1

print"*~*~*~*~*~*~*~*~*~*~*~*~* ", count_successes," out of ", trialnum+1," successes so far. *~*~*~*~*~*"

totaltime = timer2.stop()

print"Total time for ", trialnum+1,"trials was ", totaltime

return count_successes

A.2 Sage Code for Algorithm 3

The following Sage Mathematics Software [S] algorithm returns the largest prime
q for which a polynomial f has a root of order m modulo q.

Provably Weak Instances of Ring-LWE 91

x = PolynomialRing(RationalField(), ’x’).gen()
def findq(f,m):

g = x^m-1
xg = f.xgcd(g)
cofs = xg[2].coefficients()
dens = [a.denominator() for a in cofs]
facs = lcm(dens).factor()
return max([fac[0] for fac in facs])

References

IEEE. P1363.1: Standard Specifications for Public-Key Cryptographic Techniques
Based on Hard Problems over Lattices, December 2008. http://grouper.ieee.
org/groups/1363/

BCNS. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In: 36th
IEEE Symposium on Security and Privacy 2015 (2015). http://eprint.iacr.
org/2014/599.pdf

BLN. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted
medical data. J. Biomed. Inform. 54, 234–243 (2014)

BL+. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hard-
ness of learning with errors. In: STOC 2013 Proceedings of the 2013 ACM
Symposium on Theory of Computing, pp. 575–584. ACM, New York (2013)

BV. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

BGV. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theor. 6(3), 36 (2014).
Article No 13

DD. Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51.
Springer, Heidelberg (2012)

EHL. Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of PLWE. In: Joux,
A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer,
Heidelberg (2014)

G. Gassert, T.A.: Prime decomposition in iterated towers and discriminant for-
mulae. Ph.D. thesis, University of Massachusetts, Amherst (2014)

GF+. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design
of hardware building blocks for modern lattice-based encryption schemes. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529.
Springer, Heidelberg (2012)

GHS. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

GLN. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013)

HPS. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998)

http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/
http://eprint.iacr.org/2014/599.pdf
http://eprint.iacr.org/2014/599.pdf

92 Y. Elias et al.

K. Kedlaya, K.: A construction of polynomials with squarefree discriminants.
Proc. Am. Math. Soc. 140, 3025–3033 (2012)

LP. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–
339. Springer, Heidelberg (2011)

LPR. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 1–23. Springer, Heidelberg (2010)

LPR13. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

M. Masser, D.W.: 3136. The discriminants of special equations. Math. Gaz.
50(372), 158–160 (1966)

MR04. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measure. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary
version in FOCS 2004

MR09. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography, pp. 147–
191. Springer, Heidelberg (2009)

PG. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key
encryption on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk,
P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 68–86. Springer, Heidelberg (2014)

R. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 1–40 (2009). Preliminary version STOC 2005

RV+. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014)

S. Stein, W.A., et al.: Sage Mathematics Software (Version 6.4.1), The Sage
Development Team (2014). http://www.sagemath.org

SS. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as secure as
worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

TV. Tao, T., Vu, V.: Smooth analysis of the condition number and the least
singular value. Math. Comput. 79(272), 2333–2352 (2010)

http://www.sagemath.org

Cryptanalytic Insights

Links Among Impossible Differential, Integral
and Zero Correlation Linear Cryptanalysis

Bing Sun1,3, Zhiqiang Liu2,3(B), Vincent Rijmen3(B), Ruilin Li4(B),
Lei Cheng1, Qingju Wang2,3, Hoda Alkhzaimi5, and Chao Li1

1 College of Science, National University of Defense Technology, Changsha 410073,
Hunan, China

happy come@163.com
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China
ilu zq@sjtu.edu.cn

3 Department of Electrical Engineering (ESAT), KU Leuven and iMinds,
Leuven, Belgium

vincent.rijmen@esat.kuleuven.be
4 College of Electronic Science and Engineering, National University of Defense

Technology, Changsha 410073, Hunan, China
securitylrl@163.com

5 Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. As two important cryptanalytic methods, impossible differ-
ential and integral cryptanalysis have attracted much attention in recent
years. Although relations among other cryptanalytic approaches have
been investigated, the link between these two methods has been missing.
The motivation in this paper is to fix this gap and establish links between
impossible differential cryptanalysis and integral cryptanalysis.

Firstly, by introducing the concept of structure and dual structure,
we prove that a → b is an impossible differential of a structure E if and
only if it is a zero correlation linear hull of the dual structure E⊥. Mean-
while, our proof shows that the automatic search tool presented by Wu
and Wang could find all impossible differentials of both Feistel structures
with SP-type round functions and SPN structures. Secondly, by estab-
lishing some boolean equations, we show that a zero correlation linear
hull always indicates the existence of an integral distinguisher. With this
observation we improve the number of rounds of integral distinguishers of
Feistel structures, CAST-256, SMS4 and Camellia. Finally, we conclude
that an r-round impossible differential of E always leads to an r-round
integral distinguisher of the dual structure E⊥. In the case that E and
E⊥ are linearly equivalent, we derive a direct link between impossible
differentials and integral distinguishers of E .

Our results could help to classify different cryptanalytic tools and
facilitate the task of evaluating security of block ciphers against various
cryptanalytic approaches.

The work in this paper is supported by the National Natural Science Foundation of
China (No: 61202371, 61402515, 61472250), and National Basic Research Program
of China (973 Program) (2013CB338002, 2013CB338004).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 95–115, 2015.
DOI: 10.1007/978-3-662-47989-6 5

96 B. Sun et al.

Keywords: Impossible differential · Integral · Zero correlation linear ·
Feistel · SPN · Camellia · CAST-256 · SMS4 · PRESENT · PRINCE ·
ARIA

1 Introduction

Block ciphers are considered vital elements in constructing many symmetric
cryptographic schemes such as encryption algorithms, hash functions, authen-
tication schemes and pseudo-random number generators. The core security of
these schemes depends on the resistance of the underlying block ciphers to known
cryptanalytic techniques. So far a variety of cryptanalytic techniques have been
proposed such as impossible differential cryptanalysis [1,2], integral cryptanaly-
sis [3], zero correlation linear cryptanalysis [4], etc.

Impossible differential cryptanalysis was independently proposed by
Knudsen [1] and Biham [2]. One of the most popular impossible differentials is
called a truncated impossible differential. It is independent of the choices of the
S-boxes. Several approaches have been proposed to derive truncated impossi-
ble differentials of a block cipher/structure effectively such as the U-method [5],
UID-method [6] and the extended tool of the former two methods generalized
by Wu and Wang in Indocrypt 2012 [7]. Integral cryptanalysis [3] was first pro-
posed by Knudsen and Wagner, and a number of these ideas have been exploited,
such as square attack [8], saturation attack [9], multi-set attack [10], and higher
order differential attack [11,12]. With some special inputs, we check whether the
sum of the corresponding ciphertexts is zero or not. Usually, we do not need
to investigate the details of the S-boxes and only view the S-boxes as some
bijective transformations over finite fields. Zero correlation linear cryptanalysis,
proposed by Bogdanov and Rijmen in [4], tries to construct some linear hulls
with correlation exactly zero. In most cases, as in impossible differential and
integral cryptanalysis, we do not need to investigate the details of the S-boxes.
Generally, though there has been lots of work concentrating on the design and
cryptanalysis of S-boxes [13], most cryptanalytic results by using impossible dif-
ferential, integral and zero correlation linear cryptanalysis are independent of
the choices of the S-boxes. If we choose some other S-boxes in a cipher, the
corresponding cryptanalytic results will remain almost the same.

Along with the growing of the list of cryptanalytic tools, the question whether
there are direct links or any connections among different tools has drawn much
attention of the cryptographic research community, since such relations can be
used to compare the effectiveness of different tools as well as to improve crypt-
analytic results on block ciphers.

Efforts to find and build the links among different cryptanalytic techniques
were initiated by Chabaud and Vaudenay in [14], where a theoretical link between
differential and linear cryptanalysis was presented. After that, many attempts
have been made to establish further relations among various cryptanalytic tools.
In [15], Sun et al. proved that from an algebraic view, integral cryptanalysis can
be seen as a special case of the interpolation attack. In [16], Leander stated that

Links Among Impossible Differential 97

statistical saturation distinguishers are averagely equivalent to multidimensional
linear distinguishers. In [17], Bogdanov et al. showed that an integral implies a
zero correlation linear hull unconditionally, a zero correlation linear hull indicates
an integral distinguisher under certain conditions, and a zero correlation linear
hull is actually a special case of multidimensional linear distinguishers. In [18],
Blondeau and Nyberg further analyzed the link between differential and linear
cryptanalysis and demonstrated some new insights on this link to make it more
applicable in practice. They established new formulas between the probability
of truncated differentials and the correlation of linear hulls. This link was later
applied in [19] to provide an exact expression of the bias of a differential-linear
approximation. Moreover, they claimed that the existence of a zero correlation
linear hull is equivalent to the existence of an impossible differential in some spe-
cific cases [18]. As shown in [20], this link is usually not practical for most known
impossible differential or zero correlation linear distinguishers, since the sum of
the dimensions of input and output of each distinguisher is always the block size
of the cipher, which means if the dimension parameter for one type is small, it will
be infeasibly large for the other type. Blondeau et al. proposed a practical rela-
tion between these two distinguishers for Feistel-type and Skipjack-type ciphers
and showed some equivalence between impossible differentials and zero corre-
lation linear hulls with respect to Feistel-type and Skipjack-type ciphers [20].
In [21], Blondeau and Nyberg gave the link between truncated differential and
multidimensional linear approximation, and then applied this link to explore the
relations between the complexities of chosen-plaintext and known-plaintext dis-
tinguishing/key recovery attacks of differential and linear types. Moreover, they
showed that statistical saturation cryptanalysis is indeed equivalent to truncated
differential cryptanalysis, which could be used to estimate the data requirement
of the statistical saturation key recovery attack.

Contributions. Although there have been intriguing results with respect to
the relations among some important cryptanalytic approaches, the link between
impossible differential cryptanalysis and integral cryptanalysis is still missing. In
this paper, we aim to explore the link between these two cryptanalytic methods.
Since the fundamental step in statistical cryptanalysis of block ciphers is to con-
struct effective distinguishers, we focus on building the links among impossible
differential, zero correlation linear and integral cryptanalysis from the aspect of
distinguishers. Our main contributions are as follows (see Fig. 1).

1. We characterize what “being independent of the choices of S-boxes” means by
proposing the definition of structure E , which is a set containing some ciphers
that are “similar” to each other. Then, by introducing the dual structure E⊥,
we prove that a → b is an impossible differential of E if and only if it is a zero
correlation linear hull of E⊥. More specifically, let PT and P−1 denote the
transpose and inverse of P respectively. Then for a Feistel structure with SP -
type round functions where P is invertible, denoted as FSP , constructing an
r-round zero correlation linear hull is equivalent to constructing an impossible
differential of FSP T , which is the same structure as FSP with PT instead

98 B. Sun et al.

Fig. 1. Links among Impossible Differential, Integral and Zero Correlation Linear
Cryptanalysis, where E is a structure and E⊥ is the dual structure of E , A1 and A2 are
linear transformations applied before the input and after the output of E .

of P ; For an SPN structure ESP , constructing an r-round zero correlation
linear hull of ESP is equivalent to constructing an impossible differential of
ES(P −1)T , which is the same structure as ESP with (P−1)T instead of P .
Based on this result, we find 8-round zero correlation linear hulls of Camellia
without FL/FL−1 layer and 4-round zero correlation linear hulls of ARIA.

2. We show that the automatic search tool, presented by Wu and Wang in
Indocrypt 2012, could find all impossible differentials of a cipher that are
independent of the choices of the S-boxes. This can be used in provable secu-
rity of block ciphers against impossible differential cryptanalysis.

3. We find that a zero correlation linear hull always implies the existence of
an integral distinguisher, which means the conditions used for deriving inte-
gral distinguisher from zero correlation linear hull in [17] can be removed.
Meanwhile, we observe that the statement “integral unconditionally implies
zero correlation linear hull” in [17] is correct only under the definition that
integral property is a balanced vectorial boolean function, while it does not
hold for the general case. For example, up to date we cannot use the integral
distinguisher for 4-round AES (with extra MixColumns) [4,8] to construct a
zero correlation linear hull.

4. Following the results given above, we build the link between impossible dif-
ferential cryptanalysis and integral cryptanalysis, i.e., an r-round impossible
differential of a structure E always implies the existence of an r-round integral
distinguisher of E⊥. Moreover, in the case that E⊥ = A2EA1 where A1 and
A2 are linear transformations, we could get direct links between impossible
differential cryptanalysis and integral cryptanalysis of E . Specifically, an r-
round impossible differential of SPN structure which adopts bit permutation
as the linear layer, always leads to an r-round integral distinguisher.

5. We improve the integrals of Feistel structures by 1 round, build a 24-round
integral of CAST-256, present a 12-round integral of SMS4 which is 2-round
longer than previously best known ones, and construct an 8-round integral
for Camellia without FL/FL−1 layers. These distinguishers could not be
obtained by the known methods for constructing integral distinguishers or
by using the link given in [17]. As an example, the best known key recovery
attack on reduced round CAST-256 in non-weak key model is given to show
the effectiveness of the newly constructed distinguishers.

Links Among Impossible Differential 99

Organization. The remainder of this paper is organized as follows. Section 2
introduces the notations and concepts that will be used throughout the paper.
In Sect. 3, we establish the new links between impossible differential and zero
correlation linear cryptanalysis. Section 4 shows the refined link between integral
and zero correlation linear cryptanalysis. The link between impossible differential
and integral cryptanalysis is presented in Sect. 5. Then in Sect. 6, we give some
examples to show the effectiveness of the newly established links in constructing
new distinguishers of block ciphers. Finally, Sect. 7 concludes this paper.

2 Preliminaries

2.1 Boolean Functions

This section recalls the notations and concepts [22] which will be used throughout
this paper. Let F2 denote the finite field with two elements, and F

n
2 be the vector

space over F2 with dimension n. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ F
n
2 . Then

a · b � a1b1 ⊕ · · · ⊕ anbn

denotes the inner product of a and b. Note that the inner product of a and b can
be written as abT where bT stands for the transpose of b and the multiplication is
defined as matrix multiplication. Given a function G : Fn

2 → F2, the correlation
of G is defined by

c(G(x)) �
#{x ∈ F

n
2 |G(x) = 0} − #{x ∈ F

n
2 |G(x) = 1}

2n
=

1
2n

∑

x∈F
n
2

(−1)G(x).

Given a vectorial function H : Fn
2 → F

k
2 , the correlation of the linear approxi-

mation for a k-bit output mask b and an n-bit input mask a is defined by

c(a · x ⊕ b · H(x)) �
1
2n

∑

x∈F
n
2

(−1)a·x⊕b·H(x).

If c(a·x⊕b·H(x)) = 0, then a → b is called a zero correlation linear hull of H [4].
This definition can be extended as follows: Let A ⊆ F

n
2 , B ⊆ F

k
2 . If for all a ∈ A,

b ∈ B, c(a · x ⊕ b · H(x)) = 0, then A → B is called a zero correlation linear hull
of H. In the case that H is a permutation on F

n
2 , for any b �= 0, c(b · H(x)) = 0

and for any a �= 0, c(a · x) = 0. We call 0 → b and a → 0 trivial zero correlation
linear hulls of H where a �= 0 and b �= 0. Let A ⊆ F

n
2 . If the size of the set

H−1
A (y) � {x ∈ A|H(x) = y}

is independent of y ∈ F
k
2 , we say H is balanced on A. Specifically, if A = F

n
2 , we

say H is a balanced function. If the sum of all images of H is 0, i.e.
∑

x∈F
n
2

H(x) = 0,

100 B. Sun et al.

we say H has an integral-balanced (zero-sum) property [3]. Let δ ∈ F
n
2 and

Δ ∈ F
k
2 . The differential probability of δ → Δ is defined as

p(δ → Δ) �
#{x ∈ F

n
2 |H(x) ⊕ H(x ⊕ δ) = Δ}

2n
.

If p(δ → Δ) = 0, then δ → Δ is called an impossible differential of H [1,2]. Let
A ⊆ F

n
2 , B ⊆ F

k
2 . If for all a ∈ A and b ∈ B, p(a → b) = 0, A → B is called an

impossible differential of H. We recall the following property of balanced boolean
functions: a function G : Fn

2 → F2 is balanced if and only if c(G(x)) = 0.

2.2 Block Ciphers

Feistel Ciphers. An r-round Feistel cipher E is defined as follows: Let
(L0, R0) ∈ F

2n
2 be the input of E. Iterate the following transformation r times:

{
Li+1 = Fi(Li) ⊕ Ri

Ri+1 = Li

0 ≤ i ≤ r − 1,

where Li, Ri ∈ F
n
2 . The output of the r-th iteration is defined as the output of

E. In this paper, we will focus on the case that Fi’s are SP-type functions which
will be defined in the following.

SPN Ciphers. The SPN structure is widely used in constructing cryptographic
primitives. It iterates some SP-type round functions to achieve confusion and
diffusion. Specifically, the SP-type function f : Fs×t

2 → F
s×t
2 used in this paper is

defined as follows: Assume the input x is divided into t pieces x = (x0, . . . , xt−1),
and each of the xi’s is an s-bit word. Then apply the nonlinear transformation
Si to xi and let y = (S0(x0), . . . , St−1(xt−1)) ∈ F

s×t
2 . At last, apply a linear

transformation P to y, and Py is the output of f .
The following strategies are popular in designing the diffusion layer P of a

cipher:

(1) P is a bit-wise permutation of Fs×t
2 as in PRESENT [23]. PRESENT adopts

bit permutation as the diffusion layer P , which can be defined as a permu-
tation matrix P = (Pi,j)64×64:

Pi,j =

{
1 if j = 16i mod 63
0 otherwise.

(2) Each bit of Py is a sum of some bits of y as in PRINCE [24]. Firstly, we will
define SR and M ′ as follows:

SR permutes the 16 nibbles, therefore it is a permutation of 64 bits and
we could write SR as a permutation matrix in F

64×64
2 .

Links Among Impossible Differential 101

To construct M ′, we first define

M̂ (0) =

⎛

⎜
⎝

M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

⎞

⎟
⎠ , M̂ (1) =

⎛

⎜
⎝

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

⎞

⎟
⎠

where

M0 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,M1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,M2 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ ,M3 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

and then we define M ′ = diag(M̂ (0), M̂ (1), M̂ (1), M̂ (0)), which is a 64 × 64
block diagonal matrix.

M ′ is used as the linear transformation of the middle round. The trans-
formations M = SR ◦ M ′ and M−1 are used before and after the middle
round, respectively.

(3) Each word of Py is a sum of some words of y as in Camellia [25] and ARIA
[26]. The block cipher Camellia was recommended in the NESSIE block
cipher portfolio in 2003 and selected as a new international standard by
ISO/IEC in 2005. ARIA is a 128-bit block cipher established as a Korean
Standard by the Ministry of Commerce, Industry and Energy in 2004. The
linear transformations PC and PA of Camellia and ARIA could be written
as follows:

PC =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E 0 E E 0 E E E
E E 0 E E 0 E E
E E E 0 E E 0 E
0 E E E E E E 0
E E 0 0 0 E E E
0 E E 0 E 0 E E
0 0 E E E E 0 E
E 0 0 E E E E 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

PA =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 E E 0 E 0 E E 0 0 0 E E 0
0 0 E 0 0 E 0 E E E 0 0 E 0 0 E
0 E 0 0 E 0 E 0 0 0 E E E 0 0 E
E 0 0 0 0 E 0 E 0 0 E E 0 E E 0
E 0 E 0 0 E 0 0 E 0 0 E 0 0 E E
0 E 0 E E 0 0 0 0 E E 0 0 0 E E
E 0 E 0 0 0 0 E 0 E E 0 E E 0 0
0 E 0 E 0 0 E 0 E 0 0 E E E 0 0
E E 0 0 E 0 0 E 0 0 E 0 0 E 0 E
E E 0 0 0 E E 0 0 0 0 E E 0 E 0
0 0 E E 0 E E 0 E 0 0 0 0 E 0 E
0 0 E E E 0 0 E 0 E 0 0 E 0 E 0
0 E E 0 0 0 E E 0 E 0 E E 0 0 0
E 0 0 E 0 0 E E E 0 E 0 0 E 0 0
E 0 0 E E E 0 0 0 E 0 E 0 0 E 0
0 E E 0 E E 0 0 E 0 E 0 0 0 0 E

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where E and 0 denote 8 × 8 identity and zero matrices, respectively.
(4) Each word of Py, seen as an element of some extension fields of F2, is a

linear combination of some other words of y as in the AES. In the following,
we will use the matrix expression of finite fields to show how to write the
linear layer of AES as a 128 × 128 binary matrix:

102 B. Sun et al.

Since ShiftRows is a permutation on 16 bytes, it is also a permutation on
128 bits. Therefore, as in the discussion above, we can represent ShiftRows
as a permutation matrix MSR in F

128×128
2 . Let F28 = F2[x]/ < f(x) > where

F2[x] is the polynomial ring over F2, f(x) = x8 + x4 + x3 + x + 1 ∈ F2[x] is
the defining polynomial of F28 . Then 1 = (00000001) ∈ F28 can be written
as the 8 × 8 identity matrix E, 2 = (00000010) ∈ F28 can be written as the
following 8 × 8 matrix:

M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the matrix representation of 3 = (00000011) is M3 = E ⊕ M2. If we
substitute 1, 2 and 3 in MixColumns by E, M2 and M3, respectively, we get
a 128 × 128 binary matrix MMC and the linear layer of AES can be written
as MMCMSR which is a 128 × 128 matrix over F2.

Generally, no matter which linear transformation a cipher adopts, it is
always linear over F2. Therefore, P can always be written as a multiplication
by a matrix which leads to the following definition:

Definition 1. Let P be a linear transformation over F
m
2 for some positive inte-

ger m. The matrix representation of P over F2 is called the primitive represen-
tation of P .

2.3 Structure and Dual Structure

In many cases, when constructing impossible differentials and zero correlation
linear hulls, we are only interested in detecting whether there is a difference
(mask) of an S-box or not, regardless of the value of this difference (mask). For
example, the truncated impossible differential and zero correlation linear hull of
AES in [4,27] and Camellia in [28,29]. In other words, if these ciphers adopt
some other S-boxes, these distinguishers still hold. This leads to the following
definition:

Definition 2. Let E : Fn
2 → F

n
2 be a block cipher with bijective S-boxes as the

basic non-linear components.

(1) A structure EE on F
n
2 is defined as a set of block ciphers E′ which is exactly

the same as E except that the S-boxes can take all possible bijective trans-
formations on the corresponding domains.

(2) Let a, b ∈ F
n
2 . If for any E′ ∈ EE, a → b is an impossible differential (zero

correlation linear hull) of E′, a → b is called an impossible differential (zero
correlation linear hull) of EE.

Links Among Impossible Differential 103

Note. In the definition of EE , if E uses bijective S-boxes, then the S-boxes
in EE should be bijective. However, if S-boxes used in E are not necessarily
bijective, then EE could be defined as a set of block ciphers E′ which is exactly
the same as E except that the S-boxes can take all possible transformations
on the corresponding domains. As discussed above, the truncated impossible
differentials and zero correlation linear hulls of AES and Camellia found so far
are actually the impossible differentials and zero correlation linear hulls of EAES

and ECamellia.

Definition 3. Let FSP be a Feistel structure with SP -type round function, and
let the primitive representation of the linear transformation be P . Let σ be the
operation that exchanges the left and right halves of a state. Then the dual struc-
ture F⊥

SP of FSP is defined as σ ◦ FP T S ◦ σ.
Let ESP be an SPN structure with primitive representation of the linear trans-

formation being P . Then the dual structure E⊥
SP of ESP is defined as ES(P −1)T .

3 Links Between Impossible Differential and Zero
Correlation Linear Cryptanalysis

In this section, we will show the equivalence between impossible differentials and
zero correlation linear hulls of a structure, which will be used to establish the
link between impossible differential and integral cryptanalysis in Sect. 5. The
next theorem is stated without proof in [17].

Theorem 1. a → b is an r-round impossible differential of FSP if and only if
it is an r-round zero correlation linear hull of F⊥

SP .

Proof. The proof can be divided into the following two parts (See Fig. 2):
Part (I). We prove that for (δ0, δ1) → (δr, δr+1), if one can find E ∈ F⊥

SP such
that c((δ0, δ1) · x ⊕ (δr, δr+1) · E(x)) �= 0, then one can find E′ ∈ FSP such that
p((δ1, δ0) → (δr+1, δr)) > 0.

Fig. 2. Differential Propagation of FSP and Linear Propagation of F⊥
SP

104 B. Sun et al.

Assume that (δ0, δ1) → (δr, δr+1) is a linear hull with non-zero correlation
for some E ∈ F⊥

SP , and the input to the round function could be divided into t
pieces, each of which is an s-bit word. Then there exists a linear characteristic
with non-zero correlation:

(δ0, δ1) → · · · (δi−1, δi) → · · · → (δr, δr+1),

where δi ∈ (Fs
2)

t. In this characteristic, the output mask of Si = (Si,1, . . . , Si,t) is
δi = (δi,1, . . . , δi,t) ∈ (Fs

2)
t, and let the input mask of Si be βi = (βi,1, . . . , βi,t) ∈

(Fs
2)

t. Since for γ �= βiP , c(γ · x ⊕ βi · (xPT)) = 0, δi+1 = δi−1 ⊕ βiP .
In the following, for any (xL, xR) = (xL,1, . . . , xL,t, xR,1, . . . , xR,t) ∈ (Fs

2)
t ×

(Fs
2)

t, we will construct an r-round cipher Er ∈ FSP , such that Er(xL, xR) ⊕
Er(xL ⊕ δ1, xR ⊕ δ0) = (δr+1, δr).

If r = 1, for j ∈ {1, . . . , t}: if δ1,j = 0, we can define S1,j as any possible
transformation on F

s
2, and if δ1,j �= 0, we can define

S1,j(xL,j) = xL,j , S1,j(xL,j ⊕ δ1,j) = xL,j ⊕ β1,j ,

then for E1 ∈ FSP which adopts such S-boxes,

E1(xL, xR) ⊕ E1(xL ⊕ δ1, xR ⊕ δ0) = (δ0 ⊕ β1P, δ1) = (δ2, δ1).

Suppose that we have constructed Er−1 such that Er−1(xL, xR)⊕Er−1(xL ⊕
δ1, xR ⊕ δ0) = (δr, δr−1). Denote by (yL, yR) = (yL,1, . . . , yL,t, yR,1, . . . , yR,t) the
output of Er−1(xL, xR). Then in the r-th round, if δr,j = 0, we can define Sr,j

as any possible transformation on F
s
2, otherwise, define Sr,j as follows:

Sr,j(yL,j) = yL,j , Sr,j(yL,j ⊕ δr,j) = yL,j ⊕ βr,j .

Therefore Er(xL, xR) ⊕ Er(xL ⊕ δ1, xR ⊕ δ0) = (δr−1 ⊕ βrP, δr) = (δr+1, δr).
Part (II). We prove that for (δ1, δ0) → (δr+1, δr), if one can find some E ∈ FSP

such that p((δ1, δ0) → (δr+1, δr)) > 0, one can find some E′ ∈ F⊥
SP such that

c((δ0, δ1) · x ⊕ (δr, δr+1) · E′(x)) �= 0.
Assume that (δ1, δ0) → (δr+1, δr) is a differential of E ∈ FSP . Then there

exists a differential characteristic with positive probability:

(δ1, δ0) → · · · (δi+1, δi) → · · · → (δr+1, δr),

where δi ∈ (Fs
2)

t. In this characteristic, the input difference of Si = (Si,1, . . . , Si,t)
is δi = (δi,1, . . . , δi,t) ∈ (Fs

2)
t, and let the output difference of Si be βi =

(βi,1, . . . , βi,t) ∈ (Fs
2)

t, then δi+1 = δi−1 ⊕ (βiP).
Taking the following fact into consideration: for (δi,j , βi,j), where δi,j �= 0,

there always exists an s × s binary matrix Mi,j such that βi,j = δi,jM
T
i,j , then

for Si,j(x) = xMi,j , c(βi,j · x ⊕ δi,j · Si,j(x)) = 1.
Now we construct an r-round cipher Er ∈ F⊥

SP such that c((δ0, δ1) · x ⊕
(δr, δr+1) · Er(x)) �= 0. If r = 1, let S1,j(x) = xM1,j for δ1,j �= 0 and any linear
transformation on F

s
2 otherwise. Then all operations in E1 ∈ F⊥

SP are linear

Links Among Impossible Differential 105

over F2, which implies that there exists a 2st × 2st binary matrix M1 such that
E1(x) = xM1, and

c((δ0, δ1) · x ⊕ (δ1, δ2) · E1(x)) = 1.

Assume that we have constructed Er−1(x) = xMr−1 with Mr−1 being a
2st × 2st binary matrix such that

c((δ0, δ1) · x ⊕ (δr−1, δr) · Er−1(x)) = 1,

and we can define Sr,j(x) in the r-th round similarly, then Er(x) = xMr for
some 2st × 2st binary matrix Mr, and

c((δ0, δ1) · x ⊕ (δr, δr+1) · Er(x)) = 1,

which ends our proof. �

Note. In the proof of Theorem 1, the S-boxes we constructed are not necessarily
bijective. If we add the bijective condition, Theorem1 still holds. Since for a
bijective S-box, if the correlation is non-zero, δ1,j �= 0 implies β1,j �= 0. Therefore,
in Part(I) of the proof, we can further define S1,j as

S1,j(x) =

⎧
⎪⎨

⎪⎩

xL,j ⊕ δ1,j x = xL,j ⊕ β1,j ,

xL,j ⊕ β1,j x = xL,j ⊕ δ1,j ,

x others,

and a similar definition can also be given to Sr,j . In this case, the S-boxes
are invertible. Moreover, for a bijective S-box, if the differential probability is
positive, δi,j �= 0 implies βi,j �= 0, thus in Part (II) of the proof, we can always
find a non-singular binary matrix Mi,j such that βi,j = δi,jM

T
i,j .

Similarly, we can prove the following theorem:

Theorem 2. a → b is an r-round impossible differential of ESP if and only if
it is an r-round zero correlation linear hull of E⊥

SP .

Definition 2 implies that the “impossibility” of an impossible differential of a
structure can be caused only by a differential δ1 → δ2 where either δ1 = 0 or
δ2 = 0 (but not both) over an invertible S-box, or by a differential 0 → δ2 over
a non-invertible S-box. Otherwise, according to the proof of Theorem1, we can
always find an S-box such that δ1 → δ2 is a possible differential. Therefore, we
have the following corollary:

Corollary 1. The method presented in [7] finds all impossible differentials of
FSP and ESP .

As a matter of fact, this corollary can be used in the provable security of block
ciphers against impossible differential cryptanalysis, since with the help of this
corollary, the longest impossible differentials of a given structure could be given.

106 B. Sun et al.

In case P is invertible, according to the definition of equivalent structures
given in [30], we have

FP T S =
(
(PT)−1, (PT)−1

) FSP T

(
PT , PT

)
, (1)

which indicates:

Corollary 2. Let FSP be a Feistel structure with SP -type round function, and
let the primitive representation of the linear transformation be P . If P is invert-
ible, finding zero correlation linear hulls of FSP is equivalent to finding impossible
differentials of FSP T .

Example 1. (8-Round Zero Correlation Linear Hull of Camellia With-
out FL/FL−1). Let Camellia* denote the cipher which is exactly the same as
Camellia without FL/FL−1 layer except that PT is used instead of P . Then we
find that, for example:

((0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, a, 0, 0, 0)) →((0, 0, 0, 0, 0, 0, 0, h), (0, 0, 0, 0, 0, 0, 0, 0))

is an 8-round impossible differential of Camellia*, where a and h denote any
non-zero values. Therefore, we can derive an 8-round zero correlation linear
distinguisher of Camellia without FL/FL−1 layer as shown below:

((a, a, 0, 0, a, 0, a, a), (0, 0, 0, 0, 0, 0, 0, 0)) → ((0, 0, 0, 0, 0, 0, 0, 0), (h, 0, 0, h, 0, h, h, h)).

Furthermore, if FSP = FSP T and ESP = ES(P −1)T , we have:

Corollary 3. For a Feistel structure FSP with SP -type round function, if P is
invertible and P = PT , there is a one-to-one correspondence between impossible
differentials and zero correlation linear hulls.

For an SPN structure ESP , if PT P = E, a → b is an impossible differential
if and only if it is a zero correlation linear hull.

Example 2. (4-Round Zero Correlation Linear Hull of ARIA). Since the
linear layer P of ARIA satisfies PT P = E, any impossible differential of EARIA is
automatically a zero correlation linear hull of EARIA. Therefore, the impossible
differentials of 4-round ARIA shown in [28] are also zero correlation linear hulls
of 4-round ARIA.

4 Links Between Integral and Zero Correlation Linear
Cryptanalysis

Firstly, we give two fundamental statements that give links between integral
cryptanalysis and zero correlation linear cryptanalysis:

Lemma 1. Let A be a subspace of F
n
2 , A⊥ = {x ∈ F

n
2 |a · x = 0, a ∈ A} be

the dual space of A and F : Fn
2 → F

n
2 be a function on F

n
2 . For any λ ∈ F

n
2 ,

Tλ : A⊥ → F
n
2 is defined as Tλ(x) = F (x ⊕ λ), then for any b ∈ F

n
2 ,

∑

a∈A

(−1)a·λc(a · x ⊕ b · F (x)) = c(b · Tλ(x)).

Links Among Impossible Differential 107

Proof.

∑

a∈A

(−1)a·λc(a · x ⊕ b · F (x)) =
∑

a∈A

(−1)a·λ 1
2n

∑

x∈F
n
2

(−1)a·x⊕b·F (x)

=
1
2n

∑

x∈F
n
2

(−1)b·F (x)
∑

a∈A

(−1)a·(λ⊕x) =
1
2n

∑

x∈F
n
2

(−1)b·F (x)|A|δA⊥(λ ⊕ x)

=
1

|A⊥|
∑

y∈A⊥
(−1)b·Tλ(y) = c(b · Tλ(x)),

where δA⊥(x) =

{
1 x ∈ A⊥

0 x /∈ A⊥.
�

Lemma 2. Let A be a subspace of Fn
2 , F : Fn

2 → F
n
2 , and let Tλ : A⊥ → F

n
2 be

defined as Tλ(x) = F (x ⊕ λ) where λ ∈ F
n
2 . Then for any b ∈ F

n
2 ,

1
2n

∑

λ∈F
n
2

(−1)b·F (λ)c(b · Tλ(x)) =
∑

a∈A

c2(a · x ⊕ b · F (x)).

The proof of Lemma 2 is given in the full version of this paper [31]. The conclusion
of [17] that integral unconditionally implies zero correlation linear hull, is correct
only under their definition of integral, which requires that c(b · Tλ(x)) = 0.
Under the original, more general definition for an integral distinguisher [3], this
conclusion may not hold.

From Lemma 1, we can deduce the following:

Corollary 4. Let F : Fn
2 → F

n
2 be a function on F

n
2 , and let A be a subspace of

F
n
2 and b ∈ F

n
2 \ {0}. Suppose that A → b is a zero correlation linear hull of F ,

then for any λ ∈ F
n
2 , b · F (x ⊕ λ) is balanced on A⊥.

This corollary states that if the input masks of a zero correlation linear hull form
a subspace, then a zero correlation linear hull implies an integral distinguisher.
Furthermore, the condition that input masks form a subspace can be removed,
which leads to the following result:

Theorem 3. A nontrivial zero correlation linear hull of a block cipher always
implies the existence of an integral distinguisher.

Proof. Assume that A → B is a non-trivial zero correlation linear hull of a block
cipher E. Then we can choose 0 �= a ∈ A, 0 �= b ∈ B, such that {0, a} → b is also
a zero correlation linear hull of E.

Since V = {0, a} forms a subspace on F2, according to Corollary 4, b · E(x)
is balanced on V ⊥. This implies an integral distinguisher of E. �

108 B. Sun et al.

Moreover, in the proof of Theorem3, we can always assume that 0 ∈ A. Then

1. If A forms a subspace, an integral distinguisher can be constructed from
A → b;

2. If A does not form a subspace, we can choose some A1 ⊂ A such that A1 forms
a subspace, then an integral distinguisher can be constructed from A1 → b.

It was stated in [17] that a zero correlation linear hull indicates the existence of
an integral distinguisher under certain conditions, while Theorem3 shows that
these conditions can be removed. This results in a more applicable link between
zero correlation linear cryptanalysis and integral cryptanalysis.

It can be seen that Theorem 3 also gives us a new approach to find integral
distinguishers of block ciphers. More specifically, an r-round zero correlation
linear hull can be used to construct an r-round integral distinguisher.

5 Links Between Impossible Differential and Integral
Cryptanalysis

According to the links given in the previous sections, we establish a link between
impossible differential cryptanalysis and integral cryptanalysis:

Theorem 4. Let E ∈ {FSP , ESP }. Then an impossible differential of E always
implies the existence of an integral of E⊥.

Proof. This can be deduced from the following facts:

– A zero correlation linear hull of E⊥ always implies the existence of an integral
of E⊥;

– A zero correlation linear hull of E⊥ could be constructed by constructing an
impossible differential of E . �

In case E⊥ = A2EA1 where A1 and A2 are linear transformations, we get the
direct links between impossible differential and integral cryptanalysis:

Corollary 5. Let FSP be a Feistel structure with SP -type round function,
and let the primitive representation of the linear transformation be P . If P is
invertible and there exists a permutation π on t elements such that for any
(x0, . . . , xt−1) ∈ F

s×t
2 ,

P (x0, . . . , xt−1) = π−1PT π(x0, . . . , xt−1),

then for FSP , an impossible differential always implies the existence of an inte-
gral distinguisher.

Example 3. SNAKE(2) is a Feistel cipher proposed by Lee and Cha at JW-
ISC’97, please refer to [32,33] for details. According to [30], the round function

Links Among Impossible Differential 109

of SNAKE(2) can be seen as an SP-type one with the primitive presentation of
the matrix being defined as

P =

⎛

⎜
⎜
⎝

E E E E
E 0 E E
E 0 0 E
E 0 0 0

⎞

⎟
⎟
⎠ ,

where E and 0 are the identity and zero matrices of F8×8
2 , respectively. Let

π =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎟
⎠ .

Then we have P = π−1PT π, therefore, an impossible differential of SNAKE(2),
which is independent of the details of the S-boxes, always implies the existence
of an integral distinguisher of SNAKE(2).

Corollary 6. Let ESP be an SPN structure with the primitive representation of
the linear transformation being P . If PT P = diag(Q1, . . . , Qt), where Qi ∈ F

s×s
2 ,

then for ESP , an impossible differential always implies the existence of an integral
distinguisher.

Proof. Firstly, according to Theorem4, if PT P = E, an impossible differential
of ESP always implies the existence of an integral.

Secondly, for the S-layer of ESP , if we substitute S by applying Qi to the
i-th S-box, according to definition 2, the structure stays identical. Since

P ◦ (diag(Q1, . . . , Qt) ◦ S) = (P ◦ diag(Q1, . . . , Qt)) ◦ S,

an SPN structure ESP is equivalent to an SPN structure ES(P◦diag(Q1,...,Qt)).
Based on the above two points, we can get the conclusion. �

To show applications of these links, we recall that, an n×n matrix P is called
orthogonal if and only if PT P = E, where E is the n × n identity matrix.

Example 4. We can check that, SR and M ′ used in PRINCE are orthogonal
matrices, therefore

MT M = (SR ◦ M ′)T (SR ◦ M ′) = E,

where E is the 64 × 64 identity matrix. So all the linear layers used in different
rounds of PRINCE are orthogonal based on which we could conclude that any
r-round impossible differential of PRINCE which is independent of the choices
of the S-boxes implies the existence of an r-round integral distinguisher.

Example 5. Since the linear layer P of ARIA is both symmetric and involutional,
e.g. P = P−1 = PT , any impossible differential of ARIA which is independent
of the choices of S-boxes implies the existence of an integral distinguisher.

110 B. Sun et al.

Example 6. We can check that P used in PRESENT satisfies P = (P−1)T ,
therefore, an impossible differential, which is independent of the details of the
S-boxes, always leads to the existence of an integral distinguisher. In fact, since
a permutation matrix P is always orthogonal, we have the following Corollary:

Corollary 7. For an SPN structure which adopts bit permutation as the diffu-
sion layer, the existence of an r-round impossible differential implies the exis-
tence of an r-round integral distinguisher.

6 New Integrals for Block Ciphers/Structures

6.1 New Integrals for Feistel Structures

Let Er be an r-round Feistel structure FSP . Then for any a �= 0, b �= a, (a, 0) →
(0, b) is a zero correlation linear hull of E3; and if the round functions are bijective,
then for any a �= 0, (a, 0) → (0, a) is a zero correlation linear hull of E5.

So far the longest integral distinguisher known for a Feistel structure with
bijective round functions counts 4 rounds, and the longest integral distinguisher
for a Feistel structure with general round functions counts 2 rounds. We improve
these distinguishers by 1 round using Theorem3.

Proposition 1. Let Er be an r-round Feistel structure defined on F
2n
2 . Then

1. If the Fi’s are bijective, then for any c ∈ F
n
2 , c �= 0, c · R5 is balanced on

{(0, 0), (c, 0)}⊥ with respect to E5.
2. If the Fi’s are not necessarily bijective, then let {α0, . . . , αn−1} be a base of

F
n
2 over F2. Then αn−1 · R3 is balanced on {(0,

∑n−2
i=0 ciαi)|ci ∈ F2}⊥ with

respect to E3.

As a matter of fact, for any c ∈ F
n
2 , c �= 0, (c, 0) → (0, c) is a zero correlation

linear hull of E5. Thus according to Theorem 3, we can construct an integral
distinguisher of E5, i.e., let (L0, R0) take all values in {(0, 0), (c, 0)}⊥, then c ·R5

is balanced.

6.2 24-Round Integral for CAST-256

The block cipher CAST-256 was proposed as a first-round AES candidate, and
we refer to [34] for details. Firstly, we recall the following zero correlation linear
property given in [17].

Property 1. (0, 0, 0, L1) → (0, 0, 0, L2) is a zero correlation linear hull of the 24-
round CAST-256 (from the 13-th round to the 36-th round of CAST-256), where
L1 �= 0, L2 �= 0 and L1 �= L2.

Links Among Impossible Differential 111

Let L∗
1 = {(l1, l2, . . . , l31, 0)|li ∈ F2} and L2 = (0, . . . , 0, 1). Then we obtain

a zero correlation linear hull (0, 0, 0, L∗
1) → (0, 0, 0, L2) for the 24-round CAST-

256. According to Theorem 3, we can get the following result:

Proposition 2. Let V = {(x1, x2, x3, 031y)|xi ∈ F
32
2 , y ∈ F2}. If the input

takes all values in V , and let the output of the 24-round be (C0, C1, C2, C3) ∈
F
32×4
2 (from the 13-th round to 36-th round). Then (0, . . . , 0, 1) · C3 is balanced.

Based on this integral distinguisher, we present a key recovery attack on 28-
round CAST-256 which is the best known attack on CAST-256 in the non-weak
key model. The details of the attack are listed the full version of this paper [31].

6.3 12-Round Integral for SMS4

The SMS4 [35] block cipher is designed by the Chinese government as part
of their WAPI standard for wireless networks. Up to date, the longest known
integral distinguisher of SMS4 covers 10 rounds [36]. The details of SMS4 and the
proof of the following propositions are listed in the full version of this paper [31].

Proposition 3. Let V = {v ∈ (F8
2)

4|HW (vLT) = 1}, where
HW (x1, x2, x3, x4) = #{xi �= 0, i = 1, 2, 3, 4}. For any d ∈ V , (0, 0, 0, d) →
(d, 0, 0, 0) is a 12-round zero correlation linear hull of SMS4.

Proposition 4. Let V = {v ∈ (F8
2)

4|HW (vLT) = 1}, Vd = {w ∈
(F32

2)4|(0, 0, 0, d) ·w = 0}, and let (c0, c1, c2, c3) be the output of 12-round SMS4.
Then for any d ∈ V , when the input takes all possible values in Vd, we have

#{d · c0 = 0} = #{d · c0 = 1}.

Note that most of the known integral distinguishers are independent of the
choices of the S-boxes. However, the integral distinguisher presented above is
highly related with the S-boxes, since for different S-boxes, we would find dif-
ferent zero correlation linear hulls which lead to different integral distinguishers
of SMS4.

6.4 8-Round Integral for Camellia Without FL/FL−1 Layer

Based on the 8-round zero correlation linear hull presented in Example 1, we get
the following 8-round integral of Camellia without FL/FL−1 layer:

Proposition 5. Let V be defined as

V = {((x1, . . . , x8), (x9, . . . , x16))|x1 ⊕ x2 ⊕ x5 ⊕ x7 ⊕ x8 = 0, xi ∈ F
8
2}.

For any h ∈ F
8
2, h �= 0, (h, 0, 0, h, 0, h, h, h) · Ri+8 is balanced on V with respect

to 8-round Camellia without FL/FL−1 layer.

112 B. Sun et al.

7 Conclusion

In this paper, we have investigated the link between impossible differential and
integral cryptanalysis. To do this, we have introduced the concept of structure
E and dual structure E⊥ and established the link in the following steps:

– We derived the relation between impossible differential of E and zero correla-
tion linear hull of E⊥. We have shown that for a Feistel structure FSP with
SP -type round functions where P is invertible, constructing a zero correlation
linear hull of FSP is equivalent to constructing an impossible differential of
FSP T , which is the same structure as FSP with PT instead of P . For an SPN
structure ESP , constructing a zero correlation linear hull of ESP is equiva-
lent to constructing an impossible differential of ES(P −1)T , which is the same
structure as ESP with (P−1)T instead of P .

– We presented the relation between zero correlation linear hull and integral dis-
tinguisher of block ciphers. As proven in Sect. 4, a zero correlation linear hull
always implies the existence of an integral distinguisher, while such statement
only holds under certain conditions in [17]. Meanwhile, we have observed that
the statement “integral unconditionally implies zero correlation linear hull” in
[17] is correct only under the definition that integral property is a balanced
vectorial boolean function, while it does not hold for the general case (i.e.,
integral defined in [3] is a zero-sum property).

– We built the link between impossible differential of E and integral distinguisher
of E⊥. We have demonstrated that an r-round impossible differential of E
always leads to an r-round integral distinguisher of E⊥. In the case that E and
E⊥ are linearly equivalent, we obtained some direct links between impossible
differential and integral distinguisher of E . Specifically, an r-round impossible
differential of an SPN structure, which adopts bit permutation as the linear
layer, always indicates the existence of an r-round integral distinguisher.

The results and links presented in this paper not only allow to achieve a better
understanding and classifying of impossible differential cryptanalysis, integral
cryptanalysis and zero correlation linear cryptanalysis, but also provide some
new insights with respect to these cryptanalytic approaches as shown below:

– The automatic search tool presented by Wu and Wang in Indocrypt 2012
finds all impossible differentials of both Feistel structures with SP-type round
functions and SPN structures, which is useful in provable security of block
ciphers against impossible differential cryptanalysis.

– Our statement “zero correlation linear hull always implies the existence of an
integral distinguisher” provides a novel way for constructing integral distin-
guisher of block ciphers. With this observation, we have improved the inte-
gral of Feistel structures by 1 round, built a 24-round integral of CAST-256,
proposed a 12-round integral of SMS4 which is 2-round longer than previ-
ously best known ones, and present an 8-round integral of Camellia without
FL/FL−1 layers. These distinguishers could not be obtained by either the
previously known methods for constructing integral distinguishers or by using

Links Among Impossible Differential 113

the link given in [17]. Moreover, we have presented the best known key recov-
ery attack on CAST-256 in non-weak key model to show that the new links
can also be used to improve cryptanalytic results of some concrete ciphers.

By using the matrix representation given in [37], the concept of dual structure
can be extended to generalized Feistel structures, and we can get similar results
for these structures. Furthermore, we have focused on the links among the dis-
tinguishers used in impossible differential, integral and zero correlation linear
cryptanalysis since distinguishers are the essential points in the evaluation of
security margins of a block cipher against various cryptanalytic tools, and our
results can be helpful in designing a block cipher from this point of view.

References

1. Knudsen, L.R.: DEAL – A 128-bit Block Cipher. Department of Informatics, Uni-
versity of Bergen, Norway. Technical report (1998)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

4. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanaly-
sis of block ciphers. Des. Codes Crypt. 70(3), 369–383 (2014)

5. Kim, J., Hong, S., Lim, J.: Impossible differential cryptanalysis using matrix
method. Discrete Math. 310(5), 988–1002 (2010)

6. Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differ-
entials of block cipher structures. Inf. Sci. 263(1), 211–220 (2014)

7. Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-
oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012)

8. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

9. Lucks, S.: The saturation attack - a bait for twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

10. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

11. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography: Two Sides of One Tapestry, vol. 276, pp. 227–233. Springer, USA (1994)

12. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, Bart (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

13. Picek, S., Batina, L., Jakobović, D., Ege, B., Golub, M.: S-box, SET, match: a
toolbox for S-box analysis. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014.
LNCS, vol. 8501, pp. 140–149. Springer, Heidelberg (2014)

14. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

114 B. Sun et al.

15. Sun, B., Li, R., Qu, L., Li, C.: SQUARE attack on block ciphers with low algebraic
degree. Sci. China Inf. Sci. 53(10), 1988–1995 (2010)

16. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a crypt-
analysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 303–322. Springer, Heidelberg (2011)

17. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

18. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388–404. Springer, Heidelberg (2013)

19. Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revis-
ited. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 411–430.
Springer, Heidelberg (2015)

20. Blondeau, C., Bogdanov, A., Wang, M.: On the (In)equivalence of impossible dif-
ferential and zero-correlation distinguishers for Feistel- and Skipjack-type ciphers.
In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479,
pp. 271–288. Springer, Heidelberg (2014)

21. Blondeau, C., Nyberg, K.: Links between truncated differential and multidimen-
sional linear properties of block ciphers and underlying attack complexities. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 165–
182. Springer, Heidelberg (2014)

22. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes.
Cambridge University Press, Cambridge (2006)

23. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

24. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

25. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

26. Kwon, D., et al.: New block cipher: ARIA. In: Lim, Jong-In, Lee, Dong-Hoon (eds.)
ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)

27. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010)

28. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of round-
reduced ARIA and camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)

29. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear
cryptanalysis with FFT and improved attacks on ISO standards camellia and CLE-
FIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp.
306–323. Springer, Heidelberg (2014)

30. Lei, D., Chao, L., Feng, K.: New observation on camellia. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

Links Among Impossible Differential 115

31. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.:
Links among Impossible Differential, Integral and Zero Correlation Linear Crypt-
analysis. http://eprint.iacr.org/2015/181.pdf

32. Lee, C., Cha, Y.: The block cipher: SNAKE with provable resistance against DC
and LC attacks. In: Proceedings of 1997 Korea-Japan Joint Workshop on Informa-
tion Security and Cryptology (JW-ISC 1997), pp. 3–17 (1997)

33. Moriai, S., Shimoyama, T., Kaneko, T.: Interpolation attacks of the block cipher:
SNAKE. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 275–289.
Springer, Heidelberg (1999)

34. First AES Candidate Conference. http://csrc.nist.gov/archive/aes/round1/conf1/
aes1conf.htm

35. Specification of SMS4, Block Cipher for WLAN Products – SMS4 (in Chinese).
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

36. Zhang, W., Su, B., Wu, W., Feng, D., Wu, C.: Extending higher-order integral: An
efficient unified algorithm of constructing integral distinguishers for block ciphers.
In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 117–134.
Springer, Heidelberg (2012)

37. Berger, T.P., Minier, M., Thomas, G.: Extended generalized feistel networks using
matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013.
LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014)

http://eprint.iacr.org/2015/181.pdf
http://csrc.nist.gov/archive/aes/round1/conf1/aes1conf.htm
http://csrc.nist.gov/archive/aes/round1/conf1/aes1conf.htm
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf

On Reverse-Engineering S-Boxes with Hidden
Design Criteria or Structure

Alex Biryukov(B) and Léo Perrin

University of Luxembourg, SnT, Walferdange, Luxembourg
{alex.biryukov,leo.perrin}@uni.lu

Abstract. S-Boxes are the key components of many cryptographic
primitives and designing them to improve resilience to attacks such as
linear or differential cryptanalysis is well understood. In this paper, we
investigate techniques that can be used to reverse-engineer S-box design
and illustrate those by studying the S-Box F of the Skipjack block cipher
whose design process so far remained secret. We first show that the lin-
ear properties of F are far from random and propose a design criteria,
along with an algorithm which generates S-Boxes very similar to that of
Skipjack. Then we consider more general S-box decomposition problems
and propose new methods for decomposing S-Boxes built from arith-
metic operations or as a Feistel Network of up to 5 rounds. Finally, we
develop an S-box generating algorithm which can fix a large number
of DDT entries to the values chosen by the designer. We demonstrate
this algorithm by embedding images into the visual representation of
S-box’s DDT.

Keywords: S-box design criteria · Skipjack · Linearity · Functional
decomposition problem · Efficient implementation

1 Introduction

Non-linearity in cryptographic primitives is usually provided by so-called
S-Boxes, functions which map a few inputs bits to a few output bits and which
are often specified as look-up tables. These have been a topic of intensive research
since their properties are crucial for resilience of a cipher against differential [1–3]
and linear [4,5] attacks. Further, the structure or the method used to build the
S-Box can provide other benefits.

Indeed, the structure of an S-Box can be leveraged for instance to improve
the implementation of a primitive using it. The hash function Whirlpool [6]
and the block ciphers Khazad [7], Fantomas, Robin [8] and Zorro [9] among
others use 8 × 8 bits S-Boxes built from smaller 4 × 4 ones, since storing several
4 × 4 permutations as tables of 16 4-bits nibbles is more memory efficient than
storing one 8×8 permutation as a table of 256 bytes. Except for implementation
advantage, knowledge of the internal structure helps to produce more efficient
masked implementations against side-channel attacks, a notable example here
being the AES [10] with its algebraic S-box based on a power function.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 116–140, 2015.
DOI: 10.1007/978-3-662-47989-6 6

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 117

In some cases the design process of an S-Box might be kept secret for the
purpose of implementing white-box cryptography, as described e.g. in [11]. In this
paper, Biryukov et al. describe a memory-hard white-box encryption scheme
based on a Substitution-Permutation Network where the S-Boxes are very large
and are built using a so-called ASASA or ASASASA structure where “A” denotes
an affine layer and “S” a non-linear S-Box layer. Preventing an adversary from
decomposing these S-Boxes into their “A” and “S” layers is at the core of the
security claims for this scheme.

Moreover such memory-hard white-box implementations with hidden struc-
ture of components can be of use in crypto-currencies, for example in cases where
an entity is interested in issuing a crypto-currency of its own. One of the dan-
gers is that powerful adversaries may launch a 51 % attack taking control of the
mining process. Memory hard S-Boxes with hidden structure can offer a distinct
advantage in such setting since efficient implementation of the proof-of-work
function may be kept secret by the owners of the currency.

Examples of algorithms for which the components are known but the ratio-
nale behind their choice is not (at least at the time of release), are the block
ciphers designed by or with the help of the US National Security Agency (NSA),
namely the DES [12], Skipjack [13], SIMON and SPECK [14] (the last two do
not use S-Boxes though). Although the design criteria for the S-Boxes of DES
were later released [15] they were kept secret for 20 years in order to hide the
existence of differential cryptanalysis, a technique only known by IBM and NSA
at the time. Skipjack also uses an S-Box, denoted F , which is a permutation of
{0, 1}8. However, nothing was known so far about how this S-Box was chosen.

Our Contribution. Different methods can be used to recover the hidden structure
of an S-Box. We propose that a cryptanalyst follows the strategy given below to
try and decompose an unknown S-Box S:

1. Draw the “Pollock” visual representation of the LAT and DDT of S (see
Sect. 4).

2. Check whether the linear and differential properties of S are compatible with
a random function/permutation (see Sect. 2).

3. Compute the signature σ(S) of S.
4. If σ(S) is even, you may:

(a) Try an attack on SASAS [16],
(b) Try to distinguish S from a Feistel Network with XOR, using the distin-

guishers in [17],
(c) If one of the Feistel Network distinguishers worked, run DecomposeFeistel

(S,R,⊕) for an appropriate R (see Sect. 3.2).
5. Regardless of σ(S), run DecomposeFeistel(S,R,�) for R ∈ [2, 5] (see

Sect. 3.2).
6. Regardless of σ(S), run BreakArithmetic(S) (see Sect. 3.1).

We study in Sect. 2 the seemingly average linear properties of F . After a
careful investigation and despite the fact that these properties are not impressive,
we show that the probability for a random permutation of {0, 1}8 to have linear

118 A. Biryukov and L. Perrin

properties at least as good as those of F is negligible. This implies three things.
First, F was not chosen uniformly at random. Second, F is very unlikely to
have been picked among random candidates according to some criteria. Third,
the method used to build it improved the linear properties. We also provide a
candidate algorithm which can be used to generate S-Boxes with very similar
differential and linear properties.

In Sect. 3 we consider a general problem of decomposition of an S-box with
hidden structure and describe two algorithms which can be used to decompose
S-Boxes based on: (a) multiple iterations of simple arithmetic operations (for
ex. like those found in a typical microprocessor) and (b) Feistel Networks with
up to five independent rounds. The first algorithm is an optimised tree-search
and the second one involves a SAT-solver.

Finally, we show in Sect. 4 how visual representations of the difference dis-
tribution table (DDT) or the linear approximation table (LAT) of an S-Box
can help a cryptographer to spot non-randomness at a glance. As a bonus, we
present an algorithm which generates non-bijective S-Boxes such that large set
of entries in their DDT are set according to the designer’s choices. We illustrate
it by embedding images in the visual representation of the S-Box’s DDT.

2 Partially Reverse-Engineering the S-Box of Skipjack

2.1 Overview of the S-Box of Skipjack and Useful Definitions

Skipjack is a block cipher with a block size of 64 bits and key size of 80 bits. The
interested reader may refer to the official specification [13] or to the best attack
on the cipher [18], an impossible differential attack leveraging its particular round
structure. Further analysis trying to discover the design criteria of Skipjack is
given in [19,20].

Skipjack’s specification contains and 8× 8 bit bijective S-box which is called
“F-Table” and which is given as a lookup table (we list it in the Appendix A).
In order to study it we need to introduce the following concepts.

Definition 1 (Permutations Set). We denote S2n the set of all the permu-
tations of {0, 1}n.

Definition 2 (Difference Distribution Table). Let s : {0, 1}n → {0, 1}n be
a function. Its difference distribution table (DDT) is a 2n ×2n matrix where the
number at line i and column j is

di,j = #{x ∈ {0, 1}n|s(x ⊕ i) ⊕ s(x) = j}.

The maximum coefficient in this table (minus the first line and column) is the
differential uniformity of s which we denote Δ(s): Δ(s) = maxi>0,j>0(di,j).

Differential cryptanalysis relies on finding differential transitions with high
probabilities, i.e. pairs (a, b) such that s(x ⊕ a) ⊕ s(x) = b has many solutions
which is equivalent to da,b being high. Therefore, cryptographers usually attempt

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 119

to use S-Boxes s with as low a value of Δ(s)) as possible. A function differentially
2-uniform, the best possible, is called Almost Perfect Nonlinear (APN). The
existence of APN permutations of GF (2n) for even n was only proved recently
by Browning1 et al. [21] in the case n = 6, while the case n = 8 and beyond still
remains an open problem. Hence, the differential uniformity of the S-Boxes of
the AES [10] and of most modern S-Box based ciphers is equal to 4.

The distribution of the coefficients in the DDT of Skipjack is summarized
in Table 1 along with the theoretical distribution identified in [22] for a random
permutation of GF (28). As we can see it is differentially 12-uniform, the same
as you would expect from a random permutation, which is surprising since min-
imizing the differential uniformity is usually one of the corner stones of provable
resilience against differential attacks.

Table 1. Distribution of the coefficients in the DDT of F .

Coefficient Number Proportion (%) in F Poisson(1/2) (%)

0 39104 60.14 60.65

2 20559 31.62 30.33

4 4855 7.467 7.582

6 686 1.055 1.264

8 69 0.106 0.158

10 5 0.008 0.016

12 2 0.003 0.002

We briefly mention the linear properties of F before studying them thor-
oughly in Sect. 2.2. In particular, we define the Linear Approximations Table of
an S-Box.

Definition 3 (Linear Approximations Table). Let s : {0, 1}n → {0, 1}n be
a function. Its linear approximations table (LAT) is a 2n × 2n matrix where the
number at line i and column j is

ci,j = #{x ∈ {0, 1}n|x · i = s(x) · j} − 2n−1 =
1
2

∑

x∈{0,1}m

(−1)i·x⊕j·s(x)

with “·” denoting the scalar product. The maximum absolute value of the ci,j is
the linearity of s, Λ(s), where Λ(s) = maxi>0,j>0(|ci,j |).
The quantity ci,j has different names in the literature. It is called “bias” or
“Imbalance” of the Boolean function x �→ i · x ⊕ j · s(x) in, for example, [22].
In papers from the Boolean functions community, it is more often defined in
terms of Walsh Spectrum, the Walsh Spectrum of a Boolean function being the
1 The fact that Browning works at the NSA shows that this agency values theoretical

considerations, which makes the simplicity of F all the stranger.

120 A. Biryukov and L. Perrin

multiset {ci,j/2}i≥0,j≥0. The maximum coefficient in the LAT of F is Λ(F) = 28
and it occurs in absolute value 3 times.

For the sake of completeness, we also give the sizes of the cycles in which F
can be decomposed: 2, 10, 45, 68, 131.

2.2 The Linear Properties are Too Good to be True

Figure 1 contains the distribution of the value of the coefficients of the LAT
(minus the first line and column) along with the theoretical proportions for a
random permutation of GF (28) described below.

Fig. 1. Coefficients of the LAT of F , random permutations and some outputs of
Improve-R(s).

The probability distribution for the coefficients ci,j in the LAT of a permu-
tation of S2n is described in [23]:

P [ci,j = 2z] =

(
2n−1

2n−2+z

)2

(
2n

2n−1

) .

Using Sect. 3.4 of [22], we derived that Λ(s) has a mean over all permutations s ∈
S28 of approximately 34.8 which is notably larger than for F since Λ(F) = 28.

Given the probability distribution of the coefficients of the LAT, it is easy to
compute the probability that Λ(f) ≤ 28 assuming that f is a permutation chosen
uniformly at random and that the coefficients’ values correspond to independent
sample of the same distribution. Note that there are only (28 − 1)2 such trials
because the first line and column are ignored here.

P [Λ(f) ≤ 28] =
(14∑

j=−14

P [ci,j = 2j])
)(28−1)2

≈ 2−25.62.

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 121

This probability is low but it would be feasible to generate a set of about 226

random permutations from S28 and compute the LAT for each of them. In such
a set, the best S-Box s should verify Λ(s) = 28. However, we must also take into
account that in order to resist linear cryptanalysis it is not only best to have a
low maximum value, it is also better to have a low number of occurrences of it.
In this regard, F and its only three occurrences of 28 could almost be considered
as having a maximum value of 26 for which P [Λ(f) = 26] = 2−66.4.

More rigorously, we compute the probability to have at most q coefficients
equal to 28 in the LAT of a permutation picked uniformly at random from S28 .
If we let p(2i) = P [ci,j = 2i], then this probability is equal to P28,q where

P28,q =
q∑

j=0

[((28 − 1)2

j

)
(
p(28) + p(−28)

)j
(13∑

k=−13

p(2k)
)(28−1)2−j]

.

Unsurprisingly, we find that this probability is equal to 2−66.4 for q = 0, i.e.
the probability to have Λ(s) ≤ 26. It also converges to 2−25.6 = P [Λ(s) ≤ 28]
when q increases. For q = 3, the case of Skipjack’s F , we find:

P28,3 = 2−54.4.

The probability for a random permutation to have linear properties comparable
to those of Skipjack’s F is thus at most 2−54.4. Hence, we claim:

– F was not chosen uniformly at random in S28 ,
– the designers of Skipjack did not generate many random permutation to then

pick the best according to some criteria as they would need to have generated
at least about 255 S-Boxes,

– the method used to build F improved its linear properties.

2.3 A Possible Design Criteria

We tried to create an algorithm capable of generating S-Boxes with linear and
differential properties similar to those of F . It turns out that such an algorithm
is easy to write. First, we introduce a quantity we denote R(f) and define as
follows:

R(f) =
∑

�≥0

N� · 2�,

where N� counts coefficients with absolute value � in the LAT of f : N� = #{ci,j ∈
(LAT of f), |ci,j | = �}.

Algorithm 1 starts from a random permutation s of S28 and returns a new
permutation s′ such that R(s′) < R(s) and such that s′ is identical to s except for
two entries x and y which are swapped: s′(x) = s(y) and s′(y) = s(x). It works
by identifying one of the highest coefficient in the LAT, removing it through
swapping two entries and checking whether R(s) was actually improved. This
algorithm can be used in two different ways: either we keep iterating it until it

122 A. Biryukov and L. Perrin

Algorithm 1. Improve-R(s)
c := LAT of s
Find a, b such that |ca,b| = Λ(s)
L := empty list
for all x ∈ {0, 1}8 do

if a · x = b · f(x) then
Append x to L

end if
end for
for all (x, y) ∈ L2, x �= y do

s′ = s ; s′(x) = s(y) ; s′(y) = s(x)
if R(s′) < R(s) then

return s′

end if
end for
return Fail

reaches a point at which no swap can improve R(s) or we stop as soon as R(s)
is below an arbitrary threshold.

We implemented both variants. For the second one, we stop when R(s) < 1010

because R(F) ≈ 109.92. We denote N� the average number of coefficient with
absolute value � in the LAT or the DDT of the S-Boxes obtained. For the LAT,
log2(N�) is given in Table 2 and in Fig. 1; for the DDT it is in Table 3. “Random”
corresponds to the average over 200 S-Boxes picked uniformly at random in S28 ;
“F” to the distribution for the S-Box of Skipjack; “F -like” to the average over
100 S-Boxes obtained using Improve-R() and stopping when R(s) < 1010; “best”
to the average over 100 S-Boxes obtained using Improve-R() and stopping only
when it fails.

Table 2. Distribution of log2(N�) in the LAT of different S-Boxes.

� Random F F -like best R()

20 9.164 9.147 9.230 9.311

22 8.220 8.308 8.336 8.247

24 7.173 7.267 7.280 6.400

26 6.041 5.755 5.688 0.000

28 4.826 1.585 1.157 -

30 3.506 - - -

32 2.146 - - -

34 0.664 - - -

Using Improve-R() with an appropriate threshold allows us to create
S-Boxes with both linear and differential properties very close to F . However,
in order to achieve this, we need to choose a threshold value computed from F

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 123

Table 3. Distribution of log2(N�) in the DDT of different S-Boxes.

� Random F F -like Best R()

0 15.265 15.246 15.250 15.227

2 14.270 14.327 14.314 14.380

4 12.277 12.245 12.257 12.210

6 9.693 9.422 9.492 9.126

8 6.701 6.109 6.198 5.265

10 3.374 2.322 2.287 0.714

12 −0.059 1.000 −1.786 −5.059

14 −4.059 - −5.059 -

and which does not correspond to anything specific. In fact, to the best of our
knowledge, the quantity R(s) does not have any particular importance unlike
for instance the linearity Λ(s). Still, replacing R(s) by the linearity Λ(s) or a
pair (Λ(s),#{(i, j), ci,j = Λ(s)}) yields S-Boxes which are very different from F .
Such S-Boxes indeed have a value of NΛ(s)−2 much higher than in the random
case, which is not the case for F .

While our definition of R(s) may seem arbitrary, it is the only one we could
find that leads to linear properties similar to those of F . For instance it may have
been tempting to base R(s) on the square of � which is used when computing
the correlation potential of a linear trail, a quantity useful when looking for
linear attacks. We would thus define R(s) =

∑
�≥0 N��

2. However this quantity
is worthless as an optimization criteria since it is constant: Parseval’s equality
on the Walsh spectrum of a Boolean function imposes that the sum of the (ci,j)2

over each column is equal to 22n−2.
To conclude: we have found new non-random properties of the S-box of Skip-

jack which are improving its strength against linear cryptanalysis and we devel-
oped and algorithm which could be used to generate such S-boxes.

2.4 Public Information About the Design of Skipjack

The only information indirectly published by the NSA on Skipjack corresponds
to an “Interim Report” [24] written by external cryptographers and it contains
no information on the specifics of the design. The most relevant parts of this
report as far as the S-Box is concerned are the following ones.

SKIPJACK was designed to be evaluatable [...]. In summary, SKIPJACK
is based on some of NSA’s best technology. Considerable care went into
its design and evaluation in accordance with the care given to algorithms
that protect classified data.

124 A. Biryukov and L. Perrin

Furthermore, after the “leakage” of an alleged version of Skipjack to usenet2,
Schneier replied with a detailed analysis of the cipher [26] which contained in
particular the following quote indicating that the S-box was changed in August
1992.

The only other thing I found [through documents released under FOIA]
was a SECRET memo. [...] The date is 25 August 1992. [...] [P]aragraph 1
reads:
1. (U) The enclosed Informal Technical Report revises the F-table in

SKIPJACK
2. No other aspect of the algorithm is changed.

Note also that the first linear cryptanalysis of DES [4] had not been published
yet in August 1992 when the F-Table was changed. Gilbert et al. suggested at
CRYPTO’90 [27] to use linear equation to help with key guessing in differential
attack to attack FEAL. This block cipher was later attacked at CRYPTO’91 [28]
and EUROCRYPT’92 [29] using directly some linear equations involving plain-
text, ciphertext and key bits. We can but speculate about a connection between
these papers and the change of S-Box of Skipjack.

3 Algorithm Decomposing Particular Structures

A powerful tool able to discard quickly some possible structures for an S-Box is
its signature, as shown in Lemma 1.

Definition 4 (Permutation Signature). A permutation s of {0, 1}n has an
odd signature if and only if it can be decomposed into an odd number of trans-
positions, a transposition being a function permuting two elements of {0, 1}n.
Otherwise, its signature is even.

The signature of f ◦ g is even if and only if f and g have the same signature.

Lemma 1. The following b × b permutations always have an even signature:

– Feistel Networks using XOR to combine the output of the Feistel function with
the other branch,

– Substitution-Permutation Networks for which the diffusion layer is linear in
GF (2)b or can be decomposed into a sequence of permutations ignoring a
fraction of the internal state.

Proof. Let b be the block size of the block ciphers considered. The proof for the
case of Feistel Networks with XOR can be found in [30].

2 An anonymous member of sci.crypt posted what they claimed to be Skipjack at a
time when this algorithm was still classified [25]. Although the algorithm described,
“S-1”, turned out to be different from Skipjack as we know it, it used similar nota-
tions — the S-Box is called “F-Table” — and the key-schedule leads to identical
round keys being used every 5 rounds, just like in the actual Skipjack.

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 125

Let us look at substitution permutation networks. An S-Box layer consists
in the parallel application of several invertible S-Boxes operating on n bits, with
n dividing b. This operation can be seen as the successive application of the
S-Box on each n bit block, one after another. Such an operation ignores 2b−n

bits, meaning that its cycle decomposition consists in 2b−n replicas of the same
set of cycles. Since 2b−n is even, the application of each S-Box is even; which in
turn implies that the successive application of the S-Box on each block is even.
More generally, any permutation which can be decomposed into a sequence of
sub-permutations ignoring a fraction of the internal state is even. The fact that
permutations linear in GF (2)b are even is showed in the proof of Lemma 2
in [31]. 	

The restriction put on the diffusion layer of SPN’s is usually not important, e.g.
the diffusion layer of the AES fits the requirement. However, for small block
sizes, it must be taken into account.

So far, we have proved that F has been built in contrast to being picked out
of a set of random S-Boxes according to some criteria. The signature of F is odd
so Lemma 1 implies that F cannot be a Feistel Network with XOR. The generic
attack on the SASAS structure [16] fails on F , meaning that it is not a simple
SPN either. Finally, F is not affine equivalent to a monomial of GF (2n) like for
instance the S-Box of the AES. Indeed, such functions have the same coefficients
in the lines of their DDT, only the order is different. This observation lead to
the definition of the differential spectrum by Blondeau et al. [32]. It also implies
that, for a monomial, the number of coefficients equal to d in its DDT must
divide 2n − 1. As it is not the case for F , we can also rule out this structure.

However, this is not sufficient to conclude that F does not have a particular
structure. It could be based on simple operations such as rotations, addition
modulo 2n and multiplication available in a typical microprocessor (thus offer-
ing the designer a benefit of memory-efficient implementation) or on a Feistel
Network which uses modular addition to combine the output of the Feistel func-
tion with the other branch. We study these two possibilities in this section by
first describing an algorithm capable of decomposing S-Boxes built from multi-
ple simple arithmetic operations and then by presenting a new attack recovering
all Feistel functions of a small Feistel Network of up to 5-rounds regardless of
whether XOR or modular addition is used.

The purpose of the algorithms we present in this section can be linked to the
more general Functional Decomposition Problem (FDP) tackled notably over two
rounds in [33]. In this paper, Faugère et al. introduce a general algorithm capable
of decomposing h = (h1, ..., hu) into

(
f1(g1, ..., gn), ..., fu(g1, ..., gn)

)
where the

hi’s, fi’s and gi’s are polynomials of n variables. The time complexity of this
algorithm (see Theorem 3 of [33]) is lower bounded by O

(
n3·(dfdg−1)

)
where df

(respectively dg) is the maximum algebraic degree of the fi’s (respectively the
gi’s). Note that this lower bound on the time complexity is not tight. In fact,
the ratio n/u of the number of input variables over the number of coordinates
of h is also of importance, the lower being the better.

126 A. Biryukov and L. Perrin

3.1 Iterated Simple Arithmetic Permutation

A plausible assumptions for an efficient yet compact S-box design is that the
S-box is constructed using a formula containing basic instructions available in
the microprocessor. Indeed, a simple code:

for (i = 0; i < 3; i++) {
y = a * (ROTL8((b * y) ^ c, d)) ^ e;

}

generates an S-box which may have a differential uniformity better than Skip-
jack’s F ’s for a proper choice of constants a, b, c, d and e.

We introduce BreakArithmetic(s), an optimized tree-search capable of
recovering the simple operations used to create such an S-Box constructed as
an arbitrary sequence of basic processor instructions. It is based on the fol-
lowing observation. Suppose that s = φr ◦ ... ◦ φ1, where the φi’s are one of
the following algebraic operations: constant XOR, constant addition modulo 2n,
multiplication by a constant modulo 2n and bit rotation by a constant. Then
s◦φ−1

1 =
(
φr ◦ ...◦φ1

)◦φ−1
1 = φr ◦ ...◦φ2, meaning that s◦φ−1

1 is “less complex”,
“closer from the identity” than s itself. The aim of this algorithm is to peel of
the φi’s one after another by performing a tree-search among all possible simple
operations which selects operations to consider first based on how closer they
get us to the identity.

In order for this to work, we need to capture the concept of “distance to the
identity” using an actual metric which can be implemented efficiently. We chose
to base this metric on the DDT since it is less expensive to compute than the
LAT3. We define the following metric: M(s) =

∑
�≥2 N�(�−2)2. Our tree-search

privileges candidates φ1 such that M(s ◦ φ−1
1) is closer from M(Id), where Id is

the identity function.
Our implementation of this algorithm is for example capable of recovering

the decomposition of s : x �→ ψ
(
ψ

(
ψ(x)

))
with ψ : x �→ 0xa7·((3·x⊕0x53) >>>

4
) ⊕ 0x8b. However, our algorithm could not find any such decomposition for

Skipjack’s F despite running for 96 hours on a CUDA computer with more than
1000 cores for fast computation of the DDT.

3.2 Decomposing Feistel Structures

Another possible structure for F which is compatible with its having an odd
signature is a Feistel Network where the XOR is replaced by a modular addition.
In this section, we describe an algorithm which uses a SAT-solver to recover the
Feistel functions of small Feistel Networks which use either XOR or modular
addition. We describe below the key idea of this attack, namely the encoding of
the truth table of each Feistel function using Boolean variables and then how we
can use this encoding to actually decompose a small Feistel Network.
3 One can also notice that linear operations do not alter the DDT profile of the per-

mutation and thus one has to recompute the metric only after non-linear operations.

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 127

Methods to distinguish Feistel Networks from random permutations have
been actively investigated, notably in the work by Luby and Rackoff [34] as
well as by Patarin [35,36]. Here, we present a method which goes beyond dis-
tinguishing: it actually recovers all the Feistel functions for up to 5-rounds of
Feistel Networks with low branch width.

Encoding of the Feistel Function. Let f : {0, 1}n → {0, 1}n be an unknown
function. We associate to each of its output bits i on each possible input x a
unique variable zx

i . The truth-table of f is thus as shown in Table 4 for n = 3.
We encode the fact that a vector of Boolean variables yi, i ∈ [0, n − 1] is the
output of f given input variables xi, i ∈ [0, n − 1] using the truth-table of f by
building a CNF4 involving {xi}i<n, {yi}i<n and {zx

i }i<n, x<2n which is true if
and only if (yn−1, ..., y0) = f(xn−1, ..., x0).

Table 4. The variables used to encode an unknown function f : {0, 1}3 → {0, 1}3,
where (y2, y1, y0) = f(x2, x1, x0).

x2 x1 x0 y2 y1 y0

0 0 0 z0
2 z0

1 z0
0

0 0 1 z1
2 z1

1 z1
0

...

1 1 1 z7
2 z7

1 z7
0

We denote biti(b) the i-th of the binary expansion of any integer b < 2n in
little-endian notation so that b =

∑
i<n biti(n)2n−i. We also denote a1 the vari-

able a itself and a0 its negation. The procedure used to build this CNF is based
on the following implication: if {xi}i<n corresponds to the binary expansion of
an integer x < 2n and {yi}i<n to the binary expansion of the integer y = f(x),
then yi ⊕ zx

i = 0 for all i < n. Using the notations we just introduced, this idea
can be written as n implications, the conjunction of which for j < n must hold:

(∧

i<n

x
biti(x)
i

)
=⇒ (

yj ⊕ zx
j = 0

)
.

Each of these can be turned into a CNF made of two clauses using that
(a =⇒ b) ≡ (a0 ∨ b1), that (a ⊕ b = 0) ≡ (

(a1 ∨ b0) ∧ (a0 ∨ b1)
)

and basic linear
algebra as follows:

((∨

i<n

x
1−biti(x)
i

) ∨ y1
j ∨ z0j

)
∧

((∨

i<n

x
1−biti(x)
i

) ∨ y0
j ∨ z1j

)
.

If we concatenate the CNF generated in this way for all values of x < 2n, we
obtain a CNF which we denote “CNF

(
f, {xi}, {yi}

)
” with 2n2n clauses involving

n2n +2n variables. It holds if and only if the assignment of the variables {xi}i<n

and {yi}i<n is such that (yn−1, ..., y0) = f(xn−1, ..., x0).
4 A formula in Conjunctive Normal Form is the conjunction of multiple clauses, each

of them being the disjunction of some possibly negated variables.

128 A. Biryukov and L. Perrin

Generating the Full CNF and Solving. Using CNF
(
f, {xi}, {yi}

)
, a SAT-

solver and the full codebook of a S-Box S : {0, 1}2n → {0, 1}2n, we can
recover the Feistel functions used to generate S if it was indeed generated using
a Feistel network or prove that it was not constructed in this fashion using
DecomposeFeistel(S,R, operation) (see Algorithm 2). To describe it, we intro-
duce variables {xr

i }i<2n, {yr
i }i<n and, if the combining function is a modular

addition instead of a XOR, {cr
i }i<n for r < R where R is the number of rounds

we consider were used. These are summarized in Fig. 2.

xr
i , i < 2n

xr+1
i , i < 2n

Sr
yr
i ,

i < n

cri ,
i < n

Fig. 2. The variables used to encode round r of a Feistel Network operating on blocks
of 2n bits.

The general idea consists in building the CNF representation of the fact that
S(p) = c for each input/output pair (p, c) separately, concatenate these CNF’s
and then have a SAT-solver solve the CNF obtained in this fashion. To each
Feistel functions is associated a unique set of n2n variables as described in the
previous section. These are used when encoding that half of the internal state
at round r + 1 of the Feistel Network goes through the corresponding Feistel
function. The only difficulty left is the combination of the left branch with the
output of the Feistel function. In the case where a XOR is used, we can simply
encode that xr+1

i = yr
i ⊕xr

i+n separately for each bit i. However, in the case of a
modular addition, we need to introduce a new set of variables for each evaluation
of the addition corresponding to the carry bits: {cr

i }i<n. The addition is then
encoded into a CNF using the CNF encoding of the following equations:

xr
i+1 = cr

i ⊕ xr
i+n ⊕ yr

i ,

cr
i+1 =

(
cr
i ∧ xr

i+n

) ∨ (
yr

i ∧ xr
i+n

) ∨ (
cr
i ∧ yr

i

)
.

A useful heuristic when trying to decompose more than 4 rounds is to look
for decompositions with particular patterns in the sequence of the Feistel func-
tions. For instance, decomposing a 5-rounds Feistel Network with round func-
tions (Sa, Sb, Sc, Sd, Sa) is easier than decomposing a similar structure with
round functions (Sa, Sb, Sc, Sd, Se) if this knowledge is hard-coded in the CNF
by using the same sets of variables to encode both Se and Sa. In this case,

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 129

Algorithm 2. DecomposeFeistel(S,R, operation)
C := empty CNF
for all p ∈ [0, 2n − 1] do

for all r ∈ [0, R − 1] do
{xp,r+1

i+n }i<n = {xp,r
i }i<n

C := Concatenation of CNF
(
Sr, {xp,r

i }i<n, {yp,r
i }) and C

if operation is ⊕ then
Append CNF repr. of {xp,r+1

i }i<n = {yp,r
i }i<n ⊕ {xp,r

i+n}i<n to C
else

Append CNF repr. of {xp,r+1
i }i<n = {yp,r

i }i<n � {xp,r
i+n}i<n to C

end if
end for
for all i ∈ [0, n − 1] do

Append clause only made of literal (xp,0
i)biti(p) to C

Append clause only made of literal (xp,R
i)biti(S(p)) to C

end for
end for
Run SAT-solver on C
if C is satisfiable then

Extract truth-table of all Sr’s from the variable assignment
return “Feistel Network with R rounds”

else
return “Not a Feistel Network with R rounds”

end if

DecomposeFeistel(S,R, operation) also takes the assumed sequence of the
S-Boxes as an additional input.

Another improvement comes from the observation that constants can be
XOR-ed (or added/subtracted) in the input of Feistel functions in the first R−2
rounds — provided they are cancelled by XOR-ing (or adding/substracting) in
the later rounds — without changing the output of the function. Using this, we
can arbitrarily decide that the first Feistel functions all map, say, 0 to 0. This
simplification of the CNF helps the SAT-solver a lot and is actually necessary
to attack 5 independent rounds.

We implemented Algorithm 2 and used the SAT-solver Minisat [37] to solve
the CNF formula generated. The time taken to decompose S-Boxes actually
made of small Feistel Networks is smaller than the time taken to discard an
S-Box which is not based on such a structure. Decomposing 8 × 8 S-Boxes built
using 4-rounds Feistel Networks, regardless of whether ⊕ or � is used, takes less
than a second on a regular desktop PC5 and discarding S-Boxes built in other
ways requires about 5 seconds. Decomposing 5-rounds requires a bit less than
a minute but discarding this structure takes longer, for instance 3 min to prove
that F is not a 5-rounds ⊕-Feistel and 23 min to show that is it not a 5-rounds
�-Feistel. It is also possible to attack larger instances provided enough RAM is
5 The PC used for the experiments has a Intel(R) Core(TM) i7-3770 CPU (3.40GHz)

for a cpu and 8 Go of RAM.

130 A. Biryukov and L. Perrin

available. A 4-rounds Feistel Network corresponding to a 14 × 14 S-Box can be
broken in about 2 hours using up to about 38 Go of RAM6.

The CNF formulas equivalent to F being a Feistel Network with 3,4 or 5
rounds, using either ⊕ or � are all unsatisfiable, meaning that F is not a Feistel
Network with at most 5 rounds.

For the sake of completeness, we mention the existence of another time
efficient attack on 5-round Feistel Networks by Gaëtan Leurent based on a
boomerang-like property [38]. Indeed one of the open problems is how far crypt-
analytic techniques can go in analysis of ciphers with small block, where the full
code-book is available to the attacker.

4 From an S-Box to a Picture and Back Again

In order to distinguish an S-Box from a random one we propose a new method
which we call Pollock’s Pattern Recognition7. It is based on turning the DDT
and the LAT of the S-Box into a picture and then use the natural pattern finding
power of the human eye to identify not-random properties. We also describe a
method to perform (partially) the inverse operation: Seurat’s Steganography8. It
creates an S-Box such that an image is embeded in the picture representation of
its DDT.

4.1 Pollock’s Pattern Recognition

As is clear from Sect. 2, the distribution of the coefficients in the LAT of an
S-Box provides a powerful tool to distinguish a random-looking S-Box from a
permutation chosen uniformly at random from the set of all permutations. We
suggest here another method for looking at these coefficients which can also be
applied to the DDT. The idea is to look at the whole table at once, be it a DDT
or LAT, and then rely on the pattern matching capabilities of the pair human
eye/human brain to possibly discard that the S-Box was chosen uniformly at
random. In order to look at the whole table, we associate to the values of the
coefficients different colors. Exactly which color scale to use is a question which
can only be answered by trying different ones. As an illustration of the power
of this method, we provide pictures allowing us to discard the randomness of 4
S-Boxes using merely a quick glance in Appendix B.

Zorro. The S-Box of this cipher [9] is based on a 4-rounds Feistel Network
with a complex diffusion layer. As a consequence, the algorithm presented in

6 This experiment was performed on a single core of a dedicated server with 500 Go
of RAM.

7 The pictures obtained in this fashion have a strong abstract feel to them, hence a
name refering to the painter Jackson Pollock for this algorithm.

8 As will be explained later, this algorithm works by drawing the image to embed
point after point just like in a pointillist painting, hence the name of the painter
who invented this method.

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 131

Sect. 3.2 fails on it. The picture representation of its LAT, given in Fig. 4a,
contains “stripes”. These correspond to coefficients equal to 6 (orange) and
2 (green). These never appear for half of the input masks according to a
repeating pattern. Such a behaviour is not expected from a random permu-
tation. The color scheme was chosen so as to highlight this property. We note
that the congruence modulo 2k for some k of the coefficients of the LAT is
related to the algebraic degree of i · x ⊕ j · S(x) as explained for example
in [39] (Proposition 6.1).

CLEFIA. This block cipher [40] uses two distinct S-Boxes. The one denoted
S0 has a particular structure based on smaller 4× 4 S-Boxes. The LAT of
this S-Box is given in Fig. 4b: note the “dents” on the top and left side of
the picture as well as the low number of colors compared to Fig. 4c which
also depicts a LAT and uses the same color-scale. This low number of colors
is a consequence of the fact that no coefficient in the LAT is congruent to 2
modulo 4 which in turn is related to this S-Box having an algebraic degree
equal to 6 on all of its coordinates. Neither this nor the “dents” are expected
from a random permutation.

SAFER+. This block cipher [41] uses an S-Box based on exponentiation in
Z/256Z. Its LAT is given in Fig. 4c; note in particular the vertical lines whih
appear in this representation.

Arithmetic. The DDT can also be used in the same fashion. For example,
we can look at the DDT of an S-Box generated using a simple algebraic
expression similar to those discussed in Sect. 3.1, namely s : x �→ ψ

(
ψ(x)

)

with ψ : x �→ 3 ·((3 ·x⊕0x53) >>> 4
)⊕0x8b. The representation of its DDT

is in Fig. 4d. Note the white rectangles corresponding to subsets of impossible
differentials and the loose similarity between the top left and bottom right
quadrants on one hand and the top right and bottom left quadrants on the
other hand. None of these characteristics are expected from the DDT of a
random permutation. Note that with 3 iterations of φ this S-box becomes
reasonably good.

We however were not able to spot any particular pattern in the Pollock repre-
sentation of neither the DDT nor the LAT of Skipjack’s F . Such representations
are given respectively in Figs. 3a and b in Appendix B. We used the function
matrix plot from the SAGE [42] software package to draw the Pollock repre-
sentations.

4.2 Seurat’s Steganography

In this section, we present an algorithm allowing the creation of a non-bijective
S-Box such that the picture representation of its DDT contains a particular
image. Since we draw this image dot after dot like in pointillism and since it
hides said image, we call the method we present below Seurat’s Steganography.
The pictures we embed are black and white, the white parts corresponding to
places where differentials are impossible and black parts to places where the
differentials have non-zero probability.

132 A. Biryukov and L. Perrin

The Algorithm. We define white and black equations as those giving the
corresponding pixel color in the Pollock representation of the DDT of an S-Box.

White Equations. Wa,b : ∀x ∈ {0, 1}m, S(x + a) + S(x) �= b.

Black Equations. Ba,b : ∃x ∈ {0, 1}m, S(x + a) + S(x) = b.

The inputs considered in this Section are:

B The complete list of the black equations.
Tw A table of booleans of size u×v (the dimensions of the image) where Tw[a, b]

is false if and only if the pixel at (a, b) cannot be white.
S A partially unspecified S-Box such that all equations Bj for j < i hold and

such that none of the Wj has a solution for any j.
i The index of the equation in B for which we need to find a solution.

We first need a sub-routine checking if adding an entry S(x) = y to a partially
assigned S-Box, i.e. an S-Box for which some of the outputs are unspecified, leads
to at least one of the white equations not holding anymore. It is described in
Algorithm 3.

Algorithm 3. checkW(S, x, y, Tw).
for all a ∈ {0, 1}m, if S(x + a) is specified, do

if Tw[a, S(x + a) + S(x)] is false then return false

end for
return true

We now describe Seurat’s Steganoraphy, namely Algorithm 4, which uses
two lists of equations to iteratively build an S-Box such that a particular picture
appears in its DDT. It works by first making a list L of all the ways entries
could be added to the S-Box in order to satisfy the black equation Bi. If none
are found, the function fails. The function is finally called recursively on the
candidates found to look for a solution for the next equation. If no solution are
found for the next equation, the function fails.

Some optimizations are possible. First of all, it is not necessary to write
this algorithm using recursion. It is also not necessary to let L be as large as
possible. In fact |L| ≤ 2 is sufficient, although |L| = 1 does not work unless
the picture is very simple. It is also possible to allow some noise by tweaking
CheckW(S, x, y, Tw) to return true with low probability for pairs (x, y) even if
they blacken a white pixel.

Two outputs of this algorithm are presented in Appendix C: the S-Boxes are
given along with the Pollock representation of their DDT which clearly show
the pictures we chose to embed in them. The differential and linear properties
of the S-Box described in Table 6 are close from what would be expected from a
random function (differential uniformity of 14, linearity of 39), meaning that it
could be used in a context were a 8 × 8 random function would be sufficient.

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 133

Algorithm 4. Seurat(S,B, Tw, i).
δin := input difference in Bi

δout := output difference in Bi

L := empty list of S-Boxes
if Bi is already satisfied by S then

Append S to L and return L
end if
for all x ∈ {0, 1}m do

if S(x) is not defined but S(x + δin) is defined then
y = S(x + δin) + δout
if CheckW(S, x, y, Tw) then

S′ = S ; S′(x) = y
Append S′ to L

end if
else if S(x + δin) is not defined either then

for all y ∈ {0, 1}n do
if CheckW(S, x, y, Tw) and CheckW(S, x + δin, y + δout, Tw) then

S′ = S ; S′(x) = y ; S′(x + δin) = y + δout
Append S′ to L

end if
end for

end if
end for
If L is still empty then return Fail

for all S′ ∈ L do
If Seurat(S′, B, Tw, i + 1) does not fail then return S′

end for
return Fail

Counting Possible S-Boxes. Let S be a random function from {0, 1}m to
{0, 1}n. Then Wa,b holds if and only if da,b = 0, which happens with prob-
ability P [da,b = 0] = exp

(− 2m−n−1
)

because the coefficients in the DDT
of a random function follow approximately a Poisson distribution with para-
meter 1/2 (see [22]). Hence, if we have b black equations, w white ones and
if we consider that their having solutions are independent events, then the
probability that an S-Box has the correct image at the center of its DDT is
Psuccess =

(
exp(−2m−n−1)

)w × (
1− exp(−2m−n−1)

)b. In the case where m = n,
we use that log2(exp(−1/2)) ≈ −1.35 and that log2(1 − exp(−1/2)) ≈ −0.72 to
approximate this probability by

Psuccess = 2−(0.72·w+1.35·b).

As there are 2n2n possible n×n S-Boxes, we expect to have very roughly the
following amount of solutions:

NSolutions = 2n2n−(0.72·w+1.35·b).

134 A. Biryukov and L. Perrin

Therefore, we need 0.72 · w + 1.35 · b < n2n in order to have a non-empty set
of S-Box with the image we want inside their DDT. Black pixels are about twice
as expensive as white ones according to this model. However, in practice, it is
only possible to build a S-Box such that its DDT contains a black square of size
22×22 or a white one of size 62×62 without any noise, meaning that black pixels
are, from our algorithm’s point of view, about 8 times more expensive. Stirling’s
equation gives an approximate number of 2(n−1.44)·2n permutations of {0, 1}n, so
we need that 0.72 ·w +1.35 · b < (n− 1.44)2n in order for permutations with the
correct black/white pixels to exist with non negligible probability. However, our
algorithm will require significant changes in order to search for permutations.

Since our algorithm does not require the pixels to be organised inside a
square, we can also use it to force white or black pixels to appear anywhere
in the DDT of an S-Box. This could be used to place a sort of trapdoor by
for instance ensuring that a truncated differential compatible with the general
structure of a cipher is present. Another possible use could be to “sign” a S-Box:
Alice would agree with Bob to generate a S-Box for him and tell him before
hand where some black/white pixels will be. Bob can then check that those are
placed as agreed.

5 Conclusion

Knowledge of the internal structure of an S-box gives clear advantages to the
designer of a cipher in terms of efficient or side-channel resistant implementa-
tion. It is also crucial in the white-box or crypto-currency setting. Hiding the
S-box’s structure can be also a way to hide superior cryptanalysis techniques or
trapdoors.

In this paper we have introduced several approaches and algorithms to
decompose an S-Box with unknown structure and we illustrated them by study-
ing the S-Box of the NSA’s block cipher Skipjack. This allowed us to rule out
some possible structure, and to prove that its linear properties are too unlikely to
have happened at random. We also provided an algorithm capable of generating
very similar S-Boxes (Table 5).

An open problem related to this work is the study of block ciphers with small
block sizes: how far can cryptanalysis go given a whole codebook? How many
rounds of small-block Feistel Network or SPN is it feasible to break?

Acknowledgement. We thank the CRYPTO reviewers for their helpful comments.
We also thank Anne Canteaut for pointing out the connection between algebraic degree
and congruence of the coefficient of the LAT modulo 2k. The work of Léo Perrin is
supported by the CORE ACRYPT project (ID C12-15-4009992) funded by the Fonds
National de la Recherche (Luxembourg).

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 135

A The S-Box of Skipjack

Table 5. Skipjack’s S-Box, F , in hexadecimal notation. For example, F (7a) = d6.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. a3 d7 09 83 f8 48 f6 f4 b3 21 15 78 99 b1 af f9

1. e7 2d 4d 8a ce 4c ca 2e 52 95 d9 1e 4e 38 44 28

2. 0a df 02 a0 17 f1 60 68 12 b7 7a c3 e9 fa 3d 53

3. 96 84 6b ba f2 63 9a 19 7c ae e5 f5 f7 16 6a a2

4. 39 b6 7b 0f c1 93 81 1b ee b4 1a ea d0 91 2f b8

5. 55 b9 da 85 3f 41 bf e0 5a 58 80 5f 66 0b d8 90

6. 35 d5 c0 a7 33 06 65 69 45 00 94 56 6d 98 9b 76

7. 97 fc b2 c2 b0 fe db 20 e1 eb d6 e4 dd 47 4a 1d

8. 42 ed 9e 6e 49 3c cd 43 27 d2 07 d4 de c7 67 18

9. 89 cb 30 1f 8d c6 8f aa c8 74 dc c9 5d 5c 31 a4

a. 70 88 61 2c 9f 0d 2b 87 50 82 54 64 26 7d 03 40

b. 34 4b 1c 73 d1 c4 fd 3b cc fb 7f ab e6 3e 5b a5

c. ad 04 23 9c 14 51 22 f0 29 79 71 7e ff 8c 0e e2

d. 0c ef bc 72 75 6f 37 a1 ec d3 8e 62 8b 86 10 e8

e. 08 77 11 be 92 4f 24 c5 32 36 9d cf f3 a6 bb ac

f. 5e 6c a9 13 57 25 b5 e3 bd a8 3a 01 05 59 2a 46

B Picture Representation of the DDT and LAT of Some
S-Boxes

(a) The LAT of Skipjack’s F (b) The DDT of Skipjack’s F

Fig. 3. The Pollock representations of the LAT and DDT of Skipjack’s F . For both, 0
is in white and anything equal to or above 10 is black.

136 A. Biryukov and L. Perrin

(a) The LAT of the S-Box of Zorro (b) The LAT of the S-Box S0 of CLEFIA

(c) The LAT of the S-Box of SAFER+ (d) The DDT of a simple S-Box

Fig. 4. The Pollock representation of the LAT or DDT of different S-Boxes. The scales
all go from 0 to 10 (anything above 10 is treated as equal to 10).

(a) The DDT of the S-Box in Table 6 (b) The DDT of the S-Box in Table 7

Fig. 5. The DDT of some outputs of Seurat’s Steganography: |di,j | = 0 is in white,
|di,j | ≥ 2 is in black.

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 137

C S-Boxes Built from Pictures

The S-Box described in Tables 6 and 7 were built using the method described in
Sect. 4.2. Note that these are not bijections. The picture representations of their
DDT are given in Figs. 5a and b.

Table 6. An output of the algorithm described in Sect. 4.2.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 7a b3 b9 b6 53 b1 26 6e b9 43 86 ec 94 4b 9e 43

1. 5d 83 d5 57 16 4c 44 d5 5d 81 7f 79 b3 8d e6 f8

2. 0d 59 b3 8d 04 4c 8d ec d9 ff 7f 7a 7e 9a 92 61

3. 05 fc e3 1a ed 12 1e 52 1a e5 30 34 ef e5 97 e5

4. 9e 69 29 d6 29 cd b8 3a d2 c4 1b d1 1c 17 c3 3b

5. 44 ba bd 19 57 0c 5a 5f bb 55 b7 4a 5e 3f a6 fe

6. 7f c8 7e 65 be 1e b3 bf 8b 85 83 83 87 12 b2 26

7. a6 b4 bc ef 9e 9d 6c 9e 90 5e 68 25 30 97 9f 71

8. bf 64 65 9a 77 18 da 60 05 97 58 b2 88 d5 25 a1

9. 58 00 db 85 ca 9f 8d 42 db bc b2 b6 e7 85 44 78

a. ac be 5b 21 45 e9 40 4d 73 5f af 93 4b bd 45 42

b. 55 37 e2 c8 c8 20 d1 ee 7e 36 c5 28 32 37 2f d4

c. 86 21 79 70 08 b6 91 89 e3 e5 10 e5 c6 cf 02 ca

d. cc b9 e1 9a 8c 8c f3 70 ec 13 0f 00 17 7e 57 5c

e. 09 27 27 85 a0 87 3f 53 74 e3 b1 bd de b1 8d 61

f. 4b 84 9c f3 72 04 7e 9c 25 3e 98 9e 43 8d b2 9d

138 A. Biryukov and L. Perrin

Table 7. An output of the algorithm described in Sect. 4.2.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 1b 1e e7 1b 00 1b 4f e7 07 a8 b7 1c 00 06 1c 1c

1. 30 a9 ab af 54 50 36 57 65 01 17 7c 53 99 fb 65

2. 86 b5 33 78 c9 80 f5 7f 79 7d 87 7a 4d 14 49 2b

3. 66 d5 c8 54 a9 57 54 ab aa 98 a8 a8 32 17 d2 cb

4. d4 e7 73 1b 51 b3 af 50 51 68 ac 6b d7 52 1b d5

5. 71 75 8a 97 c8 36 37 33 74 ce 75 4a 77 88 8f 77

6. 1b ff e4 b5 ff 1f 1e fa b3 4a b1 4c fd fc 4b 01

7. ca c8 a0 5b 5e a1 5b a6 9d c8 98 84 cb 31 ca cb

8. 33 ca 33 cc 7b 83 98 cb a2 7f a3 ce 34 33 cb cd

9. e7 fd ff 03 7f 2d 00 b5 05 e5 ff 02 03 06 fc 06

a. 88 8e 74 8b 8c 8e 8c 51 c9 03 88 c9 8a c9 70 fc

b. 94 2b d4 29 ae 69 6b af b7 91 b7 b7 8b 89 d4 75

c. d1 c9 98 99 61 ab aa 61 99 66 12 65 15 2d 2d 33

d. b3 b3 7c 86 83 7a 7f 78 cf 98 81 30 7e cf c9 c9

e. 01 a9 57 ad e3 80 ad 61 56 53 53 28 56 a8 c8 ae

f. 18 1d 00 06 df 52 52 af 1d 61 e2 60 e2 e6 fa e2

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

2. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

3. Blondeau, C., Nyberg, K.: Perfect nonlinear functions and cryptography. Finite
Fields Appl. 32, 120–147 (2015). Special Issue: Second Decade of FFA

4. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

5. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

6. Barreto, P., Rijmen, V.: The whirlpool hashing function. In: First open NESSIE
Workshop, Leuven, Belgium, vol. 13, p. 14 (2000)

7. Barreto, P., Rijmen, V.: The khazad legacy-level block cipher. Primitive submitted
to NESSIE 97 (2000)

8. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-Designs: bitslice encryp-
tion for efficient masked software implementations. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

9. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2002)

On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure 139

11. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014)

12. U.S. DEPARTMENT: OF COMMERCE/National Institute of Standards and
Technology: Data encryption standard. Publication, Federal Information Process-
ing Standards (1999)

13. National Security Agency, N.S.A.: SKIPJACK and KEA Algorithm Specifications
(1998)

14. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck families of lightweight block ciphers. IACR Cryptology ePrint
Archive 2013, 404 (2013)

15. Coppersmith, D.: The Data Encryption Standard (DES) and its strength against
attacks. IBM J. Res. Dev. 38(3), 243–250 (1994)

16. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

17. Patarin, J.: Luby-Rackoff: 7 rounds are enough for formula 2n(1−ε) security.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer,
Heidelberg (2003)

18. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. J. Cryptology 18(4), 291–311 (2005)

19. Knudsen, L.R., Robshaw, M., Wagner, D.: Truncated differentials and skipjack.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 165–180. Springer,
Heidelberg (1999)

20. Knudsen, L., Wagner, D.: On the structure of skipjack. Discrete Appl. Math.
111(1), 103–116 (2001)

21. Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An apn permutation in dimen-
sion six. Finite Fields: Theory Appl. 518, 33–42 (2010)

22. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Cryptology JMC 1(3), 221–242 (2007)

23. O’Connor, L.: Properties of linear approximation tables. In: Preneel, B. (ed.) FSE
1995. LNCS, vol. 1008, pp. 131–136. Springer, Heidelberg (1995)

24. Brickell, E.F., Denning, D.E., Kent, S.T., Maher, D.P., Tuchman, W.: Skipjack
review: Interim report (1993)

25. Anonymous: This looks like it might be interesting. sci.crypt (usenet),
August 1995. https://groups.google.com/forum/#!msg/sci.crypt/vLtuBDoqPfc/
jm6MshFbomgJ

26. Schneier, B.: The S-1 Algorithm. mail to the cypherpunk mailing list (1995).
http://cypherpunks.venona.com/date/1995/09/msg00315.html

27. Gilbert, H., Chassé, G.: A statistical attack of the FEAL-8 cryptosystem. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 22–33.
Springer, Heidelberg (1991)

28. Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer,
Heidelberg (1992)

29. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993)

30. Patarin, J.: Generic attacks on feistel schemes. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001)

https://groups.google.com/forum/#!msg/sci.crypt/vLtuBDoqPfc/jm6MshFbomgJ
https://groups.google.com/forum/#!msg/sci.crypt/vLtuBDoqPfc/jm6MshFbomgJ
http://cypherpunks.venona.com/date/1995/09/msg00315.html

140 A. Biryukov and L. Perrin

31. Wernsdorf, R.: The round functions of RIJNDAEL generate the alternating group.
In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 143–148.
Springer, Heidelberg (2002)

32. Blondeau, C., Canteaut, A., Charpin, P.: Differential properties of power functions.
Int. J. Inf. Coding Theory 1(2), 149–170 (2010)

33. Jean-Charles, F., Perret, L.: An efficient algorithm for decomposing multivariate
polynomials and its applications to cryptography. J. Symbolic Comput. 44(12),
1676–1689 (2009)

34. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

35. Patarin, J.: New results on pseudorandom permutation generators based on the
DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–312.
Springer, Heidelberg (1992)

36. Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

37. Een, N., Sörensson, N.: Minisat: A sat solver with conflict-clause minimization. Sat
5 (2005)

38. Biryukov, A., Leurent, G., Perrin, L.: ESC 2015 S-box Reverse-Engineering Chal-
lenge. In: Early Symmetric Crypto, ESC 2015, pp. 104–107 (2015)

39. Canteaut, A.: Analyse et Conception de Chiffrements à Clef Secrète. Habilitation à
diriger des recherches, Institut National de Recherche en Informatique et Automa-
tique, Rocquencourt, September 2006

40. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

41. Massey, J.L.: Safer k-64: A byte-oriented block-ciphering algorithm. In: Anderson,
R. (ed.) FSE 1993. LNCS, vol. 809, pp. 1–17. Springer, Heidelberg (1994)

42. Stein, W., et al.: Sage Mathematics Software (Version 5.10). The Sage Development
Team (2013). http://www.sagemath.org

http://www.sagemath.org

Capacity and Data Complexity
in Multidimensional Linear Attack

Jialin Huang1,2(B), Serge Vaudenay3, Xuejia Lai2, and Kaisa Nyberg4

1 Technische Universität Darmstadt, Darmstadt, Germany
jhuang.cn@gmail.com

2 Shanghai Jiao Tong University, Shanghai, China
3 EPFL, Lausanne, Switzerland

serge.vaudenay@epfl.ch
4 Aalto University, Espoo, Finland

Abstract. Multidimensional linear attacks are one of the most power-
ful variants of linear cryptanalytic techniques now. However, there is no
knowledge on the key-dependent capacity and data complexity so far.
Their values were assumed to be close to the average value for a vast
majority of keys. This assumption is not accurate. In this paper, under a
reasonable condition, we explicitly formulate the capacity as a Gamma
distribution and the data complexity as an Inverse Gamma distribution,
in terms of the average linear probability and the dimension. The capac-
ity distribution is experimentally verified on the 5-round PRESENT.

Regarding to complexity, we solve the problem of estimating the
average data complexity, which was difficult to estimate because of the
existence of zero correlations. We solve the problem of using the median
complexity in multidimensional linear attacks, which is an open problem
since proposed in Eurocrypt 2011. We also evaluate the difference among
the median complexity, the average complexity and a lower bound of
the average complexity – the reciprocal of average capacity. In addition,
we estimate more accurately the key equivalent hypothesis, and reveal
the fact that the average complexity only provides an accurate estimate
for less than half of the keys no matter how many linear approximations
are involved.

Finally, we revisit the so far best attack on PRESENT based on our
theoretical result.

Keywords: Multidimensional linear attack · Capacity · Data complex-
ity · Linear hull effect · Linear probability

1 Introduction

Block ciphers are used as basic building primitives in symmetric cryptography for
encryption, authentication, construction of hash functions and so on. Evaluation

J. Huang—This work was finished when the author affiliated to Shanghai Jiao Tong
University and was visiting EPFL.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 141–160, 2015.
DOI: 10.1007/978-3-662-47989-6 7

142 J. Huang et al.

of their practical security has been a hot research issue over the decades, giv-
ing rise to different analysis techniques. Statistical attacks exploit non-uniform
behaviors of the plaintext-ciphertext data to find information about the key.
One of the most prominent statistical attacks is linear cryptanalysis. Previously,
linear trails were assumed to behave equally for each key [3,4,17,20]. Then, by
considering many trails in one approximation [24,25], the linear hull effect raises
interesting discussions about fixed-key behaviors in single linear approximations
[21,22]. Daemen et al. gave a fixed-key probability distribution for single lin-
ear correlations [13], leading to subsequent works on e.g., fundamental assump-
tions [9], the effect of key schedules [1] and measures for data complexity [19],
all for single linear attacks. However, we still do not understand the situation in
multidimensional linear cryptanalysis.

A collection of linear approximations has a capacity which measures their bias
to the uniform distribution. One important open problem in multidimensional
linear cryptanalysis is to estimate the capacity and data complexity when a
large number of different keys are considered. In previous work, the capacity
was assumed to hold an average value constantly for most of the keys, and the
data complexity was usually measured by reciprocal of the average capacity.
However, neither is correct. As we know, the key equivalent hypothesis has been
questioned for single linear approximations and differential trails [5,9,12]. Now
this hypothesis also requires adjustment in multidimensional linear setting.

Also, it has always been difficult to compute average data complexity over
the keys in linear cryptanalysis. Using Jensen’s inequality, Murphy [22] points
out that the Fundamental Theorem [24] can only give a lower bound for the
average data complexity when a collection of linear trails in a linear approxi-
mation is used. Leander shows that in single linear attacks we should focus on
median complexity instead of average complexity since the latter usually turns
to infinity [19]. Both Murphy’s and Leander’s concerns haven’t been addressed
yet in the scenario of multidimensional linear attacks.

As one of the most powerful variants of linear attacks, multidimensional lin-
ear attacks notably benefit the data complexity, both in theory and in practice
[10,11,15,16,23]. Moreover, the multidimensional linear distinguisher has been
discovered to have connections with other statistical distinguishers, e.g., trun-
cated differential distinguishers [6], statistical saturation distinguishers [19], and
integral distinguishers [8]. All the above suggests the importance of multidimen-
sional linear cryptanalysis, hence, the lack of knowledge on fundamental aspects
of this attack is especially surprising, and deserves more attention.

Our Contributions. In this paper, we point out that under a reasonable assump-
tion, the distribution of key-dependent capacity can be explicitly formulated
with a Gamma distribution, depending on average linear probability and dimen-
sion (Sect. 3). This distribution is verified experimentally on the round-reduced
PRESENT cipher. Then, we derive the distribution of data complexity, an
Inverse Gamma distribution based on the same parameters (Sect. 4). Our results
allow a more accurate measurement for multidimensional linear attacks.

Capacity and Data Complexity in Multidimensional Linear Attack 143

With these distributions, in Sect. 5 we discuss three well-known measures
when considering the data complexity of multidimensional linear attacks: the
reciprocal of average capacity, the average and the (general) median complexity.
The following fundamental questions in single linear attacks are then generalized
to multidimensional linear attacks and solved.

Firstly, we consider the standard key equivalence hypothesis. We discover
that instead of holding for a majority of keys, the average capacity actually
holds for less than half of the keys, no matter how many linear approximations
are used. Hence, we modify the hypothesis in a way which is more in line with
the practical situation.

Secondly, as we know, the average data complexity of single linear attacks is
difficult to calculate, since the linear hull effect may result in zero correlation for
some keys. However, we show that the situation changes when multiple linear
approximations are involved, and in this case the average data complexity can
be easily calculated from the Inverse Gamma distribution. Then, by generalizing
Murphy’s idea from the case of linear hulls to the case of multiple linear approx-
imations, the reciprocal of average capacity is proved to be only a lower bound
of the average data complexity. We also figure out the exact difference between
this lower bound and the average data complexity.

Thirdly, we solve the open problem proposed by Leander in [19] by develop-
ing the usage of median complexity to multidimensional linear attacks. Finally,
all measures of data complexity are compared under different dimensions. An
interesting observation is that, the median complexity infinitely approaches to
the average one as the dimension increases.

In Sect. 6, we revisit Cho’s 25 rounds of multidimensional linear attack on
PRESENT [10], which targets the most rounds of PRESENT with data complex-
ity less than the whole codebook. As an application of our theoretical analysis,
we can directly estimate the average capacity, instead of making a complex proof
like [10]. Our results are very close to Cho’s. Moreover, the exact knowledge of
the capacity distribution allows us to compute the ratio of weak keys precisely.
Using Cho’s attack method by changing some parameters in the attack, 2123.24

weak keys for 26 rounds PRESENT can be recovered with no more than 262.5

plaintext-ciphertext pairs.

2 Preliminaries

2.1 Block Ciphers and Linear Cryptanalysis

Let F2 be the binary field with two elements and F
n
2 be the n-dimensional vector

space over F2. The inner product on F
n
2 is defined by a · b =

∑n
i=1 aibi, where a,

b ∈ F
n
2 .

A block cipher is a mapping E : Fn
2 × F

κ
2 → F

n
2 with Ek(·) def

= E(k, ·) for
each k ∈ F

κ
2 . If y = Ek(x), x, y and k are referred to as the plaintext, the

ciphertext and the master key, respectively. A key-alternating cipher is a block
cipher consisting of an alternating sequence of unkeyed rounds and simple bitwise
key additions.

144 J. Huang et al.

Linear cryptanalysis uses a linear relation between bits from x, y and k.
A linear approximation (u, v) is a probabilistic linear relation expressed as a
boolean function of these bits, i.e.,

B(k)
def
= u · x ⊕ v · Ek(x), (1)

where (u, v) is called the text mask. B(k) is a boolean random variable charac-
terized by

p(k)
def
= Pr

x∈F
n
2

(B(k) = 0).

We call c(k) = 2p(k) − 1 the fixed-key correlation of the linear approximation
(u, v). The linear probability (LP) of approximation (u, v) is defined as LP (k) =
c(k)2. Both c(k) and LP (k) vary over different keys, and can be regarded as
real-value random variables over the whole key space.

In a linear approximation (u, v), there may be many paths with different
intermediate masks, but sharing the same input and output mask (u, v). A path
that considers linear relation round by round is called as linear trail (or linear
characteristic). Note that in a key-alternating cipher, the LP of a linear trail1 is
independent of the subkeys.

2.2 Multidimensional Linear Approximations and Data Complexity

Multidimensional linear attacks use m approximations with linearly independent
text masks, called base approximations, to construct an m-dimensional vectorial
boolean function f . Let p = (p0, p1,. . . , p2m−1) be the probability distribution
of f . It can be computed by the following lemma.

Lemma 1. ([15, Corollary 1]) Let f : Fn
2 �→ F

m
2 be a vectorial boolean function

with the probability distribution p. Then, we have

ca =
∑

η∈F
m
2

(−1)a·ηpη, for all a ∈ F
m
2

and

pη = 2−m
∑

a∈F
m
2

(−1)a·ηca, for all η ∈ F
m
2 .

Here, ca is the correlation of the boolean function a · f , a ∈ F
m
2 .

In multidimensional linear attack, ca is indeed the correlation of the approx-
imation that combines the base approximations linearly.

Let q = (q0, ..., q2m−1) be another discrete probability distribution of an
m-bit random variable. Then, the capacity of p and q is defined as follows.

1 Hereafter, whether the LP is of a linear approximation or of a linear trail will be
clear from the context.

Capacity and Data Complexity in Multidimensional Linear Attack 145

Definition 1. The capacity between two probability distributions p and q is
defined by

C(p, q) =
2m−1∑

η=0

(pη − qη)2q−1
η .

The capacity of multidimensional linear approximations with probability dis-
tribution p is C(p) = C(p, θ), where θ is the uniform distribution.

Lemma 2. ([15, Corollary 2]) Given an m-dimensional vectorial boolean func-
tion f with the probability distribution p, the capacity is

C(p) =
∑

a∈F
m
2 ,a�=0

c2a.

Thus, the capacity of multidimensional linear approximations is computed
from m base approximations and other 2m−1−m approximations that are XOR
sum of the m base approximations. These 2m−1−m approximations, denoted as
combined approximations, are linearly spanned from the m base approximations.

To estimate the data complexity of multidimensional linear cryptanalysis,
the Chernoff information D∗ can be considered [2].

Theorem 1. ([2, Theorem 1]) Let BestAdvN (p, q) be the best advantage for
distinguishing probability distribution p from probability distribution q, using N
samples. We have

1 − BestAdvN (p, q) = 2−ND∗(p,q)+o(N).

Hence, the data complexity is N ≈ 1
D∗(p,q) . When q is the uniform distribu-

tion and p is close to q, the Chernoff information can be approximated by the
capacity C(p), [2, Theorem 7], by

D∗(p, q) � C(p)
8 ln 2

.

In this case, when the optimal distinguisher based on LLR-statistic (or χ2-
statistic) is used, the data complexity is given as λ

C(p) , where λ depends on
the success probability of the distinguisher.

The probability distribution p of an m-dimensional linear approximation
actually varies over different keys, so does the capacity (as we will show later).
Hereafter, instead of using C(p(k)), we use C(k) to represent the variable of
key-dependent capacity.

2.3 Related Distributions and Assumptions

Note 3. Let N (μ, σ2) be the normal distribution with mean μ and variance σ2.
Let Γ (α, θ) be the Gamma distribution under the shape-scale parametrization,
with mean αθ, the probability density function g and the cumulative distribution
function G. If X ∼ N (0, σ2), then X2 ∼ Γ (1/2, 2σ2). Inv-Gamma(α,β) denotes
the inverse-Gamma distribution with mean β

α−1 for α > 1. If X ∼ Γ (α, θ), then
1
X ∼ Inv-Gamma(α, θ−1).

146 J. Huang et al.

Daemen et al. give the distribution of the fixed-key LP of linear approxima-
tions when linear hull effect is considered [13].

Approximation 4. [13, Theorem 22] Given a key-alternating cipher with inde-
pendent round-keys, when the number of linear trails of (u, v) is large enough and
their LP are small compared to ELP(u,v), the fixed-key correlation of (u, v), c(k),
which is a real-value random variable, follows

c(k) ∼ N (0, ELP (u, v)).

The fixed-key LP (k) follows the distribution of Γ (12 , 2ELP (u, v)), with mean
ELP(u,v) and variance 2ELP (u, v)2, where ELP (·) is the average linear prob-
ability of the approximation over all keys.

The ELP (u, v) can be denoted as c2 and computed by the following propo-
sition for key-alternating ciphers.

Proposition 1. [12,24] Let E be a key-alternating block cipher and assume
that all subkeys are independent. The average LP of a linear approximation is
the sum of all LP of the linear trails tj, LPT(tj), between the input and output
mask of this approximation, i.e.,

ELP (u, v) =
∑

tj∈(u,v)

LPT (tj).

3 Key-Dependent Capacity in Multidimensional Linear
Approximations

In this section, we study the distribution of key-dependent capacity. Let c(k)
(resp. LP (k)) be a real-value random variable representing the fixed-key correla-
tion (resp. linear probability) of the linear approximation and we can know c(k)
and LP (k) from Approximation 4. When multiple linear approximations are used,
we use i in the subscript to denote the index of linear approximations, e.g., denote
ci(k) as the fixed-key correlation of the ith linear approximation. W.l.o.g, we use
i = 1, . . . , m to represent the subscript of m base approximations.

In [16], the authors claim that in practical experiments the probability distribu-
tions vary a lot with the keys while the capacity remains rather constant. However,
in this section we point out that the capacity also varies over different keys from
the theoretical point and give experimental verification. We focus on dealing with
two cases, both existing in practical block ciphers. These two cases are shown in
Propositions 2 and 3, respectively.

Proposition 2. In an m-dimensional linear attack using m base approximations
with correlations ci(k) i.i.d. to N (0, c2) over the keys, where c2 is the average LP.
If for each fixed key, the binary random variables associated to the base approxi-
mations are statistically independent, the fixed-key capacity of this m-dimensional
linear approximation,C(k), approximately followsGamma-distributionΓ (m

2 , 2c2).

Capacity and Data Complexity in Multidimensional Linear Attack 147

Proof. Let f1(k), . . . , fm(k) be m linearly independent base approximations to
construct the m-dimensional approximation f(k), and f(k) = (f1(k), . . . , fm(k))
is an m-dimensional vectorial boolean function with the probability distribution
p(k) = {pη(k)}, where η ∈ F

m
2 and pη(k) is the probability that f(k) = η. Indeed,

fi(k) is a binary random variable with correlation ci(k). Since fi(k) are statistically
independent each other for each fixed key k,

pη(k) =
m∏

i=1

(
1
2

+ (−1)fi(k)
ci(k)

2
), η ∈ F

m
2

According to Definition 1,

C(k) =
∑

η∈F
m
2

(pη(k) − 2−m)2/2−m = 2m
∑

η∈F
m
2

(pη(k) − 2−m)2

= 2m
∑

η∈F
m
2

(
m∏

i=1

(
1
2

+ (−1)fi(k)
ci(k)

2
) − 2−m)2

For each fixed key, ci(k) · cj(k) 	 ci(k),

C(k) = 2m
∑

η∈F
m
2

[
m∑

i=1

(−1)fi(k)
ci(k)

2 · 2m−1
]2

= 2m
∑

η∈F
m
2

[
1

22m−2
(

m∑

i=1

(
ci(k)

2
)2 + 2

∑

i�=j

(−1)fi(k)+fj(k)
ci(k)

2
cj(k)

2
)]

Since
∑

η∈F
m
2

∑
i�=j(−1)fi(k)+fj(k) ci(k)

2
cj(k)
2 = 0,

C(k) =
2m

22m−2

∑

η∈F
m
2

m∑

i=1

(
ci(k)

2
)2 =

m∑

i=1

ci(k)2 =
m∑

i=1

LPi(k)

Since ci(k) are i.i.d. to N (0, c2), LPi(k) are i.i.d to Γ (12 , 2c2), i = 1, . . . , m.
Thus, C(k) is the sum of m independent Gamma distribution Γ (12 , 2c2). Hence,
C(k) ∼ Γ (m

2 , 2c2).
�
Recall that for one-dimensional linear approximations, c2 can be calculated by

Proposition 1 when the dominant trails in a linear approximation are known.
Proposition 2 considers the scenario where the LP of base approximations are

dominant. In this case, we approximate the capacity by summing the LP of base
approximations and ignoring the LP of combined approximations (see Lemma 2).
To show the reasonableness of this approximated capacity, we also bound the error
of our approximation. For this part of analysis, please see Appendix B.

In the other hand,Proposition 3 considers the case that not onlymbase approx-
imations but also 2m − 1 − m combined approximations have non-negligible con-
tribution to the capacity. In this case, the correlations of 2m − 1 − m combined
approximations are not independent any more. Thus, we derive the capacity in this
case under another hypothesis.

148 J. Huang et al.

Proposition 3. In an m-dimensional linear attack using the m-dimensional lin-
ear approximation with the probability distribution pη(k) i.i.d to a normal distri-
bution N (2−m, σ2), η ∈ F

m
2 , the fixed-key capacity of this m-dimensional linear

approximation, C(k), follows Gamma-distribution Γ (2
m−1
2 , 2 · 2mσ2).

Proof. Since pη(k) are i.i.d. to N (2−m, σ2),

Q =
2m−1∑

η=0

(pη(k) − 2−m)2

σ2
∼ χ2(2m − 1) = Γ (

2m − 1
2

, 2)

According to the definition of capacity,

C(k) =
2m−1∑

η=0

(pη(k) − 2−m)2

2−m
= 2mσ2Q = Γ (

2m − 1
2

, 2 · 2mσ2)
�

ComparedwithProposition2which considers onlymbaseapproximationswith
equally dominant correlations, Proposition 3 indeed addresses the situation where
the correlation ca(k) of 2m − 1 approximations are identically distributed (for the
proof please refer to Appendix A). Thus, the average LP of 2m −1 approximations
are equal, denoted as c2 again. As we know, the average capacity is the sum of the
average LP of involved approximations, i.e., (2m − 1) · 2mσ2 = (2m − 1)c2, the
distribution of capacity in Proposition 3 can also be represented as Γ (2

m−1
2 , 2c2).

Experimental Verification. In order to verify that the above analysis reflects
the reality with reasonable accuracy, we have experimentally computed the capac-
ity distributions sampled from 5000 randomly chosen keys for 5-round PRESENT.
A set of usable one-dimensional linear approximations is discovered in [26],
with theoretical average LP computed as 2−16.83. Thus, the correlation distrib-
utions of these approximations are N (0, 2−16.83), and the LP distributions are
Γ (12 , 2−15.83)2.

We can select linearly independent approximations from this set as the base
approximations. Here we examine the 2-dimensional and 4-dimensional linear
approximations for the case of Proposition 2.

In this case, the base approximationswith inputmasks fromdifferent S-boxes in
thefirst roundandoutputmasks fromdifferentS-boxes in the last roundare chosen.
According to Proposition 2, the theoretical distribution of 2-dimensional capacity
is Γ (1, 2−15.83) and of 4-dimensional capacity is Γ (2, 2−15.83). The experimental
distributions of 2-dimensional and 4-dimensional capacity sampled over 5000 keys
are as (a) and (b) of Fig. 1, respectively.

As illustrated in Fig. 1, the experimental distribution of capacity follows the
theoretical estimate closely. The scattering of data points occurs due to the fact
that we basically use a histogram, and deal with raw data instead of averaging.

2 For more details about the approximations used in our experiments, please refer to [26].

Capacity and Data Complexity in Multidimensional Linear Attack 149

(a) 2-dimension (b) 4-dimension

Fig. 1. Experimental (black) and theoretical (red) distributions of the capacity for the 2
and 4-dimensional approximation of the first case (Color figure online)

4 Distribution of DataComplexity

With the knowledge of capacity distribution, the distribution of data complexity,
which approximates to λ times the reciprocal of capacity, can be obtained formally.
Hereafterwe focus on the casementioned inProposition2.The case ofProposition3
can be deduced in a similar way.

Corollary 1. If the fixed-key capacity of the multidimensional linear approxima-
tion followsC(k) ∼ Γ (m

2 , 2c2), then the fixed-key data complexity of the correspond-
ing multidimensional attack follows N(k) ∼ Inv-Gamma(m

2 , λ

2c2
).

Corollary 1 is derived directly from Proposition 2 (also refer to Note 3), and
addresses the case that m correlations of base approximations play a prominent
role in the capacity. Since λ is a constant for any fixed success probability in an
attack, w.l.o.g. hereafter we study the above data complexity distribution as Inv-
Gamma(m

2 , 1

2c2
). For each key k, N(k) is asymptotically inversely proportional to

C(k). The average data complexity over all keys is denoted by N , N = Ek[N(k)],
which is proportional to

Ek

[
1

C(k)

]

=
1

|K|
∑

k∈K

1
C(k)

,

whereK denotes thewhole key space, andEk(·)means an expected value taken over
the whole key space. According to Corollary 1 and the mean of inverse Gamma dis-
tribution (see Note 3), the average data complexity is Ek[1

C(k)] = 1

2c2(m/2−1)
=

1

mc2−2c2
.

Remark.The data complexity distribution in Corollary 1 also holds for single linear
attackswherem = 1. In the case ofm = 1, the average data complexity is infinite as
pointed out by [19]3, which corresponds to the fact that themean of the distribution
3 In fact, the data complexity should be upper-bounded by the size of the codebook.

150 J. Huang et al.

(a) Probability density function (b) Cumulative distribution function

Fig. 2. Distributions of the data complexity for m = 2, 4, 6, 8, 20.

(a) Probability density function (b) Cumulative distribution function

Fig. 3. Distributions of the capacity for m = 2, 4, 6, 8, 20.

Inv-Gamma(12 , 1

2c2
) doesn’t exist. When m is equal to 2, the mean of the inverse

Gamma distribution also doesn’t exist because there are always values going to
infinite according to the distribution.

Similarly, the average capacity over the keys

Ek[C(k)] =
1

|K|
∑

k∈K
C(k)

is equal to mc2, derived from the mean of the Gamma distribution in
Proposition 2 (see Note 3).

Example 5. For clearer explanation, hereafter a simple example which quitemeets
real situations in practical ciphers is used in our analysis. We take c2 as 2−40, which
roughly equates the case in 15-round PRESENT, and take different m as 2, 4, 6, 8,
20 respectively. In this example, the distribution functions of data complexity are
shown in Fig. 2, and the distribution functions of capacity are shown in Fig. 3.

Capacity and Data Complexity in Multidimensional Linear Attack 151

5 Evaluation of theDataComplexity

In practical attacks, Ek[1
C(k)] and 1

Ek[C(k)] are highly related to the evaluation
of data complexity. Since Ek[1

C(k)] is hard to estimate, the complexity is usually
measured by 1

Ek[C(k)] . In this section, we firstly propose a refined key equivalent
hypothesis for Ek[C(k)] (Sect. 5.1). With the exact description of data complex-
ity distributions, the difficulty of evaluating Ek[1

C(k)] is overcome, and a basic
issue about the relation of average capacity and average data complexity is studied
(Sect. 5.2). We also extend Leander’s idea of exploiting median data complexities
[19] to multidimensional linear attacks (Sect. 5.3). Finally, all measures are com-
pared.

5.1 Adjusted Key Equivalence Hypothesis

In regard to the connection between the fixed-key capacity and the average capac-
ity in a multidimensional linear system, the traditional key equivalence hypothesis
indicates that the fixed-key capacity does not deviate significantly from its aver-
age value [14,18]. This key equivalence hypothesis can be interpreted as follows:
C(k) ≈ Ek[C(k)], for almost all keys k. As we have shown, the capacity is actu-
ally Gamma distributed so that this hypothesis does not hold. Thus, two questions
arise: which value is suitable for the evaluation of the attack complexity? Is that
average value enough and correct? We start with the following conjecture to show
that the average capacity is far from being able to represent the majority of keys.

Conjecture 1. There are always less than half of the keys having a capacity larger
than the average capacity. That is, |{k∗ ∈ K|C(k∗) ≥ Ek[C(k)]}| < 1

2 |K|. Hence,
less than half of the right keys can be recovered with a data complexity of λ

Ek[C(k)] ,
where K is the whole key space.

This conjecture is illustrated inTable 1withExample 5.With the increase ofm,
the ratio of keys that have a capacity larger than the average capacity approximates
to 1

2 , but cannot equal to 1
2 . This is because, for such a skew Gamma distribution

as in Proposition 2, the median value is always smaller than the mean. It can be
concluded that, using the number of cipher texts equal to λ

Ek[C(k)] , more than half
of thekeys cannotbe recovered successfullywitha reasonableprobability.Thus, the
average capacity is not enough to bring a sound estimation of attack complexities
for most keys, especially when m is not large enough.

Since the capacity is highly dependent on the choice of the key, we concern that
with how many data texts the multidimensional attacks can succeed for a majority

Table 1. The ratio of keys that have a capacity larger than the average capacity

m 2 4 6 8 20

ratio(%) 36.79 % 40.6 % 42.32 % 43.35 % 45.79 %

152 J. Huang et al.

of keys. A natural way to adjust the hypothesis is to consider the upper bound of
data complexity for, e.g. 90 %, of the keys, meaning that for these 90 % keys the
amount of data texts can guarantee a successful attack with high probability, even
for some of these keys this data complexity is overestimated.

Hypothesis 6. (Adjusted Key Equivalence Hypothesis) If the capacity distribu-
tion of an m-dimensional linear attack satisfies Proposition 2, then 90% of the keys
in the key space have a capacity no smaller than G−1(0.1), where G is the cumula-
tive distribution function of Γ (m

2 , 2c2). Using λ
G−1(0.1) data is enough for recovering

90% of the keys in the key space.

5.2 On Average Data Complexity

Why the Average Data Complexity is Calculable? It is known that in the
classical single linear attacks considering linear hull effect, the average data com-
plexity is hard to derive and usually infinite because of the existence of zero cor-
relation. This difficulty now can be solved in the situation of m-dimensional linear
attacks, since the average value can be easily derived from the accurate distribu-
tions of data complexity,whenm is larger than2.Fromthepoint of capacitydistrib-
utions, we can understand more about the reason why the average data complexity
is calculable in multidimensional attacks.

In the single linear setting, the keys with zero C(k) may make the average com-
plexity infinite, thus, this part of keys should be focused on. Here, we point out
that by taking multiple linear approximations simultaneously into consideration
instead of only one, the number of keys with zero capacity can be very tiny so that
the average complexity turns out to be computable.

We compare the ratio of keys bringingC(k) between zero and ε, where ε is a fixed
value very close to zero. From (b) of Fig. 3, it is obvious that with the increase of m,
the ratio of keys with capacity going to zero decreases. This ratio for several fixed
ε is shown in Table 2. From Table 2 we can see that as the increase of m, the ratio
of keys with capacity close to zero decreases dramatically. This is because as the
number of approximations grows, for each key there is higher probability that at
least one approximation brings a non-zero LP, so that a non-zero capacity. Hence,
for a fixed ε, the more base approximations are used, the fewer the number of keys
which bring infinite data complexities becomes. When ε is small enough and m has
a reasonable size, this ratio can be negligible in the whole key space. In this case it
is sound to assume that there is no key causing a zero capacity, so that the average
data complexity is computable.

A Difference Between Ek [1
C(k)] and 1

Ek [C (k)] . The problem discussed here is
firstly found in the context of linear hull effect by Murphy [22]. We extend it to
multidimensional linear attacks and make further investigation.

In some attack analysis, e.g. [10], the reduction in data complexity given by
multiple approximations is based on the assertion that the data complexity N is
proportional to 1

Ek[C(k)] . Like the effectiveness issue of linear hull effect studied

Capacity and Data Complexity in Multidimensional Linear Attack 153

Table 2. The ratio of keys with capacity close to zero for different m and ε

ε \ m 2 4 6 8 20

10−16 5.5 × 10−5 1.5 × 10−9 2.77 × 10−14 3.8 × 10−19 6.95 × 10−50

10−20 5.5 × 10−9 1.5 × 10−17 2.77 × 10−26 3.8 × 10−35 6.95 × 10−90

10−25 5.5 × 10−14 1.5 × 10−27 2.77 × 10−41 3.8 × 10−55 6.95 × 10−140

in [22], there is also a difference between 1
Ek[C(k)] and the actual average data com-

plexity. According to Jensen’s Inequality and the fact that reciprocal of positive
real numbers is a convex function, we have

Ek

[
1

C(k)

]

≥ 1
Ek[C(k)]

.

Thus, the 1
Ek[C(k)] can only be used to give a lower bound to the average data com-

plexity.
Jensen’s Inequality gives a general comparison without considering the details

of the variables. When the distributions of both C(k) and 1
C(k) are known, Ek[1

C(k)]
and 1

Ek[C(k)] can be derived as in Sect. 4.Their difference is formulated as 1

mc2−2c2
−

1

mc2
= 2

m(m−2)c2
. Therefore, in fact the equality will never hold for m larger than

2, i.e., Ek[1
C(k)] is always larger than 1

Ek[C(k)] . The difference can be ignored only
when m is large enough. Figure 4 shows the difference for m = 4 and m = 20. For
smallm the difference ismuchmore non-negligible, and 1

Ek[C(k)] does not reflect the
real average data complexity. As more approximations are involved, the difference
has a quicker trend to be small. For a fixed m, the smaller the average LP is, the
larger the difference becomes. That is, as c2 decreases, which is a typical case since
cryptanalysts always try to break as many rounds of the cipher as possible, the
difference between Ek[1

C(k)] and 1
Ek[C(k)] turns to be huge.

5.3 On Median Data Complexity

Leander proposed a way to overcome the problem of infinite data complexities for
single linear attacks [19]. Namely, instead of studying the average complexity, he
studied the median complexities Ñ such that for half of the keys the data complex-
ity of an attack is less than or equal to Ñ . So far the usage of median complexity
in multidimensional linear attacks remains unsolved, which we will discuss in this
section. A general definition of Np is as follows, where Ñ = N1/2.

Definition 2. ([19, Definition 1]) Np is defined as the complexity such that the
probability that for a given key the attack complexity is lower than Np, is p.

Although Leander gave this general definition, he focused on the case of N1/2 in
single linear attacks.With theknowledge of accuratedistributions of data complex-
ity, we generalize Leander’s Theorem 2 in [19] not only under the multidimensional
linear model but also from N1/2 to Np.

154 J. Huang et al.

Fig. 4. The difference between Ek[1
C(k)

] and 1
Ek[C(k)]

with c2 ranging from 2−60 to 2−40.

Theorem 2. Assuming independent subkeys in an m-dimensional linear attack
using m base approximations with the i.i.d. LP that is Γ (12 , 2c2), p percent of the
keys yield to a capacity of at least G−1(1−p), where G is the cumulative distribution
function of Γ (m

2 , 2c2). Thus, the complexity of this m-dimensional linear attack is
less than λ

G−1(1−p) with the probability p.

Leander’s Theorem 2 is a special case of Theorem 2 taking m as 1 and p as 1
2 ,

when the noisy linear trails are ignored in the linear hull effect (If the noisy trails
are considered, the ratio of keys reduces by a factor of 2). If we explain Leander’s
Theorem 2 in our context, we use the fact that F−1(1/2) = 0.46c2, where F is the
cumulative distribution function of Γ (12 , 2c2) (see [19] for more details).

As illustrated in (b) of Fig. 3, for the Y-axis at 1/2, the median capacity
increases with the increment of m. That is, when the LP of base approximations
are i.i.d., the more approximations we use, the lower data complexity we require for
the same ratio of weak keys. Given a fixed capacity (so that a fixed data complex-
ity), the ratio of keys causing a larger capacity than the fixed one increases when
more base approximations are used. Thus, the ratio of weak keys resulting in a data
complexity lower than the fixed one also increases.

Considering Example 5 again, we take different p, and fix the same λ (as 1
w.l.o.g.) for each m. The highest data complexity required for different m-
dimensional linear attacks for p percent of keys is shown in Table 3.

When the general median complexity Np is applied, there is such a question:
which p is more suitable for measuring and comparing the strength of a linear
attack. Obviously, it is meaningless to compare N1/3 and N2/3 directly. A natural
and simple way is to consider the value of Np

p because the division of p can unify the
disparity for different Np to a reasonably great extent. For example, if the attack
complexity is lower than N1/3 with probability 1/3, then the attack requires to be
repeated 3 times for a sufficiently sound success rate. This should be equivalently
compared with the case that, let’s say, an attack with complexity lower than N1/2

has to be repeated twice. By confirming the existence of the minimal Np

p , we can

evaluate different multidimensional linear attacks with the value of minp
Np

p . The
results are shown in Table 4.

Capacity and Data Complexity in Multidimensional Linear Attack 155

Table 3. The highest data complexity for different m and different ratios of keys

m 2 4 6 8 20

log2(N1/3) 38.864 37.805 37.22 36.813 35.532

log2(N1/2) 39.529 38.253 37.581 37.123 35.727

log2(N2/3) 40.302 38.75 37.974 37.457 35.931

Moreover, comparingEk[1
C(k)],

1
Ek[C(k)] and themedian complexity,we observe

that the average complexity is always larger than the median one, and the median
complexity is always larger than the reciprocal of average capacity. As m increases,
the difference between these three values decreases. When m is large enough, these
values are approximately equal (seeTable 4), since theGammaand InverseGamma
distribution turn to be normal distributions.

6 Application to Cho’s Multidimensional Attack
onPRESENT

6.1 Cho’s Attack on 25-Round PRESENT

The structure of PRESENT [7] makes it vulnerable for a multidimensional attack:
there are several strong one-dimensional approximations. The linear hull of each
such approximation with non-negligible correlations consists of several equally
strong single-bit trails, whose intermediate masks have Hamming weight one.
The average LP c2 of all such approximations are 22(−2r)L(r) [26], where L(r)
is the number of r-round trails in each approximation. The so far best result
for PRESENT is proposed by Cho aiming to 25 rounds [10]. Nine 23-round m-
dimensional linear approximations are used simultaneously, and each of them has
the dimension m = 8 starting at one of the S-boxes Si, i = 5, 9 or 13 and end-
ing at one of the S-boxes Sj , j = 5, 6 or 7. They recover 16 bits of key in the first
round and 16 bits of key in the last round. Please refer to [10] for more details of
this attack. Cho proved that the average capacity is 2−52.77, and gave the formula
of data complexity as in [10]:

Table 4. Comparison of the average data complexity, the median data complexity, the
reciprocal of average capacity, and minp

Np

p
.

m 2 4 6 8 20

log2(Ek[1
C(k)

]) ∞ 39 38 37.41 35.83

log2(N1/2) 39.529 38.253 37.581 37.123 35.727

log2(
1

Ek[C(k)]
) 39 38 37.41 37 35.68

log2(minp
Np

p
) 40.44 39.25 38.55 38.04 36.46

156 J. Huang et al.

N = (
√

advantage · 4 · M + 4(Φ−1(2Ps − 1))2)/C = λ/C (2)

where Φ is the cumulative distribution function of the normal distribution,Ps is the
success probability, C(p) is the capacity, M is the number of linear approximations
used in the attack. In Eq. (2), if the advantage is equal to a bits, then the right key
candidate should be within the position of 2�−a, where � is the number of targeted
keybits.Cho chose theλ = 29.08 (advantage is 32bits,M = 9·(28−1),Ps = 0.95)4,
and estimated the average data complexity about 261.85.

6.2 Our Investigation on Cho’s Attack

Wegive a simpler but close estimation on the capacity anddata complexity ofCho’s
attack. The authors in [16] claimed that Cho observes in practical experiments that
the probability distribution of multidimensional linear approximations varies a lot
with the keys, while the capacity remains rather constant. We have shown that the
capacity alsovaries for differentkeys fromtheoretical and experimental viewpoints.

In order to attack 25-round PRESENT, 23-round approximations are used,
thus r = 23. According to [26], L(23) = 367261713, thus c2 = 2−63.55. With
Propositions 2 and 3, the fixed-key capacity of 9 8-dimensional approximations is
estimated to be Γ (9 · 28−1

2 , 2−62.55). Hence, the average capacity is 2−52.39. With
the same λ as Cho, we obtain the data complexity N = 29.08

C(k) ∼ Inv-Gamma(9 ·
28−1

2 , 271.63). The average data complexity is 261.47. This result is very close to the
estimate in Cho’s attack, but easier to compute.

In the same way, we compute the capacity distribution used for 26-round
PRESENT, which approximates to Γ (9 · 28−1

2 , 2−65.16). With the knowledge of dis-
tributions, we can derive the exact number of weak keys corresponding to different
attack scenarios. Using Cho’s attack method by taking λ = 27.58 (advantage is 4
bits, Ps = 0.8), there are now 2123.24 (3.7 % in the whole key space) weak keys with
capacity larger than 2−54.92. That means, for 2123.24 keys out of 2128 keys, 26-round
PRESENT can be attacked using less than 262.5 plaintext/ciphertext pairs, with
success probability 0.8.

7 Conclusion and FurtherWork

In this paper, we deal with the multidimensional linear attacks using m base
approximations with i.i.d. correlations (linear probability). We focus more on the
case where the base linear approximations can be regarded as statistically inde-
pendent. In this case, we point out that the capacity of multidimensional linear
approximations satisfies aGammadistribution,whichalso leads to an exact Inverse
Gamma distribution for the data complexity. Both distributions are parametrized
by the dimension and the average linear probability of each approximation. These
theoretical results have been verified by experiments on PRESENT. We establish
4 This result is slightly different from [10], since Eq. (2) is slightly corrected in [16] and

our computation uses the corrected formula.

Capacity and Data Complexity in Multidimensional Linear Attack 157

an explicit connection between the fixed-key behaviour and the average behaviour.
Based on the distributions, several fundamental issues are discussed in more detail.
Multidimensional linear attacks not only benefit from data complexity, but also
offer more convenience for measuring the average data complexity due to the fact
that the ratio of keys with capacity going to zero decreases with the increase of
dimension. The relation of the median and average data complexity, as well as the
inverse of average capacity is derived. When the dimension is large enough, these
three values are infinitely close.Wealso propose amodified key equivalent hypothe-
sis that is more suitable for practical situations. Finally, the multidimensional lin-
ear attack on 25- and 26-round PRESENT is analyzed based on our theoretical
result.

In future work, more complicated cases about the relations of LP distributions
should be studied, which may bring more precise evaluation on multidimensional
attacks. The measure of Np

p can be extended to single linear attacks. Moreover,
given the close relation between statistical saturation attacks and multidimen-
sional linear attacks, our results may allow a clearer understanding for the capacity
of statistical saturation attacks, whose key-dependent performance still lacks accu-
rate measurement.

A Appendix - Proof of Lemma 7

Lemma 7. For an m-dimensional linear approximation with the probability dis-
tribution pη(k) i.i.d. to the normal distribution N (2−m, σ2), η = 0,...,2m − 1, the
correlations ca(k) (a ∈ F

m
2 , a = 0) of the involved 2m − 1 approximations are iden-

tically distributed.

Proof. According to Lemma 1, for a = 0,

ca(k) =
∑

η∈F
m
2

(−1)a·ηpη(k)

=
∑

η∈F
m
2

(−1)a·η(pη(k) − 2−m + 2−m)

=
∑

η∈F
m
2

(−1)a·η(pη(k) − 2−m) +
∑

η∈F
m
2

(−1)a·η2−m

As pη(k) are i.i.d. to the normal distribution N (2−m, σ2), pη(k) − 2−m are i.i.d. to
N (0, σ2). Thus,

∑

η∈F
m
2

(−1)a·η(pη(k) − 2−m) ∼ N (0, 2mσ2)

As
∑

η∈F
m
2

(−1)a·η2−m is equal to 0, ca(k) are identically distributed to the normal
distribution N (0, 2mσ2), where a ∈ F

m
2 and a = 0.
�

158 J. Huang et al.

B Appendix - Error Bound of Proposition 2

In Proposition 2, the binary random variables associated to the base approxi-
mations are statistically independent, for each fixed key. According to Piling-up
Lemma, the LP of combined approximations is equal to the multiplication of the
corresponding base LPs. Thus, the accurate capacity is the summation of LP of all
base and combined approximations (see Lemma 2):

C(k) = LP1(k)+· · ·+LPm(k)+LP1(k)×LP2(k)+· · ·+LP1(k)×LP2(k)×· · ·×LPm(k)

=
m∏

i=1

(LPi(k) + 1) − 1,

while our approximated capacity in Proposition 2 is
∑m

i=1 LPi(k). Their differ-
ence is

m∏

i=1

(LPi(k) + 1) − 1 −
m∑

i=1

LPi(k)

< (
∑m

i=1 LPi(k) + m

m
)m − 1 −

m∑

i=1

LPi(k)

In practical attacks, LPi(k) 	 1 is natural and reasonable. Denote
∑m

i=1 LPi(k)
as A, and A 	 1. The above formula can be written as

(
A + m

m
)m − 1 − A = (

A

m
+ 1)m − 1 − A = 1 +

m∑

i=1

Ci
m

mi
Ai − 1 − A

=
m∑

i=2

Ci
m

mi
Ai <

m∑

i=2

Ai < (m − 1)A2

In our case,A is a randomvariable distributed toΓ (m
2 , 2c2).The expected value

of A, E(A), is mc2. The variance of A, D(A), is m/2 × (2c2)2. The expected value
of A2, E(A2), is equal to D(A) + [E(A)]2, i.e.,

E(A2) = D(A) + [E(A)]2

= m(m + 2)(c2)2

Thus, the expected value of the error is less than (m − 1)m(m + 2)(c2)2, which
is reasonably smaller than the expected value of our approximated capacity, mc2.
As we target towards attacking more and more rounds of the cipher, in average c2

tends to be close to the inverse of the message space, for example, 2−64, meaning
that the error is negligible in this case.

References

1. Abdelraheem, M.A., Ågren, M., Beelen, P., Leander, G.: On the distribution of linear
biases: three instructive examples. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 50–67. Springer, Heidelberg (2012)

Capacity and Data Complexity in Multidimensional Linear Attack 159

2. Baignères, T., Vaudenay, S.: The complexity of distinguishing distributions (invited
talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 210–222. Springer,
Heidelberg (2008)

3. Biham, E.: On matsui’s linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)

4. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

5. Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 204–
221. Springer, Heidelberg (2013)

6. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388–404. Springer, Heidelberg (2013)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Bogdanov,A., Leander,G.,Nyberg,K.,Wang,M.: Integral andmultidimensional lin-
ear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

9. Bogdanov, A., Tischhauser, E.: On the wrong key randomisation and key equivalence
hypotheses in matsui’s algorithm 2. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 19–38. Springer, Heidelberg (2014)

10. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

11. Cho, J.Y., Hermelin, M., Nyberg, K.: A new technique for multidimensional linear
cryptanalysis with applications on reduced round serpent. In: Lee, P.J., Cheon, J.H.
(eds.) ICISC 2008. LNCS, vol. 5461, pp. 383–398. Springer, Heidelberg (2009)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002)

13. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials in
block ciphers. J. Math. Cryptology 1, 221–242 (2007)

14. Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis and
the applicability of matsui’s piling-up lemma. In: Guillou, L.C., Quisquater, J.-J.
(eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)

15. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of
reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 203–215. Springer, Heidelberg (2008)

16. Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approxima-
tions. In: Junod, P., Canteaut, A. (eds.) Advanced Linear Cryptanalysis of Block
and Stream Ciphers, IOS Press (2011)

17. Kaliski Jr., B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994)

18. Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies, D.W.
(ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)

19. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a crypt-
analysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 303–322. Springer, Heidelberg (2011)

160 J. Huang et al.

20. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

21. Murphy, S.: The independence of linear approximations in symmetric cryptanalysis.
IEEE Trans. Inf. Theory 52, 5510–5518 (2006)

22. Murphy, S.: The effectiveness of the linear hull effect. J. Math. Cryptology 6, 137–148
(2012)

23. Nguyen, P.H., Wei, L., Wang, H., Ling, S.: On multidimensional linear cryptanalysis.
In: Steinfeld,R.,Hawkes, P. (eds.)ACISP2010. LNCS, vol. 6168, pp. 37–52. Springer,
Heidelberg (2010)

24. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

25. Nyberg, K.: Correlation theorems in cryptanalysis. Discrete Appl. Math. 111, 177–
188 (2001)

26. Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 249–265. Springer, Heidelberg (2009)

Observations on the SIMON Block Cipher
Family

Stefan Kölbl1, Gregor Leander2(B), and Tyge Tiessen1

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
{stek,tyti}@dtu.dk

2 Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Bochum, Germany

gregor.leander@rub.de

Abstract. In this paper we analyse the general class of functions under-
lying the Simon block cipher. In particular, we derive efficiently com-
putable and easily implementable expressions for the exact differential
and linear behaviour of Simon-like round functions.

Following up on this, we use those expressions for a computer aided
approach based on SAT/SMT solvers to find both optimal differential
and linear characteristics for Simon. Furthermore, we are able to find
all characteristics contributing to the probability of a differential for
Simon32 and give better estimates for the probability for other vari-
ants.

Finally, we investigate a large set of Simon variants using different
rotation constants with respect to their resistance against differential
and linear cryptanalysis. Interestingly, the default parameters seem to
be not always optimal.

Keywords: SIMON · Differential cryptanalysis · Linear cryptanalysis ·
Block cipher · Boolean functions

1 Introduction

Lightweight cryptography studies the deployment of cryptographic primitives
in resource-constrained environments. This research direction is driven by a
demand for cost-effective, small-scale communicating devices such as RFID tags
that are a cornerstone in the Internet of Things. Most often the constrained
resource is taken to be the chip-area but other performance metrics such as
latency [7], code-size [2] and ease of side-channel protection [12] have been con-
sidered as well. Some of these criteria were already treated in Noekeon [9].

The increased importance of lightweight cryptography and its applications
has lately been reflected in the NSA publishing two dedicated lightweight cipher
families: Simon and Speck [5]. Considering that this is only the third time
within four decades that the NSA has published a block cipher, this is quite
remarkable. Especially as NIST has started shortly after this publication to
investigate the possibilities to standardise lightweight primitives, Simon and
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 161–185, 2015.
DOI: 10.1007/978-3-662-47989-6 8

162 S. Kölbl et al.

Speck certainly deserve a thorough investigation. This is emphasised by the
fact that, in contrast to common practice, neither a security analysis nor a
justification of the daaesign choices were published by the NSA. This lack of
openness necessarily gives rise to curiosity and caution.

In this paper we focus on the Simon family of block ciphers; an elegant,
innovative and very efficient set of block ciphers. There exists already a large
variety of papers, mainly focussed on evaluating Simon’s security with regard
to linear and differential cryptanalysis. Most of the methods used therein are
rather ad-hoc, often only using approximative values for the differential round
probability and in particular for the linear square correlation of one round.

Our Contribution. With this study, we complement the existing work three-
fold. Firstly we develop an exact closed form expression for the differential prob-
ability and a log(n) algorithm for determining the square correlation over one
round. Their accuracy is proven rigorously. Secondly we use these expressions to
implement a model of differential and linear characteristics for SAT/SMT solvers
which allows us to find the provably best characteristics for different instanti-
ations of Simon. Furthermore we are able to shed light on how differentials in
Simon profit from the collapse of many differential characteristics. Thirdly by
generalising the probability expressions and the SAT/SMT model, we are able
to compare the quality of different parameter sets with respect to differential
and linear cryptanalysis.

As a basis for our goal to understand both the security of Simon as well as
the choice of its parameter set, we rigorously derive formulas for the differential
probabilities and the linear square correlations of the Simon-like round function
that can be evaluated in constant time and time linear in the word size respec-
tively. More precisely, we study differential probabilities and linear correlations
of functions of the form

Sa(x) � Sb(x) + Sc(x)

where Si(x) corresponds to a cyclic left shift of x and � denotes the bitwise
AND operation.

We achieve this goal by first simplifying this question by considering equiv-
alent descriptions both of the round function as well as the whole cipher (cf.
Sect. 2.4). These simplifications, together with the theory of quadratic boolean
functions, result in a clearer analysis of linear and differential properties (cf.
Sects. 3 and 4). Importantly, the derived simple equations for computing the
probabilities of the Simon round function can be evaluated efficiently and, more
importantly maybe, are conceptually very easy. This allows them to be easily
used in computer-aided investigations of differential and linear properties over
more rounds. It should be noted here that the expression for linear approxima-
tions is more complex than the expression for the differential case. However, with
respect to the running time of the computer-aided investigations this difference
is negligible.

Observations on the SIMON Block Cipher Family 163

We used this to implement a framework based on SAT/SMT solvers to find
the provably best differential and linear characteristics for various instantiations
of Simon (cf. Sect. 5, in particular Table 1). Furthermore we are able to shed
light on how differentials in Simon profit from the collapse of many differential
characteristics by giving exact distributions of the probabilities of these char-
acteristics for chosen differentials. The framework is open source and publicly
available to encourage further research [13].

In Sect. 6 we apply the developed theory and tools to investigate the design
space of Simon-like functions. In particular, using the computer-aided approach,
we find that the standard Simon parameters are not optimal with regard to the
best differential and linear characteristics.

As a side result, we improve the probabilities for the best known differentials
for several variants and rounds of Simon. While this might well lead to (slightly)
improved attacks, those improved attacks are out of the scope of our work.

Interestingly, at least for Simon32 our findings indicate that the choices made
by the NSA are good but not optimal under our metrics, leaving room for further
investigations and questions. To encourage further research, we propose several
alternative parameter choices for Simon32. Here, we are using the parameters
that are optimal when restricting the criteria to linear, differential and depen-
dency properties. We encourage further research on those alternative choices to
shed more light on the undisclosed design criteria.

We also like to point out that the Simon key-scheduling was not part of our
investigations. Its influence on the security of Simon is left as an important open
question for further investigations. In line with this, whenever we investigate
multi-round properties of Simon in our work, we implicitly assume independent
round keys in the computation of probabilities.

Finally,wenote thatmost of our results canbeapplied tomoregeneral construc-
tions, where the involved operations are restricted to AND, XOR, and rotations.

Related Work. There are various papers published on the cryptanalysis of
Simon [1,3,6,17–19]. The most promising attacks so far are based on differen-
tial and linear cryptanalysis, however a clear methodology of how to derive the
differential probabilities and square correlations seems to miss in most cases.
Biryukov, Roy and Velichkov [6] derive a correct, but rather involved method
to find the differential probabilities. Abed, List, Lucks and Wenzel [1] state an
algorithm for the calculation of the differential probabilities but without further
explanation. For the calculation of the square correlations an algorithm seems
to be missing all together.

Previous work also identifies various properties like the strong differential
effect and give estimate of the probability of differentials.

The concept behind our framework was previously also applied on the ARX
cipher Salsa20 [14] and the CAESAR candidate NORX [4]. In addition to the
applications proposed in previous work we extend it for linear cryptanalysis,
examine the influence of rotation constants and use it to compute the distribution
of characteristics corresponding to a differential.

164 S. Kölbl et al.

2 Preliminaries

In this section, we start by defining our notation and giving a short descrip-
tion of the round function. We recall suitable notions of equivalence of Boolean
functions that allow us to simplify our investigations of Simon-like round func-
tions. Most of this section is generally applicable to AND-RX constructions, i.e.
constructions that only make use of the bitwise operations AND, XOR, and
rotations.

2.1 Notation

We denote by F2 the field with two elements and by F
n
2 the n-dimensional vector

space over F2. By 0 and 1 we denote the vectors of F
n
2 with all 0s and all 1s

respectively. The Hamming weight of a vector a ∈ F
n
2 is denoted as wt(a). By

Zn we denote the integers modulo n.
The addition in F

n
2 , i.e. bit-wise XOR, is denoted by +. By � we denote the

AND operation in F
n
2 , i.e. multiplication over F2 in each coordinate:

x � y = (xiyi)i.

By ∨ we denote the bitwise OR operation. By x we denote the bitwise negation
of x, i.e. x := (x + 1). We denote by Si : Fn

2 → F
n
2 the left circular shift by i

positions. We also note that any arithmetic of bit indices is always done modulo
the word size n.

In this paper we are mainly concerned with functions of the form

fa,b,c(x) = Sa(x) � Sb(x) + Sc(x) (1)

and we identify such functions with its triple (a, b, c) of parameters.
For a vectorial Boolean function on n bits, f : Fn

2 → F
n
2 , we denote by

f̂(α, β) =
∑

x

μ (〈β, f〉 + 〈α, x〉)

the Walsh (or Fourier) coefficient with input mask α and output mask β. Here
we use μ(x) = (−1)x to simplify the notation.

The corresponding squared correlation of f is given by

C2(α → β) =

(
f̂(α, β)

2n

)2

.

For differentials we similarly denote by Pr(α −→ β) the probability that a given
input difference α results in a given output difference β, i.e.

Pr(α −→ β) =
|{x | f(x) + f(x + α) = β}|

2n
.

Furthermore, Dom(f) is the domain of a function f , Img(f) is its image.

Observations on the SIMON Block Cipher Family 165

2.2 Description of SIMON

Simon is a family of lightweight block ciphers with block sizes 32, 48, 64, 96,
and 128 bits. The constructions are Feistel ciphers using a word size n of 16,
24, 32, 48 or 64 bits, respectively. We will denote the variants as Simon2n. The
key size varies between of 2, 3, and 4 n-bit words. The round function of Simon
is composed of AND, rotation, and XOR operations on the complete word (see
Fig. 1). More precisely, the round function in Simon corresponds to

S8(x) � S1(x) + S2(x),

that is to the parameters (8, 1, 2) for f as given in Eq. (1). As we are not only
interested in the original Simon parameters, but in investigating the entire design
space of Simon-like functions, we denote by

Simon[a, b, c]

the variant of Simonwhere the original round function is replaced by fa,b,c (cf. Eq.
(1)).

As it is out of scope for our purpose, we refer to [5] for the description of the
key-scheduling.

S8

S1

S2

ki

Fig. 1. The round function of Simon

2.3 Affine Equivalence of Boolean Functions

Given two (vectorial) Boolean functions f1 and f2 on F
n
2 related by

f1(x) = (A ◦ f2 ◦ B)(x) + C(x)

where A and B are affine permutations and C is an arbitrary affine mapping on
F

n
2 we say that f1 and f2 are extended affine equivalent (cf. [8] for a comprehen-

sive survey).
With respect to differential cryptanalysis, if f1 and f2 are extended affine

equivalent then the differential α
f1−→ β over f1 has probability p if and only if

the differential

B(α)
f2−→ A−1 (β + C(α))

over f2 has probability p as well.

166 S. Kölbl et al.

For linear cryptanalysis, a similar relation holds for the linear correlation. If
f1 and f2 are related as defined above, it holds that

f̂1(α, β) = f̂2

((
C ◦ B−1

)T
β +

(
B−1

)T
α,AT β

)
.

Thus up to linear changes we can study f2 instead of f1 directly. Note that,
for an actual attack, these changes are usually critical and can certainly not be
ignored. However, tracing the changes is, again, simple linear algebra.

For differential and linear properties of Simon-like functions of the form

fa,b,c(x) = Sa(x) � Sb(x) + Sc(x)

this implies that it is sufficient to find the differential and linear properties of
the simplified variant

f(x) = x � Sd(x)

and then transfer the results back by simply using linear algebra.1

2.4 Structural Equivalence Classes in AND-RX Constructions

AND-RX constructions, i.e. constructions that make only use of the operations
AND (�), XOR (+), and rotations (Sr), exhibit a high degree of symmetry.
Not only are they invariant under rotation of all input words, output words and
constants, they are furthermore structurally invariant under any affine transfor-
mation of the bit-indices. As a consequence of this, several equivalent represen-
tations of the Simon variants exist.

Let T be a permutation of the bits of an n-bit word that corresponds to an
affine transformation of the bit-indices. Thus there are s ∈ Z

∗
n and t ∈ Zn such

that bit i is renamed to s · i + t. As the AND and XOR operations are bitwise,
T clearly commutes with these:

Tv � Tw = T (v � w)
Tv + Tw = T (v + w)

where v and w are n-bit words. A rotation to the left by r can be written bitwise
as Sr(v)i = vi−r. For a rotation, we thus get the following bitwise relation after
transformation with T

Sr(v)s·i+t = vs·(i−r)+t = vs·i+t−s·r.

Substituting s · i + t with j this is the same as

Sr(v)j = vj−s·r.

1 Note that we can transform the equation f(x) = Sa(x) � Sb(x) + Sc(x) to the
equation S−a(f(x)) + Sc−a(x) = x � Sb−a(x).

Observations on the SIMON Block Cipher Family 167

Thus the rotation by r has been changed to a rotation by s · r. Thus we can
write

TSrv = Ss·rTv.

Commuting the linear transformation of the bit-indices with a rotation thus
only changes the rotation constant by a factor. In the special case where all
input words, output words and constants are rotated, which corresponds to the
case s = 1, the rotation constant are left untouched.

To summarize the above, when applying such a transformation T to all input
words, output words and constants in an AND-RX construction, the structure of
the constructions remains untouched apart from a multiplication of the rotation
constants by the factor s.

This means for example for Simon32 that changing the rotation constants
from (8, 1, 2) to (3 ·8, 3 ·1, 3 ·2) = (8, 3, 6) and adapting the key schedule accord-
ingly gives us the same cipher apart from a bit permutation. As s has to be
coprime to n, all s with gcd(s, n) = 1 are allowed, giving ϕ(n) equivalent tuples
of rotation constants in each equivalence class where ϕ is Euler’s phi function.

Together with the result from Sect. 2.3, this implies the following lemma.

Lemma 1. Any function fa,b,c as defined in Eq. (1) is extended affine equivalent
to a function

f(x) = x � Sd(x)

where d|n or d = 0.

When looking at differential and square correlations of Simon-like round functions
this means that it is sufficient to investigate this restricted set of functions. The
results for these functions can then simply be transferred to the general case.

3 Differential Probabilities of SIMON-like Round
Functions

In this section, we derive a closed expression for the differential probability for all
Simon-like round functions, i.e. all functions as described in Eq. (1). The main
ingredients here are the derived equivalences and the observation that any such
function is quadratic. Being quadratic immediately implies that its derivative is
linear and thus the computation of differential probabilities basically boils down
to linear algebra (cf. Theorem 1). However, to be able to efficiently study multiple-
round properties and in particular differential characteristics, it is important to
have a simple expression for the differential probabilities. Those expressions are
given for f(x) = x � S1(x) in Theorem 2 and for the general case in Theorem 3.

3.1 A Closed Expression for the Differential Probability

The following statement summarises the differential properties of the f function.

168 S. Kölbl et al.

Theorem 1. Given an input difference α and an output difference β the proba-
bility p of the corresponding differential (characteristic) for the function f(x) =
x � Sa(x) is given by

pα,β =

{
2−(n−d) if β + α � Sa(α) ∈ Img(Lα)
0 else

where

d = dim ker(Lα)

and

Lα(x) = x � Sa(α) + α � Sa(x)

Proof. We have to count the number of solutions to the equation

f(x) + f(x + α) = β.

This simplifies to

Lα(x) = x � Sa(α) + α � Sa(x) = β + α � Sa(α)

As this is an affine equation, it either has zero solutions or the number of solutions
equals the kernel size, i.e. the number of elements in the subspace

{x | x � Sa(α) + α � Sa(x) = 0}.

Clearly, the equation has solutions if and only if β + α � Sa(α) is in the image
of Lα. 	

Next we present a closed formula to calculate the differential probability in
the case where a = 1. Furthermore we restrict ourselves to the case where n is
even.

Theorem 2. Let

varibits = S1(α) ∨ α

and

doublebits = α � S1(α) � S2(α).

Then the probability that difference α goes to difference β is

P (α → β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2−n+1 if α = 1 and wt(β) ≡ 0 mod 2
2−wt(varibits+doublebits) if α �= 1 and β � varibits = 0

and (β + S1(β)) � doublebits = 0
0 else

Observations on the SIMON Block Cipher Family 169

Proof. According to Theorem 1, we need to prove two things. Firstly we need
to prove that the rank of Lα (i.e. n − dim ker Lα) is n − 1 when α = 1, and
wt(varibits+ doublebits) otherwise. Secondly we need to prove that β + α �
S1(α) ∈ Img(Lα) iff wt(β) ≡ 0 mod 2 when α = 1, and that β + α � S1(α) ∈
Img(Lα) iff β � varibits = 0 and (β + S1(β)) � doublebits = 0 when α �= 1.

We first consider the first part. Let us write Lα(x) in matrix form and let us
take x to be a column vector. S1(α) � x can be written as MS1(α)�x with

MS1(α)� =

⎛

⎜
⎜
⎜
⎜
⎝

αn−1 0
... α0

...
...

. . .
...

0 αn−2

⎞

⎟
⎟
⎟
⎟
⎠

. (2)

Equivalently we can write α � x and S1(x) with matrices as Mα�x and MS1x
respectively where

Mα� =

⎛

⎜
⎜
⎜
⎜
⎝

α0 0
... α1

...
...

. . .
...

0 αn−1

⎞

⎟
⎟
⎟
⎟
⎠

and MS1 =
(

01,n−1 I1,1

In−1,n−1 0n−1,1

)

, (3)

i.e. MS1 consists of two identity and two zero submatrices. The result of
MS1(α)� + Mα�MS1 can now be written as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

αn−1 0 0 . . . α0

α1 α0 0 . . . 0

0 α2 α1

...
...

. 0
0 . . . 0 αn−1 αn−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

Clearly the rank of the matrix is n − 1 when all αi are 1. Suppose now that not
all αi are 1. In that case, a set of non-zero rows is linearly dependent iff there
exist two identical rows in the set. Thus to calculate the rank of the matrix, we
need to calculate the number of unique non-zero rows.

By associating the rows in the above matrix with the bits in varibits, we
can clearly see that the number of non-zero rows in the matrices corresponds to
the number of 1s in varibits = S1(α) ∨ α.

To count the number of non-unique rows, first notice that a nonzero row can
only be identical to the row exactly above or below. Suppose now that a non-
zero row i is identical to the row (i − 1) above. Then αi−1 has to be 0 while αi

and αi−2 have to be 1. But then row i cannot simultaneously be identical to row
(i+1) below. Thus it is sufficient to calculate the number of non-zero rows minus
the number of rows that are identical to the row above it to find the rank of
the matrix. Noting that row i is non-zero iff αiαi−1 and that αiαi−1αi−2 is only

170 S. Kölbl et al.

equal 1 when row i is non-zero and equal to the row above it. Thus calculating
the number of i for which

αiαi−1 + αiαi−1αi−2

is equal 1 gives us the rank of Lα. This corresponds to calculating wt(varibits+
doublebits).

For the second part of the proof, we need to prove the conditions that check
whether β + α � S1(α) ∈ Img(Lα). First notice that α � S1(α) is in the image
of Lα (consider for x the vector with bits alternately set to 0 and 1). Thus it is
sufficient to test whether β is in ImgLα. Let y = Lα(x). Let us first look at the
case of α = 1. Then Lα(x) = x+S1(x). We can thus deduce from bit yi whether
xi = xi−1 or xi �= xi−1. Thus the bits in y create a chain of equalities/inequalities
in the bits of x which can only be fulfilled if there the number of inequalities is
even. Hence in that case β ∈ ImgLα iff wt(β) ≡ 0 mod 2.

For the case that α �= 1, we first note that yi has to be zero if the cor-
responding row i in the matrix of Eq. (4) is all zeroes. Furthermore follow-
ing our discussion of this matrix earlier, we see that yi is independent of the
rest of y if the corresponding row is linearly independent of the other rows
and that yi has to be the same as yi−1 if the corresponding rows are identi-
cal. Thus we only need to check that the zero-rows of the matrix correspond
to zero bits in β and that the bits in β which correspond to identical rows in
the matrix are equal. Thus β is in the image of Lα iff β � varibits = 0 and
(β + S1(β)) � doublebits = 0. 	

3.2 The Full Formula for Differentials

Above we treated only the case for the simplified function f(x) = x · S1(x).
As mentioned earlier, the general case where gcd(a − b, n) = 1 can be deduced
from this with linear algebra. When gcd(d, n) �= 1 though, the function f(x) =
x � Sd(x) partitions the output bits into independent classes. This not only
raises differential probabilities (worst case d = 0), it also makes the notation
for the formulas more complex and cumbersome, though not difficult. We thus
restrict ourselves to the most important case when gcd(a−b, n) = 1. The general
formulas are then

Theorem 3. Let f(x) = Sa(x)�Sb(x)+Sc(x), where gcd(n, a−b) = 1, n even,
and a > b and let α and β be an input and an output difference. Then with

varibits = Sa(α) ∨ Sb(α)

and

doublebits = Sb(α) � Sa(α) � S2a−b(α)

and

γ = β + Sc(α)

Observations on the SIMON Block Cipher Family 171

we have that the probability that difference α goes to difference β is

P (α → β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2−n+1 if α = 1 and wt(γ) ≡ 0 mod 2
2−wt(varibits+doublebits) if α �= 1 and γ � varibits = 0

and (γ + Sa−b(γ)) � doublebits = 0
0 else.

For a more intuitive approach and some elaboration on the differential prob-
abilities, we refer to the ePrint version of this paper.

4 Linear Correlations of SIMON-like Round Functions

As in the differential case, for the study of linear approximations, we also build
up on the results from Sects. 2.3 and 2.4. We will thus start with studying linear
approximations for the function f(x) = x � Sa(x). Again, the key point here
is that all those functions are quadratic and thus their Fourier coefficient, or
equivalently their correlation, can be computed by linear algebra (cf. Theorem 4).
Theorem 5 is then, in analogy to the differential case, the explicit expression for
the linear correlations. It basically corresponds to an explicit formula for the
dimension of the involved subspace.

The first result is the following:

Theorem 4.

f̂(α, β)2 =

{
2n+d if α ∈ U⊥

β

0 else

where

d = dim Uβ

and

Uβ = {y | β � Sa(y) + S−a(β � y) = 0}
Proof. We compute

f̂(α, β)2 =
∑

x,y

μ (〈β, f(x) + f(y)〉 + 〈α, x + y〉)

=
∑

x,y

μ (〈β, f(x) + f(x + y)〉 + 〈α, y〉)

=
∑

x,y

μ (〈β, x � Sa(x) + (x + y) � Sa(x + y)〉 + 〈α, y〉)

=
∑

y

μ (〈β, f(y)〉 + 〈α, y〉)
∑

x

μ (〈β, x � Sa(y) + y � Sa(x)〉)

=
∑

y

μ (〈β, f(y)〉 + 〈α, y〉)
∑

x

μ
(〈x, β � Sa(y) + S−a(β � y)〉) .

172 S. Kölbl et al.

Now for the sum over x only two outcomes are possible, 2n or zero. More pre-
cisely, it holds that

∑

x

μ
(〈x, β � Sa(y) + S−a(β � y)〉) =

{
2n if β � Sa(y) + S−a(β � y) = 0
0 else.

Thus, defining

Uβ = {y | β � Sa(y) + S−a(β � y) = 0}
we get

f̂(α, β)2 = 2n
∑

y∈Uβ

μ (〈β, f(y)〉 + 〈α, y〉) .

Now as

〈β, f(y)〉 =〈β, y � Sa(y)〉 (5)
=〈1, y � β � Sa(y)〉 (6)

=〈1, y � S−a(β � y)〉 (7)

Now, the function fβ := 〈β, f(y)〉 is linear over Uβ as can be easily seen by the
definition of Uβ . Moreover, as fβ is unbalanced for all β, it follows that actually
fβ is constant zero on Uβ . We thus conclude that

f̂(α, β)2 = 2n
∑

y∈Uβ

μ (〈α, y〉) .

With a similar argument as above, it follows that f̂(α, β)2 is non-zero if and only
if α is contained in U⊥

β . 	

Let us now restrict ourselves to the case where f(x) = x�S1(x). The general

case can be deduced analogously to the differential probabilities. For simplicity
we also restrict ourselves to the case where n is even.

First we need to introduce some notation. Let x ∈ F
n
2 with not all bits equal

to 1. We now look at blocks of consecutive 1s in x, including potentially a block
that “wraps around” the ends of x. Let the lengths of these blocks, measured
in bits, be denoted as c0, . . . , cm. For example, the bitstring 100101111011 has

blocks of length 1, 3, and 4. With this notation define θ(x) :=
m∑

i=0

 ci

2 �.

Noting that the linear square correlation of f is
̂f(α,β)2

22n , we then have the
following theorem:

Theorem 5. With the notation from above it holds that the linear square cor-
relation of α

f→ β can be calculated as

C(α → β) =

⎧
⎪⎨

⎪⎩

2−n+2 if β = 1 and α ∈ U⊥
β

2−θ(β) if β �= 1 and α ∈ U⊥
β

0 else.

Observations on the SIMON Block Cipher Family 173

Proof. Define Lβ(x) := β � S1(x) + S−1(β � x). Clearly Lβ is linear. Also
Uβ = ker Lβ(x). Let us determine the rank of this mapping. Define the matrices
Mβ·, MS1 , and MS−1 as

Mβ· =

⎛

⎜
⎜
⎜
⎜
⎝

β0 0
... β1

...
...

. . .
...

0 βn−1

⎞

⎟
⎟
⎟
⎟
⎠

MS1 =
(

01,n−1 I1,1

In−1,n−1 0n−1,1

)

MS−1 =
(

0n−1,1 In−1,n−1

I1,1 01,n−1

) (8)

We can then write Lβ in matrix form as
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 β1 0 . . . 0 β0

β1 0 β2 0 . . . 0

0 β2 0 β3
. . .

...
...

. 0

0 0 0
. . . 0 βn−1

β0 0 . . . 0 βn−1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

Clearly, if β is all 1s, the rank of the matrix is n−2 as n is even.2 Let us therefore
now assume that β is not all 1s. When we look at a block of 1s in β e.g., βi−1 = 0,
βi, βi+1, . . . , βi+l−1 = 1, and βl = 0. Then clearly the l rows i, i + 1, . . . , i + l − 1
are linearly independent when l is even. When l is odd though, the sum of rows
i, i + 2, i + 4, up to row i + l − 3 will equal row i + l − 1. In that case there
are thus only l − 1 linearly independent rows. As the blocks of 1s in β generate
independent blocks of rows, we can summarise that the rank of the matrix is
exactly θ(β). 	

Analogously to the differential probabilities, the linear probabilities in the
general case can be derived from this. It is likewise straightforward to derive how
to determine whether α ∈ U⊥

β . As an explicit formulation of this is rather tedious,
we instead refer to the implementation in Python given in the Appendix A where
both is achieved in the case where gcd(a − b, n) = 1 and n is even.

For a more intuitive approach and some elaboration on the linear probabili-
ties, we refer to the ePrint version of this paper.

5 Finding Optimal Differential and Linear Characteristics

While there are various methods for finding good characteristics, determining
optimal differential or linear characteristics remains a hard problem in general.
The formulas derived for both differential and linear probabilities enable us to
apply an algebraic approach to finding the best characteristics. A similar tech-
nique has been applied to the ARX cipher Salsa20 [14] and the CAESAR candi-
date NORX [4]. For finding the optimal characteristics for Simonwe implemented
2 The rank is n − 1 when n is odd.

174 S. Kölbl et al.

an open source tool [13] based on the SAT/SMT solvers CryptoMiniSat [15] and
STP [11].

In the next section we will show how Simon can be modeled to find both the
best differential and linear characteristics in this framework and how this can be
used to solve cryptanalytic problems.

5.1 Model for Differential Cryptanalysis of SIMON

First we define the variables used in the model of Simon. We use two n-bit
variables xi, yi to represent the XOR-difference in the left and right halves of
the state for each round and an additional variable zi to store the XOR-difference
of the output of the AND operation.

For representing the log2 probability of the characteristic we introduce an
additional variable wi for each round. The sum over all probabilities wi then
gives the probability of the corresponding differential characteristic. The values
wi are computed according to Theorem 3 as

wi = wt(varibits + doublebits) (10)

where wt(x) is the Hamming weight of x and

varibits = Sa(xi) ∨ Sb(xi)

doublebits = Sb(xi) � Sa(xi) ∧ S2a−b(xi)

Therefore, for one round of Simon we get the following set of constraints:

yi+1 = xi

0 = (zi � varibits)

0 = (zi + Sa−b(zi)) � doublebits

xi+1 = yi + zi + Sc(xi)
wi = wt(varibits + doublebits)

(11)

A model for linear characteristics, though slightly more complex, can be
implemented in a similar way. A description of this model can be found in the
implementation of our framework. Despite the increase in complexity, we could
not observe any significant impact on the solving time for the linear model.

5.2 Finding Optimal Characteristics

We can now use the previous model for Simon to search for optimal differen-
tial characteristics. This is done by formulating the problem of finding a valid
characteristic, with respect to our constraints, for a given probability w. This
is important to limit the search space and makes sense as we are usually more
interested in differential characteristics with a high probability as they are more
promising to lead to attacks with a lower complexity. Therefore, we start with
a high probability and check if such a characteristic exists. If not we lower the
probability.

The procedure can be described in the following way:

Observations on the SIMON Block Cipher Family 175

– For each round of the cipher add the corresponding constraints as defined
in (11). This system of constraints then exactly describes the form of a valid
characteristic for the given parameters.

– Add a condition which accumulates the probabilities of each round as defined
in (10) and check if it is equal to our target probability w.

– Query if there exists an assignment of variables which is satisfiable under the
constraints.

– Decrement the probability w and repeat the procedure.

One of the main advantages compared to other approaches is that we can
prove an upper bound on the probability of characteristics for a given cipher and
number of rounds. If the solvers determines the set of conditions unsatisfiable,
we know that no characteristic with the specified probability exists. We used this
approach to determine the characteristics with optimal probability for different
variants of Simon. The results are given in Table 1.

Table 1. Overview of the optimal differential (on top) and linear characteristics for dif-
ferent variants of Simon. The probabilities are given as log2(p), for linear characteristic
the squared correlation is used.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential

Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −25 −30 −34 −36 −38 −40 −42

Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −38 −44 −46 −50

Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Linear

Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −34 −36 −38 −40 −42

Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −46 −50

Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Upper Bound for the Characteristics. During our experiments we observed
that it seems to be an easy problem for the SMT/SAT solver to prove the
absence of differential characteristics above wmax. This can be used to get a
lower bound on the probability of characteristics contributing to the differential.
The procedure is similar to finding the optimal characteristics.

– Start with a very low initial probability wi.
– Add the same system of constraints which were used for finding the charac-

teristic.
– Add a constraint fixing the variables (x0, y0) to Δin and (xr, yr) to Δout.
– Query if there is a solution for this weight.
– Increase the probability wi and repeat the procedure until a solution is found.

176 S. Kölbl et al.

5.3 Computing the Probability of a Differential

Given a differential characteristic it is of interest to determine the probability

of the associated differential Pr(Δin
fr

−→ Δout) as it might potentially have a
much higher probability then the single characteristic. It is often assumed that
the probability of the best characteristic can be used to approximate the proba-
bility of the best differential. However, this assumption only gives an inaccurate
estimate in the case of Simon.

Similarly to the previous approach for finding the characteristic, we can for-
malise the problem of finding the probability of a given differential in the fol-
lowing way:

– Add the same system of constraints which were used for finding the charac-
teristic.

– Add a constraint fixing the variables (x0, y0) to Δin and (xr, yr) to Δout.
– Use a SAT solver to find all solutions si for the probability w.
– Decrement the probability w and repeat the procedure.

The probability of the differential is then given by

Pr(Δin
fr

−→ Δout) =
wmax∑

i=wmin

si · 2−i (12)

where si is the number of characteristics with a probability of 2−i.
We used this approach to compute better estimates for the probability of

various differentials (see Table 2). In the case of Simon32 we were able to find
all characteristics contributing to the differentials for 13 and 14 rounds. The
distribution of the characteristics and accumulated probability of the differential
is given in Fig. 2. It is interesting to see that the distribution of w in the range
[55, 89] is close to uniform and therefore the probability of the corresponding
differential improves only negligible and converges quickly towards the measured
probability3.

The performance of the whole process is very competitive compared to dedi-
cated approaches. Enumerating all characteristics up to probability 2−46 for the
13-round Simon32 differential takes around 90 seconds on a single CPU core
and already gives a better estimate compared to the results in [6]. A complete
enumeration of all characteristics for 13-round Simon32 took close to one core
month using CryptoMiniSat4 [15]. The computational effort for other variants
of Simon is comparable given the same number of rounds. However, for these
variants we can use differentials with a lower probability covering more rounds
due to the increased block size. In this case the running time increases due to
the larger interval [wmin, wmax] and higher number of rounds.

For Simon48 and Simon64 we are able to improve the estimate given in [16].
Additionally we found differentials which can cover 17 rounds for Simon48 and
3 We encrypted all 232 possible texts under 100 random keys to obtain the estimate

of the probability for 13-round Simon32.

Observations on the SIMON Block Cipher Family 177

22 rounds for Simon64 which might have potential to improve previous attacks.
Our results are also closer to the experimentally obtained estimates given in [10]
but give a slightly lower probability. This can be due to the limited number of
characteristics we use for the larger Simon variants or the different assumptions
on the independence of rounds.

Our results are limited by the available computing power and in general
it seems to be difficult to count all characteristics for weights in [wmin, wmax],
especially for the larger variants of Simon. However the whole process is embar-
rassingly parallel, as one can split up the computation for each probability wi.
Furthermore, the improvement that one gets decreases quickly. For all differen-
tials we observed that the distribution of differential characteristics becomes flat
after a certain point.

20

25

210

215

220

2− 40 2− 50 2− 60 2− 70 2− 80 2− 90
2− 37

2− 36

2− 35

2− 34

2− 33

2− 32

2− 31

2− 30

2− 29

2− 28

#
C

h
a
ra

ct
er

is
ti

cs

D
iff

er
en

ti
a
l
P

ro
b
a
b
il
it
y

Probability of one characteristic

#Characteristics
Probability

Measured DP

Fig. 2. Distribution of the number of characteristics for the differential (0, 40) →
(4000, 0) for 13-round Simon32 and the accumulated probability. A total of ≈ 225.21

characteristics contribute to the probability.

6 Analysis of the Parameter Choices

The designers of Simon so far gave no justification for their choice of the rotation
constants. Here we evaluate the space of rotation parameters with regard to
different metrics for the quality of the parameters. Our results are certainly not
a definite answer but are rather intended as a starting point to evaluating the
design space and reverse engineering the design choices. We consider all possible
sets of rotation constants (a, b, c)4 and checked them for diffusion properties and
the optimal differential and linear characteristics.
4 Without lack of generality, we assume though that a ≥ b.

178 S. Kölbl et al.

Table 2. Overview of the differentials and the range [wmin, wmax] of the log2 proba-
bilities of the characteristics contributing to the differential. For computing the lower
bound log2(p) of the probability of the differentials, we used all characteristics with
probabilities in the range from wmin up to the values in brackets in the wmax column.

Table 3. The number of rounds after which full diffusion is reached for the standard
Simon parameters in comparison to the whole possible set of parameters.

Block size 32 48 64 96 128

Standard parameters 7 8 9 11 13

Median 8 10 11 13 14

First quartile 7 9 9 11 12

Best possible 6 7 8 9 10

Rank 2nd 2nd 2nd 3rd 4th

6.1 Diffusion

As a very simple measure to estimate the quality of the rotation constants,
we measure the number of rounds that are needed to reach full diffusion. Full
diffusion is reached when every state bit principally depends on all input bits.
Compared to computing linear and differential properties it is an easy task to
determine the dependency.

In Table 3 we give a comparison to how well the standard Simon rotation
parameters fare within the distribution of all possible parameter sets. The exact
distributions for all Simon variants can be found in the appendix in Table 8.

6.2 Differential and Linear

As a second criteria for our parameters, we computed for all a > b and gcd(a −
b, n) = 1 the optimal differential and linear characteristics for 10 rounds of
Simon32, Simon48 and Simon64. A list of the parameters which are optimal
for all three variants of Simon can be found in Appendix C.

Observations on the SIMON Block Cipher Family 179

It is important here to note that there are also many parameter sets, including
the standard choice, for which the best 10-round characteristics of Simon32 have
a probability of 2−25 compared to the optimum of 2−26. However, this difference
by a factor of 2 does not seem to occur for more than 10 rounds and also not
any larger variants of Simon.

6.3 Interesting Alternative Parameter Sets

As one result of our investigation we chose three exemplary sets of parame-
ters that surpass the standard parameters with regards to some metrics. Those
variants are Simon[12, 5, 3], Simon[7, 0, 2] and Simon[1, 0, 2].

Simon[12, 5, 3] has the best diffusion amongst the parameters which have
optimal differential and linear characteristics for 10 rounds. The two other
choices are both restricted by setting b = 0 as this would allow a more efficient
implementation in software. Among those Simon[7, 0, 2] has the best diffusion
and the characteristics behave similar to the standard parameters. Ignoring the
diffusion Simon[1, 0, 2] seems also an interesting choice as it is optimal for the
differential and linear characteristics.

If we look though at the differential corresponding to the best differential
characteristic of Simon[7, 0, 2] and Simon[1, 0, 2], then we can see the number
of characteristics contributing to it is significantly higher than for the standard
parameters (see Appendix Table 6). However, for Simon[12, 5, 3] the differen-
tial shows a surprisingly different behaviour and the probability of the differ-
ential is much closer to the probability of the characteristic. On the other side,
the characteristics seem to be worse for the larger variants as can be seen in
Table 7. Furthermore it might be desirable to have at least one rotation parame-
ter that corresponds to a byte length, something that the standard parameter set
features.

7 Conclusion and Future Work

In this work we analysed the general class of functions underlying the Simon
block cipher. First we rigorously derived efficiently computable and easily imple-
mentable expressions for the exact differential and linear behaviour of Simon-like
round functions.

Building upon this, we used those expressions for a computer aided app-
roach based on SAT/SMT solvers to find both optimal differential and linear
characteristics for Simon. Furthermore, we were able to find all characteristics
contributing to the probability of a differential for Simon32 and gave better
estimates for the probability for other variants.

Finally, we investigated the space of Simon variants using different rotation
constants with respect to diffusion, and the optimal differential and linear char-
acteristics. Interestingly, the default parameters seem to be not always optimal.

This work opens up for further investigations. In particular, the choice and
justifications of the NSA parameters for Simon remains unclear. Besides our first

180 S. Kölbl et al.

progress concerning the round function, the design of the key schedule remains
largely unclear and further investigation is needed here.

Acknowledgments. First of all, we wish to thank Tomer Ashur. Both the method
to check whether a linear input mask gives a correlated or uncorrelated linear 1-round
characteristic for a given output mask as well as the first version of the SMT/SAT model
for linear characteristics in Simon were an outcome of our discussions. We furthermore
wish to thank the reviewers for comments that helped to improve the paper.

A Python Code to Calculate Linear and Differential
Probabilities

In the following, code for calculating the differential and linear probabilities are
given in Python. Restrictions are that the constants need to fulfil gcd(a−b, n) = 1
and n has to be even. We assume that the functions Sa(x) and wt(x) have been
implemented as well as a function parity that calculates the parity wt(x) mod 2
of a bit vector x. a, b, and c have to be defined in the program as well.

The differential probability of α
f→ β can then be calculated with the follow-

ing function:
def pdiff (alpha ,beta):

gamma = beta ^ S(alpha ,c)
if alpha == 2**n-1:

if hw(gamma)
return 2**(n-1)

else:
return 0

varibits = S(alpha , a) | S(alpha ,b)
if gamma & ~varibits != 0:

return 0
doublebits = S(alpha ,2*a-b) & ~S(alpha ,a) & S(alpha ,b)
if (gamma ^ S(gamma ,a-b)) & doublebits != 0:

return 0
return 2**(-hw(varibits^doublebits))

The squared correlation of α
f→ β can be calculated with the following function:

def plin (alpha ,beta):
alpha ^= S(beta ,-c)
if ((S(beta ,-a) | S(beta ,-b)) ^ alpha) & alpha != 0:

return 0
if beta == 2**n-1:

t, v = lin , 0
while t != 0:

v ^= t & 3
t >>= 2

if v != 0:
return 0

else:
return 2**(-n+2)

tmp = beta
abits = beta
while tmp != 0:

tmp = beta & S(tmp , -(a-b))
abits ^= tmp

sbits = S(beta , -(a-b)) & ~beta & ~S(abits , -(a-b))

Observations on the SIMON Block Cipher Family 181

sbits = S(sbits , -b)
pbits = 0
while sbits != 0:

pbits ^= sbits & alpha
sbits = S(sbits , (a-b)) & S(beta ,-b)
sbits = S(sbits , (a-b))
pbits = S(pbits , 2*(a-b))

if pbits != 0:
return 0

return 2**(-2*hw(abits))

B Additional Differential Bounds

In Table 4 resp. 5 we give the distributions for the characteristics contributing to
a differential up to the bound we computed them.

Table 4. Number of differential characteristics for the differential (80, 222)
f17

−−→
(222, 80) for Simon48.

log2(p) #Characteristics log2(p) #Characteristics

−52 1 −69 20890

−53 6 −70 38837

−54 15 −71 72822

−55 46 −72 133410

−56 100 −73 240790

−57 208 −74 353176

−58 379 −75 279833

−59 685 −76 235071

−60 1067 −77 259029

−61 1607 −78 225836

−62 2255 −79 256135

−63 2839 −80 252193

−64 3476 −81 252654

−65 4088 −82 198784

−66 5032 −83 229843

−67 7063 −84 208757

−68 11481 −85 253112

182 S. Kölbl et al.

Table 5. Number of differential characteristics for the differential (4000000, 11000000)
f21

−−→ (11000000, 4000000) for Simon64.

log2(p) #Characteristics log2(p) #Characteristics

−68 2 −83 185709

−69 14 −84 173860

−70 70 −85 171902

−71 276 −86 171302

−72 951 −87 168190

−73 2880 −88 164694

−74 8101 −89 163141

−75 21062 −90 161089

−76 52255 −91 159354

−77 123206 −92 155804

−78 238297 −93 150954

−79 239305 −94 145061

−80 171895 −95 141914

−81 170187 −96 138480

−82 165671 −97 132931

C Optimal Parameters for Differential Characteristics

The following sets of rotation constants (a, b, c) are optimal for 10 rounds regard-
ing differential characteristics for Simon32, Simon48, and Simon64

(1, 0, 2), (1, 0, 3), (2, 1, 3), (4, 3, 5), (5, 0, 10), (5, 0, 15), (5, 4, 3), (7, 0, 14), (7, 6, 5)
(8, 1, 3), (8, 3, 14), (8, 7, 5), (10, 5, 15), (11, 6, 1), (12, 1, 7), (12, 5, 3), (12, 7, 1)
(13, 0, 10), (13, 0, 7), (13, 8, 2)

Similar to the experiments for the default parameters, we used our frame-
work to evaluate the quality of various rotation constants. In Table 7 we give
an overview of the best differential characteristics for variants of Simon using
a different set of rotation constants. Table 6 shows that a carefully chosen set of
constants can have a very strong effect on the differentials.

Observations on the SIMON Block Cipher Family 183

Table 6. Distribution of the characteristics for a 13-round differential for Simon32
using different set of constants

log2(p) [8, 1, 2] [12, 5, 3] [7, 0, 2] [1, 0, 2]

−36 1 1 4 1

−37 4 2 16 6

−38 15 3 56 27

−39 46 2 144 88

−40 124 1 336 283

−41 288 0 744 822

−42 673 0 1644 2297

−43 1426 0 3420 6006

−44 2973 0 6933 14954

−45 5962 0 13270 34524

−46 11661 1 24436 73972

−47 21916 3 43784 150272

−48 40226 14 76261 292118

−49 72246 32 130068 /

−50 126574 54 218832 /

−51 218516 83 362284 /

Table 7. Overview of the optimal differential characteristics for Simon variants

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential (12, 5, 3)

Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −28 −34 −36 −42 −44 −47

Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −36 −38 −40 −42

Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −37 −43 −47 /

Differential (1, 0, 2)

Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −36 −38 −40 −42

Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Differential (7, 0, 2)

Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −25 −30 −35 −36 −38 −40 −42

Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −38 −44 −48 −53

Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 /

184 S. Kölbl et al.

Table 8. For each Simon variant and each possible number of rounds, the number of
possible combinations of rotation constants (a, b, c) with a ≥ b is given that reaches
full diffusion.

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (2015)

2. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg
(2014)

3. Alizadeh, J., Alkhzaimi, H.A., Aref, M.R., Bagheri, N., Gauravaram, P., Kumar,
A., Lauridsen, M.M., Sanadhya, S.K.: Cryptanalysis of SIMON variants with con-
nections. In: Sadeghi, A.-R., Saxena, N. (eds.) RFIDSec 2014. LNCS, vol. 8651,
pp. 90–107. Springer, Heidelberg (2014)

4. Aumasson, J.-P., Jovanovic, P., Neves, S.: Analysis of NORX: investigating dif-
ferential and rotational properties. In: Aranha, D.F., Menezes, A. (eds.) LATIN-
CRYPT 2014. LNCS, vol. 8895, pp. 306–323. Springer, Heidelberg (2015)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

http://eprint.iacr.org/

Observations on the SIMON Block Cipher Family 185

6. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer, Heidelberg (2015)

7. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

8. Carlet, C.: Vectorial boolean functions for cryptography. In: Crama, Y., Hammer,
P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and
Engineering. Encyclopedia of Mathematics and its Applications, vol. 134, pp. 398–
469. Cambridge University Press, Cambridge (2010)

9. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: The NOEKEON block cipher.
Submission to the NESSIE project (2000)

10. Dinur, I., Dunkelman, O., Gutman, M., Shamir, A.: Improved top-down techniques
in differential cryptanalysis. Cryptology ePrint Archive, Report 2015/268 (2015).
http://eprint.iacr.org/

11. Ganesh, V., Hansen, T., Soos, M., Liew, D., Govostes, R.: STP constraint solver
(2014). https://github.com/stp/stp

12. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

13. Kölbl, S.: CryptoSMT: An easy to use tool for cryptanalysis of symmetric primi-
tives (2015). https://github.com/kste/cryptosmt

14. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013).
http://eprint.iacr.org/

15. Soos, M.: CryptoMiniSat SAT solver (2014). https://github.com/msoos/
cryptominisat/

16. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Towards finding the best characteristics of some bit-oriented block ciphers and
automatic enumeration of (related-key) differential and linear characteristics with
predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014). http://
eprint.iacr.org/

17. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.:
Constructing mixed-integer programming models whose feasible region is exactly
the set of all valid differential characteristics of SIMON. Cryptology ePrint Archive,
Report 2015/122 (2015). http://eprint.iacr.org/

18. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014)

19. Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Heidelberg (2014)

http://eprint.iacr.org/
https://github.com/stp/stp
https://github.com/kste/cryptosmt
http://eprint.iacr.org/
https://github.com/msoos/cryptominisat/
https://github.com/msoos/cryptominisat/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Modes and Constructions

Tweaking Even-Mansour Ciphers

Benôıt Cogliati1, Rodolphe Lampe1, and Yannick Seurin2(B)

1 University of Versailles, Versailles, France
benoitcogliati@hotmail.fr, rodolphe.lampe@gmail.com

2 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. We study how to construct efficient tweakable block ciphers
in the Random Permutation model, where all parties have access to pub-
lic random permutation oracles. We propose a construction that com-
bines, more efficiently than by mere black-box composition, the CLRW
construction (which turns a traditional block cipher into a tweakable
block cipher) of Landecker et al. (CRYPTO 2012) and the iterated Even-
Mansour construction (which turns a tuple of public permutations into
a traditional block cipher) that has received considerable attention since
the work of Bogdanov et al. (EUROCRYPT 2012). More concretely, we
introduce the (one-round) tweakable Even-Mansour (TEM) cipher, con-
structed from a single n-bit permutation P and a uniform and almost
XOR-universal family of hash functions (Hk) from some tweak space to
{0, 1}n, and defined as (k, t, x) �→ Hk(t) ⊕ P (Hk(t) ⊕ x), where k is the
key, t is the tweak, and x is the n-bit message, as well as its generalization
obtained by cascading r independently keyed rounds of this construction.
Our main result is a security bound up to approximately 22n/3 adversarial
queries against adaptive chosen-plaintext and ciphertext distinguishers
for the two-round TEM construction, using Patarin’s H-coefficients tech-
nique. We also provide an analysis based on the coupling technique show-
ing that asymptotically, as the number of rounds r grows, the security
provided by the r-round TEM construction approaches the information-
theoretic bound of 2n adversarial queries.

Keywords: Tweakable block cipher · CLRW construction · Key-
alternating cipher · Even-mansour construction · H-coefficients tech-
nique · Coupling technique

1 Introduction

Tweakable Block Ciphers. Tweakable block ciphers (TBCs for short) are a
generalization of traditional block ciphers which, in addition to the usual inputs
(message and cryptographic key), take an extra (potentially adversarially con-
trolled) input for variability called a tweak. Hence, the signature of a tweakable

Y. Seurin—This author was partially supported by the French National Agency of
Research through the BLOC project (contract ANR-11-INS-011).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 189–208, 2015.
DOI: 10.1007/978-3-662-47989-6 9

190 B. Cogliati et al.

block cipher is Ẽ : K × T × M → M, where K is the key space, T the tweak
space, and M the message space. This primitive has been rigorously formal-
ized by Liskov et al. [25], and has proved to be very useful to construct various
higher level cryptographic schemes such as (tweakable) length-preserving encryp-
tion modes [17,18], online ciphers [2,34], message authentication codes [24,25],
and authenticated encryption modes [25,32,33].

Tweakable block ciphers can be designed “from scratch” (e.g., the Hasty
Pudding cipher [36], Mercy [10], or Threefish, the block cipher on which the
Skein hash function [15] is based), however most of the proposed constructions
are on top of an existing (traditional) block cipher, in a black-box fashion. In
this latter family, constructions where changing the tweak implies to change the
key of the underlying block cipher (e.g., Minematsu’s construction [26]) tend
to be avoided for efficiency reasons (re-keying a block cipher is often a costly
operation). Hence, most of the existing proposals have the property that the
key under which the underlying block cipher is called is tweak-independent. Of
particular relevance to our work, the original Liskov et al.’s paper proposed the
so-called LRW construction (sometimes called LRW2 in the literature since this
was the second of two constructions suggested in [25]), based on a block cipher
E with key space KE and message space {0, 1}n and an almost XOR-universal
(AXU) family of hash functions H = (Hk)k∈KH

from some set T to {0, 1}n, and
defined as

LRWE((k, k′), t, x) = Hk′(t) ⊕ Ek(Hk′(t) ⊕ x), (1)

where (k, k′) ∈ KE × KH is the key, t ∈ T is the tweak, and x ∈ {0, 1}n is the
message. This construction was proved secure in [25] up to the birthday bound,
i.e., 2n/2 adversarial queries (assuming the underlying block cipher E is secure in
the traditional sense, i.e., it is a strong pseudorandom permutation). This was later
extended by Landecker et al. [24] who considered the cascade of two rounds of the
LRW construction (with independent block cipher and hash function keys for each
round), and proved it secure up to about 22n/3 adversarial queries.1 This was fur-
ther generalized to longer cascades by Lampe and Seurin [23] who proved that the
r-round Chained-LRW (CLRW) construction is secure up to roughly 2

rn
r+2 adver-

sarial queries (they also conjectured that the tight security bound is 2
rn
r+1 queries).

The Iterated Even-Mansour Construction. The iterated Even-Mansour
construction abstracts in a generic way the high-level structure of key-alternating
ciphers [11]. Concretely, it defines a block cipher from a tuple of r public n-bit
permutations (P1, . . . , Pr), the ciphertext associated to some message x ∈ {0, 1}n

being computed as

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · ·)),
where the n-bit round keys k0, . . . , kr are either independent or derived from
a master key. This construction was extensively analyzed in the Random Per-
mutation model, where the Pi’s are modeled as public random permutation
1 A flaw was subsequently found in the original proof of [24] and patched by Procter [31].

A different way of fixing the proof was proposed by Landecker et al., see the revised
version of [24].

Tweaking Even-Mansour Ciphers 191

oracles that the adversary can only query (bidirectionally) in a black-box way.
This approach was originally taken for r = 1 round in the seminal paper of
Even and Mansour [13], who showed that the block cipher encrypting x into
k1 ⊕ P (k0 ⊕ x) is secure up to 2n/2 adversarial queries.2 Dunkelman et al. [12]
subsequently remarked that the same security level is retained by the single-key
one-round Even-Mansour cipher, i.e., when k0 = k1. An important step was later
made by Bogdanov et al. [5], who showed that for r = 2 rounds, the construc-
tion ensures security up to roughly 22n/3 adversarial queries. Bogdanov et al.’s
paper triggered a spate of results improving the pseudorandomness bound as
the number r of rounds grows [21,38], culminating with the proof by Chen and
Steinberger [7] that the r-round iterated Even-Mansour construction with r-wise
independent round keys ensures security up to about 2

rn
r+1 adversarial queries

(tightly matching a generic attack described in [5]). Note that a special case of
r-wise independent round keys is obtained by cascading r single-key one-round
Even-Mansour ciphers (with independent keys), viz.

Ek1,...,kr
(x) = kr ⊕ Pr(kr ⊕ kr−1 ⊕ Pr−1(kr−1 ⊕ · · · ⊕ k1 ⊕ P1(k1 ⊕ x) · · ·)),

in which case the high-level similarity with the CLRW construction is obvious.
Besides pseudorandomness, the iterated Even-Mansour construction (with a

sufficient number of rounds) has also been shown to achieve resistance to known-
key attacks [3], related-key attacks [9,14], and chosen-key attacks [9], as well as
indifferentiability from an ideal cipher [1,22].

Our Results. We consider the problem of constructing tweakable block ciphers
directly from a tuple of public permutations rather than from a full-fledged block
cipher. This was partially tackled by Cogliati and Seurin in [9]. They showed
how to construct a TBC with n-bit keys and n-bit tweaks from three public
n-bit permutations which is secure up to the birthday bound: denoting E(k, x)
the 3-round iterated Even-Mansour cipher with the trivial key schedule (i.e., all
round keys are equal to the n-bit master key k), let Ẽ be the TBC defined as

Ẽ(k, t, x) = E(k ⊕ t, x). (2)

Hence, Ẽ is simply the 3-round iterated Even-Mansour cipher with round keys
replaced by k ⊕ t. Cogliati and Seurin showed3 that this TBC is provably secure
up to 2n/2 adversarial queries in the Random Permutation Model (and that two
rounds or less are insecure). The drawback of this simple construction is that
any TBC of the form (2) with an underlying block cipher E of key-length κ
can deliver at most κ/2 bits of security [4], so that there is no hope to improve
2 When we talk about adversarial queries without being more specific in such a context

where the attacker, in addition to the construction oracle, also has oracle access to
the inner permutation(s), we mean indifferently construction and inner permutation
queries.

3 The focus of [9] is on xor-induced related-key attacks against the traditional iterated
Even-Mansour cipher, but their result can be directly transposed to the TBC setting,
see the full version of [9].

192 B. Cogliati et al.

the number of queries that the construction can securely tolerate by merely
increasing the number of rounds to four or more.

In this paper, we aim at getting a tweakable Even-Mansour-like construction
with security beyond the birthday bound. The naive way of proceeding would be to
instantiate the block cipher E in the CLRW construction with an iterated Even-
Mansour cipher based on permutations P1, . . . , Pr. However, combining existing
results for CLRW on one hand [23,24], and for the iterated Even-Mansour cipher
on the other hand [7], one would need at least r2 independent permutations to
get provable O(2

rn
r+1)-security.4 A more promising approach, that we take here,

is to start with the construction obtained by combining the (one-round) LRW
construction and the (one-round) Even-Mansour cipher, yielding what we dub
the one-round tweakable Even-Mansour construction, defined from a single n-bit
permutation P and an AXU family of hash functions H′ = (H ′

k′)k′∈K′ from some
tweak space T to {0, 1}n as

TEMP ((k, k′), t, x) = H ′
k′(t) ⊕ k ⊕ P (H ′

k′(t) ⊕ k ⊕ x), (3)

where (k, k′) ∈ {0, 1}n × K′ is the key, t ∈ T is the tweak, and x ∈ {0, 1}n is the
message. Combining the security proofs for LRW [25] and for the one-round single-
key Even-Mansour cipher [12,13] directly yields that this construction ensures
security up to 2n/2 adversarial queries, in the Random Permutation model for P .
For example, if we use the universal hash function family based on multiplication
in the finite field F2n , i.e., Hk′(t) = k′ ⊗ t, which is XOR-universal, one obtains a
simple tweakable block cipher with 2n-bit keys and n-bit tweaks which is secure
up to the birthday bound.

Our first insight is to consider the slightly more general construction

TEMP (k, t, x) = Hk(t) ⊕ P (Hk(t) ⊕ x). (4)

It is not too hard to show (as we do in Sect. 3.2) that this more general construc-
tion also ensures security up to 2n/2 adversarial queries, assuming that the hash
function family H = (Hk)k∈K, in addition to being AXU, is also uniform (i.e.,
for any t ∈ T and any y ∈ {0, 1}n, the probability over k ←$ K that Hk(t) = y
is equal to 2−n).5 This simple observation allows to save n bits of key material
when using multiplication-based hashing, since Hk(t) = k ⊗ t is XOR-universal
and uniform if one restricts the tweak space to F2n \ {0}.

It is naturally tempting to consider cascading r > 1 rounds of construction (4)
to obtain an hybrid of the iterated Even-Mansour cipher and the CLRW con-
struction. Our main result is that the two-round construction

TEMP1,P2((k1, k2), t, x) = Hk2(t) ⊕ P2(Hk2(t) ⊕ Hk1(t) ⊕ P1(Hk1(t) ⊕ x))

4 For r > 2, since the analysis of the CLRW construction in [23] is not tight, this is
even worse.

5 Construction (3) is obviously a special case of construction (4), since the hash
function family defined by Hk,k′(t) = H ′

k′(t) ⊕ k, where (H ′
k′)k′∈K′ is AXU and

k ∈ {0, 1}n, is AXU and uniform.

Tweaking Even-Mansour Ciphers 193

is secure (against adaptive chosen-plaintext and ciphertext attacks) up to
approximately 22n/3 adversarial queries (again, assuming that H is uniform and
AXU).

To arrive at this result, we could have adapted the game-based proof of [24]
for the two-round CLRW construction to accommodate the fact that in the TEM
setting, the adversary has additionally oracle access to the inner permutations
P1 and P2. Yet we preferred to use the H-coefficients technique [30], which was
successfully applied to the analysis of the iterated Even-Mansour cipher [6,7],
and adjust it to take into account the existence of the tweak in the TEM con-
struction. Our choice was motivated by the fact that the H-coefficients-based
security proof for the two-round Even-Mansour cipher is (in our opinion) sim-
pler than the game-based proof for the two-round CLRW construction. Actually,
our security proof for the two-round TEM construction can easily be simplified
(by making the inner permutations secret, or, more formally, letting the number
of queries qp to the inner permutations be zero in our security bound as given
by Theorem 2) to yield a new, H-coefficients-based proof of the security result
of [24] for the two-round CLRW construction (our own bound matching Lan-
decker et al.’s one [24] up to multiplicative constants).6 It seems interesting to us
that our proof entails a new and conceptually simpler (at least to us) proof of a
previous result that turned out quite delicate to get right with game-based tech-
niques [31]. We explain how to “extract” from our work a H-coefficients proof
for the two-round CLRW construction in the full version of this paper [8].

We were unable to extend our H-coefficients security proof to r > 2 rounds.7

Instead, we provide an asymptotic analysis of the TEM construction (as r grows)
based on the coupling technique [19,28]. This part combines in a rather straight-
forward way the approach of [21] (which applied the coupling technique to the
iterated Even-Mansour cipher) and of [23] (which applied the coupling technique
to the CLRW construction). This allows us to prove that the r-round TEM
construction is secure up to roughly 2

rn
r+2 adversarial queries (against adaptive

chosen-plaintext and ciphertext attacks). As with previous work, we conjecture
that the “real” security bound is actually 2

rn
r+1 queries (which we prove to hold

for the weaker class of non-adaptive chosen-plaintext adversaries), but that the
coupling technique is not adapted to prove this.

6 In fact, this is not as straightforward as it might seem, since our results assume that
the hash function family H is uniform in addition to being AXU, whereas the security
result of [24] only requires H to be AXU. Inspection of our proof indicates however
that the uniformity assumption on H can be safely lifted when the adversary is not
allowed to query the inner permutations.

7 For readers familiar with [7], which tightly analyzed the security of the traditional
iterated EM cipher for any number of rounds, the main obstacle is that in the
tweakable EM setting, the paths for two construction queries with distinct tweaks
can collide at the input of inner permutations, whereas this can never happen in the
traditional EM setting. While this is exactly the difficulty that we are able to handle
for r = 2 in Lemma 3, getting a combinatorial lemma similar to [7, Lemma 1] that
would allow to analyze good transcripts for any number of rounds in the tweakable
setting seems more challenging.

194 B. Cogliati et al.

Application to Related-Key Security. There are strong connections
between tweakable block ciphers and the related-key security of traditional block
ciphers [4,25]. We expand on this in the full version of the paper [8], explaining
how our results have immediate implications for the related-key security of the
traditional (iterated) Even-Mansour cipher with a nonlinear key-schedule.

Related Work and Perspectives. There are very few papers studying
generic ways of building tweakable block ciphers from some lower-level primitive
than a traditional block cipher. One notable exception is the work of Goldenberg
et al. [16] who studied how to tweak (generically) Feistel ciphers (in other words,
they showed how to construct tweakable block ciphers from pseudorandom func-
tions). This was extended to generalized Feistels by Mitsuda and Iwata [27]. Our
own work seems to be the first (besides [9], that capped at the birthday bound)
to explore theoretically sound ways to construct “by-design” tweakable block
ciphers with an SPN or more generally a key-alternating structure. In a sense, it
can be seen as complementary to the recent TWEAKEY framework introduced
by Jean et al. [20], that tackled a similar goal but adopted a more practical and
attack-driven (rather than proof-oriented) angle. We hope that combining these
two approaches will pave the way towards efficient and theoretically sound ways
of building tweakable key-alternating ciphers, or tweaking existing ones such as
AES. We also note that the term tweakable Even-Mansour was previously used
by the designers of Minalpher [35] (a candidate to the CAESAR competition)
to designate a permutation-based variant of Rogaway’s XEX construction [32].
It relates to construction (4) by eliminating the AXU hash function Hk(t) and
replacing it by Δ = (k‖t) ⊕ P (k‖t) (thereby halving tweak- and key-length), in
about the same way XEX replaces the AXU hash function of the LRW construc-
tion (1) by a “gadget” calling the underlying block cipher Ek. The designers of
Minalpher prove that this construction also achieves birthday-bound security.

Finally, we bring up some open problems. First, as already mentioned, it
would be very interesting to give a tight analysis of the TEM construction for
any number r > 2 of rounds (a first, hopefully simpler step towards this goal
would be to give a tight bound for the CLRW construction for r > 2). Second,
variants with the same permutation and/or non-independent round keys are
also worth studying, as was done in [6] for the (traditional) two-round iterated
Even-Mansour cipher. Third, since implementing an AXU hash function family
might be costly, it would be very valuable to explore whether linear operations for
mixing the key and the tweak into the state of an Even-Mansour-like construction
might be enough to get security beyond the birthday bound.

2 Preliminaries

2.1 Notation and General Definitions

General Notation. In all the following, we fix an integer n ≥ 1 and denote
N = 2n. For integers 1 ≤ b ≤ a, we will write (a)b = a(a − 1) · · · (a − b + 1) and
(a)0 = 1 by convention. The set of all permutations of {0, 1}n will be denoted

Tweaking Even-Mansour Ciphers 195

P(n). Given a non-empty set X, we denote x ←$ X the draw of an element x
from X uniformly at random.

Tweakable Block Ciphers. A tweakable block cipher with key space K, tweak
space T , and message space M is a mapping Ẽ : K × T × M → M such that
for any key k ∈ K and any tweak t ∈ T , x
→ Ẽ(k, t, x) is a permutation of M.
We denote TBC(K, T , n) the set of all tweakable block ciphers with key space K,
tweak space T , and message space {0, 1}n. A tweakable permutation with tweak
space T and message space M is a mapping P̃ : T × M → M such that for any
tweak t ∈ T , x
→ P̃ (t, x) is a permutation of M. We denote TP(T , n) the set of
all tweakable permutations with tweak space T and message space {0, 1}n.

The Iterated Tweakable Even-Mansour Construction. Fix integers
n, r ≥ 1. Let T and K be two sets, and H = (Hk)k∈K be a family of func-
tions from T to {0, 1}n indexed by K. The r-round iterated tweakable Even-
Mansour construction TEM[n, r,H] specifies, from an r-tuple P = (P1, . . . , Pr)
of permutations of {0, 1}n, a tweakable block cipher with key space Kr, tweak
space T , and message space {0, 1}n, simply denoted TEMP in the following
(parameters [n, r,H] will always be clear from the context) which maps a key
k = (k1, . . . , kr) ∈ Kr, a tweak t ∈ T , and a plaintext x ∈ {0, 1}n to the
ciphertext defined as (see Fig. 1):

TEMP(k, t, x) = ΠPr

kr,t ◦ · · · ◦ ΠP1
k1,t(x),

where ΠP
k,t is the permutation of {0, 1}n (corresponding to one round of the

construction) defined as

ΠP
k,t(x) = Hk(t) ⊕ P (Hk(t) ⊕ x).

We will denote TEMP
k the mapping taking as input (t, x) ∈ T × {0, 1}n and

returning TEMP(k, t, x).

Convention 1. In order to lighten the notation, we will often identify the hash
function family H and its key space K. This way, the key space of the r-round
TEMP tweakable block cipher is simply Hr, and we write

TEMP
h (t, x) = hr(t) ⊕ Pr(hr(t) ⊕ · · · ⊕ h1(t) ⊕ P1(h1(t) ⊕ x) · · ·)

where h = (h1, . . . , hr) ∈ Hr is the key of TEMP.

Uniform AXU Hash Function Family. We will need the following properties
of the hash function family H.

Definition 1. Let H = (Hk)k∈K be a family of functions from some set T to
{0, 1}n indexed by a set of keys K. H is said to be uniform if for any t ∈ T and
y ∈ {0, 1}n,

Pr[k ←$ K : Hk(t) = y] = 2−n.

196 B. Cogliati et al.

x

t

P1

Hk1

P2

Hk2

Pr

Hkr

y

Fig. 1. The tweakable Even-Mansour construction with r rounds, based on public
permutations P1, . . . , Pr and a family of hash functions H = (Hk)k∈K.

H is said ε-almost XOR-universal (ε-AXU) if for all distinct t, t′ ∈ T and all
y ∈ {0, 1}n,

Pr[k ←$ K : Hk(t) ⊕ Hk(t′) = y] ≤ ε.

H is simply said XOR-universal (XU) if it is 2−n-AXU.

Example 1. Let F2n be the set {0, 1}n seen as the field with 2n elements defined
by some irreducible polynomial of degree n over F2, the field with two elements,
and denote a ⊗ b the field multiplication of two elements a, b ∈ F2n . For any
integer � ≥ 1, we define the family of functions H = (Hk)k∈F2n with domain
(F2n)� and range F2n as

Hk(t1, . . . , t�) =
�∑

i=1

ki ⊗ ti.

Then H is � · 2−n-AXU [37]. Note however that H is not uniform since
(0, . . . , 0) is always mapped to 0 independently of the key. This can be handled
either by adding an independent key (resulting in 2n-bit keys), i.e., defining
H′ = (H ′

k,k′)(k,k′)∈(F2n)2 where H ′
k,k′(t1, . . . , t�) = Hk(t1 . . . , t�) ⊕ k′, or by for-

bidding the all-zero tweak, in which case the family is not exactly uniform, but
rather � · 2−n-almost uniform, i.e., for any t ∈ T \ {(0, . . . , 0)} and y ∈ {0, 1}n,
Pr [k ←$ K : Hk(t) = y] ≤ � ·2−n. Our results can be straightforwardly extended
to the case of ε-almost uniform families of functions.

2.2 Security Definitions

Fix some family of functions H = (Hk)k∈K from T to {0, 1}n. To study the
security of the construction TEM[n, r,H] in the Random Permutation Model,
we consider a distinguisher D which interacts with r + 1 oracles that we denote
generically (P̃0, P1, . . . , Pr), where syntactically P̃0 is a tweakable permutation
with tweak space T and message space {0, 1}n, and P1, . . . , Pr are permutations
of {0, 1}n. The goal of D is to distinguish two “worlds”: the so-called real world,

Tweaking Even-Mansour Ciphers 197

where D interacts with (TEMP
k ,P), where P = (P1, . . . , Pr) is a tuple of public

random permutations and the key k = (k1, . . . , kr) is drawn uniformly at random
from Kr, and the so-called ideal world (P̃0,P), where P̃0 is a uniformly random
tweakable permutation and P is a tuple of random permutations of {0, 1}n inde-
pendent from P̃0. We will refer to P̃0 as the construction oracle and to P1, . . . , Pr

as the inner permutation oracles.
Similarly to [21], we consider two classes of distinguishers depending on how

they can issue their queries:

– a non-adaptive chosen-plaintext (NCPA) distinguisher runs in two phases:
during the first phase, it only queries the inner permutations, adaptively and in
both directions; in the second phase, it issues a tuple of non-adaptive chosen-
plaintext queries to the construction oracle and receives the corresponding
answers (this tuple of queries may depend on the answers received in the first
phase, but all queries must be chosen non-adaptively before receiving any
answer from the construction oracle);

– an adaptive chosen-plaintext and ciphertext (CCA) distinguisher is not
restricted in how it queries its oracles: it can make adaptive bidirectional
queries to all its oracles.

We stress that the NCPA model is not very interesting in itself8 and will only be
useful as an intermediate step for the coupling-based security proof in Sect. 4.

The distinguishing advantage of a distinguisher D is defined as

Adv(D)
def=

∣
∣
∣Pr

[
DTEMP

k ,P = 1
]

− Pr
[
D ˜P0,P = 1

]∣
∣
∣ ,

where the first probability is taken over the random choice of k and P, and
the second probability is taken over the random choice of P̃0 and P. In all
the following, we consider computationally unbounded distinguishers, and hence
we can assume wlog that they are deterministic. We also assume that they
never make pointless queries (i.e., queries whose answers can be unambiguously
deduced from previous answers).

For non-negative integers qc, qp and ATK ∈ {NCPA,CCA}, we define the
insecurity of the TEM[n, r,H] construction against ATK-attacks as

Advatk
TEM[n,r,H](qc, qp) = max

D
Adv(D),

where the maximum is taken over all distinguishers in the class ATK making
exactly qc queries to the construction oracle and exactly qp queries to each inner
permutation oracle.

8 Indeed, forbidding the adversary to query the inner permutation oracles at some
point of the attack takes us away from the spirit of the Random Permutation model,
which is thought as a heuristically sound way of modeling some complex (but other-
wise public and fully described) permutation that the adversary can always evaluate
at will.

198 B. Cogliati et al.

3 Tight Bounds for One and Two Rounds

3.1 The H-Coefficients Technique

We start by describing Patarin’s H-coefficients technique [30], which has enjoyed
increasing adoption since Chen and Steinberger used it to prove the security of
the iterated Even-Mansour cipher for an arbitrary number of rounds [7].

Transcript. We summarize the interaction of D with its oracles in what we call
the queries transcript (QC ,QP1 , . . . ,QPr

) of the attack, where QC records the
queries to the construction oracle and QPi

, 1 ≤ i ≤ r, records the queries to inner
permutation Pi. More precisely, QC contains all triples (t, x, y) ∈ T × {0, 1}n ×
{0, 1}n such that D either made the direct query (t, x) to the construction oracle
and received answer y, or made the inverse query (t, y) and received answer x.
Similarly, for 1 ≤ i ≤ r, QPi

contains all pairs (u, v) ∈ {0, 1}n × {0, 1}n such
that D either made the direct query u to permutation Pi and received answer
v, or made the inverse query v and received answer u. Note that queries are
recorded in a directionless and unordered fashion, but by our assumption that
the distinguisher is deterministic, there is a one-to-one mapping between this
representation and the raw transcript of the interaction of D with its oracles
(see e.g. [7] for more details). Note also that by our assumption that D never
makes pointless queries, each query to the construction oracle results in a distinct
triple in QC , and each query to Pi results in a distinct pair in QPi

, so that
|QC | = qc and |QPi

| = qp for 1 ≤ i ≤ r since we assume that the distinguisher
always makes the maximal number of allowed queries to each oracle. In all the
following, we also denote m the number of distinct tweaks appearing in QC ,
and qi the number of queries for the i-th tweak, 1 ≤ i ≤ m, using an arbitrary
ordering of the tweaks. Note that m may depend on the answers received from
the oracles, yet one always has

∑m
i=1 qi = qc.

We say that a queries transcript is attainable (with respect to some fixed
distinguisher D) if there exists oracles (P̃0,P) such that the interaction of D
with (P̃0,P) yields this transcript (said otherwise, the probability to obtain this
transcript in the “ideal” world is non-zero). Moreover, in order to have a simple
definition of bad transcripts, we reveal to the adversary at the end of the exper-
iment the actual tuple of keys k = (k1, . . . , kr) if we are in the real world, while
in the ideal world, we simply draw dummy keys (k1 . . . , kr) ←$ Kr indepen-
dently from the answers of the oracle P̃0. (This can obviously only increase the
advantage of the distinguisher, so that this is without loss of generality). All in
all, a transcript τ is a tuple τ = (QC ,QP1 , . . . ,QPr

,k), and we say that a tran-
script is attainable if the corresponding queries transcript (QC ,QP1 , . . . ,QPr

) is
attainable. We denote Θ the set of attainable transcripts. In all the following,
we denote Tre, resp. Tid, the probability distribution of the transcript τ induced
by the real world, resp. the ideal world (note that these two probability distrib-
utions depend on the distinguisher). By extension, we use the same notation to
denote a random variable distributed according to each distribution. The main
lemma of the H-coefficients technique is the following one (see e.g. [6,7] for the
proof).

Tweaking Even-Mansour Ciphers 199

Lemma 1. Fix a distinguisher D. Let Θ = Θgood�Θbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Θgood,
one has9

Pr[Tre = τ]
Pr[Tid = τ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Tid ∈ Θbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Additional Notation. Given a permutation queries transcript Q and a per-
mutation P , we say that P extends Q, denoted P Q, if P (u) = v for
all (u, v) ∈ Q. By extension, given a tuple of permutation queries transcript
QP = (QP1 , . . . ,QPr

) and a tuple of permutations P = (P1, . . . , Pr), we say
that P extends QP, denoted P QP, if Pi QPi

for each i = 1, . . . , r. Note
that for a permutation transcript of size qp, one has

Pr[P ←$ P(n) : P Q] =
1

(N)qp

. (5)

Similarly, given a tweakable permutation transcript Q̃ and a tweakable permu-
tation P̃ , we say that P̃ extends Q̃, denoted P̃ Q̃, if P̃ (t, x) = y for all
(t, x, y) ∈ Q̃. For a tweakable permutation transcript Q̃ with m distinct tweaks
and qi queries corresponding to the i-th tweak, one has

Pr[P̃ ←$ TP(T , n) : P̃ Q̃] =
m∏

i=1

1
(N)qi

. (6)

Preliminary Observations. It is easy to see that the interaction of a distin-
guisher D with oracles (P̃0, P1, . . . , Pr) yields any attainable queries transcript
(QC ,QP) with QP = (QP1 , . . . ,QPr

) iff P̃0 QC and Pi QPi
for 1 ≤ i ≤ r. In

the ideal world, the key k, the permutations P1, . . . , Pr, and the tweakable per-
mutation P̃0 are all uniformly random and independent, so that, by (5) and (6),
the probability of getting any attainable transcript τ = (QC ,QP,k) in the ideal
world is

Pr[Tid = τ] =
1

|K|r ×
(

1
(N)qp

)r

×
m∏

i=1

1
(N)qi

.

In the real world, the probability to obtain τ is

Pr[Tre = τ] =
1

|K|r ×
(

1
(N)qp

)r

× Pr
[
P ←$ (P(n))r:TEMP

k QC

∣
∣
∣P QP

]
.

Let

p(τ)
def= Pr

[
P ←$ (P(n))r:TEMP

k QC

∣
∣
∣P QP

]
.

9 Recall that for an attainable transcript, one has Pr[Tid = τ] > 0.

200 B. Cogliati et al.

Then we have

Pr[Tre = τ]
Pr[Tid = τ]

= p(τ)
/ m∏

i=1

1
(N)qi

= p(τ) ·
m∏

i=1

(N)qi . (7)

Hence, to apply Lemma 1, we will have to compare p(τ) and
∏m

i=1 1/(N)qi ,
assuming τ is good (for some adequate definition of bad and good transcripts).

3.2 Security Proof for One Round

We consider here the one-round construction TEM[n, 1,H]. Using Convention 1,
we have

TEMP1
h1

(t, x) = h1(t) ⊕ P1(h1(t) ⊕ x)

where the key is h1 ←$ H. We prove the following theorem.

Theorem 1. Let H be a uniform ε-AXU family of functions from T to {0, 1}n.
For any integers qc and qp, one has

AdvccaTEM[n,1,H](qc, qp) ≤ q2cε +
2qcqp

N
.

The proof uses the H-coefficients technique that we exposed in Sect. 3.1, and
serves as a good warm-up before the more complex two-round case. For reasons
of space, it is deferred to the full version of the paper [8].

3.3 Security Proof for Two Rounds

Statement of the Result and Discussion. Let H be an ε-AXU and uniform
function family. Using Convention 1, the two-round tweakable Even-Mansour
construction is written

TEMP1,P2
(h1,h2)

(t, x) = h2(t) ⊕ P2

(
h2(t) ⊕ h1(t) ⊕ P1(h1(t) ⊕ x)

)

where P1, P2 are two public random permutations, (h1, h2) ←$ H2 is the key, t
is the tweak and x the plaintext. The main result of our paper is the following
theorem.

Theorem 2. Let H be a uniform ε-AXU family of functions from T to {0, 1}n.
Assume that qp + 3qc ≤ N/2 and qc ≤ min{N2/3, ε−2/3}. Then

AdvccaTEM[n,2,H](qc, qp) ≤ 29
√

qcqp

N
+ ε

√
qcqp + 4εq3/2

c +
30q

3/2
c

N
.

In particular, assuming H is XU for simplicity (i.e., ε = 2−n), one can see that
the two-round TEM construction ensures security up to approximately 22n/3

adversarial queries. In fact, for any number qc � 22n/3 of construction queries,

Tweaking Even-Mansour Ciphers 201

the two-round TEM construction remains secure as long as qp is small compared
with 2n/

√
qc.

The proof uses the H-coefficients technique. As usual, we will first define bad
transcripts and upper bound their probability in the ideal world, and then show
that the probabilities to obtain any good transcript in the real world and the
ideal world are sufficiently close.

Definition and Probability of Bad Transcripts. Let τ = (QC ,QP1 ,QP2 ,
(h1, h2)) be an attainable transcript, with |QC | = qc and |QP1 | = |QP2 | = qp.
We let

U1 = {u1 ∈ {0, 1}n : (u1, v1) ∈ QP1}, V1 = {v1 ∈ {0, 1}n : (u1, v1) ∈ QP1},

U2 = {u2 ∈ {0, 1}n : (u2, v2) ∈ QP2}, V2 = {v2 ∈ {0, 1}n : (u2, v2) ∈ QP2}
denote the domains and ranges of QP1 and QP2 respectively. For each u and
v ∈ {0, 1}n, let

Xu = {(t, x, y) ∈ QC : x ⊕ h1(t) = u},

Yv = {(t, x, y) ∈ QC : y ⊕ h2(t) = v}.

We define four quantities characterizing a transcript τ , namely

α1
def= |{(t, x, y) ∈ QC : x ⊕ h1(t) ∈ U1}|,

α2
def= |{(t, x, y) ∈ QC : y ⊕ h2(t) ∈ V2}|,

β1
def= |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y), x ⊕ h1(t) = x′ ⊕ h1(t′)}|,

β2
def= |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y), y ⊕ h2(t) = y′ ⊕ h2(t′)}|.

In words, α1 (resp. α2) is the number of queries (t, x, y) ∈ QC which “collide”
with a query (u1, v1) ∈ QP1 (resp. that collide with a query (u2, v2) ∈ QP2),
and β1 (resp. β2) is the number of queries (t, x, y) ∈ QC which “collide” with
another query (t′, x′, y′) at the input of P1 (resp. at the output of P2). Note that
one also has

β1 =
∑

u∈{0,1}n:
|Xu|>1

|Xu|, β2 =
∑

v∈{0,1}n:
|Yv|>1

|Yv|. (8)

Definition 2. We say that an attainable transcript τ is bad if at least one
of the following conditions is fulfilled (see Fig. 2 for a diagram of the first ten
conditions):

(C-1) there exists (t, x, y) ∈ QC , u1 ∈ U1, and v2 ∈ V2 such that x⊕h1(t) = u1

and y ⊕ h2(t) = v2;
(C-2) there exists (t, x, y) ∈ QC , (u1, v1) ∈ QP1 , and u2 ∈ U2 such that x ⊕

h1(t) = u1 and v1 ⊕ h1(t) ⊕ h2(t) = u2;
(C-3) there exists (t, x, y) ∈ QC , (u2, v2) ∈ QP2 , and v1 ∈ V1 such that y ⊕

h2(t) = v2 and v1 ⊕ h1(t) ⊕ h2(t) = u2;

202 B. Cogliati et al.

(C-4) there exists (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC with (t, x, y) distinct
from (t′, x′, y′) and from (t′′, x′′, y′′) such that x ⊕ h1(t) = x′ ⊕ h1(t′)
and y ⊕ h2(t) = y′′ ⊕ h2(t′′);

(C-5) there exists (t, x, y) �= (t′, x′, y′) ∈ QC such that x ⊕ h1(t) = x′ ⊕ h1(t′)
and h1(t) ⊕ h2(t) = h1(t′) ⊕ h2(t′);

(C-6) there exists (t, x, y) �= (t′, x′, y′) ∈ QC such that y ⊕ h2(t) = y′ ⊕ h2(t′)
and h1(t) ⊕ h2(t) = h1(t′) ⊕ h2(t′);

(C-7) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and u1 ∈ U1 such that y ⊕h2(t) =
y′ ⊕ h2(t′) and x ⊕ h1(t) = u1;

(C-8) there exists (t, x, y) �= (t′, x′, y′) ∈ QC and v2 ∈ V2 such that x ⊕ h1(t) =
x′ ⊕ h1(t′) and y ⊕ h2(t) = v2;

(C-9) there exists (t, x, y) �= (t′, x′, y′) ∈ QC , (u1, v1), (u′
1, v

′
1) ∈ QP1 such that

x⊕h1(t) = u1, x′⊕h1(t′) = u′
1 and v1⊕h1(t)⊕h2(t) = v′

1⊕h1(t′)⊕h2(t′);
(C-10) there exists (t, x, y) �= (t′, x′, y′) ∈ QC , (u2, v2), (u′

2, v
′
2) ∈ QP2 such that

y⊕h2(t) = v2, y′⊕h2(t′) = v′
2 and u2⊕h1(t)⊕h2(t) = u′

2⊕h1(t′)⊕h2(t′);
(C-11) α1 ≥ √

qc;
(C-12) α2 ≥ √

qc;
(C-13) β1 ≥ √

qc;
(C-14) β2 ≥ √

qc.

Otherwise we say that τ is good. We denote Θgood, resp. Θbad the set of good,
resp. bad transcripts. ♦

We start by upper bounding the probability to get a bad transcript in the
ideal world.

Lemma 2. For any integers qc and qp, one has

Pr[Tid ∈ Θbad] ≤ 3qcq
2
p

N2
+ 2ε2q3c +

εq2cqp

N
+

2
√

qcqp

N
+ 2εq3/2

c .

Proof. Let (QC ,QP1 ,QP2) be any attainable queries transcript. Recall that in
the ideal world, (h1, h2) is drawn independently from the queries transcript. We
upper bound the probabilities of the fourteen conditions in turn. We denote Θi

the set of attainable transcripts fulfilling condition (C-i).

Conditions (C-1), (C-2), and (C-3). Consider condition (C-1). For any (t, x, y) ∈
QC , u1 ∈ U1, and v2 ∈ V2, one has, by the uniformity of H and since h1 and h2

are independently drawn,

Pr
[(

h1(t) = x ⊕ u1

) ∧ (
h2(t) = y ⊕ v2

)]
=

1
N2

.

Hence, summing over the qcq
2
p possibilities for (t, x, y), u1, and v1 yields

Pr[Tid ∈ Θ1] ≤ qcq
2
p

N2
.

Similarly, for (C-2) and (C-3), one obtains

Pr [Tid ∈ Θ2] ≤ qcq
2
p

N2
, Pr [Tid ∈ Θ3] ≤ qcq

2
p

N2
.

Tweaking Even-Mansour Ciphers 203

Fig. 2. The ten “collision” conditions characterizing a bad transcript. Black dots cor-
respond to pairs (u1, v1) ∈ QP1 or (u2, v2) ∈ QP2 . Note that for (C-4) one might have
(t′, x′) = (t′′, x′′), for (C-9) one might have (u1, v1) = (u′

1, v
′
1), and for (C-10) one might

have (u2, v2) = (u′
2, v

′
2).

204 B. Cogliati et al.

Condition (C-4). For any (t, x, y), (t′, x′, y′), (t′′, x′′, y′′) ∈ QC with (t, x, y) dis-
tinct from (t′, x′, y′) and from (t′′, x′′, y′′), one has, by the ε-AXU property of H
and since h1 and h2 are drawn independently,

Pr
[(

h1(t) ⊕ h1(t′) = x ⊕ x′) ∧ (
h2(t) ⊕ h2(t′′) = y ⊕ y′′)] ≤ ε2.

Note that this also holds when t = t′ (resp. t = t′′) since in that case neces-
sarily x �= x′ (resp. y �= y′′) by the assumption that D never makes pointless
queries. Hence, summing over the (at most) q3c possibilities for (t, x, y), (t′, x′, y′),
(t′′, x′′, y′′), one obtains

Pr [Tid ∈ Θ4] ≤ ε2q3c .

Conditions (C-5) and (C-6). For any two distinct queries (t, x, y) �= (t′, x′, y′) ∈
QC , one has, by the ε-AXU property of H and since h1 and h2 are drawn
independently,

Pr
[(

h1(t) ⊕ h1(t′) = x ⊕ x′) ∧ (
h2(t) ⊕ h2(t′) = h1(t) ⊕ h1(t′)

)] ≤ ε2.

Hence, summing over the qc(qc − 1)/2 possible pairs of distinct queries, we get

Pr [Tid ∈ Θ5] ≤ ε2q2c
2

, and similarly Pr [Tid ∈ Θ6] ≤ ε2q2c
2

.

Conditions (C-7) and (C-8). For any two distinct queries (t, x, y) �= (t′, x′, y′) ∈
QC and any u1 ∈ U1, one has, by the ε-AXU property and uniformity of H and
since h1 and h2 are drawn independently,

Pr
[(

h2(t) ⊕ h2(t′) = y ⊕ y′) ∧ (
h1(t) = x ⊕ u1

)] ≤ ε

N
.

Then, summing over (t, x, y) �= (t′, x′, y′) and u1,

Pr[Tid ∈ Θ7] ≤ εq2cqp

2N
, and similarly Pr[Tid ∈ Θ8] ≤ εq2cqp

2N
.

Conditions (C-9), (C-10), (C-11), and (C-12). We will deal with conditions
(C-9) and (C-11) together, using the fact that

Pr [Tid ∈ Θ9 ∪ Θ11] = Pr [Tid ∈ Θ11] + Pr [Tid ∈ Θ9 \ Θ11] .

To upper bound Pr [Tid ∈ Θ11], we see α1 as a random variable over the random
choice of h1 (since α1 does not depend on h2). First, note that by the uniformity
of H,

E[α1] =
∑

(t,x,y)∈QC

∑

u1∈U1

Pr [x ⊕ h1(t) = u1] =
qcqp

N
,

so that by Markov’s inequality,

Pr [Tid ∈ Θ11] ≤
√

qcqp

N
.

Tweaking Even-Mansour Ciphers 205

Fix any h′
1 ∈ H such that, when h1 = h′

1, α1 <
√

qc, and fix any queries
(t, x, y) �= (t′, x′, y′) ∈ QC , (u1, v1), (u′

1, v
′
1) ∈ QP1 such that x ⊕ h1(t) = u1 and

x′ ⊕ h1(t′) = u′
1. Note that since α1 <

√
qc, there are at most qc

2 such tuple of
queries. Then

Pr
[(

h1 = h′
1

) ∧ (
h2(t) ⊕ h2(t′) = v1 ⊕ h1(t) ⊕ v′

1 ⊕ h1(t′)
)] ≤ ε

|H| ,

and, by summing over every h1 such that α1 <
√

qc and every such tuple of
queries, one has

Pr [Tid ∈ Θ9 \ Θ11] ≤ εqc

2
.

Finally,

Pr [Tid ∈ Θ9 ∪ Θ11] ≤
√

qcqp

N
+

εqc

2
.

Similarly,

Pr [Tid ∈ Θ10 ∪ Θ12] ≤
√

qcqp

N
+

εqc

2
.

Conditions (C-13) and (C-14). For every u ∈ {0, 1}n, we see |Xu| as a random
variable over the random choice of h1. We also introduce the random variable

C = |{((t, x, y), (t′, x′, y′)) ∈ Q2
C , (t, x, y) �= (t′, x′, y′) : x ⊕ h1(t) = x′ ⊕ h1(t′)}|.

Then, by definition of β1,

β1 = |{(t, x, y) ∈ QC : ∃(t′, x′, y′) �= (t, x, y), x ⊕ h1(t) = x′ ⊕ h1(t′)}| ≤ C.

Hence, Pr [Tid ∈ Θ13] ≤ Pr
[
C ≥ √

qc

]
. Note that

E[C] =
∑

(t,x,y) �=(t′,x′,y′)

Pr [x ⊕ h1(t) = x′ ⊕ h1(t′)] ≤ εq2c
2

.

By Markov’s inequality,

Pr [Tid ∈ Θ13] ≤ εq
3/2
c

2
, and similarly Pr [Tid ∈ Θ14] ≤ εq

3/2
c

2
.

The result follows by an union bound over all conditions. �

Analysis of Good Transcripts. Next, we have to study good transcripts.

Lemma 3. Let qc and qp be integers such that qp + 3qc ≤ N/2. Then for any
good transcript τ , one has

Pr [Tre = τ]
Pr [Tid = τ]

≥ 1 −
(

4qc(qp + 2qc)2

N2
+

14q
3/2
c + 4

√
qcqp

N

)

.

Proof. Deferred to the full version of the paper [8] for reasons of space. �

206 B. Cogliati et al.

Concluding the Proof of Theorem 2. We are now ready to prove Theo-
rem 2. Combining Lemmas 1, 2, and 3, one has

Advcca
TEM[n,2,H](qc, qp) ≤ 3qcq

2
p

N2
+ 2ε2q3c +

εq2cqp

N
+

2
√

qcqp

N
+ 2εq3/2

c

+
4qc(qp + 2qc)2

N2
+

14q
3/2
c + 4

√
qcqp

N

=
7qcq

2
p

N2
+

16q2cqp

N2
+

6
√

qcqp

N
+

εq2cqp

N
+ 2ε2q3c + 2εq3/2

c

+
16q3c
N2

+
14q

3/2
c

N

≤ 7qcq
2
p

N2
+

16q2cqp

N2
+

6
√

qcqp

N
+

εq2cqp

N
+ 4εq3/2

c +
30q

3/2
c

N
,

where for the last inequality we used the assumption that qc ≤ min{N2/3, ε−2/3}.
Since the result holds trivially when qcq

2
p > N2, we can assume that qcq

2
p ≤ N2,

so that qcq
2
p/N2 ≤ √

qcqp/N . Moreover, since qc ≤ N2/3, one has q2c/N2 ≤√
qc/N and q2c/N ≤ √

qc, which concludes the proof of Theorem2.

4 Asymptotic Bounds via the Coupling Technique

When the number of rounds r of the TEM construction grows, one has the
following result.

Theorem 3. Let r be an even integer and r′ = r/2. Let qc, qp be positive inte-
gers, and H be a uniform ε-AXU family of functions from T to {0, 1}n. Then:

AdvccaTEM[n,r,H](qc, qp) ≤
√

2r′+4
qc(Nεqc + qp)r′

Nr′ .

For odd r, we have Advcca
TEM[n,r,H] ≤ Advcca

TEM[n,r−1,H], so that we can use the
above bound with r − 1. Using an ε-AXU function family with ε � 2−n, we
see that the iterated tweakable Even-Mansour cipher with an even number r of
rounds achieves CCA-security up to roughly 2

rn
r+2 adversarial queries.

The proof relies on the coupling technique. Since it combines in a rather
straightforward way the approach of [21,23], the proof is entirely deferred to the
full version of the paper [8].

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
http://eprint.iacr.org/2013/061

http://eprint.iacr.org/2013/061

Tweaking Even-Mansour Ciphers 207

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

3. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key
security of block ciphers. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
348–366. Springer, Heidelberg (2014)

4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using
a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

6. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-
round even-mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014).
http://eprint.iacr.org/2014/443

7. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). http://eprint.iacr.org/2013/222

8. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking even-mansour ciphers. Full version
of this paper. http://eprint.iacr.org/2015/539

9. Cogliati, B., Seurin, Y.: On the provable security of the iterated even-mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg
(2015). http://eprint.iacr.org/2015/069

10. Crowley, P.: Mercy: a fast large block cipher for disk sector encryption. In: Schneier,
B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 49–63. Springer, Heidelberg (2001)

11. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001)

12. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

13. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Crypt. 10(3), 151–162 (1997)

14. Farshim, P., Procter, G.: The related-key security of iterated even-mansour ciphers.
In: Fast Software Encryption - FSE 2015 (2015, to appear). Full version available
at http://eprint.iacr.org/2014/953

15. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The skein hash function family. SHA3 Submission to NIST (Round
3) (2010)

16. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking luby-rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007)

17. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

18. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

19. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

http://eprint.iacr.org/2014/443
http://eprint.iacr.org/2013/222
http://eprint.iacr.org/2015/539
http://eprint.iacr.org/2015/069
http://eprint.iacr.org/2014/953

208 B. Cogliati et al.

20. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the tweakey
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Heidelberg (2014)

21. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of the
iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

22. Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small set of public
permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol.
8269, pp. 444–463. Springer, Heidelberg (2013). http://eprint.iacr.org/2013/255

23. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–152. Springer,
Heidelberg (2014)

24. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012).
http://eprint.iacr.org/2012/450

25. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

26. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer,
Heidelberg (2009)

27. Mitsuda, A., Iwata, T.: Tweakable pseudorandom permutation from generalized
feistel structure. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008.
LNCS, vol. 5324, pp. 22–37. Springer, Heidelberg (2008)

28. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer,
Heidelberg (2009)

29. Nyberg, K., Knudsen, L.R.: Provable security against differential cryptanalysis.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 566–574. Springer,
Heidelberg (1993)

30. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

31. Procter, G.: A note on the CLRW2 tweakable block cipher construction.
IACR Cryptology ePrint Archive, report 2014/111 (2014). http://eprint.iacr.org/
2014/111

32. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

33. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

34. Rogaway, P., Zhang, H.: Online ciphers from tweakable blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011)

35. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1. Submission to the CAESAR competition (2014)

36. Schroeppel, R.: The hasty pudding cipher. AES submission to NIST (1998)
37. Shoup, V.: On fast and provably secure message authentication based on univer-

sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

38. Steinberger, J.: Improved security bounds for Key-alternating ciphers via Hellinger
distance. IACR Cryptology ePrint Archive, report 2012/481 (2012). http://eprint.
iacr.org/2012/481

http://eprint.iacr.org/2013/255
http://eprint.iacr.org/2012/450
http://eprint.iacr.org/2014/111
http://eprint.iacr.org/2014/111
http://eprint.iacr.org/2012/481
http://eprint.iacr.org/2012/481

Multi-key Security: The Even-Mansour
Construction Revisited

Nicky Mouha1,2 and Atul Luykx1(B)

1 Department of Electrical Engineering-ESAT/COSIC,
KU Leuven, Leuven and iMinds, Ghent, Belgium
{Nicky.Mouha,Atul.Luykx}@esat.kuleuven.be
2 Project-team SECRET, Inria, Paris, France

Abstract. At ASIACRYPT 1991, Even and Mansour introduced a
block cipher construction based on a single permutation. Their construc-
tion has since been lauded for its simplicity, yet also criticized for not pro-
viding the same security as other block ciphers against generic attacks. In
this paper, we prove that if a small number of plaintexts are encrypted
under multiple independent keys, the Even-Mansour construction sur-
prisingly offers similar security as an ideal block cipher with the same
block and key size. Note that this multi-key setting is of high practical
relevance, as real-world implementations often allow frequent rekeying.
We hope that the results in this paper will further encourage the use of
the Even-Mansour construction, especially when a secure and efficient
implementation of a key schedule would result in significant overhead.

Keywords: Even-Mansour · Multi-key setting · Broadcast attack ·
Related-key setting

1 Introduction

Modern block cipher design is based on the concept of iterating a round func-
tion [44]. This round function typically consists of a subkey addition followed by
an unkeyed invertible function. All commonly-used block ciphers, including the
DES [46] and AES [23] standards, follow this design strategy.

As such, the design of an iterated block cipher consists of two parts: the
design of a round function, and a key schedule to generate the subkeys for every
round. Although round function design seems to be a relatively well-understood
problem, this is much less the case for the key schedule. For example, Rijmen
and Daemen already stated in the AES design book that: “There is no consen-
sus on the criteria that a key schedule must satisfy” [23, p. 77]. This fact has
been repeated many times since, for example in the SHA-3 finalist Grøstl design
document [32, p. 5]. In particular, there seems to be no consensus on whether
a “strong” or a “simple” key schedule is required, a choice which appears to
depend on the application.

An argument for a “simple” key schedule is that keys should be chosen uni-
formly at random from the entire key space anyway, in order to avoid a speed-up
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 209–223, 2015.
DOI: 10.1007/978-3-662-47989-6 10

210 N. Mouha and A. Luykx

of brute-force attacks due to low key entropy. As a result, attacks based on weak
keys [25] and known keys [42] are no longer applicable. Similarly, when multiple
keys are used, they should be chosen independently to prevent a compromise of
one key helping the recovery of other keys. This avoids attacks based on related
keys [9–11].

Proponents of a “strong” key schedule point out that in practice, keys may
not always be chosen independently from a uniformly random distribution. The
cause of this could be a weak protocol, a programming error or an insecure
implementation.

Complexity, however, always comes at a cost. It makes cryptosystems more
difficult to design, to implement and to analyze. Hence, we argue for a block
cipher with a simple key schedule, combined with the use of a secure key deriva-
tion function (KDF) [20] for secret-key applications. A KDF can be as simple
as using the same block cipher to encrypt a counter, in which case the imple-
mentation overhead is minimal. For a theoretical treatment of KDFs, we refer
to [1].

Although the use of a KDF avoids attacks on weak keys, known keys and
related keys, it cannot prevent multi-key attacks [12,14,24,38]: a plaintext may
be encrypted under multiple independent keys. Often overlooked by block cipher
designers, multi-key attacks are highly relevant in practice (cf. Sect. 2).

This leads us to the following open problem, formulated by Daemen and
Rijmen in 2012 [24]. In their paper, they point out: “A scenario where the
adversary can query the block cipher under related keys, or even multiple keys,
inevitably leads to security erosion”. Paraphrased, concerning the multi-key set-
ting they ask: “Can we design a secure block cipher with a lighter key schedule
and higher key agility if related-key security is not required?”

In this paper, we give a positive answer to their question. Surprisingly, one
of the simplest block ciphers, the single-key Even-Mansour construction1 [26,29,
30], shown in Fig. 1, offers similar security to an ideal block cipher when a small
number of plaintexts can be queried under many keys.

P

K

π

K

n

C
n

Fig. 1. The Even-Mansour construction.

Outline. The single-key, related-key and multi-key attack settings are discussed
in Sect. 2, from a theoretical as well as a practical perspective. In Sect. 3, we prove
tight bounds for the security of an Even-Mansour block cipher and of an ideal
1 Throughout this paper, we will always refer to the single-key variant of the Even-

Mansour construction, that is, using only a single n-bit key K.

Multi-key Security: The Even-Mansour Construction Revisited 211

block cipher in the multi-key setting. The relevance of our observations for the
security and efficiency of block cipher implementations is discussed in Sect. 4.
We conclude the paper in Sect. 5.

2 Attack Settings

2.1 Three Attack Settings

Single-Key Setting. One key K is chosen uniformly at random from the
key space in the single-key setting, also referred to as the fixed-key setting. The
adversary can then make encryption and decryption queries to block cipher E,
all under the same key K.

Related-Key Setting. In the related-key setting, the adversary can perform
encryption and decryption queries to block cipher E under keys Ki. Each key i
satisfies the relationship Ki = Φi(K), where K is secret, but the functions Φi are
chosen by the adversary. To avoid that not every block cipher E is vulnerable to
a related-key attack, restrictions are necessary on the functions Φi as explained
in [9].

Security against related-key attacks is often considered in the design of
a block cipher. For example, it was a stated design goal for the AES block
cipher [23], although it was shown that AES is not secure against related-key
attacks [15,16].

Furthermore, it should be noted that certain commonly-used algorithms,
including DES and Triple-DES, are trivially insecure against related-key attacks.
For DES [46] and Triple-DES [6], this is an immediate result of its complemen-
tation property [36]: EK(P) = EK(P), where x represents the bitwise comple-
ment of x.

It is difficult to say whether related-key security should be a requirement, as
this depends on the protocol in which the cryptosystem is used. Nevertheless,
it seems fair to point out that protocol designers should not assume related-
key security, given that several commonly-used designs are (sometimes trivially)
insecure in this setting.

Multi-key Setting. In the multi-key setting, the adversary can query encryp-
tion and decryption queries under keys Ki, where all Ki are independently cho-
sen, uniformly at random. The multi-key setting can be seen as a generalization
of the multi-user setting of Chatterjee et al. [19], where encryption queries of
only one plaintext P are allowed under keys Ki.2 This multi-user setting is then

2 In the model of Chatterjee et al. [19], an adversary can also corrupt any user of its
choosing, meaning that their key is given to the adversary. The goal of the adversary
is then to win the game for any uncorrupted user. Although it is straightforward to
take this refinement into account, we decided not to do this for the clarity of our
exposition.

212 N. Mouha and A. Luykx

again a further generalization of the broadcast setting of Mantin and Shamir [45],
where the plaintext P is unknown to the attacker.

Every attack in the broadcast setting also leads to an attack in the multi-user
setting, and every multi-user attack is also a multi-key attack. We will therefore
use the multi-key setting throughout this paper, in order to evaluate the security
against the most powerful adversaries.

2.2 Practical Relevance of the Multi-key Setting

The terms “broadcast” and “multi-user” imply a setting where one message is
sent to many users, encrypted under independent keys. Note, however, that this
setting does not actually require a large amount of users, and also applies to one
user that rekeys frequently.

Frequent rekeying is often a result of the common implementation practice to
use session keys. As explained in [48, Sect. 12.2.2], session keys limit the available
ciphertext under the same key for cryptanalytic attacks, and limit the exposure
in case a session key is compromised.

Furthermore, rekeying is necessary in certain scenarios in order to avoid
cryptanalytical attacks or to comply with existing standards. It should be noted
that several cryptanalytical attacks have a higher success probability when more
plaintext-ciphertext pairs under a specific key are available [8].

For example, NIST limits the amount of plaintext that can be processed
under the same key to 232 blocks (32 GB) for three-key Triple-DES, and to 220

blocks (16 MB) for two-key Triple-DES [6]. In the case of MAC functions, NIST
not only recommends to limit the number of message blocks under the same key,
but also to limit the number of MAC failures before rekeying is required [27,28].
In the case of TLS, rekeying is required after only one MAC failure [34].

AlFardan et al. [3] showed that it is a realistic attack vector in the case
of TLS to obtain the encryption of one secret (a cookie or password) under
multiple independent keys. They explained that this can be done either by using
JavaScript malware to generate multiple sessions, or by causing the session to be
terminated, after which some applications automatically reconnect and retrans-
mit the cookie or password. As shown by Paterson et al. [54], the same attack
setting also applies to WPA-TKIP because of its use of per-packet keys.

2.3 Security in the Multi-key Setting

As noted by Biham [12,13], there exists a faster generic key-recovery attack on
any block cipher in the multi-key setting compared to the single-key setting.
This can be seen as follows. To keep our explanation simple, let us assume in
this section that key size k equals the block size n.

In the single-key setting, an adversary with D = 1 plaintext-ciphertext pair
will need on average T = 2k−1 encryptions to recover the key by exhaustive
search with a success probability of about 50 %. More plaintext-ciphertext pairs
will increase the success probability of the attack, as probability decreases that

Multi-key Security: The Even-Mansour Construction Revisited 213

a random key will be found instead of the correct key, but will not reduce the
time complexity of the attack.

Recovering one key can be done with a lower time complexity in the multi-key
setting. To see this, let an attacker have D encryptions

EK1(P), EK2(P), . . . , EKD
(P) (1)

of the same plaintext P under multiple independent keys K1,K2, . . . , KD. Then,
after on average T = 2k−1/D encryptions of the plaintext P , one of the keys
K1,K2, . . . , KD will be recovered with a success probability of about 50 %.

Besides this observation, Biham also remarked in [12,13] that key collisions
become likely in this multi-key setting after about D = 2k/2 plaintext-ciphertext
pairs. Consequently, the key size k should be chosen to be sufficiently large by
design to avoid key collision attacks.

In Sect. 3, we will prove that the Even-Mansour construction has similar
security to an ideal block cipher in the multi-key setting, assuming the number
of plaintexts queried per key is small. Or put differently, when multi-key attacks
with a small amount of plaintext per key are taken into account, there is little
advantage in choosing a block cipher with a more complicated key schedule than
the Even-Mansour construction.

2.4 Related Work

The time-memory tradeoff of Hellman [37] is not a concern for block ciphers with
a reasonably long key size, because its precomputation time is the same as that
of exhaustive key search. This is different from the time-memory-data tradeoffs
for stream ciphers of Babbage-Golić [5,33] and Biryukov-Shamir [17], where the
time complexity can be far below exhaustive search.

As shown by Hong and Sarkar [38], and independently by Birykov [14], the
stream cipher time-memory-data tradeoffs can be applied to the block cipher
setting as well, assuming that a plaintext is encrypted under multiple keys.
Their work generalizes the findings of Biham that we presented in Sect. 2.3.

Chatterjee, Koblitz, Menezes and Sarkar critiqued the security proofs of
symmetric-key encryption and authentication modes [19,43,47], pointing out
that security is often reduced when a multi-user setting is considered.

Their findings inspired Fouque et al. [31] to look at collision search algorithms
in the multi-user setting. One of their results is the first analysis of the Even-
Mansour construction in the multi-user setting. We will use an entirely different
approach in this paper, by considering information-theoretic adversaries that are
only limited by the number of queries to the Even-Mansour block cipher and to
the underlying permutation. As we will show, the attack by Fouque et al. reaches
the security bound that we will prove for the Even-Mansour construction in the
multi-key setting.

A recent paper by Andreeva et al. [4] considers the security of keyed sponge
constructions in the single-target and multi-target scenarios, which are similar
to our single-key and multi-key settings. The approach that we follow in this

214 N. Mouha and A. Luykx

paper is different, as we introduce these concepts in a more general way. Fur-
thermore, we do not express the attacks and security bounds in terms of the
“total maximum multiplicity μ”, a parameter that is specific to the analysis of
sponge constructions.

Note that the multi-user setting is not only relevant for symmetric-key cryp-
tography, but also for public-key cryptography. For a theoretical treatment of
public-key encryption in the multi-user setting, we refer to Bellare et al. [7].

3 Security Proofs in the Multi-key Setting

Block cipher security in the multi-key setting is formalized with a distinguisher
comparing two worlds, one in which the distinguisher is given access to a block
cipher instantiated with � keys, and one in which it is given access to � indepen-
dent permutations. Our focus is on constructions in the ideal model, meaning
they make use of an ideal primitive.

Definition 1. An ideal primitive is a uniformly distributed random variable
over a set of functions F .

These primitives model basic components from which cryptographic algorithms
are constructed. In line with Kerckhoffs’s principle, ideal primitives are public
and can be accessed by adversaries in security definitions. The adversaries them-
selves are information-theoretic and are only bounded in the number of queries
they make to each oracle.

Let perm(n) denote the set of all permutations on n bits, and block(k, n)
denote the set of all block ciphers with k-bit key and n-bit block size. Let �
denote number of keys Ki under which the adversary performs queries, that is,
there is at least one query for every key Ki for 1 ≤ i ≤ �.

Definition 2 (Multi-key Security). Let Π be a primitive and EΠ a random
variable over block(k, n). Given an adversary A, its multi-key advantage with
respect to � keys is

Advmk
E (A) =

∣
∣
∣Pr

(
AEΠ

K1
,EΠ

K2
,...,EΠ

K�
,Π → 1

)
− Pr

(Ap1,p2,...,p�,Π → 1
)∣∣
∣ , (2)

where the keys K1, . . . , K� are independently and uniformly drawn from {0, 1}k,
and p1, . . . , p� are independently and uniformly drawn from perm(n). The adver-
sary A has access to both forward and inverse oracles.

In the case of the Even-Mansour block cipher, the primitive Π is a permutation,
whereas for an ideal block cipher, the primitive Π is the block cipher itself.

Note that our definition is similar to the “3PRP” notion in the security
analysis of Chaskey [49], however we consider � independent keys instead of
three keys that are related to each other. Our definition also closely follows the
“Joint Distinguishing Advantage” of Andreeva et al. [4, Definition 2], except that
the total maximum multiplicity μ is not a parameter in our security definition.

Multi-key Security: The Even-Mansour Construction Revisited 215

A

π

K1

K1

π

K2

K2

π

K

K

· · · π p1 p2 p· · · π

· · ·

Fig. 2. An Even-Mansour block cipher EK(P) = π(P ⊕ K) ⊕ K in the multi-key
setting. Although only one direction is shown, inverse oracles can be accessed as well.
The number of queries by the adversary A to any of the first � oracles is denoted by
D, the number of queries to the last oracle by T .

Theorem 1 (Even-Mansour Multi-key Security). Let EM be the Even-
Mansour block cipher EK(P) = π(P ⊕ K) ⊕ K, then for all A making at most
D queries to EK1 , . . . , EK�

(resp. p1, . . . , p�) or their inverses and at most T
queries to π or π−1,

Advmk
EM(A) ≤ D2 + 2DT

2n
. (3)

Our proof is similar to the security proof of the MAC function Chaskey [49],
except that we now consider that � keys are drawn independently and uniformly
at random. The proof uses Patarin’s H-coefficient technique [53]. For a detailed
explanation of this technique, we refer to Chen and Steinberger [21]. The proof
can be seen as a generalization of the security analysis of the Even-Mansour
block cipher [29,30].

Proof. As shown in Fig. 2, we consider an adversary A that has bidirec-
tional access to � + 1 oracles (O1, . . . ,O�+1). In the real world, these are
(EK1 , . . . , EK�

, π) (where EK(P) = π(P ⊕ K) ⊕ K) with Ki
$←−{0, 1}n for

i = 1, . . . , �, π
$←− perm(n), and in the ideal world these are (p1, . . . , p�, π) $←−

perm(n)�+1. Without loss of generality we assume that A is deterministic. It
makes Di queries to oracle Oi for i = 1, . . . , �, and T queries to O�+1. Let
D =

∑�
i=1 Di. To be overly generous to the adversary A, after it has made all

of its D + T queries, but before it outputs its decision, we will reveal the keys
K1, . . . , K� (in the real world) or randomly generated dummy keys K1, . . . , K�

(in the ideal world).
The interaction of A with the oracles can be summarized by a transcript

τ = (K1, . . . , K�, τ1, . . . , τ�+1). Here, the directionless list of queries to Oj for
i = 1, . . . , � is denoted by τi = {(P (1)

i , C
(1)
i), . . . , (P (Di)

i , C
(Di)
i)}, and to O�+1

216 N. Mouha and A. Luykx

by τ�+1 = {(x(1), y(1)), . . . , (x(T), y(T))}. We assume the adversary never makes
duplicate queries, so that P

(j)
i �= P

(j′)
i , C

(j)
i �= C

(j′)
i , x(j) �= x(j′), and y(j) �= y(j′)

for all i, j, j′ where j �= j′.
Given the fixed deterministic adversary A, we denote the probability distri-

bution of transcripts in the real world by X, and in the ideal world by Y . We
say that a transcript τ is attainable if it can be obtained from interacting with
(p1, . . . , p�, π), hence if Pr (Y = τ) > 0. According to the H-coefficient technique,
we have (see [21] for a proof):

Lemma 1 (H-coefficient Technique). Let us consider a fixed deterministic
adversary A, and let T = Tgood ∪ Tbad be a partition of the set of attainable
transcripts. Let ε be such that for all τ ∈ Tgood

Pr (X = τ)
Pr (Y = τ)

≥ 1 − ε. (4)

Then, Advmk
EM(A) ≤ ε + Pr (Y ∈ Tbad).

We say that a transcript τ is bad if two different queries would result in the
same input or output to π, were A interacting with the real world. Put formally,
τ is bad if one of the following conditions is set:

∃i, i′, j, j′ : i �= i′ : P
(j)
i ⊕ P

(j′)
i′ = Ki ⊕ Ki′ ∨ C

(j)
i ⊕ C

(j′)
i′ = Ki ⊕ Ki′ ,

(5)

∃i, j, j′ : P
(j)
i ⊕ x(j′) = Ki ∨ C

(j)
i ⊕ x(j′) = Ki. (6)

A transcript that is not a bad transcript, is referred to as a good transcript.

Upper Bounding Pr (Y ∈ Tbad). We want to upper bound the event that
a transcript τ in the ideal world satisfies (5)–(6). Note that Ki

$←− {0, 1}n for
i = 1, . . . , � are dummy keys generated independently of τ1, . . . , τ�. Therefore,
there are at most 2DiDi′ possible keys that satisfy (5) for any fixed i �= i′.
Analogously, there are at most 2DiT possible keys that satisfy (6) for any fixed
i. Therefore,

Pr (Y ∈ Tbad) ≤
∑

i

∑
i′<i 2DiDi′ +

∑
i 2DiT

2n
, (7)

≤ D2 + 2DT

2n
. (8)

Lower Bounding Ratio Pr (X = τ) / Pr (Y = τ). Let us consider a good
and attainable transcript τ ∈ Tgood. Then denote by ΩX = 2n� · 2n! the set of
all possible oracles in the real world and by compX(τ) ⊆ ΩX the set of oracles
in ΩX compatible with transcript τ . Define ΩY = 2n� · (2n!)�+1 and compY (τ)
similarly. According to the H-coefficient technique:

Pr (X = τ) =
|compX(τ)|

|ΩX | , and Pr (Y = τ) =
|compY (τ)|

|ΩY | . (9)

Multi-key Security: The Even-Mansour Construction Revisited 217

First, we calculate |compX(τ)|. As τ ∈ Tgood, there are no two queries in τ with
the same input to or output of the underlying permutation. Any query tuple in
τ therefore fixes exactly one input-output pair of the underlying oracle. Because
τ consists of D+T query tuples, the number of possible oracles in the real world
equals (2n − D − T)!. By a similar reasoning, the number of possible oracles in
the ideal world equals

∏�
i=1(2

n − Di)! · (2n − T)!. Therefore,

Pr (X = τ) =
(2n − D − T)!

2n� · 2n!
, (10)

Pr (Y = τ) =
∏�

i=1(2
n − Di)! · (2n − T)!
2n� · (2n!)�+1

≤ (2n − D − T)! · (2n!)�

2n� · (2n!)�+1
. (11)

It then follows that Pr (X = τ) /Pr (Y = τ) ≥ 1. �

A

E

K1

E E· · · E p1 p2 p· · · E

· · ·

K2 K

Fig. 3. An ideal block cipher EK in the multi-key setting. Although only one direction
is shown, all oracles are assumed to be bidirectional.

Theorem 2 (Ideal Block Cipher Multi-key Security). Let the ideal block
cipher IBC be uniformly distributed random variable over block(k, n), then for all
A making at most D queries to EK1 , . . . , EK�

(resp. p1, . . . , p�) or their inverses
and at most T queries to EK or its inverse under adversary-chosen keys,

Advmk
IBC(A) ≤ �2 + 2�T

2k+1
. (12)

Proof. We consider the adversary A shown in Fig. 3. Define E to be the event
where either

1. there exists i �= j such that Ki = Kj or
2. there exists a query E(K,X) or E−1(K,X) such that K = Ki for some i.

Given that E does not happen, EK1 , . . . , EK�
are drawn independently and uni-

formly at random from perm(n), and all queries made to E are independent of

218 N. Mouha and A. Luykx

EK1 , . . . , EK�
. Therefore (EK1 , . . . , EK�

, E) and (p1, . . . , p�, E) are indistinguish-
able given the negation of E, and by the fundamental lemma of game playing,

Advmk
IBC(A) ≤ Pr (E). (13)

The probability that there exists an adversary query E(K,X) or E−1(K,X) such
that K = Ki is at most T�

2k . The probability that two keys collide is bounded
above by �2

2k+1 , hence

Pr (E) ≤ �2 + 2�T

2k+1
. (14)

�
By our definition, there must be at least one query for every key. Therefore

D ≥ �, so that the following corollary can be derived from Theorem2:

Corollary 1 (Corollary of Theorem 2).

Advmk
IBC(A) ≤ D2 + 2DT

2k+1
. (15)

Observe that when the amount of plaintext per key is small, this bound is close
to that of Theorem 2.

3.1 Tightness of the Security Bounds

Several attacks have been published that match the security bound of the Even-
Mansour block cipher in the single-key setting. The first attacks were published
by Daemen [22]: a known-plaintext attack for D = 2 and a chosen-plaintext
attack for any value of D. Biruykov and Wagner [18] presented a known-plaintext
attack for D ≥ 2n/2. A known-plaintext attack for any value of D was given by
Dunkelman et al. [26].

The single-key setting is a special case of the multi-key setting where � = 1.
We proved in Sect. 3 (see Theorem 1) that the security bound of Even-Mansour in
multi-key setting is a straightforward extension of the single-key setting. There-
fore, the bound that we derived for Even-Mansour in the multi-key setting is
also tight.

An attack matching our Even-Mansour security bound in the multi-key set-
ting was recently given by Fouque et al. [31] for � = 2n/3, Di = 2n/3 for
i = 1, . . . , � and T = 2n/3.

In the case of an ideal block cipher in the multi-key setting with D = �, the
key collision and time-memory trade-off attacks of Biham [12,13] show that the
security bound of Corollary 1 is also tight. For a discussion of these attacks and
their subsequent improvements, we refer to Sect. 2.3. Evidently, these attacks
are also applicable to the Even-Mansour block cipher in the multi-key setting.

Multi-key Security: The Even-Mansour Construction Revisited 219

4 Discussion

As we proved in Sect. 3, the Even-Mansour block cipher has similar security in
the multi-key setting as an ideal block cipher with the same block and key size,
assuming D ≈ �. In Sect. 2.2, we pointed out the relevance of this multi-key
setting in practice.

The Even-Mansour block cipher is interesting from a design point of view
because of its simplicity. As Dunkelman et al. [26] argued, it also achieves mini-
malism, in the sense that removing any component (one of the two key additions
or the permutation) results in an insecure construction. But the Even-Mansour
construction also has many implementation advantages.

From an efficiency point of view, the Even-Mansour block cipher avoids that
round keys need to be precalculated and stored in memory, or that they need to
be calculated on-the-fly. Avoiding precalculation of the key schedule results in a
higher key agility, because of the lower cost to rekey. If round keys do not need
to be calculated on-the-fly, the efficiency of every block cipher call increases. For
software implementations, avoiding a key schedule reduces register pressure and
decreases RAM requirements. The amount of RAM is very critical on certain
microcontrollers, as shown for example in [39].

From a security point of view, the Even-Mansour block cipher avoids the
need to store round keys securely. Note that in the case of AES-128, recovery of
any round key leads to recovery of the encryption key. In the case of AES with
192-bit or 256-bit keys, any two consecutive round keys can be used to recover
the encryption key.

Secure key storage is not only a problem for smart cards and RFID tags, but
is also difficult to ensure on general purpose CPUs. The virtual memory system
may move cryptographic keys into swap storage, which necessitates error-prone
techniques to avoid swapping, or to use swap encryption [57].

But even in the presence of these countermeasures, cold boot attacks [35]
may be used to exploit the fact that DRAM retains a large part of its memory
for several seconds after removing power. Cooling techniques may be used to
increase this time to several hours or even days.

If the round keys that are recovered by a cold boot attack contain errors (due
to memory bit decay), it may still be possible to recover the encryption key. For
AES, Halderman et al. [35] describe a simple algorithm to recover the encryption
key in this case. Improved attacks were later given by Albrecht et al. [2] using
integer programming, and by Tsow [58], and Kamal and Youssef [41] using a
SAT solver.

The Even-Mansour block cipher avoids all attacks that recover the encryption
key from multiple noisy round keys, as it avoids the calculation of round keys
altogether. The leakage of encryption keys or round keys cannot be avoided
without additional security measures, for example by ensuring they are only
stored in the processor registers and not in RAM [50,51]. However, this problem
becomes much more manageable for the Even-Mansour construction, as only one
n-bit key needs to be protected, instead of multiple round keys.

220 N. Mouha and A. Luykx

5 Conclusion and Future Work

Rekeying occurs frequently in real-world implementations, meaning that a plain-
text may be encrypted under different keys. This setting is used, for example,
in the attacks by AlFardan et al. [3] on TLS, and by Paterson et al. [54] on
WPA-TKIP.

This setting is often referred to as the broadcast setting or the multi-user
setting. In this paper, we introduced the multi-key setting to generalize the
aforementioned settings. In the multi-key setting, the adversary can perform
chosen-plaintext and chosen-ciphertext attacks under a set of unknown keys.

In the multi-key setting, we proved that the Even-Mansour block cipher is
secure up to (D2 + 2DT)/2n queries. We proved a similar bound for an ideal
block cipher with k = n, and showed that both bounds are tight. We used our
proofs to argue in favor of the Even-Mansour construction: not only because of
the simplicity of its design, but also because the lack of a key schedule makes it
easier to generate fast and secure implementations.

Modes of operation for encryption and/or authentication may be designed
more efficiently, if it is known that the underlying block cipher follows the Even-
Mansour construction. It also seems that an Even-Mansour block cipher may
still be secure if the underlying permutation is far from ideal, an idea that was
pioneered by the design of the Chaskey MAC function [49]. We leave the further
exploration of these research questions to future work.

Acknowledgments. The authors would like to thank the anonymous reviewers and
Bart Mennink for their useful comments and suggestions. This work was supported in
part by the Research Council KU Leuven: GOA TENSE (GOA/11/007), by Research
Fund KU Leuven, OT/13/071, and by the French Agence Nationale de la Recherche
through the BLOC project under Contract ANR-11-INS-011. Nicky Mouha is sup-
ported by a Postdoctoral Fellowship from the Flemish Research Foundation (FWO-
Vlaanderen). Atul Luykx is supported by a Ph.D. Fellowship from the Institute for
the Promotion of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen).

References

1. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: a comparative analysis
of the security of re-keying techniques. In: Okamoto [52], pp. 546–559

2. Albrecht, M., Cid, C.: Cold boot key recovery by solving polynomial systems with
noise. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 57–72.
Springer, Heidelberg (2011)

3. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.: On
the security of RC4 in TLS and WPA. In: USENIX Security Symposium (2013)

4. Andreeva, E., Daemen, J., Mennink, B., Assche, G.V.: Security of keyed sponge
constructions using a modular proof approach. In: Demirci, H., Leander, G. (eds.)
FSE 2015. LNCS, Springer (2015, to appear). https://www.cosic.esat.kuleuven.be/
publications/article-2502.pdf

https://www.cosic.esat.kuleuven.be/publications/article-2502.pdf
https://www.cosic.esat.kuleuven.be/publications/article-2502.pdf

Multi-key Security: The Even-Mansour Construction Revisited 221

5. Babbage, S.H.: Improved “exhaustive search” attacks on stream ciphers. In: ECOS
95 (European Convention on Security and Detection), Conference publication No.
408, pp. 161–166, May 1995

6. Barker, W.C., Barker, E.: SP 800–67 Revision 1: Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher, January 2012. http://csrc.nist.
gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel [56], pp. 259–274

8. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, Florida, USA, October 19–22, 1997, pp. 394–
403. IEEE Computer Society (1997)

9. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003)

10. Biham, E.: New types of cryptanalytic attacks using related keys (extended
abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–
409. Springer, Heidelberg (1994)

11. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptology
7(4), 229–246 (1994)

12. Biham, E.: How to Forge DES-Encrypted Messages in 228 Steps. Technical report
CS0884, Technion Computer Science Department, Israel (1996)

13. Biham, E.: How to decrypt or even substitute DES-encrypted messages in 228

steps. Inf. Process. Lett. 84(3), 117–124 (2002)
14. Biryukov, A.: Some Thoughts on Time-Memory-Data Tradeoffs. Cryptology ePrint

Archive, Report 2005/207 (2005). http://eprint.iacr.org/
15. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192

and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

16. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

17. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto [52], pp. 1–13

18. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel [56], pp. 589–606
19. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Miri, A.,

Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg
(2012)

20. Chen, L.: Recommendation for Key Derivation Using Pseudorandom Functions
(Revised). NIST special publication 800–108, National Institute of Standards and
Technology (NIST), October 2009. http://csrc.nist.gov/publications/nistpubs/
800-108/sp800-108.pdf

21. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

22. Daemen, J.: Limitations of the even-mansour construction. In: Imai et al. [40], pp.
495–498

23. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

24. Daemen, J., Rijmen, V.: On the related-key attacks against AES. In: Proceedings
of the Romanian Academy, Series A, vol. 13(4), pp. 395–400 (2012)

http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://eprint.iacr.org/
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

222 N. Mouha and A. Luykx

25. Davies, D.W.: Some regular properties of the ‘data encryption standard’ algorithm.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO, pp. 89–96. Plenum
Press, New York (1982)

26. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval and Johansson [55], pp. 336–354

27. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. NIST special publication 800–38b, National Institute of
Standards and Technology (NIST), May 2005. http://csrc.nist.gov/publications/
nistpubs/800-38B/SP 800-38B.pdf

28. Dworkin, M.: Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, November 2007. http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf

29. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai et al. [40], pp. 210–224

30. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptology 10(3), 151–162 (1997)

31. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014)

32. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. Submission to the NIST
SHA-3 Competition (Round 3) (2011). http://www.groestl.info/Groestl.pdf

33. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

34. Group, I.N.W.: The Transport Layer Security (TLS) Protocol (2006). http://tools.
ietf.org/html/rfc4346

35. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) Proceedings of the 17th
USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA, USA, pp.
45–60. USENIX Association (2008)

36. Hellman, M.E., Merkle, R., Schroeppel, R., Diffie, W., Pohlig, S., Schweitzer, P.:
Results of an Initial Attempt to Cryptanalyze the NBS Data Encryption Standard.
Technical report, Stanford University, USA (1976)

37. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

38. Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005)

39. Ideguchi, K., Owada, T., Yoshida, H.: A Study on RAM Requirements of Various
SHA-3 Candidates on Low-cost 8-bit CPUs. Cryptology ePrint Archive, Report
2009/260 (2009). http://eprint.iacr.org/

40. Matsumoto, T., Imai, H., Rivest, R.L. (eds.): ASIACRYPT 1991. LNCS, vol. 739.
Springer, Heidelberg (1993)

41. Kamal, A.A., Youssef, A.M.: Applications of SAT solvers to AES key recovery
from decayed key schedule images. In: 2010 Fourth International Conference on
Emerging Security Information Systems and Technologies (SECURWARE), pp.
216–220. IEEE (2010)

42. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://www.groestl.info/Groestl.pdf
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc4346
http://eprint.iacr.org/

Multi-key Security: The Even-Mansour Construction Revisited 223

43. Koblitz, N., Menezes, A.: Another look at HMAC. J. Math. Cryptology 7(3), 225–
251 (2013)

44. Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

45. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

46. Mehuron, W.: Data Encryption Standard (DES), October 1999. http://csrc.nist.
gov/publications/fips/fips46-3/fips46-3.pdf

47. Menezes, A.: Another look at provable security. In: Pointcheval and Johansson
[55], p. 8

48. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, USA (1997)

49. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Heidelberg (2014)

50. Müller, T., Dewald, A., Freiling, F.C.: AESSE: a cold-boot resistant implementa-
tion of AES. In: Costa, M., Kirda, E. (eds.) Proceedings of the Third European
Workshop on System Security, EUROSEC 2010, Paris, France, April 13, 2010, pp.
42–47. ACM (2010)

51. Müller, T., Freiling, F.C., Dewald, A.: TRESOR runs encryption securely outside
RAM. In: Proceedings of 20th USENIX Security Symposium, San Francisco, CA,
USA, August 8–12, 2011. USENIX Association (2011)

52. Okamoto, T. (ed.): ASIACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg
(2000)

53. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

54. Paterson, K.G., Poettering, B., Schuldt, J.C.N.: Plaintext recovery attacks against
WPA/TKIP. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
325–349. Springer, Heidelberg (2015)

55. Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237.
Springer, Heidelberg (2012)

56. Preneel, B. (ed.): EUROCRYPT 2000. LNCS, vol. 1807. Springer, Heidelberg
(2000)

57. Provos, N.: Encrypting virtual memory. In: Bellovin, S.M., Rose, G. (eds.) 9th
USENIX Security Symposium, Denver, Colorado, USA, August 14–17, 2000.
USENIX Association (2000)

58. Tsow, A.: An improved recovery algorithm for decayed AES key schedule images.
In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 215–230. Springer, Heidelberg (2009)

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

Reproducible Circularly-Secure Bit Encryption:
Applications and Realizations

Mohammad Hajiabadi and Bruce M. Kapron(B)

Department of Computer Science, University of Victoria, Victoria V8W 3P6, Canada
{mhaji,bmkapron}@cs.uvic.ca

Abstract. We give generic constructions of several fundamental crypto-
graphic primitives based on a new encryption primitive that combines cir-
cular security for bit encryption with the so-called reproducibility property
(Bellare et al. PKC 2003). At the heart of our constructions is a novel tech-
nique which gives a way of de-randomizing reproducible public-key bit-
encryption schemes and also a way of reducing one-wayness conditions of
a constructed trapdoor-function family (TDF) to circular security of the
base scheme. The main primitives that we build from our encryption prim-
itive include k-wise one-way TDFs (Rosen and Segev TCC 2009), CCA2-
secure encryption and deterministic encryption. Our results demonstrate
a new set of applications of circularly-secure encryption beyond fully-
homomorphic encryption and symbolic soundness. Finally, we show the
plausibility of our assumptions by showing that the DDH-based circularly-
secure scheme of Boneh et al. (Crypto 2008) and the subgroup indistin-
guishability based scheme of Brakerski and Goldwasser (Crypto 2010) are
both reproducible.

Keywords: Circular security · Correlated-input security · Trapdoor
functions · (non-)shielding CCA construction · Deterministic encryption

1 Introduction

A central problem in cryptography is delineating the assumptions required for
the existence of cryptographic primitives. One way to differentiate assumptions
is by whether they refer to the hardness of a specific computational problem
(e.g., factoring), or refer generically to a class of problems (e.g., inverting effi-
ciently computable functions). Assumptions of the former sort often lead to
primitives which are more practical, e.g., in terms of efficiency or levels of secu-
rity achieved. Those of the latter sort are useful for gaining deeper insights into
the security requirements of a primitive, and also as a means of unifying specific
assumptions. However, these approaches are not mutually exclusive. In partic-
ular, in cases where we have not been able to obtain constructions based on
generic assumptions, we may consider strengthening an assumption with some
more specific properties. This is the approach we take in this paper. By adding
a syntactic property to circularly-secure bit encryption, we are able to obtain
constructions of several powerful cryptographic primitives.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 224–243, 2015.
DOI: 10.1007/978-3-662-47989-6 11

Reproducible Circularly Secure Encryption 225

More precisely, we give constructions of various cryptographic primitives
based on a general encryption primitive, which combines circular security with
a property called reproducibility [5], which, the latter, gives a way of reusing
randomness across independent public keys. We show the following results.

(1) We give a novel generic construction of TDFs from reproducible bit encryp-
tion, and under this construction we show that successively stronger circular-
security conditions result in successively stronger one-wayness conditions: we
give a hierarchy of circular security notions, called k-rec circular security, all
of which are weaker than those of [2,11,12], and show if the base scheme is
k-rec circularly secure, the constructed TDF is k-wise one-way, in the sense
of [28].

(2) We show how to extract many hardcore bits for our constructed TDFs, and
by applying the results of [28] we obtain a blackbox (BB) construction of
CCA2-secure encryption from our assumptions. Our CCA2 construction is
non-shielding in the sense of [18]. We partially justify this fact by showing
wrt a weaker encryption primitive than ours, a non-shielding BB CCA2 con-
struction is possible, while a shielding CCA2 construction is BB impossible.

(3) By slightly extending our base primitive, we show how to obtain determin-
istic encryption schemes secure under block-source inputs, as defined by [9].

(4) We realize our base encryption primitive by showing the circularly-secure
schemes of [11,12] are reproducible.

In what follows, we provide some background, give a more detailed exposition
of our results and describe our constructions and proof techniques. First of all,
we assume the following notation and conventions throughout the introduction.
Unless otherwise stated, an encryption scheme is bit encryption with randomness
space {0, 1}ρ and secret-key space {0, 1}l, where l = l(n) and ρ = ρ(n); by
Epk(m), for m ∈ {0, 1}∗, we mean bitwise encryption of m.

Trapdoor Functions. Central to public-key cryptography is the notion of injec-
tive trapdoor one-way function, which refers to a family of functions, where each
function in the family is easy to compute, but a randomly chosen function is
hard to invert without a trapdoor key. A related notion is witness-recovering
CPA-secure encryption: CPA-secure public-key encryption (PKE) where the
decryption algorithm also recovers the randomness used for encryption. It is well-
known that these two primitives are equivalent. However, as shown by Gertner
et al. [19], there is a BB separation between CPA-secure PKE and TDFs. An
interpretation of this result is that a construction of a TDF from PKE should
either be non-blackbox, or should rely on specific properties of the PKE. Indeed,
under specific assumptions, TDFs may be constructed “directly” (e.g., under the
factoring assumption), or may be constructed by using the specifics of a partic-
ular PKE scheme (e.g., the strong homomorphisms, among other properties, of
ElGamal encryption [26]).

A folklore attempt to build a TDF from PKE is to encrypt a message x
under a randomness string derived deterministically from x. However, by [19],
such a methodology is in general not sound. A naturally arising question is
what properties of PKE enable sound realizations of this approach. The starting

226 M. Hajiabadi and B.M. Kapron

point of our work is a related question, namely: when does a PKE scheme allow
“secure” encryption of r, using r itself as randomness? By security we mean it be
hard to recover r from (Epk1(r1; r), . . . , Epkρ

(rρ; r)). Note that this immediately
yields a TDF.

To address this question we first review a property of PKE schemes, called
reproducibility [5]: E = (Gen,E,D) is reproducible if there exists an efficient
deterministic function R, which given a ciphertext c = Epk(m; r), a mes-
sage m1, and public/secret keys (pk1, sk1), computes Epk1(m1; r), which we
denote by R(c,m1, sk1). Namely, there is an efficient way to transfer the ran-
domness underlying a given encryption to another, provided the secret key
for the second encryption is known. Although this notion may seem overly
strong, natural cryptosystems (e.g., ElGamal, hash-proof-system-based cryp-
tosystems) do satisfy this property. Indeed, under ElGamal a group element
q is encrypted as (gr, gr·sk · q), allowing the (encoded) randomness gr be reused
under a new secret key. Let E = (Gen,E,D,R) be a reproducible PKE scheme.
Define E ′ = (Gen′, E′,D′) as follows: (pk′, sk′) ← Gen′, where sk′ = r and
pk′ = c = Epk(0; r) (i.e., the secret key is a randomness string r and the public
key is a dummy ciphertext formed under r); E′

c(b) samples (pk1, sk1) ← Gen,
computes c′ = R(c, b, sk1) and returns (pk1, c

′) (i.e., E′
c encrypts b by reusing the

randomness underlying c); and D′
r(pk1, c

′) returns the bit b that Epk1(b; r) = c′.
Intuitively, CPA security of E ′ follows from reproducibility and CPA security
of E . Moreover, the construction swaps the key and randomness spaces of E ,
and so the task of securely encrypting randomness in E ′ reduces to that of
securely self-encrypting the secret key in E ; this latter is the problem of circu-
lar security, a special case of the well-studied problem of key-dependent-message
security [1–3,8,11–13,23]. The discussion above suggests a general technique for
de-randomizing reproducible bit-encryption schemes, sketched below, which is
the basis for all our subsequent constructions.

For E = (Gen,E,D,R) define F = C(E) = (G,F, F−1) as follows. The
domain space of F is the set of all pairs of public/secret keys generated under
Gen(1n).

– G: To produce index/trapdoor keys (ik, tk), let (pk, sk) ← Gen(1n), set ik =
(pk,Epk(0; r1), . . . , Epk(0; rl)), for random ri’s, and set tk = (r1, . . . , rl).

– F (·, ·): On key ik = (pk, c1, . . . , cl) and domain input (pk′, sk′), return
(pk′, c′

1, . . . , c
′
l), where c′

i = R(ci, sk
′
i, sk

′). (Here, sk′
i denotes the ith bit of

sk′.)
– F−1(·, ·): given trapdoor key tk = (r1, . . . , rl) and image point (pk′, c′

1, . . . , c
′
l),

return (pk′, b1 . . . bl), where bi is the bit which satisfies c′
i = Epk′(bi; ri).

Correctness of F follows by the reproduction property of R. Also, since R is
deterministic, so is the evaluation algorithm F . Finally, we take advantage of
the fact that E is bit encryption to ensure efficient inversion for F .

To discuss one-wayness we need the following definitions. For (pk, sk) output
by Gen we refer to Epk(sk) as an sk-self-encryption. We call E k-rec circu-
larly secure if no adversary can recover (with a nonnegligible chance) a random

Reproducible Circularly Secure Encryption 227

sk from k independent sk-self-encryptions, and call E k-ind circularly secure
if no adversary can distinguish between k independent sk-self-encryptions and
encryptions of, say, zero. The notion of circular security in the literature is that
of k-ind circular security, for unbounded k. For the construction above we show
the following tight reduction.

Theorem 1. If E is reproducible and 1-rec circularly secure then C(E) is
one-way.

The reduction above is “security preserving” in the following sense: assuming
E is reproducible, then E is 1-rec circularly secure iff C(E) is one-way. Indeed,
as we show next, by strengthening the condition of 1-rec circular security we
achieve stronger forms of one-wayness.

A family of TDFs is called k-wise one-way [28] if one-wayness holds even if
the given input is evaluated under k independently chosen functions.1 More for-
mally, F = (G,F, F−1) is called k-wise one-way, if F ’s k-wise product, defined
as Fik1,...,ikk

(x) = (Fik1(x), . . . , Fikk
(x)) is one-way. Rosen and Segev [28] showed

the utility of this notion by giving a blackbox construction of CCA2-secure encryp-
tion based on k-wise one-way TDFs, for a sufficiently large k, simplifying a prior
construction [26] based on lossy TDFs (LTDFs). Despite their utility, k-wise one-
way TDFs (even for k = 2) are very strong primitives, whose only generic con-
structions so far have been based on LTDFs. Indeed, as shown by Vahlis [30], even
2-wise one-way TDFs cannot be constructed in a blackbox way from trapdoor per-
mutations (TDPs).

Our TDF construction provides an easy means for obtaining k-wise one-way
TDFs: we can generalize Theorem 1 to show the following

If E is reproducible and k-rec circularly secure then C(E) is k-wise one-way.
To put our construction of k-wise one-way TDFs in context, we compare it

to the LTDF-based construction [28]: the security reduction of [28] involves both
statistical and computational arguments, allowing one to obtain only k-wise one-
way TDFs for a priori fixed but arbitrarily large values of k (which does suffice
for CCA2 encryption) from sufficiently lossy TDFs. Our reduction argument,
on the other hand, is entirely computational, allowing us to obtain unbounded
k-wise one-way TDFs (i.e., a TDF that is k-wise one-way for any value of k)
from the full circular security assumption.

As for the base assumptions, the relationships among the circular-security
notions we described is not well-understood (beyond the trivial ones). Under
certain assumptions these notions become equivalent. For example, any
re-randomizable 1-rec circularly-secure scheme is poly-ind circularly secure: this
follows by considering that a 1-rec circularly-secure scheme is already poly-
rec circularly secure (because of re-randomizability), and that any poly-rec
circularly-secure scheme is also poly-ind circularly secure [29, Theorem 8]. For
the rest of the introduction, however, for simplicity, we describe the results wrt
full circular security.

1 Actually, [28] chose another name for this particular notion, but we refer to it as k-wise
one-wayness for simplicity.

228 M. Hajiabadi and B.M. Kapron

We extend Construction C for the case in which the base scheme is
t-circularly secure (i.e., circularly-secure wrt t keys): the input of each TDF is t
pairs of public/secret keys, the index key contains l · t dummy ciphertexts, and
the evaluation algorithm on (pk0, sk0, . . . , pkt−1, skt−1) returns (pk0, . . . , pkt−1)
along with t · l ciphertexts formed by encrypting each bit of ski under
pk(i+1 mod t) (deterministically) by reusing the randomness of the corresponding
ciphertext of the index key.

Extracting Hardcore Bits. Given the TDFs built above, we may apply the
general Goldreich-Levin (GL) theorem [20] to extract a hardcore bit. We would
like to, however, avoid the use of the GL theorem for several reasons. First, the
GL reduction, due to its generality, is not tight, while we would like to achieve
CCA security with tight reductions. Second, for our deterministic encryption
results we need to be able to extract many hardcore bits. Finally, since our base
assumptions are strictly BB-stronger (by Vahlis’s result) than one-way TDFs,
we should look for more specialized methods. We sketch below two deterministic
methods for extracting many hardcore bits with tight security reductions for our
constructed TDFs. The first method applies to t-circular security and allows us
to extract log((t−1)!) bits, with the advantage that it only increases the domain
size. The second method allows us to extract any, a priori fixed, number of bits,
but it enlarges other spaces as well.

First Method: A Cycle Hides its Ordering. For simplicity, we describe the
idea for 3-circular security, showing how to extract a single hardcore bit. The idea
is 3-circularly security implies no adversary can distinguish between the sequence
(Epk1(sk2), Epk2(sk3), Epk3(sk1)) and (Epk1(sk3), Epk2(sk1), Epk3(sk2)). Now we
augment our TDF construction described above (for t-circular security) so that
the evaluation algorithm, besides (pk1, sk1), (pk2, sk2), (pk3, sk3), also receives
an additional bit b, used to dictate the ordering used to form the cycle. The
inversion algorithm can open the ciphertexts, as before, and recover the bit b,
by checking, say, whether the key encrypted under pk1 is a secret key for pk2
or for pk3.2 This technique extends to the t-circular security case for any t > 3,
allowing us to “hide” a random ordering, providing log((t − 1)!) hardcore bits.

Second Method. We describe the idea for 1-circular security. We extend con-
struction C above to be parameterized over an integer m = m(n) and to result
in a TDF whose input now consists of triples (pk, sk, x), where x ∈ {0, 1}m.
Moreover, we augment the index key to contain m added ciphertexts and let the
trapdoor key contain their underlying randomness strings. Now F (ik, (pk, sk, x))
proceeds as before, but it also “encrypts” x in the process by again reusing ran-
domness. For this TDF, we show that x remain pseudorandom even knowing
F (ik, (pk, sk, x)). Finally, assuming the property that public keys under the base
scheme are computed deterministically from their secret keys (plus perhaps some
public parameters), we show how to obtain TDFs that hide a (1− o(1)) fraction
of their input bits.

2 This, however, imposes a negligible inversion error.

Reproducible Circularly Secure Encryption 229

CCA-secure Encryption. Using results on k-wise one-way TDFs with many
hardcore bits,3 we may now use the BB construction of Rosen and Segev [28] to
build a many-bit CCA2-secure PKE from a reproducible, circularly secure bit-
encryption scheme. Specifically, [28] gives a BB construction of CCA2-secure
encryption from k-wise one-way TDFs, for k ∈ Ω(n); they also show that
k ∈ ω(log n) suffices for CCA1 encryption. Our CCA constructions, by relying on
that of [28], result in schemes whose decryption functions query the encryption
function of the base scheme. Gertner et al. [18] refer to such constructions as
non-shielding, and show that there exist no shielding BB construction of CCA-
secure from CPA-secure encryption. Since our base assumptions are BB-stronger
than CPA security, it is natural to ask whether the non-shielding nature of our
CCA2 construction is just an artifact of the construction of [28] or whether it is
inherent. We were not able to answer this question for our encryption primitive,
mainly because of the presence of the reproduction function. However, we are
able to answer this wrt a weaker primitive than ours, which is a special case
of randomness-dependent-message-secure (RDMS) encryption [7], which allows
multiple bitwise-encryptions of a randomness string r under r itself as random-
ness (Formalized in Definition 2). Calling this new primitive RDMS encryption,
we show that RDMS encryption is implied by our base assumptions, and also
that it enables a non-shielding construction of CCA-secure encryption. We prove
this by directly instantiating k-wise one-way TDFs under RDMS encryption.
Next we observe that the shielding-BB impossibility result of [18] extends if the
base scheme is an RDMS encryption primitive (Theorem 5). Indeed, it seems
that this latter statement is true for most encryption primitives whose security
requirements are defined wrt passive indistinguishability (i.e., no decryption ora-
cles); see Sect. 4 for more details. Thus, we obtain an encryption primitive, wrt
which a non-shielding BB CCA-secure construction is possible, but under which
a shielding CCA-secure construction is BB impossible.

Deterministic Encryption (DE). Following [9], a deterministic l-bit-
encryption scheme is called (λ, l)-IND secure if encryptions of any two (efficient)
λ-sources (i.e., distributions with min-entropy λ) result in computationally indis-
tinguishable ciphertexts. We formulate two extended notions of circular security,
called (λ, l)-entropy circular security and strong-(λ, l)-entropy circular security,
both of which require circular security hold even if the secret key sk ∈ {0, 1}l is
sampled from a λ-source distribution, while the strong-entropy version requires
one more assumption, related to the public-key distribution.4

We show our TDF construction immediately gives us a (λ, l)-IND-secure DE
scheme if the base scheme satisfies strong (λ, l)-entropy circular security. We also
show, by appropriately choosing the parameters, the schemes of [11,12] provide
strong-entropy circular security, meaning our generic transformation applies to
these two schemes to obtain secure DE schemes, which explains the striking
similarities between (especially) the DDH-based DE scheme of [9] and the scheme

3 We note that our hardcore-security results hold not only for F = C(E), but also for
F ’s k-wise products (under the respective assumptions). See Sect. 3.

4 The notion of weak-entropy circular security was also considered by [13] in the
context of KDM amplification.

230 M. Hajiabadi and B.M. Kapron

of Boneh et al. [11]. We also note that the extra condition of strong-entropy
circular security may be satisfied if, informally, the key-generation algorithm
acts as a strong extractor, producing the public key from the secret key, taken
as the source, based on a public parameter, taken as the seed. Similar structural
assumptions are made in other settings, e.g., [32], to obtain DE schemes.

For weak-entropy circular security we also show how to obtain a secure DE
schemebutwith looser parameters, i.e., the (λ, l)-parameters of thebase schemeare
not maintained. We follow the so-called encrypt-with-hardcore technique, implic-
itly used in [4,6,9], and formalized in [17]. A high-level description of the idea is
as follows. Assume F = (G,F, F−1) is a TDF with an associated hardcore func-
tion h producing Ω(n) hardcore bits, and we want to make F a secure DE scheme.
Suppose we have the bonus that h preserves hardcore security even if x is sam-
pled from a biased, high-min entropy distribution. Now we can build a DE scheme
by encrypting the output of F using the hardcore bitstring under a randomized-
encryption scheme E ′: namely, Eik,pk(x) = E′

pk(F (ik, x), h(x)); decryption can
be done using ik’s trapdoor key and pk’s secret key. Security of E comes from the
fact that (F (ik, x), h(x)) is computationally indistinguishable from (F (ik, x), r),
so h(x) is as good as a fresh randomness string. The only remaining issue is that E
may require a longer randomness string, which, however, can be handled by apply-
ing a pseudorandom generator to h(x).

Further Discussion. Since LTDFs [26] are the only generic assumption (to
the best of our knowledge) that imply k-wise one-way TDFs, it is natural to ask
about the relationship between LTDFs and our base primitive. We believe these
notions are incomparable. First, under our encryption primitive, we are able to
obtain a TDF that is k-wise one-way for unbounded k’s; LTDFs are known to
achieve bounded k-wise one-way TDFs, but this does not seem to generalize to the
unbounded case, mainly due to the nature of LTDF-based proof techniques that
also rely on statistical arguments. On the other hand, LTDFs have powerful statis-
tical properties (i.e., losing information in lossymode)which donot seem tobe real-
izable under our assumptions. Choi and Wee [14], by abstracting the DDH-based
TDFconstruction of [26], showhow to obtain LTDFs from reproducible encryption
that is homomorphic wrt both messages and randomness. For similar reasons our
assumptions seem incomparable to those of [26].

We note that almost all BB CCA2-constructions, based on encryption or
TDFs, are non-shielding [24,26,28], except for a few cases which rely on very
powerful primitives, e.g., [10]. Intuitively, the non-shielding property of those
constructions is used to do consistency checks on ciphertexts. It would be inter-
esting to explore if there exist weaker encryption primitives (than those we con-
sider) for which the BB separation of [18] is the best possible.

Our results show an alternative way (to those presented in [16,26]) of con-
structing DDH-based TDFs. Right now, by instantiating our TDF construction
under the DDH-based circularly-secure scheme [11], we obtain no improvement
in efficiency over existing constructions. This motivates the search for more effi-
cient DDH-based circularly-secure schemes.

Finally, we discuss adaptations of Construction C(E) to the case in which the
secret-key space of E is a subset of the plaintext space M (which allows the secret

Reproducible Circularly Secure Encryption 231

key to be encrypted as a whole) and reproducibility holds wrt M. For this case we
may substantially improve efficiency by having each index key contain only one
ciphertext, whose randomness will be reused to self-encrypt the secret key (as a
whole) given as input to the evaluation algorithm. To perform inversion, however,
we would need to rely on one more assumption: it is efficiently possible to recover
m from Epk(m; r) and r, for all pk,m and r. This last property by itself is satisfied
by natural cryptosystems, e.g., ElGamal. Moreover, there is a standard way to
make any CPA-secure scheme (for which {0, 1}l ⊆ M) “one-shot” circularly
secure; this transformation, however, does not (necessarily) maintain this last
property. Thus, our results suggest the CPA-to-one-shot-circular transformation
may be non-trivial (and interesting) if it is to maintain the last property.

2 Basic Notation and Definitions

Remark. Since we gave outlines of the proofs of most theorems in the introduc-
tion we defer the full proofs to the full version of the paper.

Notation. For a finite set S we use x ← S to denote sampling x uniformly
at random from S and denote by US the uniform distribution on S. If D is
a distribution then x ← D denotes choosing x according to D. We use the
word PPT in this paper in the standard sense. We use A(. . . ; r) to denote
the deterministic output of PPT function A when the randomness is fixed
to r, and use x ← A(a1, a2, . . .) to denote the distribution formed by out-
putting A(a1, a2, . . . ; r) for a uniformly-random r. If A(x1, . . . , xm; r) outputs
a tuple of strings, we let Ai(x1, . . . , xm) be the distribution formed by out-
putting the ith component of A(x1, . . . , xm). We denote the support set of a
distribution D by Sup(D), and write x ∈ D to indicate x ∈ Sup(D). We call
f : N → R negligible if f(n) < 1/P (n), for any polynomial P and sufficiently
large n. We write negl to denote unspecified negligible functions. We denote
by f−1 the inverse of an injective function f . For two ensembles X = {Xi}i∈N

and {Yi}i∈N of random variables we say X is computationally indistinguishable
from Y , denoted X ≡c Y , if for any bit-valued, PPT function D, we have
|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| = negl(n). We write X ≡ Y to mean X
and Y are identically distributed. All functions, adversaries, distributions, etc.,
that appear in this paper, if not otherwise stated, are assumed to be efficiently
computable/samplable. For x, y ∈ {0, 1}∗ we use |x| to denote the bit length
of x, use xi, for 1 ≤ i ≤ |x|, to denote the ith bit of x, and use x||y to denote
the concatenation of x and y.

Trapdoor Functions. We first start by giving the standard definitions related
to trapdoor functions and hardcore bits.

A collection, F = (G,F), of functions is defined as follows. The algorithm
G(1n) returns a function index s, and the deterministic algorithm F (s, ·) com-
putes a function fs : Dn → Rn. We stress both the domain and range of fs only
depend on the security parameters, 1n. We call {Dn} the domain space of F .

232 M. Hajiabadi and B.M. Kapron

Assuming that D = {Dn} is a distribution over {Dn} and h : Dn → {0, 1}p(n)

is a deterministic function, we define the following notions. We say F is D-one-
way if for any adversary A, Pr [fs(A(s, fs(x))) = fs(x)] = negl(n), where the
probability is computed over s ← G(1n), x ← Dn and A’s coins.

We say that h is a D-hardcore function for F if for any adversary A,
∣
∣Pr [A(s, fs(x), h(x)) = 1] − Pr

[A(s, fs(x), U{0,1}p(n)) = 1
]∣
∣ = negl(n),

where s ← G(1n) and x ← Dn. We may omit D, from D-hardcore, etc., when it
is clear from context. Next, we define TDFs and their k-wise products [28].

A collection of injective trapdoor functions (TDFs)5 is given by three algo-
rithms F = (G,F, F−1), where G(1n) randomly produces a pair (ik, tk) of
index/trapdoor keys, the deterministic algorithm F (ik, ·) computes an injective
function fik : Dn → Rn, and F−1(tk, ·) computes f−1

ik (). We stress that the input
domain of fik only depends on the security parameter 1n. We may sometimes
relax the definition by allowing a negligible inversion error. The k-wise product
of F , denoted F (k) =

(
G(k), F (k)

)
, is defined as follows. The algorithm G(k)(1n)

runs G(1n) independently k times to output k index keys, (ik1, . . . , ikk); on input
x, F (k) ((ik1, . . . , ikk), ·) returns (F (ik1, x), . . . , F (ikk, x)).

Assume F is a TDF with domain D = {Dn} and D = {Dn} is a distribution
on D. We say F is k-wise D-one-way if F (k) is D-one-way.

Bit Encryption Schemes. All encryption schemes that appear throughout,
if not explicitly stated, are bit-encryption schemes. In our applications we
need to work with a more general notion of encryption schemes involving pub-
lic parameters. A bit-encryption scheme E = (Param,Gen,E,Dec) is defined
as follows. Param on input 1n outputs a random parameter, par. The key-
generation algorithm, Gen on inputs 1n and par generates a public/secret key
(pk, sk) ← Gen(1n, par); we assume pk includes par, so we do not include par
as input to other algorithms. The encryption algorithm, E, on inputs 1n, pk,
bit b and randomness r ∈ Rn, outputs ciphertext c = Epk(b; r). The decryption
algorithm, Dec, takes a secret key sk and ciphertext c, and deterministically out-
puts a bit b = Decsk(c). For correctness, we require Pr [Decsk(Epk(b)) = b] = 1,
for par ← Param(1n), (pk, sk) ← Gen(1n, par) and b ← {0, 1}. We assume the
following: for any fixed par, all secret keys output by Gen(1n) are bitstrings of
the same length, and, whenever we are generating many public keys, all keys are
generated wrt a single initial par. Thus, we make Param implicit henceforth.

We say E = (Gen,E,Dec) is CPA secure if (pk,Epk(0)) ≡c (pk,Epk(1)),
where pk is chosen according to Gen(1n). For m ∈ {0, 1}∗, we extend E to
define Epk(m) = (Epk(m1), . . . , Epk(m|m|)). If r = (r1, . . . , rt) and m ∈ {0, 1}t

we write Epk(m; r) = (Epk(m1; r1), . . . , Epk(mt; rt)).
We now give definitions for circular security. We say E = (Gen,E,Dec) is

k-rec t-circularly secure if Pr [A(pk1, . . . , pkt, c1, . . . , ck) = sk1] = negl(n) for
every adversary A, where (pk1, sk1), . . . , (pkt, skt) ← Gen(1n) and for every
1 ≤ i ≤ k

ci ← (Epk2(sk1), Epk3(sk2), . . . , Epk1(skt));
5 We use TDF to refer to a collection of injective trapdoor functions henceforth.

Reproducible Circularly Secure Encryption 233

We say E is k-ind t-circularly secure if E is CPA secure and also it holds that
(c1, . . . , ck) ≡c (c′

1, . . . , c
′
k), where

c′
i ← (

Epk2(0
l), Epk3(0

l), . . . , Epk1(0
l)

)
,

for every 1 ≤ i ≤ k, and l = |sk1|. Note that we add CPA security as a separate
condition because otherwise the definition may be satisfied trivially, e.g., consider
the encryption scheme under which the secret key is always the all-zero string
and the encryption function is the identity function.

Henceforth, when we say k-rec circular security (or k-ind circular security)
we are referring to the definition wrt a single pair of public/secret keys.

Definition 1. We call E = (Gen,E,Dec) reproducible if there exists a deter-
ministic function R, called the reproduction function, s.t. for any (pk1, sk1),
(pk2, sk2) ∈ Gen(1n), r ∈ Rn and b1, b2 ∈ {0, 1},

R (pk1, Epk1(b1; r), b2, pk2, sk2) = Epk2(b2; r).

For simplicity we omit the inclusion of pk1 and pk2 as inputs to R.

3 Constructing TDFs and Hardcore Bits

TDFs From Reproducible Encryption. We begin by giving a construction
that takes as input a reproducible bit-encryption scheme and produces a TDF.
We then show how to achieve increasingly stronger guarantees of one-wayness for
the constructed TDF from corresponding assumptions on the base encryption
primitive. We present the construction adapted to the t-circular security case
(i.e., circular security wrt t keys), meaning that we will obtain guarantees of
one-wayness for the constructed TDF from t-circular security assumptions.

We use Dt to denote the t’th Cartesian power of a set D. If D is a distribution,
Dt denotes the t-tuple formed by sampling t times independently from D.

Construction 1. Construction C1 takes as input a reproducible bit-encryption
scheme E = (Gen,E,Dec,R) and t = t(n) and it outputs a TDF, F =
(G,F, F−1), with domain space Dt, where D = Sup(Gen(1n)). Let l = l(n)
be the length of a secret keys output by Gen(1n).

– G(1n): Let (pk, sk) ← Gen(1n), and form tk = (r1,1, . . . , r1,l, . . . , rt,1, . . . ,
rt,l), for independent ri,j’s, and ik = (pk, c1,1, . . . , c1,l, . . . , ct,1, . . . , ct,l), where
for 1 ≤ i ≤ t and 1 ≤ j ≤ l, ci,j = Epk(0; ri,j). Return (ik, tk)

– F ((pk, c1,1, . . . , ct,l), (pk1, sk1, . . . , pkt, skt)) returns (pk1, . . . , pkt, c
′
1,1, . . . ,

c′
t,l), where for 1 ≤ i ≤ t − 1 and 1 ≤ j ≤ l we set c′

i,j = R(ci,j , bi,j , ski+1),
and c′

t,j = R(ct,j , bt,j , sk1), with bi,j being the jth bit of ski.
– F−1((r1,1, . . . , rt,l), (pk1, . . . , pkt, c

′
1,1, . . . , c

′
t,l)): Retrieve each ski, for 1 ≤ i ≤

t, bit-by-bit by encrypting back both 0 and 1 with the provided randomness (and
under the appropriate public key) and finding the matching bit.

234 M. Hajiabadi and B.M. Kapron

The TDF’s completeness follows by reproducibility. We point out a few
remarks. First, the efficiency of the search performed by the inversion algorithm
relies on the fact that each ciphertext is hiding a single bit, encrypted under the
randomness known to the inverter. Second, our construction is entirely blackbox,
also accessing (during evaluation) the reproduction function. Third, our con-
struction extends to the non-bit-encryption case, by still continuing to encrypt
the secret key bit-by-bit, but by fixing a mapping from bits to two fixed plain-
text messages; for this case, the one-wayness of the constructed TDF reduces to
bit-wise circular security of the base scheme (wrt the fixed mapping).

Theorem 1. Assume E is a reproducible bit-encryption scheme and F is the
TDF built from E in Construction 1 based on integer t. Then, E is k-rec t-
circularly secure if and only if F is k-wise D-one-way, where D = (Gen(1n))t.
Moreover, the reductions are tight.

Extracting Many Hardcore Bits. We present two deterministic methods for
extracting many hardcore bits from the TDF presented in Construction 1, with
tight and efficient reductions to the indistinguishability variants of circular secu-
rity assumptions. The first method applies to t-circular security for t ≥ 2, allow-
ing us to directly extract log ((t − 1)!) bits, by expanding only the domain space
by the same number of bits (but without affecting the sizes of the other system’s
parameters). The second method is less restrictive, allowing us to extract (from
t-circular security, for any t ≥ 1,) m(n) hardcore bits, where m is an arbitrary
but a priori fixed poly function, by increasing the domain space by m(n) bits
and the image, index-key and trapdoor-key spaces by poly factors of m(n). In
particular, by choosing the parameter m appropriately we obtain TDFs which
hide a 1 − o(1) fraction of their input bits.

First Hardcore Extraction Method. We begin with some notation. Define
[t] = {1, . . . , t}. Let

S = {f : [t] → [t] | f is injective & ∀X, s.t. ∅ � X � [t], {f(y) | y ∈ X} �= X
}
,

for which we have |S| = (t−1)!. Intuitively, each f ∈ S defines a possible circular
ordering of encrypting a sequence of t pairs of keys, by having pki encrypt
skf(i). The condition ∀X � [t], {f(y) | y ∈ X} �= X guarantees that we have
a single, full cycle. For example, it is not the case that pk1 encrypts sk2, pk2
encrypts sk1 and the remaining keys encrypt each other in a circular manner.
Fix O : Z(t−1)! → S to be an efficient index function defined using a canonical
ordering of the elements of S. We will also write O(i, x) to denote fi(x), where fi

is the ith function according to the ordering. We also require that, for any f ∈ S,
given sq = {(x, f(x)) | x ∈ [t]}, it is possible to efficiently compute the index of
f according to the ordering6, which we (by slightly abusing the notation) denote
by O−1(sq). We now proceed to describe the modified TDF construction and
the associated hardcore function.

6 Such an ordering for which we have such a function O can be defined by fixing an
efficient way of enumeration.

Reproducible Circularly Secure Encryption 235

Construction 2. Let E = (Gen,E,Dec,R), t and Dt be as in Construction 1.
The domain space of the TDF, F = (G,F, F−1), we build is now (Dt, Z(t−1)!).

– G(1n): As in Construction 1.
– F ((pk, c1,1, . . . , ct,l), (pk1, sk1, . . . , pkt, skt, u)) is computed as follows. Define

(ind1, . . . , indt) = (O(u, 1), . . . ,O(u, t)). Informally, the output will be
pk1, . . . , pkt together with a cycle of encrypted keys, where pki encrypts the
bits of skindi

. Return (pk1, . . . , pkt, c
′
1,1, . . . , c

′
t,l), where, for 1 ≤ i ≤ t and

1 ≤ j ≤ l, c′
i,j = R(ci,j , bi,j , ski), with bi,j being the jth bit of skindi

.
– F−1((r1,1, . . . , rt,l), (pk1, . . . , pkt, c

′
1,1, . . . , c

′
t,l)): do the following steps:

• for each 1 ≤ i ≤ t, recover the bitstring, xi, encrypted under pki bit-by-bit
as follows: to retrieve the jth bit of xi, encrypt both 0 and 1 under pki using
randomness ri,j and check the result against c′

i,j;
• for each 1 ≤ i ≤ t, let indi, where 1 ≤ indi ≤ t, be the index for which it

holds that pkindi
is the matching public key of xi,7 and let skindi

= xi. Form
sq = {(1, ind1), . . . , (t, indt)}; return (pk1, sk1, . . . , pkt, skt,O−1(sq)).

Hardcore Function: For F given above we define h : (Dt, Z(t−1)!) → Z(t−1)!

as h(pk1, sk1, . . . , pkt, skt, u) = u.

Correctness of the new TDF follows immediately. Note that Construction 1 is
a special case of Construction 2, by forming the encrypted cycle wrt the fixed
function f : f(1) = t; f(2) = 1; . . . , f(t) = t−1. In contrast, Construction 2 forms
the encrypted cycle according to a random f (provided as input to the TDF),
where, as we show below, the random choice of f is what is computationally
hidden by the output. We now have

Theorem 2. Assuming E = (Gen,E,Dec,Rep) is k-ind t-circularly-secure, it
holds that F is k-wise one-way and h is a hardcore function for Fk.

Second Hardcore Extraction Method. The second construction allows us
to extract any (a priori fixed) number of pseudorandom bits, where these bits
are the last input block of the TDF.

Construction 3. Let E = (Gen,E,Dec,R), t and Dt be as in Construction 1,
and let m = m(n) be an integer. The domain space of the TDF we build is
(Dt, {0, 1}m). We define F = (G,F, F−1) as follows.

– G(1n): Let (pk, sk) ← Gen(1n), and form tk = (r1,1, . . . , rt,l, r1, . . . , rm),
where ri,j’s and rh’s are independent randomness values, and form ik =
(pk, c), where c consists of t · l + m encryptions of zero under pk using ri,j’s
and rh’s as randomness. Return (ik, tk).

– Define F ((pk, c1,1, . . . , ct,l, c1, . . . , cm), (pk1, sk1, . . . , pkt, skt, x)) to be equal to
(pk1, . . . , pkt, c

′
1,1, . . . , c

′
t,l, c

′
1, . . . , c

′
m), where c′

i,j = R(ci,j , bi,j , ski+1) for 1 ≤
i ≤ t − 1, c′

t,j = R(ct,j , bt,j , sk1) and c′
h = R(ch, xh, sk1), where 1 ≤ h ≤ m,

1 ≤ j ≤ l and bw,j is the jth bit of skw, for 1 ≤ w ≤ t.

7 This can be done by encrypting many bits under the public key and decrypting them
under a candidate secret key. This, however, results in a negligible inversion error.

236 M. Hajiabadi and B.M. Kapron

– F−1((r1,1, . . . , rt,l, r1, . . . , rm), (pk1, . . . , pkt, c
′
1,1, . . . , c

′
t,l, c

′
1, . . . , c

′
m)): as in

the previous constructions.

Hardcore Function: For F given above, we let h : (Dt, {0, 1}m) → {0, 1}m be
defined as h(pk1, sk1, . . . , pkt, skt, x) = x.

Correctness of inversion is again evident, and we have security as follows.

Theorem 3. Assuming E = (Gen,E,D,Rep) is k-ind t-circularly-secure, it
holds that F is k-wise one-way and h is a hardcore function for Fk.

Remark 1. In many concrete settings, for a PKE (Param,Gen,E,Dec), we have
Gen(1n, par) ≡ (Pubpar(sk), sk), for a deterministic function Pub (recall par is
output by Param): namely, the public key is obtained deterministically from
the secret key and public parameters. We may now easily modify Construc-
tion 3, so that the index key also includes par and that the evaluation function
no longer takes pk as input (so its entire input is a bitstring), by computing
pk = Pubpar(sk) by itself. Now letting m ∈ ω(t · l) we obtain a TDF (from the
assumptions stated in Theorem 3) hiding a (1 − o(1))-fraction of its input bits.

4 Construction of CCA Secure Encryption

Rosen and Segev [28, Theorem 1] give a BB construction of CCA1-secure encryp-
tion from any ω(log n)-wise TDF and a BB CCA2-secure encryption from any
Ω(n)-wise TDFs. We may use our results and those of [28] to build CCA-secure
encryption. For concreteness, we give the CCA1 construction here, which sim-
plifies that obtained by directly instantiating [28] under our base encryption
primitive. The construction for the CCA2 case is obtained similarly.

We fix the following notation. For c = (c1, . . . , cm), b = (b1, . . . , bm) we
extend the reproduction function R so that R(c,b, sk) denotes the sequence
(R(c1, b1, sk), . . . , R(cm, bm, sk)). We give the CCA1 construction below.

Suppose E = (Gen,E,Dec,R) has randomness space Rn and secret-key space
{0, 1}l. We build a many-bit scheme Ê = (ˆGen, Ê, D̂ec) as follows.

– ˆGen(1n) samples r10, r
1
1, . . . , r

t
0, r

t
1 ← Rl

n, (pk, sk) ← Gen(1n) and returns
(pk, sk), where pk = (pk,Epk(0l; r10), Epk(0l; r11), . . . , Epk(0l; rt

0), Epk(0l; rt
1))

and sk = (r10, r
1
1, . . . , r

t
0, r

t
1);

– Êpk(m) parses pk = (pk, c10, c
1
1, . . . , c

t
0, c

t
1), samples (pk′, sk′) ← Gen(1n),

u ← {0, 1}t and returns (u, pk′, Epk′(m), c′1
u1

, . . . , c′t
ut

), where, for 1 ≤ i ≤ t,
c′i

ui
= R(ci

ui
, sk′, sk′) (Note that each c′i

ui
is a self-encryption of sk′);

– D̂ecsk(u, pk′, c, c′1
u1

, . . . , c′t
ut

) parses sk = (r10, r
1
1, . . . , r

t
0, r

t
1), lets ski, for each

1 ≤ i ≤ t, be the plaintext obtained bit-by-bit by “opening” c′i
ui

relative to
public key pk′ and randomness vector ri

ui
, checks whether sk1 = · · · = skt (if

this check fails it returns ⊥), and returns Decsk1(c). Here by opening we mean
finding the corresponding bit that encrypts to the given ciphertext under the
specified randomness and public key.

Reproducible Circularly Secure Encryption 237

In words, Ê samples (pk′, sk′) and a string u, and returns u, an encryption
of m under pk′ as well as t self-encrypted versions of sk′, where the ith version
reuses the randomness embedded in ci

ui
. We have the following theorem.

Theorem 4. If t ∈ ω(log n) and E is a reproducible, t-ind circularly-secure bit-
encryption scheme, then Ê, constructed above, is CCA1 secure.

The construction above is non-shielding [18], since the constructed decryption
function queries the base encryption function.8 By [18], there are no BB shielding
constructions of CCA1-secure encryption from CPA-secure encryption. Since our
base assumptions are strictly stronger than CPA security (at least in a BB sense),
a natural question is whether or not it is possible to give a shielding construction
based on our assumptions. At this point, we do not know the answer to this
question, but as we show below, there exists an encryption primitive implied by
our assumptions, based on which a non-shielding CCA1-construction is possible,
but from which no fully-blackbox9 shielding CCA1-construction is possible. Our
new encryption primitive is an extension of CPA-secure encryption, asking that
security holds even when encrypting certain randomness-dependent messages.

Definition 2. A bit-encryption scheme E = (Gen,E,Dec) with randomness
space {0, 1}ρ is q-randomness-dependent-message (RDM) secure if

{Epk1
1
(r1; r), . . . , Epk1

ρ
(rρ; r)}, . . . , {Epkq

1
(r1; r), . . . , Epkq

ρ
(rρ; r)}

≡c {Epk1
1
(0; r), . . . , Epk1

ρ
(0; r)}, . . . , {Epkq

1
(0; r), . . . , Epkq

ρ
(0; r)},

where r ← {0, 1}ρ and all public keys are chosen at random according to Gen.
For better readability, we made the inclusion of the public keys implicit.

In the definition above, since we are encrypting the randomness string bitwise, we
should use independent public keys for each encryption. Otherwise, an adversary
can easily distinguish between the two distributions. Our definition is basically
an adaptation of those of [7] to the bit-encryption case. We show below that this
primitive is implied by our assumptions.

Given E = (Gen,E,Dec,R), define E ′ = (Gen′, E′,Dec′), whose randomness
space is the key space of E , as follows: Gen′(1n) samples (pk, sk) ← Gen(1n) and
r ← Rn and returns pk = Epk(0; r) and sk = r. The encryption E′

c(b; (pk′, sk′))
returns (pk′, R(c, b, sk′)); and, finally, Dec′

r(pk′, c′) returns the bit b for which
Epk′(b; r) = c′. Using ideas described in Sect. 3 we can show, for any poly q, if E
is q-ind circularly secure, then E ′ is q-RDM secure.

Next, we show q-RDM-secure encryption easily implies q-wise one-way TDFs.
Let E ’s randomness space be {0, 1}ρ, and define TDF T F = (G,F, F−1) as
follows. G runs Gen(1n) ρ times and returns ik = (pk1, . . . , pkρ) and tk =
(sk1, . . . , skρ); let F ’s domain space be Rn and define Fpk1,...,pkρ

(r) to equal
(Fpk1(r1; r), . . . , Fpkρ

(rρ, r)). The inversion algorithm F−1 is defined in an obvi-
ous way. Now it is not hard to show if E is q-RDM secure, T F is q-wise one-way.
A summary of the discussion above is the following.
8 Due to lack of space, we refer the reader directly to [18] for a formal definition of

shielding constructions.
9 We are using the notion of fully-blackbox reductions as defined in [27].

238 M. Hajiabadi and B.M. Kapron

Corollary 1. For any q ∈ ω(log n) there exists a shielding BB construction of
CCA1-secure encryption from q-RDM-secure bit-encryption.

We now show the BB separation of [18], stating that there are no shielding BB
constructions of CCA1-secure encryption from CPA-secure encryption, extends
even if the base scheme is RDM-secure, for any poly-bounded q. Combined
with the corollary above, this gives us an encryption primitive which permits
a non-shielding BB CCA1-secure construction, but from which no shielding
BB CCA1-secure construction is possible. Specifically, [18] introduces a tuple
of oracles O = (g, e,d,w,u), where O1 = (g, e,d) model an idealized encryp-
tion scheme (when the oracle is chosen at random), and O2 = (d,w) are two
security-weakening components, defined based on O1. They show that (*) for
any candidate oracle-construction E = (GenO1 , EncO1 ,Decg,d) there exists an
oracle-adversary AO, which is unbounded in time but poly-bounded in the num-
ber of oracle calls, that breaks the CCA1 security of E almost always (i.e., except
for measure-zero of oracles). Thus, to rule-out shielding fully-BB constructions,
it suffices to show that (**) for almost any selection of O (i.e., measure-one
of oracles), (g, e,d) is CPA-secure against any oracle-adversary AO with con-
straints mentioned above.10 Therefore, to rule out shielding BB constructions
of CCA2 secure encryption from a new encryption primitive, it suffices to prove
(**) with respect to the new primitive. This is what we do below wrt RDM
secure encryption. We first give the formal description of the oracles as in [18].

Definition 3. ([18]) Define ψ, a distribution on oracles (g, e,d,w,u), defined
for each n ∈ N, as follows.

– g : {0, 1}n → {0, 1}3n is a random one-to-one function. Function g is consid-
ered as a key generator, with sk being the secret key and pk = g(sk) as the
public key.

– e : {0, 1}3n × {0, 1} × {0, 1}n → {0, 1}3n is a random one-to-one function.
– d : {0, 1}n × {0, 1}3n → {0, 1,⊥} is the unique function specified based on

(g, e), where d(sk, c) = b if there exists r ∈ {0, 1}n such that e(g(sk), b, r) = c;
otherwise, d(sk, c) = ⊥.

– w : {0, 1}3n → {0, 1}3n×n ∪ {⊥} is a random function sampled as follows.
For w(pk), if g−1(pk) = ∅ then w(pk) = ⊥; otherwise, sample r1, . . . , rn ←
{0, 1}n and return (e(pk, sk1, r1), . . . , e(pk, skn, rn)), where sk = g−1(pk).

– u :{0, 1}3n ×{0, 1}3n → {�,⊥} is a deterministic function which returns � if
there exists sk, b and r such that g(sk) = pk and e(pk, b, r) = c, and returns
⊥, otherwise.

For consistency, we may sometimes write e(pk, b, r) and d(sk, c), respectively,
as epk(b; r) and dsk(c).

We give the following theorem, a CPA version of which was proved in [18].

10 We abuse notation somewhat here. By scheme (g, e,d) we mean the oracle-aided
scheme (Gg, Ee, Dd) which just copies its oracle, e.g., Gen(s) simply returns g(s).

Reproducible Circularly Secure Encryption 239

Theorem 5. For any adversary A and poly-bounded q, there exists a negligible
function negl such that

Pr
O=(g,e,d,w,u)←ψ

[
Pr

[AO(dsb) = b
] ≤ 1

2 + negl(n)
] ≥ 1 − 1

2n/2 , (1)

where the inner probability is over b, the randomness of A and dsb ← DSb, for

DS0 ≡ {epk1
1
(r1; r), . . . , epk1

n
(rn; r)}, . . . , {epkq

1
(r1; r), . . . , epkq

n
(rn; r)} (2)

DS1 ≡ {epk1
1
(0; r), . . . , epk1

n
(0; r)}, . . . , {epkq

1
(0; r), . . . , epkq

n
(0; r)}, (3)

in which r ← {0, 1}n and the tuples (pk1
1, . . . , pk1

n) . . . (pkq
1, . . . , pkq

n) are formed,
for every 1 ≤ i ≤ n and 1 ≤ j ≤ q, by sampling skj

i ← {0, 1}n and setting
pkj

i = g(skj
i).

We point out a few comments. First, the choice of 1 − 1
2n/2 for the quantity

above is not strict; we made that choice just to be consistent with that of [18].
It can in fact be, for any constant c < 1, as large as 1 − 1

2n/c by choosing
appropriately the negligible function used to bound the inner probability in
Eq. 1. Using standard techniques (especially applying the Borel-Cantelli lemma)
[21], the inequality above may then be used to conclude that for measure-one
of oracles O = (g, e,d,w,u), the scheme (g, e,d) is q-RDM secure against all
oracle-adversaries AO.

By Theorem 5 and the results of [18], as discussed above, we have

Corollary 2. For any q ∈ ω(log n) there exists a non-shielding blackbox con-
struction of CCA1 encryption from q-RDM-secure encryption. Moreover, for
any poly-bounded q, there exists no shielding blackbox construction of CCA1
encryption from q-RDM-secure encryption.

We note that it seems that one can generalize Corollary 2 to rule out the existence
of shielding BB CCA1 constructions from a large class of encryption primitives
whose security is defined in terms of indistinguishability against passive attacks
(i.e., no decryption oracles). In other words, the BB separation generalizes to
any (base) security requirement that is realized by an ideal encryption scheme
(g, e,d) in the presence of (w,u); for example, Corollary 2 still holds true if
RDM security is replaced with circular security.

5 Deterministic Encryption (DE) and Instantiations

We start by reviewing some basic facts related to entropy. The min-entropy of a
distribution D is defined as H∞(D) = mind∈D log(1/Pr[D = d]). If l = H∞(D)
we call D an l-source. We also recall the notion of average min entropy, formalized
by Dodis et al. [15], defined as H̃∞(X|Y) = − log

(
Ey←Y (2−H∞(X|Y=y))

)
.

DE Schemes. Since a DE scheme is syntactically the same as a TDF, we
denote a DE scheme as DE = (G,F, F−1). We make a few assumptions in this
section. We assume the conditions stated in Remark 1 hold for any randomized

240 M. Hajiabadi and B.M. Kapron

encryption (RE) scheme used in this section: Gen1(1n) ≡ Pubpar(sk), where
Pub is a deterministic function; we often drop par. We use l = l(n) to denote
the length of a secret key of a RE scheme, and also the message length of a DE
scheme.

We start by defining an extended notion of circular security, requiring circular
security hold even if the secret key is sampled from a non-full-entropy distribu-
tion. For technical reasons, we need to allow some information about the secret
key to be leaked, assuming the average min entropy of the secret key conditioned
on the leaked information is high. The following definition generalizes a similar
definition of [13] to the average case. We note it is possible to prove our results
wrt the weaker definition of [13], but the proofs become more complex.

Definition 4. We say a bit-encryption scheme E = (Gen,E,Dec) is (λ, l)-
entropy circularly secure if for any joint distribution (SK,X), with H̃∞(SK|X) ≥
λ, we have (pk,Epk(sk), Epk(1), x) ≡c (pk,Epk(0l), Epk(0), x), where (sk, x) ←
(SK,X) and pk = Pub(sk).

Next we define a strengthening of the notion of [13], which adds the requirement
that the public key distributions formed under high-entropy secret keys be com-
putationally indistinguishable. This may be guaranteed if, e.g., Pub is a strong
extractor [25], as is the case with known circularly-secure schemes [11,12].

Definition 5. We say a bit-encryption scheme E = (Gen,E,Dec) is strongly-
(λ, l)-entropy circularly secure if (a) for any λ-source SK,

(pk,Epk(sk), Epk(1)) ≡c (pk,Epk(0l), Epk(0)),

where sk ← SK and pk = Pub(sk); and (b) for any λ-sources SK1 and SK2, it
holds that Pub(SK1) ≡c Pub(SK2).

We now define our DE security notion, which is essentially the single-message,
indistinguishability-based notion of [9]. See [9] for definitional equivalences.

Definition 6. We say DE = (G,F, F−1) is secure wrt indistinguishability of
λ-source inputs (shortly, (λ, l)-IND secure) if for any λ-sources M0 and M1, it
holds (ik, Fik(M0)) ≡c (ik, Fik(M1)) where (ik, tk) ← G(1n).

Now we show that by starting from a reproducible encryption scheme which
provides strong (λ, l)-entropy circular security, Construction 1 immediately gives
us a (λ, l)-IND secure deterministic scheme—i.e., it preserves the parameters.

Theorem 6. Let E = (Gen,E,Dec,R) be a reproducible bit-encryption scheme
and DE = C1(E , 1) be the DE scheme built in Construction 1 based on E and
t = 1.11 If E is strongly-(λ, l)-entropy circularly secure F is (λ, l)-IND secure.

Next we show the “weaker” entropy circular security assumption also gives
rise to DE schemes, but with looser security bounds. Our construction employs
the encrypt-with-hardcore (EWH) technique, described in the introduction. To
this end, we assume that the ciphertext space of our (base) encryption scheme is
also a bitstring space, since our construction (by employing the EWH technique)
results in double encryption. We give the main theorem below.
11 Here we are working with a modified version of Construction 1 stated in Remark 1.

Reproducible Circularly Secure Encryption 241

Theorem 7. Let E = (Gen,E,Dec,R) be a reproducible (λ, l)-entropy circu-
larly secure encryption scheme, with randomness space Rn = {0, 1}pr . There
exists an (l + pr + u, 2l + pr − λ)-IND-secure deterministic encryption scheme,
where u ∈ ω(log n) is an arbitrary function.

An outline of the proof follows, using notation given in the theorem
above. The first step is to show we can use reproducibility of E to encrypt
any arbitrarily-long message using a pr-long randomness string, by reusing
randomness across different public keys. Next, consider the TDF given by
Construction 3, based on t = 1 and m = l + pr − λ, and define
hc(sk, x) = (h, h(x)), where h : {0, 1}m → {0, 1}pr is chosen from a fam-
ily of universal hash functions, and show hc is a hardcore function for the
TDF. Now to be able to apply the EWH method, we need to show, for
DS1 ≡ (h, h(x), Epk(sk; r1), Epk(x; r2), Epk(0l; r1), Epk(0|x|; r1)) and DS2 ≡
(h, y,Epk(sk; r1), Epk(x; r2), Epk(0l; r1), Epk(0|x|; r1)), that DS1 ≡c DS2, where
y ← {0, 1}pr , (sk, x) ← (SK,X), pk = Pub(sk) and H∞(SK,X) ≥ l + pr + u.
(Also, r1 and r2 are chosen independently.) Now since H̃∞(SK|X) ≥ λ + u
(which follows from standard average min-entropy facts) we may appeal to (λ, l)-
entropy circular security of E to replace Epk(sk; r1), in both DS1 and DS1, with
an all-zero encryption; in the next step we do the same for Epk(x; r1) (i.e., get-
ting rid of the occurrences of x as a plaintext); and finally, using the facts that
H̃∞(X|SK) ≥ pr +u, h is an average-case extractor and u ∈ ω(log n), we replace
h(x) with a random string.

Instantiations. In the remainder of this section we briefly and informally review
the scheme of Boneh et al. [11] (BHHO) and show it is reproducible. We defer
the proof for the scheme of [12] as well as the proofs of entropy circular security
to the full version.

Letting G be a group scheme, generate G ← G, g ← G
l and set par = (G,g)

and o = |G|. Define (Gen,E,Dec) as follows. Gen(1n): samples sk ← {0, 1}l

and sets pk = sk · g (where · denotes the inner product); Epk(g1; r): samples
r ← Zo and returns (gr, pkr ·g1), where gr denotes element-wise exponentiation;
and Dsk(g′, g′): clear from the encryption algorithm.To show reproducibility, we
need to show given pk1 = sk1 ·g, c1 = (gr, pk1

r ·g1), sk2 and g2, we can compute
(gr, pk2

r · g2), where pk2 = sk2 · g, which is clear from the group properties. As
for (strong)-(λ, l)-entropy circular security, we note that for the schemes [11,12]
the fraction l/λ can be set arbitrarily large.

6 Conclusions and Open Problems

We gave generic constructions of several cryptographic primitives based on a
general technique for de-randomizing reproducible bit-encryption schemes. For
all the primitives we built it is already known that a BB construction from CPA-
secure encryption alone is either impossible, or very difficult to find. We mention
two main open problems that arise from our work. First, it would be interesting
to see to if the BB result of [19] already separates TDFs from circularly-secure

242 M. Hajiabadi and B.M. Kapron

encryption; showing this would imply that our reliance on an additional property,
i.e., reproducibility, is unavoidable. Second, we would like to see whether the
LWE-based circularly-secure scheme of Appleabaum et al. [2] can be used to
instantiate our base assumptions.

References

1. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

3. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

5. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient
encryption schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
85–99. Springer, Heidelberg (2003)

6. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner
[31], pp. 360–378

7. Birrell, E., Chung, K.-M., Pass, R., Telang, S.: Randomness-dependent message
security. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 700–720. Springer,
Heidelberg (2013)

8. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol.
2595, pp. 62–75. Springer, Heidelberg (2003)

9. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner [31], pp. 335–
359

10. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

11. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner [31], pp. 108–125

12. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

13. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011)

14. Choi, S.G., Wee, H.: Lossy trapdoor functions from homomorphic reproducible
encryption. Inf. Process. Lett. 112(20), 794–798 (2012)

15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

Reproducible Circularly Secure Encryption 243

16. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More construc-
tions of lossy and correlation-secure trapdoor functions. J. Cryptology 26(1), 39–74
(2013)

17. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

18. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 434–455. Springer, Heidelberg (2007)

19. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, pp.
126–135. IEEE Computer Society (2001)

20. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Johnson [22], pp. 25–32

21. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Johnson [22], pp. 44–61

22. Johnson, D.S. (ed.): Proceedings of the 21st Annual ACM Symposium on Theory
of Computing. ACM, New York (1989)

23. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011)

24. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2009, 25–27 October 2009, Atlanta,
Georgia, USA, pp. 607–616. IEEE Computer Society (2009)

25. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

26. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork,
C. (ed.) STOC, pp. 187–196. ACM (2008)

27. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

28. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J.
Comput. 39(7), 3058–3088 (2010)

29. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013)

30. Vahlis, Y.: Two is a crowd? A black-box separation of one-wayness and security
under correlated inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
165–182. Springer, Heidelberg (2010)

31. Wagner, D.: Advances in Cryptology - CRYPTO 2008. LNCS, vol. 5157. Springer,
Heidelberg (2008)

32. Wee, H.: Dual projective hashing and its applications — lossy trapdoor functions
and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 246–262. Springer, Heidelberg (2012)

Multilinear Maps and IO

Zeroizing Without Low-Level Zeroes:
New MMAP Attacks and their Limitations

Jean-Sébastien Coron1, Craig Gentry2, Shai Halevi2, Tancrède Lepoint3,
Hemanta K. Maji4,5, Eric Miles4, Mariana Raykova6(B),

Amit Sahai4, and Mehdi Tibouchi7

1 University of Luxembourg, Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

2 IBM Research, New York, USA
3 CryptoExperts, Paris, France

tancrede.lepoint@cryptoexperts.com
4 Center for Encrypted Functionalities, University of California,

Los Angeles, USA
{enmiles,hmaji,sahai}@cs.ucla.edu

5 Purdue University, West Lafayette, USA
6 SRI International, Menlo Park, USA

mariana@cs.columbia.edu
7 NTT Secure Platform Laboratories, Tokyo, Japan

tibouchi.mehdi@lab.ntt.co.jp

Abstract. We extend the recent zeroizing attacks of Cheon, Han,
Lee, Ryu and Stehlé (Eurocrypt’15) on multilinear maps to settings
where no encodings of zero below the maximal level are available. Some
of the new attacks apply to the CLT13 scheme (resulting in a total break)
while others apply to (a variant of) the GGH13 scheme (resulting in a
weak-DL attack). We also note the limits of these zeroizing attacks.

Keywords: Cryptanalysis · Hardness assumptions · Multilinear maps

T. Lepoint—This work has been supported in part by the European Union’s H2020
Programme under grant agreement number ICT-644209.
H. K. Maji, E. Miles and A. Sahai—Research supported in part from a DARPA/ONR
PROCEED award, a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty
Research Award, a Google Faculty Research Award, an equipment grant from Intel,
and an Okawa Foundation Research Grant. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through the U.S. Office
of Naval Research under Contract N00014-11-1-0389. The views expressed are those
of the author and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.
M. Raykova—This work has been supported in part from NSF Award 1421102.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 247–266, 2015.
DOI: 10.1007/978-3-662-47989-6 12

248 J.-S. Coron et al.

1 Introduction

The GGH13 [7] and CLT13 [6] “approximate multilinear maps” candidates suffer
from zeroizing attacks, where encodings of zero at levels below the top (zero-test)
level can be exploited to recover information that should have been hidden by
the encoding scheme. The essence of these attacks is using successful zero tests
to obtain equations over the base ring (Z or Z[X]/F (X)), then solving these
equations to get the desired information. First presented in the context of the
GGH13 candidate [7], such attacks were recently extended by Cheon et al. [5] also
to the CLT13 candidate, where they were shown to be particularly devastating,
leading to a total break (when they can be mounted).

As explicitly discussed in [5], however, these attacks seem to depend on the
availability of low-level encoding of zeros. This limits the applicability of these
attacks, especially since several high-profile applications of multilinear maps
(such as for obfuscation [8]) do not reveal such low-level zero encodings.

In this work we show that it is possible to “zeroize without low-level zeroes”:
that is, we extend the attacks from [5] and apply them against both CLT13
encodings and a matrix variant of GGH13 encodings, even in settings where
no low-level encodings of zero are available to the adversary. We further sys-
tematize the new attacks and show that they can overcome recent proposals to
“immunize” against them [3,9]. Our extensions to the attacks from [5] include
replacing low-level zero encodings by “orthogonal encodings” (this extension was
observed independently also by Boneh et al. [3]), dealing with cases where more
than one monomial is needed to get a zero, and dealing with modifications of the
CLT13 and GGH13 schemes that use matrix-based encodings with the encoded
values embedded in the eigenvalues of the matrix. Before describing our zeroizing
attacks, we discuss the impact and limitations of these attacks.

1.1 Impact of Our Attacks

Broken Assumptions and Constructions. The most direct consequence of
our work is that more hardness assumptions and constructions from the literature
are broken. Prior to our work, the attacks of [5] already broke several assump-
tions and constructions using CLT13 encodings because they provided low-level
encodings of zero. Our work extends to new assumptions and constructions, even
where no low-level encodings of zero are available. For example, our extensions
can be used to break instances of the meta-assumption of Pass et al. [16] (using
either GGH13 or CLT13 encodings), even when used without low-level encod-
ings of zero. Furthermore, we show that natural attempts to “immunize” CLT13
or GGH13 encodings by removing low-level encodings of zero [3,9] fail. In par-
ticular, the assumptions used by Gentry et al. [10,11] are broken, even when
“immunized” using the technique from [3]. Perhaps more surprisingly, we also
show that simplified variants of certain obfuscation schemes can be broken:

Zeroizing Without Low-Level Zeroes 249

– We show that the GGHRSW branching-program obfuscation procedure
from [8], implemented over the CLT13 scheme [6], can be broken when it
is applied to branching programs with a very specific “decomposable” struc-
ture. See Sect. 3.3.

– In the full version of this report, we also show that the simplified cir-
cuit obfuscation scheme of Zimmerman [17, Appendix A] and Applebaum-
Brakerski [1] can be broken when applied to very simple circuits (e.g., point
functions).

1.2 Limitations of Zeroizing Attacks

Potent as they are, zeroizing attacks have their limitations. For example, so
far we do not have attacks on any of the NC 1 obfuscation candidates in the
literature. Moreover the “dual-input straddling sets” technique that is used in
several obfuscation schemes [2,4,17] appears to be effective in thwarting these
attacks. See more details in Sect. 2.4.

Successful Zero Tests are Necessary. Our work demonstrate that some
attacks are possible even if we only have top-level encoded zeros, but crucially
all of these attacks depend on successful zero tests to get equations over the base
ring. Some constructions or assumptions may not provide these zeros, and in that
case it is plausible that the GGH13 and CLT13 candidates could even provide
semantic security [12] of the encoded values. Even more, as far as we know the
standard generic multilinear-map model could provide a good approximation
of GGH13 and CLT13 in settings where top-level encoding of zeros are not
available.

The Equations Must be Simple. In zeroizing attacks, each successful zero-
test provides the adversary one equation over the base ring, and the attack relies
on the attacker’s ability to solve the resulting system of equations. The successful
attacks detailed in our paper (as well as those from [5,7]) arise in situations where
the adversary has substantial freedom in creating top-level encodings of zero, and
can exploit this freedom to obtain “a simple system of equations” over the base
ring that can be solved using linear algebraic techniques.

There are many cases, however, in which the available encodings are con-
structed such that only very particular combinations of them yield a top-level
encoding of zero, and those combinations do not seem to yield efficiently solvable
system of equations. Two such examples, illustrated in Sect. 2.4, are obfuscation
schemes that rely on Barrington’s theorem, and schemes that use the “dual-input
straddling sets” technique.

We believe that long-term understanding of the security offered by current
multilinear map candidates will require tackling long-standing questions about
which kinds of systems of nonlinear equations are feasible to solve efficiently,
and which are not.

250 J.-S. Coron et al.

2 Background and Overview

2.1 A Brief Description of the GGH13 and CLT13 Schemes

We begin with a brief description of the GGH13 and CLT13 schemes, omitting
many details that are irrelevant for the attacks in question. Both these schemes
implement graded encoding schemes where “plaintext elements” are encoded in
a way that hides their value but allows to add and multiply them, and also allows
to test if a degree-k expression in these values is equal to zero (where k is the
“multi-linearity parameter”).

The GGH13 Scheme. For GGH13 [7], the plaintext space is a quotient ring
Rg = R/gR where R is the ring of integers in a number field and g ∈ R is
a “small element” in that ring. The space of encodings is Rq = R/qR where
q is a “big integer”. An instance of the scheme relies on two secret elements,
the generator g itself and a uniformly random denominator z ∈ Rq. A plaintext
element (which is a coset a = α + gR) is encoded “at level one” as u = [e/z]q
where e is a “small element” in the coset a (i.e., e = α + gr for some r ∈ R).
More generally, a level-i encoding of the coset a has the form u = [e/zi]q for a
small e ∈ α + gR.

Addition/subtraction of encodings at the same level is just addition in Rq,
and it results in an encoding of the sum at the same level, so long as the numera-
tors do not wrap around modulo q. Similarly multiplication of elements at levels
i, i′ is a multiplication in Rq, and as long as the numerators do not wrap around
modulo q the result is an encoding of the product at level i + i′.

The scheme also includes a “zero-test parameter” in order to enable test-
ing for zero at level k. Noting that a level-k encoding of zero is of the form
u = [gr/zk]q, the zero-test parameter is an element of the form pzt = [hzk/g]q
for a “somewhat small element” h ∈ R. This lets us eliminate the zk in the
denominator and the g in the numerator by computing [pzt · u]q = h · r, which
is much smaller than q because both h, r are small. If u is an encoding of a
non-zero α, however, then multiplying by pzt leaves a term of [hα/g]q which
is not small. Testing for zero therefore consists of multiplying by the zero-test
parameter modulo q and checking if the result is much smaller than q.

Matrix-GGH13. An unpublished variant of GGH13 (that was meant to protect
against zeroizing attacks) uses matrices of native GGH13 encodings, where the
encoded value is an eigenvalue of the matrix and the zero-test parameter includes
also the corresponding eigenvector. This is essentially the same as the GGHZ
countermeasure construction from [9, Sect. 7] (which is described in Sect. 3.2),
except that it uses GGH13 encodings rather than CLT13 encodings.1

1 Our attack from Sect. 3.2 applies for the most part to this GGH13 variant too, except
that in this case we only get a weak-DL attack rather than a complete break; see
the full version for details.

Zeroizing Without Low-Level Zeroes 251

The CLT13 Scheme. The CLT13 scheme [6] is similar to above, but it relies
on CRT representation modulo a composite integer x0 =

∏n
j=1 pj , where the pj ’s

are “large primes”, all of about the same size. We let CRT (a1, . . . , at) denote
the unique element a ∈ Zx0 that is congruent to aj modulo pj for all j. Also we
often use the shorthand CRT (aj)j to denote the same.2

The plaintext space in CLT13 consists of vectors a ∈ Zg1 × · · · × Zgn
, where

all the gj ’s are much smaller than their corresponding pj ’s. An instance of the
scheme relies on the secrets gj and pj (with x0 public), and on a secret uniformly
random denominator z ∈ Zx0 . Such a vector a = (α1, . . . , αn) is encoded at level
one as [CRT (α1 + g1r1, . . . , αn + gnrn) /z]x0 , where the rj ’s are all small. More
generally a level-i encoding of this vector is of the form [CRT (αj + gjrj)j /zi]x0 .

Addition/subtraction of encodings at the same level is just addition in Zx0 ,
and it results in an encoding of the sum at the same level, so long as the numer-
ators in the different CRT components do not wrap around modulo their respec-
tive pj ’s. Similarly multiplication of elements at levels i, i′ is a multiplication
in Zx0 , and as long as the numerators in the different CRT components do not
wrap around modulo their respective pj ’s, the result is an encoding at level i+ i′

of the entry- wise product of the two vectors.
For zero-testing, let us denote p∗

j = x0/pj =
∏

i�=j pi, and note the following
easy corollary of the Chinese Remainder Theorem:

Proposition 1. For all a1, . . . , an ∈ Z, CRT
(
p∗

jaj

)

j
=
∑n

j=1 p∗
jaj (mod x0).

Namely when each CRT component j is divisible by p∗
j , then the CRT compo-

sition can be computed just by adding all the CRT components modulo x0.
The zero-test parameter in CLT13 is pzt = [zk · CRT (p∗

jhjg
−1
j

)

j
]x0 for

small elements hj � pj , where g−1
j is computed modulo pj . Multiplying

this zero-test parameter by a level-k encoding of zero, that has the form
u = [CRT (gjrj)j /zk]x0 , yields

[pzt · u]x0 = CRT
(
p∗

jhjrj

)
j

=
∑

j

p∗
jhjrj .

Since hjrj � pj for all j, then p∗
jhjrj = (x0/pj)hjrj � x0, and also the sum

is much smaller than x0. Testing for zero therefore consists of multiplying by
the zero-test parameter modulo x0 and checking if the result is much smaller
than x0.

Common Properties. The GGH13 and CLT13 schemes share a very similar
structure; here we summarize the common features that are used in the attacks:

– Each encoding is “associated” with the vector of small integers in the numer-
ator. For GGH13 this is a 1-vector consisting of a single algebraic integer,3

2 We do not assume that the aj ’s are smaller than their corresponding pj ’s.
3 The matrix-GGH13 variant has vectors in the numerator rather than a single alge-

braic integer.

252 J.-S. Coron et al.

and for CLT13 this is a vector of n integers in Z. Below we write informally
u ∼ (a1, . . . , an) to denote the fact that the encoding u is associated with
the vector of ai’s. Roughly speaking, the goal of the attacks is to recover the
vector (aj)j from the encoding u. Recovering this vector (even if not in full)
is usually considered a break of the scheme.

– An encoding of zero is associated with a vector divisible by the gj ’s, namely
u ∼ (gjrj)j for some rj ’s.

– Addition and multiplication of encodings acts entry-wise on the vector of
integers in the numerator. Importantly, the addition and multiplication of
these vectors is done over the integers, with no modular reduction. This is
because a wrap-around in these operations is an error condition, and so the
parameters are always set to ensure that it does not happen.

– If u ∼ (gjrj)j is an encoding of zero at the top level, then applying the zero-
test to u returns the integer w =

∑
j rjρj , where the rj ’s are the multipliers

from the numerator vector and the ρj ’s are system parameters independent
of u.

In other words, applying the zero-test to an encoding of zero yields the
inner-product of the associated vector (sans the gj ’s) with a fixed secret
vector. (In GGH13 this is the 1-vector (h), in CLT13 the vector is (p∗

jhj)j .)
Importantly, here too the inner product is over the integers, with no modular
reduction.

2.2 Overview of Existing Attacks

The GGH13 Zeroizing Attack. The following “zeroizing” attack on the GGH13
scheme was described in [7]. It gets as input a level-t encoding of zero u0 ∼ (gr)
and many other level-(k − t) encodings um ∼ (am). Multiplying u0 by any of
the um’s yields a top-level encoding of zero u0um ∼ (gram), and applying the
zero-test yields the algebraic integer wm = hram. Note that this almost recovers
the numerators am’s; indeed we have them up to the common factor h′ = hr.

If we also knew the ideal Ig = gR that defines the plaintext space, then
being able to recover the numerator up to a constant is enough to break many
hardness assumptions. For example, given an encoded matrix we could compute
its determinant (mod Ig) up to a constant, which would tell us whether or not
the encoded matrix has full rank.

Even when Ig is not explicitly given, Garg et al. described in [7] how it can
be recovered in certain cases using GCD computations. Roughly, we can use
GCD to identify and remove the common factor h′, thereby getting the am’s
themselves, except that these are all algebraic integers so we only have GCD in
terms of their ideals. Recovering the ideal Ia = aR is not always useful, e.g.,
if Ia and Ig are co-prime then knowing Ia does not tell us anything about our
plaintext coset a + Ig. However if some of the ui’s are themselves encoding of
zero, namely ai = gri, then given enough ideals Iai

= griR we could again use
GCD calculations to recover the ideal Ig itself, and then use that knowledge to
attack the non-zero encodings among the ui’s. This attack was called in [7] a

Zeroizing Without Low-Level Zeroes 253

“weak discrete-log attack”. Recently, this attack was used by Hu and Jia [14] as
a component in a new attack that breaks the key-exchange protocol from [7].

We note that the GGH13 zeroizing attack does not work against CLT13
encodings, since rather than a simple product we now have an inner product
wm =

∑
j am,jρj , and we cannot use this to compute GCDs. (For the same

reason, this attack does not work against the matrix-GGH13 variant.)

The CHLRS Zeroizing Attack. Cheon, Han, Lee, Ryu and Stehlé recently
described in [5] a major upgrade of the GGH13 zeroizing attack, which can be
used to completely break CLT13-based schemes in some cases, recovering the fac-
torization of x0 and all secret information. To mount the CHLRS zeroizing attack
we need three sets of encoded inputs, which we denote by A = {Ai : i = 1, . . . , n},
B = {B0, B1}, and C = {Cj : j = 1, . . . , n} (with n the dimension of the numer-
ator vectors). The A’s are all random encoding of zeros, the B’s are the target of
the attack, and the C’s are just helper encodings of random vectors. The levels of
these encodings are such that multiplying Ai ·Bσ ·Cj yields a top-level encoding
of zero for any i, σ, j. Below we denote the numerator vectors associated with
these encodings by

Ai ∼ (g1ri,1, . . . , gnri,n), Bσ ∼ (bσ,1, . . . , bσ,n), and Cj ∼ (cj,1, . . . , cj,n).

Multiplying Ai ·Bσ ·Cj yields a top-level encoding of zero, associated with the
vector Ai ·Bσ ·Cj ∼ (g1ri,1bσ,1cj,1, . . . , gnri,nbσ,ncj,n). Applying the zero-test we
get a four-wise inner product, yielding the integer wσ[i, j] =

∑n
k=1 ρkri,kbσ,kcj,k.

We can write this four-wise inner product in matrix form as

wσ[i, j] = (ri,1 . . . ri,n) ×

⎛

⎜
⎝

ρ1bσ,1

. . .
ρnbσ,n

⎞

⎟
⎠×

⎡

⎢
⎣

cj,1

...
cj,n

⎤

⎥
⎦ ,

and denote the vector on the left by ai, the matrix in the middle by B′
σ, and the

vector on the right by cj . For a fixed σ, let i, j range over 1, . . . , n. This yields
an n × n matrix of integers Wσ = [wσ[i, j]]i,j = A′ × B′

σ × C ′, where A′ has the
ai’s for rows and C ′ has the cj ’s for columns. Since the ri,k’s, bσ,k’s, cj,k’s and
ρk’s are all random (small) quantities, then with high probability the matrices
are all invertible (over the rationals). Having computed the matrices Wσ, the
attacker now sets

W = W0 × W−1
1 = (A′B′

0C
′) × (A′B′

1, C
′)−1 = A′ × (B′

0 × B′
1
−1) × A′−1

.

Observe now that B∗ = B′
0×B′

1
−1 is a diagonal matrix with b0,j/b1,j on the diag-

onal, and thus the eigenvalues of B∗ are all the ratios b0,j/b1,j . And since W and
B∗ are similar matrices, then also the eigenvalues of W are the b0,j/b1,j ’s. Hence
once it computes W , the attacker can find its eigenvalues (over the rationals)
and obtain all the ratios b0,j/b1,j .

These ratios may be enough by themselves to break some hardness assump-
tions, but for CLT13 it is possible to use them to factor x0, thereby getting

254 J.-S. Coron et al.

a complete break. Specifically, since each ratio is rational it can be written as
u/v = b0,j/b1,j with u, v co-prime integers. Recalling now that B0, B1 are two
encodings at the same level (say, level t) with numerator vectors (b0,1, . . . , b0,n)
and (b1,1, . . . , b1,n), respectively, we get that

uB1 − vB0 = [CRT (ub1,1 − vb0,1, . . . , ub1,n − vb0,n) /zt]x0 .

This means that the j’th CRT component is ub1,j − vb0,j = 0, and with high
probability the others are not, so we get GCD(x0, uB1 − vB0) = pj .

2.3 Extending the CHLRS Attack

In the current work we describe several extensions to attacks of Cheon et al.
from [5]; below we describe these extensions briefly.

GGH13 vs. CLT13. We can also apply these zeroizing attacks to a matrix
variant of GGH13, not just to CLT13 encodings, resulting in a “weak discrete-
log” attack. This is described in the full version.

Orthogonal Encodings. We also note that these attacks do not actually
require low-level encoding of zeros. Indeed all we need is that for every i, σ, j, the
product AiBσCj is a top-level encoding of zero, so we could have the A’s with
zeros in a few CRT components, the B’s with zeros in some other components,
and the C’s with zeros in all the CRT components not covered by the A’s and
B’s. This observation was also made concurrently by Boneh et al. [3].

More than One Monomial. The attack also extends to a setting where more
than a single monomial is needed to get a zero. For example, consider the case
where we have not three but six sets of encodings. Similar to before we have
A = {Ai : i = 1, . . . , 2n}, B = {B0, B1}, and C = {Cj : j = 1, . . . , 2n}, but
now we also have Ã = {Ãi : i = 1, . . . , 2n}, B̃ = {B̃0, B̃1}, and C̃ = {C̃j : j =
1, . . . , 2n}. (Note that the indices i, j now range over [1, 2n], not [1, n]). The new
attack requires that AiBσCj + ÃiB̃σC̃j is a top-level encoding of zero for every
i, σ, j. We denote the numerator vectors associated with these encodings by

Ai ∼ (ai,1, . . . , ai,n), Bσ ∼ (bσ,1, . . . , bσ,n), Cj ∼ (cj,1, . . . , cj,n),

Ãi ∼ (ãi,1, . . . , ãi,n), B̃σ ∼ (b̃σ,1, . . . , b̃σ,n), C̃j ∼ (c̃j,1, . . . , c̃j,n).

We can think of the pairs (Ai, Ãi), (Bσ, B̃σ), (Cj , C̃j) as encodings that are
associated with numerator vectors of twice the dimension, and the CHLRS attack
can be applied to these new “double encodings”. The only difference (other than
the larger dimension) is that we can no longer associate the division-by-gi with
any single vector. Instead, applying the zero-test to AiBσCj + ÃiB̃σC̃j yields a
four-wise inner product divided by the gi’s, which we can write in matrix form:

Zeroizing Without Low-Level Zeroes 255

wσ[i, j] = (ai,1 ãi,1 . . . ai,n ãi,n) ×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ1bσ,1
g1

ρ1b̃σ,1
g1

. . .
ρnbσ,n

gn

ρnb̃σ,n

gn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cj,1

c̃j,1

...
cj,n

c̃j,n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Importantly, even though we have division by gi’s, this equation holds over the
rationals, without modular reduction. The attack itself proceeds just as before,
and the g−1

i factors conveniently fall off when we compute B′
0 × B′

1
−1. This

extension can be used to break the “immunized” CLT13 variant from [3].

Using Cayley-Hamilton. In response to the CHLRS attacks, Garg et al.
described in [9, Sect. 7] a variant of the CLT13 encoding that uses matrices for
encoding, rather than single Zx0 elements (see description in Sect. 3.2 below).

The attacks above apply also to this variant for the most part, but the resulting
matrices B′

0, B
′
1 are no longer diagonal. Instead they are block-diagonal with the

block dimension corresponding to the dimension of the encoding matrices, and
different blocks corresponding to different CRT components (i.e. Bσ mod pj). The
eigenvalues of B′

0 ×B′
1
−1 in this case need not be rational numbers anymore, they

can be arbitrary complex numbers, and so the final step in the CHLRS attack
cannot be applied.

However the characteristic polynomial of B∗ = B′
0×B′

1
−1 is still the product

of the characteristic polynomials of the blocks. We can factor the characteristic
polynomial of B∗ to find the block characteristic polynomials, and then apply
these block polynomials to the matrix M = B1 ×B−1

0 . Applying a block polyno-
mial to M zeros out the corresponding CRT component (by the Cayley-Hamilton
theorem), but not the others (whp), and we can then compute the GCD of x0

and any matrix element to recover the prime corresponding to the zeroed CRT
component. Note this assumes that the block polynomials are irreducible over
Q (which indeed holds for [9, Sect. 7]), so that they can be efficiently found by
factoring B∗’s characteristic polynomial.

The actual procedure that we use differs slightly, in order to handle an unpub-
lished generalization of [9, Sect. 7] in which the encoding matrices themselves
are constructed to be block-diagonal, say with block dimension d. With this
change B∗ is still block-diagonal, but the block dimension is now larger by a
factor of d, and each polynomial that we want to apply to M is the product of d
factors of B∗’s characteristic polynomial. We do not know of a way to efficiently
partition these factors into the correct sets of size d. Instead, we remove one
irreducible factor from B∗’s characteristic polynomial, and apply the resulting
polynomial to M . This has the effect of zeroing out all CRT components except
the one corresponding to the removed factor, so computing the GCD with x0

recovers the product of all but one of the primes, and dividing x0 by this recov-
ers an individual prime. Cycling over all irreducible factors, we recover all of the
primes.

256 J.-S. Coron et al.

2.4 Attack Limitations

As sketched in the introduction, zeroizing attacks have their limitations, in that
they require zeros and moreover need the equations that yield these zeros to
be “simple.” Two scenarios that seem outside the scope of these attacks due to
“non-simple” equations are discussed next.

Obfuscation Using Barrington’s Theorem. Consider the obfuscation schemes in
the literature that obfuscate matrix-based branching programs (BP) resulting
from Barrington’s theorem [2,4,8,16]. These schemes are designed so that the
only way to get a top-level zero encoding is using the prescribed routines for
evaluating the obfuscated circuit on various inputs, so we only need to examine
the type of expressions that arise from such evaluation.

Recall that a matrix-based BP has a sequence of steps, each specified by
two matrices and controlled by an input bit. On a given input, we choose one
of the two matrices in each step (based on the corresponding input bit), then
multiply all of the selected matrices in order to get the result. In the BPs that
are generated by Barrington’s theorem, each input bit controls several steps
that are spaced far apart, and so changing the value of that bit changes the
selection of all these matrices. This makes it hard to apply our attacks in this
setting, since these attacks require a multilinear setting where we can get many
different zeros by changing just a single variable in every monomial. Therefore,
even though we do get equations over the base ring from top-level zeros in this
scheme, these equations appear to be correlated in a highly non-linear manner,
foiling our attempts to glean useful information from them.

We contrast this situation with the attack that we describe in Sect. 3.3, that
breaks obfuscation of very simple branching programs which are “separable” in
the sense that different subsets of the input bits control different consecutive
intervals of steps, thus giving us the simple system of equations that we need.

Binding Variables. The CHLRS attacks and our extensions rely on the ability to
partition the variables into groups (A,B, C above), so that we can independently
choose variables from the different groups and every such choice yields a top-
level zero. Several schemes in the literature use explicit binding variables to
make it hard to partition the encodings into independent sets. For example, the
obfuscation schemes of Barak et al. [2] and Zimmerman [17] use “dual-input
straddling sets” to create a “high connectivity” interlocking set of encodings.

These schemes contain, for each pair i, j of input bits, four encoded variables
Ui,j,0,0, Ui,j,0,1, Ui,j,1,0, and Ui,j,1,1, such that obtaining a top-level encoding of
zero requires multiplying Ui,j,∗,∗’s that are consistent with some n-bit input x
(i.e., it requires computing some expression ·∏i,j Ui,j,xi,xj

). This structure seems
to foil attempts of separating the variables into independent sets, since changing
any input bit creates a cascading effect. To illustrate the difficulty of applying the
attack in this setting, we describe in the full version a relatively simple source-
group hardness assumption involving such binding variables, which we do not
know how to break even though we are given many low-level CLT13 encodings
of zero.

Zeroizing Without Low-Level Zeroes 257

3 A Unified Attack Against CLT13-Based Schemes

Below we present a general attack on CLT13-based schemes that combines all
the ideas from Sect. 2.3, and show how this attack can be used against:

– The proposed CLT13 modification by Garg et al. [9, Sect. 7] (that was sug-
gested in response to the CHLRS attacks);

– Obfuscations of branching programs with specific structure using the iO pro-
cedure of Garg et al. [8].

Central to our general attack is the notion of a “good attack set,” which roughly
plays the role of the sets A,B, C from Sect. 2 (together with the zero-test para-
meter). To define this notion formally, fix an instance of CLT13 with n secret
primes p1, . . . , pn and modulus x0 :=

∏
i pi. An attack set (of dimension d) con-

sists of three sets of matrices A,B, C ⊂ Z
d×d
x0

, of sizes |A| = |C| = nd and |B| = 2,
and two vectors s ∈ Z

1×d
x0

and t ∈ Z
d×1
x0

. These sets are constructed from the
available public parameters and encodings of a given scheme, in such a way that
for every choice of (Ai, Bσ, Cj) ∈ A × B × C, the value

Wσ[i, j] := s × Ai × Bσ × Cj × t ∈ Zx0

is a zero-tested top-level encoding of 0. (The CHLRS attack can be thought as a
special case where all the “matrices” are of dimension d = 1, and we have s = 1
and t = pzt.) Given such an attack set, the attack proceeds as in Fig. 1, where
we denote by [z]p the reduction of z modulo p into the interval [−p/2, p/2), and
this notation extends entry-wise to vectors and matrices.

Fig. 1. Our general attack on CLT13-based schemes

3.1 Sufficient Conditions for the Attack to Succeed

Next we state and prove sufficient conditions on the attack set that ensures that
the attack in Fig. 1 succeeds. Specifically, we would like to show that each Mk in

258 J.-S. Coron et al.

step 5 must be zero modulo all the primes except one, and hence any non-zero
entry in it yields a nontrivial factor of x0 (i.e. the product of those primes).

Referring to the intuition from Sect. 2.3, the matrix W = A×B∗×A−1 is sim-
ilar to a block-diagonal matrix B∗ that has one block for each CRT component.
Specifically, the jth block of B∗ is B∗

j = [B0]pj
× ([B1]pj

)−1 (inverse over Q).
The characteristic polynomial of W is then the product of the characteristic
polynomials of all the blocks. For simplicity, assume the block polynomials are
the irreducible factors fi from Fig. 1. Then each Fk is thus the product of all
block polynomials except the kth, and by the Cayley-Hamilton theorem we have
that Fk(B∗

j) = 0 (and therefore also Gk(B∗
j) = 0) for all blocks j �= k. But

Gk(B∗
j) = 0 over Q implies that also Gk(B0 × B−1

1) = 0 (mod pj), so Gk(M)
is zero modulo all primes j �= k. The only thing left to ensure is that for the
last prime pk we get Gk(M) �= 0 (mod pk), which is the essence of our sufficient
condition. The actual condition in Definition 1 below is slightly more complex,
to account for the case when the block polynomials are reducible over Q.

Definition 1. Fix an attack set (A,B, C, s, t). Let B0, B1,M,W be the matri-
ces from Fig. 1, and let gj := charPoly

(
[B0]pj

× [B1]−1
pj

)
over Q. We say that

(A,B, C, s, t) is good if:

1. f := charPoly(W) =
∏

j�n gj;
2. B1 is non-singular modulo x0;
3. The common denominators dk from step 4 are all co-prime with x0;
4. For any j � n and any divisor fk of gj of degree � 1 (possibly fk = gj),

denoting Gk = dk · f/fk as in step 4, we have Gk(M) �= 0 (mod pj).

Theorem 1. For any good attack set (A,B, C, s, t), the algorithm in Fig. 1 recov-
ers the secret primes p1, . . . , pn.

To prove Theorem 1 we use the following lemma:

Lemma 1. Let p > 1 and u1, . . . , ut, v1, . . . , vt be integers, s.t. the vi’s are
invertible mod p, and denote wi = [ui · v−1

i]p. If g is a multivariate integer
polynomial such that g(u1

v1
, . . . , ut

vt
) = 0 over Q, then g(w1, . . . , wt) = 0 (mod p).

Proof. It is enough to prove it for a linear g, since we can replace any non-linear
term

∏
i∈I(

ui

vi
)ei (for some I ⊂ [t] and ei’s) by new variables u′ =

∏
i∈I uei

i ,
v′ =

∏
i∈I vei

i , and w′ = [
∏

i∈I wei
i]p = [u′ · v′−1]p, and then prove the same

statement on the resulting new polynomial.
Now denote V =

∏
i vi and for each i denote v∗

i = V/vi =
∏

j �=i vj . For a
linear g we can write

∑
i gi · ui

vi
= 0 over Q, so also

∑
giuiv

∗
i = V ·∑i gi · ui

vi
= 0,

and in particular
∑

giuiv
∗
i = 0 (mod p). Finally, since V is invertible modulo p

we get
∑

i

giwi =
∑

i

giuiv
−1
i = V −1 ·

∑

i

giuiv
∗
i = 0 (mod p). ��

Zeroizing Without Low-Level Zeroes 259

Proof (of Theorem 1). For all i denote B∗
i = [B0]pi

× [B1]−1
pi

over Q and B̂i =
[B0]pi

× [B1]−1
pi

over Zpi
. Let ti := det([B1]pi

) (over Q), and since B1 is non-
singular modulo x0 then in particular ti �= 0 (mod pi). We can therefore write
B∗

i = B̃i/ti for an integer matrix B̃i, and clearly we also have B̂i = B̃i · t−1

(mod pi).
Denote the characteristic polynomial of B∗

i over Q by gi := charPoly(B∗
i). By

the first condition in Definition 1 we have f := charPoly(W) =
∏

j�n gj . Note,
however, that the gj ’s are not necessarily irreducible, so there isn’t necessarily a
1-1 correspondence between the gj ’s and the irreducible factors fk of f .

Fix an index j � n and we show that for some k it holds that Gk(M) �= 0
(mod pj) but Gk(M) = 0 (mod pi) for all i �= j. Clearly this gj is divisible by at
least one fk (which has degree � 1), so the last condition of Definition 1 implies
that Gk(M) = dk · Fk(M) �= 0 (mod pj). It remains to show that for all the
other primes pi, i �= j, we have Gk(M) = 0 (mod pi).

Clearly Fk is divisible by gi for every i �= j, so the Cayley-Hamilton theorem
implies that Fk(B∗

i) = 0 (over Q) for all i �= j, and therefore also Gk(B∗
i) = 0.

Viewing Gk(B∗
i) as a collection of multivariate polynomials over the elements

of B∗
i , and using the facts that B∗

i = B̃i/ti and B̂i = B̃i · t−1 (mod pi), we can
apply Lemma 1 to conclude that also Gk(B̂i) = 0 (mod pi). And since M = B̂i

(mod pi) then also Gk(M) = 0 (mod pi), as needed.
We have shown that Mk := Gk(M) satisfies Mk �= 0 (mod pj) but Mk = 0

(mod pi) for all i �= j, so there exists an entry z = Mk[a, b] such that z �= 0
(mod pj) but z = 0 (mod pi) for all i �= j. Thus GCD(z, x0) =

∏
i�=j pi, and

x0/GCD(z, x0) = pj . ��
Below we construct good attack sets for some schemes in the literature. More
examples can be found in the full version. We will repeatedly use the fact that
for a CLT13 encoding u associated with numerator vector u ∼ (rigi + mi)i, the
randomization vector (ri)i∈[n] is nearly uniform for each encoding. Specifically
we have the following, which is proved in [3, Lemma 5.7].

Lemma 2 ([3]). There exists a prime q = 2Ω(n) which is determined by
the CLT13 system parameters such that, for each encoding, the distribution on
(ri mod q)i∈[n] is negl(n)-close to the uniform distribution on Z

n
q .

3.2 Attacking the Garg-Gentry-Halevi-Zhandry Countermeasure

Garg, Gentry, Halevi, and Zhandry proposed in [9, Sect. 7] a variant of the CLT13
scheme, that was designed to resist the CHLRS attack. This variant uses matrices
of native CLT13 encodings, where the encoded value is an eigenvalue of the
matrix and the zero-test parameter includes also the corresponding eigenvector.
The CHLRS attack from [5] indeed does not apply to this variant, but below
we show that this variant still gives rise to a good attack set, and thus our new
attack from Fig. 1 recovers the secret primes.

The GGHZ variant relies on the same parameters as CLT13, namely we
choose ({gi}i, {pi}i,pzt, {zi}) (with x0 :=

∏
i pi and top level corresponding to

260 J.-S. Coron et al.

denominator z∗ =
∏

zi). Let d := 2κ + 1, and choose a secret matrix T ∈ Z
d×d
x0

uniformly. An encoding of a plaintext value c at some level is given by C ∈ Z
d×d
x0

,
where4

C := T ×

⎡

⎢
⎢
⎢
⎣

$̂ 0̂ . . . 0̂
0̂ $̂ . . . 0̂
...

...
0̂ 0̂ . . . ĉ

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
C∗

×T−1 mod x0.

Each $̂ in C∗ is a “native CLT13 encoding” of an independent random value
at the given level, each 0̂ is an independent native encoding of 0, and ĉ is a native
encoding of c. For zero-testing, two dimension-d vectors s, t are provided:

s := [$̂ . . . $̂ 0̂ . . . 0̂ $̂] × T−1 mod x0

t := pzt · T× [0̂ . . . 0̂ $̂ . . . $̂ $̂]T mod x0

where 0̂ and $̂ are CLT13 native “level-zero” encodings (i.e., corresponding to
denominator 1). Then a GGHZ-encoding C as above at the top level level can
be zero tested by computing s × C × t = ($̂ · ĉ + 0̂) · pzt (mod x0) and checking
for smallness.

Attack Set. The matrix sets A,B, C consist directly of GGHZ-encodings, since
these are already in matrix form. Specifically, we assume that [1, κ] is partitioned
into three intervals IA = [1, kA], IB = [kA + 1, kB], IC = [kB + 1, κ], such that
we have GGHZ-encodings

– A =
{

Ai = T × A∗
i × T−1 : Ai encoded at level IA

}

i∈[nd]

– B =
{

Bσ = T × B∗
σ × T−1 : Bσ encoded at level IB

}

σ∈{0,1}
– C =

{
Ck = T × C∗

k × T−1 : Ck encoded at level IC

}

k∈[nd]

where Ai × Bσ × Ck is a GGHZ-encoding of 0 for all i, k ∈ [nd] and σ ∈ {0, 1}.
The vectors s and t are the zero testing vectors from the GGHZ scheme.

Attack Set Properties. We prove that (A,B, C, s, t) form a good attack set accord-
ing to Definition 1. We write

Wσ[i, k] = s × Ai × Bσ × Ck × t

= s × T × A∗
i × B∗

σ × C∗
k × T−1 × t = ai × B∗

σ × ck

4 The attack applies also when one uses many matrices T0, T
−1
0 , . . . , Tκ, T

−1
κ (rather

than just T, T−1), so multiplication can only be performed in a specific order, as
described in [9].

Zeroizing Without Low-Level Zeroes 261

where ai := s′×A∗
i and ck := C∗

k ×t′ are dimension-d vectors. The above equality
holds over the integers, not only modulo x0, since all the variables in the final
right-hand-side are small compared to x0.

We denote ai
� := ai mod p� and ck

� := ck mod p� for i ∈ [nd], � ∈ [n]. Now
we can write Wσ = Ã× B̃σ × C̃, where Ã is an nd×n2d matrix, C̃ is an n2d×nd
matrix, and B̃σ is a n2d × n2d block-diagonal matrix, defined as follows.

Ã =

⎡

⎢
⎢
⎢
⎣

a1
1 a1

2 · · · a1
n

a2
1 a2

2 · · · a2
n

...
...

...
and
1 and

2 · · · and
n

⎤

⎥
⎥
⎥
⎦

C̃ =

⎡

⎢
⎢
⎢
⎣

(c11)
T (c21)

T · · · (cnd
1)T

(c12)
T (c22)

T · · · (cnd
2)T

...
...

...
(c1n)T (c2n)T · · · (cnd

n)T

⎤

⎥
⎥
⎥
⎦

B̃σ =

⎡

⎢
⎢
⎢
⎣

B∗
σ mod p1 0 0

0 B∗
σ mod p2 0

. . .
0 0 B∗

σ mod pn

⎤

⎥
⎥
⎥
⎦

Using Lemma 2 and the Schwartz-Zippel lemma, it can be shown that with
high probability over the randomness in the CLT13 encodings, Ã, C̃, and each
B∗

σ have full rank nd. Under this condition each Wσ has rank nd and is thus
invertible, so we can write W = W0 × W−1

1 = Ã × B̃0 × B̃−1
1 × Ã−1, where Ã−1

denotes the right inverse of the (non-square, full-rank) matrix Ã. Then we have

charPoly(W) = charPoly
(
B̃0 × B̃−1

1

)
=

n∏

i=1

charPoly
(
[B∗

0]pi
× [B∗

1]−1
pi

)

=
n∏

i=1

charPoly
(
[B0]pi

× [B1]−1
pi

)

so the first property of Definition 1 holds. The second property of Definition 1
holds with high probability over the choice of randomness in the CLT13 encod-
ings. We were not able to prove that the last two properties in Definition 1
hold, but we verified them experimentally by running the attack on several ran-
dom instances and checking that they indeed hold in all of them. For the fourth
property, we can prove that it holds under the following natural conjecture:

Conjecture 1. For each i ∈ [n], with high probability over the randomness in the
CLT13 encodings, charPoly

(
[B∗

0]pi
× [B∗

1]−1
pi

)
is irreducible over Q.

We make two remarks about this conjecture. First, we have verified it experi-
mentally. Second, a work of Kuba [15] shows that among the degree-n univariate
integer polynomials whose coefficients are bounded in absolute value by an inte-
ger t, the polynomials that are reducible over Q make up a roughly 1/t fraction.
In particular, a random polynomial with r-bit coefficients is irreducible over Q

with probability roughly 1−2−r. Thus provided that charPoly
(
[B∗

0]pi
× [B∗

1]−1
pi

)

262 J.-S. Coron et al.

is well-distributed among polynomials with an appropriate coefficient bound,
Conjecture 1 should hold. We note that the relationship between a random poly-
nomial and the characteristic polynomial of a random matrix has been explored
by Hansen and Schmutz [13]. However, their results do not seem directly applica-
ble here because they study polynomials over a finite field F, and a uniform
degree-n polynomial is irreducible over F only with probability ≈ 1/n.

Assuming Conjecture 1, the fourth property of Definition 1 reduces to show-
ing that for every prime factor pj of x0,

(∏
i�=j difi

)
(M) �= 0 (mod pj) where di,

fi, and M are as in Fig. 1. Choose all values in the CLT13 encodings except for
the random values in the jth slot of the encodings in B0, and call the unchosen
values R. With high probability over this choice, each entry of M is a non-trivial
linear polynomial in R, and

(∏
i�=j difi

)
is a non-trivial degree-(n − 1) polyno-

mial in M . Thus each entry of
(∏

i�=j difi

)
(M) is a non-trivial degree-(n − 1)

polynomial in R, and is non-zero modulo pi with high probability by Lemma 2
and the Schwartz-Zippel lemma.

3.3 Attacking GGHRSW Obfuscation for Simple Branching
Programs

We observe that our unified attack can be applied also to the candidate obfusca-
tion construction of Garg et al. [8] when instantiated with the CLT13 multilinear
maps and applied to branching programs with specific “partitionable” structure
that we define below. We stress that applying Barrington’s theorem to a circuits
does not have the required structure, so as far as we know, the iO candidate
from [8] for NC1 circuits remains plausible.

The GGHRSW Obfuscation Candidate for Branching Programs. Recall
that the obfuscator of Garg et al. [8] consists of encoded, randomized versions of
two BPs; one is the BP that we want to obfuscate and the other is a “dummy BP”
consisting of only identity matrices (and hence computing the all-one function).
Even though neither program computes a zero, they are constructed such that
their difference on accepting computations yields an encoding of zero, which can
be recognized by zero testing. The core construction from [8] works with oblivious
branching programs. An oblivious branching program of length L over � input
variables is defined as follows

BP = {(inp(i), Ai,0, Ai,1) : i ∈ [L], inp(i) ∈ [�], Ai,b ∈ {0, 1}w×w},

where the Aiσ’s are invertible matrices and inp(i) is the input bit position exam-
ined in step i. The function computed by this branching program is defined
(using some fixed matrix A0 �= I) as

fBP,A,I =

⎧
⎪⎨

⎪⎩

0 if
∏L

i=1 Ai,xinpi
= A0

1 if
∏L

i=1 Ai,xinpi
= I

undef otherwise.

Zeroizing Without Low-Level Zeroes 263

Let Zp be a ring that we use for randomization, and for each input bit j
denote by Ij := {i ∈ [L] : inp(i) = j} the set of steps where the branching
program examine the j’th input bit. The GGHRSW construction, on input an
L-step branching program BP over � input bits, proceeds as follows:

1. Sample random and independent scalars {αi,0, αi,1, α
′
i,0, α

′
i,1 ∈ Zp : i ∈ [L]},

subject to the constraint that for any input bit j ∈ [�], we have
∏

i∈Ij
αi,0 =

∏
i∈Ij

α′
i,0 and

∏
i∈Ij

αi,1 =
∏

i∈Ij
α′

i,1.
2. Let m = 2L+w. For every i ∈ [n], choose two block-diagonal m×m matrices

Di,0,Di,1 where the diagonal entries 1, . . . , 2L are chosen at random ($) and
the bottom-right w × w are the scaled Aj,b’s. Also choose two more m × m
matrices D′

i,0,D
′
i,1 where the diagonal entries 1, . . . , 2L are random and the

bottom-right w × w are the scaled identity:

Di,b ∼

⎛

⎜
⎜
⎜
⎝

$
. . .

$
αi,bAi,b

⎞

⎟
⎟
⎟
⎠

, D′
i,b ∼

⎛

⎜
⎜
⎜
⎝

$
. . .

$
α′

i,bI

⎞

⎟
⎟
⎟
⎠

, b ∈ {0, 1}.

3. Choose vectors s and t, and s′ and t′ of dimension m = 2L + w as follows:

s ∼ (0 . . . 0 $. . . $ s∗) t ∼ ($. . . $ 0 . . . 0 t∗)T

s′ ∼ (0 . . . 0 $. . . $ s′∗) t′ ∼ ($. . . $ 0 . . . 0 t′∗)T

Here s∗, t∗, s′∗, t′∗ ∈ Z
w
p are uniform up to 〈s∗, t∗〉 = 〈s′∗, t′∗〉, and 0 . . . 0 and

$. . . $ are length-L vectors of zeros and uniform elements of Zp, respectively.
4. Sample 2(L + 1) uniform full-rank matrices R0, . . . , RL, R′

0, . . . , R
′
L ∈ Z

m×m
p .

5. The randomized branching program over Zp is the following:

RNDp(BP) ={
s̃ = sR−1

0 , t̃ = Rnt, s̃′ = s′(R′
0)

−1, t̃′ = R′
nt′

{
D̃i,b = Ri−1Di,bR

−1
i

}
i∈[L],b∈{0,1},

{
D̃′

i,b = R′
i−1D

′
i,b(R

′
i)

−1
}

i∈[L],b∈{0,1}

}

6. Finally, encode the randomized program using an (L + 2)-level asymmet-
ric multilinear map scheme. Here we use the CLT13 scheme, choosing x0 =∏n

i=1 pi, for equal-size primes pi, g = CRT (gi) for small gi � pi’s, ran-
dom denominators z0, z1, . . . , zL+1 ∈ Zx0 with z∗ = [

∏
i zi]x0 , and an ele-

ment h with mid-size CRT components, used for the zero-testing parameter
pzt = [hz∗g−1]x0 .

Choose random small vectors rs r′
s rt r′

t, and random small matrices Ui,b

and U ′
i,b, and publish the zero-testing parameter pzt and the obfuscation

O(BP) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ŝ = [z−1
0 (s̃ + grs)]x0 , t̂ = [z−1

L+1(t̃ + grt)]x0 ,{
D̂i,b = [z−1

i (D̃i,b + gUi,b)]x0

}
i∈[L],b∈{0,1},

ŝ′ = [z−1
0 (s̃′ + gr′

s)]x0 , t̂′ = [z−1
L+1(t̃

′ + gr′
t)]x0 ,{

D̂′
i,b = [z−1

i (D̃′
i,b + gU ′

i,b)]x0

}
i∈[L],b∈{0,1}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

264 J.-S. Coron et al.

To evaluate O(BP)(x), compute y = s̃
(∏L

i=1 D̃i,xinp(i)

)
t̃− s̃′

(∏L
i=1 D̃

′
i,xinp(i)

)
t̃′,

and output 1 if y encodes 0 (as determined by pzt).

Attack. Our attack is applicable to branching programs with the following
structure: there exists a partition of the input bits [�] = X1 ∪ X2 ∪ X3 and the
branching program steps [L] = A ∪ B ∪ C such that A, B and C consist of
consecutive steps in the branching program and inp(i) ∈ X1 ∀i ∈ A, inp(i) ∈
X2 ∀i ∈ B and inp(i) ∈ X3 ∀i ∈ C. We consider a branching program BP of
length L and input length �, computing the constant-1 function, that can be
written as BP (x) = A(x1) ◦ B(x2) ◦ C(x3), where A(x1), B(x2), and C(x3) are
branching programs over positions in the sets A,B, and C depending on inputs
x1, x2, and x3, respectively. We are given the obfuscation:

O(BP) =
(
pzt, ŝ, t̂, ŝ′, t̂′, {D̂i,b, D̂

′
i,b}i∈[L],b∈{0,1}

)
.

Attack Sets. We construct the sets A, B and C as follows. Let A(x) =∏
i∈A Di,xinp(i) , A′(x) =

∏
i∈A D′

i,xinp(i)
. We define similarly B(x), B′(x) and

C(x), C ′(x). We note that using O we can compute R0A(x)R−1
|A| =

∏
i∈A D̃i,xinp(i)

and R0A
′(x)R−1

|A| =
∏

i∈A D̃′
i,xinp(i)

, and so on. Let α1, . . . , αmn ∈ {0, 1}|X1| be

any set of distinct strings, and similarly for β0, β1 ∈ {0, 1}|X2| and γ1, . . . , γmn ∈
{0, 1}|X3|. We set s = (s̃, s̃′) and t = (t̃,−t̃′)pzt, and define

A =

{

Ãi =

[
R0A(αi)R−1

|A| 0
0 R0A

′(αi)R−1
|A|

]}

i∈[(2L+w)n]

B =

{

B̃σ =

[
R|A|B(βσ)R−1

|A∪B| 0
0 R|A|B′(βσ)R−1

|A∪B|

]}

σ∈{0,1}

C =
{

C̃k =
[
R|A∪B|C(γk)R−1

L 0
0 R|A∪B|C ′(γk)R−1

L

]}

k∈[(2L+w)n]

.

Set Properties. We consider the values

W0[i, k] = s×Ãi ×B̃0×C̃k ×t = (s×Ai ×B0×Ck ×t−s′ ×A′
i ×B′

0×C ′
k ×t′)pzt.

Since W0[i, k] is a zero-tested encoding of zero by the definition of the obfus-
cated branching programs, the above equality holds not only modx0 but also
over the integers. W1 is constructed analogously.

The rest of the attack proceeds in the same manner as the attack on GGHZ
encodings from Sect. 3.2. Let ai = (s × Ai, s

′ × A′
i) for i ∈ [(2m + w)n], ck =

(Ck × t×pzt,−C ′
k × t′ ×pzt) for k ∈ [(2m+w)n] and X0 =

[
B0 0
0 B′

0

]

. We set the

matrix Â to have i-th row that is concatenations of the vectors ai mod pj for

Zeroizing Without Low-Level Zeroes 265

j ∈ [n], the matrix Ĉ to have i-th column that is concatenation of cT
i mod pj

for j ∈ [n], and the matrix B̂0 to be a diagonal matrix with diagonal consisting
of X0 mod pj for j ∈ [n]. Then we have that W0 = Â × B̂0 × Ĉ. We compute
analogously W1 = Â× B̂1 × Ĉ. We use these matrices as in the attack on GGHZ
encodings to break the underlying CLT13 encodings.

4 Conclusion

In this work we extended the recent CHLRS zeroizing attacks to many new
settings, and also illustrated some of the limitations of this attack technique.
The underlying message of recent attacks is that for current multilinear-map
candidates, successful zero-tests give the adversary equations over the base ring
(i.e. the integers or the ring of integers in a number field). Understanding the
security of these candidates therefore hinges on a better understanding of which
types of systems of nonlinear equations can be solved efficiently.

References

1. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 528–556. Springer, Heidelberg (2015). http://eprint.iacr.org/2015/025

2. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-642-55220-5 13

3. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. Cryptology ePrint Archive, Report 2014/930 (2014). http://eprint.
iacr.org/

4. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

5. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the mul-
tilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015).
http://eprint.iacr.org/2014/906

6. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps
over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-40041-4 26

7. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38348-9 1

8. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE Computer Society (2013). http://doi.ieeecomputersociety.
org/10.1109/FOCS.2013.13

http://eprint.iacr.org/2015/025
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/906
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13

266 J.-S. Coron et al.

9. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. Cryptology ePrint Archive, Report 2014/666 (2014). http://
eprint.iacr.org/

10. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive 2014, 309 (2014). http://eprint.iacr.org/2014/309

11. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance
independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-662-44371-2 24

12. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). http://dx.doi.org/10.1016/0022-0000(84)90070-9

13. Hansen, J.C., Schmutz, E.: How random is the characteristic polynomial of a ran-
dom matrix? Math. Proc. Camb. Phi. Soc. 114, 507–515 (1993)

14. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive, Report
2015/301 (2015). http://eprint.iacr.org/

15. Kuba, G.: On the distribution of reducible polynomials. Math. Slovaca 59(3),
349–356 (2009)

16. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-662-44371-2 28

17. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). http://eprint.iacr.org/2014/776

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/309
http://dx.doi.org/10.1007/978-3-662-44371-2_24
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://eprint.iacr.org/2014/776

New Multilinear Maps Over the Integers

Jean-Sébastien Coron1(B), Tancrède Lepoint2, and Mehdi Tibouchi3

1 University of Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

2 CryptoExperts, Paris Cedex, France
tancrede.lepoint@cryptoexperts.com

3 NTT Secure Platform Laboratories, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. In the last few years, cryptographic multilinear maps have
proved their tremendous potential as building blocks for new construc-
tions, in particular the first viable approach to general program obfusca-
tion. After the first candidate construction by Garg, Gentry and Halevi
(GGH) based on ideal lattices, a second construction over the integers
was described by Coron, Lepoint and Tibouchi (CLT). However the CLT
scheme was recently broken by Cheon et al.; the attack works by com-
puting the eigenvalues of a diagonalizable matrix over Q derived from
the multilinear map.

In this paper we describe a new candidate multilinear map over
the integers. Our construction is based on CLT but with a new arith-
metic technique that makes the zero-testing element non-linear in the
encoding, which prevents the Cheon et al. attack. Our new construc-
tion is relatively practical as its efficiency is comparable to the original
CLT scheme. Moreover the subgroup membership and decisional linear
assumptions appear to hold in the new setting.

1 Introduction

Multilinear Maps. Since the breakthrough construction of Garg, Gentry and
Halevi [GGH13a], there has been a growing interest in cryptographic multi-
linear maps. They have spurred scores of new cryptographic applications. Chiefly
among them is possibly the first proposed approach to general program obfus-
cation [GGH+13b]. Currently only three candidate constructions are known.
Shorty after the first candidate construction of multilinear maps based on ideal
lattices [GGH13a] (which we will refer to as GGH), Coron, Lepoint and Tibouchi
proposed a second construction over the integers (CLT) using the same general
paradigm [CLT13]. Recently, Gentry, Gorbunov and Halevi proposed another
multilinear maps in which the map is defined with respect to a directed acyclic
graph [GGH15].

A straightforward application of multilinear maps is multipartite Diffie-
Hellman key exchange with κ + 1 users, where κ is the maximum level of the
multilinear map scheme. Initially each user publishes a level-1 encoding of a
random element while keeping a level-0 encoding of the same element private.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 267–286, 2015.
DOI: 10.1007/978-3-662-47989-6 13

268 J.-S. Coron et al.

Then each user can compute the product its level-0 by the product of the level-1
encodings of the other users. With κ+1 users this gives a level-κ encoding from
which the same secret value can be extracted by all users. The security of the
protocol relies on a new hardness assumption which is a natural extension of the
Decisional Diffie-Hellman assumption.

The CLT Multilinear Map Over the Integers. We recall the multilinear
maps scheme over the integers from [CLT13]. One generates n secret primes pi

and publishes x0 =
∏n

i=1 pi (where n is large enough to ensure security); one
also generates n small secret primes gi and a random secret integer z modulo
x0. The message space is R = Zg1 × · · · × Zgn

. A level-k encoding of a vector
m = (mi) ∈ R is then an integer c such that for all 1 � i � n:

c ≡ ri · gi + mi

zk
(mod pi) (1)

for some small random integers ri; the integer c is therefore defined modulo x0

by CRT. Encodings can then be added and multiplied modulo x0, as long as the
noise ri is such that ri · gi + mi < p for each i. The multiplication of a level-i
encoding by a level-j encoding gives an encoding at level i + j.

For level-κ encodings one defines a zero-testing parameter pzt with:

pzt =
n∑

i=1

hi · (
zκ · g−1

i mod pi

) · x0

pi
mod x0

for some small integers hi. Given a level-κ encoding c as in (1), as a zero-testing
procedure one computes ω = pzt · c mod x0 which gives:

ω =
n∑

i=1

hi · (
ri + mi · (g−1

i mod pi)
) · x0

pi
mod x0. (2)

If mi = 0 for all i, since the ri’s and hi’s are small, we obtain that ω is small
compared to x0; this enables to test whether c is an encoding of 0 or not.
Moreover for non-zero encodings the leading bits of ω only depend on the mi’s
and not on the noise ri; for level-κ encodings this enables to extract a function
of the mi’s only, which eventually defines a degree-κ multilinear map.

Cheon et al. Attack. The CLT scheme above was completely broken by a
recent attack from Cheon, Han Lee, Ryu and Stehlé [CHL+15]; the attack runs
in polynomial time, and recovers all secret parameters. The attack works by
computing the eigenvalues of a diagonalizable matrix over Q derived from the
multilinear map. More precisely, when applying the zero-testing procedure to
the product of two encodings x and x′, where x is an encoding of 0, the resulting
ω in (2) can be seen as a diagonal quadratic form over Z in the CRT components
x mod pi and x′ mod pi. By computing the values ωjk of the quadratic form for
n2 product pairs of encodings xj ·x′

k, one can then recover the coefficients of the
quadratic form using eigendecomposition, which reveals all the secret pi’s and
completely breaks the scheme. We recall the attack in more details in Sect. 3.

New Multilinear Maps Over the Integers 269

Tentative Fixes. Shortly after Cheon et al. attack, two independent approaches
to fix the CLT scheme have been proposed on the Cryptology ePrint Archive,
due to Garg, Gentry, Halevi and Zhandry on the one hand [GGHZ14, Sect. 7]1,
and Boneh, Wu and Zimmerman on the other [BWZ14]. However, both coun-
termeasures were shown to be insecure in [CLT14,CGH+15]. Indeed, although
these countermeasures do not expose encodings of zero, the value ω from the
zero-testing procedure can still be expressed as a quadratic form in the CRT
components of encodings. As a result, they can both be broken by a variant of
the original Cheon et al. attack. Further extensions of the Cheon et al. attack
along those lines are presented in [GHMS14,CGH+15].

Our New Construction. Our new construction keeps the same CLT encodings
but departs from the two previous countermeasures by modifying the zero-testing
procedure itself. Namely, we modify the definition of the zero-testing element pzt

so that ω cannot be expressed as a quadratic form anymore. For this we use a
new arithmetic technique that maps the n CRT components c mod pi to some
value modulo an independent integer N , so that the resulting ω in the zero-
testing procedure depends on the CRT components in a non-linear way, rather
than linearly as in (2).

The technique works as follows. Consider a level-κ encoding c as in (1); by
the Chinese Remainder Theorem, we can write a relation of the form:

c =
n∑

i=1

(
ri + mi · (g−1

i mod pi)
) · ui − a · x0 (3)

over Z for some a ∈ Z, where the ui’s are the CRT coefficients corresponding to
the primes pi’s, and scaled by gi ·z−κ for each i. Let N be a large integer and let
pzt ∈ ZN . For the zero-testing procedure we compute ω = pzt · c mod N which
gives from (3):

ω ≡
n∑

i=1

(
ri + mi · (g−1

i mod pi)
) · vi − a · v0 (mod N) (4)

where vi := pzt · ui mod N and v0 := pzt · x0 mod N . Assume now that we can
generate pzt and N such that all the vi’s are small compared to N , including v0.
Now if mi = 0 for all i, since the ri’s are small, the integer a in (3) is also small,
which implies that ω in (4) will also be small compared to N . This enables to
test whether c is an encoding of 0 or not. As previously for level-κ encodings one
can then extract a function of the mi’s only, which gives a degree-κ multilinear
map. We show that such an element pzt can be efficiently generated for any large
enough N , owing to the particular structure of the CRT coefficients ui.

1 We refer to the revised version of [GGHZ14] of November 12 2014, accessible on the
Cryptology ePrint Archive.

270 J.-S. Coron et al.

Security Analysis. By comparing Eqs. (2) and (4), we see that the original
CLT scheme is actually a particular case, with N = x0 and v0 = 0. Therefore
the main difference in the new scheme is that v0 �= 0, which causes the value
ω in (4) to depend on the integer a in (3). But that integer a depends on the
CRT components ri in a non-linear way. As a result, it is no longer true that the
value ω computed from encoding products xj ·x′

k can be expressed as a quadratic
form in the CRT components of xj and x′

k, and the Cheon et al. attack is thus
thwarted.

Another difference with the original CLT scheme is that we cannot publish
x0 =

∏n
i=1 pi anymore. Namely for encodings of 0 we get a small ω and there-

fore (4) holds over Z. Therefore from x0 one could compute v0 = pzt ·x0 mod N
and apply the Cheon et al. attack modulo v0 instead of over Z. It is not a
problem to keep x0 private, however, as we can mimic the technique intro-
duced by van Dijk et al. for their fully homomorphic encryption scheme over
the integers [DGHV10] and approximate modular reduction by x0 with a ladder
of encodings of zero of increasing sizes.

We provide a detailed security analysis of our new construction in Sect. 3
(for the Cheon et al. attack and its variants) and Sect. 4 (for lattice attacks).
We also explain why the subgroup membership (SubM) and decisional linear
(DLIN) problems, which are known to be easy in the GGH scheme [GGH13a],
seem to be hard in our new setting.

Implementation. We describe an implementation of our scheme, with a few
optimizations. Instead of using a ladder of encodings of 0 at every level, we pub-
lish a small multiple x′

0 of x0 so that intermediate encodings can be reduced
modulo x′

0; only at the last level do we use a ladder of a few level-κ encod-
ings of 0. Additionally, to reduce the size of public parameters, we store only
a small subset of the public elements needed for re-randomization and combine
them pairwise to generate the full public parameters, as in [CLT13]; such an
optimization was originally described in [GH11]. With these optimizations our
scheme is relatively practical; for reasonable security parameters a multipartite
Diffie-Hellman computation with 7 users requires about 30 seconds, with a pub-
lic parameter size of roughly 6 GBytes; a proof-of-concept implementation is
available at [Lep15].

2 New Multilinear Map Over the Integers

In this section we define our new multilinear scheme. Our scheme is actually a
graded encoding scheme (GES) as in previous works [GGH13a,CLT13]; we recall
the notion of GES in the full version of this paper [CLT15]. As explained in
introduction, our new multilinear map scheme keeps the same CLT encodings
as given by (1), with two main differences:

1. The zero-testing parameter pzt is computed differently, so that the CRT
components modulo pi of a level-κ encoding c are mapped to some value

New Multilinear Maps Over the Integers 271

modulo an independent integer N , instead of modulo x0. The resulting ω in
the zero-testing procedure then depends on those CRT components in a non-
linear way, rather than linearly in the original CLT scheme, which prevents
the Cheon et al. attack.

2. The integer x0 =
∏n

i=1 pi is kept private. For re-randomization, this implies
that we must slightly modify the proof of statistical indistinguishability. To
reduce the size of intermediate encodings back to the size of x0, we publish a
ladder of encodings of 0. In Sect. 5 we describe a simple optimization with a
public multiple x′

0 of x0.

2.1 Scheme Description

System Parameters. The system parameters are similar to the original CLT
scheme. One first defines the security parameter λ and the required multilinearity
level κ � poly(λ). Based on λ and κ, we choose:

• n: the vector dimension
• η: the bit-size of the primes pi

• α: the bit-size of the primes gi

• ρ: the bit-size of the randomness used in encodings

and various other parameters that will be specified later. The constraints that
these parameters must satisfy are described in Sect. 2.2. For integers z, p we
denote the reduction of z modulo p by (z mod p) or [z]p with −p/2 < [z]p � p/2.
For integers x1, . . . , xn we denote CRTp1,...,pn

(x1, . . . , xn) the unique integer x
such that x ≡ xi mod pi for all 1 � i � n and 0 � x <

∏n
i=1 pi.

As in the original CLT scheme a level-k encoding of a vector m = (mi) is an
integer c such that for all 1 � i � n:

c ≡ ri · gi + mi

zk
(mod pi) (5)

where the ri’s are ρ-bit random integers (specific to the encoding c), with the
following secret parameters: the pi’s are random η-bit prime integers, the gi’s
are random α-bit primes, and the denominator z is a random (invertible) integer
modulo x0 =

∏n
i=1 pi. The integer c is therefore defined by CRT modulo x0, but

as opposed to the original CLT scheme, x0 is kept secret. We denote by γ the size
of x0 in bits. As in the CLT scheme the domain is the ring R = Zg1 × · · · ×Zgn

,
so that for m = (mi) ∈ R the components mi are defined modulo gi for all
1 � i � n.

Instance Generation: (pp,pzt) ← instGen(1λ, 1κ). Instance generation is sim-
ilar to [CLT13], except for the generation of pzt; moreover x0 is kept private.
We generate n secret random η-bit primes pi and compute x0 =

∏n
i=1 pi. We

generate a random invertible integer z modulo x0. We generate n random α-bit
prime integers gi, and various other parameters that will be specified later.

We publish the parameters (pp,pzt) with

pp =
(
n, η, α, ρ, β, τ, �, μ, y, {x′

j}�
j=1, {X

(k)
j }, {xj}τ

j=1, {Πj}n+1
j=1 , s

)
.

272 J.-S. Coron et al.

Sampling Level-Zero Encodings: c ← samp(pp). Since the primes pi’s in (5)
must remain secret, the user cannot encode a vector m ∈ R by CRT directly
from (5). Instead, as in [CLT13], a level-0 encoding c is generated as a random
subset sum of random level-0 encodings x′

j from the public parameters. The
only difference with [CLT13] is that the random subset-sum is computed over Z
instead of modulo x0, since x0 is not public.

Therefore we publish as part as our instance generation a set of � integers x′
j ,

where each x′
j encodes at level-0 the column vector aj ∈ Z

n of a secret matrix
A = (aij) ∈ Z

n×�, where each component aij is randomly generated in [0, gi)∩Z.
More precisely, using the CRT modulo x0 we generate integers x′

j such that:

1 � j � �, x′
j ≡ r′

ij · gi + aij (mod pi) (6)

where the r′
ij ’s are randomly generated in (−2ρ, 2ρ) ∩ Z.

To generate a level-0 encoding c, we first generate a random binary vector
b = (bj) ∈ {0, 1}� and output the level-0 encoding

c =
�∑

j=1

bj · x′
j .

From (6), this gives c ≡ (
∑�

j=1 r′
ijbj) · gi +

∑�
j=1 aijbj (mod pi); as required the

output c is a level-0 encoding:

c ≡ ri · gi + mi (mod pi) (7)

of some vector m = A · b ∈ R which is a random subset-sum of the column
vectors aj . We note that for such level-0 encodings we get |ri·gi+mi| � �·2ρ+α for
all i. As in [CLT13] by applying the leftover hash lemma over R = Zg1 ×· · ·×Zgn

the distribution of m can be made statistically close to uniform over R.

Lemma 1. ([CLT13]). Let c ← samp(pp) and write c ≡ ri · gi + mi (mod pi).
Assume � � n · α + 2λ. The distribution of (pp,m) is statistically close to the
distribution of (pp,m′) where m′ ← R.

As opposed to [CLT13] we cannot reduce c modulo x0; we only have the upper-
bound |c| � � · 2γ , where γ is the size of x0 in bits. In the full version of this
paper [CLT15], we show that instead of random sampling one can also publicly
encode elements from the domain R, using a technique described in [BWZ14].

Encoding at Higher Levels: ck ← enc(pp, k, c). As in [CLT13], to allow
encoding at higher levels, we publish as part of our instance-generation a level-
one random encoding of 1, namely an integer y such that:

y ≡ ri · gi + 1
z

(mod pi)

New Multilinear Maps Over the Integers 273

for random ri ∈ (−2ρ, 2ρ) ∩ Z; as previously the integer y is computed by CRT
modulo x0. Given a level-0 encoding c of m ∈ R as given by (7), we can then
compute a level-1 encoding of the same m by computing over Z:

c1 = c · y.

Namely we obtain as required:

c1 ≡ r′
i · gi + mi

z
(mod pi)

for some integers r′
i. From |c| � � · 2γ , we obtain |c1| � � · 22γ .

The difference with [CLT13] is that we cannot reduce c1 modulo x0. Instead
we provide a ladder of level-1 encodings of zero X

(1)
j of increasing size, so that the

size of a level-1 encoding can be progressively reduced down to the size of x0, as in
the DGHV scheme [DGHV10, Sect. 3.3.1]. Specifically, for j = 0, . . . , γ+�log2 ��,
we set:

X
(1)
j = CRTp1,...,pn

([r1j · g1/z]p1 , . . . , [rnj · gn/z]pn
) + qj · x0

where rij ← (−2ρ, 2ρ) ∩ Z and qj ← [2γ+j−1/x0, 2γ+j/x0) ∩ Z.
We can then iteratively reduce the size of c1 down to the size of x0, first by

X
(1)
γ+�log2 �� and eventually by X

(1)
0 . Since the size reduction is done bit-by-bit, at

each step some integer bj · X(1)
j is subtracted from c1, for bj ∈ {0, 1}. Therefore

the noise increases additively by at most (γ + �log2 �� + 1) · 2ρ in absolute value.
After reduction, the resulting encoding ĉ1 will be such that

ĉ1 ≡ (r̂i · gi + mi)/z (mod pi), (8)

with |r̂i · gi + mi| � � · 2ρ+α · 2ρ+α + (γ + �log2 �� + 1) · 2ρ � 2� · 22ρ+2α for all i.
More generally to generate a level-k encoding we compute ck = c0 ·yk, and the

size of ck can be iteratively reduced after each multiplication by y using ladders
of similarly designed level-k encodings {X

(k′)
j }γ+�log2 ��

j=0 for levels k′ = 1, . . . , k.

Re-randomization: c′ ← reRand(pp, k, ĉk). Our re-randomization procedure is
similar to [CLT13] except that again we cannot reduce the encodings modulo
x0. We describe the re-randomization of encodings at level k = 1; the procedure
can be easily adapted to randomize at level k > 1. We publish as part of our
instance-generation a set of n + 1 integers Πj :

1 � j � n + 1, Πj =
n∑

i=1

ij · gi · ui + n+1,j · x0

where the ui’s are appropriate CRT coefficients so that the Πj ’s are all level-1
random encodings of zero:

1 � j � n + 1, Πj ≡ ij · gi

z
(mod pi).

274 J.-S. Coron et al.

Namely, we let for all 1 � i � n:

ui :=

(

z−1 ·
(

x0

pi

)−1

mod pi

)

· x0

pi
(9)

The matrix Π = (ij) ∈ Z
(n+1)×(n+1) is a diagonally dominant matrix gener-

ated as follows: the non-diagonal entries are randomly and independently gen-
erated in (−2ρ, 2ρ) ∩ Z, while the diagonal entries are randomly generated in
((n + 1)2ρ, (n + 2)2ρ) ∩ Z.

We also publish as part of our instance-generation a set of τ integers xj :

1 � j � τ, xj =
n∑

i=1

rij · gi · ui + rn+1,j · x0

so that each xj is a level-1 random encoding of zero:

1 � j � τ, xj ≡ rij · gi

z
(mod pi)

and where the column vectors of the matrix X = (rij) ∈ Z
(n+1)×τ are randomly

and independently generated in the half-open parallelepiped spanned by the
columns of the previous matrix Π; an algorithm to generate such ri’s is described
in [CLT13, Appendix E]; we obtain |rij · gi| � 3n2ρ+α for all i, j.

Given as input a (reduced) level-1 encoding ĉ1 as given by Eq. (8), we ran-
domize ĉ1 with a random subset-sum of the xj ’s and a linear combination of the
Πj ’s, over Z:

c′
1 = ĉ1 +

τ∑

j=1

bj · xj +
n+1∑

j=1

b′
j · Πj (10)

where bj ← {0, 1}, and b′
j ← [0, 2μ) ∩ Z, where μ := ρ + α + λ. The following

Lemma shows that as required the distribution of c′
1 is nearly independent of

the input (as long as it encodes the same m). This essentially follows from the
“leftover hash lemma over lattices” of [CLT13, Sect. 4.2]; the proof is given in
the full version of this paper [CLT15].

Lemma 2. Let the encodings c ← samp(pp), ĉ1 ← enc(pp, 1, c), and c′
1 as given

by (10). Write c′
1 ≡ (ri · gi + mi)/z (mod pi) for all 1 � i � n and rn+1 =

(c′
1 −∑

ri ·gi ·ui)/x0, and define r = (r1, . . . , rn, rn+1)T . If 2(ρ+α+λ) � η and
τ � (n+2) ·ρ+2λ, then the distribution of (pp, r) is statistically close to that of
(pp, r’), where r’ ∈ Z

n+1 is randomly generated in the half-open parallelepiped
spanned by the column vectors of 2μΠ. Moreover we have |ri · gi + mi| � 4n2 ·
22ρ+2α+λ for all 1 � i � n.

Finally, we can reduce the size of c′
1 down to the size of x0 using the ladder

{X
(1)
j }, and we obtain an encoding ĉ′

1. Writing ĉ′
1 ≡ (r̂′

i · gi + mi)/z (mod pi),
we obtain

|r̂′
i · gi + mi| � 4n2 · 22ρ+2α+λ + (γ + �log2 �� + 1) · 2ρ � 5n2 · 22ρ+2α+λ .

New Multilinear Maps Over the Integers 275

Adding, Negating and Multiplying Encodings. As in [CLT13] we can add,
negate and multiply encodings. The difference is that we do those operations over
Z instead of modulo x0. More precisely, given level-one encodings vj of vectors
mj ∈ Z

n for 1 � j � κ, with vj ≡ (rij · gi + mij)/z (mod pi), we compute
over Z:

v =
κ∏

j=1

vj .

This gives:

v ≡

κ∏

j=1

(rij · gi + mij)

zκ
≡

ri · gi +
(κ∏

j=1

mij

)
mod gi

zκ
(mod pi)

for some integers ri ∈ Z. Hence we obtain a level-κ encoding of the vector m
obtained by componentwise product of the vectors mj , as long as the components
do not wrap modulo pi, that is

∏κ
j=1(rij · gi + mij) < pi for all i. Then, using

the ladder X
(κ)
j one can reduce its size down to the size of x0, at the cost of an

additive increase in absolute value of the noise.
In multipartite Diffie-Hellman key exchange we compute the product of κ

level-1 encodings from reRand and one level-0 encoding from samp, which gives
from previous bounds for all i:

|ri| � (6n222ρ+2α+λ)κ · � · 2ρ+1

In Sect. 5 we describe an optimization in which we publish a multiple x′
0 of

x0; then all intermediate encodings can be reduced modulo x′
0, instead of using

a ladder of encodings of zero; only at the last stage do we need a ladder of a few
level-κ encodings of zero.

Zero Testing. isZero(pp,pzt, c)
?= 0/1. To prevent the Cheon et al. attack, we

keep the same encoding as in (1) but we compute the pzt differently; this is the
most important difference. Let c be a level-κ encoding. We assume 0 � c < x0,
as a result of approximate modular reduction using a ladder of level-κ encodings
of 0. From (5) we can write by CRT:

c ≡
n∑

i=1

(
ri · gi + mi

zκ
mod pi

)

·
((

x0

pi

)−1

mod pi

)

· x0

pi
(mod x0)

c ≡
n∑

i=1

(
ri + mi · g−1

i mod pi

) ·
(

gi · z−κ ·
(

x0

pi

)−1

mod pi

)

· x0

pi
(mod x0)

Therefore we can write over the integers:

c =
n∑

i=1

(
ri + mi · g−1

i mod pi

) · u′
i − a · x0 (11)

276 J.-S. Coron et al.

for some integer a, where the u′
i’s are the scaled CRT coefficients:

u′
i =

(

gi · z−κ ·
(

x0

pi

)−1

mod pi

)

· x0

pi
(12)

We generate a random prime integer N of size γ + 2η + 1 bits. Using LLL in
dimension 2, we obtain2 pairs of nonzero integers (αi, βi) satisfying:

|αi| < 2η−1 |βi| � 4
3

· N

2η−1
< 22−η · N βi ≡ αi · (u′

i/pi) (mod N).

We also generate as in [CLT13] an integer matrix H = (hij) ∈ Z
n×n such

that H is invertible in Z and both ‖H T ‖∞ � 2β and ‖(H−1)T ‖∞ � 2β , for
some parameter β specified later; here ‖ · ‖∞ is the operator norm on n × n
matrices with respect to the �∞ norm on R

n. A technique for generating such
H is discussed in the full version of this paper [CLT15]. We then publish as part
of our instance generation the following zero-testing vector pzt ∈ Z

n:

(pzt)j =
n∑

i=1

hij · αi · p−1
i mod N (13)

To determine whether a level-κ encoding c is an encoding of zero or not, we
compute the vector ω = c · pzt mod N and test whether ‖ω‖∞ is small:

isZero(pp,pzt, c) =
{

1 if ‖c · pzt mod N‖∞ < N · 2−ν

0 otherwise

for some parameter ν specified later.
Namely for a level-κ ciphertext c we obtain from (11):

(ω)j = (c · pzt mod N)j =
n∑

i=1

hij · αi · p−1
i · c mod N

=
n∑

i=1

hij · αi · p−1
i ·

(
n∑

k=1

(
rk + mk · g−1

k mod pk

) · u′
k − a · x0

)

mod N

which gives:

(ω)j =
n∑

i=1

hij ·
((

ri + mi · g−1
i mod pi

) · βi

+ αi ·
n∑

k=1, k �=i

(
rk + mk · g−1

k mod pk

) · u′
k

pi
− a · αi · x0

pi

)
mod N (14)

2 More precisely, we apply Legendre reduction to the 2-dimensional lattice generated

by the rows of

(�N/B2� u′
i/pi mod N

0 N

)

, where B = (3/4)1/42η−1. The shortest

vector is of the form (αi�N/B2�, βi).

New Multilinear Maps Over the Integers 277

Recall that αi is at most η − 1 bits, therefore αi · u′
k/pi has size at most

η − 1 + γ − (η − 1) = γ bits; the integer αi · x0/pi has size also at most γ bits;
moreover βi is at most |N | − η + 1 bits. Therefore in Eq. (14) the integers βi,
αi ·uk/pi and αi ·x0/pi are all small compared to N . This implies that if mi = 0
for all 1 � i � n, then ωj will be small compared to N , when the ri’s are small
enough, i.e. a limited number of additions/multiplications on encodings has been
performed. Conversely if mi �= 0 for some i we show that ‖ω‖∞ must be large.
This shows the correctness of our zero-testing procedure. More precisely we prove
the following lemma in the full version of this paper [CLT15].

Lemma 3. Let n, η, α and β be as in our parameter setting. Let ρf be such that
α+log2 n < ρf � η−2β−2α−λ−8, and let ν = η−ρf −β−λ−3 � 2α+β+5.
Let c be such that c ≡ (ri · gi + mi)/zκ (mod pi) for all 1 � i � n, where
0 � mi < gi for all i. Let r = (ri)1�i�n and assume that ‖r‖∞ < 2ρf . If m = 0
then ‖ω‖∞ < 2−ν−λ · N . Conversely if m �= 0 then ‖ω‖∞ > 2−ν+2 · N .

Extraction. sk ← ext(pp,pzt, uκ). This part is essentially the same as in
[GGH13a]. To extract a random function of the vector m encoded in a level-κ
encoding c, we multiply c by the zero-testing parameter pzt modulo N , collect
the ν most significant bits of each of the n components of the resulting vector,
and apply a strong randomness extractor (using the seed s from pp):

ext(pp,pzt, c) = Extracts
(
msbsν(c · pzt mod N)

)

where msbsν extracts the ν most significant bits of the result.
Namely if two encodings c and c′ encode the same m ∈ Z

n then from
Lemma 3 we have ‖(c − c′) · pzt mod N‖∞ < N · 2−ν−λ, and therefore we
expect that ω = c · pzt mod N and ω′ = c′ · pzt mod N agree on their ν most
significant bits, and therefore extract to the same value.

Conversely if c and c′ encode different vectors then by Lemma 3 we must have
‖(c − c′) · pzt mod N‖∞ > N · 2−ν+2, and therefore the ν most significant bits
of the corresponding ω and ω′ must be different. This implies that for random
m ∈ R = Zg1×· · ·×Zgn

the min-entropy of msbsν(c·pzt mod N) when c encodes
m is at least log2 |R| � n(α − 1). Therefore we can use a strong randomness
extractor to extract a nearly uniform bit-string of length �log2 |R|� − λ.

This concludes the description of our new multilinear encoding scheme.

Remark 1. By comparing Eqs. (2) and (4) we see that the original CLT scheme
is a particular case with N = x0 and αi = 0 for all 1 � i � n. Therefore the
main difference of our construction is that it incorporates the additional term
a, which depends on the ri’s in a non-linear way; this is to prevent the Cheon
et al. attack (see Sect. 3).

2.2 Setting the Parameters

The constraints on the system parameters are similar to [CLT13].

278 J.-S. Coron et al.

• The bit-size ρ of the randomness used for encodings must satisfy ρ = Ω(λ)
to avoid brute force attack on the noise. The improved attacks from [CN12]
and [LS14] both have complexity Õ(2ρ/2), but with a large overhead, so in
practice we can take ρ = λ.

• The bit-size α of the primes gi must be large enough so that the order of the
group R = Zg1 × · · · × Zgn

does not contain small prime factors (see the full
version of this paper [CLT15]). One can take α = λ.

• The parameter n must be large enough to thwart lattice-based attacks on the
encodings, namely n = ω(η log λ); see Sect. 4.

• The number � of level-0 encodings x′
j for samp must satisfy � � n · α + 2λ in

order to apply the leftover hash lemma; see Lemma 1.
• The number τ of level-1 encodings xj must satisfy τ � (n+2) ·ρ+2λ in order

to apply the leftover hash lemma over lattices; see Lemma 2.
• As a conservative security precaution, we take β = 3λ (see the full version of

this paper [CLT15]).
• The bit-size η of the primes pi must satisfy η � ρf +2α+2β +λ+8, where ρf

is the maximum bit size of the randoms ri a level-κ encoding (see Lemma 3).
When computing the product of κ level-1 encodings and an additional level-0
encoding (as in a multipartite Diffie-Hellman key exchange with κ + 1 users),
one obtains ρf = κ · (2ρ + 2α + λ + 2 log2 n + 3) + ρ + log2 � + 1 (see previous
Section).

• We set ν = η−ρf −λ−β −3 for the number of most significant bits to extract
(see Lemma 3).

2.3 Security of Our Construction

As in the original CLT scheme [CLT13] and in the GGH scheme [GGH13a] the
security of our construction does not seem to be reducible to more classical
assumptions, such as for example the Approximate-GCD problem. To prove the
security of the one-round (κ + 1)-way Diffie-Hellman key exchange protocol, as
in [GGH13a] one must therefore make the assumption that solving the Graded
DDH problem (GDDH) is hard in our scheme; see the full version of this paper
[CLT15].

3 Cheon et al. Attack

The goal of this section is to argue that the Cheon et al. attack [CHL+15] is
prevented in our new construction.

3.1 Attack Description

We first recall the Cheon et al. attack against the original CLT scheme. This
attack makes use of low-level encodings of 0: if such encodings are made public,
one can recover in polynomial time all secret parameters. In the CLT scheme

New Multilinear Maps Over the Integers 279

such encodings of 0 are used for the rerandomization procedure, therefore the
Cheon et al. attack leads to a complete break of CLT.

In the following we describe a slight simplification of [CHL+15] in which only
a single ciphertext c is used instead of two ciphertexts c0 and c1; this enables
to obtain as eigenvalues directly the CRT components of c, instead of the ratios
of the CRT components of c0 and c1. For simplicity we assume κ = 2; the
attack is easily extended to any κ > 2. Let c be a level-0 encoding with c ≡ ci

(mod pi). Let x be a level-1 encoding with x ≡ xi/z (mod pi), and let x′ be a
level-1 encoding of 0 with x′ ≡ r′

i · gi/z (mod pi). Let c′ be the level-κ product
encoding

c′ = x · c · x′ mod x0

From c′ ≡ xi · ci · r′
i · gi · z−2 (mod pi), we obtain by CRT:

c′ ≡
n∑

i=1

xi · ci · r′
i · ui (mod x0) (15)

with the CRT coefficients:

ui =

(

gi · z−2 ·
(

x0

pi

)−1

mod pi

)

· x0

pi

In the original CLT scheme, the zero-testing parameter pzt is given by

pzt =
n∑

i=1

hi · (
z2 · g−1

i mod pi

) · x0

pi
mod x0

Using pzt · ui ≡ hi · x0/pi (mod x0) for all 1 � i � n, we obtain from (15):

ω = [pzt · c′]x0 =
n∑

i=1

xi · ci · r′
i · hi · x0/pi (16)

where the last equality holds over Z because c′ is an encoding of 0.
More generally, let xj be level-1 encodings with xj ≡ xij/z (mod pi), and let

x′
k be a level-1 encodings of 0 with x′

k ≡ r′
ik · gi/z (mod pi). One can therefore

compute for 1 � j, k � n:

ωjk = [(xj · c · x′
k) · pzt]x0 (17)

which gives as previously:

ωjk =
n∑

i=1

xij · ci · r′
ik · hi · x0/pi (18)

over the integers. We note that ωjk is a diagonal quadratic form over Z in the
xij ’s and the r′

ik’s. By spanning 1 � j, k � n, one can construct a matrix
Wc = (ωjk)1�j,k�n such that

Wc = X × C × R, (19)

280 J.-S. Coron et al.

where C = diag(c1, c2, . . . , cn), X = (xij ·hi ·x0/pi)1�j,i�n and R = (r′
ik)1�i,k�n.

We perform the same computation with c = 1 in (17); one can therefore
compute a matrix W 1 such that W 1 = X × I × R, where I is the n × n
identity matrix. Finally, one can publicly compute:

W = Wc · W −1
1 = X × C × X−1.

Since C is a diagonal matrix, by computing the eigenvalues of W one can recover
the ci’s, and then the pi’s. Finally, Cheon et al. describe how to recover all the
other secret values in [CHL+15].

Extension. A similar attack applies against two independent approaches to
fix the CLT scheme, [GGHZ14, Sect. 7] and [BWZ14], proposed shortly after
the Cheon et al. attack. Namely, although the two countermeasures do not
expose encodings of zero, the value ω from the zero-testing procedure can still be
expressed as a diagonal quadratic form in the CRT components of encodings, as
in Eq. (18), hence the two countermeasure can be broken by the same technique;
we refer to [CLT14] for a description of the modified attacks.

3.2 Non-applicability of Cheon et al. Attack

In this section we explain why the above attack does not apply against our new
scheme. As previously we let x be a level-1 encoding with x ≡ xi/z (mod pi),
and let x′ be a level-1 encoding of 0 with x′ ≡ r′

i · gi/z (mod pi). We consider
as previously the level-κ product encoding, with κ = 2:

c′ = x · c · x′

Here we cannot reduce c′ modulo x0 since x0 is kept private; instead we must
use a ladder of level-2 encodings of zero. Let c′′ be the resulting encoding, with
0 � c′′ < x0; we obtain:

c′′ ≡ c′ +
si · gi

z2
(mod pi)

for some integers si of size roughly ρ bits. Therefore instead of (15) we obtain
over the integers:

c′′ =
n∑

i=1

(xi · ci · r′
i + si) · ui − a · x0 (20)

for some integer a. Using the new definition of pzt ∈ ZN , and letting vi =
pzt · ui mod N for all 1 � i � n and v0 = pzt · x0 mod N , we obtain from (20):

ω = [pzt · c′′]N =
n∑

i=1

(xi · ci · r′
i + si) · vi − a · v0 (21)

where as previously the last equality holds over Z.

New Multilinear Maps Over the Integers 281

Now comparing equalities (16) and (21), we see that we obtain two additional
terms: the si’s and the integer a. The si’s come from reducing c′ with the ladder
of level-κ encodings of 0, so that eventually 0 � c′′ < x0; therefore the si’s
depend on x · c · x′ in a non-linear way. Similarly the integer a in (21), which is
the quotient of the division of

∑n
i=1 (xi · ci · r′

i + si) · ui by x0, depends on the
xi · ci · x′

i in a non-linear way. Therefore, if we apply Cheon et al. attack, we do
not obtain a quadratic form as in (18) anymore.

More precisely, we can let as previously xj be level-1 encodings with xj ≡
xij/z (mod pi), and let x′

k be a level-1 encodings of 0 with x′
k ≡ r′

ik · gi/z
(mod pi). As previously for all 1 � j, k � n, we can compute the product
encodings c′

jk = xj ·c ·x′
k and we let c′′

jk be the encodings obtained after reducing
c′
jk such that 0 � c′′

jk < x0, using the ladder of level-κ encodings of zero. This
gives:

ωjk = [pzt · c′′
jk]N =

n∑

i=1

(xij · ci · r′
ik + sijk) · vi − ajk · v0 (22)

for integers sijk and ajk. Compared to (18), we see that the previous equation
has two additional terms sijk and ajk. As previously we can write:

Wc = X × C × R + S − A · v0 (23)

for some matrices S and A. However we see that the previous attack does not
apply, because of the additional terms S and A · v0. Namely if as previously we
perform the same computation with c = 1, we obtain:

W 1 = X × I × R + S’ − A’ · v0 (24)

but as opposed to the CLT scheme we cannot get a simple expression for W =
Wc × W −1

1 . More generally, as opposed to the CLT case, it seems difficult to
extract useful information about C from the matrices Wc and W 1, since in
Eqs. (23) and (24) all terms X , R, S , S’ , A, A’ and v0 are unknown.

Remark 2. If we do not reduce c′
jk with the ladder of encodings, the sijk terms

disappear but the integers ajk becomes too large and (22) does not hold over Z

anymore. The equation still holds modulo N , however there is still the additional
term ajk that prevents the Cheon et al. attack.

3.3 Attack with Known x0

In this section we describe an extension of the Cheon et al. attack against our
scheme when x0 is known; this explains why x0 must be kept secret in our
scheme.

When x0 is known, we can reduce the previous ciphertexts c′
jk modulo x0,

and therefore the sijk terms in (22) disappear. Moreover v0 = [pzt · x0]N is
known. Therefore we can compute the Wc matrix as previously, and we obtain
from (23) with S = 0:

Wc = X × C × R mod v0

282 J.-S. Coron et al.

which is the same equation as (19) in the original attack except that it holds
modulo v0 instead of over Z.

Therefore we can apply the Cheon et al. attack modulo v0 instead of over
Z. If v0 is prime, one can recover the eigenvalues of W = Wc · W −1

1 mod v0
by factoring the characteristic polynomial modulo v0, which reveals the ci’s as
previously. If a prime p can be extracted from v0, one can still apply the attack
modulo p and recover the ci’s modulo p; for large enough p this reveals the ci’s;
alternatively for sufficiently many such primes p, the ci’s could be recovered
by CRT.

Actually the attack also works even if v0 is hard to factor and no prime can
be extracted. Namely the eigenvalues ci’s are small, so to recover the roots of
the characteristic polynomial one can use Coppersmith’s first theorem for finding
small roots of polynomial equations modulo an integer of unknown factorization
[Cop97]. Namely Coppersmith’s bound applies: with a modulus v0 of size roughly
γ bits and a characteristic polynomial of degree n, the roots have size only
roughly ρ bits, with ρ
 η � γ/n.

3.4 Attack for Small Multiple of x0

In Sect. 5 we describe an optimization with a known multiple x′
0 = q ·x0, in order

to avoid the ladder of encodings of 0. Here we show that we cannot take a too
small multiple x′

0, otherwise the attacker can compute:

v′
0 = [pzt · x′

0]N = [pzt · q · x0]N = q · v0 mod N

where, as in Sect. 3.3, we let v0 := pzt ·x0 mod N . If the prime q is small enough
then the previous equation holds over the integers, and the attacker obtains
v′
0 = q ·v0. Therefore the attacker can possibly extract a few primes from v′

0 and
therefore from v0. Letting b be a divisor of v0, one could then apply the Cheon
et al. attack modulo b instead of modulo v0 and recover all secret parameters.
Therefore one should make sure that q · v0 is greater than N . Letting ηq be the
bitsize of q, this gives the condition ηq + γ � γ + 2η + 1. Therefore we can take
ηq = 2η + λ.

3.5 The Subgroup Membership and Decision Linear Problems

In the full version of this paper [CLT15] we also explain why the subgroup
membership (SubM) and decisional linear (DLIN) problems, which are known
to be easy in the GGH scheme [GGH13a], seem to be hard in our new setting.

4 Lattice Attacks

4.1 Lattice Attack on the Encodings

The first attack considered in [CLT13] against the original CLT scheme was
based on computing a short basis for the lattice of vectors orthogonal modulo x0

New Multilinear Maps Over the Integers 283

to x = (xj)1�j�t, where the xj ’s are level-0 encodings of zero [CLT13, Sect. 5.1].
If the reduced basis vectors are short enough, they can reveal the noise values
of the xj ’s and hence break the scheme.

The attack does not apply directly to our modified scheme, because x0 is now
secret, and it is therefore no longer possible to compute a basis for the lattice
of vectors orthogonal to x modulo x0. However, we can also mount the attack
using the lattice x⊥ of vectors orthogonal to x over Z, or the lattice of vectors
orthogonal to x modulo some multiple x′

0 of x0 when using the optimization
suggested in Sect. 5 below.

Just as in [CLT13, Sect. 5.1], though, the complexity of these extended
attacks remains exponential in n; it is in fact slightly worse, because the new
lattice has slightly longer vectors for a given choice of the lattice dimension t. In
particular, the complexity lower bound of 2Ω(γ/η2) applies a fortiori. The attack
is therefore defeated by letting n = ω(η log λ).

4.2 Lattice Attack Against pzt

From x0 =
∏n

i=1 pi and (pzt)j =
∑n

i=1 hij · αi · p−1
i mod N , we obtain:

x0 · (pzt)j =
n∑

i=1

hij · αi · x0

pi
mod N.

Now x0 is of size γ bits, and the right-hand side of this congruence, which we
denote by wj , is bounded above by n2β+γ : they are both small compared to
N . Therefore, if we consider a vector p formed by a subset of the (pzt)j ’s, say
p =

(
(pzt)j

)
1�j�t

∈ Z
t, it may be possible to recover w = (wj)1�j�t as a short

vector in the lattice generated by p and NZ
t, and obtain x0 accordingly.

We describe the attack in more details in the full version of this paper
[CLT15]. We show that the lattice attack has a complexity lower bound of
2Ω(n/η) = 2Ω(γ/η2), just as in Sect. 4.1. Thus, this attack is thwarted by our
choice of parameters.

In the full version of this paper [CLT15], we consider three other lattice
attacks on the zero-testing parameter pzt, which are variants of the lattice
attacks considered in [CLT13, Sects. 5.2, 5.3 and 5.4]. We show that they are
also thwarted by our choice of parameters.

5 Optimizations and Implementation

In this section we describe an implementation of our new multilinear map scheme
in the one-round (κ+1)-way Diffie-Hellman key exchange protocol; we recall the
protocol in the full version of this paper [CLT15], following [BS03,GGH13a]. We
use the following optimizations, described in details in the full version of this
paper [CLT15]:

284 J.-S. Coron et al.

1. Integer pzt: as in [CLT13] we use a single integer pzt instead of a vector
pzt with n components, as this is enough for Diffie-Hellman key exchange.
Moreover the integer N can be generated as the product of large enough
prime integers, instead of being prime.

2. Known multiple of x0: we publish a multiple x′
0 = q · x0 of x0, so that all

intermediate encodings can be reduced modulo x′
0, instead of using a ladder

of encodings of 0 at each level.
3. Quadratic re-randomization: as in [CLT13] we only store a small subset of

encodings which are later combined pairwise to generate the full set of encod-
ings. This implies that the randomization of encodings becomes heuristic only.
We describe a slightly more efficient variant.

Parameters and Timings. We have implemented a one-round (κ + 1)-way
Diffie-Hellman key exchange protocol with κ + 1 = 7 users, in C++ using the
GMP library [Gt14] to perform operations on large integers and fplll [ACPS] for
LLL. We provide our concrete parameters and the resulting timings in Table 1,
for security parameters ranging from 52 to 80 bits. As in [CLT13], for a security
level λ we expect that the best attack requires at least 2λ clock cycles. The
timings of Table 1 show that the implementation of our scheme improves upon
the implementation in [CLT13], especially for the Setup phase.

Table 1. Parameters and timings to instantiate a one-round 7-way Diffie-Hellman key
exchange protocol with κ = 6, � = 2λ and α, β, ν = λ on a 16-core computer (Intel
Xeon E7-8837 at 2.67 GHz). Setup was run in parallel on the 16 cores, while the other
steps ran on a single core. Publish and KeyGen timings are per party.

Instantiation λ κ n η Δ ρ γ = n · η pk size

Small 52 6 540 1679 23 52 0.9 · 106 27 MB
Medium 62 6 2085 1989 45 62 4.14 · 106 175 MB
Large 72 6 8250 2306 90 72 19.0 · 106 1.2 GB
Extra 80 6 25305 2619 159 85 66.3 · 106 6.1 GB

Setup Publish KeyGen

5.9 s 0.10 s 0.17 s
36 s 0.33 s 1.06 s
583 s 2.05 s 6.17 s
4528 s 7.8 s 23.9 s

References

[ACPS] Albrecht, M., Cadé, D., Pujol, X., Stehlé, D.: fpLLL-4.0, a floating-point
LLL implementation. http://perso.ens-lyon.fr/damien.stehle

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemp. Math. 324, 71–90 (2003)

http://perso.ens-lyon.fr/damien.stehle

New Multilinear Maps Over the Integers 285

[BWZ14] Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, report 2014/930
(2014). http://eprint.iacr.org/

[CGH+15] Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E.,
Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes:
new attacks on multilinear maps and their limitations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO, LNCS. Springer (2015, to appear)

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[CLT14] Coron, J.-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate
fixes of multilinear maps over the integers. Cryptology ePrint Archive,
report 2014/975 (2014). http://eprint.iacr.org/

[CLT15] Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the
integers. Cryptology ePrint Archive, report 2015/162 (2015). http://
eprint.iacr.org/. Full version of this paper

[CN12] Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common
divisors: breaking fully-homomorphic-encryption challenges over the
integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012)

[Cop97] Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent RSA vulnerabilities. J. Crypt. 10(4), 233–260 (1997)

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015)

[GGHZ14] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional
encryption without obfuscation. Cryptology ePrint Archive, report
2014/666 (2014). http://eprint.iacr.org/

[GH11] Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic
encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

[GHMS14] Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes:
cryptanalyzing multilinear maps without encodings of zero. Cryptology
ePrint Archive, report 2014/929 (2014). http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

286 J.-S. Coron et al.

[Gt14] Granlund, T. and the GMP development team. GNU MP: the GNU
multiple precision arithmetic library, 6.0.0 edn. (2014). http://gmplib.
org/

[Lep15] Lepoint, T.: Proof-of-concept implementation of the “new” multi-
linear maps over the integers (2015). https://github.com/tlepoint/
new-multilinear-maps

[LS14] Lee, H.T., Seo, J.H.: Security analysis of multilinear maps over the inte-
gers. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 224–240. Springer, Heidelberg (2014)

http://gmplib.org/
http://gmplib.org/
https://github.com/tlepoint/new-multilinear-maps
https://github.com/tlepoint/new-multilinear-maps

Constant-Round Concurrent Zero-Knowledge
from Indistinguishability Obfuscation

Kai-Min Chung1, Huijia Lin2, and Rafael Pass3(B)

1 Academia Sinica, Taipei, Taiwan
kmchung@iis.sinica.edu.tw

2 University of California, Santa Barbara, USA
rachel.lin@cs.ucsb.edu

3 Cornell University, Ithaca, USA
rafael@cs.cornell.edu

Abstract. We present a constant-round concurrent zero-knowledge pro-
tocol for NP. Our protocol relies on the existence of families of collision-
resistant hash functions, one-way permutations, and indistinguishability
obfuscators for P/poly (with slightly super-polynomial security).

1 Introduction

Zero-knowledge (ZK) interactive proofs [30] are paradoxical constructs that
allow one player (called the Prover) to convince another player (called the Ver-
ifier) of the validity of a mathematical statement x ∈ L, while providing zero
additional knowledge to the Verifier. Beyond being fascinating in their own right,
ZK proofs have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks.

The notion of concurrent zero knowledge, first introduced and achieved in the
paper by Dwork, Naor and Sahai [24], considers the execution of zero-knowledge
proofs in an asynchronous and concurrent setting. More precisely, we consider a
single adversary mounting a coordinated attack by acting as a verifier in many
concurrent executions (called sessions). Concurrent ZK proofs are significantly
harder to construct and analyze. Since the original protocol by DNS Dwork,
Naor and Sahai (which relied on “timing assumptions”), various other concur-
rent ZK protocols have been obtained based on different set-up assumptions
(e.g., [22,25]), or in alternative models (e.g., super-polynomial-time simulation
[44,53]).

In the standard model, without set-up assumptions (the focus of our work),
Canetti, Kilian, Petrank and Rosen [14] (building on earlier works by [38,58])
show that concurrent ZK proofs for non-trivial languages, with “black-box” sim-
ulators, require at least Ω̃(log n) number of communication rounds. Richardson
and Kilian [56] constructed the first concurrent ZK argument in the standard
model without any extra set-up assumptions. Their protocol, which uses a black-
box simulator, requires O(nε) number of rounds. The round-complexity was later
improved in the work of Kilian and Petrank (KP) [37] to Õ(log2 n) round. More
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 287–307, 2015.
DOI: 10.1007/978-3-662-47989-6 14

288 K.-M. Chung et al.

recent work by Prabhakaran, Rosen and Sahai [55] improves the analysis of
the KP simulator, achieving an essentially optimal, w.r.t. black-box simulation,
round-complexity of Õ(log n); see also [52] for an (arguably) simplified and gen-
eralized analysis.

The central open problem in the area is whether a constant-round concurrent
ZK protocol (for a non-trivial language) can be obtained. Note that it could
very well be the case that all “classic” zero-knowledge protocols already are
concurrent zero-knowledge; thus, simply assuming that those protocols are con-
current zero-knowledge yields an assumption under which constant-round con-
current zero-knowledge (trivially) exists—in essence, we are assuming that for
every attacker a simulator exists. Furthermore, as shown in [33] (and informally
discussed in [16]) under various “extractability” assumptions of the knowledge-
of-exponent type [8,21,34], constant-round concurrent zero-knowledge is easy to
construct. But such extractability assumptions also simply assume that for every
attacker, a simulator (in essence, “the extractor” guaranteed by the extractabil-
ity assumption) exists. In particular, an explicit construction of the concurrent
zero-knowledge simulator is not provided—it is simply assumed that one exists.
For some applications of zero-knowledge such as deniability (see e.g., [24,44]),
having an explicit simulator is crucial. Rather, we are here concerned with the
question of whether constant-round concurrent zero-knowledge, with an explicit
simulator, exits.

1.1 Towards Constant-Round Concurrent Zero-Knowledge

Recently, the authors [16] provided a first construction a constant-round con-
current zero-knowledge protocol with an explicit simulator, based on a new
cryptographic hardness assumption—the existence of so-called P-certificates,
roughly speaking, succinct non-interactive arguments for languages in P.
An issue with their approach, however, is we only have candidate con-
structions of P-certificates that are sound against uniform polynomial-time
attackers (as opposed to non-uniform ones), and the protocol of [16] inher-
its the soundness property of the underlying P-certificate. Additionally,
whereas the assumption that a particular proof system is a P-certificates
is a falsifiable assumption [42,54], it is unclear whether the existence of
P-certificates itself can be based on some more natural hardness assumptions.

A very recent elegant work by Pandey, Prabhakaran and Sahai [43] takes a
different approach and instead demonstrates the existence of constant-round con-
current zero-knowledge protocol with an explicit simulator based on the existence
of differing-input obfuscation (diO) for (restricted classes of) P/poly [1,6,11].
Whereas the assumption that a particular scheme is a diO is an “extractability”
assumption (similar in flavor to knowledge-of-exponent type [8,21,34] assump-
tions), the intriguing part of the scheme of Pandey et al. [43] is that the
extractability assumption is only used to prove soundness of the protocol; con-
current zero-knowledge is proved in the “standard” model, through providing
an explicit simulator. Nevertheless, diO is a strong and subtle assumption—
as shown by recent work [12,27,36]; unless we restrict the class of programs

Constant-Round Concurrent Zero-knowledge 289

for which diO should hold, we may end up with a notion that is unsatisfiable.
Additionally, there are currently no known approaches for basing diO on more
“natural” (or in fact any) hardness (as opposed to extractability) assumption.

1.2 Our Results

In this paper, we combine the above-mentioned two approaches. Very roughly
speaking, we will use obfuscation to obtain a variant of the notion of a
P-certificate, and we next show that this variant still suffices to obtain constant-
round concurrent zero-knowledge (where the soundness conditions holds also
against non-uniform PPT attackers). More importantly, rather than using diO,
we are able to use indistinguishability obfuscation (iO) [6,26]. Following the
groundbreaking work of Garg et al. [26], there are now several candidate con-
structions of iO that can be based on hardness assumptions on (approximate)
multilinear maps [29,51].

Theorem 1. Assume the existence of indistinguishability obfuscation for
P/poly (with slightly super-polynomial security), one-way permutations (with
slightly super-polynomial security) and collision-resistant hash function. Then
there exists a constant-round concurrent zero-knowledge argument for NP.

In more details, our approach proceeds in the following steps:
1. We first observe that a warm-up case considered in [16]—which shows the

existence of constant-round concurrent zero-knowledge based on, so-called,
unique P-certificates (that is, P-certificates for which there exists at most
one accepting certificate for each statement) directly generalizes also to unique
P-certificates in the Common Random String model (a.k.a. the Uniform Ran-
dom String model (URS)) satisfying an adaptive soundness property (where
the statement to be proved can be selected after the URS).

2. We next show that by appropriately modifying the protocol, we can handle
also unique P-certificates in the URS model satisfying even just a “static”
soundness condition (where the statement needs to be selected before the URS
is picked), and additionally also unique P-certificates (with static soundness)
in the Common Reference String (CRS) model, where the reference string no
longer is required to be uniform. Unique P-certificates in the CRS model (also
with non-uniform soundness) can be constructed based on the existence of
diO for (a restricted class of) P/poly [12], and as such this preliminary step
already implies the result of [43] in a modular way (but with worse concrete
round complexity).

3. We next show how to use fully homomorphic encryption (FHE) [28,57] and
iO to modify the protocol to handle also two-round unique P certificates.
Two-round P-certificates are a generalization of P-certificates in the CRS
model, where we allow the CRS (i.e., the “first message” from the verifier to
the prover) to depend on the statement to be proven.

4. We finally leverage recent results on delegation of computation based on iO
from [9,13,39] and show that the beautiful scheme of Koppula, Lewko and
Waters [39] can be modified into a two-message unique P-certificate (also
with non-uniform soundness).

290 K.-M. Chung et al.

More precisely, we show that any “succint” message hiding encoding [39],
which is a relaxed version of a “succint” randomized encoding [9,35], together
with injective one-way functions yields a two-round unique P-certificate. [39]
shows how to construct succint message-hiding encodings based on iO and
injective PRGs.

The above steps show how to obtain constant-round concurrent ZK based
on collision-resistant hashfunctions, iO for P/poly, one-way permutations, and
FHE. We finally observe that the message-hiding encoding of [39] has a particular
nice structure that enables us to refrain from using FHE in the final protocol,
thus reaching our final theorem.

1.3 Outline of Our Techniques

We here provide a detailed outline of our techniques. As mentioned, our con-
struction heavily relies on a “warm-up” case of the construction of [16], which
we start by recalling (closely following the description in [16]). The starting
point of the construction of [16] is the construction is Barak’s [2] non-black-box
zero-knowledge argument for NP. Below, we briefly recall the ideas behind his
protocol (following a slight variant of this protocol due to [47]).

Barak’s Protocol. Roughly speaking, on common input 1n and x ∈
{0, 1}poly(n), the Prover P and Verifier V , proceed in two stages. In Stage 1,
P starts by sending a computationally-binding commitment c ∈ {0, 1}n to 0n;
V next sends a “challenge” r ∈ {0, 1}2n. In Stage 2, P shows (using a witness
indistinguishable argument of knowledge) that either x is true, or there exists a
“short” string σ ∈ {0, 1}n such that c is a commitment to a program M such
that M(σ) = r.1

Soundness follows from the fact that even if a malicious prover P ∗ tries to
commit to some program M (instead of committing to 0n), with high probability,
the string r sent by V will be different from M(σ) for every string σ ∈ {0, 1}n.
To prove ZK, consider the non-black-box simulator S that commits to the code
of the malicious verifier V ∗; note that by definition it thus holds that M(c) = r,
and the simulator can use σ = c as a “fake” witness in the final proof. To
formalize this approach, the witness indistinguishable argument in Stage 2 must
actually be a witness indistinguishable universal argument (WIUA) [4,41] since
the statement that c is a commitment to a program M of arbitrary polynomial-
size, and that M(c) = r within some arbitrary polynomial time, is not in NP.

Now, let us consider concurrent composition. That is, we need to simulate
the view of a verifier that starts poly(n) concurrent executions of the protocol.
The above simulator no longer works in this setting: the problem is that the

1 We require that C is a commitment scheme allowing the committer to commit to
an arbitrarily long string m ∈ {0, 1}∗. Any commitment scheme for fixed-length
messages can easily be modified to handle arbitrarily long messages by asking the
committer to first hash down m using a collision-resistant hash function h chosen
by the receiver, and next commit to h(m).

Constant-Round Concurrent Zero-knowledge 291

verifier’s code is now a function of all the prover messages sent in different
executions. (Note that if we increase the length of r we can handle a bounded
number of concurrent executions, by simply letting σ include all these messages).

So, if the simulator could commit not only to the code of V ∗, but also to a
program M that generates all other prover messages, then we would seemingly
be done. And at first sight, this doesn’t seem impossible: since the simulator S
is actually the one generating all the prover messages, why don’t we just let M
be an appropriate combination of S and V ∗? This idea can indeed be imple-
mented [47,50], but there is a serious issue: if the verifier “nests” its concurrent
executions, the running-time of the simulation quickly blows up exponentially—
for instance, if we have three nested sessions, to simulate session 3 the simulator
needs to generate a WIUA regarding the computation needed to generate a WIUA
for session 2 which in turn is regarding the generation of the WIUA of session 1
(so even if there is just a constant overhead in generating a WIUA, we can handle
at most log n nested sessions).

Unique P-certificates to The Rescue: The “Warm-Up” Case [16]. As
shown in [16], the blow-up in the running-time can be prevented using Unique
P-certificates. Roughly speaking, we say that (P, V) is a P-certificate system
if (P, V) is a non-interactive proof system (i.e., the prover send a single mes-
sage to the verifier, who either accepts or rejects) allowing an efficient prover to
convince the verifier of the validity of any deterministic polynomial-time com-
putation M(x) = y using a “certificate” of some fixed polynomial length (inde-
pendent of the size and the running-time of M) whose validity the verifier can
check in some fixed polynomial time (independent of the running-time of M).
The P-certificate system is unique if there exists at most one accepted proof for
any statement.

The protocol proceeds just as Barak’s protocol except that Stage 2 is modified
as follows: instead of having P prove (using a WIUA) that either x is true, or
there exists a “short” string σ ∈ {0, 1}2n such that c is a commitment to a
program M such that M(σ) = r, we now ask P to prove (using a WIUA again)
that either x is true, or

– Commitment Consistency: c is a commitment to a program M1, and
• Input Certification: there exists a vector λ = ((1, π1), (2, π2), . . .) and a

vector of messages m such that πj certifies that M1(λ<j) outputs mj in
its j’th communication round, where λ<j = ((1, π1), . . . , (j −1, πj−1)), and

• Prediction Correctness: there exists a P-certificate π of length n demon-
strating that M1(λ) = r.

Soundness of the modified protocol, roughly speaking, follows since by the unique
certificate property, for every program M1 it inductively follows that for every j,
mj is uniquely defined, and thus also the unique (accepting) certificate πj certi-
fying M1(λ<j) = mj ; it follows that M1 determines a unique vector λ that passes
the input certification conditions, and thus there exists a single r that make M1

also pass the prediction correctness conditions. Note that we here inherently
rely on the fact that the P-certificate is unique to argue that the sequence λ

292 K.-M. Chung et al.

is uniquely defined. (Technically, we here need to rely on a P-certificate that
is sound for slightly super-polynomial-time as there is no a-priori polynomial
bound on the running-time of M1, nor the length of λ.)

To prove zero-knowledge, roughly speaking, our simulator will attempt to
commit to its own code in a way that prevents a blow-up in the running-time.
Recall that the main reason that we had a blow-up in the running-time of the
simulator was that the generation of the WIUA is expensive. Observe that in
the new protocol, the only expensive part of the generation of the WIUA is
the generation of the P-certificates π; the rest of the computation has a-priori
bounded complexity (depending only on the size and running-time of V ∗). To
take advantage of this observation, we thus have the simulator only commit to
a program that generates prover messages (in identically the same way as the
actual simulator), but getting certificates π as input.

In more detail, to describe the actual simulator S, let us first describe two
“helper” simulators S1, S2. S1 is an interactive machine that simulates prover
messages in a “right” interaction with V ∗. Additionally, S1 is expecting some
“external” messages on the “left”—looking forward, these “left” messages will
later be certificates provided by S2.

S1 proceeds as follows in the right interaction. In Stage 1 of every session i,
S1 first commits to a machine S̃1(j′, τ) that emulates an interaction between S1

and V ∗, feeding S1 input τ as messages on the left, and finally S̃1 outputs the
verifier message in the j′’th communication round in the right interaction with
V ∗. (Formalizing what it means for S1 to commit to S̃1 is not entirely trivial
since the definition of S̃1 depends on S1; we refer the reader to the formal proof
for a description of how this circularity is broken.2) S1 next simulates Stage 2
by checking if it has received a message (j, πj) in the left interaction, where j is
the communication round (in the right interaction with V ∗) where the verifier
sends its random challenge and expects to receive the first message of Stage 2; if
so, it uses M1 = S̃1 (and the randomness it used to commit to it), j and σ being
the list of messages received by S1 in the left interaction, as a “fake” witness to
complete Stage 2.

The job of S2 is to provide P-certificates πj for S1 allowing S1 to complete
its simulation. S2 emulates the interaction between S1 and V ∗, and additionally,
at each communication round j, S2 feeds S1 a message (j, πj) where πj is a
P-certificate showing that S̃1(j, σ<j) = rj , where σ<j is the list of messages
already generated by S2, and rj is the verifier message in the j’th communication
round. Finally, S2 outputs its view of the full interaction.

The actual simulator S just runs S2 and recovers from the view of S2 the
view of V ∗ and outputs it. Note that since S1 has polynomial running-time,
generating each certificate about S̃1 (which is just about an interaction between
S1 and V ∗) also takes polynomial time. As such S2 can also be implemented in
polynomial time and thus also S.

2 Roughly speaking, we let S1 take the description of a machine M as input, and we
then run S1 on input M = S1.

Constant-Round Concurrent Zero-knowledge 293

Finally, indistinguishability of this simulation, roughly speaking, follow from
the hiding property of the commitment in Stage 1, and the WI property of the
WIUA in Stage 2. (There is another circularity issue that arises in formalizing
this—as S1 in essence needs to commit to its own randomness—but it can be
dealt with as shown in [15,16]; in this overview, we omit the details as they are
not important for our modifications to the protocol, but they can be found in
the formal proof.)

Generalizing to Unique P-certificates in CRS model. The key technical
contribution in [16] was to generalize the above approach to deal also with “non-
unique” P-certificates. Here we instead aim to generalize the above approach to
work with P-certificates in the CRS model, but still relying on the uniqueness
property.

Let us first note that if we had access to unique P-certificate in the URS (i.e.,
the uniform reference string) model satisfying an adaptive soundness property
(where the statement to be proved can be selected after the URS, then above-
mentioned protocol can be almost directly generalized to work with them (as
opposed to using unique P-certificates in the “plain” model) by simply having
the Verifier send the URS ρ along with its first message of the protocol.3 The only
issue that needs to be addressed in implementing this change is to specify what
it means that “πj certifies that M1(λ<j) outputs mj” in the input certification
step in Stage 2, since this certification needs to be done with respect to some
URS. We modify Stage two to require that M1 outputs not only messages mi,
but also reference strings ρi. Let us remark that to ensure that soundness still
holds, we require the P-certificate system to satisfy a strong uniqueness property:
uniqueness of accepting proofs needs to hold for all reference strings ρ.

We next note that the protocol can be further generalized to handle also
unique P-certificates in the URS model satisfying even just a static soundness
condition (where the statement needs to be selected before the URS is picked)
by proceeding as follows:

– We add a Stage 1.5 to the protocol where the Prover is asked to provide
a commitment c2 to 0n and then asked to provide a WIUARG that either
x ∈ L or c2 is a commitment to a “well-formed” statement (but not that the
statement is true) for the P-certificate in use in Stage 2.

– Stage 2 of the protocol is then modified to first have the Verifier send the URS
for the P-certificate, and then requiring that the prover uses a P-certificate
for the statement committed to in c2. In other words, we require the Prover
to commit in advance, and prove knowledge of, the statement to be used in
the P-certificate and thus static soundness suffices.

Additionally, this approach generalizes also to deal with unique P-certificates
in the Common Reference String (CRS) model (where the reference string no
3 To make this work, we need to rely on P-certificates in the URS model with perfect

completeness. This requirement can be removed by additionally performing a coin-
tossing to determine the URS. For simplicity of exposition, we here simply assume
perfect completeness.

294 K.-M. Chung et al.

longer needs to be uniform), by having the Verifier provide a zero-knowledge
proof that the CRS was well-formed.4 Let us again remark that to ensure that
soundness still holds, we require the uniqueness property of the P-certificate
system to hold for all reference strings ρ, even invalid ones.

Generalizing to Two-round Unique P-certificates. The notion of a
P-certificate in the CRS model requires that the same CRS can be used to prove
any statement q of any (polynomially-related) length. We will now consider a
weaker notion of a P-certificate in the CRS model, where the CRS is “statement-
dependent”—that is, the CRS is generated as a function of the statement q to
be proved. (On the other hand, while we allow the CRS to depend on the state-
ment q, we require the length of the CRS to the independent of the lenght of q.)
In essence, we are considering two-round publicly-verifiable delegation proto-
cols. We refer to such schemes as two-round P-certificates. We now generalize
the above approach to work with unique two-round P-certificates.

– Instead of having the Verifier send the CRS in the clear (which it cannot
compute as it does not know the statement q on which it will be run), it
simply send an FHE encryption α̂ of random coins α needed to run the CRS
generation. (Using PRGs, we may assume wlog that the lenght of α is n.)

– The Prover is then asked to provide a third commitment c3 to 0n and provide
a WIUARG that either x ∈ L or c3 is a commitment to an FHE encryption
ρ̂ obtained by running the CRS-generation procedure (using the appropriate
FHE operations) on the ciphertext α̂. (That is, ρ̂ is an encryption of the CRS
ρ obtained by running the CRS generation algorithm with random coins α.)

– Next, the Verifier sends an indistinguishability obfuscation Π̃ = iO(Π) of a
program Π that on input a decommitment (ρ̂, r′) to c3 decrypts ρ̂ (using the
FHE secret key) into a CRS ρ and outputs it. (The reason that the Verifier
cannot simply decrypt ρ̂ for the Prover is that ρ̂ cannot be sent to the Ver-
ifier in the clear; recall that the honest prover will never compute any such
ciphertext, it is meant to commit to 0n and prove that x ∈ L.) Addition-
ally, the verifier gives a zero-knowledge proof that the obfuscation is correctly
computed.

– Then, the Prover provides a commitment c4 to 0n and provides a WI proof
of knowledge that x ∈ L or c4 is a commitment to a CRS ρ computed by
applying the obfuscated code Π̃ to a proper decommitment of c3.

– Finally, in Stage 2 of the protocol, we require the Prover to provide
P-certificates w.r.t to the CRS ρ committed to in c4.

Note that if c3 is perfectly binding, then by iO security of the obfuscation,
we can replace Π with a program that has the CRS ρ hardcoded (without any
knowledge of the random coins α used to generate ρ), and this suffices for arguing

4 Again, we here rely on P-certificates in the CRS model with perfect completeness.
This requirement can also be avoided by having the prover and the verifier per-
form coin-tossing-in-the-well to determine the secret coins the verifier should use
for generating the CRS. As our instantiations of P-certificates will satisfy perfect
completeness, we do not further formalize this approach.

Constant-Round Concurrent Zero-knowledge 295

that soundness of the protocol still holds. On the other hand, the simulation can
proceed just as before except that the simulator now uses the obfuscated code
Π̃ to generate the CRS ρ and commits to it in c4.

Realizing Unique Two-Round P-Certificates. We finally leverage recent
results on delegation of computation based on iO from [9,13,39] and show that
the beautiful scheme of Koppula, Lewko and Waters [39] can be massaged (and
slightly modified) into a two-message unique P-certificate. More precisely, we
show how to use the notion of a “succint” message hiding encoding [39]—a
relaxed version of a “succint” randomized encoding [9,35]—together with injec-
tive one-way functions to construct a two-round unique P-certificate. [39] shows
how to construct succint message-hiding encodings (in fact, even succint ran-
domized encodings) based on iO for P/poly and injective PRGs.

Let is point out that, just as [16], our protocol requires the use of P-certificates
that satisfy a slightly strong soundness condition—namely, we require soundness
to hold against circuits of size T (·) where T (·) is some “nice” (slightly) super-
polynomial function (e.g., T (n) = nlog log log n). To achieve such (delegatable)
P-certificates, we thus rely on iO for P/poly secure against T (·)-size circuits.

Removing the Use of FHE. In a final step, we note that by relying on specific
nice properties of the message-hiding encoding of [39], we obtain a two-round
P-certificate satisfying a desirable property: Only a “small” part of the CRS
generation procedure relies on secret coins. More precisely, the CRS generation
procedure proceeds in three steps: (1) first, secret coins are used to generate
a public parameter PP and a secret parameter K (this is done independently
of the statement q), (2) next, only PP is used to deterministically process the
statement q into a “short” digest d (independent of the length of q), and (3) the
digest d and the secret parameter K is efficiently processed to finally generate the
CRS (independent of the length of q). To emphasize, only step 2 requires work
proportional to the length of q, but this work only requires public information.

We refer to such schemes as deletegable P-certificates in the CRS model and
note that if we rely on such a scheme, then we can dispense the need for FHE in
our final protocol, as the computation of the disgest can be directly delegated
to the prover without the need of FHE.

This completes the informal description of our protocol and its proof of secu-
rity. In our formal description of the final protocol, for simplicity, we directly
present a solution using such delegetable P-certificates (without going through
the construction using FHE). As mentioned above, the above description ignores
certain subtleties required to prevent circularities in the simulation and the
proof of security. To deal with these issue (already considered in [16]) as well
as to streamline the description of the final protocol (to enable a better con-
crete round-complexity) the formal description slightly difference from what is
outlined above.

Other Related Works. Since the work of Barak [2], non-black-box simulation
techniques have been used in several other contexts: Non-malleability [3,45,48,49],

296 K.-M. Chung et al.

concurrent secure computation [7,40,45,46], resettable-soundness [5,10,17,18,20,
23], covert secure computation [32] and more. We believe our techniques may yield
improved constructions also in these settings.

We also mention recent work of [15,31] that constructs public-coin concurrent
zero-knowledge protocols using non-black-box simulation; these protocols are not
constant-round but instead rely on “standard” assumptions. Let us finally men-
tion that the constant-round concurrent zero-knowledge protocol of [16] (which
relies on non-interactive P-certificates) actually also is public-coin, whereas our
protocol is not. We leave open the question of basing public-coin concurrent
zero-knowledge on iO.

Organization. In Sect. 2, we define unique two-message P-certificates, and the
property of delegatable CRS generation. We show how to instantiate them using
message hiding encoding of [39] in the full version of the paper [19]. In Sect. 3,
we present our constant-round concurrent ZK protocol, and its simulator. We
refer the reader to the full version [19] for preliminaries and full proof of our
protocol.

2 Two-Message P-certificates

We consider the following canonical languages for P: for every constant c ∈ N ,
let Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let TM (x) denotes the running
time of M on input x.

Definition 1 (Two-Message P-certificate). A tuple of probabilistic interac-
tive Turing machines, (Gen,Pcert,Vcert), is a (Two-Message) P-certificate system
if there exist polynomials lCRS, lπ, and the following holds:

Syntax and Efficiency: For every c ∈ N , every q = (M,x, y) ∈ Lc, and every
k ∈ N , the verification of the statement proceed as follows:
CRS Generation: CRS $← Gen(1k, c, q), where Gen runs in time poly(k, |q|).

The length of CRS is bounded by lCRS(k).
Proof Generation: π

$← Pcert(1k, c, q,CRS), where Pcert runs in time
poly(k, |x|,min(TM (x), |x|c)) with TM (x) ≤ |x|c the running time of M
on input x. The length of the proof π is bounded by lπ(k).

Proof Verification: b = Vcert(1k, c,CRS, q, π), where Vcert runs in time
poly(k, |q|).

(Perfect) Completeness: For every c, d ∈ N , there exists a negligible function
μ such that for every k ∈ N and every q = (M,x, y) ∈ Lc such that |q| ≤ kd,
the probability that in the above execution Vcert outputs 1 is 1.

Definition 2 (Selective Strong Soundness). We say that a P-certificate
system (Gen,Pcert,Vcert) is (selectively) strong sound if the following holds:

Strong Soundness: There exists some “nice” super-polynomial function (e.g.,
T (n) = nlog log log n) T (k) ∈ kω(1) and some “nice” super-constant function (e.g.,
C(k) = log log log n) C(·) ∈ ω(1) such that for every probabilistic algorithm P ∗

Constant-Round Concurrent Zero-knowledge 297

with running-time bounded by T (·), there exists a negligible function μ, such that,
for every k ∈ N , c ≤ C(k),

Pr

⎡

⎢
⎣

(q, st) $← P ∗(1k, c)
CRS

$← Gen(1k, c, q)
π

$← P ∗(st,CRS)
: Vcert(1k, c,CRS, q, π) = 1 ∧ q �∈ Lc

⎤

⎥
⎦ ≤ μ(k)

Definition 3 (Uniqueness). We say that a P-certificate system (Gen,
Pcert,Vcert) is unique if for every k ∈ N , every constant c ∈ N , string CRS ∈
{0, 1}∗ and string q ∈ {0, 1}∗, there exists at most one string π ∈ {0, 1}∗, such
that Vcert(1k, c,CRS, q, π) = 1.

Definition 4 (Delegatable CRS Generation). We say that a (two-message)
P-certificate (Gen,Pcert,Vcert) has delegatable CRS generation if the CRS gener-
ation algorithm Gen consists of three subroutines (Setup,PreGen,CRSGen), and
there are polynomials ld and lκ, such that, the following holds:

Delegatable CRS Generation: Gen(1k, c, q) proceeds in the following steps:

1. Generate parameters: (PP ,K) $← Setup(1k, c), where Setup is probabilis-
tic and runs in time poly(k). We call PP the public parameter and K the key.

2. (Public) statement processing: d = PreGen(PP , q), where PreGen is
deterministic and runs in time poly(k, |q|), and the length of d is bounded by
ld(k). We call d the digest of the statement.

3. (Private) CRS generation: κ
$← CRSGen(PP ,K, d), where CRSGen is

probabilistic and runs in time poly(k), and the length of κ is bounded by lκ(k).

Finally, Gen outputs CRS = (PP , κ).

The reason that we say such a CRS generation procedure is delegatable is because
the only part of computation that depends on the statement is the statement
processing step; all other steps runs in time a fixed polynomial in the security
parameter. However, the statement processing step depends only on the public
parameter and the statement; hence to ensure soundness, one only needs to
ensure the correctness of this computation, without ensuring the “secrecy” of
the computation. Therefore, we also call this step “public” statement processing.

Simple Verification Procedure. Finally, we define an additional property of
P-certificates: We say that the verification algorithm of a P-certificate system is
simple if Vcert only depends on the security parameter 1k, the CRS CRS and the
proof π (independent of the statement q and the language index c). Naturally,
the uniqueness property of this instantiation is that for any 1k and CRS string
CRS, there is at most one unique accepting proof.

Instantiation of P-certificates. In the full version of the paper [19], we show
that unique two-message P certificates can be constructed from any “message
hiding encoding scheme” [39] and injective one-way functions. Furthermore, we
show that the P certificates instantiated using the specific message hiding encod-
ing of [39] has delegatable CRS generation and a simple verification procedure.

298 K.-M. Chung et al.

3 Our Protocol

Our constant-round concurrent ZK protocol relies on the following primitives:

1. A non-interactive perfectly binding commitment scheme com. We assume
without loss of generality that com only needs n bits of randomness to com-
mit to any n-bit string, (as it can always expand these n bits into a longer
sequence using a PRG).

The requirement for a perfectly binding commitment scheme can be weak-
ened to rely only on a statistically binding commitment scheme. See Remark
2 in the full version of the paper [19] for more details.

2. A strong (two-message) P-certificate system (Gen,Pcert,Vcert) with delegat-
able CRS generation Gen = (Setup,PreGen,CRSGen) (and simple verifica-
tion). The strong soundness property is associated with parameter T (·)
and C(·), where T (·) is a “nice” super-polynomial function and C(·) is a
“nice” super-constant function. The uniqueness property ensures that for
every string CRS, there exists at most one proof π that is accepted by
Vcert(1n,CRS, π) = 1. This allows us to define the following deterministic
oracle On

V cert, which will be used in the CZK protocol later.

On
V cert(CRS) =

{
π If there exists unique π s.t. Vcert(1n,CRS, π) = 1
⊥ otherwise

We call On
V cert the P-certificate oracle. Additionally, we consider a universal

emulator Emulatorn that on input (P, x,O) emulates the execution of a deter-
ministic oracle machine P on input x with oracle On

V cert as follows: It parses
O as an vector; to answer the ith query CRSi from P , it checks whether Oi is
the right answer from this CRS (i.e., Vcert(1n,CRSi, Oi) = 1); if so, it returns
Oi to P ; otherwise, it aborts and outputs ⊥. Finally, the emulator outputs
the output of P .

For simplicity, we assume that the lengths of the CRS, the proof π, and
the digest of statement d are all bounded by n, the security parameter. This
is without loss of generality, and can be achieved by scaling down the security
parameter.

We assume by default that the two message P-certificate system has a
simple verification procedure (i.e., Vcert depends only on 1k,CRS, π, but not
the statement); this is w.l.o.g., since our instantiation based on the message
hiding encoding of [39] satisfies this property. But this is not necessary. See
Remark 3 in the full version of the paper [19] on how to avoid using this
property.

3. A family of hash functions {Hn}n: to simplify the exposition, we here assume
that both com and {Hn}n are collision resistant against circuits of size T ′(·),
where T ′(·) is “nice” super-polynomial function.

As in [4], this assumption can be weakened to just collision resistance
against polynomial-size circuits by modifying the protocol to use a “good”
error-correcting code ECC (i.e., with constant distance and with polynomial-
time encoding and decoding), and replace commitments com(h(·)) with

Constant-Round Concurrent Zero-knowledge 299

com(h(ECC(·))). See Remark 1 in the full version of the paper [19] for more
discussion.

4. An indistinguishability obfuscator iO for circuits.
5. A constant-round WIUA argument system, a constant-round WISSP proof

system, and a constant-round ZK argument system.

Let us now turn to specifying the protocol (P, V). The protocol makes
use of three parameters: m(·) is a polynomial that upper bounds the number
of concurrent sessions; Γ (·) is a “nice” super-polynomial function such that
T (n), T ′(n) ∈ Γ (n)ω(1), and D(·) is a “nice” super-constant function such that
D(n) ≤ C(n). Let m = m(n), Γ = Γ (n) and D = D(n). In the description
below, when discussing P-certificates, we always consider the language LD. For
simplicity, below we do not explicitly discuss about the length of the random
strings used by various algorithms. The prover P and the verifier V , on common
input 1n and x and private input a witness w to P , proceed as follow:

Phase 1—Program Slot: P and V exchanges the following three messages.
(a) V chooses a randomly sampled hash function h ← Hn.
(b) P sends a commitment c to 0n using com, and random coins ρ1.
(c) V replies with a random “challenge” r of length 4n.
We call (c, r) the program-slot.
Note: In simulation, the simulator commits to a program S̃1.

Phase 2—Commit to Statement: P and V exchanges the following messages.
(a) P sends a commitment c2 to 0n using com, and random coins ρ2.
(b) P gives a WIUA argument of the statement that either x ∈ L OR there

exists S̃1 ∈ {0, 1}Γ (n), j ∈ [m], s ∈ {0, 1}n, π ∈ {0, 1}n, σ ∈ {0, 1}Γ (n), ρ,
ρ2 such that,
Knowledge of Statement: c2 = com(h(q); ρ2), where q ∈ {0, 1}3Γ .
Correctness of Statement: The statement q satisfies

– Use of Emulator: q is parsed into (Emulatorn, (S̃1, (1n, j, s),
σ), r).

– Program Consistency: c = com(h(S̃1); ρ).
If the argument is not accepting, V aborts.

Note: By definition of the emulator Emulatorn, on input (S̃1, (1n, j, s), σ),
it will emulate the execution of the deterministic oracle machine S̃1(1n, j, s)
with oracle On

V cert using answers stored in vector σ.
The purpose of this phase is twofold: First, it enforces a cheating prover
to commit to the “trapdoor” statement before the CRS of the P-certificate is
generated, and hence the soundness of the protocol only relies on the selective
soundness of the P-certificate. Second, it checks whether the “trapdoor” state-
ment has the right structure, in particular, the statement is about whether
S̃OV cert
1 (1n, j, s) = r, when the oracle is emulated by Emulatorn using σ, who

checks the correctness of the proofs in σ.
Note that the soundness of the protocol will crucially rely on the fact that
the input to S̃1 has length at most 3n, much smaller than the length, 4n, of
the output r (and the deterministic oracle OV cert is emulated correctly by
Emulatorn). On the other hand, in the simulation, the simulator will commit

300 K.-M. Chung et al.

to the “trapdoor” statement, q = (Emulatorn, (S̃1, (1n, j, s), σ), r) in order to
“cheat”.

Phase 3—Delegate Public Statement Processing: V delegates the public
statement processing to P :

(a) V generates (PP ,K) = Setup(1n,D; ρSetup) using random coins ρSetup,
and sends PP .

(b) P sends a commitment c3 to 0n using com, and random coins ρ3.
(c) P gives a WIUA argument of the statement that either x ∈ L OR there

exists, d ∈ {0, 1}n, q ∈ {0, 1}3Γ , ρ2, ρ3, such that,
Statement Consistency: c2 = com(h(q); ρ2).
Digest Consistency: c3 = com(d; ρ3).
Correctness of Digest: d = PreGen(PP , q).
If the argument is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the
computation of the digest of the statement to P . In simulation, the simulator
will compute, commit to and prove correctness of d = PreGen(PP , q). V
cannot compute d itself, since (1) it does not know the “trapdoor” statement
q and (2) the computation takes poly(n, |q|), which is too expensive for the
verifier.

Phase 4—Delegate Private CRS Generation: V delegates the private CRS
generation to P :

(a) V sends the indistinguishability obfuscation Λ
$← iO(P) of program

P = Pn,c3,PP ,K,ρCRSGen with c4, K, and a random string ρCRSGen hard-
wired in. P on input (d′, ρ′) checks whether c3 = com(d′, ρ′) and outputs
κ = CRSGen(PP ,K, d; ρCRSGen) if it is the case, and ⊥ otherwise. The
functionality of P is described formally in Fig. 1.

(b) V gives a ZK argument of the statement that there exists K ∈ {0, 1}n,
ρSetup, ρCRSGen, ρiO, such that,
Correctness of Public Parameter: (PP ,K) = Setup(1n,D; ρSetup).
Correctness of Obfuscation: Λ = iO(Pc3,PP ,K,ρCRSGen ; ρiO)
If the argument is not accepting, P aborts.

(c) P sends commitment c4 of 0n using com and random coins ρ4.
(d) P gives a WISSP proof of the statement that either x ∈ L OR there

exists CRS ∈ {0, 1}n, d′ ∈ {0, 1}n, ρ′, ρ4, such that,
CRS Consistency: c4 = com(CRS; ρ4).
Correctness of CRS: CRS = (PP , κ) and κ = P(d′, ρ′).
If the proof is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the
computation of CRS to P . In simulation, the simulator will compute, commit
to, and prove correctness of CRS = (PP , κ), with κ = P(d, ρ3). V cannot
compute κ itself, even though the computation takes only polynomial time in
n, since d cannot be revealed to V in order to ensure the indistinguishability
of the simulation. On the other hand, to ensure the “privacy” of the CRS
computation, V delegates this computation via obfuscation.

Constant-Round Concurrent Zero-knowledge 301

Fig. 1. Circuits used in the construction and proof of CZK protocol 〈P, V 〉

Phase 5—Final Proof: P gives the final proof:
(a) P gives a WISSP proof of the statement that either x ∈ L OR there

exists π ∈ {0, 1}n, CRS ∈ {0, 1}n, ρ4, such that,
CRS Consistency: c4 = com(CRS; ρ4),
Proof Verification: π verifies w.r.t. CRS, Vcert(1n,CRS, π) = 1.
V accepts if the proof is accepting.

Note: In simulation, the simulator computes proof π
$← Pcert(1k,D, q,CRS),

and succeed in the final proof by using π and CRS, ρ4 generated in the last
phase as “trapdoor” witness.

Theorem 1. Assume indistinguishability obfuscation for P/poly, an injective
pseudo-random generator, and collision resistant hash functions that are super-
polynomially secure. Then, the above protocol 〈P, V 〉 is a concurrent ZK argu-
ment system for NP.

The completeness of the protocol follows from the completeness of the WIUA
argument of knowledge, WISSP, and the ZK argument. In the next subsec-
tion, we describe the concurrent zero knowledge simulator. The analysis of the
simulator and the proof of concurrent ZK property, as well as the soundness
proof, are provided in the full version of the paper [19].

3.1 Contruction of the Simulator

The goal of our simulator is to try to “commit to its own code” and prove
about its own execution using P-certificates in a way that prevents a blow-
up in the running-time. Note that the only expensive part of this process is
the generation of the P-certificates π; the rest of the computation has a-priori
bounded complexity (depending only on the size and running-time of V ∗). To
take advantage of this observation, we thus have the simulator only commit to
an oracle program that generates prover messages (in identically the same way
as the actual simulator), but getting certificates π from the P-certificate oracle.

302 K.-M. Chung et al.

To describe the actual simulator S, let us first describe two “helper” sim-
ulators S1, S2. Roughly speaking, S1 is an interactive machine that simulates
prover messages in a “right” interaction with V ∗. Additionally, S1 excepts to
have access to oracle OV cert on the “left”, in particular, at any point, it can
send a CRS string CRS and gets back the π = OV cert(CRS) the unique accept-
ing certificate w.r.t. this CRS (or ⊥, if such a certificate does not exist); the
oracle will be simulated by S2, who provides these “left” certificates.

Let us turn to a formal description of the S1 and S2. To simplify the expo-
sition, we assume w.l.o.g that V ∗ has its non-uniform advice z hard-coded, and
is deterministic (as it can always get its random tape as non-uniform advice).

On a high-level, S1(1n, x,M, s, �) acts as a prover in a “right” interaction,
communicating with a concurrent verifier V ∗, while accessing oracle on the “left”.
(The input x is the statement to be proved, the input M will later be instantiated
with the code of S1, and the input (s, �) is used to generate the randomness for
S1; s is the seed for the forward secure pseudorandom generator g, and � is the
number of n-bit long blocks to be generated using g.) A communication round in
the “right” interaction with V ∗ refers to a verifier message (sent by V ∗) followed
by a prover message (sent by S1).

Procedure of simulator S1: Let us now specify how S1 generates prover
messages in its “right” interaction with V ∗. SOV cert

1 (1n, x,M, s, �) acts as follows:

Generate Randomness: Upon invocation, S1 generates its “random-tape” by
expanding the seed s; more specifically, let (s�, s�−1, . . . s1), (q�, q�−1, . . . , q1)
be the output of g(s, �). We assume without loss of generality that S1 only
needs n bits of randomness to generate any prover message (it can always
expand these n bits into a longer sequence using a PRG); in order to generate
its jth prover message, it uses qj as randomness.

Simulate Phase 1–Commit to Its Own Code: Upon receiving a hash func-
tion hi in session i during the jth communication round, S1 provides a com-
mitment ci to (the hash of) the deterministic oracle machine S̃1(1n, α, s′) =
wrap(M(1n, x,M, s′, α), V ∗, α), where wrap(A,B, α) is the program that
lets A communicate with B for α rounds, while allowing A to access oracle
OV cert, and finally outputting B’s message in the jth communication round.
Note: That is, S̃1(1n, α, s′, τ) emulates α rounds of an execution between S1

and V ∗ where S1 expands out the seed s′ into α blocks of randomness and
additionally have access to OV cert.

Simulate Phase 2–Commit to the Trapdoor Statement: Upon receiving
a challenge ri in session i during the jth communication round, S1 needs to
commit to the “trapdoor” statement it will later prove in the final proof. To
do so, it prepares statement qi = (Emulatorn, (S̃1, (1n, j, sj), τj−1), ri), where
τj−1 is the list of oracle answers received by S1 in the first j − 1 communica-
tion rounds.
Note: That is, the “trapdoor” statement is that the execution of S̃1(1n, j, sj),
emulated by Emulatorn, outputs r, when its kth oracle queries is answered
using τj−1,k; additionally, the validity of each answer is checked by Emulatorn

(i.e., the answer must be an accepting proof w.r.t. the query CRS string).

Constant-Round Concurrent Zero-knowledge 303

By construction of S̃1, this means after j communication rounds between S1

and V ∗, where S1 uses randomness expanded out from sj , and oracle answers
τj−1, V ∗ outputs ri in the jths communication round. Note that since we only
require S̃1 to generate the jth verifier message, giving him the seed (sj , j) as
input suffices to generate all prover messages in rounds j′ < j. It follows
from the consistency requirement of the forward secure PRG that S̃1 using
(sj , j) as seed will generate the exact same random sequence for the j − 1
first blocks as if running S̃1 using (s, �) as seed. Therefore, the “trapdoor”
statement holds.

In later communication rounds, when S1 receives a message from V ∗

belonging to the WIUA in Phase 2 of session i, S1 proves honestly that it
knows the statement qi it is committing to in session i, and the statement
is correctly formatted and consistent with the program S̃1 committed to in
Phase 1 of session i.

Simulate Phase 3–Process the Trapdoor Statement: Upon receiving a
public parameter PP i in session i during the jth communication round, S1

needs to commit to the digest di of the “trapdoor” statement qi of session
i. To do so, it computes honestly di

$← PreGen(PP i, qi) and commits to di

using com, and randomness ρi.
In later communication rounds, when S1 receives a message from V ∗

belonging to the WIUA in Phase 3 of session i, S1 proves honestly that it
knows di committed to in Phase 3 of session i and it is computed correctly
w.r.t. PP i and a statement qi committed to in Phase 2 of session i.

Simulate Phase 4–Compute the CRS: Upon receiving an obfuscated pro-
gram Λi, S1 acts as an honest verifier of the ZK argument to verify that PP i

and Λi in session i are correctly generated. Upon receiving the last message
of the ZK argument, in the jth communication round, S1 needs to commit
to the CRSi of session i. To do so, it computes κi = Λi(di, ρi). If the output
is ⊥, S1 aborts. Otherwise, it commits to CRSi = (PP i, κi) using com.

In later communication rounds, when S1 receives a message from V ∗

belonging to the WISSP in Phase 4 of session i, S1 proves honestly that it
knows κi committed to in Phase 4 of session i and it is computed correctly
w.r.t. Λi and a digest di committed to in Phase 3 of session i.

Simulate Phase 5–Prove the Trapdoor Statement Using P-certificate:
Upon receiving the last message from V ∗ in Phase 4 of session i, during the jth

communication round, S1 needs to prove in the WISSP proof that there is
a P-certificate that verifies the validity of the “trapdoor” statement qi w.r.t.
the CRS string CRSi committed to in Phase 4 of session i. To do so, it sends
query CRSi to its oracle OV cert, and obtains answer πi. It aborts if πi = ⊥.
Otherwise, S1 provides an honest WISSP that Vcert(1n,CRSi, πi) = 1 w.r.t.
CRSi which is the committed value in Phase 4 of session i.

Procedure of simulator S2: S2(1n, x,M, s, �) internally emulates � mes-
sages of an execution between S1(1n, x,M, s, �) and V ∗, and simulates the oracle
OV cert for S1. In a communication round j when S1 sends an oracle query CRSi

for a session i, S2 generates a certificate πi of the statement qi = (Emulatorn, (S̃1,

304 K.-M. Chung et al.

(1n, j′, sj′), τj′−1), rj′) w.r.t. CRSi, that is, πi
$← Pcert(1n,D, qi,CRSi) (where j′

is the round in which the challenge ri is sent by V ∗, qi and CRSi are generated by
S1 (emulated internally by S2) in Phase 2 and 4 of session i). S2 checks if indeed
Vcert(1n,CRSi, πi) = 1, it outputs fail if this is not the case, and otherwise, feeds
πi to S1. Finally, S2 outputs its view (which in particular, contains the view of
V ∗) at the end of the execution.

Procedure of the final simulator S: The final simulator S(1n, x) simply
runs S2(1n, x, S1, s, T (n + |x|)), where s is a uniformly random string of length
n and T (n + |x|) is a polynomial upper-bound on the number of messages sent
by V ∗ given the common input 1n, x, and extracts out and outputs, the view of
V ∗ from the output of S2. (In case that S2 outputs fail, S outputs fail as well.)

Due to the lack of space, the analysis of the simulator, including its running
time, and the correctness of its output distribution is provided in the full version
of the paper [19], which also contains the soundness proof.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications (2013)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp.
106–115 (2001)

3. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS, Washington, DC, USA, 2002, pp. 345–355.
IEEE Computer Society (2002)

4. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

5. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: FOCS, pp. 116–125 (2001)

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

7. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)

8. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (2004)

9. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succint randomized encodings
and obfuscations. Manuscript (subsuming an early version appearing as Succint
Garbling Schemes and Applications [Lin-Pass, Eprint Report 2014/766]) (2014)

10. Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-
black-box simulation technique. In: FOCS, pp. 223–232 (2012)

11. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

12. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxil-
iary input. Cryptology ePrint Archive, Report 2013/703 (2013). http://eprint.iacr.
org/

http://eprint.iacr.org/
http://eprint.iacr.org/

Constant-Round Concurrent Zero-knowledge 305

13. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and ram programs. Cryptology ePrint Archive, Report
2014/769 (2014)

14. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires ω̃(log n) rounds. In: STOC, pp. 570–579 (2001)

15. Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the
global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 80–99.
Springer, Heidelberg (2013)

16. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
p-certificates. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp. 50–59 (2013)

17. Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.:
4-Round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 192–216. Springer, Heidelberg (2014)

18. Chung, K., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. In: Symposium on Theory of Computing
Conference, STOC 2013, 1–4 June 2013, Palo Alto, CA, USA, pp. 231–240 (2013)

19. Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge
from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2014/991
(2014). http://eprint.iacr.org/

20. Chung, K.-M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from
one-way functions (2013)

21. Damg̊ard, I.B.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

22. Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

23. Deng, Y., Goyal, V., Sahai, A.; Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In: FOCS, pp. 251–260 (2009)

24. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–
898 (2004)

25. Dwork, C., Sahai, A.: Concurrent zero-knowledge: reducing the need for timing
constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 177–190.
Springer, Heidelberg (1998)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of FOCS 2013 (2013)

27. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. Technical
report, Cryptology ePrint Archive, Report 2013/860, 6 (2013)

28. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, 31 May - 2 June
2009, Bethesda, Maryland, USA, pp. 169–178. ACM Press (2009)

29. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/

30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

http://eprint.iacr.org/
http://eprint.iacr.org/

306 K.-M. Chung et al.

31. Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory
of Computing, 1–4 June 2013, Palo Alto, CA, USA, pp. 221–230. ACM Press (2013)

32. Goyal, V., Jain, A.: On the round complexity of covert computation. In: STOC,
pp. 191–200 (2010)

33. Gupta, D., Sahai, A.: On constant-round concurrent zero-knowledge from a knowl-
edge assumption. Cryptology ePrint Archive, Report 2012/572 (2012). http://
eprint.iacr.org/

34. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer,
Heidelberg (1998)

35. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium
on Foundations of Computer Science, 12–14 November 2000, Redondo Beach,
California, USA, pp. 294–304. IEEE Computer Society Press (2000)

36. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. Cryptology ePrint Archive, Report 2014/942 (2014). http://eprint.
iacr.org/

37. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC, pp. 560–569 (2001)

38. Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the inter-
net. In: FOCS, pp. 484–492 (1998)

39. Koppula, V., Lewko, A.B., Waters, A.B.: Indistinguishability obfuscation for turing
machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925
(2014). http://eprint.iacr.org/

40. Lindell, Y.: Bounded-concurrent secure two-party computation without setup
assumptions. In: STOC, pp. 683–692 (2003)

41. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

42. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

43. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box sim-
ulation and four message concurrent zero knowledge for np. Cryptology ePrint
Archive, Report 2013/754 (2013). http://eprint.iacr.org/

44. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol
composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer,
Heidelberg (2003)

45. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: STOC, New York, NY, USA, pp. 232–241. ACM (2004)

46. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-
stant number of rounds. In: FOCS, pp. 404–413 (2003)

47. Pass, R., Rosen, A.: How to simulate using a computer virus. Unpublished manu-
script (2003)

48. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS, pp. 563–
572 (2005)

49. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC, pp. 533–542 (2005)

50. Pass, R., Rosen, A., Tseng, W.-L.D.: Public-coin parallel zero-knowledge for np.
J. Cryptology 26, 1–10 (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Constant-Round Concurrent Zero-knowledge 307

51. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

52. Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent zero-knowledge,
revisited. J. Cryptology 27, 45–66 (2012)

53. Pass, R., Venkitasubramaniam, M.: Private coins versus public coins in zero-
knowledge proof systems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 588–605. Springer, Heidelberg (2010)

54. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge.
Routledge, New York (1963)

55. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS, pp. 366–375 (2002)

56. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–432. Springer,
Heidelberg (1999)

57. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms (1978)

58. Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In:
Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451–468. Springer,
Heidelberg (2000)

Indistinguishability Obfuscation from Compact
Functional Encryption

Prabhanjan Ananth1 and Abhishek Jain2(B)

1 University of California, Los Angeles, USA
prabhanjan@cs.ucla.edu

2 Johns Hopkins University, Baltimore, USA
abhishek@cs.jhu.edu

Abstract. The arrival of indistinguishability obfuscation (iO) has
transformed the cryptographic landscape by enabling several security
goals that were previously beyond our reach. Consequently, one of the
pressing goals currently is to construct iO from well-studied standard
cryptographic assumptions.

In this work, we make progress in this direction by presenting a reduc-
tion from iO to a natural form of public-key functional encryption (FE).
Specifically, we construct iO for general functions from any single-key
FE scheme for NC1 that achieves selective, indistinguishability security
against sub-exponential time adversaries. Further, the FE scheme should
be compact, namely, the running time of the encryption algorithm must
only be a polynomial in the security parameter and the input message
length (and not in the function description size or its output length).

We achieve this result by developing a novel arity amplification tech-
nique to transform FE for single-ary functions into FE for multi-ary
functions (aka multi-input FE). Instantiating our approach with known,
non-compact FE schemes, we obtain the first constructions of multi-input
FE for constant-ary functions based on standard assumptions.

Finally, as a result of independent interest, we construct a compact
FE scheme from randomized encodings for Turing machines and learning
with errors assumption.

1 Introduction

The ability to cryptographically obfuscate computer programs holds great
prospects for securing the future digital world. While general-purpose program

P. Ananth—Research supported in part from a DARPA/ONR PROCEED award,
NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276.
This material is based upon work supported by the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014-
11-1-0389. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation,
or the U.S. Government.
A. Jain—The author is partly funded by NSF CNS-1414023. Supported in part by
a DARPA Safeware grant and NSF CNS-1414023.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 308–326, 2015.
DOI: 10.1007/978-3-662-47989-6 15

Indistinguishability Obfuscation from Compact Functional Encryption 309

obfuscation remained an elusive goal for several decades, this changed recently
with the seminal work of Garg et al. [26] who gave the first candidate construc-
tion of indistinguishability obfuscation [8] (iO) for P/poly. Since then, iO has
been used to realize several advanced cryptographic primitives that were pre-
viously beyond our reach, including deniable encryption [45], collusion-resistant
functional encryption [26], round-optimal multiparty computation [25], and so
on. Indeed, by now, iO has been established as a central hub of cryptography.

The tremendous appeal of iO motivates the goal of constructing it from
well-studied, standard cryptographic assumptions. However, not much is known
in this direction. The security of candidate iO constructions, initiated by [7]1,
is proven in the “generic graded encoding model” and lacks a reduction in the
standard model. The recent works of Pass et al. [43] and Gentry et al. [33] seek to
rectify this situation by constructing iO from various assumptions on multilinear
maps [24]. In particular, Pass et al. [43] reduce the security of their construction
to an “uber assumption” on multilinear maps while Gentry et al. [33] provide a
reduction to the “multilinear subgroup elimination assumption” (stated in their
paper) on composite-order multilinear maps [22].

Till date, these remain the only known constructions of general-purpose iO.
Further, all of them rely on a common cryptographic primitive, namely, multilin-
ear maps. This is an unsatisfactory situation, especially in light of several recent
attacks on multilinear maps [13,21,23,30]. This calls for new constructions of iO
from other, more familiar cryptographic primitives.

1.1 This Work

In this work, we make progress in this direction by providing a new construction
of iO based on a natural form of functional encryption (FE). Along the way, we
also obtain new results on multi-input FE [35] that significantly improve upon
the prior results.

I. Indistinguishability Obfuscation from Compact FE. Our main result is a reduc-
tion from iO to any public-key functional encryption scheme that satisfies a nat-
ural “compactness” requirement on the encryption algorithm. Specifically, we
give a construction of iO for P/poly from any public-key FE scheme for NC1

that satisfies the following requirements:

– Security: It supports one key query and achieves selective, indistinguishability
security against sub-exponential time adversaries.

– Compactness: For any input message x, the running time of the encryption
algorithm is polynomial in the security parameter and the size of x. In partic-
ular, it does not depend on the circuit description size or the output length of
any function f supported by the scheme.2 We call such an FE scheme compact.

1 See the full version for a comprehensive list of works.
2 The compactness requirement can be further relaxed.

310 P. Ananth and A. Jain

We stress that we do not require function hiding property [1,11] from the under-
lying FE. Indeed, function-hiding public-key FE already implies iO.

On the use of Sub-exponential Hardness. Our reliance on sub-exponential hard-
ness of the underlying FE scheme is similar in spirit to the use of sub-exponential
hardness assumptions in the work of Gentry et al. [33]. Indeed, as discussed in
their paper, the use of sub-exponential hardness assumptions “seems” inherent
to realizing iO. We note, however, that to the best of our knowledge, no formal
proof supporting this intuition is known.

On the Existence of compact FE. While public-key FE is an extremely well-
studied notion, somewhat surprisingly, compact FE has remained largely unex-
plored. Previously, Goldwasser et al. [36] studied the notion of “succinct” FE
which, informally speaking, requires that the size of any ciphertext must be inde-
pendent of the function description size. We note, however, that this notion does
not preclude dependence on the function output length. Indeed, [36] focuses on
functions with single bit output, and their construction does not achieve our
desired compactness property for the case of functions with long output.

Compact FE with simulation-based security is known to be impossible for
general functions [2,20]. Concretely, in the case of adaptive simulation security,
the impossiblity result holds for a single key and message query. In the selective
security case, it holds for a single key and unbounded message queries.3 However,
we stress that for our main result, we only require the underlying compact FE
scheme to satisfy indistinguishability security in the selective model.

Presently, the only known constructions of compact FE for general functions
rely on iO [26,46].4 In contrast, non-compact FE can be based on LWE [36], or
even semantically-secure public-key encryption [37,44].

We hope that this work will bring attention to the natural goal of compact-
ness in FE and that it will be realized from standard complexity assumptions
in the future. With this view, we believe that the results in this work open
new doors to the eventual goal of realizing iO from well-studied cryptographic
assumptions, possibly avoiding multilinear maps altogether.

II. A Technique for Arity Amplification. At the heart of our results is a novel
technique for arity amplification in secret-key multi-input functional encryption
(MiFE), a notion introduced by Goldwasser et al. [35]. Specifically, we show
how to transform a selectively-secure secret-key MiFE scheme for i-ary functions
into another selectively-secure5 secret-key MiFE scheme for (i+1)-ary functions.
Interestingly, we achieve this by “knitting together” a secret-key FE scheme for

3 A related notion of reusable garbled circuits with output-size independence was
recently studied by Gentry et al. [31]. They proved an analogous impossibility result
for this notion in the case of simulation security.

4 The compact FE constructions of [26,46], in fact, achieve stronger security than
what we require. Specifically, they achieve security against unbounded key queries,
while we only require security against a single key query.

5 Unless stated otherwise, we only consider selectively-secure (Mi)FE schemes in the
subsequent discussion.

Indistinguishability Obfuscation from Compact Functional Encryption 311

i-ary functions with a public-key FE scheme for 1-ary functions. In order to prove
the security of our transformation, we build on program puncturing techniques
that were first introduced by Sahai and Waters [45] in the context of iO and
recently developed in the context of secret-key FE by Brakerski and Segev [16]
and Komargodski et al. [40].

Starting from a secret key FE scheme for single-ary functions (aka single-
input FE) and applying our transformation iteratively, we obtain a secret-key
MiFE scheme for multi-ary functions. This iterated procedure is sensitive to
the efficiency of the underlying single-input FE and yields different end results
depending upon whether the underlying FE scheme is compact or not.

More concretely, given a compact single-key FE scheme for NC1, we first
convert it into a compact FE scheme for general functions that supports an a
priori bounded polynomial number of key queries. This process involves multiple
steps, including the key query amplification step of Gorbunov et al. [37] and the
generic transformation from [4,31] for boosting the function family from NC1 to
general functions.

Then, instantiating our iterated approach with a sub-exponentially secure
compact FE scheme that supports (say) q number of key queries, we obtain
a secret-key MiFE scheme for polynomial-arity functions that supports q key
queries and q message queries. Instantiating this result for the case of q = 2 and
combining it with the MiFE to iO transformation of Goldwasser et al. [35], we
obtain iO for general functions.

III. MiFE for Functions with Small Arity from Standard Assumptions. We also
analyze our transformation for the case when the underlying FE scheme is non-
compact. Recall that in such a scheme, the running time of the encryption
algorithm may depend upon the function description size [37,44] or its output
length [36].

Bounded-Message Security from Standard Assumptions. Starting with a non-
compact FE scheme that supports an a priori bounded polynomial (say) q num-
ber of key queries, we obtain a secret-key MiFE scheme for constant-ary func-
tions that supports q message and q key queries. Instantiating the underlying
FE scheme with [37,44], we obtain the above result based on semantically secure
public-key encryption.6 This significantly improves over the state of the art in
this area in terms of security assumptions. In particular, prior constructions of
such an MiFE scheme either rely upon iO [35] or lack a security proof in the
standard model [10].

Unbounded-Message Security from iO. Starting with a non-compact FE scheme
that achieves security against unbounded key queries, we obtain a secret-key

6 At the cost of further decreasing the efficiency of encryption and restricting our
attention to a single key query, we can, in fact, obtain this result based on only
one-way functions. This requires a slight modification in our construction and proof.
In particular, to obtain this result, we must replace the underlying public-key FE
with a secret-key FE and then leverage the “one-shot” proof technique discussed in
Sect. 1.2. We defer the details to the full version of the paper.

312 P. Ananth and A. Jain

MiFE scheme for constant-ary functions that supports unbounded message and
key queries.

Presently, known constructions of public-key FE with security against
unbounded collusions rely upon iO and one-way functions [26,46] or specific
assumptions on composite-order multilinear maps [27]. Then, instantiating the
underlying FE scheme in our construction with [26], we obtain a secret-key
MiFE scheme for functions with constant arity that supports unbounded num-
ber of message and key queries based on iO and one-way functions. Previously,
such an MiFE scheme [35] was only known based on differing-inputs obfuscation
[3,8,14].

On the Optimality of Our Results. It is easy to see that a secret-key MiFE
scheme for 2-ary functions that supports a single key query and unbounded mes-
sage queries already implies a secret-key single-input FE scheme that supports
unbounded key and message queries. This observation is already implicit in [35].

In light of the above, we note that our results on secret-key MiFE with
bounded message queries are essentially optimal.

IV. Compact FE from Randomized Encodings for Turing Machines. Our final
contribution is a construction of a single-key, compact FE scheme from the
learning with errors (LWE) assumption and randomized encodings (RE) [6,38]
for Turing machines where the size of the encoding only depends on the size
of the Turing machine (TM) and not on its running time or the output length.
Combining this with our reduction from iO to compact FE, we get a construction
of iO for general circuits from sub-exponentially secure RE for Turing machines
and LWE.

Randomized encodings for circuits are known to exist from only one-way
functions [47]. In contrast, the problem of RE for TMs has received far less
attention. Recently, a few works [28,29,42] construct RE for RAM programs
from only one-way functions; however, the size of the garbled RAM program in
these schemes is proportional to the (worst-case) running time of the underlying
RAM program. Even more recently, [9,18,41] give constructions of RE for TMs
where the encoding size is independent of the running time of TM. However, all
of these results are based on iO.

We hope that our work will bring more attention to this natural goal, and
that it can be realized from standard cryptographic assumptions in the future.
This result is presented in the full version [5].

1.2 Our Techniques

Main Goal: Arity Amplification. The starting point of our iO construction
is the recent work of Goldwasser et al. [35] who showed a transformation from
secret-key MiFE to iO. Concretely, [35] proved that secret-key MiFE for (n+1)-
ary functions that supports a single key query and 2 message queries implies
iO for all functions with input length n. Very roughly, in order to obfuscate a
function f with input length n, their idea is to use the first MiFE ciphertext to

Indistinguishability Obfuscation from Compact Functional Encryption 313

hide the function and use the remaining n positions to encode f ’s input domain
à la Yao’s garbled circuits [47]. This, coupled with a secret key for the universal
circuit yields an indistinguishability obfuscation of f .

Given their result, our goal of constructing general-purpose iO from public-
key single-input FE reduces to the task of constructing secret-key MiFE scheme
for polynomial-ary functions from a public-key FE for single-ary functions. To
help the presentation, we ignore the succinctness requirements on the underlying
FE for now, and revisit it later.

At a first glance, it is not clear at all how to proceed towards realizing the
above goal.

Knitting together Two FE Instances. Towards that end, let us first consider a
weaker goal of constructing secret-key MiFE for 2-ary functions. Roughly speak-
ing, our main idea is to “knit” together an instance of a secret-key single-input
FE scheme with an instance of public-key single-input FE to obtain a secret-key
MiFE for 2-ary functions. Here, the importance of using both a secret-key FE
and a public-key FE will become clear once we explain our approach.

More concretely, the 2-ary MiFE scheme is constructed as follows:

• The master secret key of the 2-ary scheme consists of a key pair (pk,msk) of
the underlying public-key FE scheme as well as a master secret key msk′ of the
underlying secret-key FE scheme. Further, a key for a function f is computed
as a key Kf of the underlying public-key FE scheme for f .

• In order to encrypt a message m1 corresponding to the first position, we
generate (using msk′) a function key of the underlying secret-key FE scheme
for the following function Genc

[m1,K,pk]: it contains the message m1, a key for
a pseudorandom function (PRF) K, and the public key pk hardwired in its
description. On input a message (m2, tag), Genc

[m1,K,pk] outputs an encryption
(using pk) of the combined message m1‖m2 w.r.t. the underlying public-key
FE. Here, the randomness r for encryption is derived as r ← PRFK(tag).

A message m2 corresponding to the second position is encrypted (along
with a random tag) using the encryption algorithm of the underlying secret-
key FE scheme.

• In order to decrypt a pair of ciphertexts (c1, c2) using a function key Kf , we
first decrypt c2 using c1 (recall that c1 corresponds to a function key of the
secret key FE scheme) to produce a new ciphertext c̃ corresponding to the
underlying public-key FE scheme. Finally, we decrypt c̃ using Kf to get the
desired output.

The correctness of the above construction is easy to verify. A careful reader,
however, may immediately notice a security problem. Note that in order to
prove security, we must ensure that the first ciphertext hides the message m1

and the PRF key K. However, this is not necessarily guaranteed by the above
construction.

We solve this problem by building upon the recent elegant result of Brakerski
and Segev [16] who give a generic transformation from any single-input secret-
key FE scheme into another secret-key FE scheme that satisfies function hiding.

314 P. Ananth and A. Jain

Specifically, instead of using a standard secret-key FE, we will use a function-
hiding secret-key FE in the above construction. We then rely upon the function-
hiding property of the function key to argue that m1 and K remain hidden. As
we will see later, this technique, when generalized to the MiFE setting, is vital
to our overall approach.

We highlight another subtle point in the above construction: suppose that
we want the 2-ary MiFE scheme to support q ≥ 2 message queries. Then, since
the function keys of the underlying secret-key FE scheme act as ciphertexts in
the 2-ary MiFE scheme, we need the underlying secret-key FE scheme to, in
fact, support q key queries. To obtain such an FE scheme, we leverage [37] to
transform a single-key FE scheme into a q-key FE scheme. We refer the reader
to the full version for more details.

Overview of Proof Strategy. Proving the security of the above construction turns
out to be quite non-trivial. Suppose that we wish to prove security for q message
queries (for each position), say {x0

i , y
0
i }q

i=1, {x1
i , y

1
i }q

i=1. Further, for simplicity,
let us restrict our attention to a single function key query f . One plausible proof
strategy would be to construct a sequence of roughly q hybrids where at any
step i ∈ [q], we switch from (x0

i , y
0
i) to (x1

i , y
1
i). However, note that in the case

of MiFE, an adversary can compute “cross-terms” from the challenge message
pairs. That is, the adversary is allowed to compute (xb

i , y
b
i) for any i, j ∈ [q].

Indeed, this is why the security definition of MiFE requires that f(x0
i , y

0
j) =

f(x1
i , y

1
j) for all i, j ∈ [q]. However, note that in the above proof strategy, the

adversary might end up computing f(x1
i , y

0
j) which will allow him to distinguish

between two successive hybrids.
A plausible solution to overcome the above problem is to argue indistinguisha-

bility in one shot. That is, instead of arguing indistinguishability one message-
pair at a time, we instead switch all the challenge message pairs corresponding to
challenge bit 0 with the ones corresponding to challenge bit 1. Implementing this
strategy successfully, however, will require “hardwiring” and “unhardwiring” of
the (public-key) encryption of all the q2 message pairs (xb

i , y
b
j) (each of which cor-

responds to a different output) in the challenge ciphertexts for the first position
that correspond to function keys of the underlying secret-key FE scheme. While
this is tolerable for the case of arity 2 (and more generally for constant arity),
it quickly becomes prohibitive for large arity. Indeed, for arity n = poly(λ), the
number of possible outputs (and therefore the message pair combinations) is
exponential.

We solve the above problems by carefully employing a “one-input-at-a-time”
strategy where we consider roughly q2 intermediate hybrids (and qn in the case
of arity n; see below). Very briefly, our proof involves careful hardwiring and un-
hardwiring of the (public-key) encryption of each of the q2 message pairs (xb

i , y
b
j),

one at a time, in the challenge ciphertexts for the first position that correspond to
function keys of the underlying secret-key FE scheme. Furthermore, we crucially
ensure that the adversary cannot learn an output of the form f(x0

i , y
1
j) at any

point in the hybrids. In order to implement these ideas, we rely upon program
puncturing techniques that were originally introduced in the context of iO [45]

Indistinguishability Obfuscation from Compact Functional Encryption 315

and recently developed in the secret-key FE setting by [16,40]. In particular,
as in the work of [40], we rely on function hiding property of the underlying
secret-key FE scheme to argue indistinguishability of these core hybrids. We
finally note that our proof strategy bears resemblance to the proof methodology
in several recent works [9,18,19,32,33,41].

Note that in the above proof strategy, it was crucial that we use a public-key
FE in our construction. To see this, suppose we were to replace the public-key FE
with an instance of a secret-key FE, referred to as FE (while the other secret-key
FE instance used in the construction is referred to as FE ′). Note that now, the
challenge ciphertexts corresponding to the first position would contain the master
secret key (say) msk of FE . Then, in order to execute the aforementioned proof
strategy, it would seem that we need to somehow “puncture” msk such that it
allows encryption all messages except a select message (say) xb

i‖yb
j . Furthermore,

the punctured msk should not allow generation of any function keys, except Kf .
However, it is not clear how to realize such a notion of secret-key FE. By using
public-key FE, we are able to bypass the above difficulties since by definition,
the public key does not need to be hidden.

Climbing the Arity Ladder. The above approach can be generalized to transform
a secret-key MiFE scheme for i-ary functions into a secret-key MiFE scheme
for (i + 1)-ary functions. Concretely, this transformation consists of two steps:
first, by using ideas from [16], we add function privacy property to the i-ary
MiFE scheme. Next, we combine the resultant scheme with a “fresh” instance
of a public-key single-input FE scheme to obtain an (i + 1)-ary MiFE scheme.

In more detail, as in the 2-ary case, the ciphertext corresponding to the
first position will consist of a function key of the underlying (function private)
c-ary MiFE scheme for the function Genc

[m1,K,pk] which is defined similarly to the
2-ary case, except that here it takes as input messages m2, . . . , mi+1 (along with
random tags) and outputs an encryption (using pk) of the combined message
m1‖ . . . ‖mi+1 w.r.t. the underlying public-key FE. The ciphertexts correspond-
ing to remaining i positions will correspond to ciphertexts of the underlying
c-ary MiFE scheme. The function key for a function f in the c + 1-ary scheme
will correspond to a key Kf for the same function f of the underlying public-key
single-input FE scheme.

By applying the above ideas iteratively, we can transform a secret-key single-
input FE into a secret-key multi-input FE. Our iterated construction is depicted
in Fig. 1. The security of the construction follows along the same lines as dis-
cussed above.

The Role of Compactness. Upon “unrolling” our construction of n-ary MiFE
scheme, one can observe that it involves n instances of a single-input FE scheme.
Specifically, in the n-ary MiFE scheme, each of the ciphertexts corresponding to
the first n − 1 positions corresponds to a function key of (a different instance
of) a single-input FE, while the ciphertext corresponding to the nth position
corresponds to a ciphertext of a single-input FE scheme. The function key at
position n − 1 computes an encryption corresponding to the function key at

316 P. Ananth and A. Jain

Fig. 1. The Iterated Construction. (q)-FE denotes a single-input public-key FE scheme
that supports q key queries. (q1, q2)-MIFEi denotes a secret-key MiFE scheme for i-ary
functions that supports q1 key and q2 message queries. Finally, FH refers to function
hiding.

position n − 2 which in turn computes an encryption corresponding to the func-
tion key at position n − 3, and so on.

With the above view, it is easy to see that the complexity of the above
construction becomes prohibitive for n = ω(1) when it is instantiated with a
non-succinct FE scheme. On the other hand, instantiating the construction with
a succinct FE scheme allows us to go all the way to n = poly(λ).

We remark that the above discussion is oversimplified. We refer the reader
to the technical parts of the paper (and the full version [5]) for more details.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We assume that
the reader is familiar with basic cryptographic concepts [34].

Given a PPT sampling algorithm A, we use x
$←− A to denote that x is the

output of A when the randomness is sampled from the uniform distribution.

Punctured Pseudorandom Function Families. The works of [12,15,39] con-
structed a strengthening of PRF families that is commonly known as punctured
pseudorandom function families. Unlike the standard notion of PRFs, this prim-
itive is accompanied by a puncturing algorithm that takes as input x, a PRF key
K and outputs a punctured key Kx that allows one to evaluate the output of
PRF on any input other than x. The security guarantee states that the output
of PRF on x is indistinguishable from random even if the adversary gets a key
punctured on x.

2.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation (iO) that was defined
by Barak et al. [8].

Definition 2.1 (Indistinguishability Obfuscator (iO)). A uniform PPT
algorithm iO is called an indistinguishability obfuscator for a circuit class {Cλ},

Indistinguishability Obfuscation from Compact Functional Encryption 317

where Cλ consists of circuits C of the form C : {0, 1}λ → {0, 1}, if the following
holds:

– Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}λ (i.e.,
it belongs to the input space of C), we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– Indistinguishability: For any PPT distinguisher D, there exists a negligible
function negl(·) such that the following holds: for all sufficiently large λ ∈ N,
for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x,
we have:

∣
∣
∣Pr[D(iO(λ,C0)) = 1] − Pr[D(iO(λ,C1)) = 1]

∣
∣
∣ ≤ negl(λ)

2.2 Public-Key Functional Encryption

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ

are sets of size, functions in λ. Let F = {Fλ}λ∈N be an ensemble where each Fλ

is a finite collection of functions. Each function f ∈ Fλ takes as input a string
x ∈ Xλ and outputs f(x) ∈ Yλ.

A public-key functional encryption (FE) scheme FE for F consists of four
algorithms (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec):

– Setup. FE.Setup(1λ) is a PPT algorithm that takes as input a security para-
meter λ and outputs a public key, (master) secret key pair (FE.pk,FE.msk).

– Key Generation. FE.KeyGen(FE.msk, f) is a PPT algorithm that takes as
input a master secret key FE.msk, a function f ∈ Fλ and outputs a functional
key FE.skf .

– Encryption. FE.Enc(FE.pk, x) is a PPT algorithm that takes as input a public
key FE.pk, a message x ∈ Xλ and outputs a ciphertext ct.

– Decryption. FE.Dec(FE.skf , ct) is a deterministic algorithm that takes as
input a functional key FE.skf , a ciphertext ct and outputs a string y.

The correctness property guarantees that the output of the decryption on input
a functional key of f ∈ Fλ and a ciphertext of x ∈ Xλ yields f(x) ∈ Yλ.

Selective Security. We recall indistinguishability-based selective security for FE.
This security notion is modeled as a game between the challenger and the adver-
sary where the adversary can request functional keys and ciphertexts from the
challenger. Specifically, the adversary can submit function queries f to the chal-
lenger and receive corresponding functional keys. It can also submit a message
query of the form (x0, x1) and in response, the challenger encrypts message
xb and sends the ciphertext back to the adversary. The adversary wins the
game if she can guess b with probability significantly greater than 1/2 and if
f(x0) = f(x1) for all function queries f . The only constraint here is that the
adversary has to declare the challenge messages at the beginning of the game
itself.

318 P. Ananth and A. Jain

The term (qkey, μ)-secure FE scheme refers to the setting where the adversary
can request up to qkey queries and he can succeed in the game with probability
at most μ.

Compactness. We now define the notion of compact FE that will play a central
role in our main result on iO. In a compact FE scheme, the running time of
the encryption algorithm only depends on the security parameter and the input
message length. In particular, it is independent of the complexity of the function
family supported by the FE scheme. Note that a direct consequence of this is
that the size of the public key must also be independent of the complexity of the
function family.

Definition 2.2 (Compact FE). Let p(·) be a polynomial. A (qkey, μ)-selectively
secure public-key FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec),
defined for an input space X = {Xλ} and function space F = {Fλ} is said
to be compact if for all λ ∈ N, the size of any public key FE.pk is p(λ), where
(FE.msk,FE.pk) ← FE.Setup(1λ), and the running time of the encryption algo-
rithm FE.Enc, on input 1λ, FE.pk and a message x ∈ Xλ, is p(λ, qkey, |x|).
Remark 2.3. We can define the notion of unbounded compact FE in the same
manner as above except that we now allow the number of key queries made by
the adversary in the security game to be an arbitrary polynomial.

3 Function Private Multi-input Functional Encryption
(MiFE)

The concept of multi-input functional encryption was proposed by Goldwasser
et al. [35]. Standard FE only allows for computing on a single ciphertext, i.e., it
only supports single-ary functions. In contrast, multi-input functional encryption
(MiFE) allows for (joint) computation over multiple ciphertexts. In other words,
it supports multi-ary functions.

Analogous to standard FE, one can consider MiFE in two settings, namely,
public-key and secret-key setting.7 In this work, we will restrict our attention to
the secret-key setting.

The security notion we are interested in is stronger than the one considered
in Goldwasser et al. [35]. We expect the functional keys to hide the function
it is associated with. This concept, termed as function privacy was previously
considered in the single ary private key FE setting by Brakerski-Segev [16]. We
extend their notion to the multi-input functional encryption setting as well.

We first present the syntax of a MiFE scheme and later we formalize the
function privacy property.
7 Goldwasser et al. [35] also define a more general notion of MiFE where there is

different encryption key for each input position. When the adversary knows all (resp.,
none of) the encryption keys, then this notion captures the public-key (resp., secret-
key) setting.

Indistinguishability Obfuscation from Compact Functional Encryption 319

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ

are sets of size, functions in λ. Let F = {Fλ}λ∈N be an ensemble where each
Fλ is a finite collection of n-ary functions. Each function f ∈ Fλ takes as input
strings x1, . . . , xn, where each xi ∈ Xλ, and outputs f(x1, . . . , xn) ∈ Yλ.

An MiFE scheme MIFEn for n-ary functions F consists of four algorithms
(MIFEn.Setup,MIFEn.KeyGen,MIFEn.Enc,MIFEn.Dec) described below:

– Setup. MIFEn.Setup(1λ) is a PPT algorithm that takes as input a security
parameter λ and outputs the master secret key MIFEn.msk.

– Key Generation. MIFEn.KeyGen(MIFEn.msk, f) is a PPT algorithm that
takes as input the master secret key MIFEn.msk and a function f ∈ Fλ. It
outputs a functional key MIFEn.skf .

– Encryption. MIFEn.Enc(MIFEn.msk,m, i) is a PPT algorithm that takes as
input the master secret key MIFEn.msk, a message x ∈ Xλ and an index
i ∈ [n]. It outputs a ciphertext MIFEn.ct.

Here index i signals to the encryption algorithm that message x corre-
sponds to the ith input of functions f ∈ Fλ.

– Decryption. MIFEn.Dec(MIFEn.skf ,MIFEn.ct) is a deterministic algorithm
that takes as input a functional key MIFEn.skf and a ciphertext MIFEn.ct. It
outputs a value y ∈ Yλ.

Remark 3.1. From now on, we use the phrase “encryption of m in the ith position”
to refer to the process of executing MIFEn.Enc on the input (MIFEn.msk,m, i).

Correctness. There exists a negligible function negl(·) such that for all sufficiently
large λ ∈ N, every n-ary function f ∈ Fλ and input tuple (x1, . . . , xn) ∈ X n

λ

Pr
[
MIFEn.msk ← MIFEn.Setup

(
1λ
)
; MIFEn.skf ← MIFEn.KeyGen (MIFEn.msk, f) ;

MIFEn.Dec
(
MIFEn.skf , {MIFEn.Enc (MIFEn.msk, xi, i)}n

i=1

) �= f (x1, . . . , xn)

]

is at most negl(λ). In the above expression, the probability is taken over the
random coins of all the algorithms.

We present the function privacy definition below. Similar to the single ary
setting, we can consider two security notions – selective and adaptive. We first
give the selective security definition since this is the definition we are going to
consider throughout this paper.

Definition 3.2 (Selective Function Private MiFE). A secret-key MiFE
scheme MIFEn for n-ary functions F is (qkey, qmsg, μ)-selective function private
if for any PPT adversary A, there exists a function μ(λ) such that for all suffi-
ciently large λ ∈ N, the advantage of A is

AdvMIFEn

A =
∣
∣
∣Pr[ExptMIFEn

A (1λ, 0) = 1] − Pr[ExptMIFEn

A (1λ, 1) = 1]
∣
∣
∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptMIFEn

A (1λ, b) is defined
below:

320 P. Ananth and A. Jain

1. Message Queries: A submits qmsg number of queries,
{(

(xj
1,0, x

j
1,1), . . . ,

(xj
n,0, x

j
n,1)

)}

j∈[qmsg]
, with xj

i,0 ∈ Xλ, to the challenger C.

2. C computes MIFEn.msk ← MIFEn.Setup(1λ). It then computes MIFEn.ctji ←
MIFEn.Enc(MIFEn.msk, xj

i,b) for all i ∈ [n] for all j ∈ [qmsg]. The challenger
C then sends

{
(MIFEn.ctj1, . . . ,MIFEn.ctjn)

}
j∈[qmsg]

to the adversary A.
3. Function Queries: The following is repeated up to qkey times: A submits a

function query (f0, f1) ∈ F2
λ to C. The challenger C computes MIFEn.skf ←

MIFEn.KeyGen(MIFEn.msk, fb) and sends it to A.
4. If there exists a function query (f0, f1) and a challenge message query

(
(x1,0,

. . . , xn,0), (x1,1, . . . , xn,1)
)

such that f0(x1,0, . . . , xn,0) �= f1(x1,1, . . . , xn,1),
then the output of the experiment is set to ⊥. Otherwise, the output of the
experiment is set to b′, where b′ is the output of A.

Remark 3.3. When μ is a negligible function in the security parameter, then
we omit it from the notation and simply refer to (qkey, qmsg)-function privacy of
MiFE.

Constructing Function Private MiFE. In the single ary setting, Brakerski-
Segev [16] gave a generic transformation that converts any secret key single
ary FE into a function private secret key single ary FE. We observe that tech-
niques, similar to those used in Brakerski-Segev, can be adapted to obtain a
transformation from any i-ary MiFE into a function private i-ary MiFE in the
secret key setting. We defer the technical details to the full version.

4 Our Transformation: From c-ary to (c + 1)-ary MiFE

In this section, we show how to transform a secret-key MiFE scheme for c-ary
functions into an MiFE scheme for (c + 1)-ary functions, for c ≥ 1.

Our transformation proceeds in two steps:

1. Starting with an MiFE scheme for c-ary functions, we first apply the function
privacy transformation (mentioned towards the end of Sect. 3) to obtain a
function private MiFE scheme MIFEc for c-ary functions.

2. Next, we convert MIFEc into an MiFE scheme MIFEc+1 for c+1-ary functions.
We refer to this step as the arity amplification step.

We now describe the arity amplification step. We construct an MiFE scheme
for c + 1-ary functions MIFEc+1 with function space Fc+1 and message space
X c+1.

Notation. We use the following tools in our transformation: (a) A function
private MIFE scheme for c-ary functions, denoted as MIFEc = (MIFEc.Setup,
MIFEc.KeyGen,MIFEc.Enc,MIFEc.Dec). Let F fp,c and X fp,c be the associated
function space and message space, respectively. (b) A public-key FE scheme
for single-ary functions, denoted as FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

Indistinguishability Obfuscation from Compact Functional Encryption 321

Let F fe and X fe be the associated function space and message space, respectively.
(c) A puncturable pseudorandom function family, denoted as F = PRFK(·).

Setup MIFEc+1.Setup(1λ): On input a security parameter λ, sample a master
secret keyMIFEc.msk ← MIFEc.Setup(1λ) ofMIFEc and a key pair (FE.pk, FE.msk)
← FE.Setup(1λ) of FE. Output MIFEc+1.msk = (MIFEc.msk,FE.pk,FE.msk).

Key Generation MIFEc+1.KeyGen(MIFEc+1.msk, f): On input master secret key
MIFEc+1.msk and a function f ∈ Fc+1, parse MIFEc+1.msk = (MIFEc.msk,FE.pk,
FE.msk). Sample a functional key FE.skf ← FE.KeyGen(FE.msk, f) for function
f . Output MIFEc+1.skf =FE.skf .

Encryption MIFEc+1.Enc(MIFEc+1.msk, x, i): On input master secret key
MIFEc+1.msk, message x ∈ X c+1 and index i, parse MIFEc+1.msk = (MIFEc.msk,
FE.pk,FE.msk).

1. If i = 1, then draw a PRF key K ∈ {0, 1}λ at random. Initialize the index
vector I = (0, . . . , 0). Compute MIFEc.skG ← MIFEc.KeyGen(MIFEc.msk, G)
where the circuit G = GenCT

(c)
[x,1,K,FE.pk,I] ∈ F fp,c is described in Fig. 2. Out-

put the ciphertext MIFEc+1.ct = MIFEc.skG.
2. Else, if 2 ≤ i ≤ c + 1, then perform the following steps:

– If the input message x is of the form (x1, x2, 1, τ, i − 1) then compute
MIFEc+1.ct ← MIFEc.Enc(MIFEc.msk, (x1, x2, 1, τ, i), i)

– Else, choose a tag τ ∈ {0, 1}λ at random. Compute MIFEc+1.ct ←
MIFEc.Enc(MIFEc.msk, (x, x, 1, τ, i), i).

Output the ciphertext MIFEc+1.ct.

Fig. 2. Description of GenCTc.

Decryption MIFEc+1.Dec(MIFEc+1.skf ,MIFEc+1.ct1, . . . ,MIFEc+1.ctc+1): On
input (MIFEc+1.skf ,MIFEc+1.ct1, . . .,MIFEc+1.ctc+1), perform the following
steps:

322 P. Ananth and A. Jain

1. Parse: (a) MIFEc+1.skf = FE.skf , (b) MIFEc+1.ct1 = MIFEc.skG, and (c)
MIFEc+1.cti = MIFEc.cti−1 for all i �= 1, where MIFEc.cti−1 denotes the
ciphertext corresponding to (i − 1)th position in MIFEc.

2. Next, compute FE.ct∗ ← MIFEc.Dec(MIFEc.skG,MIFEc.ct1, . . . ,MIFEc.ctc).
3. Finally, compute y ← FE.Dec(FE.skf ,FE.ct∗). Output y.

This completes the description of the scheme.

Correctness. We now argue the correctness of MIFEc+1. Let MIFEc.sk be a valid
functional key for the function GenCT[x1, j1,K,FE.pk, I] w.r.t. MIFEc. For i ∈
[c], let MIFEc.cti be a valid encryption of xi+1 w.r.t. MIFEc. By the correctness of
MIFEc.Enc, we have that the output of MIFEc.Dec(MIFEc.skGenCT,MIFEc.ct1, . . . ,
MIFEc.ctc) is FE.ct∗, where FE.ct∗ is a valid encryption of (x1, . . . , xc+1) w.r.t. FE.
Further, from the correctness of FE, it follows that the output of FE.Dec(FE.skf ,
FE.ct∗) is f(x1, . . . , xc+1), where FE.skf is a valid functional key of f w.r.t. FE.
The proof of security can be found in the full version [5].

5 Multi-input FE from Single-input FE

In Sect. 4, we gave a general transformation from a secret-key MiFE scheme
for c-ary functions to another secret-key MiFE scheme for c + 1-ary functions.
Using this transformation, we now give a construction of a secret-key MiFE
scheme for functions with n = poly(λ) arity. Later we will use this construction
to obtain our main result on iO. We will also consider different instantiations of
this construction which yield new results on constant-ary MiFE from standard
assumptions.

We construct a n-ary (q, q)-secure MiFE scheme MIFEn. To obtain this con-
struction we start with a q-secure8 public-key FE scheme. This implies a single-
ary (q, q)-secure secret-key MiFE scheme, MIFE1.

(Iterated) Construction of MIFEn (Informal description):
Repeat the following two steps for c = 1, . . . , n:

1. Function Privacy Transformation: Using the MiFE function-privacy
transformation (mentioned towards the end of Sect. 3), convert the (q, q)-
secure MiFE scheme MIFEc, obtained in the previous iteration, into a
function-private (q, q)-secure MiFE scheme MIFEfp

c , also supporting c-arity
functions.

2. Arity Amplification: The function-private c-ary (q, q)-secure MiFE scheme
MIFEfp

c obtained in the previous step is then transformed into a c+1-ary (q, q)-
secure MiFE scheme, using the transformation presented in Sect. 4. In this
step, we additionally use a q-secure public-key FE scheme FE.

8 Throughout this section, we only consider selectively secure public-key FE and secret
key MiFE schemes. For simplicity of notation, we omit the use of the word “selective”
in the rest of this section and assume that it is implicit.

Indistinguishability Obfuscation from Compact Functional Encryption 323

The efficiency properties of the underlying public-key FE scheme determines
the value of n that we can achieve in the above construction. Consequently, we
consider two different instantiations of the underlying public-key FE scheme that
yield different results. We discuss these instantiations next.

iO from Compact FE. We start by stating our main result for secret-key MiFE
for polynomial-arity functions.

Theorem 5.1. For all n = poly(λ), the above proposed scheme MIFEn is (q, q)-
secure for any polynomial q, assuming that FE is

(
1, 1

(64q)(n+1)2 ·2λ

)
-selectively

secure compact public-key FE scheme.

The core non triviality in the above theorem is to argue that the size of parame-
ters does not grow exponentially with the number of iterations. At a high level,
this is because the compactness of FE ensures that the growth of the parameters
at the ith level (i-ary MiFE) depends only on the security parameter, level i
and the message length. The actual calculations can be found in the appropriate
section in the full version.

We now invoke a theorem by [35] that shows how to obtain iO for functions
of input length n from a n-ary MiFE for a specific function family. We thus have
the following main theorem.

Theorem 5.2. Assuming the (2, 1
(128)n22λ

)-security of compact public-key selec-
tively secure FE public key FE scheme for polynomial time computable functions,
the scheme iO is an indistinguishability obfuscation scheme for P/poly.

Constant ary MiFE. If we restrict our attention to just constant ary MiFE then
we can obtain a construction based on public key encryption encryption schemes.
We state the result formally below.

Theorem 5.3. For any constant n, the above proposed scheme MIFEn is (q, q)-
selectively secure assuming that FE is a q-selectively secure (not necessarily com-
pact) public-key FE scheme.

Combining Theorem 5.3 with [37,44], we obtain the following result.

Corollary 5.4. For any polynomial q = q(λ), there exists a (q, q)-selectively
secure secret-key MiFE scheme for constant-arity functions, assuming the exis-
tence of semantically-secure public-key encryption.

The reason why we can only achieve constant arity is because the growth of
parameters in this case could be exponential. If we start from any public key
FE scheme, the size of the parameters at each level grows proportional to the
size of the parameters at the next level. This stems from the fact that the FE
scheme that we start off with could be such that the encryption complexity
might depend on the function complexity. And hence, the number of iterations
that can be performed is just a constant. A detailed explanation is provided in
the full version.

324 P. Ananth and A. Jain

References

1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A.,
Prabhakaran, M., Sahai, A.: Function private functional encryption and prop-
erty preserving encryption: new definitions and positive results. IACR Cryptology
ePrint Archive 2013/744 (2013)

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II [17]. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-40084-1 28

3. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive 2013/689 (2013). http://
eprint.iacr.org/2013/689

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: The trojan method in
functional encryption: from selective to adaptive security, generically. IACR Cryp-
tology ePrint Archive 2014/917 (2014). http://eprint.iacr.org/2014/917

5. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. Technical report, Cryptology ePrint Archive, report 2015/173 (2015)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complexity 15(2), 115–162 (2006)

7. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).
http://dx.doi.org/10.1007/3-540-44647-8 1

9. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC (2015)

10. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015)

11. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

13. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. IACR Cryptology ePrint Archive 2014/930 (2014). http://eprint.iacr.
org/2014/930

14. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-642-54242-8 3

15. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2014/917
http://dx.doi.org/10.1007/3-540-44647-8_1
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930
http://dx.doi.org/10.1007/978-3-642-54242-8_3

Indistinguishability Obfuscation from Compact Functional Encryption 325

16. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 306–324. Springer, Heidelberg (2015)

17. Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part II. LNCS, vol. 8043. Springer,
Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-40084-1

18. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. In: STOC (2015)

19. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)

20. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II [17]. LNCS, vol. 8043, pp. 519–535.
Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-40084-1 29

21. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

22. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

23. Coron, J., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate fixes of mul-
tilinear maps over the integers. IACR Cryptology ePrint Archive 2014/975 (2014).
http://eprint.iacr.org/2014/975

24. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38348-9 1

25. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 74–94. Springer, Heidelberg (2014)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
26–29 October 2013, Berkeley, CA, USA, pp. 40–49. IEEE Computer Society
(2013). http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13

27. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional encryption
without obfuscation. IACR Cryptology ePrint Archive 2014/666 (2014). http://
eprint.iacr.org/2014/666

28. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: STOC (2015)

29. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

30. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: cryptanalyz-
ing multilinear maps without encodings of zero. IACR Cryptology ePrint Archive
2014/929 (2014). http://eprint.iacr.org/2014/929

31. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. IACR Cryptology ePrint Archive 2014/148 (2014). http://eprint.iacr.org/
2014/148

32. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-642-40084-1
http://dx.doi.org/10.1007/978-3-642-40084-1_29
http://eprint.iacr.org/2014/975
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://doi.ieeecomputersociety.org/10.1109/FOCS.2013.13
http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/929
http://eprint.iacr.org/2014/148
http://eprint.iacr.org/2014/148

326 P. Ananth and A. Jain

33. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive 2014/309 (2014). http://eprint.iacr.org/2014/309

34. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2009)

35. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). http://dx.doi.org/10.1007/978-3-642-55220-5 32

36. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Con-
ference, STOC 2013, 1–4 June 2013, Palo Alto, CA, USA, pp. 555–564. ACM
(2013). http://doi.acm.org/10.1145/2488608.2488678

37. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

38. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12–14 November 2000, Redondo
Beach, California, USA, pp. 294–304 (2000)

39. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, pp. 669–684.
ACM (2013)

40. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 352–377. Springer,
Heidelberg (2015)

41. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: STOC (2015)

42. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer,
Heidelberg (2013)

43. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

44. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, CCS 2010, 4–8 October 2010, Chicago, Illinois, USA, pp. 463–472
(2010)

45. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, 31 May–03 June 2014, New York, NY, USA, pp. 475–484. ACM (2014).
http://doi.acm.org/10.1145/2591796.2591825

46. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. Cryptology ePrint Archive, report 2014/588 (2014)

47. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

http://eprint.iacr.org/2014/309
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://doi.acm.org/10.1145/2488608.2488678
http://doi.acm.org/10.1145/2591796.2591825

Pseudorandomness

Efficient Pseudorandom Functions
via On-the-Fly Adaptation

Nico Döttling1 and Dominique Schröder2(B)

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
nico.doettling@cs.au.dk

2 Department of Computer Science, Saarland University, CISPA,
Saarbrücken, Germany

ds@ca.cs.uni-saarland.de

Abstract. Pseudorandom functions (PRFs) are one of the most fun-
damental building blocks in cryptography with numerous applications
such as message authentication codes and private key encryption. In this
work, we propose a new framework to construct PRFs with the overall
goal to build efficient PRFs from standard assumptions with an almost
tight proof of security. The main idea of our framework is to start from
a PRF for any small domain (i.e. poly-sized domain) and turn it into an
�-bounded pseudorandom function, i.e., into a PRF whose outputs are
pseudorandom for the first � distinct queries to F . In the second step, we
apply a novel technique which we call on-the-fly adaptation that turns
any bounded PRF into a fully-fledged (large domain) PRF. Both steps of
our framework have a tight security reduction, meaning that any success-
ful attacker can be turned into an efficient algorithm for the underlying
hard computational problem without any significant increase in the run-
ning time or loss of success probability.

Instantiating our framework with specific number theoretic assump-
tions, we construct a PRF based on k-LIN (and thus DDH) that is faster
than all known constructions, which reduces almost tightly to the under-
lying problem, and which has shorter keys.Instantiating our framework
with general assumptions, we construct a PRF with very flat circuits
whose security tightly reduces to the security of some small domain PRF.

N. Döttling—The authors acknowledge support from the Danish National Research
Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computation,
within which part of this work was performed; and also from the CFEM research
center (supported by the Danish Strategic Research Council) within which part of
this work was performed.
N. Döttling—Supported by European Research Commission Starting Grant
no. 279447.
D. Schröder—Supported by the German Federal Ministry of Education and Research
(BMBF) through funding for the Center for IT-Security, Privacy and Accountability
(CISPA, www.cispa-security.org) and also by an Intel Early Career Faculty Honor
Program Award.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 329–350, 2015.
DOI: 10.1007/978-3-662-47989-6 16

www.cispa-security.org

330 N. Döttling and D. Schröder

Keywords: Pseudorandom functions · Efficient reductions · DDH ·
K-LIN · LWE

1 Introduction

Goldreich, Goldwasser, and Micali (GGM) introduced pseudorandom functions
(PRFs) in 1984 [13]. Roughly, a PRF is a keyed deterministic function, whose
output is indistinguishable from a random function. PRFs are one of the most
fundamental building blocks in cryptography, with numerous applications such
as private-key encryption, message authentication codes, key derivation, and
many more, e.g., [2,14,22,29,32]. In this work, we propose a novel framework to
construct PRFs with the overall goal of constructing efficient PRFs based on
standard assumptions with an almost tight proof of security. The basic idea of
this framework is to transform a PRF for a small domain (i.e., poly-size) into a
fully fledged domain that handles large input spaces. This transformation tightly
reduces to the underlying small domain PRF. The main steps of our framework
and the novel techniques are shown in Fig. 1. We begin with a PRF that works
over a small domain, say {0, 1}log �, and which can be evaluated very efficiently
in time poly(λ, log �), for some parameter �.

Fig. 1. Overview of the main steps and the techniques.

The first step in our framework is to extend the domain of a small-domain PRF
into a bounded pseudorandom function (bPRF). A function F is an �-bounded
pseudorandom function (for an � ≤ poly(λ)), if the outputs of F are pseudoran-
dom for the first � distinct queries to F and if F can be computed “super effi-
ciently” (i.e., in time poly(λ, log(�))). In some sense, this primitive can be seen as
the computational analogue to �-wise independent functions.

The second step in our framework is a reduction technique we call on-the-fly
adaptation. The goal of this technique is to construct a PRF F in which we
can dynamically embed an �-bounded PRF F� for every � that grows at most
polynomially. Now assume we have a PPT distinguisher D that distinguishes F
from a truly random function. Since D is efficient, it sends at most q = poly(λ)
queries to its oracle (for an a-priori unknown q). On-the-fly adaptation allows us
to turn this distinguisher against F into a distinguisher D′ against a bounded
PRF Fq that has the same advantage.

Efficient Pseudorandom Functions via On-the-Fly Adaptation 331

We will demonstrate this idea with a simple on-the-fly adaptation technique
that works for any bounded PRF. The basic idea of this technique is to compute
F as a sum of functions F�, for an exponentially increasing �. An important
point is that all F� have the same domain. The function F is computed by

F (K,x) =
t⊕

i=0

F2i(K2i , x),

where K = (K2i)i=1,...,t. If we choose the parameter t = ω(log(λ)) slightly
super-logarithmic, we will be able to embed any F� into F . Notice that F can
be computed efficiently, as we required that bounded PRFs can be computed
in time poly(λ, log(�)). To illustrate the main idea, assume that there exists a
distinguisher D that makes at most q = poly(λ) queries distinguishes F from a
truly random function. We will provide a reduction that turns this distinguisher
into a distinguisher against the small domain PRF F2�log q� . Observe that we can
express F by

F (K,x) =
log q−1⊕

i=0

F2i(K2i , x) ⊕ F2�log q�(K2�log q� , x) ⊕
t⊕

i=log q+1

F2i(K2i , x).

The reduction can now replace the middle term F2�log q�(K2�log q� , x) by its own
oracle and provide to D an oracle O′ that computes the function

O′(x) =
log q−1⊕

i=0

F2i(K2i , x) ⊕ O(x) ⊕
t⊕

i=log q+1

F2i(K2i , x).

Clearly, if O computes the function F2�log q� , then O′ computes the function F .
On the other hand, if O is a random function, then O′ also is a random function.
This reduction is tight. Notice that it is crucial for this technique to work that
all F� have the same input domain. Basically the domain extension step in our
framework is geared towards equalizing the domains of small domain PRFs. This
generic technique is similar to a transformation from non-adaptive to adaptive
pseudorandom functions by Berman and Haitner [4]. The construction of [4]
however yields no tight security proof (which was not the purpose of that work),
as their construction does not start from bounded PRFs.

We will now discuss domain extension for arbitrary PRFs and provide a
simple domain extension technique that uses only linear functions to pre- and
post-process a small domain PRF. This, together with the generic on-the-fly
adaptation technique described above yields a PRF construction from any small
domain PRF. We will discuss an instantiation of this general construction based
on LWE.

Domain Extension for Arbitrary PRFs. The problem of domain extension
for pseudorandom functions was first considered by Levin [20]. Levin showed
that if the domain of a certain PRF is already sufficiently large, then it can be

332 N. Döttling and D. Schröder

extended by using a universal hash function to hash larger inputs into the domain
of this PRF. However, this technique is vulnerable to a “birthday attack”, which
means that after a certain number of queries there is a high probability of finding
a collision in the hash function. Levin’s technique also fails for small domain
PRFs, i.e., PRFs with domains of polynomial size. Jain, Pietrzak, and Tentes [19]
provided a domain extension technique which also works for small domains, but
has an unfavorable security loss in this case. Moreover, as mentioned by the
authors, their technique does not seem to be directly applicable to efficient PRF
such as the one’s based on DDH [19]. The work of Jain et al. [19] was refined
by Chandran and Garg [8]. Berman et al. [5] also showed how to bypass the
birthday barrier via Cuckoo hashing.

We provide a simple general domain extension technique that preserves the
parallel complexity of an underlying small domain PRF. This domain extension
technique is inspired by the construction of universal hash functions by Ishai
et al. [18] and can be seen as an amplified version of Levin’s trick. For a small
domain pseudorandom function PRF� : {0, 1}log(2λ�) → Y, we construct a large
domain bounded PRF F� : X → Y by

F�(K ′, x) =
λ⊕

j=1

PRF�(K,BIN(j)‖Hj(x)),

where K ′ = (K,H1, . . . , Hλ), H1, . . . , Hλ ←$ H are randomly chosen universal
hash functions from a family H that maps X to {0, 1}log(2�) and BIN(j) is the
log(λ) bit binary representation of an integer j ∈ {1, . . . , λ}.

1.1 A General Transformation

Above we described our on-the-fly adaptation technique that works for any
bounded PRF. Combining this technique with a general domain extension tech-
nique, we obtain large domain pseudorandom function with almost tight security
(i.e., only a logarithmic loss) from any suitable small domain PRF. In a nutshell,
a small domain PRF is suitable for this technique if its security loss only depends
on the size of its input domain, but not (polynomially) on the number queries a
distinguisher sends1. The computational problems from which PRFs with such a
small security loss can be constructed usually have one feature in common: they
support a statistical random self-reduction. Candidate PRFs with this property
are PRFs based on the LWE [28,30] problem, such as the PRF of Banerjee,
Peikert, and Rosen [1]. Using the BPR PRF as small domain PRF in our gen-
eral construction, we obtain a large domain PRF which is secure under a weaker
assumption, which has a tighter proof of security, and a shallower evaluation
circuit than instantiating the BPR scheme with a large domain directly.

1 The Naor Reingold PRF would be such a suitable PRF as its security reduction only
loses a factor of n. However, as discussed above we provide a much more efficient
direct construction based on the NR PRF.

Efficient Pseudorandom Functions via On-the-Fly Adaptation 333

In the remaining part of this section, we discuss more efficient instantiations
based on DDH and k-LIN. Here, we exploit specific number theoretic properties
in order to improve the efficiency and security of the resulting PRF.

1.2 Efficient PRFs Based on DDH and k-LIN

One appealing property of our framework is that it yields several new construc-
tions of PRFs based on weak standard assumptions, such as k-LIN (and thus
DDH) with an almost tight proof of security. A tight reduction means that a
successful attacker can be turned into an efficient algorithm for the hard compu-
tational problem without any significant increase in the running time or signifi-
cant loss of success probability2. We will provide a specific on-the-fly adaptation
technique that exploits algebraic properties of the underlying number theoretic
assumptions. We can thus avoid the blow up of the general on-the-fly adaptation
technique described in the last paragraph and obtain PRFs that improve upon
known constructions in terms of efficiency, security, and key-size.

Instantiation Based on DDH. In the following we discuss our construc-
tion based on the DDH assumption. Our underlying small domain PRF is the
Naor-Reingold PRF based on DDH [26]. For an input domain {0, 1}n, the Naor
Reingold PRF NR : Kn × {0, 1}n → G is defined by

NRn(K,x) = ga
∏n−1

j=0 s
xj
j ,

where K = (a, s0, . . . , sn−1) and a, s0, . . . , sn−1 ←$ Zp. In the first step, we turn
the small domain PRF NRlog(�), which has a domain of size � into an �-bounded
PRF that has input domain Zp, i.e., a large input domain. In contrast to our
generic construction (that we will discuss later), we can exploit specific number
theoretic properties in order to improve the efficiency, the tightness of the secu-
rity reduction, and the key-size. The bounded PRF F� : K × Zp → G is defined
as follows:

F�(K,x) = ga
∏log(�)−1

j=0 (sj+x2j
). (1)

We will briefly discuss why security of this PRF tightly reduces to the security
of NRlog(�). Expanding the exponent of F�(K,x) yields

a

log(�)−1∏

j=0

(sj + x2j

) =
∑

c∈{0,1}log(�)

⎛

⎝a

log(�)−1∏

j=0

s
1−cj

j

⎞

⎠

︸ ︷︷ ︸
E(c)

x
∑t

j=1 cj2
j

(2)

Now, observe that the term E(c) on the right side is an exponent of the
Naor Reingold PRF NRlog(�). Specifically, it holds that gE(c) = NRlog(�)(¬c)

2 Usually even a polynomially-bounded increase/loss is considered as significant, if
the polynomial may be large. An increase/loss by a small constant factor is not
considered as significant.

334 N. Döttling and D. Schröder

(where ¬c is the bitwise negation of c). Changing the sum on the right side of
(2) to run over all j = 0, . . . , 2��� − 1 and setting c = BIN(j) (where BIN(j)
is the log(�)-bit binary representation of j), we get that F� can be equivalently
computed as

F�(K,x) =
2�log(�)�−1∏

j=0

(
NRlog(�)(K,¬BIN(j))

)xj

. (3)

Notice that this expression can still be efficiently computed as long as � ≤
poly(λ). Now, observe that if we replace NRlog(�) by a random function in this
expression, then F� becomes an (information theoretic) �-wise independent func-
tion. We can therefore use this alternative description of F� to show that it is
an �-bounded PRF.

The observation that functions of the form as F� in (3) can be computed in
time log � via a closed form as (1) was previously made by Benadbbas, Gennaro,
and Vahlis for the Naor-Reingold PRF [3] and Fiore and Gennaro for the Lewko-
Waters PRF [12]. The fact that F� is a bounded PRF was independently observed
by Hazay [15].

In the last step, we apply an “in-place” on-the-fly adaptation technique to
this function. We will not use the generic technique described above, but one
that exploits the specific algebraic properties of F�. We define the full fledged
PRF F by

F(K,x) = ga
∏t−1

j=0(sj+x2j
),

where the parameter t = ω(log(λ)) is chosen slightly super-logarithmic. Now,
notice that we can embed the bounded PRF F� (for any � ≤ poly(λ)) into F by

F(K,x) =
(

ga
∏log(�)−1

j=0 (sj+x2j
)

)∏t−1
j=log(�)(sj+x2j

)

= (F�(K�, x))
∏t−1

j=log(�)(sj+x2j
)
.

In the security proof, we replace F� by a truly random function. The main part of
the proof consists in showing that the exponent

∏t−1
j=log(�)(sj +x2j

) only accounts
for a negligible error.

Comparison to Naor-Reingold [25]. Our full fledged PRF with input domain Zp

improves upon the Naor-Reingold PRF (NR-PRF) in terms of tightness of the
security reduction and compactness. In contrast to the NR-PRF, the loss of our
security reduction is only a factor of log(q) (where q = poly(λ) is the number
of queries required by the distinguisher D), compared to a factor n for the NR-
PRF. Our PRF is very compact as it only requires ω(log(λ)) Zp elements for its
key, whereas the Naor-Reingold needs n Zp elements. Since the exponentiation
is the dominating factor in the computation of both PRFs, the costs to evaluate
both functions is roughly the same.

Efficient Pseudorandom Functions via On-the-Fly Adaptation 335

Instantiation Based on k-LIN. In the main body, we directly provide a PRF
construction based on a family of weaker computational problems known as
k-LIN [17,31]. The decisional k-linear assumption becomes (generically) weaker
as the parameter k grows, where the instance k = 1 corresponds to DDH and
k = 2 to the linear assumption [6]. The main motivation for these assumptions
is that groups are known where the DDH assumption is easy, but the compu-
tational Diffie Hellman problem is supposedly hard [16]. It is thus desirable to
have constructions of cryptographic primitives based on the decisional k-linear
assumption instead of DDH. Our generalized PRF is defined as follows: Let
k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group of prime order p and
t = ω(log(λ)). The function F : K × Zp → G

k is defined by

F (K,x) = ga
�·∏t−1

j=0(Sj+x2j ·I),

where K = (a,S0, . . . ,St−1) with a ←$ Z
k
p, S0, . . . ,St−1 ←$ Z

k×k
p and I the

identity matrix. Clearly, if we only need a single group element as output, we
can truncate the exponent and perform only 1 exponentiation.

Comparison to Lewko-Waters [21]. Our PRF improves upon the Lewko-Waters
PRF (LW-PRF) in terms of efficiency, tightness of the security reduction, and
compactness. A single evaluation of the LW-PRF involves n matrix multiplica-
tions and a single exponentiation. In our case, the computation requires only
t = ω(log(λ)) matrix multiplications and a single exponentiation. For larger k,
the cost of the matrix multiplication dominates the cost of the exponentiation,
so in this case our construction is more efficient. The security reduction of Lewko
and Waters loses a factor of k ·n while our reduction only losses a factor of k log q.
The keys of the LW-PRF consist of n k ×k matrices over Zp, while ours consists
merely of t = ω(log λ) such matrices.

1.3 Other Related Work

Many number-theoretic PRF constructions follow the GGM paradigm [13], such
as [1,21,25]. Naor and Reingold introduced pseudorandom synthesizer (PRS)
that can be used to construct parallel computable pseudorandom function [1,24].
A PRF construction that is not based on either the GGM or synthesizers par-
adigm is the PRF of Dodis-Yampolskiy, which is in fact a direct construction,
but whose security is closely related to its underlying bilinear q-type assump-
tion [10]. Recently, Chase and Meiklejohn showed that this q-type assumption
can be reduced to the subgroup hiding assumption in composite order groups [9].
The PRF of Naor, Reingold, and Rosen is a clever variant of the Naor-Reingold
PRF that is secure under the factoring assumption [27]. The work of Boneh,
Montgomery, and Raghunathan combines a generalization of the GGM tree with
the Dodis-Yampolskiy PRF to get a large-domain (simulateable) verifiable ran-
dom function [7].

336 N. Döttling and D. Schröder

2 Preliminaries

Throughout this paper, we will use λ to denote the security parameter. We will
denote the concatenation of two bit strings x and y by x‖y. We will generally
assume that logarithms are rounded to the next biggest integer, i.e., when we
write log(�) we actually mean �log(�)�. To avoid confusion, we will sometimes still
write �log(�)�, e.g. when we write 2�log(�)� to indicate that this can be different
from �.

Definition 1 (Pseudorandom Functions). Let Xλ and Yλ be two finite sets
depending on λ. We say that an efficiently computable keyed function PRF :
Kλ ×Xλ → Yλ with key-space Kλ is a pseudorandom function (PRF), if it holds
for every PPT oracle distinguisher D that

|Pr[DPRF(K,·)(1λ) = 1] − Pr[DR(1λ) = 1]| ≤ negl(λ),

where K ←$ Kλ and R : Xλ → Yλ is a randomly chosen function. If |X | ≤
poly(λ), then we say that PRF is a small-domain PRF, otherwise we call PRF a
large-domain PRF.

We will usually omit the λ subscript in the definition of K, X and Y. More-
over, we will henceforth implicitly assume that distinguisher gets 1λ as an addi-
tional input without explicitly stating this.

As mentioned in the outline, bounded pseudorandom functions can be seen
as a computational analogue of limited-wise independent functions. Basically,
the difference between true PRFs and bounded PRFs manifests itself in their
security guarantee. While a distinguisher against a true PRF can query the PRF
an a-priori unbounded number of times, a distinguisher against an �-bounded
PRF can query the PRF with at most � distinct queries.

Definition 2 (Bounded Pseudorandom Functions). Let X and Y be finite
sets (depending on λ). We say that a keyed function F� : K� × X → Y para-
metrized by a parameter � is a bounded pseudorandom function (bPRF), if F�

is computable in time poly(λ, log(�)) and if it holds for all efficiently computable
�∗ = �(λ) ≤ poly(λ) and all �∗-query distinguishers D (i.e. distinguishers that
send at most �∗ distinct queries) that

|Pr[DF�(K,·) = 1] − Pr[DR = 1]| ≤ negl(λ),

where K ←$ K� and R : X → Y is a randomly chosen function.

Notice that in the definition of bounded PRFs we allow the key-space to
depend on �, but X and Y are independent of �. Moreover, as we require that
F� is computable in time poly(λ, log(�)), we implicitly also require that |K�| ≤
poly(λ, log(�)). Requiring that F� can be computed in time poly(λ, log(�)) allows
us to evaluate F� for super-polynomial �, while we only require security for �∗

which are at most polynomial.

Efficient Pseudorandom Functions via On-the-Fly Adaptation 337

The following lemma states that if a function F outputs uniformly ran-
dom outputs under benign inputs, then the statistical distance from F to a
uniformly random function F ′ can be bounded by the probability that a non-
adaptive sequence of inputs is not benign. Intuitively, an adaptive distinguisher
D learns nothing about the set of bad inputs unless it finds such an input by
chance, as otherwise the function F reveals no information about the set of bad
inputs. This lemma is a simplified version of a more general statement due to
Maurer [23].

Lemma 1. Let X and Z be two finite sets. Let FK,aux : X → Z be a function
that takes two additional parameters K ∈ K and aux ∈ AUX. Let good(·, ·)
be a predicate with the following property: If good({x1, . . . , xi}, aux) holds, then
FK,aux(x1), . . . , FK,aux(xi) are distributed uniformly at random over the choice
of K ←$ K. Let D be a (possibly unbounded) distinguisher that makes at most
� distinct queries, K ←$ K, aux ←$ AUX and let F ′ be a uniformly chosen
function from X to Z. Then it holds that

|Pr[DFK,aux = 1] − Pr[DF ′
= 1]| ≤ max

S
Pr[¬good(S, aux)],

where S runs over all subsets of X of size at most �.

A proof of Lemma 1 can be found in the full version.

3 A Generic Construction

In this section, we will first provide an efficient construction of �-bounded pseudo-
random function any small domain PRF with input space of (polynomial) size
n · �. Security of the �-bounded PRF follows tightly from the underlying small
domain PRF. Second, we will provide a general construction of a PRF from
�-bounded PRFs, where security also follows tightly.

3.1 Bounded PRFs via Domain Extension of Small Domain PRFs

We will need universal hash functions for our domain extension technique.

Definition 3 (Universal Hash Functions). Let X and Y be finite sets. We
say that a family H of functions from X to Y is a family of universal hash
functions, if it holds for all x = x′ ∈ X that Pr[H(x) = H(x′)] ≤ 1/|Y|, where
the probability is taken over the random choice of H ←$ H.

Universal hash functions can be constructed very efficiently, see e.g., [18].

338 N. Döttling and D. Schröder

Construction 1. Let PRF� : K� × {0, 1}log(2λ�) → {0, 1}m be a keyed function
with key space K�. Let H� be a family of universal hash functions that map X to
{0, 1}log(2�). Let BIN(j) denote the log(λ) bit binary representation of a number
j ∈ {1, . . . , λ}. We define the keyed function F� : K′ × X → {0, 1}m with key
space K′

� = Hλ × K� by

F�(K ′, x) =
λ⊕

j=1

PRF�(K,BIN(j)‖Hj(x)),

where Hj ←$ H� for j = 1, . . . , λ, K ←$ K� and K ′ = (H1, . . . , Hλ,K).

The following theorem states that F� is an �-bounded pseudorandom function
if PRF� is a pseudorandom function.

Theorem 1. Let PRF� and F� be as in Construction 1. If PRF� is a pseudoran-
dom function, then F� is an �-bounded pseudorandom function. More specifically,
assume there exists an �∗ ≤ poly(λ) and an �∗-query PPT distinguisher D that
distinguishes F�∗ from a truly random function with advantage ε, then there exists
a PPT distinguisher D′ with essentially the same runtime as D that distinguishes
PRF�∗ from a truly random function with advantage at least ε − �∗ · 2−λ.

The proof of Theorem 1 will be given in the full version.

3.2 PRFs via On-the-Fly Adaptation of Bounded PRFs

In this section we provide a generic on-the-fly adaptation technique which con-
verts a bounded PRF into a standard PRF.

Construction 2. Let t = ω(log(λ)) be slightly super-logarithmic. For a given
parameter �, let F� : K� × X → {0, 1}m be a keyed function with corresponding
key space K�. Define the function F : K × X → {0, 1}m with key-space K =∏t

i=0 K2i by

F (K,x) =
t⊕

i=0

F2i(K2i , x),

where K2i ←$ K2i for i = 1, . . . , t and K = (K2i)i=1,...,t.

We will now show that F is in fact a pseudorandom function.

Theorem 2. Let F� and F be as inConstruction 2. Assume that F� is an �-bounded
PRF for every efficiently computable � = �(λ). Then F is a pseudorandom func-
tion. Specifically, if D is a PPT distinguisher against F with advantage ε that
makes at most q = poly(λ) distinct queries, then there exists a PPT distinguisher
D′ (with essentially the same runtime as D) with advantage ε against F�∗ , where
�∗ = 2�log(q)� ≤ 2q = poly(λ).

Efficient Pseudorandom Functions via On-the-Fly Adaptation 339

Proof. Let D be a PPT distinguisher against F with advantage ε that makes
at most q distinct queries. Note that since q = poly(λ) and t = ω(log(λ)), it
holds log(q) ≤ t (for a sufficiently large λ). We will now construct an �∗-query
distinguisher D′ against F�∗ , which is given in Fig. 2.

Notice first that D′ sends at most q ≤ 2�log(q)� = �∗ queries to its oracle, as D
sends at most q oracle queries. We will now analyze the distinguishing advantage
of D′. First, assume that D′’s oracle O implements the function F�∗(K, ·) for a
randomly chosen K ←$ K�∗ . Then, the oracle O provided by D′ to D implements
exactly the function F (K, ·) for a randomly chosen K ←$ K. On the other
hand, if O behaves like a uniformly random function R′, then the oracle O′ also
implements a uniformly random function R, as R′ is independent of the K2i .
Consequently, it holds that

Adv(D′) = |Pr[D′F�∗ (K�∗ ,·) = 1] − Pr[D′R′
= 1]|

= |Pr[DF = 1] − Pr[DR = 1]| = ε,

i.e. D′ distinguishes F� from a uniformly random function R′ with advantage ε.
This concludes the proof.

Fig. 2. The distinguisher D′

3.3 Instantiations

Combining Theorems 1 and 2 yields the following

Theorem 3. Let t = ω(log(λ)). Let PRF� : {0, 1}log(2λ�) → {0, 1}m be a small
domain PRF, let H� : X → {0, 1}log(2�) be a family of universal hash functions.
Define the keyed function F : K × X → {0, 1}m by

F (K,x) =
t⊕

i=1

λ⊕

j=1

PRF2i(K2i ,BIN(j)‖H2i,j(x)),

340 N. Döttling and D. Schröder

where K2i ←$ K2i for i = 1, . . . , t and H2i,j ←$ H2i for i = 1, . . . , t and
j = 1, . . . , λ.

If PRF� is a PRF for every � = poly(λ), then F is a PRF. More specifi-
cally, if there exists an distinguisher D that makes at most q = poly(λ) queries
and distinguishes F with advantage ε, then there exists a distinguisher D′ with
essentially the same runtime as D that distinguishes PRF2�q� with advantage
ε − q · 2−λ.

We will briefly discuss efficiency aspects of the construction provided in
Theorem 3. First of all notice that the transformation preserves the parallel
complexity of the underlying small domain PRF. Moreover, the pre- and post-
processing steps are entirely linear, i.e. the computation of universal hash func-
tions and XOR-ing the results.

We will now discuss an instantiation of this PRF using a small domain PRF
based on lattice problems. As already mentioned in the introduction, the main
purpose of our constructions is obtaining PRFs from standard assumptions that
are as tight as possible. Since the construction in the last section allows reducing
the security of the constructed large domain PRF to the security of an adversary
specific small domain PRF, we need a family of small domain PRFs with security
as tight as possible. The Naor-Reingold PRF with domain {0, 1}n allows for a
security loss of a factor of n, while the security loss of a comparable GGM PRF
is q · n. This holds because the DDH problem possesses a statistical random
self-reduction which allows to compute an arbitrary number of DDH samples
from a given sample. The learning with errors (LWE) problem enjoys a similar
property, which is stated explicitly in the assumption.

Definition 4 (Decisional LWE [28,30]). Let p = p(λ) be a modulus, k =
k(λ) = poly(λ) be a positive integer and χr = DZ,r be a gaussian distribution
with noise parameter r. Let s ←$ Z

k
p be chosen uniformly at random. The goal

of the LWE(p, n, χr) problem is to distinguish an arbitrary number of samples
(a, 〈a, s〉 + e) where a ←$ Z

k
p and e ←$ χα from samples (a, u) where u ←$ Zp

is chosen uniformly at random.

Banerjee, Peikert and Rosen [1] constructed a PRF based on the LWE prob-
lem. The PRF has a structure which is similar to the Lewko-Waters PRF but
uses a rounding operation instead of exponentiation. Let p1 � p2. For an x ∈ Zp1

define �x�p2 = �(p2/p1)·x� mod p2. For vectors x ∈ Z
k
p1

define �·�p2 component-
wise. We can now state the BPR PRF.

Theorem 4. Let n = n(λ) be a positive integer, r = r(n) be a noise parameter,
k = k(λ) = poly(λ) be a positive integer and let p1, p2 be moduli such that
p1 ≥ p2 ·n · (Cr

√
k)n ·kω(1), where C is a universal constant. The keyed function

BPRn : Kn × {0, 1}n → Z
k
p2

with key space Kn = Z
k
p2

× (
Z

k×k
p2

)n is defined by

Efficient Pseudorandom Functions via On-the-Fly Adaptation 341

BPRn(K,x) =

⎢
⎢
⎢
⎣a�

n∏

j=1

Sxj

j

⎤

⎥
⎥
⎥

p2

,

where a ←$ Z
k
p1

and S1, . . . ,Sn ←$ χk×k
α and K = (a,S1, . . . ,Sn).

Assume that LWE(p1, k, χr) is hard. Then BPRn is a pseudorandom func-
tion. Specifically, if there exists a distinguisher D that distinguishes BPRn with
advantage ε from a random function, then there exists a distinguisher D′ with
essentially the same runtime as D that distinguishes LWE(p1, k, χr) with advan-
tage ε/(k · n).

Observe that in Theorem 4 the underlying hardness assumption changes when
we increase the input length n. More specifically, the smaller the term p1/r is,
the harder the underlying LWE problem LWE(p1, k, χr) becomes. The term p1/r
is dominated by (Cr

√
k)n, thus we aim towards minimizing n. Observe that we

can fix a modulus p2 for the whole family BPRn, therefore all functions in this
family have the same output domain. Plugging the BPRn as small domain PRF
in the construction of Theorem 3 yields that n never becomes larger than log(q)
for some q = poly(n). Thus we can base the security of the PRF in Theorem 3
on LWE(p1, k, χr) with p1 = p2 ·n · (Cr

√
k)log(2λq) ·kω(1), which is slightly super-

polynomial (instead of sub-exponential). Moreover, since the BPRn loses only a
factor k ·n in its security reduction to LWE, the resulting PRF from Theorem 3
loses only a factor of k · log(2λq). We remark that using the more efficient and
tighter Ring-LWE based PRF of [1], the security reduction to Ring-LWE loses
only a factor of log(2λq).

While the construction from Theorem 3 preserves the parallel complexity of
the small domain PRF, the overall complexity of evaluating the PRF may actu-
ally increase. We consider it an interesting problem to find a PRF construction
which enjoys similar properties as the k-LIN based construction in Sect. 4, i.e.
one improves the underlying small domain PRF in all aspects, in particular key
size and evaluation complexity.

4 A Direct Construction from the k-LIN Problem

In this section, we will provide our efficient constructions of number-theoretic
PRFs. As discussed above, we will first develop a specialized domain extension
technique and then construct a large domain PRF using a tailor-made on-the-fly
adaptation strategy.

4.1 Preliminaries

In this section, we will generally index vectors of length n with indices 0, . . . , n−1.
We will denote the identity matrix in Z

k×k
p by I. For vectors a ∈ Z

k
p we define

exponentiation component-wise, i.e. ga = (ga0 , . . . , gak−1). The decisional k-linear
assumption (k-LIN) [17,31] generalizes the decisional DDH problem. The deci-
sional k-Linear assumption becomes (generically) weaker when the parameter

342 N. Döttling and D. Schröder

k grows, where the instance k = 1 corresponds to DDH and k = 2 to the lin-
ear assumption [6]. The main motivation for these assumptions is that groups
are known, where the DDH assumption is easy, but the computational Diffie
Hellman problem is supposedly hard [16].

Definition 5 (Decisional k-LIN Problem). Let G be a cyclic group of prime
order p. Let g0, g1, . . . , gk ←$ G and s1, . . . , sk, r ←$ Zp be chosen uniformly at
random. The goal of the k-LIN problem in G is to distinguish the distributions

(g0, . . . , gk, gs1
1 , . . . , gsk

k , g
∑k

i=1 si

0) and (g0, . . . , gk, gs1
1 , . . . , gsk

k , gr
0).

We will use the PRF construction of Lewko and Waters [21] as underlying
small domain PRF in our construction.

Theorem 5. Let k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group of
prime order p and n = n(λ) be a positive integer. Define the keyed function
LWn : Kn × {0, 1}n → G with key space Kn = Z

k
p × (

Z
k×k
p

)n by

LWn(K,x) = ga
�·∏n−1

j=0 S
xj
j ,

where a ←$ Z
k
p, S0, . . . ,Sn−1 ←$ Z

k×k
p and K = (a,S0, . . . ,Sn−1). If the k-LIN

problem is hard in G, then LWn is a pseudorandom function. More specifically,
assume that there exists a PPT distinguisher D that distinguishes LWn with
advantage ε from a random function. Then there exists a PPT distinguisher D′

that distinguishes the k-LIN problem with advantage ε/(k · n).

The Lewko-Waters PRF LW as described in the construction in Theorem 5
outputs k group elements and therefore requires k exponentiations. We can trun-
cate the output of the LW PRF to a single group element, thereby only requiring
a single exponentiation.

4.2 A Bounded PRF From k-LIN

We will now provide an efficient construction of a bounded PRF from k-LIN.
The security of this bounded PRF tightly reduces to the security of a small
domain LW PRF and therefore to k-LIN with only a logarithmic loss.

Construction 3. Let k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group
of prime order p. The keyed function F� : K� × Zp → G with key space K� =
Z

k
p × (

Z
k×k
p

)log(�) is defined by

F�(K�, x) = ga
�·∏log(�)−1

j=0 (Sj+x2j ·I),

where a ←$ Z
k
p, S0, . . . ,Slog(�)−1 ←$ Z

k×k
p and K� = (a,S0, . . . ,Slog(�)−1)

For a bit b ∈ {0, 1} let ¬b = 1 − b denote the negation of b. For a bit-vector
c ∈ {0, 1}m let ¬c denote the bit-wise negation of c. We will need the following
technical lemma.

Efficient Pseudorandom Functions via On-the-Fly Adaptation 343

Lemma 2. Let p be a prime integer. It holds for all r ∈ N>0, all matrices
S0, . . . ,Sr−1 ∈ Z

k×k
p and all x ∈ Zp that

r−1∏

j=0

(Sj + x2j

I) =
∑

c∈{0,1}r

⎛

⎝
r−1∏

j=0

S¬cj

j

⎞

⎠ x
∑r−1

j=0 cj2
j

.

The proof of Lemma 2 works by inductively expanding the left side of the equa-
tion and can be found in the full version of this paper. We will now show that
the function F� given in Construction 3 is a bounded PRF.

Theorem 6. Assume that the k-LIN problem is hard in G. Then the function
F� defined in Construction 3 is a bounded PRF. More specifically let �∗ ≤ poly(λ)
and assume that D is an �∗-query PPT distinguisher with advantage ε against the
pseudorandomness of F�∗ . Then there exists a distinguisher D′ (with essentially
the same runtime as D) with advantage ε

k·log(�∗) against k-LIN.

Proof. First observe that F� can be computed in time poly(λ, log(�)). Notice that
LWlog(�) and F� have identical key-spaces. Let K = (a,S0, . . . ,Slog(�)−1) be a key
for F�. It follows immediately by Lemma 2 that we can compute F� by

F�(K,x) = ga
�·∏log(�)−1

j=0 (Sj+x2j ·I)

= g
a�·∑

c∈{0,1}log(�)

(

∏log(�)−1
i=0 S

¬ci
i

)

x
∑log(�)−1

i=0 ci2
i

=
∏

c∈{0,1}log(�)

g
a�·
(

∏log(�)−1
i=0 S

¬ci
i

)

x
∑log(�)−1

i=0 ci2
i

=
∏

c∈{0,1}log(�)

(
LWlog(�)(K,¬c)

)x
∑log(�)−1

i=0 ci2
i

For an integer j ∈ {0, . . . , 2�log(�)� − 1} let BIN(j) denote the log(�) bit binary
representation of j, i.e. it holds that j =

∑log(�)−1
i=0 BIN(j)i2i. Thus, it holds that

F�(K,x) =
2�log(�)�−1∏

j=0

(
LWlog(�)(K,¬BIN(j))

)xj

. (4)

Now, let �∗ ≤ poly(λ) and assume that D is a �∗-query PPT distinguisher that
distinguishes F�∗ with advantage ε from a random function. We will construct a
PPT distinguisher D′ that distinguishes LWlog(�∗) from a random function with
advantage ε. Since the function table of a function {0, 1}log(�∗) → G

k has size
2�log(�∗)� · k log(|G|) ≤ 2�∗k log(|G|) = poly(λ), we can assume that D′’s input is
an explicit function table

344 N. Döttling and D. Schröder

Distinguisher D′

Input: Function T : {0, 1}log(�∗) → k,
encoded as a function table

b′ ← DO(·)(1λ)
return b′

O(x):

y ← ∏2�log(�∗)�−1
j=0 (T (¬BIN(j)))xj

return y

First observe that D′ is efficient as D is efficient and the oracle O can be imple-
mented efficiently (as 2�log(�∗)� ≤ 2�∗). We will now analyze the advantage of D′.
If D′’s input T is a function LWlog(�∗)(K, ·) for a randomly chosen K ←$ Klog(�∗),
then clearly by (4) it holds that the oracle O implements exactly F�∗(K, ·).
On the other hand, if T implements a random function R′ : {0, 1}log(�∗) → G

k,
then we can express R′ by R′(¬BIN(j)) = ga

�
j for all j = 0, . . . , 2�log(�∗)�−1,

where the a0, . . . ,a2�log(�∗)�−1 ←$ G
k are chosen uniformly at random. Thus, in

this case the function computed by O is

O(x) =
2�log(�∗)�−1∏

j=0

ga
�
j xj

= g
∑2�log(�∗)�−1

j=0 a�
j xj

,

which is an �∗-wise independent function. To see this, note that g-exponentiation

is an isomorphism and the function in the exponent
∑2�log(�∗)�−1

j=0 a�
j xj is a ran-

dom polynomial of degree 2�log(�∗)� −1 ≥ �∗ −1, which is an �∗-wise independent
function. Thus, from the view of D the oracle O implements a random function
R, as D sends at most �∗ distinct queries. We conclude

Adv(D′) = |Pr[D′LWlog(�∗)(K,·) = 1] − Pr[D′R′
= 1]|

= |Pr[DF�∗ (K,·) = 1] − Pr[DR = 1]| = ε.

By Theorem 5, the distinguisher D′ yields a distinguisher D′′ with advantage
ε

k log(�∗) against k-LIN.

4.3 In-Place On-the-Fly Adaptation

While the general on-the-fly adaptation strategy we will provide in Sect. 3.2
needs to replicate the the underlying bounded PRF t times, we will now provide
a specific on-the-fly adaptation technique for the bounded PRF F� provided in
the last paragraph that involves no expansion whatsoever. Due to the special
algebraic structure of F�, this on-the-fly adaptation can be done in-place. To
obtain an unbounded PRF from the bounded PRF of Construction 3,we will set

Efficient Pseudorandom Functions via On-the-Fly Adaptation 345

the upper limit of the product in the exponent from log(�) to some t = ω(log(λ)).
We thereby ensure that t is large enough that we can embed F�∗ in this PRF for
any �∗ ≤ poly(λ).

Construction 4. Let k ≥ 1 be a positive integer and G = 〈g〉 be a cyclic group
of prime order p. Let t = ω(log(λ)). The keyed function F : K × Zp → G with
key space K = Z

k
p × (

Z
k×k
p

)t is defined by

F (K,x) = ga
�·∏t−1

j=0(Sj+x2j ·I),

where a ←$ Z
k
p, S0, . . . ,St−1 ←$ Z

k×k
p and K = (a,S0, . . . ,St−1).

We still need the following auxiliary lemma which states that a randomly
chosen matrix from Z

k×k
p has full rank, except with small probability.

Lemma 3. Let p be a prime and S ←$ Z
k×k
p be chosen uniformly at random.

Then it holds that
Pr[rank(S) < k] ≤ 1

p − 1
.

The proof of Lemma 3 is standard.

Theorem 7. Assume that the k-LIN problem is hard in G. Then the func-
tion F defined in Construction 4 is a PRF. More specifically assume that D
is PPT distinguisher that makes at most q = poly(λ) queries and distinguishes
F with advantage ε from a uniformly random function. Then there exists a
PPT distinguisher D∗ (with essentially the same runtime as D) with advantage

1
k·log(q) ·

(
ε − qt

(p−1)

)
against k-LIN in G.

Proof. Let D be a distinguisher with advantage ε against the pseudorandomness
of F which makes at most q = poly(n) queries. Note that since q = poly(λ) and
t = ω(log(λ)), it holds log(q) ≤ t − 1 (for a sufficiently large λ). We will define 3
hybrid experiments. In hybrid i D is given access to a function F (i) : Zp → G

k.

– Hybrid H1: In this experiment D is given oracle access to the function F (1)

given by F (1)(x) = F (K,x) for a randomly chosen K ←$ K.
– Hybrid H2: In this experiment D is given oracle access to the function F (2)

defined by

F (2)(x) = gr(x)
�·∏t

j=log(q)(Sj+x2j
I),

where r : Zp → Z
k
p is a uniformly random function and Slog(q), . . . ,St−1 ←$

Z
k×k
p .

– Hybrid H3: In this experiment D is given oracle access to a uniformly random
function F (3).

346 N. Döttling and D. Schröder

Clearly, it holds that

|Pr[DF (1)
= 1] − Pr[DF (3)

= 1]| ≥ ε.

Define

ε1 = |Pr[DF (1)
= 1] − Pr[DF (2)

= 1]|
ε2 = |Pr[DF (2)

= 1] − Pr[DF (3)
= 1]|.

By the triangle inequality it holds that

ε ≤ ε1 + ε2.

We will first show that ε2 ≤ qt/(p − 1). Define

M(x) =
t−1∏

j=log(q)

(Sj + x2j

I),

and observe that F (2)(x) = gr
�(x)·M(x). Now, if it holds for distinct x1, . . . , xq ∈

Zp that rank(M(xi)) = k for i = 1, . . . , q, then r�(x1)·M(x1), . . . , r�(xq)·M(xq)
are distributed independently and uniformly at random. Thus it also holds that
F (2)(x1), . . . , F (2)(xq) are distributed independently and uniformly at random.
We can define the predicate good({x1, . . . , xq},M) to be true if and only if it
holds rank(M(xi)) = k for i = 1, . . . , q. Applying Lemma 1 yields

ε2 = |Pr[DF (2)
= 1] − Pr[DF (3)

= 1]|
≤ max

x1,...,x�

Pr[¬good({x1, . . . , xq},M)]

= max
x1,...,x�

Pr[∃i : rank(M(xi)) < k].

For a fixed x it holds that rank(M(x)) < k if there exists a j ∈ {log q, . . . , t − 1}
with rank(Sj + x2j

I) < k. Since Sj is chosen uniformly at random it holds by
Lemma 3 that

Pr[rank(Sj + x2j

I) < k] = Pr[rank(Sj) < k] ≤ 1
p − 1

.

By a union bound over the j it holds that Pr[rank(M(x)) < k] ≤ t
p−1 . By another

union bound over i = 1, . . . , q it holds that

Pr[∃i : rank(M(xi)) < k] ≤ qt

p − 1

We conclude ε2 ≤ qt/(p − 1) and therefore ε1 ≥ ε − qt/(p − 1).

Efficient Pseudorandom Functions via On-the-Fly Adaptation 347

Now let �∗ = 2�log(q)�. We will now construct a PPT distinguisher D′ that
distinguishes the bounded PRF F�∗ with advantage ε2. The distinguisher D′ is
given in Fig. 3.

Fig. 3. The distinguisher D′

First assume that D′’s oracle O implements the function F�∗(K�∗ , x) =

ga
�∏log(q)−1

j=0 (Sj+x2j
I) where K� = (a,S0, . . . ,Slog(q)−1) is a uniformly chosen key

for F�∗ . Then the oracle O′ implements the function

O′(x) =
(

ga
�∏log(q)−1

j=0 (Sj+x2j
I)

)∏t−1
j=log(q)(Sj+x2j

I)

= g

(

a�∏log(q)−1
j=0 (Sj+x2j

I)
)

·∏t−1
j=log(q)(Sj+x2j

I)

= ga
�∏t−1

j=0(Sj+x2j
I).

Thus O′ implements exactly F (1). On the other hand, if D′’s oracle O implements
a random function R with R(x) = gr(x)

�
, where r : Zp → Z

k
p is a random

function, then the oracle O′ implements the function

O′(x) =
(
gr

�(x)
)∏t−1

j=log(q)(Sj+x2j
I)

= g
r�(x)·∏t−1

j=log(q)(Sj+x2j
I)

.

Thus O′(x) implements exactly F (2). We conclude that

Adv(D′) = |Pr[D′F�∗ (K�∗ ,·) = 1] − Pr[D′R = 1]|
= |Pr[DF (1)

= 1] − Pr[DF (2)
= 1]| = ε1 ≥ ε − qt

p − 1
.

By Theorem 6 this yields a distinguisher D∗ with advantage 1
k·log(q) ·

(
ε − qt

(p−1)

)

against k-LIN in G. This concludes the proof.

348 N. Döttling and D. Schröder

PRF with Shorter Keys. Escala et al. [11] suggested a framework that gen-
eralizes Diffie-Hellman like decisional assumptions and proposed a variant of
the Lewko-Waters PRF with short keys based on the so-called Matrix-DDH
(MDDH) assumption. The proof of Theorem 6 immediately generalizes to this
setting. Theorem 7 also holds in this setting, given that the distribution of aggre-
gated transformation matrices T corresponding to the matrix distribution D�,k

(c.f. [11], Sect. 5.3) used in the MDDH problem satisfies Pr[rank(T+x ·I) < k] ≤
negl for all x ∈ Zp.

Acknowledgements. We thank Max Rabkin and the reviewers of CRYPTO 2015 for
their helpful comments and feedback.

References

1. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 719–737. Springer, Heidelberg (2012)

2. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

3. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

4. Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom functions.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 357–368. Springer, Heidelberg
(2012)

5. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness preserving reductions
via cuckoo hashing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 40–59.
Springer, Heidelberg (2013)

6. Boneh, D., Boyen, X.: Efficient selective-ID Secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

7. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10, pp. 131–140. ACM Press,
Chicago (2010)

8. Chandran, N., Garg, S.: Balancing output length and query bound in hardness pre-
serving constructions of pseudorandom functions. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 89–103. Springer, Berlin (2014)

9. Chase, M., Meiklejohn, S.: Déjà Q: Using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 622–639. Springer, Heidelberg (2014)

10. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

Efficient Pseudorandom Functions via On-the-Fly Adaptation 349

12. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: Yu, T., Danezis, G., Gligor, V.D. (eds.)
ACM CCS 12, pp. 501–512. ACM Press, Raleigh (2012)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th FOCS, 24–26 October 1984, pp. 464–479. IEEE Com-
puter Society Press, Singer Island (1984)

14. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 276–288. Springer, Heidelberg (1985)

15. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic prfs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 90–120. Springer, Heidelberg (2015)

16. Herranz, J., Hofheinz, D., Kiltz, E.: The kurosawa-desmedt key encapsulation is
not chosen-ciphertext secure. Cryptology ePrint Archive, Report 2006/207 (2006).
http://eprint.iacr.org/

17. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

18. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 433–442. ACM Press, Canada (2008)

19. Jain, A., Pietrzak, K., Tentes, A.: Hardness preserving constructions of pseudo-
random functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 369–382.
Springer, Heidelberg (2012)

20. Levin, L.: One way functions and pseudorandom generators. Combinatorica 7(4),
357–363 (1987)

21. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: Al-Shaer, E., Jha, S., Keromytis, A.D.
(eds.) ACM CCS 09, pp. 112–120. ACM Press, Chicago (2009)

22. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton, NJ, USA (1994)

23. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

24. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. In: 36th FOCS, 23–25 October 1995, pp. 170–181.
IEEE Computer Society Press, Milwaukee (1995)

25. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, 19–22 October 1997, pp. 458–467. IEEE Computer Soci-
ety Press, Miami Beach (1997)

26. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited (extended abstract). In: 29th ACM STOC, 4–6 May 1997,
pp. 189–199. ACM Press, El Pas (1997)

27. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring
(extended abstract). In: 32nd ACM STOC, 21–23 May 2000, pp. 11–20. ACM
Press, Portland (2000)

28. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May - 2 June 2009,
pp. 333–342 (2009)

29. Razborov, A.A., Rudich, S.: Natural proofs. In: 26th ACM STOC, 23–25 May
1994, pp. 204–213. ACM Press, Montréal (1994)

http://eprint.iacr.org/

350 N. Döttling and D. Schröder

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

31. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007). http://eprint.iacr.org/

32. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984).
http://doi.acm.org/10.1145/1968.1972

http://eprint.iacr.org/
http://doi.acm.org/10.1145/1968.1972

The Iterated Random Permutation Problem
with Applications to Cascade Encryption

Brice Minaud and Yannick Seurin(B)

ANSSI, Paris, France
brice.minaud@gmail.com, yannick.seurin@m4x.org

Abstract. We introduce and study the iterated random permutation
problem, which asks how hard it is to distinguish, in a black-box way,
the r-th power of a random permutation from a uniformly random per-
mutation of a set of size N . We show that this requires Ω(N) queries
(even for a two-sided, adaptive adversary). As a direct application of
this result, we show that cascading a block cipher with the same key
cannot degrade its security (as a pseudorandom permutation) more than
negligibly.

Keywords: Iterated random permutation problem · Block cipher ·
Pseudorandom permutation · Cascade encryption

1 Introduction

A Simple Question. Assume that, as a cautious and slightly paranoid cryp-
tographer, you are not at ease with using AES (say, with 256-bit keys) as is.
Instead, you define the block cipher myAES as

myAES(k, x)
def= AES(k,AES(k, x)),

that is, you encipher the plaintext x twice with the same key k, hoping that
this will increase security. After all, this seems like a cheap, “black-box” way of
doubling the number of rounds of AES-256, and it is heuristically well established
that increasing the number of rounds of a cipher improves its resistance to various
attacks. Another motivation is some contexts could be to slow down brute force
attacks.1 How can you be sure that the security of your new custom block cipher
does not suddenly collapse, becoming much worse than the security of AES-256?
This seems quite implausible, but can we hope to formally prove that this cannot
happen?

Cascade Encryption. This question is obviously related to what is called cas-
cade encryption (or multiple encryption), i.e., self-composition of a block cipher.
1 For example, the traditional UNIX password protection mechanism crypt uses DES

iterated 25 times. However this is in a hashing context and hence not directly relevant
to our work.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 351–367, 2015.
DOI: 10.1007/978-3-662-47989-6 17

352 B. Minaud and Y. Seurin

Given a block cipher E, the cascade of length r associated with E encrypts a
message x as

E′
k1,...,kr

(x)
def= (Ekr

◦ · · · ◦ Ek1)(x).

Cascade encryption has been extensively studied in the setting where the keys
(k1, . . . , kr) for the r calls to the underlying block cipher E are indepen-
dent: there are results in the computational setting [LR86,Mye99,MT09,Tes11],
in the information-theoretic setting (where only computationally unbounded
adversaries are considered) [Vau98,Vau99,Vau03,MP04,MPR07,CPS14], and
in the ideal cipher model (in the context of key-length extension) [ABCV98,
BR06,GM09,Lee13,DLMS14]. In particular, it is known that cascading a given
block cipher with independent keys is security-amplifying : if E is a (q, t, ε)-
pseudorandom permutation2 (PRP), then the r-fold cascade with independent
keys for the r calls to E is a (q′, t′, rεr)-PRP [Tes11], with q′ � q and t′ � t. In
the information-theoretic setting, the following slightly weaker result has been
shown: if E is a (q, ε)-PRP, then the r-fold cascade of E with independent keys
is a (q, 2r−1εr)-PRP [Vau98,Vau99].

On the other hand, virtually nothing is known regarding the security of cas-
cade encryption when the keys used for each call to the underlying block cipher
are not independent.3 Not only is it not known whether this might amplify
security (and indeed, proving even a tiny security amplification result for cas-
cade encryption without increasing the total key-length would be a major break-
through), but there is absolutely no guarantee that this might not in some cases
dramatically deteriorate security.

Our Result. In this short paper, we prove that cascading a block cipher with
the same key cannot degrade its security beyond negligible. By security, we mean
the standard notion of (strong) pseudorandomness, defined as follows.

Definition 1 (Strong Pseudorandom Permutation (SPRP)). Let E be a
block cipher with key space K and message space S, and Perm(S) be the set of all
permutations of S. Let D be a distinguisher with oracle access to a permutation
and its inverse, and returning a single bit. The SPRP-advantage of D against E
is defined as

Advsprp
E (D) =

∣
∣
∣ Pr

[
P ←$ Perm(S) : DP,P−1

= 1
]

− Pr
[
k ←$ K : DEk,(Ek)

−1
= 1

] ∣
∣
∣.

2 A block cipher E = (Ek)k∈K with key space K is a (q, t, ε)-PRP if any adversary
making at most q oracle queries and running in time at most t can distinguish Ek (for
a random key k) from a uniformly random permutation with advantage at most ε.
See also Definition 1 below.

3 This setting is sometimes called product encryption [Sha49,MM93], cascade encryp-
tion being reserved to the case where the keys are independent. Yet since the wording
product encryption carries the idea of iterating a very weak round function rather
than a entire block cipher, we will not use it here.

The Iterated Random Permutation Problem 353

For integers q and t, the SPRP-advantage of E is defined as

Advsprp
E (q, t) = max

D
Advsprp

E (D),

where the maximum is taken over all distinguishers making at most q oracle
queries and running in time at most t. E is a (q, t, ε)-SPRP if Advsprp

E (q, t) ≤ ε.

A block cipher is deemed secure if its SPRP-advantage is “small” for all
“reasonable” parameters q and t. We show the following.

Theorem 1. Let E be a block cipher with message space of size N , and r > 0
be an integer. Let Er be the block cipher obtained by r-fold self-composition of E
with the same key. (Note that E and Er have the same message and key spaces.)
Then

Advsprp
Er (q, t) ≤ Advsprp

E (rq, t′) +
(2r + 1)q

N
,

with t′ = O(t).

Hence, cascade encryption with the same key does not hurt security beyond
negligible, or, to phrase it more positively, it can only improve the security of
a given PRP. Theorem 1 follows straightforwardly from a purely information-
theoretic result that we now expose in details.

The Iterated Random Permutation Problem. Let S be a set of size
N > 0, and let Perm(S) be the group of all permutations of S. For a permutation
P ∈ Perm(S) and an integer r ≥ 1, we denote P r the r-fold self-composition of
P . Consider an adversary (later called distinguisher) D having two-sided oracle
access to an element P ∈ Perm(S): it can either query P (x) and receive the corre-
sponding image y, or query P−1(y) and receive the corresponding antecedent x.
We assume that D makes at most q (adaptive queries) before outputting a bit
b. The iterated random permutation problem asks how many queries q needs D
to distinguish with a noticeable probability the following two situations:

1. a permutation P is drawn at random from Perm(S), and D is given oracle
access to P and P−1;

2. a permutation P is drawn at random from Perm(S), and D is given oracle
access to P r and (P r)−1.

In other words, defining the advantage of D for the iterated random permutation
problem as

AdvP,P r(D) =
∣
∣
∣ Pr

[
P ←$ Perm(S) : DP,P−1

= 1
]

− Pr
[
P ←$ Perm(S) : DP r,(P r)−1

= 1
] ∣
∣
∣,

and the best advantage at q queries as

AdvP,P r(q) = max
D

AdvP,P r (D),

354 B. Minaud and Y. Seurin

where the maximum is taken over all distinguishers making at most q queries, we
ask how q must grow with N for AdvP,P r (q) to be constant, say AdvP,P r (q) ≥
1/2. We show that this requires q = Ω(N/r). More precisely, we have the fol-
lowing theorem.

Theorem 2. For any integer q, one has

AdvP,P r(q) ≤ (2r + 1)q
N

.

This theorem is proved in Sect. 2. Theorem 1 follows from Theorem 2 by a
simple hybrid argument that we give for completeness.

Proof of Theorem 1. Let D be a distinguisher against the strong pseudorandom-
ness of Er making at most q oracle queries and running in time at most t. By
definition,

Advsprp
Er (D) =

∣
∣
∣ Pr

[
P ←$ Perm(S) : DP,P−1

= 1
]

− Pr
[
k ←$ K : D(Ek)

r,((Ek)
r)−1

= 1
] ∣
∣
∣

≤ AdvP,P r(D) + AdvP r,Er (D)

≤ (2r + 1)q
N

+ AdvP r,Er (D),

where the last inequality follows from Theorem 2 and where

AdvP r,Er (D) =
∣
∣
∣ Pr

[
P ←$ Perm(S) : DP r,(P r)−1

= 1
]

− Pr
[
k ←$ K : D(Ek)

r,((Ek)
r)−1

= 1
] ∣
∣
∣.

Consider the following distinguisher D′ against the strong pseudorandomness
of E. It has oracle access to some permutation oracle O (which is either a random
permutation P or Ek for a random key k) and works as follows: it runs D,
answering each oracle query of D by querying its own oracle r times to return
Or(x) for a direct query or (Or)−1(y) for an inverse query, and outputting the
same decision as D. Clearly, the SPRP-advantage of D′ against E is exactly
AdvP r,Er (D), and D′ makes at most rq queries and runs in time t′ = O(t).
Hence

AdvP r,Er (D) ≤ Advsprp
E (rq, t′),

which concludes the proof. �

Remark 1. It can be noted in the proof above that even when D is non-adaptive
(i.e., D chooses all its queries at the beginning of the security experiment
and issues them all at once), D′ seems to inherently have to query its ora-
cle adaptively. And indeed, Theorem 1 does not extend to the non-adaptive

The Iterated Random Permutation Problem 355

variant of (strong) pseudorandomness. This can be seen from the following sim-
ple example: Consider a (single-key) Even-Mansour cipher [EM97], defined by
Ek(x) = k⊕P (k⊕x), where P is a public (efficiently computable and invertible)
permutation. Assume that P is an involution (i.e., P 2 is the identity). Then, the
block cipher E2 obtained by composing E twice with the same key is highly
insecure (even against non-adaptive adversaries making one single query) since
it is equal to the identity for any key. On the other hand, modeling P as a public
random involution oracle, it can be shown [DKS12] that E is secure against non-
adaptive distinguishers making at most q = 2n/2 encryption/decryption queries
and evaluating P on at most t = 2n/2 values.4 This shows that, unlike what The-
orem 1 ensures for adaptive security, cascading with the same key can completely
ruin security against non-adaptive distinguishers.

We also exhibit a distinguisher whose advantage matches the upper bound
of Theorem 2 (up to some constant term which depends on r), establishing the
following lower bound.

Theorem 3. For q ≤ N/r, one has

AdvP,P r(q) ≥ q

2N
− r

N
.

The adversary that we use to arrive at Theorem 3 simply picks a random
message x ∈ S and travels along the cycle on which this point lies, hoping
to cycle back to x. Details of the analysis can be found in Sect. 3. A different
attack, based on the search of a fixed point, has been analyzed by Courtois
et al. [BAC12].

Perspectives. A natural question is whether it is possible to prove any kind of
security amplification for cascade encryption with non-independent keys, which
in its full generality would take the form

E′
k(x) = (Efr(k) ◦ · · · ◦ Ef1(k))(x),

where the fi’s are permutations of the key space of E.5 However, in the particular
scenario where the same key is reused (i.e., all fi’s are equal to the identity),
this clearly requires additional assumptions on the underlying block cipher E,
as indicated (again) by the simple example of a single-key Even-Mansour cipher
Ek(x) = k⊕P (k⊕x), where P is a public (efficiently computable and invertible)
permutation. There is a generic6 attack on any block cipher of this class requiring
4 But note that E can be distinguished from random by an adaptive adversary making

two queries; namely, denoting O the adversary’s oracle, it queries y := O(x), y′ :=
O(y), and checks whether y′ = x.

5 Remark that, seeing E as a round function rather than a full-fledged block cipher
and (f1, . . . , fr) as a key-schedule, this is exactly how most modern block ciphers
are designed.

6 In this context, an attack is said to be generic if it only uses the inner permutation
P as a black-box.

356 B. Minaud and Y. Seurin

q = 2n/2 queries to the encryption/decryption oracle and t = 2n/2 evaluations
of the inner permutation P [Dae91,DKS12]. Note that for any r > 1, the r-fold
cascade with the same key Er is again a one-round single-key Even-Mansour
cipher, with inner permutation P r, so that it can be generically attacked with
q = 2n/2 queries to the encryption/decryption oracle and t = r2n/2 evaluations
of P . Hence, under the assumption that P is such that the best attack against E
is the generic one, composition with the same key does not amplify the security
of such a block cipher. The same argument applies if the fi’s are of the form
fi(k) = k ⊕ ci for public constants ci. Indeed, this yields again a one-round
single-key Even-Mansour cipher with inner permutation

P ′(x) = cr ⊕ P (cr ⊕ cr−1 ⊕ P (cr−1 ⊕ · · · ⊕ c1 ⊕ P (c1 ⊕ x) · · ·)).

Besides, slide attacks [BW99] show that iterating a truly weak cipher can-
not make it arbitrarily strong, independently of the number of iterations. For
instance, in the information-theoretic setting, if E is so weak that it can be dis-
tinguished from random using a single plaintext/ciphertext pair with advantage
1 − 2n/2, then Er can be distinguished from random using 2n/2 queries with
constant probability of success, regardless of the value of r.7

We leave open the problem whether it is possible to find assumptions on the
block cipher E (e.g. resistance to related-key attacks, resistance to key-dependent
messages attacks, etc.) sufficient to prove that cascading with non-independent
keys is security amplifying.

2 Proof of the Main Result

In this section, we prove Theorem 2. We rely on the game-playing framework, and
we assume some familiarity of the reader with this technique (see [Sho04,BR06]
for more details).

In all the following, given a non-empty set S, we denote Card(S) the number
of elements in S. Let Cycl(S) denote the set of cyclic permutations of S, i.e.,
the subset of Perm(S) consisting of permutations with a single cycle. Overall,
we will consider the following four games:

– GP, which gives access to P and P−1 for P ←$ Perm(S);
– GPr , which gives access to P r and (P r)−1 for P ←$ Perm(S);
– GC, which gives access to C and C−1 for C ←$ Cycl(S);
– GCr , which gives access to Cr and (Cr)−1 for C ←$ Cycl(S).

7 Indeed, given 2n/2 plaintext/ciphertext pairs (p, c) for (Ek)r, the distinguisher
against E can be used to recognize so-called slid pairs ((p, c), (p′, c′)) satisfying
Ek(p) = p′, and hence Ek(c) = c′. By the birthday paradox, such a slid pair is
ensured to exist with constant probability when making 2n/2 random queries to
(Ek)r. Hence, the distinguisher between (Ek)r and a random permutation can count
the number of plaintext/ciphertext pairs ((p, c), (p′, c′)), such that the distinguisher
against E outputs 1 on both inputs (p, p′) and (c, c′): the expected result is roughly
1 for a random permutation and 2 for (Ek)

r.

The Iterated Random Permutation Problem 357

Each game provides two interfaces to the distinguisher, denoted Q and Q−1,
for querying the underlying permutation respectively in the direct and inverse
direction. For example, the formal definition of GP is:

1 Game GP:
2 Initialization:
3 P ←$ Perm(S)
4 procedure Q(x):
5 return P (x)

6 procedure Q−1(y):
7 return P−1(y)

For any games G, H, we write AdvG,H(q) to denote the maximal advantage
attainable by distinguishers between G and H within q queries. We say that two
games G and H are equivalent (within q queries) if AdvG,H(q) = 0. Our goal is
to bound AdvGP,GPr

(q). The layout of the proof is summarized by the following
picture:

Lemma 1.
AdvGP,GC

(q) ≤ q

N
.

Proof. We start with some useful definitions. A partial permutation graph (V,E)
of size N is a directed graph (with loops allowed) with set of vertices V of size N
and set of edges E ⊂ V 2, where each vertex has out- and in-degree 0 or 1. Given
a partial permutation graph (V,E) containing no cycles and a vertex z ∈ V , the
source of z, denoted So(z), is the unique x ∈ V with in-degree 0 such that there
is a path from x to z (with the convention that So(z) = z if z has in-degree 0),
and the sink of z, denoted Si(z), is the unique y ∈ V with out-degree 0 such
that there is a path from z to y (with the convention that Si(z) = z if z has
out-degree 0). The existence and uniqueness of So(z) and Si(z) when (V,E) is
acyclic are straightforward to prove.

We consider lazily sampled versions of GP and GC. To describe the lazy sam-
pling procedure, we assume that GP internally maintains a partial permutation
graph over V = S (with initially no edge). This graph represents the current
state of the sampling process. We let E ⊂ S2 denote the (time-dependent) set
of edges of the graph. We also let X be the set of vertices with out-degree 1 and
Y be the set of vertices with in-degree 1, these two sets being time-dependent
as well. Slightly abusing notation, for x ∈ X, we denote E(x) the unique y ∈ S
such that (x, y) ∈ E, and for y ∈ Y , we denote E−1(y) the unique x ∈ S such
that (x, y) ∈ E. The lazy sampled version of GP is as follows:

358 B. Minaud and Y. Seurin

1 Game Glazy
P :

2 Variables:
3 Set of edges E, initially empty
4 procedure Q(x):
5 if x /∈ X then
6 y ←$ S \ Y
7 E := E ∪ {(x, y)}
8 return E(x)

9 procedure Q−1(y):
10 if y /∈ Y then
11 x ←$ S \ X
12 E := E ∪ {(x, y)}
13 return E−1(y)

Claim. GP and Glazy
P are equivalent (for any number q of queries).

Proof. This is a folklore result (see e.g. [BR06, Sect. 7.4]). Proving it amounts
to showing, with the previous notation, that if P ←$ Perm(S) agrees with a
partial permutation graph (S,E), for x ∈ S \ X, then P (x) is uniformly distrib-
uted over S \ Y . Equivalently, for any x, x1, . . . , xn pairwise distinct in S, and
yA, yB , y1, . . . , yn pairwise distinct in S, we have

Card{P ∈ Perm(S) : P (x) = yA, P (x1) = y1, . . . , P (xn) = yn}
= Card{P ∈ Perm(S) : P (x) = yB , P (x1) = y1, . . . , P (xn) = yn}.

To see this, observe that left-hand side composition with transposition (yA yB)
is a bijection between the two sets. The reasoning for an inverse query is
similar. �

Similarly, the lazy version of GC is:

1 Game Glazy
C :

2 Variables:
3 Set of edges E, initially empty
4 procedure Q(x):
5 if x /∈ X then
6 y ←$ S \ (Y ∪ {So(x)})
7 E := E ∪ {(x, y)}
8 return E(x)

9 procedure Q−1(y):
10 if y /∈ Y then
11 x ←$ S \ (X ∪ {Si(y)})
12 E := E ∪ {(x, y)}
13 return E−1(y)

Claim. GC and Glazy
C are equivalent (for any number q of queries).

Proof. Here, we must show that for any partial permutation graph (S,E) con-
taining no cycle, with the previous notation and letting X = {x1, . . . , xn},
Y = {y1, . . . , yn}, x ∈ S \ X and yA, yB ∈ S \ (Y ∪ {So(x)}), we have

Card{C ∈ Cycl(S) : C(x) = yA, C(x1) = y1, . . . , C(xn) = yn}
= Card{C ∈ Cycl(S) : C(x) = yB , C(x1) = y1, . . . , C(xn) = yn}.

Once again, we prove this equality by building a bijection between the two sets.
This bijection is: C �→ (yA yB) ◦ C ◦ (Si(yA) Si(yB)), where (a b) denotes the
transposition swapping a and b. If C is seen as a cyclic graph, this bijection

The Iterated Random Permutation Problem 359

swaps the position of the longest chain starting from yA in E with the longest
chain starting from yB. Thus it preserves the cyclic structure and is an involutive
bijection between the two sets considered. The reasoning for an inverse query is
similar. �

From the lazy sampling versions of the games, it becomes apparent that
Glazy
C and Glazy

P are identical, unless the event [Q(x) = So(x) or Q−1(y) = Si(y)]
happens for some query in Glazy

P . More precisely, we can rewrite Glazy
C using a flag

bad as follows:

1 Game Glazy2
C :

2 Variables:
3 Set of edges E, initially empty
4 bad ← false
5 procedure Q(x):
6 if x /∈ X then
7 y ←$ S \ Y
8 if y = So(x) then
9 bad ← true

10 y ←$ S \ (Y ∪ {So(x)})
11 E := E ∪ {(x, y)}
12 return E(x)

13 procedure Q−1(y):
14 if y /∈ Y then
15 x ←$ S \ X
16 if x = Si(y) then
17 bad ← true
18 x ←$ S \ (X ∪ {Si(y)})
19 E := E ∪ {(x, y)}
20 return E−1(y)

Clearly, Glazy
C and Glazy2

C are equivalent (this technique is called resampling,
see [BR06, Sect. 7.2]). Moreover, Glazy

P and Glazy2
C are syntactically identical unless

bad is set to true. By the fundamental lemma of game-playing (see [BR06,
Lemma 2]), one has

AdvGlazy
P ,Glazy2

C
(q) ≤ max

D
Pr

[
D sets bad to true in Glazy2

C

]
,

where the maximum is taken over all distinguishers making at most q queries.
For any distinguisher D, the probability that bad is set to true at the i-th

query of D in Glazy2
C is exactly 1/(N − i). Hence, we finally obtain

AdvGP,GC
(q) = AdvGlazy

P ,Glazy2
C

(q) ≤ 1 −
q−1∏

i=0

(

1 − 1
N − i

)

=
q

N
.

�
Lemma 2.

AdvG
Pr
,G

Cr
(q) ≤ rq

N
.

Proof. Any distinguisher between P r and Cr can be used to distinguish between
P and C at the cost of multiplying the number of queries by r. More formally,
given a distinguisher D between P r and Cr making at most q queries, consider
the distinguisher D′ with oracle access to some permutation oracle O (which
is either P or C) working as follows: it runs D, answering each oracle query
of D by querying its own oracle r times to return Or(x) for a direct query or

360 B. Minaud and Y. Seurin

(Or)−1(y) for an inverse query, and outputting the same decision as D. Clearly,
the advantage of D′ in distinguishing GP and GC is equal to the advantage of D
in distinguishing GPr and GCr , and D′ makes at most rq queries if D makes at
most q queries. Hence, by Lemma 1,

AdvG
Pr
,G

Cr
(q) ≤ AdvGP,GC

(rq) ≤ rq

N
. �

Lemma 3.
AdvGC,GCr

(q) ≤ rq

N
.

Proof. Let d = gcd(N, r). The key observation is that GCr is equivalent to query-
ing a random permutation with d cycles of equal length.8 This follows from the
fact that the mapping C �→ Cr sends Cycl(S) onto the set of permutations with
exactly d cycles of the same length, and that each such permutation has the same
number of preimages in Cycl(S) under this mapping (the interested reader can
refer to Appendix A where we prove this claim). In particular, if d = 1 (when
N and r are coprime), the games GC and GCr are identical and we are done. If
d > 1, we need to upper bound the advantage of an adversary distinguishing
between a random permutation with a single cycle, and a random permutation
with d cycles of equal length.

We now describe a new game G∗
Cr , which we claim is an equivalent description

of GCr .

1 Game G∗
Cr :

2 Initialization:
3 C ←$ Cycl(S)
4 s0 ←$ S

5 for i < d, si = CN/d(si−1)
6 procedure Q(x):
7 if x = si for some i then
8 return C(s(i−1) mod d)
9 else

10 return C(x)

11 procedure Q−1(y):
12 if y = C(si) for some i then
13 return s(i+1) mod d

14 else
15 return C−1(y)

Intuitively, G∗
Cr may be pictured as shown on Fig. 1.

We show in Appendix A that the sampling process underlying game G∗
Cr is

also equivalent to sampling a random permutation with d cycles of equal length.
Meanwhile, we define the game G∗

C as being identical to G∗
Cr , except queries Q(x)

(resp. Q−1(y)) simply return C(x) (resp. C−1(y)): the si’s play no special role.
This corresponds to step 2 in the picture above. The point is that G∗

C is clearly
an equivalent description of GC (since procedures Q and Q−1 are syntactically
the same in both games), while G∗

Cr is an equivalent description of GCr (indeed,
by the two claims proved in Appendix A, they are both equivalent to querying
a random permutation with d cycles of length N/d).

Thus AdvGC,GCr
(q) = AdvG∗

C ,G
∗
Cr

(q). The following claim completes the proof.

8 When we say “a random permutation with some property”, more formally we mean
“a uniformly random element among permutations with this property”.

The Iterated Random Permutation Problem 361

Fig. 1. Representation of the game G∗
Cr .

Claim.
AdvG∗

C ,G
∗
Cr

(q) ≤ dq

N
.

Proof. The only difference between G∗
C and G∗

Cr occurs when Q(si) is queried for
some i (or Q−1(C(si)) for backward queries). So AdvGC,GCr

(q) is upper bounded
by the advantage of an adversary playing the following game: she queries G∗

C,
and wins iff one of the queries is an si (or C(si) for a backward query). We now
prove that the advantage of such an adversary is at most dq/N .

To show this, we give extra information to the adversary: we grant her full
knowledge of the cycle C before queries begin. Clearly this can only increase
her advantage. The point is that queries no longer provide any new information.
Thus the game becomes equivalent to the adversary simply trying to guess one
of the si’s within q tries.

Notice that the position of the si’s in the cycle C is essentially defined modulo
a = N/d. Guessing the position of one of the si’s in the cycle amounts to guessing
a value modulo a. Thus the game is equivalent to guessing a value among a
possibilities, within q tries. The advantage of an adversary in this game is:

1 −
q−1∏

i=0

(

1 − 1
a − i

)

= 1 − a − q

a
= 1 − N − dq

N
=

dq

N
.

By the previous reasoning, this is an upper bound for AdvG∗
C ,G

∗
Cr

(q). �
Thus, we have

AdvGC,GCr
(q) = AdvG∗

C ,G
∗
Cr

(q) ≤ dq

N
≤ rq

N
. �

The proof of Theorem 2 is now complete. Combining Lemmas 1, 2, and 3,
we obtain

AdvGP,GPr
(q) ≤ AdvGP,GC

(q) + AdvGC,GCr
(q) + AdvG

Cr
,G

Pr
(q) ≤ (2r + 1)q

N
.

362 B. Minaud and Y. Seurin

3 A Matching Attack

In this section, we describe a simple attack matching the bound in Theorem 2
within a constant factor, when the number of iterations r is constant. Our attack
uses the following distinguisher Dcycle between GP and GPr . It makes q queries
to the interface Q (corresponding to P in GP and P r in GPr), ignoring Q−1.

1 Distinguisher DQ
cycle(q)

2 s0 ←$ S
3 for i in {0, . . . , q − 1}:
4 si+1 ← Q(si)
5 end for
6 if all si’s are distinct
7 return 0
8 else
9 return 1

Thus, DQ
cycle returns 1 iff the point s0 ←$ S belongs to a cycle of length

at most q. We have the following result (from which Theorem 3 is a direct
application).

Lemma 4. Assume q ≤ N/r. Then

C(r)
q

N
− r

N
≤ AdvGP,GPr

(Dcycle) ≤ C(r)
q

N
+

r

N
with C(r) =

∑

d|r

φ(d)
d

− 1

where d|r denotes “d divides r”, and φ is Euler’s totient function. Moreover
C(r) ≥ 1/2 for r ≥ 2.

Proof. By definition:

AdvGP,GPr
(Dcycle) =

∣
∣
∣ Pr

[
P ←$ Perm(S) : DP r

cycle = 1
]

− Pr
[
P ←$ Perm(S) : DP

cycle = 1
] ∣
∣
∣.

We now set out to compute these two probabilities.
If we pick a random point in a random permutation on N points, and look at

the length of the cycle it belongs to, all lengths 1 ≤ k ≤ N are equally probable.
This is a standard result. It can be shown, for instance, using Glazy

P : if we choose
s0 ←$ S and query q times along a chain, and assume the first i queries do not
create a cycle, then the probability that the next query does is exactly 1/(N −i).
Thus, the probability that s0 belongs to a cycle of length k is precisely

k−1∏

i=0

(

1 − 1
N − i

)

· 1
N − k

=
1
N

.

As a consequence, one has

Pr
[
P ←$ Perm(S) : DP

cycle(q) = 1
]

=
q

N
.

The Iterated Random Permutation Problem 363

We now turn to the case where Dcycle interacts with P r instead of P . We let

p
def= Pr[P ←$ Perm(S) : DP r

cycle(q) = 1].

First, we recall two classic equalities regarding the totient function:

∑

d|n
φ(d) = n (1) φ(n) = n

∏

p|n,p∈P

(

1 − 1
p

)

(2)

where P is the set of prime numbers. Now let k be the length of the cycle
containing s0. In P r this cycle is broken up into d = gcd(k, r) cycles of length
k/d. Hence Dcycle(q) detects a cycle iff q ≥ k/d. Since all lengths k are equally
probable, we have

p =
1
N

Card
{

k ≤ N : q ≥ k

gcd(k, r)

}

=
1
N

Card{k ≤ N : ∃d|r, gcd(k, r) = d and k ≤ dq}

=
1
N

Card{k : ∃d|r, gcd(k, r/d) = 1 and k ≤ min(q,N/d)} with k ← k/d

=
1
N

Card{k : ∃d|r, gcd(k, r/d) = 1 and k ≤ q} using q ≤ N/r

=
1
N

∑

d|r
Card{k : gcd(k, d) = 1 and k ≤ q} since d �→ r/d is 1-to-1 over d|r

≥ 1
N

∑

d|r
Card

{
k : gcd(k, d) = 1 and k ≤ d

⌊ q

d

⌋}

=
1
N

∑

d|r
φ(d)

⌊ q

d

⌋

≥ 1
N

∑

d|r
φ(d)

(q

d
− 1

)

=
q

N

∑

d|r

φ(d)
d

− r

N
by (1).

One can upper bound p in a very similar manner, and we obtain the main
inequality.

Finally, we show that C(r) ≥ 1/2 for r ≥ 2. In fact it holds that for all r,
C(r) ≥ 1 − 1/r. To see this, observe that if r > 2 is not prime, we have:

C(r) =
∑

d|r

φ(d)
d

− 1

=
φ(1)

1
+

∑

d|r,1<d<r

φ(d)
d

+
∏

p|r,p∈P

(

1 − 1
p

)

− 1 by (2)

364 B. Minaud and Y. Seurin

≥
∑

d|r,1<d<r

φ(d)
d

+
(

1 −
∑

p|r,p∈P

1
p

)

by the union bound

≥ 1 since {p ∈ P : p|r} ⊆ {1 < d < r : d|r}.

On the other hand, if r is prime then C(r) = 1 − 1/r, hence this is the lower
bound. �
Corollary 1. For constant r, the best distinguisher between GP and GPr has
advantage Θ(q/N) as N → ∞ and q ≤ N is any function of N .

Proof. Theorem 2 shows that the advantage is O(q/N). Theorem 3 shows that
it is Ω(q/N) if q ≤ N/r. On the other hand if q > N/r, as the advantage can
only increase with q, it is at least C(r)N/r

N +o(1) ≥ 1
2r +o(1) = Ω(1) = Ω(q/N).

Hence overall the advantage is Θ(q/N). �
For concreteness, if r = 2, Theorem 3 exhibits a distinguisher with advantage

0.5q/N (under the assumption q < N/2), while the main theorem upper bounds
the advantage of any such distinguisher by 5q/N . Note that if r is not constant,
the behavior is more complex; informally, only cycles whose length is not coprime
with r are affected by the transformation P �→ P r. In particular, if r is prime
and r > N , P �→ P r is a permutation of Perm(S) and GP is indistinguishable
from GPr .

The problem of finding a tight bound for variable r is interesting from a
purely theoretical standpoint, although we do not know of a situation where
such a result would be applicable.

A Omitted Proofs

We prove here two claims that we used in the proof of Lemma 3. We denote
Cycld(S) the set of permutations of S with exactly d cycles of length N/d (note
that Cycl(S) = Cycl1(S)).

Claim. Let S be a set of size N , r ≥ 1 be an integer, and d = gcd(N, r). Let φ
be the mapping

φ : Cycl(S) → Perm(S)
P �→ P r.

Then φ(Cycl(S)) = Cycld(S) and all permutations in Cycld(S) have exactly the
same number of preimages by φ.

Proof. First, we show that for any C ∈ Cycl(S), φ(C) ∈ Cycld(S). Let a = N/d.
Denote

C = (x1 x2 · · · xN).

Then it is easy to see that Cr is the product of d disjoint cycles Ci, 1 ≤ i ≤ d,
with

Ci = (xi x(i+r) mod N x(i+2r) mod N · · · x(i+(a−1)r) mod N).

The Iterated Random Permutation Problem 365

For A ∈ Cycld(S), we denote φ−1(A) the set of preimages of A by φ. We now
show that for any A,B ∈ Cycld(S), |φ−1(A)| = |φ−1(B)|. For P ∈ Perm(S), we
denote fP the conjugation by P , namely fP (Q) = P ◦ Q ◦ P−1. Since A and
B have the same cycle structure, they belong to the same conjugacy class, i.e.,
there exists a permutation P such that fP (A) = B. Hence, for any C ∈ φ−1(A),
fP (C) ∈ Cycl(S) since conjugation preserves the cycle structure, and one has

fP (C)r = (P ◦ C ◦ P−1)r = P ◦ Cr ◦ P−1 = P ◦ A ◦ P−1 = B.

This implies that fP (φ−1(A)) ⊆ φ−1(B), and hence |φ−1(A)| ≤ |φ−1(B)| since
fP is one-to-one. By symmetry, |φ−1(A)| = |φ−1(B)|. �

Claim. Let ψ denote the mapping which sends a pair (C, s0) ∈ Cycl(S) × S to
the permutation defined by game G∗

Cr . Then ψ(Cycl(S) × S) = Cycld(S) and all
permutations in Cycld(S) have exactly the same number of preimages by ψ.

Proof. The fact that ψ(C, s0) ∈ Cycld(S) for any (C, s0) ∈ Cycl(S) × S is clear.
We now show that for any A,B ∈ Cycld(S), |ψ−1(A)| = |ψ−1(B)|. As in the
previous claim, there exists a permutation P such that fP (A) = B. We show
that for any (C, s0) ∈ ψ−1(A), (fP (C), P (s0)) ∈ ψ−1(B). First, fP (C) ∈ Cycl(S)
since conjugation preserves the cycle structure. For i < d, let si = CiN/d(s0). By
definition of ψ, A(si) = C(s(i−1) mod d) and A(x) = C(x) for x /∈ {s0, . . . , sd−1}.
Let s′

0 = P (s0) and for i < d, s′
i = fP (C)iN/d(s′

0) = P (si). Then

ψ(fP (C), P (s0))(s′
i) = fP (C)(s′

(i−1) mod d)

= P ◦ C(s(i−1) mod d) = P ◦ A(si) = fP (A)(s′
i) = B(s′

i),

and for x /∈ {s′
0, . . . , s

′
d−1}, since P−1(x) /∈ {s0, . . . , sd−1}, one has

ψ(fP (C), P (s0))(x) = fP (C)(x) = P ◦ C ◦ P−1(x) = P ◦ A ◦ P−1(x) = B(x),

which shows that ψ(fP (C), P (s0)) = B. Hence, the image of ψ−1(A) by the one-
to-one mapping (C, s0) �→ (fP (C), P (s0)) is a subset of ψ−1(B), thus |ψ−1(A)| ≤
|ψ−1(B)|. By symmetry, |ψ−1(A)| = |ψ−1(B)|. �

References

[ABCV98] Aiello, W., Bellare, M., Di Crescenzo, G., Venkatesan, R.: Security amplifi-
cation by composition: the case of doubly-iterated, ideal ciphers. In: Kraw-
czyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 390–407. Springer,
Heidelberg (1998)

[BAC12] Bard, G.V., Van Ault, S., Courtois, N.T.: Statistics of random permutations
and the cryptanalysis of periodic block ciphers. Cryptologia 36(3), 240–262
(2012)

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
http://eprint.iacr.org/2004/331

http://eprint.iacr.org/2004/331

366 B. Minaud and Y. Seurin

[BW99] Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999.
LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

[CPS14] Cogliati, B., Patarin, J., Seurin, Y.: Security amplification for the composi-
tion of block ciphers: simpler proofs and new results. In: Joux, A., Youssef,
A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 129–146. Springer, Heidelberg
(2014)

[Dae91] Daemen, J.: Limitations of the even-mansour construction. In: Matsumoto,
T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp.
495–498. Springer, Heidelberg (1993)

[DKS12] Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the
even-mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg
(2012)

[DLMS14] Dai, Y., Lee, J., Mennink, B., Steinberger, J.: The security of multiple
encryption in the ideal cipher model. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 20–38. Springer, Heidelberg
(2014)

[EM97] Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Cryptology 10(3), 151–162 (1997)

[GM09] Gaži, P., Maurer, U.: Cascade encryption revisited. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 37–51. Springer, Heidelberg
(2009)

[Lee13] Lee, J.: Towards key-length extension with optimal security: cascade
encryption and xor-cascade encryption. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 405–425. Springer, Hei-
delberg (2013)

[LR86] Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryp-
tographic composition. In: Symposium on Theory of Computing - STOC
1986, pp. 356–363. ACM (1986)

[MM93] Maurer, U.M., Massey, J.L.: Cascade ciphers: the importance of being first.
6(1), 55–61 (1993)

[MP04] Maurer, U.M., Pietrzak, K.: Composition of random systems: when two
weak make one strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
410–427. Springer, Heidelberg (2004)

[MPR07] Maurer, U.M., Pietrzak, K., Renner, R.S.: Indistinguishability amplifica-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149.
Springer, Heidelberg (2007). http://eprint.iacr.org/2006/456

[MT09] Maurer, U., Tessaro, S.: Computational indistinguishability amplifica-
tion: tight product theorems for system composition. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 355–373. Springer, Heidelberg (2009)

[Mye99] Myers, S.: On the development of block-ciphers and pseudo-random func-
tion generators using the composition and XOR operators. Ph.D. thesis,
University of Toronto (1999)

[Sha49] Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J.
28(4), 656–715 (1949)

[Sho04] Shoup, V.: Sequences of games: a tool for taming complexity in security
proofs. IACR ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.
org/2004/332.pdf

[Tes11] Tessaro, S.: Security amplification for the cascade of arbitrarily weak PRPs:
tight bounds via the interactive hardcore lemma. In: Ishai, Y. (ed.) TCC
2011. LNCS, vol. 6597, pp. 37–54. Springer, Heidelberg (2011)

http://eprint.iacr.org/2006/456
http://eprint.iacr.org/2004/332.pdf
http://eprint.iacr.org/2004/332.pdf

The Iterated Random Permutation Problem 367

[Vau98] Vaudenay, S.: Provable security for block ciphers by decorrelation. In:
Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275.
Springer, Heidelberg (1998)

[Vau99] Vaudenay, S.: Adaptive-attack norm for decorrelation and super-
pseudorandomness. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 49–61. Springer, Heidelberg (2000)

[Vau03] Vaudenay, S.: Decorrelation: a theory for block cipher security. J. Cryptol-
ogy 16(4), 249–286 (2003)

The Exact PRF Security of Truncation:
Tight Bounds for Keyed Sponges

and Truncated CBC

Peter Gaži1, Krzysztof Pietrzak1(B), and Stefano Tessaro2

1 IST, Klosterneuburg, Austria
{gazi,pietrzak}@ist.ac.at
2 UC, Santa Barbara, USA

tessaro@cs.ucsb.edu

Abstract. This paper studies the concrete security of PRFs and MACs
obtained by keying hash functions based on the sponge paradigm. One
such hash function is KECCAK, selected as NIST’s new SHA-3 standard.

In contrast to other approaches like HMAC, the exact security of
keyed sponges is not well understood. Indeed, recent security analyses
delivered concrete security bounds which are far from existing attacks.

This paper aims to close this gap. We prove (nearly) exact bounds
on the concrete PRF security of keyed sponges using a random permuta-
tion. These bounds are tight for the most relevant ranges of parameters,
i.e., for messages of length (roughly) � � min{2n/4, 2r} blocks, where n
is the state size and r is the desired output length; and for � � q queries
(to the construction or the underlying permutation). Moreover, we also
improve standard-model bounds.

As an intermediate step of independent interest, we prove tight bounds
on the PRF security of the truncatedCBC-MAC construction, which oper-
ates as plain CBC-MAC, but only returns a prefix of the output.

1 Introduction

Hash functions are popular building blocks for message-authentication codes
(MACs) and pseudorandom functions (PRFs) [23]. The latter are keyed functions
with the property that their outputs (under a secret key) are indistinguishable
from random, except with a (small) distinguishing gap ε. PRFs are not only
good MACs, but can also be used in a variety of other contexts, from symmetric
encryption to key derivation. The to-date most widely used hash-based PRF
construction is HMAC [4], and a large body of works has studied its concrete
security under different assumptions [3,18,21,26].

It is very likely that hash-based MACs and PRFs will remain popular as
the upcoming SHA-3 hash function will replace older designs like MD5, SHA-1
and SHA-256. In contrast to legacy functions, the SHA-3 [1] competition winner
KECCAK [10] follows the sponge paradigm by Bertoni et al. [11]. A key property
of sponges is that they resist extension attacks, and this enables much simpler
approaches than HMAC to derive a PRF. For example, it is suggested (e.g.
in [11]) that one may simply pre-prend the key to the message.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 368–387, 2015.
DOI: 10.1007/978-3-662-47989-6 18

The Exact PRF Security of Truncation 369

Our contributions, in a nutshell. This paper studies the exact security
(i.e., how large is the best distinguishing gap ε?) of keyed sponge constructions.
The existing indifferentiability security proof [11], as well as recent targeted
analyses [2,8] yield upper bounds on ε for several keying approaches. However,
it is not clear that these bounds are the best possible ones. For example, they all
degrade quadratically in the message length, yet no known generic attacks seem
to exploit the message length at all.

In this work, we show that the concrete security of keyed sponges is far supe-
rior to what was previously proved, and in particular only minimally depends
on the message length. We provide a nearly exact characterization of the PRF
security of keyed sponges in the model where the underlying n-bit permutation
is random and the adversary is allowed to issue queries to it. We consider both
variants where the key is processed as part of the input (as in HMAC) or where
the initialization value takes the role of key (akin to NMAC). Our bounds are
tight for messages whose length does not exceed (roughly) min{2r, 2n/4} blocks,
where r is the output length of the constructions and n is the underlying block
length – a constraint satisfied in all envisioned application scenarios.1

The key to our results is a tight analysis of truncated CBC, the construction
operating as plain CBC-MAC without prefix-free encoding, but only returning a
subset of the output bits.

Security of Keyed Sponges. The sponge construction relies on an invertible
permutation π on n-bit strings.2 For a parameter b < n, it pads the message
M into b-bit blocks M [1], . . . , M [�], and keeps a state Si ‖Ti, where Si ∈ {0, 1}b

and Ti ∈ {0, 1}n−b. It outputs the first r bits of S� for some3 r � b, where

S0 ‖T0 ← 0n , Si ‖Ti ← π((Si−1 ⊕ M [i]) ‖Ti−1) for i = 1, . . . , �.

We first consider the keyed construction GSponge which sets S0 ‖T0 to equal the
n-bit key value. We prove that when this key is secret and random, no attacker
making qC queries of length at most � < 2n/4 b-bit blocks to GSponge using a
random permutation π, and qπ queries to π itself (and to its inverse π−1), can
distinguish it from a random function, except with distinguishing gap roughly

ε(qC , qπ, �) = O

(
q2C + qCqπ + �qC

2n−r
+

�q2C + �qCqπ

2n

)

.

1 For SHA-3, we have r � 224 and n = 1600, and thus processing messages exceeding
these lengths is practically impossible.

2 Naming consistency with the TCBC setting below forces us to deviate from the usual
naming in the literature on sponges.

3 The sponge paradigm also allows for outputs of r > b bits obtained by repeated
application of π, an option that does not occur for any of the SHA-3 parameters,
and that we will not consider for simplicity in the present paper.

370 P. Gaži et al.

The ideal-permutation model is common for sponge-based constructions, and
was used in [2,8,11]. For comparison, the previously best known bound was
dominated by a term of much larger magnitude O((�2q2C + �qCqπ)/2n−r).4

The salient feature of our new bound is that the length � only affects terms
with denominator 2n, or appears in a term �qC/2n−r linear in qC . Therefore, the
terms with denominator 2n−r are the dominating ones when � � min{2n/4, 2r},
and in this case, our bound simply becomes of the order O(q2

C+qCqπ+�qC

2n−r). We also
show that this is tight for max{qC , qπ} � �, which is a very common scenario. We
leave the question of proving tightness of the remaining terms (or, alternatively,
of improving our bound) as a challenging open problem.

Our generalized analysis also shows that with respect to PRF security, we are
not constrained to any block length b < n – we could well XOR n-bit message
blocks to the whole state. Shorter block lengths can then be enforced by the
padding function setting some of the bits to 0 (e.g. the last n − b bits). Note
that full, n-bit blocks were already used in the design of the sponge-based MAC
construction donkeySponge [9], which is implicitly covered by our result.

Black-box keying. In most scenarios, black-box keying by pre-pending a key
to the message is more desirable than altering the initial value. We provide a
complete analysis of key-prepending for arbitrary key-length b ·w (for simplicity,
we assume that the key length fits exactly in w blocks). Our results are in terms
of the overall number of queries q = qπ + � · qC made to the permutation. We
distinguish two cases: If q2 � 2n−b, then the additional keying step is secure
as long as q � 2bw. In contrast, in the high-query regime, the keying step is
secure as long as q � 2bw/2, which effectively requires doubling the key length
to achieve a similar security level as in the previous case. (This gap is due to the
fact that the high-q regime enables meet-in-the-middle attacks.)

We note that a similar analysis was given in [2] concurrent to our work, but
their initial proof was incorrect for w � 2. The current version of [2] uses the
results from this paper to obtain a correct bound.

Standard-model bounds. We also show improved standard-model security of
keyed sponges under an assumption on the permutation π introduced by Chang
et al. [13] and further considered in [2]. The assumption is that a block cipher
built from the permutation π as Eπ

K(X) = (0b ‖K) ⊕ π(X ⊕ (0b ‖K)) for X ∈
{0, 1}n and K ∈ {0, 1}n−b, where b is the block length, is a pseudorandom
permutation. (Note that this construction is essentially a low-entropy single-key
version of the Even-Mansour cipher [19,20]).

Our approach: Truncated CBC. Our analysis of keyed sponges builds on top
of a result of independent interest – a tight analysis of truncatedCBC. In particular,
4 We note that the recently proved bound of Andreeva et al. [2] is slightly more general

and modular, as discussed in the full version [22]. In particular, it uses a somewhat
different parametrization of the attacker complexity for the second term �qCqπ/2n−r,
which converges to the above in the worst case, but which can make the term smaller
(and incomparable to ours) in some scenarios.

The Exact PRF Security of Truncation 371

our standard-model bounds on sponges are a direct corollary of our truncated-
CBC analysis, whereas our bounds in the random permutation model are obtained
by a modification of the proof for truncated CBC.

In its basic form, the cipher block-chaining mode (or CBC, for short) [15,28]
uses a block cipher E with n-bit block size. The input M ∈ {0, 1}∗ is first
padded into n-bit blocks M = M [1] . . . M [�], and then for a key K, CBCK(M)
outputs the value Y� resulting from the following iterative computation: Y0 ← IV
and Yi ← EK(Yi−1 ⊕ M [i]) for all i ∈ [�], where IV is the initialization value,
e.g., IV = 0n. The basic CBC construction is only secure for messages of equal
length � [5]. Otherwise, one can easily mount an extension attack.

Three (variants of) solutions prevent extension attacks: The first one is prefix-
free encoding of messages [33]. The second outputs EK′(CBCK(M)), under a key
K ′ independent from K. (This has been used in EMAC, developed as part of
the RACE project [35]). Also, combinations of these ideas have been used in
other constructions, like XCBC [12], TMAC [27], and OMAC [24]. The third
solution, considered in this paper, is to use truncation, i.e., to only output the
first r < n bits of the output. While the first two variants have been extensively
analyzed [5–7,25,29–31,33,34,36], we are not aware of any explicit analysis of
truncated CBC having ever been published,5 let alone a tight one.

We prove that no attacker making q queries of length at most � < 2n/4 to
TCBC using a random permutation can distinguish it from a random function,
except with distinguishing gap ε(q, �) = O

(
q(q+�)
2n−r + �q2

2n

)
. This implies security

when the random permutation is replaced by a secure block cipher which is a
good PRP. The second term matches the one from the best known analysis of
prefix-free CBC [6], whereas we prove that the first term is tight for q � �.

Our techniques. The analysis of TCBC immediately appears harder than that
of related constructions. Existing proofs are based on “Bad event analyses”: For
example, for encrypted MAC (as in EMAC), one defines the bad event that
for two distinct query messages M,M ′, CBCπ(M) and CBCπ(M ′) collide, where
CBCπ denotes (plain) CBC-MAC using a random permutation π. It is not hard
to prove that as long as no such collision occurs, the outputs π′(CBCπ(M))
are indistinguishable from random for an independent permutation π′, and the
distinguishing advantage is upper-bounded by the probability of such collisions.6

This implies indistinguishability when π and π′ are replaced by EK and EK′ ,
respectively, for a block cipher E and independent keys K and K ′. Similarly, for
prefix-free CBC the bad event is that in the evaluation of CBCπ(M), the last
internal query to π is not fresh, i.e., it was already made within the same or an
earlier evaluation of CBCπ.

For TCBC, however, if we make a query M , resulting into output Y (con-
sisting of the first r bits of CBCπ(M)), we cannot prevent a later query M ′,

5 Implicitly, the techniques from sponge analyses [2,8,11] yield non-tight bounds of
order O(�2q2/2n−r).

6 This notwithstanding, proving bounds on the collision probability is far from triv-
ial [6,34].

372 P. Gaži et al.

with output Y ′, where M ′ is a prefix of M . Previous machinery only tells us
that CBCπ(M) and CBCπ(M ′) are unlikely to collide, but this is insufficient to
argue randomness and independence of Y and Y ′. Moreover, the last query to
π within the evaluation of CBCπ(M ′) cannot be fresh, as the same query was
made earlier within the evaluation of CBCπ(M). One cannot swap the order of
these queries either, as the choice of M ′ may well depend adaptively on Y .

To deal with this, our proof will crucially use Patarin’s H-coefficient tech-
nique [32], as recently revisited by Chen and Steinberger [14]: We fix a (deter-
ministic) adversary A and a compatible transcript (M1, Y1), . . . , (Mq, Yq) (i.e., A
indeed would ask such queries M1, . . . , Mq if fed with the corresponding answers
Y1, . . . , Yq) and then compare the probabilities that such a transcript would
indeed occur with A in the real and in the ideal world, respectively. It is easy
to see that the latter ideal-world probability is exactly 2−rq, as all outputs of a
random functions on (distinct) inputs M1, . . . , Mq are random.

However, the real world (where TCBC is evaluated), is far more complex.
We are going to show the probability that Pr [TCBCπ(Mi) = Yi] is at least (1 −
ε)2−rq, for some small ε, as long as π is uniformly distributed, conditioned on
the following being true:

– For every message Mi, the value Zi ← CBCπ(Mi) is unique. (This is equivalent
to stating that the π-query leading to the value Zi in the evaluation of Mi is
unique). Recall that the actual output on input Mi consists of the first r bits
of Zi.

– For every message Mi, and every message Mj such that Mi is a prefix of Mj ,
the value Zi,j ← CBCπ(Mi ‖m) is unique, where m is the first n-bit block in
Mj after the end of Mi.

It turns out that those conditions are satisfied also except with some small
probability δ. The actual indistinguishability bound happens to be ε + δ by
the H-coefficient method, but determining both values will be at the core of
the proof. While an upper bound on δ follows by using techniques from [6,34],
upper-bounding ε will require new techniques.

Our security proof for sponges is very similar, and will essentially rely on
the argument that with good probability (roughly �qπqC/2n), queries to π made
in the evaluation of the sponge queries and direct queries to π by the attacker
are disjoint. However, while this is fairly simple to show when the sponge con-
struction is keyed by setting the initial value (S0, T0) to be an n-bit secret key,
proving the same statement when the key is input through several absorbing
steps turns out to be more involved. We also give a security proof for this more
complex setting using techniques inspired by [17].

Standard-model analysis. A recent paper by Chang et al. [13] also provides
a security analysis of variants of sponge constructions in the standard model.
We note that (a simple twist of) their very elegant trick reduces the security of
the sponge construction with a random IV as the key (this is the construction
GSponge) to the security of TCBC for a random permutation and the PRP

The Exact PRF Security of Truncation 373

security against �q queries of the block cipher Eπ described above. Our bounds
for TCBC directly yield improved standard-model bounds.

Their technique was generalized further in the recent work of Andreeva
et al. [2]. Beyond the modularity, the main technical contribution of their work
is to reduce (in some contexts) the quantity �q in the reduction to the security
of Eπ. Their contribution is completely orthogonal to ours, and their techniques
can be applied in our context.

2 Preliminaries

We denote [n] := {1, . . . , n}. Moreover, for a finite set S (e.g., S = {0, 1}), we let
Sn, S+ and S∗ be the sets of sequences of elements of S of length n, of arbitrary
(but non-zero) length, and of arbitrary length, respectively (with ε denoting the
empty sequence). We denote by S[i] the i-th element of S ∈ Sn for all i ∈ [n].
Similarly, we denote by S[i . . . j], for every 1 � i � j � n, the sub-sequence
consisting of S[i], S[i + 1], . . . , S[j], with the convention that S[i . . . i] = S[i].
Moreover, we denote by S ‖S′ the concatenation of two sequences in S∗, and
also, we let S | T be the usual prefix-of relation: S | T ⇔ (∃S′ ∈ S∗ : S ‖S′ = T).

We also let Fcs(m,n) be the set of functions mapping m-bit strings to n-bit
strings, and let Perm(n) ⊆ Fcs(n, n) be the set of permutations on the set of
n-bit strings. We use the shorthand Fcs(∗, n) to denote the set of functions from
{0, 1}∗ to {0, 1}n. Finally, we denote the event that an adversary A, given access
to an oracle O, outputs a value y, as AO ⇒ y.

Pseudorandom functions. We consider keyed functions F : {0, 1}κ×{0, 1}∗ →
{0, 1}r taking a κ-bit key, arbitrary long messages M ∈ {0, 1}∗ as inputs, and
returning an r-bit output. In particular, we denote as FK the map such that
F(K, ·) = FK(·). We are typically interested in the security of F as a pseudoran-
dom function (or PRF, for short) [23]. This is defined via the following advantage
measure, involving an adversary A, such that

AdvprfF (A) :=
∣
∣
∣Pr

[
K

$← {0, 1}κ : AFK ⇒ 1
]

− Pr
[
f

$← Fcs(∗, n) : Af ⇒ 1
]∣
∣
∣ .

We consider constructions C[π] : {0, 1}∗ → {0, 1}r invoking a permutation π ∈
Perm(n) (we sometimes write Cπ instead of C[π]), and denote by C the resulting
keyed function where the key is a permutation π ∈ Perm(n) (i.e., there are 2n!
key values).

For our analysis of keyed sponges, we are also going to consider constructions
Fπ : {0, 1}κ × {0, 1}∗ → {0, 1}r invoking a public randomly chosen permutation

π
$← Perm(n), i.e., one that can be evaluated directly by the adversary. For this

case, we use the following notation to express the PRF advantage of A in the
so-called ideal permutation model:

AdvprfF,π(A) :=
∣
∣
∣Pr

[
K

$← {0, 1}κ, π
$← Perm(n) : AFπ

K ,π,π−1 ⇒ 1
]
−

− Pr
[
f

$← Fcs(∗, r), π $← Perm(n) : Af,π,π−1 ⇒ 1
] ∣
∣
∣.

374 P. Gaži et al.

Fig. 1. Truncated CBC TCBCr,pad[π]. Here, M [1], . . . , M [�] are n-bit blocks resulting
from applying the padding scheme pad to the input message M ∈ {0, 1}∗.

MACs and Unpredictability. It is appropriate to note that good PRFs also
yield good message-authentication codes (MACs). A concrete security bound for
unforgeability can be obtained from our PRF bounds via a standard argument.

3 Truncated CBC and its Security

This first part of the paper deals with the concrete security of truncated CBC
(TCBC). On top of being of independent interest, the TCBC analysis of this
section will be instrumental to analyze the security of keyed sponges in Sect. 5
below. First off, our analysis of keyed sponges in the ideal permutation model
will rely on a modification of the proof for TCBC. Second, our standard-model
proofs for keyed sponges will directly apply the TCBC result in a black-box way.

Truncated CBC. We fix two parameters r < n and a padding scheme pad :
{0, 1}∗ →({0, 1}n)+, uniquely encodingarbitrary strings intonon-empty sequences
of n-bit blocks. (We are not requiring the padding to be prefix-free.) The canonical
approach computes pad(M) by appending a single 1-bit to M , and then sufficiently
many 0’s to reach a length which is a multiple of n.7

The (plain) CBC construction for padding scheme pad, using π ∈ Perm(n),
computes CBCπ

pad(M) by first producing n-bit blocks M [1], . . . , M [�] ← pad(M),
and then outputs S�, where

S0 ← IV , Si ← π(M [i] ⊕ Si−1) for all i = 1, . . . , �. (1)

Then, truncated CBC (or TCBC, for short) on input M ∈ {0, 1}∗, outputs the
first r < n bits of CBC evaluated on input M , i.e.,

TCBCπ
r,pad(M) =

(
CBCπ

pad(M)
)
[1 . . . r].

Also cf. Fig. 1 for a pictorial representation.

Security analysis. The following theorem characterizes the concrete PRF
security of the TCBC construction in the case where π is randomly sampled
from Perm(n). By a standard argument, this implies that TCBC is a secure PRF
when π is instantiated with a block cipher which is secure as a pseudorandom
permutation (PRP).

7 In this case, pad(M) consist of � = � |M|+1
n

� n-bit blocks.

The Exact PRF Security of Truncation 375

Theorem 1 (Security of TCBC). Let A be a prf-adversary making at most
q queries, each of length at most � < 2n/4 n-bit blocks (after padding). Let
TCBC = TCBCr,pad[π] for a random permutation π ∈ Perm(n). Then, for any
t � 1,

AdvprfTCBC(A) � (6t + 17)
�q2

2n
+

8n · q2

2n−r
+

8q�

2n−r
+

2q

2n
+

136�4q2

22n
+

2qt+1�t+1

2nt
. (2)

The proof of Theorem 1 is found below in Sect. 4, where we also give high-
level overviews of the individual components of the proof. Here, we first discuss
the bound and its tightness.

Discussion of the bound. First off, note that q < 2(n−r)/2 for the above
bound to be negligible. We stress in particular that under the constraints � <
2n/4, the first three terms are the leading ones: Indeed, 2q/2n is always negligible
if the other terms are, and the second last term is for sure negligible as long as
� < 2n/4. For the final term, note that q� < 23n/4 for the previous terms to be
negligible, and the term becomes negligible for t � 4.

Given this, the most important point is that when additionally � < 2r, the
bound is of the order O((q2 + q�)/2n−r), and thus only mildly depends on the
length. In the full version, we also show how to break TCBC with a q-query prf-
adversary achieving distinguishing advantage roughly Ω(q2/2n−r). The attack
works regardless of the permutation π used to instantiate TCBC. Therefore, the
bound is tight when additionally q � �. We leave it as an open question to
determine tightness for other parameter cases.

4 Proof of Theorem 1

We start with the high level overview of the proof of Theorem 1, which relies on
Patarin’s H-coefficient technique [32], for which we give a self-contained introduc-
tion below. (The notation we use is consistent with the recent revisited version
of the framework by Chen and Steinberger [14]).

Roadmap. Sections 4.1 and 4.2 first introduce the notational framework to pre-
cisely describe interactions between A and the given system – i.e., either TCBC[π]

for π
$← Perm(n) or a truly random function f

$← Fcs(∗, n). Then, Sect. 4.3 will
review the H-coefficient method, and apply it to our setting. Finally, Sect. 4.4
will state and explain the individual probabilistic lemmas composing the rest of
the proof, and combine them into the theorem.

Simplifying assumption. Throughout the proof, we assume that (1) A is
deterministic, (2) it makes exactly q queries, and (3) it never repeats the same
query twice. All these assumptions are without loss of generality for an
information-theoretic indistinguishability analysis, since any (possibly random-
ized) adversary making at most q queries can be transformed into one satisfying
these constraints and achieving advantage which is at least as large.

376 P. Gaži et al.

Fig. 2. (Reduced) message tree. Message tree for permutation π ∈ Perm(n) and
four messages M1 = 0, M2 = 0 ‖0, M3 = 0 ‖1 ‖1, and M4 = 1, where b = bn for
b ∈ {0, 1}. The gray vertices correspond to these four messages. Labels are represented
in proximity of the vertices and the edges they are assigned to (as a function of π) and
we let λ(ε) = 0 = IV. The boxed labels are omitted in the reduced message tree.

4.1 Message Trees

We start by introducing some graph-theoretic concepts – the message tree, and
its reduced version – which capture the inherent combinatorial structure of any
q messages M1, . . . , Mq queried by the attacker, as well as the internal values
computed while these messages are processed by TCBC. Then, we will put these
concepts to work to define transcripts describing the adversary’s interaction with
either of TCBC or a random function f .

We stress that our transcripts will release more information than what is
actually seen by the adversary A: This information will make the proof simpler,
and will not help substantially in distinguishing TCBC from random.

The message tree. Let q � 1, π ∈ Perm(n), and let M1, . . . , Mq ∈ ({0, 1}n)+

represent the padded versions of the messages. These q messages induce a labeled
tree Tπ(M1, . . . , Mq) = (V,E, λ, γ) – called the message tree, and often simply
denoted as T or Tπ, whenever parameters are clear from the context – defined
as follows:

– The set V of vertices of the tree is V :=
{
M ′ ∈ ({0, 1}n)∗ : ∃i ∈ [q] : M ′ | Mi

}
,

where | is the prefix-of partial ordering of strings. In particular, note that the
empty string ε is a vertex.

– The set E ⊆ V ×V of edges is E := {(M,M ′) : ∃m ∈ {0, 1}n : M ′ = M ‖m}.
– We label vertices and edges recursively. Concretely, we define λ : V → {0, 1}n

and γ : E → {0, 1}n. We start with λ(ε) = IV. Then, for every vertex M ‖m ∈

The Exact PRF Security of Truncation 377

V where M ∈ V and m ∈ {0, 1}n, we set

λ(M ‖m) = π(λ(M) ⊕ m).

Moreover, we let γ((M,M ‖m)) = λ(M) ⊕ m.

An example of a message tree is given in Fig. 2. Note that the vertex labels
λ(M) are exactly the values of CBC[π](M) while the edge labels correspond to
the inputs on which π is invoked. Strictly speaking, edge labels are redundant
as they can be reconstructed from the vertex labels and V , but their explicit
definition will occasionally simplify descriptions.

For every vertex M ∈ V (where possibly M /∈ {M1, . . . , Mq}), we let MM

be the set of n-bit blocks m such that (M,M ‖m) ∈ E and DM = |MM | be the
out-degree of vertex M . It is convenient to denote Di = DMi

and Mi = MMi

for all i ∈ [q]. A very useful fact we repeatedly use below is that

q∑

i=1

Di < q. (3)

This is because every edge (Mi,Mi ‖m) can be uniquely mapped to the shortest
message Mj such that Mi ‖m is a prefix of Mj .

The reduced message tree. An abridged version of the above tree, called the
reduced message tree and denoted T

π
= T

π
(M1, . . . , Mq), will be used in the defi-

nition of transcripts below. In particular, T
π

is obtained from Tπ(M1, . . . , Mq) =
(V,E, λ, γ) as follows. First, we check whether the following condition is true for
the given labels λ and γ, and if so, we let T

π
= �:

– There exists i ∈ [q] and M ∈ V \{Mi} such that λ(Mi) = λ(M); or
– For some i ∈ [q] and m ∈ Mi, there exists M ∈ V \{Mi ‖m} such that

λ(Mi ‖m) = λ(M).

This condition is met when a label of an actual message in {M1, . . . , Mq}, or of
one of its successor vertices, collides with some other label. (Labels not associated
with messages are allowed to collide with each other).

If the above condition is not true, we are going to selectively delete some
labels from T (setting them to ⊥) to obtain a new vertex- and edge-labeled tree,
which is the value taken by T . Specifically,

– For all i ∈ [q], we let λ(Mi) = ⊥.
– For all i ∈ [q] and all m ∈ Mi, we let γ(Mi,Mi ‖m) = ⊥.

In other words, we remove the information necessary to recover the values λ(Mi)
for all i ∈ [q].8

In Fig. 2, we explicitly show what is omitted when computing the reduced
message tree in the case where the tree is not reduced to equal �.
8 Note, however, that some information about these values can be deduced from the

rest of the labels using the fact that π is a permutation. As we will implicitly see
below, this information is irrelevant.

378 P. Gaži et al.

4.2 Interactions and Transcripts

We call a sequence of query/answer pairs (M1, Y1), . . . , (Mq, Yq) valid if the
adversary A asks indeed queries M1, . . . , Mq when fed with answers Y1, . . . , Yq

to its queries. (Since A is deterministic, the first query M1 only depends on A,
the second query only depends on A and the first answer Y1, etc.) Moreover, a
valid transcript has the form

τ = ((M1, Y1), . . . , (Mq, Yq), T
π
(M1, . . . , Mq)),

where (M1, Y1), . . . , (Mq, Yq) is valid, π : {0, 1}n → {0, 1}n is a permutation, and
T

π
(M1, . . . , Mq) is the reduced message tree for M1, . . . , Mq with respect to π.

We differentiate between the ways in which such valid transcripts are gener-
ated in the real and in the ideal worlds, respectively, by defining corresponding
distributions Treal and Tideal over the set of valid transcripts:

Real World. The transcript Treal for the adversary A is obtained by sampling
π

$← Perm(n), and letting

Treal = ((M1, Y1), . . . , (Mq, Yq), T
π
(M1, . . . , Mq)),

where we execute A, which asks queries M1, . . . , Mq answered with Yi =
TCBC[π](Mi) for all i ∈ [q], and we let T

π
(M1, . . . , Mq) be the correspond-

ing reduced message tree. Note that because A is fixed and deterministic,
Treal only depends on π, and thus we occasionally write Treal(π) for the cor-
responding map.

Ideal World. The transcript Tideal for the adversary A is obtained similarly
to the above. However, here we sample both a random permutation π

$←
Perm(n) and q independent random values Y1, . . . , Yq

$← {0, 1}r, and let

Tideal = Tideal(Y1, . . . , Yq, π) = ((M1, Y1), . . . , (Mq, Yq), T
π
(M1, . . . , Mq)),

where M1, . . . , Mq are the queries asked when executing A and answering
each query Mi with Yi, for all i ∈ [q]. We stress that here we are augmenting
the ideal world with an additional independent random permutation π which
does not actually exist in the original prf distinguishing game. This is in order
to make real- and ideal-world transcripts alike. In particular, the tree T

π
is

generated according to the permutation π.

Note that the range of Treal is included in the range of Tideal by definition, and
that the range of Tideal is easily seen to contain all valid transcripts.

4.3 The “H-Coefficient Method”: Good and Bad Transcripts

We upper bound the advantage A in distinguishing TCBC[π] for π
$← Perm(n)

from a random function using the statistical distance of the transcripts, i.e.,

AdvprfTCBC(A) � SD(Treal,Tideal) =
1
2

∑

τ

|Pr [Treal = τ] − Pr [Tideal = τ]| , (4)

The Exact PRF Security of Truncation 379

where the sum is over all valid transcripts. This is because a distinguisher for
Treal and Tideal, whose optimal advantage is exactly SD(Treal,Tideal), can always
output the same decision bit as A, ignoring any extra information provided by
the transcript.

To this end, we are going to use Patarin’s H-coefficient method [32], recently
revisited in [14]. Concretely, this means that we need to partition the set of
possible transcripts into good transcripts GT and bad transcripts BT to enable
effective usage of the following lemma.

Lemma 1 (The H-Coefficient Method). Let δ, ε ∈ [0, 1] be such that:

(a) Pr [Tideal ∈ BT] � δ.
(b) For all τ ∈ GT, Pr[Treal=τ]

Pr[Tideal=τ] � 1 − ε.

Then, AdvprfTCBC(A) � SD(Treal,Tideal) � ε + δ.

More verbally, we require that with very high probability (i.e., 1−δ) a generated
transcript in the ideal world is going to be in GT, and moreover, for each such
good transcript, the probabilities that it occurs in the real and in the ideal worlds
are roughly the same, i.e., at most a multiplicative factor 1 − ε apart.

Transcript-dependent quantities. Concretely, a transcript τ will be defined
as “good” if the associated reduced message tree T = (V,E, γ, λ) is not � and
not “too degenerate”. This requires introducing two relevant quantities. Before
doing so, however, we first note that T defines a partial permutation π on the
n-bit strings such that π(γ(e)) = λ(v) for every edge e with end-node v with
γ(e), λ(v) = ⊥, and π(x) = ⊥ for all other inputs.

We will make use of the following quantities, which connect the outputs
Y1, . . . , Yq with T .

Definition 1. Let τ = ((M1, Y1), . . . , (Mq, Yq), T = (V,E, γ, λ)) be a valid tran-
script with associated partial permutation π. Then, for all i ∈ [q] we define:

– N
(1)
i (τ) is the number of x ∈ {0, 1}n with π(x) = ⊥ and π(x)[1 . . . r] = Yi.

– N
(2)
i (τ) is defined as

N
(2)
i (τ) := |{z ∈ {0, 1}n : z[1 . . . r] = Yi ∧ ∃e ∈ E,m∈Mi : γ(e)=z ⊕ m}}| .

Moreover, for a ∈ {1, 2}, let N (a) =
∑q

i=1 N
(a)
i . If T = �, then these values are

set to 0.

Let us give some intuition on how the above quantities behave for an ideal-world
transcript. Note that π is defined on at most q · � values, and the value π(x),
when first defined, is obtained by sampling a (nearly) uniform random n-bit
string. Thus the expectation of N

(1)
i is roughly q�/2r, and in turn, N (1) should

be roughly q2�/2r.
Also, note that N

(2)
i is the number of n-bit strings z which are consistent

with Yi in their first r bits which have additionally the property that for some

380 P. Gaži et al.

message block m ∈ Mi, z ⊕ m is the (non-⊥) label of an edge in the reduced
message tree. Here, the intuition is that every edge label γ(e) in the partial tree
is uniform (this won’t be quite true, but let us assume it is), and therefore the
expectation of N

(2)
i should be (roughly) Diq�/2r, and thus, the expectation of

N (2) should also be roughly q2�/2r, using
∑

i Di � q.

Good transcripts. We require that in a good transcript τ the actual values of
N (1) and N (2) are not too far off their (heuristic) expected values we mentioned
above. Moreover, we also want that the reduced message tree is not degenerate,
i.e., even though we can’t see them, we want the guarantee that the labels of
the actual messages (and their successors) are unique – the failure to satisfy this
would be signalled by T = � by definition.

Definition 2 (Good Transcripts). Let τ = ((M1, Y1), . . . , (Mq, Yq), T) be a
valid transcript. We say that the transcript is good (and thus τ ∈ GT) if the
following properties are true (for t ≥ 1 as in the theorem statement):

(1) T = �.
(2) N (1)(τ) � 3q (qt�/2r + n).
(3) N (2)(τ) � (2n + 1)q2 + (3t + 1)q2�/2r + 8q2�4/2n+r.

We denote as GT the set of all good transcripts, and BT the set of all bad
transcripts, i.e., transcripts which can possibly occur (i.e., they are in the range
of Tideal) and are not good. More specifically, we denote by BTi the set of all
bad transcripts that do not satisfy the i-th property in the definition of a good
transcript above, hence we have BT =

⋃3
i=1 BTi.

4.4 High-Level Lemmas and Putting Pieces Together

Bounding the ratio. In Sect. 4.5 below, we are going to prove the following
lemma.

Lemma 2. For all good transcripts τ ∈ GT,

Pr[Treal=τ]
Pr[Tideal=τ] � 1 −

(
N(1)+N(2)

2n−r + 2q2

2n−r

)
. (5)

Bounding probability of bad transcripts. We now upper bound the prob-
abilities that a transcript sampled according to Tideal is bad via the following
lemmas, proved in the full version [22] for lack of space.

Lemma 3 (Bad-TranscriptAnalysis forBT1).Pr[Tideal ∈ BT1] � 16�q2/2n+
128�4q2/22n.

Lemma 4 (Bad-Transcript Analysis for BT2). For t � 1 as in the theorem
statement, Pr [BT2] � q/2n + (q · �)t+1/2nt.

Lemma 5 (Bad-Transcript Analysis for BT3). For all t � 1 as in the the-
orem statement, Pr [BT3] � q/2n + 8q�/2n−r + (q · �)t+1/2nt.

The Exact PRF Security of Truncation 381

The proof of Lemma 3 above uses and extends techniques inherited from the work
of [6] and in particular their analysis of prefix-free CBC. The proof requires some
extra work, since we are considering non-prefix free messages.

One would expect that the proofs of Lemmas 4 and 5 follow by application
of a simple Chernoff-like argument. Unfortunately, more work is required: First
off, the sampled values are not uniform, but only close to uniform. But more
importantly, Lemma 5 requires to prove a concentration bound on a series of
random variables (the edge labels) which are defined adaptively by an iterative
process when computing the reduced message tree. Our technique will essentially
show that most of the edge labels will exhibit a high degree of independence,
and only a small number of them will be defined by “recycled values” when
generating the tree.

Combining pieces. Therefore, we can apply Lemma 1 using ε and δ extracted
from the above lemmas. In particular,

ε =
N (1) + N (2)

2n−r
+

2q2

2n−r
� (6t + 1)�q2

2n
+

8nq2

2n−r
+

8q2�4

22n
,

and

δ =
2q

2n
+

8q�

2n−r
+

16�q2

2n
+

128�4q2

22n
+ 2

(q · �)t+1

2nt
.

In particular, we simplify

ε + δ � (6t + 17)
�q2

2n
+

8n · q2

2n−r
+

8q�

2n−r
+

2q

2n
+

136�4q2

22n
+

2qt+1�t+1

2nt
.

4.5 Lower Bounding the Probability Ratio (Proof of Lemma 2)

We fix a good transcript τ = ((M1, Y1), . . . , (Mq, Yq), T) ∈ GT, where T =
(V,E, λ, γ) = �. To start with, we define the set Ω[τ] of π’s consistent with τ
in the real world, i.e.,

Ω[τ] := {π ∈ Perm(n) : Treal(π) = τ} .

Moreover, let Ω′[τ] be the set of permutations π which are consistent with the
labels of the reduced message tree T , however TCBCπ(Mi) does not need to
equal Yi for all i. More formally,

Ω′[τ] :=
{

π ∈ Perm(n) : T
π
(M1, . . . , Mq) = T

}
.

Now, we define

p(τ) :=
|Ω[τ]|
|Ω′[τ]| = Pr

[
π

$← Ω′[τ] : π ∈ Ω[τ]
]
.

This is the probability that a random permutation π consistent with the con-
straints on the reduced message tree also yields TCBCπ(Mi) = Yi for all i ∈ [q].9

9 Note that sampling such a π is not the same as sampling a random π which is
consistent with π. The latter may allow for some permutations which are not possibly
generating a message tree which can be reduced to T .

382 P. Gaži et al.

The following claim will reduce lower bounding the probability ratio to lower
bounding p(τ) for τ ∈ GT, and its proof is omitted here.

Claim (1). For all good transcripts τ ∈ GT, Pr[Treal=τ]
Pr[Tideal=τ] = 2r·q · p(τ).

It is easy to see that the ordering of (M1, Y1), . . . , (Mq, Yq) does not affect p(τ),
and we therefore assume without loss of generality that it is prefix-preserving,
i.e., if Mi | Mj , then i < j. Let ei be the edge leading to Mi.

To study p(τ), we consider an iterative process where we extend π defined
by T as above, setting the values of π(γ(ei)) = λ(Mi) for i = 1, . . . , q one after
the other in this order. Moreover, upon setting λ(Mi) = π(γ(ei)) ← Zi, for all
m ∈ Mi, we do the following:

– We set γ(Mi,Mi ‖m) ← Zi ⊕ m
– If we know the value λ(Mi ‖m), we set π(Zi ⊕ m) ← λ(Mi ‖m).10

Note that depending on the choice of the Zi’s, the resulting π may or may not
be a partial permutation, or we may overwrite values, etc. We will of course be
only interested in sequences of Zi’s which maintain the permutation property.

To this end, let L = L(T , (M1, Y1), . . . , (Mq, Yq))) be the set of sequences
(z1, . . . , zq) of distinct q values such that zi[1 . . . r] = Yi for all i ∈ [q] and when
assigning λ(Mi) ← zi for all i ∈ [q] in the above process, at the end of the process
the labels λ(Mi) = zi are unique (i.e., no other vertex has the same label) and
moreover, for all i ∈ [q] and all m ∈ Mi, we also have that λ(Mi ‖m) is a unique
label.

The following claim is proved in the full version [22] and reduces the problem
of lower bounding p(τ) to that of lower bounding the size of L.

Claim (2). For all good transcripts τ ∈ GT, p(τ) ≥ |L|
2nq .

The lower bound on |L|. Here, to lower bound |L|, we go through the above
process, and assuming z1, . . . , zi−1 have been fixed, we see how many ways we
still have to fix zi satisfying the invariant that it is still possible to reach sequence
(z1, . . . , zq) ∈ L. In particular, at every step, we are going to exclude values zi

with the following properties:

(1) zi[1 . . . r] = Yi

(2) There exists 1 � j < i such that zj = zi.
(3) There exists M /∈ {M1, . . . , Mq} with λ(M) = zi.
(4) There exists 1 � j < i, m′ ∈ Mj , m ∈ Mi such that m ⊕ zi = m′ ⊕ zj .
(5) There exists a n-bit value m ∈ Mi and an edge e ∈ E with tail node not in

{M1, . . . , Mq} such that γ(e) = zi ⊕ m.

It is clear that we reach a sequence in L if at every step we pick a non-excluded
value. In particular, note that (4) and (5) are necessary for us to ensure that
the edge labels leading to successor vertices of Mi are fresh, which is necessary
to ensure that the sequence is in L.
10 Note that if for some m ∈ Mi, we have λ(Mi ‖ m) = ⊥, then (Mi, m) = ej for j > i,

and will be set later in the process.

The Exact PRF Security of Truncation 383

Now, for every i, note that due to condition (1) there are initially 2n−r

possible values for zi, i.e., all strings with the first r bits equal to Yi. However,
we need to remove all strings satisfying any of (2)–(5) above. These can be
counted as follows:

(2) There are at most i � q such values.
(3) In order for M to be such that λ(M) = zi, we need to have λ(M)[1 . . . r] = Yi,

but we know that there are at most N
(1)
i such vertices by definition.

(4) Note that for every j ∈ [i− 1], there are exactly Dj possible values m′ ∈ Mj

which can be combined with a value m ∈ Mi (there are Di of those) to get
a possible “forbidden” value zi = zj ⊕ m ⊕ m′, and thus we need to exclude
Di · ∑i−1

j=1 Dj � q · Di possible values.

(5) This is exactly the definition of N
(2)
i .

Therefore, we can now lower bound |L| as

|L| �
q∏

i=1

(2n−r − N
(1)
i − N

(2)
i − q − q · Di)

� 2q·(n−r) ·
(

1 − N (1) + N (2)

2n−r
− 2q2

2n−r

)

, (6)

where we used the fact that
∏

i(1 − xi) � 1 − ∑
i xi, and that

∑q
i=1 q · Di � q2.

5 Security Analysis of Sponge-Based PRFs

In this final section, we turn to discussing security of sponge-based PRFs. We
first discuss the constructions considered in this section.

Sponge-Based MAC. As in the TCBC case above, we fix parameters n, r and
an injective padding scheme pad : {0, 1}∗ → ({0, 1}n)+. Then, the construc-
tion Sponge = Sponger,pad[π] : {0, 1}κ × {0, 1}∗ → {0, 1}r, using a permuta-
tion π ∈ Perm(n), on input M ∈ {0, 1}∗ and key K ∈ {0, 1}κ, first computes
K[1] . . . K[w]M [1] . . . M [�] ← pad(K ‖M). Then, it outputs S�[1 . . . r] (the first
r bits of S�), where

V0 ← 0n , Vi ← π(K[i] ⊕ Vi−1) for i = 1, . . . , w,

S0 ← Vw , Si ← π(M [i] ⊕ Si−1) for i = 1, . . . , �.

We are explicitly assuming (for simplicity) that the (padded) keys and the actual
message end up in different blocks, and hence our naming conventions.11

Different from the actual hash-function instantiations, the presented Sponge
construction is more general in that it allows for processing n-bit input blocks
in the absorption phase. We can retrieve the originals sponge construction and
11 Our results can be extended to the more general case, but we avoid the notational

overhead in this version of the paper.

384 P. Gaži et al.

SHA-3 instantiations as special case — shorter blocks can be enforced by the
padding function pad, which we only require to be injective, but an added benefit
of our analysis is that it shows that such shorter blocks are not necessary. The
construction Sponger,pad[π] using a customary padding padb that enforces b-bit
blocks is depicted in Fig. 3.

Fig. 3. Sponge construction. Representation of Sponger,padb
[π] used with a padding

scheme padb that enforces b-bit blocks.

We also consider a variant of the construction – called GSponge – that takes
an n-bit key K and differs from Sponge in that it directly sets S0 ← K instead
of absorbing the key to obtain Vw. The construction is similar to some other
MAC designs such as donkeySponge [9] and Pelican [16].

Security analysis of GSponge. We prove the following theorem:

Theorem 2 (Security of GSponge). Let A be a prf-adversary in the ideal-
permutation model, making at most qπ queries to π and at most qC queries of
length at most � < 2n/4 blocks to the construction (either GSponger,pad[π] for a
random n-bit key K or a random function). Then, for all t � 1,

AdvprfGSponger,pad,π
(A) � (6t + 17)�q2C + 7�qπqC + 2qC

2n
+

6nq2C + 8�qC + qπqC

2n−r

+
136�4q2C

22n
+

2(�qC)t+1

2nt
. (7)

This bound substantially improves the previously known bound from [8], which
was of the order O(�2q2

C+�qCqπ

2n−r). (We discuss the subtleties of the bound in [2] in
detail in the full version [22]). For sufficiently large t and for � < 2n/4, the first
two terms are the leading terms. If we additionally assume that � < 2r, then the
bound becomes of order O(q2

C+qCqπ+�qC

2n−r). In the full version [22], we prove that
this is tight when additionally max{qπ, qC} � �.

The proof of Theorem 2 adapts the proof strategy of Theorem 1 to the set-
ting of sponges. The GSponge and TCBC constructions are in fact the same, with
the main difference that the initial value in GSponge is set to a random secret
key and the underlying permutation π can be evaluated by the adversary. Intu-
itively, however, one can show that thanks to the random secret key, no internal
permutation query in a construction query intersects with a direct permutation
query by the attacker, except with probability O(� · qCqπ/2n). Conditioned on
the event that such intersection does not occur, the distinguishing bound (in
terms of construction queries) is roughly the same as the one of TCBC.

The Exact PRF Security of Truncation 385

Replacing the Uniform Key. We now address security of the Sponge con-
struction when using the customary padding padb, where the (κ = w · b)-bit key
K is first split into w b-bit blocks as K[1] · · · K[w], each of them is padded with
n−b trailing zeroes and absorbed by the construction, as depicted in Fig. 3. The
proof of the following theorem is found in the full version [22], and relies on a
detailed analysis of the key absorption mechanism which shows that the behav-
iors of GSponge and Sponge are indistinguishable given enough key material.

Theorem 3 (Security of Sponge). Let A be a prf-adversary in the ideal-
permutation model, making at most qπ queries to π and at most qC queries of
length at most � < 2n/4 blocks to the construction (either Sponger,padb

[π] with
the padding padb and a random (w · b)-bit key, or a random function). Then, for
all t � 1, and q = qπ + �qC < 2n−b, we have

AdvprfSponger,padb
,π(A) � At(qc, qπ, �) +

wq

2n
+ min

{
q

2
b−log(3n)−1

2 w
,

q

2bw
+

q2

2n−b

}

,

where At denotes the expression on the right-hand side of inequality (7). More-
over, if w = 1 then one can replace the whole min-term by q/2bw.

We remark that our proof is highly involved for the case where q2 > 2n−b, where
q = qπ + qC · � is the overall number of queries to π in the experiment, and
requires an adaptation of combinatorial techniques proposed in [17].

The standard-model bounds. We combine an approach by Chang et al. [13]
(also used in [2]) with our improved bound for TCBC. In particular, we measure
security of the underlying permutation π in terms of the advantage Adv(r,⊕)-prp

π (B)
of an adversary in distinguishing the map M �→ (0r ‖K)⊕π(M ⊕(0r ‖K)) under

a random secret key K
$← {0, 1}n−r from τ

$← Perm(n). In the full version [22],
we prove and discuss the following theorem.

Theorem 4 (Standard-Model Security of GSponge). Let π ∈ Perm(n) and
pad : {0, 1}∗ → ({0, 1}n)+ a padding scheme. Let A be a prf-adversary making
at most q queries, each of length at most � < 2n/4 n-bit blocks (after padding).
Then, there exists an (⊕, r)-prp-adversary B such that for any t � 1,

AdvprfGSponger,pad[E]
(A) � Adv(r,⊕)-prp

π (B) + B(q, �, n, r, t),

where B has Time(B) = Time(A) + O(q · �) and makes at most q · � permutation
queries, and B(q, �, n, r, t) is the term on the right-hand-side of Theorem 1.

Acknowledgments. We thank Mihir Bellare for insightful feedback, and Bart Mennink
for technical comments. Gaži and Pietrzak’s work was partly funded by the European
Research Council under an ERC Starting Grant (259668-PSPC). Tessaro’s research was
partially supported by NSF grant CNS-1423566, by a gift from the Gareatis Foundation,
and by the Culler Chair. Part of this work was done while the third author was visiting
IST Austria.

386 P. Gaži et al.

References

1. SHA-3 standard. National Institute of Standards and Technology (NIST), Draft
FIPS Publication 202, U.S. Department of Commerce, April 2014

2. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge
constructions using a modular proof approach. In: FSE 2015. LNCS (2015, to
appear)

3. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer,
Heidelberg (2006)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994)

6. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer,
Heidelberg (2005)

7. Bernstein, D.J.: A short proof of the unpredictability of cipher block chaining
(2005). http://cr.yp.to/antiforgery/easycbc-20050109.pdf

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed
sponge construction. In: Symmetric Key Encryption Workshop (SKEW), February
2011

9. Bertoni, G., Daemen, J., Peeters, M.: Permutation-based encryption, authentica-
tion and authenticated encryption. In: Directions in Authenticated Ciphers (2012)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013)

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008)

12. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000)

13. Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A keyed sponge construc-
tion with pseudorandomness in the standard model. In: Proceedings of the Third
SHA-3 Candidate Conference (2012)

14. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

15. Computer data authentication. National Bureau of Standards, NBS FIPS PUB
113, U.S. Department of Commerce, May 1985

16. Daemen, J., Rijmen, V.: The mac function pelican 2.0. Cryptology ePrint Archive,
Report 2005/088 (2005). http://eprint.iacr.org/

17. Dai, Y., Lee, J., Mennink, B., Steinberger, J.: The security of multiple encryption
in the ideal cipher model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 20–38. Springer, Heidelberg (2014)

18. Dodis, Y., Ristenpart, T., Steinberger, J.P., Tessaro, S.: To hash or not to hash
again? (In)differentiability results for h2 and HMAC. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg
(2012)

http://cr.yp.to/antiforgery/easycbc-20050109.pdf
http://eprint.iacr.org/

The Exact PRF Security of Truncation 387

19. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

20. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptology 10(3), 151–162 (1997)

21. Gaži, P., Pietrzak, K., Rybár, M.: The exact PRF-security of NMAC and HMAC.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp.
113–130. Springer, Heidelberg (2014)

22. Gaži, P., Pietrzak, K., Tessaro, S.: The exact PRF security of truncation: Tight
bounds for keyed sponges and truncated CBC. Cryptology ePrint Archive, Report
2015/053 (2015). Full version of this paper

23. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol.
196, pp. 276–288. Springer, Heidelberg (1985)

24. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

25. Iwata, T., Kurosawa, K.: Stronger security bounds for OMAC, TMAC, and XCBC.
In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 402–
415. Springer, Heidelberg (2003)

26. Koblitz, N., Menezes, A.: Another look at HMAC. Cryptology ePrint Archive,
Report 2012/074 (2012). http://eprint.iacr.org/2012/074

27. Kurosawa, K., Iwata, T.: TMAC: two-key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

28. Information technology security techniques message authentication codes (macs)
part 1: Mechanisms using a block cipher. ISO/IEC 9797–1 (1999)

29. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

30. Minematsu, K., Matsushima, T.: New bounds for PMAC, TMAC, and XCBC. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 434–451. Springer, Heidelberg
(2007)

31. Nandi, M.: A simple and unified method of proving indistinguishability. In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 317–334. Springer,
Heidelberg (2006)

32. Patarin, J.: The “Coefficients H” technique (invited talk). In: Avanzi, R.M.,
Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer,
Heidelberg (2009)

33. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. J. Cryptology
13(3), 315–338 (2000)

34. Pietrzak, K.: A tight bound for EMAC. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 168–179. Springer, Heidelberg
(2006)

35. Vandewalle, J., Chaum, D., Fumy, W., Jansen, C.J.A., Landrock, P., Roelofsen,
G.: A european call for cryptographic algorithms: RIPE; race integrity primitives
evaluation. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 267–271. Springer, Heidelberg (1990)

36. Vaudenay, S.: Decorrelation over infinite domains: the encrypted CBC-MAC case.
In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 189–201.
Springer, Heidelberg (2001)

http://eprint.iacr.org/2012/074

An Algebraic Framework for Pseudorandom
Functions and Applications to Related-Key

Security

Michel Abdalla(B), Fabrice Benhamouda(B), and Alain Passelègue(B)

ENS, CNRS, INRIA, and PSL, École normale supérieure, 45 Rue d’Ulm,
75230 Paris Cedex 05, France

{michel.abdalla,fabrice.ben.hamouda,alain.passelegue}@ens.fr

Abstract. In this work, we provide a new algebraic framework for
pseudorandom functions which encompasses many of the existing alge-
braic constructions, including the ones by Naor and Reingold (FOCS’97),
by Lewko and Waters (CCS’09), and by Boneh, Montgomery, and
Raghunathan (CCS’10), as well as the related-key-secure pseudoran-
dom functions by Bellare and Cash (Crypto’10) and by Abdalla et al.
(Crypto’14). To achieve this goal, we introduce two versions of our frame-
work. The first, termed linearly independent polynomial security, states
that the values (gP1(�a), . . . , gPq(�a)) are indistinguishable from a random
tuple of the same size, when P1, . . . , Pq are linearly independent mul-
tivariate polynomials of the secret key vector �a. The second, which is
a natural generalization of the first framework, additionally deals with
constructions based on the decision linear and matrix Diffie-Hellman
assumptions. In addition to unifying and simplifying proofs for exist-
ing schemes, our framework also yields new results, such as related-key
security with respect to arbitrary permutations of polynomials. Our con-
structions are in the standard model and do not require the existence of
multilinear maps.

1 Introduction

Pseudorandom functions (PRFs), originally defined by Goldreich, Goldwasser,
and Micali [19], are one of the most fundamental primitives in cryptography.
Informally speaking, a function is said to be pseudorandom if its outputs are
indistinguishable from that of a random function with respect to a computa-
tionally bounded adversary which only has black-box access to it. Hence, even
if the adversary can control the inputs on which the function is computed and
see the corresponding outputs, he or she should still not be able to distinguish
this function from a perfectly random one.

Due to their simplicity and security properties, pseudorandom functions have
been used in numerous applications, including symmetric encryption, authenti-
cation, and key exchange. In particular, since pseudorandom functions can be
used to model real-world block-ciphers, such as AES [3], they are also extremely
useful for the security analysis of protocols that rely on these primitives.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 388–409, 2015.
DOI: 10.1007/978-3-662-47989-6 19

An Algebraic Framework for Pseudorandom Functions and Applications 389

Number-Theoretic Constructions. Despite its elegance, the original con-
struction of pseudorandom functions by Goldreich, Goldwasser, and Micali based
on pseudorandom generators was not very efficient. In order to improve its effi-
ciency while still being able to prove its security under reasonable complexity
assumptions, Naor and Reingold [27] proposed a new construction based on the
Decisional Diffie-Hellman assumption (DDH) [27]. Let �a = (a0, . . . , an) ∈ Z

n+1
p

be the key and x = x1 ‖ . . . ‖ xn ∈ {0, 1}n be the input of the PRF. Let g be a
fixed public generator of a group G of prime order p. The Naor-Reingold PRF
is then defined as

NR(�a, x) =

[

a0

n∏

i=1

axi
i

]

where for any a ∈ Zp, [a] stands for ga, as defined in [18].
As mentioned in [17], the algebraic nature of the Naor-Reingold PRF has

led to many applications, such as verifiable random functions [2,22], distrib-
uted PRFs [27], and related-key-secure PRFs [8], which are hard to obtain from
generic PRFs. Hence, due to its importance, several other extensions of the
Naor-Reingold PRF have been proposed [17,26] based on different assumptions,
such as the Decision Linear assumption (DLin) [15] and the d-DDHI assumption
[17,20].

In this work, our main contribution is to further extend the above line of work
by providing a generic algebraic framework for building pseudorandom functions.
In particular, all of the algebraic constructions mentioned above can be seen as a
particular instantiations of our framework. In addition, our framework is general
enough that it captures and extends other constructions such as the related-key-
secure PRF constructions by Bellare and Cash [8] (BC) and by Abdalla et al. [1]
(ABPP).

Linearly Independent Polynomial Security. To obtain our results, our first
contribution is to introduce a new notion of linearly independent polynomial
(LIP) security. Informally, it states that the values ([P1(�a)] , . . . , [Pq(�a)]) are
indistinguishable from a random tuple of the same size, when P1, . . . , Pq are
linearly independent multivariate polynomials of degree at most d in any inde-
terminate and �a is the PRF secret key vector. The new notion is based on a
new MDDH assumption [18] over the underlying group G, denoted E1,d-MDDH,
which can be (tightly) reduced to either DDH or DDHI depending on value of d.

In order to illustrate the usefulness of the new notion, we show in Sect. 4 how
to use it to provide alternative security proofs for the Naor-Reingold PRF [27]
and the PRF by Boneh, Montgomery, and Raghunathan (BMR) in [17] as well as
generalizations of both these PRFs, that we call weighted NR and weighted BMR.
Intuitively, all these PRFs are defined over a prime order group G = 〈g〉 as a
function F that takes a key �a and an input x and outputs an element in G of the
shape F (�a, x) = [Px(�a)] where the polynomial Px depends on x. Hence, to prove
the security of such constructions, we just need to prove that all polynomials
Px, for any entries x, are linearly independent.

390 M. Abdalla et al.

We would like to remark that the actual formulation of the LIP security in
Sect. 3 includes a value a′ ∈ Zp multiplying each Pi(�a) term, which allows for the
use of different generators in the PRF constructions. While we could dispense
with a′ in the case where a′ and the ai values in �a are scalars, we opted to use it
to be consistent with the case in which these values are matrices, as in Sect. 6.

Applications to Related-Key Security. Related-key attacks (RKAs) were
first introduced by Biham and Knudsen [11,24] and consider the setting in which
an adversary could force a given cryptographic primitive to execute under a dif-
ferent but related key. Over the years, such attacks became more predominant
and several related-key attacks have been proposed against existing block-ciphers
(e.g., [12,13,23]). Since these attacks are quite powerful and hard to defend
against, Bellare and Kohno [9] introduced a formal treatment of these attacks in
the context of PRFs and pseudorandom permutations (PRPs) to better under-
stand if and how one could achieve security in the presence of related-key attacks.
One of their main observations is that certain classes of related-key attacks are
impossible to protect against and, hence, their goal was to identify the set of
classes Φ for which one could design secure RKA-PRFs and RKA-PRPs.

Let F : K × D → R be a family of functions for a security parameter κ, and
let Φ = {φ: K → K} be a set of related-key deriving (RKD) functions on the
key space K. Let G: K × D → R be a random function and let K ∈ K be a
random target key. Informally, in the RKA security model of [9], F is said to
be a Φ-RKA-PRF if no polynomial-time adversary can distinguish the output
of F (φ(K), x) from the output of G(φ(K), x), for pairs (φ, x) of its choice, with
non-negligible probability.

Our second contribution is to show that the new LIP security notion can
be used to prove directly the related-key security of certain constructions. In
particular, we show that a particular case of our weighted BMR PRF construction
is secure against permutations of the secret key. In these attacks, the attacker
can obtain the output of the PRF with respect to any key that is a permutation
of the original one.

To understand why RKA security can follow from the LIP security notion,
let F be a PRF defined over a prime-order group G = 〈g〉 that takes a key �a and
an input x and outputs F (�a, x) = [Px(�a)]. Let Φ be a class of RKD functions,
where functions �φ = (φ1, . . . , φn) ∈ Φ are such that φi are multivariate polyno-
mials in Zp[T1, . . . , Tn]. Then, for a RKD function �φ and an input x, the PRF

outputs F (�φ(�a), x) =
[
P�φ,x(�a)

]
, where the polynomial P�φ,x(�T) = Px(�φ(�T)) =

Px(φ1(�T), . . . , φn(�T)) depends on �φ and x, with �T = (T1, . . . , Tn). Hence, when
all polynomials P�φ,x are linearly independent, the LIP security notion directly
shows that F is Φ-RKA-secure.

Related-Key Security with Respect to Unique-Input Adversaries.
Unfortunately, the case in which the polynomials P�φ,x are all linearly indepen-
dent is not so easy to instantiate as we would like, and we have only been able to
directly obtain RKA security for very restricted classes. Hence, to overcome these
restrictions, our third contribution is to further extend our results in Sect. 5.2

An Algebraic Framework for Pseudorandom Functions and Applications 391

to deal with the case where polynomials are only linearly independent when all
the inputs x are distinct. This scenario is similar to the one considered in [1].
In particular, our new algebraic framework extends the one from [1] and provides
constructions for new and larger classes of RKD functions. More precisely, we
build in Sect. 5.2 RKA-PRFs against classes of permutations of univariate poly-
nomials. Furthermore, in the full version, we also consider classes of univariate
polynomials and multivariate affine RKD functions.

For simplicity, the results in Sect. 5.2 only hold with respect to PRFs of the
form [Px(�a)] where Px is a polynomial that depends on x. However, a more
general framework which does not make this assumption is described in the full
version.

An Algebraic Framework for Non-commutative Structures. Finally, our
last contribution is to extend the LIP security notion to work under weaker
assumptions than DDH, such as DLin. As we point out in Sect. 6, the main
difficulty in this case is that the key values ai’s may be matrices, which do not
necessarily commute. To address this issue, we introduce natural conditions on
the order of indeterminates which makes non-commutative and commutative
polynomials behave in a similar manner. Through the new generalization, we
not only deal with cases already covered by the LIP security notion, but we also
capture PRFs based on the DLin and MDDH assumptions [18].

Further Discussions. In addition to the foundational work of Goldreich,
Goldwasser, and Micali [19], several other frameworks for constructing PRFs
have appeared in the literature, including [7,17,28] to name a few.

In [28], Naor and Reingold proposed the notion of pseudorandom synthe-
sizers and provided several instantiations for it based on different complexity
assumptions. Informally speaking, a pseudorandom synthesizer is a two-variable
function, S(·, ·), so that, for polynomially many random and independent input
assignments (x1, . . . , xm) and (y1, . . . , ym), the set of values {S(xi, yj)} are com-
putationally indistinguishable from uniform for i and j in {1, . . . , m}.

In [7], Bellare, Canetti, and Krawczyk provide a framework for building
variable-length input PRFs from fixed-length input ones, known as the cascade
construction. In their framework, one obtains a larger-domain PRF F ′ simply
by partitioning the input x into a number n of small blocks x1, . . . , xn matching
the domain of the underlying PRF F and using the output of F on key ki and
input xi as the secret key ki+1 for the next stage. Since their framework requires
the output of the underlying PRF to be at least as long as the secret key, it
cannot be applied to PRFs with very small domains.

To circumvent the restrictions of the cascade construction, Boneh,
Montgomery, and Raghunathan proposed an extension in [17], known as the
augmented cascade construction, in which supplemental secret information is
provided in every iteration. Unlike the cascade construction, its security does
not follow from the standard security of the underlying PRF, requiring it to
meet a new notion called parallel security.

While these frameworks are more general than ours and capable of han-
dling different complexity assumptions (e.g., [6]), they are more combinatorial

392 M. Abdalla et al.

in nature and do not fully exploit the algebraic nature of the underlying PRFs.
In particular, it is not clear how to extend them to the RKA setting, which is one
of the main applications of our new algebraic framework. Moreover, even in the
standard PRF setting, our framework seems to possess complementary features
compared to the existing ones. Notably, it only requires the verification of an
algebraic condition (such as testing the linear independence of the polynomials)
for each instantiation, which is generally easier to prove.

Other Related Work. It is worth mentioning that in the context of related-
key security, Lewi, Montgomery and Raghunathan [25] designed RKA-PRFs for
similar classes of polynomial RKD functions. However, unlike their constructions,
ours do not require multilinear maps. Also, our constructions are proven fully
RKA-secure while theirs are only proven unique-input RKA-secure.

2 Definitions

Notations and Conventions. We denote by κ the security parameter. Let
F : K × D → R be a function that takes a key K ∈ K and an input x ∈ D
and returns an output F (K,x) ∈ R. The set of all functions F : K × D → R
is then denoted by Fun(K,D,R). Likewise, Fun(D,R) denotes the set of all
functions mapping D to R. If S is a set, then |S| denotes its size. We denote
by s

$← S the operation of picking at random s in S. If �x is a vector then
we denote by |�x| its length, so �x = (x1, . . . , x|�x|). For a binary string x, we
denote its length by |x| so x ∈ {0, 1}|x|, xi its i-th bit, so x = x1 ‖ . . . ‖ xn.
We extend these notations to any d-ary string x, for d ≥ 2. For a matrix A
of size k × m, we denote by ai,j the coefficient of A in the i-th row and the
j-th column. For a vector �φ = (φ1, . . . , φn) of n functions from S1 to S2 with
|�φ| = n and �a ∈ S1, we denote by �φ(�a) the vector (φ1(�a), . . . , φn(�a)) ∈ Sn

2 . We
denote by Zp[T1, . . . , Tn] the ring of multivariate polynomials in indeterminates
T1, . . . , Tn. For a polynomial P ∈ Zp[T1, . . . , Tn], we denote P (T1, . . . , Tn) by
P (�T) and by P (�a) the evaluation of P by setting �T to �a, meaning that we set
T1 = a1, . . . , Tn = an. For F : K × D → R and for a vector �x over D, we denote
by F (K,�x) the vector (F (K,x1), . . . , F (K,x|�x|)). We denote by Sn the set of
all permutations of {1, . . . , n}.

Finally, we often implicitly consider a multiplicative group G = 〈g〉 with
public generator g of order p and we denote by [[] g]a, or simply [a] if there is
no ambiguity about the generator, the element ga, for any a ∈ Zp. Similarly, if
A is a matrix in Z

k×m
p , [A] is a matrix U ∈ G

k×m, such that ui,j = [ai,j] for
i = 1, . . . , k and j = 1, . . . , m.

Games [10]. Most of our definitions and proofs use the code-based game-playing
framework, in which a game has an Initialize procedure, procedures to respond
to adversary oracle queries, and a Finalize procedure. To execute a game G
with an adversary A , we proceed as follows. First, Initialize is executed and
its outputs become the input of A . When A executes, its oracle queries are

An Algebraic Framework for Pseudorandom Functions and Applications 393

answered by the corresponding procedures of G. When A terminates, its outputs
become the input of Finalize. The output of the latter, denoted GA is called
the output of the game, and we let “GA ⇒ 1” denote the event that this game
output takes the value 1. The running time of an adversary by convention is
the worst case time for the execution of the adversary with any of the games
defining its security, so that the time of the called game procedures is included.

PRFs [8,19]. The advantage of an adversary A in attacking the standard PRF
security of a function F : K × D → R is defined via

Advprf
F (A) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]
.

Game PRFRealF first picks K
$← K and responds to oracle query Fn(x) via

F (K,x). Game PRFRandF first picks f
$← Fun(D,R) and responds to oracle

query Fn(x) via f(x).

RKA-PRFs [8,9]. Let F : K × D → R be a function and Φ ⊆ Fun(K,K). The
members of Φ are called RKD (Related-Key Deriving) functions. An adversary is
said to be Φ-restricted if its oracle queries (φ, x) satisfy φ ∈ Φ. The advantage of a
Φ-restricted adversary A in attacking the RKA-PRF security of F is defined via

Advprf-rka
Φ,F (A) = Pr

[
RKPRFRealAF ⇒ 1

]
− Pr

[
RKPRFRandA

F ⇒ 1
]
.

Game RKPRFRealF first picks K
$← K and responds to oracle query

RKFn(φ, x) via F (φ(K), x). Game RKPRFRandF first picks K
$← K and

G
$← Fun(K,D,R) and responds to oracle query RKFn(φ, x) via G(φ(K), x).

We say that F is a Φ-RKA-secure PRF if for any Φ-restricted adversary, its
advantage in attacking the RKA-PRF security is negligible.

Group Generators. All our PRFs and RKA-PRFs use a cyclic group of prime
order p. The generator(s) used in their construction is supposed to be public. In
particular, RKD functions cannot modify the generator(s). Our security proofs
will then start by giving the generators to the adversary.

Hardness Assumptions. To get a simpler and unified framework, we introduce
a particular MDDH assumption [18]: the Ek,d-MDDH assumption, defined by the
matrix distribution Ek,d which samples matrices Γ as follows

Γ =

⎛

⎜
⎜
⎜
⎝

A0
1 · A0

A1
1 · A0

...
Ad

1 · A0

⎞

⎟
⎟
⎟
⎠

∈ Z
k(d+1)×k
p with A0,A1

$← Z
k×k
p . (1)

The advantage of an adversary D against the Ek,d-MDDH assumption is

AdvEk,d-mddh
G

(D) = Pr [D(g, [Γ] , [Γ · W])] − Pr [D(g, [Γ] , [U])],

394 M. Abdalla et al.

Table 1. Security of Ek,d-MDDH

k = 1 k = 2 k ≥ 3

d = 1 = Advddh
G � 2 · AdvU2-mddh

G
� k · Adv

Uk-mddh
G

d ≥ 2 � d · Advd-ddhi
G generic bilinear groupa ?b

Advddh
G

,Advd-ddhi
G

andAdv
Uk -mddh

G
are advantages forDDH,DDHI, and Uk-MDDH.

This latter assumption is weaker than k-Lin;
a Proven in the generic (symmetric) bilinear group model [14] in the full version;
b (Trivially) secure in the generic cyclic group model [30], but nothing known

about security in generic (symmetric) k-linear group model [21,29]

where Γ
$← Ek,d, W

$← Z
k×1
p , U $← Z

k(d+1)×1
p . As any MDDH assumption and

as recalled in the full version, this assumption is random self-reducible, which
enables us to make relatively tight proofs.

In Table 1, we summarize security results for Ek,d-MDDH. For k = 1 or d = 1,
the Ek,d-MDDH assumption is implied by standard assumptions (DDH, DDHI,
or k-Lin, recalled in the full version). E1,1-MDDH is actually exactly DDH.

For our RKA framework, we also make use of the d-Strong Discrete Loga-
rithm (SDL) problem given in [20] and recalled in the full version.

3 Linearly Independent Polynomial Security

In this section, we define a new security notion, termed linearly indepen-
dent polynomial (LIP) security, which captures that, given a cyclic group
G = 〈g〉 of prime order p, the hardness of distinguishing a tuple (y1, . . . , yq) =
([P1(�a) · a′] , . . . , [Pq(�a) · a′]) ∈ G

q from a random tuple in (y1, . . . , yq)
$← G

q,
where �a is a secret random vector in Z

n
p , a′ is a secret random scalar in Zp, and

Pj are linearly independent multivariate polynomials. Our LIP theorem (Theo-
rem 1) shows that distinguishing these two tuples is harder than the E1,d-MDDH
problem in G, where d is the maximum degree in one indeterminate in polynomi-
als P1, . . . , Pq. We point out that, on the one hand, if there were a linear relation
between the polynomials, i.e., if there exists (λ1, . . . , λq) ∈ Z

q
p\{(0, . . . , 0)}, such

that
∑q

j=1 λjPj = 0, then it would be straightforward to break the LIP security
by checking whether

∏q
j=1 yj

λj = 1 (real case) or not (random case). So the
linear independence of the Pj ’s is required.

On the other hand, if the polynomials Pj are linearly independent, then
distinguishing the two tuples is hard in the generic group model, since in this
model, the adversary can only compute linear combinations of the group elements
it is given (and check for equality). The LIP security is therefore not surprising.
What is surprising, is that it is possible to prove it under classical assumptions
such as E1,d-MDDH, without an exponential blow-up.

In the following, we first consider a particular case of the LIP theorem in
which the polynomials are given in their expanded form. This section not only
serves as a warm-up for the sequel, but it also helps better grasp the challenges
of the proof of the full theorem and gives a nice overview. Next, we formally
state the LIP theorem.

An Algebraic Framework for Pseudorandom Functions and Applications 395

3.1 Warm-Up: Expanded Multilinear Polynomials

As a warm-up, let us first suppose the polynomials Pj are multilinear and given
in their expanded form: Pj ∈ Zp[T1, . . . , Tn] and

Pj(�T) =
∑

i∈{0,1}n

αj,iT
i1
1 · · · T in

n .

There are 2n monomials T i1
1 · · · T in

n , even in that restricted case. So we need to
suppose that either n is logarithmic in the security parameter, or, more generally,
only a polynomial (in the security parameter) number of αj,i are non-zero.

Let us now prove the LIP security of these polynomials. In the real case, we
have:

yj = [Pj(�a)a′] =

⎡

⎣
∑

i∈{0,1}n

αj,ia
i1
1 · · · ain

n a′

⎤

⎦ =
∏

i∈{0,1}n

NR((a′,�a), i)αj,i , (2)

where NR((a′,�a), i) =
[
a′ ∏n

k=1 aik

k

]
(for i ∈ {0, 1}n). NR is a secure PRF under

the DDH assumption, meaning that all the values NR((a′,�a), i) for all i ∈ {0, 1}n

look independent and uniformly random. Let us write �U the column vector, with
rows indexed by i ∈ {0, 1}n, containing all the discrete logarithm of these values,
i.e., ui = a′ ∏n

k=1 aik

k . Let us also write M the q × 2n matrix, with columns
indexed by i ∈ {0, 1}n, defined by mj,i = αj,i. Then we can rewrite (2) as:

(
y1 . . . yq

)ᵀ =
[
M · �U

]
.

Since the polynomials Pj are linearly independent, the rows of M are linearly

independent. Therefore, as
[
�U

]
looks uniformly random in G

2n

, (y1, . . . , yq) looks
like a uniformly random tuple in G

q. This proves the result of the LIP theorem
in this multilinear case with expanded polynomial. Extending this result to non
multilinear polynomial would just require slightly changing the assumption, as
long as polynomials are given in their expanded form.

This result is already very useful. We will see in Sect. 4 that it enables to
prove the security of the Naor-Reingold PRF and variants thereof.

Challenges for its Extension. Unfortunately, for certain settings such
as those considered in the context of related-key security, or even for the
Boneh-Montgomery-Raghunathan PRF [17], we cannot have polynomials in an
expanded form, but only as a polynomial-size (in the number n of indetermi-
nates and the maximum degree d in each indeterminate) formula (given by an
abstract tree).1 The problem is that the expanded version of these polynomials
may be exponentially large. For example, (T1 +1) · · · (Tn +1) has 2n monomials.

Therefore, the main challenge is to prove the theorem without expanding the
polynomials. This requires a much more subtle proof that we sketch here. This
1 Details on the representation of polynomials are given in the full version.

396 M. Abdalla et al.

first idea is the following: instead of replacing all monomials by independent
random values at once, we first fix all values T2, . . . , Tn to randomly chosen
a2, . . . , an, and get polynomials in T1 only. These polynomials can be expanded
without an exponential blow-up, and each monomial T1, T

2
1 , . . . can be replaced

by an independent random value (instead of a1, a
2
1, . . . for some value a1). Then,

we can fix only T3, . . . , Tn to randomly chosen a3, . . . , an, get a polynomial in T1

and T2, and replace all distinct monomial (T1, T
2
1 , T1T2, T

2
2 , . . .) by independent

random values. And we can continue like that until all monomials are replaced.
Obviously, if we do that so naively, we get back to the original problem: we

have an exponential number of monomials. The second idea is to remark that
we actually do not need to expand polynomials to replace all distinct monomials
by random values and get the result, at each step of the previous idea. We
could just assign random values to all polynomials (after fixing Ti+1, . . . , Tn to
ai+1, . . . , an), if they are all linearly independent: this is exactly what we showed
in the previous proof for expanded polynomials. And if they are not all linearly
independent, we just need to take care of linear combinations, and compute the
resulting value accordingly.

More precisely, for any polynomial P , let us write QP ∈ Zp[T1, . . . , Ti] the
polynomial obtained after fixing Ti+1, . . . , Tn to ai+1, . . . , an. To answer the j-th
query Pj , we check whether QPj

is linearly independent from (QPl
)l=1,...,j−1. If

that is the case, we answer with an independent random value yj . Otherwise,
we find some linear combination between QPj

and (QPl
)l=1,...,j−1, and we write

QPj
=

∑j−1
l=1 λlQPl

and outputs
∏j−1

l=1 yλl

l , with yl the output given for Pl.
The last difficulty is that this proof requires a test of linear dependence of

multivariate polynomials. One way to do that would be to expand them, which
is exactly what we are trying to avoid. So, instead, we use a statistical test
based on the Schwartz-Zippel lemma, which basically consists in evaluating the
polynomials in enough random points and looking for linear combination among
the vectors of these evaluations.

Fig. 1. Game defining the (n, d)-LIP security for a group G

3.2 Main Theorem: LIP Security

LIP Security. Let G = 〈g〉 be a group of prime order p. We define the advantage
of an adversary A against the (n, d)-LIP security of G, denoted Adv(n,d)-lip

G
(A)

as the probability of success in the game defined in Fig. 1, with A being restricted
to make queries P ∈ Zp[T1, . . . , Tn] such that for any query P , the maximum
degree in one indeterminate in P is at most d, and for any sequence (P1, . . . , Pq)
of queries, the polynomials (P1, . . . , Pq) are always linearly independent over Zp.
Another way to look at the security definition is to consider that when b = 0,

An Algebraic Framework for Pseudorandom Functions and Applications 397

Pl(P) outputs [P (�a)]h = [P (�a) · a′]g, where the generator is h = [a′]g, which is
not public (but can be obtained by querying the polynomial 1), and g is a public
generator.

Theorem 1 (LIP). Let G = 〈g〉 be a group of prime order p. Let A be an adver-
sary against the (n, d)-LIP security of G that makes q oracle queries P1, . . . , Pq.
Then we can design an adversary B against the E1,d-MDDH problem in G, such
that Adv(n,d)-lip

G
(A) ≤ n · d ·AdvE1,d-mddh

G
(B) + O(ndq/p). The running time of

B is that of A plus the time to perform a polynomial number (in q, n, and d)
of operations in Zp and G.

The proof is detailed in the full version.

4 Recovering and Extending Existing Number-Theoretic
PRFs

In Table 2, we recall known number-theoretic PRFs, namely the Naor-Reingold
(NR) PRF [27], its variant NR∗ defined in [8], and the algebraic PRF by Boneh,
Montgomery, and Raghunathan (BMR) in [17]. We also introduce weighted
(extended) versions of these PRFs, namely weighted NR (WNR) and weighted
BMR (WBMR), in order to construct RKA-secure PRFs for new classes of RKD
functions (Sect. 5). These weighted PRFs are obtained by applying particular
permutations to the key space. Then, as PRFs, it is straightforward that the
security of NR and BMR implies the security of their weighted versions. How-
ever, as detailed in Sect. 5, in the RKA setting, we can prove that some of these
weighted PRFs are secure against certain classes of RKD functions while both
NR and BMR are not, even if we apply the BC/ABPP frameworks.

Using the LIP theorem and changing the generators used (to get PRFs of the
form F (�a, x) = [Px(�a) · a′]), the security proof of WNR and WBMR is straight-
forward, and so is the security proof of NR, NR∗, and BMR, as particular cases of
WNR and WBMR. Concretely, for WBMR�w, we start by revealing the generator
h to the adversary where

h =

⎡

⎣

⎛

⎝
n∏

i=1

∏

k∈{0,...,d}
(ai + wi + k)

⎞

⎠ · a′

⎤

⎦

g

= [P (�a) · a′]g

which is a generator with overwhelming probability. Then, when the adversary
makes a query x, it is clear that
[

n∏

i=1

1
ai + wi + xi

]

h

=

⎡

⎣

⎛

⎝
n∏

i=1

∏

k∈{0,...,d}\{xi}
(ai + wi + k)

⎞

⎠ · a′

⎤

⎦

g

= [Px(�a) · a′]g

As each polynomial Px is null on every input −x′ for x′ ∈ {0, . . . , d}n, seen as
a vector of Zn

p , except when x′ = x, and as P is null on all −x′, P and (Px)x

are linearly independent. Then, we conclude the security proof of WBMR�w by
applying the LIP theorem. Formal proofs are provided in the full version.

398 M. Abdalla et al.

Table 2. Existing number-theoretic PRFs and their weighted extensions

PRF F Key �a Key
domain K

Domain D Output Advprf
F �

NR (a0, . . . , an)
K = Z

n+1
p

{0, 1}n

[

a0

n∏

i=1

axi
i

]

n · Advddh
G

NR∗ (a1, . . . , an)
K = Z

n
p

{0, 1}n \ {0n}
[

n∏

i=1

axi
i

]

n · Advddh
G

BMR (a1, . . . , an)
K = Z

n
p

{0, . . . , d}n

[
n∏

i=1

1

ai + xi

]

nd · Advd-ddhi
G

WNR�w

(�w ∈ Z
n+1
p)∗

(a0, . . . , an)
K = Z

n+1
p

if w0 �= 0: {0, 1}n,
else: {0, 1}n \ {0n}

[
aw0
0

∏n
i=1 awixi

i

]
n · Advddh

G

†

WBMR�w

(�w ∈ Z
n
p)‡

(a1, . . . , an)
K = Z

n
p

{0, . . . , d}n
[∏n

i=1
1

ai+wi+xi

]
nd · Advd-ddhi

G

G = 〈g〉 is a prime order group, and g is the generator used for the PRF construction;

The last column show approximate simplified bounds on the advantage Advprf
F of a polynomial-

time adversary against the security of the PRF F ; exact bounds can be found in the full version;

Remarks: NR = WNR(1,...,1), NR∗ = WNR(0,1,...,1), and BMR = WBMR(0,...,0);
a For WNR, weights are �w = (w0, . . . , wn) ∈ Z

n+1
p ;

b When w1, . . . , wn are coprime to p − 1, and w0 is 0 or coprime to p − 1;
c For WBMR, weights are �w = (w1, . . . , wn) ∈ Z

n
p .

5 Application to Related-Key Security

In this section, we show how our theorem can be used to build RKA-secure
PRFs from a PRF F defined over a prime order group G = 〈g〉 that takes a
key �a and an input x and outputs a group element F (�a, x) = [Px(�a)]. Let Φ be
a class of RKD functions, where functions �φ = (φ1, . . . , φn) ∈ Φ are such that
φi are multivariate polynomials in Zp[T1, . . . , Tn]. Then, for an RKD function �φ

and an input x, the PRF outputs F (�φ(�a), x) =
[
P�φ,x(�a)

]
, where the polynomial

P�φ,x(�T) = Px(�φ(�T)) = Px(φ1(�T), . . . , φn(�T)) depends on �φ and x. In particular,
Pid,x = Px for all x, where id is the identity function.

When all polynomials P�φ,x and the constant polynomial 1 are linearly inde-
pendent, the LIP theorem directly shows that F is Φ-RKA-secure. To illustrate
this, we construct in Sect. 5.1 a PRF that is secure against permutations of the
secret key using this method.

However, to assume that all polynomials P�φ,x are linearly independent is

a very strong property and, in general, this is not the case for all x and �φ.
Hence, in Sect. 5.2, we consider the less restrictive case where the polynomials
P�φ1,x1

, . . . , P�φq,xq
are linearly independent as long as the inputs x1, . . . , xq are

distinct (in which case the adversary is said to be unique-input). More precisely,
we first design a new algebraic framework that extends the one from [1], when
the PRF F is of the form [Px(�a)] and the RKD functions are multivariate poly-

An Algebraic Framework for Pseudorandom Functions and Applications 399

nomials, and then use it to construct RKA-secure PRFs from F for new and
larger classes of RKD functions.

5.1 Direct Constructions of RKA-Secure PRFs

In this section, we show how the LIP theorem can be used to prove the Φ-
RKA-PRF security in the particular case where all polynomials P�φ,x are linearly

independent, for any �φ ∈ Φ and any input x.
Specifically, we consider the class ΦSn

of functions defined as {σ | σ ∈ Sn}
such that, applying a function σ ∈ ΦSn

to a key �a = (a1, . . . , an) ∈ Z
n
p leads to

the key σ(�a) = (aσ−1(1), . . . , aσ−1(n)), so the i-th component of �a becomes the
σ(i)-th component of the key σ(�a).

It is clear that BMR is not ΦSn
-RKA-secure, since we can distinguish BMR

from a random function with only 2 queries. Indeed, let id be the identity function
and (12) be the permutation which switches the first two components of the
key. Then, one can just first query (id, 100 . . . 0) and ((12), 010 . . . 0) and check
whether the output of these queries are the same, which is the case in the real
case while they are independent in the random case. However, we show in what
follows that a particular case of WBMR, defined below, is a ΦSn

-RKA-secure
PRF.

Linear WBMR PRF. We define WBMRlin as the particular case of WBMR,
where wi = (i − 1)(d + 1), for i = 1, . . . , n. Please refer to Table 2 for details.

Theorem 2. Let G = 〈g〉 be a group of prime order p and let WBMRlin be
the function defined above. Then we can reduce the ΦSn

-RKA-PRF security of
WBMRlin to the hardness of the (n(d + 1) − 1)-DDHI problem in G, with a loss
of a factor n(n(d + 1) − 1). Moreover, the time overhead of this reduction is
polynomial in n, d and in the number of queries made by the adversary.

The proof is given in the full version and is very similar to the proof of security
of WBMR sketched in Sect. 4. The construction can actually be extended to also
tolerates small additive factors in addition to permutations (see the full version).

5.2 Constructions via Unique-Input RKA-Secure PRFs

In this section, we address the less restrictive case where the polynomials
P�φ1,x1

, . . . , P�φq,xq
are linearly independent for any �φ1, . . . , �φq only when the

inputs x1, . . . , xq are all distinct. Please notice that this is the case for all
the classes considered in [1,8]. We now denote by M the “original” PRF:
M(�a, x) = [Px(�a)].

In order to build RKA-secure PRFs from such PRFs, we would like to apply
the ABPP generic framework [1] that allows to transform a PRF M which is
RKA-secure with respect to unique-input adversaries (UI-RKA-secure) into an
RKA-secure PRF F , when M is key-collision and statistical-key-collision secure.
The latter means that it is hard to find two functions φ1, φ2 ∈ Φ such that

400 M. Abdalla et al.

φ1(K) = φ2(K), even with access to an oracle (φ, x) �→ f(φ(K), x), when f = M
(key-collision security), and when f is a random function (statistical key-collision
security). The framework consists in transforming this UI-RKA-secure PRF M
into an RKA-secure PRF F , as follows:

F (K,x) = M(K,H(x,M(K, �ω))),

where H is a compatible collision-resistant hash function, and the vector �ω
is a strong key fingerprint, meaning that it is a vector of inputs such that
the vector of outputs M(K, �ω) completely defines K (recall that M(K, �ω) =
(M(K,ω1), . . . , M(K,ω|�ω|)). As defined in [8], a hash function is said to be com-
patible if it guarantees that the inner calls to M in the construction above will
never collide with the outer calls to M even under related keys.

Unfortunately, if we consider the PRF WNR�w with some wi > 1, then it is
not clear how to find a strong key fingerprint, which can be used to apply the
ABPP framework. Furthermore, this ABPP framework requires to prove sev-
eral non-algebraic properties (statistical or computational), namely key-collision,
statistical-key-collision, and UI-RKA securities.

For this reason, we design a new algebraic framework, that generalizes the
ABPP framework in the particular case of PRFs of the shape M(�a, x) = [Px(�a)]
and of RKD functions which are multivariate polynomials. For completeness, a
more general framework, which does not make any assumptions about the shape
of a PRF, is also given in the full version. Afterwards, we use our algebraic
framework to design new RKA-secure PRFs based on WNR for larger classes for
which previous constructions from [1,8] are not secure.

An Algebraic Framework for Related-Key Security. Here, we describe a

new framework that transforms any PRF that satisfies that P�φ1,x1
, . . . , P�φq,xq

are linearly independent, for any �φ1, . . . , �φq as long as x1, . . . , xq are all distinct
inputs, into a RKA-secure PRF. To do so, we first introduce three new notions,
termed algebraic fingerprint, helper information, and expansion function, and
defined as follows.

Group Generator. In this framework and its applications, we assume for
simplicity that the generator used in the PRF construction, that is revealed to
the adversary, is [a′].

Algebraic Fingerprint. In order to overcome the eventual lack of a strong
key fingerprint, we introduce algebraic fingerprint, which will be used to replace
M(K, �ω) in the construction in [1], where �ω is a strong fingerprint. An algebraic
fingerprintis simply an injective function �Ω: Z

n
p → G

m such that the image �Ω(�a)
is a vector of group elements ([Ω1(�a)a′] , . . . , [Ωm(�a)a′]) with Ω1, . . . , Ωm being
polynomials in Zp[T1, . . . , Tn] and a′ ∈ Zp. In our applications, we will simply
have �Ω(�a) = ([a1a

′] , . . . , [ana′]), so m = n and Ωi(�T) = Ti for i = 1, . . . , n.

Helper Information. In order to prove the security of our framework, we
need to be able to compute the image of the algebraic fingerprint, �Ω(�φ(�a)) =
((Ω1 ◦ �φ)(�a), . . . , (Ωm ◦ �φ)(�a)), for any related key �φ(�a) ∈ Z

n
p , with �φ ∈ Φ, from

An Algebraic Framework for Pseudorandom Functions and Applications 401

some information which can somehow be made public without hurting security.
We call this information a helper information, write it HelpΦ(�a), and call HelpΦ

the helper function. We suppose that HelpΦ(�a) = ([help1(�a)a′] , . . . , [helpl(�a)a′]),
with help1, . . . , helpl linearly independent polynomials which generate a vector
subspace of Zp[T1, . . . , Tn] containing the polynomials Ωi ◦ �φ for i = 1, . . . , m,
and �φ ∈ Φ.

Hash Function and Expansion Function. Let D = D × G
m where D

is the domain of the PRF M , and let h be a collision-resistant hash func-
tion h: D → hSp (definition recalled in the full version), where hSp is a large
enough space. The last thing we need to define is an expansion function, which
is simply an injective function E: hSp → S ⊆ D such that for any sequence
(�φ1, x1), . . . , (�φq, xq) where x1, . . . , xq are distinct inputs in S and �φ1, . . . , �φq are
RKD functions, polynomials help1, . . . , helpl and polynomials P�φ1,x1

, . . . , P�φq,xq

and 1 (which needs to be queried to define the generator [a′]) are linearly inde-
pendent over Zp (in particular, E has to be injective).

Using these new tools, we obtain the following framework.

Theorem 3. Let G be a group of prime order p. We use the above definitions,
with M : Z

n
p × D → G defined by M(�a, x) = [Px(�a)]. Let d be a upper bound for

the maximum degree in any indeterminate of polynomials in {help1, . . . , helpl} ∪
{Px,�φ | x ∈ S, �φ ∈ Φ}. Define F : Z

n
p × D → G by

F (�a, x) = M(�a,E(h(x, �Ω(�a))))

for all �a ∈ Z
n
p and x ∈ D. Then, we can reduce the Φ-RKA-PRF security of

F to the (n, d)-LIP security, the collision-resistance security of h without any
loss, and to the [-SDLd] assumption with a loss of a factor 2n. The running time
overhead of this reduction is polynomial in n, d and q.

Proof Overview. The proof of the above theorem is detailed in the full ver-
sion and relies on the sequence of 10 games (games G0 − G9). We first prove an
intermediate statement whose proof is very similar to the proof of Theorem 3.1
from [1], under a notion termed extended key-collision security (that states the
hardness of finding key collisions given access to PRF values and helper infor-
mation) which is defined in the appendix. Afterwards, we reduce this notion to
the hardness of the SDL in G. Here we provide a brief overview of the proof of
the intermediate statement.

We start by giving the generator used for the PRF by querying polynomial 1.
Hence, the generator is simply [a′]. Since we may have key collisions (i.e., two
RKD functions φ1 �= φ2, such that φ1(�a) = φ2(�a)), we start by dealing with pos-
sible collisions on the related keys in the RKAPRFReal case, using the extended
key-collision notion (games G0 − G2). These claws can be detected by looking
for collisions on images of �Ω for different RKD functions.

402 M. Abdalla et al.

Then, in games G3 − G4, we deal with possible collisions on hash values in
order to ensure that the inputs t = E(h(x, �Ω(�a))) used to compute the output y
are distinct (recall that E is injective).

Then, we use the (n, d)-LIP security notion to show that it is hard to distin-
guish the output of F and the helper information from uniformly random values
(games G5 − G6).

Finally, we use once again the extended-key-collision security notion to deal
with possible key collisions in the RKAPRFRand case (games G7 − G9) so that
G9 matches the description of the RKAPRFRand game. These key collisions can
still be detected in these games by making crucial use of the helper information.

RKA-PRFs for Permutations of Univariate Polynomial Functions. We
now apply our framework to a particular case of WNR and build the first RKA-
secure PRF secure against permutations of univariate polynomials. We chose to
set w0 to 0 in our construction in order to ease the readability so that the key
space of the PRF stays Zn

p , but similar results can be proven with w0 = 1 or set
to a prime number p0 > d (and distinct to p1, . . . , pn defined below).

For d ≥ 1, let Φd be the class of degree at most d non-constant univariate
polynomials defined as Φd = {�φ: Z

n
p → Z

n
p | φi : �T �→ ∑d

j=0 αi,jT
j
i , (αi,1, . . . ,

αi,d) �= 0d,∀i = 1, . . . , n}. Then we consider the class ΦSn,d of permutations of
degree at most d non-constant univariate polynomials, defined as follows:

ΦSn,d = {σ ◦ �φ | (σ, �φ) ∈ Sn × Φd} .

For a key �a = (a1, . . . , an) ∈ Z
n
p , applying an RKD function σ ◦ �φ ∈ ΦSn,d,

where �φ = (φ1, . . . , φn) leads to the key (φσ−1(1)(�a), . . . , φσ−1(n)(�a)) ∈ Z
n
p , so

the i-th component ai of the key is changed into φi(�a) and becomes the σ(i)-th
component of the related key.

Before explaining our construction, we would like to point out that, even if
we just consider the simple class of permutations ΦSn

⊂ ΦSn,1 introduced in
Sect. 5.1, we can already show that NR and NR∗ are not ΦSn

-RKA secure, even
with respect to unique-input adversaries.

Indeed, let us consider NR∗: let id be the identity function and (12) be the
permutation which switches the first two components of the key. Then, the out-
put of the queries (id, 100 . . . 0) and ((12), 010 . . . 0) will be the same in the real
case and independent in the random case.

In fact, we can generalize the attack above to show that there even exists
a compatible collision-resistant hash function h such that the PRF that one
obtains when applying the Bellare-Cash (or ABPP) transform to NR∗ would not
be RKA-secure with respect to the class of permutations. Indeed, let h′ be a
collision-resistant hash function. The counter-example for h could be as follows
(where x1 and x2 are two arbitrary distinct inputs):

h(x, [a1] , . . . , [an]) =

⎧
⎨

⎩

1110 ‖ h′(x1, [a1] , . . . , [an]) if x = x1

1101 ‖ h′(x1, [a2] , [a1] , [a3] , . . . , [an]) if x = x2

1111 ‖ h′(x, [a1] , . . . , [an]) otherwise.

An Algebraic Framework for Pseudorandom Functions and Applications 403

Note that h is a compatible collision-resistant hash function. It is easy to
see that the output of the queries (id, x1) and ((12), x2) will be the same in the
real case and independent in the random case. The same kind of attack can be
mounted against NR.

However, while NR and NR∗ are not RKA-secure against permutations
attacks, we show in what follows that a particular case of WNR, defined below,
yields a ΦSn,d-RKA-secure PRF.

d-Linear Weighted NR PRF. Let d ≥ 1. Let p1 < p2 < · · · < pn be distinct
prime numbers such that p1 > d. We define WNRd-lin as the particular case of
WNR, where w0 = 0 and wi = pi. Please refer to Table 2 for details. Using
standard inequalities over prime numbers, it is easy to see that we can find
p1, . . . , pn such that pn = Õ(d + n).

In order to apply the framework from Theorem 3 to WNRd-lin and ΦSn,d, we
define:

– [a′] ∈ G is the generator used for the PRF construction
– �Ω: �a ∈ Z

n
p �→ ([a1a

′] , . . . , [ana′]) ∈ G
n

– HelpΦSn,d
: �a ∈ Z

n
p �→ ([a′] , [a1a

′] , . . . ,
[
ad
1a

′] , . . . , [ana′] , . . . ,
[
ad

na′]) ∈
G

nd+1

– h can be any collision-resistant hash function h: {0, 1}n × G
n → {0, 1}n−2

– E: z ∈ {0, 1}n−2 �→ 11 ‖ z ∈ {0, 1}n.

We just need to prove that E satisfies the linear independence property
required to apply the framework, which is done in the full version, and sketched
here. We order monomials of multivariate polynomials, with any order respect-
ing the total degree of polynomials (e.g., the graded lexicographic order). The
leading monomial (i.e., the first monomial for that order) of the polynomial P�φ,x

is T
xσ(1)pσ(1)d1

1 · · · T xσ(n)pσ(n)dn
n , with di > 0 the degree of φi. The polynomials

for the helper information (helpk) are T j
i . Therefore, the leading monomials of

help1, . . . , helpl, P �φ1,x1
, . . . , P �φq,xq

, 1 are all distinct, when x1, . . . , xq are distinct
inputs. This means that the matrix whose columns correspond to monomials
(ordered as specified above) and whose rows correspond to the polynomials
help1, . . . , helpl, P �φ1,x1

, . . . , P �φq,xq
, 1 (ordered according to their leading mono-

mial) is in echelon form. Hence, the latter polynomials are linearly independent.
Finally, by combining Theorem 3 and the LIP theorem, we obtain the following
theorem.

Theorem 4. Let �Ω, h and E be defined as above. Define F : Z
n
p × {0, 1}n → G

by F (�a, x) = WNRd-lin(�a,E(h(x, �Ω(�a)))), for all a ∈ Z
n
p and x ∈ {0, 1}n. Then we

can reduce the ΦSn,d-RKA-PRF security of F to the hardness of the pnd-DDHI
problem in G and the pnd-SDL problem in G, respectively with a loss of a factor
npnd and of a factor n, and to the CR security of h. Moreover, the time overhead
of this reduction is polynomial in n, d, pn and in the number of queries made by
the adversary attacking the ΦSn,d-RKA-PRF security of F .

404 M. Abdalla et al.

6 Extension to PRFs in Symmetric Bilinear Groups

6.1 High-Level Overview of Existing Constructions and Challenges

All the previous constructions (of classical PRF and RKA-secure PRF) require
at least DDH to hold. In particular, they are insecure if there exists a symmetric
pairing e : G × G → GT . In this section, we investigate how to adapt our
linearly independent polynomials framework and the corresponding LIP theorem
to handle constructions of PRFs under weaker assumptions, which may hold in
symmetric bilinear groups.

The first algebraic PRF based on DLin is the Lewko-Waters PRF [26], which
is defined as follows:

LW(�A, x) =

[
n∏

i=1

Axi
i · A′

]

,

with �A = (A1, . . . ,An) being a vector of n uniformly random matrices in Z
2×2
p

and A′ a uniformly random matrix in Z
2×m
p , for some m ≥ 1. A′ was actually

in Z
2×1
p (i.e., m = 1) in [26] (with only the first group element being returned).

This PRF is secure under DLin, and even under a weaker assumption, namely
the U2-MDDH-assumption of Escala et al. [18]. In the latter paper, this PRF is
extended to any MDDH-assumption, which particularly encompasses DDH and
DLin. These instantiations differ by the size of the matrices and their distri-
bution. Except for constructions using multilinear maps and lattices [5,16] or
trivial variants, we are not aware of any other construction.

Commutation Challenge. From a high level point of view, these PRFs are
very similar to the one considered in our algebraic framework in Sect. 3, except
elements of keys are now matrices. Unfortunately, matrices do not commute in
general, and this lack of commutativity makes everything more complex.

One naive solution would be to extend the LIP theorem by considering
non-commutative polynomials, or in other words elements of the free algebra
Zp〈T1, . . . , Tn〉. In this algebra, for example, T1T2 and T2T1 are distinct and
linearly independent elements. The problem is that, as proven by Amitsur and
Levitzki [4], for any matrices A1, . . . ,A4 ∈ Z

2×2
p ,

∑
σ∈S4

sgn(σ) · Aσ(1) · Aσ(2) ·
Aσ(3) ·Aσ(4) = 0, with sgn(σ) being the parity of the permutation σ. Thus, while
the family of non-commutative polynomials (Pσ = Tσ(1)Tσ(2)Tσ(3)Tσ(4))σ∈S4 is
linearly independent in the free algebra, the PRF of domain D = S4, the PRF
defined by F (�A, σ) =

[
Aσ(1)Aσ(2)Aσ(3)Aσ(4)A

′] would clearly be insecure.

Assumption Challenge and Generic Symmetric Bilinear Group. The
second challenge is to prove the hardness of the E2,d-MDDH assumption in the
generic bilinear group, which is done in the full version, using a non-trivial tech-
nical lemma. Notably, contrary to the cyclic group case, it is not straightforward
to check whether a PRF defined by F (�A, x) =

[
Px(�A) · A′

]
is secure in the

generic bilinear group model, where (Px)x∈D is a family of non-commutative
polynomials, �A is a vector of matrices from Z

2×2
p , and A′ is a matrix from

Z
2×m
p , for some m ≥ 1.

An Algebraic Framework for Pseudorandom Functions and Applications 405

6.2 Generalized Polynomial Framework

Let us show how we address these challenges.

Generalized Polynomial (GP) Security. Let us introduce the (k, n, d)-GP
security of a cyclic group G = 〈g〉 as a generalization of the (n, d)-LIP security
in Sect. 3.2, where the secret scalar a′ $← Zp and the secret vector of scalars
�a

$← Z
n
p are replaced by a secret matrix A′ $← Z

k×m
p (for some m ≥ 1; for the

sake of simplicity, in the sequel, we choose k = m) and a secret vector of matrices
�A

$← (Zk×k
p)n, respectively.

Result under E2,d-MDDH. To extend Theorem 1 to symmetric bilinear groups
and avoid the commutativity problem, we suppose that all indeterminates appear
“in the same order when multiplied together” in each subexpression of the rep-
resentation of the non-commutative polynomials Pj (e.g., P1 = T1T3 +T3T2 and
P2 = T3 + T1T2, where T1 appears before T3 which appears before T2). The
condition is quite natural and is formally defined in the full version. That makes
these non-commutative polynomials behave very similarly to commutative poly-
nomial, and we get the following theorem.

Theorem 5. Let G = 〈g〉 be a group of prime order p. Let A be an adversary
against the (2, n, d)-GP security of G that makes q oracle queries P1, . . . , Pq.
We suppose that all indeterminates appear in the same order in each mono-
mial of each non-commutative polynomials Pj. Then we can build an adver-
sary B against the E2,d-MDDH problem in G, such that Adv(2,n,d)-gp

G
(A) ≤

n · d · AdvE2,d-mddh
G

(B) + O(ndq/p). The running time of B is that of A plus
the time to perform a polynomial number (in q, n, and d) of operations in Zp

and G.

The proof is similar to the proof of the LIP theorem (with some additional care
when partially evaluating polynomials to avoid having polynomials with matrix
coefficients) and is given in the full version. Actually, this theorem can trivially
be extended to the (k, n, d)-GP security and the Ek,d-MDDH assumption. But
for k ≥ 3 and n ≥ 2, it is not known if the latter assumption is secure in the
generic k-linear group model.

Results in the Generic Bilinear Group Model. We may wonder whether
the (2, k, d)-GP security still holds in the generic bilinear group model, when
indeterminates do not necessarily appear in the same order in each polynomial
Pj . As seen before, it is not sufficient to suppose that (Pj)j=1,...,q is a linearly
independent family. But we show here that under a relatively natural condition,
the DLM (distinct leading monomial) condition, the (2, k, d)-GP security still
holds.

To formally state our result, we need to introduce some notions, which are
formally defined in the full version and which are informally described here. We
consider a monomial order for Zp[T1, . . . , Tn], which is a total order on monomials
T i1

1 · · · T in
n compatible with multiplications and where 1 is the smallest mono-

mial. We then define the commutative leading monomials of a non-commutative

406 M. Abdalla et al.

Table 3. Summary of our results related to generalized polynomial security

Cyclic Group G Symmetric Bilinear Group
(pairing e : G × G → GT)

Pj ∈ Zp[T1, . . . , Tn]
commutative polynomial

Pj ∈ Zp〈T1, . . . , Tn〉
non-commutative polynomial

(a′, a1, . . . , an)
$← K = Z

n+1
p (a′, a1, . . . , an)

$← K = (Z2×2
p)

n+1

In generic cyclic group:
(1, n, d)-GP security
⇔ (Pj)j satisfies the DLM condition
⇔ (Pj)j is linearly independent

In generic bilinear group:
(2, n, d)-GP security
⇐ (Pj)j satisfies the DLM condition

(easy) (Theorem 6)

Under E1,d-MDDH:
(1, n, d)-GP security
⇔ same condition as above

Under E2,d-MDDH:
(2, n, d)-GP security
⇐ same condition as above

+ same order for indeterminates
or equivalently,

(Pj)j is linearly independent
+ smae order for indeterminates

(Theorem 1, the LIP theorem) (Theorem 5)

polynomial as the monomials which are the highest for our monomial order,
when considered as commutative monomials. There may be many commutative
leading monomials for a given polynomial (for example T1T

2
2 +5T2T1T2 has two

commutative leading monomials: T1T
2
2 and T2T1T2). We say a polynomial has a

unique commutative leading monomial if there is only one such monomial.
Finally, we say that a family of polynomials (Pj)j satisfies the DLM condi-

tion, if there exists a monomial order and an invertible matrix M ∈ Z
q×q
p such

that M · (Pj)j is a vector of non-commutative polynomials with unique and
distinct commutative leading monomials, where (Pj)j is the column vector of
polynomials Pj .

Theorem 6. Let G = 〈g〉 be a group of prime order p. Let A be an adversary
against the (2, n, d)-GP security of G that makes q oracle queries P1, . . . , Pq.
We suppose that (Pj)j satisfies the DLM condition. Then, the advantage

Adv(2,n,d)-gp
G

(A) is negligible in the generic bilinear group model.

The proof of Theorem 6 is given in the full version. We remark that, in the case of
commutative polynomials (i.e., LIP theorem), the DLM condition is exactly the
same as saying that the polynomials Pj are linearly independent (using the Gauss
reduction). However, this is not the case with non-commutative polynomials
(e.g., consider P1 = T1T2 and P2 = T2T1 which are linearly independent but
which have the same leading monomial).

Summary. Table 3 provides a summary of all our results about GP security.

An Algebraic Framework for Pseudorandom Functions and Applications 407

6.3 Applications

RKA-PRFs in Generic Bilinear Groups. The RKA-PRF for permutation
of univariate polynomial functions based on WNR (Sect. 5.2) can easily be trans-
formed into an RKA-secure PRF for symmetric bilinear groups for the same set
of RKD functions. It is sufficient to change keys from �a

$← Z
n
p to �A

$← (Z2×2
p)n.

Indeed, the RKA framework extends to this case easily, and the polynomials
family we considered verifies the DLM condition as non-commutative polynomi-
als. Actually, our proof of their linear independence can be seen as exhibiting a
monomial order (namely the graded lexicographic order) for which these poly-
nomials have distinct leading monomials. In addition, their leading monomials
are always unique even as non-commutative polynomials.

RKA-PRFs under E2,d-MDDH. Unfortunately, Theorem 5 does not apply
to RKA-PRF for permutation, as permutation change the order of the inde-
terminates. However, it still easily enables to construct the first RKA-PRF for
univariate polynomial functions, secure in symmetric bilinear groups, using the
construction of Sect. 5.2 (or a slightly more efficient variant thereof in the full
version). Again, the construction is straightforward and so is the proof.

Acknowledgments. This work was supported by the French ANR-10-SEGI-015
PRINCE Project, the Direction Générale de l’Armement (DGA), the CFM Foundation,
and the European Research Council under the European Union’s Seventh Framework
Program (FP7/2007–2013 Grant Agreement 339563 – CryptoCloud).

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg
(2014)

2. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-
based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 554–571. Springer, Heidelberg (2009)

3. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001

4. Amitsur, A.S., Levitzki, J.: Minimal identities for algebras. Proc. Am. Math. Soc.
1(4), 449–463 (1950)

5. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 353–370. Springer, Heidelberg (2014)

6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012)

7. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: 37th FOCS, October 1996, pp.
514–523. IEEE Computer Society Press (1996)

408 M. Abdalla et al.

8. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010)

9. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, Eli (ed.) EUROCRYPT 2003. LNCS, vol.
2656. Springer, Heidelberg (2003)

10. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

11. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

12. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

13. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

14. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

15. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

16. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013)

17. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10, October 2010, pp. 131–140.
ACM Press (2010)

18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

20. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

21. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

22. Hohenberger, S., Waters, B.: Constructing Verifiable Random Functions with Large
Input Spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010)

23. Kim, J.-S., Hong, S.H., Preneel, B.: Related-key rectangle attacks on reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

24. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Yuliang, Seberry, Jennifer
(eds.) AUSCRYPT 1992. LNCS, vol. 718. Springer, Heidelberg (1993)

25. Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of PRFs
secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S.
(eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Heidelberg (2014)

An Algebraic Framework for Pseudorandom Functions and Applications 409

26. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: Al-Shaer, E., Jha, S., Keromytis, A.D.
(eds.) ACM CCS 09, November 2009, pp. 112–120. ACM Press (2009)

27. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, October 1997, pp. 458–467. IEEE Computer Society
Press (1997)

28. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

29. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007). http://eprint.iacr.org/2007/074

30. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

http://eprint.iacr.org/2007/074

Block Cipher Cryptanalysis

Integral Cryptanalysis on Full MISTY1

Yosuke Todo(B)

NTT Secure Platform Laboratories, Tokyo, Japan
todo.yosuke@lab.ntt.co.jp

Abstract. MISTY1 is a block cipher designed by Matsui in 1997.
It was well evaluated and standardized by projects, such as CRYPTREC,
ISO/IEC, and NESSIE. In this paper, we propose a key recovery attack
on the full MISTY1, i.e., we show that 8-round MISTY1 with 5 FL layers
does not have 128-bit security. Many attacks against MISTY1 have been
proposed, but there is no attack against the full MISTY1. Therefore, our
attack is the first cryptanalysis against the full MISTY1. We construct a
new integral characteristic by using the propagation characteristic of the
division property, which was proposed in 2015. We first improve the divi-
sion property by optimizing a public S-box and then construct a 6-round
integral characteristic on MISTY1. Finally, we recover the secret key of
the full MISTY1 with 263.58 chosen plaintexts and 2121 time complexity.
Moreover, if we can use 263.994 chosen plaintexts, the time complexity for
our attack is reduced to 2107.9. Note that our cryptanalysis is a theoretical
attack. Therefore, the practical use of MISTY1 will not be affected by our
attack.

Keywords: MISTY1 · Integral attack · Division property

1 Introduction

MISTY [17] is a block cipher designed by Matsui in 1997 and is based on
the theory of provable security [19,20] against differential attack [3] and linear
attack [15]. MISTY has a recursive structure, and the component function has
a unique structure, the so-called MISTY structure [16]. There are two types of
MISTY, MISTY1 and MISTY2. MISTY1 adopts the Feistel structure whose
F-function is designed by the recursive MISTY structure. MISTY2 does not
adopt the Feistel structure and uses only the MISTY structure. Both ciphers
achieve provable security against differential and linear attacks. MISTY1 is
designed for practical use, and MISTY2 is designed for experimental use.

MISTY1 is a 64-bit block cipher with 128-bit security, and it has a Feistel
structure with FL layers, where the FO function is used in the F-function of the
Feistel structure. The FO function is constructed by using the 3-round MISTY
structure, where the FI function is used as the F-function of the MISTY struc-
ture. Moreover, the FI function is constructed by using the 3-round MISTY
structure, where a 9-bit S-box S9 and 7-bit S-box S7 are used in the F-function.
MISTY1 is the candidate recommended ciphers list of CRYPTREC [6], and it is
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 413–432, 2015.
DOI: 10.1007/978-3-662-47989-6 20

414 Y. Todo

Table 1. Summary of single secret-key attacks against MISTY1

Rounds #FL layers Attack algorithm Data Time Reference

5 0 higher order differential 11 × 27 CP 217 [23]

5 3 Square 234 CP 248 [13]

5 4 higher order differential 222 CP 228 [10]

5 4 impossible differential 238 CP 246.45 [8]

6 4 higher order differential 253.7 CP 253.7 [25]

6 4 impossible differential 251 CP 2123.4 [8]

7 0 impossible differential 250.2 KP 2114.1 [8]

7 4 higher order differential 254.1 CP 2120.7 [25]

7 4 higher order differential 250.1 CP 2100.4 [2]

7 5 higher order differential 251.4 CP 2121 [2]

8 5 integral by division property 263.58 CP 2121 This paper

8 5 integral by division property 263.994 CP 2107.9 This paper

standardized by ISO/IEC 18033-3 [11]. Moreover, it is a NESSIE-recommended
cipher [18] and is described in RFC 2994 [21]. There are many existing attacks
against MISTY1, and we summarize these attacks in Table 1. A higher-order
differential attack is the most powerful attack against MISTY1, and this type of
cryptanalysis was recently improved in [2]. However, there is no attack against
the full MISTY1, i.e., 8-round MISTY1 with 5 FL layers.

Integral Attack. The integral attack [13] was first proposed by Daemen et al.
to evaluate the security of Square [7] and was then formalized by Knudsen
and Wagner. There are two major techniques to construct an integral char-
acteristic; one uses the propagation characteristic of integral properties [13],
and the other estimates the algebraic degree [12,14]. We often call the second
s technique a “higher-order differential attack.” A new technique to construct
integral characteristics was proposed in 2015 [24], and it introduced a new prop-
erty, the so-called “division property,” by generalizing the integral property [13].
It showed the propagation characteristic of the division property for any secret
function restricted by an algebraic degree. As a result, several improved results
were reported on the structural evaluation of the Feistel network and SPN.

Our Contribution. In [24], the focus is only on the secret S-box restricted
by an algebraic degree. However, many realistic block ciphers use more efficient
structures, e.g., a public S-box and a key addition. In this paper, we show that
the division property becomes more useful if an S-box is a public function. Then,
we apply our technique to the cryptanalysis on MISTY1. We first evaluate the
propagation characteristic of the division property for public S-boxes S7 and S9

and show that S7 has a vulnerable property. We next evaluate the propagation
characteristic of the division property for the FI function and then evaluate
that for the FO function. Moreover, we evaluate that for the FL layer. Finally,
we create an algorithm to search for integral characteristics on MISTY1 by

Integral Cryptanalysis on Full MISTY1 415

Fig. 1. Specification of MISTY1

assembling these propagation characteristics. As a result, we can construct a
new 6-round integral characteristic, where the left 7-bit value of the output
is balanced. We recover the round key by using the partial-sum technique [9].
As a result, the secret key of the full MISTY1 can be recovered with 263.58

chosen plaintexts and 2121 time complexity. Moreover, if we can use 263.994 chosen
plaintexts, the time complexity is reduced to 2107.9. Unfortunately, we have to
use almost all chosen plaintexts, and recovering the secret key by using fewer
chosen plaintexts is left as an open problem.

2 MISTY1

MISTY1 is a Feistel cipher whose F-function has the MISTY structure, and
the recommended parameter is 8 rounds with 5 FL layers. Figure 1 shows the
structure of MISTY1. Let XL

i (resp. XR
i) be the left half (resp. the right half) of

an i-round input. Moreover, XL
i [j] (resp. XR

i [j]) denotes the jth bit of XL
i (resp.

XR
i) from the left. MISTY1 is a 64-bit block cipher, and the key-bit length is 128

bits. The component function FOi consists of FIi,1, FIi,2, and FIi,3, and the
four 16-bit round keys KOi,1, KOi,2, KOi,3, and KOi,4 are used. The function
FIi,j consists of S9 and S7, and a 16-bit round key KIi,j is used. Here, S9 and S7

are defined in Appendix A. The component function FLi uses two 16-bit round

416 Y. Todo

keys, KLi,1 and KLi,2. These round keys are calculated from the secret key
(K1,K2, . . . , K8) as

Symbol KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2

Key Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3 K i+1

2
(odd i) K′

i+1
2 +6

(odd i)

K′
i
2+2

(even i) K i
2+4 (even i)

Here, K ′
i is the output of FIi,j where the input is Ki and the key is Ki+1.

3 Integral Characteristic by Division Property

3.1 Notations

We make the distinction between the addition of F
n
2 and addition of Z, and

we use ⊕ and + as the addition of F
n
2 and addition of Z, respectively. For any

a ∈ F
n
2 , the ith element is expressed in a[i], and the Hamming weight w(a) is

calculated as w(a) =
∑n

i=1 a[i]. Moreover, a[i, . . . , j] denotes a bit string whose
elements are values described into square brackets. Let 1n ∈ F

n
2 be a value whose

all elements are 1. Moreover, let 0n ∈ F
n
2 be a value whose all elements are 0.

For any a ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2), the vectorial Hamming weight of a is

defined as W (a) = (w(a1), w(a2), . . . , w(am)) ∈ Z
m. Moreover, for any k ∈ Z

m

and k′ ∈ Z
m, we define k � k′ if ki ≥ k′

i for all i. Otherwise, �k � �k′′.

Boolean Function. A Boolean function is a function from F
n
2 to F2. Let deg(f)

be the algebraic degree of a Boolean function f . Algebraic Normal Form (ANF)
is often used as representations of the Boolean function. Let f be any Boolean
function from F

n
2 to F2, and it can be represented as

f(x) =
⊕

u∈F
n
2

af
u

(
n∏

i=1

x[i]u[i]
)

,

where af
u ∈ F2 is a constant value depending on f and u. If deg(f) is at most d,

all af
u satisfying d < w(u) are 0. An n-bit S-box can be regarded as the collection

of n Boolean functions. If algebraic degrees of n Boolean functions are at most
d, we say the algebraic degree of the S-box is at most d.

3.2 Integral Attack

An integral attack is one of the most powerful cryptanalyses against block
ciphers. Attackers prepare N chosen plaintexts and get the corresponding cipher-
texts. If the XOR of all corresponding ciphertexts becomes 0, we say that the
block cipher has an integral characteristic with N chosen plaintexts. In an inte-
gral attack, attackers first create an integral characteristic against a reduced-
round block cipher. Then, they guess the round keys that are used in the last
several rounds and calculate the XOR of the ciphertexts of the reduced-round
block cipher. Finally, they evaluate whether or not the XOR becomes 0. If the
XOR does not become 0, they can discard the guessed round keys from the
candidates of the correct key.

Integral Cryptanalysis on Full MISTY1 417

3.3 Division Property

A division property, which was proposed in [24], is used to search for integral
characteristics. We first prepare a set of plaintexts and evaluate the division
property of the set. Then, we propagate the division property and evaluate the
division property of the set of texts encrypted over one round. By repeating
the propagation, we show the division property of the set of texts encrypted
over some rounds. Finally, we can easily determine the existence of the integral
characteristic from the propagated division property.

Bit Product Function. We first define two bit product functions πu and πu,
which are used to evaluate the division property of a multiset. Let πu : F

n
2 → F2

be a function for any u ∈ F
n
2 . Let x ∈ F

n
2 be the input, and πu(x) is the AND of

x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=
n∏

i=1

x[i]u[i].

Let πu : (Fn1
2 × F

n2
2 × · · · × F

nm
2) → F2 be a function for any u ∈ (Fn1

2 × F
n2
2 ×

· · ·×F
nm
2). Let x ∈ (Fn1

2 ×F
n2
2 ×· · ·×F

nm
2) be the input, and πu(x) is defined as

πu(x) :=
m∏

i=1

πui
(xi).

Definition of Division Property. The division property is given against a
multiset, and it is calculated by using the bit product function. Let X be an
input multiset whose elements take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2). In the

division property, we first evaluate a value of
⊕

x∈X
πu(x) for all u ∈ (Fn1

2 ×
F
n2
2 × · · · × F

nm
2). Then, we divide the set of u into a subset whose evaluated

value becomes 0 and a subset whose evaluated value becomes unknown1. In [24],
the focus was on using the Hamming weight of elements of u to divide the set.

Definition 1 (Division Property). Let X be a multiset whose elements take
a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2), and k is an m-dimensional vector whose ith

element takes a value between 0 and ni. When the multiset X has the division
property Dn1,n2,...,nm

k(1),k(2),...,k(q) , it fulfils the following conditions: The parity of πu(x)
over all x ∈ X is always even when

u ∈
{

(u1, . . . , um) ∈ (Fn1
2 × · · · × F

nm
2) | W (u) � k(1), . . . , W (u) � k(q)

}
.

Moreover, the parity becomes unknown when u is used such that there exists an
i (1 ≤ i ≤ q) satisfying W (u) � k(i).
1 If we know all accurate values in a multiset, we can divide the set of u into subsets

whose evaluated value becomes 0 or 1. However, in the application to cryptanalysis,
we evaluate the values in the multiset whose elements are texts encrypted for several
rounds. Such elements change depending on the sub keys and the constant bit of
plaintexts. Therefore, we consider the subset whose evaluated value becomes 0 or
unknown.

418 Y. Todo

Assume that the multiset X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q) . If there

exist k(i) such that k
(i)
j is greater than 1,

⊕
x∈X

xj becomes 0. See [24] to better
understand the concept in detail. Moreover, [22] shows an example, and it helps
us understand the division property.

Propagation Rules of Division Property. Some propagation rules for the
division property are proven in [24]. We summarize them as follows.

Rule 1 (Substitution). Let F be a function that consists of m S-boxes, where
the bit length and the algebraic degree of the ith S-box is ni bits and di,
respectively. The input and the output take a value of (Fn1

2 ×F
n2
2 ×· · ·×F

nm
2),

and X and Y denote the input multiset and the output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2,...,nm

k(1),k(2),...,k(q) , the
division property of the multiset Y is Dn1,n2,...,nm

k′(1),k′(2),...,k′(q) as

k
′(j)
i =

⌈
k
(j)
i

di

⌉

for 1 ≤ i ≤ m, 1 ≤ j ≤ q.

Rule 2 (Copy). Let F be a copy function, where the input x takes a value
of F

n
2 and the output is calculated as (y1, y2) = (x, x). Let X and Y be the

input multiset and output multiset, respectively. Assuming that the multiset
X has the division property Dn

k , the division property of the multiset Y is
Dn,n

k′(1),k′(2),...,k′(k+1) as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Rule 3 (Compression by XOR). Let F be a function compressed by an XOR,
where the input (x1, x2) takes a value of (Fn

2 × F
n
2) and the output is cal-

culated as y = x1 ⊕ x2. Let X and Y be the input multiset and output
multiset, respectively. Assuming that the multiset X has the division prop-
erty Dn,n

k(1),k(2),...,k(q) , the division property of the multiset Y is Dn
k′ as

k′ = min{k
(1)
1 + k

(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

Here, if the minimum value of k′ is larger than n, the propagation charac-
teristic of the division property is aborted. Namely, a value of ⊕y∈Yπv(y) is
0 for all v ∈ F

n
2 .

Rule 4 (Split). Let F be a split function, where the input x takes a value of
F
n
2 and the output is calculated as x = y1‖y2, where (y1, y2) takes a value

of (Fn1
2 × F

n−n1
2). Let X and Y be the input multiset and output multiset,

respectively. Assuming that the multiset X has the division property Dn
k , the

division property of the multiset Y is Dn1,n−n1

k′(1),k′(2),...,k′(q) as

k′(i+1) = (k − i, i) for 0 ≤ i ≤ k.

Here, (k − i) is less than or equal to n1, and i is less than or equal to n−n1.

Integral Cryptanalysis on Full MISTY1 419

Fig. 2. The difference between [24] and us. The left figure is an assumption used in
[24]. The right one is a new assumption used in this paper.

Rule 5 (Concatenation). Let F be a concatenation function, where the input
(x1, x2) takes a value of (Fn1

2 × F
n2
2) and the output is calculated as y =

x1‖x2. Let X and Y be the input multiset and output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2

k(1),k(2),...,k(q) , the
division property of the multiset Y is Dn1+n2

k′ as

k′ = min{k
(1)
1 + k

(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }.

4 Division Property for Public Function

In an assumption of [24], attackers cannot know the specification of an S-box
and only know the algebraic degree of the S-box. However, many specific block
ciphers usually use a public S-box and an addition of secret sub keys, where
an XOR is especially used for the addition. In this paper, we show that the
propagation characteristic of the division property can be improved if an S-box
is a public function. The difference between [24] and us is shown in Fig. 2.

We consider the propagation characteristic of the division property against
the function shown in the right figure in Fig. 2. The key XORing first be applied,
but it does not affect the division property because it is a linear function. There-
fore, when we evaluate the propagation characteristic of the division property,
we can remove the key XORing. Next, a public S-box is applied, and we can
determine the ANF of the S-box. Assuming that an S-box is a function from n
bits to m bits, the ANF is represented as

y[1] = f1(x[1], x[2], . . . , x[n]),
y[2] = f2(x[1], x[2], . . . , x[n]),

...
y[m] = fm(x[1], x[2], . . . , x[n]),

where x[i] (1 ≤ i ≤ n) is an input, y[j] (1 ≤ j ≤ m) is an output, and fj (1 ≤ j ≤
m) is a Boolean function. The division property evaluates the input multiset and
output one by using the bit product function πu, and we then divide the set of
u into a subset whose evaluated value becomes 0 and a subset whose evaluated
value becomes unknown. Namely, we evaluate the equation

Fu(x[1], x[2], . . . , x[n]) =
m∏

i=1

fi(x[1], x[2], . . . , x[n])u[i]

420 Y. Todo

and divide the set of u. In [24], a fundamental property of the product of some func-
tions is used, i.e., the algebraic degree ofFu is atmostw(u)×d if the algebraic degree
of functions fi is at most d. However, since we now know the ANF of functions
f1, f2, . . . , fm, we can calculate the accurate algebraic degree of Fu for all u ∈ F

n
2 .

In this case, if the algebraic degree of Fu is less than w(u) × d for all u for which
w(u) is constant, we can improve the propagation characteristic.

4.1 Application to MISTY S-boxes

Evaluation of S7. The S7 of MISTY is a 7-bit S-box with degree 3. We show
the ANF of S7 in Appendix A. We evaluate the property of (πv ◦ S7) to get
the propagation characteristic of the division property. The algebraic degree
of (πv ◦ S7) increases in accordance with the Hamming weight of v, and it is
summarized as follows.

w(v) 0 1 2 3 4 5 6 7

degree 0 3 5 5 6 6 6 7

If we replace the S7 with a modified S-box, which is randomly chosen from all
7-bit S-boxes with degree 3, the algebraic degree of (πv ◦ S) is at least 6 with
w(v) ≥ 2. However, for the S7, the increment of the algebraic degree is bounded
by 5 with w(v) = 2 or w(v) = 3 holds2. Thus, the propagation characteristic is
represented as the following.

D7
k for input set X D7

0 D7
1 D7

2 D7
3 D7

4 D7
5 D7

6 D7
7

D7
k for output set Y D7

0 D7
1 D7

1 D7
1 D7

2 D7
2 D7

4 D7
7

Notice that the division property D7
4 is propagated from the division property

D7
6. Assuming that the modified S-box is applied, the division property D7

2 is
propagated from the division property D7

6 [24]. Therefore, the deterioration of
the division property for the S7 is smaller than that for any 7-bit S-box.

Evaluation of S9. The S9 of MISTY is a 9-bit S-box with degree 2. We show
the ANF of S7 in Appendix A. We evaluate the property of (πv ◦ S9) to get
the propagation characteristic of the division property. The algebraic degree
of (πv ◦ S9) increases in accordance with the Hamming weight of v, and it is
summarized as follows.

w(v) 0 1 2 3 4 5 6 7 8 9

degree 0 2 4 6 8 8 8 8 8 9

2 This observation was also provided by Theorem 3.1 in [4].

Integral Cryptanalysis on Full MISTY1 421

Fig. 3. Structure of FI function

Thus, the propagation characteristic is represented as

D9
k for input set X D9

0 D9
1 D9

2 D9
3 D9

4 D9
5 D9

6 D9
7 D9

8 D9
9

D9
k for output set Y D9

0 D9
1 D9

1 D9
2 D9

2 D9
3 D9

3 D9
4 D9

4 D9
9

Unlike the propagation characteristic of the division property for S7, that for S9

is the same as that for any 9-bit S-box with degree 2.

5 New Integral Characteristic

This section shows how to create integral characteristics on MISTY1 by using the
propagation characteristic of the division property. We first evaluate the propaga-
tion characteristic for the component functions of MISTY1, i.e., the FI function,
the FO function, and the FL layer. Finally, by assembling these characteristics,
we create an algorithm to search for integral characteristics on MISTY1.

5.1 Division Property for FI Function

We evaluate the propagation characteristic of the division property for the FI
function by using those for MISTY S-boxes shown in Sect. 4.1. Since there are
a zero-extended XOR and a truncated XOR in the FI function, we use a new
representation, in which the internal state is expressed in two 7-bit values and
one 2-bit value. Figure 3 shows the structure of the FI function with our repre-
sentation, where we remove the XOR of sub keys because it does not affect the
division property.

Let X1 be the input multiset of the FI function. We define every multiset
X2, X3, . . . , X11 in Fig. 3. Here, elements of the multiset X1, X5, X6, and X11 take
a value of (F7

2 × F
2
2 × F

7
2). Elements of the multiset X2, X3, X8, and X9 take a

value of (F9
2 × F

7
2). Elements of the multiset X4, X7, and X10 take a value of

(F2
2 × F

7
2 × F

7
2). Since elements of X1 and X11 take a value of (F7

2 × F
2
2 × F

7
2),

the propagation for the FI function is calculated on D7,2,7
k(1),k(2),...,k(q) . Here, the

propagation is calculated with the following steps.

From X1 to X2: A 9-bit value is created by concatenating the first 7-bit value
with the second 2-bit value. The propagation characteristic can be evaluated
by using Rule 5.

From X2 to X3: The 9-bit S-box S9 is applied to the first 9-bit value. The
propagation characteristic can be evaluated by using Rule 1.

422 Y. Todo

Algorithm 1. Propagation for FI function
1: procedure FIEval(k1, k2, k3)
2: k(1), k(2), . . . , k(q) ⇐ S9Eval(k) � X1 → X5

3: k(1), k(2), . . . , k(q) ⇐ S7Eval(k(1), k(2), . . . , k(q)) � X5 → X7

4: k(1), k(2), . . . , k(q) ⇐ S9Eval(k(1), k(2), . . . , k(q)) � X7 → X11

5: return SizeReduce(k(1), k(2), . . . , k(q))
6: end procedure

1: procedure S9Eval(k(1), . . . , k(q))
2: q′ ⇐ 0
3: for i ⇐ 1 to q do
4: (�, c, r) ⇐ (k

(i)
1 , k

(i)
2 , k

(i)
3)

5: k ⇐ � + c
6: if k < 9 then
7: k ⇐ �k/2�
8: end if
9: for c′ ⇐ 0 to min(2, k) do

10: for x ⇐ 0 to r do
11: �′ ⇐ r − x
12: r′ ⇐ k − c′ + x
13: if r′ ≤ 7 then
14: q′ ⇐ q′ + 1
15: k′(q′) ⇐ (�′, c′, r′)
16: end if
17: end for
18: end for
19: end for
20: return k′(1), k′(2), . . . , k′(q′)

21: end procedure

22: procedure S7Eval(k(1), . . . , k(q))
23: q′ ⇐ 0
24: for i ⇐ 1 to q do
25: (�, c, r) ⇐ (k

(i)
1 , k

(i)
2 , k

(i)
3)

26: k ⇐ �
27: if k = 6 then
28: k ⇐ 4
29: else if k < 6 then
30: k ⇐ �k/3�
31: end if
32: for x ⇐ 0 to r do
33: �′ ⇐ c
34: c′ ⇐ r − x
35: r′ ⇐ k + x
36: if r′ ≤ 7 then
37: q′ ⇐ q′ + 1
38: k′(q′) ⇐ (�′, c′, r′)
39: end if
40: end for
41: end for
42: return k′(1), k′(2), . . . , k′(q′)

43: end procedure

From X3 to X4: The 9-bit output value is split into a 2-bit value and a 7-bit
value. The propagation characteristic can be evaluated by using Rule 4.

From X4 to X5: The second 7-bit value is XORed with the last 7-bit value, and
then, the order is rotated. The propagation characteristic can be evaluated
by using Rule 2 and Rule 3.

From X5 to X6: The 7-bit S-box S7 is applied to the first 7-bit value. The
propagation characteristic can be evaluated by using Rule 1.

From X6 to X7: The first 7-bit value is XORed with the last 7-bit value, and
then, the order is rotated. The propagation characteristic can be evaluated
by using Rule 2 and Rule 3.

From X7 to X8: A 9-bit value is created by concatenating the first 2-bit value
with the second 7-bit value. The propagation characteristic can be evaluated
by using Rule 5.

From X8 to X11: The propagation characteristic is the same as that from X2

to X5.

Integral Cryptanalysis on Full MISTY1 423

Fig. 4. Structure of FO function

Algorithm 1 creates the propagation characteristic table for the FI function. It
calls SizeReduce, where redundant elements are eliminated, i.e., it eliminates
k(i) if there exists j satisfying k(i) � k(j). Algorithm 1 only creates the propaga-
tion characteristic table for which the input property is represented by D7,2,7

k . If
any input multiset is evaluated, we need to know the propagation characteristic
of D7,2,7

k(1),k(2),...,k(q) . However, we do not evaluate such propagation in advance
because it can easily be evaluated by the table for which the input property is
represented by D7,2,7

k . We create all propagation characteristic tables by imple-
menting Algorithm 1 and experimentally confirm that Algorithm1 creates the
correct tables.

5.2 Division Property for FO Function

We next evaluate the propagation characteristic of the division property for the
FO function by using the propagation characteristic table of the FI function.
Figure 4 shows the structure of the FO function, where we remove the XOR of
sub keys because it does not affect the division property. The input and output
of the FO function take the value of (F7

2 × F
2
2 × F

7
2 × F

7
2 × F

2
2 × F

7
2). Therefore,

the propagation for the FO function is calculated on D7,2,7,7,2,7
k(1),k(2),...,k(q) .

Similar to that for the FI function, we create the propagation characteristic
table for the FO function (see Algorithm 2). We create only a table for which
the input property is represented by D7,2,7,7,2,7

k and the output property is rep-
resented by D7,2,7,7,2,7

k(1),k(2),...,k(q) .

5.3 Division Property for FL Layer

MISTY1 has the FL layer, which consists of two FL functions and is applied
once every two rounds. In the FL function, the right half of the input is XORed
with the AND between the left half and a sub key KLi,1. Then, the left half of
the input is XORed with the OR between the right half and a sub key KLi,2.

Since the input and the output of the FL function take the value of
F
7
2 × F

2
2 × F

7
2 × F

7
2 × F

2
2 × F

7
2, the propagation for the FL function is calculated

on D7,2,7,7,2,7
k(1),k(2),...,k(q) . FlEval in Algorithm 3 calculates the propagation character-

istic table for the FL function, where SizeReduce eliminates k(i) if there exists
j satisfying k(i) � k(j). Moreover, the FL layer consists of two FL functions.
Therefore, we have to consider the propagation characteristic of the division
property D7,2,7,7,2,7,7,2,7,7,2,7

k , where each FL function is applied to the left half

424 Y. Todo

Algorithm 2. Propagation for FO function
1: procedure FOEval(k1, k2, k3, k4, k5, k6)
2: k(1), k(2), . . . , k(q) ⇐ FORound(k)
3: k(1), k(2), . . . , k(q) ⇐ FORound(k(1), k(2), . . . , k(q))
4: k(1), k(2), . . . , k(q) ⇐ FORound(k(1), k(2), . . . , k(q))
5: return SizeReduce(k(1), k(2), . . . , k(q))
6: end procedure
1: procedure FORound(k(1), k(2), . . . , k(q))
2: q′ ⇐ 0
3: for i = 1 to q do
4: y(1), y(2), . . . , y(qy) ⇐ FIEval(k

(i)
1 , k

(i)
2 , k

(i)
3)

5: for j = 1 to qy do

6: for all x s.t. (x1 ≤ k
(i)
4) ∧ (x2 ≤ k

(i)
5) ∧ (x3 ≤ k

(i)
6) do

7: k′ ⇐ (k
(i)
4 − x1, k

(i)
5 − x2, k

(i)
6 − x3, y

(j)
1 + x1, y

(j)
2 + x2, y

(j)
3 + x3)

8: if (k′
4 ≤ 7) ∧ (k′

5 ≤ 2) ∧ (k′
6 ≤ 7) then

9: q′ ⇐ q′ + 1
10: k′(q′) ⇐ k′

11: end if
12: end for
13: end for
14: end for
15: return k′(1), k′(2), . . . , k′(q′)

16: end procedure

and the right one. FlLayerEval in Algorithm 3 calculates the propagation char-
acteristic of the division property for the FL layer.

5.4 Path Search for Integral Characteristic on MISTY1

We created the propagation characteristic table for the FI and FO functions in
Sects. 5.1 and 5.2, respectively. Moreover, we showed the propagation characteris-
tic for the FL layer in Sect. 5.3. By assembling these propagation characteristics,
we create an algorithm to search for integral characteristics on MISTY1. Since
the input and the output are represented as eight 7-bit values and four 2-bit
values, the propagation is calculated on D7,2,7,7,2,7,7,2,7,7,2,7

k(1),k(2),...,k(q) .
The FL layer is first applied to plaintexts, and it deteriorates the propagation

of the division property. Therefore, we first remove only the first FL layer and
search for integral characteristics on MISTY1 without the first FL layer. The
method for passing through the first FL layer is shown in the next paragraph.
Algorithm 4 shows the search algorithm for integral characteristics on MISTY1
without the first FL layer.

As a result, we can construct 6-round integral characteristics without the first
and last FL layers. Each characteristic uses 263 chosen plaintexts, where any one
bit of the first seven bits is constant and the others take all values. Figure 5 shows
the 6-round integral characteristic, where the bit strings labeled B, i.e., the first
7 bits and last 32 bits, are balanced. Notice that the 6-round characteristic

Integral Cryptanalysis on Full MISTY1 425

Algorithm 3. Propagation for FL layer
1: procedure FlEval(k1, k2, . . . , k6)
2: q′ ⇐ 0
3: (�, c, r) ⇐ (k1 + k4, k2 + k5, k3 + k6)
4: for k′

1 ⇐ 0 to min(7, �) do
5: for k′

2 ⇐ 0 to min(2, c) do
6: for k′

3 ⇐ 0 to min(7, r) do
7: (k′

4, k
′
5, k

′
6) ⇐ (� − k′

1, c − k′
2, r − k′

3)
8: if (k′

4 ≤ 7) ∧ (k′
5 ≤ 2) ∧ (k′

6 ≤ 7) then
9: q′ ⇐ q′ + 1

10: k′(q′) ⇐ (k′
1, k

′
2, k

′
3, k

′
4, k

′
5, k

′
6)

11: end if
12: end for
13: end for
14: end for
15: return SizeReduce(k(1), k(2), . . . , k(q′))
16: end procedure
1: procedure FlLayerEval(k(1), k(2), . . . , k(q))
2: q′ ⇐ 0
3: for i ⇐ 1 to q do
4: �(1), �(2), . . . , �(q�) ⇐ FlEval(k

(i)
1 , k

(i)
2 , . . . , k

(i)
6)

5: r(1), r(2), . . . , r(qr) ⇐ FlEval(k
(i)
7 , k

(i)
8 , . . . , k

(i)
12)

6: for j ⇐ 1 to q� do
7: for j′ ⇐ 1 to qr do
8: q′ ⇐ q′ + 1

9: k′(q′) ⇐ (�
(j)
1 , �

(j)
2 , �

(j)
3 , �

(j)
4 , �

(j)
5 , �

(j)
6 , r

(j′)
1 , r

(j′)
2 , r

(j′)
3 , r

(j′)
4 , r

(j′)
5 , r

(j′)
6)

10: end for
11: end for
12: end for
13: return (k′(1), k′(2), . . . , k′(q′))
14: end procedure

becomes a 7-round characteristic if the FL layer that is inserted after the 6th
round is removed. Compared with the previous 4-round characteristic [10,25],
our characteristic is improved by two rounds.

As shown in Sect. 4, the S7 of MISTY1 has the vulnerable property that
D7

4 is provided from D7
6. Interestingly, assuming that S7 does not have this

property (change lines 27–31 in S7Eval), our algorithm cannot construct the
6-round characteristic.

We already know that MISTY1 has the 14th order differential characteristic,
which is shown in [23], and the principle was also discussed in [1,5]. We also eval-
uate the principle of the characteristic by using the propagation characteristic
of the division property. As a result, we confirm that the characteristic always
exists if each algebraic degree S9 and S7 is 2 and 3, respectively. This result
implies that the existence of the 14th order differential characteristic is only
derived from the algebraic degree of S-boxes. Namely, even if different S-boxes

426 Y. Todo

Algorithm 4. Path search for r-round characteristics without first FL layer
1: procedure RoundFuncEval(k(1), k(2), . . . , k(q))
2: q′ = 0
3: for i ⇐ 1 to q do
4: for all x s.t. xj ≤ k

(i)
j for all j = 1, 2, . . . , 6 do

5: (r1, r2, r3) ⇐ (k
(i)
1 − x1, k

(i)
2 − x2, k

(i)
3 − x3)

6: (r4, r5, r6) ⇐ (k
(i)
4 − x4, k

(i)
5 − x5, k

(i)
6 − x6)

7: y(1), y(2), . . . , y(qy) ⇐ FOEval(x1, x2, x3, x4, x5, x6)
8: for i′ ⇐ 1 to qy do

9: (�1, �2, �3) ⇐ (k
(i)
7 + y

(i′)
1 , k

(i)
8 + y

(i′)
2 , k

(i)
9 + y

(i′)
3)

10: (�4, �5, �6) ⇐ (k
(i)
10 + y

(i′)
4 , k

(i)
11 + y

(i′)
5 , k

(i)
12 + y

(i′)
6)

11: if �j′ ≤ 7 for j′ ∈ {1, 3, 4, 6} and �j′ ≤ 2 for j′ ∈ {2, 5} then
12: q′ ⇐ q′ + 1
13: k′(q′) ⇐ (�1, �2, �3, �4, �5, �6, r1, r2, r3, r4, r5, r6)
14: end if
15: end for
16: end for
17: end for
18: return SizeReduce(k′(1), k′(2), . . . , k′(q′))
19: end procedure
1: procedure Misty1Eval(k1, k2, . . . , k12, r)
2: k(1), k(2), . . . , k(q) ⇐ RoundFuncEval(k) � 1st round
3: for i = 1 to r do
4: if i is even then
5: k(1), k(2), . . . , k(q) ⇐ FlLayerEval(k(1), k(2), . . . , k(q)) � FL Layer
6: end if
7: k(1), k(2), . . . , k(q) ⇐ RoundFuncEval(k(1), k(2), . . . , k(q)) � (i+1)th round
8: end for
9: end procedure

are chosen in S7 and S9, the 14th order differential characteristic exists unless
the algebraic degree increases.

Passage of First FL Layer. Our new characteristic removes the first FL layer.
Therefore, we have to create a set of chosen plaintexts to construct integral
characteristics by using guessed round keys KL1,1 and KL1,2. Here, we have to
carefully choose the set of chosen plaintexts to avoid the use of the full code book
(see Figs. 6, 7, and 8). In every figure, Ai denotes for which we prepare an input
set that i bits are active. As an example, we consider an integral characteristic
for which the first one bit is constant and the remaining 63 bits are active. Since
all bits of the right half are active, we focus only on the left half. We first guess
that KL1,2[1] = 1, and we then prepare the set of plaintexts like in Fig. 6. We
next guess that (KL1,1[1],KL1,2[1]) = (0, 0), and we then prepare the set of
plaintexts like in Fig. 7. Moreover, we guess that (KL1,1[1],KL1,2[1]) = (1, 0),
and we then prepare the set of plaintexts like in Fig. 8. Their chosen plaintexts
construct 6-round integral characteristics if the guessed key bits are correct.

Integral Cryptanalysis on Full MISTY1 427

Fig. 5. New 6-round integral characteristic

Fig. 6. KL1,2 = 1

Fig. 7. KL1,1 = 0, KL1,2 = 0

Fig. 8. KL1,1 = 1, KL1,2 = 0

Notice that we do not use 262 chosen plaintexts as (1A15 1A15 A16 A16). Thus,
our integral characteristics use 264 − 262 ≈ 263.58 chosen plaintexts.

6 Key Recovery Using New Integral Characteristic

This section shows the key recovery step of our cryptanalysis, which uses the
6-round integral characteristic shown in Sect. 5. In the characteristic, the left
7-bit value of XL

7 is balanced. To evaluate this balanced seven bits, we have to
calculate two FL layers and one FO function by using the guessed round keys.
Figure 9 shows the structure of our key recovery step.

6.1 Sub Key Recovery Using Partial-Sum Technique

We guess KL1,1[i](= K1[i]) and KL1,2[i](= K ′
7[i]) and then prepare a set of

chosen plaintexts to construct an integral characteristic. In the characteristic,

428 Y. Todo

Fig. 9. Key recovery step

Table 2. Procedure of key recovery step

Step Guessed key #guessed

total bits

New

value

Discarded values #texts Values in set Complexity

1 0 234 CL, CR[j, 16 + j]

2 K1, K′
7 32 XR

9 CL 234 XR
9 , CR[j, 16 + j] 234+32 =

266

3 K8, K′
5 64 D1 XR

9 [1, . . . , 16] 234 D1, XR
9 [17, . . . , 32],

CR[j, 16 + j]

234+64 =

298

4 K′
3[j], (K7) 65 D2[j] D1 w/o D1[j] 220 D1[j], D2[j],

XR
9 [17, . . . , 32],

CR[j, 16 + j]

234+65 =

299

5 K2, (K′
1[j]) 81 D3[j] XR

9 [17, . . . , 32],

D1[j]

24 D2[j], D3[j],

CR[j, 16 + j]

220+81 =

2101

6 K5[j], K′
2[j] 83 XL

7 [j] D2[j], D3[j],

CR[j, 16 + j]

21 XL
7 [j] 24+83 =

287

seven bits XL
7 [1, . . . , 7] are balanced. Therefore, we evaluate whether or not XL

7 [j]
is balanced for j ∈ {1, 2, . . . , 7} by using a partial-sum technique [9].

In the first step, we store the frequency of 34 bits (CL, CR[j, 16 + j]) into a
voting table for j ∈ {1, 2, . . . , 7}. Then, we partially guess round keys, discard the
size of the voting table, and calculate the XOR of XL

7 [j]. Table 2 summarizes the
procedure of the key recovery step, where every value is defined in Fig. 9. Since
the time complexity is the sum of all steps, the time complexity is about 2101.5.

Integral Cryptanalysis on Full MISTY1 429

When we repeat the procedure for seven balanced bits, the time complexity
becomes 7 × 2101.5 = 2104.3.

The key recovery step has to guess the 124-bit key

K1,K2,K5[1, . . . , 7],K7,K8,

K ′
1[1, . . . , 7],K ′

2[1, . . . , 7],K ′
3[1, . . . , 7],K ′

5,K
′
7.

Here, K ′
7 and K ′

1[1, . . . , 7] are uniquely determined by guessing K7,K8 and
K1,K2, respectively. Thus, the guessed key bit size is reduced to

K1,K2,K5[1, . . . , 7],K7,K8,

K ′
2[1, . . . , 7],K ′

3[1, . . . , 7],K ′
5,

and it becomes 101 bits. Moreover, since we already guessed 2 bits, i.e., K1[i] and
K ′

7[i], to construct integral characteristics, the guessed key bit size is reduced
to 99 bits. For wrong keys, the probability that XL

7 [1, . . . , 7] is balanced is 2−7.
Therefore, the number of the candidates of round keys is reduced to 292. Finally,
we guess the 27 bits:

K5[8, . . . , 16],K ′
2[8, . . . , 16],K ′

3[8, . . . , 16].

Notice that K3, K4, and K6 are uniquely determined from (K2,K
′
2), (K3,K

′
3),

and (K5,K
′
5), respectively. Therefore, the total time complexity is 292+27 = 2119.

We guess the correct key from 2119 candidates by using two plaintext-ciphertext
pairs, and the time complexity is 2119 + 2119−64 ≈ 2119. We have to execute the
above procedure against (K1[i],K ′

7[i]) = (0, 0), (0, 1), (1, 0), (1, 1), and the time
complexity becomes 4 × 2119 = 2121.

6.2 Trade-Off Between Time and Data Complexity

In Sect. 6.1, we use only one set of chosen plaintexts, where (264 − 262) chosen
plaintexts are required. Since the probability that wrong keys are not discarded
is 2−7, a brute-force search is required with a time complexity of 2128−7 = 2119,
and it is larger than the time complexity of the partial-sum technique. Therefore,
if we have a higher number of characteristics, the total time complexity can be
reduced.

To prepare several characteristics, we choose some constant bits from seven
bits (i ∈ {1, 2, . . . , 7}). If we use a characteristic with i = 1, we use chosen
plaintexts for which plaintext PL takes the following values

(00A14 00A14), (00A14 01A14), (01A14 00A14), (01A14 01A14),
(00A14 10A14), (00A14 11A14), (01A14 10A14), (01A14 11A14),
(10A14 00A14), (10A14 01A14), (11A14 00A14), (11A14 01A14),

where A14 denotes that all values appear the same number independent of other
bits, e.g., (00A14 00A14) uses 260 chosen plaintexts because PR also takes all

430 Y. Todo

Table 3. Trade-off between time and data complexity

#characteristics Complexity for partial-sum Complexity for brute-force Total

1 1 × 3 × 2104.3 2121 2121

2 2 × 3 × 2104.3 2114 2114

3 3 × 3 × 2104.3 2107 2108.3

4 4 × 3 × 2104.3 2100 2107.9

5 5 × 3 × 2104.3 293 2108.2

values. Moreover, if we use a characteristic with i = 2, we use chosen plaintexts
for which PL takes the following values

(00A14 00A14), (00A14 10A14), (10A14 00A14), (10A14 10A14),
(00A14 01A14), (00A14 11A14), (10A14 01A14), (10A14 11A14),
(01A14 00A14), (01A14 10A14), (11A14 00A14), (11A14 10A14).

When both characteristics are used, they do not require choosing plaintexts for
which PL takes (11A14 11A14). Therefore, (264 − 260) chosen plaintexts are
required, and the probability that wrong keys are not discarded becomes 2−14.
Similarly, when three characteristics, which require (264−258) chosen plaintexts,
are used, the probability that wrong keys are not discarded becomes 2−21.

Table 3 summarizes the trade-off between time and data complexity, and
it shows that the use of four characteristics is optimized from the perspective
of time complexity. Namely, when (264 − 256) ≈ 263.994 chosen plaintexts are
required, the time complexity to recovery the secret key is 2107.3.

7 Conclusions

In this paper, we showed a cryptanalysis of the full MISTY1. MISTY1 was well
evaluated and standardized by several projects, such as CRYPTREC, ISO/IEC,
and NESSIE. We constructed a new integral characteristic by using the prop-
agation characteristic of the division property. Here, we improved the division
property by optimizing a public S-box. As a result, a new 6-round integral char-
acteristic is constructed, and we can recover the secret key of the full MISTY1
with 263.58 chosen plaintexts and 2121 time complexity. If we can use 263.994

chosen plaintexts, our attack can recover the secret key with a time complexity
of 2107.9.

A MISTY S-boxes

The ANF of S7 is represented as

y[0] = x[0] ⊕ x[1]x[3] ⊕ x[0]x[3]x[4] ⊕ x[1]x[5] ⊕ x[0]x[2]x[5] ⊕ x[4]x[5]

⊕ x[0]x[1]x[6] ⊕ x[2]x[6] ⊕ x[0]x[5]x[6] ⊕ x[3]x[5]x[6] ⊕ 1,

Integral Cryptanalysis on Full MISTY1 431

y[1] = x[0]x[2] ⊕ x[0]x[4] ⊕ x[3]x[4] ⊕ x[1]x[5] ⊕ x[2]x[4]x[5] ⊕ x[6] ⊕ x[0]x[6]

⊕ x[3]x[6] ⊕ x[2]x[3]x[6] ⊕ x[1]x[4]x[6] ⊕ x[0]x[5]x[6] ⊕ 1,

y[2] = x[1]x[2] ⊕ x[0]x[2]x[3] ⊕ x[4] ⊕ x[1]x[4] ⊕ x[0]x[1]x[4] ⊕ x[0]x[5] ⊕ x[0]x[4]x[5]

⊕ x[3]x[4]x[5] ⊕ x[1]x[6] ⊕ x[3]x[6] ⊕ x[0]x[3]x[6] ⊕ x[4]x[6] ⊕ x[2]x[4]x[6],

y[3] = x[0] ⊕ x[1] ⊕ x[0]x[1]x[2] ⊕ x[0]x[3] ⊕ x[2]x[4] ⊕ x[1]x[4]x[5] ⊕ x[2]x[6]

⊕ x[1]x[3]x[6] ⊕ x[0]x[4]x[6] ⊕ x[5]x[6] ⊕ 1,

y[4] = x[2]x[3] ⊕ x[0]x[4] ⊕ x[1]x[3]x[4] ⊕ x[5] ⊕ x[2]x[5] ⊕ x[1]x[2]x[5] ⊕ x[0]x[3]x[5]

⊕ x[1]x[6] ⊕ x[1]x[5]x[6] ⊕ x[4]x[5]x[6] ⊕ 1,

y[5] = x[0] ⊕ x[1] ⊕ x[2] ⊕ x[0]x[1]x[2] ⊕ x[0]x[3] ⊕ x[1]x[2]x[3] ⊕ x[1]x[4]

⊕ x[0]x[2]x[4] ⊕ x[0]x[5] ⊕ x[0]x[1]x[5] ⊕ x[3]x[5] ⊕ x[0]x[6] ⊕ x[2]x[5]x[6],

y[6] = x[0]x[1] ⊕ x[3] ⊕ x[0]x[3] ⊕ x[2]x[3]x[4] ⊕ x[0]x[5] ⊕ x[2]x[5] ⊕ x[3]x[5]

⊕ x[1]x[3]x[5] ⊕ x[1]x[6] ⊕ x[1]x[2]x[6] ⊕ x[0]x[3]x[6] ⊕ x[4]x[6] ⊕ x[2]x[5]x[6].

Moreover, the ANF of S9 is represented as

y[0] = x[0]x[4] ⊕ x[0]x[5] ⊕ x[1]x[5] ⊕ x[1]x[6] ⊕ x[2]x[6] ⊕ x[2]x[7] ⊕ x[3]x[7] ⊕ x[3]x[8]

⊕ x[4]x[8] ⊕ 1,

y[1] = x[0]x[2] ⊕ x[3] ⊕ x[1]x[3] ⊕ x[2]x[3] ⊕ x[3]x[4] ⊕ x[4]x[5] ⊕ x[0]x[6] ⊕ x[2]x[6]

⊕ x[7] ⊕ x[0]x[8] ⊕ x[3]x[8] ⊕ x[5]x[8] ⊕ 1,

y[2] = x[0]x[1] ⊕ x[1]x[3] ⊕ x[4] ⊕ x[0]x[4] ⊕ x[2]x[4] ⊕ x[3]x[4] ⊕ x[4]x[5] ⊕ x[0]x[6]

⊕ x[5]x[6] ⊕ x[1]x[7] ⊕ x[3]x[7] ⊕ x[8],

y[3] = x[0] ⊕ x[1]x[2] ⊕ x[2]x[4] ⊕ x[5] ⊕ x[1]x[5] ⊕ x[3]x[5] ⊕ x[4]x[5] ⊕ x[5]x[6]

⊕ x[1]x[7] ⊕ x[6]x[7] ⊕ x[2]x[8] ⊕ x[4]x[8],

y[4] = x[1] ⊕ x[0]x[3] ⊕ x[2]x[3] ⊕ x[0]x[5] ⊕ x[3]x[5] ⊕ x[6] ⊕ x[2]x[6] ⊕ x[4]x[6]

⊕ x[5]x[6] ⊕ x[6]x[7] ⊕ x[2]x[8] ⊕ x[7]x[8],

y[5] = x[2] ⊕ x[0]x[3] ⊕ x[1]x[4] ⊕ x[3]x[4] ⊕ x[1]x[6] ⊕ x[4]x[6] ⊕ x[7] ⊕ x[3]x[7]

⊕ x[5]x[7] ⊕ x[6]x[7] ⊕ x[0]x[8] ⊕ x[7]x[8],

y[6] = x[0]x[1] ⊕ x[3] ⊕ x[1]x[4] ⊕ x[2]x[5] ⊕ x[4]x[5] ⊕ x[2]x[7] ⊕ x[5]x[7] ⊕ x[8]

⊕ x[0]x[8] ⊕ x[4]x[8] ⊕ x[6]x[8] ⊕ x[7]x[8] ⊕ 1,

y[7] = x[1] ⊕ x[0]x[1] ⊕ x[1]x[2] ⊕ x[2]x[3] ⊕ x[0]x[4] ⊕ x[5] ⊕ x[1]x[6] ⊕ x[3]x[6]

⊕ x[0]x[7] ⊕ x[4]x[7] ⊕ x[6]x[7] ⊕ x[1]x[8] ⊕ 1,

y[8] = x[0] ⊕ x[0]x[1] ⊕ x[1]x[2] ⊕ x[4] ⊕ x[0]x[5] ⊕ x[2]x[5] ⊕ x[3]x[6] ⊕ x[5]x[6]

⊕ x[0]x[7] ⊕ x[0]x[8] ⊕ x[3]x[8] ⊕ x[6]x[8] ⊕ 1.

References

1. Babbage, S., Frisch, L.: On MISTY1 higher order differential cryptanalysis. In:
Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 22–36. Springer, Heidelberg (2001)

2. Bar-On, A.: Improved higher-order differential attacks on MISTY1. In: FSE (2015)
3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:

Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

4. Boura, C., Canteaut, A.: On the influence of the algebraic degree of f-1 on the
algebraic degree of G ◦ F. IEEE Trans. Inf. Theor. 59(1), 691–702 (2013)

5. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions
and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002)

432 Y. Todo

6. CRYPTREC: Specifications of e-government recommended ciphers (2013). http://
www.cryptrec.go.jp/english/method.html

7. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

8. Dunkelman, O., Keller, N.: An improved impossible differential attack on MISTY1.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454. Springer,
Heidelberg (2008)

9. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.L.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

10. Hatano, Y., Tanaka, H., Kaneko, T.: Optimization for the algebraic method and
its application to an attack of MISTY1. IEICE Trans. 87–A(1), 18–27 (2004)

11. ISO/IEC: JTC1: ISO/IEC 18033: Security techniques – encryption algorithms –
part 3: Block ciphers (2005)

12. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

13. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

14. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography. The Springer International Series in Engineering and Computer Science,
vol. 276, pp. 227–233. Springer, USA (1994)

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

16. Matsui, M.: New structure of block ciphers with provable security against differen-
tial and linear cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039,
pp. 205–218. Springer, Heidelberg (1996)

17. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

18. NESSIE: New european schemes for signatures, integrity, and encryption (2004).
https://www.cosic.esat.kuleuven.be/nessie/

19. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

20. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. J. Cryp-
tology 8(1), 27–37 (1995)

21. Ohta, H., Matsui, M.: A description of the MISTY1 encryption algorithm (2000).
https://tools.ietf.org/html/rfc2994

22. Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division
property. IACR Cryptology ePrint Archive 2015, 459 (2015). http://eprint.iacr.
org/2015/459

23. Tanaka, H., Hisamatsu, K., Kaneko, T.: Strength of MISTY1 without FL function
for higher order differential attack. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A.
(eds.) AAECC 1999. LNCS, vol. 1719, pp. 221–230. Springer, Heidelberg (1999)

24. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015)

25. Tsunoo, Y., Saito, T., Shigeri, M., Kawabata, T.: Higher order differential attacks
on reduced-round MISTY1. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 415–431. Springer, Heidelberg (2009)

http://www.cryptrec.go.jp/english/method.html
http://www.cryptrec.go.jp/english/method.html
https://www.cosic.esat.kuleuven.be/nessie/
https://tools.ietf.org/html/rfc2994
http://eprint.iacr.org/2015/459
http://eprint.iacr.org/2015/459

New Attacks on Feistel Structures
with Improved Memory Complexities

Itai Dinur1, Orr Dunkelman2,4(B), Nathan Keller3,4, and Adi Shamir4

1 Département d’Informatique, École Normale Supérieure, Paris, France
2 Computer Science Department, University of Haifa, Haifa, Israel

orrd@cs.haifa.ac.il
3 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel

4 Computer Science Department, The Weizmann Institute, Rehovot, Israel

Abstract. Feistel structures are an extremely important and exten-
sively researched type of cryptographic schemes. In this paper we
describe improved attacks on Feistel structures with more than 4 rounds.
We achieve this by a new attack that combines the main benefits of
meet-in-the-middle attacks (which can reduce the time complexity by
comparing only half blocks in the middle) and dissection attacks (which
can reduce the memory complexity but have to guess full blocks in the
middle in order to perform independent attacks above and below it).
For example, for a 7-round Feistel structure on n-bit inputs with seven
independent round keys of n/2 bits each, a MITM attack can use (21.5n,
21.5n) time and memory, while dissection requires (22n, 2n) time and
memory. Our new attack requires only (21.5n, 2n) time and memory,
using a few known plaintext/ciphertext pairs. When we are allowed to
use more known plaintexts, we develop new techniques which rely on the
existence of multicollisions and differential properties deep in the struc-
ture in order to further reduce the memory complexity.

Our new attacks are not just theoretical generic constructions — in
fact, we can use them to improve the best known attacks on several con-
crete cryptosystems such as round-reduced CAST-128 (where we reduce
the memory complexity from 2111 to 264) and full DEAL-256 (where we
reduce the memory complexity from 2200 to 2144), without affecting their
time and data complexities. An extension of our techniques applies even
to some non-Feistel structures — for example, in the case of FOX, we
reduce the memory complexity of all the best known attacks by a factor
of 216.

Keywords: Cryptanalysis · Block cipher · Feistel structure · Dissec-
tion · Meet-in-the-middle · Splice-and-cut · CAST-128 · DEAL

O. Dunkelman—The second author was supported in part by the Israeli Science
Foundation through grant No. 827/12.
N. Keller—The third author was supported by the Alon Fellowship.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 433–454, 2015.
DOI: 10.1007/978-3-662-47989-6 21

434 I. Dinur et al.

1 Introduction

Feistel structures were first used in the design of DES [18], and had a major
influence on the development of both the theory and the practice of cryptography
(e.g., in the Luby-Rackoff [17] construction of pseudo random permutations and
in the design of numerous block cipher proposals). In this paper we will primarily
consider generic Feistel structures whose i-th round is depicted in Fig. 1. They
divide their n-bit blocks into two equal parts (Li, Ri), use independent n/2-bit
subkeys in their � rounds, and have round functions Fi over n/2-bit inputs,
outputs and subkeys which are perfect in the sense that they cannot be broken
with attacks that are faster than exhaustive search. This choice of parameters
allows us to consider any two consecutive rounds in a Feistel structure as a
single round in a regular (non-Feistel) structure that has n-bit inputs outputs
and subkeys. However, when we describe attacks on concrete schemes which have
a Feistel structure, we will consider the relevant key and block sizes, and exploit
some of the weaknesses of the actual round functions.

Fig. 1. The i’th round of a Feistel structure

A major type of low-data attacks which can be applied to multi-round con-
structions is the Meet-In-The-Middle (abbreviated as MITM) attack, which was
proposed by Diffie and Hellman [8] in 1977 as a method for cryptanalyzing dou-
ble encryption schemes. It gained additional fame in 1985, when Chaum and
Evertse [7] applied it to reduced-round variants of DES [18], and it is now con-
sidered as an essential part in any course in cryptanalysis. In the last few years,
research of MITM techniques had expanded in diverse directions and numer-
ous new extensions of the basic MITM appeared, including partial matching [4],
probabilistic matching [15,20], bicliques [3], sieve-in-the-middle [6], and many
others. One of the recent approaches is the dissection attack, which was intro-
duced by Dinur et al. [9] at CRYPTO 2012. Dissection can solve a wide variety of
combinatorial search problems with improved combinations of time and memory
complexities. In its cryptanalytic application, dissection significantly improved
the time/memory tradeoff achievable by MITM attacks on multiple encryption
schemes with more than 3 rounds.

The main difference between these two types of low-data attacks can be
described in the following way: In basic MITM the adversary starts from the
known plaintexts and ciphertexts at the endpoints, and works from both end-
points towards the middle by guessing some keys and building appropriate
lookup tables. The equality of the pairs of values in the middle is used just
as a filtering condition to identify the correct keys, and there is no need to know
them in order to start the attack. In dissection attacks the adversary starts by

New Attacks on Feistel Structures with Improved Memory Complexities 435

guessing the relevant values in the middle, and works from the middle towards
the endpoints. In fact, the knowledge of the middle values enables the adver-
sary to break the cryptanalytic problem into two independent smaller problems
with new known plaintext and ciphertext pairs at their endpoints, which can
be solved recursively by another dissection, or with MITM at the leaves of the
recursion tree.

When we compare the two types of attacks on a Feistel structure with an
odd number of � = 2r+1 rounds, we notice that each one of them offers different
advantages and disadvantages. The MITM attack can ignore the middle round
by comparing only the n/2-bit half blocks which are not affected by this round in
the Feistel structure. This enables the MITM attack to be more time-efficient in
the case of Feistel structures, since it does not have to guess the middle subkey.
Even though dissection is naturally more efficient than MITM, it loses in its time
complexity in this case since it has to guess the full n-bit middle value in order
to be able to encrypt and decrypt this guessed value through multiple rounds.

In this paper we present new techniques which enable us to combine the
MITM and dissection approaches, along with additional ingredients, such as
iterating over values that are not used later in the MITM attack, and using
multi-collisions and differential properties in the middle of the Feistel structure.
We first consider the case of Feistel structures with an odd number of rounds,
and try to reduce the memory complexity of the most time-efficient attacks on
them. We show that the memory complexity of the MITM attack on � = 2r + 1
rounds for r ≥ 3 can be reduced all the way from 20.5rn to about 2�r/2�0.5n

(like in dissection) without increasing the time complexity, at the expense of
increasing the data complexity to about 2� r−3

(r+1) �0.5n known plaintexts. If no
additional plaintexts are allowed, we are still able to reduce the memory, but
only to about 2�2r/3�0.5n. In particular, we can reduce the memory complexity
of the standard MITM attack on 7-round Feistel from 21.5n to 2n with no effect
on the data and time complexities.1

A different goal is to reduce the time complexity of the most memory-efficient
nontrivial attacks (in which the memory available to the adversary is restricted to
20.5n, which makes it possible to store in memory all the possible values of a sin-
gle half-block or a single subkey, but not more). Here, we assume that the round
functions can be inverted efficiently when their subkey is given. In [9], Dinur
et al. considered low-memory dissection attacks on general (non-Feistel) struc-
tures, in which the available memory is restricted to 2n (where n is the length of
a single block or a single subkey). They defined the gain of a dissection attack of
time complexity T over a standard MITM attack with 2n memory (whose time
complexity is 2(�−1)n for � rounds) by (�− 1)− log2(T)/n. Then, they computed
the sequence of round numbers � for which the gain of the best dissection attack
increases by one — {4,7,11,16,22,29,37,. . . }. We use our techniques to compute
a similar sequence of round numbers � of Feistel structures for which the gain

1 We alert the reader that similarly to [9], we concentrate on asymptotic complexity
and ignore small polynomial factors in n. Moreover, we treat � as a (possibly big)
constant, and therefore disregard all multiplicative factors related to � (and r).

436 I. Dinur et al.

(over MITM, whose time complexity is 2(�−2)0.5n) increases by one — it turns
out to be {5,10,15,22,29,38,47,. . . }, and the asymptotic complexity of an attack
on �-round Feistel using a minimal amount of 20.5n memory turns out to be
20.5n(�−2−√

2�+o(
√

�)). In particular, we present an attack on 5-round Feistel with
time complexity of 2n and memory complexity of 20.5n (compared to (2n, 2n) or
(21.5n, 20.5n) which are the best that can be obtained by previous attacks).

To deal with an even number of rounds without having to guess the extra key,
we show that our algorithms can be combined with a recent algorithm presented
by Isobe and Shibutani [12] at Asiacrypt 2013. This algorithm extends MITM
attacks on Feistel structures by one round, at the expense of increasing the time
complexity by 20.25n and using 20.25n chosen plaintexts. As a result, we obtain
an attack on a Feistel structures with � = 2r rounds (for r ≥ 4) that requires
2(0.5r−0.25)n time, about 2(0.5�r/2�−0.25)n memory, and max{20.25n, 2� r−4

r �0.5n}
chosen plaintexts. Alternatively, we can use only 20.25n chosen plaintexts like
in [12], with 2(0.5r−0.25)n time and about 2(�2(r−1)/3�0.5+0.25)n memory. In par-
ticular, we reduce the memory complexity of Isobe and Shibutani’s attack [12]
on 8-round Feistel structures from 21.75n to 21.25n, with no effect on the data
and time complexities.

In Table 1 we compare the complexity of our attacks with previous results
for certain numbers of rounds which have “clean” exponents.

While all the techniques described so far are completely generic, they allow
us to significantly improve the best known attacks on several concrete block
ciphers. In particular, we reduce the memory complexity of the best known
attack on 8-round CAST-128 [1] from 2111 to 264, and the memory complexity
of the best known attack on 8-round DEAL [16] with 256-bit keys from 2200 to
2144, both without affecting the time and data complexities. It is interesting to
note that an extension of our techniques can even be applied to certain non-
Feistel cryptosystems, such as FOX [14], in which the best MITM attack uses
the partial matching technique.

This paper is organized as follows: In Sect. 2 we describe the improved memory
complexities we obtain when we consider the most time-efficient attacks, and in
Sect. 3 we describe the improved time complexities which can be obtained when we
consider the most memory-efficient attacks. In Sect. 4 we sketch the application of
our results to concrete block ciphers. We conclude the paper in Sect. 5.

2 Improving the Memory Complexity of the Most
Time-Efficient Attacks on Feistel Structures

Consider a standard Feistel structure with an odd number � = 2r + 1 of rounds.
The generic dissection attack on this construction (that does not exploit the
Feistel structure) requires 20.5(r+1)n time and roughly 20.25(r+1)n memory.2 The
2 The precise generic formula for the memory complexity of dissection is less relevant

here. Note that such an attack has to treat every two consecutive Feistel rounds as
a single round with an n-bit block and an n-bit key, and it is the last “half-round”
which makes it suboptimal.

New Attacks on Feistel Structures with Improved Memory Complexities 437

Table 1. Comparing and summarizing some of our results

Rounds Complexity Attack

Time Memory Data

5 2n 2n 3 KP Meet in the middlea

21.5n 20.5n 3 KP Meet in the middle

2n 20.5n 3 KP New (Sect. 3.1)

7 21.5n 21.5n 4 KP Meet in the middle

22n 2n 4 KP Dissection

21.5n 2n 4 KP New (Sect. 2.1)

8 22n 21.5n 4 KP Meet in the middle

22n 2n 4 KP Dissection

21.75n 21.75n 20.25n CP Splice-and-cut [12]

21.75n 21.25n 20.25n CP New (Sect. 2.3)

15 23.5n 23.5n 8 KP Meet in the middle

26.5n 20.5n 8 KP Meet in the middle

24n 22n 8 KP Dissection

25n 20.5n 8 KP New (Sect. 3.2)

23.5n 22n 20.25n KP New (Sect. 2.2)

31 27.5n 27.5n 16 KP Meet in the middle

214.5n 20.5n 16 KP Meet in the middle

28n 24n 16 KP Dissection

212n 20.5n 16 KP New (Sect. 3.2)

27.5n 25n 16 KP New (Sect. 2.1)

27.5n 24n 20.375n KP New (Sect. 2.2)

32 28n 27.5n 16 KP Meet in the middle

215n 20.5n 16 KP Meet in the middle

28n 24n 16 KP Dissection

27.75n 27.75n 20.25n CP Splice-and-cut [12]

212.5n 20.5n 16 KP New (Sect. 3.2)

27.75n 27.25n 20.25n CP New (Sect. 2.3)

KP — Known plaintext, CP — Chosen plaintext
a In the case of 5-round Feistel, the dissection attack is not
better than the meet in the middle attack

standard MITM attack can exploit the Feistel structure to reduce the time com-
plexity to 20.5rn, at the expense of enlarging the memory complexity to 20.5rn.
No attacks faster than 20.5rn are known (unless additional assumptions are made
on the round functions or on the key schedule) and thus we concentrate in this
section on attacks which have this time complexity. Our goal is to combine the
benefits of both MITM and dissection attacks in order to reduce the memory

438 I. Dinur et al.

complexity to 20.25(r+1)n. We show that this is indeed possible, but at the expense
of somewhat enlarging the data complexity of the attack.

First, we present a basic 7-round attack3 that requires 21.5n time and 2n

memory (compared to (21.5n, 21.5n) and (22n, 2n) in generic MITM and dissec-
tion, respectively), and extend it to an attack on 2r + 1 rounds that requires
20.5rn time and about 20.33rn memory. Then, we present a more sophisticated
attack that requires 20.5rn time and about 20.25rn memory as desired, but at
the expense of enlarging the data complexity to 2�(r−4)/r�·0.5n known plaintexts.
Finally, we show that our attacks can be combined with a technique of Isobe
and Shibutani [12] that allows extending MITM attacks on Feistel structures by
one round using a splice-and-cut technique [2]. We obtain an attack on � = 2r-
round Feistel that requires 2(0.5r−0.25)n time, about 20.25(r+1)n memory, and
2max(� r−4

r �,0.5)·0.5n chosen plaintexts.

2.1 Attacks with a Low Data Complexity

In this section we present attacks that are time-efficient (i.e., have a time com-
plexity of 20.5rn for 2r + 1 rounds) and also data-efficient (i.e., require only a
few known plaintexts, like the standard MITM attack).

A Standard MITM Attack. In order to put our attacks in context, we begin
by describing a standard MITM attack on a 7-round Feistel structure (see left
side of Fig. 2).

A 7-Round MITM Attack

1. Obtain 4 plaintext-ciphertext pairs (P i, Ci) (i = 1, 2, 3, 4).
2. For each value of K1,K2,K3:

(a) Partially encrypt P i for i ∈ {1, 2, 3, 4} through the first three
rounds and obtain suggestions for Ri

3. Store the suggestions in
a list List sorted by the Ri

3 values.
3. For each value of K5,K6,K7:

(a) Partially decrypt Ci for i ∈ {1, 2, 3, 4} through the last three
rounds, obtain suggestions for Ri

3 and search the suggestions in
List. For each match, retrieve K1,K2,K3, guess4 K4, and test
the full key using trial encryptions.

The time complexity of Step 2 is about 21.5n, which is also the size of List.
In order to calculate the time complexity of Step 3, we note that we have a
total of 21.5n key suggestions from each side of the encryption, each associated

3 We consider attacks on less than 7 rounds in Sect. 3.
4 We note that K4 can also be found by a precomputed table instead of guessing, but

this will not make a big difference as will be explained in the sequel.

New Attacks on Feistel Structures with Improved Memory Complexities 439

Fig. 2. On the left: 7-round MITM attack. On the right: 8-round splice-and-cut attack.

with 4 values of Ri
3 (filtering conditions). Thus, the expected total number of key

suggestions that remain after the 2n-bit match in Step 3 is 21.5n+1.5n−2n = 2n.
For each such suggestion, we guess K4, and thus we expect to perform about
21.5n trial encryptions. Consequently, the time complexity of Step 3 is also about
21.5n, which is the time complexity of the full attack.

A 7-Round Attack. The basic idea of our reduced memory attack is to guess
the n/2-bit value R1

3 and to iterate over all the possible guesses as an outer loop.
Each guess imposes an n/2-bit constraint on the key suggestions for K1,K2,K3

and K5,K6,K7, and thus, allows reducing the expected size of List to 2n.
In order to compute the reduced lists efficiently, we prepare auxiliary tables
Tupper, Tlower that allow retrieving the subkey K3 (resp., K5) instantly given
the input (L2, R2) of round 3 (resp., the output (L5, R5) of round 5).

440 I. Dinur et al.

The table Tupper is computed as follows. We guess the intermediate value R1
2

and the subkey K3. Since (R1
2, R

1
3) = (L1

3, R
1
3) form the full state after the 3’rd

round in the encryption process of P 1, the guesses enable us to partially decrypt
through round 3 and obtain (R1

1, R
1
2) = (L1

2, R
1
2). We store the triple (L1

2, R
1
2,K3)

in Tupper, sorted by (L1
2, R

1
2). The table Tlower is constructed similarly.

7-Round Attack with Reduced Memory Complexity

1. Obtain 4 plaintext-ciphertext pairs (P i, Ci).
2. For each value of R1

3:
(a) For each value of K3 and I13 = R1

2, compute L1
2 = F3(K3, I

1
3) ⊕

R1
3, and store the triplet (L1

2, R
1
2,K3) in a table Tupper, sorted

according to (L1
2, R

1
2).

(b) For each value of K5 and I15 = R1
4, compute R1

5 = F5(K5, I
1
5) ⊕

R1
3, and store the triplet (L1

5, R
1
5,K5) in a table Tlower, sorted

according to (L1
5, R

1
5).

(c) For each value of K1,K2:
i. Partially encrypt P 1 through the first two rounds to obtain

suggestions for R1
2 and L1

2.
ii. Search for the pair (L1

2, R
1
2) in Tupper and obtain sugges-

tions for K3. For each suggestion, given K1,K2,K3, partially
encrypt P i for i ∈ {2, 3, 4} through the first three rounds
and obtain suggestions for Ri

3. Store the suggestions in a list
List1, sorted by the values R2

3, R
3
3, R

4
3.

(d) For each value of K6,K7:
i. Partially decrypt C1 through the last two rounds to obtain

suggestions for R1
5 and L1

5 = R1
4.

ii. Search for the pair (L1
5, R

1
5) in Tlower and obtain sugges-

tions for K5. For each suggestion, given K5,K6,K7, par-
tially decrypt Ci for i ∈ {2, 3, 4} through the last three
rounds, obtain suggestions for Ri

3 and search the sugges-
tions in List1. For each match, retrieve K1,K2,K3, guess
K4, and test the full key using trial encryptions.

In Steps 2a and 2b, a single round function (either F3 or F5) is called once
for each guess of (R1

3, I3,K3) (or (R1
3, I5,K5), respectively), and thus, their time

complexity is 21.5n. The memory complexity of the tables Tupper and Tlower

is 2n. In Steps 2(c)ii and 2(d)ii there is an average of one match in Tupper

and Tlower, respectively. Thus, on average, we perform a constant number of
partial encryption and decryption operations per guess of K1,K2 and K6,K7 in
Steps 2c and 2d, respectively. The expected number of matches in Step 2(d)ii is
2n+n−1.5n = 20.5n, and the expected number of trial encryptions (after guessing
K4) is 20.5n+0.5n = 2n. Therefore, the time complexity of each of Steps 2c and 2d
is about 2n each, and the total time complexity of the attack is about 21.5n, as
in the standard MITM attack. On the other hand, the memory complexity of
the attack is reduced from 21.5n to about 2n, which is the expected number of

New Attacks on Feistel Structures with Improved Memory Complexities 441

elements in List1 (based on standard randomness assumptions on the round
functions).

We note that the time complexity of the attack can be slightly reduced by
precomputing a table for F4, which allows to avoid guessing K4 in Step 2(d)ii.
However, this requires an additional table of size 2n, i.e., maintaining the 2n

total memory complexity.

Extension to 6r+1 Rounds. The 7-round attack presented above can be
extended to an attack on a 6r + 1-round Feistel structure, with time complexity
of 21.5rn (as in standard MITM) and memory complexity of 2rn (instead of 21.5rn

in standard MITM). As the attack is similar to the 7-round attack, we describe
it briefly. The reader can follow this attack by verifying that the case r = 1
reduces exactly to the attack described above.

First, we obtain 3r + 1 plaintext/ciphertext pairs (P i, Ci). Then, the outer
loop is performed for all guesses of the r intermediate values R1

3r, R
2
3r, . . . , R

r
3r. In

the inner loop, we guess the 2r values R1
3r−1, R

2
3r−1, . . . , R

r
3r−1,K3r, . . . , K2r+1.

Since for each i, (Ri
3r−1 = Li

3r, R
i
3r) forms the full state after the 3r’th

round in the encryption process of P i, we can partially decrypt this state
through rounds 3r, . . . , 2r + 1 to obtain the corresponding values (Ri

2r−1 =
Li
2r, R

i
2r). This allows us to prepare a table Tupper of size 2rn of the values

((Li
2r, R

i
2r)

r
i=1,K2r+1, . . . , K3r), sorted by ((Li

2r, R
i
2r)

r
i=1). The table Tlower is

prepared similarly. Note that the 2r values guessed from each side are used only
for preparing the tables and not in the rest of the attack.

After preparing the tables, we guess the subkeys K1,K2, . . . , K2r, obtain the
intermediate values (Li

2r, R
i
2r)

r
i=1 and access the table Tupper to obtain a sugges-

tion for the subkeys K2r+1, . . . , K3r. For each suggestion, given K1,K2, . . . , K3r,
we partially encrypt P i for i ∈ {r+1, . . . , 3r+1} through the first 3r rounds and
obtain suggestions for Ri

3r. We store the suggestions in a list List1, sorted by
the values Rr+1

3r , . . . , R3r+1
3r . Then, we guess the subkeys K6r+1, . . . , . . . , K4r+2,

access the table Tlower to obtain a suggestion for K4r+1, . . . , K3r+2, partially
decrypt the ciphertexts to get suggestions for Ri

3r (i = r + 1, . . . , 3r + 1), and
search them in List1. For each match, we retrieve K1, . . . , K3r, guess K3r+1, and
test the full key using trial encryptions.

The analysis of the attack is similar to that of the 7-round attack described
above, and yields time complexity of 21.5rn and memory complexity of 2rn.
The same attack applies for a general odd number 2r′ + 1 of rounds. The time
complexity is 2r′n (like in MITM), but the memory complexity has to be rounded
up to 2�2r′/3�·0.5n, due to lack of balance between the part of table creation and
the rest of the attack.

2.2 Using Multi-Collisions to Further Reduce the Memory
Complexity

We now present a more sophisticated variant of the attacks described above,
that allows to reduce the memory complexity to the “desired” 20.25(r+1)n (simi-
larly to dissection on multiple encryption schemes), with no increase in the time
complexity, but at the expense of some increase in the data complexity.

442 I. Dinur et al.

Consider the 6r +1-round attack described above. In the course of preparing
the table Tupper, we make an auxiliary guess of the values R1

3r−1, . . . , R
r
3r−1,K3r,

. . . , K2r+1, and in the course of preparing the table Tlower, we guess R1
3r+1, . . . ,

Rr
3r+1,K3r+2, . . . , K4r+1. If there was some relation between the guessed values,

we could have used this relation to enumerate over some “common relative”
in the outer loop of the attack, and thus reduce the memory complexity. We
cannot hope for such a relation between the subkeys, as they are assumed to be
independent.5 However, some relation between Ri

3r−1 and Ri
3r+1 may exist.

We observe that such a relation can be “created”, using multi-collisions.
Assume that the partial encryption of the plaintexts P 1, P 2, . . . , P r considered in
the attack results in an r-multi-collision at the state R3r, i.e., that R1

3r = R2
3r =

· · · = Rr
3r. In such a case, the r values Ri

3r−1 ⊕ Ri
3r+1 = Oi

3r+1 (i = 1, . . . , r)
are all equal! This allows us to enumerate over the r − 1 values R1

3r−1 ⊕ Ri
3r−1

(i = 2, . . . , r) in the outer loop, such that in the inner loop, a single guess
of R1

3r−1 provides all the values {Ri
3r−1}i=2,...,r, while a single guess of R1

3r+1

provides all the values {Ri
3r+1}i=2,...,r. In order to obtain the multi-collision,

we consider 2((r−1)/r)·0.5n known plaintexts (which guarantees that an r-multi-
collision exists in the data with a constant probability6), and repeat the attack
for all r-tuples of plaintext/ciphertext pairs in the data set.

In the description of the algorithm below, we switch from 6r + 1 rounds to
8r − 1 rounds, in order to balance the complexities of all the steps of the attack.
Hence, the external guesses are performed at state R4r−1, instead of R3r. Note
that for r = 1, the algorithm reduces to the 7-round attack presented above.

An 8r–1-Round Attack Using Multi-Collisions

1. Obtain 2((r−1)/r)·0.5n plaintext-ciphertext pairs (P i, Ci).
2. For each r-tuple (Pi1 , Ci1), (Pi2 , Ci2), . . . , (Pir , Cir) of plaintext-

ciphertext pairs in the data set (hereinafter denoted for simplicity
by (P 1, C1), . . . , (P r, Cr)), for each possible value of R1

4r−1, and for
all possible differences R1

4r−2 ⊕ Ri
4r−2 (i = 2, 3, . . . , r):

(a) For each I14r−1 = R1
4r−2 and the subkeys K4r−1,K4r−2, . . . ,

K2r+1, compute7 (Li
2r, R

i
2r) for all i = 1, . . . , r, and store the

vector ((Li
2r, R

i
2r)i=1,...,r,K2r+1, . . . , K4r−1) in a table Tupper,

sorted according to (Li
2r, R

i
2r)i=1,...,r.

(b) For each I14r+1 = R1
4r and the subkeys K4r+1, . . . , K6r−1, com-

pute (Li
6r−1, R

i
6r−1) for all i = 1, . . . , r, and store the vector

((Li
6r−1, R

i
6r−1)i=1,...,r,K4r+1, . . . , K6r−1) in a table Tlower,

sorted according to (Li
6r−1, R

i
6r−1)i=1,...,r.

(c) For each value of K1,K2, . . . , K2r:

5 Some useful relations between subkeys may exist if they are derived from a master
key using a simple key schedule. However, in this paper, we focus on the most general
Feistel constructions and do not assume the existence of such relations.

6 Roughly speaking, given D data, we have about Dr different r-tuples of the 0.5n-bit
value R3r. For each r-tuple, the probability that all the values of R3r are equal is
2−0.5n·(r−1). Therefore, we require Dr = 20.5n·(r−1) or D = 2((r−1)/r)·0.5n.

New Attacks on Feistel Structures with Improved Memory Complexities 443

i. Partially encrypt P 1, . . . , P r through the first 2r rounds to
obtain suggestions for (Li

2r, R
i
2r)i=1,...,r.

ii. Search for (Li
2r, R

i
2r)i=1,...,r in Tupper and obtain sug-

gestions for K2r+1, . . . , K4r−1. For each suggestion, given
K1, . . . , K4r−1, partially encrypt 2r+1 additional plaintexts
P j for j ∈ {1, . . . , 2r + 1} through the first 4r − 1 rounds
and obtain suggestions for Rj

4r−1. Store the suggestions in a
list List1, sorted by the values {Rj

4r−1}j=1,...,2r+1.
(d) For each value of K8r−1, . . . , K6r:

i. Partially decrypt C1, . . . , Cr through the last 2r rounds to
obtain suggestions for (Li

6r−1, R
i
6r−1)i=1,...,r.

ii. Search for (Li
6r−1, R

i
6r−1)i=1,...,r in Tlower and obtain sug-

gestions for K4r+1, . . . , K6r−1. For each suggestion, given
K4r+1, . . . , K8r−1, partially decrypt the additional cipher-
texts C ′j for j ∈ {1, . . . , 2r + 1} through the last 4r −
1 rounds, obtain suggestions for {Rj

4r−1}j=1,...,2r+1, and
search the suggestions in List1. For each match, retrieve
K1, . . . , K4r−1, guess K4r, and test the full key using trial
encryptions.

The inner loop of the algorithm is repeated for each of the 2(r−0.5)n values of
the external guess (there are 2(r−1)·0.5n r-tuples in the data set, 20.5n possible
values of R1

4r−1, and 2(r−1)·0.5n possible differences R1
4r−2 ⊕ Ri

4r−2). In each
of Steps 2(a) and 2(b), we perform 2rn partial encryptions/decryptions and
construct a table of size 2rn. In Steps 2.(c).ii. and 2.(d).ii. there is an average
of one match in Tupper and Tlower, respectively. Thus, on average, we perform
a constant number of partial encryption and decryption operations per guess
of K1, . . . , K2r and K6n, . . . , K8n−1 in Steps 2.(c) and 2.(d), respectively. The
expected number of matches in Step 2.(d).ii is 2rn+rn−(r+0.5)n = 2(r−0.5)n, and
the expected number of trial encryptions (after guessing K4) is 2(r−0.5)n+0.5n =
2rn. Therefore, the time complexity of Steps 2.(c) and 2.(d) is about 2rn and the
total time complexity of the attack is about 2(2r−0.5)n, as in the standard MITM
attack. On the other hand, the memory complexity of the attack is reduced from
2(2r−0.5)n to about 2rn, which is the expected number of elements in List1.

The same attack applies for a general odd number 2r′+1 of rounds. The time
complexity is 2r′n (like in MITM), the memory complexity has to be rounded
up to 2�0.5(r′+1)�·0.5n, due to lack of balance between the part of table creation

and the rest of the attack, and the data complexity is 2� r′−3
r′+1 �·0.5n known plain-

texts.

7 The computation of (Li
2r, R

i
2r) for all i = 1, . . . , r is feasible, since by the assumption

that (P 1, C1), . . . , (P r, Cr) is an r-multi-collision, the value R1
4r−2 along with the

externally guessed values are sufficient for obtaining the values R2
4r−2, . . . , R

r
4r−2.

444 I. Dinur et al.

2.3 Attacks on Feistel Structures with an Even Number of Rounds

In this section we show that all the attacks presented above can be combined
with the recent technique of Isobe and Shibutani [12] that allows to extend
MITM attacks on Feistel structures by one round, at the expense of a relatively
small increase in the time complexity and of using 20.25n chosen plaintexts. The
generic attack of [12] on a 2r-round Feistel structures requires 2(0.5r−0.25)n time,
2(0.5r−0.25)n memory, and 20.25n chosen plaintexts. Our attacks allow to either
reduce the memory complexity to about 20.33(r−1)n+0.25n with no effect on the
time and data complexities or to reduce the memory complexity all the way
to about 20.25(r+1)n, while increasing the data complexity to 2max(� r−4

r �,0.5)·0.5n

chosen plaintexts, with no effect on the time complexity. In the specific case of
the 8-round Feistel structures considered in [12], our attack reduces the mem-
ory complexity significantly from 21.75n to 21.25n, without affecting the other
complexities.

Consider a MITM attack on a 2r-round Feistel structure. In a standard appli-
cation (skipping the guess of the middle subkey), the attack is not balanced, as r
subkeys are guessed on one side of the MITM, while r−1 subkeys are guessed on
the other side. The attack of [12] aims to rebalance the attack, by “splitting” the
guess of one subkey between the two sides. The basic idea behind the attack is
as follows. If in all plaintexts used in the attack, the right half is equal to a fixed
value R0 (e.g., R0 = 0), then in all encryptions, we have R1 = Const⊕L0, where
Const is an unknown constant that depends on K1. This allows to replace the
2r-round Feistel with an equivalent construction that consists of a 2r − 1-round
Feistel, prepended by an addition of Const to the right half of the plaintext
that can be treated as a subkey addition (see right side of Fig. 2 for a sketch of
an 8-round attack). This, in turn, allows to use the splice-and-cut technique [2]
to “split” the guess of the n/2-bit value Const between the two sides of the
MITM, at the price of using 2n/4 chosen plaintexts (each associated with an
n/4-bit value of Const, while the remaining n/4 bits of Const are guessed from
the other side of the attack). As a result, the attack becomes balanced and the
time complexity is reduced from 20.5rn to 2(0.5r−0.25)n. For a full description of
the attack, see [12].

In order to incorporate the splice-and-cut procedure of [12] into our attacks,
we consider the equivalent 2r − 1-round variant, perform one of our attacks
against it, and insert the splice-and-cut procedure into the “key guessing” part of
the attack (i.e., Steps 2(c) and 2(d)), without changing the “table construction”
part (Steps 2(a) and 2(b)). As a result, the time complexity of our 2r − 1-
round attack is increased by a factor of 20.25n to 2(0.5r−0.25)n (just like the
complexity of the attack of [12]), and the memory complexity is increased by a
factor of 20.25n to either 20.33(r−1)n+0.25n (in the low data complexity attack)
or to about 20.25(r+1)n (in the attack using multi-collisions). As for the data
complexity, in our low data complexity attack the data complexity increases to
20.25n chosen plaintexts (required for the splice-and-cut procedure), and in the
multi-collision based attack the data complexity increases to 2max(� r−4

r �,0.5)·0.5n,
as the plaintexts required for the multi-collision can be chosen in such a way
that they will contain the structures required for the splice-and-cut attack.

New Attacks on Feistel Structures with Improved Memory Complexities 445

3 Memory-Restricted Attacks on Feistel Structures

After analyzing the most time-efficient attacks, a natural question to explore is
what are the most memory-efficient attacks one can devise against an r-round
Feistel structure. Specifically, we shall concentrate on the problem of devising
attacks with 20.5n memory complexity, since it is the smallest amount of memory
that enables us to list all the values of a single subkey or of half a block.

With such a restriction, a standard meet in the middle attack takes 2(�−2)·0.5n

on an �-round Feistel, and one can trade time for memory. One can also try to
consider the original dissection attack of [9]. However, as noted before, dissection
takes at least 2n memory to store all the possible values of a full block, which
implies that it cannot be used in this context, even though we adopt several
concepts from it.

Section 3.1 presents our new attack on 5-round Feistel structures that uses 2n

time and 20.5n memory. This is to be compared with meet in the middle attacks
that use time of 21.5n with 20.5n memory or time of 2n with 2n memory. We
then generalize the attack to more rounds, and show in Sect. 3.2 how to increase
the gain over meet in the middle attacks as the number of rounds increases. The
attacks in this section assume that the round function is efficiently invertible
given the round’s subkey. We postpone the discussion of this assumption to
Appendix A, but note that it holds for almost any Feistel block cipher we are
aware of.

3.1 A Memory-Restricted Attack Against 5-Round Feistel
Constructions

The algorithm of our basic 5-round attack is as follows.

A 5-Round Attack with 20.5n Memory (DF2(5, 1))

1. Obtain 3 plaintext-ciphertext pairs (P i, Ci)i=1,2,3.
2. For each value of R1

2 = I13 :
(a) Compute O1

2 = I13 ⊕ R1
0 and O1

4 = I13 ⊕ R1
4.

(b) For each value of K1, compute R1
1 = F1(K1, I

1
1) ⊕ L1

0 and store
the pair (R1

1,K1) in a table Tupper sorted according to R1
1.

(c) For each value of K2, compute R1
1 = F−1

2 (K2, O
1
2), search for

the value R1
1 in Tupper and obtain suggestions for K1. For each

suggestion, given K1,K2, compute R2
2, R

3
2 for P 2, P 3. Store the

suggestions (R2
2, R

3
2,K1,K2) in a list List1 sorted by the value

of (R2
2, R

3
2).

(d) For each value of K5, compute R1
3 = F5(K5, I

1
5) ⊕ R1

5 and store
the pair (R1

3,K5) in a table Tlower sorted according to R1
3.

(e) For each value of K4, compute R1
3 = F−1

4 (K4, O
1
4), search for the

value R1
3 in Tlower and obtain suggestions for K5. For each sug-

gestion, given K4,K5, compute R2
2, R

3
2 from C2, C3, and search

the suggestion in List1. For each match, retrieve K1,K2, guess
K3, and test the full key using trial encryptions.

446 I. Dinur et al.

For reasons which will become apparent later, we call the above attack DF2(5, 1).
As before, Tupper, Tlower, are each of size 20.5n. The memory complexity of

List1 depends on the number of (K1,K2) pairs that satisfy the meet in the
middle condition on the value of I2 in Step 2c. For sufficiently random round
functions, we expect about 20.5n such (K1,K2) pairs.

The time complexity of the algorithm is 2n, as it iterates over 2n/2 values
for R1

2, and each step of the loop takes 20.5n operations (besides the XOR of
Step 2a, which takes less).

We note that the time complexity of the attack can be slightly reduced by pre-
computing a table for F3 (given its input value I13), which allows to avoid guessing
K3. However, this requires an additional table of size 20.5n, which increases the
memory complexity by a small constant factor.

Finally, it is important to note that given only two plaintext-ciphertext pairs,
the above attack finds all possible (K1,K2,K3,K4,K5) in time 2n and memory
of 20.5n. The expected number of candidates is about 20.5n. This observation will
be used in the subsequent attacks.

3.2 Extension to More Rounds

As the time complexity of a MITM attack with 20.5n memory on an �-round
Feistel structure is 2(�−2)0.5n, we define the gain over MITM of an attack on
�-round Feistel that requires T time and 20.5n memory by (�−2)− log2(T)/0.5n.
Thus, the 5-round attack presented above has gain of 1. We denote by Gain(�)
the maximal gain achieved by an �-round attack with 20.5n memory. In this
section, we extend the 5-round attack to a sequence of attacks which show that
asymptotically, Gain(�) = Ω(

√
�), and compute the sequence of round numbers

for which the gain is strictly increased.
Obviously, it is possible to attack 6-round Feistel by guessing K6, and apply-

ing the 5-round attack for each guess. The result is an attack of 21.5n time
and 20.5n memory on 6-round Feistel structure. This approach can obviously be
extended, but maintains a gain of 1.

Attacking 10-Round Feistel Constructions. To increase the gain to 2, we
consider the case of 10-round Feistel, and develop the following attack:

10-Round Dissection Attack with 2n/2 Memory (DF5(10, 4))

1. Obtain 5 plaintext-ciphertext pairs (P i, Ci)i=1,...,5.
2. For each value of (L1

5, R
1
5) and (L2

5, R
2
5):

(a) Run DF2(5, 1) on the first 5 rounds, and obtain a list of 20.5n

candidates for (K1,K2,K3,K4,K5).
(b) For each candidate for the subkeys (K1,K2,K3,K4,K5), par-

tially encrypt a third plaintext P 3 through the first 5 rounds,
and store the suggestions (with the keys) (L3

5, R
3
5,K1, . . . , K5)

in a list List1 sorted by the values of (L3
5, R

3
5).

New Attacks on Feistel Structures with Improved Memory Complexities 447

(c) Run DF2(5, 1) on the last 5 rounds, and obtain a list of 20.5n

candidates for (K6,K7,K8,K9,K10).
(d) For each candidate for the subkeys (K6,K7,K8,K9,K10), par-

tially decrypt C3 through the last 5 rounds, and obtain sug-
gestions for (L3

5, R
3
5) and search the suggestion in List1. For

each match, retrieve K1, . . . , K5, and test the full key using trial
encryptions.

It is easy to see that the 10-round attack calls 22n times two independent
5-round attacks, each running in time 2n. Hence, the time complexity of the
10-round attack is 23n, and the memory complexity is 20.5n. Hence, the gain of
the 10-round attack is 2.

We use the following notations, DF2(5, 1) denotes the 5-round attack pre-
sented earlier, as it is a generalized Dissection attack on Feistel structures with
5 rounds, which guesses one n/2-bit value after two rounds of encryption. Simi-
larly, DF5(10, 4) attacks 10 rounds by guessing 4 n/2-bit values after 5 rounds
of encryption (i.e., two full intermediate encryption values). As in [9], we now
explore how to extend the attack to more rounds.

Attacking 15-Round Feistel Constructions. We can increase the gain to 3,
when attacking 15-round Feistel: Guess two complete intermediate encryption
values after 5 and after 10 rounds (a total of four internal values), and run
the 5-round attack three times subsequently (on rounds 1–5, 6–10, and 11–15),
resulting in 20.5n candidates for each set of corresponding subkeys. Then, the
correct value can be found by an additional standard MITM. If the memory is
kept at 20.5n, this means that the last layer of the MITM takes 2n time. Hence,
the total time complexity of the 15-round attack is 25n, and thus, its gain is 3.

In other words, DF5(15, 4) is based on guessing four n/2-bit internal state
words after 5 rounds, and recursively running DF2(5, 1) on the first rounds, and
DF5(10, 4) on the last rounds. This contrasts with the works of [9], where each
new layer in the dissection was of a different size.

The different “expanding” rule is due to two inherent differences between
the dissection attacks presented in [9] and our new attacks. First, in our attacks,
guessing a full intermediate state adds two “units” of time complexity (as each
full state contains two n/2-bit values) compared with one in the case of regular
dissection attacks. The second difference is more subtle, but has a larger effect on
the way the attack scales up: In our attacks we can enjoy the “Feistel” advantage
(meeting in the middle only on n/2 bits) only once in the internal recursion step
(e.g., in the 5-round attack), as the external steps must rely on guessing a full
internal state. The second difference is already apparent in the transition from
5-round to 10-round (comparing DF2(5, 1) and DF5(10, 4): whereas the 5-round
attack guesses a single n/2-bit value, the 10-round attack starts by guessing 4
such values.

448 I. Dinur et al.

Attacking 22-Round Feistel Structures. We now turn our attention to
22-round Feistel structures. Due to the differences between regular dissection
attacks and attacking Feistels, the extension of the 15-round attack into the
22-round attack follows a slightly different path than the extension from the
10-round to the 15-round:

22-Round Dissection Attack with 2n/2 Memory (DF7(22, 6))

1. Obtain 11 plaintext-ciphertext pairs (P i, Ci)i=1,...,11.
2. For each possible value of (L1

7, R
1
7), (L2

7, R
2
7), and (L3

7, R
3
7):

(a) Run DF2(7, 3) on the first 7 rounds, and obtain a list of 20.5n

candidates for (K1,K2, . . . , K7).
(b) For each candidate for the subkeys (K1,K2, . . . , K7), partially

encrypt a fourth plaintext P 4 through the first 7 rounds, and
store the suggestions (with the keys) (L4

7, R
4
7,K1, . . . , K7) in a

list List1 sorted by the values of (L4
7, R

4
7).

(c) Run DF5(15, 4) on the last 15 rounds, and obtain a list of 24.5n

candidates8 for (K8,K9, . . . , K22).
(d) For each candidate for the subkeys (K8, . . . , K22), partially

decrypt C4 through the last 15 rounds, and obtain suggestions
for (L4

7, R
4
7) and search the suggestion in List1. For each match,

retrieve K1, . . . , K7, and test the full key using trial encryptions.

It is easy to see that the memory complexity of the attack is 20.5n. The 7-
round attack DF2(7, 3) is actually DF2(5, 1), run when K6,K7 are guessed, i.e.,
takes 22n time for 20.5n. Both the 7-round attack and the 15-round attack are
called 23n times, suggesting a total running time of 28n, i.e., the attack offers a
gain of 4.

Generalization to More Rounds. In the second generalization, we prepend
5 rounds to the 10-round attack (obtaining 15 rounds in total), and again, guess
two full internal states in order to run two independent attacks — one on 5
rounds, and the other on 10 rounds. The 22-round attack is based on guessing
three additional full internal states, and prepending 7 rounds before the 15-
round attack. Similarly, a 29-round attack with a gain of 5 can be obtained by
prepending 7 rounds before the 22-round attack and guessing three additional
full internal states. It is now apparent that the sequence of round numbers for
which the gain increases is {5, 10, 15, 22, 29, 38, 47, 58, 69, . . .},9 which shows that
for all k, Gain(2k2 + 6k + 2) ≥ 2k and Gain(2k2 + 8k + 5) ≥ 2k + 1. It follows
that asymptotically, Gain(�) grows as

√
2�.

The general form of the recursion is described in Fig. 3. We note that the
recursion yields only a lower bound on Gain(�).
8 We guess 3n bits in Step 2, giving rise to 3n constraints on 7.5n key bits.
9 A gain of j is first achieved when attacking 5j + 2

∑j−1
i=1 �i/2� rounds.

New Attacks on Feistel Structures with Improved Memory Complexities 449

Fig. 3. Generalizing the 5-round attack and increasing the gain

4 Applications to Concrete Cryptosystems

While the new techniques presented in Sects. 2 and 3 are generic, they can also
be used to improve the memory complexity of the best known attacks on several
block ciphers, including CAST-128, DEAL, and FOX. It turns out that even
a straightforward application of the generic techniques already yields improve-
ments over previously known attacks, and if we also exploit the specific proper-
ties of the analyzed cipher, the improvements become even more significant. We
present in this section only a very brief description of our improved attacks on
specific schemes. The detailed description of the attack on CAST-128 is given in
the full version of this paper [10].

4.1 Lower Memory Attacks on DEAL

DEAL [16] is a 128-bit Feistel structure, designed in 1997 by Knudsen and sub-
mitted as a candidate to the AES selection process. The round function of DEAL
is extremely complex — it consists of a full keyed DES [18] encryption. (Recall
that DES has 64-bit blocks and 56-bit keys.) In return, the number of rounds is
rather small — 8 rounds for the 256-bit key variant and 6 rounds for the 128-bit
and 192-bit key variants. The only published attack on the full 8-round DEAL is
a standard MITM attack mentioned by the designers [16], with time and mem-
ory complexities of 24·56 = 2224. The generic attack of [12] on 8-round Feistel
structures (described in Sect. 2.3) can be used to reduce the time complexity to
23·56+32 = 2200, with memory complexity of 2200 and data complexity of 232 cho-
sen plaintexts. We show that by using our techniques, the memory complexity
can be significantly reduced to 2144, while maintaining the same data and time
complexities.

Our generic attack on 8-round Feistel structures (presented in Sect. 2.3)
requires 21.75n time, 21.25n memory, and 20.25n chosen plaintexts. A direct appli-
cation of this attack to DEAL, taking into account the fact that each round key

450 I. Dinur et al.

has only 56 bits rather than 64, yields time complexity of 264+56+56+32 = 2208.
However, the time complexity can be reduced to 2200 by performing the external
enumeration over 56 out of the 64 bits of the intermediate value R1

4, rather than
over the full value. In the phase of table preparation, we guess the remaining 8
bits of R1

4, along with the auxiliary guess of R1
3,K4, and thus, the complexity

of this step is increased to 28+64+56 = 2128. However, this complexity is still
dominated by the 232+56+56 = 2144 complexity of the key guessing step. As a
result, the overall time complexity remains 256+56+56+32 = 2200, the memory
complexity is reduced to 256+56+32 = 2144, and the data complexity remains 232

chosen plaintexts.
In a similar way we can reduce the memory complexity of the improved

MITM attack on the full 6-round DEAL with 192-bit keys from 256+56+32 = 2144

to 256+32 = 288 (while keeping the 2144 time complexity and 232 data complexity
unchanged), using a modification of the generic attack on 6-round Feistel struc-
tures presented in Sect. 3. The resulting attack in this case is the best known
attack which uses 232 data, but is outperformed (in terms of time complexity)
by the impossible differential attack presented by Knudsen [16] that requires
2121 time but uses 270 chosen plaintexts. Table 2 compares the complexities of
attacks against the variants of DEAL.

Table 2. Comparison of results against DEAL

Key size Rounds Complexity Attack

Time Memory Data

192 6 2121 264 270 CP Impossible differential [16]

6 2144 2144 232 CP Splice-and-cuta [12]

6 2144 288 232 CP New

256 8 2224 2168 4 KP Meet in the middle

8 2200 2200 232 CP Splice-and-cuta [12]

8 2200 2144 232 CP New

KP — Known plaintext, CP — Chosen plaintext
a This attack was not really suggested in [12], but can be derived from
the paper

4.2 A Lower Memory Attack on CAST-128

CAST-128 [1] is a 16-round Feistel structure that uses 64-bit inputs and 128-
bit keys, which was designed in 1996 by Adams. It is used in several real-life
products, such as GPG, PGP, and SSH2. The currently best known attack on
the cipher (excluding weak-key attacks such as [21]) is the MITM attack of Isobe
and Shibutani [12], breaking 8 out of the 16 rounds in time complexity of about
2118, using 8 chosen ciphertexts and a memory complexity of 2111 words. Using
our techniques, the memory complexity can be reduced significantly to 264, while
maintaining the same data and time complexities.

New Attacks on Feistel Structures with Improved Memory Complexities 451

In the round function Fi of CAST-128, the 32 LSBs of the 37-bit round key
Ki (denoted as Kmi

) are first either XORed, added (modulo 232), or subtracted
(modulo 232) from Ri−1 (depending on the round). Then, the result is rotated
to the left by 0–31 bits, according to the value of the 5 MSBs of Ki (denoted as
Kri

). Finally, a key-less function fi is applied to the result. The first round of
CAST-128 (that uses modular addition) is shown in Fig. 4.

Since each round key of CAST-128 is of 37 bits, the time complexity of a
basic MITM attack on a 8-round variant is 24·37 = 2148. Using the generic attack
of [12] on 8-round Feistel structures (described in Sect. 2.3), the time complexity
can be reduced to 23·37+16 = 2127, which is only slightly faster than exhaustive
key search. Isobe and Shibutani [12] showed that the specific structure of the
round function of CAST-128 can be used to further reduce the time complexity
to 2118. The main idea of [12] is that by fixing most of the ciphertext bits (in
all ciphertexts) to a constant value and exploiting the specific round function
structure, the amount of key material required for partial decryption can be
reduced (and not only divided between the upper and lower halves of the MITM,
like in the generic attack). To achieve this, [12] consider an equivalent 7-round
Feistel structure, with different round functions F ′

5, F
′
6, F

′
7 that imitate the four

round functions F5, F6, F7, F8 for the specifically chosen ciphertexts. See the full
version of this paper [10] for details of the attack.

As in case of the generic attack of Isobe and Shibutani discussed in Sect. 2.3,
we can incorporate the advanced attack procedure in the “key guessing” part of
our generic memory-efficient attack on 7-round Feistel structures. As a result, the
memory complexity of the attack is reduced from 2111 to 279, without increasing
the time and data complexities. The memory complexity can be further reduced
using a refined attack that exploits the relatively simple round function of CAST-
128. As we show in the full version of this paper [10], it is possible to guess
two intermediate values R1

3, R
2
3 (instead of a single value in the generic 7-round

attack) and to structures separate tables Tupper1, Tupper2 for rounds 2,3 (and
similarly, separate tables Tlower1, Tlower2 for rounds 5,6). These tables make use
of complex differential properties of F2 and F6 that simultaneously combine
different operations over GF (2) and over GF (232). As a result, the memory
complexity is reduced to 264 with no effect on the time complexity. The details
of this (rather involved) attack are given in the full version of this paper [10].

Fig. 4. The first round of CAST-128

452 I. Dinur et al.

4.3 Lower Memory Attacks on Other Cryptosystems

We conclude this section by mentioning briefly applications of our generic tech-
niques to several other specific and generic structures.

1. FOX. Fox is a non-Feistel block cipher. The memory complexity of all the
attacks of [13] on round-reduced variants of the block cipher FOX (namely,
on 6 and 7-round FOX-64 and FOX-128), which are currently the best known
attacks on FOX, can be reduced by a factor of 216 (with no change in the data
or time complexities). We note that in these attacks, the 16 bits of filtering on
which the attack iterates in the outer loop of the attack are not actual state
bits, but rather linear combinations of state bits. However, our techniques are
still applicable in this case, as in the inner loop, for each side of the attack,
we simply complement these linear combinations to obtain an intermediate
encryption state of FOX, and invert its round function as done in our generic
attacks.

2. Camellia. The memory complexity of the attacks of [12] on reduced variants
of Camellia can be reduced by a factor of at least 216 (depending on the
attack) with no effect on the data or time complexities. We note however
that MITM attacks are not the best known attacks on Camellia (in terms of
the number of rounds).10

3. Feistel-2 Schemes. The memory complexity of the attacks of [12] on the 8
and 9-round Feistel-2 scheme (which is a more specific Feistel implementation
compared to the generic Feistel-1) with a 2n-bit key can be reduced from
about 21.5n to 2n (with no change in the data or time complexities). We note
that these MITM attacks are the best known attacks on this specific Feistel-2
only when the data complexity is limited. With large data complexity in the
chosen plaintext model, the attacks of [11] have superior time complexities.

5 Conclusions

In this paper we introduced some new cryptanalytic techniques, and combined
the known techniques of MITM and dissection in new ways which enabled us
to merge their advantages and avoid their disadvantages. Taken together, these
techniques allowed us to develop improved attacks on Feistel structures with
more than four rounds, and to improve the best known concrete attacks on
several well known block ciphers.

A On the Invertibility of the Round Function

We first note that our 5-round only needs two round functions to be efficiently
invertible — namely, F2(·) and F4(·). As noted before, we are not aware of
any Feistel cipher which does not posses this property. Even DEAL [16], whose
10 Although they reach fewer rounds, the advantage of MITM attacks over other attacks

on Camellia (namely, impossible differential attacks [5]) is their low data complexity.

New Attacks on Feistel Structures with Improved Memory Complexities 453

round functions are full DES encryptions, has invertible round functions given
the subkey, as our attack described in Sect. 4.1 shows.

Moreover, we can relax a bit the requirement over the invertibility of the
round functions F2(·) and F4(·). We remind the reader that we are allowed
20.5n memory, which can help in inverting the round functions. For example,
if the cipher is a Feistel-2 structure (i.e., the round function is Fi(Ki, Ii) =
Gi(Ki ⊕ Ii), for some completely one-way function Gi(·)), a simple enumeration
of all input/output pairs of Gi(·) is sufficient to invert the round function.

Finally, we note that when we discuss the general Feistel-2 structure, the
memory complexity can be slightly reduced, as no memory is needed for the
meet in the middle step in itself. For example, instead of structure T1, given
O1

2, we invert G2, to obtain I12 ⊕ K2. Hence, for any K1 value, it is possible to
immediately obtain the corresponding K2.

References

1. Adams, C.: The CAST-128 Encryption Algorithm. RFC 2144 (1997). https://tools.
ietf.org/html/rfc2144

2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

3. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

4. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

5. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014)

6. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

7. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a reduced number of rounds:
sequences of linear factors in block ciphers. In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)

8. Diffie, W., Hellman, M.E.: Cryptanalysis of the NBS data encryption standard.
Computer 10(6), 74–84 (1977)

9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 719–740. Springer, Heidelberg (2012)

10. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel structures
with improved memory complexities. IACR Cryptology ePrint Arch. 2015, 146
(2015)

11. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic
Feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 458–477. Springer, Heidelberg (2014)

https://tools.ietf.org/html/rfc2144
https://tools.ietf.org/html/rfc2144

454 I. Dinur et al.

12. Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 464–485.
Springer, Heidelberg (2013)

13. Isobe, T., Shibutani, K.: Improved All-subkeys recovery attacks on FOX, KATAN
and SHACAL-2 block ciphers. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 104–126. Springer, Heidelberg (2015)

14. Junod, P., Vaudenay, S.: FOX : a new family of block ciphers. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg
(2004)

15. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

16. Knudsen, L.: DEAL - A 128-bit Block Cipher. NIST AES Proposal (1998)
17. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-

random functions. SIAM J. Comput. 17(2), 373–386 (1988)
18. National Bureau of Standards. Data encryption standard. Federal Information

Processing Standards Publications (FIPS) 46 (1977)
19. Sarkar, P., Iwata, T. (eds.): Advances in Cryptology - ASIACRYPT 2014–20th

International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Proceedings,
Part I. Lecture Notes in Computer Science, vol. 8873. Springer, Heidelberg (2014)

20. Wang, L., Sasaki, Y.: Finding preimages of tiger up to 23 steps. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 116–133. Springer, Heidelberg (2010)

21. Wang, M., Wang, X., Chow, K., Hui, L.C.K.: New Differential Cryptanalytic
Results for Reduced-Round CAST-128. IEICE Trans. 93(12), 2744–2754 (2010)

Known-Key Distinguisher on Full PRESENT

Céline Blondeau1, Thomas Peyrin2, and Lei Wang2,3(B)

1 Department of Computer Science, School of Science, Aalto University,
Aalto, Finland

celine.blondeau@aalto.fi
2 Nanyang Technological University, Singapore, Singapore

thomas.peyrin@ntu.edu.sg
3 Shanghai Jiao Tong University, Shanghai, China

wangleihb83@gmail.com

Abstract. In this article, we analyse the known-key security of the stan-
dardized PRESENT lightweight block cipher. Namely, we propose a known-
key distinguisher on the full PRESENT, both 80- and 128-bit key versions.
We first leverage the very latest advances in differential cryptanalysis on
PRESENT, which are as strong as the best linear cryptanalysis in terms
of number of attacked rounds. Differential properties are much easier to
handle for a known-key distinguisher than linear properties, and we use a
bias on the number of collisions on some predetermined input/output bits
as distinguishing property. In order to reach the full PRESENT, we eventu-
ally introduce a new meet-in-the-middle layer to propagate the differen-
tial properties as far as possible. Our techniques have been implemented
and verified on the small scale variant of PRESENT. While the known-key
security model is very generous with the attacker, it makes sense in prac-
tice since PRESENT has been proposed as basic building block to design
lightweight hash functions, where no secret is manipulated. Our distin-
guisher can for example apply to the compression function obtained by
placing PRESENT in a Davies-Meyer mode. We emphasize that this is the
very first attack that can reach the full number of rounds of the PRESENT

block cipher.

Keywords: PRESENT · Known-key model · Distinguisher · Differential
cryptanalysis · Linear cryptanalysis

1 Introduction

The pervasive deployment of tiny computational devices brings with it many
interesting, and potentially difficult, security issues. Recently, lightweight cryp-
tography has naturally attracted a lot of attention from the symmetric-key cryp-
tography community and many lightweight block ciphers [8,10,18] and hash
functions [2,7,17] have been proposed in the past few years. Among these prim-
itives, PRESENT [8] is probably the one which has been the most scrutinized. It
remains unbroken, even though many lightweight block ciphers have been suc-
cessfully attacked. As such, it has become an ISO/IEC standard [19] and is now
expected to be deployed in many industrial applications.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 455–474, 2015.
DOI: 10.1007/978-3-662-47989-6 22

456 C. Blondeau et al.

It is well known that block ciphers and hash functions are very close crypto-
graphic primitives, as the latter can be built from the former and vice versa. For
example, the Davies-Meyer construction or the Miyaguchi-Preneel construction
can transform a secure block cipher into a secure compression function (which
can in turn be used to build a secure hash function by plugging it into some
domain extension algorithm). However, while the security is usually guaranteed
with a security proof that considers the internal block cipher as a black-box,
it is very important that this internal primitive presents no flaw whatsoever.
A classical example is the devastating effect on the compression function secu-
rity of weak keys for a block cipher [32], which are usually considered as a minor
flaw for a block cipher if the set of these weak-keys is small.

Therefore, the security notions to consider for a block cipher will vary depend-
ing if this block cipher will be used in a hash function setting or not. In a hash
setting, block cipher security models such as the known-key [22] (the attacker
can know the key) or the chosen-key model (the attacker can choose the key)
make sense since in practice the attacker has full access and control over the
internal computations. Moreover, an attack in these models depicts a structural
flaw of the cipher, while it should be desired to work with a primitive that does
not have any flaw, even in the most generous security model for the attacker.
Several known-key or chosen-key attacks on reduced-round AES-128were pub-
lished [14,16,21,22], and Gilbert [15] eventually exhibited a known-key attack
on the full 10 rounds with 264 computations.

PRESENT is a natural candidate to build lightweight compression functions
and hash functions, and such constructions were proposed in [9]. It is there-
fore meaningful to study PRESENT even in security models very generous for the
attacker. Thus far, the best secret-key attacks on PRESENT [5,12] can reach 26
rounds over the 31 total. Related-key attacks (where the key is secret, but the
attacker is allowed to ask queries for some keys related to the original one) are
thus far not more powerful, probably due to the impossibility of the attacker
to properly control linear/differential propagation in the PRESENT key sched-
ule. Regarding known or chosen-key model, the best attack could only reach
18 rounds [23] using rebound attacks and multi-differential cryptanalysis (their
distinguisher worked not only for the internal block cipher, but also for the
DM-PRESENT compression function). Only very recently Lauridsen et al. [25] man-
aged to reach 26 rounds of 80-bit key version of PRESENT and 27 rounds of 128-bit
key version of PRESENT by combining rebound attacks with linear cryptanalysis
in the known-key model (it works for only a small portion of keys, e.g. 271.8

out of 2128). It is noticeable that even though the security margin of PRESENT
is rather small, the best attacks in the classical (secret)-single-key model and in
the known or chosen-key models are almost reaching the same number of rounds.
This is quite surprising as one would expect many more rounds to be broken
when the attacker is given so much power. As analogy, one can remark that
the best attacks on AES-128 can break 7 rounds in the single-key or related-key
model, but the full 10-round cipher can be broken when the attacker knows the
key [15]. It seems that, in the case of PRESENT, leveraging the degrees of freedom
obtained by knowing or choosing the key will not greatly help the attacker to
improve linear attacks [25].

Known-Key Distinguisher on Full PRESENT 457

Our Contribution. In this article, we exhibit the very first known-key attack
on the full PRESENT cipher. More precisely, using the framework from [5], we avoid
the issues when trying to improve linear attacks with more freedom degrees. We
start from some of the best differential distinguishers from [5] and we managed
to extend them by several rounds by adding a meet-in-the-middle layer. Overall,
storing 235.58 bytes, we can distinguish the full 31-round PRESENT in the known-
key model in a time corresponding to 256 encryptions. The success of our known-
key distinguisher on the full PRESENT is 50.5% and is equal to 100% when
considering a version reduced to 27 rounds. More details are provided in Table 3.
The distinguishing attacks presented in this paper are independent of the key-
size and are valid for both PRESENT-80 and PRESENT-128.

In order to validate our results, we have implemented and verified our dis-
tinguisher on a small scale variant of PRESENT proposed in [26]. Our findings
indicate that one should avoid using PRESENT as building block to create com-
pression functions and hash functions, as it was proposed in [9]. Actually, our
distinguisher can also apply to DM-PRESENT (both 80 and 128-bit versions) and
to H-PRESENT. We emphasize that this cryptanalysis is the very first non-random
property found for the full PRESENT.

In Sect. 2 we first describe the PRESENT block cipher and then we introduce
our attack model in Sect. 3. Then, we explain the method to build our distin-
guisher in Sect. 4 and finally provide experiments and summarize our results in
Sect. 5. Section 6 concludes this paper.

2 The PRESENTBlock Cipher

2.1 Description of PRESENT

PRESENT [8] is a 64-bit lightweight block cipher proposed at CHES 2007. It is
composed of 31 rounds and the 64-bit 32 round-keys are derived from a 80-bit or
a 128-bit master key (we will respectively refer to PRESENT-80 or PRESENT-128).
The round function is composed of a round-key XOR, an Sbox layer and a simple
linear bit permutation layer, as depicted in Fig. 1.

The permutation layer operates linearly on the 64 bits as follows: the bit i of
the state is moved to the bit position P (i) where

P (i) =
{

16 × i mod (63) for 0 ≤ i < 63,
63 for i = 63.

Even though the same Sbox is applied for all nibbles at each round, we
numbered the Sboxes from 0 to 15 (see Fig. 1) to simplify the description of our
attacks. Note that, as in the original PRESENT paper, the least significant bit
and the least significant Sbox are on the right. In particular the input of the
Sbox Si, 0 ≤ i ≤ 15, corresponds to the bits 4i, 4i + 1, 4i + 2, 4i + 3 denoted by
[4i, 4i + 3]. The 4-bit PRESENT Sbox can be described with the following table in
hexadecimal display:

S[] = {0xC, 0x5, 0x6, 0xB, 0x9, 0x0, 0xA, 0xD, 0x3, 0xE, 0xF, 0x8, 0x4, 0x7, 0x1, 0x2}.

458 C. Blondeau et al.

Fig. 1. One round of PRESENT.

We do not describe the key schedule of PRESENT as it has no impact on our
attack, yet we refer to [8] for a more complete description of the cipher.

2.2 Previous Results on PRESENT

In the last couple of years, various analyses [1,3–5,12,13,27,30,31] on reduced
versions of PRESENT in the (secret)-single-key model have been proposed. Among
these analyses, the most important one remains the multidimensional linear
attack from Cho [12], which takes advantage of the easy-to-trace linear trails
with large correlations, and eventually threatens the security of PRESENT up to
26 rounds. Until 2014, as shown in Table 1, linear cryptanalysis-based attacks
were much more powerful against PRESENT, as only 19 rounds were reachable
using differential cryptanalysis-based attacks. Some of these key-recovery attacks
take advantage of the key-schedule and their time complexity have often been
computed for a single version.

However, based on a link between differential probability and linear correla-
tion, it has recently been shown in [5] that one can convert a multidimensional
linear distinguisher into a truncated differential one. In Sect. 4.2 we will provide
more details on this technique, which permitted to push truncated differential
attacks up to 26 rounds of PRESENT.

Regarding known-key or chosen-key settings, in [23] the authors presented an
analysis of DM-PRESENT, i.e. the compression function built by placing PRESENT
in a Davis-Meyer mode. Based on a combination of differential distinguishers
and rebound techniques, they manage to obtain collision and second-preimage
attacks on 12 rounds of DM-PRESENT-80, but also a distinguisher up to 18 rounds
(this distinguisher can also be applied to the cipher itself). Nevertheless, this app-
roach does not seem to be the most promising one since using classical methods,
simple differential-based attacks on PRESENT have been much less powerful than
linear-based attacks, as illustrated by Table 1. In the next sections, we will use
the model provided in [5] to take advantage of much longer truncated differential
distinguishers.

Very recently, Lauridsen et al. [25] combined linear cryptanalysis and rebound
attacks to obtain known-key distinguishers on the PRESENT cipher, for both
80-bit and 128-bit versions. Eventually, they managed to reach 27 rounds, that is
one more round than the best (secret)-single-key model attack on PRESENT. Their
distinguisher on 27 rounds of PRESENT-128 requires 210 computations and 261.67

Known-Key Distinguisher on Full PRESENT 459

Table 1. Relevant attacks on PRESENT in the (secret)-single-key model

#Rounds Version Attack Data Time Mem Ref Year

16 80 differential 264.0 264.0 232.0 [30] 2008

19 128 algebraic differential 262.0 2113.0 n/r [1] 2009

19 128 multiple differential 262 2120 260 [4] 2013

25 128 linear 264.0 296.7 240.0 [28] 2009

26 80 multidimensional linear 264.0 272.0 232.0 [12] 2010

26 80 truncated differential 263.16 276.0 229.0 [5] 2014

steps of verification, but works only with probability 2−56.2 since the distin-
guisher is considered valid for 271.8 keys among the 2128 possible. The issue with
this method is that it seems not very well fit for known-key or chosen-key sce-
narios, as only one extra round is reached compared to the best attack in the
(secret)-single-key model.

In the next sections, we will describe a meet-in-the-middle approach that fits
very well with differential-based attacks, and that will allow us to reach 5 more
rounds compared to the best attack in the (secret)-single-key model. Moreover,
our distinguishers can apply to DM-PRESENT and H-PRESENT [9] as well.

3 Known-Key Distinguisher

The known-key model has been introduced by Knudsen and Rijmen [22] to
analyse the security of AES-128 and some Feistel-based ciphers. The goal of this
model was to get a better estimation of the security margin of a cipher, but also
to encompass the scenario of block cipher-based hashing, where the key is known
and even chosen by the attacker. The property exhibited for their distinguisher
was an integral structure on the input and output of a set of plaintext/ciphertext
pairs, for a given known key. Several other types of known-key distinguish-
ers were subsequently proposed, such as the subspace distinguisher [24], the
limited-birthday distinguisher [16,20], and more recently a quite complex prop-
erty related to an integral structure was described by Gilbert [15] to reach the
full AES-128.

When one proposes a new known-key distinguisher, it is important to prove
or at least give very strong arguments that there is no generic attack that can
obtain the same property with an equal or lower complexity than the distin-
guisher. In other words, an attacker having only blackbox access to encryption
and decryption oracles of the cipher should not be able to obtain the same prop-
erty with equal or lower complexity than for the distinguisher. In our case, the
property we will exhibit is quite trivial: we will observe a bias on the number of
collisions on some predetermined input and output bits for a set of many plain-
text/ciphertext pairs. More precisely, let the cipher block size to be n bits and
let s (respectively q) denote the number of bits from the input (respectively the

460 C. Blondeau et al.

output) on which we will observe these collisions. We will generate N messages,
such that they all have the same value on the s input bits and such that there
is a bias on the number of collisions observed on the q output bits.

When having blackbox access to encryption/decryption oracles, an attacker
would maximise his success rate by asking only encryption queries. Indeed it
is much harder for him to ensure that he will get exactly the required value
on the s input bits (which is basically the strongest bias possible) when asking
decryption queries, than trying to obtain a weak bias on the q output bits when
asking encryption queries. In other words, the best strategy for him is to ensure
that the strongest bias is pre-verified when building its queries, and then hoping
to observe the weakest bias on the outputs of the oracle. Moreover, to further
maximize his success rate, all its encryption queries should have the same value
on the s input bits. Indeed, since the encryption oracle is a blackbox to him,
all the queries which have different value on the s input bits can be considered
completely independent, and therefore will not help him (this is similar to the
reasoning given in the limited-birthday problem proof [20]). To summarize, in
order to validate our distinguisher, we must compare with the generic attack that
consists in simply picking N random inputs (all having the same value on the s
predefined bits), querying them to the encryption oracle, and counting the num-
ber of collisions obtained on the q predefined bits of the output. In Sect. 4.2, we
will explain the details regarding the computation of the distinguisher’s success
probability against this type of generic attacker.

Moreover, it is important that this exhibited property can be checked
efficiently, and one should count this cost in the overall complexity of the distin-
guisher. Our distinguishing property can be very easily checked by simply ver-
ifying that all the N plaintext/ciphertext pairs have indeed the same value on
the s predefined input bits, and by maintaining counters for each possible value
taken by the q predefined ciphertext bits. Then, according to these counters, the
distinguisher will compute a simple scoring function and decide if he believes to
be communicating with PRESENT or with a random permutation (see Sect. 4.2).
We note that our known-key distinguishers will work for any key choice. Thus,
one can actually have the key value used as challenge for the attacker, which
further confirms the validity of our model.

4 Distinguishing Full PRESENT

4.1 Distinguisher Overview

While previous known-key distinguishers on other ciphers benefit much from a
start-from-the-middle approach, it cannot effectively be applied to PRESENT (at
least in a straightforward way). Typically, those distinguishers are built upon a
differential characteristic with desired input/output differences such that extra
short differential characteristics with high probability can be pre- and post-
added in order to attack as many rounds as possible. The start-from-the-middle
approach is then to firstly find solutions of the intermediate differential charac-
teristic. Although such a characteristic usually has a very low probability, thanks

Known-Key Distinguisher on Full PRESENT 461

to the degrees of freedom obtained from knowing or choosing the key and the
internal state values, the distinguisher is able to efficiently compute its solu-
tions. After that, the distinguisher propagates these solutions backwards and
forwards to probabilistically satisfy the pre- and post-added extra characteris-
tics. As demonstrated in [23], a rather straightforward application of the start-
from-the-middle approach works on very limited number of rounds of PRESENT.
The difficulty comes from the impossibility to find an intermediate differential
characteristic with a large number of rounds, while maintaining an affordable
time complexity to find its solutions even leveraging the degree of freedom from
knowing or choosing the key and the internal state values. We refer the interested
readers to [23,30].

Instead of differential characteristic, our distinguisher on PRESENT is built
based on the truncated differential of [5]. This is motivated by the fact that
truncated differential attack reaches the maximum number of attacked rounds
so far as shown in Table 1. Moreover, as far as we know, it is much easier to han-
dle than multidimensional linear attack. Hence, the distinguishing property is a
statistical bias of the number of collisions on a few predetermined output bits,
where the inputs collide on a few predetermined input bits. We note that such
a bias is a very small value and thus cannot be observed with a non-negligible
success probability unless a very large set of input/output pairs are provided.
Moreover, the necessary number of input/output pairs increases with the num-
ber of attacked rounds of truncated differential in order to have a non-negligible
success probability. Therefore, there are two issues when adding extra rounds
to the truncated differential to extend the number of attacked rounds of the
distinguisher. The first one is that we cannot post-add extra rounds, because
the predetermined colliding output bits of truncated differential will be input to
different Sboxes in the next round and as a result the bias cannot be observed
any more from the final outputs. The second one is that if we pre-add a dif-
ferential characteristic, it sets extra constraints on the inputs of the truncated
differential, i.e. the inputs must satisfy the extra differential characteristic, which
consequently reduces the total number of available inputs to the truncated dif-
ferential and, a fortiori, lowers the success probability of the distinguisher. On
one hand, one surely prefers to use a longer extra characteristic in order to
attack more rounds. On the other hand, a longer extra characteristic sets more
constraints on the inputs of the truncated differential path. Particularly, if the
total number of the available inputs of truncated differential is lower than the
necessary number to observe the statistical bias, the overall distinguisher fails.

Thus instead of pre-adding extra differential characteristics, we propose a new
layer called meet-in-the-middle (MitM) layer in order to pre-add extra rounds
to the truncated differential. It sets constraints only at its input bits and its
output bits, but not at any of its internal state bits. More precisely, the con-
straints on its input bits is trivially due to defining the distinguishing property.1

1 When attacking DM-PRESENT or H-PRESENT, the input bits with constraints of the
MitM layer must be located in the same bit positions with the output bits with
constraints of the truncated differential, due to the feed-forward operation.

462 C. Blondeau et al.

Fig. 2. Distinguisher overview. Each symbol represents 4 bits.

The constraints on its output bits are coming from the truncated differential,
i.e. the output difference of the MitM layer must satisfy the input constraints of
the truncated differential.

Before providing the details of our known-key distinguisher on PRESENT, we
give a general overview. As illustrated in Fig. 2, the main idea is to take advantage
of a strong truncated differential distinguisher (Δ → Γ) over the r1 ≤ 24 last
rounds. We denote by p the probability of this distinguisher. From the knowledge
of the key, using a MitM approach, we are able to generate a large number
of plaintexts which fulfill the following property: for all plaintexts with input
difference in the set Λ, their differences after 7 rounds is in the set Δ. The
truncated differential distinguisher is described in Sect. 4.2, the MitM layer in
Sect. 4.3.

4.2 A Statistical Bias on Reduced-Round PRESENT

Given an n-bit permutation F , splitting the input space into s + t bits and
the output space into q + r bits, we have the following results which link the
probability of a truncated differential with the capacity of a multidimensional
linear approximation.

Theorem 1 [5]. Let Fn
2 = F

s
2 × F

t
2 = F

q
2 × F

r
2 and

F : Fn
2 → F

n
2 , x = (xs, xt) �→ (yq, yr).

Given a multidimensional approximation [(as, 0), (bq, 0)]as∈F
s
2, bq∈F

q
2
with capacity

C =
∑

(as,bq) �=(0,0)

cor2 (as · xs ⊕ bq · yq) ,

and a truncated differential composed of 2t input differences (0, δt) ∈ {0} × F
t
2,

and 2r output differences (0, γr) ∈ {0} × F
r
2 with probability

p =
1
2q

∑

δt,γr∈F
t
2×F

r
2

P[(0, δt)→(0, γr)],

Known-Key Distinguisher on Full PRESENT 463

where P[(0, δt)
F→ (0,Δr)] = 2−n#{x ∈ F

n
2 |F (x) ⊕ F (x ⊕ (0, δt)) = (0, γr)}.

We have

p = 2−q(C + 1). (1)

Truncated Differential with Strong Bias. While the previous attack on
DM-PRESENT [23] is derived from a differential with high probability, in this paper,
we take advantage of the strong relation between differential probability and
capacity to derive a large truncated differential over up to 24 rounds with
large bias.

Throughout this paper, we make a distinction on the set of output differ-
ences depending if we want to distinguish PRESENT or DM-PRESENT. For our
distinguisher on the PRESENT cipher, the sets of differences Λ and Γ do not need
to be similar and the last permutation can be omitted which is not the case if
we want to distinguish DM-PRESENT or H-PRESENT. Depending of the context, the
set of considered output differences will be denoted Γ if it is placed after the
last permutation layer and Γ ′ if it is placed after the last Sbox layer.

We denote by I (resp. J) the number of Sboxes in the first round (resp. last
round) with no difference in their input. In the context of the distinguishing
attack on PRESENT, we express Theorem 1 as follows.

Corollary 1. Given a multidimensional linear approximation involving the
input bits ∪i∈{i1,··· ,iI}[4i, 4i + 3] and the output bits ∪j∈{j1,··· ,jJ}[4j, 4j + 3] with
capacity C, we have a truncated differential with input difference

Δ =
{
δ = (δ0, · · · , δ63) ∈ F

64
2 |δb = 0 for b ∈ ∪i∈{i1,··· ,iI}[4i, 4i + 3]

}
,

and output difference

Γ =
{
γ = (γ0, · · · , γ63),∈ F

64
2 |γb = 0 for b ∈ ∪j∈{j1,··· ,jJ}[4j, 4j + 3]

}
.

The probability of this differential is given as p = 2−4J (C + 1) = 2−4J + 2−4JC.
Following the notation of Theorem 1, we have s = 4I and q = 4J . We call
2−4JC the bias of this truncated differential approximation.

While in classical truncated differential attacks only few differentials are involved,
for this distinguisher derived from a multidimensional linear distinguisher the
number of involved differentials is 2128−4I−4J (as PRESENT is a 64-bit cipher).

Part of the analysis consists at selecting a truncated differential with high
relative bias. To understand the meaning of high relative bias we first study the
success of a distinguishing truncated differential attack.

Success of the Distinguishing Attack. Given a truncated differential with
probability p = 2−q(C+1), we use the following method with data complexity N ,
time complexity N encryptions and negligible memory complexity to distinguish
the cipher from a random permutation.

1. Set a table T of size 2q to 0

464 C. Blondeau et al.

2. For all N messages x with same value on the bits ∪i∈{i1,··· ,iI}[4i, 4i + 3]
(a) Compute y = EK(x)
(b) Given yq the truncation of y reduced to q bits, increment T [yq]

3. Compute D =
∑

0≤�≤2q−1 T [�](T [�] − 1)/2
4. If D > τ , consider that this is the cipher

Without comparing the pairs directly, the scoring function D gives us number of
pairs which fulfill the differential [5]. From N messages with same values on the
bits ∪i∈{i1,··· ,iI}[4i, 4i+3] we can generate NS = N2/2 pairs of message with no
difference on these bits, meaning that for a random permutation the expected
number of pairs fulfilling the truncated differential should be μW = NS · 2−q =
NS · 2−4J . We can show [6] that the random variable DR corresponding to this
scoring function for the given permutation follows a normal distribution with
mean μR = NS · 2−q(1 + C) and variance σ2

R ≈ NS · 2−q(1 + C) ≈ NS · 2−q. On
the other hand we have μW = NS · 2−q and σ2

W ≈ NS · 2−q. We can show that
when using NS pairs, the success probability PS of the distinguishing attack is
given by,

PS(NS) = Φ

(
μR − μW

σR + σW

)

≈ Φ

(√
2−qNS · C

2

)

(2)

where Φ the cumulative distribution function of the central normal distribution.
This success probability corresponds to a threshold τ = μR − σR · Φ−1(PS) =
μW + σW · Φ−1(PS).

Strong Truncated Differential on PRESENT. For a fixed NS number of pairs,
we derive from (2) that the best truncated differentials are the ones which max-
imize 2−q/2C. As explained in the previous section the number NS of available
pairs is fixed by the MitM part and the size of Λ, Δ. For the purpose of this
attack, we computed the capacity C of different set of linear approximations.
From this analysis it turns out that in combination with the MitM phase, if
we want to be able to transform this known distinguisher to a distinguisher on
DM-PRESENT, the best choice is achieved for I = 1 and J = 1.

As explained in [12], the capacity of a multidimensional linear approximation
can be obtained from the 1-bit linear trails. Given the multidimensional linear
input space involving the bits [4i, 4i + 3], 0 ≤ i ≤ 15 and an output space after
the Sbox layer involving the bits [4j, 4j + 3], 0 ≤ j ≤ 15, we denote by U the set
{P (4i), P (4i+1), P (4i+2), P (4i+3)} and V the set {4j, 4j+1, 4j+2, 4j+3}. We
can show (see the explanation in [12]) that an estimate of the capacity C ′

r1
over

r1 rounds without the last linear layer is obtained from the following formula

C ′
r1

=
∑

u∈U,v∈V

Mr1−2[u, v], (3)

where M denotes the 64 × 64 matrix with coefficients the square correlation
of the 1-bit linear approximations over one round in rest of the paper. On the
other hand, when the last linear layer is included, since the linear trails activate

Known-Key Distinguisher on Full PRESENT 465

different Sboxes in the last round, we can estimate the capacity Cr1 over r1
rounds as follows

Cr1 =
∑

u∈U,v∈V

Mr1−1[u, v]. (4)

From our computation we found that when selecting Δ = {δ|δb = 0 for b ∈
[52, 55]}, the best truncated differentials are obtained for Γ ′

i = {γ′|γb = 0 for b ∈
[4i, 4i + 3]} and i = 5, 7, 13, 15. For instance such truncated differential distin-
guisher on 24 rounds has a probability of 2−4(1 + 2−58.77) = 2−4 + 2−62.77 to be
fulfilled. By using 256 messages (the reason of this number is due to the MitM
layer explained in Sect. 4.3), we can distinguish 24-round of PRESENT from a
random permutation in 50.5% of the cases.

In the next section we explain how in the known-key model we can extend
this distinguisher to reach more rounds. More explicitly we explain how we can
ensure that all the generated messages have a fixed value over the bits [52, 55]
after 7 rounds.

4.3 The Meet-in-the-Middle Layer

This section illustrates the meet-in-the-middle (MitM) layer, which is prepended
to the truncated differential in order to extend the number of attacked rounds of
the known-key distinguisher. It consists of several rounds, and sets constraints
on the differences of input/output bits of these rounds. Moreover, the constraints
on the output bits of the MitM layer must be exactly the same with those set on
the input bits of the truncated differential layer. Then next is to identify a set
of plaintexts which can satisfy the constraints on both input and output of the
MitM layer. Namely, if these plaintexts are input to PRESENT, their internal
state after several rounds as the output of the MitM layer can satisfy the input
constraints of the truncated differential. Thus these plaintexts can be used to
launch a distinguisher on the (reduced) PRESENT consisting of both the MitM
layer and the truncated differential layer. To efficiently identify such a set of
plaintexts, we adopt a meet-in-the-middle approach, which benefits from the
small Sbox and the bit-permutation linear layer of PRESENT. More precisely,
for two rounds of computations, an input bit (or four input bits of an Sbox)
interacts with only few other bits, and with those bits together can determine
partial output bits. Thus we carry out a forward computation to get partial
internal state bits for the first two rounds of the MitM layer by guessing just
few bits. Similarly we carry out an independent backward computation to get
partial internal state bits for the last one and half round of the MitM layer.
Finally we carry out a gradually matching process to link and meanwhile fully
determine the internal states obtained from the forward and from the backward
computations, which can work up to 3 rounds.

We describe in detail the concrete MitM procedure that is used in our attack
on full PRESENT. It consists of 7 rounds. The constraints on the inputs are that
they share the same values at bits [52, 55], i.e. the input bits to S13. The con-
straints on the outputs are that they share the same values at bits [52, 55], i.e.

466 C. Blondeau et al.

the input bits to S13 for next round. In this section, we denote by Xi the internal
state after i-th round of PRESENT, and by Yi the internal state after applying
Sbox layer to Xi.

Firstly, we set the bits [52, 55] of plaintext to a randomly chosen 4-bit value,
and compute bits 13, 29, 45 and 61 of X1 in the forward direction. These bits are
input to Sboxes S3, S7, S11 and S15 in the second round. Then we exhaustively
guess the other 12 bits input to these Sboxes, that include bits 12, 14, 15, 28,
30, 31, 44, 46, 47, 60, 62 and 63 of X1, and continue to compute in the forward
direction to get 16 bits of X2, i.e. bits 4i + 3 for 0 ≤ i ≤ 15. It is also depicted
as the first two rounds in Fig. 3. In total we get a set of 212 such values of X2

and each value has 16 bits determined.
Secondly, we set the bits [52, 55] of X7 to a randomly chosen 4-bit value, and

compute bits 19, 23, 27 and 31 of Y6 in the backward direction. These bits are
input to compute the inversion of Sboxes S4, S5, S6 and S7 in sixth round. We
guess the other 12 bits input to the inversion of these Sboxes, that include bits
[16,18,20,22,24,26,28,30], and continue to compute in the backward direction
to get 16 bits of Y5, i.e. bits 4i + 1 for 0 ≤ i ≤ 15. It is also depicted as the last
two rounds in Fig. 3. In total we get a set of 212 such values of Y5 and each value
has 16 bits determined.

Finally, we carry out a gradually-matching algorithm for each pair of X2

and Y5 obtained from the forward and the backward computations respectively.
Recall that each of X2 and Y5 has 16 bits fixed, which will be named fixed bits in
the following description. The algorithm is to find a set of internal state values of
X4, whose corresponding values of X2 and Y5 can satisfy all the fixed bits, and
in turn the corresponding plaintexts can satisfy the constraints on the input and
output of the MitM layer. In details, at the third round of the MitM layer, we
re-group the bits of X2 into 4 groups; the i-th group contains bits [16i, 16i + 15]
for 0 ≤ i ≤ 3. Hence each group contains input bits to 4 consecutive Sboxes,
and has 4 bits fixed, i.e. bits 16i + 3, 16i + 7, 16i + 11 and 16i + 15 for the
i-th group. Then for each group independently, we exhaustively guess its 12
unfixed bits, and compute in the forward direction to get 16 bits of X4, that
is bits 4j + i, 0 ≤ j ≤ 15, for the i-th group. We store the values of partially
determined X4 computed from the i-th group in a table TFi. See Fig. 3 for an
example group in red color. Independently and similarly, at the sixth round of
the MitM layer, we also re-group the bits of Y5 to 4 groups; the i-th group
contains bits [4i, 4i+3]

⋃
[4i+16, 4i+19]

⋃
[4i+32, 4i+35]

⋃
[4i+48, 4i+51] for

0 ≤ i ≤ 3. Then for each group independently, we exhaustively guess the unfixed
12 bits, and compute in the backward direction to get 16 bits of X4, that is bits
[16i, 16i+15], for the i-th group. We store the values of partially determined X4

computed from the i-th group in a table TBi. See Fig. 3 for an example group
in blue color. After that, we merge those tables to find a set of fully-determined
values of X4. To begin with, we merge TFi and TBi, and the merged table is
denoted as Ti, independently for each 0 ≤ i ≤ 3. By merging these two tables, we
mean to merge every two partially-determined values of X4, each from a table
and sharing the same bit values at the common determined bit positions, into a

Known-Key Distinguisher on Full PRESENT 467

Fig. 3. MitM over the 7 first rounds of PRESENT

new (partially-determined) value of X4 with all their determined bits, and then
to include this new value of X4 in table Ti. Note that each value of TFi and each
value of TBi share 4 determined bit positions. Hence table Ti has on average
220 values. Then, we merge T0 and T1 and merge T2 and T3 independently, and
store the results in two tables T0,1 and T2,3 respectively. As T0 (respectively T2)
shares 8 common bits with T1 (respectively T3), we get that each of resulted
tables has on average 232 values. In the end, we merge T0,1 and T2,3, which gives
on average 232 values of fully-determined X4 since they share 32 common bits.

Overall, there are 224 pairs of partially-determined X2 and Y5 obtained from
the forward and the backward computations respectively, and each pair results
on average 232 fully-determined values of X4. Thus in total we can get on average
256(=24+32) plaintexts by inversely computing from the fully-determined values
of X4, and these plaintexts can satisfy the constraints on the input and output
of the MitM layer.

It is important to note that by running over all pairs of X2 and Y5, we have
filtered out all the plaintexts that can satisfy the constraints on both input and

468 C. Blondeau et al.

output of the MitM layer. In fact it is trivial to evaluate the expected number of
such plaintexts. Since there are 4 bit-constraints at bits [52, 55] of plaintext and
4 bit-constraints at bits [52, 55] of X7, the expected number of desired plaintexts
should be 256(=64−4−4). This means that on average (at most) 256 values can be
input to the truncated differential, which contributes to 2111 pairs, to observe
the bias. It has an impact to the success probability of overall distinguisher.
More details are given in Sect. 5.

Complexity. The complexities of both the forward computation and the back-
ward computations are 212 computations of 2 PRESENT-rounds. For the gradually-
matching phase, the algorithm is executed 224 times since there are 212 X2 from
the forward computation and 212 Y5 from the backward computations. The com-
plexity of each execution is obviously dominated by merging T0,1 and T2,3, which
needs 232 table lookups. Hence in total the complexity of the gradually-matching
phase is 256 table lookups.

Once a match of the MitM layer has been found, we can encrypt this value
X4 over the r1 + 3 rounds and increment the counter D given in the previous
section. Therefore the memory complexity of this attack is dominated by the
storage of the table T0,1 and T2,3 which is 2 · 232 · 6 bytes. Overall the total time
complexity of the distinguisher is 256 table lookups and 256 encryptions.

5 Results

5.1 Experiments

To confirm the validity of the distinguisher presented in this paper, we imple-
mented a similar known-key distinguisher on SMALLPRESENT-[8], a 32-bit scaled-
version of PRESENT [26]. A general overview of the cipher as well as a description
of the parameters for this known-key distinguishing attack are provided in Fig. 4.

For this experimental attack with I = 2 and J = 2, the expected num-
ber of messages obtained from the MitM layer should be 232−4I−4J = 216. We
repeated the experiments with different keys by 100000 times, and computed
that the average number of generated messages was 216.0009. We also computed
the standard deviation of these experiments, which was 212.73. Based on this
deviation, we got that for more than 99.9% of the experiments, the number of
messages generated by the MitM phase was greater than 215. Therefore we take
the value N = 215 (NS = N2/2 = 229) into consideration to compute a con-
servative success probability of the attack. A resume of the obtained results for
5 ≤ r1 ≤ 8 and a comparison with the theoretical success probability obtained
by formula (2) are given in Table 2.

As expected, these results confirm the validity of the known-key distinguish-
ing model presented in this paper.

Known-Key Distinguisher on Full PRESENT 469

Fig. 4. Left: The MitM part of our experiments on SMALLPRESENT-[8]. Right: Descrip-
tion of the differential involved in our experimental attacks.

Table 2. Experimental attacks on SMALLPRESENT-[8]

#Rounds C over r − 4 rounds PS(229) Exp. PS

9 2−5.42 100% 100 %

10 2−8.46 98.0 % 96.6 %

11 2−10.30 75.6 % 78.9 %

12 2−16.17 54.3 % 54.6 %

5.2 Results

Distinguisher on PRESENT. The results of our known-key distinguishing attack
on PRESENT are given in Table 3. The input difference set is Λ = {λ | λb =
0 for b ∈ [52, 55]}. For this distinguishing attack we selected the output difference
set after the last Sbox layer to be Γ ′ = {γ′ | γ′

b = 0 for b ∈ [52, 55]}. From this
set Γ ′ we derive the following set of output differences after the last linear layer
{γ | γb = 0 for b ∈ {13, 29, 45, 61}}

As from the MitM phase we can extend the truncated differential distin-
guisher over 7 rounds, its probability has been computed over r − 7 rounds. As
explained in Sect. 4.3, from the MitM phase we can generate in average 2111

plaintext pairs with difference in the set Λ leading after 7 rounds to 2111 pairs
with difference in Δ. As from the MitM phase the number of generated pairs is
not the always same, we computed a conservative success probability assuming
that from the MitM phase only 2109 pairs are generated. Note that we have con-
ducted experiments on the 7 first rounds of PRESENT showing that when merging
TFi and TBi, 0 ≤ i ≤ 3, the expected number of matches was, as expected, 220

and the standard deviation was dependent of the group and lower than 214.5.
These experiments support the fact that assuming that only 2109 pairs are gener-
ated should gives us an underestimate of the success of the attack. The memory
complexity of this distinguishing attack is dominated by the storage of the tables

470 C. Blondeau et al.

Table 3. Success probability of the known-key distinguisher (Λ → Γ ′) on PRESENT.
The probability of the truncated differential over r − 7 rounds is obtained from the
formula p = 2−4(C′

r−7 + 1) with C′
r−7 computed from (3).

#Rounds C′
r−7 PS(2111) PS(2109)

27 2−48.33 100% 100 %

28 2−50.94 99.8 % 93.0 %

29 2−53.55 68.6 % 59.5 %

30 2−56.16 53.2 % 51.5 %

31 2−58.77 50.5 % 50.3 %

in the MitM phase and corresponds to the storage of 235.58 bytes. The time com-
plexity of this known-key distinguisher on the full PRESENTis 256 table lookups
plus 256 encryptions.

Using Multiple Truncated Differentials. In contrary to the distinguishers
on DM-PRESENT and H-PRESENT, for the distinguisher on PRESENT the input and
output differences can be selected independently of each other, in particular it
is possible to consider different sets of output differences simultaneously. For
instance we can simultaneously check that the output pairs have difference in
the set Γ ′

5 or Γ ′
7 or Γ ′

13 or Γ ′
15 (see Sect. 4.2 for the notation). Meaning that we

can simultaneously check that the output pairs have no-difference on the bits
[20,23] or [28,31] or [52,55] or [60,63]. Given the four multidimensional linear
approximations with input masks involving the bits [52, 55] and output masks
involving the bits of one of the previous set with same capacity C we derive that
the probability of the union of these four events is p ≈ 4 ·2−4(1+C). The success
of such multiple truncated differential distinguisher is

PS ≈ Φ

(
NS · 4 · 2−4C

2
√

NS · 4 · 2−4

)

= Φ
(
2−2

√
NSC

)
.

Using this multiple truncated differential distinguisher, having 2109 plaintext
pairs the success of the attack on 31 rounds is 50.5%. Using different distribution
table Ti and different counter values Di for each set of differentials 1 ≤ i ≤ 4,
the time complexity of this attack remains the same than that of the simple
distinguisher.

Distinguisher on DM-PRESENT and H-PRESENT. For these two compression
functions DM-PRESENT and H-PRESENT, the last linear layer has to be considered.
In particular, as explained in Sect. 4.2 the probability of a truncated differen-
tial distinguisher with output difference equal to 0 on the bits [52, 55] after the
last linear layer can be computed from the capacity of the related multidimen-
sional linear approximation using (4). From the linear properties of the Sbox

Known-Key Distinguisher on Full PRESENT 471

Table 4. Success probability of the known-key distinguisher (Λ → Γ ′) on
DM-PRESENT and H-PRESENT. The probability of the truncated differential over r − 7
rounds is obtained from the formula p = 2−3(Cr−7 + 1) with Cr−7 computed from (4).
NS = 2111 has been chosen in a conservative way to have a good estimate of the success
probability.

#Rounds Cr−7 PS(2113) PS(2111)

27 2−50.94 100 % 100 %

28 2−53.55 100 % 97.3 %

29 2−56.16 73.7 % 62.4 %

30 2−58.77 54.1 % 52.1 %

31 2−61.39 50.7 % 50.3 %

of PRESENT, we derive the particularity that for all v ∈ {4j}0≤j<16 we have
M [u, v] = 0. Meaning that (4) is equivalent to

Cr1 =
∑

u∈U,v∈V

Mr1−1[u, v],

where V = {4j +1, 4j +2, 4j +3}. Reducing the output multidimensional linear
space from 24 values to 23 values we can increase the success of our distinguish-
ing attack on PRESENT. In this case we define the set Γ̃ = {γ|γb = 0 for b ∈
[53, 55]}. Our truncated differential distinguisher (Δ → Γ̃) has a probability
p = 2−3(Cr1 + 1).

In this case the value of X0[52] does not have to be fixed and the MitM
presented in Sect. 4.3 can be repeated for the two values of X0[52], meaning that
in average 257 messages (2113 pairs) with fixed X0[53, 55] and X7[52, 55] can
be generated. The set Λ is now equal to {λ|λb = 0 for b ∈ [53, 55]}. Meaning
that an attack on 31-round DM-PRESENT and H-PRESENT can be performed in
time 257 table lookups and 257 encryptions with success probability 50.3%. This
distinguishing attack requires the storage of 235.58 bytes. The success of this
distinguishing attack on reduced-round DM-PRESENT and H-PRESENT is given in
Table 4.

The same attack with same success probability could also be performed on
PRESENT. However, the time complexity of this new known-key distinguishing
attack on PRESENT is twice the one of the previous attack.

6 Conclusion

In this article, we proposed a known-key distinguisher on the full PRESENT block
cipher, in both 80- and 128-bit versions. This is the very first non-random prop-
erty exhibited for the full number of rounds of this standardized cipher. It seems
an interesting future work to analyse what an attacker would be able to do
when not only knowing the key, but when he can actually choose it (chosen-key

472 C. Blondeau et al.

model). Similarly to the previous strange situation that no attack improvement
could be obtained when switching from the secret-key model to the known-key
model, it would be surprising that no further improvement could be obtained in
the chosen-key model.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments. The second and third authors are supported by the
Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).
Lei Wang is also supported by Major State Basic Research Development Program (973
Plan) (2013CB338004), National Natural Science Foundation of China (61472250), and
Innovation Plan of Science and Technology of Shanghai (14511100300).

References

1. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg
(2009)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
1–15. Springer, Heidelberg (2010)

3. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: theory and practice.
In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg
(2011)

4. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
388–404. Springer, Heidelberg (2013)

5. Blondeau, C., Nyberg, K.: Links between truncated differential and multidimen-
sional linear properties of block ciphers and underlying attack complexities. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 165–
182. Springer, Heidelberg (2014)

6. Blondeau, C., Nyberg, K.: Links between truncated differential and multidimen-
sional linear properties of block ciphers and underlying attack complexities. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 165–
182. Springer, Heidelberg (2014)

7. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011 [29]. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

8. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

9. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash functions and RFID tags: mind the gap. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

10. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

11. Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)

Known-Key Distinguisher on Full PRESENT 473

12. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

13. Collard, B., Standaert, F.-X.: A statistical saturation attack against the block
cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–
210. Springer, Heidelberg (2009)

14. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

15. Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014)

16. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-Like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

17. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash. In:
Rogaway, P. (ed.) CRYPTO 2011 [30]. LNCS, vol. 6841, pp. 222–239. Springer,
Heidelberg (2011)

18. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011 [29]. LNCS, vol. 6917, pp. 326–341.
Springer, Heidelberg (2011)

19. ISO/IEC: information technology - security techniques - lightweight cryptography
- part 2: block ciphers. ISO/IEC 29192-2:2012 (2012)

20. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday distinguishers for hash func-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 504–523. Springer, Heidelberg (2013)

21. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple limited-birthday distinguishers
and applications. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 533–550. Springer, Heidelberg (2014)

22. Knudsen, L.R., Rijmen, V.: Known-Key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

23. Koyama, T., Sasaki, Y., Kunihiro, N.: Multi-differential cryptanalysis on reduced
DM-PRESENT-80: collisions and other differential properties. In: Kwon, T., Lee,
M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 352–367. Springer,
Heidelberg (2013)

24. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009)

25. Lauridsen, M.M., Rechberger, C.: Linear distinguishers in the key-less setting:
application to PRESENT. In: Leander, G. (ed.) Fast Software Encryption - FSE
2015. Lecture Notes in Computer Science. Springer (2015, to appear)

26. Leander, G.: Small scale variants of the block cipher PRESENT. Cryptology ePrint
Archive, Report 2010/143 (2010). https://eprint.iacr.org/2010/143

27. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a crypt-
analysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 303–322. Springer, Heidelberg (2011)

28. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and algebraic
cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

29. Preneel, B., Takagi, T. (eds.): Cryptographic Hardware and Embedded Systems –
CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011)

https://eprint.iacr.org/2010/143

474 C. Blondeau et al.

30. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

31. Wang, M., Sun, Y., Tischhauser, E., Preneel, B.: A model for structure attacks,
with applications to PRESENT and serpent. In: Canteaut, A. (ed.) FSE 2012 [11].
LNCS, vol. 7549, pp. 49–68. Springer, Heidelberg (2012)

32. Wei, L., Peyrin, T., Soko�lowski, P., Ling, S., Pieprzyk, J., Wang, H.: On the
(In)Security of IDEA in various hashing modes. In: Canteaut, A. (ed.) FSE 2012
[11]. LNCS, vol. 7549, pp. 163–179. Springer, Heidelberg (2012)

Key-Recovery Attack on the ASASA
Cryptosystem with Expanding S-Boxes

Henri Gilbert(B), Jérôme Plût, and Joana Treger

ANSSI, Paris, France
henri.gilbert@ssi.gouv.fr

Abstract. We present a cryptanalysis of the ASASA public key cipher
introduced at Asiacrypt 2014 [3]. This scheme alternates three layers of
affine transformations A with two layers of quadratic substitutions S. We
show that the partial derivatives of the public key polynomials contain
information about the intermediate layer. This enables us to present a very
simple distinguisher between an ASASA public key and random polyno-
mials. We then expand upon the ideas of the distinguisher to achieve a
full secret key recovery. This method uses only linear algebra and has a
complexity dominated by the cost of computing the kernels of 226 small
matrices with entries in F16.

Introduction

A long-standing challenge in asymmetric cryptography is to bring asymmetric
cryptography closer to symmetric cryptography by designing public key schemes
whose overall structure and elementary operations are similar to those used in
mainstream block ciphers such as AES. Solving this appealing but difficult chal-
lenge would not only increase the diversity in asymmetric cryptography, but
might also help reducing the considerable performance gap between asymmetric
cryptography and symmetric cryptography (the latter currently being more effi-
cient by several orders of magnitude). This might as well allow the emergence
of symmetric algorithms with some extra features, as for instance symmetric
encryption schemes with a secure white-box implementation. Until 2014 how-
ever, as far as we know, all attempts of public key scheme designs with block
cipher features, e.g. [10,15,16], eventually turned out to be weak [1,7,8,13,18].

Asymmetric ASASA Schemes. Some new candidate solutions to the above
challenge were proposed in a paper published at Asiacrypt 2014 by Biryukov
et al. [3]. One conducting idea for the new designs stems from the observations
that: (1) Traditional SPN block ciphers such as AES can be viewed as an alter-
nance of (at least partly secret) affine transformations A and S-box layers S,
and generally comprise a substantial number of A rounds (essentially 10 in the

This work was partially supported by the French National Research Agency through
the BRUTUS project (contract ANR-14-CE28-0015).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 475–490, 2015.
DOI: 10.1007/978-3-662-47989-6 23

476 H. Gilbert et al.

case of AES-128); as shown by Biryukov and Shamir [4], some efficient generic
attacks exist for the ASASA structure with secret S and A layers and small bijec-
tive S-boxes. (2) The efforts to design public key schemes with an alternance
of A and S layers mainly focused so far on multivariate schemes with an ASA
structure, with one single large S-box described by low degree equations over
a finite field.1 Based on the former considerations, the authors of [3] advocate
for use of public multivariate schemes with an ASASA structure, i.e. with the
simplest possible structure for which no generic attack is known in the case of
small bijective S-boxes—or more generally of injective S-boxes whose non-zero
linear combinations of outputs are not too strongly biased.

More precisely, the authors of [3] proposed a public-key encryption scheme
named the asymmetric ASASA scheme with expanding S-boxes, conjecturing that
it offers a comfortable security margin with respect to the potential lines of attack
identified in their security analysis. This scheme uses small input-expanding
injective quadratic S-boxes. Since the these S-boxes have a length expansion
factor of 2, the whole scheme has a length expansion factor of 4. The standard
plaintext and ciphertext length for this scheme are respectively 128 and 512 bits.

While this works focuses exclusively on the ASASA scheme with expand-
ing S-boxes, the same authors also proposed in [3] a second public-key scheme
based on the ASASA structure, named the χ-scheme. Indeed, this alternative
construction makes use of Daemen’s bijective quadratic S-box χ based on cellu-
lar automata [5] and also used in various recent hash functions. The standard
plaintext and ciphertext length is 128 bits. In this χ-scheme, one single large
S-box is used at each S layer. In their security analysis though, the authors of [3]
consider many attacks on weakened versions of the χ-scheme and conclude that
the security margin of the χ-scheme must be lower than that of the expanding
scheme. They therefore express some caveats on its security and only “offer it
as a cryptanalytic challenge, but not for practical use”, unlike the expanding
scheme.

In both ASASA public key encryption schemes, quadratic S-boxes are being
used. The public key consists of the quartic equations of the encryption function
and the private key consists of the specification of the A and S layers and of some
perturbation polynomials, which are added to a few components of the vector
representing the output of the second S layer.2 Another property of these public
key encryption schemes is that they can also be viewed as symmetric ciphers with
a decent encryption and decryption speed and the following extra feature: as an
alternative to using the secret key to efficiently encrypt, the public key provides

1 While a noticeable exception is the multivariate scheme R2 [14] that contains two S
layers with small S-boxes, one weakness highlighted by attacks on R2 or its variant
R2− that were eventually discovered is the fact that the R2 S-boxes are not injective.

2 While the role of perturbations is essential in the case of the χ-scheme since its vari-
ants without perturbations are reported in [3] to be vulnerable to efficient Gröbner
basis attacks, in the case of the expanding scheme, perturbations are mostly intro-
duced to provide some extra resistance against decomposition attacks that could
potentially reduce the ASASA structure to the functional composition of two ASA
structures.

Key-Recovery Attack on the ASASA Cryptosystem 477

a slower strong white-box implementation of the encryption function — i.e. an
obfuscated implementation that is conjectured to prevent that the decryption
function be derivable by an adversary who has full access to it.

Our Contribution. In this paper, we present an efficient attack on the ASASA
scheme with expanding S-boxes. The starting point for our attack is the analysis
of the homogeneous cubic part of the derivatives of the (quartic) polynomials
of the public key. We first show that this analysis provides a distinguisher that
allows to tell apart the public key of the scheme from a vector of random quartic
polynomials. We then describe how to leverage the first information about the
secret key provided by the distinguisher to retrieve the intermediate values that
lie between the two S-layers, for an equivalent representation of the scheme. At
this point, we are essentially left with the problem of solving two quadratic ASA
layers. Though generic techniques to solve this problem exist, we give our own
algorithm, that is well-adapted to the scheme considered. The overall complexity
of the attack is equivalent to at most 226 computations of kernels of matrices
of size 64 × 96 over the finite field F16. We estimate the corresponding compu-
tational time to a few CPU-hours, which places this cryptanalysis well within
practical limits.

This paper is organised as follows. Section 1 provides a description of the
expanding ASASA scheme and presents some useful preliminary results. Section 2
introduces a distinguisher for this scheme that can be used to derive some first
information on the secret key. Finally, Sect. 3 shows how to efficiently derive an
equivalent secret key from the public key.

1 The ASASA Cryptosystem

1.1 Definition and First Notations

The two asymmetric ASASA schemes of [3] are composed of polynomial trans-
formations over the base field k = F16; they are obtained by alternating three
k-affine layers and two non-linear polynomial-based S layers. The ASASA scheme
with expanding S-boxes, on which we are focusing, involves S-boxes whose out-
put is twice as big as their input; 32 perturbation polynomials of degree four are
also applied just before the last affine transform. More precisely, each S-box maps
a 4-tuple of k-values onto an 8-tuple of k-values, defined as degree 2 polynomi-
als over k in the inputs. The resulting scheme, which we simply call the ASASA
cryptosystem in the remaining of this paper for simplification purposes, has then
degree 4 over k. Going into details, the private key of the ASASA cryptosystem
consists of:

– Three uniformly random invertible affine transformations Ax of k32, Ay of k64,
and Az of k128;

– Two sets of uniformly random quadratic functions from k4 to k8 corresponding
to the first and second S-box layer Sx = {Sx

0,0, . . . , S
x
0,7, . . . S

x
7,0, . . . S

x
7,7}, that

determines 8 S-boxes Sx
0 , . . . Sx

7 , and Sy = {Sy
0,0, . . . , S

y
7,0, . . . S

y
15,0, . . . , S

y
15,7},

that determines 16 S-boxes Sy
0 , . . . Sy

15;

478 H. Gilbert et al.

Fig. 1. The ASASA cryptosystem with expanding S-boxes.

– Thirty-two uniformly random quartic perturbation polynomials p0, . . . , p31
on k32.

The public key and the associated public encryption function are derived from
the secret key as illustrated at Fig. 1, following those successive steps:

(i) The plaintext state is the tuple of variables x = (x0, . . . , x31) ∈ k32;
(ii) Let x′ = Ax·x ∈ k32;
(iii) Define y = (y0,0, . . . , y7,7) ∈ k64 as yr,i = Sx

r,i(x
′
r,0, . . . , x

′
r,3), for r, i =

0 . . . 7;
(iv) Let y′ = Ay·y ∈ k64;
(v) Define z = (z0,0, . . . , z15,7) ∈ k128 as zr,i = Sy

r,i(y
′
r,0, . . . , y

′
r,3), for i = 0 . . . 7

and r = 0 . . . 15;
(vi) For r ∈ {0, 15}, do z∗

8r ← zr,0+p2r(x), z∗
8r+1 ← zr,1+p2r+1(x), and z∗

8r+i ←
zr,i for i = 2 . . . 7 (the two first components out of 8 contiguous components
of z are modified);

(vii) The public key PK(x) is the vector of 128 polynomials over k, z′ = Az·z∗ ∈
(k[x0, . . . x31])128; the public encryption function is the associated function
from k32 to k128.

Dimension of the Secret and Public Key Spaces. Since the dimensions
of various vector spaces are central in our analysis, we compute the size of
the secret and public key spaces. We do not find the exact same numbers as
the original authors [3, 2.5], although the order of magnitude is the same. An

Key-Recovery Attack on the ASASA Cryptosystem 479

affine transform on n variables is representable by a matrix of size n × (n +
1); therefore, the three A layers have a key size of 32 × 33 + 64 × 65 + 128 ×
129 = 21 728 elements of F16. An S-box output is an (inhomogeneous) quadratic
polynomial in four variables, and is therefore described by

(
6
2

)
= 15 coefficients.

(The dimensions of spaces of homogeneous polynomials are as given below in
Sect. 1.3 of this paper; inhomogeneous polynomials in n variables correspond
bijectively to homogeneous polynomials of the same degree in n + 1 variables).
Therefore, the two S layers have a key size of 24 × 8 × 15 = 2 880 elements
of F16. In total, the secret key size is 24 608 elements of F16, or approximately
213.6 bytes of data. This does not, however, count the perturbation polynomials,
which occupy a space of 32 × (

36
4

)
elements, or 219.8 bytes of data. The public

key is a set of 128 × (
36
4

)
elements of F16, or 221.8 bytes of data.

1.2 Equivalent Simple Keys

As for most multivariate cryptosystems, there are multiple private keys that
correspond to a given ASASA public key, and we show here that each secret key
is equivalent to a simpler one, that we describe. We also redefine the ASASA
system in terms of those “simple” keys, which make our attack easier to explain;
we point out that this simplification is purely cosmetic though and that our
attack does apply to the ASASA system as described in [3].

First, since for each r = 0, . . . , 15, the two outputs zr,0, zr,1 of the S-box Sy
r

are added to arbitrary perturbation polynomials pi, we obtain the same public
key when replacing p2r, p2r+1 by p2r + zr,0, p2r+1 + zr,1 and Sy

r,0, Sy
r,1 by zero.

Let Ax = Ax + ax and Ay = Ay + ay be the decomposition of Ax and Ay

as their linear part plus their constant. We can actually assume that Ax = Ax

and Ay = Ay, as it is always possible to consider a modified Sy S-box layer
where the first addition by ax and the second addition by ay are absorbed
by the polynomials of Sy. The same goes for Az, where the addition of the
32 components with index 8r and 8r + 1 of az can be viewed as part of the
perturbation polynomials, so that Sy

r,0 and Sy
r,1 are still zero. This shows that

we can assume ax = ay = az = 0 and consider from now on Ax, Ay and Az

instead of Ax, Ay and Az.
Finally, notice that it is always possible to compose the output of the

quadratic map Sx
i by a linear transform, and the corresponding input block of the

linear map Ay by its inverse. The same applies to Sy
i and Az, for i �= 8r, 8r + 1,

i.e. as long as the corresponding 32 zero polynomials of Sy are not affected.
To sum up, the description of the ASASA private key of Sect. 1.1 is equivalent

to the following:

– Three uniformly random invertible linear transformations Ax of k32, Ay of k64

and Az of k128;
– Two sets of 8 × 8 and 16 × 6 uniformly random quadratic functions on k4,

Sx = {Sx
0,0, . . . , S

x
7,7} and Sy = {Sy

0,0, . . . , S
y
15,5};

– A set of 32 uniformly random quartic polynomials p0, . . . , p31 on k32.

480 H. Gilbert et al.

Fig. 2. The ASASA cryptosystem with expanding S-boxes, equivalent representation.

In the remaining of this paper, we shall always consider such simple private keys;
the corresponding encryption mechanism is illustrated at Fig. 2.

1.3 Notations and Preliminaries

We write k = F16 for the finite field with 16 elements. Throughout this work,
we let q = |k| = 16.

Homogeneous Polynomials. We write Hd,n for the space of homogeneous
polynomials of degree d over n variables (over the base field k = F16); it is a
vector space of dimension

(
n+d−1

d

)
[17, 2.2.1]. Throughout this paper, we shall

usually work with the vector space Hd,32 of homogeneous polynomials of degree d
on the 32 input variables xi. We shall write Hd instead of Hd,32.

Let f(x1, . . . , xn) be a polynomial. For any integer d, we write f(d) for the
degree d homogeneous part of f .

Vector Spaces. Given subspaces E ⊂ Hd,n and E′ ⊂ Hd′,n, we define E·E′ as
the subspace of Hd+d′,n generated by all the products u·u′ for u ∈ E and u′ ∈ E′.
We also define D as the vector space generated by the 32 derivations ∂i = ∂/∂xi.
For any vector space E ⊂ Hd,n, we define DE ⊂ Hd−1,n as the vector space
generated by all δ(u) for δ ∈ D and u ∈ E.

Counting Matrices of a Given Rank. We introduce the following notations,
used in the computation of the number of matrices with given size and rank. For
any integers n ≥ d, we define

Key-Recovery Attack on the ASASA Cryptosystem 481

[n, d] =
d−1∏

i=0

qn − qi and
[
n
d

]

=
[n, d]
[d, d]

. (1)

We omit the value q from these notations, since we shall always use q = 16. We
use the following classical result (see [12, VII.19]).

Proposition 1. Let m,n, d be three integers.

(i) There are exactly [n, d] injective maps from kd to kn.

(ii) There are exactly
[
n
d

]

subspaces of dimension d of kn.

(iii) There are exactly [n,d]·[m,d]
[d,d] matrices of size m × n with rank exactly d. ��

Proposition 2. Let V be a vector space of dimension d over k = F16. A set of
n uniformly random, independent vectors vi ∈ V generates V with overwhelming
probability if n ≥ d + 32.

Proof. Let π(n, d) be the probability that a random matrix of size n × d has
maximal rank d. We see by Proposition 1 that

π(n, d) =
[n, d]
qnd

=
d−1∏

i=0

1 − q−(n−i). (2)

For n > d 	 0, since q−n
 1, we have the asymptotic expansion

π(n, d) = exp

(
d−1∑

i=0

log(1 − q−(n−i))

)

� exp
(

−q−n qd − 1
q − 1

)

. (3)

For any ε > 0, we find that

π(n, d) > 1 − ε iff n > logq

qd − 1
q − 1

− logq log
1

1 − ε
. (4)

Using ε = 2−128 as our definition of “overwhelming probability”, the above
condition (4) becomes n ≥ d + 32.

Expected Behaviour of Derivatives and Product of Random Poly-
nomials. We shall use throughout this work the following heuristics about the
derivatives and products of random polynomials.

For f1, . . . , fr uniformly random, independent elements of Hd,n:

(i) if r < 1
n dim Hd−1,n, then the nr derivatives ∂ifj behave like uniformly

random, independent elements of Hd−1,n;
(ii) if r < 1

n dim Hd+1,n, then the nr products xifj behave like uniformly ran-
dom, independent elements of Hd+1,n.

482 H. Gilbert et al.

In particular, according to Proposition 2, we expect that, with overhelming
probability, if nr ≤ dim Hd−1,n − 32, then the ∂ifj are free in Hd−1,n; if nr ≤
dim Hd+1,n − 32, then the xifj are free in Hd+1,n. Although giving a detailed
proof of these facts would be out of the scope of this work, we obtained an
empiric confirmation in the cases of interest to us (namely n = 32, and either
d = 4, r = 128 for derivation, or d = 2, r = 64 for multiplication), as well as of
the bounds of validity.

2 A Simple Distinguisher

We shall see that the ASASA cryptosystem presents the same flaw as several
multivariate cryptosystems, that is, it is possible to distinguish the equations
of the public key for the ASASA scheme from random polynomials of the same
degree over k. The distinguisher we present here is extremely simple: namely,
computing the rank of the matrix of partial derivatives of the polynomials is
enough. However, by elaborating on the structure of this distinguisher, we shall
explain in Sect. 3 how it is possible to fully recover the secret key.

2.1 Considerations on the Dimension of Vector Spaces Derived
from the Public Key

The key observation underlying the distinguisher is that, while the space of
homogeneous cubic polynomials H3 = H3,32 has dimension

(
34
3

)
= 5984, the

homogeneous cubic parts of the derivatives of the public key (∂PKi/∂xj)(3) actu-
ally belong to a much smaller subspace of H3 which happens to have dimension
at most 3 072.

The Case of the ASASA Cryptosystem with No Perturbation Poly-
nomials. As a warm-up, we first consider the encryption of the mes-
sage (x0, . . . , x31) under the “non-perturbed” ASASA scheme, i.e. the ASASA
scheme with no perturbation polynomials. We recall that all intermediate val-
ues {yr,i}, {y′

r,i}, {zr,i} and {z′
i} introduced at Sect. 1 can be seen as polynomials

in the 32 input variables xi with coefficients in k = F16 (see Fig. 1).
To see that the (∂PKi/∂xj)(3), for i = 0 . . . 127, j = 0 . . . 31, belong to

a restricted subspace, we consider the second S-box layer Sy; recall that zr,i

denotes the i-th output of the S-box Sy
r with input y′

r,0, . . . y
′
r,3. The quadratic

polynomials y′
r,i may be written y′

r,i = (y′
r,i)(2)+(y′

r,i)(1)+(y′
r,i)(0), as the sum of

a homogeneous degree 2 part, a linear part and a constant. We therefore see that
the homogeneous parts of degree 4 of the polynomials zr,i output by the S-box Sy

r

are linear combinations of the terms (y′
r,m)(2)·(y′

r,n)(2). Let us write ∂zr,i/∂xj

for the derivative of the output zr,i along the input variable xj . There exists
coefficients am,n ∈ k such that

(∂zr,i/∂xj)(3) =
∑

m,n

am,n(y′
r,m)(2)(∂y′

r,n/∂xi)(1). (5)

Key-Recovery Attack on the ASASA Cryptosystem 483

Let Y ′
(2) ⊂ H32,2 be the vector space spanned by the 64 homogeneous quadratic

parts of the polynomials y′
r,m; it has dimension at most 64. Let also (DZ)(3) be

the vector space spanned by the 128 × 32 = 4 096 homogeneous cubic parts of
the derivatives of the polynomials zr,i. The expression (5) above implies

(DZ)(3) ⊂ Y ′
(2)·H1. (6)

The vector space (DZ ′)(3) = 〈(∂PKi/∂xj)(3)〉 being a linear image of (DZ)(3)
by Az, we also have

(DZ ′)(3) ⊂ Y ′
(2)·H1, (7)

and
dim(DZ ′)(3) ≤ dim Y ′

(2)·H1 ≤ 64 × 32 = 2 048. (8)

The General ASASA Cryptosystem. For the general ASASA scheme, we have
to slightly adapt the result (7) to take into account the perturbation polynomials.
We refer the reader to Fig. 2 for the description of ASASA used in this paragraph.

We established in our analysis of the unperturbed scheme that the homo-
geneous cubic parts of the derivatives of the polynomials {zr,i} belong to the
vector space Y ′

(2)·H1, which has dimension 2 048. This still holds for the general
ASASA scheme, since up to generation z, the perturbation polynomials do not
appear. The next step in the algorithm is the linear transform Az; its input is the
concatenation z||(p0, . . . , p31), where the first 96 elements are the polynomials
of z and the last 32 are the perturbation polynomials. This means that the poly-
nomials of the public key z′ are linear combinations of the polynomials of z and
the perturbation polynomials p0, . . . p15. Let DP be the vector space spanned by
the homogeneous cubic parts (∂pi/∂xj)(3) of the derivatives of the perturbation
polynomials; it has dimension at most 32 × 32 = 1 024. We necessarily have

(DZ ′)(3) ⊂ Y ′
(2)·H1 + DP. (9)

In terms of dimensions, Eq. (9) implies

dim(DZ ′)(3) ≤ dim(Y ′)(2)·H1 + 1024 ≤ 3 072, (10)

as claimed.

2.2 The Distinguisher

We now turn the observation of Sect. 2.1 into a working distinguisher.

Proposition 3. It is possible to distinguish the public key polynomials of the
ASASA scheme from uniformly random quartic polynomials by computing the
rank of a matrix of size 5 984 × 4 096 with coefficients in F16.

484 H. Gilbert et al.

Proof. Let T = (T0, . . . , T127) be a vector of 128 polynomials that are either
uniformly random quartic polynomials, or a (perturbed) ASASA public key PK.
We consider the matrix M of size 5 984 × 4 096 whose columns are the vec-
tors (∂Ti/∂xj)(3) ∈ H3,32, with the usual notations. If the Ti are uniformly ran-
dom polynomials, then the rank of M is 32 times the rank of the family (Ti); since
128×32 < dim H3,32, according to our heuristic, this is usually 32×128 = 4 096.
If on the contrary T is an ASASA public key, then by (10), the rank of M is at
most 3 072.

The distinguisher that returns ASASA if the rank of M is ≤ 3 072, and random
otherwise, succeeds with overwhelming probability.3 �

3 Key Recovery

We now present a secret key recovery attack on an ASASA scheme. The ideas
used here are based on the properties already identified in Sect. 2, namely, the
space of derivatives of PK contains information about the intermediate values
between the two quadratic layers.

To attack the system, we first identify the vector space of quadratic forms
manipulated in the middle of the algorithm (as output of the first S layer, and
input to the second one). This is the crucial point of the cryptanalysis. It enables
us to reduce the problem to two much simpler ASA problems. We then solve each
ASA instance in turn. (Note that although we present a specific way to solve to
these two ASA instances, it is well-known that ASA instances are weak, and
techniques to solve such systems can be found in the literature [2,6,9,11]).

This key-recovery only relies on linear algebra in various spaces of homoge-
neous polynomials. We refer the reader to Sect. 1.3 for some useful general results
in algebra used in the attack; a few other results will be introduced on the fly
when needed. For simplicity in this whole Sect. 3, we write Y , instead of Y ′

(2), for
the space generated by the homogeneous quadratic parts of the polynomials of y.

The overall complexity of the attack is about 226 times the computation of
the rank of a square matrix of size 64× 96 with coefficients in F16. We point out
that our method only uses the quadratic terms of the secret quadratic layers; it is
therefore also applicable to homogeneous instances of the ASASA cryptosystem.

3.1 Computing the Middle Layer

As already mentioned, our attack uses the same data as the distinguisher. More
precisely, the key result was given at Eq. (9): the vector space DZ ′ of derivatives
of PK contains information about the space Y ·H1, i.e. about the vector space Y
of homogeneous quadratic functions produced by the first S layer. However, the

3 We may also investigate the case of a reinforced ASASA scheme with more pertur-
bation polynomials, i.e. with 96 “legitimate” outputs and p ≥ 32 perturbations. We
easily find that our distinguisher works at least for p ≤ 90. The same bound applies
to the key recovery attack of Sect. 3 below.

Key-Recovery Attack on the ASASA Cryptosystem 485

observed vector space deduced from the public key also contains some unwanted
vectors originating in the perturbation polynomials.

To access the space Y ·H1 and see beyond the perturbation polynomials, the
first step is to construct several subspaces of DZ ′ including Y ·H1. We are then
able to recover Y ·H1 as the intersection of all those subspaces. In a second step
we show how, from this recovered vector space, we compute the space Y itself.

Eliminating the Perturbations. This first steps aims at computing the vector
space Y ·H1 from the public key.

Recall that a public key PK of the ASASA cryptosystem is given as a vector
of 128 polynomials PKi in the 32 input variables. We define Fi = (PKi)(4) as the
homogeneous quartic part of the public key, and F as the vector space generated
by all Fi.

For any derivation δ ∈ D and for any f ∈ F , we saw when describing the
distinguisher that

δf ∈ Y ·H1 + δP, (11)

where Y is the vector space generated by the 64 quadratic polynomials (yr,i)(2),
and P is the vector space generated by the 32 perturbation polynomials (pi)(4).

Let Δ ⊂ D be a vector space of dimension d. By (11), we then have

ΔF ⊂ Y ·H1 + ΔP, (12)

where the right-hand space has dimension at most 64×32+32×d = 2048+32 d.
The space ΔF is generated by 128 d elements δfi, for δ ∈ Δ and i = 0, . . . , 127.
By Proposition 2, these 128 d elements generate the whole space Y ·H1 + ΔP as
long as 128 d ≥ 2 048 + 32 d + 32, or equivalently, d ≥ 22.

We now consider a family of m vector spaces Δ1, . . . , Δm ⊂ D, each space Δi

being of dimension d = 22. We know by what precedes that for each one of them,
ΔiF = Y ·H1 + ΔiP . This implies that

m⋂

i=1

ΔiF = Y ·H1 +
m⋂

i=1

ΔiP. (13)

Since dimD = 32 and dimΔi = 22 for each i, the intersection of two spaces Δi

generally has dimension 12 (this is always the case if we choose the Δi correctly),
and likewise the intersection of three such spaces has dimension 2, and for m ≥ 4,
we easily find Δ1, . . . , Δm such that Δ1 ∩ . . . ∩ Δm = 0. This implies that

m⋂

i=1

ΔiP = 0 for m ≥ 4. (14)

Formula (14) means that the intersection
⋂m

i=1 ΔiF is then exactly the
space Y ·H1:

m⋂

i=1

ΔiF = Y ·H1 for m ≥ 4. (15)

486 H. Gilbert et al.

Computing the Middle Terms. This part explains how we recover the 64-
dimensional space Y from the space Y ·H1 ⊂ H3 obtained during the previ-
ous step.

We first prove a short lemma. Let V ⊂ H2 be a vector space of dimen-
sion d and basis (vj). The vector space V ·H1 ⊂ H3 is generated by the 32 d ele-
ments xi vj . If d ≤ 186, then 32 d ≤ dim H3 − 32; by Proposition 2, we therefore
expect these 32 d elements to be linearly independent in H3. This implies that
dim(V ·H1) = 32 d. In particular, this means that when V has dimension ≤ 186,
the correspondence between (dim V) and (dim V ·H1) behaves, with very high
probability, as a strictly increasing function.

We now use this lemma to characterize the space Y . Let Y ⊂ H2 be the
vector space of all functions g such that, for all i, gxi ∈ Y ·H1. Trivially, Y ⊂ Y
and Y ·H1 = Y ·H1. Since dim Y = 64 ≤ 186, we are in the conditions of the
previous lemma, which implies that Y = Y with overwhelming probability.

We may easily compute the space Y from Y ·H1 as follows. For each i =
0, . . . , 31, we define Gi as the subspace of multiples of xi in Y ·H1; by definition,
Y is the intersection of all spaces x−1

i Gi,

Y =
31⋂

i=0

x−1
i Gi. (16)

3.2 Solving a Quadratic ASA Layer

As already mentioned, there exists generic techniques [2,6,9,11] for inverting a
public key in the ASA form. We give our own solution here, as it is simple and
works well in the particular case of an ASA layer based on quadratic S-boxes.
We shall use this technique twice, once for the inner ASA layer, and then once
more for the outer one.

This section and the next one (Sect. 3.3) are mutually independent. We
present the inner layer ASA first since it is easier to explain.

Notations. The inner ASA layer is represented as the (known) vector space Y
generated by the 64 (unknown) quadratic forms yr,i in the 32 input variables xi.
We restrict ourselves here to the homogeneous part of the yr,i, since this case is
more difficult to solve, but easier to present.

For each fixed r, the eight functions yr,0, . . . , yr,7 are quadratic forms in the
same 4 fixed linear combinations x′

r,0, . . . , x
′
r,3 of the input variables xi. We

write Xr for the vector space generated by the x′
r,i. We may also decompose the

space of differentials D = 〈∂/∂xi〉 according to the S-boxes; namely, for each r,
we define Dr as the set of all elements δ ∈ D whose restriction to Xr is zero.

We note that dim Xr = 4 and dimDr = 28. Therefore, for a given r, an
uniformly random element of D belongs to Dr with probability q−4 = 2−16.

Key-Recovery Attack on the ASASA Cryptosystem 487

Separating the Inputs of the S-Boxes. We show that we are able to identify
the elements of Dr, i.e. the differentials that vanish on the inputs of a particular
S-box.4

For any quadratic form f ∈ Y and any δ ∈ D, the function δf is a linear form
of x ∈ X; this means that (δf)(x) is a trilinear function of (δ, f, x). Therefore,
for a fixed value of δ, it is a bilinear function of (f, x). We write Fδ for this
bilinear form. It is represented by a matrix of size 64 × 32 whose coefficients are
the (δfi)(xj), where (fi) is a basis of Y and (xj) is the standard basis of X.

Let f ∈ Y ; we can write f as a sum
∑

fs for s = 0, . . . , 7, where fs is a
quadratic form on Xs. For any δ ∈ Dr, we have δfr = 0, so that δf is the sum of
the δfs for s �= r. Since each one of these terms uses only the variables from Xs,
this means that (δf)(x) = 0 for x ∈ Xr. Put differently, the kernel of Fδ (here
seen as a linear map from X to the dual of Y) contains Xr.

Now let δ be an element of D not belonging to any of the Dr: since the
maps (δfi) are 64 random linear forms on the 32-dimensional space X; by Propo-
sition 2, with overwhelming probability, the intersection of their kernels is zero.

As a result, we see that the rank of the matrix Fδ is always ≤ 28 if δ belongs to
at least one of the Dr and 32 with overwhelming probability otherwise. This also
provides a test, given two elements δ and ε of Dr and Ds, for the equality r = s:
since the kernels of the matrices Fδ, Fε contain respectively Xr and Xs, their
intersection is non-trivial when r = s.

The Algorithm. We compute the spaces Xr and Dr at the same time, and
up to a permutation of {0, . . . , 7}, since we do not know the labeling of the
S-boxes. For each r = 0, . . . , 7, we keep candidates Ur and Vr for the spaces Xr

and Dr; initially, Ur is the whole space X while the space Vr is empty. During
the whole algorithm, we have Ur ⊃ Xr and Vr ⊂ Dr, with both inclusions being
equalities at the end. We also note that, at every step of the alorithm, Ur is the
intersection of the kernels of all elements of Vr.

We now describe the algorithm. We randomly generate elements δ of D and
compute the kernel K ⊂ X of the matrix Fδ. If this kernel has dimension at
least 4, then it intersects non-trivially one of the spaces Ur and the intersection
also has dimension at least 4. We then update Vr to Vr⊕〈δ〉 and Ur to Ur∩K. The
algorithm ends when each space Vr has the required dimension 28, as then Vr =
Dr as required, and therefore Ur = Xr.

Recovering the S-Boxes. Once the spaces Xr are known, computing the
S-boxes is easy. We write Yr for the vector space generated by the 8 outputs of
the S-box Sx

r , and Xr for the direct sum of all Xs for s �= r. Then Yr is exactly the
4 Since the elements of Y are quadratic forms, their differentials are exactly the asso-

ciated polar forms. This means that we may represent the derivations as elements
of X, using the relation (δf)(x) = f(x + δ) − f(x) − f(δ); in this view, the space Dr

is the direct sum of all the Xs for s �= r. However, we chose to use an explanation
based on differentials, since this is both closer to the differential cryptanalysis point
of view, and easier to generalize to polynomials of higher degree.

488 H. Gilbert et al.

set of elements of Y that vanish on all points of Xr. We may therefore compute Yr

with linear algebra. (Another possibility is to use the derivations spaces Dr, also
computed in the previous step, since Yr is the set of elements f ∈ Y such that,
for all δ ∈ Dr, δf = 0). Once bases of both Xr and Yr are known, we recover
the secret functions Sx

r by interpolation.

Complexity. q4 × 28 × 8 ≈ 15·106 elements of X, the expected cost for the
execution of this algorithm is approximately 223.8 times that of the computation
of the kernel of a matrix of size 32 × 64 with entries in F16.

3.3 Solving the Outer ASA Layer

We again use the representation of the middle layer as a 64-dimensional vector
space Y of quadratic forms computed in Sect. 3.1. We now determine the output
functions Fi as linear combinations of quadratic forms in the elements of Y and
the 32 perturbation polynomials pi.

Computing the Outputs of the S-Boxes. We recall that F is the vector
space generated by the homogeneous quartic part of the ASASA public key.
This vector space is the direct sum of the 32-dimensional space P generated
by the homogeneous quartic parts of the perturbations, and the 96-dimensional
vector space Z generated by the outputs of the 16 S-boxes Sy

r . Since the middle
layer Y is known as a result of Sect. 3.1, we may compute Z as the intersection
Z = (Y ·Y) ∩ F .

Reducing to a Quadratic ASA Layer. We now study the 16 S-boxes Sy
r . We

already know the 64-dimensional vector space Y of their (quadratic) inputs and
the 96-dimensional vector space Z of their (quartic) outputs. Our goal for now
is to rewrite each element of Z as an explicit quadratic function of the elements
of Y , so as to be able to apply the techniques of Sect. 3.2.5

We represent Y by its Hermite normal basis relative to a particular basis
of H2: the first 32 elements of Y have the form ui = x2

i + . . . for i = 1, . . . , 32,
the next 31 elements have the form vi = x1xi + . . . for i = 2, . . . , 32, and the
last one is w = x2x3 + . . ., where none of the omitted “. . .” expressions contain
either squares or terms x1xi or x2x3. In the (unlikely) case where the Hermite
normal form of Y does not contain the monomials x2

1, . . . , x2x3, we may always
replace the public key F by its composition F ◦ σ by a random invertible linear

5 We note that in the (very unlikely) case where the computation of the space Y
performed in Sect. 3.1 returned a space Y ′

� Y , the computation performed here
will allow us to remove the few extra elements of Y ′: namely, since the elements
of Z are quadratic forms in the elements of Y , the unneeded elements of Y ′ will not
appear in these expressions. This means that, in practice, this step (Sect. 3.3) should
be performed before the inner step (Sect. 3.2).

Key-Recovery Attack on the ASASA Cryptosystem 489

transformation of the input variables, such that Y ◦ σ has the suitable Hermite
normal form.

We now consider a basis of the space Z. Any term of the form λ x4
i appearing

in a basis element of Z comes, in its expression as a quadratic forms over Y , from
a term λ u2

i . Likewise, any term of the form μ x3
1xi comes from a term μ u1vi,

and so on.
In this way, we identify the second ASA layer as a quadratic map from

Y to Z.

Solving the ASA Problem. The problem we have to solve is now almost
identical to the one we solved in Sect. 3.2, except that we now have 16 instead
of 8 S-boxes, and 96 instead of 64 quadratic forms.

Applying the previous algorithm to this case thus has a global complexity of
approximately q4 × 60 × 16 ≈ 225.9 times the cost of computing the kernel of a
matrix of size 64 × 96 with entries in F16. This is the dominant step in the key
recovery procedure. We estimate the corresponding computational cost to a few
CPU-hours.

3.4 Computing the Inhomogeneous Terms

We just presented an algorithm computing the homogeneous part (of degree two)
of the quadratic S layers of the ASASA public key. These homogeneous terms
represent the largest part of the secret key. Once they are computed, recovering
the inhomogeneous terms (of degree one) is quite simple.

Each output S-box has one such linear term, represented by four coefficients;
in total, there are therefore (64+96)×4 = 640 unknown coefficients. We consider
the homogeneous parts of degree one and three of the public key PKi. These
functions are linear in the unknown inhomogeneous terms. Since there are exactly
(dim H1+dim H3)×32 = 192 512 such functions, we have enough linear equations
to recover all inhomogeneous terms.

Conclusion

We presented a very efficient distinguisher on the main ASASA scheme proposi-
tion of [3], that evolved into a full key-recovery algorithm with very reasonable
complexity. The complexity of the attack can be approximated by the cost of
computing the kernels of 226 matrices of size 64 × 96 with entries in F16. This
cost is well within practical limits. A classical venture to “repairing” a multivari-
ate cryptosystem is to consider the homogeneous variant of the broken scheme.
We point out that our cryptanalysis works by considering the homogenous quar-
tic parts of the polynomials of the public key, thus defeats any such attempt.
Another possibility would be to reinforce the scheme by adding more perturba-
tion polynomials. However, our attack still works without any modification even
for a larger number of perturbations.

490 H. Gilbert et al.

References

1. Biham, E.: Cryptanalysis of patarin’s 2-round public key system with S boxes (2R).
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 408–416. Springer,
Heidelberg (2000)

2. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004)

3. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic Schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014)

4. Biryukov, A., Shamir, A.: Structural cryptanalysis of ASASA. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg
(2001)

5. Daemen, J.: Cipher and hash function design strategies based on linear and dif-
ferential cryptanalysis. Ph.D. thesis, Doctoral Dissertation, KU Leuven, March
1995

6. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013)

7. Ding-Feng, Y., Kwok-Yan, L., Zong-Duo, D.: Cryptanalysis of 2R schemes.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 315–325. Springer,
Heidelberg (1999)

8. Faugère, J.-C., Perret, L.: Cryptanalysis of 2R− schemes. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 357–372. Springer, Heidelberg (2006)

9. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007)

10. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

11. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009)

12. Newman, M.: Integral Matrices. Academic Press, New York (1972)
13. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of euro-

crypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)

14. Patarin, J.: Asymmetric cryptography with a hidden monomial. In: Koblitz, N.
(ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 45–60. Springer, Heidelberg (1996)

15. Patarin, J., Goubin, L.: Asymmetric cryptography with S-Boxes is it easier than
expected to design efficient asymmetric cryptosystems? In: Information and Com-
munications, Security, pp. 369–380 (1997)

16. Rijmen, V., Preneel, B.: A family of trapdoor ciphers. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 139–148. Springer, Heidelberg (1997)

17. Sturmfels, B.: Algorithms in Invariant Theory. Springer Science & Business Media,
New York (2008)

18. Wu, H., Bao, F., Deng, R.H., Ye, Q.-Z.: Cryptanalysis of Rijmen-Preneel trapdoor
ciphers. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 126–
132. Springer, Heidelberg (1998)

Integrity

Online Authenticated-Encryption
and its Nonce-Reuse Misuse-Resistance

Viet Tung Hoang1,2(B), Reza Reyhanitabar3, Phillip Rogaway4,
and Damian Vizár3

1 Department of Computer Science, Georgetown University, Washington, D.C, USA
vth005@eng.ucsd.edu

2 Department of Computer Science, University of Maryland, College Park, USA
3 EPFL, Lausanne, Switzerland

4 Department of Computer Science, University of California, Davis, USA

Abstract. A definition of online authenticated-encryption (OAE), call
it OAE1, was given by Fleischmann, Forler, and Lucks (2012). It has
become a popular definitional target because, despite allowing encryp-
tion to be online, security is supposed to be maintained even if nonces
get reused. We argue that this expectation is effectively wrong. OAE1
security has also been claimed to capture best-possible security for any
online-AE scheme. We claim that this understanding is wrong, too. So
motivated, we redefine OAE-security, providing a radically different for-
mulation, OAE2. The new notion effectively does capture best-possible
security for a user’s choice of plaintext segmentation and ciphertext
expansion. It is achievable by simple techniques from standard tools.
Yet even for OAE2, nonce-reuse can still be devastating. The picture to
emerge is that no OAE definition can meaningfully tolerate nonce-reuse,
but, at the same time, OAE security ought never have been understood
to turn on this question.

Keywords: Authenticated encryption · CAESAR competition · Misuse
resistance · Nonce reuse · Online AE · Symmetric encryption

1 Introduction

Between nAE & MRAE. With typical nonce-based authenticated-encryption
(nAE) schemes [52,54], nonces must never repeat when encrypting a series of
messages; if they do, it is possible—and routine—that all security will be forfeit.
To create some breathing room around this rigid requirement, Rogaway and
Shrimpton defined a stronger authenticated-encryption (AE) notion, which they
called misuse-resistant AE (MRAE) [55]. In a scheme achieving this, repeating
a nonce has no adverse impact on authenticity, while privacy is damaged only to
the extent that an adversary can detect repetitions of (N,A,M) triples, these
variables representing the nonce, associated data (AD), and plaintext.

While it’s easy to construct MRAE schemes [55], any such scheme must
share a particular inefficiency: encryption can’t be online. When we speak of
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 493–517, 2015.
DOI: 10.1007/978-3-662-47989-6 24

494 V.T. Hoang et al.

encryption being online we mean that it can be realized with constant memory
while making a single left-to-right pass over the plaintext M , writing out the
ciphertext C, also left-to-right, during that pass. The reason an MRAE scheme
can’t have online encryption is simple: the definition entails that every bit of
ciphertext depends on every bit of the plaintext, so one can’t output the first
bit of a ciphertext before reading the last bit of plaintext. Coupled with the
constant-memory requirement, single-pass MRAE becomes impossible.

Given this efficiency/security tension, Fleischmann, Forler, and Lucks (FFL)
put forward a security notion [28] that slots between nAE and MRAE. We call
it OAE1. Its definition builds on the idea of an online cipher due to Bellare,
Boldyreva, Knudsen, and Namprempre (BBKN) [15]. Both definitions depend
on a constant n, the blocksize. Let Bn = {0, 1}n denote the set of n-bit strings, or
blocks. An online cipher is a blockcipher E : K×B∗

n → B∗
n (meaning each E(K, ·)

is a length-preserving permutation) where the ith block of ciphertext depends
only on the key and the first i blocks of plaintext. An OAE1-secure AE scheme
is an AE scheme where encryption behaves like an (N,A)-tweaked [43] online
cipher of blocksize n followed by a random, (N,A,M)-dependent tag.

Problems with OAE1. FFL assert that OAE1 supports online-AE and nonce-
reuse security. We disagree with the second claim, and even the first.

To begin, observe that as the blocksize n decreases, OAE1 becomes weaker, in
the sense that the ability to perform a chosen-plaintext attack (CPA) implies the
ability to decrypt the ciphertext of an m-block plaintext with (2n −1)m encryp-
tion queries. Fix a ciphertext C = C1 · · · Cm T with Ci ∈ Bn, a nonce N , and
an AD A. Using just an encryption oracle Enc, we want to recover C’s plaintext
M = M1 · · · Mm with Mi ∈ Bn. Here’s an attack for n = 1. If Enc(N,A, 0) = C1

set M1 = 0; otherwise, set M1 = 1. Next, if Enc(N,A,M1 0) = C1C2 set M2 = 0;
otherwise, set M2 = 1. Next, if Enc(N,A,M1M2 0) = C1C2C3 set M3 = 0; oth-
erwise, set M3 = 1. And so on, until, after m queries, one recovers M . For n > 1
generalize this by encrypting M1 · · · Mi−1 Mi (instead of M1 · · · Mi−1 0) with Mi

taking on values in Bn until one matches C1 · · · Ci or there’s only a single possi-
bility remaining. The worst-case number of Enc queries becomes (2n − 1)m. We
call this the trivial attack.

The trivial attack might suggest hope for OAE1 security as long as the block-
size is fairly large, like n = 128. We dash this hope by describing an attack, what
we call a chosen-prefix / secret-suffix (CPSS) attack, that breaks any OAE1-
secure scheme, for any n, in the sense of recovering S from given an oracle for
EN,A

K (L‖ · ‖S), for an arbitrary, known L. See Sect. 3. The idea was introduced,
in a different setting, with the BEAST attack [27].

While many real-world settings won’t enable a CPSS attack, our own take
is that, for a general-purpose tool, such a weakness effectively refutes any claim
of misuse resistance. If the phrase is to mean anything, it should entail that the
basic characteristics of nAE are maintained in the presence of nonce-reuse. An
AE scheme satisfying nAE (employing non-repeating nonces) or MRAE (without
that restriction) would certainly be immune to such an attack.

Online-AE and its Misuse-Resistance 495

Fig. 1. Approaches to formulating online-AE. It is a thesis of this paper that
OAE1 misformulates the desired goal and wrongly promises nonce-reuse misuse-
resistance.

We next pull back and take a more philosophical view. We argue that the
definition of OAE1 fails in quite basic ways to capture the intuition for what
secure online-AE (OAE) ought to do. First, schemes targeting OAE1 conflate
the blocksize of the tool being used to construct the scheme and the memory
restrictions or latency requirements that motivate OAE in the first place [61].
These two things are unrelated and ought to be disentangled. Second, OAE1
fails to define security for plaintexts that aren’t a multiple of the blocksize. But
constructions do just that, encrypting arbitrary bit strings or byte strings. Third,
OAE1 measures privacy against an idealized object that’s an online cipher fol-
lowed by a tag. But having such a structure is not only unnecessary for achieving
online encryption, but also undesirable for achieving good security. Finally, while
OAE1 aims to ensure that encryption is online, it ignores decryption. The eli-
sion has engendered an additional set of definitions for RUP security, “releasing
unverified plaintext” [7]. We question the utility of online encryption when one
still needs to buffer the entire ciphertext before any portion of the (speculative)
plaintext may be disclosed, the implicit assumption behind OAE1.

An alternative: OAE2. There are environments where online encryption is
needed. The designer of an FPGA or ASIC encryption/decryption engine might
be unable to buffer more than a kilobyte of message. An application like SSH
needs to send across a character interactively typed at the keyboard. Netflix
needs to stream a film [46] that is “played” as it is received, never buffering an
excessive amount or incurring excessive delays. A software library might want to
support an incremental encryption and decryption API. Whatever the setting, we
think of the plaintext and ciphertext as having been segmented into a sequence
of segments. We don’t control the size of segments—that’s a user’s purview—and
different segments can have different lengths.

Thus the basic problem that OAE2 formalizes involves a (potentially long,
even infinite) plaintext M that gets segmented by the user to (M1, . . . , Mm).
We must encrypt each segment Mi as soon as it arrives, carrying forward only
a constant-size state. Thus M gets transformed into a segmented ciphertext
(C1, . . . , Cm). Each Ci must enable immediate recovery of Mi (the receiver can

496 V.T. Hoang et al.

no more wait for C’s completion than the sender can wait for M ’s). We don’t
insist that |Ci| = |Mi|; in fact, the user will do better to grow each segment,
|Ci| > |Mi|, to support expedient verification of what has come so far. See Fig. 1
for a brief comparison of OAE1 and OAE2.

After formulating OAE2, which we do in three approximately-equivalent ways,
we describe simple means to achieve it. We don’t view OAE2 as a goal for which
one should design a fundamentally new AE scheme; the preferred approach is to
use a conventional AE scheme and wrap it in a higher-level protocol. We describe
two such protocols. The first,CHAIN, can be used to turn an MRAE scheme (e.g.,
SIV) into an OAE2 scheme. The second, STREAM, can be used to turn an nAE
scheme (e.g., OCB) into a nonce-based OAE scheme. That aim, nOAE, is identi-
cal to OAE2 except for insisting that, on the encryption side, nonces don’t repeat.
Finally, we consider a weakening of OAE2, we call it dOAE, stronger than nOAE
and achievable with online processing of each segment.

For reasons of length, the treatment of nOAE, dOAE, and STREAM appear
only in the full version of this paper [33]. Also see the full version for proofs and
a more complete discussion of related work.

We emphasize that moving from OAE1 to OAE2 does not enable one to
safely repeat nonces; an OAE2-secure scheme will still be susceptible to CPSS
attack, for example. In that light, we would not term an OAE2 scheme misuse
resistant. What makes OAE2 “better” than OAE1 is not added robustness to
nonce-reuse (at least none that we know how to convincingly formalize) but a
better modeling of the problem at hand, and a more faithful delivery on the
promise of achieving best-possible security for an online-AE scheme. In view of
the fact that, with OAE2, one must still deprecate nonce reuse, we would view
nOAE as the base-level aim for online-AE.

Related work. A crucial idea for moving beyond BBKN’s and FFL’s con-
ceptions of online encryption is to sever the association of the blocksize of
some underlying tool and the quantum of text a user is ready to operate on.
A 2009 technical report of Tsang, Solomakhin, and Smith (TSS) [61] expressed
this insight and provided a definition based on it. TSS explain that AE à la
Boldyreva and Taesombut [23] (or BBKN or FFL, for that matter) “processes
and outputs . . . blocks as soon as the next input block is received” [61, p. 4],
whence they ask, “what if the input is smaller than a block?”, even a bit, or
what “if the input is a [segment] . . . of arbitrary length?” TSS maintain that
such situations occur in practice, and they give examples [61, Sect. 8].

There are major difference in how TSS proceed and how we do. They insist
on schemes in which there is ciphertext expansion only at the beginning and end,
and their definition is oriented towards that assumption. They do not authen-
ticate the segmented plaintext but the string that is their concatenation. Our
formalization of OAE2 lets the adversary run multiple, concurrent sessions of
online encryption and decryption, another novum. In the end, the main com-
monality is some motivation and syntax.

Bertoni, Daemen, Peeters, and Van Assche (BDPV) present a mechanism, the
duplex construction, to turn a cryptographic permutation f into an object very

Online-AE and its Misuse-Resistance 497

much like what we are calling an OAE2 scheme [19]. BDPV consider encrypting
and authenticating a sequence of messages (B1, B2, . . .) having corresponding
headers (A1, A2, . . .). Asserting that it is “interesting to authenticate and encrypt
a sequence of messages in such a way that the authenticity is guaranteed not
only on each (A,B) but also on the sequence received so far” [19, p. 323], they
encrypt each (Ai, Bi) to a ciphertext Ci and a tag Ti, the process depending
on the prior (Aj , Bj) values. The authors explain that “Intermediate tags can
also be useful in practice to be able to catch fraudulent transactions early” [19,
p. 323]. BDPV provide a definition for the kind of AE they speak of [19, Sect. 2].
It resembles both OAE2 and nOAE, and inspired dOAE.

A real-world need. Netflix recently described a protocol of theirs, MSL, for
streaming video [46]. The movie is broken into variable-length segments and each
segment is independently encrypted and authenticated, with the ordering of the
segments itself authenticated. MSL is based on Encrypt-then-MAC composition,
where the encryption is AES-CBC with PKCS#5 padding and the MAC is
HMAC-SHA256. The choice suggests that even in real-time applications, use
of a two-pass AE scheme for each segment can be fine, as long as segments
are of appropriate length. MSL resembles an instantiation of STREAM. The
current paper provides foundations for the problem that Netflix faced, offering
definitions and generic solutions with good provable security.

2 OAE1 Definition

All OAE definitions of widespread use spring from FFL [28], who married
the definition of an online cipher from Bellare, Boldyreva, Knudsen, and
Namprempre [15] with the definition of authenticity of ciphertexts (also called
integrity of ciphertexts) [16,41,54]. In this section we recall the FFL definition,
staying true to the original exposition as much possible, but necessarily deviating
to correct an error. We call the (corrected) definition OAE1.

Syntax. For any n ≥ 1 let Bn = {0, 1}n denote the set of n-bit blocks. A block-
based AE scheme is a triple Π = (K, E ,D) where the key space K is a nonempty
set with an associated distribution and where the encryption algorithm E and
decryption algorithm D are deterministic algorithms with signatures E : K×H×
B∗

n → {0, 1}∗ and D : K × H × {0, 1}∗ → B∗
n ∪ {⊥}. The set H associated to Π

is the header space. FFL assumes that it is H = B+
n = N × A with N = Bn

and A = B∗
n the nonce space and AD space. The value n associated to Π is

its blocksize. Note that the message space M of Π must be M = B∗
n and the

blocksize n will play a central role in the security definition. We demand that
D(K,N,A, E(K,N,A,M)) = M for all K ∈ K, N ∈ N , A ∈ A, and M ∈ B∗

n.
To eliminate degeneracies it is important to demand that |E(K,H,M)| ≥ |M |

for all K,H,M and that |E(K,H,M)| depends on at most H and |M |. To keep
things simple, we assume that the ciphertext expansion |E(K,H,M)| − |M | is a
constant τ ≥ 0 rather than an arbitrary function of H and |M |.

498 V.T. Hoang et al.

Fig. 2. OAE1 security. Defining security for a block-based AE scheme Π = (K, E , D)
with header space H, blocksize n, and ciphertext expansion τ .

Security. Let OPerm[n] be the set of all length-preserving permutations π
on B∗

n where ith block of π(M) depends only on the first i-blocks of M ; more
formally, a length-preserving permutation π : B∗

n → B∗
n is in OPerm[n] if the first

|X| bits of π(XY) and π(XY ′) coincide for all X,Y, Y ′ ∈ B∗
n. Despite its being

infinite, one can endow OPerm[n] with the uniform distribution in the natural
way. To sample from this we write π ←← OPerm[n].

Fix a block-based AE scheme Π = (K, E ,D) with E : K × H ×B∗
n → {0, 1}∗.

Then we associate to Π and an adversary A the real number Advoae1
Π (A) =

Pr[A Real1 ⇒ 1] − Pr[A Ideal1 ⇒ 1] where games Real1 and Ideal1 are defined
in Fig. 2. Adversary A may not ask a Dec query (H,C) after an Enc query
(H,M) returned C. Informally, Π = (K, E ,D) is OAE1 secure if Advoae1

Π (A) is
small for any reasonable A . Alternatively, we can speak of OAE1[n] security to
emphasize the central role in defining security of the scheme’s blocksize n.

Discussion. The OAE1 definition effectively says that, with respect to privacy,
a ciphertext must resemble the image of a plaintext under a random online
permutation (tweaked by the nonce and AD) followed by a τ -bit random string
(the authentication tag). But the original definition from FFL somehow omitted
the second part [28, Definition 3]. The lapse results in a definition that makes
no sense, as E must be length-increasing to provide authenticity. The problem
was large enough that it wasn’t clear to us what was intended. Follow-on work
mostly replicated this [2,29]. After discussions among ourselves and checking
with one of the FFL authors [44], we concluded that the intended definition is
the one we have given.

LCP leakage. Say that a block-based AE scheme Π = (K, E ,D) with block-
size n is LCP[n] (for “longest common prefix”) if for all K,H,M , and i ≤ |M |/n,
the first i blocks of EH

K (M) depend only on the first i blocks of M . While
all schemes we know claiming to be OAE1[n] are also LCP[n], an OAE1[n]-
secure scheme isn’t necessarily LCP[n]. This is because the requirement for
OAE1[n] security is to be computationally close to an object that is LCP[n], and

Online-AE and its Misuse-Resistance 499

something being computationally close to something with a property P doesn’t
mean it has property P . Indeed it is easy to construct an artificial counterexam-
ple; for example, starting with a OAE1[n]-secure scheme that is LCP[n], aug-
ment the key with n extra bits, K ′, and modify encryption so that when the
first block of plaintext coincides with K ′, then reverse the bits of the remain-
der of the plaintext before proceeding. OAE1 security is only slightly degraded
but the scheme is no longer LCP[n]. Still, despite such counterexamples, an
OAE1[n]-secure scheme must be close to being LCP[n]. Fix Π as above and
consider an adversary A that is given an oracle EK(·, ·) for K ←← K. Con-
sider A to be successful if it outputs H ∈ H and X,Y, Y ′ ∈ B∗

n such that the
first |X|/n blocks of EH

K (XY) and EH
K (XY ′) are different (i.e., the adversary

found non-LCP behavior). Let Advlcp
Π (A) be the probability that A is success-

ful. Then it’s easy to transform A into an equally efficient adversary B for which
Advoae1

Π (B) = Advlcp
Π (A). Because of this, there is no real loss of generality,

when discussing OAE1[n] schemes, to assume them LCP[n]. In the next section
we will do so.

3 CPSS Attack

Section 1 described the trivial attack to break OAE1-secure schemes with too
small a blocksize. We now describe a different fixed-header CPA attack, this
one working for any blocksize. We call the attack a chosen-prefix, secret-suffix
(CPSS) attack. The attack is simple, yet devastating. It is inspired by the well-
known BEAST (Browser Exploit Against SSL/TLS) attack [27].

Let Π = (K, E ,D) be a block-based AE scheme with blocksize n satisfying
LCP[n]. We consider a setting where messages M = P ‖ S that get encrypted
can be logically divided into a prefix P that is controlled by an adversary, then a
suffix S that is secret, fixed, and not under the adversary’s control. The adversary
wants to learn S. We provide it the ability to obtain an encryption of EH

K (P ‖S)
for any P it wants—except, to be realistic, we insist that P be a multiple of b bits.
This is assumed for S too. Typically P and S must be byte strings, whence b = 8;
for concreteness, let us assume this. Also for concreteness, assume a blocksize
of n = 128 bits. Assume that E can in fact operate on arbitrary byte-length
strings, but suffers LCP leakage on block-aligned prefixes (this is what happens
if one pads and then applies an OAE1-secure scheme). Finally, assume |S| is a
multiple of the blocksize.

To recover S, the adversary proceeds as follows. First it selects an arbitrary
string P1 whose byte length is one byte shorter than p blocks, for an arbitrary
p ≥ 1. (For example, it would be fine to have P1 = 0120.) The adversary requests
ciphertext C1 = EH

K (P1 ‖ S). This will be used to learn S1, the first byte of S.
To do so, the adversary requests ciphertexts C1,B = EH

K (P1 ‖ B ‖ S) for all
256 one-byte values B. Due to LCP leakage, exactly one of these values, the one
with B = S1, will agree with C1 on the first p blocks. At this point the adversary
knows the first byte of S, and has spent 257 queries to get it. There is an obvious
strategy to reduce this to 256 queries: omit one of the 256-possible byte values
for B and use this for S1 if no other match is found.

500 V.T. Hoang et al.

Now the adversary wants to learn S2, the second byte of S. It selects an
arbitrary string P2 that is two bytes short of p blocks, for any p ≥ 1. The
adversary requests the ciphertext C2 = EH

K (P2 ‖ S); and it requests ciphertexts
C2,B = EH

K (P2 ‖ S1 ‖ B ‖ S) for all 256 one-byte values B. Due to LCP leakage
and the fact that we have matched the first byte S1 of S already, exactly one of
these 256 values, call it S2, will agree with C2 on the first p blocks. At this point
the adversary knows S2, the second byte of S. It has used 257 more queries to
get this. This can be reduced to 256 as before.

Continuing in this way, the adversary recovers all of S in 256 |S|/8 queries.
In general, we need 2b|S|/b queries to recover S. Note that the adversary has
considerable flexibility in selecting the values that prefix S: rather than this
being completely chosen by the adversary, it is enough that it be a known, fixed
value, followed by the byte string that the adversary can fiddle with. That is, the
CPSS attack applies when the adversary can manipulate a portion R of values
L ‖ R ‖ S that get encrypted, where L is known and S is not.

How practical? It is not uncommon to have protocols where there is a pre-
dictable portion L of a message, followed by an adversarially mutable portion R
specifying details, followed by further information S, some or all of which is
sensitive. This happens in HTTP, for example, where the first portion of the
request specifies a method, such as GET, the second specifies a resource, such as
/img/scheme.gif/, and the final portion encodes information such as the HTTP
version number, an end-of-line character, and a session cookie. If an LCP-leaking
encryption scheme is used in such a setting, one is asking for trouble.

Of course we do not suggest that LCP leakage will always foreshadow a
real-world break. But the whole point of having general-purpose notions and
provable-security guarantees is to avoid relying on application-specific charac-
teristics of a protocol to enable security. If misuse comes as easily as giving
adversaries the ability to manipulate a middle portion L ‖ R ‖ S of plaintexts,
one has strayed very far indeed from genuine misuse-resistance.

MRAE and CPSS. In the full version [33] we evidence that MRAE provides a
modicum of misuse resistance that OAE1 lacks by establishing the rather obvious
result that any MRAE-secure scheme resists CPSS attack.

4 Broader OAE1 Critique

The CPSS attack suggests that the OAE1 definition is “wrong” in the sense
that it promises nonce-reuse security but compliant protocols are susceptible to
realistic fixed-nonce attacks. In this section we suggest that OAE1’s defects are
more fundamental—that the definition fails to capture the intuition about what
something called “online-AE” ought do. Our complaints are thus philosophical,
but only in the sense that assessing the worth of a cryptographic definition always
includes assessing the extent to which it delivers on some underlying intuition.

Online-AE and its Misuse-Resistance 501

The Blocksize Should not be a Scheme-Dependent Constant. A reasonable syn-
tactic requirement for online-AE would say that the ith bit of ciphertext should
depend only on the first i bits of plaintext (and, of course, the key, nonce, and
AD). This would make online-AE something akin to a stream cipher. But the
requirement above is not what OAE1 demands—it demands that the ith block
depends only on the first i blocks of plaintext. Each of these blocks has a fixed
blocksize, some number n associated to the scheme and its security definition.
Thus implicit in the OAE1 notion is the idea that there is going to be some
buffering of the bits of an incoming message before one can output the next
block of bits. It is not clear if this fixed amount of buffering is done as a mat-
ter of efficiency, simplicity, or security. In schemes targeting OAE1-security, the
blocksize is usually small, like 128 bits, the value depending on the width of
some underlying blockcipher or permutation used in the scheme’s construction.

That there’s a blocksize parameter at all implies that, to the definition’s
architects, it is desirable, or at least acceptable, to buffer some bits of plaintext
before acting on them—just not too many. But the number of bits that are rea-
sonable to buffer is application-environment specific. One application might need
to limit the blocksize to 128 KB, so as to fit comfortably within the L2 cache of
some CPU. Another application might need to limit the blocksize to 1 KB, to
fit compactly on some ASIC or FPGA. Another application might need to limit
the blocksize to a single byte, to ensure bounded latency despite bytes arriving
at indeterminate times. The problem is that the designer of a cryptographic
scheme is in no position to know the implementation-environment’s constraint
that motivates the selection of a blocksize in the first place. By choosing some
fixed blocksize, a scheme’s designer simultaneously forecloses on an implemen-
tation’s potential need to buffer less and an implementation’s potential ability
to buffer more. Any choice of a blocksize replaces a user’s environment-specific
constraint by a hardwired choice from a primitive’s designer.

(Before moving on let us point out that, if it is the amount of memory available
to an implementation that is an issue, the right constraint is not the blocksize n,
where block Ci depends only on prior blocks, but the requirement that an imple-
mentation be achievable in one pass and n bits of memory. These are not the same
thing [56, p. 241]. And the former is a poor substitute for the latter since context
sizes vary substantially from scheme to scheme. While one could build an OAE
notion by parameterizing its online memory requirement, we find it more appeal-
ing to eliminate any such parameter.)

Security must be Defined for all Plaintexts. The OAE1[n] notion only defines
security when messages are a multiple of n bits. What should security mean
when the message space is larger, like M = {0, 1}∗? Saying “we pad first, so
needn’t deal with strings that aren’t multiples of the blocksize” is a complete
non-answer, as it leaves unspecified what the goal is one is aiming to achieve by
padding on the message space of interest—the one before padding is applied.

There are natural ways to try to extend OAE1[n] security to a larger message
space; see, for example, the approach used for online ciphers on {0, 1}≥n [56].
This can be extended to OAE1. But it is not the only approach, and there will

502 V.T. Hoang et al.

still be issues for dealing with strings of fewer than n bits. In general, we think
that an online-AE definition is not really meaningful, in practice, until one has
specified what security means on the message space M = {0, 1}∗.

Decryption too must be Online. If one is able to produce ciphertext blocks in an
online fashion one had better be able to process them as they arrive. Perhaps
the message was too long to store on the encrypting side. Then the same will
likely hold on the decrypting side. Or perhaps there are timeliness constraints
that one needs to act on a message fragment now, before the remainder of it
arrives. Think back to the Netflix scenario. It would be pointless to encrypt the
film in an online fashion only to have to buffer the entire thing at the receiver
before it could play.

But online decryption is not required by OAE1 security, and it is routine that
online decryption of each provided block would be fatal. We conjecture that it is
an unusual scenario where it is important for encryption be computable online
but irrelevant if decryption can be online as well.

The OAE1 Reference Object is not Ideal. The reference object for OAE1[n]
security pre-supposes that encryption resembles an online-cipher followed by
a random-looking tag. But it is wrong to think of this as capturing ideal behav-
ior. First, it implicitly assumes that all authenticity is taken care of at the very
end. But if a plaintext is long and one is interested in encryption being online to
ensure timeliness, then waiting until the end of a ciphertext to check authenticity
make no sense. If one is going to act on a prefix of a plaintext when it’s recov-
ered, it better be authenticated. Second, it is simply irrelevant, from a security
point of view, if, prior to receipt of an authentication tag, encryption amounts
to length-preserving permutation. Doing this may minimize ciphertext length,
but that is an efficiency issue, not a basic goal. And achieving this particular
form of efficiency is at odds with possible authenticity aims.

5 OAE2: Reformalizing Online-AE

We provide a new notion for online-AE. We will call it OAE2. To accurately
model the underlying goal, not only must the security definition depart from
that used by nAE and MRAE, but so too must a scheme’s basic syntax. In
particular, we adopt an API-motivated view in which the segmentation of a
plaintext is determined by the caller.

After defining the syntax we offer three ways to quantify the advantage an
adversary gets in attacking an OAE2 scheme. We term these advantage measures
OAE2a, OAE2b, OAE2c. The notions are essentially equivalent. We provide
quantitative results to make this essentially precise.

Why describe three different advantage measures of OAE2 security? We think
it helps clarify just what OAE2 really is. The measures have different charac-
teristics. The first, OAE2a, is a vector-oriented formulation. It employs a fairly
easy-to-understand reference object. The second advantage measure, OAE2b, is

Online-AE and its Misuse-Resistance 503

a string-oriented formulation. It employs a tighter and more realistic accounting
of the adversary’s actual resource expenditure. The third advantage measure,
OAE2c, is more aspirational in character. Yet it is the easiest notion to work
with, at least for proving schemes OAE2-secure. The OAE2c measure only makes
sense if the segment-expansion τ is fairly large.

We begin with a bit of notation.

Segmented strings. Denote by {0, 1}∗∗ = ({0, 1}∗)∗ the set of segmented-
strings: a segmented string X ∈ {0, 1}∗∗ is a vector (or list) of strings. Each of
its components, which we call a segment, is a string. The segmented-string with
zero components is the empty list Λ. This is different from the empty string ε.
The number of components in a segmented-string X is denoted |X|, while the
ith component of X, i ∈ [1..|X|], is denoted X[i]. Note that indexing begins
at 1. For X ∈ {0, 1}∗∗ and 1 ≤ i ≤ j ≤ |X|, by X[i..j] we mean the (j − i + 1)-
vector (X[i],X[i + 1], · · ·X[j]). If X ∈ {0, 1}∗∗ and X ∈ {0, 1}∗ then X ‖ X is
the |X| + 1 vector consisting of the components of X, in order, followed by X.
Keep in mind that this is not concatenation of strings but, instead, appending
a string to vector of strings to get a longer vector of strings. We emphasize that
a segmented string is not a string.

Scheme syntax. A segmented-AE scheme is a tuple Π = (K, E ,D) where the
key space K is a nonempty set with an associated distribution and both encryp-
tion E = (E .init, E .next, E .last) and decryption D = (D.init,D.next,D.last)
are specified by triples of deterministic algorithms. Associated to Π are its
nonce space N ⊆ {0, 1}∗ and its state space S. For simplicity, a scheme’s
AD space A = {0, 1}∗, message space M = {0, 1}∗, and ciphertext space
C = {0, 1}∗ are all strings. While an AD will be provided with each plaintext
segment, a single nonce is provided for the entire sequence of segments. The
signature of the components of E and D are as follows:

E .init : K × N → S D.init : K × N → S
E .next : S × A × M → C × S D.next : S × A × C → (M × S) ∪ {⊥}
E .last : S × A × M → C D.last : S × A × C → M ∪ {⊥}

When an algorithm takes or produces a point S ∈ S from its state space, it is
understood that a fixed encoding of S is employed.

Given a segmented-AE scheme Π = (K, E ,D) there are induced encryption
and decryption algorithms E, D : K×N ×{0, 1}∗∗×{0, 1}∗∗ → {0, 1}∗∗ (note the
change to bold font) that operate, all at once, on vectors of plaintext, ciphertext,
and AD. These maps are defined in Fig. 3. Observe how Dec(K,N,A,C) returns
a longest M whose encryption (using K, N , and A) is a prefix of C; in essence,
we stop at the first decryption failure, so |C| = |M | if and only if C is entirely
valid. We require the following validity condition for any segmented-AE scheme
Π = (K, E ,D) with induced (E,D): if K ∈ K, N ∈ N , A ∈ {0, 1}∗∗, M ∈
{0, 1}∗∗, and C = E(K,N,A,M), then M = D(K,N,A,C).

504 V.T. Hoang et al.

Fig. 3. Operating on segmented strings. The figure shows the algorithms E and D
that are induced by the segmented encryption scheme Π = (K, E , D).

Ciphertext expansion. We focus on segmented-AE schemes with constant
segment-expansion, defined as follows: associated to Π is a number τ ≥ 0 such
that if K ∈ K, N ∈ N , A ∈ {0, 1}∗∗, M ∈ {0, 1}∗∗, m = |A| = |M |, and
C = E(K,N,A,M), then |C[i]| = |M [i]| + τ for all i ∈ [1..m]. Thus each
segment grows by exactly τ bits, for some constant τ . We call τ the segment-
expansion of Π.

We favor constant segment-expansion because we think it runs contrary to
the spirit of online-AE to furnish interior segments with an inferior authenticity
guarantee than that afforded to the whole message. After all, much of the point
of online-AE is to allow a decrypting party to safely act on a ciphertext segment
as soon as its available. Still, there is an obvious efficiency cost to expanding
every segment. See the heading “Multivalued segment-expansion” for the case
where the amount of segment-expansion is position dependent.

Online computability. We say that a segmented-AE scheme Π = (K, E ,D)
has online-encryption if its state space S is finite and there’s a constant w such
that E .next and E .last use at most w bits of working memory. The value w
excludes memory used for storing an algorithm’s inputs or output; we elaborate
below. Similarly, scheme Π has online-decryption if its state space S is finite and
there’s a constant w such that D.next and D.last use at most w bits of working
memory. A segmented-AE scheme is online if it has online-encryption and online-
decryption. In accounting for memory above, the model of computation provides
input values on a read-only input tape; the input’s length is not a part of the
working memory accounted for by w. Similarly, algorithms produce output by
writing to a write-only output tape in a left-to-right fashion. The number of bits
written out has nothing to do with the working memory w.

Our security definitions don’t care if a segmented-AE scheme is online: that’s
an efficiency requirement, not a security requirement. Yet a good part of the
purpose of the segmented-AE syntax is to properly deal with schemes that have
such efficiency constraints.

Online-AE and its Misuse-Resistance 505

Fig. 4. OAE2a security. The segmented-AE scheme Π = (K, E , D) has nonce space N
and segment-expansion τ . It induces algorithms E , D as per Fig. 3. The distribution
IdealOAE(τ) is described in the text.

First OAE2 definition: OAE2a. We begin by defining the ideal behavior for
an OAE scheme. Let Inj(τ) denote the set of all τ -expanding injective functions—
the set of all functions f : {0, 1}∗ → {0, 1}∗ that are injective and satisfy
|f(x)| = |x| + τ . Endow this set with the uniform distribution in the natural
way. We write f ←← Inj(τ) to denote uniformly sampling a random, τ -expanding
injective function. Now define a distribution on functions IdealOAE(τ) as follows:

for m ∈ Z
+, N ∈ {0, 1}∗, A ∈ ({0, 1}∗)m, M ∈ ({0, 1}∗)m−1 do

fN,A,M ,0 ←← Inj(τ); fN,A,M ,1 ←← Inj(τ)
for m ∈ Z

+, A ∈ ({0, 1}∗)m, X ∈ ({0, 1}∗)m, δ ∈ {0, 1} do
F (N,A,X , δ) ← (fN,A[1..1],Λ,0(X [1]), fN,A[1..2],X [1..1],0(X [2]),

fN,A[1..3],X [1..2],0(X [3]), . . . , fN,A[1..m−1],X [1..m−2],0(X [m − 1]),
fN,A[1..m],X [1..m−1],δ(X [m]))

ret F

Thus F ←← IdealOAE(τ) grows by accretion, the ith component of F (N,A,X, 0)
depending on N , A[1..i], and X[1..i]. It must be decryptable (hence the injec-
tivity) and have the mandated length. The final input to F , the flag δ, indicates
if the argument X is complete: a 1 means it is, a 0 means it’s not.

Figure 4 defines games Real2AΠ and Ideal2AΠ for a τ -expanding
segmented-AE scheme Π. Given an adversary A with oracles Enc and Dec
determined by these games, let Advoae2a

Π (A) = Pr[A Real2AΠ ⇒ 1] −
Pr[A Ideal2AΠ ⇒ 1] be the adversary’s distinguishing advantage.

Discussion. The security notion may be described as follows. A user wants
to encrypt a segmented message M = (M1, . . . , Mm) into a ciphertext C =
(C1, . . . , Cm) using K,N,A. He wants to do this as well as possible subject to
the constraint that segments grow by exactly τ bits and M1 · · · Mi are recoverable
from K,N, (A1, . . . , Ai), (C1, . . . , Ci). As with robust-AE [34], the phrase “as well

506 V.T. Hoang et al.

as possible” targets an achievable (instead of aspirational) goal. Specifically, it is
formalized by comparing the real object to a random element from IdealOAE(τ)
and its inverse, the later understood to invert as many components as possible,
stopping at the first point one can’t proceed.

The definition of IdealOAE(τ) is complex enough that an example may help.
Consider encrypting a segmented plaintext M = (A,B,C,D) with a fixed key,
nonce, and AD. Let (U, V,X, Y) be the result. Now encrypt M ′ = (A,B,C).
We want this to give (U, V, Z), not (U, V,X), as the final segment is special:
processed by E .last instead of E .next, it is as though M = (A,B,C,D) means
(A,B,C,D$), while M = (A,B,C) means (A,B,C$), where the $-symbol is
an end-of-message sentinel. Written like this, it is clear that the two segmented
ciphertexts should agree on the first two components but not the third. Corre-
spondingly, possession of (U, V,X, Y) ought not enable a forgery of (U, V,X). All
of this understanding gets quietly embedded into the definition of IdealOAE(τ),
whose member functions get a final argument δ with semantics indicating if the
message is complete. Thus F (N,A, (A,B,C), 0) is what M = (A,B,C) should
map to if more segments are to come, while F (N,A, (A,B,C), 1) is what it
should map to if C is the final segment of M .

Second OAE2 definition: OAE2b. Figure 5 gives a more fine-grained and
string-oriented measure for OAE2 security. The adversary, instead of provid-
ing N,A,M and getting a vector C = Enc(N,A,M), can adaptively grow A
and M one component at a time. Similarly, instead of providing a segmented
ciphertext N,A,C and getting M = Dec(N,A,C), it can adaptively grow A,C.
As before, we associate to a τ -expanding segmented-AE scheme Π = (K, E ,D)
and an adversary A the real number Advoae2b

Π (A) = Pr[A Real2BΠ ⇒ 1] −
Pr[A Ideal2BΠ ⇒ 1] that is its distinguishing advantage.

The OAE2a and OAE2b measures are essentially equivalent. The essentially
of this sentence entails a simple result explaining how to convert an adversary
for one definition into an adversary for the other. First, given an oae2a-style
adversary A we can construct an equally effective oae2b-style adversary B:
it translates each Enc(N, (A1, . . . , Am), (M1, . . . , Mm)) asked by adversary A
into an Enc.init, then m − 1 Enc.next calls, then an Enc.last call, assembling
the answers into a segmented ciphertext (C1, . . . , Cm). Similarly, it translates
Dec(N, (A1, . . . , Am), (C1, . . . , Cm)) calls into Dec.init, Dec.next, Dec.last calls.
Adversary B gets exactly the oae2b-advantage that A had as oae2a-advantage.
It runs in almost the exact same time.

Simulation in the other direction is less efficient. Given an adversary A
attacking the oae2b-security of a Π, we construct an adversary B for attacking
the oae2a-security of the same scheme. Adversary B maintains lists Ni,Ai,M i

that are initialized in the natural way with each Enc.init call (incrementing i, ini-
tially zero, with each Enc.init). Calls of the form Enc.next(i, A,M), when valid,
result in appending A to Ai and M to M i, making an Enc(Ni,Ai ‖ ε,M i ‖ ε)
call, and returning its |M i|-th component. Calls of the form Enc.last(i, A,M)
result in making an Enc(Ni,Ai ‖ A,M i ‖ M) call, returning its last compo-
nent, resetting M i to ⊥ before doing so. Calls of the form Dec.init, Dec.next,

Online-AE and its Misuse-Resistance 507

Fig. 5. OAE2b security. The segmented-AE scheme Π = (K, E , D) has nonce
space N and segment-expansion τ .

and Dec.last are treated analogously, maintaining N ′
i , A

′
i,Ci values. Once again

the simulation is perfect, so Advoae2a
Π (B) = Advoae2b

Π (A). But now there is a
quadratic slowdown in running time: the argument lists can grow long, as can
return values, only one component of which is used with each call.

While the OAE2a definition is more compact, the improved concision for
the adversary’s queries in the OAE2b definition ultimately make it preferable,
particularly as this concision better models the real-world semantics, where an
adversary might be able to incrementally grow a plaintext or ciphertext with
the unwitting cooperation of some encrypting or decrypting party. We note that
we could achieve greater concision still by introducing a shorthand that would

508 V.T. Hoang et al.

allow the adversary to grow a tree and not just a chain. But this would not seem
to model anything meaningful in the real-world.

There are a couple of further reasons to favor OAE2b. One is that it more
directly captures the possibility of “infinite” (non-terminating) plaintexts (an
infinite “stream” of messages). This is simply the setting where Enc.last and
Dec.last are never called. Second, the OAE2b definition makes it easier to define
nonce-respecting adversaries for the OAE setting. Such adversaries may adap-
tively grow a plaintext based on a single nonce, but it may grow only one plain-
text for any given nonce. Building on the OAE2a formulation this is awkward
to say, but building on the OAE2b formulation, it is natural.

Third OAE2 definition: OAE2c. Let Π be a segmented-AE scheme with
segment-expansion τ and nonce-space N . Our final formulation of OAE2 security
uses a two-part definition, separately defining privacy and authenticity require-
ments. With games defined in Fig. 6, we let Advoae2-priv

Π (A) = Pr[A Real2CΠ ⇒
1] − Pr[A Rand2CΠ ⇒ 1]. Similarly, define Advoae2-auth

Π (A) = Pr[A Forge2CΠ],
meaning the probability that A returns a value that, when provided as input
to the procedure finalize, evaluates to true. Informally, OAE2c security for a
scheme Π means that reasonable adversaries get small oae2-priv advantage and
small oae2-auth advantage.

Definition OAE2c is simpler than prior games in the sense that, for privacy,
no decryption oracles are provided and the reference experiment simply returns
the right number of uniformly random bits. For the authenticity portion of the
definition, forgeries are defined to allow any (N,A,C) that the adversary does
not trivially know to be valid, the adversary marking in C has terminated (b = 1)
or not (b = 0). Set Z records the tuples that the trivially adversary knows by
virtue of encryption queries.

The following propositions show that OAE2b and OAE2c are close, assuming
that the segment-expansion τ is fairly large. The proofs are in the full version [33].

Proposition 1 (oae2c ⇒ oae2b). Let Π be a segmented-AE scheme with
ciphertext expansion τ . There are explicit given reductions R1 and R2 with the
following property. For any adversary A , adversaries B1 = R1(A) and B2 =
R2(A) satisfy Advoae2b

Π (A) ≤ Advoae2-priv
Π (B1)+p·Advoae2-auth

Π (B2)+q2/2τ ,
where p and q are the number of decryption chains and the number of queries
of A , respectively. For each i ∈ {1, 2}, adversary Bi uses about the same running
time as A , and the length of its queries is also at most that of A ’s queries.

Proposition 2 (oae2b ⇒ oae2c). Let Π be a segmented-AE scheme with
ciphertext expansion τ . There are explicit given reductions R1 and R2 with
the following property. For any adversaries A1 and A2, adversaries B1 =
R1(A1) and B2 = R2(A2) satisfy Advoae2-priv

Π (A1) ≤ Advoae2b
Π (B1) and

Advoae2-auth
Π (A2) ≤ Advoae2b

Π (B2) + �/2τ , where � is the number of segments
in A2’s output. For each i ∈ {1, 2}, adversary Bi uses about the same running
time as Ai, and the length of its queries is at most that of Ai’s queries.

Online-AE and its Misuse-Resistance 509

Fig. 6. OAE2c security. Privacy and authenticity are separately defined, the first by
comparing games Real2C and Rand2C, and the second using game Forge2C, which
includes the additional lines indicated.

Multivalued segment-expansion. It is easy to extend the definitions of this
section to schemes for which the segment-expansion varies according to segment
position. In particular, one could use one expansion value, σ, for plaintext com-
ponents other than the last, and a different expansion value, τ , at the end. For
such a (σ, τ)-expanding scheme, distribution IdealOAE(τ) would be adjusted to
IdealOAE(σ, τ) in the natural way.

The main reason for considering multivalued segment-expansion is to clarify
how OAE2 security relates to prior notions in the literature. In particular, OAE2
resembles OAE1 where the segment-expansion is (0, τ) and where all segments
are required to have some fixed length n. Yet even then the definitions would be
very different: the OAE2 version would be stronger, since an online decryption
capability is not allowed to compromise OAE2 security, whereas the capability
may compromise OAE1 security. It is easy to give a separating example [33].

510 V.T. Hoang et al.

Another potential reason to consider multivalued segment-expansion is as a
way to save on bits; obviously one will use fewer total bits, over a sequence of
two or more segments, if only the last is expanded. But we suspect that this
benefit is rarely worth its cost. If segments are 1 KByte (which is fairly short)
and tags are 128 bits (which is fairly long), the difference (in total number of
needed bits) between authenticating every segment and authenticating only the
last one will always be less than 2 %. This seems a small price to pay to have
each and every segment properly authenticated.

Why vector-valued AD? In modeling OAE it is unclear if one ought think
of the AD as a fixed string that is known before the plaintext begins to arrive, or
if, instead, one should think of the AD as vector-valued, its ith segment available
when the ith segment of plaintext is. We adopted the second view (switching
from the first at the urging of the Keyak team) for closer concordance with prior
work [19] and for greater generality: a string-valued AD of A can be regarded as a
vector-valued AD of A = (A, ε, ε, . . .). More philosophically, the two conceptions
correspond to whether one thinks of breaking up a fixed plaintext M into a
sequence of segments Mi or one regards the Mi values as more autonomous, each
encrypted when available, each with its own associated context. With plaintexts
and AD both vector-valued, one conceptually extends across time a channel that
securely transmit pairs of strings, one component with privacy and both with
authenticity. All that said, the authors are uncertain of the actual utility of
vector-valued over string-valued AD.

6 Achieving OAE2

In the special case that each segmented-string has only one component, OAE2
degenerates to the notion of a pseudorandom injection (PRI) [55]. The notion is
close to MRAE [55], with a gap q2/2s+τ + q/2τ where q is the number of queries
and s is the length of the shortest plaintext queried. Below we construct an
OAE2-secure scheme from a PRI-secure scheme. The scheme could be SIV [55]
if τ is large, say τ = 128, or AEZ scheme [34], for arbitrary τ . We begin by
recalling the PRI notion.

Pseudorandom injections. Let Π = (K,E,D) be a conventional AE scheme,
meaning that (i) the key space K is a nonempty set with an associated distri-
bution, (ii) E : K × N × Å × {0, 1}∗ → {0, 1}∗ is the encryption scheme, and
(iii) D : K× N × Å × {0, 1}∗ → {0, 1}∗ ∪ {⊥} is the decryption scheme. Both E
and D are deterministic, and decryption reverses encryption, meaning that for
every N ∈ N , A ∈ A, M ∈ {0, 1}∗, and K ∈ K, we have DN,A

K (EN,A
K (M)) = M .

We insist there be a constant τ associated to Π, its ciphertext-expansion, where
|EN,A

K (M)| = |M | + τ for all N ∈ N , A ∈ A, M ∈ {0, 1}∗, K ∈ K. Define
Advpri

Π (A) = Pr[A RealPRIΠ ⇒ 1] − Pr[A IdealPRIΠ ⇒ 1] using Fig. 7’s games.

Achieving OAE2 security. Fix integers n ≥ τ ≥ 0. For a string X ∈ {0, 1}∗

and 1 ≤ i ≤ j ≤ |X|, let X[i, j] denote the substring of X from the ith bit
to the jth bit (inclusive). Let 〈·〉 denote an encoding that maps a pair (A, d) ∈

Online-AE and its Misuse-Resistance 511

Fig. 7. PRI security. Defining security for an AE scheme Π = (K,E,D) with expan-
sion τ , nonce space N , and AD space A. Here Inj(τ) is the set of all injective functions
f : {0, 1}∗ → {0, 1}∗ such that |f(x)| = |x| + τ for all x ∈ {0, 1}∗. For each y ∈ {0, 1}∗

let f−1(y) = x if there’s an x ∈ {0, 1}∗ such that f(x) = y, and f−1(y) = ⊥ otherwise.

{0, 1}∗×{0, 1, 2} to a string 〈A, d〉 ∈ {0, 1}∗. For example, one can represent d by
a two-bit string, and append this to A. Let Π = (K,E,D) be a conventional AE
scheme of ciphertext-expansion τ , nonce space {0, 1}n, and AD space {0, 1}∗.
Figure 8 defines a segmented-AE scheme CHAIN[Π, 〈·〉, n] = (K, E ,D) with
segment expansion τ , nonce space {0, 1}n, AD space {0, 1}∗, and state space
K × {0, 1}n. The proof of the following theorem is in the full version [33].

Theorem 1. Let Π, 〈·〉, n, and CHAIN[Π, 〈·〉, n] be as above. There is an
explicit reduction R with the following property. For any adversary A , adversary
B = R(A) satisfies Advoae2b

CHAIN[Π,〈·〉,n](A) ≤ Advpri
Π (B) + 2q2/2n where q is

the number of A ’s queries. Adversary B uses about the same running time as A
and the total length of B’s queries is that of A plus at most 5qn bits.

Discussion. In E .next and D.next, the state is computed via M [1, n] ⊕ C[1, n].
One might instead xor the n-bit suffix of M and C; this makes no differ-
ence. On the other hand, suppose one uses just C[1, n], eliminating the xor
with M [1, n]. Call this variant CHAIN1[Π, 〈·, 〉, n]. The method is insecure for
small τ . Here is an attack for the case τ = 0. The adversary makes a single
query (N,A,C) to the decryption oracle, where N is arbitrary, A = (ε, ε, ε) and
C = (0n, 0n, 0n, 0n). Let the answer be M = (M1,M2,M3,M4). The adversary
will output 1 only if M2 = M3. In the Ideal2B game the strings M2 and M3

are independent random strings. However, in game Real2B we always have
M2 = M3 = DK(0n, 〈ε, 0〉, 0n). Hence the adversary can win with advantage
1 − 2−n. In contrast, for large τ , scheme CHAIN1[Π, 〈·, 〉, n] is OAE2 secure.

To achieve OAE2 with multivalued segment-expansion, use an RAE-secure
underlying scheme [34], a generalization of PRI that allows one to select an
arbitrary ciphertext-expansion for each query. The construction is modified in
the natural way.

512 V.T. Hoang et al.

Fig. 8. The CHAIN construction for OAE2. Top: Encryption scheme Π =
(K,E,D), secure as a PRI with expansion τ , is turned into a segmented-AE scheme
CHAIN[Π, 〈·〉, n] = (K, E , D) with K = K. Bottom: Illustration of the scheme. Each
segment of (M1, M2, M3) has at least n bits. Trapezoids represent truncation to n bits.

7 Escalating Claims, Diminishing Guarantees

A survey of the literature shows increasingly strong rhetoric surrounding nonce-
reuse security of online schemes. We document this trend. In doing so we identify
some of the notions (all quite weak, in our view) that have come to be regarded
as nonce-reuse misuse-resistant.

Shifting language. The paper defining MRAE [55] never suggested that
nonce-reuse was OK; it said that an MRAE scheme must do “as well as possible
with whatever IV is provided” [55, p. 1]. Elaborating, the authors “aim for an
AE scheme in which if the IV is a nonce then one achieves the usual notion for
nonce-based AE; and if the IV does get repeated then authenticity remains and
privacy is compromised only to the extent that [one reveals] if this plaintext is
equal to a prior one, and even that . . . only if both the message and its header
have been used with this particular IV” [55, p. 12–13].

The FFL paper indicates that the authors wish “to achieve both simulta-
neously: security against nonce-reusing adversaries . . . and support for on-line-
encryption” [28, p. 197]. While the authors understood that they were weakening
MRAE, they saw the weakening as relatively inconsequential: they say that their
scheme, McOE, “because of being on-line, satisfies a slightly weaker security

Online-AE and its Misuse-Resistance 513

Fig. 9. A menagerie of OAE notions and schemes. All of the schemes are CAE-
SAR submissions except ElmE and McOE. Schemes1 lists proposals that claim some
flavor of nonce-reuse misuse resistance. Schemes2 lists proposals that didn’t, yet are or
were marked as such in the AE Zoo [14] or AFL survey [4].

definition against nonce-reusing adversaries” [28, p. 198] (emphasis ours). The
paper did not investigate the definitional consequences of this weakening.

An early follow-on to FFL, the COPA paper, asserts that OAE1 schemes are
distinguished by “not relying on the non-reuse of a nonce” [9, p. 438]. Andreeva
et al. classify AE schemes according to the type of initialization vector (IV)
one needs: either random, nonce, or arbitrary. A scheme satisfying OAE1 is
understood to be an arbitrary-IV scheme, where “no restrictions on the IV are
imposed, thus an adversary may choose any IV for encryption” [7, p. 9]. The

514 V.T. Hoang et al.

authors add that “Often a deterministic AE scheme does not even have an IV
input” [7, p. 9]. The linguistic progression reaches its logical conclusion in the
rebranding of OAE1-secure schemes as nonce-free, as seen, for example, in recent
talks of Guo [32, slide 2] and Lauridsen [21, Slides 4, 6].

We have thus seen a transformation in language, played out over eight years,
taking us from a strong definition (MRAE) pitched as trying to capture the
best one can do when a nonce gets reused to a comparatively weak definition
(OAE1) nowadays pitched as being so strong so as to render nonces superfluous.
Meanwhile, the best-one-can-do positioning of MRAE was mirrored in the online
setting. The COPA authors indicate that their mode achieves “the maximum
attainable for single pass schemes” [8, p. 7]. Identical language is found in the
COBRA submission [11, p. 7]. In our view, such claims are wrong; there would
seem to be a significant gap between OAE1 and OAE2 security.

Weaker notions. Concurrent with the rhetoric for what OAE1 delivers being
ratcheted up, weakened variants of OAE1 have proliferated. We document this
trend in Fig. 9, which introduces a variety of OAE notions. They are all weaker
than OAE1 except for OAE1a; by standard arguments, OAE1 and OAE1a are
quantitatively close if the blocksize is reasonably large. In this race to the bottom,
it may seem as though the scheme comes first and whatever properties it provides
is branded as some form misuse resistance.

The number of different OAE definitions, and their meanings, has never been
clear. The evolution of what’s been indicated in the Nonce-MR column of the
AE Zoo [14] illustrates the struggle of researchers trying to accurately summarize
the extent of nonce-reuse misuse-resistance for tens of AE schemes. Our own
attempt at sorting this out, Fig. 9, is not definitive. We do not formalize the
notions in this table except for OAE1. (Some of the definitions are obvious,
some are not.) The table is based on both author assertions (Schemes1) and
assertions of others (Schemes2). The OAE1x notions only consider security for
messages that are blocksize multiples.

Acknowledgments. The authors appreciate the excellent comments received from
the Keyak/Ketje team: Joan Daemen, Guido Bertoni, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. Their feedback called our attention to the duplexing-
the-sponge paper [19] and led to our decision to generalize to vector-valued AD and
to remove the key K from .next and .last calls. We appreciate further comments and
corrections from Farzaneh Abed, Nasour Bagheri, Dan Bernstein, Danilo Gligoroski,
Stefan Lucks, Samuel Neves, and Kenny Paterson.

Much of the work on this paper was done while Phil Rogaway was visiting Ueli
Maurer’s group at ETH Zürich. Many thanks to Ueli for hosting that sabbatical.
Rogaway was also supported by NSF grants CNS-1228828 and CNS-1314885.
Reyhanitabar and Vizár were partially supported by Microsoft Research under the
Swiss Joint Research Centre MRL Contract No. 2014-006 (DP1061305).

Online-AE and its Misuse-Resistance 515

References

1. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel,
J.: The POET Family of On-Line Authenticated Encryption Schemes (Version
1.01). CAESAR submission (2014)

2. Abed, F., Fluhrer, S., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel, J.:
Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 205–223. Springer, Heidelberg (2015)

3. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Don’t Panic! The Cryptogra-
pher’s Guide to Robust (On-line) Encryption: Draft, 11 March 2015

4. Abed, F., Forler, C., Lucks, S.: General Overview of the First-Round CAESAR
Candidates for Authenticated Encryption. Cryptology ePrint report 2014/792
(2014)

5. Alizadeh, J., Aref, M. R., Bagheri, N.: Artemia v1. CAESAR submission (2014)
6. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,

Yasuda, K.: APE: authenticated permutation-based encryption for lightweight
cryptography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
168–186. Springer, Heidelberg (2015)

7. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014)

8. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: AES-COPA v. 1. CAESAR submission (2014)

9. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

10. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable (Authenticated) Online Ciphers. DIAC presentation (2013)

11. Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: AES-COBRA v1. CAESAR
submission (2014)

12. Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: COBRA: a parallelizable
authenticated online cipher without block cipher inverse. In: Cid, C., Rechberger,
C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 187–203. Springer, Heidelberg (2015)

13. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX v1. CAESAR submission (2014)
14. Authenticated Encryption Zoo. https://aezoo.compute.dtu.dk
15. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online ciphers and

the Hash-CBC construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292–309. Springer, Heidelberg (2001)

16. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)

17. Bernstein, D.: Cryptographic competitions: CAESAR. http://competitions.cr.yp.
to

18. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Keyak v1. CAESAR submission (2014)

19. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

https://aezoo.compute.dtu.dk
http://competitions.cr.yp.to
http://competitions.cr.yp.to

516 V.T. Hoang et al.

20. Kavun, E.B., Lauridsen, M., Leander, G., Rechberger, C., Schwabe, P., Yalçın, T.:
Prøst v1.1. CAESAR submission (2014)

21. Bogdanov, A., Lauridsen, M., Tischhauser, E.: AES-Based Authenticated Encryp-
tion Modes in Parallel High-Performance Software. DIAC presentation (2014)

22. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmet-
ric encryption in the presence of ciphertext fragmentation. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer,
Heidelberg (2012)

23. Boldyreva, A., Taesombut, N.: Online encryption schemes: new security notions
and constructions. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
1–14. Springer, Heidelberg (2004)

24. Chakraborti, A., Nandi, M.: TriviA-ck-v1. CAESAR submission. (2014)
25. Datta, N., Nandi, M.: ELmD v1.0. CAESAR submission. (2014)
26. Datta, N., Nandi, M.: ELmE: a misuse resistant parallel authenticated encryption.

In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 306–321. Springer,
Heidelberg (2014)

27. Duong, T., Rizzo, J.: Here Come The ⊕ Ninjas. Manuscript (2011)
28. Fleischmann, E., Forler, C., Lucks, S.: McOE: A family of almost foolproof on-line

authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012)

29. Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: McOE: A Foolproof On-line
Authenticated Encryption Scheme. Cryptology ePrint report 2011/644 (2013)

30. Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated on-line encryp-
tion. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006. Springer,
Heidelberg (2004)

31. Fouque, P.-A., Martinet, G., Poupard, G.: Practical symmetric on-line encryp-
tion. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 362–375. Springer,
Heidelberg (2003)

32. Guo, J.: Marble Specification Version 1.0. CAESAR submission (2014). Also DIAC
presentation (2014)

33. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D: Online Authenticated-
Encryption and its Nonce-Reuse Misuse-Resistance. Cryptology ePrint Archive,
Report 2015/189 (2015)

34. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015)

35. Iwata, I., Minematsu, K., Guo, J., Morioka, S.: CLOC: Compact Low-Overhead
CFB. CAESAR submission. (2014)

36. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: SILC: SImple
Lightweight CFB. CAESAR submission. (2014)

37. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1. CAESAR submission. (2014)
38. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1. CAESAR submission. (2014)
39. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. CAESAR submission. (2014)
40. Joux, A., Martinet, G., Valette, F.: Blockwise-adaptive attackers: revisiting the

(In)security of some provably secure encryption modes: CBC, GEM, IACBC. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Heidelberg
(2002)

41. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

Online-AE and its Misuse-Resistance 517

42. Krovetz, T., Rogaway, P.: The OCB Authenticated-Encryption Algorithm. RFC
7253. Internet Research Task Force (IRTF) and Crypto Forum Research Group
(CFRG) (2014)

43. Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. J. Cryptology 24(3),
588–614 (2011)

44. Lucks, S.: Personal communication (2014)
45. Abed, F., Fluhrer, S., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel, J.:

Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 205–223. Springer, Heidelberg (2015)

46. Miaw, W.: Netflix/msl (2014). https://github.com/Netflix/msl/wiki
47. Minematsu, K.: AES-OTR v1. CAESAR submission (2014)
48. Minematsu, K.: Parallelizable Rate-1 Authenticated Encryption from Pseudoran-

dom Functions. Cryptology ePrint Archive, Report 2013/628 (2013)
49. Möller, B.: Security of CBC Ciphersuites in SSL/TLS: Problems and Counter-

measures. http://web.archive.org/web/20120630143111/http://www.openssl.org/
∼bodo/tls-cbc.txt

50. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wójcik, M.: ICEPOLE v1. CAESAR submission (2014)

51. Recacha, F.: ++AE v1.0. CAESAR submission (2014)
52. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: ACM CCS 2002,

pp. 98–107. ACM Press (2002)
53. Rogaway, P.: Problems with Proposed IP Cryptography. Manuscript (1995)
54. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of

operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205.
ACM Press (2001)

55. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

56. Rogaway, P., Zhang, H.: Online ciphers from tweakable blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011)

57. Saarinen, M.-J.O.: The CBEAMr1 Authenticated Encryption Algorithm. CAESAR
submission (2014)

58. Saarinen, M.-J.O.: The STRIBOBr 1 Authenticated Encryption Algorithm. CAE-
SAR submission (2014)

59. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1. CAESAR submission (2014)

60. Touset, S.: Streaming API to Authenticated Encryption. Cryptography Stack
Exchange, 16 January 2013. http://crypto.stackexchange.com/questions/6008

61. Tsang, P., Solomakhin, R., Smith, S.: Authenticated Streamwise On-line Encryp-
tion. Dartmouth Computer Science Technical report TR2009-640 (2009)

62. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–545. Springer, Heidelberg (2002)

63. Wang, L.: SHELL v1. CAESAR submission (2014)
64. Wu, H., Huang, T.: JAMBU Lightweight Authenticated Encryption Mode and

AES-JAMBU (v1). CAESAR submission (2014)
65. Wu, H., Huang, T.: The Authenticated Cipher MORUS (v1). CAESAR submission

(2014)
66. Zhang, L, Wu, W., Sui, H., Wang, P.: iFeed[AES] v1. CAESAR submission (2014)

https://github.com/Netflix/msl/wiki
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt
http://crypto.stackexchange.com/questions/6008

Relational Hash: Probabilistic Hash for Verifying
Relations, Secure Against Forgery and More

Avradip Mandal and Arnab Roy(B)

Fujitsu Laboratories of America, Sunnyvale, CA, USA
{amandal,aroy}@us.fujitsu.com

Abstract. Traditional cryptographic hash functions allow one to eas-
ily check whether the original plaintexts are equal or not, given a pair
of hash values. Probabilistic hash functions extend this concept where
given a probabilistic hash of a value and the value itself, one can effi-
ciently check whether the hash corresponds to the given value. However,
given distinct probabilistic hashes of the same value it is not possible
to check whether they correspond to the same value. In this work we
introduce a new cryptographic primitive called Relational Hash using
which, given a pair of (relational) hash values, one can determine whether
the original plaintexts were related or not. We formalize various natural
security notions for the Relational Hash primitive - one-wayness, twin
one-wayness, unforgeability and oracle simulatibility.

We develop a Relational Hash scheme for discovering linear relations
among bit-vectors (elements of Fn

2) and Fp-vectors. Using the linear Rela-
tional Hash schemes we develop Relational Hashes for detecting proxim-
ity in terms of hamming distance. The proximity Relational Hashing
schemes can be adapted to a privacy preserving biometric identification
scheme, as well as a privacy preserving biometric authentication scheme
secure against passive adversaries.

Keywords: Probabilistic hash functions · Functional encryption · Bio-
metric authentication

1 Introduction

Traditional cryptographic hash functions, like MD-5 and SHA-3, enable checking
for equality while hiding the plaintexts. Since these are deterministic functions,
this just involves checking if the hashes are identical. The notion of probabilistic
hash functions was developed in [Can97,CMR98]. In this setting, the computa-
tion of hashes is randomized and thus no two independently generated hashes
of the same plaintext look same. However, given the plaintext and a hash, it
can be checked efficiently if the hash corresponds to the plaintext. Probabilistic
hashes can provably enable strong privacy guarantees in standard model, like
oracle simulatability, which deterministic hash functions cannot provide. Ora-
cle simulatability captures the notion that a hash reveals nothing about the
value except enabling equality checking. This typically has come at the price
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 518–537, 2015.
DOI: 10.1007/978-3-662-47989-6 25

Relational Hash: Probabilistic Hash for Verifying Relations 519

of efficiency. In addition, the property of compression, which is desirable for
deterministic hash functions, is no longer at the forefront.

However, probabilistic hashes suffer from the drawback that for verification of
equality the plaintext has to be provided in the clear, which deterministic hashes
do not require. Probabilistic hashes do not allow checking whether the plaintexts
are equal, given two distinct hash values. This drawback can preclude use of prob-
abilistic hashes in certain scenarios where it is desirable to hide the plaintext from
the verifier as well. For example, consider a scenario where password equality is to
be checked by a server. If the server uses deterministic hashes, then only the hash
of the password could be transmitted to the server. However, with probabilistic
hashes, the actual password has to be sent to the server for verification1. Therefore
question arises whether we can build probabilistic hashes which allow verification
given two distinct hashes of the plaintexts.

So suppose we had a probabilistic hash function ph which allows efficient
checking of equality of plaintexts x1 and x2, given ph(x1, r1) and ph(x2, r2),
where the ri’s are randomnesses used for hashing. Now we run into a different
problem. The existence of such a functionality implies that a secrecy property
called 2-value perfect one-wayness (2-POW) [CMR98] would no longer hold. This
property states that the distribution of two probabilistic hashes of the same value
is computationally indistinguishable from the distribution of probabilistic hashes
of two independent values. The property trivially breaks down if we have an
efficient mechanism for checking if two hashes correspond to the same plaintext.
In addition to being a strong security notion, this property also implies oracle
simulatability [CMR98]. So now the question is:

How do we develop probabilistic hashes which enable equality checking
just given hashes but at the same time preserve 2-value perfect one-
wayness?

Our Contributions. We propose a cryptographic primitive called Relational Hash
which attempts to model the question above. One of the key ideas is to have dis-
tinct, but related, hashing systems for the individual co-ordinates, i.e., have two
probabilistic hash functions ph1 and ph2 and enable checking of x1

?= x2, given
ph1(x1, r1) and ph2(x2, r2). Having two hashing systems leaves open the possi-
bility that they can individually be 2-POW. Extending equality, we define Rela-
tional Hash with respect to a relation R, such that given two hashes ph1(x1, r1)
and ph2(x2, r2), we can efficiently determine whether R(x1, x2) holds. It may
also be desirable to compute ternary relations R′ on x1, x2 and a third plain-
text parameter z, so that given ph1(x1, r1), ph2(x2, r2) and z, we can efficiently
determine whether R′(x1, x2, z) holds. For any Relational Hash primitive, we
formalize a few natural and desirable security properties, namely one-wayness,
unforgeability, twin one-wayness and oracle simulatability. The notion of oracle
simulatability was introduced in [Can97,CMR98] for the equality relation. Here
we extend this concept for arbitrary relations.
1 We need additional protocol steps to ensure security against replay attacks and so on.

However, for now, we focus on the core property of the hashes themselves.

520 A. Mandal and A. Roy

For the equality relation, there is a simple construction which extends
Canetti’s scheme in [Can97]. While the [Can97] probabilistic hash on a plaintext
m and randomness r is (gr,grm), one can consider bilinear groups G1 and G2

with a pairing e : G1 × G2 → GT and define ph1(x1, r1) := (gr1 ,gr1x1) and
ph2(x2, r2) := (hr2 ,hr2x2) with g ∈ G1 and h ∈ G2. Plaintext equality of two
hashes (c1, c2) and (d1, d2) of different types can be done as: e(c1, d2)

?= e(c2, d1).
We do not develop this construction formally in the body of the paper, addi-
tionally relegating some proof sketches to the full version [MR14]2.

For hamming proximity relations among vectors, especially low characteristic
ones, the constructions turn out to be far more sophisticated and form the main
thrust of our paper. Towards that end, we first develop a construction for a
linear Relational Hash scheme. In our scheme, for any x, y, z ∈ F

n
2 , given just the

hashes of x and y and the plaintext z, it is possible to verify whether x + y
?= z.

A linear Relational Hash scheme is also trivially an equality Relational Hash
scheme, by taking z to be all 0’s. We also extend our construction to verify
linear relations over F

n
p . We show that our linear Relational Hash constructions

satisfy all four security notions: one-wayness, unforgeability, twin one-wayness
and oracle simulatability. Next we show that using a linear Relational Hash
and error correcting codes it is possible to build Relational Hashing schemes
which can verify proximity relations and enjoy one-wayness, unforgeability and
a stronger version of twin one-wayness. It remains open to build a proximity
Relational Hash scheme which is oracle simulation secure.

Application. A motivating application of the proximity relation hash primitive is
a privacy preserving biometric identification scheme. Consider a scenario where
there is a database of fingerprints of known criminals. The database should
not reveal the actual fingerprints, even internally. An investigative officer might
want to check, whether a candidate fingerprint digest matches with the data-
base. Using a Relational Hash scheme for proximity relation, one can build a
biometric identification scheme which guarantees complete template privacy (to
the server, as well as to the investigating officer). While storing the fingerprints
in the database, hashes of type 1 are used. On the other hand, the officer gets
access to type 2 hash of the fingerprint template. The Relational Hash scheme
will guarantee that, with access to a relational secret key the server can only ver-
ify whether the original templates are close to each other or not. To construct
authentication schemes, rather than identification schemes, additional protocol
layers are needed to address replay attacks and so on. Merely providing a type
2 hash of the challenge biometric template does not suffice as that can easily be
replayed. We leave open the construction of such protocols building on the Rela-
tional Hash primitive. However, we show that for the case of a passive adversary
attempting to recover the biometric template, a Relational Hash can be seen as
a biometric authentication mechanism (Sect. 4).

2 We thank Mehdi Tibouchi for observing this example.

Relational Hash: Probabilistic Hash for Verifying Relations 521

Relation to Fuzzy Extractor/Secure Sketch Based Schemes. Existing biometric
authentication schemes, e.g. fuzzy vault [JS02], fuzzy commitment [JW99] and
secure sketch [DRS04,DS05] based schemes guarantee template privacy only
during the registration phase. Boyen solved this issue in [Boy04], by construct-
ing a “Zero Storage remote biometric authentication scheme”, which provides
complete template privacy. Boyen’s construction only assumes that the bio-
metric template comes from a high entropy distribution. Compared to that,
we only achieve a passive adversary secure biometric authentication scheme
assuming uniform distribution of biometric templates. On the positive side, our
biometric authentication scheme is much simpler, in particular during authen-
tication the client generates the authentication token on its own, without
requiring any intervention from the server. Moreover, for our primary appli-
cation - the non-interactive biometric identification mechanism, the advantage
becomes more apparent. It is not readily clear whether one can build such iden-
tification mechanism based on fuzzy extractors/secure sketches.

Relation to Multi-input Functional Encryption (MIFE). Goldwasser et al. pro-
posed the concept of MIFE in [GGG+14], which is a functional encryption
which enables the computation of f(x1, x2, · · · , xn) given the encryptions of
x1, x2, · · · , xn. The paper [GGG+14] is a merge of two independent and concur-
rent works [GGJS13,GKL+13]. While a Relational Hash scheme for a relation
R can be considered an MIFE for evaluating the relation R, there are sev-
eral important differences between the MIFE work of [GGG+14] and Relational
Hash. We only consider the fully public key model where encryption keys for all
the co-ordinates are given to the adversary.

We first remark that an indistinguishability based functional encryption secu-
rity definition (FE-IND) for the equality relation is a rather trivial notion. The
FE-IND notion asks the adversary to query two sets of n-tuples, and the chal-
lenger randomly selects which set to encrypt. We observe that even a standard
CPA secure public-key encryption scheme satisfies this notion, where the func-
tional key is simply the secret key for decryption. The FE-IND security notion
is satisfied for equality because the restriction on the adversary’s queries forces
it to choose equal sets of messages to the challenger. So in the end the adversary
has information theoretically no clue about which of the messages was chosen for
encryption by the challenger. In a Relational Hash scheme, even when given the
relational key, the encryption of the plaintexts is required to be at least one-way
secure. No such guarantee is provided by the standard CPA scheme, since giving
the full decryption key fully exposes the plaintext to the functional key recipient.

Thus we have to resort to the simulation based security notion (FE-SIM)
for any meaningful assurance of security. The only possibility result in the fully
public key setting is given by [GKL+13], who give a construction of FE-SIM
secure encryption scheme for a class of functionalities they call “learnable” func-
tions. They also prove that if an FE-SIM secure scheme exists for a class of
functionalities, then this class must be learnable. Briefly, a 2-ary function f(., .)
is learnable if, given a description of f and oracle access to f(x, .), one can out-
put the description of a function that is indistinguishable from fx(.), which is

522 A. Mandal and A. Roy

the restriction of f on fixing the first input to x. This has to hold true with high
probability even if the distinguisher is given x. One can immediately see that
equality is not a learnable function. When x comes from high min-entropy distri-
bution, it is not possible to learn the value of x efficiently by querying f(x, .) on
various inputs. A distinguisher can immediately thwart any such ‘learnt’ function
by simply testing it on x.

Thus these work(s) effectively show that there is no FE-SIM secure functional
encryption scheme for the function testing equality. How does our construction
get around this impossibility? The reason is that the security properties that we
consider: one-wayness and unforgeability do not imply FE-SIM. The property
closest to FE-SIM is oracle simulatability, but it differs from FE-SIM in that
the adversary does not choose the messages to be encrypted, rather they are
sampled from a distribution and only their encryption is given to the adversary.

Relation to Property Preserving (Tagged) Encryption (PPE). PPE [PR12] is a
special case of MIFE in the symmetric key setting. PPE offers IND based secu-
rity guarantees, where attacker queries are constrained such that the preserved
property values cannot be trivially used for distinguishing purposes. Moreover,
PPE involves a secret key, whereas for Relational Hashes all the keys are pub-
lic. For our public key case, the trivial construction which makes the functional
key the same as the decryption key, is IND secure and does not provide any
meaningful security guarantee. On the other hand, for the symmetric key PPE
schemes, chosen message security is non-trivial.

Relation to Perceptual Image Hashing (PIH). PIH [KVM04] is a related tech-
nique which aims to construct hash of images invariant under geometric trans-
formations which preserve perceptual similarity. There are several differences,
most importantly: (1) the primary objective of PIH is the detection of simi-
lar inputs, however privacy of the inputs may not be preserved, (2) generating
hashes requires a secret key, and (3) while for PIH the hashes are required to
be equal for similar images, we require that the hashes are randomized and a
verification algorithm is given which uses a key to perform the relation check.

Organization of the Paper. In Sect. 2, we formally define the notion of Relational
Hash and its desired security properties. In Sect. 3, we construct a Relational
Hash for linearity over F

n
2 , with extension to F

n
p . In Sect. 4, we show how to

construct a proximity (in terms of hamming distance) Relational Hash using a
linear Relational Hash and a linear error correcting code. In Sect. 5, we describe
relations among notions of security for constructing Relational Hashes for various
relations. Standard hardness assumptions are summarized in Appendix A. We
defer the proof of unproven theorems in this paper to the full version [MR14].

Notations. We denote a sequence xj , · · · , xk as 〈xi〉k
i=j . We treat F

n
p as an Fp

vector space and write x ∈ F
n
p also as 〈xi〉n

i=1. Group elements are written in
bold font: g, f. The security parameter is denoted as λ.

Relational Hash: Probabilistic Hash for Verifying Relations 523

2 Relational Hash

The concept of Relational Hash is an extension of regular probabilistic hash
functions. In this work, we only consider 3-tuple relations. Suppose R ⊆ X ×
Y × Z be a 3-tuple relation, that we are interested in. We abuse the notation a
bit, and often use the equivalent functional notation R : X × Y × Z → {0, 1}.
The Relational Hash for the relation R, will specify two hash algorithms Hash1

and Hash2 which will output the hash values Hash1(x) and Hash2(y) for any
x ∈ X and y ∈ Y . Any Relational Hash must also specify a verification algorithm
Verify, which will take Hash1(x), Hash2(y) and any z ∈ Z as input and output
R(x, y, z). Formally, we define the notion of Relational Hash as follows.

Definition 1 (Relational Hash). Let {Rλ}λ∈N be a relation ensemble defined
over set ensembles {Xλ}λ∈N, {Yλ}λ∈N and {Zλ}λ∈N such that Rλ ⊆ Xλ×Yλ×Zλ.
A Relational Hash for {Rλ}λ∈N consists of four efficient algorithms:

– A randomized key generation algorithm: KeyGen(1λ) outputs key pk from
key space Kλ.

– The hash algorithm of first type (possibly randomized): Hash1 : Kλ × Xλ →
RangeXλ, hereRangeXλ denotes the range ofHash1 for security parameterλ.

– The hash algorithm of second type (possibly randomized): Hash2 : Kλ × Yλ →
RangeYλ, hereRangeYλ denotes the range ofHash2 for security parameterλ.

– The deterministic verification algorithm:
Verify : Kλ × RangeXλ × RangeYλ × Zλ → {0, 1}.
Treating the third parameter z differently from the first two might strike as

odd. Our reason behind the choice of this asymmetric definition is to convey the
intention that we are not trying to hide z and that the verifier or attacker can
choose the value of z to test relations.

In the rest of the paper we will drop the subscript λ for simplicity and it will
be implicitly assumed in the algorithm descriptions. Often, we will also denote
the 1 output of Verify as Accept, and the 0 output as Reject. The definition
of Relational Hashing consists of two requirements: Correctness and Security (or
Secrecy).

Correctness: Informally speaking, the correctness condition is, if an honest party
evaluates Verify(Hash1(pk, x),Hash2(pk, y), z) for some key pk which is the
output of KeyGen and any (x, y, z) ∈ X × Y × Z, the output can differ from
R(x, y, z) only with negligible probability (the probability is calculated over the
internal randomness of KeyGen, Hash1 and Hash2). Formally,

Definition 2 (Relational Hash - Correctness). A Relational Hash scheme
(KeyGen,Hash1,Hash2,Verify) for a relation R ⊆ X × Y × Z satisfies cor-
rectness if the following holds for all (x, y, z) ⊆ X × Y × Z:

Pr

⎡

⎣
pk ← KeyGen(1λ)
hx ← Hash1(pk, x)
hy ← Hash2(pk, y)

: Verify(pk, hx, hy, z) ≡ R(x, y, z)

⎤

⎦ ≈ 1.

524 A. Mandal and A. Roy

Security: The notion of security for a Relational Hash will depend on the context
where the Relational Hash is going to be used and also on the a priori infor-
mation available to the adversary. Recall that for a regular hash function one
of the weakest form of security is one-wayness. We will consider Probabilistic
Polynomial Time (PPT) adversaries for our security definitions.

Definition 3 (Security of Relational Hash - One-Way). Let X and Y be
(independent) probability distributions over X and Y . We define a Relational
Hash scheme (KeyGen,Hash1,Hash2,Verify) to be one-way secure for the
probability distributions X and Y, if the following hold:

– pk ← KeyGen(1λ), x ← X , y ← Y, hx ← Hash1(pk, x), hy ← Hash2(pk, y)
– For any PPT adversary A1, there exists a negligible function negl(), such that

Pr[A1(pk, hx) = x] < negl(λ).
– For any PPT adversary A2, there exists a negligible function negl(), such that

Pr[A2(pk, hy) = y] < negl(λ).

Here the probabilities are calculated over the internal randomness of KeyGen,
Hash1 and Hash2, internal randomness of the adversarial algorithms A1 and
A2 as well as the probability distributions X and Y.

The above definition captures the security notion in case the adversary has
access to either type 1 or type 2 hash values. We observe that if the distributions
X and Y remain independent, Relational Hash still remains one-way secure, even
if the adversary has access to both type of hash values. However for correlated x
and y, sampled from a joint probability distribution Ψ over X ×Y , the previous
security notion does not provide sufficient security guarantee when the attacker
has access to both types of hash values. For these kind of distributions we define
a stronger security notion called twin one-wayness as follows.

Definition 4 (Security of Relational Hash - Twin One-Way). Let Ψ
be a probability distribution over X × Y . We define a Relational Hash scheme
(KeyGen,Hash1,Hash2,Verify) to be twin one-way secure for the probability
distribution Ψ , if the following hold:

– pk ← KeyGen(1λ), (x, y) ← Ψ , hx ← Hash1(pk, x), hy ← Hash2(pk, y).
– For any PPT adversary A1, there exists a negligible function negl(), such that

Pr[A1(pk, hx, hy) = x] < negl(λ).
– For any PPT adversary A2, there exists a negligible function negl(), such that

Pr[A2(pk, hx, hy) = y] < negl(λ).

Here the probabilities are calculated over the internal randomness of KeyGen,
Hash1 and Hash2, internal randomness of the adversarial algorithms A1 and
A2 as well as the probability distribution Ψ .

Note that the twin one-wayness property is actually a stronger version of corre-
lated input security due to Rosen and Segev [RS09]. We require each coordinate
to be one-way, whereas correlated input security requires the input involving all
coordinates should be one-way.

Relational Hash: Probabilistic Hash for Verifying Relations 525

Remark 1. For our application scenarios: biometric identification and authenti-
cation, the twin one-wayness property plays a key role. Intuitively, this guar-
antees that even if the server has access to both type of hashes coming from
biometric templates (possibly generated at different times) of the same person,
the template still remains one-way to the server3.

In this work, we are mostly interested in sparse relations (Definition 7). Infor-
mally speaking, for a sparse relation R ⊆ X × Y × Z and unknown x it is hard
to output y and z such that (x, y, z) ∈ R. A Relational Hash scheme is called
unforgeable if given hx = Hash1(pk, x) and pk it is hard to output hy, z, such
that Verify(pk, hx, hy, z) outputs 1. Formally,

Definition 5 (Security of Relational Hash - Unforgeable). Let X and
Y be (independent) probability distributions over X and Y . A Relational Hash
scheme (KeyGen,Hash1,Hash2, Verify) is unforgeable for the probability
distributions X and Y, if the following holds:

– pk ← KeyGen(1λ), x ← X , y ← Y, hx ← Hash1(pk, x), hy ←
Hash2(pk, y).

– For any PPT adversary A1, there exists a negligible function negl(), such
that: Pr[(hy′, z) ← A1(pk, hx) ∧ Verify(pk, hx, hy′, z) = 1] < negl(λ).

– For any PPT adversary A2, there exists a negligible function negl(), such
that: Pr[(hx′, z) ← A2(pk, hy) ∧ Verify(pk, hx′, hy, z) = 1] < negl(λ).

For Relational Hash functions, the strongest form of security notion is
based on oracle simulations. The concept of oracle simulation was introduced
in [Can97]. However, over there the author was interested in regular probabilis-
tic hash functions. In case of Relational Hash functions, we want to say that:
having hx = Hash1(pk, x) gives no information on x, besides the ability to eval-
uate the value of R(x, y, z) for any y, z chosen from their respective domains.
Similarly, hy = Hash1(pk, y) should not provide any extra information other
than the ability to evaluate the value of R(x, y, z) for any x ∈ X and z ∈ Z.
Also, having access to both hx and hy, one should be able to only evaluate
R(x, y, z) for any z ∈ Z.

For any relation R ⊆ X × Y × Z and x ∈ X, y ∈ Y , let Rx(·, ·) : Y × Z →
{0, 1}, Ry(·, ·) : X × Z → {0, 1} and Rx,y(·) : Z → {0, 1} be the oracles defined
as follows:

– For any y′ ∈ Y, z′ ∈ Z,Rx(y′, z′) = 1 if and only if (x, y′, z′) ∈ R.
– For any x′ ∈ X, z′ ∈ Z,Ry(x′, z′) = 1 if and only if (x′, y, z′) ∈ R.
– For any z′ ∈ Z,Rx,y(z′) = 1 if and only if (x, y, z′) ∈ R.

We note that giving oracle access to Rx,y on top of Rx and Ry is not super-
fluous as both x and y are generated and kept unknown from the adversary.

3 Strictly speaking, we need a stronger a security criterion, i.e. not only the server
should be able to recover exact x or y, it should not be able to recover any nearby x′

from x or y. Theorem 4 in Sect. 4, in fact guarantees this stronger security notion.

526 A. Mandal and A. Roy

Definition 6 (Security of Relational Hash - Oracle Simulation). Let Ψ
be a probability distribution over X × Y . A Relational Hash scheme (KeyGen,
Hash1,Hash2,Verify) is said to be oracle simulation secure with respect to the
distribution Ψ if for any PPT adversary C, there exists a PPT simulator S such
that for any predicate P (·, ·, ·) : K × X × Y → {0, 1} (where K is the range of
KeyGen), there exists a negligible function negl(), such that

∣
∣
∣
∣
Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]

−Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]

∣
∣
∣
∣ < negl(λ),

where (x, y) ← Ψ and pk ← Keygen(1λ).

3 Relational Hash for Linearity in F
n
2

We now construct a Relational Hash scheme for the domains X,Y,Z = F
n
2 and

the relation R = {(x, y, z) | x + y = z ∧ x, y, z ∈ F
n
2}.

KeyGen: Given the security parameter, bilinear groups G1,G2,GT are gener-
ated of prime order q, exponential in the security parameter, and with a bilinear
pairing operator e. Now we sample generators g0 ← G1 and h0 ← G2. Next
we sample 〈ai〉n+1

i=1 and 〈bi〉n+1
i=1 , all randomly from Z

∗
q . Define gi = gai

0 and
hi = hbi

0 . Now we define the output of KeyGen as pk := (pk1, pk2, pkR), defined
as follows:

pk1 := 〈gi〉n+1
i=0 , pk2 := 〈hi〉n+1

i=0 , pkR :=
n+1∑

i=1

aibi.

Hash1: Given plaintext x = 〈xi〉n
i=1 ∈ F

n
2 and pk1 = 〈gi〉n+1

i=0 , the hash is con-
structed as follows: Sample a random r ∈ Z

∗
q and then compute the following:

hx :=
(
gr
0,

〈
g(−1)xi r

i

〉n

i=1
,gr

n+1

)
.

Hash2: Given plaintext y = 〈yi〉n
i=1 ∈ F

n
2 and pk2 = 〈hi〉n+1

i=0 , the hash is con-
structed as follows: Sample a random s ∈ Z

∗
q and then compute the following:

hy :=
(
hs
0,

〈
h(−1)yis

i

〉n

i=1
,hs

n+1

)
.

Verify: Given hashes hx = 〈hxi〉n+1
i=0 and hy = 〈hyi〉n+1

i=0 , the quantity z =
〈zi〉n

i=1 ∈ F
n
2 and pkR, the algorithm Verify checks the following equality:

e(hx0, hy0)pkR
?= e(hxn+1, hyn+1)

n∏

i=1

e(hxi, hyi)(−1)zi
.

Correctness. Correctness of the scheme follows from standard algebraic manip-
ulation of pairing operations. Details are given in [MR14].

Relational Hash: Probabilistic Hash for Verifying Relations 527

One-Wayness. This Relational Hash can be shown to be one-way secure based
on the SXDH assumption, and a new hardness assumption we call Binary Mix
DLP. The assumption says if we choose a random x from F

n
2 (for sufficiently

large n), n random elements g1, · · · ,gn from group G then given the product
∏n

i=1 g
(−1)xi

i it is hard to find any candidate x.

Assumption 1. (Binary Mix DLP) : Assuming a generation algorithm G that
outputs a tuple (n, q,G) such that G is a group of prime order q, the Binary
Mix DLP assumption asserts that given random elements 〈gi〉n

i=1 from the group
G and

∏n
i=1 g

(−1)xi

i , for a random x ← F
n
2 , it is computationally infeasible to

output y ∈ F
n
2 such that

n∏

i=1

g(−1)xi

i =
n∏

i=1

g(−1)yi

i .

There is an interesting parallel between the Binary Mix DLP assumption and
the Discrete Log hardness assumption which may appeal to the appreciation of
its hardness at an intuitive level. The Discrete Log problem asks to find w ∈ Z

∗
q

given a random element g ∈ G and gw. Consider the sequence of elements
g1 = g,g2 = g2, · · · ,gλ = g2λ

, where λ = lg q. When we think of the binary
expansion of w = wλ · · · w0 and interpret the vector W = wλ · · · w0 in F

λ+1
2 ,

then equivalently we are asking for computing W , given the product
∏λ

i=0 g
wi
i .

In the Binary Mix DLP problem, the difference is that the gi’s are indepen-
dently random and that instead of raising the gi’s to the powers 0 or 1, we raise
them to the powers ±1. This is, of course, not a formal proof of its hardness.
In [MR14], we show that the Binary Mix DLP assumption can actually be reduced
to the more standard Random Modular Subset Sum assumption [Lyu05]. As an
added assurance, in [MR14], we show that the Binary Mix DLP assumption is
also secure in the Generic Group Model [Sho97].

The Binary Mix DLP assumption is similar to [BGG95], where Bellare et al.
define a hash function to be a subset product of publicly given random group
elements based on the bits of the plaintext. In our case, we either use a random
group element or its inverse depending on the bit. They achieve reduction from
DLP to collision resistance. In contrast, this does not work for one-wayness, as
for certain admissible values of (q, n) our function (as also [BGG95]) may turn
out to be collision-free.

Theorem 1. The above algorithms (KeyGen,Hash1,Hash2,Verify) consti-
tute a Relational Hash scheme for the relation R = {(x, y, z) | x+y = z∧x, y, z ∈
F

n
2}. The scheme is one-way secure under the SXDH and Binary Mix DLP assump-

tions, when x and y are sampled uniformly from F
n
2 .

Twin One-Wayness. Until now, we have shown this Relational Hash is one-
way when the adversary has access to only one type of hash values. However, an
important scenario to consider is the case when adversary has access to both type
of hash values for any x uniformly drawn from F

n
2 . The following theorem claims

our scheme is indeed twin one-way secure in this case and is proved in [MR14].

528 A. Mandal and A. Roy

Theorem 2. The above algorithms (KeyGen,Hash1,Hash2,Verify) consti-
tute a Relational Hash scheme for the relation R = {(x, y, z) | x+y = z∧x, y, z ∈
F

n
2}. The scheme is twin one-way secure in the generic group model, when x is

sampled uniformly from F
n
2 and y = x.

Unforgeability and Oracle Simulation Security. In Sect. 2, we show this Rela-
tional Hash is in fact a 2-value perfectly one-way function, albeit under a stronger
hardness assumption. By Theorem 8 from Sect. 5, that will imply this Relational
Hash construction is also unforgeable and oracle simulation secure.

Remark 2. This linear Relational Hash construction is weakly homomorphic, in
the sense that, given

Hash2(y) = (hy0, 〈hyi〉n
i=1, hyn+1) =

(
hs
0,

〈
h(−1)yis

i

〉n

i=1
,hs

n+1

)
,

it is easy to construct

Hash2(y + t) =
(
hy0,

〈
hy

(−1)ti

i

〉n

i=1
, hyn+1

)
=

(
hs
0,

〈
h(−1)yi+tis

i

〉n

i=1
,hs

n+1

)

for any t ∈ F
n
2 . Hash1 is also homomorphic in a similar manner. However, this

does not really refute any of our security claims. In fact, in next section we
will see this linear homomorphism gives us strong security guarantee for relation
hash construction for hamming proximity (Theorem 4).

Remark 3. Theorem 2 and Remark 2 imply that given Hash1(x), Hash2(y) and
x+y it is hard to output either of x or y, for uniformly sampled x and y from F

n
2 .

Relational Hash for Linearity in F
n
p : For any prime p, we can choose the

order q of the bilinear groups to be exponential in the security parameters as well
as equal to 1 (mod p). This means the group Z

∗
q has a subgroup Jp of prime order

p. Let ω be an arbitrary generator of Jp. We can publish this arbitrary generator
as part of the public key. For Hash1 evaluation (similarly in Hash2), we can
simply calculate hxi as gωxi r

i (instead of g(−1)xi r
i). Similarly during verification,

instead of checking e(hx0, hy0)pkR
?= e(hxn+1, hyn+1)

∏n
i=1 e(hxi, hyi)(−1)zi , we

can just check e(hx0, hy0)pkR
?= e(hxn+1, hyn+1)

∏n
i=1 e(hxi, hyi)ω−zi . We pro-

vide the details in [MR14].

4 Relational Hash for Hamming Proximity

In this section we construct a Relational Hash for the domains X,Y = F
n
2

and the relation4 Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ F
n
2}, where dist is

4 Note that Relational Hash is defined over 3-tuple relations (Definition 2). However,
here proximity encryption is defined over 2-tuple relations. 2-tuple relations can
be regarded as special cases of 3-tuple relations, where the third entry does not
matter. E.g. the relation R′

δ ⊆ F
n
2 ×F

n
2 ×Z (where Z is any non empty domain) and

(x, y, z) ∈ R′
δ if and only if (x, y) ∈ Rδ.

Relational Hash: Probabilistic Hash for Verifying Relations 529

the hamming distance and δ is a positive integer less than n. Specifically, we
construct a Relational Hash for proximity from a family of binary (n, k, d) lin-
ear error correcting codes (ECC) C and a Relational Hash for linearity in F

k
2 :

(KeyGenLinear,HashLinear1,HashLinear2,VerifyLinear).
For any C ∈ C, Encode and Decode are the encoding and decoding algo-

rithms of the (n, k, d) error correcting code C. For any x ∈ F
n
2 , weight(x) is the

usual hamming weight of x, denoting the number of one’s in the binary repre-
sentation of x. For any error vector e ∈ F

n
2 , with weight(e) ≤ d/2 and m ∈ F

k
2

we have,
Decode(Encode(m) + e) = m.

If weight(e) > d/2, the decoding algorithm Decode is allowed to return ⊥.

KeyGen: Given the security parameter, choose a binary (n, k, 2δ + 1) linear
error correcting code C, where k is of the order of the security parameter. Run
KeyGenLinear and let pklin be its output. Publish,

pk := (Encode,Decode, pklin).

Hash1: Given plaintext x ∈ F
n
2 and pk = (Encode,Decode, pklin), the hash

value is constructed as follows: Sample a random r ← F
k
2 and then compute the

following:

hx1 := x + Encode(r)
hx2 := HashLinear1(pklin, r)

Publish the final hash value hx := (hx1, hx2).

Hash2 is defined similarly.

Verify: Given the hash values hx = (hx1, hx2), hy = (hy1, hy2) and pk =
(Encode,Decode, pklin) verification is done as follows.

– Recover z as z := Decode(hx1 + hy1).
– Output Reject if Decode returns ⊥ or dist(Encode(z), hx1 + hy1) > δ
– Output VerifyLinear(pklin, hx2, hy2, z).

Theorem 3. The above algorithms (KeyGen,Hash1,Hash2,Verify) consti-
tute a Relational Hash for the relation Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ F

n
2}.

The scheme is one-way secure with respect to the uniform distributions on F
n
2 if the

linear Relational Hash is a one-way secure with respect to the uniform distributions
on F

k
2 . The scheme is unforgeable for the uniform distributions on F

n
2 if the linear

Relational Hash is unforgeable with respect to the uniform distributions on F
k
2 .

Twin One-Wayness. For our target application scenarios (biometric identifica-
tion/authentication), we need a slightly stronger security property compared to
the Twin one-wayness as defined in Definition 4. We only consider a passive
adversary looking at the communication transcripts between the entities. Con-
sideration of active adversaries would require an additional challenge-response

530 A. Mandal and A. Roy

mechanism which we do not develop in this paper. In particular, we should show
that if an attacker has access to Hash1(x) and a number of samples of Hash2(yi)
(where x and the yi’s are biometric templates generated by same individual),
the attacker cannot output any other biometric template z near to x. If we
assume that every individual’s biometric template has full entropy we can model
the scenario as follows:

x ← F
n
2 , yi = x + ei,

where the ei’s are sampled from some known noise distribution Ξ, such that with
high probability we have weight(ei) ≤ δ. We now show that, given Hash1(x)
and any number of samples5 Hash2(yi), the attacker cannot output z, such that
dist(x, z) ≤ δ. The proof, which is a reduction to twin one-wayness of the linear
Relational Hash is given in [MR14].

Theorem 4. If the above Relational Hash for Rδ = {(x, y) | dist(x, y) ≤ δ ∧
x, y ∈ F

n
2}, is instantiated by the twin one-way secure linear Relational Hash in

Sect. 3, then for a random x ← F
n
2 and for any polynomially bounded number of

error samples e1, · · · , et ← Ξ, given (Hash1(x),Hash2(x + e1), · · · ,Hash2(x +
et)) it is hard to output x′ ∈ F

n
2 such that dist(x′, x) ≤ δ.

Privacy Preserving Biometric Authentication Scheme. Suppose we have
a biometric authentication scheme, where during registration phase a partic-
ular user generates a biometric template x ∈ {0, 1}n and sends it to the
server. During authentication phase the user generates a new biometric tem-
plate y ∈ {0, 1}n and sends y to server. The server authenticates the user if
dist(x, y) ≤ δ. The drawback of this scheme is the lack of template privacy.
However, if we have a Relational Hash (KeyGen,Hash1,Hash2,Verify) for
the relation Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ F

n
2}, we readily get a pri-

vacy preserving biometric authentication scheme as follows: 1. A trusted third
party runs KeyGen and publishes pk ← KeyGen. 2. During Registration, the
client generates biometric template x ∈ {0, 1}n and sends hx = Hash1(pk, x)
to the server. 3. During Authentication, the client generates biometric template
y ∈ {0, 1}n and sends hy = Hash2(pk, y) to the server. 4. The server authenti-
cates the client iff Verify(pk, hx, hy) returns Accept.

If we assume that the biometric templates of individuals follow uniform dis-
tribution over {0, 1}n, then Theorem 3 would imply that the server can never
recover the original biometric template x. Moreover, the unforgeability property
guarantees that even if the server’s database gets leaked to an attacker then also
the attacker cannot come up with a forged hy′, which would authenticate the
attacker. Theorem 4 will guarantee that even with access to the registered hash
and several authentication transcripts from the same individual, the biometric
template will remain private to the server.

In spite of these strong guarantees there is a significant drawback of our
privacy preserving authentication scheme. One basic premise of this scheme is

5 Limited only by the time complexity of the attacker.

Relational Hash: Probabilistic Hash for Verifying Relations 531

that the biometric template x comes from a uniform distribution over {0, 1}n.
From a practical point of view this is really a strong assumption. One interesting
open problem in this direction is whether we can build a privacy preserving
biometric authentication scheme when x comes from a distribution with high
min-entropy which is not necessarily uniform.

5 Relation Among Notions of Security for Relational
Hashes

In Sect. 2 we introduced three natural definitions of security for Relational
Hash functions: one-wayness, unforgeability and oracle simulation security. In
this section we define the notion of sparse and biased relations. We show, if
a Relational Hash function is unforgeable, that implies the relation must be
sparse. Following [CMR98], we extend the notion of 2-value Perfectly One-Way
(2-POW) function. We show if a Relational Hash function is 2-POW, then the
relation must be biased. We also show that the 2-POW property is actually a
sufficient condition for oracle simulation security, as well as unforgeability (when
the relation is sparse). These implications are summarized in Fig. 1.

We begin by asking the question: What kind of relations can support the
existence of an unforgeable Relational Hash? It is easy to see that certain rela-
tions cannot support unforgeability. Take, for example, the relation R(x, y, z),
where x, y ∈ F

n
2 and z ∈ F2 which returns 1 iff the parity of x + y is equal to

the bit z. One cannot construct an unforgeable hash for this relation because
given the type 1 hash of a random x, it is easy to construct a type 2 hash of a
y such that the relational verification outpusts 1, without knowing x: We just
pick an arbitrary y, compute a type 2 hash of the arbitrary y and verify with
the relational key with the type 1 hash of x for both z values 0 and 1.

So the intuitive property of relations supporting unforgeability is that with-
out knowing x, it should be hard to come up with (y, z), such that R(x, y, z)
holds. We formalize this intuition below in defining sparse relations.

Definition 7. A relation R ⊆ X × Y × Z is called a sparse relation in the
first co-ordinate with respect to a probability distribution X over X, if for all
PPTs A:

Pr[x ← X , (y, z) ← A(λ) : (x, y, z) ∈ R] < negl(λ)

Similarly, we can define a sparse relation in the second co-ordinate with respect
to a probability distribution Y over Y . A relation R ⊆ X × Y × Z is called a
sparse relation with respect to probability distributions X over X and Y over Y ,
if it is a sparse relation in first coordinate with respect to X , as well as a sparse
relation in second coordinate with respect to Y.

Remark 4. Similar to Sect. 2, the definitions given in this sections are actually
defined with respect to ensemble of probability distributions Xλ, Yλ, Kλ, ensem-
ble of sets Xλ, Yλ, Zλ,Kλ and ensemble of relation Rλ. However, for simplicity
we drop the subscript λ.

532 A. Mandal and A. Roy

Fig. 1. Relationship among Types of Relations. Arrowhead indicates direction of impli-
cation. Strike on an arrow indicates the existence of a counter-example.

Now, we show if a Relational Hash function is unforgeable, that implies the
relation must be sparse.

Theorem 5. If a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify)
for a relation R is unforgeable for probability distributions X over X and Y
over Y , then the relation R is sparse with respect to X and Y.

Proof. Suppose, the relation R is not sparse over first coordinate, and there
exists an PPT attacker A such that Pr[x ← X , (y, z) ← A(λ) : (x, y, z) ∈
R] is non-negligible. Now, given an unforgeability challenge (pk, cx), such that
pk ← KeyGen(1λ) and cx ← Hash1(pk, x) for some x ← X ; we can just
get (y, z) ← A(λ) and output (Hash2(pk, y), z). From the correctness of the
Relational Hash function, it follows that this output is a valid forgery with non-
negligible probability. �

Following [CMR98], we recall the definition of 2-value perfectly one-way
(POW) functions. Intuitively, this property states that the distribution of two
probabilistic hashes of the same value is computationally indistinguishable from
the distribution of probabilistic hashes of two independent values. This is a use-
ful property, because if we can show a Relational Hash function is 2-POW, we
show that it would immediately imply the Relational Hash function is oracle
simulation secure, as well as unforgeable (if the relation is sparse).

Definition 8 (2-value Perfectly One-Way function). Let X be a probability
distribution over X. Let H = {hk}k∈K be a keyed probabilistic function family
with domain X and randomness space U , where the key k gets sampled from a
probability distribution K over K. H is 2-value perfectly one-way (POW) with
respect to X and K if for any PPT distinguisher D,

∣
∣
∣
∣

Pr[D(k, hk(x, r1), hk(x, r2)) = 1]
−Pr[D(k, hk(x1, r1), hk(x2, r2)) = 1]

∣
∣
∣
∣ < negl(λ),

Relational Hash: Probabilistic Hash for Verifying Relations 533

where x, x1, x2 are drawn independently from X , k is drawn from K and r1, r2
are generated uniformly at random from the randomness space U .

Remark 5. In [CMR98], the key k was universally quantified, and the function
family H was called 2-POW if the inequality was true for all k ∈ K. However, for
our purpose it is sufficient if we consider random k coming from the distribution
K (or KeyGen).

Now we ask what kind of relations can support the existence of 2-POW
Relational Hashes? Intuitively, we require that it should be hard to distinguish
two distinct samples x and w from the distribution X by testing relations with a
(y, z) tuple which is efficiently computable without knowing the samples. That
is we should have R(x, y, z) and R(w, y, z) come out equal most of the time. This
intuition is formalized in the following definition of biased relations.

Definition 9. A relation R ⊆ X × Y × Z is called a biased relation in the
first co-ordinate with respect to a probability distribution X over X, if for all
PPTs A:

Pr[x,w ← X , (y, z) ← A(λ) : R(x, y, z) �= R(w, y, z)] < negl(λ)

Similarly, we can define a biased relation in the second co-ordinate with respect
to a probability distribution Y over Y . A relation R ⊆ X × Y × Z is called a
biased relation with respect to independent probability distributions X over X
and Y over Y , if it is a biased relation in first coordinate with respect to X , as
well as a biased relation in second coordinate with respect to Y.

Remark 6. We observe that if a relation R is biased, then its complement R̄ is
also biased. Now one might begin to think that maybe for a biased relation R,
either R or R̄ is sparse. However, the following counterexample shows that this
is not the case. Consider the relation R(x, y, z) which outputs the first bit of y.
This is a biased relation, but neither R, nor its complement R̄ is sparse.

Remark 7. The other direction is actually an implication, that is, if a relation
R is sparse then it is also biased. The proof intuition is as follows: Given an
algorithm A breaking the biased-ness of R, we construct an algorithm breaking
the sparse-ness of R. Let A output (y, z), such that with probability p over the
choice of x ← X , R(x, y, z) = 1 and therefore with probability 1−p, R(x, y, z) =
0. The probability of breaking the biased-ness of R is thus 2p(1−p) which should
be non-negligible. Hence p should be non-negligible. Now observe that p is the
probability of breaking the sparse-ness of R.

Now, we show if a Relational Hash is 2-POW, then the relation must be
biased.

Theorem 6. For a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify)
for a relation R, ifHash1 is 2-value Perfectly One-Way with respect to X and Key-
Gen, then R is a biased relation in the 1st co-ordinate with respect to X .

534 A. Mandal and A. Roy

Proof. We are given that,

∀ PPT D :
∣
∣
∣
∣

Pr[D(k,Hash1(k, x, r1),Hash1(k, x, r2)) = 1]
−Pr[D(k,Hash1(k, x1, r1),Hash1(k, x2, r2)) = 1]

∣
∣
∣
∣ < negl(λ)

Suppose R is not a biased relation in the 1st co-ordinate. Then, there exists an
efficient algorithm A, which outputs (y, z) ∈ Y ×Z, such that Pr[x ← X, (y, z) ←
A(λ) : R(x, y, z) �= R(w, y, z)] is non-negligible in the security parameter. So now
given (k,Hash1(k, x, r1),Hash1(k, w, r2)), we generate (y, z) ← A(λ), compute
Hash2(k, y, r′) and then compute Verify(k,Hash1(k, x, r1), Hash2(k, y, r′), z)
and Verify(k,Hash1(k, w, r2),Hash2(k, y, r′), z). By the correctness of the
Relational Hash scheme, these boolean results are R(x, y, z) and R(w, y, z)
respectively. In the case R(x, y, z) = R(w, y, z), the distinguisher D outputs
1, else 0. By the non-sparseness of R, D will have a non-negligible chance of
distinguishing the distributions. Hence we get a contradiction. �

Theorem 7, stated below, shows that if a Relational Hash is 2-POW, then it
is also oracle simulation secure.

Theorem 7. For a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify),
if the algorithms Hash1 and Hash2 are individually 2-value Perfectly One-Way
for distributions (X ,KeyGen) and (Y,KeyGen) respectively, then the Relational
Hash scheme is Oracle Simulation Secure for the distribution X ×Y. Formally, for
all PPT C, there exists a PPT S, such that:

∣
∣
∣
∣
Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]

−Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]

∣
∣
∣
∣ < negl(λ),

where pk ← KeyGen, x ← X , y ← Y.

Finally, we show that if a Relational Hash is 2-POW as well as sparse, then
it must be unforgeable.

Theorem 8. If (KeyGen,Hash1,Hash2,Verify) is a Relational Hash scheme
for a sparse relation R with respect to independent probability distributions X
and Y and Hash1 (Hash2) is 2-value Perfectly One-Way for distribution X (Y)
and KeyGen, then the Relational Hash scheme is unforgeable for the distribu-
tion X (Y).

Proof. Assume that the scheme is not unforgeable. This means that given (pk,
Hash1(pk, x, r)) for x ← X , there is an attacker A, which outputs Hash2(pk, y, s)
and z, such that R(x, y, z) = 1, with non-negligible probability. Using A, we now
build an attacker B which distinguishes the distributions (pk,Hash1(pk, x, r1),
Hash1(pk, x, r2)) and (pk,Hash1(pk, x, r1),Hash1(pk, x′, r2)) with non-
negligible probability. Given (pk,Hash1(pk, x, r1),Hash1(pk,w, r2)), B sends
Hash1(pk, x, r1) to A. With non-negligible probability A outputs Hash2(pk, y, s)
and z, such that R(x, y, z) = 1. Now since R is a sparse relation, if w �=
x, then with non-negligible probability R(w, y, z) = 0, whereas if w = x,
then R(w, y, z) = 1. Now R(w, y, z) can be efficiently evaluated by comput-
ing Verify(pk,Hash1(pk,w, r2), Hash2(pk, y, s), z). Thus, B will have a non-
negligible probability of breaking the 2-value POW security of Hash1. �

Relational Hash: Probabilistic Hash for Verifying Relations 535

Stronger Security Properties for the Relational Hash Constructions.
In Theorem 9, we show that the Relational Hash construction for linearity over
F

n
2 from Sect. 3 is actually a 2-value perfectly one-way function. This prop-

erty is based on a stronger hardness assumption called Decisional Binary Mix
(Assumption 2). In [MR14] we show that this assumption holds in Generic
Group Model [Sho97]. One can easily verify that the linearity relation over F

n
2 ,

R = {(r, s, z) | r + s = z ∧ r, s, z ∈ F
n
2} is actually a sparse relation with respect

to uniform distributions over F
n
2 . Hence, by Theorems 7 and 8 we get that the

Relational Hash construction from Sect. 3 is actually oracle simulation secure
as well as unforgeable with respect to the independent uniform distributions
over F

n
2 .

Assumption 2 (Decisional Binary Mix). Assuming a generation algorithm G
that outputs a tuple (n, q,G) such that G is a group of prime order q, the Deci-
sional Binary Mix assumption asserts that for random x, y ← F

n
2 , given random

elements 〈gi〉n
i=1, 〈fi〉n

i=1 from the group G it is hard to distinguish the following
distributions:

(
n∏

i=1

g(−1)xi

i ,

n∏

i=1

f(−1)xi

i

)

and

(
n∏

i=1

g(−1)xi

i ,

n∏

i=1

f(−1)yi

i

)

.

Theorem 9. The algorithms (KeyGen,Hash1,Verify) in Sect. 3 constitute a
2-value Perfectly One Way Function for the uniform distribution on F

n
2 , under

the Decisional Binary Mix and DDH assumptions.

On Stronger Security Properties for the Proximity Hash Construc-
tions. We observe that our proximity hash construction is not 2-POW secure.
This is readily seen by considering the first component of the proximity hash,
which is x + c, where x is the plaintext and c is a codeword. Two independent
hashes of x will have first components x + c and x + c′, and therefore adding
them will lead to c + c′, which is a codeword. However for the hash of an inde-
pendently randomly generated y, the first component will be y + c′′. If we add
the first components we get x + y + c + c′′, which is unlikely to be a codeword.
Therefore there is an efficient distinguisher for the 2-POW distributions. Our
construction is also not Oracle Simulation secure, because it reveals the syn-
drome of the plaintext with respect to the ECC used - this is more information
than what the simulation world can provide. We leave it as an open problem to
construct 2-POW and Oracle Simulation secure Relational Hashes for proximity.

A Hardness Assumptions

We summarize the standard hardness assumptions used in this paper.

Assumption 3 (DDH [DH76]). Assuming a generation algorithm G that out-
puts a tuple (q,G,g) such that G is of prime order q and has generator g,
the DDH assumption asserts that it is computationally infeasible to distinguish

536 A. Mandal and A. Roy

between (g,ga,gb,gc) and (g,ga,gb,gab) for a, b, c ← Z
∗
q . More formally, for all

PPT adversaries A there exists a negligible function negl() such that
∣
∣
∣
∣
Pr[(q,G,g) ← G(1λ); a, b, c ← Z

∗
q : A(g,ga,gb,gc) = 1]−

Pr[(q,G,g) ← G(1λ); a, b ← Z
∗
q : A(g,ga,gb,gab) = 1]

∣
∣
∣
∣ < negl(λ).

Assumption 4 (SXDH [BBS04]). Consider a generation algorithm G taking
the security parameter as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2),
where G1,G2 and GT are groups of prime order q with generators g1,g2 and
e(g1,g2) respectively and which allow an efficiently computable Z

∗
q-bilinear pair-

ing map e : G1 × G2 → GT . The Symmetric eXternal decisional Diffie-Hellman
(SXDH) assumption asserts that the Decisional Diffie-Hellman (DDH) problem
is hard in both the groups G1 and G2.

Assumption 5 (Random Modular Subset Sum [Lyu05]). Assuming a gen-
eration algorithm G that outputs a tuple (n, q), where q is prime, the Random
Modular Subset Sum assumption asserts that given random elements 〈ai〉n

i=1 from
the group Zq and c =

∑n
i=1 εiai for a random ε ← {0, 1}n, it is hard to output

η ∈ {0, 1}n such that
n∑

i=1

ηiai = c (mod q).

More formally, for all PPT A, there exists a negligible function negl() such that

Pr

⎡

⎣
(n, q) ← G(1λ), 〈ai〉n

i=1 ← Zq

ε ← {0, 1}n, c =
∑n

i=1 εiai

η ← A(〈ai〉n
i=1, c)

:
n∑

i=1

ηiai = c (mod q)

⎤

⎦ < negl(λ).

References

BBS04. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

BGG95. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and
application to virus protection. In: 27th ACM STOC, pp. 45–56. ACM
Press, May/June 1995

Boy04. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitz-
mann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 82–91. ACM Press, New
York (2004)

Can97. Canetti, R.: Towards realizing random oracles: hash functions that hide all
partial information. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol.
1294, pp. 455–469. Springer, Heidelberg (1997)

CMR98. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic
hash functions (preliminary version). In: 30th ACM STOC, pp. 131–140.
ACM Press, May 1998

DH76. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theor. 22(6), 644–654 (1976)

Relational Hash: Probabilistic Hash for Verifying Relations 537

DRS04. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong
keys from biometrics and other noisy data. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer,
Heidelberg (2004)

DS05. Dodis, Y., Smith, A.: Correcting errors without leaking partial information.
In: Gabow, N.H., Fagin, R. (eds.) 37th ACM STOC, pp. 654–663. ACM
Press, New York (2005)

GGG+14. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H.,
Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 578–602. Springer, Heidelberg (2014)

GGJS13. Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/727 (2013). http://
eprint.iacr.org/2013/727

GKL+13. Dov Gordon, S., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-input
functional encryption. Cryptology ePrint Archive, Report 2013/774 (2013).
http://eprint.iacr.org/2013/774

JS02. Juels, A., Sudan, M.: A fuzzy vault scheme. Cryptology ePrint Archive,
Report 2002/093 (2002). http://eprint.iacr.org/2002/093

JW99. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS 99,
pp. 28–36. ACM Press (1999)

KVM04. Kozat, S.S., Venkatesan, R., Mihçak, M.K.: Robust perceptual image hash-
ing via matrix invariants. In: 2004 International Conference on Image
Processing 2004, ICIP 2004, vol. 5, pp. 3443–3446. IEEE (2004)

Lyu05. Lyubashevsky, V.: On random high density subset sums. Electronic Collo-
quium on Computational Complexity (ECCC) vol. 12, no. 7 (2005)

MR14. Mandal, A., Roy, A.: Relational hash. Cryptology ePrint Archive, Report
2014/394 (2014). http://eprint.iacr.org/2014/394

PR12. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 375–391. Springer, Heidelberg (2012)

RS09. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer,
Heidelberg (2009)

Sho97. Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997)

http://eprint.iacr.org/2013/727
http://eprint.iacr.org/2013/727
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2002/093
http://eprint.iacr.org/2014/394

Explicit Non-malleable Codes Against Bit-Wise
Tampering and Permutations

Shashank Agrawal1, Divya Gupta2, Hemanta K. Maji2,4, Omkant Pandey3,
and Manoj Prabhakaran1(B)

1 University of Illinois Urbana-Champaign, Champaign, USA
{sagrawl2,mmp}@illinois.edu

2 Los Angeles and Center for Encrypted Functionalities,
University of California, Los Angeles, USA

{divyag,hmaji}@cs.ucla.edu
3 University of California, Berkeley, USA

omkant@gmail.com
4 Purdue University, West Lafayette, USA

Abstract. A non-malleable code protects messages against various
classes of tampering. Informally, a code is non-malleable if the message
contained in a tampered codeword is either the original message, or a
completely unrelated one. Although existence of such codes for various
rich classes of tampering functions is known, explicit constructions exist
only for “compartmentalized” tampering functions: i.e. the codeword is
partitioned into a priori fixed blocks and each block can only be tampered
independently. The prominent examples of this model are the family of
bit-wise independent tampering functions and the split-state model.

In this paper, for the first time we construct explicit non-malleable
codes against a natural class of non-compartmentalized tampering func-
tions. We allow the tampering functions to permute the bits of the code-
word and (optionally) perturb them by flipping or setting them to 0 or 1.
We construct an explicit, efficient non-malleable code for arbitrarily long
messages in this model (unconditionally).

We give an application of our construction to non-malleable commit-
ments, as one of the first direct applications of non-malleable codes to
computational cryptography. We show that non-malleable string com-
mitments can be “entirely based on” non-malleable bit commitments.

S. Agrawal, D. Gupta, O. Pandey and M. Prabhakaran—Research supported in part
by NSF grant 1228856.
D. Gupta, H.K. Maji and O. Pandey—Research supported in part from a DARPA/
ONR PROCEED award, NSF Frontier Award 1413955, NSF grants 1228984,
1136174, 1118096. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11- 1-0389. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 538–557, 2015.
DOI: 10.1007/978-3-662-47989-6 26

Explicit Non-malleable Codes Against Bit-Wise 539

1 Introduction

Non-malleability is a cryptographic notion [16] which requires that an encod-
ing (encryption, commitment etc.) of a message cannot be used to create a valid
encoding of a “related” message by a (computationally) crippled adversary. Non-
malleable codes [18] is a special case of this idea: here, the encoding is in the form
of a single string (rather than an interactive protocol), but the attacker is heavily
crippled in that the tampering function it can apply on a codeword must belong
to very simple classes (e.g., bit-wise functions). Non-malleable codes are required
to be secure without relying on any computational restriction on the adversary,
but instead – as is the case for other information-theoretic cryptographic prim-
itives like secret-sharing and information-theoretically secure multi-party com-
putation – relies on limitations of the adversary’s access1 to information. The
limited access is captured by limiting the class of tampering functions.

Ever since non-malleable codes were explicitly introduced, there has been a
tremendous body of work on the topic [1,2,9–11,17,18]. Even when there are
severe restrictions on the tampering class, it has been a challenge to obtain
explicit constructions of non-malleable codes. All prior explicit constructions of
non-malleable codes rely on the “compartmentalized” structure of the tamper-
ing function, i.e. the codeword is partitioned into a priori fixed blocks and any
tampering function should tamper with each block independently. The prominent
examples of this model are the family of bit-wise independent tampering func-
tions and the split-state model.

In this work, we seek to build explicit non-malleable codes (with efficient
encoding and decoding algorithms) for certain non-compartmentalized tamper-
ing functions. In particular, we consider bit-permutation attacks composed with
arbitrary bit-wise functions. Our result could be seen as a first step towards one
of the major problems in non-malleable codes: to construct explicit codes that
are non-malleable against low-complexity function classes like NC0 and AC0.
Indeed, the tampering functions we consider are very low-complexity circuits,
with only unary gates and no fan-outs.

We point out that existential results and efficient randomized constructions
are known for non-malleable codes against a very broad classes of tampering
functions. However, given the theoretical importance of non-malleable codes (as
evidenced by a deep and rich literature), explicit constructions are of great inter-
est. Further, randomized constructions, even when they are efficient, are not
suitable for some cryptographic applications. Indeed, in this work, we present a
novel cryptographic application of non-malleable codes to non-malleable string
commitments. Among other things, this is an instance of an application where
neither party can be trusted to carry out the code construction honestly. We
discuss this application further, later in this section.

Construction Sketch. Our non-malleable code construction consists of four steps,
that are sketched below. We present a more detailed overview and further moti-
vation behind these steps in the full version [3].
1 Here access refers to both the ability to read and write the information in the system.

540 S. Agrawal et al.

• We start with a large-alphabet randomized encoding which has a large
enough distance and whose positions are t-wise independent for a large
enough t (e.g., a “packed secret-sharing scheme” based on the Reed-Solomon
code suffices), and make it resistant to permutations by incorporating into
each character its position value; i.e., the character at the ith position in a
codeword xi is re-encoded as 〈i, xi〉, and allowed to occur at any position in
the new codeword.

• The above code uses a large alphabet. It is concatenated with a binary inner
code that is also resistant to permutations: each character in the outer code’s
alphabet is mapped to a positive integer (in a certain range) and is encoded
by a block of bits whose weight (number of positions with a 1) equals this
integer. Note that a permutation may move bits across the different blocks.
To resist such attacks, we keep the bits within each block randomly per-
muted, and also, ensure that a good fraction of the weights do not correspond
to a valid block (achieved, for instance, by requiring that the weight of each
block is a multiple of 32), so that blindly mixing together bits from different
blocks has some probability of creating an invalid block. A careful combina-
torial argument can be used to show that, despite dependencies among the
blocks caused by a permutation attack, the probability of having all attacked
blocks remaining valid decreases multiplicatively with the number of blocks
being attacked thus. This, combined with the fact that the outer code has a
large distance, ensures that the probability of creating a different valid code-
word by this attack is negligible. However, we need to ensure not only that
the attack has negligible chance of modifying one codeword into a different
valid codeword, but also that the probability of creating an invalid codeword
is (almost) independent of the actual message. Roughly, this is based on the
large independence of the outer code.

• The resulting code is not necessarily resistant to attacks which can set/reset
several bits. Towards achieving resistance to such attacks as well, we consider
an intermediate 2-phase attack family: here the adversary can set/reset bits
at random positions, learn which positions were subjected to this attack, and
then specify a permutation attack.3 To resist such attacks, we encode each
bit in the above codeword into a bundle, using an additive secret-sharing.
Then, if one or more bits in a bundle are set/reset, all the other bits in
the bundle turn uniformly random. Hence, unless the adversary chooses to
set/reset a very large number of positions (in which case almost every bundle
is touched, and all information about the original message is lost), for every
bit which has been set/reset, there will be several that are uniformly random.
Now, even though the adversary can apply a permutation to rearrange these
random bits (into as few bundles as possible), to ensure that there are only

2 In our actual analysis, we also allow the attacker to flip any subset of bits. This pre-
vents us from having valid weights to be 0 modulo 2, as flipping an even number of
positions preserves this parity.

3 In the actual analysis, we need to consider a slightly stronger 2-phase attack, in which
the adversary can also learn the values of the bits in a small number of positions before
specifying a permutation (and flipping a subset of bits).

Explicit Non-malleable Codes Against Bit-Wise 541

a few bundles with a random bit, the adversary is forced to set/reset at
most a few bundles’ worth of bits. We note that our actual analysis follows
a somewhat different argument, but fits the above intuition.

• Finally, the above code is modified as follows: a random permutation over the
bits of the code is applied to a codeword; the permutation itself is encodedusing
a code of large distance, and appended to the above (permuted) codeword.
Then it can be shown that a full-fledged attack (involving arbitrary set/reset
and permutations) on such a codeword translates to a 2-phase attack of the
above kind. Note that we do not rely on the permutation itself to be encoded
in a non-malleable fashion. Indeed, the adversary can be allowed to learn and
modify the encoded permutation after it has committed to the set/reset part
of its attack on the rest of the codeword; in the 2-phase attack, this is modeled
by the fact that the adversary can learn which positions in the codeword were
set and reset, before deciding on the permutation attack.

As sketched above, the rate of our code is zero, as the codewords are
polynomially longer than the message. However, the generic compiler pro-
vided in [4] when instantiated with our code yields a rate 1 code (i.e., the
codewords are only marginally longer than the messages, with the increase
being sub-linear in the length of the message).

An Application. One motivation behind the class of attacks considered in this
work comes from the following intriguing question:

Can non-malleable string-commitments be “entirely based” on non-
malleable bit-commitments?

To formalize this problem, we may consider an idealized model of bit com-
mitments using physical tokens: to commit a bit to Bob, Alice can create a small
physical token which has the bit “locked” inside (and later, she can send him
a “key” to open the token). This completely hides the bit from Bob until Alice
reveals it to him; on the other hand, Alice cannot change the bit inside the
token once she has sent it to Bob. Further, this is a non-malleable bit commit-
ment scheme, in that if Bob plays a man-in-the-middle adversary, and wants to
send a commitment to Carol, he can only send the token from Alice as it is, or
create a new token himself, independent of the bit committed to by Alice.

Now, we ask whether, in this model, one can make non-malleable string
commitments (relying on no computational assumptions). This is a question
about non-malleable codes in disguise! Indeed, if we required the commitment
protocol to involve just a single round of sending a fixed number of tokens,
then a commitment protocol is nothing but a non-malleable encoding of a string
into bits, and the class of tampering functions we need to protect against is
that of bit-level permutations and bit-wise set/reset.4 Though we presented this
4 For this application, bit-flipping need not be part of the admissible tampering func-

tions. However, even if we restricted ourselves to this simpler class, our construction
does not become significantly simpler. Indeed, handling permutations and set/reset
present the biggest technical challenges in our construction. By handling bit-flipping
as well, our tampering function family subsumes the bit-wise tampering function
family.

542 S. Agrawal et al.

string commitment scheme in an idealized setting involving tokens, it can be
translated to a reduction of non-malleable string commitment to CCA-secure bit
commitment (as defined in [6]).

As mentioned above, the non-malleable codes we build can withstand a
slightly larger class of tampering attacks, which corresponds to the ability of
the adversary to apply any set of functions from {0, 1} to {0, 1} to the bits
stored in the tokens (i.e., set, reset, flip or keep), before applying the permuta-
tion attack. As such, in the above application, we do not actually require the
bit commitment scheme to be CCA secure. We also present a variant of the
above construction to illustrate this, which we base on a specific (non-standard)
assumption on a PRG.

This application also illustrates why explicit constructions can be of impor-
tance to cryptographic constructions. While there indeed is an efficient random-
ized construction of non-malleable codes that can resist permutations [20], it will
not be suitable in this case, because neither the sender nor the receiver in a com-
mitment scheme can be trusted to pick the code honestly (Bob could play either
role), and non-malleable codes are not guaranteed to stay non-malleable if the
description of the code itself can be tampered with. While one may address this
issue using a more complex protocol which securely samples a non-malleable code
using (malleable) string commitments, this undermines the simplicity of our pro-
tocol (which involves no interaction beyond carrying out the bit commitments)
and introduces more rounds of interaction.

1.1 Prior Work

Cramer et al. [14] introduced the notion of arithmetic manipulation detection
codes, which is a special case of non-malleable codes; AMD codes with optimal
parameters have been recently provided by [15]. Dziembowski et al. motivated
and formalized the more general notion of non-malleable codes in [18]. They
showed existence of a constant rate non-malleable code against the class of all bit-
wise independent tampering functions. Existence of rate 1 non-malleable codes
against various classes of tampering functions is known. For example, existence of
such codes with rate (1 − α) was shown against any tampering function family
of size 22

αn

; but this scheme has inefficient encoding and decoding [10]. For
tampering functions of size 2poly(n), rate 1 codes (with efficient encoding and
decoding) exist with overwhelming probability [20].

On the other hand, explicit constructions of non-malleable codes have
remained elusive, except for some well structured tampering function classes.
Recently, an explicit rate 1 code for the class of bit-wise independent tamper-
ing function was proposed by [11]. Note that a tampering function in this class
tampers each bit independently. For a more general compartmentalized model of
tampering, in which the codeword is partitioned into separate blocks and each
block can be tampered arbitrarily but independently, an encoding scheme was
proposed in [12]. In the most general compartmentalized model of tampering,
where there are only two compartments (known as the split-state model), an

Explicit Non-malleable Codes Against Bit-Wise 543

explicit encoding scheme for bits was proposed by [17]. Recently, in a break-
through result, an explicit scheme (of rate 0) was proposed for arbitrary length
messages by [2]. Subsequently, a constant rate construction for 10 states was
provided in [9] and, building on that, a constant rate construction for the split
state was proposed in [1].

Codes Under Computational Assumptions. The idea of improving the rate of
error-correcting codes by considering computationally limited channels has been
explored in a large body of work [8,26,27,30,32,34]. In the setting of non-
malleable codes as well, constructions based on computational assumptions have
been explored, for example [19,31].

Non-malleable Commitments. There is extensive literature on non-malleable
commitments starting from the work of Dolev, Dwork and Naor [16] leading
to recent constant-round constructions based on one-way functions [24,25,29].
Our application of nonmalleable codes to non-malleable commitments is simi-
lar in spirit to the work of Meyers and Shelat [33] on the completeness of bit
encryption. Concurrently, and independently of our work, Chandran et al. [7]
relate non-malleable commitments to a new notion of non-malleable codes, called
blockwise non-malleable codes.

Application of Non-malleable Codes to Cryptographic Constructions. AMD
codes have found several applications in information-theoretic cryptography,
for secret-sharing, randomness extraction and secure multi-party computation
(e.g., [5,14,21,23]). However, the more general notion of non-malleable codes
have had few other applications, outside of the direct application to protect-
ing the contents of device memories against tampering attacks. Our application
to non-malleable commitment is one of the few instances where non-malleable
codes have found an application in a natural cryptographic problem that is
not information-theoretic in nature. A similar application appears in the recent
independent work of Coretti et al. [13].

1.2 Our Contribution

The class of tampering functions which permutes the bits of the codeword is
represented by SN . The set of all tampering functions which allow the adversary
to tamper a bit by passing it through a channel is denoted by F{0,1}; this includes
forwarding a bit unchanged, toggling it, setting it to 1, or resetting it to 0. The
class of tampering functions which allows the adversary to do apply both: i.e.,
tamper bits followed by permuting them is represented by: F{0,1}◦SN . Our main
result is a non-malleable code against this class of tampering functions.

Theorem 1 (Non-malleable Code). There exists an explicit and efficient
non-malleable code for multi-bit messages against the tampering class F{0,1} ◦ SN .

Our main non-malleable encoding which is robust to F{0,1} ◦ SN relies on a
basic encoding scheme. The basic encoding scheme is robust to a weaker class of

544 S. Agrawal et al.

tampering functions, but it provides slightly stronger security guarantees. More
specifically, the basic scheme protects only against F̃{0,1}◦SN class, where F̃{0,1}
is the class of functions which either forward a bit unchanged or toggle it but do
not set or reset it. The stronger security guarantee given by basic scheme is that
it allows the adversary to adaptively choose the tampering function F̃{0,1} ◦ SN .
The adversary first specifies n0 and n1, i.e. number of indices it wants to reset
to 0 and number of indices it wants to set to 1. It is provided a random subset
of indices of size n0 which is all reset to 0; and a (disjoint) random subset of
indices of size n1 which is all set to 1. Given this information, the adversary
can adaptively choose the tampering function in F̃{0,1} ◦ SN . Even given this
additional power, the adversary cannot tamper the codeword to produce related
messages (except with negligible probability).

We present the basic encoding scheme and prove its non-malleability in
Sect. 5. Theorem 1 is proved via a reduction to the basic scheme. This proof
is provided in the full version [3].

Non-malleable Commitments. As noted earlier, we consider the question of con-
structing simple string non-malleable commitments from bit non-malleable com-
mitments. For example, if we simply encode the given string and commit to each
of its bit using the given non-malleable bit-commitment, does it result in a secure
non-malleable string commitment schemes? What are the conditions we need on
the underlying bit commitment scheme?

For this question, we are interested in a really simple reduction, as opposed
to, e.g. “merely” black-box reductions. Indeed, if we ask for a merely black-box
construction we can invoke known (but complex) reductions: a bit commitment
scheme (even malleable) implies a one-way function, which in turn imply string
commitments in a black box way [25]. Such reductions are not, what we call
totally black-box. For example, if we switch to a model where we are given the
bit-commitment scheme as a functionality which can be executed only a bounded
number of times, such as a one-time program [22] or a hardware token [28], then
we do not necessarily have standard one-way functions. Therefore, the reduc-
tion should avoid assuming additional complexity assumptions such as OWFs
or signatures. In fact, for this reason, the reduction should also not rely on
using tags and “tag-based” non-malleability [35]. It should work with standard
non-tag-based non-malleable bit-commitments.

Our reduction actually satisfies these conditions provided that we start with a
(non-tag-based) CCA-secure bit-commitment scheme [6]. We show that (perhaps
the simplest construction where) if we just commit to each bit of a random
codeword of the given string works! This gives us the following theorem:

Theorem 2 (CCA Bit-Commitment to Non-malleable String Commit-
ment). There exists a simple and efficient black-box compiler which, when pro-
vided with:

• A non-malleable encoding robust to F{0,1} ◦ SN , and
• A r-round (possibly non-tag-based) CCA-secure bit-commitment scheme

yields a r-round non-malleable string-commitment scheme.

Explicit Non-malleable Codes Against Bit-Wise 545

We note that the theorem statement is unconditional: it does not assume
any computational assumption beyond the given non-malleable bit-commitment.
In particular, the theorem holds even if the bit-commitment is implemented
in a model which does not necessarily imply OWFs. Furthermore, in our full
version [3], we prove that in fact, the theorem holds even if the bit-commitment
is not CCA-secure but only satisfies a much weaker notion which we call bounded-
parallel security.

Finally, we show the power of our non-malleable codes by demonstrating
that even if we start with a seemingly much weaker scheme which allows partial
malleability, e.g., it may allow the MIM to toggle the committed bit, our non-
malleable codes can “boost” it to full-fledged malleability. See [3] for details.

2 Preliminaries

We denote the set {1, . . . , n} by [n]. If a ∈ [b − ε, b + ε], then we represent it as:
a = b ± ε.

Probability distributions are represented by bold capital alphabets, for exam-
ple X. The distribution US represents a uniform distribution over the set S.
Given a distribution X, x ∼ X represents that x is sampled according to the dis-
tribution X. And, for a set S, x

$←S is equivalent to x ∼ US . For a joint variable
X = (X1, . . . ,Xn) and S = {i1, . . . , i|S|} ⊆ [n], we define the random variable
XS = (Xi1 , . . . ,Xi|S|). We also define hamming distance between two samples
u = (u1, u2, . . . , un) and v = (v1, v2 . . . , vn) drawn from the distribution X as
the number of indices at which they differ, i.e., HD(u, v) = |{i ∈ [n] | ui 	= vi}|.
For a function f(·), the random variable Y = f(X) represents the following
distribution: Sample x ∼ X; and output f(x). Further, f(x[n]) represents the
vector f(x1) . . . f(xn).

The statistical distance between two distributions S and T over a finite sam-
ple space I is defined as: SD (S,T) := 1

2

∑
i∈I |Prx∼S[x = i] − Prx∼T[x = i]|.

2.1 Classes of Tampering Functions

We shall consider the following set of tampering functions.

1. Family of Permutations. Let SN denote the set of all permutations π : [N] →
[N]. Given an input codeword x[N] ∈ {0, 1}N , tampering with function π ∈
SN yields the following codeword: xπ−1(1) . . . xπ−1(N) =: xπ−1([N]).

2. Family of Fundamental Channels. The set of fundamental channels over {0,1},
represented as F{0,1}, contains the following binary channels f : (a) f(x) =
x, (b) f(x) = 1 ⊕ x, (c) f(x) = 0, or (d) f(x) = 1. These channels are,
respectively, called forward, toggle, reset and set functions.

3. Family of Sensitive Channels. The set of sensitive functions F̃{0,1} contains
only forward and toggle channels. In other words, tampering involves XOR-
ing an N -bit input string with a fixed N -bit string.

546 S. Agrawal et al.

We can define more complex tampering function classes by composition
of these function classes. For example, composition of SN with F{0,1} yields
the following class of tampering functions. For any π ∈ SN and f1, . . . , fN ∈
F{0,1}, it transforms a codeword x[N] into f1(xπ−1(1)) . . . fN (xπ−1(N)) =:
f1,...,N (xπ−1([N])). This class is represented by: F{0,1} ◦ SN .

2.2 Non-malleable Codes

We define non-malleable codes formally in Fig. 1. Our main result provides an
efficient non-malleable code against the tampering class F{0,1} ◦ SN .

3 Building Blocks

In this section, we define various types of secret-sharing schemes relevant to our
construction. First we present the basic notion.

Fig. 1. Definition of non-malleable codes

Explicit Non-malleable Codes Against Bit-Wise 547

Definition 1 (Secret-Sharing Scheme (SSS)). Let S = (X0,X1, . . . ,XM)
be a joint distribution over ΛL × ΣM , such that the support of X0 is all of ΛL.
(The random variable X0 represents the secret being shared and Xi for i ∈ [m]
represents the i-th share.)

We say that S is an [M,L, T,D]Λ,Σ secret-sharing scheme if the following
conditions hold:

1. T -privacy: ∀ s, s′ ∈ ΛL, ∀ J ⊆ [M] such that |J | � T , we have

SD ((XJ |X0 = s), (XJ |X0 = s′)) = 0.

2. D-distance: For any two distinct c, c′ ∈ Supp(X[M]), the hamming distance
between them, HD(c, c′), is at least D, where Supp(X[M]) denotes the support
of distribution X[M].

3. Reconstruction: For any s, s′ ∈ ΛL such that s 	= s′, we have

SD
(
(X[M]|X0 = s), (X[M]|X0 = s′)

)
= 1.

In the remainder of the paper, by an SSS scheme, we shall implicitly refer
to a family of SSS schemes indexed by M , i.e., [M,L(M), T (M),D(M)]-SSS
schemes for each positive integer M . We define the rate of such a scheme to be
limM→∞

L(M)
M . We will be interested in efficient SSS schemes. For this, we define

two algorithms for encoding and decoding as follows:

• EncSSS(s): This is a randomized algorithm that takes s ∈ ΛL as input and
outputs a sample from the distribution (X[M]|X0 = s).

• DecSSS(c̃): This algorithm takes a c̃ ∈ ΣM as input, and outputs a secret
s ∈ ΛL such that c̃ ∈ Supp(X[M]|X0 = s). If such a secret does not exist, it
outputs ⊥.

Note that the uniqueness of the output of algorithm DecSSS is guaranteed
by the reconstruction property. An SSS scheme is said to be efficient if the two
algorithms defined above run in time bounded by a polynomial in M .

We can instantiate a secret-sharing scheme with all the properties described
above using Reed-Solomon codes. Let n, k and � be any three positive inte-
gers such that n � k � �. Let F be a finite field of size at least n + �. Let
{u−�, . . . , u−1, u1, . . . , un} ⊆ F. The secret-sharing of a message (s1, . . . , s�) ∈ F

�

is done by choosing a random polynomial p(·) of degree < k conditioned on
(p(u−1), . . . , p(u−�)) = (s1, . . . , s�). The shares {y1, . . . , yn} are evaluations of
p(·) at {u1, . . . , un} respectively. It is known that efficient encoding and decod-
ing procedures exist using Lagrange interpolation. Further, this encoding has
privacy k − � and distance n − k + 1.

SSS with Independence. A secret-sharing scheme with independence, or i-SSS
in short, is defined in the same way as an SSS, except that instead of privacy, it
has a stronger independence property:

• T -independence: ∀ s ∈ ΛL, ∀ J ⊆ [M] such that |J | � T , we have

SD ((XJ |X0 = s),UΣ|J|) = 0.

548 S. Agrawal et al.

In simple words, any subset of at most T shares are uniformly distributed over
the corresponding codeword space (whereas privacy only guarantees that these
shares have a distribution independent of the secret being shared). The encoding
and decoding algorithms for i-SSS are denoted by Enci-SSS and Deci-SSS respec-
tively. Reed-Solomon codes, as defined above, actually give independence and
not just privacy.

Augmented SSS. A secret-sharing scheme (with or without independence) can
be augmented to have each share also specify which share it is – the first, the
second, etc. More formally, if we have an [M,L, T,D]Λ,Σ-SSS (or i-SSS) with
(EncSSS,DecSSS) algorithms, we define algorithms Enca-SSS and Deca-SSS for the
augmented secret-sharing scheme over ΛL × ([M] × Σ)M as follows:

• Enca-SSS(s): Run EncSSS(s) to obtain c1, . . . , cM . Output (1, c1), . . . , (M, cM).
• Deca-SSS(c̃): Let c̃ = ((i1, c̃1), . . . , (iM , c̃M)). Sort the shares according to the

first element in each tuple, check that each index occurs exactly once, and
then output DecSSS((c̃1, . . . , c̃M)).

It is easy to observe that a-SSS defined in this way has T -privacy and D-distance.

Additive Secret Sharing. An [M,L]Λ,Σ additive secret sharing scheme,
referred to simply as add, is an [M,L, T,D]Λ,Σ-i-SSS with T = M −1 and D = 1.
One can instantiate such sharing schemes over any Abelian group (G,+). The
joint distribution (X0, . . . ,XM) is defined via the following sampling procedure:

pick x1, . . . , xM
$← G and set x0 =

∑
i∈[M] xi. It is easy to see that there exist

efficient encoding and decoding algorithms, which are denoted by Encadd and
Decadd respectively.

Balanced Unary Encoding. This scheme is parameterized by a message space
F and a positive integer p. Let π : F → Z|F | be a bijection and m = 3p|F | + 1.
Then, given a message s ∈ F , the encoding Encunary(s) is performed as follows:
Sample a random set S of [m] of weight �m/3�+pπ(s). The codeword is defined to
be the characteristic vector of set S. Note that this scheme has efficient encoding
and decoding algorithms, Encunary and Decunary, respectively. For any s ∈ F
and any set S used for encoding s, the total weight of the final shares lie in
[m/3, 2m/3]. Hence, the name balanced unary secret sharing scheme.

We now define how to combine two or more schemes.

Definition 2 (Concatenating Sharing Schemes). Consider two secret shar-
ing schemes, an outer scheme S(out) = (X(out)

0 ,X(out)
1 , . . . ,X(out)

n) over ΛL × ΣN

and an inner scheme S(in) = (X(in)
0 ,X(in)

1 , . . . ,X(in)
m) over Σ × ΓM . The con-

catenation of the outer scheme with the inner scheme is defined as the joint dis-
tribution S(concat) = (X(concat)

0 ,X(concat)
1 , . . . ,X(concat)

NM) over ΛL × ΓMN . Given a
secret s ∈ ΛL, sample x(concat)

[NM] ∼ (X(concat)
[NM] |X(concat)

0 = s) as follows: first sample

x(out)
[N] ∼

(
X(out)

[N]

∣
∣
∣ X(out)

0 = s
)
, and then for each i ∈ [N], sample x(concat)

(i−1)m+[M] ∼
(
X(in)

[M]

∣
∣
∣ X(in)

0 = x(out)
i

)
. We use S(concat) = S(out) ◦S(in) to represent the concate-

nation of S(out) with S(in).

Explicit Non-malleable Codes Against Bit-Wise 549

If the encoding and decoding procedures for outer and inner schemes are
(Enc(out),Dec(out)) and (Enc(in),Dec(in)) respectively, then the corresponding pro-
cedures for the concatenated scheme are denoted by (Enc(out) ◦Enc(in),Dec(out)
◦Dec(in)). Note that the final encoding and decoding procedures are efficient if
the corresponding procedures are efficient for inner and outer schemes.

Moreover, we emphasize that we do not focus on error correcting codes. In
particular, if any of inner or outer decoding procedures fails, we output ⊥ as the
decoding of the overall code.

4 Our Non-malleable Encoding Scheme

In this section, we describe our non-malleable encoding scheme against the class
of tampering functions F{0,1} ◦ SN . It proceeds in following two steps.

1. Basic Encoding Scheme. Though this scheme will offer non-malleability
against a weaker class of tampering functions, it will offer stronger guaran-
tees beyond standard non-malleability. We refer to this as “2-Phase Non-
malleability” property. The security proof of our main construction described
below reduces to the 2-phase non-malleability of our basic scheme.

The basic encoding scheme is described formally in Fig. 2. As a high level,
our encoding scheme is a concatenation code (see Definition 2) which does the
following: Given a message s, it samples an outer code according to augmented
Reed-Solomon code based secret sharing. Then for each outer code element, it
samples an inner codeword which itself is a concatenation code using balanced
unary secret sharing scheme and additive sharing scheme.

2. Main Construction. Our main non-malleable coding scheme resistant
against the class of attacks F{0,1} ◦ SN is built on top of the basic cod-
ing scheme. In order to encode a message s, we choose a random permutation
σ. The codeword consists of two parts: the first part is the basic encoding
of s with σ applied on it, and the second part is a secret sharing of σ with
high distance and independence encoding. Intuitively, applying a random per-
mutation ensures that setting/resetting bits in the main codeword results in
random positions being modified in the basic codeword, exactly the kind of
attack basic code can handle. The scheme is described formally in Fig. 3.

In the following section, we first describe the 2-phase security of basic encod-
ing scheme and then our main construction.

5 Basic Encoding Scheme and 2-Phase Non-malleability

2-Phase Non-Malleability is a two-phase attack experiment where the adversary
gets additional information about the codeword in the first phase before it gets
to choose the tampering function in second phase.

550 S. Agrawal et al.

Fig. 2. Basic non-malleable Code achieving 2-phase non-malleability.

1. In the first phase the adversary sends message s and n0, n1, np ∈ [N] such
that n0 + n1 + np � N and np � log2 κ. Here n0 and n1 refer to the number
of bits in the tampered codeword that will be set to 0 and 1, respectively. np

refers to the number of bits of the original codeword which will be revealed
to the adversary before he chooses the final tampering function.

2. The challenger picks an index set I
$←

(
[N]

n0 + n1 + np

)

and randomly parti-

tions I into I0, I1 and Ip of size n0, n1 and np, respectively. It picks c = Enc(s).
Then it sends (I0, I1, Ip, cIp

) to the adversary. Here I0 and I1 refer to the
indices which will be set to 0 and 1, respectively. Ip refers to the indices of c
which are revealed in cIp

.
3. In the second phase, the adversary sends a tampering function f ∈

F̃{0,1} ◦ SN , using the information obtained from first phase.
4. The tampered codeword is created by setting the bits at positions I0 and I1

to 0 and 1, respectively, to obtain c′. Then, f is applied to c′.

Observe that in the above experiment the adversary can specify n0, n1, np

and a function map in advance, and then the challenger can carry out the entire
experiment on its own. The function map takes three disjoint subsets of indices
I0, I1, Ip ⊆ [N] of size n0, n1, and np respectively, and a bit string of length
|Ip| � log2 κ, and outputs a function f ∈ F̃{0,1} ◦ SN . Let F∗ be a tampering
function family where an f∗ ∈ F∗ is specified by n0, n1, np and map, and tampers
the codeword as the challenger does. Our security requirement can now be simply
stated as non-malleability against the tampering class F∗. The only issue is that
the functions in this family are randomized and we have defined non-malleability
w.r.t. deterministic functions. However, we could just define the randomness of

Explicit Non-malleable Codes Against Bit-Wise 551

Fig. 3. Main non-malleable code

Tamper
(s)
f in Fig. 1 to be over the coin tosses of not only the encoding function

but also over the tampering function, and take care of this problem.

Theorem 3 (2-Phase Non-malleability). There exists an explicit and effi-
cient non-malleable code for multi-bit messages against the tampering class F∗.

5.1 Proof of Theorem 3

In this section we show that the basic encoding scheme described in Fig. 2 satisfies
Theorem 3.

Useful Terminology. We will call the field elements of augmented secret shar-
ing scheme Enc(out) as “elements”. The encoding of each element via inner encod-
ing Enc(in) will be called a “block” or “inner codeword”. We shall visualize our
inner code blocks as a two-dimensional objects, where each “column” represents
the additive secret shares of a bit in the unary encoding scheme.

Below we crucially rely on the notion of “equivalence of codes” and “dirty
inner codewords” or “dirty blocks” as defined below.

Equivalence of Codewords for our Scheme. Here we describe equivalence
of codes for Enc(in) and Enc(basic).

552 S. Agrawal et al.

1. Inner Codes. Two inner codewords, g
(in)
[um] and h

(in)
[um] are equivalent codes if

they encode the same message according to the inner encoding scheme Enc(in).

2. Non-Malleable Codes. Two codewords g
(basic)
[umn] and h

(basic)
[umn] are equivalent

codes if their outer codes under Enc(out) are identical5. That is, following holds.
For all i ∈ [n], define g

(in)
i = g

(basic)
(i−1)um+[um] and h

(in)
i = h

(basic)
(i−1)um+[um]. Then,

there exists a π : [n] → [n] such that for all i ∈ [n], g
(in)
i

∼= h
(in)
π(i).

Criteria for Valid Inner Codeword or Block. For a block to be valid, the
corresponding unary code should have parity 0 mod 3.

Classification of Blocks. We classify the inner codewords or blocks in following
three categories.

Fixed Blocks. We say that a block is completely fixed if all its bits are obtained
from bits in I0 ∪ I1. That is, the tampering function explicitly writes down the
whole block using bits from I0 ∪ I1. Note that some of these bits might have
been toggled.

Copied Blocks. We say that a block is completely copied if it is generated
by copying one whole block in c and (possibly) performing column preserving
permutations to the block. Also, even number of toggles might have been applied
to any of these columns. Note that copied blocks are valid with probability 1.

Dirty Blocks. We say that an inner codeword or a block in c̃ is dirty if it is
neither fixed nor copied. In other words, one of the following holds:

1. The block receives its bits partially from one block of c. To clarify, it can be
the case that it receives bits from more than one blocks, or it receives bits
from one block but some of its bits are obtained from I0 ∪ I1.

2. (The block receives all its bits from one block of c but) The permutation
within the block is not column preserving. That is, there exists a column
which receives bits from more than one columns of the same inner codeword.

3. (The block receives all its bits from one block and the permutation is column
preserving but) There exists a column which has odd number of toggle gates.

We show that a dirty block fails to be a valid block (according to inner
encoding scheme) with at least a constant probability (see [3] for details).

We denote the number of dirty blocks by ndirty, fixed blocks by nfixed, and
copied blocks by ncopy. Note that n = ndirty + nfixed + ncopy. Finally, we define
peeked blocks as follows:

Peeked Blocks. We say that a block is a peeked if one of its bits has been
copied from Ip. Let npeek be the number of such blocks. Note that npeek � np.

5 Note that we only insist that g
(basic)
[umn] and h

(basic)
[umn] not only encode the same mes-

sage s but also every outer codeword element is identical. Note that we allow for
permutation of outer code elements.

Explicit Non-malleable Codes Against Bit-Wise 553

5.2 Key Steps of the Proof

In this section, we give a high level proof idea by doing a case analysis on
n0 +n1 and explaining how Sim is determined on each case (depending on map).
The threshold value log10 κ chosen below for analysis is arbitrary; any suitable
poly log κ will suffice. For a formal proof of non-malleability, please refer to the
full version [3].

Case 1. log6 κ � n0 + n1 � N − um log3 κ.
In this case, Sim outputs ⊥ with probability 1. This incurs negl(κ) simulation
error. This is because, as we can show, ndirty � log3 κ with probability 1−negl(κ).
Further, as described below, if ndirty is large, then the probability that Tamper(s)

outputs something other than ⊥ is negligible.

Case 2. n0 + n1 � log6 κ.
Note that Sim has n0, n1, np and map. It begins by sampling I0, I1, Ip, cIp

and
f ∈ F according to map as in real execution. Based on these we have the following
cases on ndirty, the number of dirty blocks.

Case 2.1. ndirty � log3 κ.
In this case, Sim outputs ⊥ with probability 1. Again, as explained below, this
incurs a negligible simulation error.

Case 2.2. ndirty < log3 κ.
In this case, ncopy = n − ndirty − nfixed � n − log3 κ − log6 κ/um. That is, the
tampering function copies most of the blocks identically into the tampered code-
word. Now, let n′

copy be the number of copied blocks which do not contain any
bit from Ip. Then n′

copy � ncopy − npeek � n − 2 log6 κ.
So, the tampered codeword can either be invalid or (if valid) equivalent to

the original codeword (because distance of the outer codeword � Θ(log6 κ)).
Now the probability that the completely fixed, dirty and peeked blocks are each
identical to their counterparts in the input codeword does not depend the mes-
sage s because the privacy of the outer codeword is � ndirty +nfixed +npeek. This
probability σ can be computed exhaustively by Sim and does not depend on the
message s. So, given these I0, I1, Ip, cIp

, f , Sim outputs same∗ with probability
σ; otherwise outputs ⊥. This is clearly identical to the real execution random
variable Tamper(s) on I0, I1, Ip, cIp

, f .

Case 3. n0 + n1 � N − um log3 κ.
In this case, nfixed = n − ndirty − ncopy > n − log3 κ. In this case, the tampered
code word is either invalid or (if valid) equivalent to the codeword consistent with
the fixed inner codewords (because the distance of the outer encoding scheme is
much greater than Θ(log3 κ)).

Now Sim samples I0, I1, Ip, cIp
and f ∈ F according to map as in real exe-

cution. We say that (I0, I1) is good if it contains at least one bit from each
column of c.

Since we have n0+n1 > N−um log3 κ, we can show that Pr[(I0, I1) is good] =
1−negl(κ). If (I0, I1) is not good, then we define Sim to output ⊥ with probability

554 S. Agrawal et al.

1 on this (I0, I1). This incurs additional negl(κ) expected simulation error over
the choices of (I0, I1).

Now we are in the case that (I0, I1) is good. Given this, Sim first checks
whether the fixed inner blocks can define a valid outer codeword. If not, then
Sim outputs ⊥. Simulation error in this case is 0.

Finally, we are in the case when (I0, I1) are good and the fixed blocks define
a valid outer codeword, say g∗ and a message s∗. Now Sim needs to check that
remaining blocks are consistent with g∗ or not. Note that since (I0, I1) is good,
the bits restricted to [N] \ (I0 ∪ I1 ∪ Ip) are uniform bits. This is because all
proper subsets of any column are uniform random bits. Now the probability of
forming a codeword for s∗ can be exhaustively computed starting from uniform
random bits for [N]\ (I0 ∪I1∪Ip) and taking fixed value for bits in Ip as cIp

. Let
this probability be σ. Note that peeked blocks cannot intersect with set of fixed
blocks. Now, Sim outputs s∗ with probability σ and ⊥ otherwise. The simulation
error in this case is again 0.

Analysis for ndirty � log3 κ. In Case 1 and Case 2.1 above we relied on the
claim that if ndirty is large, then the probability of the tampered codeword being
valid is negligible. To prove this, we need to consider different ways in which
a dirty block can be formed. In all cases, it is easy to argue that each dirty
block has a constant positive probability of being an invalid block (the unary
codeword encoded by the block will not be 0 (mod 3)). However, these events
need not be independent of each other. The main reason for dependence is that
bits from a single block can be moved into two different blocks. Nevertheless,
we can show that there is an ordering of the dirty blocks that at least ndirty/2
dirty blocks are “risky,” i.e., the probability of it being an invalid block is a
positive constant, conditioned on all previous blocks being valid. Technically, the
ith block (according to the given ordering) is risky if there is some block u in
the original codeword, such that the ith block as well as the jth block, for some
j > i, each has at least one bit copied to it from u; further a sufficiently large
number of bits from u should be copied to blocks numbered i or larger. We can
consider any arbitrary ordering, and its reverse ordering, and argue that every
dirty block is risky in one of the two orderings. This guarantees that in one of
the two orderings, there are at least ndirty/2 risky blocks. The above analysis
assumes that the adversary does not see the bits from the original codeword
that it copies, which is not true since it is given the bits in Ip. To account for
this we restrict to orderings in which the npeek blocks containing the bits from
Ip appear at the beginning, and also define a block to be risky only if it is not
one of these blocks. Since npeek is much smaller than ndirty, we can argue that
the number of risky blocks remains large.

6 Application to Non-malleable String Commitment

For a bit b and auxiliary input z, let STRb(〈C,R〉, A, n, z) denote the output
of the following experiment: on input (1n, z), A adaptively chooses two strings
(v0, v1) of length n (where n is the security parameter), and receives a commit-
ment to vb while simultaneously A also interacts with a receiver, attempting to

Explicit Non-malleable Codes Against Bit-Wise 555

commit to some value. Define ṽ to be the value contained in the right commit-
ment6. If A’s commitment transcript on right is either not accepting, or identical
to the transcript on left, then output a special symbol ⊥; if ṽ ∈ {v0, v1}, output
a special symbol same∗; otherwise, output ṽ.7

Definition 3 (Non-malleable String Commitments). We say that 〈C,R〉
is a non-malleable string commitment scheme (for all strings in {0, 1}n) if for
every PPT A and every z ∈ {0, 1}∗ it holds that

STR0(〈C,R〉, A, n, z) ≈c STR1(〈C,R〉, A, n, z).

We remark that the definition above requires the message space to be
large (i.e., at least super-polynomial in n). Otherwise, the definition cannot be
achieved. This definition, however, is equivalent to a standard simulation-based
formulation of non-malleability (see Theorem A.1 in [18]).

Below we give our construction for non-malleable string commitments from
non-malleable bit commitments. We prove the security of our scheme in the full
version [3].

Construction. Given a bit commitment scheme 〈C,R〉, we construct a string
commitment scheme 〈C ′, R′〉 for {0, 1}n as follows. Let nm-code be a non-
malleable coding scheme for messages of length n that is robust to F := F0,1◦SN ,
and let t(n) denote the length of the codewords for some fixed polynomial t.
Let Enc and Dec be encoding and decoding algorithms. To commit to a string
v ∈ {0, 1}n, C ′ generates a random codeword w ← Enc(v), and commits to
each bit of w independently, and in parallel using the bit-commitment protocol
〈C,R〉. The receiver checks that no two bit-commitment transcripts, out of t
such transcripts, are identical. If the check fails, or if any of the bit-commitment
transcripts are not accepting, the receiver rejects; otherwise it accepts the com-
mitment. To decommit to v, the receiver sends v along with decommitment
information for each bit of w denoted by (wi, di) for every i ∈ [t]; the receiver
accepts v if and only if all recommitments verify and the resulting codeword
decodes to v.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. STOC (2015, to appear)

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

6 Note that ṽ is unique w.h.p. and there exists d̃ s.t. open(c̃, ṽ, d̃) = 1 where c̃ is the
right commitment.

7 Following [16], this definition allows MIM to commit to the same value. It is easy to
prevent MIM from committing the same value generically in case of string commit-
ments: convert the scheme to tag based by appending the tag with v, and then sign
the whole transcript using the tag.

556 S. Agrawal et al.

3. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes resistant to permutations and perturbations. Cryptology ePrint
Archive, Report 2014/841 (2014). http://eprint.iacr.org/

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 375–397. Springer, Heidelberg (2015)

5. Broadbent, A., Tapp, A.: Information-theoretic security without an honest major-
ity. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 410–426.
Springer, Heidelberg (2007)

6. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)

7. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015). http://
eprint.iacr.org/

8. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decod-
able codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer,
Heidelberg (2014)

9. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: STOC, pp. 306–315 (2014)

10. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS, pp.
155–168 (2014)

11. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014)

12. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011)

13. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. Cryptology ePrint Archive, Report
2014/324 (2014). http://eprint.iacr.org/

14. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008)

15. Cramer, R., Padró, C., Xing, C.: Optimal algebraic manipulation detection codes
in the constant-error model. Cryptology ePrint Archive, Report 2014/116 (2014).
http://eprint.iacr.org/

16. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552 (1991)

17. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 239–257. Springer, Heidelberg (2013)

18. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–
452 (2010)

19. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

20. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Explicit Non-malleable Codes Against Bit-Wise 557

21. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC, pp. 495–504
(2014)

22. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

23. Gordon, D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primitives
for fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108.
Springer, Heidelberg (2010)

24. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
STOC, pp. 695–704 (2011)

25. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: FOCS, pp. 51–60 (2012)

26. Guruswami, V., Smith, A.: Codes for computationally simple channels: explicit
constructions with optimal rate. In: FOCS, pp. 723–732 (2010)

27. Hemenway, B., Ostrovsky, R.: Public-key locally-decodable codes. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 126–143. Springer, Heidelberg (2008)

28. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

29. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC, pp. 705–714 (2011)

30. Lipton, R.J.: A new approach to information theory. In: STACS, pp. 699–708
(1994)

31. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012)

32. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against
computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 1–16. Springer, Heidelberg (2005)

33. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)
34. Ostrovsky, R., Pandey, O., Sahai, A.: Private locally decodable codes. In: Arge, L.,

Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
387–398. Springer, Heidelberg (2007)

35. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC, pp. 533–542 (2005)

Assumptions

Cryptanalysis of the Co-ACD Assumption

Pierre-Alain Fouque1, Moon Sung Lee2, Tancrède Lepoint3,
and Mehdi Tibouchi4(B)

1 Université de Rennes 1 and Institut Universitaire de France, Rennes, France
fouque@irisa.fr

2 Seoul National University (SNU), Seoul, South Korea
moolee@snu.ac.kr

3 CryptoExperts, Paris, France
tancrede.lepoint@cryptoexperts.com

4 NTT Secure Platform Laboratories, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. At ACM-CCS 2014, Cheon, Lee and Seo introduced a new
number-theoretic assumption, the Co-Approximate Common Divisor
(Co-ACD) assumption, based on which they constructed several cryp-
tographic primitives, including a particularly fast additively homomor-
phic encryption scheme. For their proposed parameters, they found that
their scheme was the “most efficient of those that support an additive
homomorphic property”. Unfortunately, it turns out that those parame-
ters, originally aiming at 128-bit security, can be broken in a matter of
seconds.

Indeed, this paper presents several lattice-based attacks against the
Cheon–Lee–Seo (CLS) homomorphic encryption scheme and of the under-
lying Co-ACD assumption that are effectively devastating for the pro-
posed constructions. A few known plaintexts are sufficient to decrypt any
ciphertext in the symmetric-key CLS scheme, and small messages can even
be decrypted without any known plaintext at all. This breaks the security
of both the symmetric-key and the public-key variants of CLS encryption
as well as the underlying decisional Co-ACD assumption. Moreover, Cop-
persmith techniques can be used to solve the search variant of the Co-ACD
problem and mount a full key recovery on the CLS scheme.

Keywords: Cryptanalysis · Lattice reduction · Coppersmith theorem ·
Homomorphic encryption · Co-ACD problem

1 Introduction

At ACM-CCS 2014, Cheon, Lee and Seo [CLS14] introduced a new hardness
assumption called the co-approximate common divisor assumption (Co-ACD).
Informally, the decisional Co-ACD assumption states that it is hard to distin-
guish (without knowing the primes pi’s) between the uniform distribution over
Zp1 × · · · × Zpn

and the distribution which outputs (e · Q mod pi)n
i=1, where Q

is a known value and e is some uniformly distributed noise in (−2ρ, 2ρ). It is
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 561–580, 2015.
DOI: 10.1007/978-3-662-47989-6 27

562 P.-A. Fouque et al.

assumed that max{p1, . . . , pk} < 2ρ · Q <
∏

i pi to make the problem non triv-
ial. The search Co-ACD assumption states that, given arbitrarily many samples
from the distribution above, it is hard to recover the pi’s themselves. To validate
the plausible hardnesses of these assumptions, the authors provided a crypt-
analytic survey [CLS14, Sect. 4] based on known and new dedicated attacks:
the algebraic approach due to Chen–Nguyen [CN12,CNT12], orthogonal lat-
tices [NS98b,NS99] and Coppersmith’s theorem [Cop97,How01,CH12].

Based on the hardness of the decisional problem, the authors then proposed
a very efficient additive homomorphic encryption scheme which outperformed
competitors such as [Pai99,NLV11,JL13] by several orders of magnitude. In this
scheme, a message m ∈ ZQ is encrypted as (c1, c2) =

(
m + e · Q mod p1, m + e ·

Q mod p2

)
for large enough primes p1, p2 which form the secret key. The hope is

that eQ > p1, p2 will hide the message m for each component c1 and c2 (which is
indeed the case if the decisional Co-ACD assumption holds), while still allowing
decryption using the Chinese Remainder Theorem for users who know the secret
key, since eQ < p1p2. This is a symmetric-key scheme, but can be converted to
public-key using a transformation similar to the one from [DGHV10].

As the name suggests, the Co-ACD assumption has some similarity with
the (extended) approximate common divisor (ACD) assumption, which has
been used to construct various primitives including fully homomorphic encryp-
tion [DGHV10,CCK+13,CLT14]. In the ACD problem, the goal is to recover p
given samples of the form x = pq + r where q and r are uniformly distributed
in [0, 2γ/p) and (−2ρ, 2ρ), respectively. This problem has been introduced by
Howgrave-Graham in [How01] and lattice reduction algorithms have been used
to solve this problem using Coppersmith’s theorem [Cop97,CH12], as well as
other algebraic techniques [CN12,CNT12]. In view of that similarity, the para-
meter choice in [CLS14] seems rather bold: for example, the authors claim 128
bits of security with ciphertexts as small as 3000 bits, whereas even if we restrict
the recent ACD-based fully homomorphic encryption scheme [CLT14] to homo-
morphic additions, ciphertext size for that scheme is still at least cubic in the
security parameter, so ciphertexts have to be millions of bits long for 128 bits of
security.

Our Contributions. In this paper, we present three new attacks, targeting
the Cheon–Lee–Seo (CLS) encryption scheme (in both its symmetric-key and
public-key incarnations) as well as the decisional and search variants of the Co-
ACD assumption. Our new attacks severely reduce the security of all proposed
constructions from [CLS14].

Our first attack, described in Sect. 3, is a known-plaintext attack against the
symmetric-key CLS scheme. We establish that a few known plaintext-ciphertext
pairs are sufficient to decrypt any ciphertext. This attack breaks the one-wayness
of the symmetric-key CLS scheme, and it is straightforward to use it to break the
one-wayness of the public-key CLS scheme and the decisional Co-ACD assump-
tion as well. The algorithm runs in polynomial time on a wide range of para-
meters, and while it is possible to select parameters outside of that range, they
need to be huge to achieve security, resulting in a scheme of little practical use.

Cryptanalysis of the Co-ACD Assumption 563

Our second attack, discussed in Sect. 4, is a ciphertext-only attack on the
symmetric-key CLS scheme. It allows an attacker to decrypt, without any known
plaintext, a set of ciphertexts corresponding to small messages. Combined with
the first attack, this makes it possible to decrypt arbitrary ciphertexts given only
a few ciphertexts corresponding to small messages. This stronger attack uses the
more advanced “doubly orthogonal lattice” technique of Nguyen–Stern, which
makes it heuristic, but we find that it is very effective as well in practice.

Finally, our third attack, discussed in Sect. 5, solves the search variant of the
Co-ACD problem in a wide range of parameters, and can in particular be used
to factor the modulus of the public-key CLS scheme, revealing the entire private
key. This attack combines a pure lattice step together with a generalization of
Coppersmith’s theorem due to Alexander May.

We present each of these attacks both in the case when n = 2 (i.e. the mod-
ulus N is a product of two primes), which is the one considered by Cheon et al.
to construct their encryption schemes, and in the case of larger n, for which
the Co-ACD assumptions are still defined, and the encryption schemes admit
natural generalizations. We also provide extensive experiments that show that
our attacks completely break the parameters proposed in [CLS14] in a very con-
crete way.

Related Work. Our attacks use orthogonal lattice techniques (as discussed e.g.
in [NT12]), originally introduced by Nguyen and Stern in several attacks [NS97,
NS98b,NS98a,NS99] against the Qu–Vanstone knapsack-based scheme, the
Itoh–Okamoto–Mambo cryptosystem, Béguin-Quisquater server-aided RSA pro-
tocol, and the hidden subset sum problem. Similar techniques were also used in
other cryptanalytic works, but work only with one modulus p1 (either known
but hard to factor [DGHV10,CNT10], or unknown [LT15]). In the original
paper [CLS14], orthogonal lattice attacks were already considered to set the
parameter ρ = (n − 1)η + 2λ for λ bits of security; we obtain better attacks,
however, by considering different lattices as well as extended attack techniques.

Notation. For any integer n, we denote by [n] the set {1, . . . , n} and by Zn the

ring of integers modulo n. We use a
$← A to denote the operation of uniformly

sampling an element a from a finite set A. If χ is a distribution, the notation
a ← χ refers to sampling a according to the distribution χ. We let λ be the
security parameter. We use bold letters for vectors and the inner product of two
vectors u , v is denoted by 〈u , v〉.

2 Preliminaries

In this section, we recall the additive homomorphic schemes (symmetric and
public-key) proposed by Cheon–Lee–Seo (CLS) at ACM-CCS 2014 [CLS14], and
its underlying security assumption called the co-approximate common divisor
assumption (Co-ACD). We also give some background on lattices, orthogonal
lattices and Coppersmith’s algorithm to find small roots of modular polynomial
equations.

564 P.-A. Fouque et al.

Table 1. Parameters for the CLS scheme for λ = 128 bits of security

Parameters Q η ρ τ ν

Set-I 2256 1536 1792 3328 142
Set-II 2256 2194 2450 4645 142
Set-III 2256 2706 2962 5669 142

2.1 CLS Somewhat Additively Homomorphic Encryption Schemes

Secret-Key Scheme. Given the security parameter λ, we use the following
parameters: η the bit-length of the secret key elements pi’s, Q the size of the
message space ZQ, ρ the bit-length of the error. The CLS scheme then consists
of the following algorithms.

CLS.KeyGen(1λ): Generate two random prime integers p1, p2 of η bits, and output
sk = {p1, p2}.

CLS.Encrypt(sk,m ∈ ZQ): Generate a random noise e
$← (−2ρ, 2ρ), and output

c = (c1, c2) = (m + e · Q mod p1,m + e · Q mod p2).
CLS.Decrypt(sk, c): Parse c = (c1, c2). Compute e′ = c1 + p1 · (p−1

1 mod p2) ·
(c2 − c1) mod (p1p2) and output e′ mod Q.

This completes the description of the scheme using Garner’s formula to
improve the decryption. When 2ρ · Q ≤ 22η−2 < p1p2, the previous scheme is
obviously correct. As shown in [CLS14], this scheme is also somewhat additively
homomorphic when adding the ciphertexts componentwise over Z, i.e. a limited
number of homomorphic additions (at least 2η−3−ρ−�log2 Q�) can be performed
on fresh ciphertexts while preserving correctness.

Public-Key Variant. A public key variant of the latter scheme was also
proposed in [CLS14]. The public key pk then consists of the public modulus
N = p1p2, and x 1, . . . ,x τ , b1, b2 ← CLS.Encrypt(sk, 0).

To encrypt a message m ∈ ZQ, one samples (si)τ
i=1

$← {0, 1}τ and t1, t2 ←
[0, 2ν) and outputs c = (m,m)+

∑τ
i=0 si ·x i +t1 ·b1+t2 ·b2. The parameters are

chosen so that (τ +2ν+1) ·2ρ ·Q < 2η−2 to ensure that c decrypts correctly with
CLS.Decrypt. The x i’s, b1, and b2 are specially crafted (using rejection sampling)
in order to apply the leftover hash lemma over lattices of Coron, Lepoint and
Tibouchi [CLT13, Sect. 4]; this step gives conditions on ν and τ but is irrelevant
for our purposes—we refer to [CLS14] for a rigorous description.

Practical Parameters. Some specific parameters (and implementation results)
are proposed by Cheon et al. The parameters are chosen from their cryptanalysis
survey [CLS14, Sect. 4] and aim at a security level of 128 bits. We recall these
parameters in Table 1.

Cryptanalysis of the Co-ACD Assumption 565

2.2 The Co-ACD Assumptions

Definition 1 (Co-ACD). Let n,Q, η, ρ ≥ 1 and denote π the uniform dis-
tribution over the η-bit prime integers. The Co-ACD distribution for a given
p = (p1, . . . , pn) ∈ Z

n is the set of tuples (e · Q mod p1, . . . , e · Q mod pn) where

e
$← (−2ρ, 2ρ).

– The search-Co-ACD problem is: For a vector p ← πn and given arbitrarily
many samples from the Co-ACD distribution for p, to compute p.

– The decisional-Co-ACD problem is: For some fixed vector p ← πn and given
arbitrarily many samples from Zp1 × · · · × Zpn

, to distinguish whether the
samples are distributed uniformly or whether they are distributed as the Co-
ACD distribution for p.

We sometimes use notation like (ρ, η, n;Q)-Co-dACD to mean the assump-
tion that no polynomial-time adversary solve the decisional Co-ACD problem
with these parameters. In [CLS14, Theorem 1 and 3], the authors prove that the
(somewhat) additive homomorphic encryption schemes of Sect. 2.1 are semanti-
cally secure under the (ρ, η, 2;Q)-Co-dACD assumption when Q < 2η−3−2λ.

2.3 Background on Lattices

In this section, we recall some useful facts about lattices, orthogonal lattices and
Coppersmith’s technique. We refer to [MR09,NS01,Ngu10] for more details.

Lattices. A d-dimensional Euclidean lattice L ⊂ Z
t is the set of all integer

linear combinations of some linearly independent vectors b1, . . . , bd ∈ Z
t, and

we write

L =
{∑

i≤d

xibi : (xi)i≤d ∈ Z
d
}

= Zb1 ⊕ · · · ⊕ Zbd.

We denote vol(L) the volume of the lattice, defined as vol(L) = |det(BBt)1/2| for
any basis matrix B = (b1, . . . , bd). (The determinant of a lattice is well-defined
since it is independent of the choice of the basis). A theorem due to Minkowski
bounds the length of the shortest vector in L in terms of vol(L).

Theorem 1 ([Ngu10], Cor. 3). Any d-dimensional lattice L in Z
t contains a

nonzero vector x such that ‖x‖ ≤ √
d · vol(L)1/d.

And in fact, in most lattices, that is close to the right order of magnitude not
just for the length λ1(L) of the shortest vector, but for all successive min-
ima λi(L)1≤i≤d: according to the Gaussian heuristic, one expects λi(L) ≈√

d
2πe vol(L)1/d for all i.
Among all the bases of a lattice L, some are “better” than others, in the sense

that they consist of shorter and “more orthogonal” vectors. Shortening the vec-
tors of a lattice basis and making them more orthogonal is the purpose of lattice
reduction algorithm. The LLL algorithm of Lenstra, Lenstra and Lovász [LLL82]

566 P.-A. Fouque et al.

is the best known such algorithm; it runs in polynomial time and returns a basis
(b1, . . . , bd) such that ‖bi‖ ≤ 2χ·d · λi(L) for some absolute constant χ. More
generally, with other reduction algorithms such as BKZ, one can achieve better
approximation factors.

Orthogonal Lattices. For any vectors u , v ∈ Z
t, we say that u and v are

orthogonal if 〈u , v〉 = 0, and we denote it u ⊥ v . For any lattice L ⊂ Z
t, we

denote by L⊥ its orthogonal lattice, i.e. the set of vectors in Z
t orthogonal to

the points in L: L⊥ = {v ∈ Z
t | ∀u ∈ L, 〈u , v〉 = 0}. Note that it is shown that

dim(L) + dim(L⊥) = t and vol(L⊥) ≤ vol(L) in [NS97]. We have the following
theorem [NS97]:

Theorem 2. There exists an algorithm which, given any basis {b1, . . . , bd} of
a lattice L in Z

t of dimension d, outputs an LLL-reduced basis of the orthogonal
lattice L⊥, and whose running time is polynomial with respect to t, d and any
upper bound on the bit-length of the ‖bj‖’s.
Remark 1. A simple algorithm for Theorem 2 consists in a single call to LLL: to
compute an LLL-reduced basis {u1, . . . ,u t−d} of the orthogonal lattice L⊥ ⊂ Z

t

to L = Zb1 ⊕ · · · ⊕ Zbd ⊂ Z
t, one applies LLL to the lattice in Z

d+t generated
by the rows of the following matrix:

⎛

⎜
⎝

γ · b1,1 · · · γ · bd,1 1 0
...

...
. . .

γ · b1,t · · · γ · bd,t 0 1

⎞

⎟
⎠ ,

where bi = (bi,j)t
j=1 and γ is a suitably large constant, and keeps only the t last

coefficients of each resulting vector.

Coppersmith’s Technique. In [Cop97], Coppersmith presents a method based
on lattice reduction to find small roots of univariate modular polynomials. In this
paper, we use the more general formulation of his theorem due to May [May03,
Theorem 7].

Theorem 3 (Coppersmith). Let N be an integer of unknown factorization,
which has a divisor b ≥ Nβ. Let f(x) be a univariate polynomial of degree δ.
Then, we can find all solutions x0 to the equation f(x) ≡ 0 mod b which satisfy
|x0| ≤ Nβ2/δ in time polynomial in (log N, δ).

3 Known Plaintext Attack Against the CLS Scheme

Let m1, . . . , mt be t messages with their respective ciphertexts c1, . . . , ct, where
ci ← Encrypt(sk,mi). Throughout this section, we assume that the first message
m1 is unknown while the other (t − 1) messages m2, . . . , mt are known, and we
show that if t is large enough, m1 can be recovered efficiently. This means that
the symmetric-key CLS scheme is not one-way against known-message attacks
(not OW-KPA-secure), and as a direct corollary, it follows that the public-key
CLS scheme is not one-way either.

Cryptanalysis of the Co-ACD Assumption 567

Moreover, this also implies that we can solve the decisional Co-ACD prob-
lem efficiently for suitable parameters. We can either see this from the original
security reduction for the symmetric-key [CLS14, Theorem 1], or much more
directly: if we have samples from a distribution which is either the Co-ACD dis-
tribution or uniformly random, we can use these samples to “encrypt” randomly
chosen messages m1, . . . , mt, and then apply our attack. It will recover the cor-
rect value of m1 with significant probability if the distribution was Co-ACD, but
returns a random element of ZQ for the uniform distribution, so that we solve
the decisional Co-ACD problem with significant advantage.

We present our attack in the sections below: we first present the attack
in Sect. 3.1 in the case when n = 2, i.e. N = p1p2, as in the original CLS
encryption schemes. Then, we show in Sect. 3.2 how it generalizes naturally to
higher values of n, thus breaking the decisional Co-ACD assumption for a wide
range of parameters.

3.1 Message Recovery Using Known Plaintexts for N = p1p2

Denote c = (c1, . . . , ct). We can write for each i ∈ [t]:
{

ci,1 = mi + ei · Q + ki,1 · p1

ci,2 = mi + ei · Q + ki,2 · p2,

where |ei| < 2ρ and ki,1 (resp. ki,2) is the quotient in the Euclidean division
of mi + ei · Q by p1 (resp. p2). If we write e = (ei)i∈[t], k j = (ki,j)i∈[t] and
C j = (ci,j)i∈[t] for j = 1, 2, we have:

{
C 1 = m + e · Q + p1 · k1

C 2 = m + e · Q + p2 · k2.
(1)

In particular, this yields the following equation:

C 1 − C 2 = p1 · k1 − p2 · k2. (2)

Since only C 1 − C 2 is known, Eq. (2) can be seen as a variant of the hidden
subset sum problem as considered by Nguyen and Stern [NS99]. However, while
in the hidden subset sum setting the hidden vectors are random independent
binary vectors, in our case the unknown vectors k1 and k2 are nearly parallel
and have entries of roughly (ρ+ log Q− η) bits. As a result, it turns out that k1

and k2 cannot be obtained directly from the much shorter reduced basis of the
lattice they generate, and therefore we do not know how to recover the secret
primes p1, p2 from the ciphertext difference C 1 −C 2 alone. Nevertheless, we can
still obtain the unknown message m1 in two steps:

(1) Find a short vector u in the orthogonal lattice L⊥ to the lattice L =
Z(C 1 − C 2) generated by C 1 − C 2. If u is short enough, we get 〈u , k1〉 =
〈u , k2〉 = 0.

568 P.-A. Fouque et al.

(2) Reducing the linear equation 〈u ,m + e · Q − C 1〉 = 〈u ,−p1 · k1〉 =
−p1〈u , k1〉 = 0 modulo Q, we eliminate e , and recover the message from
〈u ,m − C 1〉 ≡ 0 mod Q.

For the first step, we use the algorithm of Nguyen and Stern to obtain a basis
of the orthogonal lattice L⊥ ⊂ Z

t of rank t − 1, where L = Z(C 1 − C 2) (see
Theorem 2). Let u be a vector in L⊥. Then, the following holds:

〈u ,m + e · Q − C 1〉 ≡ 〈u ,C 1 − C 1〉 = 0 (mod p1),
〈u ,m + e · Q − C 1〉 ≡ 〈u ,C 2 − C 1〉 = 0 (mod p2).

Thus, we get the following equation:

〈u ,m + e · Q − C 1〉 ≡ 0 (mod N).

Now if ‖u‖ is less than N/‖m + e · Q − C 1‖ ≈ 22η−ρ−log Q, then

‖〈u ,m + e · Q − C 1〉‖ ≤ ‖u‖ · ‖m + e · Q − C 1‖ < N,

which implies that the inner product 〈u ,m+e ·Q−C 1〉 is actually zero over the
integers. Finally, u satisfies 〈u , k1〉 = 0 from Eq. (1), and similarly we obtain
that 〈u , k2〉 = 0.

In the second step, we actually recover the message m1. Using the vector
u = (u1, . . . , ut) ∈ L⊥ obtained in the first step, we have 〈u ,m+e ·Q−C 1〉 = 0.
Viewing this equation modulo Q, we obtain

〈u ,m − C 1〉 = 0 (mod Q). (3)

Solving the Eq. (3) modulo Q reveals m1 completely as soon as gcd(u1, Q) =
1, which happens with significant probability φ(Q)/Q = Ω(1/ log log Q) if we
assume that u1 is randomly distributed modulo Q. More generally, we always
obtain m1 modulo (Q/ gcd(u1, Q)), which gives gcd(u1, Q) candidates for m1

(this is usually small, and polynomially bounded on average for a random Q by
[Bro01, Theorem 4.3]), and we can of course obtain more information on m1 with
a different, independent short vector u or with more known plaintexts, making
recovery very fast in practice.

We now discuss the value of t needed to find a short enough vector u . Since
the volume of L⊥ is vol(L⊥) ≤ vol(L) = ‖C 1 −C 2‖ ≈ 2η and it has rank t − 1,
Minkowski’s theorem guarantees that it contains a vector u of length at most√

t − 1 · vol(L⊥)1/(t−1) ≈ 2η/(t−1). Such a vector is short enough to carry out
our attack provided that:

η/(t − 1) < 2η − ρ − log Q ⇐⇒ t > 1 +
η

2η − ρ − log Q
.

Setting t = 4 is enough for all proposed parameters in [CLS14]. For such a small
lattice dimension, it is straightforward to find the actual shortest vector of the
lattice, and we can easily recover m1 in practice in a fraction of a second, even
accounting for occasional repetitions when more than one candidate is found.

Cryptanalysis of the Co-ACD Assumption 569

We can also analyze the attack asymptotically as follows. For large lattice
dimensions, a lattice reduction algorithm may not find the shortest vector of L⊥,
but only an approximation within a factor 2χ·(t−1), where the value χ depends
on the algorithm; we can achieve a given value of χ in time 2Θ(1/χ) using BKZ-
reduction with block size Θ(1/χ). With such an algorithm, a short enough vector
u will be found provided that:

χ · (t − 1) +
η

t − 1
< 2η − ρ − log Q.

The left-hand side is minimal for t − 1 =
√

η/χ, and is then equal to 2
√

χη.
Moreover, the right-hand side is a lower bound on the additive homomorphicity
of the encryption scheme (denoted by log2 A in [CLS14]), and should thus be at
least as large as the security parameter λ for the scheme to be of interest. The
condition to find u then becomes χ < λ2/4η. Thus, we obtain an attack with
complexity 2Ω(η/λ2), which means that our algorithm runs in polynomial time
for parameters such that η = Õ(λ2), and that we should have at least η = Ω(λ3)
to achieve λ bits of security, making the scheme quite inefficient.

More concretely, 128-bit security roughly corresponds to 2χ ≈ 1.007 [CN11,
vdPS13]. Hence, a conservative choice of η for 128 bits of security should satisfy:

η � 1282

4 · log2(1.007)
> 400,000,

making the scheme quite impractical!

3.2 Generalization to n ≥ 2

In this section, we extend the attack to n ≥ 2. Consider a modulus N =
∏n

j=1 pj

(which may be kept secret). Using the same notation as before, we have:

C j = m + e · Q + pj · k j , for all j ∈ [n].

Recall that we know the plaintexts m2, . . . , mt where m = (m1,m2, . . . , mt).
Our goal is to find m1 ∈ ZQ.

We first prove that a vector orthogonal to C j − C 1 for all j ∈ [n] is either
large, or orthogonal to k j for all j ∈ [n].

Lemma 1. Let u ∈ Z
t. If u ⊥ (Cj − C1) for all j ∈ [n], then it verifies one of

the following condition:

(1) u ⊥ kj for all j ∈ [n];
(2) ‖u‖ ≥ 2n(η−1)/(Q · 2ρ+1 · t1/2).

Proof. Let u ∈ Z
t be such that u ⊥ (C j −C 1) for all j ∈ [n], and not satisfying

condition (2). Now for all j ∈ [n],

0 = 〈u ,C j − C 1〉 = 〈u ,m + e · Q+ pj · kj − C 1〉 = 〈u ,m + e · Q − C 1〉 + pj · 〈u , kj〉.

570 P.-A. Fouque et al.

In particular, N =
∏n

j=1 pj > 2n(η−1) divides 〈u ,m + e · Q − C 1〉. Now the
Cauchy-Schwarz inequality yields

|〈u ,m + e · Q − C 1〉| ≤ ‖u‖ · (‖m‖ +Q · ‖e‖ + ‖C 1‖) < ‖u‖ · Q · 2ρ+1 · t1/2 < 2n(η−1),

which implies 〈u ,m + e · Q − C 1〉 = 0, and thus 〈u , k j〉 = 0 for all j ∈ [n]. �

Let L⊥ be the orthogonal lattice to the lattice L = Z(C 2 − C 1) ⊕ · · · ⊕
Z(Cn − C 1) generated by the vectors C j − C 1. As before, we can use lattice
reduction to find a short vector u in L⊥, and by Lemma 1, if u is sufficiently
short it must satisfy 〈u ,m + e · Q − C 1〉 = 0. Reducing modulo Q, we obtain
〈u ,m−C 1〉 = 0 mod Q. And m1 can be recovered provided that gcd(u1, Q) = 1
(which again happens with significant probability).

As before, let us estimate the condition on t for such a short vector u to
exist. Since L⊥ is of rank m = t − n + 1 and volume vol(L⊥) ≤ vol(L) ≤∏n

i=2 ‖C i − C 1‖ ≈ 2(n−1)η, Minkowski’s theorem ensures that it contains a
vector of length at most

√
m · vol(L⊥)1/m ≈ 2(n−1)η/m. Taking logarithms and

ignoring logarithmic factors, the condition can be written as:

(n − 1)η
m

< n(η − 1) − log Q − ρ ⇐⇒ t >
(n − 1)η

n(η − 1) − log Q − ρ
+ n − 1. (4)

Again, if we can find the shortest vector in a t-dimensional lattice for some t
satisfying (4), we can break the CLS scheme (and the decisional Co-ACD
assumption) for the corresponding choice of parameters. For the parameters
suggested in [CLS14], where the authors take ρ = (n − 1)η + 2λ, the required t
is quite small: it suffices to choose t ≈ 3n if 2λ + log Q < η/2. Therefore, it is
easy to break such parameters for small values of n.

More generally, we can mimic the asymptotic analysis of the previous section
to take larger parameters into account. We show in the full version of this
paper [FLLT14] that, in this case, our attack on the scheme (and the corre-
sponding Co-ACD assumption) runs in time 2Ω(nη/λ2). Therefore, nη (the size
in bits of the modulus N) should be chosen as Ω(λ3) for λ bits of security, and
no smaller than 400,000 bits at the 128-bit security level.

3.3 Experimental Results

We implemented our attack on the parameters proposed by [CLS14] (see
Table 1), and on other sets of parameters for n ≥ 2. The reduced basis for L⊥ is
computed using the Nguyen–Stern algorithm (cf. Remark 1), and we choose u
among short enough vectors in the reduced basis such that gcd(u1, Q) is mini-
mal. As reported in Table 2, the attack takes much less than a second for n = 2,
and under 40 s even for n = 5 and a much larger ρ. On average, the number of
candidates for m1 is always less than 2.

4 Ciphertext-Only Attack Against the CLS Scheme

We now present a somewhat stronger attack against the symmetric-key CLS
encryption scheme, which works without any known plaintext. We assume that

Cryptanalysis of the Co-ACD Assumption 571

Table 2. Known Plaintext Attack on the CLS scheme with message space Z2256 using
(t−1) plaintext-ciphertext pairs (average value over 100 experiments using Sage [S+14]
on a single 2.8 Ghz Intel CPU).

(a) Attack against the proposed parameters claiming 128 bits of security

Parameters t Time in seconds Success rate Average # of candidates
Set-I 4 0.005s 100% 1.21
Set-II 4 0.006s 100% 1.52
Set-III 4 0.007s 100% 1.33

(b) Various parameters for n ≥ 2 with η = 1536

n 2 3 4 5
ρ 1792 2688 3328 4224 4864 5760 6400 7296
t 4 14 6 28 8 42 11 58

Time in seconds 0.005s 0.122s 0.027s 1.95s 0.081s 10.8s 0.22s 39.1s
Success rate 100% 100% 100% 95% 100% 95% 100% 92%

Average # of candidates 1.21 1 1.08 1 1.07 1 1.03 1

we obtain the ciphertexts ci ← Encrypt(sk,mi) corresponding to t messages
m1, . . . , mt that are unknown but small, and we show that all the mi’s can be
recovered efficiently.

Combining this attack with the one from the previous section, this means
that we can break the one-wayness of the symmetric-key CLS scheme without
any known plaintexts, as long as we get a few ciphertexts associated with small
messages (a very common situation in a homomorphic setting!).

From a technical standpoint, this stronger attack is still based on Nguyen–
Stern orthogonal lattices, but uses the “doubly orthogonal” technique introduced
in [NS97].

We present our attack in the sections below: we first present the attack in
Sect. 4.1 in the case when n = 2, i.e. N = p1p2. Then, we explain in Sect. 4.2
that it generalizes naturally to higher values of n.

4.1 (Small) Message Recovery Using Known Ciphertexts
for N = p1p2

We use the same notation as in Sect. 3.1. Our attack proceeds in two steps:

(1) Find t − 3 short vectors u1, . . . ,u t−3 in the orthogonal lattice L⊥ to the
lattice L = ZC 1⊕ZC 2. If the u i are short enough, we will get that 〈u i,m+
e · Q〉 = 0.

(2) Rewriting 〈u i,m + e · Q〉 = 〈u i,m〉 + Q · 〈u , e〉 = 0 and reducing modulo
Q, we get that 〈u i,m〉 = 0 mod Q. If u1, . . . ,u t−4 are short enough, the
previous equation holds over Z and m ∈ (L′)⊥ where L′ = Zu1⊕· · ·⊕Zu t−4.
One should recover the small vector m as the shorter vector of (L′)⊥.

572 P.-A. Fouque et al.

For the first step, we once again use the algorithm of Nguyen and Stern to
obtain a basis u1, . . . ,u t−2 of L⊥ ⊂ Z

t of rank t − 2. Similarly to Lemma 1,
we have that a vector u i orthogonal to both C 1 and C 2 is either large, or
orthogonal to k1, k2 and m + e · Q.

Lemma 2. Let u ∈ Z
t. If u ⊥ C1 and u ⊥ C2, then it verifies one of the

following condition:

(1) u ⊥ (m + e · Q), u ⊥ k1 and u ⊥ k2;
(2) ‖u‖ ≥ 22(η−1)/(Q · 2ρ+1 · t1/2).

Proof. Let u ∈ Z
t be such that u ⊥ C 1 and u ⊥ C 2, and not satisfying

condition (2). Now
{

0 = 〈u ,C 1〉 = 〈u ,m + e · Q〉 + p1 · 〈u , k1〉
0 = 〈u ,C 2〉 = 〈u ,m + e · Q〉 + p2 · 〈u , k2〉.

In particular, p = p1 · p2 > 22(η−1) divides 〈u ,m + e · Q〉. Now the Cauchy–
Schwarz inequality yields

|〈u ,m + e · Q〉| ≤ ‖u‖ · (‖m‖ + Q · ‖e‖) < ‖u‖ · Q · 2ρ+1 · t1/2 < 22(η−1),

which implies 〈u ,m + e · Q〉 = 0, and thus 〈u , k1〉 = 〈u , k2〉 = 0. �

In particular, if u1, . . . ,u t−3 do not verify condition (2) of Lemma2, they are
such that 〈u i,m + e · Q〉 = 0.

For the second step, we similarly prove that if a vector u is orthogonal to
m + e · Q, then it is either large or orthogonal to both m and e .

Lemma 3. Let u ∈ Z
t. If u ⊥ (m + e · Q), then it verifies one of the following

condition:

(1) u ⊥ m and u ⊥ e · Q;
(2) ‖u‖ ≥ Q/(2μ · t1/2).

In particular, if u1, . . . ,u t−4 do not verify condition (2) of Lemma3, then
m , e , k1 and k2 are in (L′)⊥ where L′ = Zu1⊕· · ·⊕Zu t−4. By applying Nguyen
and Stern technique, one can hope to recover m as the shortest vector of (L′)⊥.

We now discuss the conditions so that

(a) u1, . . . ,u t−3 do not verify condition (2) of Lemma2,
(b) u1, . . . ,u t−4 do not verify condition (2) of Lemma3.

Let us start with (a). For linearly independent m + e · Q, k1 and k2, the
first condition of Lemma 2 cannot hold for all uk with k ∈ [t − 2] (for reasons
of dimensions). In particular, the largest uk, say u t−2, must satisfy ‖u t−2‖ ≥
22(η−1)/(Q·2ρ+1·t1/2). Now the other vectors form a lattice Λ = Zu1⊕· · ·⊕Zu t−3

of rank t − 3 and of volume

V = vol(Λ) ≈ vol(L⊥)
‖u t−2‖ ≤ ‖C 1‖ · ‖C 2‖

22(η−1)/(Q · 2ρ+1 · t1/2)
≤ Q · 2ρ+3 · t3/2.

Cryptanalysis of the Co-ACD Assumption 573

Heuristically, we can expect Λ to behave as a random lattice; assuming the
Gaussian heuristic, we should have ‖uk‖ ≈ √

t − 3·V 1/(t−3)). Thus, the condition
for all the uk’s to be orthogonal to k1, k2 and m + e · Q becomes

t−1/2 · 2−2 ·
(
Q · 2ρ+3 · t3/2

)1+1/(t−3)

� 22·(η−1) ≤ 22·η.

Taking logarithms and ignoring logarithmic factors, this means:

t � 3 +
ρ + 3 + log Q

2η − log Q − ρ − 3
= 3 +

α

1 − α
where α =

ρ + 3 + log Q

2η
. (5)

In the following, we assume that condition (5) is satisfied; therefore the vectors
m + e · Q, k1 and k2 belong to Λ⊥.

Next, let us focus on (b). Similarly, for linearly independent m , e , k1 and
k2, condition (2) of Lemma 3 cannot hold for all k ∈ [t − 3], and therefore
‖u t−3‖ ≥ Q/(2μ · t1/2). Now we want to select t large enough so that all the
‖uk‖ for k ≤ t − 4 verifies condition (1) of Lemma3. We have that

‖uk‖ = O(t2 · Q1/(t−3) · 2(ρ+3)/(t−3)),

so the uk’s do not verify condition (2) of Lemma3 (and therefore verify condi-
tion (1)) when

t5/2 · Q1/(t−3) · 2(ρ+3)/(t−3) · 2μ � Q.

Taking logarithms and ignoring logarithmic factors, this means:

t � 3 +
log Q + ρ + 3

log Q − μ
. (6)

Finally, assuming condition (6) is satisfied, m is a really short vector (of norm
≈ 2μ · t1/2) orthogonal to uk for all k ∈ [t − 4]. It follows that one should
recover m as the first vector of the reduced basis of (L′)⊥, at least in the case
of small lattice dimensions. Our experiments, presented in Sect. 4.3, show that
this condition is well verified in practice.

Moreover, one can carry out an asymptotic analysis as in Sect. 3 to take larger
lattice dimensions into account. The computations are very similar, but due to
the heuristic nature of the present attack, they are less meaningful.

4.2 Generalization to n ≥ 2

Once again, our technique generalizes directly to n ≥ 2. The steps of the gener-
alized attack are similar:

(1) Find t − n − 1 short vectors u1, . . . ,u t−n−1 in the orthogonal lattice L⊥ to
the lattice L = ZC 1 ⊕ · · · ⊕ ZCn. If the u i are short enough, we will get
that 〈u i,m + e · Q〉 = 0 (and 〈u i, k j〉 = 0 for all j ∈ [n]).

574 P.-A. Fouque et al.

Table 3. Attack of Sect. 4.1 on the CLS scheme with message space Z2256 (average
value over 500 experiments using Sage [S+14] on a single 3.4 Ghz Intel Core i7 CPU).

(a) Parameter Set-I

μ 0 16 32 64 128 192 224
Minimal t from Eq. (6) 12 12 13 14 20 36 68
Minimal t in practice 12 12 13 14 20 39 80
Running time (in seconds) 0.16s 0.16s 0.21s 0.28s 1.10s 13.9s 169s
Success rate 100%

(b) Parameter Set-II

μ 0 16 32 64 128 192 224
Minimal t from Eq. (6) 14 15 16 18 25 46 88
Minimal t in practice 14 15 16 18 25 47 98
Running time (in seconds) 0.38s 0.49s 0.62s 0.99s 3.65s 37.1s 521s
Success rate 100% 72.8%

(2) Rewriting 〈u i,m + e · Q〉 = 〈u i,m〉 + Q · 〈u , e〉 = 0 and reducing modulo
Q, we get that 〈u i,m〉 = 0 mod Q. If u1, . . . ,u t−n−2 are short enough, the
previous equation holds over Z and m ∈ (L′)⊥ where L′ = Zu1 ⊕ · · · ⊕
Zu t−n−2. One should recover the small vector m as the shorter vector of
(L′)⊥.

Condition (6) becomes:

t � n + 1 +
log Q + ρ + n + 1

log Q − μ
.

4.3 Experimental Results

We ran our attacks against the parameters of Table 1. Once again, our attack is
really efficient; it amounts to applying LLL twice (cf. Remark 1) and runs in a
matter of seconds. Results are collected in Table 3.

5 Breaking the Search Co-ACD Assumption

In this section, we break the search Co-ACD assumption when N =
∏

i pi and
Q are known (as in the public-key CLS scheme): given a few samples {(ei ·
Q mod p1, . . . , ei ·Q mod pn)}i from the Co-ACD distribution, we show that one
can recover the pi’s in heuristic polynomial time, at least for certain ranges of
parameters. In particular, in the public-key CLS encryption scheme, the private
key can be recovered from the public key alone!

Cryptanalysis of the Co-ACD Assumption 575

5.1 Description of the Attack

For simplicity, we first consider the case n = 2 (as in the CLS scheme). We use
the same notation as in Sect. 4 with m = 0, and assume that N = p1p2 is known.
Hence, we have that

(C 1 − e · Q) · (C 2 − e · Q) = 0 mod N, (7)

where the multiplication · is done componentwise. We start from the following
equation:

e · Q = (C 1 − C 2) · p̄1 + C 2 (mod N), (8)

where p̄1 = p2 · (p−1
2 mod p1) mod N is the first CRT coefficient for (p1, p2).

Multiplying Q−1 mod N , we obtain

e = (C 1 − C 2) · p̄1Q
−1 + C 2 · Q−1 (mod N).

Similar to the lattice used against the ACD problem in [DGHV10], consid-
ering the above equation, we construct a lattice L generated by the rows of the
following (t + 2) × (t + 1) matrix:

⎛

⎝
C 1 − C 2 0

C 2 · Q−1 mod N 2ρ

N · It×t 0

⎞

⎠

Since Z
t+1/L is the quotient of (Z/NZ)t × (Z/2ρ

Z) by (C 1 −C 2 mod N, 0), we
have vol(L) = 2ρ · N t−1 with overwhelming probability. Moreover, the lattice L
contains the following short distinguished vectors:

v1 = (C 1 − C 2, 0) and v2 = (e , 2ρ), (9)

of respective norms ‖v1‖ ≈ 2η and ‖v2‖ ≈ 2ρ, and when t is large enough, we
expect those vectors to be much shorter than other independent vectors in L
(see the discussion below). As a result, if x 1 and x 2 are the first two vectors
of a reduced basis of the lattice L, we expect to have, up to some explicit sign
change, v1 = x 1 and:

(e , 2ρ) = v2 = x 2 + αx 1 (10)

for some unknown integer coefficient α ∈ Z.
Now, plugging the previous equality into Eq. (7) and considering the first

components of the corresponding vectors, we obtain:
(
c1,1 − Q(x2,1 + α · x1,1)

) · (
c2,1 − Q(x2,1 + α · x1,1)

)
= 0 mod N.

This yields a univariate quadratic equation modulo N which admits α as a
solution. Moreover, that solution α is short, in the sense that

|α| =
‖v2 − x 2‖

‖x 1‖ ≤ ‖v2‖ + ‖x 2‖
‖x 1‖ � 21+ρ−η <

√
N.

576 P.-A. Fouque et al.

As a result, we can use (the original, univariate version of) Coppersmith’s theo-
rem [Cop97] to solve this equation in polynomial time, obtain α, and recover e
from (10). It is then straightforward to factor N by computing gcd(C 1−e ·Q,N)
componentwise.

Finally, we analyze how t should be chosen. Since our target vector v2 is
much longer than the shortest vector v1, the best we can hope is that the
second shortest vector in L is v2 (modulo v1). Using λ1(L) ≈ 2η, vol(L) =
2ρ ·N t−1 ≈ 2ρ+2η(t−1), and (

∏t+1
i=1 λi(L))1/(t+1) ≤ √

t + 1 vol(L)1/(t+1), we know
that λ2(L) � (vol(L)/λ1(L))1/t ≈ (2ρ+2η(t−1)−η)1/t = 22η+ ρ−3η

t . If this quantity
is much larger than ‖v2‖ ≈ 2ρ, we can expect to find v2 in L (modulo v1). This
yields the following condition on t when our attack works:

t >
3η − ρ

2η − ρ
. (11)

5.2 Extension to n ≥ 3

In this section, we extend the attack against search Co-ACD assumption to the
case n ≥ 3. Unlike the case n = 2, we will see that this extended attack is only
applicable in a certain range for ρ, but it always breaks non trivial instances of
the search Co-ACD problem.

Similar to the case n = 2, we start from the following equation:

e · Q = (C 1 − Cn) · p̄1 + · · · + (Cn−1 − Cn) · p̄n−1 + Cn (mod N), (12)

where the p̄i’s are the CRT coefficients p̄i = N
pi

· (
pi

N mod pi

)
. Multiplying

Q−1 mod N , we again get

e = (C 1 − Cn) · p̄1Q
−1 + · · · + (Cn−1 − Cn) · p̄n−1Q

−1 + Cn · Q−1 (mod N).

Therefore, if we consider the lattice L generated by the rows of the following
matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C 1 − Cn 0
...

...
Cn−1 − Cn 0

Cn · Q−1 mod N 2ρ

N · It×t 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

it is full rank and contains the following short distinguished vectors: v i = (C i −
Cn, 0) for i = 1, . . . , n−1, which are all of norm ≈ 2η, and vn = (e , 2ρ) of norm
≈ 2ρ. With high probability, these vectors are linearly independent, and when
t is large enough, we expect them to be much shorter than other independent
vectors in the lattice (see the discussion below).

As a result, and since vn is much longer than the v i’s for i < n, apply-
ing lattice reduction to L should yield a reduced basis (x 1, . . . ,x t+1) such

Cryptanalysis of the Co-ACD Assumption 577

that
⊕r

i=1 Zx i =
⊕r

i=1 Zv i for r = n − 1 and r = n. In particular,
(v1, . . . , vn−1,xn, . . . ,x t+1) is a basis of L, and writing vn over that basis yields:

(e , 2ρ) = vn = αv1 + y

for some α ∈ Z and y ∈ Zv2 ⊕ · · · ⊕ Zvn−1 ⊕ Zxn. Plugging that relation into
Eq. (12) gives:

(αv1 + y) · Q ≡ p̄1v1 + · · · + p̄n−1vn−1 + w (mod N)

where w = (Cn, 2ρQ). Now choose a vector u ∈ Z
t+1 orthogonal to

v2, . . . , vn−1,xn but not to v1 modulo N (such a vector exists with overwhelm-
ing probability, and when it does, it can be found in deterministic polynomial
time using the Nguyen–Stern algorithm [NS97]). Taking the inner product with
u yields:

Qα · 〈v1,u〉 + 0 ≡ p̄1〈v1,u〉 + 0 + · · · + 0 + 〈w ,u〉 (mod N),

or equivalently:

p̄1 ≡ Qα + ω (mod N) where ω = − 〈w ,u〉
〈v1,u〉 mod N. (13)

Moreover, α is still small compared to N , of size about ρ − η bits. Therefore,
we can proceed as before and deduce a polynomial relation from (13) so as to
apply Coppersmith’s theorem to recover α. We propose two ways of doing so.
Note that once α is found, we obtain a non trivial factor of N straight away by
computing gcd(Qα + ω,N) = N/p1.

One first approach to computing α is to observe that p̄1 is an idempotent
element of ZN : it satisfies p̄2

1 ≡ p̄1 mod N . It follows that α is a root of the
quadratic polynomial F2(X) = (Q · X + ω)2 − (Q · X + ω) modulo N . It is thus
possible to compute α in polynomial time using Coppersmith’s theorem when
2ρ−η <

√
N ≈ 2nη/2, i.e. ρ < n+2

2 · η. Since we already know that ρ > (n − 1)η
for security, that condition is only non trivial for n = 2 (providing a slightly
different formulation of the attack from the previous section) and n = 3 (in
which case we can break parameters ρ < 5η/2).

A second approach is to see that Eq. (13) implies:

Qα + ω ≡ 0 (mod N/p1).

Therefore, α is a small root of the linear polynomial F1(X) = Q · X + ω modulo
some large unknown factor of N of size ≈ N1−1/n. Alexander May’s extension of
Coppersmith’s theorem guarantees that we can then recover α in deterministic
polynomial time provided that 2ρ−η < N (1−1/n)2 ≈ 2(n−2+1/n)η, i.e. ρ < (n −
1+1/n)η. That condition is always non trivial, and thus we obtain an attack for
all values of n. For n = 3, however, the previous approach should be preferred
as it gives a better bound for ρ (5η/2 instead of 7η/3).

Finally, let us evaluate the condition on t for the attack to succeed. As
before, the condition says that the n-th minimum of the lattice L should

578 P.-A. Fouque et al.

Table 4. Attack of Sect. 5.1 on the search Co-ACD assumption with Q = 2256 (average
value over 100 experiments using Sage on a single 2.8 Ghz Intel CPU).

ρ 1792 2192 2592 2792 2892 2992
Minimal t from Eq. (11) 3 3 5 7 10 21
Minimal t in practice 3 3 5 7 10 22
Running time of the attack (in seconds) 0.31s 0.26s 1.07s 1.07s 17.3s 1886s
Success rate 100% 99% 86%

(a) η = 1536 (ρ = 1792 for 128 bits of security)

ρ 2450 2950 3450 3700 3950 4200
Minimal t from Eq. (11) 3 3 4 5 7 13
Minimal t in practice 3 3 4 5 7 14
Running time of the attack (in seconds) 0.57s 0.55s 0.41s 2.0s 2.1s 203s
Success rate 100%

(b) η = 2194 (ρ = 2450 for 128 bits of security)

be at least 2ρ, while the first n − 1 minima are at most 2η. The volume
of L is vol(L) = 2ρ · N t−n+1, and the expected n-th minimum is roughly
� =

(
vol(L)/2(n−1)η

)1/(t+1−(n−1)). Thus, the condition can be written as:
(t − n + 2) · ρ < ρ + (t − n + 1) · nη − (n − 1)η, or equivalently:

t >
(n + 1)η − ρ

nη − ρ
· (n − 1),

which is a direct generalization of Condition (11). For n ≥ 4, since our
best attack only works for ρ < (n − 1 + 1/n)η, this condition simplifies to
t > (n+1)−(n−1+1/n)

n−(n−1+1/n) (n − 1) = 2n − 1, i.e. t ≥ 2n.

5.3 Experimental Results

We have implemented the attack of Sect. 5.1 in Sage. Timings are reported in
Table 4. The initial lattice reduction step is very fast, and the Coppersmith
computation, where most of the CPU time is spent, also takes on the order of
seconds at most for practically all parameters we tested (despite the fact that
Sage’s small roots command is relatively poorly optimized compared to more
recent implementation efforts such as [BCF+14]).

We also implemented the attack for larger n, and found for example that
N can be factored in a few seconds with only 5 samples for (n, η, ρ) =
(3, 1000, 2300).

Acknowledgments. The authors thank Jung Hee Cheon, Paul Kirchner, Changmin
Lee, Guénaël Renault, Jae Hong Seo, and Yong Soo Song for helpful discussions.
The second author was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education
(No. 2012R1A1A2039129).

Cryptanalysis of the Co-ACD Assumption 579

References

[BCF+14] Bi, J., Coron, J.-S., Faugère, J.-C., Nguyen, P.Q., Renault, G., Zeitoun,
R.: Rounding and chaining LLL: finding faster small roots of univariate
polynomial congruences. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 185–202. Springer, Heidelberg (2014)

[Bro01] Broughan, K.A.: The gcd-sum function. J. Integer Sequences 4, 01.2.2, 19
(2001)

[CCK+13] Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi,
M., Yun, A.: Batch fully homomorphic encryption over the integers. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 315–335. Springer, Heidelberg (2013)

[CH12] Cohn, H., Heninger, N.: Approximate common divisors via lattices. In:
ANTS X (2012)

[CLS14] Cheon, J.H., Lee, H.T., Seo, J.H.: A new additive homomorphic encryption
based on the Co-ACD problem. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM
CCS, pp. 287–298. ACM, New York (2014)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[CLT14] Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic
encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 311–328. Springer, Heidelberg (2014)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011)

[CN12] Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divi-
sors: breaking fully-homomorphic-encryption challenges over the integers.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 502–519. Springer, Heidelberg (2012)

[CNT10] Coron, J.-S., Naccache, D., Tibouchi, M.: Fault attacks against emv signa-
tures. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220.
Springer, Heidelberg (2010)

[CNT12] Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and
modulus switching for fully homomorphic encryption over the integers. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 446–464. Springer, Heidelberg (2012)

[Cop97] Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent RSA vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomor-
phic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

[FLLT14] Fouque, P.-A., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of the
Co-ACD assumption. Cryptology ePrint Archive. Full version of this paper,
Report 2014/1024 (2014). http://eprint.iacr.org/

[How01] Howgrave-Graham, N.: Approximate integer common divisors. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, p. 51. Springer,
Heidelberg (2001)

[JL13] Joye, M., Libert, B.: Efficient cryptosystems from 2k-th power residue sym-
bols. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 76–92. Springer, Heidelberg (2013)

http://eprint.iacr.org/

580 P.-A. Fouque et al.

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261(4), 515–534 (1982)

[LT15] Lepoint, T., Tibouchi, M.: Cryptanalysis of a (somewhat) additively homo-
morphic encryption scheme used in PIR. In: WAHC (2015)

[May03] May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D.
thesis, University of Paderborn (2003)

[MR09] Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–
191. Springer, Berlin (2009)

[Ngu10] Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen, P.Q.,
Vallée, B. (eds.) The LLL Algorithm, Information Security and Cryptog-
raphy, pp. 19–69. Springer, Berlin (2010)

[NLV11] Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryp-
tion be practical? In: Cachin, C., Ristenpart, T. (eds), ACM CCSW, pp.
113–124, ACM (2011)

[NS97] Nguyên, P.Q., Stern, J.: Merkle-hellman revisited: a cryptanalysis of the qu-
vanstone cryptosystem based on group factorizations. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg
(1997)

[NS98a] Nguyên, P.Q., Stern, J.: The béguin-quisquater server-aided RSA protocol
from crypto 1995 is not secure. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 372–379. Springer, Heidelberg (1998)

[NS98b] Nguyên, P.Q., Stern, J.: Cryptanalysis of a fast public key cryptosystem
presented at SAC 1997. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS,
vol. 1556, p. 213. Springer, Heidelberg (1999)

[NS99] Nguyên, P.Q., Stern, J.: The hardness of the hidden subset sum problem
and its cryptographic implications. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, p. 31. Springer, Heidelberg (1999)

[NS01] Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, p. 146. Springer,
Heidelberg (2001)

[NT12] Nguyen, P.Q., Tibouchi, M.: Lattice-based fault attacks on signatures. In:
Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography, Information
Security and Cryptography, pp. 201–220. Springer, Berlin (2012)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223.
Springer, Heidelberg (1999)

[S+14] Stein, W. et al.: Sage Mathematics Software (Version 6.4). The Sage Devel-
opment Team (2014). http://www.sagemath.org

[vdPS13] van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional
lattice-based systems. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308,
pp. 290–303. Springer, Heidelberg (2013)

http://www.sagemath.org

Last Fall Degree, HFE, and Weil Descent
Attacks on ECDLP

Ming-Deh A. Huang1, Michiel Kosters2(B), and Sze Ling Yeo3

1 USC, Los Angeles, California
mdhuang@usc.edu

2 TL@NTU, Singapore, Singapore
kosters@gmail.com

3 I2R, Singapore, Singapore
slyeo@i2r.a-star.edu.sg

Abstract. Weil descent methods have recently been applied to attack
the Hidden Field Equation (HFE) public key systems and solve the ellip-
tic curve discrete logarithm problem (ECDLP) in small characteristic.
However the claims of quasi-polynomial time attacks on the HFE sys-
tems and the subexponential time algorithm for the ECDLP depend on
various heuristic assumptions.

In this paper we introduce the notion of the last fall degree of a poly-
nomial system, which is independent of choice of a monomial order. We
then develop complexity bounds on solving polynomial systems based on
this last fall degree.

We prove that HFE systems have a small last fall degree, by show-
ing that one can do division with remainder after Weil descent. This
allows us to solve HFE systems unconditionally in polynomial time if
the degree of the defining polynomial and the cardinality of the base
field are fixed. For the ECDLP over a finite field of characteristic 2, we
provide computational evidence that raises doubt on the validity of the
first fall degree assumption, which was widely adopted in earlier works
and which promises sub-exponential algorithms for ECDLP. In addition,
we construct a Weil descent system from a set of summation polynomi-
als in which the first fall degree assumption is unlikely to hold. These
examples suggest that greater care needs to be exercised when applying
this heuristic assumption to arrive at complexity estimates.

These results taken together underscore the importance of rigorously
bounding last fall degrees of Weil descent systems, which remains an
interesting but challenging open problem.

Keywords: HFE · ECDLP · Weil descent · Solving equations · First
fall degree · Last fall degree

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 581–600, 2015.
DOI: 10.1007/978-3-662-47989-6 28

582 M.-D.A. Huang et al.

1 Introduction

1.1 Zero-Dimensional Polynomial Systems and Weil Descent
Attacks

Zero-dimensional multivariate polynomial systems over finite fields arise in many
practical areas of interest including in cryptography and coding theory. As such,
solving these systems has both practical and theoretical interest. For instance,
a major application is in the design of multivariate cryptosystems. One of the
earliest proposals for the multivariate cryptosystem was the HFE public-key
cryptosystem [21]. In recent years, polynomial solving also arises in elliptic curve
cryptography, specifically in the index calculus approach to solve the elliptic
curve discrete logarithm problem (ECDLP).

Many different approaches had been proposed to solve multivariate polyno-
mial equations over finite fields. The most common approach for generic polyno-
mial systems is via Gröbner basis algorithms [1,9,10]. Typically, a Gröbner basis
with respect to the degree reverse lexicographical ordering is first computed via
algorithms F4 or F5 [9,10]. It is then converted to a Gröbner basis with respect
to the lexicographical ordering by algorithms such as the FGLM algorithm [11]
which contains equations where variables are eliminated. This enables the vari-
ables to be solved one at a time. In general, it is very difficult to determine the
complexity of the Gröbner basis algorithm. Various authors have used the term
“the degree of regularity” to describe properties of a system that can be used to
obtain complexity results. However not all definitions of this term are equivalent.

Another approach to solve multivariate polynomial systems is the XL algo-
rithm and its variants [2–5,17]. This class of algorithms performs well when the
system under consideration is overdetermined, that is, the number of equations
far exceeds the number of variables.

In this present paper, we first introduce the notion of the last fall degree of a
polynomial system over a finite field. Our definition is intrinsic to the polynomial
system itself, independent of the choice of a monomial order. With this notion
at our disposal, we present an explicit algorithm to find all the roots of a zero-
dimensional multivariate polynomial system, bounding the complexity by the
last fall degree.

When the polynomial systems are over a field of cardinality qn, where q is
a prime power and n a positive integer, one can convert this system via Weil
descent to a system over its subfield with q elements (see Sect. 3 for more details).
This results in a polynomial system over a smaller field, but at the expense of
more variables. For example, Weil descent has been adopted to solve the HFE
system as well as the index calculus method for ECDLP. In this paper, we will
describe Weil descent systems arising from a polynomial in one variable and
study the relations among various polynomial systems. Analogous definitions
hold for a multivariate polynomial system.

1.2 The HFE Cryptosystem

Let k be a finite field of cardinality qn, with subfield k′ of cardinality q. Let f ∈
k[X] be a polynomial over k with a relatively small degree. Using factorization

Last fall degree, HFE, and Weil descent attacks on ECDLP 583

algorithms, one can easily factorize this polynomial to find its roots in k. One
can transform this system using Weil descent and two transformations into a
system in n variables over k′. At first glance, this system seems to be hard to
solve and this is the basis of the Hidden Field Equations (HFE) cryptosystem
(see [21] and Subsect. 4.1). Computational and heuristic evidence show that such
a system is not secure [7,8,16]: the degree of regularity of a Weil descent systemis
small and does not depend on n and hence the system can be solved efficiently
using Gröbner basis algorithms. In particular in [16], the authors claimed that
the HFE system can be solved efficiently under a heuristic assumption on the
complexity of the Gröbner basis computations to solve the system. More recently,
Christophe Petit, in a preprint [22], gives a proof of this observation by doing
manipulations using his successive resultant algorithm on the descent side. In
this article, we prove that HFE systems have a small last fall degree, by showing
that one can do division with remainder after Weil descent. This allows us to
solve the HFE systems unconditionally in polynomial time if the degree of the
defining polynomial and the cardinality of the base field are fixed.

We have a natural right action of Affn(k′) = k′n
� GLn(k′) on the ring

R′ = k′[Y0, . . . , Yn−1] by acting as affine change of coordinates. If M ∈ Affn(k′)
and g ∈ R′ we write gM for this action. The main theorem is the following,
which allows one to solve HFE systems efficiently. We stress that our results
hold for a larger class of polynomial systems as we do not require the resulting
Weil descent system to be quadratic.

For r ∈ Z≥0 and c ∈ Z≥1, we set

ψ(r, c) = max (�2(c − 1) (logc (r) + 1)�, 0) .

Main Theorem 1. Let q be a prime power and let k be a finite field of cardinal-
ity qn with subfield k′ of cardinality q. Let f ∈ k[X] nonzero which has at most
e different roots over k and let F = {f}. Let F ′

f ⊂ k′[Y0, . . . , Yn−1] be a Weil
descent system of F (Subsect. 3.1). Let M ∈ Affn(k′), N ∈ GLn(k′). Define gi,
i = 0, . . . , n − 1, by

⎛

⎜
⎝

g0
...

gn−1

⎞

⎟
⎠ = N

⎛

⎜
⎝

[f]0M
...

[f]n−1M

⎞

⎟
⎠ .

Set d = max(ψ(deg(f), q), q, e). Then given G = {g0, . . . , gn−1, Y
q
0 −

Y0, . . . , Y
q
n−1 − Yn−1} ⊂ k′[Y0, . . . , Yn−1], one can deterministically find all solu-

tions to G in time polynomial in (n + d)d.

If one fixes q and deg(f), then the complexity to solve systems in Main
Theorem 1 is polynomial in n. Note that e ≤ deg(f), but usually it is much
smaller. Furthermore, in practical applications, one wants e to be small, say
bounded by a constant: in this case one can solve the above system in quasi-
polynomial time if q is fixed and deg(f) grows like nα.

It is an open question whether variants of HFE, such as HFEv-, can be
attacked by our approach.

584 M.-D.A. Huang et al.

1.3 Polynomial Systems from ECDLP

A major application of solving multivariate polynomial equations over a finite
field k of cardinality qn is in the relation search step of the index calculus algo-
rithm for elliptic curves over the field [6,14,23]. Indeed, let E : y2 + a1xy + a3 =
x3 +a2x

2 +a4x+a6, where a1, a2, a3, a4, a6 ∈ k, be an elliptic curve defined over
k. Let P be a point on E and let Q be a point in the cyclic group generated by
P . The elliptic curve discrete logarithm problem seeks for an integer a such that
Q = aP .

The most important step in the index calculus approach is to generate suf-
ficiently many relations among suitable points on the elliptic curve E. To this
end, summation polynomials provide a way to achieve this (see Subsect. 5.1).
In particular, this transforms the problem of finding relations among points to
solving a system of polynomial equations over k via the summation polynomials.

Cryptographic applications of Weil descent were first suggested by Frey [12],
and Weil descent attacks were initially applied to elliptic curves of composite
degrees over F2 [12,15]. In [6,14], Weil descent was exploited to solve the ECDLP
by applying the Weil descent to the summation polynomials over k. In [6], for
instance, sub-exponential time estimates via this Weil descent approach were
obtained for certain classes of q and n. Here, the author relied on a geometric
approach by Rojas to solve a Weil descent system.

In [23], Petit et al. studied Weil descent systems arising from polynomial sys-
tems over fields of characteristic 2. Their results are based on a certain heuristic
assumption, called the first fall degree assumption, which asserts that the first
fall degree of a polynomial system is close to the degree of regularity. More
specifically, they obtained a sub-exponential time complexity of 2O(n2/3 log n) on
the basis of this assumption.

In this article, we provide computational evidence that raises doubt on the
validity of the first fall degree assumption when applied to elliptic curves over
fields of characteristic 2. In addition, we construct a Weil descent system from a
set of summation polynomials in which the first fall degree assumption is unlikely
to hold. These examples suggest that greater care needs to be exercised when
applying this heuristic assumption to arrive at complexity estimates.

1.4 Our Contributions

The contributions of this paper are three-fold.

– First, we introduce the notion of the last fall degree for a finite set of poly-
nomials. Intuitively, this last fall degree determines the minimum degree at
which operations on the generating polynomials need to be performed for all
other polynomials to be generated. Our definition is intrinsic to the generating
system and is independent of any monomial order. This allows us to provide an
explicit and generic algorithm to find all the zeroes of a zero-dimensional set
of polynomials whose time complexity depends on this last fall degree. While
our approach may be similar to existing Gröbner basis algorithms, we stress

Last fall degree, HFE, and Weil descent attacks on ECDLP 585

that we have developed a generic framework that applies to any multivariate
zero-dimensional polynomial system with a time complexity dependent on a
well-defined parameter.

– Second, we prove that the polynomials from the HFE system can be solved in
polynomial time if the degree of the defining polynomial and the cardinality of
the base field are fixed. Our proof is elementary and complete, without relying
on any unproved assumptions or results. We do this by bounding the last fall
degree of the zero-dimensional system and then exploit the aforementioned
algorithm to solve the system. Besides, our proof works for any univariate
polynomial f(X) bounded by some degree in contrast to the original HFE
system which restricts the monomials in f(X) to be of a certain form. More
importantly, our approach can be applied to analyze zero-dimensional poly-
nomial systems of other types (see [20]).

– Finally, we consider an important application of solving a zero-dimensional
multivariate polynomial system, namely in finding relations for index calcu-
lus algorithms to solve the elliptic curve discrete logarithm problem. Here,
we revisit the first fall degree assumption adopted in [23] to derive a sub-
exponential time estimate to solve the ECDLP. We illustrate two examples
which raise some doubts on the correctness of this assumption on Weil descent
systems arising from summation polynomials. From such examples, we believe
that more evidence has to be presented before applying the first fall degree
assumption to make complexity claims on the ECDLP.

1.5 Organization of the Paper

The rest of this article is organized as follows. We begin in Sect. 2 by defining
a vector space of polynomials obtained with operations within a certain degree
starting from a set of polynomials. We then use this set to define the notion
of the last fall degree of a polynomial system. With these notions, we present
an algorithm to find all the zeros of a zero-dimensional multivariate polynomial
system over a finite field. Next in Sect. 3, we define the notion of a Weil descent
system and of a fake Weil descent system arising from a system of univariate
polynomials over a field of cardinality qn and we discuss the relations between
both systems. This is followed by our attack on the HFE system in Sect. 4. The
main result in this section is Main Theorem 1. In the final section, we provide a
brief discussion and some comments on Weil descent attacks on ECDLP.

2 Constructible Polynomials

Let k be a field and let R = k[X0, . . . , Xn−1] be a polynomial ring. Let F
be a finite subset of R and let I ⊆ R be the ideal generated by F . We set
deg(F) = max(deg(f) : f ∈ F).

Definition 1. For i ∈ Z≥0, we let VF,i be the smallest k-vector space of R such
that

586 M.-D.A. Huang et al.

1. {f ∈ F : deg(f) ≤ i} ⊆ VF,i;
2. if g ∈ VF,i and if h ∈ R with deg(hg) ≤ i, then hg ∈ VF,i.

We set VF,∞ = I. For convenience, we set VF,−1 = ∅. If F is fixed, we often
write Vi instead of VF,i.

Intuitively, Vi is the largest subset of I which can be constructed from F by
doing ideal operations without exceeding degree i.

Note that Vi is a finite-dimensional k-vector space of dimension dimk(Vi) ≤(
n+i

i

) ≤ (n + i)i.
If F is fixed and g1, g2 ∈ R, then we write g1 ≡i g2 whenever g1 − g2 ∈ Vi.

Note that for h1, h2, h3 ∈ R with h1 ≡r h2, one has

h1h3 ≡max(r,deg(h1h3),deg(h2h3)) h2h3.

We write g1 ≡ g2 if g1 − g2 ∈ I.

Definition 2. Let F be a finite subset of R and let I be the ideal generated by
F . The minimal c ∈ Z≥0∪{∞} such that for all f ∈ I one has f ∈ Vmax(c,deg(f)),
is called the last fall degree of F , and is denoted by dF .

A monomial order ≤ on R is called degree refining if for monomials M,N
with deg(M) < deg(N), one has M < N .

Lemma 1. The following hold:

1. One has dF ∈ Z≥0.
2. Let B be a Gröbner basis of I with respect to some degree refining monomial

order on R. Then there is an integer c ∈ Z≥0 such that B ⊆ VF,c and one
has dF ≤ c.

Proof. Since (1) follows from (2), we will prove (2). Let {g1, . . . , gs} be a Gröbner
basis of I with respect to some monomial order which refines the degree. Set c
to be the minimal i such that gj ∈ Vi for all j. Let f ∈ I. Since B is a Gröbner
basis of I with respect to a degree refining order, we can write f =

∑s
i=1 aigi

with deg(aigi) ≤ deg(f) for i = 1, . . . , s. Then one easily finds f ∈ Vmax(deg(f),c).

Note that the bound c on dF given in Lemma 1 is constructed with respect
to a fixed monomial order. However, the last fall degree dF is intrinsic to the set
F and independent of the choice of a monomial order.

Let G be obtained from F through an invertible linear transformation
of equations. Then one has max(dF ,deg(F)) = max(dG ,deg(F)). Note that
deg(F) = deg(G). Further, since any affine transformation of the variables
X0, . . . , Xm−1 is degree-preserving, the last fall degree is invariant under such
transformations. Finally, enlarging the field k does not change the last fall degree.

Remark 1. The name last fall degree has been chosen because there is a similar
concept called the first fall degree, which is used to heuristically bound the
complexity of Gröbner basis algorithms, see [23]. The first fall degree of a system

Last fall degree, HFE, and Weil descent attacks on ECDLP 587

F is the smallest d ≥ deg(F) such that there exists gf ∈ R for f ∈ F such that
d = maxf∈F (deg(gff)) and deg(

∑
f∈F gff) < d and

∑
f∈F gff = 0.

An equivalent definition of the last fall degree is the following: dF is the
largest c ∈ Z≥0 such that Vc ∩R≤c−1 = Vc−1, where R≤c−1 denotes the set of all
polynomials in R with degree less than or equal to c − 1. This definition has the
same flavour as the definition of the first fall degree. This equivalent definition of
the last fall degree allows one to compute the last fall degree if an upper bound,
for example from Lemma 1, is known. It would be of great interest to find a
direct method for computing the last fall degree.

2.1 An Explicit Construction of Vi

Next, we describe an algorithm to construct Vi explicitly.
Let V be a finite-dimensional k-vector subspace of k[X0, . . . , Xn−1]. We say

that B is a reduced basis of V if B is a basis of V and for all h =
∑

g∈B agg, ag ∈
k, we have deg(h) = maxg∈B deg(agg). For instance, a reduced basis can be
constructed if we order the monomials with respect to their degrees and apply
linear algebra operations to obtain a basis with different leading monomials.

Fix an integer i ≥ 0 and let F = {f1, . . . , fr} ⊂ k[X0, . . . , Xn−1]. We con-
struct Vi inductively as follows.

Let W0 be the k-linear span of {fj : j = 1, . . . , r,deg(fj) ≤ i}. By linear
algebra operations, construct a reduced basis B0 of W0. For j = 1, 2, . . ., define
Wj = Spank{tg : g ∈ Bj−1, t is a monomial and deg(tg) ≤ i}. Construct a
reduced basis Bj of Wj from using linear algebra. Note that Wj contains Wj−1.
Since W0 ⊆ W1 ⊆ . . . ⊆ Vi, this process must terminate and we conclude that
there exists some l such that Wl = Wl+1.

We claim that Wl = Vi. Suppose not. Then there must exist some g ∈ Wl and
h ∈ k[X0, . . . , Xn−1] such that gh ∈ Wl and deg(gh) ≤ i. Let Bl = {g1, . . . , gs}
be a reduced basis of Wl. Then one has g = a1g1 + a2g2 + . . . + asgs with
a1, a2, . . . , as ∈ k. Since Bl is a reduced basis of Wl, maxj(deg(ajgj)) = deg(g).
Hence, gh =

∑
j gajgj and maxj(gajgj) ≤ i so that Wl+1 = Wl.

Assume k is a finite field of cardinality q. Since l is bounded by (n + i)i, it
follows from the above arguments that one can compute Vi in time polynomial
in r, log(q) and (n + i)i. Furthermore, using linear algebra, one can determine if
a polynomial f with deg(f) ≤ i lies in Vi with the same time bound.

2.2 Solving a Zero-Dimensional Polynomial System

Consider a system of r multivariate polynomial equations over a field k of car-
dinality q, namely, f1 = f2 = . . . = fr = 0 in n variables X0,X1, . . . , Xn−1.
Suppose that the algebraic set defined by this system is zero-dimensional, that
is, there are finitely many solutions over an algebraic closure k of k. The next
proposition gives a generic approach to solve the system via the above construc-
tion of Vi.

588 M.-D.A. Huang et al.

Proposition 1. Let k be a finite field of cardinality q. Let F ⊂ R be a finite
subset and let I be the ideal generated by F . Assume that I is radical and that
the system has at most e solutions over k. Set d = max(dF , e). Then one can
find all solutions of I in k

– probabilistically in time polynomial in the input size of F , log(q) and (n+d)d;
– deterministically in time polynomial in the input size of F , q and (n + d)d.

Proof. First, note that one can factor a polynomial of degree s over k determin-
istically in time polynomial in q and s, and probabilistically in time polynomial
in log(q) and s [13].

Compute Vd in time polynomial in the input size of F , log(q) and (n + d)d

(Subsect. 2.1).
Assume that all solutions over k of the system are

(a0,0, . . . , a0,n−1), . . . , (at,0, . . . , at,n−1) ∈ k
n

with t < e. Since I is a radical ideal, by the Nullstellensatz and Galois theory,
one has

h0 =
∏

a∈{ai,0: i=0,...,t}
(X0 − a) ∈ I.

Using linear algebra, one can find h0 as the nonzero polynomial of minimal
degree d0 in Vd ∩ Spank{1,X0, . . . , X

e
0}. Factor h0. Assume that a0 is a root of

h0 in k. We will find all solutions over k with X0 = a0. Set h′
0 = h0/(X0 − a0)

of degree d0 − 1. By the Nullstellensatz and Galois theory, one has

h1 = h′
0

∏

a∈{ai,1: i=0,...,t, ai,0=a0}
(X1 − a) ∈ I.

Using linear algebra, one finds h1 as the polynomial of minimal degree d1 in
Vd ∩ Spank{h′

0,X1h
′
0, . . . , X

e−d0+1
1 h′

0}. Factor h1/h′
0 over k. Pick a solution a1

over k and find all solutions with X0 = a0, X1 = a1 using the similar recursive
procedure. Hence one can find all solutions over k as required.

Remark 2. See [20] for a comparison between our approach for solving systems,
MutantXL and Gröbner basis algorithms.

3 Weil Descent

Let q be a prime power. Let n ∈ Z≥1 and let k be a finite field of cardinality qn

with subfield k′ of cardinality q. Let F be a finite subset of k[X]. In this section,
we introduce a Weil descent system of F , which is a system in k′[Y0, . . . , Yn−1].
Furthermore, we introduce the fake Weil descent system of F , which is a system
in k[X0, . . . , Xn−1]. The analysis in this section can be easily extended to m
variables for any positive integer m (see Remark 3).

Let F ⊂ k[X] be a finite set of polynomials. Suppose we want to find the
common zeros of these polynomials in k. Let I be the ideal generated by

Ff = F ∪ {Xqn − X}.

Last fall degree, HFE, and Weil descent attacks on ECDLP 589

3.1 Weil Descent

Let α0, . . . , αn−1 be a basis of k/k′. Write X =
∑n−1

i=0 αiYi and for f ∈ k[X],
define [f]j ∈ k′[Y0, . . . , Yn−1] by

f(
n−1∑

j=0

αjYj) ≡
n∑

j=0

[f]jαj (mod Y q
0 − Y0, . . . , Y

q
n−1 − Yn−1)

where [f]j ∈ k′[Y0, . . . , Yn−1] is chosen of minimal degree, that is, degYi
([f]j) < q.

Consider the systems

F ′ = {[f]j : f ∈ F , j = 0, . . . , n − 1}

and

F ′
f = {[f]j : f ∈ F , j = 0, . . . , n − 1} ∪ {Y q

i − Yi : i = 0, . . . , n − 1}.

The latter is called a Weil descent system of F . Notice that the ideal generated
by F ′

f is always a radical ideal, as k′[Y0, . . . , Yn−1]/(Y q
i − Yi : i = 0, . . . , n − 1) is

isomorphic to a product of fields (Chinese remainder theorem). One easily sees
that solutions of F or Ff in k correspond to solutions of F ′ or F ′

f over k′.
A different choice of αi merely results in a linear change of the variables Yi

and the polynomials [f]i. An interesting choice for the αi is a normal basis, that
is, a basis with αi = θqi

for some θ ∈ k.

3.2 Fake Weil Descent

To study the complexity of solving a Weil descent system, we relate a Weil
descent system to another system in k[X0, . . . , Xn−1], which we refer to as the
fake Weil descent system.

Let R = k[X0, . . . , Xn−1]. Let e ∈ Z≥0. Let Xe′
be the remainder of division

of Xe by Xqn−X in k[X]. Write e′ =
∑n−1

j=0 e′
jq

j in base q with e′
j ∈ {0, 1, . . . , q−

1}. We set

Xe = X
e′
0

0 · · · Xe′
n−1

n−1 ∈ R.

We extend this definition k-linearly for all polynomials in R. This gives a map¯:
k[X] → R. We set, where by convention Xn = X0,

F = {f : f ∈ F}

and

Ff = {f : f ∈ F} ∪ {Xq
0 − X1, . . . , X

q
n−1 − Xn}.

We let I be the ideal generated by Ff . We call Ff the fake Weil descent
system of F . Note that I is a radical ideal. Indeed the k-algebra morphism

590 M.-D.A. Huang et al.

R/(Xq
0 − X1, . . . , X

q
n−1 − Xn) → k[X0]/(Xqn

0 − X0) which sends Xi to Xqi

0 is
an isomorphism, because it is a surjective morphism on k-vector spaces of the
same dimension. The latter ring is isomorphic to kk by the Chinese remainder
theorem. In the ring kk all ideals are radical.

There is a bijection between the set of solutions of I and those of I over k
(or k). If X = a ∈ k is a zero of I, then (X0, . . . , Xn−1) = (a, aq, . . . , aqn−1

) is a
zero of I. Conversely, if (X0, . . . , Xn−1) = (a0, . . . , an−1) is a solution of I, then
X = a0 is a solution of I.

We will now prove a couple of lemmas which will be useful later.

Lemma 2. Let h1, h2 ∈ R, g ∈ k[X]. One has, where ≡i is defined with respect
to Ff :

1. h1 + h2 ≡max(deg(h1),deg(h2))
h1 + h2;

2. h1 · h2 ≡deg(h1)+deg(h2)
h1h2;

3. There is h3 ∈ k[X] with deg(h3) < qn such that g ≡deg(g) h3.

Proof. One reduces to the case of monomials and the result then follows easily.

We have a morphism of k-algebras ϕ : R → k[X] which maps Xi to Xqi

.
This map has the following properties.

Lemma 3. Let h ∈ k[X]. The following statements hold:

1. ϕ(h) ≡ h (mod Xqn − X);
2. h ∈ I if and only if h ∈ I.

Proof. 1: Follows directly.
2: Let h ∈ I. We will show h ∈ I. One can write h = b(Xqn −X)+

∑
f∈F aff .

Modulo I we find with Lemma 2:

h = b(Xqn − X) +
∑

f∈F
aff ≡ b(X0 − X0) +

∑

f∈F
aff ≡ 0.

Conversely, let h ∈ k[X] and assume h ∈ I. Write h =
∑n−1

j=0 cj(X
q
j −Xj+1)+

∑
f∈F bff . One finds, using 1,

ϕ(h) =
n−1∑

j=0

ϕ(cj)ϕ(Xq
j − Xj+1) +

∑

f∈F
ϕ(bf)ϕ(f)

≡ ϕ(cn−1)(Xqn − X) +
∑

f∈F
ϕ(bf)f (mod Xqn − X).

We conclude ϕ(h) ∈ I.

Last fall degree, HFE, and Weil descent attacks on ECDLP 591

3.3 Summary of Notation

Let us recall some notation we have introduced thus far. Let F ⊂ k[X] be a
finite subset, where k is a finite field of cardinality qn and let k′ be its subfield of
cardinality q with an implicit choice of basis of k over k′. We let I be the ideal
generated by

Ff = F ∪ {Xqn − X}.

We have systems in k′[Y0, . . . , Yn−1] defined by

F ′ = {[f]j : f ∈ F , j = 0, . . . , n − 1}
and a Weil descent system

F ′
f = {[f]j : f ∈ F , j = 0, . . . , n − 1} ∪ {Y q

i − Yi : i = 0, . . . , n − 1}.

Finally, we have systems in k[X0, . . . , Xn−1] defined by

F = {f : f ∈ F}
and the fake Weil descent system

Ff = {f : f ∈ F} ∪ {Xq
0 − X1, . . . , X

q
n−1 − Xn}.

We let I be the ideal generated by Ff .

3.4 Relating Both Types of Descent

This subsection seeks to connect the last fall degrees of a Weil descent system
and the fake Weil descent system presented in Subsects. 3.1 and 3.2. We follow
the formulation in [16] which essentially shows that the two systems are linked
by suitable transformations. We have the following result.

Proposition 2. One has

max(dF ′
f
, q,deg(F ′)) ≤ max(dFf

, q,deg(F ′)).

Proof (Sketch). We follow [16]. The details can be found in [20]. One has
deg(F ′) = deg(F). After a linear change, we may assume that a Weil descent
in F ′ is with respect to a normal basis {θqi

: i = 0, . . . , n − 1}. Consider the
system F ′ ⊆ k[Y0, . . . , Yn−1], which has the same last fall degree as considered
over k′. Using some linear changes of the polynomials and linear changes of vari-
ables as in Sect. 4 of [16], we obtain the system F ′′ = {f, fq, . . . , fqn−1 : f ∈
F} ∪ {Y q

0 − Y1, . . . , Y
q
n−1 − Yn}. One has

max(dF ′
f
, q,deg(F ′)) = max(dF ′′ , q,deg(F ′)).

Note that F ⊆ F ′′ and that both sets generate the same ideal (Lemma 2(2)).
Hence the result follows.

592 M.-D.A. Huang et al.

Remark 3. In this section, we have presented a Weil descent system and its
related fake Weil descent system corresponding to a polynomial system in one
variable X over k. This definition can be easily extended to a system of r poly-
nomials in m variables over k such that each variable corresponds to n descent
variables. This gives rise to rn polynomials in mn variables and all the results
follow accordingly.

4 Solving the HFE System

In this section, our primary goal is to prove that the HFE system and its vari-
ants can be solved efficiently by employing the tools we have developed so far.
Although such results were shown previously (see for example [16]), their proofs
were based on some heuristics. Our proof, on the other hand, is rigorous and
free from any unproven conjecture or heuristics. Another claim for a proof can
be found in [22].

We begin by reviewing the general description of the HFE system. Through-
out this section, k will denote a field of cardinality qn, while k′ will denote its
subfield of cardinality q.

4.1 Description of the HFE Encryption

The HFE public key cryptosystem was first introduced by Patarin [21]. Briefly,
let f(X) be a univariate polynomial in k[X] with degree bounded by qt. In
practice, the nonconstant monomials in f are chosen to be either of the form
Xqi+qj

or Xqi

for integers i, j ≥ 0. However, we will remove this restriction in
this paper and allow f to be an arbitrary polynomial with degree bounded by qt.

Let F = {f} ⊂ k[X] and consider the Weil descent system

F ′
f = {[f]0, . . . , [f]n−1} ∪ {Y q

i − Yi : i = 0, . . . , n − 1} ⊆ k′[Y0, . . . , Yn−1]

as in Subsect. 3.1 with respect to some basis of k/k′. We have a natural right
action of Affn(k′) on R′ = k′[Y0, . . . , Yn−1] by an affine transformation of vari-
ables. Let M ∈ Affn(k′). For g ∈ k′[Y0, . . . , Yn−1], we write gM for this action.
Let N ∈ GLn(k′). Define

⎛

⎜
⎝

g0
...

gn−1

⎞

⎟
⎠ = N

⎛

⎜
⎝

[f]0M
...

[f]n−1M

⎞

⎟
⎠ .

The public key of the system is the set of equations {g0, g1, . . . , gn−1} ⊂
k′[Y0, . . . , Yn−1] while the private key comprises f , the basis choice k/k′ and the
transformations M and N . To encrypt a message, (m0,m1, . . . , mn−1) ∈ k′n,
one computes

(c0, . . . , cn−1) = (g0(m0, . . . , mn−1), . . . , gn−1(m0, . . . , mn−1)).

Last fall degree, HFE, and Weil descent attacks on ECDLP 593

Using the private key and a factorization algorithm, one can find the message
efficiently.

Let G = {g0 − c0, . . . , gn−1 − cn−1} ∪ {Y q
i − Yi : i = 0, 1, . . . , n − 1}. Observe

that the message (m0, . . . , mn−1) can be recovered if we can solve G. This can be
achieved deterministically via Proposition 1 in time polynomial in q and (n+d)d,
where d is bounded by the maximum of the last fall degree of G and the number
of solutions e of G. Notice that we are now in the situation of the main theorem
(Main Theorem 1) which we now proceed to prove.

4.2 An Upper Bound on the Last Fall Degree

Let q be a prime power and let k be a finite field of cardinality qn. Let F ⊂
k[X] be a finite set. Consider a fake Weil descent system Ff to the subfield of
cardinality q. Define ≡j with respect to Ff . For e ∈ Z≥0 with e =

∑
i aiq

i in
base q, we set w(e) =

∑
i ai. For f =

∑
i biX

i, we set w(f) = max(w(i) : bi = 0).
Note that w(f) ≤ deg(f), with equality if deg(f) < qn.

We start with a technical lemma. Recall the following. For r ∈ Z≥0 and
c ∈ Z≥1, we set

ψ(r, c) = max (�2(c − 1) (logc (r) + 1)�, 0) .

Let g ∈ k[X] \ k. Then one has

deg(g) ≤ (q − 1)
(
logq(deg(g)) + 1

)
.

It follows that deg(g) ≤ ψ(deg(g), q)/2.

Lemma 4. Let h2 ∈ k[X] nonzero of degree d. Set u = ψ(d, q). Assume h2 ≡u 0.
Let h1 ∈ k[X]. Let h3 be the remainder of division of h1 by h2. Then one has
h1 ≡max(u,w(h1)) h3.

Proof. If d = 0, the result follows easily. Assume d > 0.
Fix h2 and write h2 =

∑d
i=0 biX

i where bd = 0. Since taking remainders is
additive, it suffices to prove the result for h1 = Xe. Let re be the remainder of
division of Xe by h2. For g ∈ k[X] with deg(g) ≤ d, one has deg(g) ≤ u/2. In
particular, we have deg(re) ≤ u/2.

We will prove the following statements successively:

1. for e ∈ {0, 1, . . . , qd − 1}, we have Xe ≡u re;
2. if e, e′ ∈ Z≥0 satisfy w(e) + w(e′) ≤ u, Xe ≡u re and Xe′ ≡u re′ , then

Xe+e′ ≡u re+e′ ;
3. for e ∈ Z≥0 with w(e) ≤ u, we have Xe ≡u re;
4. for all e ∈ Z≥0 one has Xe ≡max(u,w(e)) re.

1: For e = 0, . . . , d − 1, the remainder is Xe itself and the result follows. One
has rd = −1

bd

∑d−1
i=0 biX

i and this gives Xd ≡u rd. We continue by induction.
Assume the statement holds for cases smaller than e and that e ≤ qd − 1. We
will prove the statement for e. Write re−1 =

∑d−1
j=0 cjX

j . Note that re is the

594 M.-D.A. Huang et al.

remainder of division of Xre−1 by h2, which gives re =
∑d−1

j=0 cjrj+1. Note that
e − 1 ≤ qd − 2 = qlogq(d)+1 − 2. Hence we have (as d > 0):

deg(X) + deg(Xe−1) ≤ 1 + �(q − 1)
(
logq(d) + 2

) − 1�
= �(q − 1)

(
logq(d) + 2

)� ≤ u.

Using Lemma 2 and the induction hypothesis, we find

Xe ≡u X · Xe−1 ≡u X · re−1 ≡u

d−1∑

j=0

cjXj+1 ≡u

d−1∑

j=0

cjrj+1,

and this gives the required remainder.
2: Assume without loss of generality that w(e′) ≤ u/2. Then one has u ≥

max(w(e) + w(e′),deg(re) + w(e′),deg(re) + deg(re′)) and one has deg(rere′) ≤
2d − 2 ≤ qd − 1. Lemma 1 and 2 give

Xe+e′ ≡u Xe · Xe′ ≡u re · Xe′ ≡u re · re′ ≡u rere′ ≡u re+e′ .

3: Using 2 and induction, we easily reduce to the case where e = qi, i ≥ 0.
Note that for i ≥ 1, qi = q · qi−1 and that u ≥ q. We can then apply 2 and the
proof follows by induction.

4: We prove this statement by induction on w(e) > u. Write e = e1 + e2 with
u ≤ w(e1) < w(e), and w(e1) + w(e2) = w(e). One has (Lemma 2 and part 3)

Xe ≡max(u,w(e)) Xe1 · Xe2 ≡max(u,w(e)) re1 · Xe2

≡max(u,w(e)) re1 · re2 ≡max(u,w(e)) re.

Proposition 3. Assume F = {f} with f ∈ k[X] nonzero. Set u = ψ(deg(f), q)
and set g = gcd(f,Xqn − X). Then we have g ∈ Vu.

Proof. Let f1 be the remainder of division of Xqn − X by f . By Lemma 4, we
have f1 ≡u 0. Let f2 be the remainder of division of f by f1. Similarly, we find
f2 ≡u 0. Hence we can follow the Euclidean algorithm and we obtain g ∈ Vu.

4.3 Proof of the Main Theorem

We can finally prove Main Theorem 1.

Proof. [of Main Theorem 1] We first study the last fall degree of G. One has
(Proposition 2)

dG ≤ max(dG , q,deg(F ′)) = max(dF ′
f
, q,deg(F ′)) ≤ max(dFf

, q,deg(F ′)).

Hence we study the last fall degree of Ff . Set g = gcd(f,Xqn − X). From
Proposition 3, we have g ∈ Vu with u = ψ(deg(f), q).

Let h ∈ I, the ideal generated by Ff . Define the relations ≡i with respect to
Ff . By Lemma 2(3), one has h ≡deg(h) h2 for some h2 ∈ k[X] with deg(h2) < qn.

Last fall degree, HFE, and Weil descent attacks on ECDLP 595

Since h2 ∈ I, it follows from Lemma 3(2) that h2 ∈ I. Hence h2 has remainder
0 when divided by g. From Lemma 4, we conclude (as deg(h2) ≤ deg(h)),

h ≡max(deg(h),u) h2 ≡max(deg(h),u) 0.

This shows dF ≤ u. Hence one finds, as deg(F ′) ≤ u,

dG ≤ max(dFf
, q,deg(F ′)) ≤ max(u, q, deg(F ′)) = max(u, q).

Notice that u ≥ q. Apply Proposition 1 to solve the system G in the required
time.

5 Weil Descent Attacks on ECDLP

5.1 ECDLP and Summation Polynomials

Let E be an elliptic curve over a field k of cardinality qn and let k′ be its sub-
field of cardinality q. One possible approach to solve the elliptic curve discrete
logarithm problem (ECDLP) is via the index calculus method. Essentially, suf-
ficiently many relations between k-points on the curve E need to be generated
and the time to construct such relations has a direct impact on the complexity
of the entire index calculus approach.

In [6,24], summation polynomials were used to find relations between points
on the curve. Here, we recall the definition of a summation polynomial.

Let F be a field. Let A = (a1, a2, a3, a4, a6) ∈ F 5. Set

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a2

4.

We define

SA,2 = X0 − X1 ∈ F [X0,X1].

We define the third summation polynomial SA,3 ∈ F [X0,X1,X2] of degree 4 by:

SA,3 = (X2
0X

2
1 + X2

0X
2
2 + X2

1X
2
2) − 2 · (X2

0X1X2 + X0X
2
1X2 + X0X1X

2
2)

−b2 · (X0X1X2) − b4 · (X0X1 + X0X2 + X1X2) − b6 · (X0 + X1 + X2) − b8.

We will quite often write SA instead of SA,3. For r ∈ Z>3, we recursively define
the rth summation polynomial by

SA,r = ResX
(
SA,r−1(X0, . . . , Xr−3, X), SA,3(Xr−2, Xr−1, X)

) ∈ F [X0, . . . , Xr−1],

where ResX denotes the resultant with respect to X.
We have the following proposition.

596 M.-D.A. Huang et al.

Proposition 4. Let F be a field and let E/F be an elliptic curve given by Y 2 +
a1XY + a3Y = X3 + a2X

2 + a4X + a6. Let r ∈ Z≥2 and let x0, . . . , xr−1 ∈ F .
Then there are P0, . . . , Pr−1 ∈ E(F)\{0} with x(Pi) = xi (i = 0, . . . , r−1) such
that P0 + . . . + Pr−1 = 0 if and only if S(a1,a2,a3,a4,a6),r(x0, . . . , xr−1) = 0.

It follows that given a point Q = 0 and a positive integer m, we can represent
a point Q as a sum of m points by solving Sm+1(x(Q),X0, . . . , Xm−1) = 0.

Assume that F = k. Further linear constraints were introduced so as to
restrict the Xi’s to a subspace V of k of dimension n′ over k′. Let L(X) ∈
k[Xq] ⊂ k[X] be the additive polynomial whose roots are precisely the elements
of the subspace V . We obtain a system F of equations in k[X0, . . . , Xm−1],
namely,

F = {Sm+1(x(Q),X0, . . . , Xm−1), L(X0), L(X1), . . . , L(Xm−1)}.

Using this set-up and Weil descent (Remark 3), Diem showed that there exist
sub-exponential time index calculus algorithms for ECDLP for some families of
q and n.

The authors of [23] adopted a similar approach and considered ECDLP for
q = 2n. To solve the system F , they considered a Weil descent system F ′ over
F2 (notation as in Subsect. 3.1). With m = O(n1/3), the authors claimed that
this system can be solved via Gröbner basis algorithms in sub-exponential time
of 2O(n2/3 log n). Essentially, their claim was based on the so-called “first fall
degree assumption” which asserts that the first fall degree (see Remark 1) of a
Weil descent polynomial system is close to the degree of regularity, the largest
degree reached during Gröbner basis computations. More precisely, as the first
fall degree of this system is O(m2), they conjectured that the degree of regularity
is O(m2) as well, thereby giving their heuristic result. According to the authors,
they justified this heuristic assumption based on the following:

– The assumption of a constant gap between the first fall degree and the degree
of regularity is widely believed to hold for Weil descent systems arising from
HFE systems;

– The assumption is verified with experimental data for some multivariate poly-
nomial systems for small parameters of n and m.

5.2 Discussion on the First Fall Degree Assumption

Here, we wish to highlight some examples where the first fall degree assumption
is unlikely to hold.

One Bivariate Summation Polynomial. Let k be a finite field of cardinality
2n. Let E/k be a random elliptic curve in Weierstrass form with a random
nonzero point Q ∈ E(k). The following table records the degree of regularity for
a Weil descent system comprising the bivariate polynomial S3(X0,X1, x(Q)).
Following the formulation in [23], we include linear constraints on X0 and X1 to

Last fall degree, HFE, and Weil descent attacks on ECDLP 597

restrict their values to be in a random F2-subspace of k with dimension �n/2�.
Note that in this case, a Weil descent system F ′, after eliminating variables using
the linear constraints, is a system in about n variables and has about n quadratic
equations together with field equations of the form Y 2

i + Yi. We performed our
computations using the “GroebnerBasis()” function in the Magma computer
Algebra System and the degree of regularity is read off as the largest step degree
where new polynomials are generated while the first fall degree is the smallest
step degree at which a new lower-degree polynomial is generated. Here, the last
column in the table records the degree of regularity of a system of n random
quadratic equations in n variables over F2 together with the n field equations. By
a quadratic equation over F2, we mean an equation whose terms are a product
of at most 2 variables.

n First fall degree Degree of regularity Random

12 2 3 4

16 2 3 5

18 2 4 5

20 2 4 5

24 2 4 6

30 2 4 –

40 2 ≥ 5 –

As the computations require more than 38 GB for n = 40, we are not able to carry
out more experiments for larger values of n. However, the behaviour of the step
degrees, another observable parameter from the Gröbner basis computations,
suggests that the degree of regularity follows an increasing pattern as n increases.
The above table raises doubt to the evidence of Assumption 2 from the article
[23]: the gap between the degree of regularity and the first fall degree might be
dependent on n.

Remark 4. Notice that our n = 40 computation did not terminate. After the sub-
mission of this paper, with the help of the Caramel team from Nancy (France),
we managed to terminate similar computations: the degree of regularity does
seem to increase. See [19] for the details. This paper also contains a proof that
the first fall degree in general is 2.

Note that in all our computations, the first fall degree is 2. One can prove
that this is almost always the case when E is ordinary (a1 = 0) and Q is
not the point of order 2. After some mathematics, the result follows from the
following proposition where a complete proof can be found in [18, Chapter 7,
Proposition 5.4]. The result is partially found in [25] as well.

Proposition 5. Let E/k be an elliptic curve given by Y 2 + a1XY + a3Y =
X3 + a2X

2 + a4X + a6. Assume that E is ordinary (a1 = 0). Then we have a

598 M.-D.A. Huang et al.

surjective group morphism

E(k) → F2

0 �→ 0

P �→ Trk/F2

(
x(P) + a2

a2
1

)

with kernel 2E(k).

Note that knowledge of this map can speed up the summation polynomial app-
roach for solving ECDLP, but probably only by a constant.

Multiple Summation Polynomials. Let k be a finite field of cardinality 2n

and let E/k be an elliptic curve. Let Q ∈ E(k) be a nonzero point. Let m ∈ Z≥3.
Instead of working with the (m + 1)st summation polynomial, we consider the
following sequence of m sums:

Q = P1 + Q1,

Q1 = P2 + Q2,

.

Qm−2 = Pm−1 + Pm.

Observe that when this system is satisfied, we have Q = P1 + . . . + Pm.
Once again, we let the x-coordinates of Pi be restricted in some subspace of

dimension O(n/m). Consider the set

F = {S3(x(Q),X1, Y1), . . . , S3(Ym−2,Xm−1,Xm)},

where the Xi’s are restricted to the subspace and the Yi are unrestricted. We
perform Weil descent to obtain a system F ′ of equations in F2, where each
equation has degree at most 3. According to [23], the first fall degree of this
system is no greater than 5 (in fact, it is usually 2). Under the first fall degree
assumption, this system will have a constant degree of regularity. In particular,
it can be solved in time polynomial in m. Now, take m = O(n). Letting the
Pi’s take some specific points, say Pi = 2iP, i = 1, . . . , m, this system will allow
us to solve the ECDLP for a large proportion of points Q and thus, for all
points Q. Consequently, we have a polynomial-time algorithm to solve ECDLP,
which is highly improbable. We conclude that the first fall degree assumption
is unlikely to hold for this system as well. In a similar way, using the first fall
degree assumption, one can prove P=NP [19].

5.3 Open Problem on the Last Fall Degree

From the discussion in the preceding subsection, we believe that greater justifi-
cation needs to be provided before one applies the first fall degree assumption to

Last fall degree, HFE, and Weil descent attacks on ECDLP 599

a Weil descent system arising from a multivariate polynomial system. Nonethe-
less, as the above table demonstrates, the degree of regularity of a Weil descent
system tends to grow more slowly than a random system with the same number
of equations and variables. The big question is, how slowly does it grow. The
slower it grows, the better algorithms there will be for ECDLP using Gröbner
basis algorithms. As such, we believe that it remains worthwhile to analyze such
systems in greater detail in order to get a more rigorous estimate to solve the
ECDLP.

In this article, we defined the notion of a last fall degree of a multivariate
polynomial system and describe an explicit algorithm to solve a zero-dimensional
polynomial system whose time complexity depends on this last fall degree. As
the last fall degree is independent of monomial orders, it enables us to give a
rigorous bound on the time to solve a Weil descent system coming from univariate
polynomials. We believe that this framework will be useful to help us investigate
Weil descent systems from multivariate polynomials as well and will hopefully
allow us to rigorously bound last fall degrees.

Remark 5. After submitting this paper, the authors continued their work in
[20], and showed that the last fall degree of a Weil descent system arising from
a zero-dimensional system also does not depend on the Weil descent parameter
n. Unfortunately, the results of [20] do not apply to summation polynomials,
because such systems are not zero-dimensional without adding field equations.

Acknowledgements. The authors would like to thank Bagus Santoso, Chaoping Xing
and Yun Yang for their help and support in preparing this manuscript. We are grateful
to Steven Galbraith and the anonymous reviewers for their valuable comments. Finally,
we would like to thank the Caramel team from Nancy (France) for allowing us to use
their computers to do experiments.

References

1. Buchberger, B.: Ein Algorithmus zum Auffffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University
of Innsbruck (1965)

2. Buchmann, J.A., Ding, J., Mohamed, M.S.E., Mohamed, W.S.A.E.: Mutantxl:
solving multivariate polynomial equations for cryptanalysis. In: Handschuh, H.,
Lucks, S., Preneel, B., Rogaway, P. (eds.) Symmetric Cryptography (Dagstuhl,
Germany, 2009). Dagstuhl Seminar Proceedings, vol. 09031. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2009)

3. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

4. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

600 M.-D.A. Huang et al.

5. Courtois, N.T., Patarin, J.: About the XL algorithm over GF (2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

6. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Math.
147, 75–104 (2011)

7. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer,
Heidelberg (2011)

8. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139, 61–88 (1999)

10. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero F5. In: Proceedings of ISSAC, pp. 75–83. ACM Press (2002)

11. Faugère, J.C., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

12. Galbraith, S.D., Smart, N.P.: A cryptographic application of Weil descent. In:
Walker, M. (ed.) Cryptography and Coding 1999. LNCS, vol. 1746, pp. 191–200.
Springer, Heidelberg (1999)

13. von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey.
J. Symbolic Comput. 31(1–2), 3–17 (2001). Computational algebra and number
theory, (1996)

14. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009)

15. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptology 15(1), 19–46 (2002)

16. Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

17. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

18. Kosters, M.: Groups and fields in arithmetic. Ph.D. thesis, Universiteit Leiden
(2014)

19. Kosters, M., Yeo, S.L.: Notes on summation polynomials. Preprint (2015).
http://arxiv.org/abs/1503.08001

20. Huang, M.-D.A., Kosters, M., Yang, Y., Yeo, S.L.: On the last fall
degree of zero-dimensional Weil descent systems. Preprint (2015).
http://arxiv.org/abs/1505.02532

21. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

22. Petit, C.: Bounding HFE with SRA. Preprint (2013). http://www0.cs.ucl.ac.uk/
staff/c.petit/files/SRA GB.pdf

23. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a Weil descent.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466.
Springer, Heidelberg (2012)

24. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic
curves. Preprint (2004). https://eprint.iacr.org/2004/031.pdf

25. Seroussi, G.: Compact representation of elliptic curve points over F
n
2 research con-

tribution to IEEE P1363 (1998)

http://arxiv.org/abs/http://arxiv.org/abs/1503.08001
http://arxiv.org/abs/1505.02532
http://www0.cs.ucl.ac.uk/staff/c.petit/files/SRA_GB.pdf
http://www0.cs.ucl.ac.uk/staff/c.petit/files/SRA_GB.pdf
https://eprint.iacr.org/2004/031.pdf

A Quasipolynomial Reduction for Generalized
Selective Decryption on Trees

Georg Fuchsbauer1(B), Zahra Jafargholi2, and Krzysztof Pietrzak1

1 Institute of Science and Technology Austria, Vienna, Austria
{gfuchsbauer,pietrzak}@ist.ac.at

2 Northeastern University, Boston, USA
z.jafargholi@gmail.com

Abstract. Generalized Selective Decryption (GSD), introduced by
Panjwani [TCC’07], is a game for a symmetric encryption scheme Enc
that captures the difficulty of proving adaptive security of certain proto-
cols, most notably the Logical Key Hierarchy (LKH) multicast encryp-
tion protocol. In the GSD game there are n keys k1, . . . , kn, which the
adversary may adaptively corrupt (learn); moreover, it can ask for encryp-
tions Encki(kj) of keys under other keys. The adversary’s task is to dis-
tinguish keys (which it cannot trivially compute) from random. Proving
the hardness of GSD assuming only IND-CPA security of Enc is surpris-
ingly hard. Using “complexity leveraging” loses a factor exponential in
n, which makes the proof practically meaningless.

We can think of the GSD game as building a graph on n vertices,
where we add an edge i → j when the adversary asks for an encryption of
kj under ki. If restricted to graphs of depth �, Panjwani gave a reduction
that loses only a factor exponential in � (not n). To date, this is the only
non-trivial result known for GSD.

In this paper we give almost-polynomial reductions for large classes
of graphs. Most importantly, we prove the security of the GSD game
restricted to trees losing only a quasi-polynomial factor n3 logn+5. Trees
are an important special case capturing real-world protocols like the LKH
protocol. Our new bound improves upon Panjwani’s on some LKH vari-
ants proposed in the literature where the underlying tree is not balanced.
Our proof builds on ideas from the “nested hybrids” technique recently
introduced by Fuchsbauer et al. [Asiacrypt’14] for proving the adaptive
security of constrained PRFs.

1 Introduction

Proving security of protocols where an adversary can make queries and/or cor-
rupt players adaptively is a notoriously hard problem. Selective security, where
the adversary must commit to its queries before the protocol starts, often allows
for an easy proof, but in general does not imply (the practically relevant) adap-
tive security notion [CFGN96].

G. Fuchsbauer and K. Pietrzak—Supported by the European Research Council, ERC
Starting Grant (259668-PSPC).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 601–620, 2015.
DOI: 10.1007/978-3-662-47989-6 29

602 G. Fuchsbauer et al.

Panjwani [Pan07] argues that the two common approaches to achieving adap-
tive security, namely requiring that all parties erase past data [BH93], or using
non-committing encryption [CFGN96] are not satisfactory. He introduces the
generalized selective decryption (GSD) problem and uses it as an abstraction of
security requirements of multicast encryption protocols [WGL00,MP06]. GSD is
defined by a very simple game that captures the difficulty of proving adaptive
security of some interesting protocols.

The Generalized Selective Decryption (GSD) Game. In the GSD game
we consider a symmetric encryption scheme Enc and a parameter n ∈ N. Initially,
we sample n random keys k1, . . . , kn and a bit b ∈ {0, 1}. During the game the
adversary A can make two types of queries. Encryption query: on input (i, j) she
receives c = Encki

(kj); corruption query: on input i, she receives ki. At some
point, A chooses some i to be challenged on. If b = 0, she gets the key ki; if b = 1,
she gets a uniformly random ri.1 Finally, A outputs a guess bit b′. The goal is
prove that for any efficient A, |Pr[b = b′]− 1/2| is negligible (or, equivalently, ki is
pseudorandom) assuming only that Enc is a secure encryption scheme. We only
allow one challenge query, but this notion is equivalent to allowing any number
of challenge queries by a standard hybrid argument (losing a factor that is only
the number of challenge queries).

It is convenient to think of the GSD game as dynamically building a graph,
which we call key graph. We start with a graph with n vertices labeled 1, . . . , n,
where we associate vertex i with key ki. On an encryption query Encki

(kj) we
add a directed edge i → j. On a corruption query i we label the vertex i as
corrupted. Note that if i is corrupted then A also learns all keys kj for which
there is a path from i to j in the key graph by simply decrypting the keys along
that path. To make the game non-trivial, challenge queries are thus only allowed
for keys that are not reachable from any corrupted key. Another restriction we
must make is to disallow encryption cycles, i.e., loops in the graph. Otherwise
we cannot hope to prove security assuming only standard security (in our case
IND-CPA) of the underlying encryption scheme, as this would require circular
(or key-dependent-message) security [BRS03], which is stronger than IND-CPA
[ABBC10]. Finally, we require that the challenge query is a leaf in the graph;
this restriction too is necessary unless we make additional assumptions on the
underlying encryption scheme (cf. Footnote 9).

Selective security of GSD. In order to prove security of the GSD game,
one must turn an adversary A that breaks the GSD game with some advantage
ε = |Pr[b = b′] − 1/2| into an adversary B that breaks the security of Enc with
some advantage ε′ = ε′(ε). The security notion we consider is the standard
1 Below, we will consider a (seemingly) different experiment and output ki in both

cases (b = 0 and b = 1), but if b = 1, then on any query (j, i), we will encrypt
Enckj (ri) and not Enckj (ki). This is just a semantic change assuming the following:
during the experiment we always answer encryption queries of the form (a, b) with
Encka(kb) (note that we don’t know if we’re encrypting the challenge at this point),
and once the adversary chooses a challenge i, if b = 1, we simply switch the values
of ri and ki (this trick is already used in [Pan07]).

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 603

notion of indistinguishability under chosen plaintext attacks (IND-CPA). Recall
that in the IND-CPA game an adversary B is given access to an encryption
oracle Enck(·). At some point B chooses a pair of messages (m0,m1), then gets
a challenge ciphertext c = Enck(mb) for a random bit b, and must output a
guess b′. The advantage of B is |Pr[b = b′] − 1/2|.

It is not at all clear how to construct an adversary B that breaks IND-CPA
from an A that breaks GSD. This problem becomes much easier if we assume that
A breaks the selective security of GSD, where A must choose all its encryption,
corruption and challenge queries before the experiment starts.

In fact, it is sufficient to know the topology of the connected component in
the key graph that contains the challenge node. Let α denote the number of
edges in this component. One can now define a sequence of 2α hybrid games
H0, . . . , H2α−1, where the first game is the real game (i.e., the GSD game with
b = 0 where the adversary gets the key), the last hybrid is the random game
(b = 1), and moreover, from any adversary that distinguishes Hi from Hi+1 with
some advantage ε′, we get an adversary against the IND-CPA security of Enc
with the same advantage. Thus, given an A breaking GSD with advantage ε, we
can break the IND-CPA security with advantage ε′ ≥ ε/(2α − 1) ≥ ε/n2 (as an
n vertex graph has ≤ n2 edges). We illustrate this reduction in Fig. 1.

Fig. 1. Hybrids for the selective security proof. Green nodes correspond to keys, dark
nodes are random values. The adversary A commits to encryption queries (1, 3), (2, 3),
(3, 5) and challenge 5 (Encryption query (4, 6) is outside the connected component
containing the challenge and thus not relevant for the hybrids. A could also corrupt keys
4 and 6, which are also outside.) Hybrid H0 is the real game, hybrid H5 is the random
game, where instead of an encryption of the challenge key Enck3(k5), the adversary
gets an encryption of the random value Enck3(r5). If an adversary A can distinguish
any two consecutive hybrids Hi and Hi+1 with some advantage δ, we can use A to
construct B which breaks the IND-CPA security of Enc with the same advantage δ:
E.g., assume B is given an IND-CPA challenge C = Enck(z) where z is one of two
messages (which we call k5 and r5). Now B can simulate game H2 for A, but when A
makes the encryption query (3, 5), B answers with C. If z = k5 then B simulates game
H2; but if z = r5, it simulates game H3. Note that B can simulate the games because
k3, which in the simulation is B’s challenger’s key, is not used anywhere else. Thus, B
has the same advantage in the IND-CPA game as A has in distinguishing H3 from H4

(Color figure online).

604 G. Fuchsbauer et al.

Adaptive security of GSD. In the selective security proof for GSD we cru-
cially relied on the fact that we knew the topology of the underlying key graph.
Proving adaptive security, where the adversary decides what queries to ask adap-
tively during the experiment, is much more difficult. A generic trick to prove
adaptive security is “complexity leveraging”, where one simply turns an adap-
tive adversary into a selective one by initially guessing the adaptive adversary’s
choices and committing to those (as required by the selective security game). If
during the security game the adaptive choices by the adversary disagree with the
guessed ones, we simply abort. The problem with this approach is that assum-
ing the adaptive adversary has advantage ε, the constructed selective adversary
only has advantage ε/P where 1/P is the probability of that our guess is correct,
which is typically exponentially small. Concretely, in the GSD game we need to
guess the nodes in the connected component containing the challenge, and as the
number of such choices is exponential in the number of keys n, this probability
is 2−Θ(n).

No proofs for the adaptive security of GSD with a subexponential (in n) secu-
rity loss are known in general. But remember that the GSD problem abstracts
problems we encounter in proving adaptive security of many real-world applica-
tions where the underlying key graph is typically not completely arbitrary, but
often has some special structure. Motivated by this, Panjwani [Pan07] investi-
gated better reductions assuming some special structure of the key graph. He
gives a proof where the security degradation is only exponential in the depth of
the key graph, as opposed to its size. Concretely, he proves that if the encryption
scheme is ε-IND-CPA secure then the adaptive GSD game with n keys where
the adversary is restricted to key graphs of depth � is ε′-secure where

ε′ = ε · O(n · (2n)�).

Until today, Panjawain’s bound is the only non-trivial improvement over the
2Θ(n) loss for GSD.

Our Result. The main result of this paper is Theorem 2, which states that
GSD restricted to trees can be proven secure with only a quasi-polynomial loss

ε′ = ε · n3 log(n)+5.

Our bound is actually even stronger as the entire key graph need not be a tree; it
is sufficient that the subgraph containing only the nodes from which the challenge
node can be reached is a tree (when ignoring edge directions).

The bound above is derived from a more fine-grained bound: assuming that
the longest path in the key graph is of length �, the in-degree of every node is
at most d and the challenge node can be reached from at most s sources (i.e.,
nodes with in-degree 0) we get

ε′ = ε · dn((2d + 1)n)�log s� (3n)�log ��.

Note that �, d and s are at most n and the previous bound was derived from
this by setting � = d = s = n. Panjwani [Pan07] uses his bound to give a quasi-
polynomial reduction of the Logical Key Hierarchy (LKH) protocol [WGL00].

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 605

Panjwani first fixes a flaw in LKH, and calls the new protocol rLKH with “r”
for repaired. rLKH is basically the GSD game restricted to a binary tree.2

The users correspond to the leaves of this tree, and their keys consists of
all the nodes from the root to their leaf. Thus, if the tree is almost full and
balanced, then it has only depth � ≈ log n and Panjwani’s bound loses only a
quasi-polynomial factor nlog(n)+2 (if � = log n). As here d = 2, � = log n, s = n,
our bound gives a slightly worse bound nlog(n)+log log(n)+4 for this particular
problem, but this is only the case if a large fraction of the keys are actually used,
and the adversary gets to see almost all of them. If � is significantly larger than
log n (e.g., because only few of the keys are active, or the tree is constructed
in an unbalanced way like e.g. proposed in [SS00]), our bounds decrease only
marginally, as opposed to exponentially fast in � in [Pan07].

Graphs with Small Cut-Width. The reason our result is restricted to trees
is that in the process of generating the hybrids, we have to guess nodes such
that removing this node splits the tree in a “nice” way (this has to be done log n
times, losing a factor n in the distinguishing advantage every time).

One can generalize this technique (but we do not work out the details in
this paper) to graphs with small “cut-width”, where we say that a graph has
cut-width w if for any two vertices u, v that are not connected by an edge, there
exists a set of at most w vertices such that removing those disconnects u from v
(a tree has cut-width w = 1). For graphs with cut-width w we get

ε′ = ε · n(2w+1) log(n)+4,

which is subexponential in n, and thus beats the existing exponential bound
whenever w = o(n/ log2(n)). Whether there exists a subexponential reduction
which works for any graph is an intriguing open problem.

Shorter Keys from Better Reduction. An exponential security loss (as via
complexity leveraging) means that, even when assuming exponential hardness
of Enc (which is a typical assumption for symmetric encryption schemes like
AES), one needs to use keys for Enc whose length is at least linear in n to get
any security guarantee for the hardness of GSD at all. Whereas our bound for
trees means that a key of length polylog(n) is sufficient to get asymptotically
overwhelming security (again assuming Enc is exponentially hard).

Nested Hybrids. In a classical paper [GGM86] Goldreich, Goldwasser and
Micali constructed a pseudorandom function (PRF) from a pseudorandom gener-
ator (PRG). More recently, three papers independently [BW13,KPTZ13,BGI14]
observed that this construction is also a so-called constrained PRF, where for
every string x one can compute a constrained key kx that allows evaluation of
the PRF on all inputs with prefix x. Informally, the security requirement is that
2 Let us stress that the graph obtained when just adding an edge for every encryption

query in rLKH is not a tree after a rekeying operation. But for every node v, the
subgraph we get when only keeping the nodes from which v can be reached is a tree,
and as explained above, this is sufficient.

606 G. Fuchsbauer et al.

an adversary that can ask for constrained keys cannot distinguish the output of
the PRF on some challenge input from random.

All three papers [BW13,KPTZ13,BGI14] only prove selective security of this
constrained PRF, where before any queries the adversary must commit to the
input on which it wants to be challenged. This proof is a hybrid argument losing a
factor 2m in the distinguishing advantage, where m is the PRF input length. One
can then get adaptive security losing a huge exponential factor 2m via complexity
leveraging. Subsequently, Fuchsbauer et al. [FKPR14] gave a reduction that only
loses a quasi-polynomial factor (3q)log m, where q denotes the number of queries
made by the adversary. Our proofs borrows ideas from their work.

Very informally, the idea behind their proof is the following. In the standard
proof for adaptive security using leveraging one first guesses the challenge query
(losing a huge factor 2m), which basically turns the adaptive attacker into a
selective one, followed by a simple hybrid argument (losing a small factor 2m)
to prove selective security. The proof from [FKPR14] also first makes a guess-
ing step, but a much simpler one, namely which of the q queries made by the
adversary is the first to coincide with the challenge query on the first m/2 bits.
This is followed by a hybrid argument losing a factor 3, so both steps together
lose a factor 3q. At this point the reduction is not finished yet, but intuitively
the problem was reduced to itself but on inputs of only half the size m/2. These
two steps can be iterated log m times (losing a total factor of (3q)log m) to get a
reduction to the security of the underlying PRG.

Proof Outline for Paths. Our proof for GSD uses an approach similar to the
one just explained, iterating fairly simple guessing steps with hybrid arguments,
but the analogy ends here, as the actual steps are very different.

We first outline the proof for the adaptive security of the GSD game for a
special case where the adversary is restricted in the sense that the connected
component in the key graph containing the challenge must be a path. Even for
this very special case, currently the best reduction [Pan07] loses an exponential
factor 2Θ(n). We will now outline a reduction losing only a quasi-polynomial
nlog n factor.3 Recall that the standard way to prove adaptive security is to first
guess the entire connected component containing the challenge, and then prove
selective security as illustrated in Fig. 1.

Our approach is not to guess the entire path, but in a first step only the
node in the middle of the path (as we make a uniform guess, it will be correct
with probability 1/n). This reduces the adaptive security game to a “slightly

3 Let us mention that it is trivial to prove security of GSD restricted to paths if we
additionally assume that for random keys k, k′ the ciphertext Enck(k

′) is uniform
given k′ (this is e.g. the case for one-time pad encryption Enck(k

′) = k ⊕ k′): then
the real and random challenge have the same distribution (they’re uniform) and thus
even a computationally unbounded adversary has zero advantage. (This is because
in the path case, every key is used only once to encrypt.) The proof we outline
here does not require this special property of Enc, and this will be crucial to later
generalize it to more interesting graphs.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 607

Fig. 2. Illustration of our adaptive security proof for paths.

selective” game where the adversary must commit initially to this middle node,
at the price of losing a factor n in the distinguishing advantage.4

Let H0 and H3 denote these “slightly selective” real and random GSD games
(we also assume that the adversary initially commits to the challenge query,
which costs another factor of n). We illustrate this with a small example featuring
a path of length 4 in Fig. 2. The correct guess for the middle node for the
particular run of the experiment illustrated in the figure is i = 5. As now we
know the middle vertex is i = 5, we can define new games H1 and H2 which
are derived from H0 and H3, respectively, by replacing the ciphertext Enckj

(ki)
with an encryption Enckj

(ri) of a random value (in the figure this is illustrated
by replacing the edge kj → ki with kj → ri).

So, what have we gained? If our adaptive adversary has advantage ε in dis-
tinguishing the real and random games then she has advantage at least ε/n to
distinguish the “slightly selective” real and random games H0 and H3, and thus
for some i ∈ {0, 1, 2} she can distinguish the games Hi and Hi+1 with advantage
ε/3n. Looking at two consecutive games Hi and Hi+1, we see that they only
differ in one edge (e.g., in H2 we answer the query (3, 5) with Enck3(r5), in H3

with Enck3(k5)), and moreover this edge will be at the end of a path that now
has only length 2, that is, half the length of the path in our original real and
random games.

We can now continue this process, constructing new games where the path
length is halved, paying a factor 3n in distinguishing advantage. For example,
as illustrated in Fig. 2, we can guess the node that halves the path leading to
4 We never actually construct this “slightly selective” adversary, but (as in complexity

leveraging) we simply commit to a random guess, then run the adaptive adversary,
and if its queries are not consistent with our guess, we abort outputting a random
value. (We could also output a constant value; the point is that the advantage of the
adversary, conditioned on our guess being wrong, is zero; whereas, conditioned on
the guess being correct, it is the same as the advantage of the adaptive adversary).
However, instead of this experiment it is easier to follow our proof outline by thinking
of the adversary actually committing to its choices initially, but the reduction paying
a factor (in the distinguishing advantage of the adversary that is allowed to make
this choice adaptively) that corresponds to the size of the sample space of this guess.

608 G. Fuchsbauer et al.

the differing query in games H2 and H3 (for the illustrated path this would be
i = 3), then define new games where we assume the adversary commits to this
node (paying a factor n), and then define two new games H ′

2 and H ′
3, which are

derived from games H2 and H3 (which now are augmented by our new guess),
respectively, by answering the query (j, i) that asks for an encryption of this node
(in the figure (j, i) = (1, 3)) with an encryption Enck1(r3) instead of Enck1(k3).

If we start with a path of length � ≤ n then after log � ≤ log n iterations
of this process we proved the existence of two consecutive games (call them G0

and G1) that differ only in a single edge j → i and the vertex j has in-degree 0.
That is, both games are identical, except that in one game the encryption query
(j, i) is answered with Enckj

(ki) and in the other with Enckj
(ri). Moreover, the

key kj is not used anywhere else in the experiment and we know exactly when
this query is made during the experiment (as the adversary committed to i).

Given a distinguisher A for G0 and G1, we can now construct an attacker
B that breaks the IND-CPA security of the underlying encryption scheme with
the same advantage: in the IND-CPA game B chooses two random messages
m0,m1 and asks to be challenged on them.5 The game samples a random bit b
and returns the challenge C = Enck(mb) to B, which must then output a guess
b′ for b. At this point, B invokes A and simulates the game G0 for it, choosing
all keys at random, except that it uses C to answer the encryption query (j, i).6

Finally, B forwards A’s guess b′. Identifying (k,m0,m1) with (kj , ki, ri), we see
that depending on whether b = 0 or b = 1, B simulates either G0 or G1. Thus,
whatever advantage A has in distinguishing G0 from G1, B will break the IND-
CPA security of Enc with the same advantage.

Proof Outline for Trees. We will now outline our reduction of the adaptive
security of GSD to the IND-CPA security of Enc for a more general case. Namely,
the adversary is only restricted in that the key graph resulting from its queries
is such that the connected component containing the challenge is a tree. (Recall
that we already disallowed cycles in the key graph as this would require circular
security. Being a tree means that we also have no cycles in the key graph when
ignoring edge directions). Note that paths as discussed in the previous section
are very special trees. The GSD problem on trees is particularly interesting, as
it captures some multicast encryption protocols like the Logical Key Hierarchy
(LKH) protocol [WGL00]. We refer the reader to [Pan07] for details.

Trees with in-degrees ≤ 1. Let us first consider the case where the connected
component containing the challenge is a tree, and moreover all its vertices have
in-degree 0 or 1. It turns out that the proof outlined for paths goes through
with only minor changes for such trees. Note that such a tree has exactly one
vertex with in-degree 0, which we call the root, and there is a unique path from
the root to the challenge node. We can basically ignore all the edges not on this
5 Note that B makes no encryption queries at all (which are allowed by the IND-CPA

experiment).
6 Note that since node j has in-degree 0, we can identify kj with the key k used by

the IND-CPA experiment, as we never have to encrypt kj .

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 609

Fig. 3. Illustration of our adaptive security proof for general trees.

path and do a reduction as the one outlined above. The only difference is that
now, when simulating the game Gb (where b is 0 or 1 depending on the whether
the challenge C with which we answer the encryption query (j, i) is Enckj

(ki) or
Enckj

(ri)), the adversary can also ask for encryption queries (j, x) for any x. This
might seem like a problem as we do not know kj (we identified kj with the key
used by the IND-CPA challenger). But recall that in the IND-CPA game there
is an encryption oracle Enckj

(·), which we can query for the answer Enckj
(kx)

to such encryption queries.

General Trees. For general trees, where nodes can have in-degree greater
than 1, we need to work more. The proof for paths does not directly generalize,
as now nodes (in particular, the challenge) can be reached from more than one
node with in-degree 0. We call these the sources of this node; for example in the
tree H0 in Fig. 3, the (challenge) node k7 has 4 sources k1, k2, k3 and k12.

On a high level, our proof strategy will be to start with a tree where the
challenge node c has s sources (more precisely, we have two games that differ in
one edge that points to ki in one game, and to ri in the other, like games H0

and H7 in Fig. 3). We then guess a node v that “splits” the tree in a nice way,
by which we mean the following: Assume v has in-degree d and we divert every
edge going into v to a freshly generated node; let’s call them v1, . . . , vd. Then this
splits the tree into a forest consisting of d + 1 trees (the component containing

610 G. Fuchsbauer et al.

the challenge and one component for every vi). The node v “well-divides” the
tree if after the split the node c and all of v1, . . . , vd have at most �s/2� sources.

As an example, consider again the tree H0 in Fig. 3, where the challenge
node k7 has 4 sources. The node k9 would be a good guess, as it well-divides the
tree: consider the forest after splitting at this node as described above (creating
new nodes v1, v2, v3 and diverting the edges going into k9 to them, i.e., replacing
k5 → k9 by k5 → v1, k6 → k9 by k6 → v2, and k12 → k9 by k12 → v3). Then we
obtain 4 trees, where now c = k7 has only one source (k9) and the new nodes
v1, v2, v3 have 2, 1 and 1 sources, respectively.

Once we have guessed a well-dividing node v (or equivalently, the adversary
has committed to such a node), we define 2d hybrid games (where d is the degree
of the well-dividing node) between the two initial games, which we call H0 and
H2d+1, as follows. H1 is derived from H0 by diverting the first encryption query
that asks for an encryption of v (i.e., that is of the form (j, v) for some j) from
real to random; that is, we answer with Enckj

(rv) instead of Enckj
(kv). For i ≤ d,

Hi is derived from H0 by diverting the first i encryption queries. Hd+1 is derived
from Hd by diverting the encryption query that asks for an encryption of the
challenge c from real to random. The final d−1 hybrids games are used to switch
the encryption of v back from random to real, one edge at a time. This process
is illustrated in the games H0 to H7 in Fig. 3.

Because v was well-dividing (and we show in the full version that such a
node always exists), we can prove the following property for any two consecutive
games Hi and Hi+1: they differ in exactly one edge, which for some j, v in one
game is kj → kv and kj → rv in the other, and moreover, kj has at most �s/2�
sources.

If an adversary can distinguish H0 and H2d+1 with advantage ε then it must
distinguish two hybrids Hi and Hi+1 with advantage ε/((2d + 1)n) (where n
accounts for guessing the well-dividing node). But any such two hybrids now
only have at most �s/2� sources. If we repeat this guessing/hybrid steps log s
times, we end up with two games G0 and G1 which differ in one edge that has
only one source. At this point we can then use our reduction for trees with only
one source outlined above.

Analyzing the Security Loss. To halve the number of sources, we guess a
well-dividing vertex (which costs a factor n in the reduction), and then must add
up to 2d intermediate hybrids (where d is the maximum in-degree of any node),
costing another factor 2d + 1. Assuming that the number of sources is bounded
by s, we have to iterate the process at most log s times. Finally, we lose another
factor d (but only once) because our final node can have more than one ingoing
edge. Overall, assuming the adversary breaks the GSD game with advantage ε
on trees with at most s sources and in-degree at most d, our reduction yields an
attacker against the IND-CPA security of Enc with advantage

ε/ dn((2d + 1)n)�log s� (3n)�log �� .

For general trees, since s, d ≤ n, we have ε/ n3 log n+5.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 611

2 Preliminaries

For a ∈ N, we let [a] = {1, 2, . . . , a} and [a]0 = [a] ∪ {0}. We say adversary (or
distinguisher) D is t-bounded if D runs in time t.

Definition 1 (Indistinguishability). Two distributions X and Y are (ε, t)-
indistinguishable, denoted Y ∼(ε,t) X or Δt(Y,X) ≤ ε, if no t-bounded distin-
guisher D can distinguish them with advantage greater than ε, i.e.,

Δt(Y,X) ≤ ε ⇐⇒ ∀Dt :
∣
∣Pr [Dt(X) = 1] − Pr [Dt(Y) = 1]

∣
∣ ≤ ε.

Symmetric Encryption. A pair of algorithms (Enc,Dec) with input k ∈
{0, 1}λ, where λ is the security parameter, and a message m (or a cipher-
text) from {0, 1}∗ is a symmetric-key encryption scheme if for all k,m we have
Deck(Enck(m)) = m. Consider the game Expind-cpa−b

Enc,D between a challenger C

and a distinguisher D: C chooses a uniformly random key k ∈ {0, 1}λ and a bit
b ∈ {0, 1}; D can make encryption queries for messages m and receives Enck(m);
finally, D outputs a pair (m0,m1), is given Enck(mb) and outputs a bit b′ ∈ {0, 1},
which is also the output of Expind-cpa−b

Enc,D .7

Definition 2. Let t ∈ N
+ and 0 < ε < 1. An encryption scheme (Enc,Dec) is

(t, ε)-IND-CPA secure if for any t-bounded distinguisher D, we have
∣
∣Pr

[
Expind-cpa−1

Enc,D = 1
] − Pr

[
Expind-cpa−0

Enc,D = 1
]∣
∣ ≤ ε.

3 The GSD Game

In this section we describe the generalized selective decryption game as defined in
[Pan07] and give our main theorem. Consider the following game, Expgsd−(n,b)

Enc,A

called the generalized selective decryption (GSD) game, parameterized by an
encryption scheme Enc,8 an integer n and a bit b. It is played by the adversary A
and the challenger B. First B samples n keys k1, k2, . . . , kn uniformly at random
from {0, 1}λ. A can make three types of queries during the game:

– encrypt: A query of the form encrypt(i, j) is answered with c ← Encki
(kj).

– corrupt: A query of the form corrupt(i) is answered with ki.
– challenge: The response to challenge(i) depends on the bit b: if b = 0, the

answer is ki; if b = 1, the answer is a random value ri ∈ {0, 1}λ.

7 For this notion to be satisfied, Enc must be probabilistic. In this paper one may
also consider deterministic encryption, in which case the security definition must
explicitly require that the challenge messages are fresh in the sense that D has not
asked for encryptions of them already.

8 We will never actually use the decryption algorithm Dec in the game, and thus will
not mention it explicitly.

612 G. Fuchsbauer et al.

A can make multiple queries of each type, adaptively and in any order. It can
also make several challenge queries at any point in the in the game. Allowing
multiple challenge queries models the fact that the respective keys are jointly
pseudorandom (as opposed to individual keys being pseudorandom by them-
selves). Allowing to interleave challenges with other queries models that they
remain pseudorandom even after corrupting more keys or seeing further cipher-
texts.

We can think of the n keys that B creates as n vertices, labeled 1, 2, . . . , n, in a
graph. In the beginning of the game there are no edges, but every time A queries
encrypt(i, j), we add the edge i → j to the graph. When A queries corrupt(i) for
some i ∈ [n], we mark i as a corrupt vertex; when A queries challenge(i), we mark
it as a challenge vertex. For an adversary A we call this graph the key graph,
denoted G(A) and we write V corr(A) and V chal(A) for the sets of corrupt and
challenge nodes, respectively. (Note that G(A) is a random variable depending
on the randomness used by A and its challenger.)

Legitimate Adversaries. Consider an adversary that corrupts a node i in
G(A) and queries challenge(j) for some j which is reachable from i. Then A
can successively decrypt the keys on the path from i to j, in particular kj , and
thus deduce the bit b. We only consider non-trivial breaks and require that no
challenge node is reachable from a corrupt node in G(A).

Two more restrictions must be imposed on G(A) if we only want to assume
that Enc satisfies IND-CPA. First, we do not allow key cycles, that is, queries
yielding

Encki1
(ki2),Encki2

(ki3), . . . ,Enckis−1
(kis),Encks

(ki1),

as this would require the scheme to satisfy key-dependent-message (a.k.a. circu-
lar) security [BRS03,CL01].

Second, IND-CPA security does not imply that keys under which one has seen
encryptions of random messages remain pseudorandom.9 Pseudorandomness of
keys (assuming only IND-CPA security of the underlying scheme) can thus only
hold if their corresponding node does not have any outgoing edges. We thus
require that all challenge nodes in the key graph are sinks (i.e., their out-degree
is 0). The requirements (as formalized also in [Pan07]) are summarized in the
following.

Definition 3. An adversary A is legitimate if in any execution of A in the GSD
game the values of G(A), V corr(A) and V chal(A) are such that:

– For all i ∈ V corr(A) and j ∈ V chal(A): j is unreachable from i in G(A).
– G(A) is a directed acyclic graph (DAG) and every node in V chal(A) is a sink.

9 Consider any IND-CPA-secure scheme (Enc,Dec) and define a new scheme as follows:
keys are doubled in length and encryption under k = k1||k2 is defined as Enck(m) =
Enck1(m)||k2. This scheme is still IND-CPA, but given a ciphertext C = Enck(m)
one can easily distinguish k from a random value even if m is random and unknown.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 613

Let n ∈ N
+ and G be a class of DAGs with n vertices. We say that a legitimate

adversary A is a G-adversary if in any execution the key graph belongs to G, i.e.,
G(A) ∈ G.
Definition 4. Let t ∈ N

+, 0 < ε < 1. An encryption scheme Enc is called
(n, t, ε,G)-GSD secure if for every G-adversary A running in time t, we have

∣
∣Pr

[
Expgsd−(n,1)

Enc,A = 1
] − Pr

[
Expgsd−(n,0)

Enc,A = 1
]∣
∣ ≤ ε.

Assuming One Challenge Query is Enough. Although the definition of
GSD allows the adversary to make any number of corruption queries, Panjwani
[Pan07] observes that by a standard hybrid argument one can turn any adver-
sary with advantage ε (which makes at most q ≤ n challenge queries) into an
adversary that makes only one challenge query, but still has advantage at least
ε/q. From now on we therefore only consider adversaries that make exactly one
challenge query (keeping in mind that we have to pay an extra factor n in the
final distinguishing advantage for statements about general adversaries).

4 Single Source

In this section we will analyze the GSD game for key graphs in which the chal-
lenge node is only reachable from one source node. That is, for some q ≤ n there
is a path p1 → p2 → . . . → pq where p1 has in-degree 0, all nodes pi, 2 ≤ i ≤ q
have in-degree 1 (but arbitrary out-degree) and the (single) challenge query is
challenge(pq) (recall that the challenge has out-degree 0). Let G1 be the set of all
such graphs, and G�

1 ⊆ G1 be the subset where this path has length at most �.

Theorem 1 (GSD on Trees with One Path to Challenge). Let t ∈ N,
0 < ε < 1 and G1 be the class of key graphs just defined. If an encryption scheme
is (t, ε)-IND-CPA secure then it is also (n, t′, ε′,G1)-GSD secure for

ε′ = ε · n (3n)�log n� and t′ = t − QAdvTEnc − Õ(QAdv),

where TEnc denotes the time required to encrypt a key, and QAdv denotes an upper
bound on the number of queries made by the adversary.10 More generally, if we
replace G1 with G�

1, we get

ε′ = ε · n (3n)�log �� and t′ = t − QAdvTEnc − Õ(QAdv).

GSD on Single-Source Graphs. For b ∈ {0, 1}, we consider the GSD game
Expgsd−(n,b)

Enc on G1 between B and an adversary A. Challenger B first samples

10 If Enc is deterministic then w.l.o.g. we can assume QAdv ≤ n2 as there are at most
n(n − 1)/2 possible encryption queries (plus ≤ n corruption and challenge queries).
If Enc is probabilistic then A is allowed any number of encryption queries.

614 G. Fuchsbauer et al.

n random keys k1, k2, . . . , kn and we assume that already at this point B sam-
ples fake keys r1, . . . , rn. On all encrypt(i, j) queries B returns real responses
Encki

(kj). If b = 0, the response to challenge(z) is kz; if b = 1, the response is rz.
We require that the key graph is in G1, that is the connected component

of the key graph which contains the challenge z has a path p1 → p2 → . . . →
pq = z with p1 having in-degree 0, all other pi having in-degree 1 and pq = z
having out-degree 0 (this means A made queries encrypt(pi−1, pi), but no queries
encrypt(x, pi) for x �= pi−1).

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also the output of the game.
If the encryption scheme Enc is not (t′, ε′,G1)-GSD secure then there exists a
G1-adversary A running in time t′ such that

∣
∣Pr

[
Expgsd−(n,0)

Enc,A = 1
] − Pr

[
Expgsd−(n,1)

Enc,A = 1
]∣
∣ > ε′. (1)

Our Goal. Suppose we knew that our GSD adversary A wants to be challenged
on a fixed node z∗ and that it will make a query encrypt(y, z∗) for some y which
it will not use in any other query. Then we could use A directly to construct a
distinguisher D as in Definition 2: D sets up all keys kx, x ∈ [n], samples a value
rz∗ and runs A, answering A’s queries using its keys; except when encrypt(y, z∗)
is queried for any y ∈ [q], D queries its own challenger on (kz∗ , rz∗) and forwards
the answer to A. Moreover, challenge(z∗) is answered with kz∗ . If D’s challenger
C chose b = 0, this perfectly simulates the real game for A. If b = 1 then A gets
an encryption of rz∗ and the challenge query is answered with kz∗ , although in
the random GSD game A expects an encryption of kz∗ and challenge(z∗) to be
answered with rz∗ . However, these two games are distributed identically, since
both kz∗ and rz∗ are uniformly random values that do not occur anywhere else
in the game. Thus D simulates the real game when b = 0 and the random game
when b = 1. Note that D implicitly set ky to the key that C chose, but that’s
fine, since we assumed that ky is not used anywhere else in the game and thus
not needed by D for the simulation.

Finally, suppose that, in addition to the challenge z∗, we knew y∗ for which
A will query encrypt(y∗, z∗). Then we could also allow A to issue queries of the
form encrypt(y∗, x), for x other than z∗. D could easily simulate any such query
by querying kx to its encryption oracle.

Unfortunately, general GSD adversaries can decide adaptively on which node
they want to be challenged, and worse, they can make queries encrypt(x, y),
where y is a key that encrypts the challenge.

We will construct a series of hybrids where any two consecutive games Game
and Game′ are such that from a distinguisher A for them, we can construct an
adversary D against the encryption scheme with the same advantage. For this,
the two games should only differ in the response of one encryption query on
the path to the challenge, say encrypt(y, z), which is responded to with a real
ciphertext Encky

(kz) in Game and with a fake ciphertext Encky
(rz) in Game′.

Moreover, the key ky must not be encrypted anywhere else in the game, as our
distinguisher D will implicitly set ky to be the key of its IND-CPA challenger C.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 615

Thus, in Game and Game′ all queries encrypt(x, y), for any x, are responded to
with a fake ciphertext Enckx

(ry). Summing up, we need the two games to have
the following properties for some y:

– Property 1. Game and Game′ are identical except for the response to one
query encrypt(y, z), which is replied to with a real ciphertext in Game and a
fake one in Game′.

– Property 2. Queries encrypt(x, y) are replied to with a fake response in both
games.

If we knew the entire key graph G(A) before answering A’s queries then we could
define a series of 2q − 1 games as in Fig. 1 where we consecutively replace edges
from the source to the challenge by fake nodes and then go back replacing fake
edges with real ones starting with pq−2 → pq−1. Any two consecutive games in
such a sequence would satisfy the two properties, so we could use them to break
IND-CPA.

The problem is that in general the probability of guessing the connected
component containing the challenge is exponentially small in n and consequently
from a GSD adversary’s advantage ε′ we will obtain a distinguisher D with advan-
tage ε = ε′/O(n!). To avoid an exponential loss, we thus must avoid guessing the
entire component at once.

The First Step. Our first step is to define two new games Game{q}
∅ and Game{q}

{q} ,
which are modifications of Expgsd−0 and Expgsd−1, respectively. Both new
games have an extra step at the beginning of the game: B guesses which key
is going to be the challenge key and at the end of the game only if its guess was
correct, the output of the game is A’s output and otherwise it is 0. Clearly B’s
guess is correct with probability 1/n. Aside from this guessing step, Game{q}

∅ is
identical to Expgsd−0; all responses are real. We therefore have Pr[Game{q}

∅ =
1] = 1/n · Pr[Expgsd−0 = 1].

Analogously, we define an auxiliary game, Game{q}
1 , which is identical to

Expgsd−1, except for the guessing step. Again we have Pr[Game{q}
1 = 1] =

1/n · Pr[Expgsd−1 = 1]. We then define Game{q}
{q} exactly as Game{q}

1 , except for a
syntactical change: Let z be the guessed value for the challenge node. Then any
query encrypt(x, z) is replied to with Enckx

(rz), that is, an encryption of the fake
key rz. (Note that this game can be simulated, since we “know” z when guessing
correctly.) On the other hand, the query challenge(z) is answered with kz (rather
than rz in Expgsd−1). Since the difference between Game{q}

1 and Game{q}
{q} is that

we have replaced all occurrences of kz by rz and all occurrences of rz by kz,
which are distributed identically (thus we’ve merely swapped the names of kz

and rz), we have Pr[Game{q}
{q} = 1] = Pr[Game{q}

1 = 1] = 1/n · Pr[Expgsd−1 = 1].
Together with Eq. (1), we have thus

∣
∣Pr

[
Game

{q}
∅ = 1

] − Pr
[
Game

{q}
{q} = 1

]∣
∣

= 1/n · ∣
∣Pr

[
Expgsd−0 = 1

] − Pr
[
Expgsd−1 = 1

]∣
∣ > 1/n · ε′.

616 G. Fuchsbauer et al.

We continue to use the notational convention that for sets I ⊆ P ⊆ [n], the
game GameP

I is derived from the real game by additionally guessing the nodes
corresponding to P and answering encryptions of the nodes in I with fake keys.
This is made formal in Fig. 4 below.

The Second Step. Assume q is a power of 2 and consider Game{q/2, q}
∅ , which

is identical to Game{q}
∅ , except that in addition to the challenge node, B also

guesses which node x ∈ [n] is going to be the node in the middle of the path to
the challenge, i.e. pq/2 = x. T he output of Game{q/2, q}

∅ is A’s output if the guess
was correct and 0 otherwise. Since B guesses correctly with probability 1/n, we
have

Pr
[
Game

{q/2, q}
∅ = 1

]
= 1/n · Pr

[
Game

{q/2}
∅ = 1

]
.

By guessing the middle node, we can assume the middle node is known and this
will enable us to define a hybrid game, Game{q/2, q}

{q/2} , in which the query for the
encryption of kpq/2 is responded to with a fake answer. In addition, we consider
games Game{q/2, q}

{q} and Game{q/2, q}
{q/2, q} which are similarly defined by making the

same changes to game Game{q}
{q} , i.e. guessing the middle node and replying to

the encryption query of the guessed key with a fake and a real ciphertext respec-
tively. Again, we have Pr[Game{q/2, q}

{q} = 1] = 1/n · Pr[Game{q}
{q} = 1]. Therefore

(t′, ε′/n)-distinguishability of Game{q}
∅ and Game{q}

{q} implies that Game{q/2, q}
∅ and

Game{q/2, q}
{q} are (t′, ε′/n2)-distinguishable, i.e. Δt

(
Game{q/2, q}

∅ ,Game{q/2, q}
{q}

)
>

ε′/n2, and therefore by the triangle inequality

Δt

(
Game

{q/2, q}
∅ ,Game

{q/2, q}
{q/2}

)
+ Δt

(
Game

{q/2, q}
{q/2} ,Game

{q/2, q}
{q/2, q}

)

+ Δt

(
Game

{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)
≥ Δt

(
Game

{q/2, q}
∅ ,Game

{q/2, q}
{q}

)

> 1/n2 · ε′. (2)

By Eq. (2), at least one of the pairs of games on the left-hand side must be
(t′, ε′/3n2)-distinguishable. The two games of every pair differ in exactly one
point, as determined by the subscript of each game. For instance, the difference
between the last pair Game{q/2, q}

{q/2, q} and Game{q/2, q}
{q} is the encryption of node q/2.

Recall that our goal is to construct a pair of hybrids where the differing query
encrypt(y, z) is such that all queries encrypt(x, y) are replied to with Enckx

(ry),
as formalized as Property 2. Games Game{q}

∅ and Game{q}
{q} differed in the last

query on the path and the only key above it that is not encrypted anywhere
is the start of the path. What we have achieved with our games above is to
halve that distance: the first pair, (Game{q/2, q}

∅ ,Game{q/2, n}
{q/2}), and the last pair,

(Game{q/2, q}
{q/2, q} ,Game{q/2, q}

{q}), differ in a node that is only half way down the path;
and the middle pair, (Game{q/2, q}

{q/2} ,Game{q/2, q}
{q/2, q}), differ in the last node, but half

way up the path there is a key, namely kq/2, which is not encrypted anywhere,
as all queries encrypt(x, q/2) are answered with Enckx

(rq/2).

The Remaining Steps. For any of the three pairs that is (t′, ε′/3n2)-distin-
guishable (and by Eq. (2) there must exist one), we can repeat the same process

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 617

Fig. 4. Definition of GamePI for the single-source case.

on the half of the path which ends with the query that is different in the two
games. For example, assume this holds for the last pair, that is

Δt

(
Game

{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)
>

ε′

3n2
. (3)

We repeat the process of guessing the middle node between the differing node
and the random node above (in this case the root of the path), which is thus
node q/4, and obtain a new pair which satisfies

Δt

(
Game

{q/4, q/2, q}
{q/2, q} ,Game

{q/4, q/2, q}
{q}

)
>

ε′

3n3
, (4)

by Eq. (3) and the fact that the guess is correctly with probability 1/n. We can
now define two intermediate games

Game
{q/4, q/2, q}
{q/4, q/2, q} and Game

{q/4, q/2, q}
{q/4, q} (5)

where we replaced the encryption of kpq/4 by one of rpq/4 . As in Eq. (2), we
can again define a sequence of games by putting the games in Eq. (5) between
the ones in Eq. (4) and argue that by Eq. (4), two consecutive hybrids must
be (t′, ε′/(32n3))-distinguishable. What we have gained is that any pair in this
sequence differs by exactly one edge and the closest fake answer above is only a
fourth of the path length away.

Repeating these two steps a maximum number of �log q� times, we arrive at
two consecutive games, where the distance from the differing node to the closest
“fake” node above is 1. We have thus found two games that satisfy Properties 1
and 2, meaning we can use a distinguisher A to construct an adversary D against
the encryption scheme.

Since a path has at most n nodes, after at most log n steps we end up with
two games that are (t′, ε′/n(3n)�log n�)-distinguishable and which can be used to
break the encryption scheme. If the adversary is restricted to paths of length �
(i.e., graphs in G�

1), this improves to (t′, ε′/n(3n)�log ��).

618 G. Fuchsbauer et al.

Proof of Theorem 1. We formalize our method to give a proof of the theorem.
In Fig. 4 we describe game GameP

I , which is defined by the nodes on the path
that are guessed (represented by the set P) and the nodes where an encryption
of a key is replaced with an encryption of a value r (represented by I ⊆ P).

Lemma 1. Let I ⊆ P ⊆ [n] and z ∈ P \ I. Also let y be the largest number in I
such that y < z, and y = 0 if z is smaller than all elements in I. If GameP

I and
GameP

I∪{z} are (t, ε)-distinguishable then the following holds.

– If z = y + 1 then Enc is not (t + QAdvTEnc + Õ(QAdv)), ε)-IND-CPA-secure.
– If z > y + 1, define z′ = y + �(z − y)/2�, P ′ = P ∪ {z′} and

I1 = I, I2 = I ∪ {z′}, I3 = I ∪ {z′, z}, I4 = I ∪ {z}.

Then for some i ∈ {1, 2, 3}, games GameP ′
Ii and GameP ′

Ii+1
are (t, ε/3n)-

distinguishable.

The proof of this lemma can be found in the full version. Applying Lemma 1
repeatedly �log n� times (or �log �� if we know an upper bound on the path
length �), we obtain the proof of Theorem 1.

5 General Trees

For a node v in a directed graph G let Tv denote the subgraph of G we get when
only keeping the edges on paths that lead to v. In this section we prove bounds
for GSD if the underlying key graph is a tree. Concretely, let Gτ be the class of
key graphs that contain one designated “challenge node” z and where the graph
Tz is a tree (when ignoring edge directions).

To give more fine-grained bounds we define a subset Gs,d,�
τ ⊆ Gτ as follows.

For G ∈ Gτ , let z be the challenge node and Tz as above. Then G ∈ Gs,d,�
τ

if the challenge node has at most s sources (i.e., there are at most s nodes u
of in-degree 0 s.t. there is a directed path from u to z), every node in Tz has
in-degree at most d and the longest path in Tz has length at most �. Note that
as d < n, s < n and � ≤ n any G ∈ Gτ with n nodes is trivially in Gn−1,n−1,n

τ .

Theorem 2 (Security of GSD on Trees). Let n, t ∈ N, 0 < ε < 1 and Gτ

be the class of key graphs just defined. If an encryption scheme is (t, ε)-IND-
CPA secure then it is also (n, t′, ε′,Gτ)-GSD secure for

ε′ = ε · n2(6n3)�log n� ≤ ε · n3�log n�+5 and t′ = t − QAdvTEnc − Õ(QAdv)

(with QAdv, TEnc as in Theorem 1). If we replace Gτ with Gs,d,�
τ then

ε′ = ε · dn((2d + 1)n)�log s� (3n)�log �� and t′ = t − QAdvTEnc − Õ(QAdv).

For space reasons, the proof of this theorem is moved to the full version.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 619

6 Conclusions and Open Problems

We showed a quasipolynomial reduction of the GSD game on trees to the security
of the underlying symmetric encryption scheme. As already discussed in the
introduction, it is an interesting open problem to extend our reduction to general
(directed, acyclic) graphs or to understand why this is not possible. This is the
second result using the “nested hybrids” technique (after its introduction in
[FKPR14] to prove the security of constrained PRFs), and given that it found
applications for two seemingly unrelated problems, we believe that there will be
further applications in the future.

One candidate is the problem of proving security under selective opening
attacks [DNRS99,FHKW10,BHY09], where one wants to prove security when
correlated messages are encrypted under different keys. Here, the adversary may
adaptively chose to corrupt some keys after seeing all ciphertexts, and one
requires that the messages in the unopened ciphertexts are indistinguishable
from random messages (sampled so they are consistent with the already opened
ciphertexts). This problem is notoriously hard, and no reduction avoiding com-
plexity leveraging to IND-CPA security of the underlying scheme is known.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments.

References

[ABBC10] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its
relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014)

[BH93] Beaver, D., Haber, S.: Cryptographic protocols provably secure against
dynamic adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 307–323. Springer, Heidelberg (1993)

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009)

[BRS03] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595. Springer, Heidelberg (2003)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[CFGN96] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-
party computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May
1996

620 G. Fuchsbauer et al.

[CL01] Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 93. Springer, Heidelberg
(2001)

[DNRS99] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In:
40th FOCS, pp. 523–534. IEEE Computer Society Press, October 1999

[FHKW10] Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure
against chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg
(2010)

[FKPR14] Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security
of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[KPTZ13] Kiayia, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 13, pp. 669–684. ACM Press, New York
(2013)

[MP06] Micciancio, D., Panjwani, S.: Corrupting one vs. Corrupting many: the
case of broadcast and multicast encryption. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 70–82.
Springer, Heidelberg (2006)

[Pan07] Panjwani, S.: Tackling adaptive corruptions in multicast encryption pro-
tocols. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40.
Springer, Heidelberg (2007)

[SS00] Selçuk, A.A., Sidhu, D.P.: Probabilistic methods in multicast key man-
agement. In: Information Security, Third International Workshop, ISW
2000, 20–21 December 2000, Wollongong, NSW, Australia, pp. 179–193.
Proceedings (2000)

[WGL00] Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using
key graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)

Hash Functions and Stream Cipher
Cryptanalysis

Practical Free-Start Collision Attacks
on 76-step SHA-1

Pierre Karpman1,2, Thomas Peyrin2, and Marc Stevens3(B)

1 Inria, Villeurbanne, France
pierre.karpman@inria.fr

2 Nanyang Technological University, Singapore, Singapore
thomas.peyrin@ntu.edu.sg

3 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
marc.stevens@cwi.nl

Abstract. In this paper we analyze the security of the compression func-
tion of SHA-1 against collision attacks, or equivalently free-start collisions
on the hash function. While a lot of work has been dedicated to the analy-
sis of SHA-1 in the past decade, this is the first time that free-start col-
lisions have been considered for this function. We exploit the additional
freedom provided by this model by using a new start-from-the-middle
approach in combination with improvements on the cryptanalysis tools
that have been developed for SHA-1 in the recent years. This results in
particular in better differential paths than the ones used for hash func-
tion collisions so far. Overall, our attack requires about 250 evaluations
of the compression function in order to compute a one-block free-start
collision for a 76-step reduced version, which is so far the highest num-
ber of steps reached for a collision on the SHA-1 compression function.
We have developed an efficient GPU framework for the highly branching
code typical of a cryptanalytic collision attack and used it in an opti-
mized implementation of our attack on recent GTX 970 GPUs. We report
that a single cheap US$ 350 GTX970 is sufficient to find the collision in
less than 5 days. This showcases how recent mainstream GPUs seem to
be a good platform for expensive and even highly-branching cryptanaly-
sis computations. Finally, our work should be taken as a reminder that
cryptanalysis on SHA-1 continues to improve. This is yet another proof
that the industry should quickly move away from using this function.

Keywords: SHA-1 · Hash function · Cryptanalysis · Free-start collision ·
GPU implementation

1 Introduction

Cryptographic hash functions are essential components in countless security sys-
tems for very diverse applications. Informally, a hash function H is a function

P. Karpman—Partially supported by the Direction Générale de l’Armement and by
the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).
T. Peyrin—Supported by the Singapore National Research Foundation Fellowship
2012 (NRF-NRFF2012-06).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 623–642, 2015.
DOI: 10.1007/978-3-662-47989-6 30

624 P. Karpman et al.

that takes an arbitrarily long message M as input and outputs a fixed-length
hash value of size n bits. One of the main security requirements for a cryp-
tographic hash function is to be collision resistant: it should be hard for an
adversary to find two distinct messages M , M̂ leading to the same hash value
H(M) = H(M̂) in less than 2

n
2 calls to H. Most standardized hash functions

are based on the Merkle-Damg̊ard paradigm [6,27] which iterates a compression
function h that updates a fixed-size internal state (also called chaining value)
with fixed-size message blocks. This construction allows a simple and very useful
security reduction: if the compression function is collision-resistant, then so is
the corresponding hash function. Since the compression function has two inputs,
an attacker may use this extra freedom to mount attacks that are not possible
on the complete hash function; on the other hand, one loses the ability to chain
message blocks. We can then distinguish between two classical attack models: a
free-start collision is a pair of different message and chaining value (c,m), (ĉ, m̂)
leading to a collision after applying h: h(c,m) = h(ĉ, m̂). A semi-free-start col-
lision works similarly, with the additional restriction that the chaining values c
and ĉ must be equal. It is important to note that the Merkle-Damg̊ard security
reduction assumes that any type of collision for the compression function should
be intractable for an attacker, including free-start collisions.

The most famous and probably most used hash function as of today is
SHA-1 [29]. This function belongs to the MD-SHA family, that originated with
MD4 [34]. Soon after its publication, MD4 was believed to be insufficiently secure [9]
and a practical collision was later found [11]. Its improved version, MD5 [35],
was widely deployed in countless applications, even though collision attacks on
the compression function were quickly identified [10]. The function was com-
pletely broken and collisions were found in the groundbreaking work from Wang
et al. [43]. A more powerful type of collision attack called chosen-prefix collision
attack against MD5 was later introduced by Stevens et al. [40]. Irrefutable proof
that hash function collisions indeed form a realistic and significant threat to
Internet security was then provided by Stevens et al. [41] with their construc-
tion of a Rogue Certification Authority that in principle completely undermined
HTTPS security. This illustrated further that the industry should move away
from weak cryptographic hash functions and should not wait until cryptanalytic
advances actually prove to be a direct threat to security. Note that one can
use counter-cryptanalysis [38] to protect against such digital signature forgeries
during the strongly advised migration away from MD5 and SHA-1.

Before the impressive attacks on MD5, the NIST had standardized the hash
function SHA-0 [28], designed by the NSA and very similar to MD5. This function
was quickly very slightly modified and became SHA-1 [29], with no justification
provided. A plausible explanation came from the pioneering work of Chabaud
and Joux [4] who found a theoretical collision attack that applies to SHA-0 but
not to SHA-1. Many improvements of this attack were subsequently proposed [1]
and an explicit collision for SHA-0 was eventually computed [2]. However, even
though SHA-0 was practically broken, SHA-1 remained free of attacks until the
work of Wang et al. [42] in 2005, who gave the very first theoretical collision

Practical Free-Start Collision Attacks on 76-step SHA-1 625

attack on SHA-1 with an expected cost equivalent to 269 calls to the compression
function. This attack has later been improved several times, the most recent
improvement being due to Stevens [39], who gave an attack with estimated cost
261; yet no explicit collision has been computed so far. With the attacks on the
full SHA-1 remaining impractical, the community focused on computing collisions
for reduced versions: 64 steps [8] (with a cost of 235 SHA-1 calls), 70 steps [7]
(cost 244 SHA-1), 73 steps [13] (cost 250.7 SHA-1) and the latest advances reached
75 steps [14] (cost 257.7 SHA-1) using extensive GPU computation power. As of
today, one is advised to use e.g. SHA-2 [30] or the hash functions of the future
SHA-3 standard [31] when secure hashing is needed.

In general, two main points are crucial when dealing with a collision search for
a member of the MD-SHA family of hash functions (and more generally for almost
every hash function): the quality of the differential paths used in the attack and
the amount and utilization of the remaining freedom degrees. Regarding SHA-0
or SHA-1, the differential paths were originally built by linearizing the step func-
tion and by inserting small perturbations and corresponding corrections to avoid
the propagation of any difference. These so-called local collisions [4] fit nicely
with the linear message expansion of SHA-0 and SHA-1 and made it easy to gen-
erate differential paths and evaluate their quality. However, these linear paths
have limitations since not so many different paths can be used as they have
to fulfill some constraints (for example no difference may be introduced in the
input or the output chaining value). In order to relax some of these constraints,
Biham et al. [2] proposed to use several successive SHA-1 compression function
calls to eventually reach a collision. Then, Wang et al. [42] completely removed
these constraints by using only two blocks and by allowing some part of the
differential paths to behave non-linearly (i.e. not according to a linear behavior
of the SHA-1 step function). Since the non-linear parts have a much lower dif-
ferential probability than the linear parts, to minimize the impact on the final
complexity they may only be used where freedom degrees are available, that
is during the first steps of the compression function. Finding these non-linear
parts can in itself be quite hard, and it is remarkable that the first ones were
found by hand. Thankfully, to ease the work of the cryptanalysts, generating
such non-linear parts can now be done automatically, for instance using the
guess-and-determine approach of De Cannière and Rechberger [8], or the meet-
in-the-middle approach of Stevens et al. [15,37]. In addition, joint local collision
analysis [39] for the linear part made heuristic analyzes unnecessary and allows
to generate optimal differential paths.

Once a differential path has been chosen, the remaining crucial part is the
use of the available freedom degrees when searching for the collision. Several
techniques have been introduced to do so. First, Chabaud and Joux [4] noticed
that in general the 15 first steps of the differential path can be satisfied for free
since the attacker can fix the first 16 message words independently, and thus
fulfill these steps one by one. Then, Biham and Chen [1] introduced the notion of
neutral bits, that allows the attacker to save conditions for a few additional steps.
The technique is simple: when a candidate following the differential path until

626 P. Karpman et al.

step x > 15 is found, one can amortize the cost for finding this valid candidate by
generating many more almost for free. Neutral bits are small modifications in the
message that are very likely not to invalidate conditions already fulfilled in the
x first steps. In opposition to neutral bits, the aim of message modifications [42]
is not to multiply valid candidates but to correct the wrong ones: the idea is
to make a very specific modification in a message word, so that a condition not
verified at a later step eventually becomes valid with very good probability, but
without interfering with previously satisfied conditions. Finally, one can cite the
tunnel technique from Kĺıma [20] and the auxiliary paths (or boomerangs) from
Joux and Peyrin [18], that basically consist in pre-set, but more powerful neutral
bits. Which technique to use, and where and how to use it are complex questions
for the attacker and the solution usually greatly depends on the specific case that
is being analyzed.

Our Contributions. In this paper, we study the free-start collision security
of SHA-1. We explain why a start-from-the-middle approach can improve the
current best collision attacks on the SHA-1 compression function regarding two
keys points: the quality of the differential paths generated, but also the amount
of freedom degrees and the various ways to use them. Furthermore, we present
improvements to derive differential paths optimized for collision attacks using
an extension of joint local-collision analysis. All these improvements allow us
to derive a one-block free-start collision attack on 76-step SHA-1 for a rather
small complexity equivalent to about 250 calls to the primitive. We have fully
implemented the attack and give an example of a collision in the full version of
the paper [19].

We also describe a GPU framework for a very efficient GPU implementa-
tion of our attack. The computation complexity is quite small as a single cheap
US$ 350 GTX 970 can find a collision in less than 5 days, and our cheap US$ 3000
server with four GTX 970 GPUs can find one in slightly more than one day on
average. In comparison, the 75-step collision from [14] was computed on the
most powerful supercomputer in Russia at the time, taking 1.5 month on 455
GPUs on average. This demonstrates how recent mainstream GPUs can easily
be used to perform big cryptanalysis computations, even for the highly branch-
ing code used in cryptanalytic collision attacks. Notably, our approach leads to
a very efficient implementation where a single GTX 970 is equivalent to about
140 recent high-clocked Haswell cores, whereas the previous work of Grechnikov
and Adinetz estimates an Nvidia Fermi GPU to be worth 39 CPU cores [14].

Moreover, we emphasize that we have found the collision that has reached
the highest number of SHA-1 compression function steps as of today. Finally,
this work serves as a reminder that cryptanalysis on SHA-1 continues to improve
and that industry should now quickly move away from using this primitive.

Outline. In Sect. 2 we first describe the SHA-1 hash function. In Sect. 3 we
describe the start-from-the-middle approach and how it can provide an improve-
ment when looking for (semi)-free-start collisions on a hash function. We then

Practical Free-Start Collision Attacks on 76-step SHA-1 627

study the case of 76-step reduced SHA-1 with high-level explanations of the
application of the start-from-the-middle approach, the differential paths, and
the GPU implementation of the attack in Sect. 4. The reader interested by more
low-level details can then refer to Sect. 5. Finally, we summarize our results in
Sect. 6.

2 The SHA-1 Hash Function

We give here a short description of the SHA-1 hash function and refer to [29]
for a more exhaustive treatment. SHA-1 is a 160-bit hash function belonging to
the MD-SHA family. Like many hash functions, SHA-1 uses the Merkle-Damg̊ard
paradigm [6,27]: after a padding process, the message is divided into k blocks of
512 bits each. At every iteration of the compression function h, a 160-bit chaining
value cvi is updated using one message block mi+1, i.e. cvi+1 = h(cvi,mi+1).
The initial value IV = cv0 is a predefined constant and cvk is the output of the
hash function.

As for most members of the MD-SHA family, the compression function h uses
a block cipher Enc in a Davies-Meyer construction: cvi+1 = Enc(mi+1, cvi) +
cvi, where Enc(x, y) denotes the encryption of plaintext y with key x. The
block cipher itself is an 80-step (4 rounds of 20 steps each) generalized Feistel
network which internal state is composed of five branches (or internal registers)
(Ai, Bi, Ci,Di, Ei) of 32-bit each. At each step, a 32-bit extended message word
Wi is used to update the five internal registers:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai+1 = (Ai ≪ 5) + fi(Bi, Ci,Di) + Ei + Ki + Wi,
Bi+1 = Ai,
Ci+1 = Bi ≫ 2,
Di+1 = Ci,
Ei+1 = Di.

where Ki are predetermined constants and fi are Boolean functions defined
in Table 1. Note that all updated registers but Ai+1 are just rotated copies of
another register, so one can only consider the register A at each iteration. Thus,
we can simplify the step function as:

Ai+1 = (Ai ≪ 5) + fi(Ai−1, Ai−2 ≫ 2, Ai−3 ≫ 2) + (Ai−4 ≫ 2) + Ki + Wi.

Finally, the extended message words Wi are computed from the 512-bit message
block, which is split into 16 32-bit words M0, . . . , M15. These 16 words are then
expanded linearly into the 80 32-bit words Wi as follows:

Wi =
{

Mi, for 0 ≤ i ≤ 15
(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1, for 16 ≤ i ≤ 79

For the sake of completeness, since our attacks compute the internal cipher
Enc both in the forward (encryption) and backward (decryption) directions, we
also give below the description of the inverse of the state update function:

Ai=(Ai+5−Wi+4−Ki+4−fi+4(Ai+3, Ai+2 ≫ 2, Ai+1 ≫ 2)−(Ai+4 ≪ 5))≪ 2

and of the message expansion: Wi = (Wi+16 ≫ 1) ⊕ Wi+13 ⊕ Wi+8 ⊕ Wi+2.

628 P. Karpman et al.

Table 1. Boolean functions and constants of SHA-1

Round Step i fi(B,C,D) Ki

1 0 ≤ i < 20 fIF = (B ∧ C) ⊕ (B ∧ D) 0x5a827999

2 20 ≤ i < 40 fXOR = B ⊕ C ⊕ D 0x6ed6eba1

3 40 ≤ i < 60 fMAJ = (B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 0x8fabbcdc

4 60 ≤ i < 80 fXOR = B ⊕ C ⊕ D 0xca62c1d6

3 A Start-from-the-middle Approach

The first example of an attack starting from the middle of a hash function is
due to Dobbertin [11], who used it to compute a collision on MD4. Start-from-
the-middle methods are also an efficient approach to obtain distinguishers on
hash functions, such as Saarinen’s slide distinguisher on the SHA-1 compression
function [36]. Rebound attacks [25] and their improvements [12,16,21,24] can
be considered as a start-from-the-middle strategy tailored to the specific case
of AES-like primitives. Start-from-the-middle has also been used to improve the
analysis of functions based on parallel branches, such as RIPEMD-128 [22]. All
these attacks leverage the fact that in some specific scenarios, starting from the
middle may lead to a better use of the freedom degrees available.

In general, a start-from-the-middle approach for collision search leads to a
free-start or semi-free-start attack. Indeed, since one might not use the freedom
degrees in the first steps of the compression function anymore, it is harder to
ensure that the initial state (i.e. the chaining value) computed from the middle
is equal to the specific initial value of the function’s specifications. However, if
the starting point is not located too far from the beginning, one may still be
able to do so; this is for example the case of the recent attack on Grøstl [26]. In
this work, we focus on the search of free-start collisions and consider that the
IV can be chosen by the attacker. For SHA-1, this adds 160 bits of freedom that
can be set in order to fulfill conditions to follow a differential path.

Furthermore, in the case of SHA-1, one can hope to exploit a start-from-the-
middle approach even more to improve previous works in two different ways.
Firstly, the set of possible differential paths to consider increases. Secondly, the
freedom degrees now operate in two directions: forward and backward.

More Choice for the Differential Paths. The linear differential paths (gen-
erated from the mask of introduced perturbations, also called disturbance vector
or DV) used in all existing collision attacks on SHA-1 can be concisely described
in two families [23]. Both types have the feature that the complexity of following
the path is unevenly distributed along the 80 steps of SHA-1 (this remains true
for attacks on reduced versions as well). Furthermore, because a typical attack
replaces a portion of the linear differential path by a non-linear part, this latter
one defines a series of steps where the complexity of the linear path is basically
irrelevant. In the case of a start-from-the-middle attack, one can choose where

Practical Free-Start Collision Attacks on 76-step SHA-1 629

to locate this non-linear part, and thereby gains more flexibility in the choice of
the linear path to use.

Two-Way Use of the Freedom Degrees. In a start-from-the-middle setting,
one freely chooses an initial state in the middle of the function instead of nec-
essarily starting from the IV in the beginning. Therefore, the differential path
conditions may be related both to forward and backward computations from the
middle state, and the same goes for the freedom available in the first 16 words
of the message. Because one now has more possibilities to exploit them, one
can hope to make a better use of these freedom degrees. For example, we can
imagine two-way neutral bits, that is applying neutral bits in both forward and
backward directions. This would potentially allow the attacker to obtain a few
free steps not only in the forward direction as in previous works, but also in the
backward direction. Of course, one must be careful about the non-independence
between the forward and backward computations. Obviously, the same reason-
ing can apply to other freedom degrees utilization techniques such as message
modifications, tunnels or boomerangs.

In the next two sections, we detail how we applied this approach to the search
of free-start collisions for SHA-1.

4 A High-Level View of the SHA-1 Free-Start Collision
Attack

4.1 Start-from-the-middle

There is one main choice that must be made when using a start-from-the-middle
approach for an attack on SHA-1, that is which consecutive 16 steps are used
to apply advanced message modification techniques or neutral bits; in our ter-
minology the offset corresponding to this choice is called the main block offset.
Any simple change in those 16 steps propagates to all other steps, in particular
differences propagate backwards from these 16 steps down to step 0 and thereby
affect the input chaining values. Note that for regular attacks on SHA-1, the
main block offset must be 0 to ensure that the chaining value is never altered.

For our neutral bits, we found that using a main block offset of 6 was optimal.
Therefore neutral bits are applied on the 16 message words W6...21 and a neutral
bit in Wi affects steps 5, 4, . . . , 0 backwards and steps i, i + 1, . . . forwards.

Before we can apply the neutral bits, we first need to compute a partial
solution over 16 consecutive steps that can be extended using the neutral bits,
which we call base solution in our terminology. This base solution is also com-
puted with an offset but it is only one, meaning that it consists of state words
A−3, . . . , A17. We can find such a solution using simple message modification,
over the message words W1 to W16, in particular we choose an initial solution
for A8, . . . , A12 which we first extend backwards using words 11, . . . , 1 and then
forwards using words 12, . . . , 16.

630 P. Karpman et al.

Using Neutral Bits to Improve the Probabilistic Phase. The offset of
the base solution being 1, the state may not follow the differential path anymore
starting from A18, and the attacker needs to test many different base solutions
to go as far as A76 and get a complete collision. At first sight, it may therefore
seem that we gained only little from this particular use of a start-in-the-middle
approach. However, by using a main block offset of 6, there remains freedom
that can still be exploited in the message words up to W21. Although their value
cannot be changed entirely (as they were fully determined when computing the
base solution), we can still use these words to implement neutral bits.

In our attack, we use 51 neutral bits spread on words W14 to W21, which are
neutral with respect to the computation of state words up to A18...26 with good
probability. This means that up to the computation of A26, one can take advan-
tage of solutions up to A18...25 (that had to be found probabilistically) to find
more solutions up to the same step with only a negligible cost. This consider-
ably reduces the complexity of the attack, and we experimentally observed that
about 90 % of the computations were done past A24, which can thus be consid-
ered to be where the actual probabilistic phase starts. This is a very noticeable
improvement from the original A17 of the base solution. We give a complete list
of these neutral bits in the full version of the paper [19].

There is however one caveat when using neutral bits in such a start-in-the-
middle fashion, as one will pay an additional cost in complexity if they interact
badly with the base solution when they go through the backward message expan-
sion. In our attack, we chose neutral bits that do so with only a small probability,
which can even be lowered to a negligible quantity when running the attack by
filtering the base solutions from which to start.

In Fig. 1, we summarize our application of start-from-the-middle to SHA-1
with a graphical representation of the attack layout.

4.2 Differential Path Construction Improvements

The full differential path for SHA-1 collision attacks are made of two parts.
The most important part is the linear part built from a combination of local
collisions as described by the disturbance vector, which almost covers the last 3
rounds of SHA-1 and directly contributes a major factor to the overall complexity.
The remaining part, the so-called non-linear-part covering mostly round 1, is
constructed to link up prescribed IV differences and the linear part into a full
differential path.

Current methods to construct the non-linear part are a guess-and-determine
approach due to De Cannière et al. [8] and a meet-in-the-middle approach due
to Stevens et al. [37]. For the latter an implementation has been made public at
Project HashClash [15] that we used for this work. For the linear part, the state-
of-the-art is Joint Local-Collision Analysis (JLCA) [39] which analyzes the entire
set of differential paths over the last 3 rounds conforming to the disturbance
vector and which exploits redundancy to make it practical. Using JLCA one can
extract a minimal set of conditions (consisting of starting differences (say for

Practical Free-Start Collision Attacks on 76-step SHA-1 631

Fig. 1. Illustration of the use of start-from-the-middle for SHA-1.

step 20), message bit-relations and ending differences) that leads to the highest
probability. Being of the highest probability implies that the factor contribution
of the linear part to the overall complexity is minimal, while a minimal set of
conditions maximizes the amount of freedom that can be exploited to speed up
the attack.

For our attacks we extended (our own implementation of) JLCA to cover all
steps and to produce the entire set of sufficient state conditions and message
bit-relations as used by collision attacks. In particular, we improved JLCA in
the following ways:

1. Include the Non-linear Part. Originally JLCA considers the entire set of
differential paths that conform to the disturbance vector only over the linear
part. This is done by considering sets Qi of allowed state differences for each
Ai given the disturbance vector (including carries), see [39]. We extended
this by defining sets Qi for the non-linear part as the state difference given
by a previously constructed differential path of the non-linear part. Here one
actually has a few options: only consider exact state difference of the non-
linear path or also consider changes in carries and/or signs, as well as include
state differences conforming to the disturbance vector. We found that allowing
changes in carries and/or signs for the state differences given by the non-linear
path made JLCA impractical, yet including state differences conforming to
the disturbance vector was practical and had a positive effect on the overall
probability of the full differential path.

2. Do Not Consider Auxiliary Carries Not Used in the Attack. Origi-
nally JLCA considers local collisions with carries as this improves the overall
probability, the probability of variants of paths adding up. However, collision
attacks employ sufficient conditions for, say, the first 25 steps, where such

632 P. Karpman et al.

auxiliary carries are not used. For these steps JLCA would thus optimize for
the wrong model with auxiliary carries. We propose to improve this by not
adding up the probability of paths over the first 25 steps, but only to take
the maximum probability. We propose to do this by redefining the cumulative
probabilities p(P,w) from [39, Sect. 4.6] to:

p(P,w) = max
̂P[0,25]∈D[0,25]

∑

P′∈D[0,te]

P′|[0,25]= ̂P[0,25]

P=Reduce(P′),w=w(P′)

Pr[P ′ − P].

In our JLCA implementation this can be simply implemented by replacing
the addition of two probabilities by taking their maximum conditional on the
current SHA-1 step.

3. Determine Sufficient Conditions. Originally JLCA only outputted start-
ing differences, ending differences, message bit-relations and the optimal suc-
cess probability. We propose to extend JLCA to reconstruct the set of differ-
ential paths over steps, say, [0, 25], and to determine minimal sets of sufficient
conditions and message bit-relations. This can be made possible by keeping
the intermediate sets of reduced differential paths R[tb,te] which were con-
structed backwards starting at a zero-difference intermediate state of SHA-1.
Then one can iteratively construct sets O[0,i) of optimal differential paths over
steps 0, . . . , i−1, i.e., differential paths compatible with some combination of
the optimal starting differences, ending differences and message bit-relations
such that the optimal success probability can be achieved. One starts with the
set O[0,0) determined by the optimal starting differences. Given O[0,i) one can
compute O[0,i+1) by considering all possible extensions of every differential
path in O[0,i) with step i (under the predefined constraints, i.e. ΔQj ∈ Qj ,
δWi ∈ W − i, see [39]). From all those paths, one only stores in O[0,i+1) those
that can be complemented by a reduced differential path over steps i+1, . . . , te
from R[i+1,te] such that the optimal success probability is achieved over steps
0, . . . , te.

Now given, say, O[0,26), we can select any path and determine its conditions
necessary and sufficient for steps 0, . . . , 25 and the optimal set of message bit-
relations that goes with it. Although we use only one path, having the entire
set O[0,26) opens even more avenues for future work. For instance, one might
consider an entire subclass of 2k differential paths from O[0,26) that can be
described by state conditions linear in message bits and a set of (linear) mes-
sage bit-relations. This would provide k bits more in degrees of freedom that
can be exploited by speed up techniques.

In short, we propose several extensions to JLCA that allows us to determine suf-
ficient state conditions and message bit-relations optimized for collision attacks,
i.e. minimal set of conditions attaining the highest success probability paths
(where auxiliary carries are only allowed after a certain step).

Practical Free-Start Collision Attacks on 76-step SHA-1 633

4.3 Implementation of the Attack on GPUs

We now present a high-level view of the implementation of our attack, focusing on
the features that make it efficient on GPUs. Their architecture being noticeably
different from the one of CPUs, we first recall a few important points that will
help understanding the design decisions1.

Number of Cores and Scheduling. A modern GPU can feature more than
a thousand of small cores, that are packed together in a small number of larger
“multiprocessor” execution units. Taking the example of the Nvidia GTX 970 for
concreteness, there are 13 multiprocessors of 128 cores each, making 1664 cores
in total [33]. The fastest instructions (such as for instance 32-bit bitwise logical
operations or modular addition) have a throughput of 1 per core, which means
that in ideal conditions 1664 instructions may be simultaneously processed by
such a GPU in one clock cycle [32].

Yet, so many instructions cannot be emitted independently, or to put it in
another way, one cannot run an independent thread of computation for every
core. In fact, threads are grouped together by 32 forming a warp, and only
warps may be scheduled independently. Threads within a warp may have a
diverging control flow, for instance by taking a different path upon encountering
a conditional statement, but their execution in this case is serialized. At an even
higher level, warps executing the same code can be grouped together as blocks.

Furthermore, on each multiprocessor one can run up to 2048 threads simul-
taneously, which are dynamically scheduled every cycle onto the 128 cores at a
warp granularity. Thus while a warp is waiting for the results of a computation
or for a (high latency) memory operation to return, another warp can be sched-
uled. Although having more threads does not increase the computational power
of the multiprocessor, such overbooking of cores can be used to hide latencies
and thus increase efficiency of a GPU program.

In short, to achieve an optimal performance, one must bundle computations
by groups of 32 threads executing the same instructions most of the time and
diverging as little as possible and use as many threads as possible.

Memory Architecture and Thread Synchronization. In the same way as
they feature many execution units, GPUs also provide memory of a generous
size, which must however be shared among the threads. The amount of memory
available to a single thread is therefore much less than what is typically available
on a CPU (it of course highly depends on the number of running threads, but can
be lower than 1 MB). This, together with the facts that threads of a same warp
do not actually execute independently of each other and that threads of a same
block run the same code makes it enticing to organize the memory structure of
a program at the block level. Fortunately, this is made rather easy by the fact

1 We specifically discuss these points for Nvidia GPUs of the most recent Maxwell
generation such as the GTX 970 being used in our attacks.

634 P. Karpman et al.

that many efficient synchronization functions are available for the threads, both
at the warp and at the block level.

Balancing the Work Between the GPU and the CPU. The implemen-
tation of our attack can be broadly decomposed in two phases. The first step
consists in computing a certain number of base solutions as in Sect. 4.1 and in
storing them on disk. Because the total number of base solutions necessary to
find a collision in our attack is rather small (about 225) and because they can be
computed quickly, this can be done efficiently in an offline fashion using CPUs.

The second phase then consists in trying to extend probabilistically the base
solutions (and their variants through the use of neutral bits) to find a collision.
This is an intensely parallel task that is well suited to run on GPUs. However, as
it was emphasized above, GPUs are most efficient when there is a high coherency
between the execution of many threads. For that reason, we must avoid having
idle threads that are waiting because their candidate solutions failed to follow
the differential paths, while others keep on verifying a more successful one. Our
approach to this is to fragment the verification into many small pieces (or snip-
pets) that are chosen in a way which ensures that coherency is maintained for
every thread of a warp when executing a single snippet, except in only a few
small points. This is achieved through a series of intermediary buffers that store
inputs and outputs for the snippets; a warp then only executes a given snippet if
enough inputs are available for every of its threads. One should note that there
is no need to entirely decompose the second step of the attack into snippets, and
that a final part can again be run in a more serial fashion. Indeed, if inputs to
such a part are scarce, there is no real advantage in verifying them in a highly
parallel way.

The sort of decomposition used for the GPU phase of our attack as described
above is in no way constrained by the specifics of our attack. In fact, it is quite
general, and we believe that it can be successfully applied to many an implemen-
tation of cryptographic attacks. We conclude this section by giving more details
of the application of this approach to the case of SHA-1.

Choice of the Snippets. As it was mentioned in Sect. 4.1, our attack uses
neutral bits acting on the state words of step 18 to 26. The choice we made for the
decomposition into snippets reflects this use of neutral bits: we use intermediary
buffers to store partial solutions up to step 17, 18, etc. Then for each step
the corresponding snippet consists in loading one partial solution per thread
of a warp and applying every combination of neutral bits for this step. Each
combination is tried by every thread at the same time on its own partial solution,
thereby maintaining coherency. Then, each thread writes every resulting partial
solution extended by one step to the output buffer of the snippet (which is the
input buffer of the next snippet) at the condition that it is indeed valid, this being
the only part of the code where threads may briefly diverge. For the later steps
when no neutral bits can be used anymore, the snippets regroup the computation
of several steps together, and eventually the verification that partial solutions

Practical Free-Start Collision Attacks on 76-step SHA-1 635

up to step 56 make valid collisions is done on a CPU. This is partly because
the amount of available memory makes it hard to use step-by-step snippets until
the end, but also because such partial solutions are only produced very slowly
(a single GTX 970 produces solutions up to step 56 at a speed of about 0.017
solution per second, that is about 1 per minute).

Complete Process of the Attack. When running the attack, every warp
tries to work with partial solutions that are up to the latest step possible. If no
work is available there, it tries to work with partial solutions up to the second-
latest step, etc. Eventually warps resort to using base solutions in the worst
case that no work is available anywhere else. As was already said in Sect. 4.1,
we experimentally observed that most of the work is done on partial solutions
that are at least up to step 24, and work on solutions up to lower steps (and
in particular base solutions) is thus done only intermittently. We conclude this
description by giving a simplified flow chart (made slightly incorrect for the sake
of clarity) of the GPU part of the SHA-1 attack in Fig. 2.

Fig. 2. Simplified flow chart for the GPU part of the attack. The start of this infinite
loop is in the top left corner. Rectangles “ ” represent snippets, ellipses “ ” represent
shared buffers, plain lines “ ” represent control flow, and dotted lines “ ” represent
data flow.

5 Details of the Attack and Its Implementation

5.1 The Case of SHA-1

For our 76-step free-start collision attack, we selected disturbance vector II(55,0)
(following Manuel’s classification [23]), and this for two reasons. Firstly, JLCA
showed it to be one of the best for 76-steps. Secondly, the required IV difference
is very sparse and localized on the two lowest bit positions, thus having low

636 P. Karpman et al.

potential for interference of the neutral bits with state conditions on the first
few steps.

As explained in Sect. 4.2, we have extended JLCA to determine optimal sets
of state conditions and message bit-relations given a non-linear path. For our
attack we tried both non-linear differential path construction methods, i.e. the
guess-and-determine method using our own implementation, and the meet-in-
the-middle method using the public HashClash implementation [15]. We have
found that the meet-in-the-middle approach generally resulted in fewer condi-
tions and that furthermore we could better position the conditions. Our ini-
tial non-linear path was thus generated using the meet-in-the-middle approach,
although when considering the full differential path one can encounter contra-
dictions in the message bit-relations and/or an unsolvable highest density part
of the differential path. These are expected situations which are easily solvable
by considering variations of the non-linear part, which we did using the guess-
and-determine approach.

The sufficient conditions over steps 0–35 and the message bit-relations can
be found in the full version [19].

5.2 GPU Implementation

We complete the description of our approach towards GPU programming from
Sect. 4.3 with a few lower-level details about our implementation on GTX 970.

Block Layout. A GTX 970 features 13 multiprocessors of 128 cores. Each mul-
tiprocessor can host a maximum of 2048 threads regrouped in at least 2 and
at most 32 blocks [32]. If every multiprocessor of the GPU hosts 2048 threads,
we say that we have reached full occupancy. While a multiprocessor can only
physically run one thread per core (i.e. 128) at a given time, a higher number of
resident threads is beneficial to hide computation and memory latencies. These
can have a significant impact on the performance as a single waiting thread
causes its entire warp of 32 to wait with him; it is thus important in this case
for the multiprocessor to be able to schedule another warp in the meantime.

Achieving full occupancy is not however an absolute objective as it may
or may not result in optimal performance depending on the resources needed
by every thread. Important factors in that respect are the average amount of
memory and the number of registers needed by a single thread, both being
resources shared among the threads. In our implementation, the threads need
to run rather heavy functions and full occupancy is typically not desirable. One
reason why it is so is that we need to allocate 64 registers per thread in order to
prevent register spilling in some of the most expensive functions; a multiprocessor
having “only” 216 registers, this limits the number of threads to 1024. As a result,
we use a layout of 26 blocks of 512 threads each, every multiprocessor being then
able to host 2 such blocks.

Practical Free-Start Collision Attacks on 76-step SHA-1 637

Buffer Framework. As it was already said in Sect. 4.3, we use a number of
shared buffers in our implementation in order to maximize coherency among
threads of a single warp. With the exception of the buffers holding the base solu-
tions and the collision candidates, there is one instance of every buffer per block.
This allows to use block-wise instead of global synchronization mechanisms when
updating the buffers’ content, thence reducing the overhead inherent to the use
of such shared data structures.

All of the buffers are cyclic and hold 220 elements of a few different type and
size (with the exception of the ones holding solutions after step A36 which are
of size only 210, given their limited number). The different types of buffers are
the following:

– The base solution buffer contains the value of 6 words of the solution’s state
A12 to A17, and the 16 message words W6 to W21, making 22 words in total.
Although only 5 state words are necessary to fully determine the base solution,
the value of A12 is additionally needed for the computation of some of the
neutral bits.

– An extended base solution buffer is used after the step A21; it holds the value
of state words A17 to A21, message words W14 to W18 and W20, and the index
of the base solution that it extends, using 11 words in total.

– For all the remaining steps with neutral bits, a compact representation is used
that only refers to the (extended) base solution from which it is derived and
the value of its active neutral bits; all of this can be stored in only two words.

– A candidate solution buffer of 5 state words and 16 message words is used for
partial solutions up to step A36 and step A56.

The decomposition into base and extended base solutions was carefully chosen
from the position of the neutral bits. From their description [19], one can see
that neutral bits on the message words up to W18 are only used up to step
A21; similarly, neutral bits on the words W19 to W21 are only used after step
A21. It is then only natural to define extended base solutions as up to A21.
Of course one could have dispensed with such a decomposition altogether, but
this would mean that extending a base solution to the later steps (say A24)
would systematically need to start recomputing many of the earlier steps from
A17 before being able to do any useful work and this would be an unnecessary
burden on these critical steps. We describe our packing of the neutral bits and of
the index to the (extended) base solution in the full version [19]. As a side-note,
let us also mention that the use of A36 and A56 as boundaries for the candidate
solutions simply comes from the fact that each is the last of a series of 5 state
words with no differences.

On the pure implementation side, we also carefully took into account the
presence of a limited amount of very fast multiprocessor-specific shared memory.
While the 96 KB available per multiprocessor is hardly enough to store the whole
buffers themselves, we take advantage of it by dissociating the storage of the
buffers and of the meta-data used for their control logic, the latter being held
in shared memory. This improves the overall latency of buffer manipulations,

638 P. Karpman et al.

especially in case of heavy contention between different warps. This local shared
memory is also very useful to buffer the writes to the buffers themselves. Indeed,
only a fraction (often as low as 1

8) of the threads of a warp have a valid solution to
write after having tested a single candidate, and the more unsuccessful threads
need to wait while the former write their solution to global memory. It is therefore
beneficial to first write the solutions to a small local warp-specific buffer and to
flush it to the main block-wise buffer as soon as it holds 32 solutions or more,
thence significantly reducing the number of accesses to the slower global memory.

GPU Tuning. After our initial implementation, we did some fine tuning of the
GPU BIOS settings in order to try having an optimal performance. One first
objective was to ensure that the GPU fans work at 100 % during the attack, as
this was strangely not the case initially, and was obviously not ideal for cool-
ing. We also experimented with various temperature limits (that define when
the GPU will start to throttle) and both over-clocking and under-volting. Taken
together, these variations can have a significant impact on the overall perfor-
mance of the program, as can be seen with our 76-step attack below.

6 Results and Perspectives

In this last section, we give the statistics for the performance of our imple-
mentation of the 76-step attack and estimate the cost of a collision on the full
compression function of SHA-1 using similar methods.

6.1 The 76-Step Collisions

The first collision was found when running the attack on a single GPU. Based
on the production rate of partial solutions up to step 56, the estimated time
to find a collision was slightly less than 5 days, at 4.94 days. This rate was also
observed in practice, although we also witnessed significant outliers; as a matter
of fact, the first collision was found in less than two days.

We subsequently ran the attack for a longer time on a server with four GPUs,
and found 17 additional collisions. By improving the implementation and the
GPU settings, we managed to significantly decrease the average time needed to
find a collision. For the best configuration we found, the best-performing GPU
computed collisions at an expected rate of 1 every 4.16 days, with an average
of 4.42 for the 4 GPUs (producing solutions up to step 56 at a rate of 0.0171
per second). The whole server could then be expected to produce one collision
every 1.1 day. Our GPU implementation of SHA-1 can compute about 231.8 SHA-1
compression functions per second. This means that on the best-performing GPU
our attack has a complexity equivalent to 250.25 calls to the compression function.
If one takes the average over the 4 GPUs, this increases slightly to 250.34.

We also implemented our attack to run on a standard CPU, which provides
an interesting comparison of the relative performance of the attack versus the
speed of raw SHA-1 computations. On an Haswell Core-i5 running at 3.2 GHz,

Practical Free-Start Collision Attacks on 76-step SHA-1 639

the OpenSSL implementation of SHA-1 can compute 223.47 compression func-
tions per second, while our attack program generates solutions up to step 56 at
a rate of 0.000124 per second. The total complexity of the attack thus requires
about 606.12 core-days and has a complexity of 249.1 compression function calls.
This means that a single GTX 970 is worth 322 such CPU cores when com-
puting the SHA-1 compression function, and 138 cores when running our attack
program (this increases to 146 for our best-performing GPU). While this drop in
relative efficiency was to be expected, it is somehow surprisingly small given the
complexity of our implementation and e.g. the intensive use of large shared data
structures. Our careful implementation thus gives a much better value for the
GPUs when compared to previous attempts at running cryptographic attacks
on such a platform; in their attack, Grechnikov and Adinetz estimated a GPU
to be worth 39 CPU cores [14].

6.2 Collisions on the Full Compression Function

We are currently working to apply our methods to a free-start collision attack
for the full SHA-1. Precisely estimating the cost of such an attack is always
difficult before it is actually implemented as several factors may influence the
complexity; none the least is the number and the quality of the neutral bits
(or of accelerating techniques in general), which is typically hard to determine
without a full implementation. We can however provide rather reliable estimates
for different disturbance vectors by comparing the cost of the linear parts, as
well as the number of conditions over the non-linear parts, and by making an
educated guess of where should be the last step with a significant number of
neutral bits. This guess is in particular made easier by the fact that we can
compare a candidate disturbance vector to the one used for the 76-step attack,
for which we have very precise results. As a consequence, we get the estimates
in Table 2 for the complexity of an attack starting at A25 for two disturbance
vectors. These figures need to be modulated by the fact that different DVs may
yield neutral bits of different quality. Both II(55,0) and I(51,0) result in IVs
with two differences, though the ones of II(55,0) may be at better positions.
As a consequence, one may need to include step A24 and its one condition in
the critical computations for I(51,0), thus doubling the complexity. Things are

Table 2. Complexity comparison and estimates for an 80-step attack. #C denotes the
number of conditions for a given step and Gd is short for GPU-day (the cost as a
number of compression function computation is also given as an alternative measure).
The use of † denotes an estimated cost.

DV Steps Prob. (A25) Cost (A25) #C (A24) #C (A23)

II(55,0) 76 2−52.59 4.4 Gd (250.3) 1 3

I(51,0) 80 2−62.27 3609† Gd (260 †) 1 2

II(51,0) 80 2−57.46 129† Gd (255.2 †) 3 3

640 P. Karpman et al.

even worse for II(51,0) which yields an IV with five differences. Consequently,
one would expect neutral bits to be markedly less efficient, and should probably
add the cost of both A24 and A23, resulting in a 6-bit increase of complexity.
Thus, based on these two DVs, we can expect to find a free-start collision for
80 steps for an approximate cost of 7218 GPU-days based on I(51,0), and 8234
GPU-days using II(51,0). With a cluster of 64 GPUs, this represents 4 months
of computation or thereabouts. While this gives us a reasonable upper-bound, it
is still rather high and hence not entirely satisfactory. We plan to significantly
improve the complexity of such an attack by:

1. investigating better disturbance vectors such as II(56,0), II(58,0) or II(59,0);
unfortunately computing their exact probability with JLCA is much harder
than for e.g. II(51,0);

2. using better accelerating techniques than the rather simple neutral bits used
so far for the 76-step attack.

Both options should result in quite better attacks than the estimates from above.
This is a promising and exciting future work, and we hope to achieve significant
results in the near future.

References

1. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and reduced SHA-1. In: Cramer [5], pp. 36–57

3. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
4. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)

CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)
5. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg

(2005)
6. Damg̊ard, I.: A design principle for hash functions. In: Brassard [3], pp. 416–427
7. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-step SHA-1: on the

full cost of collision search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

8. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

9. den Boer, B., Bosselaers, A.: An attack on the last two rounds of MD4. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 194–203. Springer, Heidelberg
(1992)

10. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

11. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

12. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-13858-4

http://dx.doi.org/10.1007/978-3-642-13858-4

Practical Free-Start Collision Attacks on 76-step SHA-1 641

13. Grechnikov, E.A.: Collisions for 72-step and 73-step SHA-1: improvements in the
method of characteristics. IACR Cryptology ePrint Archive 2010, 413 (2010)

14. Grechnikov, E.A., Adinetz, A.V.: Collision for 75-step SHA-1: intensive paralleliza-
tion with GPU. IACR Cryptology ePrint Archive 2011, 641 (2011)

15. Hashclash project webpage. https://marc-stevens.nl/p/hashclash/
16. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist

Grøstl. In: Canteaut, A. (ed.) FES 2012. LNCS, vol. 7549, pp. 110–126. Springer,
Heidelberg (2012)

17. Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT 2013. LNCS, vol. 7881.
Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38348-9

18. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

19. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-
step SHA-1. IACR Cryptology ePrint Archive 2015, 530 (2015)

20. Kĺıma, V.: Tunnels in hash functions: MD5 collisions within a minute. IACR Cryp-
tology ePrint Archive 2006, 105 (2006)

21. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-10366-7

22. Landelle, F., Peyrin, T.: Cryptanalysis of full RIPEMD-128. In: Johansson and
Nguyen [17], pp. 228–244. http://dx.doi.org/10.1007/978-3-642-38348-9

23. Manuel, S.: Classification and generation of disturbance vectors for collision attacks
against SHA-1. Des. Codes Crypt. 59(1–3), 247–263 (2011)

24. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanaly-
sis of the reduced Grøstl compression function, ECHO permutation and
AES block cipher. In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R.
(eds.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-05445-7

25. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound
attack: cryptanalysis of reduced whirlpool and Grøstl. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-03317-9

26. Mendel, F., Rijmen, V., Schläffer, M.: Collision attack on 5 rounds of Grøstl. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 509–521. Springer,
Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-46706-0

27. Merkle, R.C.: One way hash functions and DES. In: Brassard [3], pp. 428–446
28. National Institute of Standards and Technology: FIPS 180: Secure Hash Standard,

May 1993
29. National Institute of Standards and Technology: FIPS 180–1: Secure Hash Stan-

dard, April 1995
30. National Institute of Standards and Technology: FIPS 180–2: Secure Hash Stan-

dard, August 2002
31. National Institute of Standards and Technology: Draft FIPS 202: SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions, May 2014
32. Nvidia Corporation: Cuda C Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide
33. Nvidia Corporation: Nvidia Geforce GTX 970 Specifications. http://www.geforce.

com/hardware/desktop-gpus/geforce-gtx-970/specifications

https://marc-stevens.nl/p/hashclash/
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-10366-7
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-05445-7
http://dx.doi.org/10.1007/978-3-642-03317-9
http://dx.doi.org/10.1007/978-3-662-46706-0
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications

642 P. Karpman et al.

34. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

35. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm, April 1992
36. Saarinen, M.-J.O.: Cryptanalysis of block ciphers based on SHA-1 and MD5. In:

Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 36–44. Springer, Heidelberg
(2003)

37. Stevens, M.: Attacks on Hash Functions and Applications. Ph.D. thesis, Leiden
University, June 2012

38. Stevens, M.: Counter-cryptanalysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 129–146. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-40041-4

39. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision
analysis. In: Johansson and Nguyen [17], pp. 245–261. http://dx.doi.org/10.1007/
978-3-642-38348-9

40. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for MD5
and colliding X.509 certificates for different identities. In: Naor, M. (ed.)
EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007).
http://dx.doi.or/10.1007/978-3-540-72540-4 1

41. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03356-8

42. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

43. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [5],
pp. 19–35

http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-540-72540-4_1
http://dx.doi.org/10.1007/978-3-642-03356-8

Fast Correlation Attacks over Extension Fields,
Large-Unit Linear Approximation
and Cryptanalysis of SNOW 2.0

Bin Zhang1,2, Chao Xu1, and Willi Meier3(B)

1 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences,
Beijing, China

2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China
3 FHNW, Windisch, Switzerland

willi.meier@fhnw.ch

Abstract. Several improvements of fast correlation attacks have been
proposed during the past two decades, with a regrettable lack of a better
generalization and adaptation to the concrete involved primitives, espe-
cially to those modern stream ciphers based on word-based LFSRs. In
this paper, we develop some necessary cryptanalytic tools to bridge this
gap. First, a formal framework for fast correlation attacks over extension
fields is constructed, under which the theoretical predictions of the com-
putational complexities for both the offline and online/decoding phase
can be reliably derived. Our decoding algorithm makes use of Fast Walsh
Transform (FWT) to get a better performance. Second, an efficient algo-
rithm to compute the large-unit distribution of a broad class of functions
is proposed, which allows to find better linear approximations than the
bitwise ones with low complexity in symmetric-key primitives. Last, we
apply our methods to SNOW 2.0, an ISO/IEC 18033-4 standard stream
cipher, which results in the significantly reduced complexities all below
2164.15. This attack is more than 249 times better than the best published
result at Asiacrypt 2008. Our results have been verified by experiments
on a small-scale version of SNOW 2.0.

Keywords: Stream ciphers · Cryptanalysis · Large-unit · SNOW 2.0 ·
Finite state machine (FSM) · Linear feedback shift register (LFSR)

1 Introduction

The design and analysis of any cipher in history have to match well with the com-
puting technologies in a specified period. Fast correlation attacks, introduced by
Meier and Staffelbach in 1989 [19], are commonly regarded as classical methods
in the cryptanalysis of LFSR-based stream ciphers, which were usually imple-
mented in hardware at that time. In general, fast correlation attacks have been
constantly and steadily evolving [4,5,11], resulting in more and more powerful
decoding methods dedicated to very large linear codes in the presence of a highly
noisy channel.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 643–662, 2015.
DOI: 10.1007/978-3-662-47989-6 31

644 B. Zhang et al.

On the other side, with the development of computing facilities, many word-
oriented stream ciphers have been proposed, e.g., SNOW 2.0, SNOW 3G [6,8]
and Sosemanuk [2], aiming to combine the merits from the thoroughly studied
LFSR theory with a fast implementation in software. Due to the complex form
of the reduced LFSR recursion from the extension field to GF(2) (many taps and
a large number of state variables), the previous bitwise fast correlation attacks
do not work so well as expected in these cases. This motivates us to study the
security of these word-oriented primitives against a new form of fast correlation
attacks that works on some larger data unit.

Our Contributions. First, a formal framework for fast correlation attacks over
extension fields is constructed, under which the theoretical predictions of the
computational complexities for both the offline and online/decoding phase can be
reliably derived. This gives an answer to the open problem of Meier in [18] at FSE
2011. We adapt the k-tree algorithm [24] to generate the desirable parity check
equations in the pre-computation phase and propose a fast decoding algorithm
for the online phase. Second, an efficient algorithm to compute the large-unit
distributions of the generalized pseudo-linear functions modulo 2n (GPLFM),
which includes all the previously studied relevant topics [17] in an unified frame-
work, is proposed. This technique, serving as a basis to the first one, generalizes
the algorithm in [22] and has the value in its own right. It can compute the noise
distributions of the linear approximations of the GPLFM (including the addition
modulo 2n) in a larger alphabet of m-bit (m > 1) size when m is divisible by
n with a low complexity, e.g., for n = 32, the 2, 4, 8, 16-bit linear approxima-
tions can be found efficiently with a slice size depending on the structure of the
primitive. Last, we apply our methods to SNOW 2.0, an ISO/IEC 18033-4 stan-
dard and a benchmark stream cipher in the European eSTREAM project. We
build the byte-wise linear approximation of the FSM by further generalizing the
GPLFM to include the S-boxes and restore the initial state of the LFSR (thus
the key) with a fast correlation attack over GF(28). The time/memory/data/pre-
computation complexities of this attack are all below 2186.95. Then we further
improve our attack by changing the linear mask from GF(2) to GF(28), which
results in the significantly reduced time/memory/data/pre-computation com-
plexities all below 2164.15. This attack is more than 249 times better than the
best published result at Asiacrypt 20081. Table 1 presents a comparison of our
attack on SNOW 2.0 with the best previous ones. Our results have been verified
on a small-scale version of SNOW 2.0 with 16-bit word size in experiments.

Table 1. Comparison of the attacks on SNOW 2.0

Type Data Time

[22] Distinguishing attack 2174 2174

[13] Key recovery attack 2198.77 2212.38

This paper Key recovery attack 2163.59 2164.15

1 Note that in the Asiacrypt 2008 paper [13], the complexity is written as 2204.38 in
the abstract, while from the formula in Sect. 6, this complexity is 2212.38.

Fast Correlation Attacks over Extension Fields 645

Outline. We present some preliminaries relevant to our work in Sect. 2.
In Sect. 3, the framework of fast correlation attacks over extension fields is estab-
lished with detailed theoretical justifications. The new algorithm to accurately
and efficiently compute the large-unit distribution of the GPLFM is provided
in Sect. 4. The application of our approaches to SNOW 2.0 is given in Sect. 5.
The improved attack using finite field linear masks is described in Sect. 6 with
the experimental results. Finally, some conclusions are made and future work is
pointed out in Sect. 7.

2 Preliminaries

In this section, some notations and basic definitions are presented. Denote
the set of real numbers by R. The binary field is denoted by GF(2) and the
m-dimensional extension field of GF(2) is denoted by GF(2m). The modular
addition is � and the usual xor operation is ⊕. The inner product of two n-
dimensional vectors a and b over GF(2m) is defined as 〈a, b〉 = 〈(a0, · · · , an−1),
(b0, · · · , bn−1)〉 :=

⊕n−1
i=0 aibi. As usual, a function f : GF(2n) → GF(2) is called

a Boolean function and a function g = (g1, · · · , gm) : GF(2n) → GF(2m) with
each gi (1 ≤ i ≤ m) being a Boolean function is called a m-dimensional vectorial
Boolean function.

Definition 1. Let X be a binary random variable, the correlation between X
and zero is defined as c(X) = Pr{X = 0} − Pr{X = 1}. The correlation of a
Boolean function f : GF (2n) → GF (2) to zero is defined as c(f) = Pr{f(X) =
0} − Pr{f(X) = 1}, where X ∈ GF (2n) is an uniformly distributed random
variable.

Given a vectorial Boolean function g : GF(2n) → GF(2m), define the distribution
pg of g(X) with X uniformly distributed as pg(a) = #{X|g(X) = a}/2n for all
a ∈ GF(2m).

Definition 2. As in [1], the Squared Euclidean Imbalance (SEI) of pg is
Δ(pg) = 2m

∑
a∈GF (2m)(pg(a) − 1

2m)2, which measures the distance between the
target distribution and the uniform distribution.

SEI2 is used to evaluate the efficiency of large-unit linear approximations in
this paper. Here by large-unit, we refer to the linear approximation whose basic
data unit is non-binary. The next definition introduces a powerful tool to com-
pute the correlation of a nonlinear function and to reduce the complexity of the
substitution step of a fast correlation attack [5].

Definition 3. Given a function f : GF (2n) → R, for ω ∈ GF (2n), the Walsh
Transform of f at point ω is defined as f̂(ω) =

∑
x∈GF (2n) f(x)(−1)〈ω,x〉.

The Walsh Transform of f can be computed efficiently with an algorithm called
Fast Walsh Transform (FWT) [25] in n2n time and 2n memory. The preparation
of f takes 2n time, thus the total time complexity is 2n + n2n, which is a large
improvement compared to 22n. The following fact [21] is used in our analysis.
2 SEI is also referred to as capacity of the distribution in [9].

646 B. Zhang et al.

Lemma 4. We consider a vectorial Boolean function g : GF (2n) → GF (2m)
with the probability distribution vector pg. Then Δ(pg) =

∑
a∈GF (2m) c2(〈a, g〉),

where c(〈a, g〉) is the correlation of the Boolean function 〈a, g〉.
Lemma 4 indicates that we can derive the SEI of distribution pg with the cor-
relations c(〈a, g〉) for a ∈ GF(2m). Therefore, computing the SEI of the large
data unit distribution can be reduced to the problem of looking for bitwise linear
approximations with non-negligible correlations.

3 Fast Correlation Attacks Over Extension Fields

In this section, we will describe a formal framework for fast correlation attacks
over GF(2n), which is the first comprehensive answer to the open problem how
to amount fast correlation attack over the extension fileds proposed in [3,18].
Let us first define the notations used hereafter.

– N is the number of available output words.
– l is the word-length of the LFSR over GF(2n).
– l′ is the number of target words in decoding phase.
– G is the l × N generator matrix of a [N, l] linear code C1 over GF(2n).
– ui ∈ GF(2n) is the i-th output word of the LFSR.
– zi ∈ GF(2n) is the i-th output word of the keystream generator.
– ei ∈ GF(2n) is the i-th noisy variable of a Discrete Memoryless Channel

(DMC).

3.1 Model for Fast Correlation Attacks Over Extension Fields

The fast correlation attack over extension fields is also modelled as a decoding
problem, i.e., the keystream segment z = (z1, z2, · · · , zN) can be seen as the
transmission result of the LFSR sequence u = (u1, u2, · · · , uN) through a DMC
with the noisy variables e = (e1, e2, · · · , eN), as shown in Fig. 1. From this model,
we can represent the received symbols zi as zi = ui ⊕ei, where the noise variable
ei is non-uniformly distributed for i = 1, · · · , N . The capacity of the DMC is
CDMC = log(2n) +

∑
e∈GF (2n) Pr{ei = e} · log(Pr{ei = e}), where the maximum

capacity is reached when Pr{ei = e} = 1/2n for all e ∈ GF(2n). Then the above
decoding problem is converted into decoding a [N, l] linear code C1 over GF(2n),
where N is the code length and l is the symbol-length of information, with the

Fig. 1. Model for fast correlation attacks over GF(2n)

Fast Correlation Attacks over Extension Fields 647

code rate R = log(2n) · l/N . Using Taylor series at order two, we achieve the
following theorem, which theoretically connects the capacity of the DMC with
the SEI of the noise distribution.

Theorem 5. Let CDMC be the capacity of a DMC over GF(2n) and the noise
variable ei ∈ GF(2n), whose distribution is denoted by pei

= (Pr{ei = 0},
· · · , P r{ei = 2n − 1}). Then the theoretical relation between the capacity CDMC

and the SEI of pei
, i.e., Δ(pei

), is CDMC ≈ Δ(pei
)

2 ln(2) .

This theorem provides a tool for bridging the theory based on Shannon theory
and that based on the SEI measure. Theorem 5 is the basis of our framework,
enabling us to derive a lower bound on the keystream length required for a
successful attack. Actually, a [N, l] linear code over GF(2n) can be successfully
decoded only if its code rate does not exceed the capacity of the transmission
channel, pioneered in [23].

Theorem 5 and Shannon Theorem are combined together in our framework
to give a theoretical analysis of the new fast correlation attacks over extension
fields. Under this theoretical framework, we can assure that the fast correlation
attack succeeds with a high probability, i.e., 0.5 < Psucc ≤ 1, if R < CDMC.

3.2 General Description of Fast Correlation Attacks Over Extension
Fields

Our new algorithm is extracted from the previous work in [10,12] by addressing
some important unsolved problems therein. First, the pre-computation algorithm
in [10,12] uses the straight forward method to find all the possible collisions over
extension fields, whose complexity is too high to be applied in cryptanalysis.
Second, in Fig. 1, only a DMC with the following properties is considered, i.e.,
the distribution of the noise variable ei satisfies Pr{ei = 0} = 1/2n + δ and
Pr{ei = e} = 1/2n − δ/(2n − 1),∀e ∈ GF(2n), e
= 0, which is not the general
case. Usually in the practice of correlation attacks, the distribution of noisy
variable does not necessarily satisfy this condition. Third, the straightforward
method is used to identify the correct key in the online phase, i.e., by evaluating
parity-checks one by one for each possible codeword, which is inappropriate for
cryptanalytic purposes. Last, a comprehensive theoretical justification is missing,
which will assure the decoding reliability when simulations are infeasible.

Preprocessing. As in [4,10,12], we convert the original code C1 directly derived
from the primitive to a new code C2, which is expected to be easier to decode
by some fast decoding algorithm later devised. Precisely, let the length of the
LFSR be l-word. Then we have u = (u1, u2, · · · , ul) · G, where (u1, u2, · · · , ul)
is the initial state of the LFSR. Let (·, · · · , ·)T be the transpose of a vector,
we rewrite the matrix G in column vectors as G = (g1,g2, · · · ,gN), where
gi = (g1i , g2i , · · · , gl

i)
T (1 ≤ i ≤ N) is the i-th column vector. In order to reduce

the decoding complexity, we build a new code C2 with a smaller number of
information symbols û = (u1, u2, · · · , ul′) for a certain l′ < l as follows. We first

648 B. Zhang et al.

look for some k-tuple column vectors (gi1 ,gi2 , · · · ,gik
) satisfying gi1 ⊕ gi2 ⊕

· · · ⊕ gik
= (c1, c2, · · · , cl′ , 0, · · · , 0)T . For each k-tuple, we have

k⊕

j=1

uij
= (u1, u2, · · · , ul)

k⊕

j=1

gij
= c1u1 ⊕ c2u2 ⊕ · · · ⊕ cl′ul′ . (1)

This equation is called the parity check for u1, · · · , ul′ . Since zi = ui ⊕ ei, we
rewrite it as

⊕k
j=1 zij

= c1u1 ⊕ c2u2 ⊕· · ·⊕ cl′ul′ ⊕⊕k
j=1 eij

. Collect a desirable
number of such k-tuples and denote the number of such derived equations by
mk. Denote the indices of t-th such tuple of columns by {i

(t)
1 , i

(t)
2 , · · · , i

(t)
k }. Let

Ut =
⊕k

j=1 u
i
(t)
j

, 1 ≤ t ≤ mk. Thus we have constructed an [mk, l′]-code C2, i.e.,

U = (U1, U2, · · · , Umk
).

Processing. Denote the received sequence by Z = (Z1, Z2, · · · , Zmk
), where

Zt =
⊕k

j=1 z
i
(t)
j

. We first use the keystream words z1, z2, · · · , zN to compute Z.
Then decode the code C2 using the algorithm in the following subsection and
output (u1, u2, · · · , ul′). Using the DMC model and assuming that all the eis
are independent random values over GF(2n), it is easy to see that the distri-
bution of the folded noisy variable Et =

⊕k
j=1 e

i
(t)
j

can be computed by the
convolution property via FWT. The new noise sequence can be represented as
E = (E1, E2, · · · , Emk

).

3.3 Preprocessing Stage: Generating the Parity Checks

Now we present an algorithm to compute the desirable k-tuple parity checks
with a relatively low complexity, while the straight forward method in [12]
needs a complexity of O(Nk). First look at the case of k = 2. Eq. (1) indi-
cates that (gl′+1

i1
, gl′+2

i1
, · · · , gl

i1
)T ⊕ (gl′+1

i2
, gl′+2

i2
, · · · , gl

i2
)T = (0, · · · , 0)T . Thus

the construction of parity checks is equivalent to the searching of n(l − l′)-bit
collision, i.e., just split (gl′+1

i , gl′+2
i , · · · , gl

i) for i = 1, · · · , N into two lists L1

and L2, and look for x1 ∈ L1, x2 ∈ L2 such that x1⊕x2 = 0. Hence, by searching
for collisions through these two lists, 2-tuple parity checks in our attack can be
constructed.

Note that the crucial difference between GF(2n) and GF(2) requires that
the length of the partial collision positions cannot be arbitrary and should be a
multiple of n. In general, we can split the truncated matrix columns of G into
k lists and search for xi ∈ Li for 1 ≤ i ≤ k such that

⊕k
i=1 xi = 0 holds for

1 ≤ i ≤ k. This problem can be transformed into the well known k-sum problem.
Problem 1. (The k-sum problem) Given k lists L1, · · · , Lk, each of length α
and containing elements drawn uniformly and independently at random from
{0, 1}n(l−l′), find x1 ∈ L1, · · · , xk ∈ Lk such that x1 ⊕ x2 ⊕ · · · ⊕ xk = 0.

Fortunately, this problem can be efficiently solved by the k-tree algorithm
in [24]. It is shown that the k-tree algorithm requires O(k2n(l−l′)/(1+log k)) time
and space and uses lists of size O(2n(l−l′)/(1+log k)). The k-tree algorithm can

Fast Correlation Attacks over Extension Fields 649

also find many solutions to the k-sum problem. It can find β1+log k solutions to
the k-sum problem with β times as much work as finding a single solution, as
long as β ≤ 2n(l−l′)/(log k(1+log k)). Thus the total time/space complexities are
O(βk2n(l−l′)/(1+log k)) and the size of each list is O(β2n(l−l′)/(1+log k)).

Now we show how to generate the mk k-tuple parity checks. Precisely, we
denote the truncated partial vector of gi by xi = (gl′+1

i , · · · , gl
i) for i = 1, · · · , N .

Then disjoin (x1,x2, · · · ,xN) into k lists L1, · · · , Lk, each of length α = N/k.
We want to find x1 ∈ L1, · · · ,xk ∈ Lk satisfying x1 ⊕ x2 ⊕ · · · ⊕ xk = 0. This is
exactly the same case as the k-sum problem, so we can adopt the k-tree algorithm
in [24] to find the required number of desirable parity checks.

3.4 Processing Stage: Decoding the Code C2

It is well-known that decoding a random linear code over an extension field is a
NP-hard problem. Here we present a fast decoding algorithm, which can be seen
as a solution to this problem.

As shown in [5,14], FWT can be used to accelerate the decoding process for
the linear codes over GF(2). Here we derive a method based on Lemma 4 to
exploit FWT for decoding linear codes over GF(2n).

Let us denote the guessed value of the partial initial state û = (u1, · · · , ul′) by
û′ = (u′

1, · · · , u′
l′). After pre-computation, we construct a distinguisher I(û′) =

c
(t)
1 (u1 ⊕ u′

1) ⊕ · · · ⊕ c
(t)
l′ (ul′ ⊕ u′

l′) ⊕ Et = Zt ⊕ c
(t)
1 u′

1 ⊕ · · · ⊕ c
(t)
l′ u′

l′ , to find the
correct partial state û. If the guessed value û′ is correct, I is expected to be
biased; otherwise it approximates an uniform distribution.

Next, let us give a description on how to compute the SEI of I(û′), which
is the crucial part of our algorithm. We need to substitute the zis into the
parity check equations and evaluate the SEI of I for each possible û′. Combining
Lemma 4 in Sect. 2.2 with FWT, we have the following method. Precisely, the SEI
of I(û′) can be computed by the correlations c(〈γ, I〉), where 〈γ, I〉 is a boolean
function and γ ∈ GF(2)n. We can divide the vectorial boolean function I into
n linearly independent boolean functions I1, · · · , In and each boolean function
can be expressed as Ii = 〈wi, û′〉 ⊕ 〈vi, Zt〉, where wi ∈ GF(2)nl′ , vi ∈ GF(2)n

are two binary coefficient vectors. Let Q = span{I1, · · · , In} such that Q is a set
of approximations generated by these n approximations Ii. Now the advantage
is that FWT can be used to compute the correlation of each approximation Ii

for i = 1, · · · , n, as described in [14].
Preciously, assume that we have mk n-bit parity checks over GF(2n) with the

same distribution. Then for each Ii there are mk bitwise parity checks denoted
by I

(t)
i for 1 ≤ t ≤ mk. In order to evaluate these mk bitwise parity checks

I
(t)
i = 〈w(t)

i , û′〉 ⊕ 〈v(t)
i , Zt〉 for each û′, we introduce an integer-valued function,

h(û′) =
∑

1≤t≤mk:û′=w
(t)
i

(−1)〈v(t)
i ,Zt〉,

for all û′ ∈ GF(2nl′). We compute the Walsh transform of h and then we can get
an 2nl′ -dimensional array storing the correlation c(Ii) indexed by û′. The total

650 B. Zhang et al.

time complexity for computing c(I1), · · · , c(In) is O(n(mk+l′n2l′n)) and memory
complexity is O(n2l′n). In addition, the correlations of the other 2n −n−1 linear
approximations can be computed by the Piling-up Lemma [16]. Thus, we have got
all the correlations for different guessed values of û. Again from Lemma 4, we can
easily compute Δ(I(û′)) for each possible û′. Then, we can use a distinguisher
described in [1] to recover the correct initial state. In total, the time complexity
of decoding C2 in such a way is O(n(mk + l′n2l′n) + 2n2l′n).

Now we give the theoretical justifications of our algorithm. Assume the noisy
distribution of Et over GF(2n) is pEt

= (Pr{Et = 0}, · · · ,Pr{Et = 2n − 1}) and
the code length of C2 is mk. According to the k-tree algorithm, using k lists, each
of which has size of α = β2n(l−l′)/(1+log k), we can find β1+log k parity checks.

Since the number of parity checks pre-computed is mk, thus we have mk =
β1+log k. Further, for the decoding to succeed, the code rate R = l′ · log(2n)/mk

of C2 must satisfy R < CDMC. Then by Theorem 5, the value of mk can be
calculated as mk ≈ (2l′n ln 2)/Δ(pEi

). The following theorem gives the required
length N of the observed keystream segment for successfully decoding code C1.

Theorem 6. Given a [N, l] linear code C1 over GF(2n). After applying the pre-
computation of our algorithm, we get a new [mk, l′] linear code C2, which is
transmitted through a 2n-ary DMC with the noise distribution pEi

. The required
length N of the observed keystream segment for the algorithm to succeed is N ≈
k2

n(l−l′)
θ (2l′n ln 2)

1
θ Δ(pEi

)− 1
θ , where θ = 1 + log k.

4 Large-Unit Linear Approximation and Its Distribution

In this section, an efficient algorithm to accurately compute the large-unit distri-
bution of the GPLFM is proposed. This is desired when the decoding algorithm
is available.

4.1 Large-Unit Linear Approximations

Most of the previous work only study how to use the bitwise linear approxi-
mations to constitute a vector, here we directly focus on the non-binary linear
approximations whose basic data unit is over GF(2m) (m > 1) and such non-
binary unit linear approximations are called the large-unit linear approximations
throughout this paper3. Let H(X1,X2, · · · ,Xd) be a non-linear function, where
the output and the input Xis are all random variables over GF(2n). Our task is
to accurately compute the m-bit large-unit distribution of some linear approx-
imation of H. In practice, the choice of m cannot be arbitrary and is usually
determined by the structure of the primitive and the underlying building blocks,
e.g., the LFSR structure and the S-box size. When m is fixed, the output of H
and each input Xi(1 ≤ i ≤ d) can all be regarded as some n

m -dimensional vectors
over GF(2m). In this setting, the definition of a binary linear mask is as follows.

3 As we can see, when m = 1 it is just the bitwise approximation of F , while when
m = n it becomes the n-bit linear approximation, discussed in [7,17].

Fast Correlation Attacks over Extension Fields 651

Definition 7. Let X ∈ GF(2n) and Ω = (ω n
m

, · · · , ω2, ω1) be a n
m -dimensional

binary vector, then X can be transformed to a n
m -dimensional vector X =

(x n
m

, · · · , x2, x1) over GF(2m) with xi ∈ GF(2m) for 1 ≤ i ≤ n
m . The inner prod-

uct between these two vectors is defined as Ω ·X = ω n
m

x n
m

⊕· · ·⊕ω1x1 ∈ GF(2m),
where Ω is called the n

m -dimensional binary linear mask of X over GF(2m).

4.2 The Generalized Pseudo-Linear Function Modulo 2n

Now we first generalize the pseudo-linear function modulo 2n (PLFM) in [17] to
GPLFM by introducing the binary mask with the inner product in Definition 7.
Note that in [17], the distribution of some class of functions called PLFM over
GF(2n) is computed, here we consider similar problems of GPLFM in a smaller
field GF(2m) with m < n.

Assume the large-unit is of m-bit size. Let X = {X1,X2, · · · ,Xd} be a set of
d uniformly distributed n-bit random variables with Xi ∈ GF(2n) for 1 ≤ i ≤ d,
C = {C1, · · · , Cg} be a set of n-bit constants and M be a set of n

m -dimensional
binary masks of X and C. Now each element in X and C can be regarded as
a n

m -dimensional vector over GF(2m). We denote some symbol or expression
on X and C by Ti. The following two definitions introduce the GPLFM, which
generalizes the definition of PLFM in [17].

Definition 8. Given three sets X , C and M, we have:

1. A is an arithmetic term4, if it has only the operation of arithmetic �, e.g.,
A = T1 � T2 � · · · .

2. B is a Boolean term, if it only involves Boolean operations such as OR, AND,
XOR, and others, e.g., B = (T1 ⊕ T2) & T3.

3. S is a simple term, if it is a symbol either from X or C.
4. Ω · X for X ∈ {A,B,S} is the inner product result of the term X with the

binary mask Ω ∈ M.

Definition 9. F (X1,X2, · · · ,Xd) is called a generalized pseudo-linear function
modulo 2n (GPLFM) on X , if it can recursively be expressed in Ω · X for X ∈
{A,B,S} combined by the Boolean operations.

It can be easily seen that the PLFM studied in [17] forms a subset of the GPLFM,
which only satisfies the conditions 1 ∼ 3 in Definition 8. In our large-unit linear
approximation of SNOW 2.0 in Sects. 5 and 6, we actually further generalize the
GPLFM functions by considering parallel boolean functions, i.e., the S-boxes
and multiplication over finite fields are included in our framework.

4.3 Algorithm for Computing the Distribution of a GPLFM

Assume the basic large-unit is of m-bit size. Let F (X1, · · · ,Xd) be a GPLFM
with X , C and Ω ∈ M, where Xi ∈ GF(2n) (1 ≤ i ≤ d) and the binary masks
4 An arithmetic subtraction � can be substituted by � using X � Y = X � (Ȳ) � 1

mod 2n, where ·̄ is the complement operation.

652 B. Zhang et al.

are n
m -dimensional vectors. We want to calculate the distribution of F in an

efficient way for some large n. Note that if n ≥ 32 and d ≥ 2, the distribution
pF is impossible to implement in practice with the straight forward method,
which needs 2nd operations. Further, the algorithm in [17] cannot be applied to
this problem due to the inner product operation inherent in the GPLFM over a
smaller field GF(2m). Here we propose Algorithm 1 to fulfill this task.

Our basic idea is as follows. Since each coordinate of the binary mask can
only take the value of 0 or 1, it actually selects which parts of the data arguments
will take effect in the approximation. According to the binary mask Ω, we can
split each variable Xi ∈ GF(2n) for i = 1, · · · , d into n

m blocks and each block
has m bits, i.e., Xi = (X

n
m
i , · · · ,X2

i ,X1
i), where Xj

i ∈ GF(2m) for 1 ≤ j ≤ n
m .

Since each block of the input variable is mutually independent, the function
F can be split into n

m sub-functions Fi (1 ≤ i ≤ n
m), which can be evaluated

over a smaller space GF(2m). Each sub-function Fi can be seen as a PLFM over
GF(2m), whose distribution can be efficiently calculated by the algorithm in [17].

Algorithm 1. Computing the m-dimensional distribution of a GPLFM over GF(2n)

Parameters:
M1 and M2: two consecutive connection matrices of size 2m × |Crmax|;

Processing:
1: Split the function F into n

m
sub-functions Fi according to the binary masks

2: M1 ← ComputePLFM(F1(0, 0, X1
1 , · · · , X1

d), M1, 1), shown in Appendix A
3: for i = 2, · · · , n

m
do

4: Initialize M2 with zeros
5: for Cri−1 = (0, 0, · · · , 0) to (d+

1 , d+
2 , · · · , d+

s) do
6: for Bi−1 = 0 to 2m − 1 do
7: M2 ← ComputePLFM(Fi(Bi−1, Cri−1, X

i
1, · · · , Xi

d), M2, M1[Bi−1][|Cri−1|]);
8: end for
9: end for

10: M1 ← M2/(2m · |Crmax|);
11: end for
Output: pF (i) = M1[i][0] + M1[i][1] + · · · + M1[i][|Crmax| − 1]

On the other hand, the sub-function Fis are connected with each other by the
one direction information propagation from the least significant function F1 to
the most significant F n

m
, caused by the carry bit introduced by � and the output

of Fi, shown in Fig. 2. Therefore, we can use a connection matrix to characterize
this propagation process.

Now, we compute the distribution pF by calculating the Fis one-by-one from
1 to n

m , as depicted in Fig. 2. Here Bi−1 ∈ GF(2m) is the output of sub-function
Fi−1 and Cri−1 is the carry vector of Fi−1 that will be propagated to Fi, gen-
erated by the arithmetic terms in Fi−1. If there are s arithmetic terms Aj

(1 ≤ j ≤ s) in F (thus in each Fi), then we have Cri = (cr1i , · · · , crs
i), where

each crj
i is the corresponding local carry value of the Aj (1 ≤ j ≤ s) when

the inputs are truncated to the ith block. Note that though each block is m-
bit size, the modular addition is still calculated bit-by-bit, thus the maximum
local carry value is d+j , where d+j is the number of modular additions in Aj

Fast Correlation Attacks over Extension Fields 653

Fig. 2. The basic idea of our algorithm

(1 ≤ j ≤ s). Emphatically, Cri contains all the carry information of Fj for
j < i, since the carry information is propagated from F1 to Fi. It is proved
in [17] that for any arithmetic term Aj , the maximum local carry value is d+j
(the additions of carry value are not included). Similarly, denote the cardinal-
ity of Cri by |Cri| = ((cr1i · (d+2 + 1) + cr2i)(d+3 + 1) + cr3i) · . . . , which is a
one-to-one index mapping function from (cr1i , · · · , crs

i) to [0, . . . , |Crmax| − 1],
where |Crmax| =

∏s
j=1(d

+
j + 1) is the maximal possible cardinality of the carry

vector Cri. We use a 2m × |Crmax| matrix Mi to store the information of the
Fjs (j ≤ i), where the matrix element Mi[Bi][|Cri|] for 0 ≤ Bi ≤ 2m − 1
and 0 ≤ |Cri| ≤ |Crmax| − 1 represents the total number of the inputs
(Xi

1,X
i
2, · · · ,Xi

d) of Fi that result in the Fi output Bi and the carry vector
Cri. Thus, the evaluation of Fi is converted into the computation of the matrix
Mi. Mi stores all the output and carry information of Fi. Here we call it the
connection matrix.

Now we need to evaluate the function Fi based on the connection matrix Mi−1,
to obtain the next matrix Mi. It depends on the carry vector Cri−1 and the out-
put value Bi−1 of Fi−1. For m > 1, since the sub-function Fi can be seen as
a PLFM over GF(2m), which is recursively expressed in A,B,S, we can use a
sub-algorithm called ComputePLFM (Appendix A) to compute the matrix Mi

(M2 in Algorithm 1) for all the possible values of Bi−1 and Cri−1. Hereafter,
when applying the Algorithm 1 we always assume that m > 1. The initial val-
ues are Cr0 = (0, 0, · · · , 0) and B0 = 0, i.e., the initial matrix M0 is set to be
zero matrix. Our algorithm to compute the full m-dimensional distribution pF =
(pF (0), pF (1), · · · , pF (2m −1)) of a GPLFM F over GF(2n) is shown in the Algo-
rithm 1 diagram. Note that in Algorithm 1, only two connection matrices M1 and
M2 are used to store the propagation information alternatively. The complexity
analysis of Algorithm 1 is as follows. First look at the complexity of Algorithm 2 in
Appendix A. Step 1 in Algorithm 2 needs a time complexity of O(m · |Crmax| ·2d)
from [17]. Step 2 to step 8 needs a complexity of O(2m · m · |Crmax|). Thus the
complexity of Algorithm 2 is O(m · |Crmax| · (2d + 2m)) and the total time com-
plexity of our algorithm is O(n · 2m · |Crmax|2 · (2d + 2m)).

654 B. Zhang et al.

5 A Key Recovery Attack on SNOW 2.0

In this section, we demonstrate a state recovery attack against SNOW 2.0. The
description of SNOW 2.0 is detailed in [6]. Our new attack is based on the byte-
wise linear approximation and utilizes the fast correlation attack over GF(28) to
recover the correct initial state with much lower complexities.

5.1 The Byte-Wise Linear Approximation of SNOW 2.0

In SNOW 2.0, denote the AES S-box and the Mixcolumn matrix in the S trans-
form of FSM by SR and M respectively. Since SR is a 8-bit S-box, we let n = 32
and m = 8. As SNOW 2.0 has two 32-bit memory registers R1 and R2 in the
FSM, it is necessary to consider at least two consecutive steps of the FSM to elim-
inate these two registers in the approximation. Here we denote the two binary
masks by Γ,Λ ∈ GF(2)4 respectively, thus the 32-bit word can be divided into
4 bytes and be regarded as a 4-dimensional vector over GF(28). For example,
let the binary mask Γ = (1, 0, 1, 0) and X = (x4, x3, x2, x1) be a 32-bit word of
SNOW 2.0 in byte-wise form, thus Γ ·X = x4 ⊕x2. Applying Γ and Λ to zt and
zt+1 respectively, we have

Γ · zt = Γ · st ⊕ Γ · (R1t � st+15) ⊕ Γ · R2t,

Λ · zt+1 = Λ · st+1 ⊕ Λ · (st+16 � R2t � st+5) ⊕ Λ · S(R1t).

Let yt = Sbox(R1t) = (SR(R14t), SR(R13t), SR(R12t), SR(R11t)) be the output of
S-box. Since the Mixcolumn matrix M is a linear transformation over GF(28), we
have Λ ·S(R1t) = Λ · (Myt) = Λ′ · yt. We can rewrite the above two equations as

Γ · zt = Γ · st ⊕ Γ · (Sbox−1(yt) � st+15) ⊕ Γ · R2t,

Λ · zt+1 = Λ · st+1 ⊕ Λ · (st+16 � R2t � st+5) ⊕ Λ′ · yt.

Now we have a new byte-wise linear approximation of SNOW 2.0, depicted in
Fig. 3. Note that in Fig. 3, the S transform of the FSM is dissected to have an
efficient approximation. Here we use two linear approximations

Fig. 3. The linear approximation of the FSM in SNOW 2.0

Fast Correlation Attacks over Extension Fields 655

Γ · (Sbox−1(yt) � st+15) = Γ · st+15 ⊕ Λ′ · yt ⊕ N1(t), (2)
Λ · (st+16 � st+5 � R2t) = Λ · st+16 ⊕ Λ · st+5 ⊕ Λ · R2t ⊕ N2(t). (3)

The linear approximation (3) is a GPLFM, thus we can adopt Algorithm 1 to
compute the distribution of N2(t). For the linear approximation (2), it is not a
GPLFM in Definitions 8 and 9, thus we cannot use Algorithm 1 directly. But
note that the four SRs do not affect the independency among the bytes of yt,
thus we can revise Algorithm 1 to compute the distribution of N1(t) as shown
in Algorithm 3.

Algorithm 3. Computing the Distribution in Eq. (2) over GF(28)

Parameters:
Γ = (Γ4, Γ3, Γ2, Γ1), st = (s4t , s

3
t , s

2
t , s

1
t),yt = (y4

t , y3
t , y

2
t , y

1
t), Λ′ = (Λ′

4, Λ
′
3, Λ

′
2, Λ

′
1);

Processing:
1: Compute Γ1(S

−1
R (y1

t) + s1t+15) ⊕ Γ1s
1
t+15 ⊕ Λ′

1y
1
t and store in M1

2: for i = 2, · · · , 4 do
3: Initialize M2 with zeros
4: for yi

t = 0, · · · , 255 and sit+15 = 0, · · · , 255 do
5: for Cri−1 = 0, 1 do
6: for Bi−1 = 0, · · · , 255 do
7: Bi ← Bi−1 ⊕ Γi(S

−1
R (yi

t) + sit+15) ⊕ Γis
i
t+15 ⊕ Λ′

iy
i
t;

8: Cri ← (SR(yi
t) + sit+15 + Cri−1)/28;

9: M2[Bi][|Cri|] ← M2[Bi][|Cri|] + M1[Bi−1][|Cri−1|];
10: M1 ← M2/(28 × 2);
11: Output: The distribution pi = M1[i][0] + M2[i][1] for each 0 ≤ i ≤ 255

The time complexity of computing the distribution of N1(t) has dropped from
264 to 226.58, which is a large improvement compared to the straightforward
method. We have searched over all the different binary masks over GF(2)4 and
found that when Γ = Λ, these two linear approximations will have larger SEIs.
Thus the sum of Γ · (zt ⊕ zt+1) can be expressed as

Γ · (zt ⊕ zt+1) = Γ · st ⊕ Γ · st+1 ⊕ Γ · st+5 ⊕ Γ · st+15 ⊕ Γ · st+16 ⊕ N(t), (4)

where N(t) = N1(t)⊕N2(t) is the folded noise variable introduced by the above
two linear approximations, whose distribution can be computed by the convo-
lution of the above two noise distributions. We have searched all the possible
Γ and Λ and found that the strongest linear approximation of the FSM is as
follows. When Γ = Λ = (1,0,1,0), the distribution of N(t) has the value of
SEI as Δ(N(t)) = 2−43.23. Observe that given a noise distribution Pr{N(t)},
the SEI can be precisely computed by Definition 2. Now, we have constructed
the byte-wise linear approximation, i.e., Eq. (4), of SNOW 2.0. Next, we will use
this linear approximation to recover the initial state of SNOW 2.0.

5.2 Fast Correlation Attack on SNOW 2.0

Now we apply the fast correlation attack over GF(28) to SNOW 2.0 to recover the
initial state of the LFSR. Let the LFSR state be (st+15, · · · , st) ∈ GF(232)16, here

656 B. Zhang et al.

the LFSR is interpreted as a 64-byte LFSR over GF(28), i.e., (s4t+15, s
3
t+15, s

2
t+15,

s1t+15, · · · , s4t , s
3
t , s2t , s

1
t) ∈ GF(28)64. With the feedback polynomial we can

express the linear approximation (4) in the initial state form as Γ · (zt ⊕ zt+1) =
Ψt · (s4t+15, s

3
t+15, s

2
t+15, s

1
t+15, · · · , s4t , s

3
t , s

2
t , s

1
t) ⊕ N(t), where Ψt ∈ GF(28)64 is

the derived recursion of the LFSR.
For the decoding algorithm, we apply the precomputation algorithm in Sect. 3

to generate the parity checks with the parameters l = 64, l′ = 17, k = 4, which
are the best parameters we have found in terms of the total complexities. The
distribution of the folded noise variables N(ti1)⊕N(ti2)⊕N(ti3)⊕N(ti4) can be
computed by the applications of the convolutional operation twice. The SEI of
this new distribution is found to be 2−177.3. Using 4 lists in the k-tree algorithm,
we get about mk = β1+log k = 2184.86 parity check equations. By Theorem 6,
the data complexity is N = 2188.95 and the time/memory complexities of pre-
processing stage are βk2n(l−l′)/(1+log k) = 2188.95. Second, we perform the online
decoding algorithm on the new code C2 of the code length 2188.95. With a com-
putational complexity of n(mk + l′n2l′n) + 2n2l′n = 2187.86, we can recover the
17 · 8 = 136 bits of the initial state of LFSR, the other bits can be recovered
with a much lower complexity.

Therefore, the final time/memory/data/pre-computation complexities are all
upper bounded by 2186.95, which is more than 225 times better than the best
previous result at Asiacrypt 2008 [13]. This obviously confirms the superiority
of our new techniques.

6 An Improved Key Recovery Attack on SNOW 2.0

Recall in Sect. 4, we use the n
m -dimensional binary linear masks. Here we gener-

alize this definition by making each component ωi ∈ GF(2m) rather than GF(2),
i.e., changing the 0/1 coefficients to finite field coefficients, i.e., expressing X by
X = (x n

m
, · · · , x1) ∈ GF(2m)

n
m with xi ∈ GF(2m) and denote the inner product

by Ω · X = ω n
m

x n
m

⊕ · · · ⊕ ω1x1 ∈ GF(2m), where ωixi is the multiplication
over GF(2m). Ω is called the linear mask over GF(2m) of X. Now these new
nonlinear functions are not GPLFM in Definitions 8 and 9, for we have changed
the linear mask from GF(2) to GF(2m). Thus we cannot apply the Algorithm 1
to compute the distributions of these new functions directly. Instead, we further
revise Algorithm 1 to efficiently compute the distributions of such functions in
the following analysis of SNOW 2.0.

6.1 Linear Approximations of SNOW 2.0 Over GF(28)

The process of finding the linear approximations of SNOW 2.0 is nearly the same
as in Sect. 5. In order to find the best linear masks over GF(28), let us take a
closer look at the details of the S permutation in FSM. Let Λ′ = (Λ′

4, Λ
′
3, Λ

′
2, Λ

′
1)

denote the linear mask over GF(28) of the 4 byte outputs of the Sbox, where the
multiplication is computed in GF(28) defined by the AES Mixcolumn. Then, we
can express Λ · S(ω) as

Fast Correlation Attacks over Extension Fields 657

(Λ1, Λ2, Λ3, Λ4)

⎛

⎜
⎜
⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞

⎟
⎟
⎠

︸ ︷︷ ︸

⎛

⎜
⎜
⎝

SR(ω1)
SR(ω2)
SR(ω3)
SR(ω4)

⎞

⎟
⎟
⎠ = (Λ′

1, Λ
′
2, Λ

′
3, Λ

′
4)

⎛

⎜
⎜
⎝

SR(ω1)
SR(ω2)
SR(ω3)
SR(ω4)

⎞

⎟
⎟
⎠ ,

where Λi, Λ
′
i ∈ GF(28) for 1 ≤ i ≤ 4. We adopt the field GF(28) as that defined

by the AES Mixcolumn and assume that the linear masks over GF(28) are also
defined in this field. Here we still use the two linear approximations over GF(28),
i.e., Eqs. (2) and (3), but the linear masks Γ,Λ are 4-dimensional vectors over
GF(28). The algorithm to compute the distribution of Eq. (2) is similar as before,
except that Γ = (Γ4, Γ3, Γ2, Γ1) ∈ GF(28)4 rather than GF(2)4, shown in Algo-
rithm 3. The distribution of N2(t) with the linear mask Λ ∈ GF(28)4 can be com-
puted by Algorithm 4 in Appendix B The time complexity is 3·(28)3 ·28 ≈ 233.58,
while the straightforward method needs a complexity of 296.

Now we describe how to find the linear masks Λ, Γ that satisfy Eqs. (2)
and (3) with large SEIs. Our strategy is to limit the Hamming weights of the
linear masks Λ and Λ′ over GF(28). Denote the Hamming weight of a vector
by wt(·), thus wt(Λ′) determines the number of active S-boxes in the S-box
ensemble S. In the experiments, we found that the SEI of N2(t) is dependent on
wt(Λ). The lower value of wt(Λ), the larger Δ(N2(t)). We have searched all the
linear masks Λ,Λ′ with wt(Λ) ≤ 3 and wt(Λ′) ≤ 3 and found 255 different linear
masks having the same largest value of Δ(N(t)). For example, when Γ = Λ =
(0x00,0x01,0x00,0x03), we get the best linear approximation with the noise
distribution N(t) having a SEI of Δ(N(t)) = 2−29.23.

Please see Appendix C for unifying the two fields before decoding. Then we
launch the fast correlation attack over GF(28) with the parameters n = 32, l =
64, l′ = 19, k = 4. The data complexity is N ≈ 2163.59, while the time/memory
complexities of the pre-computation is 2163.59. After pre-computation, we can
acquire about mk = 2124.79 parity checks. For the online decoding algorithm, the
time complexity is 2162.52 with the above parameter configuration. Note that here
all the complexities are below 2164.15 ≈ 2162.52 + 2163.59, which are considerably
reduced compared to the binary mask case. The reason is that the linear masks
with the finite field coefficients greatly extend the searching space and can well
exploit the algebraic structure of the two finite fields (one defined in a tower man-
ner in the LFSR and the other in the Mixcolumn) inherent in SNOW 2.0.

6.2 Experimental Results

We have verified each step of our new techniques in simulations to support
the theoretical analysis. We have used the GNU Multiple Precision Arithmetic
Library in Linux system to verify the exact distribution of each linear approxi-
mation that has been found, thus the SEI of our large-unit linear approximation
is precisely evaluated without any precision error. Then we have run extensive
experiments on a small-scale version of SNOW 2.0, called s-SNOW 2.0 described
in Appendix D, that have verified our approach.

658 B. Zhang et al.

We have computed the 4-bit linear approximation of the s-SNOW 2.0 with
Algorithm 1 in theory and verified it in practice. Then we executed the experi-
ments on the decoding algorithm in Sect. 3.4. We randomly fixed the values of
60 bits of the initial state of the LFSR and tried to recover the remaining 20-bit
by our method. The chosen parameters are l′ = 20,mk = 215.39. We first use
s-SNOW 2.0 to generate 217 keystream bits zt for a randomly generated 80-bit
initial state. Then we store zt and st in two arrays for t = 1, · · · , 217. Thus we
can construct 217 parity checks I(t) = Γ · (zt ⊕ zt+1) ⊕ Γ · st ⊕ Γ · st+1 ⊕ Γ ·
st+3 ⊕ Γ · st+4 ⊕ Γ · st, for t = 0, · · · , 217 − 1. Second, for each parity check
It, we use the LFSR feedback polynomial to express each st for t > 4 as a
linear combination of the LFSR initial state variables. Now we get 217 parity
checks only containing (s0, s1, s2, s3, s4) after fixing 60-bit in the state. Third, we
divide the 4-bit linear approximation I(t) into four bitwise linear approximations,
i.e., I

(t)
1 = 〈(0, 0, 0, 1), It〉, I(t)2 = 〈(0, 0, 1, 0), I(t)〉, I(t)3 = 〈(0, 1, 0, 0), I(t)〉, I(t)4 =

〈(1, 0, 0, 0), I(t)〉. For each possible 20-bit initial state, we use FWT to
compute the correlations c(I(t)i) for i = 1, · · · , 4. Fourth, we apply Lemma 4
to compute the SEI of pI for each possible initial state. Then we use the SEI to
distinguish the correct initial state. We ran the experiments for randomly gen-
erated values 100 times with different fixed values at different positions in the
LFSR state, and we found that the correct key always ranks in the top 10 in the
candidates list. These 10 candidates have Δ(pI) around 2−10.6, which verified
the theoretical analysis.

Therefore, the experimental results have provided a solid support to our
decoding algorithm and we can get reliable predictions from our theoretical
analysis when the simulation is infeasible to perform. Further, our decoding
method is essentially the LLR method in linear cryptanalysis, whose validity
can be guaranteed by the theory of linear cryptanalysis.

7 Conclusions

In this paper, we have developed two new cryptanalytic tools to bridge the gap
between the widely used primitives employing word-based LFSRs and the cur-
rent mainstream bitwise fast correlation attacks. The first one, a formal frame-
work for fast correlation attacks over extension fields with a thorough theoretical
analysis, is the first comprehensive answer to the corresponding open problem
in the field of correlation attacks. The second technique, serving as a basis to
the first one, allows to efficiently compute the bias distributions of large-unit
linear approximations of the flexibly derived GPLFM, which includes all the
previously studied topics in the open literature in an unified framework. The
size of the data unit is usually chosen according to the structure of the underly-
ing primitive and the building blocks, which greatly extends the freedom of the
adversary in the cryptanalysis of many symmetric-key primitives. As an appli-
cation, we adapted these two techniques to SNOW 2.0, an ISO/IEC 18033-4
standard and a benchmark stream cipher in the European eSTREAM project,
and achieved the best key recovery attacks known so far. The new methods are

Fast Correlation Attacks over Extension Fields 659

generic and are applicable to other symmetric-key primitives as well, e.g., SNOW
3G, Sosemanuk, Dragon, and some CAESAR candidates. It is our future work to
study the large-unit linear approximations of these primitives and launch various
attacks accordingly.

Acknowledgments. This work is supported by the National Grand Fundamental
Research 973 Program of China (Grant No. 2013CB338002), and the programs of
the National Natural Science Foundation of China (Grant No. 60833008, 60603018,
61173134, 91118006, 61272476). The third author was supported in part by the
Research Council KU Leuven: a senior postdoctoral scholarship SF/14/010 linked to
the GOA TENSE (GOA/11/007).

A Diagrams of the Invoked Algorithm 2

Algorithm 2. ComputePLFM(Fi, M, Di−1)

Parameters: Di−1: a probability of Fi−1 that results in Bi−1, Cri−1

Temporary Variable: Bi, Cri: the output and carry vector of Fi

v = (v0, · · · , v|Crmax|−1): a |Crmax|-dimensional vector
Processing:
1: Submit Fi to the precomputed algorithm in [17] and get 2m matrices M(Bi)t|t;
2: for Bi = 0 to 2m − 1 do

3: v = (
∏0

t=m−1 M(Bi)t|t) × (1, 0, · · · , 0)T ;

4: for j = 0 to |Crmax| − 1 do

5: M [Bi][j] = M [Bi][j] + (vj/2md)Di−1;
Return: M

In the diagram of Algorithm 2, (Bi)t is the t-th bit of Bi and the matrices
in [17] have the similar meaning with our connection matrix, which store the
carry information for each bit.

B Computing the Distribution in Eq. (3) over GF(28)

Algorithm 4. Computing the distribution of N2(t)

Parameters:
Λ = (Λ4, Λ3, Λ2, Λ1) ∈ GF(28)4, st = (s4t , s

3
t , s

2
t , s

1
t),R2t = (R24

t , R23
t , R22

t , R21
t);

Processing:
1: Compute Λ1(s

1
t+16 � s1t+5 � R21

t) ⊕ Λ1s
1
t+16 ⊕ Λ1s

1
t+5 ⊕ Λ1R21

t and store in M1

2: for i = 2, · · · , 4 do
3: Initialize M2 with zeros
4: for sit+16 = 0, · · · , 255 and sit+5 = 0, · · · , 255 and R2i

t = 0, · · · , 255 do
5: for Cri−1 = 0, 1, 2 do
6: for Bi−1 = 0, · · · , 255 do
7: Bi ← Bi−1 ⊕ Λi(s

i
t+16 + sit+5 + R2i

t) ⊕ Λis
i
t+16 ⊕ Λis

i
t+5 ⊕ ΛiR2i

t;
8: Cri ← (sit+16 + sit+5 + R2i

t + Cri−1)/28;
9: M2[Bi][|Cri|] ← M2[Bi][|Cri|] + M1[Bi−1][|Cri−1|];
10: M1 ← M2/(28 × 3);
15: Output: pi = M1[i][0] + M2[i][1] + M2[i][2] for each 0 ≤ i ≤ 255

660 B. Zhang et al.

C Unifying the Two Fields

Note that in Eq. (4), the mask Γ = (0x00,0x01,0x00,0x03) is defined over
the Mixcolumn field GF(28), which is different from the corresponding field
of the LFSR. We need to first unify the two fields for an efficient decoding,
otherwise there will be the folded noise introduced by whether xoring the two
field constants or not. Here we adopt the following routine to solve this problem.
To facilitate the decoding phase, we first find an equivalent representation of the
LFSR part theoretically so that it is defined over the new GF(232) field, which
is derived as follows.

We first substitute the low-level GF(28) field of the LFSR defined by x8 +
x7+x5+x3+1 (field constant 0xa9) with the GF(28) field defined in Mixcolumn
by x8+x4+x3+x+1 (field constant 0x1b), and then randomly select a primitive
polynomial of degree 4 over this new field to construct the new GF(232) field. Let
{si}∞

i=0 be the sequence generated by the LFSR defined over the original GF(232)
field in SNOW 2.0, our observation is that the sequence itself is just a string of
bits and is independent of the definition of the underlying field, thus once one
segment of sufficient length of the sequence is produced from a LFSR over the
field associated with one definition, we can use the classical Berlekamp-Massey
algorithm [15] over the field with another definition to reconstruct the LFSR
feedback polynomial over the latter field and as a by product, the equivalent state
conversion relation between the two field definitions can be obtained. Note that
the LFSR sequence {si}∞

i=0 in SNOW 2.0 is primitive, thus the new generated
LFSR over the new GF(232) field is also of length 16. Compared with the other
parts of our attack, the complexity of computing the equivalent representation
of the LFSR part defined in the new field is negligible. The overall complexity
of our attack is dominated by the complexity of the decoding phase.

D A Small Scale Version of SNOW 2.0

The LFSR consists of 5 units and each unit is a 16-bit word in GF(216). The
feedback polynomial is π(x) = αx5 + α−1x3 + x2 + 1 ∈ GF(216)[x], where α is a
root of x4 + β10x3 + β6x2 + x + β11, and β is a root of x4 + x + 1 ∈ GF(2)[x].
The FSM has two 16-bit registers R1 and R2 updated by R1t+1 = (st+3 � R2t)
mod 216 and R2t+1 = S(R1t). The function S is composed of four parallel Nibble
S-boxes followed by the following MixColumn.

S(si) =
(

1 4
4 1

)(
SR(s1i) SR(s3i)
SR(s2i) SR(s4i)

)

,

where SR is the Nibble S-box in Small AES [20]. The output of FSM is Ft =
(st+4 � R1t) ⊕ R2t. The generated keystream is zt = Ft ⊕ st.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

Fast Correlation Attacks over Extension Fields 661

2. Berbain, C., et al.: Sosemanuk, a fast software-oriented stream cipher. In:
Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp.
98–118. Springer, Heidelberg (2008)

3. Canteaut, A.: Fast correlation attacks against stream ciphers and related open
problems. In: 2005 IEEE Information Theory Workshop on Theory and Practice
in Information-Theoretic Security, pp. 49–54 (2005)

4. Chepyzhov, V.V., Johansson, T., Smeets, B.: A simple algorithm for fast correlation
attacks on stream ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
181–195. Springer, Heidelberg (2001)

5. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of
view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)

6. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg,
K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Berlin (2003)

7. Englund, H., Maximov, A.: Attack the dragon. In: Maitra, S., Veni Madhavan,
C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 130–142.
Springer, Heidelberg (2005)

8. ETSI/SAGE. Specification of the 3GPP confidentiality and integrity algorithms
uea2 & uia2. In: Document 2: SNOW 3G Specification, version 1.1, September
2006. http://www.3gpp.org/ftp/

9. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

10. Jönsson, F., Johansson, T.; Correlation attacks on stream ciphers over GF(2n).
In: 2001 IEEE International Symposium on Information Theory-ISIT 2001, p. 140
(2001)

11. Johansson, T., Jönsson, F.: Fast correlation attacks through reconstruction of lin-
ear polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 300–
315. Springer, Heidelberg (2000)

12. Jönsson, F.: Some results on fast correlation attacks. Ph.D. thesis, Lund University,
Sweden (2002)

13. Lee, J.-K., Lee, D.-H., Park, S.: Cryptanalysis of SOSEMANUK and SNOW 2.0
using linear masks. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
524–538. Springer, Heidelberg (2008)

14. Lu, Y., Vaudenay, S.: Faster correlation attack on Bluetooth keystream generator
E0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 407–425. Springer,
Heidelberg (2004)

15. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theor.
IT–15(1), 122–127 (1969)

16. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

17. Maximov, A., Johansson, T.: Fast computation of large distributions and its cryp-
tographic applications. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
313–332. Springer, Heidelberg (2005)

18. Meier, W.: Fast correlation attacks: methods and countermeasures. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 55–67. Springer, Heidelberg (2011)

19. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J.
Cryptology 1, 159–176 (1989)

20. Musa, M.A., Schaefer, E.F., Wedig, S.: A simplified AES algorithm and its linear
and differential cryptanalyses. Cryptologia 27(2), 148–177 (2003)

http://www.3gpp.org/ftp/

662 B. Zhang et al.

21. Nyberg, K., Hermelin., M.: Multidimensional Walsh transform and a characteriza-
tion of bent functions. In: 2007 IEEE Information Theory Workshop on Information
Theory for Wireless Networks, pp. 1–4 (2007)

22. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006)

23. Shannon, C.E.: A mathematical theory of communication. ACM Sigmobile Mob.
Comput. Commun. Rev. 5(1), 3–55 (2001)

24. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

25. Yarlagadda, R.K.R., Hershey, J.E.: Hadamard Matrix Analysis and Synthesis with
Applications to Communications and Signal/Image Processing. Kluwer Academic
Publishers, Boston (1997)

Cryptanalysis of Full Sprout

Virginie Lallemand and Maŕıa Naya-Plasencia(B)

Inria, Bordeaux, France
maria.naya.plasencia@gmail.com

Abstract. A new method for reducing the internal state size of stream
cipher registers has been proposed in FSE 2015, allowing to reduce the
area in hardware implementations. Along with it, an instantiated pro-
posal of a cipher was also proposed: Sprout. In this paper, we analyze
the security of Sprout, and we propose an attack that recovers the whole
key more than 210 times faster than exhaustive search and has very low
data complexity. The attack can be seen as a divide-and-conquer evolved
technique, that exploits the non-linear influence of the key bits on the
update function. We have implemented the attack on a toy version of
Sprout, that conserves the main properties exploited in the attack. The
attack completely matches the expected complexities predicted by our
theoretical cryptanalysis, which proves its validity. We believe that our
attack shows that a more careful analysis should be done in order to
instantiate the proposed design method.

Keywords: Stream cipher · Cryptanalysis · Lightweight · Sprout

1 Introduction

The need of low-cost cryptosystems for several emerging applications like RFID
tags and sensor networks has drawn considerable attention to the area of light-
weight primitives over the last years. Indeed, those new applications have very
limited resources and necessitate specific algorithms that ensure a perfect balance
between security, power consumption, area size and memory needed. The strong
demand from the community (for instance, [5]) and from the industry has led
to the design of an enormous amount of promising such primitives, with differ-
ent implementation features. Some examples are PRESENT [6], CLEFIA [26],
KATAN/KTANTAN [11], LBlock [28], TWINE [27], LED [17], PRINCE [7],
KLEIN [16], Trivium [10] and Grain [18].

The need for clearly recommended lightweight ciphers requires that the large
number of these potential candidates be narrowed down. In this context, the
need for a significant cryptanalysis effort is obvious. This has been proved by
the big number of security analyses of the previous primitives that has appeared
(to cite a few: [1,13,15,19–21,24,25]).

Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 663–682, 2015.
DOI: 10.1007/978-3-662-47989-6 32

664 V. Lallemand and M. Naya-Plasencia

Stream ciphers are good candidates for lightweight applications. One of the
most important limitations to their lightweight properties is the fact that to
resist time-memory-data trade-off attacks, the size of their internal state must
be at least twice the security parameter.

In FSE 2015, Armknecht et al. proposed [3,4] a new construction for stream
ciphers designed to scale down the area required in hardware. The main intention
of their paper is to revisit the common rule to resist against time-memory-data
trade-off attacks, and reduce the minimal internal state of stream ciphers. To
achieve this goal, the authors decided to involve the secret key not only in the
initialization process but also in the keystream generation phase. To support
this idea, an instance of this new stream cipher design is specified. This instance
is based on the well studied stream cipher Grain128a [2] and as such has been
named Sprout. In this paper we analyze the security of this cipher, and present
an attack on the full version that allows the attacker to recover the whole 80-bit
key with a time complexity of 269.39, that is 210 times faster than exhaustive
search and needs very few bits of keystream. Our attack exploits an evolved
divide-and-conquer idea.

In order to verify our theoretical estimation of the attack, we have imple-
mented it on a toy version of Sprout that maintains all the properties that we
exploit during the attack, and we have corroborated our predicted complexities,
being able then to validate our cryptanalysis.

This paper is organised as follows: we first recall the specifications of the
stream cipher Sprout in Sect. 2, and then describe our attack in Sect. 3. We
provide the details of the implementation that has verified the validity of our
attack in Sect. 4. Section 5 provides a discussion on how the attack affects the
particular instantiation and the general idea.

2 Description of Sprout

In [3] the authors aim at reducing the size of the internal state used in stream
ciphers while resisting to time-data-memory trade-off (TMDTO) attacks. They
propose to this purpose a new design principle for stream ciphers such that the
design paradigm of long states can be avoided. This is done by introducing a state
update function that depends on a fixed secret key. The designers expect a min-
imum time effort equivalent to an exhaustive search of the key for an attacker to
lead an attack, since she has to determine the key prior to realise the TMDTO.

Sprout is the concrete instantiation of this new type of stream ciphers devel-
oped in [3]. It has an IV and a key size of 80 bits. Based on Grain128a, this
keystream generator is composed of two feedback shift registers of 40 bits, one
linear (the LFSR) and one non-linear (the NLFSR), an initialization function
and an update function, both key-dependent, and of an output function that
produces the keystream (see Fig. 1). The maximal keystream length that can be
produced under the same IV is 240.

We first recall some notations that will be used in the following:

– t clock-cycle number
– Lt = (lt0, l

t
1, · · · , lt39) state of the LFSR at clock t

Cryptanalysis of Full Sprout 665

h

LFSRNLFSR

7 2 7

6

33 k∗
t

g f29

Round key function

k
80

z

ct

Fig. 1. Sprout KeyStream generation

– N t = (nt
0, n

t
1, · · · , nt

39) state of the NLFSR at clock t
– iv = (iv0, iv1, · · · , iv69) initialisation vector
– k = (k0, k1, · · · , k79) secret key
– k∗

t round key bit generated during the clock-cycle t
– zt keystream bit generated during the clock-cycle t
– ct round constant at clock t (generated by a counter).

A counter is set to determine the key bit to use at each clock and also to
update the non linear register. More specifically, the counter is made up of 9 bits
that count until 320 in the initialisation phase, and then count in loop from 0 to
79 in the keystream generation phase. The fourth bit (ct

4) is used in the feedback
bit computation of the NLFSR.

The 40-bit LFSR uses the following retroaction function, that ensures max-
imal period: lt+1

39 = f(Lt) = lt0 + lt5 + lt15 + lt20 + lt25 + lt34.
The remaining state is updated as lt+1

i = lti+1 for i from 0 to 38.
The NLFSR is also 40-bit long and uses a feedback computed by:

nt+1
39 = g(N t) + k∗

t + lt0 + ct

= k∗
t + lt0 + ct + nt

0 + nt
13 + nt

19 + nt
35 + nt

39 + nt
2n

t
25 + nt

3n
t
5 + nt

7n
t
8 + nt

14n
t
21

+ nt
16n

t
18 + nt

22n
t
24 + nt

26n
t
32 + nt

33n
t
36n

t
37n

t
38 + nt

10n
t
11n

t
12 + nt

27n
t
30n

t
31,

where k∗
t is defined as:

k∗
t = kt, 0 ≤ t ≤ 79

k∗
t = (kt mod 80)×(lt4 + lt21 + lt37 + nt

9 + nt
20 + nt

29), t ≥ 80

The remaining state is updated as nt+1
i = nt

i+1 for i from 0 to 38.
In the following, we name by

∑
l the sum of the LFSR bits that intervene in

k∗
t when t ≥ 80 (i.e.

∑
l � lt4 + lt21 + lt37) and by

∑
n � nt

9 +nt
20 +nt

29 it NLFSR
counterpart, leading to the following equivalent definition of k∗

t when t ≥ 80:

k∗
t = (kt mod 80) × (

∑
l +

∑
n)

666 V. Lallemand and M. Naya-Plasencia

Update and Output Function.- The output of the stream cipher is a boolean
function computed from bits of the LFSR and of the NLFSR. The nonlinear part
of it is defined as:

h(x) = nt
4l

t
6 + lt8l

t
10 + lt32l

t
17 + lt19l

t
23 + nt

4n
t
38l

t
32

And the output bit is given by:

zt = nt
4l

t
6 + lt8l

t
10 + lt32l

t
17 + lt19l

t
23 + nt

4n
t
38l

t
32 + lt30 +

∑

j∈B

nt
j

with B = {1, 6, 15, 17, 23, 28, 34}. Each time a keystream bit is generated, both
feedback registers are updated by their retroaction functions.

Initialization.- The IV is loaded in the initial state in the following way:
n0

i = ivi, 0 ≤ i ≤ 39, li = ivi+40, 0 ≤ i ≤ 29 and l0i = 1, 30 ≤ i ≤ 38, l039 = 0.
The cipher is then clocked 320 times; instead of outputting the keystream bits,
these bits are used as feedback in the FSRs:

lt+1
39 = zt + f(Lt)

nt+1
39 = zt + k∗

t + lt + ct
4 + g(N t)

Keystream Generation.- After the 320 initialisation clocks, the keystream
starts being generated according to the previously defined output function; one
keystream bit per state update.

3 Key-Recovery Attack on Full Sprout

The attack described in this section and that has allowed us to attack the full
version of Sprout, exploits the short sizes of the registers, the little dependency
between them when generating the keystream and the non-linear influence of the
keybits in the update function. We use an evolved divide-and-conquer attack,
combined with a guess-and-determine technique for recovering the key bits, that
resembles the analysis applied to the hash function Shabal from [9,22]. It recovers
the whole key much faster than an exhaustive search and needs very little data.

Our attack is composed of three steps: in the first one, the attacker builds
and arranges two independent lists of possible internal states for the LFSR and
for the NLFSR at an instant r′ = 320 + r. For now on, we will refer to time
with respect to the state after initialization, being t = 0 the instant where the
first keystream bit is output. During the second step, we merge the previous
lists with the help of some bits from the keystream that will allow to perform a
sieving in order to exclusively keep as candidates the pairs of states that could
have generated the known keystream bits. Finally, once a reduced set of possible
internal states is kept, we will recover the whole key by using some additional
keystream bits. Through all the attack, we consider r + �z keystream bits as
known (z0, . . . , zr+�z−1). The last 1 + �z bits are used in the second step of the

Cryptanalysis of Full Sprout 667

attack, for reducing the number of state candidates. The first r−1 bits are used in
the last step of the attack, for recovering the only one correct state and the whole
key. We will use these bits in our attack, and therefore they represent the data
complexity. As we show in the following, the parameters r and �z are the ones we
adapt to optimize the attack, and in order to mount the best possible attacks,
we always have �z ≥ 6 and r ≥ 1.

We first describe some useful preliminary remarks. Next we describe the three
steps of the attack, and finally we provide a summary of the full attack along
with the detailed complexities of each step.

3.1 Preliminary Remarks

We present in this subsection some observations on Sprout, that we use in the
following sections for mounting our attack.

Let us consider the internal state of the cipher at time t. If we guessed1 both
registers at time t, how could we discard some incorrect guesses by using some
known keystream bits?

Linear Register.- First of all, let us remark that the linear register state is totally
independent from the rest during the keystream generation phase. Then, once
its 40-bit value at time t are guessed, we can compute all of its future and past
states during the keystream generation, including all its bits involved in the
keystream generation.

We describe now the four sievings that can be performed in order to reduce
the set of possible states with the help of the conditions imposed by the
keystream bits.

Type I: Direct Sieving of 2 Bits.- From Sect. 2 we know that the keystream
bit at clock cycle t is given by:

zt = nt
4l

t
6 + lt8l

t
10 + lt32l

t
17 + lt19l

t
23 + nt

4n
t
38l

t
32 + lt30 +

∑

j∈B

nt
j

with B = {1, 6, 15, 17, 23, 28, 34}. We can see that 9 bits of the NLFSR intervene
in the keystream bit computation, 7 linearly and 2 as part of terms of degree 2
and 3, as depicted on Fig. 2 (in this figure, instant r corresponds to the generic
instant t that we consider in this section). The first observation we can make is
that if we know the 80 bits of the internal state at clock t, then we can directly
compute the impact of the LFSR and of the NLFSR in the value of zt and of zt+1

(see r and r +1 on Fig. 2), which will potentially give us a sieving of two bits: as
zt and zt+1 are known, the computed values should collide with the known ones.
The number of state candidates will then be reduced by a factor of 2−2. For
instants positioned after t + 1, the bit nt

38 turns unknown so we cannot exploit
the same direct sieving. In the full version of the attack, this sieving involves
keystream bits zr and zr+1.

1 Which cannot be done as it contains 280 possible values and therefore exceeds the
exhaustive search complexity.

668 V. Lallemand and M. Naya-Plasencia

Fig. 2. Representation of the full attack. Each line represents the internal values at a
certain instant, and the keystream generated at this same instant is represented in the
rightmost column.

Type II: Previous Round for Sieving.- We consider a situation in which
we have guessed a state not at instant 0, but at an instant t > 0. This nice idea
has the advantage of allowing to additionally exploit the previously generated
keystream bits to filter out the wrong states. We can therefore have for free an
additional bit of sieving, provided by round t−1: indeed, as can be seen in Fig. 2,
for each possible pair of states (NLFSR, LFSR) at round (t − 1) we know all
the bits from the NLFSR having an influence on zt−1, as well as all the bits
needed from the LFSR, that are also needed to compute zt−1. As this keystream
bit is known, we can compare it with the computed value: a match occurs with
probability 1/2, and therefore the number of possible states is reduced by a
factor of 2−1. In the full version of the attack, this sieving involves keystream
bit zr−1.

Type III: Guessing for Sieving.- To obtain a better sieving, we consider one
by one the keystream bits generated at time t + i for i > 1. On average, one
time out of two, nt+i

38 won’t be known, as it would depend on the value of k∗
t+i−2.

We know that, on average, k∗
t+i−2 is null one time out of two with no additional

guess. In these cases, we have an additional bit sieving, as we can directly check if
zt+i is the correct one. Moreover, each time the bit nt+i

38 is unknown, we can guess
the corresponding k∗

t+i−2, and keep as possible candidate the one that verifies

Cryptanalysis of Full Sprout 669

the relation with zt+i. In this case not only we reduce the number of possible
states, but we also recover some associated key bit candidates 2 out of 3 times,
as we show in details in Sect. 3.3. For each bit that we need to guess (×2) we
obtain a sieving of 2−1, which compensate. The total number of state candidates,
when considering the positions that need a bit guessing and the ones that do
not, is reduced by a factor of (3/4) ≈ 2−0.415 per keystream bit considered with
the type III conditions. For our full attack this gives 2−0.415×(�z−2−4), as �z is
the number of bits considered during conditions of type I, III and IV (the one
bit used during type 2 is not included in �z). As sieving of type I always uses 2
bits, and conditions of type IV, as we see next, always use 4 bits, sieving of type
III remains with �z − 2 − 4 keystream bits. In the full version of the attack, this
sieving involves keystream bits zt+i for i from 2 to (�z − 5).

Type IV: Probabilistic Sieving.- In the full version of the attack, this sieving
involves keystream bits zt+i for i from �z − 4 to (�z − 1). Now, we do not guess
bits anymore, but instead we analyse what more we can say about the states,
i.e. whether we can reduce the amount of candidates any further. We point out
that nt+i

38 only appears in one term from h. What happens if we consider also the
next 4 keystream bits? What information can the next keystream bits provide?
In fact, as represented in Fig. 2, the next four keystream bits could be computed
without any additional guesses with each considered pair of states, but for the bit
nt+i
38 , that is not known. But if we have a look carefully, this bit only affects the

corresponding keystream bit one time out of three. Indeed, the partial expression
given by h:

nt+i
4 nt+i

38 lt+i
32

is only affected by nt+i
38 for 3/4 of the values the other two related variables,

nt+i
4 and lt+i

32 , can take. Therefore, even without knowing nt+i
38 , we can perform

a sieving of one bit 3/4 of the times. On average, as this can be done up to
considering four more keystream bits, marked in Fig. 2 with 3/4, we will obtain
an additional sieving of 4×3/4 = 3 bits, i.e. the number of state candidates will
be additionally reduced by 2−3.

We can now start describing our attack.

3.2 Building the Lists LL and LN

We pointed out in the previous section that guessing the whole internal state at
once (80 bits) would already be as expensive as the exhaustive key search. There-
fore, we start our attack by guessing separately the states of both the NLSFR
and the LFSR registers at instant r. For each register we build a list, obtaining
two independent lists LL and LN , which contain respectively the possible state
bit values of the internal states of the LFSR, and respectively of the NLFSR, at
a certain clock-cycle r′ = 320 + r, i.e. r rounds after the first keystream bit is
generated.

More precisely, LL is filled with the 240 possibilities for the 40 bits of the
LFSR at time r (which we denoted by l0 to l39). LN is a bigger list that contains

670 V. Lallemand and M. Naya-Plasencia

n 4 n 38tn t l l 6 l 32
∑ l

LN LL

guess
related

guess
related

240+�z−2−4 240

r

n 4 n 38tn

r+1

n 4 n 38tn

r+2 r+3
∑ n

α n 4 n 38tn
∑ n

α

... r

t l l 6 l 32

r+1

t l l 6 l 32

r+2

l 0

...

guess
related

n 4 n 38tn

r-1

t l l 6 l 32

r-1

Fig. 3. Lists LL and LN before starting the attack. All the values used for the sorting
can be computed from the original states, and the αr+i in the case of LN

240+�z−2−4 = 234+�z elements2, corresponding to the 40-bit state of the NLFSR
(denoted by n0 to n39), each coupled to the 2�z−2−4 possible values for αr =
k∗

r + lr0 + cr
4 to αr+�z−6 = k∗

r+�z−6 + lr+�z−6
0 + cr+�z−6

4 . See Fig. 4 for a better
description of α.

As detailed next, we also store additional bits deduced from the previous
ones to speed up the attack. In LN , we store for certain instants of time the
bits n4, n38, tn �

∑
j∈B nj (the linear contribution of the NLFSR to the output

bit z) and
∑

n = n9 +n20 +n29 (the sum of the NLFSR bits that appear in the
key selection process) while in LL it is l6, l32, tl � l30 + l8l10 + l19l23 + l17l32 + zt

and
∑

l = l4 + l21 + l37. These bits are arranged as shown in Fig. 3.

3.3 Reducing the Set of Possible States

The main aim of this step is to use the precomputed lists LL and LN to combine
them and keep only the subset of the crossproduct that corresponds to a full inter-
nal state for the registers and that could generate the keystream bits considered. It
is easy to see that this problem perfectly corresponds to merging lists with respect
to a relation, introduced in [23]. Therefore, we will use the algorithms proposed
to solve it in [12,14,23] in order to efficiently find the remaining candidate pairs.
Let us point out here that in the complexities we take into account for applying
these algorithms, we not only take into account the candidates kept on the lists,
but also the cost of sorting and comparing the lists.

Of course, our aim is to make the number of remaining state candidates
shorter than the trivial amount of 280 (the total number of possible internal
states for the registers). To achieve this, we use the sieves described in Sect. 3.1
as the relations to consider during the merging of the lists. The sieves were
deduced from relations that the known keystream bits and the state bits at time
r must satisfy.
2 In the next section we describe how to reduce the state candidates step by step, so

if only conditions of type I and II are considered, no guesses are needed and LN is of
size 240. When sieving conditions of type III are considered, but not of type IV, as
in Table 2, the size of LN is 240+�z−2 instead, i.e. the size of the list is 240+�z−2−�IV ,
where �IV are the conditions of type IV considered.

Cryptanalysis of Full Sprout 671

LFSRNLFSR

6

33
k∗
tg f29

Round key function

kt (mod 80)

α ct

Fig. 4. Position of the additional guesses stored in list LN

For the sake of simplicity, we start by presenting an attack that only uses the
sievings of type I and II. Next we will show how to also take into consideration
the sieving of type III, and finally we will show how to also take into account the
sieving of type IV, and therefore the 4 sievings at once for obtaining a reduced
set of possible initial states.

Sievings of Type I and II with zr−1, zr and zr+1.- Exceptionally, in this
simplified version of the attack we consider �z = 2, and t is at least one. We
therefore know at least three keystream bits: zt−1, zt and zt+1, that we use for
reducing the size of the set of possible internal states at instant t.

We consider the previously built lists LL and LN both of size 240 (no guesses
are performed for this sievings) and are sorted as follows (see the three first
columns of lists in Fig. 3):

– LL is sorted according to ttl = lt30 + lt8l
t
10 + lt19l

t
23 + lt17l

t
32 + zt, lt6 and lt32 at

instants r − 1, r and r + 1.
– LN is sorted according to nt

4, nt
38 and finally ttn =

∑
j∈B nt

j at time r − 1, r
and r + 1.

Given our new notations, we can rewrite the equation expressing zt, as:

ttl + ttn + nt
4(n

t
38l

t
32 + lt6) = 0

We will use it for t from r − 1 to r + 1. The idea is then to use the relations
implied by these three equations to deduce the possible initial state values of the
LFSR and of the NLFSR in a guess and determine way.

For instance, if we first consider the situations in which the bits nt
4 and nt

38

are null, we know that the relation ttl + ttn = 0 must be satisfied so that we can
only combine one eighth of LN (nt

4 = 0, nt
38 = 0 and ttn = 0, or respectively

n4 = 0, n38 = 0 and tn = 1) with one half of LL (in which tl = 0, respectively
tl = 1). The same way, fixing other values for n4, n38 and tn we obtain other
restricted number of possibilities for the values of ttl , lt6 and lt32. We reduce the
total number of candidate states by 2−1 per keystream bit considered. When
considering the equations from the three keystream bits zt−1, zt and zt+1, we
therefore obtain 277 possible combinations instead of 280.

672 V. Lallemand and M. Naya-Plasencia

This is a direct application of the gradual matching algorithm from [23], and
we provide a detailed description of how the algorithm works and should be
implemented in Sect. 4.2.

Additional Sieving of Type III with zr+2, . . . , zr+�z−1.-3 We can easily
improve the previous result by taking into account the sieving of type III pre-
sented in the previous section. List LN will have, in this case, a size of 240+�z−2,
where �z − 2 is the number of keystream bits that will be treated with sieving of
type III, and therefore, the number of αt+i bits that will be guessed (for i from 0
to �z−2−1). The attacker is given (1+�z) bits of keystream (zr−1, . . . , zr+�z−1),
and she can directly exploit zr−1, zr and zr+1 with sieving conditions of type I
and II. Next arranging the table as showed in Fig. 3 will help exploiting the
conditions derived from keystream bits zr+2, . . . , zr+�z−1.

To explain in more detail the sieving probability deduced in Sect. 3.1 with
respect to one condition of type III, we refer to Table 1 where in 1 case out of 4 the
cohabitation of a fixed value of bits of LL and LN is impossible, which indicates
to the attacker that the internal state is not possible, retaining a proportion of
3/4 of the considered states.

We recall that, so far (as we have not discussed yet the application of sieving
conditions of type IV), the number of keystream bits treated by type III of
conditions is �z−2. We have one additional sieving condition of type III per each
one of these �z−2 bits of the keystream. Each additional condition to test reduces
the number of possible combinations of sublists by a factor of 3

4 = 2−0.4150, as we
have just seen. By repeating this process �z−2 times, we finally obtain a number
280−3−0.415∗(�z−2) of possible internal states. Let us detail the cost of obtaining
this reduced set of possible states. The process of the attack considering sievings
of type I, II and III simultaneously, which is done using a gradual matching
technique as described in [23], can be broadly summarized as follows and can be
visualized in Table 2.

1. Consider the two precomputed lists LN and LL of respective sizes 240+�z−2

and 240, containing all the possibilities for the 40-bit long internal states of
the NLFSR and the �z −2 additional guesses and respectively the 40-bit long
possible internal states of the LFSR.

2. For i from 0 to �z, consider keystream bit zr+i, and:
(a) if i ≤ 2, divide the current (sub)list from LN in 23 sublists according

to the values of n4, n38 and tn at time r + i − 1 and divide the current
(sub)list from LL into 23 sublists according to the values of tl, l6 and
l32 also at time r + i − 1. According to the previous discussion, we know
that only 23+3−1 = 25 combinations of sublists are possible (for sievings
of type I and II). For each one of the 25 possible combinations, consider
the next value for i.

3 In the full attack, the last keystream bit considered here is zr+�z−1−4, as �z is four
units bigger when considering sieving conditions of type IV.

Cryptanalysis of Full Sprout 673

Table 1. Restrictions obtained from the additional guess, deduced from the formula
of nt+1

39

guess
∑

n l0
∑

l information

0 none
0 1 k = 0

0 0 impossible
1 1 k = 1

0 0 k = 0
0 1 none

1 0 k = 1
1 1 impossible

0 impossible
0 1 k = 1

0 0 none
1 1 k = 0

1 0 k = 1
0 1 impossible

1 0 k = 0
1 1 none

(b) if i > 2, divide further the current sublist from LN in 25 sublists according
to the values of the 5 bits n4, n38, tn,

∑
n and αr+i−1−2 = (k∗

r+i−1−2 +
lr+i−1−2) (the additional guess) at time r + i − 1 and divide the current
sublist from LL in 25 sublists according to the values of the 5 bits tl, l6,
l32,

∑
l and l0 at time r + i− 1. According to the previous discussion, we

know that only 25+5−1−0.415 = 28.585 combinations of those sublists are
possible. For each one of the 28.585 possible combinations, consider the
next value for i.

For a given value of �z, the log of the complexity of recursively obtaining the
reduced possibilities for the internal state by this method could be computed as
the sum of the right most column of Table 2, as this represents the total number
of possible sublist combinations to take into account plus the sum of this column
and the log of the relative sizes in both remaining sublists, which are given in the
last line considered, as, for each possible combination of the sublists, we have to
try all the elements remaining in one list with all the elements in the other. In
the cases where the log is negative (−h), we only check the combinations with
the other sublists when we find a non empty one, which happens with probability
2−h, and this also corresponds to the described complexity.

Let us consider �z = 8. The total time complexity4 will be

23∗5+6∗8.585 + 23∗5+6∗8.585+8−1+1 ≈ 274.51

4 We are not giving here the complexity yet in number of encryptions, which will
reduce it when comparing with an exhaustive search.

674 V. Lallemand and M. Naya-Plasencia

Table 2. .

i LN sublists size LL sublists size matching pairs
(log) (log) at this step (log)

40+�z − 2 40

0 35+ �z 37 5

1 32+ �z 34 5

2 29+ �z 31 5

3 24+ �z 26 8.585

4 19+ �z 21 8.585

5 14+ �z 16 8.585

6 9+ �z 11 8.585

7 4+ �z 6 8.585

8 �z-1 1 8.585

9 �z-6 ’-4’ 8.585

10 �z-11 ’-9’ 8.585

If we considered for instance �z = 9, we obtain for i = 9 a number of possible
combinations of 23∗5+7∗8.585 ≈ 275.095 for checking if the corresponding sublist is
empty or not, and so the attack will be more expensive than when considering
�z = 8, which seems optimal (without including conditions of type IV).

To compare with exhaustive search (so to give the time complexity on encryp-
tion functions), we have to multiply 274.51 by 8

(320) , where 8
(320) = 2−5.32 is the

term comparing our computations with one encryption, i.e. 320 initialization
rounds, and we do not take into account the following 80 rounds for recovering
one unique key, as with early abort techniques one or two rounds should be
enough. This gives 269.19 as time complexity, for recovering 274.5 possible states.

We can still improve this, by using the sieving of type 4, as we show in the
next section.

Additional Sieving of Type IV with zr+2, . . . , zr+�z−1.- Applying the type
IV sieving is quite straight forward, as no additional guesses are needed: It just
means that on average, we have an additional extra sieving of 2−3 per possible
state found after the sievings of type I, II and III. In the end, when considering all
the sievings, we recover 271.5 possible states with a time complexity determined
by the previous step (applying sieving of type III which is the bottleneck) of
269.19 encryption calls.

As previously we have determined that the optimal value for �z when consid-
ering sieving conditions of type I, II and III is 8, now, as we consider 4 additional
keystream bits, the optimal value is �z = 8 + 4 = 12.

The question now is: how to determine, from the 271.5 possible states, which
one is correct, and whether it is possible or not to recover the whole key. We will
see how both things are possible with negligible additional cost.

Cryptanalysis of Full Sprout 675

3.4 Full Key Recovery Attack: Guessing a Middle State

The main idea that allows us to recover the whole master key with a negligible
extra complexity is considering the guessed states of the registers as not the first
initial one, obtained right after initialization and generation of z0, but instead,
guessing the state after having generated r keystream bits, with r > 0 (for
instance, values of r that we will consider are around 100). The data needs will
be r + �z keystream bits, which is more than reasonably low (the keystream
generation limit provided by the authors is 240 bits). We recall here that the
optimal value for �z is 12.

With a complexity equivalent to 269.19 encryptions, we have recovered 271.5

possible internal states at time r using �z + 1 = 13 keystream bits, reducing the
initial total amount by 28.5. The question now is: how to find the only correct
one, out of these 271.5 possible states? And can we recover the 80-bit master key?
We recall that, on average, we have already recovered (�z−2−4)∗2/3 = 4 keybits
during the type III procedure described in Sect. 3.3. For the sake of simplicity,
and as the final complexity won’t be modified (it might be slightly better for the
attacker if we consider them in some cases), we will forget about these 4 keybits.

Inverting one Round for Free.- Using Fig. 2, we will describe how to recover
the whole key and the correct internal state with a negligible cost. This can be
done with a technique inspired by the one for inverting the round function of
the Shabal [8] hash function, proposed in [9,22]. The keystream bit from col-
umn z, marked with a 1 (at round (r − 2)) represents zr−2, and implies the value
of nr−2

1 at this same round5, which implies the value of nr−1
0 , one round later.

This last value also completely determines the value of the guessed bit in round
r − 1 (αr−1), which determines the value of this same round k∗

r−1, which, with
a probability of 1/2, will determine the corresponding key bit and with proba-
bility of 1/4 won’t be a valid state, corresponding to the case of k∗

r−1 = 1 and
(lr−1
4 + lr−1

21 + lr−1
37 + nr−1

9 + nr−1
20 + nr−1

29) = 0, producing a sieving of 3/4 (we
only keep 3/4 of the states on average).

Inverting Many Rounds for Free.- We can repeat the exact same procedure con-
sidering also the keystream bits marqued with 2 and 3 (zr−3 and zr−4 respec-
tively). When we arrive backwards at round (r − 5), we are considering the
keystream bit marked with 4, that is actually zr−5, and the bit nr−5

4 needed
for checking the output equations that wasn’t known before, is now known as
it is nr−2

1 , that was determined when considering the keystream bit zr−2. We
can therefore repeat the procedure for keystream bits 4,5,6. . . and so on. Indeed,
in the same way, we can repeat this for as many rounds as we want, with a
negligible cost (but for the constant represented by the number of rounds).

Choosing the Optimal Value for r.- As we have seen, going backwards r rounds
(so up to the initialisation state) will determine on average r/2 key bits, and for

5 This result comes from the expression of zr−2 that linearly involves nr−2
1 while all the

other involved terms are known.

676 V. Lallemand and M. Naya-Plasencia

each keystream bit considered we have a probability of 3/4 of keeping the state
as candidate, so we will keep a proportion of (3/4)r−1 state candidates.

Additionally, if r > 80, because of the definition of k∗, the master key involved
bits will start repeating6. For the kept state candidates, we have an additional
probability of around 2/3×2/3 = 2−2 of having determined the bit at one round
as well as exactly 80 rounds before. The 2/3 comes from the fact that, for having
one key bit at an instant t determined we need (lt4+lt21+lt37+nt

9+nt
20+nt

29) = 1,
and as the case (lt4 + lt21 + lt37 + nt

9 + nt
20 + nt

29) = 0 with k∗
t = 1 has been

eliminated by discarding states, we have that 2 out of the three remaining cases
will determine a key bit. Therefore, when this happens, we need the bits to
collide in order to keep the tested state as a candidate. This happens with an
additional probability of 1/2 per bit.

We first provide here the equations considering r ≤80. Given 271.5 possible
states obtained during the second step, the average number of states that we
will keep as candidates after inverting r rounds (�s) is �s = 271.5 × (3/4)r. Each
one has �K = r × 2/3 determined key bits on average.

For 160 > r > 80, the average number of states that we will keep as candi-
dates is

�s = 271.5 × (3/4)r × 2−(r−80)×(2/3)2 .

Each one has �K = r × 2/3 − (r − 80) × (2/3)2 determined key bits on average.
For any r, as we can gradually eliminate the candidate states on the fly, we

do not need to compute backwards all the 100 bits but for very few of them. The
complexity of testing the kept states in encryption function calls in the worst
case will be

271.5 × 1
320

+ 271.5−1∗0.41 × 2
320

+ . . . + 271.5−(r−1)∗0.41 × r

320
,

we can upper bound this complexity by 10 × 271.5 × 1
320 ≈ 266.5, which is lower

than the complexity to perform the previous step, described in Sect. 3.3, so won’t
be the bottleneck.

As for each final kept state, we have to try all the possibilities for the remain-
ing 80 − �K key bits, we can conclude that the final complexity of this last part
of the attack in number of encryptions is

�s × 280−�K , (1)

Which will be negligible most of the times (as a small increase in r means a big
reduction of this complexity).

The optimal case is obtained for values of r close to 100, so we won’t provide
the equations when r > 160.

For our attack, it would seem enough to choose r = 80 in order to have this
last step less expensive than the previous one, and therefore, in order not to
6 As previously said, for the sake of simplicity we do not take into account the �z bits

computed from r forward, and we discuss in the next section on implementation,
the very little this changes in the final complexity (any way, it could only help the
attacker, so the attack is as least as “good” as explained in our analysis).

Cryptanalysis of Full Sprout 677

increase the time complexity. We can choose r = 100 so that we are sure that
things will behave correctly and the remaining possible key candidates can be
very efficiently tested. We recall that the optimal value for �z was 8 + 4, which
means that the data complexity of our attack is r + �z = 112 bits of keystream,
which is very small. We have �s = 221.11 and �K = 57.2. The complexity of
this step is therefore 221.11 × 280−57.2 = 243.91, which is much lower than the
complexity of the previous steps.

3.5 Full Attack Summary

We consider r = 100 and �z = 12. The data complexity of the attack is therefore
112 bits.

First, we have precomputed and carefully arranged the two lists LL and LN ,
of size 240 and 240+12−4−2 = 246, and 246 will be the memory needed to perform
the attack, as all the remaining steps can be performed on the fly. Next, we
merged both lists with respect to the sieving conditions of type I, II, III and
IV, obtaining 271.5 state candidates with a complexity of 269.19 encryptions. For
each candidate state, we compute some clocks backwards, in order to perform
an additional sieving and to recover some key bits. This can be done with a com-
plexity of 266.5. The kept states and associated key bits are tested by completing
the remaining key bits, and we only keep the correct one. This is done with a cost
of 243.91. We recover then the whole master key with a time complexity of 269.39

encryptions, i.e. around 210 times faster than an exhaustive key search. In the
next section we implement the attack on a reduced version of the cipher, being
able to proof the validity of our theoretical analysis, and verifying the attack.

4 Implementation and Verification of the Attack

To prove the validity of our attack, we experimentally test it on a shrinked cipher
with similar structure and properties. More specifically, we built a small stream
cipher according to the design principles used for Sprout but with a key of 22
bits and two states of 11 bits. We then implemented our attack and checked the
returned complexities.

4.1 Toy Cipher Used

The toy cipher we built is the one represented in Fig. 5. It follows the same
structure as Sprout but its registers are around 4 times smaller. We have chosen
the functions so that the sieving conditions behaved similarly as in our full
round attack. We keep the same initialisation principle and set the number of
initialisation rounds to 22×4 = 88 (in Sprout there are 80×4 = 320 initialisation
rounds).

678 V. Lallemand and M. Naya-Plasencia

k

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

k∗ = kt mod 22 ∗ (l2 + l4 + l8 + n2 + n4 + n6)

h n4l1 + n9l3 + n4n9l7

z

0 1 2 3 4 5 6 7 8 9 10 11121314151617181920 21

Fig. 5. Toy cipher

4.2 Algorithm Implemented

Steps 1 and 2 of the Attack.-

1. Ask for r+#z = r+3 keystream bits generated from time t = 0 to t = r+3−1,
that we denote by z0, z1, · · · zr+2

2. Build a list LL of size 211 containing all the possible values for the 11 bits of
the linear register at time t = r, sorted according to:
– lr1, lr3 and lr7 at time t = r,
– lr+1

1 , lr+1
3 and lr+1

7 at time t = r + 1,
– lr+2

3 and lr+2
7 at time t = r + 2 and finally

– lr0, lr2 + lr4 + lr8 at time t = r
3. Build a list LN of size 211+1 = 212 that contains all the possible state values

of the non-linear register at time t = r plus the value of an additional guess
and sort it according to:
– nr

0 + zr, nr
4 and nr

9 at time t = r,
– nr+1

0 + zr+1, nr+1
4 and nr+1

9 at time t = r + 1,
– nr+2

0 + zr+2, nr+2
4 and nr+2

9 at time t = r + 2 and finally
– αr (the guessed bit) at time t = r

4. Create a new list M containing the possible value of LL and LN together:
(a) Consider the states of LL and LN for which the first indexes (lr1, lr3 and

lr7 in LL and nr
0 + zr, nr

4 and nr
9 in LN) verify the equation given by the

keystream bit at time t = r:

zr = nr
4l

r
1 + nr

9l
r
3 + nr

4n
r
9l

r
7 + nr

0

i. Apply a second filter given by the second indexes (lr+1
1 , lr+1

3 and lr+1
7

in L and nr+1
0 +zr+1, nr+1

4 and nr+1
9 in G) by checking if the equation

given by the keystream bit at time t = r + 1 holds:

zr+1 = nr+1
4 lr+1

1 + nr+1
9 lr+1

3 + nr+1
4 nr+1

9 lr+1
7 + nr+1

0

Cryptanalysis of Full Sprout 679

A. Similarly, apply a sieving according to the third indexes. Remark
here that l1 at time t = r+2 is equal to the already fixed bit l3 at
time t = r. Finally, use the additional information deduced from
α at time t = r that must verify

αr = kr · (lr2 + lr4 + lr8 + nr
2 + nr

4 + nr
6)

so that it implies a contradiction if lr2 + lr4 + lr8 = nr
2 +nr

4 +nr
6 and

αr �= l0 at the same time.

As discussed in Sect. 3.3, the resulting filter on the cardinal product of the list
is of 2−1−1−1−0.415 so 223−3.415 = 219.585 possible states remain at this point.

Step 3 of the Attack.-

1. For each of the 219.585 possible states at time t = r, create a vector of 22 bits
K̃ for the possible value of the key associated to it:
(a) For time t = r − 1 to t = 0:

i. Deduce the values of nt
i, i = 1 · · · 10 and of lti , i = 1 · · · 10 from the

state at time t + 1
ii. Compute the value of nt

0 given by the keystream bit equation as:

nt
0 = zt + nt

4l
t
1 + nt

9l
t
3 + nt

4n
t
9l

t
7

and of lt0 given by the LFSR retroaction equation as:

lt0 = lt2 + lt5 + lt+1
10

and deduce from it the value of

k∗t = nt
0 + nt

3n
t
5 + nt

7n
t
9 + nt

10 + l0 + nt+1
10

(given by the NLFSR retroaction equation)
iii. Compute the value of lt2 + lt4 + lt8 + nt

2 + nt
4 + nt

6 and combine it with
the value of k∗t obtained in the previous step:
A. If lt2+lt4+lt8+nt

2+nt
4+nt

6 = 0 and k∗t = 1, there is a contradiction
so discard the state and try another one by going back to Step 1.

B. If lt2 + lt4 + lt8 + nt
2 + nt

4 + nt
6 = 1 and k∗t = 0 check if the bit

has already been set in K̃. If no, set it to 0. Else, if there is
a contradiction, discard the state and try another one by going
back to Step 1.

C. If lt2 + lt4 + lt8 + nt
2 + nt

4 + nt
6 = 1 and k∗t = 1 check if the bit

has already been set in K̃. If no, set it to 1. Else, if there is
a contradiction, discard the state and try another one by going
back to Step 1.

680 V. Lallemand and M. Naya-Plasencia

4.3 Results

The previous algorithm has been implemented and tested for various values of r.
At the end of step 2 we recovered indeed 219.5 state candidates. In all the cases,
the pair formed by the correct internal state and the partial right key were
included amongst the candidates at the end of step 3. The results are displayed
in Table 3, together with the values predicted by theory. We recall here that the
expected number of states at the end of the key recovery is given by the formula
in Sect. 3.4 which in this case can be simplified by:

219.5 × (3/4)r = 219.5−0.415r when r < |k| and by

219.5 × (3/4)r × 2−(r−|k|)×(2/3)2 = 229.35−0.859r when r ≥ |k|.

In the same way, we expect the following amount of bits to be determined:

r × (2/3) when r < |k| and

r × (2/3) − (r − |k|) × (2/3)2 when r ≥ |k|.

This leads to the comparison given in Table 3 in which we can remark that theory
and practice meet quite well.

Note that given the implementation results, a sensible choice would be to
consider a value of r around 26. Indeed, r = 26 means that the attacker has to
consider all the 27.32 states at the end of the key recovery part and for each of
them has to exhaust on average the 6.67 unknown bits, leading to an additional
complexity of 213.99. This number has to be compared to the time complexity of
the previous operation. The time complexity for recovering the 219.585 candidates
at the end of step 2 is the bottleneck of the time complexity. According to
Sect. 3.3, this term can be approximated by 219.585 × 3

88 � 214.71 encryptions.
So recovering the full key is of negligible complexity in comparison, and r = 26
leads to an attack of time complexity smaller than 215 encryptions, coinciding
with our theoretical complexity.

Table 3. Experimental results obtained on average on 300 random states and keys

r 20 21 22 23 24 25 26 27 28 29 30

log of number of states
remaining at the end 11.28 10.85 10.47 9.68 8.95 8.01 7.32 6.63 5.75 5.17 4.42
of the key recovery

theory 11.3 10.9 10.5 9.6 8.8 7.9 7.0 6.2 5.3 4.4 3.6

unknown bits 8.68 8.02 7.30 7.12 6.96 6.77 6.67 6.32 6.29 6.03 5.94

theory 8.7 8.0 7.3 7.1 6.9 6.7 6.4 6.2 6.0 5.8 5.6

Cryptanalysis of Full Sprout 681

5 Conclusion

In this paper we present a key-recovery attack on the stream cipher Sprout, pro-
posed at FSE 2015, that allows to recover the whole key more than 210 times faster
than exhaustive search. We have implemented our attack on a toy version of the
cipher. This implemented attack behaves as predicted, and, therefore, we have
been able to verify the correctness of our approach. Our attack exploits the small
size of the registers and the non-linear influence of the key in the update func-
tion. It shows a security issue on Sprout and suggests that a more careful analysis
should be done in order to instantiate the proposed design method.

An interesting direction to look at for repairing this weakness would be to
consider the key influence on the update function as linear.

References

1. Abdelraheem, M.A., Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.:
Cryptanalysis of ARMADILLO2. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 308–326. Springer, Heidelberg (2011)

2. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-
128 with optional authentication. IJWMC 5(1), 48–59 (2011)

3. Armknecht, F., Mikhalev, V.: On Lightweight stream ciphers with shorter internal
states. In: FSE 2015. LNCS. Springer (2015, to appear)

4. Armknecht, F., Mikhalev, V.: On Lightweight Stream Ciphers with Shorter Internal
States. Cryptology ePrint Archive, Report 2015/131 (2015). http://eprint.iacr.org/
2015/131

5. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash functions and RFID tags: mind the gap. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

7. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

8. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,
A., Icart, T., J. Misarsky, Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard,
J., Thuillet, C., Videau, M.: Shabal. In: The first SHA-3 Candidate Conference,
Leuven, Belgium (2009)

9. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,
A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard,
J.R., Thuillet, C., Videau, M.: Indifferentiability with Distinguishers: Why Sha-
bal Does Not Require Ideal Ciphers. Cryptology ePrint Archive, Report 2009/199
(2009). http://eprint.iacr.org/2009/199

10. De Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

http://eprint.iacr.org/2015/131
http://eprint.iacr.org/2015/131
http://eprint.iacr.org/2009/199

682 V. Lallemand and M. Naya-Plasencia

11. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

12. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

13. Collard, B., Standaert, F.-X.: A statistical saturation attack against the block
cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–
210. Springer, Heidelberg (2009)

14. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 719–740. Springer, Heidelberg (2012)

15. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

16. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

17. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

18. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. IJWMC 2(1), 86–93 (2007)

19. Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of KLEIN. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 451–470. Springer,
Heidelberg (2015)

20. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011)

21. Mendel, F., Rijmen, V., Toz, D., Varıcı, K.: Differential analysis of the LED block
cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
190–207. Springer, Heidelberg (2012)

22. Naya-Plasencia, M.: Chiffrements à flot et fonctions de hachage : conception et
cryptanalyse. INRIA Paris-Rocquencourt, Project SECRET et Université Pierre
et Marie Curie, France, Thése (2009)

23. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)

24. Naya-Plasencia, M., Peyrin, T.: Practical cryptanalysis of ARMADILLO2. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 146–162. Springer, Heidelberg
(2012)

25. Nikolić, I., Wang, L., Wu, S.: Cryptanalysis of round-reduced LED. In: Moriai, S.
(ed.) FSE 2013. LNCS, vol. 8424, pp. 112–130. Springer, Heidelberg (2014)

26. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

27. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

28. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

Higher-Order Differential Meet-in-the-middle
Preimage Attacks on SHA-1 and BLAKE

Thomas Espitau1,2, Pierre-Alain Fouque3,4(B), and Pierre Karpman2,5

1 École normale supérieure de Cachan, Cachan, France
tespitau@ens-cachan.fr

2 Inria, Villeurbanne, France
pierre.karpman@inria.fr

3 Université de Rennes 1, Rennes, France
4 Institut Universitaire de France, Paris, France

pa.fouque@gmail.com
5 Nanyang Technological University, Singapore, Singapore

Abstract. At CRYPTO 2012, Knellwolf and Khovratovich presented a
differential formulation of advanced meet-in-the-middle techniques for
preimage attacks on hash functions. They demonstrated the useful-
ness of their approach by significantly improving the previously best
known attacks on SHA-1 from CRYPTO 2009, increasing the number
of attacked rounds from a 48-round one-block pseudo-preimage with-
out padding and a 48-round two-block preimage without padding to a
57-round one-block preimage without padding and a 57-round two-block
preimage with padding, out of 80 rounds for the full function. In this work,
we exploit further the differential view of meet-in-the-middle techniques
and generalize it to higher-order differentials. Despite being an impor-
tant technique dating from the mid-90’s, this is the first time higher-
order differentials have been applied to meet-in-the-middle preimages.
We show that doing so may lead to significant improvements to preim-
age attacks on hash functions with a simple linear message expansion.
We extend the number of attacked rounds on SHA-1 to give a 62-round
one-block preimage without padding, a 56-round one-block preimage with
padding, and a 62-round two-block preimage with padding. We also apply
our framework to the more recent SHA-3 finalist BLAKE and its newer
variant BLAKE2, and give an attack for a 2.75-round preimage with
padding, and a 7.5-round pseudo-preimage on the compression function.

Keywords: Hash function · Preimage attack · Higher-order differential
meet-in-the-middle · SHA-1 · BLAKE · BLAKE2

1 Introduction

A hash function is a cryptographic primitive that is used to compress any binary
string of arbitrary length to one of a fixed predetermined length: H : {0, 1}∗ →

P. Karpman—Partially supported by the Direction Générale de l’Armement and by
the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 683–701, 2015.
DOI: 10.1007/978-3-662-47989-6 33

684 T. Espitau et al.

{0, 1}n. Hash functions hold a special role among cryptographic primitives, as
operating without a key. This makes the analysis of their security somewhat
harder than for most other primitives, but three notions are commonly used for
that purpose: collision resistance, means that it is hard for an attacker to find
two distinct strings (or messages) m and m′ such that H (m) = H (m′); second
preimage resistance means that it is hard given a predetermined message m to
find a distinct message m′ such that H (m) = H (m′); and preimage resistance
means that it is hard given a target t to find a message m such that H (m) = t.
The hardness level associated with these three notions depends on the length of
the output of H , and is O(2

n
2) for collision resistance, and O(2n) for (second)

preimage resistance. In addition to these notions, it is also common to evaluate
the security of hash function through the one of its building blocks.

In this work, we give a framework that can be used to attack the preimage
resistance of hash functions designed around certain principles. We show the
usefulness of our approach by improving the best known attacks on two popular
hash functions: the first is the NIST standard SHA-1 [16], which is a widely
used function originally designed by the NSA in the 1990’s; the second is the
SHA-3 finalist BLAKE [3], which along with its updated version BLAKE2 is
increasingly being used in modern applications.

Our starting point is the meet-in-the-middle technique, which was first used
in cryptography by Diffie and Hellman in 1977 to attack double-encryption [8].
Its use for preimage attack is much more recent and is due to Aoki and Sasaki,
who used it as a framework to attack various hash functions, including for
instance SHA-0 and SHA-1 [2]. The basic principle behind a meet-in-the-middle
technique is to exploit the fact that some value can be computed in two different
ways involving different parts of a secret, which can then be sampled indepen-
dently of each other. In the case of hash function cryptanalysis, there is no actual
secret to consider, but a similar technique can nonetheless be exploited in certain
cases; we show in more details how to do so in the preliminaries of Sect. 2.

At CRYPTO 2012, Knellwolf and Khovratovich introduced a differential for-
mulation of the meet-in-the-middle framework of Aoki and Sasaki, which they
used to improve the best attacks on SHA-1. One of the main interests of their
approach is that it simplifies the formulation of several advanced extensions of
the meet-in-the-middle technique, and thereby facilitates the search for attack
parameters (in the case of meet-in-the-middle attacks, this roughly corresponds
to finding good partitions for the ‘secret’).

In this work, we further exploit this differential formulation and generalize it
to use higher-order differentials, which were introduced in cryptography by Lai in
1994 [13]. The essence of this technique is to consider ‘standard’ differential crypt-
analysis as exploiting properties of the first-order derivative of the function one
wishes to analyze; it is then somehow natural to generalize the idea and to consider
higher-order derivatives as well. Let us illustrate this with a small example using
XOR ‘⊕’ differences: consider a function f and assume the differential Δαf �
f (x)⊕ f (x⊕α) = A holds with a good probability; this is the same as saying that
the derivative of f in α is biased towards A. In particular, if f is linear, this is

Higher-Order Differential Meet-in-the-middle Preimage Attacks 685

equal to a constant value f (α), though this is obviously not true in general. Now
consider the value Δαf (x)⊕Δαf (x⊕β) = f (x)⊕f (x⊕α)⊕f (x⊕β)⊕f (x⊕α⊕β),
which corresponds to taking the derivative of f twice, first in α, and then in β.
The nice point about doing this is that this function may be more biased than
Δαf was, for instance by being constant when Δαf is linear. This process can
be iterated at will, each time decreasing the algebraic degree of the resulting
function until it reaches zero.

As higher-order differentials are obviously best formulated in differential
form, they combine neatly with the differential view of the framework of Knell-
wolf and Khovratovich, whereas using such a technique independently of any
differential formulation would probably prove to be much more difficult.

Previous and New Results on SHA-1 and BLAKE(2). The first preimage
attacks on SHA-1 were due to De Cannière and Rechberger [7], who used a
system-based approach that in particular allows to compute practical preimages
for a non-trivial number of steps. In order to attack more steps, Aoki and Sasaki
later used a MiTM approach [2]. This was subsequently improved by Knellwolf
and Khovratovich [12], who attacked the highest number of rounds so far. To be
more precise, they attack reduced versions of the function up to 52 steps for one-
block preimages with padding, 57 steps for one-block preimages without padding,
and 60 steps for one-block pseudo-preimages with padding. The latter two attacks
can be combined to give 57 steps two-block preimages with padding. In this work,
we present one-block preimages with padding up to 56 steps, one-block preimages
without padding up to 62 steps, one-block pseudo preimages with padding up to
64 steps, resulting in two-block preimages with padding up to 62 steps.

The previous best known result for the BLAKE hash function, as far as preim-
ages are concerned, is a 2.5-round attack by Li and Xu [14]. In a compression
function model, the previous best attack reached 4 rounds [19]. For BLAKE2,
the only known result is a pseudo-preimage attack on the full compression func-
tion targeting a small class of weak preimages of a certain form [10]. In this
paper, we give a 2.75-round (resp. 3-round) preimage attack on BLAKE-512
and BLAKE2b, and a 7.5-round (resp. 6.75) pseudo-preimage on the compres-
sion functions of the larger (resp. smaller) variants of BLAKE and BLAKE2.

We give a summary of these results in Table 1.

2 Meet-in-the-middle Attacks and the Differential
Framework from CRYPTO 2012

As a preliminary, we give a description of the meet-in-the-middle framework for
preimage attacks on hash functions, and in particular of the differential formu-
lation of Knellwolf and Khovratovich from CRYPTO 2012 [12].

The relevance of meet-in-the-middle for preimage attacks comes from the
fact that many hash functions are built from a compression function which is
an ad hoc block cipher used in one of the PGV modes [17]. One such popular
mode is the so-called Davies-Meyer, where a compression function h : {0, 1}v ×

686 T. Espitau et al.

Table 1. Existing and new results on SHA-1 and BLAKE(2) (the complexity is given
in base-2 logarithm).

Function # blocks # rounds Complexity Ref.

SHA-1 1 52 158.4 [12]

1 52 156.7 Sect. 4.3

1 56 159.4 Sect. 4.3

2 57 158.8 [12]

2 58 157.9 Sect. 4.4

2 62 159.3 Sect. 4.4

SHA-1, without padding 1 57 158.7 [12]

1 58 157.4 Sect. 4.2

1 62 159 Sect. 4.2

SHA-1, pseudo-preimage 1 60 157.4 [12]

1 61 156.4 Sect. 4.4

1 64 158.7 Sect. 4.4

BLAKE-512 1 2.5 481 [14]

1 2.75 510.3 Sect. 5.3

BLAKE2b 1 2.75 511 Sect. 5.3

BLAKE-256 c.f., pseudo-preimage 1 6.75 253.9 Sect. 5.2

BLAKE-512 c.f., pseudo-preimage 1 7.5 510.3 Sect. 5.2

BLAKE2s c.f., pseudo-preimage 1 6.75 253.8 Sect. 5.2

BLAKE2b c.f., pseudo-preimage 1 12 0 (weak class) [10]

1 7.5 510.3 Sect. 5.2

{0, 1}n → {0, 1}v compressing a chaining value c with a message m to form the
updated chaining value c′ = h(c,m) is defined as h(c,m) � f (m, c) + c, with
f : {0, 1}n × {0, 1}v → {0, 1}v a block cipher of key-length and message-length
n and v respectively.

Given such a compression function, the problem of finding a preimage of t
for h is equivalent to finding a key m for f such that f (m, p) = c for a pair (p, c),
with c = t − p. Additional constraints can also be put on p, such as prescribing
it to a fixed initialization value [iv].

In its most basic form, a meet-in-the-middle attack can speed-up the search
for a preimage if the block cipher f can equivalently be described as the
composition f2 ◦ f1 of two block ciphers f1 : K1 × {0, 1}v → {0, 1}v and
f2 : K2 × {0, 1}v → {0, 1}v with independent key spaces K1,K2 ⊂ {0, 1}n.
Indeed, if this is the case, an attacker can select a subset {k1

i , i = 1 . . . N1} (resp.
{k2

j , j = 1 . . . N2}) of keys of K1 (resp. K2), which together suggest N � N1 · N2

candidate keys k12
ij � (k1

i , k2
j) for f by setting f (k12

ij , ·) = f2 (k2
j , ·) ◦ f1 (k1

i , ·).

Higher-Order Differential Meet-in-the-middle Preimage Attacks 687

Since the two sets {f1 (k1
i , p), i = 1 . . . N1} and {f2−1(k2

j , c), j = 1 . . . N2} can
be computed independently, the complexity of testing f (k12

ij , p) = c for N keys
is only of O(max(N1, N2)) time and O(min(N1, N2)) memory, which is less than
N and can be as low as

√
N when N1 = N2.

2.1 Formalizing Meet-in-the-middle Attacks with Related-Key
Differentials

Let us denote by (α, β)
f−→
p

γ the fact that Pr
(x,y)

[
f (x⊕α, y⊕β) = f (x, y)⊕γ

]
= p,

meaning that (α, β) is a related-key differential for f that holds with probability
p. The goal of an attacker is now to find two linear sub-spaces D1 and D2 of
{0, 1}m such that:

D1 ∩ D2 = {0} (1)

∀δ1 ∈ D1 ∃ Δ1 ∈ {0, 1}v s.t. (δ1, 0)
f1−→
1

Δ1 (2)

∀δ2 ∈ D2 ∃ Δ2 ∈ {0, 1}v s.t. (δ2, 0)
f2

−1

−→
1

Δ2. (3)

Let d1 and d2 be the dimension of D1 and D2 respectively. Then for a set M
of messages μi ∈ {0, 1}m (or more precisely the quotient space of {0, 1}m by
D1 ⊕ D2), one can define #M distinct sets μi ⊕ D1 ⊕ D2 of dimension d1 + d2
(and size 2d1+d2), which can be tested for a preimage with a complexity of only
O(max(2d1 , 2d2)) time and O(min(2d1 , 2d2)) memory. We recall the procedure to
do so in Algorithm1.

Algorithm 1. Testing μ ⊕ D1 ⊕ D2 for a preimage [12]
Input: D1, D2 ⊂ {0, 1}m, μ ∈ {0, 1}m, p, c
Output: A preimage of c + p if there is one in μ ⊕ D1 ⊕ D2, ⊥ otherwise
Data: Two lists L1, L2 indexed by δ2, δ1 respectively

1 forall the δ2 ∈ D2 do
2 L1[δ2] ←� f1 (μ ⊕ δ2, p) ⊕ Δ2

3 forall the δ1 ∈ D1 do
4 L2[δ1] ←� f2

−1(μ ⊕ δ1, c) ⊕ Δ1

5 forall the (δ1, δ2) ∈ D1 × D2 do
6 if L1[δ2] = L2[δ1] then
7 return μ ⊕ δ1 ⊕ δ2

8 return ⊥

Analysis of Algorithm 1. For the sake of simplicity we assume that d1 =
d2 � d < v

2 . The running time of every loop of Algorithm1 is therefore O(2d)
(assuming efficient data structures and equality testing for the lists), and O(2d)
memory is necessary for storing L1 and L2. It is also clear that if the condition
L1[δ2] = L2[δ1] is met, then μ⊕δ1⊕δ2 is a preimage of c+p. Indeed, this translates

688 T. Espitau et al.

to f1 (μ⊕ δ2, p)⊕Δ2 = f2−1(μ⊕ δ1, c)⊕Δ1, and using the differential properties
of D1 and D2 for f1 and f2 , we have that f1 (μ ⊕ δ1 ⊕ δ2, p) = f1 (μ ⊕ δ2, p) ⊕ Δ1

and f2−1(μ ⊕ δ1 ⊕ δ2, c) = f2−1(μ ⊕ δ1, c) ⊕ Δ2. Hence, f1 (μ ⊕ δ1 ⊕ δ2, p) =
f2−1(μ ⊕ δ1 ⊕ δ2), and f (μ ⊕ δ1 ⊕ δ2, p) = c. This algorithm therefore allows to
search through 22d candidate preimages with a complexity of O(2d), and thus
gives a speed-up of 2d. The complexity of a full attack is hence O(2v−d).

Comparison with Basic Meet-in-the-middle. When setting Δ1 = Δ2 = 0,
this differential variant of the meet-in-the-middle technique becomes a special
case of the general formulation of the basic technique given above: the key spaces
K1 and K2 now possess a structure of affine spaces. The advantage of this restric-
tion comes from the fact that it gives a practical way of searching for the key
spaces, as differential path search is a well-studied area of symmetric crypt-
analysis. Another major advantage is that it makes the formulation of several
extensions to this basic attack very natural, without compromising the ease of
the search for the key spaces. One such immediate extension is obviously to con-
sider non-zero values for Δ1 and Δ2. As noted by Knellwolf and Khovratovich,
this already corresponds to an advanced technique of indirect matching in the
original framework of Aoki and Sasaki. Further extensions are detailed next.

2.2 Probabilistic Truncated Differential Meet-in-the-middle

There are two natural ways to generalize the differential formulation of the meet-
in-the-middle, which both correspond to relaxing one of the conditions from
above. First, one can consider differentials of probability less than one (though
a high probability is still usually needed); second, one can consider truncated
differentials by using an equivalence relation ‘≡’ instead of the equality (usually
taken as a truncated equality: a ≡ b[m] ⇔ a ∧ m = b ∧ m for a, b,m ∈ {0, 1}v),

denoting by (α, β)
f�
p

γ the fact that Pr
(x,y)

[
f (x ⊕ α, y ⊕ β) ≡ f (x, y) ⊕ γ

]
= p.

Hence Eq. 2 becomes:

∀δ1 ∈ D1 ∃ Δ1 ∈ {0, 1}v s.t. (δ1, 0)
f1�
p1

Δ1, (4)

for some probability p1 and relation ≡, and similarly for Eq. 3.
Again, these generalizations correspond to advanced techniques of Aoki and

Sasaki’s framework, which find here a concise and efficient description.
The only change to Algorithm 1 needed to accommodate these extensions is

to replace the equality by the appropriate equivalence relation on line 6. However,
the fact that this equivalence holds no longer ensures that μ⊕δ1⊕δ2 is a preimage,
which implies an increased complexity: firstly, even when it is a preimage, the
relation on line 6 might not hold with probability 1 − p1p2, meaning that on
average one needs to test 1/p1p2 times more candidates in order to account for
the false negatives; secondly, if we denote by s the average size of the equivalence
classes under ≡ (when using truncation as above, this is equal to 2v−r with r

Higher-Order Differential Meet-in-the-middle Preimage Attacks 689

the Hamming weight of m), then on average one needs to check s potential
preimages as returned on line 6 before finding a valid one, in order to account
for the false positives. The total complexity of an attack with the modified
algorithm is therefore O((2v−d + s)/p̃1p̃2), where p̃1 and p̃2 are the respective
average probabilities for p1 and p2 over the spaces D1 and D2.

2.3 Splice-and-cut, Initial Structures and Bicliques

These two techniques are older than the framework of [12], but are fully com-
patible with its differential approach.

Splice-and-cut was introduced by Aoki and Sasaki in 2008 [1]. Its idea is
to use the feedforward of the compression function so as to be able to start
the computation of f1 and f2−1 not from p and c but from an intermediate
value from the middle of the computation of f . If one sets f = f3 ◦ f2 ◦ f1 and
calls s the intermediate value f3−1(c) (or equivalently f2 ◦ f1 (p)), an attacker
may now sample the functions f1 (t − f3 (s)) and f2−1(s) on their respective (as
always independent) key-spaces when searching a preimage for t. By giving more
possible choices for the decomposition of f , one can hope for better attacks. This
however comes at the cost that they are now pseudo-preimage attacks, as one
does not control the value of the IV anymore which is now equal to t − f3 (s).

A possible improvement to a splice-and-cut decomposition is the use of initial
structures [18], which were later reformulated as bicliques [11]. Instead of starting
the computations in the middle from an intermediate value s, the idea is now
to start from a set of multiple values possessing a special structure that spans
several rounds. If the cost of constructing such sets is negligible w.r.t the rest
of the computations, the rounds spanned by the structure actually come for
free. In more details, a biclique, say for f3 in the above decomposition of f , is a
set {m,D1,D2, Q1, Q2} where m is a message, D1 and D2 are linear spaces of
dimension d, and Q1 (resp. Q2) is a list of 2d values indexed by the differences
δ1 of D1 (resp. D2) s.t. ∀(δ1, δ2) ∈ D1 × D2 Q2[δ2] = f3 (m ⊕ δ1 ⊕ δ2, Q1[δ1]).
This allows to search the message space m ⊕ D1 ⊕ D2 in O(2d) with a meet-in-
the-middle approach that does not need any call to f3 , essentially bypassing this
part of the decomposition.

3 Higher-Order Differential Meet-in-the-middle

We now describe how to modify the framework of Sect. 2 to use higher-order
differentials. Let us denote by ({α1, α2}, {β1, β2})

f−→
p

γ the fact that Pr
(x,y)

[
f (x⊕

α1 ⊕ α2, y ⊕ β1 ⊕ β2) ⊕ f (x ⊕ α1, y ⊕ β1) ⊕ f (x ⊕ α2, y ⊕ β2) = f (x, y) ⊕ γ
]

= p,
meaning that ({α1, α2}, {β1, β2}) is a related-key order-2 differential for f that
holds with probability p.

Similarly as in Sect. 2, the goal of the attacker is to find four linear subspaces
D1,1,D1,2,D2,1,D2,2 of {0, 1}m in direct sum (cf. Eq. (5)) such that:

D1,1

⊕
D1,2

⊕
D2,1

⊕
D2,2 (5)

690 T. Espitau et al.

∀δ1,1, δ1,2 ∈ D1,1 × D1,2 ∃ Δ1 ∈ {0, 1}v s.t. ({δ1,1, δ1,2}, {0, 0})
f1−→
1

Δ1 (6)

∀δ2,1, δ2,2 ∈ D2,1 × D2,2 ∃ Δ2 ∈ {0, 1}v s.t. ({δ2,1, δ2,2}, {0, 0})
f2

−1

−→
1

Δ2. (7)

Then M ⊕δ1,1 ⊕δ1,2 ⊕δ2,1 ⊕δ2,2 is a preimage of c+p if and only if f1 (μ⊕δ1,1 ⊕
δ1,2 ⊕ δ2,1 ⊕ δ2,2, c) = f2−1(μ ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, p) which is equivalent by
the Eqs. (6) and (7) to the equality:

f1 (μ ⊕ δ1,1 ⊕ δ2,1 ⊕ δ2,2, p) ⊕ f2−1(μ ⊕ δ2,1,⊕δ1,1 ⊕ δ1,2, c)⊕
f1 (μ ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, p)⊕ = f2−1(μ ⊕ δ2,2,⊕δ1,1 ⊕ δ1,2, c)⊕
f1 (μ ⊕ δ2,1 ⊕ δ2,2, p) ⊕ Δ1 f2−1(μ ⊕ δ1,1 ⊕ δ1,2, c) ⊕ Δ2.

(8)

We denote by di,j the dimension of the sub-space Di,j for i, j = 1, 2. Then for
a set M of messages μ ∈ {0, 1}m) one can define #M affine sub-sets μi ⊕D1,1 ⊕
D1,2 ⊕D2,1 ⊕D2,2 of dimension d1,1 +d1,2 +d2,1 +d2,2 (since the sub-spaces Di,j

are in direct sum by hypothesis), which can be tested for a preimage using (8).
This can be done efficiently by a modification of Algorithm 1 into the following
Algorithm 2.

Analysis of Algorithm 2. If we denote by Γ1 and Γ2 the cost of eval-
uating of f1 and f2−1 and Γmatch the cost of the test on line 14, then
the algorithm allows to test 2d1,1+d1,2+d2,1+d2,2 messages with a complexity
of 2d1,2+d2,1+d2,2Γ2 + 2d1,1+d2,1+d2,2Γ2 + 2d1,1+d1,2+d2,1Γ1 + 2d1,1+d1,2+d2,1Γ1 +
2d1,1+d1,2Γ2 + 2d2,1+d2,2Γ1 + Γmatch. The algorithm must then be run
2n−(d1,1+d1,2+d2,1+d2,2) times in order to test 2n messages. In the special case
where all the linear spaces have the same dimension d and if we consider that
Γmatch is negligible with respect to the total complexity, the total complexity of
an attack is then of: 2n−4d·(23d·(2Γ1+2Γ2)+22d·(Γ1+Γ2)) = 2n−d+1Γ+2n−2dΓ =
O(2n−d) where Γ is the cost of the evaluation of the total compression function
f . We think that the assumption on the cost of Γmatch to be reasonable given
the small size of d in actual attacks and the fact that performing a single match
is much faster than computing f .

The factor that is gained from a brute-force search of complexity O(2n) is
hence of 2d, which is the same as for Algorithm 1. However, one now needs four
spaces of differences of size 2d instead of only two, which might look like a
setback. Indeed the real interest of this method does not lie in a simpler attack
but in the fact that using higher-order differentials may now allow to attack
functions for which no good-enough order-1 differentials are available.

Using Probabilistic Truncated Differentials. Similarly as in Sect. 2,
Algorithm 2 can be modified in order to use probabilistic truncated differen-
tials instead of probability-1 differentials on the full state. The changes to the
algorithm and the complexity evaluation are identical to the ones described
in Sect. 2.2, which we refer to for a description.

Higher-Order Differential Meet-in-the-middle Preimage Attacks 691

Algorithm 2. Testing μ ⊕ D1,1 ⊕ D1,2 ⊕ D2,1 ⊕ D2,2 for a preimage
Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1}m, μ ∈ {0, 1}m, p, c
Output: A preimage of c + p if there is one in μ ⊕ D1,1 ⊕ D1,2, ⊕D2,1 ⊕ D2,2,

⊥ otherwise
Data: Six lists:
L1,1 indexed by δ1,2, δ2,1, δ2,2

L1,2 indexed by δ1,1, δ2,1, δ2,2

L2,1 indexed by δ1,1, δ1,2, δ2,2

L2,2 indexed by δ1,1, δ1,2, δ2,1

L1 indexed by δ2,2, δ2,1

L2 indexed by δ1,1, δ1,2

1 forall the δ1,2, δ2,1, δ2,2 ∈ D1,2 × D2,1 × D2,2 do
2 L1,1[δ1,2, δ2,1, δ2,2] ←� f2

−1(μ ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2, c) ;

3 forall the δ1,1, δ2,1, δ2,2 ∈ D1,1 × D2,1 × D2,2 do
4 L1,2[δ1,1, δ2,1, δ2,2] ←� f2

−1(μ ⊕ δ1,1 ⊕ δ2,1 ⊕ δ2,2, c) ;

5 forall the δ1,1, δ1,2, δ2,2 ∈ D1,1 × D1,2 × D2,2× do
6 L2,1[δ1,1, δ1,2, δ2,2] ←� f1 (μ ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,2, p) ;

7 forall the δ1,1, δ1,2, δ2,1 ∈ D1,1 × D1,2 × D2,1 do
8 L2,2[δ1,1, δ1,2, δ2,1] ←� f1 (μ ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1, p) ;

9 forall the δ1,1, δ1,2 ∈ D1,1 × D1,2 do
10 L2[δ1,1, δ1,2] ←� f2

−1(μ ⊕ δ1,1 ⊕ δ1,2, c) ⊕ Δ1 ;

11 forall the δ2,1, δ2,2 ∈ D2,1 × D2,2 do
12 L1[δ2,1, δ2,2] ←� f1 (μ ⊕ δ2,1 ⊕ δ2,2, p) ⊕ Δ2 ;

13 forall the δ1,1, δ1,2, δ2,1, δ2,2 ∈ D1,1 × D1,2 × D2,1 × D2,2 do
14 if L1,1[δ1,2, δ2,1, δ2,2] ⊕ L1,2[δ1,1, δ2,1, δ2,2] ⊕ L1[δ2,1, δ2,2] =

L2,1[δ1,1, δ1,2, δ2,2] ⊕ L2,2[δ1,1, δ1,2, δ2,1] ⊕ L2[δ1,1, δ1,2] then
15 return μ ⊕ δ1,1 ⊕ δ1,2 ⊕ δ2,1 ⊕ δ2,2

16 return ⊥

4 Applications to SHA-1

4.1 Description of SHA-1

SHA-1 is an NSA-designed hash function standardized by the NIST [16]. It com-
bines a compression function which is a block cipher with 512-bit keys and
160-bit messages used in Davies-Meyer mode with a Merkle-Damg̊ard mode of
operation [15, Chap. 9]. Thus, the initial vector (IV) as well as the final hash
are 160-bit values, and messages are processed in 512-bit blocks. The under-
lying block cipher of the compression function can be described as follows: let
us denote by m0, . . . m15 the 512-bit key as 16 32-bit words. The expanded key
w0, . . . w79 is defined as:

wi =
{

mi if i < 16
(wi−3 ⊕ wi−8 ⊕ wi−14 ⊕ wi−16) ≪ 1 otherwise.

692 T. Espitau et al.

Then, if we denote by a, b, c, d, e a 160-bit state made of 5 32-bit words and
initialized with the plaintext, the ciphertext is the value held in this state after
iterating the following procedure (parametered by the round number i) 80 times:

t ←� (a ≪ 5) + Φi÷20(b, c, d) + e + ki÷20 + wi

e ←� d
d ← � c
c ←� b ≪ 30
b ←� a
a ←� t,

where ‘÷’ denotes the integer division, Φ0...3 are four bitwise Boolean functions,
and k0...3 are four constants (we refer to [16] for their definition).

Importantly, before being hashed, a message is always padded with at least
65 bits, made of a ‘1’ bit, a (possibly zero) number of ‘0’ bits, and the length
of the message in bits as a 64-bit integer. This padding places an additional
constraint on the attacker as it means that even a preimage for the compression
function with a valid IV is not necessarily a preimage for the hash function.

4.2 One-Block Preimages without Padding

We apply the framework of Sect. 3 to mount attacks on SHA-1 for one-block
preimages without padding. These are rather direct applications of the frame-
work, the only difference being the fact that we use sets of differentials instead
of linear spaces. This has no impact on Algorithm2, but makes the description
of the attack parameters less compact.

As was noted in [12], the message expansion of SHA-1 being linear, it is
possible to attack 15 steps both in the forward and backward direction (for
a total of 30) without advanced matching techniques: it is sufficient to use a
message difference in the kernel of the 15 first steps of the message expansion.
When applying our framework to attack more steps (say 55 to 62), we have
observed experimentally that splitting the forward and backward parts around
steps 22 to 27 seems to give the best results. A similar behaviour was observed
by Knellwolf and Khovratovich in their attacks, and this can be explained by
the fact that the SHA-1 step function has a somewhat weaker diffusion when
computed backward compared to forward.

We use Algorithm 3 to construct a suitable set of differences in the prepara-
tion of an attack. This algorithm was run on input differences of low Hamming
weight; these are kept only when they result in output differences with truncation
masks that are long enough and with good overall probabilities. The sampling
parameter Q that we used was 215; the threshold value t was subjected to a
tradeoff: the larger it is, the less bits are chosen in the truncation mask, but the
better the probability of the resulting differential. In practice, we used values
between 2 and 5, depending on the differential considered.

Once input and output differences have been chosen, we use an adapted ver-
sion of Algorithm 2 from [12] given in Algorithm 4 to compute suitable truncation
masks.

Higher-Order Differential Meet-in-the-middle Preimage Attacks 693

Algorithm 3. Computing a suitable output difference for a given input
difference
Input: A chunk fi of the compression function, δi,1, δi,2 ∈ {0, 1}m, a threshold

value t, a sample size Q, an internal state c.
Output: An output difference S , and a mask TS for the differential

((δi,1, δi,2), 0)
fi� S

Data: An array d of n counters initially set to 0.
1 for q = 0 to Q do
2 Choose μ ∈ {0, 1}m at random ;
3 Δ ←� fi(μ ⊕ δi,1 ⊕ δi,2, c) ⊕ fi(μ ⊕ δi,1, c) ⊕ fi(μ ⊕ δi,2, c) ⊕ fi(μ, c);
4 for i = 0 to n − 1 do

5 if the ith bit of Δ is 1 then
6 d[i] ←� d[i] + 1;

7 for i = 0 to n − 1 do
8 if d[i] ≥ t then
9 Set the i-th bit of the output difference S to 1;

The choice of the size of the truncation mask d in this algorithm offers
a tradeoff between the probability one can hope to achieve for the result-
ing truncated differential and how efficient a filtering of “ bad ” messages
it will offer. In our applications to SHA-1, we chose masks of size about
min(log2(|D1,1|), log2(|D1,2|), log2(|D2,1|), log2(|D2,2|)), which is consistent with
taking masks of size the dimension of the affine spaces as is done in [12].

We similarly adapt Algorithm3 from [12] as Algorithm 5 in order to esti-
mate the average false negative probability associated with the final truncated
differential.

We conclude this section by giving the statistics for the best attacks that we
found for various reduced versions of SHA-1 in Table 2, the highest number of
attacked rounds being 62. Because the difference spaces are no longer affine, they
do not lend themselves to a compact description and their size is not necessarily
a power of 2 anymore. The ones we use do not have many elements, however,
which makes them easy to enumerate.

4.3 One-Block Preimages with Padding

If we want the message to be properly padded, 65 out of the 512 bits of the last
message blocks need to be fixed according to the padding rules, and this natu-
rally restricts the positions of where one can now use message differences. This
has in particular an adverse effect on the differences in the backward step, which
Hamming weight increases because of some features of SHA-1’s message expan-
sion algorithm. The overall process of finding attack parameters is otherwise
unchanged from the non-padded case. We give statistics for the best attacks

694 T. Espitau et al.

Algorithm 4. Find truncation mask T for matching
Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1}m, a sample size Q, a mask size d.
Output: A truncation mask T ∈ {0, 1}n of Hamming weight d.
Data: An array k of n counters initially set to 0.

1 for q = 0 to Q do
2 Choose μ ∈ {0, 1}m at random ;
3 c ←� f (μ, [iv]);
4 Choose (δ1,1, δ1,2, δ2,1, δ2,2) ∈ D1,1 × D1,2 × D2,1 × D2,2 at random;
5 Δ ←� f1 (μ ⊕ δ1,1 ⊕ δ1,2, c) ⊕ f1 (μ ⊕ δ1,1, c) ⊕ f1 (μ ⊕ δ1,2, c);
6 Δ ←� Δ ⊕ f2

−1(μ ⊕ δ2,1 ⊕ δ2,2, c) ⊕ f2
−1(μ ⊕ δ2,2, c) ⊕ f2

−1(μ ⊕ δ2,2, c);
7 for i = 0 to n − 1 do

8 if the ith bit of Δ is 1 then
9 k[i] ←� k[i] + 1;

10 Set the d bits of lowest counter value in k to 1 in T.

Algorithm 5. Estimate the average false negative probability
Input: D1,1, D1,2, D2,1, D2,2 ⊂ {0, 1}m, T ∈ {0, 1}n, a sample size Q
Output: Average false negative probability α.
Data: A counter k initially set to 0.

1 for q = 0 to Q do
2 Choose μ ∈ {0, 1}m at random ;
3 c ←� f (μ, [iv]);
4 Choose (δ1,1, δ1,2, δ2,1, δ2,2) ∈ D1,1 × D1,2 × D2,1 × D2,2 at random;
5 Δ ←� f1 (μ ⊕ δ1,1 ⊕ δ1,2, c) ⊕ f1 (μ ⊕ δ1,1, c) ⊕ f1 (μ ⊕ δ1,2, c);
6 Δ ←� Δ ⊕ f2

−1(μ ⊕ δ2,1 ⊕ δ2,2, c) ⊕ f2
−1(μ ⊕ δ2,2, c) ⊕ f2

−1(μ ⊕ δ2,2, c);
7 for i = 0 to n − 1 do
8 if Δ �≡T 0n then
9 k ←� k + 1;

10 return k/Q

that we found in Table 3. One will note that the highest number of attacked
rounds dropped from 62 to 56 when compared to Table 2.

4.4 Two-Block Preimages with Padding

We can increase the number of rounds for which we can find a preimage with a
properly padded message at the cost of using a slightly longer message of two
blocks: if we are able to find one-block pseudo preimages with padding on enough
rounds, we can then use the one-block preimage without padding to bridge the
former to the IV. Indeed, in a pseudo-preimage setting, the additional freedom
degrees gained from removing any constraint on the IV more than compensate
for the ones added by the padding. We first describe how to compute such
pseudo-preimages.

Higher-Order Differential Meet-in-the-middle Preimage Attacks 695

Table 2. One block preimage without padding. N is the number of attacked steps,
Split is the separation step between the forward and the backward chunk, di,j is the
log2 of the cardinal of Di,j and α is the estimate for the false negative probability. The
complexity is computed as described in Sect. 3.

N Split d1,1 d1,2 d2,1 d2,2 α Complexity

58 25 7.6 9.0 9.2 9.0 0.73 157.4

59 25 7.6 9.0 6.7 6.7 0.69 157.7

60 26 6.5 6.0 6.7 6.0 0.60 158.0

61 27 4.7 4.8 5.7 5.8 0.51 158.5

62 27 4.7 4.8 4.3 4.6 0.63 159.0

Table 3. One block preimage without padding. N is the number of attacked steps,
Split is the separation step between the forward and the backward chunk, di,j is the
log2 of the cardinal of Di,j and α is the estimation for false negative probability. The
complexity is computed as described in Sect. 3.

N Split d1,1 d1,2 d2,1 d2,2 α Complexity

51 23 8.7 8.7 8.7 8.7 0.72 155.6

52 23 9.1 9.1 8.2 8.2 0.61 156.7

53 23 9.1 9.1 3.5 3.5 0.61 157.7

55 25 6.5 6.5 5.9 5.7 0.52 158.2

56 25 6 6.2 7.2 7.2 0.6 159.4

One-Block Pseudo-preimages. If we relax the conditions on the IV and do
not impose anymore that it is fixed to the one of the specifications, it becomes
possible to use a splice-and-cut decomposition of the function, as well as short
(properly padded) bicliques.

The (reduced) compression function of SHA-1 f is now decomposed into three
smaller functions as f = f2 t ◦ f1 ◦ f3 ◦ f2 b, f3 being the rounds covered by the
biclique. The function f1 covers the steps s1 to e, f2 = f2 t ◦ f2 b covers s2 to e+1
through the feedforward, and f3 covers s2 + 1 to s1 − 1, as shown in Fig. 1.

Fig. 1. A splice-and-cut decomposition with biclique.

Finding the parameters is done in the exact same way as for the one-block
preimage attacks. Since the bicliques only cover 7 steps, one can generate many

696 T. Espitau et al.

of them from a single one by modifying some of the remaining message words
outside of the biclique proper. Therefore, the amortized cost of their construction
is small and considered negligible w.r.t. the rest of the attack. The resulting
attacks are shown in Table 4.

Table 4. One block pseudo-preimage with padding. N is the number of attacked steps,
di,j is the log2 of the cardinal of the set D1,2 and α is the estimation for false negative
probability. The various splits are labeled as in Fig. 1. The complexity is computed as
described in Sect. 3.

N s1 e s2 d1,1 d1,2 d2,1 d2,2 α Complexity

61 27 49 20 7.0 7.0 7.5 7.5 0.56 156.4

62 27 50 20 5.8 5.7 7.2 7.2 0.57 157.0

63 27 50 20 6.7 6.7 7.7 7.7 0.57 157.6

64 27 50 20 3 3 4.5 4.7 0.69 158.7

Complexity of the Two-Block Attacks. Using both one-block attacks, it is
simple to mount a two-block attack at the combined cost of each of them. For a
given target c, one:

1. uses a properly-padded pseudo-preimage attack, yielding the second message
block μ2 and an IV [iv]′;

2. uses a non-padded preimage attack with target [iv]′, yielding a first message
block μ2.

From the Merkle-Damg̊ard structure of SHA-1, it follows that the two-block
message (μ1, μ2) is a preimage of c.

For attacks up to 60 rounds, we can use the pseudo-preimage attacks of [12];
for 61 and 62 rounds, we use the ones of this section. This results in attacks of
complexities as shown in Table 5.

5 Applications to BLAKE and BLAKE2

5.1 Description of BLAKE

The hash function BLAKE [3] was a candidate and one of the five finalists of the
SHA-3 competition, that ended in November 2012. Although it was not selected
as the winner, no weaknesses were found in BLAKE and it is accepted as being
a very secure and efficient hash function [6]. More recently, a faster variant
BLAKE2 has been designed [5]; both functions come in two variants with a
chaining value of 256 bits (BLAKE-256 and BLAKE2s) and 512 bits (BLAKE-
512 and BLAKE2b). The design of BLAKE is somewhat similar to the one of
SHA-1, as being built around a compression function in Merkle-Damg̊ard mode.

Higher-Order Differential Meet-in-the-middle Preimage Attacks 697

Table 5. Two-block preimage attacks on SHA-1 reduced to N steps. The pseudo-
preimage attacks followed by ‘�’ come from [12].

N Second block complexity First block complexity Total complexity

58 156.3� 157.4 157.9

59 156.7� 157.7 158.3

60 157.5� 158.0 158.7

61 156.4 158.5 158.8

62 157.0 159.0 159.3

It does however feature a few notable differences: first, the compression function
takes two additional inputs to the message m and the previous chaining value c,
in the form of a user-defined salt s and a block counter t. The new chaining value
c′ is thus defined as c′ � h(c,m, s, t); second, the compression function follows
the local wide-pipe paradigm which was introduced by BLAKE’s predecessor
LAKE [4], meaning that the state size of the compression function h is larger
than the size of the chaining value c. In particular, this implies that c is first
expanded to form the input to h, and that the output of the latter is compressed
in order to give c′. This feature has some important consequences when analyzing
the function and makes some types of attacks harder to perform, as we will see
later. We describe BLAKE-512 in more details, and refer to the specification
document [3] for a full description of the function and of its variants. Similarly,
the changes from BLAKE to BLAKE2 having no impact on our overall attack
strategy, we refer the reader to the specifications of BLAKE2 for more details [5].

Initialization and Finalization of the Compression Function. The state
of the compression function is logically seen as a 4×4 array of 64-bit words v0...15,
making 1024 bits in total. It is initialized from 8 words of incoming chaining value
c0...7, 4 words of salt s0...4, 2 words of counter t0,1 and 8 words of constant k0...7,
as shown below:

⎛

⎜
⎜
⎝

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

⎞

⎟
⎟
⎠ ←�

⎛

⎜
⎜
⎝

c0 c1 c2 c3
c4 c5 c6 c7

s0 ⊕ k0 s1 ⊕ k1 s2 ⊕ k2 s3 ⊕ k3
t0 ⊕ k4 t0 ⊕ k5 t1 ⊕ k6 t1 ⊕ k7

⎞

⎟
⎟
⎠ .

The outgoing chaining value c′
0...7 is defined from the final value of the state

v′
0...15, the initial value of the chaining value and the salt as:

c′
0 ←� c0 ⊕ s0 ⊕ v′

0 ⊕ v′
8 c′

4 ←� c4 ⊕ s0 ⊕ v′
4 ⊕ v′

12

c′
1 ←� c1 ⊕ s1 ⊕ v′

1 ⊕ v′
9 c′

5 ←� c5 ⊕ s1 ⊕ v′
5 ⊕ v′

13

c′
2 ←� c2 ⊕ s2 ⊕ v′

2 ⊕ v′
10 c′

6 ←� c6 ⊕ s2 ⊕ v′
6 ⊕ v′

14

c′
3 ←� c3 ⊕ s3 ⊕ v′

3 ⊕ v′
11 c′

7 ←� c7 ⊕ s3 ⊕ v′
7 ⊕ v′

15.

698 T. Espitau et al.

Round Function. One round of BLAKE is made of eight calls to a ‘quarter-
round’ function Gi on part of the state:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14).

There are 16 such rounds for BLAKE-5121. Furthermore, because the whole
state is updated twice during one round (once by G0...3 and once by G4...7), one
such update will be called a half-round. The function Gi(a, b, c, d) is defined for
round r as:

1 : a ← a + b + (mσr(2i) ⊕ kσr(2i+1)) 5 : a ← a + b + (mσr(2i+1) + kσr(2i))
2 : d ← (d ⊕ a) ≫ 32 6 : d ← (d ⊕ a) ≫ 16
3 : c ← c + d 7 : c ← c + d
4 : b ← (b ⊕ c) ≫ 25 8 : b ← (b ⊕ c) ≫ 11,

with σ a round-dependent permutation of {0 . . . 15}. The padding is nearly the
same as for SHA-1. The only difference is that a ‘1’ bit is again systematically
appended after the ‘0’ bits (if any). Hence, there are at least 66 bits of padding.

Terminology. As can be seen from the above description, there is an additional
initialization phase for the compression function in BLAKE when compared to
most hash functions and SHA-1 in particular. We choose to call pseudo-preimage
on the compression function a preimage attack that bypasses this initialization
and requires complete freedom for the initial 16-word state, yet that does respect
the finalization (and thence forms an attack for the same level of security than
the compression function, i.e. 512 bits for BLAKE-512). This is a more restrictive
model than attacking the underlying block cipher of the compression function
in a PGV mode, which would in itself be a significant attack on a building block
of the hash function.

5.2 Pseudo-preimage on the Compression Function

If we relax the conditions on the initialization of the compression function, we can
use a splice-and-cut approach to mount a pseudo-preimage attack in a straight
application of the framework, which we did on the BLAKE(2) family. We note
that because of the use of a local-wide-pipe construction, matching in the middle
of the compression function has a complexity the square of the actual security
level for preimages. Therefore we perform the matching phase right on the output
of the compression function.

We mount an attack on the compression function reduced to 7.5 rounds of
BLAKE-512 and BLAKE 2b attacking round 0.5 (resp. 0.25) to round 8 (resp.
7.75), and 6.75 rounds of BLAKE-256 and BLAKE2s attacking round 0.75 to
round 7.5. We decompose this reduced compression function f as f1 ◦ f3 ◦ f2 . The
function f1 starts at round 5.25 and ends at round 8 (resp. 7.75 for BLAKE2b

1 There are 14 for BLAKE-256, 12 for BLAKE2b and 10 for BLAKE2s.

Higher-Order Differential Meet-in-the-middle Preimage Attacks 699

Table 6. One block pseudo-preimage without padding on BLAKE-512 and BLAKE2b;
di,j is the log2 of the cardinal of the set Di,j and α is the estimation for false negative
probability. The complexity is computed as described in Sect. 3. The various splits are
labeled as in Fig. 1.

Function Start s1 e s2 d1,1 d1,2 d2,1 d2,2 α Complexity

BLAKE-512 0.5 5.25 8 4 3.0 9.3 4.0 9.5 0.49 510.3

BLAKE2b 0.25 5.25 7.75 4 4.5 8.0 3.9 3.9 0.41 510.9

BLAKE-256 0.75 5.25 7 4 4.1 7.2 9.0 9.0 0.64 253.9

BLAKE2s 0.75 5.25 7 4 4.1 7.2 9.0 9.0 0.68 253.8

and 7.5 for BLAKE2s and BLAKE-256), f2−1 covers rounds 4 to 0.5 (resp. 0.25
and 0.75), and f3 is a biclique covering the 0.75 remaining rounds. Finding the
parameters of the attack is done similarly as in Sect. 4. Since the biclique covers
less than one round, it leaves some of the message words free, which can then be
used to generate many similar bicliques. Therefore, the amortized cost of their
construction is small and considered negligible w.r.t. the rest of the attack. The
only message words with differences are m2 & m8 in the forward computation
and m3 & m11 in the backward computation. As a consequence, the whole
message can easily be properly padded. The statistics of the resulting attacks
are shown in Table 6.

5.3 Preimage on the Hash Function

We now adapt the framework to mount a preimage attack for the larger variants
of BLAKE and BLAKE2. Because of the quick diffusion of BLAKE’s round func-
tion (notably due to the fact that every message word is used in every round), we
were unsuccessful when searching for difference spaces resulting in a good meet-
in-the-middle decomposition that simultaneously preserves the initialization of
the compression function.

To overcome this problem, we use a single difference space, in the forward
direction only. The use of order-2 differentials proves to be critical at this point,
as no gain could be easily obtained otherwise. More precisely, we use differences
of the type ({α1, α2}, {0, 0})

f�T
p

0, meaning that with probability p over the

messages m, f (m) ⊕ f (m ⊕ α1) ⊕ f (m ⊕ α2) ≡ f (m ⊕ α1 ⊕ α2) for a truncation
mask T . This equality can be used with Algorithm2 modified as Algorithm 6 in
an attack. The basic idea at play here is that after computing f (m), f (m ⊕ α1)
and f (m ⊕ α2), one can test the values of f (m ⊕ α1 ⊕ α2) for essentially no
additional cost. We give an illustration of this process in the full version of the
paper [9].

Analysis of Algorithm 6. The test on line 6 can be performed efficiently by
using an appropriate data structure (typically a hash table), resulting in overall

700 T. Espitau et al.

Algorithm 6. Testing μ ⊕ D1,1 ⊕ D1,2 for a preimage
Input: D1,1, D1,2 ⊂ {0, 1}m, μ ∈ {0, 1}m, p, c
Output: A preimage if there is one in μ ⊕ D1,1 ⊕ D1,2, ⊥ otherwise
Data: Two lists L1, L2 indexed by δ1,2, δ1,1 respectively

1 forall the δ1,2 ∈ D1,2 do
2 L1[δ1,2] ←� f1 (μ ⊕ δ1,2, p)

3 forall the δ1,1 ∈ D1,1 do
4 L2[δ1,1] ←� f1 (μ ⊕ δ1,1, c)

5 forall the (δ1,1, δ1,2) ∈ D1,1 × D1,2 do
6 if L1[δ1,2] ⊕ L2[δ1,1] ≡ f1 (μ, c) ⊕ c ⊕ p then
7 return μ ⊕ δ1,1 ⊕ δ1,2

8 return ⊥

linear time for the loop on line 5. In line with Sect. 2.2, the total complexity
of an attack based on this algorithm thus becomes (2n−d1−d2(2d

1 + 2d
2)Γ + s)/p̃,

where d1 (resp. d2) is the dimension of D1,1 (resp. D1,2), Γ is the cost of calling
f1 , s the complexity of retesting and p̃ is the average success probability of the
order-2 differentials.

Table 7. The preimage attacks on BLAKE(2); di,j is the log2 of the cardinal of Di,j

and α is the estimate for the false negative probability.

Function #rounds d1,1 d1,2 α Complexity

BLAKE-512 2.75 4.0 9.5 0.6 510.3

BLAKE2b 2.75 3.1 6.9 0.4 511.0

Application to BLAKE(2). We introduce the differences at round 5.25 and
let them propagate with good probability for 2.75 rounds for BLAKE-512 and
BLAKE2b. Like in Sect. 5.3 the only message words with differences are m2 &
m8 in the forward computation and m3 & m11 in the backward computation.
As a consequence, the whole message can easily be properly padded. The attack
parameters are found as before and lead to the attacks in Table 7.

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

2. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

Higher-Order Differential Meet-in-the-middle Preimage Attacks 701

3. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE,
version 1.3 (2008). Available online at https://131002.net/blake/

4. Aumasson, J.-P., Meier, W., Phan, R.C.-W.: The hash function family LAKE.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 36–53. Springer, Heidelberg
(2008)

5. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013)

6. Chang, S.j., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham,
L.E.: Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Compe-
tition. NIST Interagency Report 7896 (2012)

7. De Cannière, C., Rechberger, C.: Preimages for reduced SHA-0 and SHA-1. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 179–202. Springer, Heidel-
berg (2008)

8. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10, 74–84 (1977)

9. Espitau, T., Fouque, P.A., Karpman, P.: Higher-Order Differential Meet-in-The-
Middle Preimage Attacks on SHA-1 and BLAKE. IACR Cryptology ePrint Archive
2015, 515 (2015). https://eprint.iacr.org/2015/515

10. Guo, J., Karpman, P., Nikolić, I., Wang, L.: Analysis of BLAKE2. In: Benaloh, J.
(ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 402–423. Springer, Heidelberg (2014).
https://dx.doi.org/10.1007/978-3-319-04852-9 21

11. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

12. Knellwolf, S., Khovratovich, D.: New preimage attacks against reduced SHA-1. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 367–383.
Springer, Heidelberg (2012)

13. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography, pp. 227–233. Springer, USA (1994)

14. Li, J., Xu, L.: Attacks on Round-Reduced BLAKE. IACR Cryptology ePrint
Archive 2009, p. 238 (2009). https://eprint.iacr.org/2009/238

15. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

16. National Institute of Standards and Technology: FIPS 180–4: Secure Hash Stan-
dard (SHS), March 2012

17. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on
block ciphers: a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994).
https://dx.doi.org/10.1007/3-540-48329-2 31

18. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

19. Wang, L., Ohta, K., Sakiyama, K.: Free-start preimages of round-reduced BLAKE
compression function. ASIACRYPT rump session (2009). https://www.iacr.org/
conferences/asiacrypt2009//rump/slides/11.pdf

https://131002.net/blake/
https://eprint.iacr.org/2015/515
https://dx.doi.org/10.1007/978-3-319-04852-9_21
https://eprint.iacr.org/2009/238
https://dx.doi.org/10.1007/3-540-48329-2_31
https://www.iacr.org/conferences/asiacrypt2009//rump/slides/11.pdf
https://www.iacr.org/conferences/asiacrypt2009//rump/slides/11.pdf

Implementations

Decaf: Eliminating Cofactors Through Point
Compression

Mike Hamburg(B)

Rambus Cryptography Research, San Francisco, USA
mhamburg@cryptography.com

Abstract. We propose a new unified point compression format
for Edwards, Twisted Edwards and Montgomery curves over large-
characteristic fields, which effectively divides the curve’s cofactor by 4 at
very little cost to performance. This allows cofactor-4 curves to efficiently
implement prime-order groups.

1 Introduction

“Let G be a group of prime order q.” This defines the requirements for the
main group in many cryptographic systems [1,9,16,18,19], most often with the
intention that G will be the group of points on an elliptic curve. However, prac-
tical implementations usually do not quite deliver a group of prime order q, at
least not without significant caveats. Implementations of prime-order curves usu-
ally have incomplete or variable-time addition formulas. For example, OpenSSL
1.0.1f, LibTomCrypt 1.17, PolarSSL 1.3.9 and Crypto++ 5.6.2 all use a branch
to decide whether the inputs to their point-addition functions are equal, so that
they can call the doubling function instead. Some of these libraries also have
branches to detect cases where two points add to the identity point, or where
one of them is the identity point. Even if this does not introduce timing varia-
tions in ECDH or ECDSA signing, it may introduce timing variations in other
systems. Furthermore, there is a special case when encoding and decoding the
identity point, which is at infinity in the Weierstrass model.

This problem can be mitigated by using complete addition laws. While such
laws exist for prime-order curves [6,11], they are faster and much simpler for
other elliptic curves such as (twisted) Edwards curves [4,5,14], Hessian curves [15],
Jacobi quartics [8] or Jacobi intersections [20,26]. These curves have a cofactor,
denoted h, where the order of the curve is h ·q for some large prime q. The cofactor
h is always divisible by 3 for Hessian curves, and by 4 for the other models.

1.1 Pitfalls of a Cofactor

Many authors consider the advantages of a non-prime-order group, such the
points on an Edwards curve, to outweigh the disadvantages. But the disadvan-
tages are not negligible. There are several pitfalls which appear specifically for
h > 1:
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 705–723, 2015.
DOI: 10.1007/978-3-662-47989-6 34

706 M. Hamburg

Small-Subgroup Attacks. Here an attacker sends a point whose order divides h,
and a hapless user multiplies it by some scalar and uses the result. This will
either result in a point known to the attacker (if the scalar is known to be
divisible by h), or worse it may give the attacker information about the scalar. If
the scalar is a private key, then leaking a few bits is a minor problem, though it
is devastating to password-authenticated key exchange (PAKE) protocols [13].

Leaking a few bits of a scalar is a much more serious problem if the scalar is
arithmetically related to a private key. Menezes and Ustaoglu used scalar leaks
through the cofactor in their attack [27] on MQV [25] and HMQV [24]. HMQV
was designed to avoid this weakness, but not successfully.

A related attack is to replace a point P with P + T , where T lies in a small
subgroup. If the user multiplies by a scalar s, they will get sP + sT instead of
sP , where the difference sT gives away the low-order bits of s. Therefore, it isn’t
always enough to reject points in the small subgroup.

The usual defense against these attacks is to multiply certain points by h, and
possibly to abort the protocol if the result is the identity. But one must decide
which points to take these steps on, and the extra factor of h can complicate
the arithmetic. In a prime-order group, this attack is easier to mitigate: at most,
one must check for the identity point in the proper places.

Non-injective Behavior. Multiplication by a scalar is a 1-to-1 function if the
scalar is relatively prime to the group order. In a prime-order group, this is any
scalar in [1, q−1], and is true of a random scalar with high probability. The same
is not true in a composite-order group. This means that adding a small-order
element to e.g. a public key can produce the same result, possibly resulting in
identity misbinding. This can be mitigated by making scalars relatively prime
to h — exactly the opposite of techniques which clear the cofactor.

Covert Channels. Non-injective behavior may make it easier to exfiltrate data
through the cofactor component, even in protocols where behavior is otherwise
deterministic.

Implementation-Defined Behavior. Some systems, such as Ed25519 [7], do not
specify behavior when the inputs have a nonzero h-torsion component. In par-
ticular, Ed25519 signature verification can be different for batched vs singleton
signatures, or between different implementations. This can cause disruption in
protocols where all parties must agree on whether a signature is valid, such as
a blockchain or Byzantine agreement. In other cases, it may make it easier to
fingerprint implementations.

Nontrivial Modifications. If a system or protocol is specified and proved secure
on a prime-order group, then both the system and the proof may need to be
changed for a group with a cofactor h > 1. Usually the modification is small.
Often it is enough simply to multiply the outputs by h. However, only an expert
will be able to tell exactly what modification is required. Cryptographic proofs
are difficult, and this may represent enough work to prevent adoption.

Decaf: Eliminating Cofactors Through Point Compression 707

1.2 Our Contribution

The cofactor pitfalls can be avoided by using a related group of prime order q.
The most obvious choice is the order-q subgroup of the elliptic curve. But val-
idating membership in that subgroup is slow and complex, requiring either an
extra scalar multiplication, checking for roots of division polynomials, or invert-
ing multiple isogenies.

We propose two new ways to build a group of prime order q based on an
Edwards or twisted Edwards curve E of order 4q, thus eliminating the cofactor.
In the first proposal of this paper, the group is E/E [4]. That is, two points on
the curve E are considered equal if their difference has small order (dividing 4).
This requires three changes:

– The function which checks equality of group elements must be modified.
– The function which encodes points before sending them must encode these

equal points as equal sequences of bits.
– The function which decodes points must be designed to accept only the pos-

sible outputs of the encoding function.

Our second, improved proposal uses a different group ψ(E), which in the usual
case will be 2E/E [2]. That is, only the even (2q-order) points of E are used, and
two points are considered the same if they differ by a point of order 2. This
requires the same three changes.

The difficult parts are the encoding and decoding routines, which are the
main contributions of this paper. We describe the encoding algorithm as “com-
pression” because its output is an element of the underlying field F rather than
the usual two elements. In fact, it will be a “non-negative” element of F, which
allows us to save an additional bit.

It is important to note that internally, the points used in the first proposal can
be any points on E , and in the second proposal they can be any even points on E .
Points which differ by a point of order 4 (resp. 2) are considered equal, and will
be encoded to binary strings in the same way. This is similar to using projective
coordinates: two values in memory may be considered same point and encode to
the same binary string, even though the X,Y and Z coordinates are different.
This is how using a prime-order ψ(E) instead of E mitigates small-subgroup
attacks. Points of small order can appear internally, but they are considered
equal to the identity element. Likewise P + T can appear internally with T in
a small-order subgroup, but it is considered equal to P and is encoded in the
same way.

With the combination of the complete Edwards group law and our point
encoding, protocols can gain the simplicity, security and speed benefits of
(twisted) Edwards curves without any cofactor-related difficulty. The cost is a
small increase in code complexity in the point encoding and decoding functions.
On balance, we believe that our encoding can make the design of the entire sys-
tem simpler. In terms of overhead, our encoding and decoding perform as well
as existing point compression and decompression algorithms.

708 M. Hamburg

Designers often use untwisted Edwards, twisted Edwards or Montgomery
curves. Montgomery curves give simple Diffie-Hellman protocols, and twisted
Edwards curves give a speed boost but have incomplete formulas in fields of
order 3 (mod 4). Our second proposal adds flexibility for curve choice. The
same wire format can be used for a Montgomery curve as for its 4-isogenous
Edwards and twisted Edwards curves. Furthermore, for twisted Edwards curves
of cofactor 4, the subgroup we use avoids the incomplete cases in the addition
laws.

Our group ψ(E) and encoding algorithm can be used on curves with cofactor
greater than 4. It still divides the cofactor by 4, so ψ(E) will not have prime
order. Additionally, ψ(E) is not of the form 2E/E [2] if E has full 2-torsion.

We call this technique “Decaf” after the procedure which divides the effect of
coffee by 4. We have built reference and optimized implementations of Decaf, and
have posted them online at http://sourceforge.net/p/ed448goldilocks/code/ci/
decaf/tree/. Our code carries out essentially all the operations described in this
paper and appendices on the curve Ed448-Goldilocks, reducing the cofactor
from 4 to 1.

2 Definitions and Notation

Finite Field. Let F be a finite field whose characteristic is neither 2 nor 3.

Even Elements. An element g of an Abelian group G is said to be even if g = 2h
for some h ∈ G. The even elements form a subgroup denoted 2G.

Torsion Elements. An element g of a group G is a k-torsion element if k ·g = 0G.
The k-torsion elements of an Abelian group form a subgroup usually denoted
G[k]. The k-torsion subgroup of an elliptic curve over a finite field has order
dividing k2; in particular, the 2-torsion subgroup has size 1, 2 or 4.

Projective Space. Denote by P
n(F) the n-dimensional projective space over F.

Its elements are written as ratios (X : Y : Z : . . .), usually in upper-case. As
a traditional short-cut, we usually write the elements of P2(F) as a lower-case
tuple (x, y) equivalent to (x : y : 1), with the understanding that the equations
involving these points may have be extended to cover “points at infinity” of the
form (X : Y : 0).

Twisted Edwards Curves. Twisted Edwards curves have two parameters, a and
d. They are specified as

Ea,d :=
{
(x, y) ∈ P

2(F) : a · x2 + y2 = 1 + d · x2 · y2
}

Another form, extended homogeneous coordinates [22], is used for high perfor-
mance and simpler formulas:

Ea,d :=
{
(X : Y : Z : T) ∈ P

3(F) : XY = ZT and a · X2 + Y 2 = Z2 + d · T 2
}

We will use “untwisted” to mean a = 1. “Twisted” is the general case, which
we sometimes narrow to a = −1. The identity point of any Edwards curve is
(0, 1) = (0 : 1 : 1 : 0).

http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/
http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/

Decaf: Eliminating Cofactors Through Point Compression 709

An Edwards curve is called “complete” if d and ad are nonsquare in F, which
also implies that a is square. A complete Edwards curve has no points at infinity,
and supports fast addition formulas which are complete in that they compute
the correct answer for any two input points [5].

Montgomery Curves. A Montgomery curve has two parameters, called A and B.
It has the form

MB,A :=
{
(u, v) ∈ P

2(F) : Bv2 = u · (u2 + Au + 1)
}

The identity point of this curve is a point at infinity, namely (0 : 1 : 0). The
curve is “untwisted” if B = 1. Over 3 (mod 4) fields, any twisted Montgomery
curve can be put into a form with B = 1, but over 1 (mod 4) fields, this is not
true. In particular, B �= 1 is potentially useful to handle the twist of Curve25519,
which has cofactor 4.

Jacobi Quartic Curves. A Jacobi quartic curve has two parameter, called A and e,
and is defined by

Je,A :=
{
(s, t) ∈ P

2(F) : t2 = es4 + 2As2 + 1
}

with an identity point at (0, 1). The curve is “untwisted” if e = 1. We will only
consider curves with e = a2 in this paper; such curves always have full 2-torsion.

The Curve Parameters. As a corollary of Ahmadi and Granger’s work [2], for
any a, d ∈ F\{0, 1}, the following curves are isogenous:

Ea,d; E−a,d−a; Ma,2−4d/a; Ja2,a−2d

Specifically, the Edwards, twisted Edwards and Montgomery curves are all
2-isogenous to the Jacobi quartic, and thus 4-isogenous to each other. We will
write the 2-isogenies explicitly in Sects. 4.1 and 5. Since our point encoding
works on this family of isogenous curves, we will consider these specific curves
parameterized by a and d.

We will write E as a shorthand for Ea,d, J for Ja2,a−2d, and M for Ma,2−4d/a.

Coset. In an Abelian group G, the coset of a subgroup H ⊂ G with respect to
an element g ∈ G is H + g := {h + g : h ∈ H}.

Non-negative Field Elements. Let p > 2 be prime. Define a residue x ∈ F =
Z/pZ to be “non-negative” if the least absolute residue for x is in [0, (p − 1)/2],
and “negative” otherwise. This definition can be generalized (easily but non-
canonically) to extension fields. Define |x| to be x or −x, whichever is non-
negative. Define

√
x to be an arbitrary square root of x, not necessarily the

non-negative one.
We chose this definition of non-negative because it is easy to evaluate, and

it works over every odd-characteristic field. Alternative choices would be to dis-
tinguish by the low bit, or for fields 3 (mod 4), by the Legendre symbol. We
avoided the Legendre symbol because it restricts field choices and is somewhat
expensive to compute.

710 M. Hamburg

Encoding. For sets S and T , and encoding from S to T is an efficient function
enc : S → T with efficient left-inverse dec : T → S �{⊥}, which fails by returning
⊥ on every element of T\enc[S]. We are interested in an encoding from an elliptic
curve E over the field F to a binary set {0, 1}n for some fixed n. We assume that
the implementer has already chosen an encoding from F to binary. Since encodings
can be composed and distributed over products, it suffices to encode to a set such
as F, F2 or F × {0, 1} which has a natural encoding to binary.

Compression. Since most elliptic curve forms are defined as subsets of P
2(F),

they admit a straightforward encoding to F
2 (and thence to binary) with a finite

number of special cases corresponding to points at infinity. We call an encoding
“point compression” or simply “compression” if its codomain is smaller than F

2

when naturally encoded to binary. Most of the encoding algorithms in this paper
map to the set F or to its non-negative elements, and so are point compression
functions. The set of non-negative elements of F generally requires one fewer bit
to encode than F itself.

3 An Edwards-Only Solution

There is a simple way to remove the a cofactor of 4 from an untwisted Edwards
curve. A complete Edwards curve Ea,d has a 4-torsion subgroup of size exactly
4, whose coset with respect to P = (x, y) is

E [4] + P =
{
(x, y); (y/

√
a,−x

√
a); (−x,−y); (−y/

√
a, x

√
a)

}

Of this coset, there is exactly one representative point such that y and xy are
both non-negative, and x is nonzero.1 We can define the encoding of P to be the
y-value of this representative. Note that the representation of the identity point
is (0,−1), so the identity point encodes to 0 ∈ F.

Similar solutions apply to incomplete Edwards curves. For curves whose
4-torsion group is Z4, there is exactly one representative with y and y/x both
finite and non-negative. For curves with full 2-torsion, there is exactly one rep-
resentative with x finite and both y and (y2 + ax2)/xy non-negative.

The usual addition formulas for incomplete Edwards curves produce the
wrong answer (0/0) for operations involving points at infinity, but are otherwise
complete. Therefore, if the decoding operation chooses a coset representative in
a subgroup that contains no points at infinity (e.g. in the prime-order subgroup),
then it is safe to use these curves. However, there is not an obvious way to make
this section’s decoding formulas restrict to a subgroup.

Furthermore, this format is not compatible with the fast, simple Montgomery
ladder on Montgomery curves. We will remedy these problems using a slightly
more complex encoding.

1 When a = 1, there is also exactly one representative where x and y are both non-
negative, and x is nonzero, which could make for a simpler encoding.

Decaf: Eliminating Cofactors Through Point Compression 711

4 A Solution from the Jacobi Quartic

On the Jacobi quartic Ja2,a−2d, the coset of the 2-torsion group with respect to
P = (s, t) is exactly

J [2] + P =
{
(s, t); (−s,−t); (1/as,−t/as2); (−1/as, t/as2)

}

So a similar solution applies on J modulo its 2-torsion: we can encode a point
P by the s-coordinate of the coset representative (s, t), where s is non-negative
and finite, and t/s is non-negative or infinite2. Call this encoding encJ (P), and
call the corresponding decoding algorithm decJ . Note that the identity point
encodes to 0 ∈ F.

4.1 From the Jacobi Quartic to Edwards Curves

The curves Ea,d and Ja2,a−2d are isogenous by the map

φa(s, t) =
(

2s

1 + as2
,

1 − as2

t

)

with dual φ̄a(x, y) =
(

x

y
,

2 − y2 − ax2

y2

)

Note that swapping (a, d) with (−a, d − a) results in the same curve Ja2,a−2d,
and gives an isogeny φ−a to the curve E−a,d−a.

We will need the following lemma, whose trivial proof is omitted:

Lemma 1. Let φ be a homomorphism from an abelian group G to another
abelian group H, and let G′ be a subgroup of G. Then φ acts as a well-defined
homomorphism from G/G′ to φ[G]/φ[G′] which is a subgroup of H/φ[G′]. Fur-
thermore, if ker φ ⊆ G

′, then φ acts as an isomorphism between these groups.

Since the isogeny φa is a group homomorphism whose kernel is in J [2], we can
extend the encoding on J /J [2] to an encoding on φa[J]/φa[J [2]]:

enc(P) := encJ (φ−1
a (P)) with dec(b) := φa(decJ (b))

The lemma shows that both encoding and decoding are well-defined. In partic-
ular, P has two preimages under φa, but they represent the same element of
J /J [2] and have the same encoding under encJ .

Let ψ(E) denote the group φa[J]/φa[J [2]]. If the 4-torsion group of E is
cyclic, then ψ(E) is more simply expressed as 2E/E [2].

4.2 Encoding

When encoding from ψ(E), we are given a point P = (x, y) in the image of φaq

on E . We need to efficiently compute s where (s, t) = φ−1
a (x, y). We know that

x = 2s/(1 + as2)

so s = (1 ±
√

1 − ax2)/ax

2 Checking the sign of s/t works about as well as t/s in our formulas; the choice of t/s
is more or less arbitrary.

712 M. Hamburg

Also,

y = (1 − as2)/t

so t/s = (1 − as2)/sy

= ∓2
√

1 − ax2/xy

It turns out to be particularly straightforward to compute this encoding from
the popular extended homogeneous coordinates. Explicit formulas are given in
AppendixA.1.

4.3 Decoding

To decode, we are given s and must compute

(x, y) =

(
2s

1 + as2
,

1 − as2
√

a2s4 + (2a − 4d)s2 + 1

)

with the square root t taken so that t/s is non-negative. This requires the “inverse
square root trick” to compute 1/s and t at the same time, with care to avoid
division by 0. The exact formulas are given in AppendixA.2. The input must
be rejected if s is negative or if it is not a field element (eg. if it is the binary
encoding of a number ≥ p), or if the square root doesn’t exist.

It is simplest to decode to projective form, so that the denominators need
not be cleared. It is also relatively easy to decode to affine form by batching a
computation of 1/(1 + as2) with the square root. Decoded points always have a
well-defined affine form on curves with cofactor exactly 4, because those curves
have no points at infinity in the image of φa.

4.4 Completeness

Importantly, if the cofactor of J is exactly 4, then the image ψ(E) contains no
points at infinity. An easy way to see this is that if φa(s, t) were at infinity, then
φ̄a(φa(s, t)) would be either at infinity or at (0,−1). In either case, it would be a
nontrivial 2-torsion point [21]. But it cannot be a 2-torsion point, because φ̄a◦φa

is the doubling map on J (by definition of an isogeny), and its image is exactly
the subgroup of order q.

4.5 Equality

Ordinarily, testing for equality in a quotient group G/H requires testing whether
P = Q+H for each H ∈ H. But if the cofactor is exactly 4, then equality testing
is actually easier on ψ(E) than on E . In this case, two points (X1 : Y1 : Z1 : T1)
and (X2 : Y2 : Z2 : T2) are equal if and only if

X1 · Y2 = X2 · Y1

Decaf: Eliminating Cofactors Through Point Compression 713

This is because X/Y is the s-coordinate of the image Q of φ̄a(X : Y : Z : T)
on J . The only other point with that s-coordinate has a nontrivial 2-torsion
component (it is (0,−1) − Q), but the image (φ̄a ◦ φa)[J] is the prime-order
subgroup J [q].

In particular, for a curve of cofactor exactly 4, a point (X : Y : Z : T) is
equal to the identity precisely when X = 0.

4.6 Security

Using Decaf gives the security benefits of a prime-order group without weakening
well-studied cryptographic assumptions. In particular:

– The discrete logarithm problem is equivalent on E ,J and ψ(E). The same is
true for computational Diffie-Hellman, gap DH, static DH, strong DH, and
should hold for similar computation problems.

– If the Decaf group ψ(E) has prime order q, then the DDH problem is equivalent
on E [q],J [q] and ψ(E). The same is true for decision linear, and should hold
for similar decision problems. These decision problems are easy on groups with
a small cofactor, such as E itself.

The straightforward proofs of these reductions are omitted.

4.7 Batch Encoding

On a server which needs to generate signatures and/or ephemeral keys at prodi-
gious rates, it may be advantageous to batch the point encoding algorithm.

The encoding algorithm listed above cannot be batched easily because of the
inverse square root computation. However, the square root can be avoided if we
wish to compress 2P instead of P , that is, if P is computed as (k/2mod q) · B
instead of k · B. In this case, we can simply evaluate the dual 2-isogeny φ̄ from
E to J :

– Compute 1/(xy) and t/s = (2 − y2 − ax2)/xy.
– If t/s is non-negative, then output |s| = |x/y| = |x2/xy|.
– Otherwise output |1/s| = |y/x| = |y2/xy|.
The computation of 1/(xy) can be batched over multiple points using Mont-
gomery’s trick.

4.8 Performance

Overall, Decaf’s performance is very similar to a traditional point compression
scheme. Encoding and decoding take one field exponentiation each.

A comparison to existing point encoding algorithms is shown in Fig. 1.
It shows:

– The encoding and decoding costs.
– The cost to clear the cofactor if one remains.

714 M. Hamburg

Encoding enc cost dec cost clear h order factor size

(x, y) 1I + 2M 3M 12M 4q → q 4 2�lg | |�
(x, sign y) 1I + 2M 1I2 + 3M 12M 4q → q 4 �lg | |� + 1

(x, sign y), check 1I + 2M > 2I2 + L 0 q 1 �lg | |� + 1

First proposal 1I + 2M 1I2 + 3M 0 4q 1 �lg | |� − 1

Second proposal 1I2 + 7M 1I2 + 10M 0 2q 1 �lg | |� − 1

Batchable 1I + 6M 1I2 + 10M 0 2q 2 �lg | |� − 1

Fig. 1. Cost of encoding and decoding algorithms. M = multiply, I = inversion, I2 =
inverse square root, L = Legendre symbol. Squarings are treated as 0.8M and multi-
plies by constants as 0.2 M, but columns are rounded to the nearest M .

– The order of the resulting points on the curve, with 4q → q meaning a cofactor
that will most likely be cleared.

– The extra factor induced by encoding and cofactor clearing.
– The size in bits of the encoding’s codomain.

If inversion I is implemented using Fermat’s little theorem, it is likely to be
slightly more expensive than an inverse square root I2. In practice, implementa-
tions that need both I and I2 with |F| ≡ 3 (mod 4) often implement inversion as
x/(±

√
x2)2, costing M + 2S more, and this is usually close to optimal anyway.3

The (x, y) method is uncompressed, and (x, sign y) is classically compressed.
These methods do not remove the cofactor, so many protocols will remove it at
the cost of two doublings ≈ 12M. This changes the order of the internal points
from 4q to q. The third row is compression with order checking. The order
checking can be accomplished by inverting a 2-isogeny twice: the first inversion
requires an inverse square root, but the second requires only checking that the
root exists, i.e. computing a Legendre symbol.

The first proposal (Sect. 3) is a quotient group on an untwisted Edwards
curve. It is slightly more expensive on a twisted Edwards curve, and is dangerous
for such curves when |F| ≡ 3 (mod 4) because the internal points can have
order 4. The second proposal (Sect. 4) avoids this problem, and gives an encoding
compatible with several curve models, but at the cost of about 8 extra field
multiplications and correspondingly higher complexity.

A downside of methods which include an inverse square root I2 is that they
cannot use an EGCD-based inversion method. They also cannot be batched
using Montgomery’s batch inversion trick, which accomplishes N inversions using
one inversion and 3(N − 1) multiplications. The batchable encoding method
(Sect. 4.7) replaces the inverse square root in encoding with an inversion but
multiplies by an extra factor of 2.

3 We tested a simple dynamic program which computes 3-register powering ladders,
and it gave this technique for NIST P-192, P-256, P-384, P-521, and also for 2414−17
(Curve41417) and 2448 − 2224 − 1 (Ed448-Goldilocks).

Decaf: Eliminating Cofactors Through Point Compression 715

It is seen that our methods cost less in total than point compression plus
clearing the cofactor. Even for operations which do not need to clear the cofactor
(eg. key generation), the overhead from our encoding is relatively small. Fast key
generation operations cost on the order of 3 M per bit of the curve’s order, so
the difference in encoding costs is well under 1 % for cryptographically useful
curves.

5 Compatibility with Montgomery Curves

The Montgomery ladder on Montgomery curves is a very simple and fast way
to implement scalar multiplication for Diffie-Hellman (DH) key exchange. In
its simplest form, the ladder discards sign information, making it inherently
incompatible with any point encoding format that conveys sign information.
Furthermore, it does not distinguish between the curve and its quadratic twist,
necessitating the use of twist-safe curves [3]. However, we would like to inter-
operate with the Montgomery ladder with minimal changes. For example, if a
protocol uses a (u, sign v) format, then the ladder can be modified to compute
the sign, or the protocol can be changed to discard the sign bit for DH outputs.

We will show how to use Decaf with the Montgomery ladder on the curve

Ma,2−4d/a : av2 = u · (u2 + (2 − 4d/a) · u + 1)

where conveniently the value of (A + 2)/4 is 1 − d/a. The curve Ma,2−4d/a is
isogenous to Ja2,a−2d by the maps

φ(s, t) =
(

1
as2

,− t

as3

)

and φ̄(u, v) =
(

1 − u2

2av
,
a(u + 1)4 + 8du(u2 + 1)

4a2v2

)

More simply, φ(s, t) = (as2, ts)+T2, where the 2-torsion point T2 can be ignored
due to the quotient. This means that Montgomery ladder implementations can
take input in Decaf format, simply by starting the ladder at u = as2.

When the ladder finishes, it is possible to efficiently encode the output point
in the Decaf point format, including the correct sign information for v. However,
recovering the sign information is complicated. Furthermore, it is possible to
reject elements on the twist rather than on the curve, which the usual Mont-
gomery ladder does not do, and it is possible to do all of this with only one field
exponentiation (an inverse square root). This means that the Montgomery lad-
der will behave exactly the same as a standard decoding, scalar multiplication
and encoding. We give the full details of how to do this in Appendix B. Some of
the formulas in that section may be of independent interest.

It is also possible (and complicated) to do these things with existing point
formats such as (u, sign v), but almost no implementations do. Instead, since the
Montgomery ladder is used almost exclusively for Diffie-Hellman, most imple-
mentations clear the cofactor and output only u, losing the information about v.
This leaves the Montgomery ladder code very simple. It is also easy to do this

716 M. Hamburg

with the Decaf encoding, by clearing the cofactor4 and outputting |1/
√

au|. The
implementation should abort on u = 0 and u = ∞, which lie in a small subgroup.
This will also reject points on the twist, because even points on the twist have
either u = 0, u = ∞ or au nonsquare.

An Edwards or twisted Edwards implementation can interoperate with this
simpler behavior simply by computing |s| = |x/y|, instead of encoding any sign
information.

6 Hashing to the Curve

Some protocols require a map from F to a curve [10,19,23], either to build
a hash function which is either indifferentiable from a random oracle, or at
least suitable for encoding computational Diffie-Hellman (CDH) challenges in
the random oracle model. We could do this by using Elligator 1 or 2 on E or M.
Since Decaf only operates subgroups on these curves, we would need to double
the output of the map to make sure it is in the subgroup.

However, there is a better solution. We can instead use Elligator 2 on the
Jacobi quartic J , since it has a point of order 2. Then we can translate this
point to the Edwards and Montgomery curves using the isogeny. That way, the
groups and maps implemented by these curves are all compatible. The formulas
for Elligator 2 are found in AppendixC. It is important to note that Elligator 2
provides a 1:1 map to a group of order h · q, not of order (h/4) · q. Therefore,
the map be up to 4:1 once the isogeny and quotient are applied.

This map is suitable for deriving CDH challenges from a random oracle. That
is, it is still suitable for use in derivatives of BLS [10], SPAKE2 [1]5, SPEKE [23]
and possibly Dragonfly [19]6. These protocols do not require a random oracle
map to G. They only require a map from strings to the curve which is at most
k-to-1 for small k, hits at least a 1/� fraction of the points for small �, and
whose inverse is efficiently sampleable. When a full random oracle map to G is
required, Brier et al.’s result [12] shows that mapping two independently chosen
field elements and adding them is sufficient.

It is still possible to use Elligator 2 as a partial steganographic encoding
for public keys, as in EKE. One may invert the isogeny to obtain a point on
J , randomize its 2-torsion components, and apply the inverse map defined by
Elligator 2. Unfortunately, this requires an extra randomization step and an
extra inverse-square-root operation compared to the original Elligator 2.

4 Clearing the cofactor takes one doubling on a cofactor-4 curve, because of the isogeny.
Another option would be to quotient out the cofactor, by choosing the lexicograph-
ically greater of |√u/a| and |1/√au|. But this is more complex and doesn’t reject
points on the twist.

5 Replacing SPAKE2’s H(password) · (M,N) with an Elligator-like map results in a
protocol with the same properties but no static-CDH assumption.

6 Dragonfly lacks a security proof, so we cannot actually be sure that any such map
is suitable. But given the similarity to SPEKE this seems likely.

Decaf: Eliminating Cofactors Through Point Compression 717

7 Future Work

We do not believe that Decaf is the last word in cofactor-reducing compression
algorithms. It would be useful, for example, to eliminate the cofactor of 8 in
Curve25519. Additionally, an improved encoding scheme with simpler formulas
would make this technique more compelling.

8 Conclusion

We have shown a straightforward way to implement a prime-order group G using
Edwards, twisted Edwards, Jacobi quartic and Montgomery curves. All four
curve shapes implement the same group and so are compatible, except that as
usual it is complicated to make the Montgomery ladder retain sign information.
Our technique is otherwise similar in complexity and performance to traditional
point compression techniques, though it may improve performance by making
faster curves safe. Furthermore, we have shown how to implement an Elligator-
like map from F to G, which is also compatible with all 4 models.

Acknowledgements. The author thanks Mark Marson, Steven Galbraith and the
anonymous reviewers for their editorial suggestions.

A Explicit Formulas for Encoding and Decoding

A.1 Encoding

We wish to compute

s = (1 ±
√

1 − ax2)/ax and t/s = ∓2
√

1 − ax2/xy

We know from the curve equation that

(1 − ax2) · (1 − y2) = 1 + ax2y2 − (y2 + ax2) = (a − d)x2y2

so that √
1 − ax2/xy = ±

√
(a − d)/(1 − y2)

Observe that in extended homogeneous coordinates,

1/x2 = (a − dy2)/(1 − y2) = (aZ2 − dY 2)/(Z2 − Y 2)

and therefore
1/x = (aZX − dY T)/(Z2 − Y 2)

This leads to a relatively simple encoding formula given an inverse-square-root
algorithm:

r ← 1/
√

(a − d) · (Z + Y) · (Z − Y)
u ← (a − d) · r

r ← −r if − 2 · u · Z is negative
s ← |u · (r · (aZ · X − d · Y · T) + Y)/a|

718 M. Hamburg

In theory, this formula has an exceptional case because it divides by 0 when
y = ±1. But if the inverse square root function returns r = 0 in this case, the
correct answer s = 0 will emerge.

A.2 Decoding

To decode to Ea,d, we must recover

(x, y) =

(
2s

1 + as2
,

1 − as2
√

a2s4 + (2a − 4d)s2 + 1

)

where
√

a2s4 + (2a − 4d)s2 + 1/s is non-negative. We can compute this as:

Reject unless s = |s|
X ← 2 · s

Z ← 1 + a · s2

u ← Z2 − 4d · s2

v ←
⎧
⎨

⎩

1/
√

u · s2 if u · s2 is square and nonzero
0 if u · s2 = 0

[reject] if u · s2 is not square
v ← −v if u · v is negative
w ← v · s · (2 − Z)
w ← w + 1 if s = 0
Y ← w · Z

T ← w · X

P ← (X : Y : Z : T)

The special case for s = 0 is required to decode s = 0 to the identity point
instead of the point (0, 0), which isn’t on the curve.

B The Modified Montgomery Ladder

We use a modified version of the traditional Montgomery ladder on Montgomery
curves [28]. This uses our knowledge of s0 such that the initial state u0 = as20.
It converts

(s0, U1 : Z1, U2 : Z2) where (s0 : v0 : 1) + (U1 : V1 : Z1) − (U2 : V2 : Z2) = 0M

for some unknown v0, V1, V2, to

(s0, U3 : Z3, U4 : Z4)

where

(U4 : V4 : Z4) = 2(U2 : V2 : Z2) and (U3 : V3 : Z3) = (U1 : V1 : Z1)+(U2 : V2 : Z2)

Decaf: Eliminating Cofactors Through Point Compression 719

again with the V components unknown. Note that on Ma,2−4d/a, the coefficient
(A + 2)/4 = 1 − d/a. The ladder works as follows:

E ← U2 + Z2

F ← U2 − Z2

G ← U1 + Z1

H ← U1 − Z1

K ← E2 − F 2

U3 ← (EH + FG)2

Z3 ← a · (s0 · (EH − FG))2

U4 ← E2 · F 2

Z4 ← K · (F 2 + (1 − d/a) · K)

The computation of the common subexpressions EH,FG,E2 and F 2 has been
removed for brevity. The salient feature of this ladder is that it computes as inter-
mediate results S3 and W3 which are square roots of X3 and Z3/a respectively.
Our implementation allocates is temporary variables in a way that prevents these
intermediates from being overwritten until the next iteration of the ladder. This
means that they will be available to the encoding algorithm.

B.1 Encoding

At the end of the Montgomery ladder, we need to encode the point stored in
U4 : Z4. Recall that a point on Ma,2−4d/a is the image of an isogeny from
Ja2,a−2d:

φ((s, t)) = (as2, st) + T2 with inverse φ−1((u, v) + T2) = (
√

u/a, v/
√

u/a)

Because the encoding is the same modulo 2-torsion components, we can ignore T2

completely.Theprincipal difficulty of encoding is to simultaneously determine
√

u2

and its inverse from the ladder state, and whether t2/s2 = av2/u2 is positive given
that t0/s0 = av0/u0 is known to be positive. Fortunately, the invariants of the
ladder make this possible. From [17], AppendicesA.1 and A.2, we know that if

(u0, v0) + (u1, v1) + (u2, v2) = 0 on M
that is, if these points lie on a line, then

2av1v2 = (u1u2 + 1)(u1 + u2) − u0(u1 − u2)2 + 2Au1u2 (1)

and symmetrically, and also

4(u0 + u1 + u2 + A)(u0u1u2) = (1 − u0u1 − u1u2 − u0u2)2 (2)

Adding (2) to 2u0· (1), we have

4au0v1v2 = (1 − u1u2 − u0u2 + u0u1) · (1 − u1u2 + u0u2 − u0u1) (3)

720 M. Hamburg

and symmetrically. Multiplying and dividing symmetric copies of this equation,
we obtain

4au0u1v
2
2/u2 = (1 − u1u2 − u0u2 + u0u1)2

so that
v2
u2

=
1 − u1u2 − u0u2 + u0u1

±2
√

au0u1u2

This equation cannot determine the sign of the square root, but (3) shows it to
be consistent for all three points on the line.

This means that it is enough to compute ±1/
√

au0u1u2. This will allow
us to determine av0/u0 to adjust the sign of the square root. It will allow us
to check whether av2/u2 is negative, in which case we should output 1/

√
au2

instead of
√

u2/a. Furthermore, the input point s0 is
√

u0/a, and the modified
Montgomery ladder state contains either

√
au1 or

√
au2, depending on the last

bit of the ladder. This allows us to compute
√

u2/a or its inverse from the
ladder state and 1/

√
au0u1u2 with no additional field exponents. In the actual

computation, u1 and u2 are given in projective form, but this does not greatly
complicate matters because the equations are nearly homogeneous.

Special Cases. If u2 is zero or infinite, then it is a 2-torsion point and the output
is zero. Likewise if u0 = 0, then the base point is the identity and again the
output will always be zero. If u1 is zero or infinite, then the output is either
the initial point or its inverse, depending on whether the last step in the ladder
swapped u1 and u2. So the output should be either s0 or |1/as0|.
Twist Rejection. The above procedure will reject points which are on the twist
of M instead of on M itself, because au0u1u2 will not be square for such points.
However, there is one sticking point: if the secret key is 0 or ±1 modulo the
twist’s group order q′, then u1 or u2 may be 0 even if u0 �= 0. This would make
au0u1u2 = 0 a square number. This quirk is unlikely to apply in a real system,
but it is still worth avoiding.

To fix this issue, we can test whether au0u1u2 = 0; if so, the special case
above is used to determine the sign, so the output of the square root doesn’t
matter. Therefore, the square root can be changed to

√
u2
0 + Au0 + 1 to deter-

mine whether the input point was on the curve or not.

C Elligator 2

The Jacobi quartic Ja2,a−2d is birationally equivalent to the Legendre curve

ay2 = x(x − 1)(x − d/a)

by the maps

(s, t) =
(

ax − d

a2y
,
ax2 − 2dx + d

ax(x − 1)

)

; (x, y) =
(

as2 + t + 1
2as2

,
as2 + t + 1 − 2ds2

2a2s3

)

Decaf: Eliminating Cofactors Through Point Compression 721

Since the Legendre curve has 3 points of order 2, we have a choice of which to
use as the point of order 2 in Elligator 2. It turns out to be best for symmetry
if we use (d/a,0).

The Elligator 2 map E to Ja2,a−2d starts with a fixed quadratic nonresidue n
and an input r0 ∈ F, and begins by computing a probable nonresidue r := nr20.
It then returns

(s, t) =

(

+

√
(r + 1)(a − 2d)

(dr + a − d)(dr − ar − d)
,

−(r − 1)(a − 2d)2

(dr + a − d)(dr − ar − d)
− 1

)

or

(s, t) =

(

−
√

r(r + 1)(a − 2d)
(dr + a − d)(dr − ar − d)

,
r(r − 1)(a − 2d)2

(dr + a − d)(dr − ar − d)
− 1

)

for whichever case the square root is defined, prioritizing the second case if r = 0
and both are square. Here we take +

√· to mean the non-negative square root,
and −√· to mean its negation. This formulation seems to have two advantages
over other ways to formulate Elligator 2 for this curve. First, the two cases are
very similar, requiring only very small adjustments for the square vs. nonsquare
cases. Second, the formula is invariant under the parameter involution (a, d) ↔
(−a, d − a) which preserves J but swaps the untwisted and twisted Edwards
curves. This means that if one implementor uses (a, d) and another chooses
(−a, d−a), then even their Elligator 2 implementations will remain compatible.

The map to J can easily be computed as follows:

r ← nr20

D ← (dr + a − d) · (dr − ar − d)
N ← (r + 1) · (a − 2d)

c, e ←
{

+1, 1/
√

ND if ND is square
−1, nr0/

√
nND otherwise

s ← c · |N · e|
t ← −c · N · (r − 1) · ((a − 2d) · e)2 − 1

Note that if D or N is 0, the result should be some 2-torsion point ether at
(0,±1) or at infinity. In fact, a näıve inverse square root algorithm will return
e = 0 in this case, resulting in the point (0,−1) which is indeed a 2-torsion point.
Since we are quotienting out the 2-torsion group, this result is satisfactory.

To map to the Edwards or Montgomery curves, one simply applies the isogeny
from J .

To invert the Elligator 2 map, let c = sign s and note that

nr20 = r =
(2d − a)s2 + c(t + 1)
(2d − a)s2 − c(t + 1)

If
√

r/n exists, then it is the inverse; otherwise, there is no inverse. Since the
group in question isn’t J but rather J /J [2], to ensure a random sample E−1(P),
one must add a random 2-torsion element to P .

722 M. Hamburg

References

1. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005)

2. Ahmadi, O., Granger, R.: On isogeny classes of edwards curves over finite fields.
Cryptology ePrint Archive, Report 2011/135 (2011). http://eprint.iacr.org/2011/
135

3. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

4. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

5. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

6. Bernstein, D., Lange, T.: Complete addition laws for elliptic curves (2009). http://
cr.yp.to/talks/2009.04.17/slides.pdf

7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011)

8. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643,
pp. 34–42. Springer, Heidelberg (2003)

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 514. Springer, Heidelberg
(2001)

11. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryp-
tography: an efficiency and security analysis. Cryptology ePrint Archive, Report
2014/130 (2014). http://eprint.iacr.org/

12. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)

13. Clarke, D., Hao, F.: Cryptanalysis of the dragonfly key exchange protocol. IET
Inf. Secur. 8(6), 283–289 (2014)

14. Edwards, H.M.: A normal form for elliptic curves. Bull.-Am. Math. Soc. 44(3), 393
(2007)

15. Farashahi, R.R., Joye, M.: Efficient arithmetic on hessian curves. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 243–260. Springer,
Heidelberg (2010)

16. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. J. Crypt. 20(4), 493–514 (2007)

17. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309 (2012). http://eprint.iacr.org/2012/309

18. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. Cryptology
ePrint Archive, Report 2010/190 (2010). http://eprint.iacr.org/

http://eprint.iacr.org/2011/135
http://eprint.iacr.org/2011/135
http://cr.yp.to/talks/2009.04.17/slides.pdf
http://cr.yp.to/talks/2009.04.17/slides.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/2012/309
http://eprint.iacr.org/

Decaf: Eliminating Cofactors Through Point Compression 723

19. Harkins, D.: Dragonfly: a pake scheme (2012). http://www.ietf.org/proceedings/
83/slides/slides-83-cfrg-0.pdf

20. Hışıl, H., Wong, K., Carter, G., Dawson, E.: Faster group operations on elliptic
curves. Cryptology ePrint Archive, Report 2007/441 (2007). http://eprint.iacr.org/

21. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Jacobi quartic curves revisited.
Cryptology ePrint Archive, Report 2009/312 (2009). http://eprint.iacr.org/2009/
312

22. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008)

23. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 26(5), 5–26 (1996)

24. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer,
Heidelberg (2005)

25. Law, L., Menezes, A., Minghua, Q., Solinas, J., Vanstone, S.: An efficient protocol
for authenticated key agreement. Des. Codes Crypt. 28(2), 119–134 (2003)

26. Liardet, P., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi
form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
p. 391. Springer, Heidelberg (2001)

27. Menezes, A., Ustaoglu, B.: On the importance of public-key validation in the MQV
and HMQV key agreement protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)

28. Montgomery, P.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

http://www.ietf.org/proceedings/83/slides/slides-83-cfrg-0.pdf
http://www.ietf.org/proceedings/83/slides/slides-83-cfrg-0.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/2009/312
http://eprint.iacr.org/2009/312

Actively Secure OT Extension
with Optimal Overhead

Marcel Keller(B), Emmanuela Orsini, and Peter Scholl

Department of Computer Science, University of Bristol, Bristol, UK
{m.keller,emmanuela.orsini,peter.scholl}@bristol.ac.uk

Abstract. We describe an actively secure OT extension protocol in the
random oracle model with efficiency very close to the passively secure
IKNP protocol of Ishai et al. (Crypto 2003). For computational security
parameter κ, our protocol requires κ base OTs, and is the first practical,
actively secure protocol to match the cost of the passive IKNP extension
in this regard. The added communication cost is only additive in O(κ),
independent of the number of OTs being created, while the computation
cost is essentially two finite field operations per extended OT. We present
implementation results that show our protocol takes no more than 5%
more time than the passively secure IKNP extension, in both LAN and
WAN environments, and thus is essentially optimal with respect to the
passive protocol.

1 Introduction

Oblivious transfer (OT) is a fundamental primitive in cryptography, used in the
construction of a range of protocols. In particular, OT is sufficient and necessary
for secure multi-party computation [10,15,25], and is also often used in special-
purpose protocols for tasks such as private set intersection [22]. Due to a result
of Impagliazzo and Rudich [11] it is very unlikely that OT is possible without
the use of public-key cryptography, so all OT constructions have quite a high
cost when used in a practical context.

OT Extension. Since OT requires public key machinery, it is natural to wonder
whether OT can be efficiently ‘extended’. That is, starting with a small number
of ‘base OTs’, create many more OTs with only symmetric primitives, some-
what analogous to the use of hybrid encryption to extend public key encryption.
Beaver [3] first showed how, starting with κ base OTs, one could create poly(κ)
additional OTs using only symmetric primitives, with computational security κ.
Beaver’s protocol is very elegant, but requires evaluation of pseudo-random gen-
erators within Yao’s garbled circuits; therefore it is highly impractical. In 2003,
Ishai, Kilian, Nissim and Petrank [12] presented a very efficient protocol for
extending OTs, requiring only black-box use of symmetric primitives and κ base
OTs. Concretely, the main cost of their basic protocol is computing and sending
just two hash function values per OT. Asharov et al. [1] gave several algorithmic
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 724–741, 2015.
DOI: 10.1007/978-3-662-47989-6 35

Actively Secure OT Extension with Optimal Overhead 725

optimizations to the IKNP protocol, reducing the communication down to one
hash value for the random OT variant, where the sender’s messages are sam-
pled at random, and using a cache-oblivious algorithm for matrix transposition,
which turned out to be the computational bottleneck when implemented naively.
By analysing an implementation, they suggest that the actual bottleneck of the
IKNP protocol is communication, particularly in wide area networks (WANs)
with high latency and low bandwidth.

The above protocols are only secure against passive adversaries, who are
trusted to strictly follow the protocol. For the case of actively secure protocols,
which remain secure against arbitrary deviations from the protocol, typically
most cryptographic protocols have a much greater cost than their passive coun-
terparts. The actively secure OT extension of Ishai et al. [12] uses an expensive
cut-and-choose technique, where s runs of the protocol are done in parallel to
achieve O(s) bits of statistical security. In recent years, the cost of actively secure
OT extension has improved greatly, down to just constant overhead. The TinyOT
protocol for secure two-party computation [20] is based on a very efficient OT
extension where the total cost is roughly 8

3 times the passively secure IKNP
extension – this applies to communication and computation, as well as the num-
ber of base OTs required to run the protocol. Very recently, in an independent
and concurrent work, Asharov et al. [2] gave a protocol reducing the overhead
even further: their protocol requires roughly κ + s base OTs for computational
security κ and statistical security s, which in practice reduces the constant from
8
3 ≈ 2.7 down to ≈ 1.4, plus an additive overhead in O(κ).

Applications of OT Extension. As we mentioned before, OT extension has been
getting a lot of attention recently, because the efficiency of this procedure plays
a decisive role in the overall efficiency of a number of protocols for secure com-
putations where the number of OTs needed is very large, for example in the
two-party and multiparty TinyOT protocols [5,18,20], in the MiniMAC proto-
col of Damgard et al. [7] and in private set intersection protocols [8,22].

Our Contributions. In this paper we give the first practical, actively secure
OT extension protocol requiring only κ base OTs, matching the efficiency of the
passively secure IKNP extension in this respect. For communication and com-
putation costs, the overhead on top of IKNP is negligible: our protocol requires
2 finite field (of size κ) operations per extended OT, plus a small communica-
tion overhead of O(κ) bits in a constant number of rounds, independent of the
number of OTs being performed, which amortizes away when creating many
OTs. We give extensive benchmarks (in both LAN and WAN settings) showing
that the practical cost of our protocol for performing 10 million OTs is less than
6 % more than the IKNP extension, and so is almost optimal. In contrast, the
protocol of Asharov et al. [2] takes at least 80 % more time than the passive
protocol in the WAN setting and over 20 % more in the LAN setting for 223

OTs, according to their implementation figures.
The comparison table below shows the concrete efficiency of various other

OT extension protocols, in terms of the number of base OTs required and the

726 M. Keller et al.

total communication and computation cost for creating � OTs. Our protocol is
more efficient than all previous protocols in all of these measures. Note that
these comparisons are for OT extensions on strings of length at least κ bits. For
shorter strings, the passively secure protocol of Kolesnikov and Kumaresan [16]
is more efficient, but it does not seem straightforward to apply our techniques to
obtain an actively secure protocol in that setting. We also omit the protocol of
Ishai et al. [13], since although asymptotically this has only a constant overhead,
the protocol is based on the ‘MPC-in-the-head’ technique, which has not been
shown to be practical.

Table 1. Concrete cost of OT extension protocols for producing � OTs of 128-bit
strings with 128-bit computational and 40-bit statistical security parameters.

Protocol Seed OTs Comms. Comp. Security

[12] 128 � · 128 bits 2� hashes passive, CRF

[12] >5000 O(� · κ · s) O(� · s) hashing active, CRF

[17] 323 O(� · κ2) O(� · κ2) XOR active, CRF

[20] 342 � · 342 bits + 43KB O(�) hashing active, RO

[2] 170 � · 175 bits + 22KB O(�) hashing active, CRF

This work 128 � · 128 bits + 10KB 2� + 336 hashes active, RO

Our protocol is similar in structure to previous protocols [2,20], in that we
carry out one run of the passively secure IKNP extension, and then use a cor-
relation check to enforce correct behaviour. As in the previous protocols, it is
possible that a cheating receiver may pass our check, in which case some infor-
mation on the sender’s secret is leaked. However, the leakage is such that we
still only need κ base OTs, and then must sacrifice κ + s of the extended OTs
produced from the IKNP extension, where s is a statistical security parame-
ter, to ensure security. The check itself is extremely simple and only requires a
constant number of hash computations on a fixed input length, unlike previous
checks where the amount of data being hashed increases with the number of
extended OTs (Table 1).

Random Oracle Usage. We prove our OT extension protocol secure in the
random oracle model, used for a functionality FRand, which securely generates
random values, and the hash function H used to randomize the correlated OT
outputs. For the function H, Ishai et al. [12] prove security of their protocol
in the standard model, under the assumption that H is a correlation robust
function. The protocol of Asharov et al. [2] is proven secure with the additional
requirement that H satisfies some kind of leakage resilience, and it is conjectured
that the protocol of Nielsen et al. [20] is also secure in this model.

Note that in the case of random OT, where the sender’s outputs are defined
as randomly chosen by the functionality, the security of the protocol (using

Actively Secure OT Extension with Optimal Overhead 727

the optimization of Asharov et al. [1], which cuts the communication in half)
has only ever been proven in the random oracle model, because of the need
for the simulator to program the receiver’s outputs from H to be as defined
by the functionality. Random OT can be used for an offline/online scenario
where random OTs are generated in advance of the inputs being known, and
is also often used in practical protocols (e.g. [20,22]), so we take the pragmatic
approach of using random oracles for our security proofs, which also simplifies the
exposition. However, due to the similarities between our protocol and previous
ones [2,20], we believe it is likely that our (non-random) OT extension protocol
can also be proven secure under a form of correlation robustness for H.

2 Preliminaries

2.1 Notation

We denote by κ the computational security parameter and by s the statistical
security parameter. We let negl(κ) denote some unspecified function f(κ), such
that f = o(κ−c) for every fixed constant c, saying that such a function is negligible
in κ. We say that a probability is overwhelming in κ if it is 1−negl(κ). We denote

by a
$← A the random sampling of a from a distribution A, and by [d] the set of

elements {1, . . . d}.
Throughout the proofs we will often identify F

κ
2 with the finite field F2κ .

Addition is the same in both; we will use “ · ” for multiplication in F2κ and
“ ∗ ” for the componentwise product in F

κ
2 . We use lower case letters to denote

elements in F2 and bold lower case letters for vectors in F
κ
2 and elements in F2κ .

We will use the notation v[i] to denote the i-th entry of v.
Given a matrix A, we denote its rows by subindices ai and its columns by

superindices ak. Given a vector v ∈ F
κ
2 , we denote by v̄ the vector in F

κ
2 such

that v + v̄ = 1. We say that a vector v ∈ F
κ
2 is monochrome if v[i] = v[j], for

each i, j ∈ [κ]; otherwise we say it is polychrome.
In our proofs we often use the notion of affine space. We recall that an affine

space is a set X that admits a free transitive action of a vector space V .

2.2 Oblivious Transfer and OT Extension

Oblivious transfer (OT) [4,9,23,24] is a two-party protocol between a sender S
and a receiver R. The sender transmits part of its input to R, in such a way
that S remains oblivious as what part of its input was transmitted and R does
not obtain more information than it is entitled.

We use three main oblivious transfer functionalities. We denote by FOT the
standard

(
2
1

)
-OT functionality, where the sender S inputs two messages v0,v1 ∈

F
κ
2 , and the receiver inputs a choice bit x, and at the end of the protocol R

learns only the selected message vx. We use the notation Fκ,�
OT to denote the

functionality that provides �
(
2
1

)
-OTs of messages in F

κ
2 (see Fig. 1 for a formal

definition). Another variant of OT is correlated OT, where the sender’s messages

728 M. Keller et al.

Fig. 1. The OT functionality

Fig. 2. Correlated OT with errors functionality FCOTe

are correlated, i.e. v0 +v1 = Δ for a fixed Δ ∈ F
κ
2 ; in Fig. 3 we give a version of

this functionality which allows “errors”. Finally, in the random OT functionality,
FROT, the messages v0,v1 are sampled uniformly at random by the functionality
(Fig. 7).

IKNP Protocol Augmented with Errors. In Fig. 2, we model the IKNP
extension as a separate functionality, FCOTe that incorporates a cheating receiver’s
behavior, and call this correlated OT with errors. Figure 3 gives the implemen-
tation of this functionality: after the first phase and the local expansion of the
seeds through a pseudorandom generator PRG, R holds two � × κ matrices
{ti

0}i∈[κ], {ti
1}i∈[κ], while S holds the vector Δ ∈ F

κ
2 and the matrix {ti

Δi
}i∈[κ].

In the extension phase, we allow a cheating receiver R to input vectors x1, . . . ,x� ∈
F

κ
2 , instead of inputting bits x1, . . . , x�. To better understand this situation we

can imagine R inputting an � × κ matrix X, having x1, . . . ,x� ∈ F
κ
2 as rows and

x1, . . . ,xκ ∈ F
�
2 as columns. If R is honest then x1 = · · · = xκ and the rows

xj are “monochrome” vectors, i.e. consisting either of all 0’s or all 1’s. At this
point the receiver computes ui = ti

0 + ti
1 + xi, for each i ∈ [κ]. Clearly, if R

is honest, they send the same vector xi for each i. After this step S computes
qi = ti

Δi
+ui +ui · Δi = ti

0 + xi · Δi, obtaining the � × κ matrix Q, having qi as
columns and qj = t0,j+xj∗Δ as rows. If xj is monochrome, i.e. xj = xj ·(1, . . . , 1),

Actively Secure OT Extension with Optimal Overhead 729

then qj = t0,j +xj ·Δ, otherwise, rewriting xj as xj = xj · (1, . . . , 1)+ ej , we get
qj = t0,j + xj · Δ + ej ∗ Δ, where ej is an “error” vector counting the number of
positions in which R cheated.

Notice that, compared with the original IKNP protocol, the protocol COTe
stops before hashing the output with the random oracle to break the correlation
and performing the final round of communication. It is easy to see (and was
shown e.g. by Nielsen [19]) that the protocol for COTe (given in Fig. 3) securely
implements this functionality.

Fig. 3. Protocol for correlated OT with errors between S and R.

3 Our Actively Secure OT Extension Protocol

In this section we describe our protocol for actively secure OT extension based
on the passive IKNP functionality, FCOTe. We recall that to deal with mali-
cious adversaries, all the known actively secure OT extension protocols add a

730 M. Keller et al.

consistency check to the passive secure IKNP protocol to ensure that R inputs
consistent values.

For example, in previous works [2,20] this check is added before the “exten-
sion” phase, i.e. before the sender S “reverses” the base OTs and breaks the
correlation, effectively checking on the OT seeds. In our construction we check
the correlation for consistency after the extension step, precisely after the exe-
cution of COTe, actually checking the extended OTs.

Fig. 4. Relationship between the different functionalities used to go from Fκ,κ
OT to Fκ,�

OT .

Fig. 5. Functionality FF

Rand

The high level idea of our protocol in Fig. 7 is to perform a simple correlation
check to ensure that the receiver used the same vector xi for each ui sent in Step
3 of the IKNP extension. If the check passes, then the correlated OTs are hashed
to obtain random OTs. This check requires sacrificing κ + s extended OTs to
ensure security, so we obtain a reduction from Fκ,�

ROT to Fκ,�′
COTe, with �′ = �+(κ+s).

The intuition in this reduction is that, if the check passes, the adversary can
only learn few bits of the correlation vector Δ, and hence the values H(qj + Δ)
are actually random except with negligible probability. Finally, if required, the
random OTs obtained from ROT can be derandomized with an additional set of
messages from the sender, using the standard reduction from Fκ,�

OT to Fκ,�
ROT.

The relationship between all the functionalities used are described in Fig. 4.
The first stage to FCOTe essentially consists of the IKNP OT extension protocol
(with some modifications from the protocol by Asharov et al. [1]) that we have
seen in the previous section.

3.1 Protocol from COTe to ROT

Here we describe the protocol implementing the Fκ,�
ROT functionality in Fig. 6.

The main idea of our construction is to use a variant of the MAC check protocol
from SPDZ [6], adapted for two parties where one party holds the MAC key,

Actively Secure OT Extension with Optimal Overhead 731

Fig. 6. Functionality Fκ,�
ROT

to check the correlation is consistent. The correlation check is performed on the
�′ correlated OTs of length κ output by Fκ,�′

COTe, i.e. after the vectors have been
transposed. Recall that after running FCOTe, the sender S has Δ,q1, . . . ,q�′ ∈ F

κ
2

and the receiver R has x1, . . . ,x�′ , t1, . . . , t�′ ∈ F
κ
2 such that qj = tj +xj ∗Δ for

j ∈ [�′]. If R was honest then every xj is monochrome, so qj = tj + xj · Δ for
bits x1, . . . , x�′ .

To carry out the check, both parties first securely generate �′ random weights
χ1, . . . , χ�′ ∈ F

κ
2 (using Fig. 5), and then compute weighted sums of their outputs

from FCOTe. Then R sends these values to S to check consistency with S’s output.
So, R computes x =

∑�′

j=1 xj ·χj , t =
∑�′

j=1 tj ·χj and S computes q =
∑�′

j=1 qj ·
χj , where the vectors tj ,qj , χj are viewed as elements of F2κ and multiplications
are performed in this finite field. S then checks that q = t + x · Δ.

Clearly, by linearity of the correlated OT output, the check will always pass
for an honest receiver. If R is corrupted then it is possible they may pass the
check despite having used polychromatic xj vectors; in this case they will learn
some information about Δ. We show that this leakage is optimal, in the sense that
a cheating receiver can learn c bits of information on Δ with at most probability
2−c, and the possible errors in the resulting OTs do not provide the adversary
with any further useful information. Looking ahead to the proof, the success
probability of a receiver who passes the check in breaking the resulting OTs
with q = poly(κ) queries to H will therefore be q/2κ−c, giving an overall success
probability of q/2κ. This implies that κ base OTs suffice for computational
security κ.

On the other hand, if the sender is corrupted, our correlation check introduces
the possibility that the values of x and t could leak information about R’s input
bits x1, . . . , x�. However, we show that it suffices to perform κ+s additional OTs
with random choice bits to counter against this leakage, for statistical security s.

732 M. Keller et al.

Overall, this means our protocol requires only κ base OTs, which is optimal with
respect to the IKNP extension, and an additive overhead of s+κ extended OTs,
regardless of the number � of OTs required, as well as just O(κ) additional
communication in a constant number of rounds.

3.2 Analysis of the Correlation Check

Corrupt Sender. To ensure that the correlation check step is secure against
a corrupt sender we must carefully choose the parameter �′, which determines
the size of the batch each check is performed on. Recall that the elements in the
field F are κ bits long; if �′ ≤ κ then it is likely that the secret bits xj will be
uniquely determined given χj and x, so an adversary could attempt to solve the
corresponding knapsack problem to recover these. As we will see in the proof in
Theorem 1, to thwart this attack, we use a technical lemma giving a bound on
the rank of a random binary matrix. This is also the reason why we do not let
the sender sample {χj}�

j=1.

Corrupt Receiver. The case of a corrupt receiver is much more involved. We
now investigate a cheating receiver’s success probability in the correlation check
stage of the ROT protocol in Fig. 7. Let x1, . . . ,x�′ be the vectors in F

κ
2 input

by R during the protocol. Taking these to be the rows of a �′ × κ matrix, let
x1, . . . ,xκ be the columns of the same matrix, in F

�′
2 . If R was honest then

{xj}j∈[�′] are all monochrome and {xi}i∈[κ] are all equal. The following Lemma
gives the main properties needed from our correlation check.

Lemma 1. Let SΔ ⊆ F
κ
2 be the set of all Δ for which the correlation check

passes, given the view of the receiver. Except with probability 2−κ, there exists
k ∈ N such that

1. |SΔ| = 2k.
2. For every s ∈ {xi}i∈[κ], let Hs = {i ∈ [κ] | s = xi}. Then one of the following

holds:
– For all i ∈ Hs and any Δ(1),Δ(2) ∈ SΔ, Δ

(1)
i = Δ

(2)
i .

– k ≤ |Hs|, and |{ΔHs}Δ∈SΔ
| = 2k, where ΔHs denotes the vector consisting

of the bits {Δi}i∈Hs . In other words, SΔ restricted to the bits corresponding
to Hs has entropy at least k.

Furthermore, there exists ŝ such that k ≤ |Hŝ|.
Proof. See full version [14].

We now give some intuition about the meaning of this statement. The set SΔ

is the set of all possible values of Δ with which the correlation check could
pass – note that since Δ is uniformly random to the receiver, their probability
of passing the check is therefore |SΔ|/2κ. For some vector s ∈ {xi}i∈[κ], the
set Hs represents indices of all of the vectors equal to s. Clearly, for an honest
receiver, Hs is always just the set {1, . . . , κ}, and so the size of Hs measures the

Actively Secure OT Extension with Optimal Overhead 733

Fig. 7. Random OT extension protocol from correlated OT with errors.

amount of deviation in the protocol for a given s. The precise indices in Hs are
also important, as they correspond to a subset of the bits of the secret Δ, which
could be learnt using 2|Hs| queries to the hash function (causing the simulation
to abort in our security proof).

The second part of the lemma implies that for any s, either the bits of Δ
corresponding to the indices in Hs are constant for all possible Δ ∈ SΔ, or, the
size of Hs is at least k, which means the corresponding abort in the simulation
occurs with probability at least 1−2−k+κ. Clearly in the first case, the adversary
gains no new information, but in the second case we have a bound on the amount
of information an adversary can learn, which directly corresponds to the size of

734 M. Keller et al.

the set SΔ, and hence also the success probability in the correlation check. The
final part of the Lemma, concerning ŝ, simply states that there is always a vector
s that satisfies the second condition, so at least one block of k bits of Δ remains
hidden. A careful analysis of these possible deviations allows us to show that κ
base OTs suffice for our protocol.

3.3 Proof of Security

Theorem 1. The protocol in Fig. 7 securely implements the Fκ,�
ROT func-

tionality in the (FCOTe,FRand,FRO)-hybrid model with computational security
parameter κ.

The computational security parameter κ manifests itself in that the adversary
is only allowed poly(κ) calls of the random oracle in the proof. Other than that,
the simulation is statistically indistinguishable.

Proof. We construct a simulator S that has access to FROT, and show that no
environment Z can distinguish between an interaction with S and FROT and an
interaction with the real adversary A and the real parties. To simulate a real
world execution of the protocol, S starts an internal copy of A and runs an
internal copy of the protocol with dummy parties πS and πR, as shown in Fig. 8.

First we deal with the (simpler) case of a corrupt sender. Since the simulator
gets the sender’s secret Δ, it is straightforward to construct x and t that will
pass the check. All we need to do is argue indistinguishability from the real world
execution. We need the following lemma.

Lemma 2. Let A be a random (κ+m)×κ matrix over F2, where m > 0. Then
A has rank κ except with probability less than 2−m.

Proof. See full version [14].

Recall that in the real world the sender receives

x =
�′

∑

j=1

xj · χj =
�∑

j=1

xj · χj +
�′

∑

j=�+1

xj · χj .

The second summation corresponds to the image of a linear map from F
�′−�
2 =

F
κ+s
2 to F

κ
2 . From Lemma 2, it follows that this map has full rank with probability

1− 2−s. In this case, the second summation is uniformly random in F2κ because
(x�+1, . . . , x�′) were chosen uniformly at random by R, and so indistinguishable
from the simulated random x. Finally, t has the same distribution in both worlds
because there is only one t fulfilling the equation q = t + x · Δ.

We now consider the case of R being corrupted. In steps 1–4, S simply
emulates FCOTe and the correlation check, choosing random values for the dummy
sender’s input. Lemma 1 states that (except with negligible probability) |SΔ| =
2k for some k ∈ N. For every s ∈ {xi}i∈[κ], let Hs = {i ∈ [κ] | s = xi} and ŝ as in
Lemma 1. Recall that the adversary knows (tj ,xj) such that tj = qj + xj ∗ Δ.

Actively Secure OT Extension with Optimal Overhead 735

Fig. 8. Simulator for random OT extension

If x1, . . . , x� are the bits of ŝ then this can be expressed as tj = qj +xj ·Δ+ej ∗Δ,
where ej = (xj , . . . , xj)+xj is an adversarially chosen error vector. By definition,
ej [i] = ej [i′] for all i, i′ ∈ Hs, for any s ∈ {xi}i∈[κ] and j ∈ [�].

In step 7, the simulator responds to the adversary’s random oracle queries.
Notice that it is the queries qj = tj + xj ∗ Δ and qj + Δ = tj + xj ∗ Δ that
require the reply conforming to the output of Fκ,�

ROT. The simulator knows vxj ,j ,
which is the output of H(j‖qj + xj · Δ) in the real-world protocol. On the other
hand, if the adversary queries (j‖qj +xj ·Δ), the simulator cannot give the right
output and thus aborts.

We now investigate the probability that this happens, given that the corre-
lation check has passed. It holds that

qj + xj · Δ = tj + xj ∗ Δ + xj · Δ = tj + (xj + (xj , . . . , xj)) ∗ Δ.

For i ∈ Hŝ, xj [i] = xj and thus (xj + (xj , . . . , xj)[i] = 1. By Lemma 1, there are
|SΔ| = 2k possibilities for (xj + (xj , . . . , xj)) ∗ Δ and hence qj + xj · Δ, given
Δ ∈ SΔ. Therefore, the probability of one such query is 2−k.

736 M. Keller et al.

However, we must also show that the environment cannot learn any addi-
tional information from previous queries. For example, when R queries qj +xj ·Δ
to get their correct OT output, the environment (who sees the honest sender out-
put so can verify this has occurred) can learn ej ∗Δ by computing qj +xj ·Δ+tj .
By definition, the bits of ej corresponding to any index set Hs are constant. Fur-
thermore, Lemma 1 states that either Δ

(1)
i = Δ

(2)
i for all Δ(1),Δ(2) ∈ SΔ and

i ∈ Hs or |Hs| ≥ k. In the first case, ej [i] · Δi is known by the fact that Δ ∈ SΔ.
In the second case, consider that ej [i] is the same for all i ∈ Hs. If ej [i] = 0 for
all i ∈ Hs, then ej [i] ·Δi = 0 for all i ∈ Hs. On the other hand, if ej [i] = 1, there
are 2k possibilities for ej ∗ Δ (given Δ ∈ SΔ as above) and thus for qj + xj · Δ.
Hence, either the latter is known to the adversary already or the probability of
querying it is 2−k per query.

It follows that the probability the simulation aborts after the correlation
check has passed is at most q · 2−k, where q is the number of queries made by
the environment. Now taking into account the fact that the check passes with
probability |SΔ| · 2−κ + 2−κ = 2−κ · (2k + 1), the overall success probability of
distinguishing is at most q · 2−κ · (1 + 2−k), which is negligible in κ. �

3.4 From ROT to OT

Finally we show how to reduce Fκ,�
OT to Fκ,�

ROT.

Lemma 3. The protocol in Fig. 9 securely implements the Fκ,�
OT functionality in

the Fκ,�
ROT-hybrid model.

Proof. It is easy to describe a simulator for a corrupt R. S runs a copy of A
setting dummy parties πR and πS and then simulates for them a real execution
of DeROT, running an internal copy of FROT.

We just need to show indistinguishablity of the transcripts and of the outputs.
In both worlds, {dxi,i}i∈[�] and {vxi,i}i∈[�] are distributed uniformly subject to
the condition dxi,i + vxi,i = yxi,i for all i ∈ [�], as the pads v0,i and v1,i pro-
vided by FROT are random and independent of R’s view, except with negligible
probability.

Fig. 9. Derandomization protocol for random OT.

Actively Secure OT Extension with Optimal Overhead 737

4 Implementation

In this section, we evaluate the efficiency of our random OT extension proto-
col. As was done in previous works [1,2], we tested the protocol in a standard
LAN setting and a simulated WAN environment, using the Linux tc tool to cre-
ate an average round-trip-time of 100 ms (with standard deviation 1 ms) and
limit bandwidth to 50 Mbps (comparable with the setting reported by Asharov
et al. [2]). We used computational security parameter κ = 128 and statistical
security parameter s = 64 throughout, and instantiated the PRG with AES-128
in counter mode (using Intel AES-NI) and the random oracle H with SHA-1.
FRand is implemented using a standard hash-based commitment scheme, where
both parties commit to and then open a seed, then the XOR of the two values
is used to seed a PRG, which is UC-secure in the random oracle model.

Our implementation was written in C++ using the Miracl libary for elliptic
curve arithmetic in the base OTs, which were executed using the actively secure
protocol of Peikert et al. [21]. All benchmarks were taken as an average of 20 runs
on Intel Core i7-3770S 3.1 GHz processors with 8 cores and 32 GB of memory.

Implementation Optimizations. The correlation check stage of our protocol
requires computing values of the form

∑
i xi ·yi where xi, yi ∈ F2κ . We used Intel

PCLMUL instructions to efficiently compute carrlyess multiplications and then
performed summations and the check itself in the polynomial ring (of length
2κ − 1) to avoid having to do expensive reduction by the finite field polynomial.

As was done by Asharov et al. [1], we use Eklundh’s algorithm for transposing
the matrices T and Q during the COTe protocol in a cache-friendly manner,
which makes the time spent in this stage less than 3 % of the total runtime.
Our implementation also supports multi-threading, making use of the 8 cores
available on our test machines.

4.1 Comparison of Protocols

Table 2 shows the time taken for our implementation to compute 10 million OT
extensions (excluding the base OTs) in a variety of settings. The one-directional
setting is a traditional OT between a sender and a receiver, whilst in the bi-
directional times, both parties perform both roles simultaneously (for a total
of 20 million OTs). The bi-directional variant is often required for secure two-
party and multi-party computation protocols, and over a LAN is much more
efficient than performing the one-directional protocol twice, but less so in the
WAN setting where communication is the bottleneck.

The passive protocol is just the standard IKNP extension (with the random
OT communication optimization of Asharov et al. [1]), which is essentially our
protocol without the correlation check. In the LAN setting, the time difference
between the active and passive protocols is less than 5 %. The WAN times for
the passive and active protocols are very similar, however it should be noted that
there was more variation in our WAN experiments – computing 95 % confidence

738 M. Keller et al.

Table 2. Random OT extension runtimes in seconds, using either 1 or 8 threads. The
one-directional time is for 10 million OTs between a sender and receiver, whilst for the
bi-directional time both parties are playing each role for a total of 20 million OTs.

Protocol Comms. (MB) LAN time (s) WAN time (s)

One-dir. Bi-dir. One-dir. Bi-dir.

Passive, IKNP (1T) 160MB 9.1037 12.5148 36.2319 66.2692

Passive, IKNP (8T) 3.3258 4.0827 28.4410 53.3977

Active, ours (1T) 160MB 9.5589 12.9461 36.2653 66.6558

Active, ours (8T) 3.3516 4.2020 28.4569 54.1157

intervals for these means in the table gives a variation of up to ±3 %. This is
probably mostly due to network variation and can be taken as evidence that our
protocol has roughly the same performance as the passive IKNP extension. The
total amount of data sent (in all protocols) is almost identical, due to the very
low overhead of our correlation check. Compared with the reported timings for
the protocol of Asharov et al. [2], our runtimes are much improved: their actively
secure times are between 40 % and 80 % higher than their passive implementa-
tion, whilst ours almost match the efficiency of the passive protocol. (We do
not directly compare figures due to the different benchmarking environments
involved.)

Figure 10 illustrates the performance of our protocol as the number of OTs
computed varies, in both the WAN and LAN settings, tested in the one-
directional and bi-directional modes of OT operation.

26 210 214 218 222 226
10−3

10−2

10−1

100

101

102

No. OTs

R
u
n

ti
m

e
(s

)

LAN, bi-directional

LAN, one-directional

WAN, bi-directional

WAN, one-directional

Fig. 10. Performance of our OT extension protocol for various numbers of OTs. Times
exclude the base OTs.

Actively Secure OT Extension with Optimal Overhead 739

WAN LAN
0

10

20

30

40

2.55

2.55

0.66

0.45

3.33

3.33

29.37

2.88
1.44 1.02

T
im

e
(s

)

Other

Correlation check

Hashing

Comms (OT ext.)

Base OTs

Fig. 11. Profiling results for running 10 million OTs in a single thread.

4.2 Profiling

Figure 11 presents profiling results for the main components of our protocol,
run in a single thread creating 10 million OTs. It clearly demonstrates that the
bottleneck of our protocol is communication from the IKNP extension phase, as
was reported for the passive secure implementation of Asharov et al. [1]. The
correlation check that we require for active security has a negligible impact on
the runtime; the best way to further optimize our implementation in the LAN
setting would be to target the hash function computations. The ‘Other’ section
includes overhead from PRG computations, matrix transposition and allocating
memory, which could also potentially be reduced a small amount.

Acknowledgements. We would like to thank Claudio Orlandi and Morten Bech for
pointing out minor errors in the proof of Theorem 1, and the anonymous reviewers
whose comments helped to improve the paper. This work has been supported in part
by EPSRC via grant EP/I03126X.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, pp. 535–548.
ACM (2013)

2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg
(2015)

740 M. Keller et al.

3. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, pp. 479–488. ACM (1996)

4. Brassard, G., Crepeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

5. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary cir-
cuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472
(2015). http://eprint.iacr.org/

6. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

7. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvementsof
the minimac protocol for secure computation. In: Proceedings of the Security
and Cryptography forNetworks - 9th International Conference, SCN 2014, 3–5
September 2014, Amalfi, Italy, pp. 398-415 (2014)

8. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2013, 4–8 November 2013, Berlin, Germany,
pp. 789–800 (2013)

9. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

10. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency
improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–
86. Springer, Heidelberg (1988)

11. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the Twenty-First Annual ACM Symposium on The-
ory of Computing, pp. 44–61. ACM (1989)

12. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

13. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
572–591. Springer, Heidelberg (2008)

14. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. Cryptology ePrint Archive (2015, to appear). http://eprint.iacr.org/

15. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
20th Annual ACM Symposium on Theory of Computing, 2–4 May 1988, Chicago,
Illinois, USA, pp. 20–31 (1988)

16. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 54–70. Springer, Heidelberg (2013)

17. Larraia, E.: Extending oblivious transfer efficiently. In: Aranha, D.F., Menezes, A.
(eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 368–386. Springer, Heidelberg
(2015)

18. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/

Actively Secure OT Extension with Optimal Overhead 741

19. Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robustness
almost for free. IACR Cryptology ePrint Arch. 2007, 215 (2007)

20. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

21. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

22. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Proceedings of the 23rd USENIX Security Symposium, 20–22 August
2014, San Diego, CA, USA, pp. 797–812 (2014)

23. Rabin, M.O.: How to exchange secrets with oblivious transfer, (1981). Harvard
University Technical report 81

24. Wiesner, S.: SIGACT News. Conjugate Coding 15(1), 78–88 (1983)
25. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th

Annual Symposium on Foundations of Computer Science, 27–29 October 1986,
Toronto, Canada, pp. 162–167 (1986)

Algebraic Decomposition for Probing Security

Claude Carlet1, Emmanuel Prouff2, Matthieu Rivain3(B), and Thomas Roche2

1 LAGA, UMR 7539, CNRS, Department of Mathematics,
University of Paris XIII and University of Paris VIII, Paris, France

claude.carlet@univ-paris8.fr
2 ANSSI, Paris, France

{emmanuel.prouff,thomas.roche}@ssi.gouv.fr
3 CryptoExperts, Paris, France

matthieu.rivain@cryptoexperts.com

Abstract. The probing security model is very popular to prove the side-
channel security of cryptographic implementations protected by mask-
ing. A common approach to secure nonlinear functions in this model is to
represent them as polynomials over a binary field and to secure their non-
linear multiplications thanks to a method introduced by Ishai, Sahai and
Wagner at Crypto 2003. Several schemes based on this approach have
been published, leading to the recent proposal of Coron, Roy and Vivek
which is currently the best known method when no particular assump-
tion is made on the algebraic structure of the function. In the present
paper, we revisit this idea by trading nonlinear multiplications for low-
degree functions. Specifically, we introduce an algebraic decomposition
approach in which a nonlinear function is represented as a sequence of
functions with low algebraic degrees. We therefore focus on the probing-
secure evaluation of such low-degree functions and we introduce three
novel methods to tackle this particular issue. The paper concludes with
a comparative analysis of the proposals, which shows that our algebraic
decomposition method outperforms the method of Coron, Roy and Vivek
in several realistic contexts.

1 Introduction

Since their introduction in [15,16], side-channel attacks are known to be a serious
threat against implementations of cryptographic algorithms. Among the existing
strategies to secure an implementation, one of the most widely used relies on
secret sharing (aka masking). Using secret sharing at the implementation level
enables to achieve provable security in the so-called probing security model [13].
In this model, it is assumed that an adversary can recover information on a
limited number of intermediate variables of the computation. This model has
been argued to be practically relevant to address so-called higher-order side-
channel attacks and it has been the basis of several efficient schemes to protect
block ciphers [1,6,11,12,23,24]. More recently, it has been shown in [10] that the
probing security of an implementation actually implies its security in the more
realistic noisy leakage model introduced in [22]. This makes probing security a
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 742–763, 2015.
DOI: 10.1007/978-3-662-47989-6 36

Algebraic Decomposition for Probing Security 743

very appealing feature for the design of secure implementations against side-
channel attacks.

The first generic probing secure scheme, here called the ISW scheme, was
designed by Ishai, Sahai and Wagner in [13]. It was later used by Rivain and
Prouff to design an efficient probing-secure implementation of AES.1 Several
works then followed to improve this approach and to extend it to other SPN
block ciphers [6,8,9,14,25]. In a nutshell, these methods consist in representing
the nonlinear functions of such ciphers (the so-called s-boxes) as polynomials
over a binary field. Evaluating such polynomials then involves some linear oper-
ations (e.g. squaring, addition, multiplication by constants) which are secured
with straightforward and efficient methods, and some so-called nonlinear mul-
tiplications which are secured using ISW. The proposed polynomial evaluation
methods then aim at minimizing the number of nonlinear multiplications. The
method recently introduced by Coron, Roy and Vivek in [9] (called CRV in the
following) is currently the most efficient scheme for the probing-secure evaluation
of nonlinear functions without particular algebraic structure.

In this paper we introduce a new approach based on algebraic decomposi-
tion for the probing-secure evaluation of nonlinear functions. More precisely,
we propose a method — inspired from [9] — to efficiently compute a function
from the evaluation of several other functions having a low algebraic degree.
We subsequently study the problem of designing efficient probing-secure evalua-
tion methods for low-degree functions. Specifically, we introduce three different
methods to tackle this issue with different and complementary assets. The first
one relies on a recursive higher-order derivation of the target function. Remark-
ably, it enables to get a t-probing secure evaluation of a function of algebraic
degree s (for arbitrary order t) from several s-probing secure evaluations of
the function. Namely, for degree-s functions, it reduces t-probing security to s-
probing security. This method has a complexity exponential in s and is hence
only interesting for low-degree functions. In particular, for the case s = 2, we
show how to specialize it into an efficient algorithm which happens to be a gen-
eralization of a previous method proposed in [8] to secure a peculiar type of
multiplications (specifically x �→ x · �(x) where � is linear). Our generalization of
this algorithm can be applied to secure any quadratic function more efficiently
than a single multiplication with the ISW scheme. Our second approach also
applies a recursive derivation technique, but in a more direct way which allows
us to design a stand-alone probing-secure evaluation method. Interestingly, this
method does not rely on the polynomial representation of the target function h,
and its processing only involves additions and evaluations of h. When the latter
evaluation can be tabulated (which is often the case in the context of s-boxes),
the proposed algorithm can be a valuable alternative to the state-of-the-art
solutions based on field multiplications. However, this method also has a com-

1 The original proposal of [24] actually involved a weak mask refreshing algorithm
and the weakness was exploited in [8] to exhibit a flaw in the s-box processing. The
authors of [8] also proposed a correction, which was recently verified for d � 4 using
program verification techniques [2].

744 C. Carlet et al.

plexity exponential in the algebraic degree of h, which makes it only interesting
for low degree functions. Eventually, the third method consists in tweaking the
CRV method for the case of low-degree functions. The tweak is shown to sub-
stantially reduce the number of nonlinear multiplications for functions of a given
(low) algebraic degree.

The theoretical analysis of our proposals is completed by an extensive com-
parative analysis considering several ratios for the cost of a field multiplication
over the cost of other elementary operations. The results show that for functions
of algebraic degree 2 our generalization of [8] is always the most efficient. On
the other hand, for functions of algebraic degree 3, the tweaked CRV method
achieves the best performances except for small probing orders for which our
second method takes the advantage. For high-degree functions, our algebraic
decomposition method reaches its best performances when it is combined with
our generalization of [8]. For some multiplication cost ratios, our method is
more efficient than CRV, which makes it the currently best known method for
the probing-secure evaluation of nonlinear functions in these scenarios. As an
example, for functions of dimension n = 8, our method outperforms CRV when-
ever a field multiplication takes more than 5 elementary operations (which we
believe to be a realistic scenario).

From a general point of view, this paper shows that the issue of designing
efficient probing-secure schemes for nonlinear functions may be reduced to the
secure evaluation of functions of small algebraic degrees. This approach, and the
first encouraging results reported in this paper, opens a promising avenue for
further research on this topic. Our work also has strong connections with the
field of threshold implementations in which secret sharing techniques are used
to design hardware masking schemes resistant to glitches [19,20]. An efficient
threshold implementation is indeed usually obtained by decomposing the target
nonlinear function into lower-degree functions (ideally quadratic functions). In
this context, some decompositions have been proposed for specific functions, such
as the PRESENT s-box [21], the AES s-box [18], and the DES s-boxes [3]. Some
works have also followed an exhaustive approach to provide decompositions for
small-size s-boxes, specifically all bijective 3-bit and 4-bit s-boxes [3,17]. Certain
5-bit and 6-bit s-boxes have also been considered in [4].

2 Preliminaries

2.1 Functions in Finite Fields and Derivation

Along this paper, we shall denote by [[i, j]] the integer interval [i, j] ∩ Z for any
pair of integers (i, j) with i � j, and we shall denote by F2n the finite field with
2n elements for any integer n � 1. Choosing a basis of F2n over F2 enables to
represent elements of F2n as elements of the vector space F

n
2 and vice versa. In

the following, we assume that the same basis is always used to represent elements
of F2n over F2. For any positive integers m � n, a function from F

n
2 to F

m
2 is

called an (n,m)-function (the dimensions could be omitted if they are clear from
the context). Nonlinear functions used in block-ciphers are usually called s-boxes.

Algebraic Decomposition for Probing Security 745

The set of (n,m)-functions is denoted by Bn,m. When m divides n, any function
h ∈ Bn,m can be represented by a polynomial function x ∈ F2n �→ ∑2n−1

i=0 aix
i

where the ai are constant coefficients in F2n that can be obtained by applying
Lagrange’s Interpolation. When m does not divide n, the m-bit outputs of h
can be embedded into F2n by padding them to n-bit outputs (e.g. by setting
the most significant bits to 0). This ensures that any function h ∈ Bn,m can be
evaluated as a polynomial over F2n . If padding has been used, then it can be
removed after the polynomial evaluation by mapping the output from F2n to F

n
2 .

The algebraic degree of a function h ∈ Bn,m is the integer value maxai �=0(HW(i))
where the ai are the coefficients of the polynomial representation of h and where
HW(i) denotes the Hamming weight of i (see e.g. [5] for more details about this
notion). The algebraic degree must not be confused with the classical notion of
polynomial degree which is the integer value maxai �=0(i). A function of algebraic
degree s will sometimes be called a degree-s function.

This paper intensively uses the notion of higher-order derivative of a (n,m)-
function. It is recalled hereafter.

Definition 1 (Higher-Order Derivative). Let n and m be two positive inte-
gers such that m � n and let h ∈ Bn,m. For any positive integer t and any
t-tuple (a1, a2, . . . , at) ∈ (Fn

2)t, the (n,m)-function Da1,a2,...,at
h which maps any

x ∈ F2n to
∑

I⊆[[1,t]] h
(
x +

∑
i∈I ai

)
is called the tth-order derivative of h with

respect to (a1, a2, . . . , at).

Any tth-order derivative of a degree-s function has an algebraic degree
bounded above by s − t. In the following we shall denote by ϕ

(t)
h the (n,m)-

function defined by

ϕ
(t)
h : (a1, a2, . . . , at) �→ Da1,a2,...,at

h(0). (1)

This function has some well-known properties recalled hereafter.

Proposition 1. Let h ∈ Bn,m be a degree-s function. Then, the function ϕ
(s)
h is

s-linear symmetric and equals zero for any family of ai linearly dependent over
F2. Conversely, if ϕ

(s)
h is s-linear, then the algebraic degree of h is at most s.

2.2 Sharing and Probing Security

For two positive integers k and d, a (k, d)-sharing of a variable x defined over
some finite field K is a random vector (x1, x2, . . . , xk) over K

k such that x =
∑k

i=1 xi holds (completeness equality) and any tuple of d−1 shares xi is a uniform
random vector over K

d−1. The variable x is also called the plain value of the
sharing (xi)i. If k = d, the terminology simplifies to d-sharing.

An algorithm with domain K
d is said t-probing secure if on input a d-sharing

(x1, x2, . . . , xd) of some variable x, it admits no tuple of t or less intermediate
variables that depends on x. An algorithm achieving t-probing security is resis-
tant to the class of tth-order side-channel attacks (see for instance [7,22,24]). In
this paper we will further use the following non-standard notion.

746 C. Carlet et al.

Definition 2 (Perfect t-probing Security). An algorithm is said to achieve
perfect t-probing security if every �-tuple of its intermediate variables can be
perfectly simulated from an �-tuple of its input shares for every � � t.

It can be shown that for the tight security case t = d − 1, the notion above
is equivalent to the usual t-probing security.

Lemma 1. An algorithm taking a d-sharing as input achieves (d − 1)-probing
security if and only if it achieves perfect (d − 1)-probing security.

We shall simply say that an algorithm taking a d-sharing as input is probing
secure when it achieves (perfect) (d − 1)-probing security. We will also say that
an algorithm admits a t-order flaw when t of its intermediate variables jointly
depend on the plain input (hence contradicting t-probing security).

It is worth noticing that achieving (perfect) probing security for the evalua-
tion of a linear function g is pretty simple. Computing a d-sharing of g(x) from a
d-sharing (x1, x2, . . . , xd) of x can indeed be done by applying g to every share.
The process is clearly (perfectly) t-probing secure with t = d − 1 and the com-
pleteness holds by linearity of g since we have g(x) = g(x1)+g(x2)+ · · ·+g(xd).
The same holds for an affine function but the constant term g(0) must be added
to the right side if and only if d is odd (without impacting the probing security).

Probing security is more tricky to achieve for nonlinear functions. In [13],
Ishai, Sahai, and Wagner tackled this issue by introducing the first generic
t-probing secure scheme for the multiplication over F2 which can be easily
extended to the multiplication over any finite field. Let (xi)i and (yi)i be the
d-sharings of two variables x and y over some binary field K, the ISW scheme
proceeds as follows:

1. for every 1 � i < j � d, sample a random value ri,j over K,
2. for every 1 � i < j � d, compute rj,i = (ri,j + ai · bj) + aj · bi,
3. for every 1 � i ≤ d, compute ci = ai · bi +

∑
j �=i ri,j .

The completeness holds from
∑

i ci =
∑

i,j ai · bj = (
∑

i ai)(
∑

j bj) since every
random value ri,j appears exactly twice in the sum and hence vanishes.2 The
above multiplication procedure was proved t-probing secure with t � (d − 1)/2
in [13]. This was later improved in [24] to a tight t-probing security with t � d−1.

2.3 Secure Evaluation of Nonlinear Functions

In the original scheme of Ishai et al., a computation is represented as a Boolean
circuit composed of logical operations NOT and AND. In [24], Rivain and Prouff
generalized their approach to larger fields which allowed them to design an effi-
cient probing-secure computation of the AES cipher. The main issue in securing
SPN ciphers like AES lies in the s-box computations (the rest of the cipher being

2 This is true since K is a binary field, but the method can easily be extended to any
field by defining rj,i = (ai · bj − ri,j) + aj · bi in Step 2.

Algebraic Decomposition for Probing Security 747

purely linear operations). The Rivain-Prouff scheme computes the AES s-box
using 4 multiplications over F28 (secured with ISW) plus some linear operations
(specifically squaring over F28 , and the initial affine transformation). This app-
roach was then extended in [6] to secure any s-box in Bn,m. The principle is
to represent the s-box as a polynomial

∑
i ai · xi in F2n [x] whose evaluation is

then expressed as a sequence of linear functions (e.g. squaring over F2n , addi-
tions, multiplications by coefficients) and nonlinear multiplications over F2n .
The former operations can be simply turned into probing-secure operations of
complexity O(d) as described in the previous section, whereas the latter oper-
ations are secured using ISW with complexity O(d2). The total complexity is
hence mainly impacted by the number of nonlinear multiplications involved in
the underlying polynomial evaluation method. This observation led to a series
of publications aiming at developing polynomial evaluation methods with least
possible costs in terms of nonlinear multiplications. Some heuristics in this con-
text were proposed by Carlet et al. in [6], and then improved by Roy and Vivek
in [25] and by Coron, Roy and Vivek in [9]. In the latter reference, a method, that
we shall call the CRV method, is introduced. It is currently the most efficient
one for probing-secure evaluation of nonlinear functions.

Tabulated Multiplications. Further works have shown that secure evaluation
methods could be improved by relying on specific kind of nonlinear multipli-
cations. Assume for instance that the dimension n is such that a lookup table
with 22n entries is too big for some given architecture whereas a lookup table
with 2n entries fits (e.g. for n = 8 one needs 64 kilobytes for the former and
256 bytes for the latter). This means that a multiplication over F2n/2 can be
computed using a single lookup, whereas a multiplication over F2n must rely
on more costly arithmetic (e.g. schoolbook method, log-exp tables, Karatsuba,
etc.). This observation was used by Kim, Hong, and Lim in [14] to design an effi-
cient alternative to the Rivain-Prouff scheme based on the so-called tower-field
representation of the AES s-box [26]. Using this representation, the AES s-box
can be computed based on 5 multiplications over F24 instead of 4 multiplications
over F28 , which results in a significant gain of performance when the former are
tabulated while the latter are computed using log-exp tables (although one more
multiplication is involved). Another approach, proposed in [8] by Coron, Prouff,
Rivain, and Roche, is to consider the multiplications of the form x · �(x) where �
is a linear function. Such multiplications can be secured using a variant of ISW
relying on a table for the function x �→ x · �(x). This variant that we shall call
the CPRR scheme, allowed the authors to design a faster probing-secure scheme
for the AES s-box. It was further used in [12] to reduce the complexity of the
probing-secure evaluation of power functions in F2n with n � 8.

3 The Algebraic Decomposition Method

In this section, we introduce a new algebraic decomposition method that split
the evaluation of a nonlinear function with arbitrary algebraic degree into sev-
eral evaluations of functions with given (low) algebraic degree s. Our proposed

748 C. Carlet et al.

method is inspired from the CRV method but relies on low-degree polynomial
evaluations instead of nonlinear multiplications.

We consider a function h ∈ Bn,m which is seen as a polynomial h(x) =
∑2n−1

j=0 ajx
j over F2n [x]. We start by deriving a family of generators (gi)i as

follows: {
g1(x) = f1(x)
gi(x) = fi

(
gi−1(x)

)
,

(2)

where the fi are random polynomials of given algebraic degree s. Then we ran-
domly generate t polynomials (qi)i over the subspace of polynomials

∑r
j=1 �j ◦gj

where the �j are linearized polynomials (i.e. polynomials of algebraic degree 1).
This is done by sampling random linearized polynomials (�i,j)i,j and by com-
puting

qi(x) =
r∑

j=1

�i,j

(
gj(x)

)
+ �i,0(x). (3)

Eventually, we search for t polynomials pi of algebraic degree s and for r + 1
linearized polynomials �i such that

h(x) =
t∑

i=1

pi

(
qi(x)

)
+

r∑

i=1

�i

(
gi(x)

)
+ �0(x). (4)

From such polynomials, we get a method to compute h(x) by subsequently eval-
uating (2), (3) and (4). This method involves r + t evaluations of degree-s poly-
nomials (the fi and the pi), plus some linear operations. The following table
gives the exact operation counts (where “#eval deg-s” denotes the number of
evaluations of degree-s functions, “#eval LP” denotes the number of evaluations
of linearized polynomials, and “#add” denotes the number of additions).

#eval deg-s #eval LP #add

r + t (t + 1)(r + 1) r · t + t + r

The complexity of the resulting d-probing secure evaluation can be obtained
by multiplying by d the number of additions and the number of evaluations of
linearized polynomials (which might be tabulated) and by adding r + t secure
evaluations of degree-s functions.

Remark 1. The generation step of our method can be generalized as follows:
{

g1(x) = f1(x)
gi(x) = fi

(∑i−1
j=1�

′
i,j

(
gj(x)

)) (5)

where the fi are random polynomials of given algebraic degree s and the �′
i,j are

random linearized polynomials. This generalization has no impact when r � 2.
In particular, it has no impact on our experimental results for s ∈ {2, 3} and
n ∈ [[4, 8]] (indeed, the best counts are always obtained with r � 2 since we stop
at g2(x) = f ′

2 ◦ f1(x) where f ′
2 = f2 ◦ �2,1 is of degree s1 – see hereafter –).

However, (5) might give better results than (2) for higher values of n and/or s.

Algebraic Decomposition for Probing Security 749

As in the CRV method, the search of polynomials (pi)i and (�i)i satisfying (4)
for given polynomials (gi)i and (qi)i amounts to solve a system of linear equations
over F2n :

A · b = c. (6)

The target vector c has 2n coordinates which are the values taken by h(x) for
all x over F2n , that is

c = (h(e1), h(e2), h(e3), . . . , h(e2n)),

where {e1, e2, . . . , e2n} = F2n . The coordinates of the vector b are the variables
of the system that represents the solutions for the coefficients of the polynomials
(pi)i and (�i)i. The matrix A is then defined as the concatenation of several
submatrices:

A = (1 | Ap1 | Ap2 | · · · | Apt
| A�0 | A�1 | · · · | A�r),

where 1 is the 2n-dimensional column vector with all coordinates equal to 1 ∈
F2n , where the Api

are 2n × Ns submatrices, with Ns =
∑s

d=1

(
n
d

)
, and where

the A�i are 2n × n submatrices. For every i ∈ [[1, t]], the 2n × Ns matrix Api
is

defined as:

Api
=

⎛

⎜
⎜
⎜
⎝

qi(e1)β1 qi(e1)β2 · · · qi(e1)βNs

qi(e2)β1 qi(e2)β2 · · · qi(e2)βNs

...
...

. . .
...

qi(e2n)β1 qi(e2n)β2 · · · qi(e2n)βNs

⎞

⎟
⎟
⎟
⎠

,

where {βi} = {β | 1 � HW(β) � s} ⊆ [0; 2n − 1] (i.e. the βi are the powers with
non-zero coefficients in a degree-s polynomial). On the other hand, A�i is defined
as the 2n × n matrix:

A�0 =

⎛

⎜
⎜
⎜
⎝

eα1
1 eα2

1 · · · eαn
1

eα1
2 eα2

2 · · · eαn
2

...
...

. . .
...

eα1
2n eα2

2n · · · eαn
2n

⎞

⎟
⎟
⎟
⎠

and A�i =

⎛

⎜
⎜
⎜
⎝

gi(e1)α1 gi(e1)α2 · · · gi(e1)αn

gi(e2)α1 gi(e2)α2 · · · gi(e2)αn

...
...

. . .
...

gi(e2n)α1 gi(e2n)α2 · · · gi(e2n)αn

⎞

⎟
⎟
⎟
⎠

for i � 1, where {αi} = {2i | 0 � i ≤ n − 1} (i.e. the αi are the powers with
non-zero coefficients in a linearized polynomial).

System (6) has 2n equations and t · Ns + (r + 1) n unknowns. Such a system
admits a solution for every choice of h(x) if and only if its rank is 2n, which
implies the following inequality as necessary condition:

t · Ns + (r + 1) n � 2n ⇔ t � 2n − (r + 1) n

Ns
. (7)

In other words our method requires at least
(
2n − (r + 1) n

)
/Ns secure evalua-

tions of degree-s polynomials. Another necessary condition is that the algebraic
degree of the pi◦qi reaches n, that is r verifies sr+1 � n. This constraint becomes
sr+1 � n − 1 if we only focus on bijective functions (since their algebraic degree
is at most n − 1).

750 C. Carlet et al.

Remark 2. We stress that once a full-rank system has been found for some given
parameters r and t, it can be applied to get a decomposition for every n-bit non-
linear function (the considered function being the target vector of the system).
Note however that for some specific function it might be possible to find a decom-
position involving less than r + t degree-s polynomials. For instance, the 4-bit
s-box of PRESENT can be decomposed into 2 quadratic functions [21], whereas
we need 3 quadratic functions to decompose any 4-bit s-box.

Experimental Results. We provide hereafter some experimental results for our
algebraic decomposition method. We experimented our method for n ∈ [[4, 8]] and
s ∈ {2, 3}. The following table summarizes the best results that we obtained and
compares them to the lower bound resulting from the above constraints.

n = 4 n = 5 n = 6 n = 7 n = 8

#eval-2 (achieved) 3 4 5 8 11

#eval-2 (lower bound) 2 4 5 6 9

#eval-3 (achieved) 2 3 3 4 4

#eval-3 (lower bound) 2 2 3 3 4

Note that our method can be generalized to involve the evaluation of func-
tions with different (low) algebraic degrees. In particular, in our experiments,
we considered the hybrid case where the gi are of degree s1 and the pi are
of degree s2. In that case, the constraint on r becomes sr

1 · s2 � n (resp.
sr
1 · s2 � n − 1 for bijective functions), and the constraint on t remains as

in (7) with s2 instead of s. The following table summarizes the best results for
the hybrid case (s1, s2) = (2, 3). This case was always more favorable than the
case (s1, s2) = (3, 2).

n = 4 n = 5 n = 6 n = 7 n = 8

#eval-2 + #eval-3 (achieved) 1+1 2+1 1+2 2+2 2+3

#eval-2 + #eval-3 (lower bound) 1 + 1 1 + 1 1 + 2 2 + 2 2 + 3

The following table gives the exact parameters (s1, s2), r, and t, that we
achieved for every n ∈ [[4, 8]]. Note that the entries 4∗, 5∗, and 7∗ stand for bijec-
tive functions of size n ∈ {4, 5, 7}, which enjoy more efficient decompositions.
For the other considered values of n, the bijective property did not enable any
improvement.

Remark 3. For the case n = 4, it was shown in [3] that every cubic bijective
function in B4,4 can be either decomposed as h(·) = f1 ◦ f2(·) or as h(·) =
f1 ◦ f2 ◦ f3(·), where the fi are quadratic functions, if and only if it belongs to
the alternating group of permutations in B4,4. It was then shown in [17] that the

Algebraic Decomposition for Probing Security 751

n #eval-2 #eval-3 (s1, s2) r t

4 3 – (2, 2) 1 2

3 – (2, 2) 2 1

1 1 (2, 3) 1 1

– 2 (3, 3) 1 1

4∗ – 1 (1, 3) 0 1

5 4 – (2, 2) 2 2

2 1 (2, 3) 2 1

– 3 (3, 3) 1 2

5∗ 3 – (2, 2) 1 2

6 5 – (2, 2) 2 3

1 2 (2, 3) 1 2

– 3 (3, 3) 1 2

7 8 – (2, 2) 2 6

2 2 (2, 3) 2 2

– 4 (3, 3) 1 3

– 4 (3, 3) 2 2

7∗ 1 2 (2, 3) 1 2

8 11 – (2, 2) 2 9

11 – (2, 2) 3 8

2 3 (2, 3) 2 3

– 4 (3, 3) 1 3

so-called optimal s-boxes in B4,4 can be decomposed as h(·) = f1(·) + f2 ◦ f3(·).
The authors also suggested to use a decomposition of the form h(·) = f1(·) +
f2 ◦ f3(·) + f4 ◦ f5(·) + . . . for other functions in B4,4. Our results demonstrate
that every function in B4,4 can be decomposed using 3 quadratic functions plus
some linear functions. Moreover, we know from [3] that there exist functions in
B4,4 that cannot be decomposed using only two quadratic functions. This show
the optimality of our method for the case n = 4 and s = 2. This also suggests
that the lower bound (7) might not be tight.

4 Reducing the Probing Order Down to the Algebraic
Degree

In this section we start by showing that arbitrary t-probing security can always
be reduced to s-probing security where s is the algebraic degree of the function to
protect. Specifically, we give a method to construct a t-probing secure processing
of a degree-s function from its s-probing secure processing. Then, we apply our
method for the case s = 2, where a simple 2-probing secure processing can
be turned into an efficient t-probing secure evaluation of any (algebraically)
quadratic function.

752 C. Carlet et al.

4.1 General Case

Let n and m be two positive integers such that m � n and let h ∈ Bn,m be the
vectorial function whose processing must be secured at the order t = d − 1 for
some d. By definition of ϕ

(s)
h , for every tuple (a1, · · · , as) ∈ (Fn

2)s we have:

h
(s∑

i=1

ai

)
= ϕ

(s)
h (a1, a2, . . . , as) +

∑

I�[[1,s]]

h
(∑

i∈I

ai

)
. (8)

Iterating (8) we obtain the following theorem where, by convention, h(
∑

i∈∅ ai)
equals h(0). The proof is given in the full version of the paper.

Theorem 1. Let h ∈ Bn,m be a vectorial function of algebraic degree at most s.
Then, for every d � s we have:

h
(d∑

i=1

ai

)
=

∑

1�i1<···<is�d

ϕ
(s)
h (ai1 , . . . , ais) +

s−1∑

j=0

ηd,s(j)
∑

I⊆[[1,d]]
|I|=j

h
(∑

i∈I

ai

)
,

where ηd,s(j) =
(
d−j−1
s−j−1

)
mod 2 for every j � s − 1.

From Theorem 1 we get the following corollary.

Corollary 1. Let h ∈ Bn,m be a vectorial function of algebraic degree at most s.
Then, for every d > s we have:

h
(∑d

i=1
ai

)
=

∑s

j=0
μd,s(j)

∑
I⊆[[1,d]]

|I|=j

h
(∑

i∈I
ai

)
,

where μd,s(j) =
(
d−j−1

s−j

)
mod 2 for every j � s.

Corollary 1 states that, for any d, the evaluation of a degree-s function h ∈
Bn,m on the sum of d shares can be expressed as several evaluations of h on sums∑

i∈I ai with |I| � s. We can then reduce a (d − 1)-probing secure evaluation
of h to several (j − 1)-probing secure evaluations of h where j = |I| � s. Doing
so, each evaluation takes j = |I| shares (ai)i∈I and computes a j-sharing of
h(

∑
i∈I ai). Afterwards, one needs a secure scheme to combine the obtained

shares of all the h(
∑

i∈I ai), with I ⊆ [[1, d]] such that |I| � s and μd,s(|I|) = 1,
into a d-sharing of h(a).

The overall process is summarized in the following algorithm, where
SecureEval is a primitive that performs a (j − 1)-probing secure evaluation of
h on a j-sharing input for any j � s, and where SharingCompress is a primitive
that on input (xi)i�[[1,k]] produces a d-sharing of

∑k
i=1 xi for any k � d. The full

version of this paper includes the description of such SharingCompress algorithm
which achieves perfect t-probing security, and provide a security proof for the
overall method.

Algebraic Decomposition for Probing Security 753

Algorithm 1. Secure evaluation of a degree-s function
Input : a d-sharing (x1, x2, · · · , xd) of x ∈ F2n

Output: a d-sharing (y1, y2, · · · , yd) of y = h(x)

1 for I ⊆ [[1, d]] with |I| � s and μd,s(|I|) = 1 do
2 (rI,k)k�|I| ← SecureEval(h, (xi)i∈I)

3 (y1, y2, . . . , yd) ← SharingCompress
(
(rI,k)k�|I|,I⊆[[1,d]],μd,s(|I|)=1

)

4 return (y0, y1, . . . , yd)

Complexity. For every s and every d > s, the term μd,s(j) always equals 1
when j = s. On the other hand, whenever d ≡ s mod 2� with � = �log2 s + 1,
the term μd,s(j) equals 0 for every j < s. For the sake of efficiency, we shall
assume that such a value of d is always chosen for our method.3 Under this
assumption, the complexity of Algorithm1 is of

(
d
s

)
calls to SecureEval with s

shares and one call to SharingCompress from k shares to d shares where k = s
(
d
s

)
.

From the complexity of the sharing compression method, we obtain the following
operation count (where “#add” and “#rand” respectively denote the number of
additions and the number of sampled random values in the sharing compression).

#SecureEval #add #rand

Exact count
(

d
s

) (
s
(

d
s

)− d
)
(d + 1) 1

2

(
s
(

d
s

)− d
)
(d − 1)

Approximation
(

1
s!

)
ds

(
1

(s−1)!

)
ds+1

(
1

2(s−1)!

)
ds+1

4.2 Quadratic Case

For degree-2 (aka quadratic) functions h, it may be observed that ϕ
(2)
h (xi, xj)

equals h(xi + xj + r) + h(xi + r) + h(xj + r) + h(r) whatever (xi, xj , r) ∈ (
F2n

)3

(this holds since ϕ
(3)
h (xi, xj , r) = 0 for quadratic functions). This observation

and Theorem 1 imply the following equality for any integer d � s and any ri,j

values in F2n :

h
(∑

i∈[[1,d]]

xi

)
=

∑

1�i<j�d

(
h(xi + xj + ri,j) + h(xj + ri,j) + h(xi + ri,j) + h(ri,j)

)

+
∑

i∈[[1,d]]

h(xi) +
(
(d+ 1) mod 2

) · h(0). (9)

Equality (9) shows that the evaluation of a quadratic function in a sum of d
shares can be split into a sum of terms depending on at most two shares xi

and xj . In this particular case it is then possible to use an improved sharing
compression inspired from ISW, which gives4 Algorithm 2.

3 This is a weak assumption for low algebraic degrees. For instance s � 3 gives d ≡
s mod 4, s � 7 gives d ≡ s mod 8, etc. Note that the complexity comparison in
Sect. 7 does not take this assumption into account.

4 Note that in Step 4 the additions must be computed from left to right in order to
ensure the probing security.

754 C. Carlet et al.

Algorithm 2. Secure evaluation of a quadratic function
Input : the d-sharing (x1, x2, . . . , xd) of x in F2n

Output: a d-sharing (y1, y2, . . . , yd) of y = h(x)

1 for i = 1 to d do
2 for j = i + 1 to d do

3 ri,j ←$
F2n ; r′

i,j ←$
F2n

4 rj,i ← ri,j + h(xi + r′
i,j) + h(xj + r′

i,j) + h((xi + r′
i,j) + xj) + h(r′

i,j)

5 for i = 1 to d do
6 yi ← h(xi)
7 for j = 1 to d, j �= i do
8 yi ← yi + ri,j

9 if d is even then y1 = y1 + h(0)
10 return (y1, y2, . . . , yd)

This algorithm is actually already known from [8]. However the authors only
suggest to use it for the secure evaluation of a multiplication of the form x ·
�(x) where � is a degree-1 function (linear or affine). We show here that this
algorithm can actually be used to securely compute any degree-2 function. The
only difference is that one must add h(0) to one output share whenever d is even
(this term does not appear in [8] since by definition of h : x �→ x ·�(x) one always
get h(0) = 0). The probing security of Algorithm2 holds from the security proof
provided in [8].

Complexity. The following table summarizes the complexity of Algorithm2 in
terms of additions, evaluations of h, and sampled random values (we consider
the worst case of d being even). For comparison, we also give the complexity of
the ISW scheme for a single multiplication.

add # evalh # mult # rand

Algorithm 2 9
2

d(d − 1) + 1 d(2d − 1) - d(d − 1)

ISW multiplication 2d(d − 1) - d2 1
2
d(d − 1)

As explained in Sect. 2.3, for some values of n, a lookup table of 2n entries
might be affordable while a lookup table of 22n entries is not (typically for n = 8
giving 256 bytes vs. 64 kilobytes). In such a situation, the cost of one evaluation
of h is expected to be significantly lower than the cost of a multiplication. We
hence expect Algorithm 2 to be more efficient than the ISW scheme. Moreover,
as shown above, Algorithm 2 can be used to securely evaluate a degree-2 func-
tion with a polynomial representation possibly involving many multiplications,
whereas the ISW scheme securely evaluates a single multiplication.

Algebraic Decomposition for Probing Security 755

5 Another Method to Secure Low-Degree Functions

In this section we introduce another new scheme to secure the evaluation of
any function h ∈ Bn,m of given algebraic degree s. The method only involves
additions and evaluations of h (that may be tabulated depending on the con-
text). As the previous method, its complexity is exponential in s which makes
it suited for low-degree functions only. We start by introducing the core ideas of
our method with the simple case of a 2-probing secure evaluation (i.e. taking a
3-shared input) of a degree-2 function. Then, we show how to extend the app-
roach to achieve arbitrary probing security. The study is completed in the full
version of this paper where we generalize our result to functions of any algebraic
degree.

5.1 Two-Probing Security for Quadratic Functions

Let h ∈ Bn,m be a degree-2 function. We present hereafter a new method
to securely construct a 3-sharing (y1, y2, y3) of y = h(x) from a 3-sharing
(x1, x2, x3) of x. Since h is quadratic, its third-order derivatives are null (see
Definition 1) which implies the following equality for every x ∈ F2n and every
triplet (r1, r2, r3) ∈ F

3
2n :

h(x) =
∑

1�i�3

h(x + ri) +
∑

1�i<j�3

h(x + ri + rj) + h(x + r1 + r2 + r3), (10)

or equivalently h(x) =
∑7

i=1 h(x + e(i)), where e(i) denotes the scalar product
ωi · (r1, r2, r3) with ωi being the binary representation of the index i (e.g. ω3 =
(0, 1, 1)). We shall say in the following that the family (e(i))i∈[[1,7]] is 3-spanned
from (r1, r2, r3). Replacing x by the sum of its shares then leads to:

h(x1 + x2 + x3) =
7∑

i=1

h(x1 + x2 + x3 + e(i)). (11)

It may be checked that the tuple (hi)i∈[[1,7]] =
(
h(x + e(i))

)
i∈[[1,7]]

is a (7, 3)-

sharing of h(x) (this holds since the rank of (e(i))i∈[[1,7]] is at most 3). However,
a direct evaluation of the hi would yield an obvious second-order flaw. Indeed,
for every i ∈ {1, 2, 3}, the evaluation of at least one of the terms in (11) implies
the computation of x+ri which can be combined with ri to recover x. A natural
solution to avoid such a second-order flaw is to split the processing of each
x + e(i) into several parts, which actually amounts to randomly split each e(i)

into 3 shares e
(i)
1 , e

(i)
2 , e

(i)
3 . This leads to the following expression:

h(x) =
7∑

i=1

h
(
(x1 + e

(i)
1) + (x2 + e

(i)
2) + (x3 + e

(i)
3)

)
. (12)

It then just remains to securely turn the (7, 3)-sharing (hi)i∈[[1,7]] into a 3-
sharing (yi)i∈[[1,3]]. This is done by using the following sharing compression pro-
cedure specific to the case 7 to 3:

756 C. Carlet et al.

1. (m1,m2,m3) ←$
F

q
2n

2. y1 ← (h1 + m1) + (h4 + m2) + h7

3. y2 ← (h2 + m1) + (h5 + m3)
4. y3 ← (h3 + m2) + (h6 + m3)

5.2 Arbitrary Probing Security for Quadratic Functions

The idea in previous section can be extended to any security order d by starting
from the following equation which generalizes (12):

h(x) =
7∑

i1=1

7∑

i2=1

· · ·
7∑

it=1

h
(d∑

j=1

xj + e
(i1)
j + e

(i1,i2)
j + · · · + e

(i1,i2,··· ,it)
j

)
, (13)

where for every (j, q) ∈ [[1, d]] × [[1, t]] and every tuple (i1, · · · , iq−1) ∈ [[1, 7]]q−1

the family (e(i1,··· ,iq−1,iq)
j)iq∈[[1,7]] is 3-spanned from fresh random values. Let us

denote by h(i1,i2,··· ,it), with (i1, · · · , it) ∈ [[1, 7]]t, the terms in the right-hand sum
in (13). It may be checked that the family {h(i1,i2,··· ,it) | (i1, i2, · · · , it) ∈ [[1, 7]]t}
forms a (7t, 3t)-sharing of h(x). To turn the latter into a 3t-sharing (which leaves
us with a d-sharing of h(x) taking t = log3(d)) the sharing compression procedure
is recursively applied. This leads to the following recursive algorithm.

Algorithm 3. TreeExplore
Input: a d-sharing (z1, z2, . . . , zd) of z ∈ F2n , a depth parameter k
Output: a 3k-sharing of h(z)

1 if k = 0 then
2 return h(z1 + z2 + · · · + zd)

3 for j = 1 to d do
4 (e(1)j , e

(2)
j , . . . , e

(7)
j) ← RandSpan(3)

5 for i = 1 to 7 do
6 (h(i)

(w))w∈{1,2,3}k−1 ← TreeExplore(z1 + e
(i)
1 , z2 + e

(i)
2 , . . . , zd + e

(i)
d , k − 1)

7 for w in {1, 2, 3}k−1 do
8 (h(w||1), h(w||2), h(w||3)) ← SharingCompress(h(1)

(w), h
(2)
(w), . . . , h

(7)
(w))

9 return (h(w))w∈{1,2,3}k

A detailed and didactic description of the method together with a proof of
probing security is provided in the full version of this paper.

Complexity. The following table summarizes the complexity of Algorithm3 in
terms of additions, evaluation of h, and random generation over F2n .

#add #evalh # rand

Exact count 3d · 7t − 2d + 5
2
(7t − 3t) 7t d

2
7t − d

2
+ 3(7t−3t)

4

Approximation 3d2.77 d1.77 1
2
d2.77

Algebraic Decomposition for Probing Security 757

6 Adapting the CRV Method to Low Algebraic Degrees

This section proposes an adaptation of Coron-Roy-Vivek’s method (CRV) with
improved complexity for functions with given (low) algebraic degree. We start
by recalling the CRV method [9].

6.1 The CRV Method

In the following, we shall view functions over Bn,m as polynomials over F2n [x].
Let h(x) =

∑2n−1
j=0 ajx

j be the function that must be securely evaluated. To find
a representation of h(x) that minimizes the number of nonlinear multiplications,
CRV starts by building the union set L =

⋃�
i=1 Cαi

where Cαi
is the cyclotomic

class of αi defined as Cαi
= {2j · αi mod (2n − 1) ; j ∈ [[0,n − 1]]} such that

α1 = 0, α2 = 1, and αi+1 ∈ ⋃ i
j=1 Cαj

+
⋃ i

j=1 Cαj
for every i. The elements in

{xα; α ∈ L} can then be processed with only � − 2 nonlinear multiplications.5

The set L must satisfy the constraint L + L = [[0, 2n − 1]] and, if possible, the �
classes Cαi

in L are chosen such that |Cαi
| = n.

Let P ⊆ F2n [x] be the subspace spanned by the monomials xα with α ∈ L.
The second step of CRV consists in randomly generating t − 1 polynomials
qi(x) ∈ P and in searching for t polynomials pi(x) ∈ P such that

h(x) =
t−1∑

i=1

pi(x) × qi(x) + pt(x). (14)

This gives a linear system with 2n equations (one for each x ∈ F2n) and t × |L|
unknowns (the coefficients of the pi). Such a system admits a solution for every
choice of h if its rank is 2n, which leads to the necessary condition t × |L| � 2n.
Finding such a solution provides a method to evaluate h involving � + t − 3
multiplications: � − 2 multiplications to generate the monomial (xj)j∈L, from
which pi(x) and qi(x) are computed as linear combinations for every i � t, and
t − 1 multiplications to evaluate (14). In order to optimize the number of linear
operations, the polynomials pi can be represented as pi(x) =

∑
αj∈L �i,j(xαj)

where the �i,j are linearized polynomials (i.e. polynomials of algebraic degree 1)
that might be tabulated.

Complexity. Assuming that all the cyclotomic classes in L except C0 have
maximum size n (i.e. |L| = 1 + n × (� − 1)) and that the lower bound t × |L| �
2n is reached, it is argued in [9] that the complexity of CRV is minimized for
t = �√2n/n� and � = �√2n/n − 1/n + 1�. Moreover, it is empirically shown
in [9] that these lower bounds are often achieved for n � 12. Using ISW to
secure nonlinear multiplications we get the following complexity (where #eval
LP denotes the number of evaluations of a linearized polynomial):

5 For α1 = 0 and α2 = 1 the building requires no nonlinear multiplication.

758 C. Carlet et al.

#add #eval LP #rand #mult

2d2(t + � − 3) + d(t� − 2t − 3� + 5) d�t d(d−1)(t+�−3)
2

d2(t + � − 3)

Remark 4. Some of the � − 2 nonlinear multiplications used to generate the set
of powers {xα;α ∈ L} might take the form xαi ·(xαi)2

j

with αi ∈ L. In that case,
the CPRR scheme (Algorithm 2) may be preferred to ISW. Indeed, as discussed
in Sect. 4.2, this algorithm may be more efficient than ISW when x �→ x ·x2j can
be tabulated whereas (x, y) �→ x ·y cannot. The same observation applies for the
tweaked CRV method proposed in the next section for low-degree functions. In
the complexity comparisons discussed in Sect. 7, this optimization is used (we
have actually observed that it was always possible to entirely build L based on
� − 2 multiplications of the form x �→ x · x2j).

6.2 The CRV Method for Degree-s Functions

We propose here an adaptation of the CRV method for functions with (low) alge-
braic degree s. For the generation of L, the constraint becomes L + L = {α ∈
[[0, 2n − 1]] ; HW(α) � s}. When s is even, we impose the additional condition
that every cyclotomic class Cα ⊆ L verifies HW(α) � s

2 (the odd case is addressed
hereafter). Then, as in the original method, we randomly generate t − 1 polyno-
mials qi(x) in the subspace P (i.e. the subspace of polynomials spanned by the
monomials xj with j ∈ L), and we try to solve a linear system obtained from
(14). The difference is that the obtained system is of rank at most

∑s
r=0

(
n
r

)
,

i.e. the maximum number of non-null coefficients in a degree-s function. Here
again if this maximal rank is achieved, then the system has a solution for every
target vector i.e. for every degree-s function h(x). The necessary condition to
get a full-rank system then becomes t × |L| �

∑s
r=0

(
n
r

)
. Assuming that the

cyclotomic classes in L except C0 have maximum size n, this gives

t �
∑s

r=0

(
n
r

)

n(� − 1) + 1
.

If this bound is reached, the number t + � − 3 of nonlinear multiplications is
minimized by taking t = (� − 1) = (

∑s
r=0

(
n
r

)
/n)1/2, and we get t + � − 3 =

2(
∑s

r=0

(
n
r

)
/n)1/2 − 2. When s is odd, the method is similar but L must contain

some cyclotomic classes Cα such that HW(α) � s+1
2 and the qi are constructed

from powers xα such that HW(α) � s−1
2 (this ensures that the algebraic degree

of pi(x) · qi(x) is at most s).
The complexity for this method is the same as for CRV (see table in the

previous section), but for low-degree functions, the obtained parameters (t, �)
are significantly smaller. The obtained number of nonlinear multiplications are
compared in the following table.

Algebraic Decomposition for Probing Security 759

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Original CRV 2 4 5 7 10 14 19

CRV for s = 2 2 2 2 3 3 3 3

CRV for s = 3 2 3 4 5 5 6 7

7 Comparison

In this section, we first study the practical complexity of the methods introduced
in Sects. 4, 5, and 6 to secure functions of low algebraic degrees (specifically of
degrees s = 2 and s = 3). Then, we compare our algebraic decomposition method
exposed in Sect. 3 with the CRV method (which is the best known alternative).
The comparisons are done on specific examples where the dimension n fits with
classical symmetric ciphers’ s-boxes (i.e. n ∈ {4, 8}) and the number d of shares
ranges over [[2, 9]]. An asymptotic analysis w.r.t parameters n, d, and s, is further
provided in the full version of the paper.

Low-Degree Functions. For the case s = 2, we compare Algorithm 2 (general-
ization of the CPRR scheme – see Sect. 4), Algorithm 3 (aka TreeExplore – see
Sect. 5), and the tweaked CRV method for low-degree functions (aka CRV-LD –
see Sect. 6). For the case s = 3, our first method (Algorithm1) must be combined
with a third-order secure evaluation method (primitive SecureEval) of degree-3
functions. For such a purpose, we either use Algorithm3 (TreeExplore) or the
tweaked CRV method (CRV-LD). The exact operations counts for these methods
are plotted in Figs. 1 and 2.6 In our comparisons, we assumed that an addi-
tion, a table lookup and a random generation of n bits have the same cost 1.7

For the multiplication, we considered various possible costs C. The case C = 1
corresponds to a device where the multiplication of two elements in F2n can be
precomputed and stored in a table, hence taking n22n bits of memory. When this
is not possible (in a constraint environment and/or for too large values of n),
the multiplication must be implemented and its cost essentially depends on the
device architecture.8 We believe to encompass most realistic scenarios by consid-
ering C ∈ {5, 10, 20}. Note that for the case s = 3, we used the improved CRV
method based on CPRR for the generation of powers as suggested in Remark 4.
We did not use it for s = 2 since a CPRR multiplication is similar to one call to
Algorithm 2.

Case (s = 2). Figure 1 clearly illustrates the superiority of Algorithm2 for the
secure evaluation of degree-2 functions at any order. The ranking between our

6 Note that when d � s, Algorithm 1 is not specified and therefore cannot be applied.
7 In the context of side-channel countermeasures, generating n random bits usually

amounts to read a n-bit value in a TRNG register.
8 In [12], the authors explain that the processing of a field multiplication with the CPU

instructions set requires between 20 and 40 cycles and they give some examples of
implementations.

760 C. Carlet et al.

2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

number of shares

el
em

en
ta

ry
op

er
at

io
n
s

Comp lexity for n = 4 and s = 2

CRV−LD C=1
CRV−LD C=5
CRV−LD C=10
CRV−LD C=20
Alg.3 (TreeExplore)
Alg.2

2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

number of shares

el
em

en
ta

ry
op

er
at

io
n
s

Comp lexity for n = 8 and s = 2

CRV−LD C=1
CRV−LD C=5
CRV−LD C=10
CRV−LD C=20
Alg.3 (TreeExplore)
Alg.2

Fig. 1. Secure evaluation of quadratic functions

second method (Algorithm 3 aka TreeExplore) and the tweaked CRV method
(CRV-LD) depends on the sharing order d and the multiplication cost ratio
C. For high values of C (i.e. when the multiplication cannot be tabulated),
TreeExplore outperforms the tweaked CRV method. It is particularly interest-
ing for a sharing order d lower than 4. However, due to its tree structure of
depth log3(d), it becomes slower as soon as d reaches 4. Moreover for higher
values of d, it would not be competitive since its asymptotic complexity is more
than quadratic in the sharing order.

Case (s = 3). Fig. 2 show the superiority of the tweaked CRV method for sharing
orders greater than 3 and even for costly multiplications (i.e. C = 20). For small
sharing orders d ∈ {2, 3}, Algorithm 3 (TreeExplore) is competitive (for the
same reasons as for the degree-2 case). It appears that the use of our first method
(Algorithm 1) for lowering the sharing order down to the algebraic degree is never
interesting in this setting. We however think that this is not a dead-end point
for this method and that the ideas used to obtain Algorithm2 from the general
description of the method could be used to get an improved version for the cubic
case as well. We let this question open for further research on this subject.

High-Degree Functions. We now consider the algebraic decomposition
method described in Sect. 3 and compare it to the CRV method. The following

2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

number of shares

el
em

en
ta

ry
op

er
at

io
n
s

Comp lexity for n = 4 and s = 3

CRV−LD with CPRR C=1
CRV−LD with CPRR C=5
CRV−LD with CPRR C=10
CRV−LD with CPRR C=20
TreeExplore
Alg.1 + TreeExplore
Alg.1 + CRV−LD C=1
Alg.1 + CRV−LD C=5
Alg.1 + CRV−LD C=10
Alg.1 + CRV−LD C=20

2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

number of shares

el
em

en
ta

ry
op

er
at

io
n
s

Comp lexity for n = 8 and s = 3

CRV−LD with CPRR C=1
CRV−LD with CPRR C=5
CRV−LD with CPRR C=10
CRV−LD with CPRR C=20
TreeExplore
Alg.1 + TreeExplore
Alg.1 + CRV−LD C=1
Alg.1 + CRV−LD C=5
Alg.1 + CRV−LD C=10
Alg.1 + CRV−LD C=20

Fig. 2. Secure evaluation of cubic functions

Algebraic Decomposition for Probing Security 761

table summarizes the number (�−2)+(t−1) of secure nonlinear multiplications
involved in CRV, as well as the numbers r and t of secure evaluations of degree-s1
functions and degree-s2 functions in the algebraic decomposition method.

This Paper CRV
#eval-2 #eval-3 (s1, s2) r t #mult � − 2 t − 1

n = 4
3 - (2, 2) 1 2

2 1 11 1 (2, 3) 1 1
- 2 (3, 3) 1 1

n = 6
5 - (2, 2) 2 3

5 3 21 2 (2, 3) 1 2
- 3 (3, 3) 1 2

n = 8
11 - (2, 2) 2 9

10 5 52 3 (2, 3) 2 3
- 4 (3, 3) 1 3

2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

10
5

number of shares

el
em

en
ta

ry
op

er
at

io
n
s

Comp lexity for n = 4

CRV−CPRR C=1
CRV−CPRR C=5
CRV−CPRR C=10
CRV−CPRR C=20
AlgDecomp (2,2) + CPRR
AlgDecomp (3,3) + TreeExplore
AlgDecomp (2,3) + CPRR & TreeExplore

2 3 4 5 6 7 8 9
10

2

10
3

10
4

10
5

number of shares

el
em

en
ta

ry
op

er
at

io
n
s

Comp lexity for n = 8

CRV−CPRR C=1
CRV−CPRR C=5
CRV−CPRR C=10
CRV−CPRR C=20
AlgDecomp (2,2) + CPRR
AlgDecomp (3,3) + TreeExplore
AlgDecomp (2,3) + CPRR & TreeExplore

Fig. 3. Secure evaluation of nonlinear functions (arbitrary degree)

Figure 3 gives the overall cost of the CRV method and of our algebraic decom-
position method for various values of n, d and C (these are the cross marked blue
to green curves). We used the improved version of CRV suggested in Remark 4
(i.e. using CPRR multiplications for the first phase and ISW multiplications for
the second phase). For our method, we considered quadratic decomposition (i.e.
s1 = s2 = 2) combined with Algorithm2 for secure quadratic evaluations, as
well as cubic decomposition (s1 = s2 = 3) with TreeExplore for secure cubic
evaluation. We further considered hybrid decomposition combined with both
Algorithm 2 and TreeExplore.

We observe that the quadratic decomposition is always more efficient than
the cubic and hybrid decompositions. This is due to the gap of efficiency between
the secure quadratic evaluation (Algorithm 2) and the secure cubic evaluation
(TreeExplore). Compared to CRV, the quadratic decomposition offers some
efficiency gain depending on the multiplication cost. For n = 4, we observe
that it is more efficient than CRV whenever a multiplication takes at least 10
elementary operations. For n = 8, the quadratic decomposition is better than

762 C. Carlet et al.

CRV whenever the multiplication cost exceeds 5 elementary operations. This
shows that our algebraic decomposition approach is the best known method
for the probing secure evaluation of nonlinear functions (such as s-boxes) in a
context where the field multiplication is a costly operation.

References

1. Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 486–510.
Springer, Heidelberg (2015)

2. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part I. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015)

3. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 ×3 and 4 ×4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

5. Carlet, C.: Vectorial boolean functions for cryptography, Chap. 9. In: Crama,
Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer
Science, and Engineering, pp. 398–469. Cambridge University Press, Cambridge
(2010)

6. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012)

7. Coron, J.-S.: Fast Evaluation of Polynomials over Finite Fields and Application to
Side-channel Countermeasures. Personnal Communication, February 2014

8. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014)

9. Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014)

10. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

11. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analy-
sis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011)

12. Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked S-boxes processing – a
step forward –. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS,
vol. 8469, pp. 251–266. Springer, Heidelberg (2014)

13. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

14. Kim, H.S., Hong, S., Lim, J.: A fast and provably secure higher-order masking of
AES S-box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
95–107. Springer, Heidelberg (2011)

Algebraic Decomposition for Probing Security 763

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implemen-
tations for all 4-bit S-boxes. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 91–108. Springer, Heidelberg (2014)

18. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

19. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

20. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

21. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptology 24(2), 322–345 (2011)

22. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

23. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

24. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

25. Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking
scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol.
8086, pp. 417–434. Springer, Heidelberg (2013)

26. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, p. 239. Springer, Heidelberg (2001)

Consolidating Masking Schemes

Oscar Reparaz(B), Begül Bilgin, Svetla Nikova, Benedikt Gierlichs,
and Ingrid Verbauwhede

ESAT/COSIC and iMinds, KU Leuven, Leuven, Belgium
oscar.reparaz@esat.kuleuven.be

Abstract. In this paper we investigate relations between several mask-
ing schemes. We show that the Ishai–Sahai–Wagner private circuits
construction is closely related to Threshold Implementations and the
Trichina gate. The implications of this observation are manifold. We
point out a higher-order weakness in higher-order Threshold Implemen-
tations, suggest a mitigation and provide new sharings that use a lower
number of input shares.

Keywords: Masking · Private circuits · Ishai–Sahai–Wagner · Thresh-
old implementations · Trichina gate · Higher-order DPA

1 Introduction

Side-channel cryptanalysis allows to break implementations of mathematically
secure cryptographic algorithms running on embedded devices. Shortly after the
introduction of a particularly powerful branch of side-channel attacks, namely
Differential Power Analysis (DPA) by Kocher et al. [15], different countermea-
sures were proposed. An especially popular countermeasure used today is mask-
ing, introduced in [7,12], mainly due to its theoretical soundness. Contrary to
other heuristic, ad-hoc approaches, masking carries a proof of security [7]. A dth-
order secure masking works by splitting every sensitive variable (i.e. that depends
on the key) into s shares, such that an adversary probing at most d values during
the computation gets no information about any sensitive variable. This adver-
sarial model is relevant in practice since the adversary is not weaker than a
dth-order DPA attack [8,11]. The advantage of a properly masked implementa-
tion is that it forces the adversary to use higher-order DPA attacks in order to
break it. Higher-order DPA attacks are substantially harder to launch, both in
terms of data complexity and computational resources [7,19,24]. Masking, how-
ever, comes with a cost. Performing operations in the masked domain increases
the computational requirements on the target platform (area, time and random-
ness, among others), thus in practice, it is crucial to design countermeasures that
have a limited cost impact.

In this paper, we focus on Boolean masking, i.e. the intermediates are split
additively in a given finite field. The difficulty is then reduced to masking func-
tions that are not linear with respect to addition.
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 764–783, 2015.
DOI: 10.1007/978-3-662-47989-6 37

Consolidating Masking Schemes 765

1.1 Related Works

There have been several efforts for constructing masking schemes — algorithms
to compute on masked data. Some early development came from practitioners
which produced designs mostly oriented to fit in real-world constraints: Trichina
presents in [29] a masked AND gate resistant to first-order DPA attacks (first-
order secure masking).

A generic algorithm for the masked AND computation at any security level is
given by Ishai, Sahai and Wagner (here ISW) in [14], together with a convenient
theoretical framework to prove the security of such a scheme. It is, however, well
known that early theoretical concepts of masking schemes rely on assumptions
that do not necessarily hold in practice. This is true for both the hardware and
the software side. A common problem for the latter is that Hamming distance
leakage, which is typically visible in memory-element transitions, may invalidate
the assumption that leakages from each share are independent [1]. For the for-
mer, glitches (in static CMOS, a spurious transition of nodes in a combinational
circuit within one clock cycle, resulting from different arrival times of the input
signals) were shown to be a source of exploitable leakage [17,18], enabling suc-
cessful DPA attacks against theoretically sound masked implementations due to
unsatisfactory leakage modeling.

The mitigation of glitches is a well-studied problem in digital design, since
they are not only inconvenient from a security point of view. Glitches are use-
less transitions that consume extra energy and thus digital designers tend to
minimize them to achieve low-power and high-speed circuits. There are strate-
gies to reduce glitches (e.g., balancing the path delay using combinational tree-
like structures) or fully eliminate them (e.g. using dynamic logic styles, such as
Domino or dynamic differential such as SABL [27] or WDDL [28]).

Alternatively, a specific strand of masking schemes, namely Threshold Imple-
mentations (TIs), were introduced in [21] to address the aforementioned model
limitations. TIs are designed to deal with non-idealities in hardware (glitches)
at a higher level of abstraction, and can provide strong security guarantees that
may be relevant in practice. While ISW requires first to decompose a circuit into
(exclusively) AND, XOR and NOT gates and then masking those, TI has the
advantage that any function can be shared directly, which typically results in
more compact designs. Recently TIs were extended to provide not only first-order
but also higher-order security [3].

1.2 Our Contribution

The discussion provided in this paper is threefold. First, we point out the simi-
larities and differences between ISW, TI and the Trichina gate when the function
to mask is an AND gate. We gain deeper understanding about masking schemes
from these relations and use it to provide a generalized masking scheme (Sect. 3).

In the second part of the paper, we show how this generalization is mutually
beneficial to all three masking schemes mentioned above. We show a weakness
in the recently proposed higher-order extension of TI and suggest a fix using

766 O. Reparaz et al.

ideas from the generalized scheme in Sect. 4. In addition, we discuss how ISW
and the Trichina masked AND-gate can be implemented securely in logic styles
that glitch.

Finally, we focus on constructive applications. In Sect. 5.1, we discuss under
which conditions a TI function provides security against dth-order attacks using
only d + 1 shares instead of the usual td + 1 bound. We end the paper by
describing how ideas from TI could be inherited in software-oriented schemes to
provide security in a distance-based leakage model (Sect. 5.2).

2 Preliminaries

We begin with standard definitions and descriptions of the masking schemes that
we consider. Lower-case characters refer to elements in a field with character-
istic two. An element a is split into s shares ai, where i ∈ 1, 2, . . . , s by means
of Boolean masking. Namely, without loss of generality s − 1 random shares
a1, . . . , as−1 are drawn from the uniform distribution, then as is calculated such
that a =

⊕
s ai. Bold characters refer to a valid shared vector a = a1, . . . , as. We

use the term s-share representation (s-sharing) of a to emphasize the number of
shares. Note that the sharing a generated as detailed above is uniform [4]. More-
over, the sharing āi = a1, . . . , ai−1, ai+1, . . . , as is independent of the unshared
value a for any choice of i. It is hence an (s, s) secret sharing.

We use upper-case characters to denote functions. For a given unshared func-
tion b = F (a), we generate a shared vector F = F1, . . . , Fs of component func-
tions Fi in order to perform the shared calculation. The sharing F is correct if
b =

⊕
s bi for bi = Fi(a). The algebraic degree of a function is denoted with t.

Adversarial Model. We use d probing as our adversarial model which we define as
follows. The adversary is allowed to probe d wires in the circuit within a certain
time window. Each probed wire g calculating a function G gives information
about all the inputs of G up to the latest synchronization point1. This definition
directly implies that the adversary can derive all the intermediate values during
the computation of G and hence the output of G. To clarify, let us refer to Fig. 1.
An attacker probing the output of the function G (that is, wire g) can observe
all the inputs to G up to, and including, reg2; can generate all the intermediate
values used during the calculation of G (including the outputs of G that are
stored in reg3); but can not directly learn all the values stored in reg1 or any
intermediate values occurring during the calculations of each Fi.

We note that this is a theoretical model stronger than a real-world attacker
since a real-world attacker can only get a subset of the mentioned information.
Moreover, it is slightly different than the conventional d-probing model [14].
Nevertheless, it is advantageous since being able to see the inputs of the gates
used during the calculation implies the ability to observe real world effects such
as glitches. Hence, we gain the flexibility to work also with non-ideal (glitchy)
1 One of the many ways of synchronization is storing elements in registers which we

inherit throughout this paper without loss of generalization.

Consolidating Masking Schemes 767

·· ·

F1

G

reg2

reg3

·· ·

reg1

F2

Fs

· ··· · · g

f1

f2

fs

f ′
1

f ′
2

f ′
s

Fig. 1. Exemplary circuit to aid the explanation of the adversarial model adopted in
this paper. Fi and G are combinational logic blocks, regi are register stages and fi and
g are wires that compute the Fi (resp. G) functions.

gates. If the usage of ideal gates is assumed, working with the conventional model
is typically sufficient.

This model matches quite nicely with dth-order DPA attacks, which consider
a noisy function of intermediates’ leakage [11]. There are certainly other adver-
sarial models that are even more powerful, in which the attacker has the ability
to adaptively move the probes between time periods (but not within a time
period). We note that this “adaptive-probes” model is stronger than dth-order
DPA model and we do not consider moving probes in this paper.

Require: s-shares a and b
Ensure: s-shares c satisfying c = ab

for i from 1 to s do
for j from i + 1 to s do

zij ← rnd()

zji ← (zij ⊕ aibj) ⊕ ajbi
end for

end for
for i from 1 to s do

ci ← aibi
for j from 1 to s, j �= i do

ci ← ci ⊕ zij
end for

end for

Fig. 2. ISW algorithm.

a1b1 z12 z13

z23a2b2

a3b3

c1 = a1b1 + z12 + z13

(z12 + a1b2)
+a2b1

c2 = a1b1+

c3 = a3b3+

+(z12 + a1b2) + a2b1

+(z13 + a1b3) + a3b1

+z23

+(z12 + a1b2) + a2b1

(z13 + a1b3)
+a3b1

(z23 + a2b3)
+a3b2

Fig. 3. Intermediate state of the ISW com-
putation for s = 3.

Ishai–Sahai–Wagner Scheme. Private circuits [14] provide a procedure for com-
putation on masked data. They give a construction for NOT and AND gates,
and prove the security against d probes of any circuit composed of these secure
gates (“gadgets”) which are in turn built from logic gates that do not glitch.
To compute c = F (a, b) = ab while providing security against d probes, ISW

768 O. Reparaz et al.

takes s = 2d+ 1 shares a and b of each input and consumes
(
s
2

)
bits of random-

ness. We exemplify the computation of a masked AND gate providing security
against adversaries using one (d = 1, s = 3) and two (d = 2, s = 5) probes in
Eqs. (1), (2) and (3) respectively. An intermediate state of the computation is
shown in Fig. 3.

z21 = (z12 ⊕ a1b2) ⊕ a2b1,

z31 = (z13 ⊕ a1b3) ⊕ a3b1,

z32 = (z23 ⊕ a2b3) ⊕ a3b2,

c1 = a1b1 ⊕ z12 ⊕ z13,

c2 = a2b2 ⊕ z21 ⊕ z23,

c3 = a3b3 ⊕ z31 ⊕ z32.

(1)

First, three (resp. ten) bits of randomness zij where 1 ≤ i < j ≤ s are drawn
i.i.d. uniformly random. Then the intermediates zji are computed as shown in
the left column of Eq. (1) (resp. Eq. (2)). The last step xors the intermediates
zij and the products aibi to compute the s output shares c (right column of
Eqs. (1) and (3) respectively).

z21 = (z12 ⊕ a1b2) ⊕ a2b1,

z41 = (z14 ⊕ a1b4) ⊕ a4b1,

z32 = (z23 ⊕ a2b3) ⊕ a3b2,

z52 = (z25 ⊕ a2b5) ⊕ a5b2,

z53 = (z35 ⊕ a3b5) ⊕ a5b3,

z31 = (z13 ⊕ a1b3) ⊕ a3b1,

z51 = (z15 ⊕ a1b5) ⊕ a5b1,

z42 = (z24 ⊕ a2b4) ⊕ a4b2,

z43 = (z34 ⊕ a3b4) ⊕ a4b3,

z54 = (z45 ⊕ a4b5) ⊕ a5b4.

(2)

c1 = a1b1 ⊕ z12 ⊕ z13 ⊕ z14 ⊕ z15,

c2 = a2b2 ⊕ z21 ⊕ z23 ⊕ z24 ⊕ z25,

c3 = a3b3 ⊕ z31 ⊕ z32 ⊕ z34 ⊕ z35,

c4 = a4b4 ⊕ z41 ⊕ z42 ⊕ z43 ⊕ z45,

c5 = a5b5 ⊕ z51 ⊕ z52 ⊕ z53 ⊕ z54.
(3)

Extensions to higher orders are similarly generated using the algorithm in
Fig. 2.

It is well known that the ISW algorithm can work in larger finite fields by
building upon field multiplications instead of AND gates. In the case of AES,
there is a significant performance gain if ISW operates in GF(28), due to the
algebraic structure of the AES S-box [25]. We refer to [14] for a variant of this
method using s = d + 1 shares.

Threshold Implementations. TI provides provable security against dth-order DPA
even in a circuit with glitches according to [3]. In addition, it is also advantageous
since any degree t function can be securely implemented using at least s ≥ td+1
shares.

The security of a single function relies on the satisfaction of dth-order non-
completeness: any combination of up to d component functions Fi of F must
be independent of at least one input share. It is shown that such a sharing can
always be constructed using sin = td + 1 and sout =

(
sin
t

)
shares. Examples for

the function d = F (a, b, c) = c ⊕ ab are given in Eqs. (4) and (5) for d = 1 and
d = 2 respectively.

d1 = c2 ⊕ a2b2 ⊕ a1b2 ⊕ a2b1,

d2 = c3 ⊕ a3b3 ⊕ a3b2 ⊕ a2b3

d3 = c1 ⊕ a1b1 ⊕ a1b3 ⊕ a3b1.

(4)

Consolidating Masking Schemes 769

Notice that sout > sin for d > 1. In order to avoid further increase of the
number of shares when several functions are cascaded, some of the output shares
are typically xored. It is important that this reduction is performed only after the
sout-sharing d is stored in the registers in order to satisfy the non-completeness
property and to avoid glitches depending on all shares of a variable.

d1 = c2 ⊕ a2b2 ⊕ a1b2 ⊕ a2b1,

d3 = c4 ⊕ a4b4 ⊕ a1b4 ⊕ a4b1,

d5 = a2b3 ⊕ a3b2,

d7 = c5 ⊕ a5b5 ⊕ a2b5 ⊕ a5b2,

d9 = a3b5 ⊕ a5b3,

d2 = c3 ⊕ a3b3 ⊕ a1b3 ⊕ a3b1,

d4 = c1 ⊕ a1b1 ⊕ a1b5 ⊕ a5b1,

d6 = a2b4 ⊕ a4b2,

d8 = a3b4 ⊕ a4b3,

d10 = a4b5 ⊕ a5b4.

(5)

In order to provide security when several functions are cascaded, (i.e. the out-
put of F is used as the input to another shared nonlinear-function G), the shared
function and its output should satisfy uniformity [4]. Several methods to achieve
uniformity have been proposed [5,6,16,22]. It is advised to use re-masking [4,20]
in case these methods do not provide a solution.

When a single AND gate is considered, it has been shown that there exists no
3-sharing satisfying both uniformity and first-order non-completeness [5]. There-
fore, the output shares of the 3-share AND gate must be re-masked (refreshed).
Moreover, the sharing in Eq. (4) considering an AND and XOR gate instead of
a single AND gate satisfies all TI properties.

Trichina AND-gate. Unlike ISW and TI which can be applied both at the algo-
rithm and at the gate level, Trichina [29] investigates how to implement a masked
AND gate c = ab securely strictly at the gate level. The construction, which is
described in Eq. (6), requires two 2-share inputs and uses 1-bit extra randomness
z12 to generate a 2-share output. The security relies strictly on the order of the
operations to avoid unmasking certain bits, on the ideality of the cells and on
the assumption that the sharing a of a is independent from b.

c1 = (((z12 ⊕ a1b2) ⊕ a2b1) ⊕ a2b2) ⊕ a1b1, c2 = z12. (6)

3 Conciliation

In this section we mainly describe a generalized masking scheme and argue its
security. In order to do that, we first relate the ISW scheme with TI and the
Trichina gate using elementary transformations. We then use ingredients from
all three schemes in our generalized construction. As a case study, we consider
a first-order sharing of an AND gate.

3.1 From ISW to TI

Consider the ISW construction with s = 3 input shares, providing first-order
security as depicted in Fig. 4. It is equivalent to the computation in Eq. (1) and
to Fig. 2. In Fig. 4, the computation flows from the outside towards the center.

770 O. Reparaz et al.

It begins with deriving all the cross products aibj . Then three random values zij
are added to some of the cross products. The terms are finally xored together in
three groups to generate the output shares ci.

In the following, we perform several elementary transformations on this cir-
cuit to arrive to a typical re-masked 3-share TI of an AND gate.

Fig. 4. Original ISW scheme. Fig. 5. After first transformation.

First Transformation: Moving Random Bits. Delaying the injection of random-
ness using the random bits zij closer to the center (towards the end of the
calculation) as depicted in red yields the construction in Fig. 5. Of course, this
operation preserves the correctness of the output. It is already possible to recog-
nize a refreshing operation in the inner ring where z12, z13 and z23 are involved.
Note that the security of this intermediate construction highly depends on the
order of computation of the XOR gates and the ideality (glitching behavior) of
the gates.

Second Transformation: Moving AND Gates. The next modification transforms
the circuit of Fig. 6 into Fig. 7. It simply moves around the two red AND gates
a1b3 and a3b1 together with the XOR gate from the upper to the lower-left
branch.

This second transformation also preserves the correctness at the output.
Notice that after this transformation each branch of the circuit sees at most
two shares of each input. For example, the upper branch sees only a2, a3, b2 and
b3. We can absorb the computation from each branch (3 ANDs and 2 XORs)
into its respective component function Fi as shown in Eq. (7).

F1(a1, a2, b1, b2) = a2b2 ⊕ a1b2 ⊕ a2b1,

F2(a2, a3, b2, b3) = a3b3 ⊕ a2b3 ⊕ a3b2,

F3(a1, a3, b1, b3) = a1b1 ⊕ a3b1 ⊕ a1b3.

(7)

The reader will recognize that the resulting sharing F is a TI (satisfying
first-order non-completeness) followed by a refreshing (resulting from the first

Consolidating Masking Schemes 771

Fig. 6. Before second transforma-
tion.

Fig. 7. After second transformation.

transformation.) Note that one could also equivalently see this refreshing as an
addition with the uniform shares of the constant value 0.

The security of this construction follows from the fact that it is a TI, followed
by a refreshing. In particular, this construction is secure even in the presence of
glitches. Therefore, we link the s = 3 ISW scheme to first-order TI.

3.2 From ISW to the Trichina AND-gate

In Fig. 8, we draw the ISW computation2 of an AND gate for s = 2. In Fig. 9,
we have the Trichina AND gate. Similar to Sect. 3.1, we can transform the ISW
construction s = 2 to the Trichina gate by rearranging the term a1b1. It is
noteworthy that the Trichina gate resembles a simplified ISW, and thus can be
seen as the practitioners version.

Fig. 8. ISW with s = 2. Fig. 9. Trichina AND gate.

2 We stress that ISW with s = 2 is neither strictly defined nor proven secure in the
ISW simulation model. We are extending the algorithm in Fig. 2 in a straight forward
way to any s.

772 O. Reparaz et al.

3.3 Generalizing and Inducing a Structure

We can generalize the masked AND-gate transformations from Sects. 3.1 and 3.2
to the general case of higher orders. In addition, we can construct variants that
compute logic gates with more than two inputs or more sophisticated functions.

In order to induce a structure to the mentioned generalization, we decompose
the resulting construction into four layers as exemplified in Figs. 10 and 11 for
first- and second-order security respectively. Specifically, we notice a non-linear
layer N , followed by a linear layer L and a refreshing layer R. In certain cases
where we want to reduce the number of shares, we add a linear compression
layer C. Below we detail the functionality of each layer.

Fig. 10. First-order secure (s =
3) after transformation.

Fig. 11. Second-order secure
(s = 5) after transformation.

The Non-linear Layer N . This layer is responsible for the bulk of the com-
putation, corresponding to the cross products aibj . For example, in the
first-order secure construction of a 3-share 2-input AND gate, N (a,b) =
(a1b1, a1b2, . . . , a3b3) maps 6 input bits to 9 output bits (aibj). Note that the set
of cross products calculated in this layer is defined by the number of shares and
the function itself.3

In order to generalize the construction such that a function other than c = ab
is computed (such as d = abc, d = a ⊕ bc, d = a ⊕ bc ⊕ abc), N needs to be
modified accordingly. To be specific, all the shared terms (cross products and
linear terms) should be placed in N to be used in the following steps.

The Linear Layer L. This layer is an XOR net that reduces the number of shares
without modifying the unshared value. In the AND-gate example, it maps 9 input
bits (output of N) to 3 output bits for the first-order case and 25 input bits to
10 output bits in the second-order case. The linear layer L of TI is responsible
for preserving non-completeness. Failure to achieve non-completeness can cause

3 It is possible to add other terms to N (as long as they are inserted an even number
of times), such as virtual variable pairs [6], in order to increase the flexibility for
generating a uniform sharing.

Consolidating Masking Schemes 773

sensitive information leakage in a glitchy circuit as in the case of the original
ISW scheme (see Sect. 4.2).

The reduction of the number of shares performed by L partially limits the
exponential blow-up of shares otherwise caused by the non-linear layer N alone.
We point out that the output of N is already a valid, non-complete sharing
when each cross product is considered as an output share. However, cascading
several sharings without L increases the number of shares rapidly, making such
an implementation impractical except for circuits with very shallow logic depth.

The Refreshing Layer R. This layer is applied in order to re-mask the output
of L. It is shown in several prior works on first-order TI that this layer can be
avoided if the output of L already satisfies uniformity. However, R is critical in
order to provide higher-order security as will be discussed in Sect. 4.1. In ISW,
each output of each masked AND gate is refreshed, which clearly increases the
randomness requirements compared to the generalized sharing of a more complex
function with several terms (such as d = a ⊕ bc ⊕ abc).

The Compression Layer C. While designing the L layer, there is a natural tension
between two desirable properties, namely satisfying dth-order non-completeness
and having a small number of output shares. Normally, one designs L to have
a small number of output shares yet satisfying dth-order non-completeness. One
example of this issue is the second-order masking of an AND-gate depicted in
Fig. 11, where the number of shares at the output of L (10 shares) is considerable
larger than the number of shares of each input variable (5-share a and b).

If it is desired to decrease the number of output shares further, the com-
pression layer C is applied. This layer is composed of XOR gates only. In order
to satisfy non-completeness and avoid glitches causing leakage of more than the
intended number of shares, it is crucial to isolate the R and C layers using
registers.

Note that in typical TIs, the layers N and L are combined and absorbed
into the component functions without registers between these layers as drawn in
Fig. 11. An additional challenge is to design L so that it simultaneously satisfies
non-completeness and uniformity.

3.4 Security Arguments for Generalized Scheme

In this section, we argue the security of the generalized structure. We start
by showing the security of a 2-input AND gate (2AND) against a d-probing
adversary and inductively continue to a function of degree t. We assume that
inputs to N are uniformly shared and synchronous. This discussion enables us
to relate the number of required shares in TI with that in ISW.

2-input AND gate. Let us consider a set of information I (based on indices)
gathered by the attacker by probing d wires. Specifically, if a wire corresponding
to ai, bi or aibi is probed, the index i ∈ I. If the wire corresponding to aibj is
probed, both i, j ∈ I. This implies that a probed wire at the output of the layer
N can give information about at most two indices. Therefore, the cardinality

774 O. Reparaz et al.

of I is at most 2d when d wires are probed in N . It follows that using at least
2d+1 shares is required to provide security up to L. However, an attacker is not
limited to probing certain layers. Notice that the attacker probing closer to the
end of the calculation of the component functions, i.e. just before the register
between R and C, gains more information. By the definition of the linear layer L,
the component functions should be formed such that any combination of up to
d of them should be independent of at least one share, i.e. one index, when
a d-probing secure circuit is considered. Hence, we know that if it is possible
to construct L with the given restriction, the attacker probing d wires never
has all the indexes in I. Since the input shares are uniformly shared and the
vectors āi, b̄i, . . . are independent from the unshared values a, b, . . ., we achieve
security at the end of L. Moreover, knowing the randomness used in R does
not yield additional information to the attacker. At this point the possibility
of generating L with 2d + 1 shares becomes the question. It has been shown
in [3] with a combinatorial argument that this is possible if the linear layer L
is divided into

(
2d+1

2

)
component functions. Namely, each component function

uses at most two input shares and hence at most two indices are put in I for
each probing. This gives the cardinality of at most 2d when d probes are used.

Notice that the security discussion provided so far considers only one AND
gate. However, the security of the generalized scheme also holds for the com-
position of several AND gates. Namely, the refreshing layer R and the register
afterwards impose independence of the composed elements and non-completeness
respectively. Hence, the union of the gathered information does not give an addi-
tional advantage to the attacker.

In the case of a single-probe adversary, we can relax the requirements on
R. As long as the next nonlinear function sees uniformly shared inputs, one
can simplify the construction of R and even in some cases avoid R. This result
follows from the fact that an attacker using a single probe is unable to combine
information from more than one function.

3-input AND gate. The security argument for a 3-input AND gate (F (a, b, c) =
abc) follows the same lines as for the 2-input AND gate. The nonlinear layer N
calculates aibjck terms. In order to keep the number of shares small, we need to
make sure that each component function uses variables with at most 3 different
indices. Then, an attacker probing d wires can only gather information from
at most 3d indices. The question if it is possible to arrange L such that this
restriction is respected is answered positively in [3]. It can be done by dividing
L into

(
3d+1

3

)
component functions. Note that for a full proof of security, the

insertion of randomness (the R layer) and registers become critical in order to
provide higher-order security of the composition of such gates.

Naturally, it is also possible to generate a shared 3AND gate by composing
two shared 2AND gates. This requires usage of registers after both the first and
the second 2AND-gate calculation. However, the construction described above
which performs the 3AND gate calculation at once is typically more efficient.

Consolidating Masking Schemes 775

t-input AND gate. We can inductively apply the arguments for 2AND and
3AND gates to the t-input AND gate. This implies the sufficient lower bound of
sin = td+ 1 input shares. The shared function should be split into at least

(
sin
t

)

component functions in L and satisfy dth-order non-completeness.

Degree t Boolean Functions. The above inductive argument does not exclude
functions composed of more than one degree t term. To clarify, the generation
of N is performed by straight-forward calculation of all cross products using
sin = td+1 shares. The linear layer is split into

(
sin
t

)
component functions, each

of which sees t indices as described above for a t-input AND gate. Any shared
term of degree ≤ t can be placed to at least one existing component function
since any cross product of the shared ≤ t term uses at most t indices, which
concludes the argument.

Degree t Functions in Other Finite Fields. A careful investigation of the above
arguments shows that they are independent of the used field. Namely, it is enough
to replace the AND gates in GF(2) with multiplication in the required field in
order to provide security for a degree t function.

We conclude the security argument of the generalized masking scheme by
noting that sin can be chosen to be greater than td + 1 in order to achieve
flexibility without invalidating the security arguments.

3.5 Wrapping up

In this section, we provided a generalized scheme which extends ISW and TI
like masking schemes. Specifically, unlike the ISW scheme which builds up on
AND gates or field multiplications; the generalized scheme allows to implement
any function directly, enabling the usage of less compositions. The generalized
scheme inherits the ability to operate on larger fields and security against d-
probing adversary. In addition, it offers protection for composition of gates.

4 What can Go Wrong?

In Sect. 3 we constructed a generalized masking structure, and assigned precise
requirements and functions to each of its layer. In this section, we show how
small deviations from this generalized scheme can cause vulnerable implementa-
tions. In particular, in Sect. 4.1 we analyze the cost of lacking a refreshing layer
R. We use the recently proposed higher-order TI as our case study to show a
higher-order flaw, then we suggest a generic fix. In Sect. 4.2, we elaborate on
the insecurity that deviating from the structure especially on L brings in the
presence of glitches using the ISW and Trichina scheme as our case study.

4.1 Higher-Order TI is Not so Higher-Order Secure

The higher-order TI proposed in [3] fits to our generalized structure as follows.
N and L together enforce a correct and dth-order non-complete implementation.

776 O. Reparaz et al.

However, unlike the generalized scheme, the refreshing layer R is not performed
in TI when the uniformity of the shared output of C can be satisfied without
R. This difference becomes important since as we shall see in the sequel, it can
induce a higher-order security flaw when composing several sharings, even if
these sharings are uniform.

For simplicity, we use a second-order TI of a mini-cipher construction and
show a second-order leakage.

Description of the Mini-Cipher. Let us consider a minimal non-linear feed-
back shift register. This mini-cipher comes from an extreme simplification of
the KATAN block cipher for which a higher-order TI was given in [3]. We con-
sider a 4-bit state S[i], i ∈ 0, . . . , 3 for which the taps are at the state bits with
indices i = 1, 2, 3 and the feedback is plugged at position 0. This state is a
“sensitive variable4”. The feedback function (“round function” of an extremely
unbalanced Feistel) F = F (S [3], S [2], S [1]) is the same AND-XOR feedback
function as in KATAN, namely d = F (a, b, c) = ab ⊕ c.

Shared Version of the Mini-Cipher. The shared version of this mini-cipher (non-
complete sharing in the N and L) follows the lines of [3]. The feedback function
F is shared as Eq. (5). In particular, to provide security against glitches, the
state bit S[0], in which the output of F is stored, is composed of 10 shares,
whereas S[1], S[2], S[3] are composed of 5 shares. The conversion from 10 to 5
shares is done as suggested in [3]. That is, the fifth share of S[1] sees the xor of
the last six shares of S[0] when the cipher is clocked (Fig. 12).

Fig. 12. Diagram of the shared version of the mini-cipher.

A Second-Order Leakage. Some lengthy, albeit straightforward, calculations
show that the covariance (second mixed statistical moment) between the fifth
share of S[1] after the first cycle and the fourth share of S[1] after the seventh
cycle depends on the unshared initial value S [2]. Thus, there is a second-order
flaw that invalidates the security claims of the scheme.5

4 The goal is to show leakage in this construction. To simplify and keep the essentials,
we do not explicitly inject the key in this mini-cipher construction, but assume that
the initial state is secret (sensitive).

5 This result had been previously reported in [23] and experimentally confirmed in [26].

Consolidating Masking Schemes 777

Mitigation. The direct mitigation is to refresh the shares after each shared func-
tion computation, for example by adding fresh shares of the null vector. In other
words, the refreshing layer R should be implemented in TI when higher-order
security is considered. The idea here is to isolate the intermediates occurring
within each computation stage from intermediates of another stage, so that com-
bining intermediates from different stages no longer reveals information about
a secret unshared value. With this argument, we fix the flaw in [3] using the
conciliation of masking schemes.

Note that this fix naturally increases area and randomness requirements and
we do not claim that it is the optimal solution. We foresee that this solution
may be an overkill in many situations, and a careful analysis can save significant
amount of randomness. This is especially true since the existence of a second-
order dependency between two variables does not necessarily imply an easy key-
extraction by DPA. In particular, if there is a second-order flaw between two
intermediates for which there is enough key-diffusion between them, key recov-
ery exploiting the joint leakage of intermediates becomes difficult. The exact
minimum amount of R layers needed to make the whole implementation secure
against higher-order attacks may depend from design to design.

4.2 ISW and Trichina in the Presence of Glitches

ISW scheme implicitly considers a logic gate that does not glitch. Thus, a
straightforward translation of ISW into standard CMOS technology can result
in a vulnerable implementation. To see this, observe that in Eq. (8) c3 breaks
the non-completeness property:

c1 = a1b1 ⊕ z12 ⊕ z13,

c2 = a2b2 ⊕ ((z12 ⊕ a1b2) ⊕ a2b1)) ⊕ z23,

c3 = a3b3 ⊕ ((z13 ⊕ a1b3) ⊕ a3b1) ⊕ (z23 ⊕ a2b3) ⊕ a3b2.

The trivial fix here is to register signals that otherwise could result in unde-
sired (and pernicious) glitches. More precisely, if during the ISW computation
in logic, the intermediate values zji where i < j (outputs in Eq. (1), left column;
and Eq. (2)) are stored in registers together with the intermediate values aibi
before further XOR combinations, the circuit becomes secure even if there are
glitches. This follows since non-completeness holds between register stages. The
caveat of this fix is the significant increase in area (and latency) due to extra
registers. Note that this extra layer of registers is prevented by careful selection
of the layer L.

Similar observations apply to the Trichina construction. Trichina also imposes
restrictions on the logic gates, especially on the order of evaluation of these gates.
It is implicitly assumed that signals are registered or latched in order to avoid
glitches. The case where first-order security fails due to glitches is studied in [18].

778 O. Reparaz et al.

5 Applications

Here we introduce two additional constructive applications. In the first one, we
focus on optimizing the generalized scheme further such that it uses less input
shares per function. The second application analyses software-like implementa-
tions in a distance-based leakage model.

5.1 Using d + 1 Input Shares

As described in Sect. 3, the generalized scheme uses at least td+1 input shares to
protect a function with degree t against d-probing attacks. Here, we improve the
scheme such that it uses less input shares, specifically, d + 1 shares to achieve
d-probing security. As a trade-off, however, this sharings are more restrictive
with the requirements of independent input sharings. We illustrate with single-
probe secure examples the design process of such sharings and the construction
of layers. We provide a security argument and discuss connections with prior
works.

First Crack. We start with the first-order sharing of c = ab with sin = 2 and
sout = 4 given in Eq. (8). The sharing c is only composed of the crossproducts
aibj . Hence, it can be seen as the output of N which is already a correct sharing
for c. Moreover, if the sharing of a is independent than that of b then each share
ci is independent of at least one input share of each variable. In other words, non-
completeness is satisfied. This implies the independence of c from the unmasked
variables a and b providing security under a single probe.

c1 = a1b1, c2 = a1b2, c3 = a2b1, c4 = a2b2. (8)

Note that in this simple sharing, if the sharings of a and b were dependent (for
example, a = b), then the second output share a1b2 = a1a2 would depend on all
shares of a (breaking non-completeness) and this would clearly leak information
about a. During the construction of layers in the following, we assume that the
sharings of each input variable is independent from all others.

Construction of N and L. The increase of number of variables in the
input increases the number of cross products and hence the number of
output shares of N exponentially. For example, if we consider the shar-
ing of d = a ⊕ ac ⊕ bc with sin = 2, we end up with 10 terms
(a1, a2, a1c1, a1c2, a2c1, a2c2, b1c1, b1c2, b2c1, b2c2) in N . Notice that it is possi-
ble to reduce the number of output shares using a careful selection of a linear
layer L as shown in Eq. (9) while satisfying the non-completeness property.

d1 = a1 ⊕ a1c1 ⊕ b1c1,

d2 = a1c2 ⊕ b1c2,

d3 = a2 ⊕ a2c1 ⊕ b2c1,

d4 = a2c2 ⊕ b2c2.
(9)

The number of output shares of L also changes significantly depending on
the function itself in addition to the number of input shares. To clarify, let us

Consolidating Masking Schemes 779

consider the sharing of d = a⊕ac⊕bc⊕ab which differs from the prior unshared
function in the additional term ab. The terms (a1b1, a1b2, a2b1, a2b2) should be
added to Eq. (9) for a correct implementation. Even if we place the additional
terms a1b1 and a2b2 to the first and the last component functions in Eq. (9)
respectively, the remainding terms a1b2 and a2b1 can not be placed in these four
component functions without breaking the non-completeness property. Hence, we
need to increase the number of shares. One option to obtain non-completeness
is increasing the number of output shares of L as shown in the equation below.

d1 = a1 ⊕ a1c1 ⊕ b1c1 ⊕ a1b1,
d2 = a1c2 ⊕ b1c2,
d3 = a2 ⊕ a2c1 ⊕ b2c1,

d4 = a2c2 ⊕ b2c2 ⊕ a2b2,
d5 = a1b2,
d6 = a2b1.

(10)

Construction of R and C. It is clear that if n × sin < m × sout, the output
sharing can not be uniform. Even if n × sin ≥ m × sout the uniformity is not
guaranteed. The output sharing described in Eqs. (8), (9) and (10) are such non-
uniform examples which require refreshing (R layer). An alternative approach
for the first-order case only is to decrease the number of shares in order to achieve
uniformity after storing the output of the mentioned sharings in registers (prior
to the C layer). To exemplify, consider the following sharing of d = ab ⊕ c with
2 input shares of each variable.

d1 = a1b1 ⊕ c1, d2 = a1b2, d3 = a2b1 ⊕ c2, d4 = a2b2. (11)

The sharing d is a nonuniform 4-sharing. However, the 2-sharing e generated
by e1 = d1 ⊕ d2 and e2 = d3 ⊕ d4 is uniform. Moreover, if the sharing d is stored
in registers before decreasing the number of shares, as implied by the registers
between the R and C layers in the generalized construction, any glitch during
the calculation of ei does not reveal information about the input values. Note
that the selection of the xored terms is not random at all and must be performed
with extreme care. A bad choice for a compression layer would be e1 = d1 ⊕ d3
and e2 = d2 ⊕ d4, since e2 = (a1 ⊕ a2)b2 = ab2 obviously reveals information
on a.

Security Argument of the Improved Bound on the Number of Shares. It is note-
worthy that the security of the improved scheme is not proven using indices as
for the generalized scheme described in Sect. 3.4. Instead, since we assume that
each input sharing is independent of the others, we ensure that any combination
of d probes miss at least one share of each input variable. Therefore d+ 1 input
shares are sufficient in order to provide non-completeness in N hence indepen-
dence of the output shares from each unmasked input. As discussed above the
requirements that should be satisfied by the L and C layers in order to provide
the claimed security highly depends on the function. Therefore, we avoid to give
a generic construction besides imposing dth-order non-completeness in L and
extreme care not to unmask in C. The extension to higher orders is straightfor-
ward under given exceptions.

780 O. Reparaz et al.

Application to 4 -bit Quadratic Permutations. Due to space restrictions, this
section is not present in this version. The interested reader can find it in the
extended version6 of this paper.

Connections with Software ISW. In [25], a fast masked AES at any order is
given. The authors improve the security guarantees with respect to the number
of shares from s = 2d + 1 to s = d + 1. This improvement actually resembles to
the contribution of this section. The improvement was later shown to be slightly
flawed by [10]. However, we observe here that the refreshing from [25] is not
exactly the same as the layer R presented in Sect. 3.3 (operating in GF(28)).
Namely, the refreshing from [25] uses 1 unit of randomness (elements in GF(28))
less than R. Using a refreshing that mimics the layer R makes the second-order
flaw disappear [2].

5.2 Resistance Against Distance Leakage

There are many applications of the ISW scheme for masked software implemen-
tations [13,25]. In the case of AES, there is a significant performance gain if the
ISW operates in GF(28), due to the algebraic structure of the AES Sbox. A com-
mon problem with ISW-based software implementations is the mismatch between
the probing model in which ISW is proven secure and the leakage behavior of
the device that runs the implementation. For instance, typical processors can
be approximately modeled by a distance-based leakage behavior (Hamming dis-
tance) rather than value-based one (Hamming weight). Thus, a straightforward
implementation of ISW without a careful prior profiling of the device leakage
behavior will likely lead to an insecure implementation. This is because, even
if ISW is secure in weight-based leakage behavior, it is not in a distance-based
one.

There are already some theoretical solutions for this problem, although they
come with a great cost [1,9]. We point out here that it is possible to minimize
the exposure to this issue with the same modification performed in Sect. 3, i.e.
bringing the non-completeness condition.

The generalized scheme (e.g. after the second modification in Fig. 7) com-
putes sequentially each branch (component function) Fi, i = 1, 2, 3 and then
performs a refreshing. This scheme is secure even if during the computation of
each branch Fi the device leaks distances (or a more complex leakage function
of several values). Contrary to the ISW, we do not impose specific constraints
on the order of evaluation of intermediates (within each Fi). This result imme-
diately follows from non-completeness of each branch Fi. It is required, however,
to make sure that there is no distance leakage between an intermediate appear-
ing in Fi and another in Fj , for i �= j. It is noteworthy that the randomness
requirement, running time and memory requirements stay the same as in the
original algorithm.

6 http://www.reparaz.net/oscar/crypto2015/.

http://www.reparaz.net/oscar/crypto2015/

Consolidating Masking Schemes 781

6 Conclusion

In this paper, we explored the connections, similitudes and differences between
several masking schemes, both from theoretical domains and from practitioners
working under real-world constraints. It is remarkable how two substantially
disparate communities arrive to essentially similar designs. This perhaps builds
even more confidence on the underlying techniques.

There are certainly many future avenues of research. For example, it would
be desirable to have explicit and tight bounds on the randomness requirements
to achieve efficient masked implementations.

Acknowledgement. The authors would like to thank the CRYPTO 2015 reviewers
for their valuable comments, as well as Fre Vercauteren and Vincent Rijmen for stim-
ulating discussions. This work has been supported in part by the Research Council of
KU Leuven (OT/13/071 and GOA/11/007), by the FWO G.0550.12N and by the Her-
cules foundation (AKUL/11/19). Oscar Reparaz is funded by a PhD fellowship of the
Fund for Scientific Research - Flanders (FWO). Benedikt Gierlichs is a Postdoctoral
Fellow of the Fund for Scientific Research - Flanders (FWO). Begül Bilgin is partially
supported by the FWO project G0B4213N.

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Heidelberg (2015)

2. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015)

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

6. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

8. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014)

9. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Con-
version of security proofs from one leakage model to another: a new issue. In:
Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81.
Springer, Heidelberg (2012)

782 O. Reparaz et al.

10. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014)

11. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

12. Goubin, L., Patarin, J.: DES and differential power analysis the duplication
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, p. 158.
Springer, Heidelberg (1999)

13. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implemen-
tations for all 4-bit S-boxes. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 91–108. Springer, Heidelberg (2014)

17. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

18. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

19. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

20. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

21. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

22. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2,300 GE. J. Cryptology 24(2), 322–345
(2011)

23. Reparaz, O.: A note on the security of higher-order threshold implementations.
Cryptology ePrint Archive, Report 2015/001

24. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting Time samples for multivari-
ate DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 155–174. Springer, Heidelberg (2012)

25. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

26. Schneider, T., Moradi, A.: Leakage assessment methodology - a clear roadmap for
side-channel evaluations. In: CHES. LNCS (2015)

Consolidating Masking Schemes 783

27. Tiri, K., Akmal, M., Verbauwhede, I.: A dyamic and differential CMOS logic with
signal independent power consumption to withstand differential power analysis on
smart cards. In: ESSCIRC, pp. 403–406 (2002)

28. Tiri, K., Verbauwhede, K.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: DATE (2004)

29. Trichina, E.: Combinational logic design for aes subbyte transformation on masked
data. Cryptology ePrint Archive, Report 2003/236

Author Index

Abdalla, Michel I-388
Agrawal, Shashank I-538
Alkhzaimi, Hoda I-95
Alwen, Joël II-763
Ananth, Prabhanjan I-308, II-657
Andrychowicz, Marcin II-379

Benhamouda, Fabrice I-388, II-107
Bilgin, Begül I-764
Biryukov, Alex I-116
Blondeau, Céline I-455
Boyle, Elette II-742
Brakerski, Zvika II-657
Broadbent, Anne II-609

Canetti, Ran II-3, II-43
Carlet, Claude I-742
Catalano, Dario II-254
Cheng, Lei I-95
Chitambar, Eric II-443
Chung, Kai-Min I-287, II-742
Clear, Michael II-630
Cogliati, Benoît I-189
Cohen, Asaf II-3
Coron, Jean-Sébastien I-247, I-267
Couteau, Geoffroy II-107

Dinur, Itai I-433
Dodis, Yevgeniy II-463
Döttling, Nico I-329
Dov Gordon, S. II-63
Dunkelman, Orr I-433
Dziembowski, Stefan II-379, II-585

Elias, Yara I-63
Espitau, Thomas I-683

Faust, Sebastian II-585
Fehr, Serge II-403
Fillinger, Max II-403
Fiore, Dario II-254
Fischlin, Marc II-545
Fortescue, Benjamin II-443
Fouque, Pierre-Alain I-43, I-561, I-683
Fuchsbauer, Georg I-601, II-233

Garg, Sanjam II-191
Gay, Romain II-485

Gaži, Peter I-368
Genkin, Daniel II-721
Gentry, Craig I-247
Gierlichs, Benedikt I-764
Gilbert, Henri I-475
Gorbunov, Sergey II-503
Goyal, Vipul II-23, II-43
Gu, Dawu II-209
Günther, Felix II-545
Guo, Qian I-23
Gupta, Divya I-538, II-23, II-701

Haitner, Iftach II-173
Hajiabadi, Mohammad I-224
Halevi, Shai I-247
Hamburg, Mike I-705
Hanser, Christian II-233
Hoang, Viet Tung I-493
Hsieh, Min-Hsiu II-443
Hu, Zhangxiang II-150
Huang, Jialin I-141
Huang, Ming-Deh A. I-581

Ishai, Yuval II-173, II-191, II-359, II-701,
II-721

Jafargholi, Zahra I-601
Jain, Abhishek I-308, II-43
Jeffery, Stacey II-609
Johansson, Thomas I-23

Kalai, Yael Tauman II-422
Kapron, Bruce M. I-224
Karpman, Pierre I-623, I-683
Keller, Marcel I-724
Keller, Nathan I-433
Kerenidis, Iordanis II-485
Kiltz, Eike II-275
Kirchner, Paul I-43
Kiyoshima, Susumu II-85
Kölbl, Stefan I-161
Kolmogorov, Vladimir II-585
Kosters, Michiel I-581
Kowalczyk, Lucas II-524
Kumaresan, Ranjit II-359
Kushilevitz, Eyal II-191, II-359

Laarhoven, Thijs I-3
Lai, Xuejia I-141
Lallemand, Virginie I-663
Lampe, Rodolphe I-189
Lauter, Kristin E. I-63
Leander, Gregor I-161
Lee, Moon Sung I-561
Lepoint, Tancrède I-247, I-267, I-561
Lewko, Allison Bishop II-524
Li, Chao I-95
Li, Ruilin I-95
Li, Xiangxue II-209
Libert, Benoît II-296
Lin, Huijia I-287
Lindell, Yehuda II-3
Liu, Feng-Hao II-63
Liu, Zhiqiang I-95
Luykx, Atul I-209

Maji, Hemanta K. I-247, I-538, II-701
Mandal, Avradip I-518
Marson, Giorgia Azzurra II-545
McGoldrick, Ciarán II-630
Meier, Willi I-643
Miles, Eric I-247
Minaud, Brice I-351
Mohassel, Payman II-150
Mouha, Nicky I-209

Naor, Moni II-565
Naya-Plasencia, María I-663
Nikova, Svetla I-764
Nizzardo, Luca II-254
Nyberg, Kaisa I-141

Omri, Eran II-173
Orsini, Emmanuela I-724
Ostrovsky, Rafail II-130, II-191, II-339,

II-763
Ozman, Ekin I-63

Pan, Jiaxin II-275
Pandey, Omkant I-538
Paskin-Cherniavsky, Anat II-359
Pass, Rafael I-287, II-742
Passelègue, Alain I-388
Paterson, Kenneth G. II-545
Perrin, Léo I-116
Persiano, Giuseppe II-130
Peters, Thomas II-296
Peyrin, Thomas I-455, I-623

Pietrzak, Krzysztof I-368, I-601, II-585
Pinkas, Benny II-319
Plût, Jérôme I-475
Pointcheval, David II-107
Polychroniadou, Antigoni II-721
Prabhakaran, Manoj I-538
Prouff, Emmanuel I-742

Raykova, Mariana I-247
Reparaz, Oscar I-764
Reyhanitabar, Reza I-493
Richelson, Silas II-339
Rijmen, Vincent I-95
Rivain, Matthieu I-742
Roche, Thomas I-742
Rogaway, Phillip I-493
Rosulek, Mike II-150
Rothblum, Ron D. II-422
Roy, Arnab I-518

Sahai, Amit I-247, II-23, II-191, II-701
Scafuro, Alessandra II-339
Scholl, Peter I-724
Schröder, Dominique I-329
Segev, Gil II-657
Seurin, Yannick I-189, I-351
Shaltiel, Ronen II-173
Shamir, Adi I-433
Shi, Elaine II-63
Slamanig, Daniel II-233
Smart, Nigel P. II-319
Stange, Katherine E. I-63
Stankovski, Paul I-23
Stevens, Marc I-623
Sun, Bing I-95

Tessaro, Stefano I-368
Tibouchi, Mehdi I-247, I-267, I-561
Tiessen, Tyge I-161
Todo, Yosuke I-413
Treger, Joana I-475

Vaikuntanathan, Vinod II-503, II-657
Vaudenay, Serge I-141
Verbauwhede, Ingrid I-764
Visconti, Ivan II-130
Vizár, Damian I-493

Wang, Lei I-455
Wang, Qingju I-95
Waters, Brent II-678

786 Author Index

Wee, Hoeteck II-107, II-275, II-485, II-503
Weng, Jian II-209

Xu, Chao I-643

Yanai, Avishay II-319
Yao, Yanqing II-463
Yeo, Sze Ling I-581

Yogev, Eylon II-565
Yu, Yu II-209
Yung, Moti II-296

Zhang, Bin I-643
Zhou, Hong-Sheng II-763
Zikas, Vassilis II-763

Author Index 787

	Preface
	CRYPTO 2015
	The 35th IACR International Cryptology Conference

	Contents – Part I
	Contents – Part II
	Lattice-Based Cryptography
	Sieving for Shortest Vectors in Lattices Using Angular Locality-Sensitive Hashing
	1 Introduction
	2 Locality-Sensitive Hashing
	2.1 Introduction
	2.2 Hash Families
	2.3 Amplification
	2.4 Finding Nearest Neighbors
	2.5 Angular Hashing

	3 From the GaussSieve to the HashSieve
	3.1 The GaussSieve Algorithm
	3.2 The GaussSieve with Angular Reductions
	3.3 The HashSieve with Angular Reductions
	3.4 The (GaussSieve-Based) HashSieve Algorithm
	3.5 Relation with Leveled Sieving

	4 Theoretical Results
	4.1 High-Dimensional Intuition
	4.2 Heuristically Solving SVP in Time and Space 20.3366n + o(n)
	4.3 Heuristically Solving SVP in Time 20.3366n and Space 20.2075n
	4.4 Reducing the Space Complexity with Probing

	5 Practical Results
	5.1 Experimental Results in Moderate Dimensions
	5.2 High-Dimensional Extrapolations

	References

	Coded-BKW: Solving LWE Using Lattice Codes
	1 Introduction
	1.1 Previous Work
	1.2 Motivation and Contributions

	2 Background
	2.1 Discrete Gaussian Distribution
	2.2 LWE Problem Description
	2.3 Lattice Codes and Construction A

	3 The BKW Algorithm
	4 A Modified BKW Algorithm for the LWE Problem
	4.1 A New BKW Step
	4.2 Analyzing the Error Distribution
	4.3 Decoding Method and Constraint

	5 Algorithm Description
	5.1 Gaussian Elimination
	5.2 Standard BKW Reductions
	5.3 Coded-BKW Reductions
	5.4 Partial Guessing
	5.5 Subspace Hypothesis Testing

	6 Analysis of the New Approach for BKW
	7 A Variant of Coded-BKW for Binary-LWE
	8 Simulation
	9 Summary of Results
	10 Conclusion
	References

	An Improved BKW Algorithm for LWE with Applications to Cryptography and Lattices
	1 Introduction
	2 Preliminaries
	2.1 Secret-Error Switching
	2.2 Low Dimension Algorithms

	3 Main Algorithm
	3.1 Rationale
	3.2 Quantization
	3.3 Main Algorithm
	3.4 Experimentation

	4 Applications to Lattice Problems
	4.1 Variant of Bounding Distance Decoding
	4.2 UniqueSVP and GapSVP

	5 Other Applications
	5.1 Low Density Subset-Sum Problem
	5.2 Sample Expander and Application to LWE with Binary Errors

	References

	Provably Weak Instances of Ring-LWE
	1 Introduction
	2 Background on Poly-LWE
	2.1 Parameter Selection

	3 Attacks on Poly-LWE
	3.1 Attack Based on a Small Set of Error Values Modulo q
	3.2 Attack Based on the Size of the Error Values

	4 Moving the Attack from Poly-LWE to Ring-LWE
	4.1 The Canonical Embedding
	4.2 Spherical Gaussians and Error Distributions
	4.3 The Ring-LWE Problems
	4.4 Isomorphisms from (R) to a Polynomial Ring
	4.5 The Spectral Norm
	4.6 Moving the Attack from Poly-LWE to Ring-LWE
	4.7 Choice of

	5 Provably Weak Ring-LWE Number Fields
	6 Heuristics on the Prevalence of Weak Ring-LWE Number Fields
	6.1 Monogenicity
	6.2 Examples, n = 210, q 232
	6.3 Heuristics for the Spectral Norm
	6.4 Experimental Evidence for the Spectral Norm

	7 Weak Poly-LWE Number Fields
	7.1 Finding f and q with Roots of Small Order
	7.2 Examples, n 210, q 232
	7.3 Examples of Weak Poly-LWE Number Fields with Additional Properties

	8 Cyclotomic (in)vulnerability
	9 Successfully Coded Attacks
	A Appendix: Code
	A.1 Proof of Concept for Ring-LWE and Poly-LWE Attacks
	A.2 Sage Code for Algorithm ??

	References

	Cryptanalytic Insights
	Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions
	2.2 Block Ciphers
	2.3 Structure and Dual Structure

	3 Links Between Impossible Differential and Zero Correlation Linear Cryptanalysis
	4 Links Between Integral and Zero Correlation Linear Cryptanalysis
	5 Links Between Impossible Differential and Integral Cryptanalysis
	6 New Integrals for Block Ciphers/Structures
	6.1 New Integrals for Feistel Structures
	6.2 24-Round Integral for CAST-256
	6.3 12-Round Integral for SMS4
	6.4 8-Round Integral for Camellia Without FL/FL-1 Layer

	7 Conclusion
	References

	On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure
	1 Introduction
	2 Partially Reverse-Engineering the S-Box of Skipjack
	2.1 Overview of the S-Box of Skipjack and Useful Definitions
	2.2 The Linear Properties are Too Good to be True
	2.3 A Possible Design Criteria
	2.4 Public Information About the Design of Skipjack

	3 Algorithm Decomposing Particular Structures
	3.1 Iterated Simple Arithmetic Permutation
	3.2 Decomposing Feistel Structures

	4 From an S-Box to a Picture and Back Again
	4.1 Pollock's Pattern Recognition
	4.2 Seurat's Steganography

	5 Conclusion
	A The S-Box of Skipjack
	B Picture Representation of the DDT and LAT of Some S-Boxes
	C S-Boxes Built from Pictures
	References

	Capacity and Data Complexity in Multidimensional Linear Attack
	1 Introduction
	2 Preliminaries
	2.1 Block Ciphers and Linear Cryptanalysis
	2.2 Multidimensional Linear Approximations and Data Complexity
	2.3 Related Distributions and Assumptions

	3 Key-Dependent Capacity in Multidimensional Linear Approximations
	4 Distribution of Data Complexity
	5 Evaluation of the Data Complexity
	5.1 Adjusted Key Equivalence Hypothesis
	5.2 On Average Data Complexity
	5.3 On Median Data Complexity

	6 Application to Cho's Multidimensional Attack on PRESENT
	6.1 Cho's Attack on 25-Round PRESENT
	6.2 Our Investigation on Cho's Attack

	7 Conclusion and Further Work
	A Appendix - Proof of Lemma 7
	B Appendix - Error Bound of Proposition 2
	References

	Observations on the SIMON Block Cipher Family
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Description of SIMON
	2.3 Affine Equivalence of Boolean Functions
	2.4 Structural Equivalence Classes in AND-RX Constructions

	3 Differential Probabilities of SIMON-like Round Functions
	3.1 A Closed Expression for the Differential Probability
	3.2 The Full Formula for Differentials

	4 Linear Correlations of SIMON-like Round Functions
	5 Finding Optimal Differential and Linear Characteristics
	5.1 Model for Differential Cryptanalysis of SIMON
	5.2 Finding Optimal Characteristics
	5.3 Computing the Probability of a Differential

	6 Analysis of the Parameter Choices
	6.1 Diffusion
	6.2 Differential and Linear
	6.3 Interesting Alternative Parameter Sets

	7 Conclusion and Future Work
	A Python Code to Calculate Linear and Differential Probabilities
	B Additional Differential Bounds
	C Optimal Parameters for Differential Characteristics
	References

	Modes and Constructions
	Tweaking Even-Mansour Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Notation and General Definitions
	2.2 Security Definitions

	3 Tight Bounds for One and Two Rounds
	3.1 The H-Coefficients Technique
	3.2 Security Proof for One Round
	3.3 Security Proof for Two Rounds

	4 Asymptotic Bounds via the Coupling Technique
	References

	Multi-key Security: The Even-Mansour Construction Revisited
	1 Introduction
	2 Attack Settings
	2.1 Three Attack Settings
	2.2 Practical Relevance of the Multi-key Setting
	2.3 Security in the Multi-key Setting
	2.4 Related Work

	3 Security Proofs in the Multi-key Setting
	3.1 Tightness of the Security Bounds

	4 Discussion
	5 Conclusion and Future Work
	References

	Reproducible Circularly-Secure Bit Encryption: Applications and Realizations
	1 Introduction
	2 Basic Notation and Definitions
	3 Constructing TDFs and Hardcore Bits
	4 Construction of CCA Secure Encryption
	5 Deterministic Encryption (DE) and Instantiations
	6 Conclusions and Open Problems
	References

	Multilinear Maps and IO
	Zeroizing Without Low-Level Zeroes: New MMAP Attacks and their Limitations
	1 Introduction
	1.1 Impact of Our Attacks
	1.2 Limitations of Zeroizing Attacks

	2 Background and Overview
	2.1 A Brief Description of the GGH13 and CLT13 Schemes
	2.2 Overview of Existing Attacks
	2.3 Extending the CHLRS Attack
	2.4 Attack Limitations

	3 A Unified Attack Against CLT13-Based Schemes
	3.1 Sufficient Conditions for the Attack to Succeed
	3.2 Attacking the Garg-Gentry-Halevi-Zhandry Countermeasure
	3.3 Attacking GGHRSW Obfuscation for Simple Branching Programs

	4 Conclusion
	References

	New Multilinear Maps Over the Integers
	1 Introduction
	2 New Multilinear Map Over the Integers
	2.1 Scheme Description
	2.2 Setting the Parameters
	2.3 Security of Our Construction

	3 Cheon et al. Attack
	3.1 Attack Description
	3.2 Non-applicability of Cheon et al. Attack
	3.3 Attack with Known x0
	3.4 Attack for Small Multiple of x0
	3.5 The Subgroup Membership and Decision Linear Problems

	4 Lattice Attacks
	4.1 Lattice Attack on the Encodings
	4.2 Lattice Attack Against pzt

	5 Optimizations and Implementation
	References

	Constant-Round Concurrent Zero-Knowledge from Indistinguishability Obfuscation
	1 Introduction
	1.1 Towards Constant-Round Concurrent Zero-Knowledge
	1.2 Our Results
	1.3 Outline of Our Techniques

	2 Two-Message -certificates
	3 Our Protocol
	3.1 Contruction of the Simulator

	References

	Indistinguishability Obfuscation from Compact Functional Encryption
	1 Introduction
	1.1 This Work
	1.2 Our Techniques

	2 Preliminaries
	2.1 Indistinguishability Obfuscation
	2.2 Public-Key Functional Encryption

	3 Function Private Multi-input Functional Encryption (MiFE)
	4 Our Transformation: From c-ary to (c+1)-ary MiFE
	5 Multi-input FE from Single-input FE
	References

	Pseudorandomness
	Efficient Pseudorandom Functions via On-the-Fly Adaptation
	1 Introduction
	1.1 A General Transformation
	1.2 Efficient PRFs Based on DDH and k-LIN
	1.3 Other Related Work

	2 Preliminaries
	3 A Generic Construction
	3.1 Bounded PRFs via Domain Extension of Small Domain PRFs
	3.2 PRFs via On-the-Fly Adaptation of Bounded PRFs
	3.3 Instantiations

	4 A Direct Construction from the k-LIN Problem
	4.1 Preliminaries
	4.2 A Bounded PRF From k-LIN
	4.3 In-Place On-the-Fly Adaptation

	References

	The Iterated Random Permutation Problem with Applications to Cascade Encryption
	1 Introduction
	2 Proof of the Main Result
	3 A Matching Attack
	A Omitted Proofs
	References

	The Exact PRF Security of Truncation: Tight Bounds for Keyed Sponges and Truncated CBC
	1 Introduction
	2 Preliminaries
	3 Truncated CBC and its Security
	4 Proof of Theorem ??
	4.1 Message Trees
	4.2 Interactions and Transcripts
	4.3 The ``H-Coefficient Method'': Good and Bad Transcripts
	4.4 High-Level Lemmas and Putting Pieces Together
	4.5 Lower Bounding the Probability Ratio (Proof of Lemma ??)

	5 Security Analysis of Sponge-Based PRFs
	References

	An Algebraic Framework for Pseudorandom Functions and Applications to Related-Key Security
	1 Introduction
	2 Definitions
	3 Linearly Independent Polynomial Security
	3.1 Warm-Up: Expanded Multilinear Polynomials
	3.2 Main Theorem: LIP Security

	4 Recovering and Extending Existing Number-Theoretic PRFs
	5 Application to Related-Key Security
	5.1 Direct Constructions of RKA-Secure PRFs
	5.2 Constructions via Unique-Input RKA-Secure PRFs

	6 Extension to PRFs in Symmetric Bilinear Groups
	6.1 High-Level Overview of Existing Constructions and Challenges
	6.2 Generalized Polynomial Framework
	6.3 Applications

	References

	Block Cipher Cryptanalysis
	Integral Cryptanalysis on Full MISTY1
	1 Introduction
	2 MISTY1
	3 Integral Characteristic by Division Property
	3.1 Notations
	3.2 Integral Attack
	3.3 Division Property

	4 Division Property for Public Function
	4.1 Application to MISTY S-boxes

	5 New Integral Characteristic
	5.1 Division Property for FI Function
	5.2 Division Property for FO Function
	5.3 Division Property for FL Layer
	5.4 Path Search for Integral Characteristic on MISTY1

	6 Key Recovery Using New Integral Characteristic
	6.1 Sub Key Recovery Using Partial-Sum Technique
	6.2 Trade-Off Between Time and Data Complexity

	7 Conclusions
	References

	New Attacks on Feistel Structures with Improved Memory Complexities
	1 Introduction
	2 Improving the Memory Complexity of the Most Time-Efficient Attacks on Feistel Structures
	2.1 Attacks with a Low Data Complexity
	2.2 Using Multi-Collisions to Further Reduce the Memory Complexity
	2.3 Attacks on Feistel Structures with an Even Number of Rounds

	3 Memory-Restricted Attacks on Feistel Structures
	3.1 A Memory-Restricted Attack Against 5-Round Feistel Constructions
	3.2 Extension to More Rounds

	4 Applications to Concrete Cryptosystems
	4.1 Lower Memory Attacks on DEAL
	4.2 A Lower Memory Attack on CAST-128
	4.3 Lower Memory Attacks on Other Cryptosystems

	5 Conclusions
	References

	Known-Key Distinguisher on Full PRESENT
	1 Introduction
	2 The PRESENTBlock Cipher
	2.1 Description of PRESENT
	2.2 Previous Results on PRESENT

	3 Known-Key Distinguisher
	4 Distinguishing Full PRESENT
	4.1 Distinguisher Overview
	4.2 A Statistical Bias on Reduced-Round PRESENT
	4.3 The Meet-in-the-Middle Layer

	5 Results
	5.1 Experiments
	5.2 Results

	6 Conclusion
	References

	Key-Recovery Attack on the ASASA Cryptosystem with Expanding S-Boxes
	1 The ASASA Cryptosystem
	1.1 Definition and First Notations
	1.2 Equivalent Simple Keys
	1.3 Notations and Preliminaries

	2 A Simple Distinguisher
	2.1 Considerations on the Dimension of Vector Spaces Derived from the Public Key
	2.2 The Distinguisher

	3 Key Recovery
	3.1 Computing the Middle Layer
	3.2 Solving a Quadratic ASA Layer
	3.3 Solving the Outer ASA Layer
	3.4 Computing the Inhomogeneous Terms

	References

	Integrity
	Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance
	1 Introduction
	2 OAE1 Definition
	3 CPSS Attack
	4 Broader OAE1 Critique
	5 OAE2: Reformalizing Online-AE
	6 Achieving OAE2
	7 Escalating Claims, Diminishing Guarantees
	References

	Relational Hash: Probabilistic Hash for Verifying Relations, Secure Against Forgery and More
	1 Introduction
	2 Relational Hash
	3 Relational Hash for Linearity in F2n
	4 Relational Hash for Hamming Proximity
	5 Relation Among Notions of Security for Relational Hashes
	A Hardness Assumptions
	References

	Explicit Non-malleable Codes Against Bit-Wise Tampering and Permutations
	1 Introduction
	1.1 Prior Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Classes of Tampering Functions
	2.2 Non-malleable Codes

	3 Building Blocks
	4 Our Non-malleable Encoding Scheme
	5 Basic Encoding Scheme and 2-Phase Non-malleability
	5.1 Proof of Theorem 3
	5.2 Key Steps of the Proof

	6 Application to Non-malleable String Commitment
	References

	Assumptions
	Cryptanalysis of the Co-ACD Assumption
	1 Introduction
	2 Preliminaries
	2.1 CLS Somewhat Additively Homomorphic Encryption Schemes
	2.2 The Co-ACD Assumptions
	2.3 Background on Lattices

	3 Known Plaintext Attack Against the CLS Scheme
	3.1 Message Recovery Using Known Plaintexts for N=p1p2
	3.2 Generalization to n2
	3.3 Experimental Results

	4 Ciphertext-Only Attack Against the CLS Scheme
	4.1 (Small) Message Recovery Using Known Ciphertexts for N=p1p2
	4.2 Generalization to n2
	4.3 Experimental Results

	5 Breaking the Search Co-ACD Assumption
	5.1 Description of the Attack
	5.2 Extension to n3
	5.3 Experimental Results

	References

	Last Fall Degree, HFE, and Weil Descent Attacks on ECDLP
	1 Introduction
	1.1 Zero-Dimensional Polynomial Systems and Weil Descent Attacks
	1.2 The HFE Cryptosystem
	1.3 Polynomial Systems from ECDLP
	1.4 Our Contributions
	1.5 Organization of the Paper

	2 Constructible Polynomials
	2.1 An Explicit Construction of Vi
	2.2 Solving a Zero-Dimensional Polynomial System

	3 Weil Descent
	3.1 Weil Descent
	3.2 Fake Weil Descent
	3.3 Summary of Notation
	3.4 Relating Both Types of Descent

	4 Solving the HFE System
	4.1 Description of the HFE Encryption
	4.2 An Upper Bound on the Last Fall Degree
	4.3 Proof of the Main Theorem

	5 Weil Descent Attacks on ECDLP
	5.1 ECDLP and Summation Polynomials
	5.2 Discussion on the First Fall Degree Assumption
	5.3 Open Problem on the Last Fall Degree

	References

	A Quasipolynomial Reduction for Generalized Selective Decryption on Trees
	1 Introduction
	2 Preliminaries
	3 The GSD Game
	4 Single Source
	5 General Trees
	6 Conclusions and Open Problems
	References

	Hash Functions and Stream Cipher Cryptanalysis
	Practical Free-Start Collision Attacks on 76-step SHA-1
	1 Introduction
	2 The SHA-1 Hash Function
	3 A Start-from-the-middle Approach
	4 A High-Level View of the SHA-1 Free-Start Collision Attack
	4.1 Start-from-the-middle
	4.2 Differential Path Construction Improvements
	4.3 Implementation of the Attack on GPUs

	5 Details of the Attack and Its Implementation
	5.1 The Case of SHA-1
	5.2 GPU Implementation

	6 Results and Perspectives
	6.1 The 76-Step Collisions
	6.2 Collisions on the Full Compression Function

	References

	Fast Correlation Attacks over Extension Fields, Large-Unit Linear Approximation and Cryptanalysis of SNOW 2.0
	1 Introduction
	2 Preliminaries
	3 Fast Correlation Attacks Over Extension Fields
	3.1 Model for Fast Correlation Attacks Over Extension Fields
	3.2 General Description of Fast Correlation Attacks Over Extension Fields
	3.3 Preprocessing Stage: Generating the Parity Checks
	3.4 Processing Stage: Decoding the Code C2

	4 Large-Unit Linear Approximation and Its Distribution
	4.1 Large-Unit Linear Approximations
	4.2 The Generalized Pseudo-Linear Function Modulo 2n
	4.3 Algorithm for Computing the Distribution of a GPLFM

	5 A Key Recovery Attack on SNOW 2.0
	5.1 The Byte-Wise Linear Approximation of SNOW 2.0
	5.2 Fast Correlation Attack on SNOW 2.0

	6 An Improved Key Recovery Attack on SNOW 2.0
	6.1 Linear Approximations of SNOW 2.0 Over GF(28)
	6.2 Experimental Results

	7 Conclusions
	A Diagrams of the Invoked Algorithm 2
	B Computing the Distribution in Eq.(3) over GF(28)
	C Unifying the Two Fields
	D A Small Scale Version of SNOW 2.0
	References

	Cryptanalysis of Full Sprout
	1 Introduction
	2 Description of Sprout
	3 Key-Recovery Attack on Full Sprout
	3.1 Preliminary Remarks
	3.2 Building the Lists LL and LN
	3.3 Reducing the Set of Possible States
	3.4 Full Key Recovery Attack: Guessing a Middle State
	3.5 Full Attack Summary

	4 Implementation and Verification of the Attack
	4.1 Toy Cipher Used
	4.2 Algorithm Implemented
	4.3 Results

	5 Conclusion
	References

	Higher-Order Differential Meet-in-the-middle Preimage Attacks on SHA-1 and BLAKE
	1 Introduction
	2 Meet-in-the-middle Attacks and the Differential Framework from CRYPTO 2012
	2.1 Formalizing Meet-in-the-middle Attacks with Related-Key Differentials
	2.2 Probabilistic Truncated Differential Meet-in-the-middle
	2.3 Splice-and-cut, Initial Structures and Bicliques

	3 Higher-Order Differential Meet-in-the-middle
	4 Applications to SHA-1
	4.1 Description of SHA-1
	4.2 One-Block Preimages without Padding
	4.3 One-Block Preimages with Padding
	4.4 Two-Block Preimages with Padding

	5 Applications to BLAKE and BLAKE2
	5.1 Description of BLAKE
	5.2 Pseudo-preimage on the Compression Function
	5.3 Preimage on the Hash Function

	References

	Implementations
	Decaf: Eliminating Cofactors Through Point Compression
	1 Introduction
	1.1 Pitfalls of a Cofactor
	1.2 Our Contribution

	2 Definitions and Notation
	3 An Edwards-Only Solution
	4 A Solution from the Jacobi Quartic
	4.1 From the Jacobi Quartic to Edwards Curves
	4.2 Encoding
	4.3 Decoding
	4.4 Completeness
	4.5 Equality
	4.6 Security
	4.7 Batch Encoding
	4.8 Performance

	5 Compatibility with Montgomery Curves
	6 Hashing to the Curve
	7 Future Work
	8 Conclusion
	A Explicit Formulas for Encoding and Decoding
	A.1 Encoding
	A.2 Decoding

	B The Modified Montgomery Ladder
	B.1 Encoding

	C Elligator 2
	References

	Actively Secure OT Extension with Optimal Overhead
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Oblivious Transfer and OT Extension

	3 Our Actively Secure OT Extension Protocol
	3.1 Protocol from COTe to ROT
	3.2 Analysis of the Correlation Check
	3.3 Proof of Security
	3.4 From ROT to OT

	4 Implementation
	4.1 Comparison of Protocols
	4.2 Profiling

	References

	Algebraic Decomposition for Probing Security
	1 Introduction
	2 Preliminaries
	2.1 Functions in Finite Fields and Derivation
	2.2 Sharing and Probing Security
	2.3 Secure Evaluation of Nonlinear Functions

	3 The Algebraic Decomposition Method
	4 Reducing the Probing Order Down to the Algebraic Degree
	4.1 General Case
	4.2 Quadratic Case

	5 Another Method to Secure Low-Degree Functions
	5.1 Two-Probing Security for Quadratic Functions
	5.2 Arbitrary Probing Security for Quadratic Functions

	6 Adapting the CRV Method to Low Algebraic Degrees
	6.1 The CRV Method
	6.2 The CRV Method for Degree-s Functions

	7 Comparison
	References

	Consolidating Masking Schemes
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution

	2 Preliminaries
	3 Conciliation
	3.1 From ISW to TI
	3.2 From ISW to the Trichina AND-gate
	3.3 Generalizing and Inducing a Structure
	3.4 Security Arguments for Generalized Scheme
	3.5 Wrapping up

	4 What can Go Wrong?
	4.1 Higher-Order TI is Not so Higher-Order Secure
	4.2 ISW and Trichina in the Presence of Glitches

	5 Applications
	5.1 Using d+1 Input Shares
	5.2 Resistance Against Distance Leakage

	6 Conclusion
	References

	Author Index

