
Chapter 9
Fault Accommodation and Reconfiguration
Methods

Abstract This chapter gives an overview of methods for re-adjusting the controller
to faulty plants. Small faults can be tackled by fault accommodation, where the con-
troller parameters are adapted to the parameters of the faulty plant. When accommo-
dation cannot be used like in the case of an actuator or sensor breakdown, the control
loop has to be reconfigured and a new control law designed.

9.1 Fault-Tolerant Model-Matching Design

9.1.1 Reconfiguration Problem

The basic scheme of fault-tolerant control is depicted in Fig. 1.1 on p. 2. At the
execution level, a feedback controller

u(t) = k( y(t), yref(t))

is used to attenuate the disturbance d and to ensure command tracking with respect
to the command input yref . The control law k is designed so that the closed-loop
system satisfies the given requirements for the faultless plant. Before a fault f occurs
the supervision level shown in the figure only checks that the plant has its nominal
behaviour.

If the diagnostic unit detects and identifies a fault, the adaptation of the controller
to the faulty system is accomplished at the supervision level. This process results
in new controller parameters and possibly in a new control configuration. If the
sensors and actuators work differently as before but the faulty plant is still observable
and controllable, the control configuration can remain as before but the controller
parameters have to be adapted to the faulty system. This process is called fault
accommodation.

However, if the sensor or actuator faults break the control loop, new sensors or
actuators, respectively, have to be used. Then, the control loop has to be “recon-
figured” in the sense that the whole process of selecting a suitable structure and
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appropriate controller parameters has to be repeated after the fault is present. The
control problem has to be considered “from the scratch” by appropriately choosing

• the signal vector y to be controlled and the input vector u to be used,
• the control law k including the controller parameters,
• the set-point yref of underlying control loops.

Control reconfiguration can be thought of as an “analytical repair” of the closed-
loop system, where instead of repairing the plant the control algorithm and, hence,
the controller software is changed while exploiting the redundant measurement or
control signals for satisfying the control specifications in spite of the fault (Fig. 9.1).

To solve the fault-tolerant control problem, it is assumed that a state-space model

ẋ(t) = g(x(t), u(t), f ), x(0) = x0 (9.1)

y(t) = h(x(t), u(t), f ) (9.2)

with state x ∈ |Rn , input u ∈ |Rm and output y ∈ |Rr is available, which also
describes the dependence of the plant dynamics upon the faults f ∈ F . Furthermore,
it is assumed that a diagnostic algorithm has identified the current fault f .

According to these assumptions, the fault-tolerant control problem can be sum-
marised as follows:

Problem 9.1 (Fault-tolerant control problem)

Given: Model (9.1), (9.2) of the plant
Nominal controller k
Control specifications
Fault f

Find: Control configuration and new control law k f .

Note that in contrast to the usual controller design problem, also a nominal con-
troller k is given. One of the important aspects of fault-tolerant control is to take
advantage of the knowledge of the nominal controller k when solving the control
problem stated above.
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9.1.2 Pseudo-Inverse Method

One of the earliest methods for the controller redesign is based on model-matching.
As the nominal closed-loop system is known, the model of this system can be used
as a description of the dynamical properties that the new controller should produce
in connection with the faulty plant. That is, the closed-loop system should match the
model of the nominal loop.

The idea of model-matching is depicted in Fig. 9.2. The nominal closed-loop
system is composed of the linear nominal plant

ẋ(t) = Ax(t) + Bu(t) (9.3)

y(t) = Cx(t) (9.4)

and a nominal controller, which is assumed to be a state feedback controller u(t) =
−K x(t). Both components yield the model of the closed-loop system

ẋ(t) = (A − B K ) x(t)

y(t) = Cx(t).

If the controller does not use all the inputs ui of the input vector u, the matrix K
has zero rows, which is typical for plants with redundant actuators. When the fault
f occurs, the faulty plant is given by

ẋ(t) = A f x(t) + B f u(t) (9.5)

y(t) = C f x(t), (9.6)
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where the fault f has changed the system properties, which are now described by
the matrices A f , B f and C f . If the sets of available input or output signals have
changed, the matrices B f and C f have vanishing columns or rows, respectively. A
new state feedback controller

u(t) = −K f x(t)

should be found such that the closed-loop system

ẋ(t) = (A f − B f K f ) x(t)

y(t) = C f x(t)

behaves like the nominal loop. For the models used here, model-matching means to
satisfy the relation

A − B K = A f − B f K f , (9.7)

which means that both closed-loop systems have similar dynamics.
Equation (9.7) cannot be satisfied unless B and B f have the same image (like in

the case of a redundant actuator). Therefore, the new controller K f is chosen so as
to minimise the difference

‖(A − B K ) − (A f − B f K f )‖. (9.8)

The solution to this problem is given by

K f = B+
f

(
A f − A + B K

) =
(

BT
f B f

)−1
BT

f

(
A f − A + B K

)
, (9.9)

where B+
f denotes the pseudoinverse of B f given on the right-hand side of (9.9). Its

use provides the reason for the name pseudo-inverse method of this approach.
The new controller (9.9) is adapted to the faulty system and minimises the differ-

ence (9.8) between the dynamical properties of the nominal loop and the closed-loop
system with the faulty plant. Although the controller K f is the best possible solution
to the controller redesign problem, it does not ensure that the closed-loop system
behaves satisfactorily. In particular, it does not ensure the stability of the closed-loop
system. Therefore, the stability of A f − B f K f and the performance of the control
loop have to be evaluated separately. Extensions of this method ensure the stability
without a separate test.

Fault accommodation and control reconfiguration. The method described so far
is rather general. It includes both fault accommodation and control reconfiguration.
Depending on the sensors and the actuators used, the controller is simply adapted
to the new plant dynamics or it uses sensors or actuators that have not been used in
the nominal case. In the latter case, vanishing rows in the nominal controller K are
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replaced by non-zero elements, which means that new actuators are used and, hence,
a new control configuration results.

9.1.3 Model-Matching Control for Sensor Failures

This section considers the case of complete sensor failures. If the i th sensor fails,
the output yi is set to zero. In the plant model the matrix C changes to C f , whose
i th row is zero, but the other matrices remain the same as in the nominal case. The
corresponding reconfiguration problem will be investigated here for output feedback

u(t) = −K y(t),

for which the nominal closed-loop system is described by

ẋ(t) = (A − B K C) x(t)

y(t) = Cx(t).

For the faulty plant, the new controller

u(t) = −K f y f (t)

should be found such that the closed loop

ẋ(t) = (A − B K f C f ) x(t)

y f (t) = C f x(t)

has the same dynamics as the nominal loop.
The controller has to satisfy the simplified version of Eq. (9.7)

K f C f = K C. (9.10)

To find an appropriate matrix K f is possible only if the condition

Kern(C f ) ⊆ Kern(C) (9.11)

is satisfied, where Kern denotes the kernel1 of a matrix. The condition means that
the measurement information obtained by the full output vector y is the same as the
information obtained by the remaining sensors through y f . The condition (9.11) can
be written in an equivalent form as

1The kernel of C is the set of vectors x for which Cx = 0 holds.
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rank C f = rank

(
C

C f

)
.

Lemma 9.1 In case of sensor failures, exact model-matching can be reached if the
relation (9.11) holds. Then, the controller

u(t) = −K P y(t) (9.12)

solves the reconfiguration problem where

P = CC+
f = CCT

f

(
C f CT

f

)−1
(9.13)

satisfies the relation

C = PC f . (9.14)

The reconfigured controller K f = K P produces a closed-loop system that has
exactly the same properties as the faultless closed-loop system.

Situations where the requirement (9.11) is satisfied include the following:

• The fault has changed the sensitivity of the sensor, but the signal is not completely
lost. Hence, y f = a y holds for some scalar a.

• A sensors is at fault which has at least one parallel redundant sensor. The matrix
P switches the output to the redundant sensor.

• An analytic relation between the faulty output and several other output values
exists, which can be reformulated by using the matrix P .

The later two cases are only possible if C does not have full rank, which is likely in
special applications only.

9.1.4 Model-Matching Control for Actuator Failures

In case of an actuator failure, the matrix B is replaced by the matrix B f with zero
column for the failing actuator. The output feedback

u(t) = −K y(t)

which leads to the closed-loop system

ẋ(t) = (
A − B f K C

)
x(t)

y(t) = Cx(t).
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should be replaced by a new controller

u f (t) = −K f y(t)

such that the closed loop

ẋ(t) = (A − B f K f C) x(t)

y(t) = Cx(t)

has the same dynamics as the nominal loop.
The controller has to satisfy the simplified version of Eq. (9.7)

B f K f = B K . (9.15)

A solution K f to this equation exists only if the condition

Im (B f ) ⊇ Im (B) (9.16)

holds, where Im denotes the image2 of a matrix. An equivalent formulation of the
condition (9.16) is given by

rank B f = rank
(

B B f
)
.

Lemma 9.2 In case of actuator failures, exact model-matching is possible if Eq.
(9.16) holds. Then, the reconfigured controller is given by

u(t) = −N K y(t), (9.17)

where

N = B+
f B =

(
BT

f B f

)−1
BT

f B (9.18)

is a matrix satisfying the relation

B f N = B. (9.19)

The new controller K f = N K yields a closed-loop system with exactly the same
properties as the nominal loop.

Example 9.1 Model-matching for actuator failures
This example demonstrates the model-matching approach for actuator failures and shows the
main idea and a situation in which this approach fails.

2The image of C is the set of vectors y, for which a vector x exists such that y = Cx holds.
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Fig. 9.3 Example
demonstrating the
model-matching
reconfiguration strategy
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Consider the tank system shown in Fig. 9.3 which has two input pipes. Obviously, for level
control, only one pipe is necessary as control input and the redundant input can be used in
case of an actuator failure.

Assume first, that the valve positions are used directly as the control inputs. Then the
system can be described by a state-space model (9.3), (9.4) where the matrix

B = (b kb)

has two linearly depending columns because the two inputs influence the system in the same
way and the effects of the two actuators distinguish only with respect to some constant factor
k. In the nominal system, the first control input is used:

u1(t) = uC (t) = −K y(t)

for some controller K and some output y of the tank system.
If the corresponding actuator fails, the controller should be switched to the second input,

where

B f = (0 kb)

holds. The model-matching solutions yields the (2, 1)-element of the matrix N

N21 = (k2bTb)−1kbTb = 1

k
,

which means that the output uC (t) of the nominal controller is transformed into the input

u2(t) = 1

k
uC (t)

to the second actuator. This is an obvious solution: As the gain of the new actuator is k-times
the gain of the old one, the old input uC is multiplied by 1

k . A perfect reconfiguration results.
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Now change the situation by including the motors for the valves as shown in Fig. 9.3. As
these motors have integral dynamics, two additional states have to be added to the state

x̃ =
⎛

⎝
xa1
xa2
x

⎞

⎠

such that the model now reads as

˙̃x(t) =
⎛

⎝
0 0 0
0 0 0
b kb A

⎞

⎠ x̃(t) +
⎛

⎝
1 0
0 1
0 0

⎞

⎠
(

u1(t)
u2(t)

)

y(t) = (O O C) x̃(t)

In principle, the same solution as before is possible. However, the model-matching approach
yields for

B =
⎛

⎝
1
0
0

⎞

⎠ and B f =
⎛

⎝
0
1
0

⎞

⎠

the solution

N21 =
⎛

⎜
⎝

⎛

⎝
0
1
0

⎞

⎠

T ⎛

⎝
0
1
0

⎞

⎠

⎞

⎟
⎠

−1 ⎛

⎝
0
1
0

⎞

⎠

T ⎛

⎝
1
0
0

⎞

⎠ = O,

where the pseudo-inverse matrix has been built after the zero columns for the no longer
available inputs have been deleted. Hence, there is no control input at all. The model-matching
approach fails.

The reason for this result lies in the fact that the model-matching idea tries to reproduce the
effect Bu of the nominal controller by the reconfigured controller B f Nu. This is impossible
in this example, because the nominal controller has a direct effect only on the state variable
xa1 an no effect at all on the state variable xa2 whereas the redundant input leads to the reverse
situation. Hence, no choice of N can reproduce any of the effects of the nominal input. The
failure of the model-matching approach lies in this idea and can be circumvented by extending
the model-matching aim to the whole plant as described below. �
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9.1.5 Markov Parameter Approach to Control Reconfiguration
for Actuator Failures

The model-matching approach using the pseudo-inverse of the input matrix fails
because if concentrates on the forcing action at point P© in Fig. 9.4. In the approach
shown in this section, the goal refers to the I/O-behaviour of the plant. By this
formulation, analytical redundancies become amenable which are based on internal
couplings via the system matrix on the one hand and the selection of relevant states
via the output matrix on the other hand, see point Q© in the figure. Such redundancies
are hidden from a forcing action perspective.

The Markov parameters

Gi = C Ai−1 B, i = 1, . . . , n (9.20)

completely describe the I/O-behaviour of a linear system (9.3), (9.4) in terms of its
transfer function

P(s) =
∞∑

i=0

Gi s
−i . (9.21)

The Markov parameter-based approach to control reconfiguration tries to recover
the nominal plant Markov parameters after an actuator failure by using the static
reconfiguration block

uc(t) = Nu f (t). (9.22)

A

B f C

N

uf

xf

yf

Controller
ycuc

Faulty plant

P Q∫

Fig. 9.4 Input/output-based reconfiguration after actuator failures



9.1 Fault-Tolerant Model-Matching Design 399

If the Markov parameters of a reconfigured plant match those of the nominal
plant (9.3), (9.4) exactly, the dynamical I/O-behaviour is recovered exactly, which is
both necessary and sufficient for successful static I/O-reconfiguration.

With the observability matrix

SO =

⎛

⎜
⎜
⎜
⎝

C
C A
...

C An−1

⎞

⎟
⎟
⎟
⎠

∈ |Rn·m×n (9.23)

the design problem to Markov parameter recovery can be posed as

N = arg min
N

‖SO B f N − SO B‖ (9.24)

with the solution

N = (SO B f )
+SO B. (9.25)

If the condition

Im (SO B f ) ⊇ Im (SO B) (9.26)

holds, then perfect I/O-reconfiguration results in the sense that all Markov parameters
are exactly recovered. This condition is equivalent to

rank (SO B f ) = rank (SO B f SO B). (9.27)

If this condition is violated, an approximate solution is obtained in this way which
matches the original Markov parameters as closely as possible.

Lemma 9.3 In case of actuator failures, exact model-matching with respect to the
I/O-behaviour can be reached if the condition (9.26) holds. Then the reconfigured
controller is given by

u(t) = −N K y(t), (9.28)

where

N = (SO B f )
+SO B (9.29)

is a matrix satisfying the relation

C A(i−1) B f N = C A(i−1) B, i = 1, . . . , n. (9.30)
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The new controller yields a closed-loop system with exactly the same I/O-behaviour
as the nominal loop.

Remark 9.1 (Generality of the method) The approach is valid in connection with
any controller, since the plant I/O-response is recovered and the fault is hidden from
the controller. If the nominal loop was internally stable, this property is preserved
under reconfiguration if condition (9.26) holds, as an analysis using the Kalman
decomposition reveals. �

Example 9.1 (cont.) Model-matching for actuator failures: Markov approach
The example is now solved using the Markov parameter approach. It is shown that the problems
of the pseudo-inverse method are overcome.

The construction of the observability matrix (9.23) yields

SO B = (γ kγ)b with γ = (C C A...)T, (9.31)

whereas after the fault the relation

SO B f = (0 kγ)b (9.32)

holds. Condition (9.26) is met and the admissible solution to the problem

SO B f N = SO B (9.33)

is found using Eq. (9.25) as

N =
(

0 0
1
k 1

)
. (9.34)

As expected, the control input meant for the first valve is redirected to the second valve with
the correct gain adjustment. �

Example 9.2 Markov parameter approach applied to the two-tank example
The plant consists of the two tanks T1 and T2 interconnected by valves uL , u H , where
T1 is filled via pump uP as shown in Fig. 9.5. Valves are electromechanically driven with
the motor states vL , vH . The controlled quantities are the levels h1 and h2. With the state
x = (vL , vH , h1, h2)T, the tank system is described by the linear model (9.3), (9.4) with

A = 103

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0

−3.2 −3.4 −7.1 3.6
3.2 3.4 7.1 −18

⎞

⎟⎟
⎠

B = 103

⎛

⎜
⎜
⎝

0 10−3 0
0 0 10−3

8.1 0 0
0 0 0

⎞

⎟
⎟
⎠ , B f = 103

⎛

⎜
⎜
⎝

0 0 0
0 0 10−3

8.1 0 0
0 0 0

⎞

⎟
⎟
⎠

C =
(

0 0 1 0
0 0 0 1

)

and controlled by two decentralised proportional controllers LC.
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Fig. 9.5 Reconfiguration of
a two-tank system
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After a blocking of the lower valve at fault time t f , which yields uL (t) = 0 for t ≥ tf ,
the plant is statically I/O-reconfigurable according to the condition (9.27). The reconfigura-
tion (9.29) yields

N =
⎛

⎝
1 0 0
0 0 0
0 0.9167 1

⎞

⎠ .

The behaviour of the successfully reconfigured plant with fault f occurring at t f = 250 s
is shown in Fig. 9.6. After the fault appearing at t f = 250 s and the reconfiguration accom-
plished at t = 260 s, the control action is redirected from the lower to the upper valve. This
action appears logical, but it cannot be found by the pseudo-inverse method. �
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Fig. 9.6 Experimental results with the reconfigured tank system: After the failure of the lower
valve (uL , solid line) the controller acts at the upper valve (u H , dashed line)
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9.2 Control Reconfiguration for Actuator or Sensor Failures

9.2.1 The Idea of Virtual Sensors and Virtual Actuators

Severe faults such as the complete failure of actuators or sensors open the control
loop with the nominal controller. In order to hold the system in operation, it is
necessary to use a different set of input or output signals to accomplish the control
task. Once the new control configuration is selected, new controller parameters have
to be found. The goal of the reconfiguration is to stabilise the faulty process and to
keep it operational with sufficient performance.

Figure 9.7 shows the main idea of the methods explained in this section. Instead
of adapting the controller to the faulty plant, a reconfiguration block is used to adapt
the faulty plant to the nominal controller. The faulty plant together with the reconfig-
uration block should produce, for a given input uc, the same (or approximately the
same) output yc as the nominal plant. Hence, the controller “sees” the same plant as
before and reacts in the same way as before.

This solution of the reconfiguration problem tries to apply a minimal change to
the control loop. In particular, the nominal controller remains an unchanged block
of the control loop. The rationale for keeping the controller as before is given by
the fact that the existing control law includes valuable implicit knowledge about the
process and the possible performance of the closed-loop system. This knowledge
was acquired during the design cycle and is not represented in the process model.
For example, during the design it became obvious, which control objectives (like
overshoot, bandwidth, settling time) can be met with reasonable control effort and
which not. The trade-off between the different control objectives is represented by
the nominal controller.

In case of a sensor breakdown, the reconfiguration block results from the appli-
cation of a Luenberger observer to reconstruct the immeasurable output. It is called

Actuators Plant

Actuator
failure

uf

Sensors

Sensor
failure

Reconfiguration block

Nominal Controller
uc

yf

yc

Reconfigured
plant

Reconfigured
controlleryref

Fig. 9.7 Principle of control reconfiguration for actuator or sensor failures
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a “virtual sensor”, because it reconstructs that element yi of the output vector yc
from the other measured output signals that the faulty sensor does no longer mea-
sure. If an actuator becomes faulty, the reconfiguration block is obtained in a dual
way. The reconfiguration block is called a “virtual actuator”, because it acts like the
faulty actuator but replaces the effect of this actuator by using the control input of
the other actuators appropriately. The reconfigured controller, which is to be applied
to the faulty plant, consists of the nominal controller and the reconfiguration block
(Fig. 9.7).

The way to find appropriate reconfiguration blocks, which will be described in
this section, uses an alternative interpretation of the reconfigured control loop: The
faulty process and the reconfiguration block together are called the reconfigured
plant, which is connected to the nominal controller. If the reconfigured plant behaves
like the nominal plant, the loop consisting of the reconfigured plant and the controller
behaves like the nominal closed-loop system. This is true for an arbitrary nominal
controller.

Example 9.3 Two-tank reconfiguration problem
The reconfiguration problem and a way of its solution are illustrated by the two coupled tanks
depicted in Fig. 9.8.

The main mission of the system is to store water at a certain level in the right tank for some
consumer. During the nominal operation there exists two level controllers, with the set-points
y1ref and y2ref . The right controller uses the upper valve, whose position is given by the input
u2. A redundant control input is provided by the lower valve with input signal u3. In the
nominal case, the valve V12 is closed. The right controller has to attenuate the disturbance
d and to hold the tank level at a given value y2ref . The control specifications include the
stability, the set-point following requirement and the specification that the command step
response should not have a large overshoot.

P
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h
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3 d
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Level
Controller
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Controller

u
1 y
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Fig. 9.8 Reconfiguration problem for the tank example
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Tank system
Level

controller
u2
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u3

yref y = h2

d

−

Fig. 9.9 Block diagram of the reconfiguration problem

For the reconfiguration problem, three actuator faults are considered:

• Valve Va is closed and blocked.
• Valve Va is open and blocked.
• A level sensor is faulty.

In these cases, one of the two control loops does no longer work. The reconfiguration task
consists in finding a new control structure by selecting appropriate actuators, new control
laws and new set-points for the control loops such that the control aims described above are
obtained (Fig. 9.9).

Obviously, the reconfiguration task cannot be solved by simply changing the parameters
of the given controllers, but a structural change of the control configuration is necessary:

• If Valve Va is closed and blocked, the level controller of the right tank has to use the lower
valve V12 as control input. In this case, the controller of the left tank can remain unchanged.

• If Valve Va is open and blocked, in addition to the change of the level controller of the right
tank as before, the set-point of the level controller of the left tank has to be set to a value
which is lower then the position of Valve Va. Another possibility is to use the set-point of
the level controller of the left tank as control input of the level controller of the right tank.

• In case of the sensor fault, the missing sensor reading has to be reconstructed by means of
the remaining output measurements.

All these solutions, which for this simple example seem to be obvious, have to be found
automatically by a fault-tolerant control algorithm. �

9.2.2 Reconfiguration Problem

Before explaining the reconfiguration method, the problem to be solved is formally
stated. The model of the nominal process is given in state-space form:

ẋ(t) = Ax(t) + Bu(t) + Ed(t), x(0) = x0 (9.35)

y(t) = Cx(t). (9.36)
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The standard model is extended by the disturbance d ∈ |Rp.
It is important that the process model includes all available input and output signals

including those that are not used by the nominal controller. Unlike in the traditional
design problem, B and C may not have full rank.

The nominal process is stabilised by a nominal controller with output u(t) and
inputs y(t) and yref(t). The reconfiguration method explained here can be applied
without further assumptions on the controller, which may have arbitrary dynamics
and even be nonlinear. However, to demonstrate the properties of the resulting control
loop a linear feedback controller

uc(t) = −K yc(t) + V yref(t) (9.37)

is used.
Process and controller form the nominal control loop for u(t) = uc(t) and y(t) =

yc(t):

ẋ(t) = (A − B K C) x(t) + BV yref(t) + Ed(t), x(0) = x0 (9.38)

y(t) = Cx(t). (9.39)

This control loop is assumed to be stable and to satisfy the performance requirements
concerning set-point tracking and disturbance rejection.

Fault cases. In the case that the fault f indicates a loss of sensor i , the i th row
of the matrix C is changed into zeros and the new matrix is denoted by C f . If the
j th actuator fails, the j th column of the matrix B is set to zero and the resulting
matrix denoted by B f . In this way, the number of input signals, output signals and
state variables is not changed in the model, though some of them may have lost their
function. It is assumed that the faulty process is still controllable and observable.
This assumption implies that a stabilising controller exists. The input and the output
of the faulty plant are denoted by u f or y f , respectively.

Reconfiguration task. The aim is to find a reconfigured controller that makes the
closed-loop system satisfy the following conditions, which, depending on the control
task, refer to the autonomous behaviour, reference tracking and disturbance rejection:

• Strong reconfiguration goal:
The controller should make the reconfigured control loop behave in exactly the
same way as the nominal control loop, i.e. the relation

y f (t) = y(t)

should hold for any d(t), yref(t) and x0.

It will be demonstrated that this strong goal is only feasible in very special cases.
Therefore, a weaker goal is defined in terms of the dynamical and the static behaviour
of the reconfigured loop.
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• Weak reconfiguration goal:
The weak goal consists of a static and a dynamical part. Considering the static
behaviour, the output y f of the reconfigured loop should have the same value as
for the nominal system. This means that for constant values of yref and d, the
relation

y f (t) → y(t) for t → ∞

should hold. The transient behaviour is determined by the poles and zeros of the
system which should not differ significantly in the nominal and the reconfigured
control loop. This requirement applies for the autonomous, the disturbance, and
the command following behaviour of the reconfigured loop. Additional poles (and
zeros) are allowed only if they are fast enough not to dominate the system behav-
iour.

9.2.3 Virtual Sensor

This section describes a reconfiguration block that reconstructs a measurement yi

from the remaining sensor signals after the i th sensor is no longer available. The
main idea is to use an observer for the faulty system, which represents the main part
of the reconfiguration block to be built. This block is called virtual sensor due to its
function of replacing a broken sensor.

The plant with faulty sensor is described by the state-space model

ẋ f (t) = Ax f (t) + Bu f (t) + Ed(t), x f (0) = xf0 (9.40)

y f (t) = C f x f (t), (9.41)

where the sensor failure is reflected by the matrix C f . If the condition (9.11) is
satisfied, the complete output vector y can be reconstructed from y f and the recon-
figured controller (9.12) can be used. This new control structure can be interpreted
as consisting of a reconfiguration block

yc(t) = P y f (t) + yΔ

u f (t) = uc(t)

and the nominal controller. That is, under the condition (9.11) the virtual sensor is a
static reconfiguration block.

In the following, the general case is considered, where the condition (9.11) is
violated. Then, the reconfiguration block includes a state observer and a direct
feedthrough:

Definition 9.1 (Virtual sensor) Consider the plant (9.40), (9.41) with faulty sensor.
The virtual sensor is defined as the system
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ẋV(t) = AVxV(t) + BVuc(t) + L y f (t), xV(0) = xV0 (9.42)

u f (t) = uc(t) (9.43)

yc(t) = CΔxV(t) + P y f (t) (9.44)

with the state xV ∈ |Rn and with matrices

AV = A − LC f (9.45)

BV = B (9.46)

CV = C − PC f . (9.47)

P and L denote matrices that can be freely chosen.

The main part of the virtual sensor is the state observer with the state vector
xV(t). The complete output yc(t) of the plant can be approximately determined:
yc(t) ≈ CxV(t). This observation result is improved by using the available sensor
values and by observing only the difference between the nominal and the faulty
output. In a generalised form, this approach is represented by Eq. (9.44), where the
matrix P is a design parameter. For P = O only observed values are used.

Model of the reconfigured plant. The plant together with the virtual sensor is
described by Eqs. (9.40)–(9.47):

(
ẋ f (t)
ẋV(t)

)
=

(
A O

LC f A − LC f

)(
x f (t)
xV(t)

)
(9.48)

+
(

B
B

)
uc(t) +

(
E
O

)
d(t)

yc(t) = (
PC f CV

)
(

x f (t)
xV(t)

)
. (9.49)

A state transformation is performed in order to introduce the observation error
xΔ(t) = xV(t) − x f (t): Eqs. (9.48), (9.49) are equivalent to

(
ẋ f (t)
ẋΔ(t)

)
=

(
A O
O A − LC f

) (
x f (t)
xΔ(t)

)
(9.50)

+
(

B
O

)
uc(t) +

(
E

−E

)
d(t)

yc(t) = (
C CV

)
(

x f (t)
xΔ(t)

)
(9.51)

(
x f (0)

xΔ(0)

)
=

(
xf0

xV0 − xf0

)
.

Model of the reconfigured loop. For the analysis of the closed-loop behaviour
the model of the reconfigured plant is combined with the linear feedback con-
troller (9.37):
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(
ẋ f (t)
ẋΔ(t)

)
=

(
A − B K C −B K CV

O A − LC f

)(
x f (t)
xΔ(t)

)
+

+
(

E
−E

)
d(t) +

(
BV
O

)
yref(t) (9.52)

y f (t) = (
C f O

)
(

x f (t)
xΔ(t)

)
. (9.53)

The trajectory of this system depends on the initial state, the reference input yref and
the disturbance d (Fig. 9.10). As the system is linear, the behaviour can be analysed
separately for these three excitations.

Autonomous behaviour. For yref(t) = 0 and d(t) = 0 the system (9.52), (9.53)
simplifies to

(
ẋ f (t)
ẋΔ(t)

)
=

(
A − B K C −B K CV

O A − LC f

)(
x f (t)
xΔ(t)

)
(9.54)

y f (t) = (
C f O

)
(

x f (t)
xΔ(t)

)
(9.55)

(
x f (0)

xΔ(0)

)
=

(
xf0

xV0 − xf0

)
.

Fig. 9.10 Reconfiguration
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The separation principle of state observers applies: The matrix K influences the
behaviour of the process state x f (t) through the submatrix A − B K C (controller
design), while L affects the behaviour of the observation error xΔ through the sub-
matrix A − LC f (observer design). There are cross-couplings in one direction only
from xΔ(t) to x f (t). The strength of the couplings and the influence of xΔ(t) on the
output can be reduced by a suitable choice of the matrix P .

Theorem 9.1 (Separation principle for the virtual sensor) The set σ of eigenvalues of
the reconfigured closed-loop system (9.54), (9.55) consists of the set of eigenvalues
of the nominal closed-loop system (9.38), (9.39) and the set of eigenvalues of the
virtual sensor (9.42):

σ = σ{A − B K C} ∪ σ{A − LC f }.

The stability of the closed-loop is guaranteed if the nominal control loop is sta-
ble (depending on K ) and if the observer is stable (depending on L). The second
condition can be satisfied by an appropriate choice of L because the pair (A, C f ) is
assumed to be observable. The equilibrium state is zero for both the faulty and the
nominal system.

Tracking behaviour. For xf0 = xV0 = 0 and d = 0, the system (9.52), (9.53)
simplifies to

ẋ f (t) = (A − B K C) x f (t) + BV yref(t), x f (0) = O

y f (t) = C f x f (t),

which is identical to the behaviour of the nominal closed-loop system (9.38), (9.39).
Hence, the reference tracking behaviour of the reconfigured control loop is identical
to that of the nominal control loop.

Disturbance behaviour. For the disturbance behaviour it is assumed that the initial
state and the reference input are zero. This leads to the following closed-loop system:

(
ẋ f (t)
ẋΔ(t)

)
=

(
A − B K C −B K CV

O A − LC f

)(
x f (t)
xΔ(t)

)
+

(
E

−E

)
d(t)

y f (t) = (
C f O

)
(

x f (t)
xΔ(t)

)

(
x f (0)

xΔ(0)

)
=

(
O
O

)
.

It is obvious that the output y f is different from the output y of the nominal control
loop. The dynamical disturbance behaviour is much more complex because the num-
ber of states of the reconfigured process is 2n instead of n for the nominal process.
The poles of the disturbance rejection behaviour depend on K and L, while the zeros
are affected by P .

These results are summarised in the following theorem.
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Theorem 9.2 (Virtual sensor) For sensor faults, the virtual sensor (9.42)–(9.44)
solves the reconfiguration problem such that the weak reconfiguration goal is reached
provided that the faulty process is observable. The strong goal is reached for the
reference tracking behaviour.

The analysis has shown how the virtual sensor works. The direct feedthrough P
reconstructs or at least approximates the output yc of the faultless plant from the
remaining output y f . If the condition (9.11) is satisfied and P is chosen according
to Eq. (9.13), the virtual sensor shrinks to a static reconfiguration block

yc(t) = CCT
f

(
CT

f C f

)−1
y f (t)

u f (t) = uc(t),

because CV = O results. This solution to the reconfiguration problem coincides with
the solution obtained by the model-matching approach. The strong reconfiguration
goal is satisfied.

If the condition (9.11) is not satisfied, the virtual sensor reconstructs the missing
sensor information. Its state xV(t) approximates the plant state x f (t). The strong
reconfiguration goal is satisfied only for the reference tracking behaviour. The dis-
turbance behaviour of the reconfigured closed-loop system is typically slower com-
pared with the nominal behaviour. The smaller the state xΔ(t) in the model of the
disturbance behaviour is, the better approximates the reconfigured loop the nominal
behaviour.

9.2.4 Virtual Actuator

This section develops a solution to the reconfiguration problem for actuator failures.
The notion of a virtual actuator is introduced as the dual system to the virtual sensor.

The system under consideration is described by

ẋ f (t) = Ax f (t) + B f u f (t) + Ed(t), x f (0) = xf0 (9.56)

y f (t) = Cx f (t), (9.57)

where zero columns in the matrix B f reflect the failing actuators. If the condi-
tion (9.16) is satisfied, the static reconfiguration block

u f (t) = Nuc(t)

yc(t) = y f (t)

can be used. In the following, the more general case is investigated, where this
condition is not satisfied.
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To explain the structure of the virtual actuator, the dual system of the reconfigured
control loop for sensor faults shown in Fig. 9.11 is constructed. The result is shown
in Fig. 9.12.

Definition 9.2 (Virtual actuator) Consider the plant (9.56), (9.57) with faulty actu-
ator. The virtual actuator is defined as the system

ẋΔ(t) = AΔxΔ(t) + BΔuc(t), xΔ(0) = xΔ0 (9.58)

u f (t) = CΔxΔ(t) + DΔuc(t) (9.59)

yc(t) = CxΔ(t) + y f (t) (9.60)

with the state xΔ ∈ |Rn and the matrices

AΔ = A − B f M (9.61)

BΔ = B − B f N (9.62)

CΔ = M (9.63)

DΔ = N. (9.64)
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∫
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Fig. 9.11 Analysis of the closed-loop system with virtual sensor
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Fig. 9.12 Reconfiguration by means of a virtual actuator

M and N denote matrices that can be freely chosen.

Analysis of the reconfigured plant. The plant together with the virtual actuator
leads to the following model of the reconfigured plant:

(
ẋ f (t)
ẋΔ(t)

)
=

(
A B f M
O A − B f M

)(
x f (t)
xΔ(t)

)
(9.65)

+
(

B f N
B − B f N

)
uc(t) +

(
E
O

)
d(t)

yc(t) = (
C C

)
(

x f (t)
xΔ(t)

)
. (9.66)
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The introduction of the new state x̂(t) = x f (t) + xΔ(t) leads to the following
equivalent model:

d

dt

(
x̂(t)

xΔ(t)

)
=

(
A O
O A − B f M

)(
x̂(t)

xΔ(t)

)

+
(

B
B − B f N

)
uc(t) +

(
E
O

)
d(t)

yc(t) = (
C O

)
(

x̂(t)
xΔ(t)

)

(
x̂(0)

xΔ(0)

)
=

(
x0 + xΔ0

xΔ0

)
.

Note that the state xΔ of the second subsystem is not observable by yc. Hence, this
state does not influence the I/O-behaviour of the reconfigured plant, whose model
can be reduced to

ẋ(t) = Ax(t) + Buc(t), x(0) = x0 + xΔ0

yc(t) = Cx(t).

This model is identical to the nominal plant provided that xΔ0 = 0 holds.

Theorem 9.3 The reconfigured plant (9.56)–(9.64) has the same I/O-behaviour as
the nominal plant (9.38), (9.39) for arbitrary parameter matrices M and N of the
virtual actuator.

Hence, the virtual actuator yields a reconfigured plant that satisfies the fault-hiding
goal for arbitrary matrices M and N .

Separation principle for the virtual actuator. The reconfigured closed-loop sys-
tem consists of the reconfigured plant and the controller (9.37), both of which are
considered for vanishing disturbance d and command input yref . If the transformed
model is used, the reconfigured closed-loop system is described by

d

dt

(
x̂(t)

xΔ(t)

)
=

(
A − B K C O
−BΔ K C A − B f M

)(
x̂(t)

xΔ(t)

)

(
x̂(0)

xΔ(0)

)
=

(
x0 + xΔ0

xΔ0

)
.

As the system matrix is a block triangular matrix, the following result is obtained:

Theorem 9.4 (Separation principle for the virtual actuator) The set σ of eigenval-
ues of the reconfigured closed-loop system (9.37), (9.56)–(9.64) consists of the set
of eigenvalues of the nominal closed-loop system (9.37)–(9.39) and the set of eigen-
values of the virtual actuator (9.58):

σ = σ{A − B K C} ∪ σ{A − B f M}.
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This theorem holds true for arbitrary matrices M and N of the virtual actuator.
Clearly, a corollary of this theorem is that the matrix M has to be chosen so that
the matrix A − B f M has eigenvalues with negative real parts in order to ensure the
stability of the reconfigured closed-loop system.

Corollary 9.1 The stability of the reconfigured closed-loop system can be ensured
by appropriately choosing the matrix M of the virtual actuator if and only if the pair
(A, B f ) is stabilisable.

This corollary shows that the stabilisation goal can be satisfied by using the gener-
alised virtual actuator as long as the faulty plant is stabilisable.

I/O-behaviour of the reconfigured closed-loop system. The following investigates
the I/O-behaviour of the reconfigured closed-loop system and derives guidelines for
choosing the parameter matrices M and N of the virtual actuator. If the models of
the faulty plant (9.56), (9.57) is combined with the virtual actuator (9.58)–(9.60)
and the controller (9.37), the following model is obtained after the state x̂ has been
introduced as before:

d

dt

(
x̂(t)

xΔ(t)

)
=

(
A − B K C O
−BΔ K C A − B f M

)(
x(t)

xΔ(t)

)
(9.67)

+
(

BV
BΔV

)
yref(t) +

(
E
O

)
d(t)

(
x̂(0)

xΔ(0)

)
=

(
x0 + xΔ0

xΔ0

)

yc(t) = (C O)

(
x̂(t)

xΔ(t)

)
(9.68)

y f (t) = (C − C)

(
x̂(t)

xΔ(t)

)
. (9.69)

The block diagram that illustrates this model is shown in Fig. 9.13. The lower block
represents the nominal closed-loop system. The control error e = V yref − yc is fed
into the “difference system”

ẋΔ(t) = (A − B f M)xΔ(t) + BΔe(t), xΔ(0) = xΔ0 (9.70)

yΔ(t) = CxΔ(t), (9.71)

whose name results from its output yΔ, which is the difference between the output yc
of the nominal closed-loop system and the output y f of the reconfigured closed-loop
system. Hence, yΔ shows how the reconfigured closed-loop system differs from the
nominal loop.

This model yields two corollaries:

• The I/O-behaviour with respect to the disturbance input d or the command input
yref , respectively, and to the output yc is identical to the corresponding I/O-
behaviour of the nominal closed-loop system.
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Fig. 9.13 Transformed closed-loop system showing the separation principle

• The I/O-behaviour with respect to the disturbance input d or the command input
yref , respectively, and to the output y f differs from that of the nominal closed-loop
system due to the influence of the difference system (9.70), (9.71).

To summarise these results, the virtual actuator presents a successful reconfig-
uration block in case of actuator failures. It creates a stable control loop with n
placeable additional poles. However, it does not restore the original equilibrium
unless the equilibrium is zero.

Theorem 9.5 (Virtual actuator) For actuator failures, the virtual actuator (9.58)–
(9.64) is a solution to the reconfiguration problem such that the weak reconfiguration
goal is reached provided that the faulty process is controllable.

The following part of this section concerns the question how to choose the matrices
M and N of the virtual actuator in order to get a small difference yΔ between the
behaviour of the nominal and the reconfigured closed-loop system.

Complete reconfiguration. As Fig. 9.13 and Eqs. (9.70), (9.71) show, a complete
reconfiguration is possible if the matrix N can be chosen such that the matrix BΔ

vanishes.
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Corollary 9.2 If the matrix N can be chosen such that

BΔ = B − B f N = O (9.72)

holds, the I/O-behaviour of the reconfigured closed-loop system is identical to that
of the nominal control loop for both the disturbance input d and the command input
yref . Furthermore, if

xΔ(0) = 0 (9.73)

holds, the reconfigured loop has the same free motion as the nominal loop.

The condition (9.72) can be satisfied for an arbitrary controller (9.37) if and only if
the relation (9.16) holds. Then the virtual actuator (9.58), (9.60) reduces to the static
reconfiguration block

u f (t) = (BT
f B f )

−1 BT
f Buc(t) (9.74)

yc(t) = y f (t), (9.75)

which is identical to the reconfiguration solution described in Sect. 9.1.4.
If the condition (9.16) is violated, this static reconfiguration block does not solve

the reconfiguration problem, the inequality BΔ �= O holds and the dynamical part
of the virtual actuator becomes active.

Design of the virtual actuator by disturbance decoupling methods. If the transfer
function matrix of the difference system (9.70), (9.71) vanishes

G(s) = C(s I − A + B f M)−1(B − B f N) = O, (9.76)

the reconfiguration is complete as well. Then the difference model (9.70), (9.71),
which can be equivalently written as

ẋΔ(t) = AxΔ(t) + Buc(t) + B f u f (t), xΔ(0) = xΔ0 (9.77)

uΔ(t) = MxΔ(t) + Nuc(t) + Qũ(t) (9.78)

has a vanishing output. To select the matrices N and M such that the condition (9.76)
holds is a disturbance decoupling problem for known disturbance uc. It has been
shown in [340] that the solution to this problem yields a complete reconfiguration.
This solution exist, however, only under restrictive conditions.

Restoration of the static behaviour. The static behaviour is completely recon-
structed if the gain of the difference system vanishes:

G(0) = −C(A − B f M)−1(B − B f N) = O. (9.79)
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Approximate solution. The generalised virtual actuator has the property that the
effect of the virtual actuator “disappears” if the matrix BΔ can be made very small
by choosing the matrix N appropriately.

Corollary 9.3 For‖BΔ‖ → 0, the behaviour of the reconfigured closed-loop system
approaches that of the nominal loop:

‖ yc(t) − y f (t)‖ → 0.

Hence, if ‖BΔ‖ is sufficiently small it is reasonable to use the static reconfiguration
block only.

Example 9.4 Reconfiguration of the two-tank system
To illustrate the reconfiguration by means of the virtual actuator, the problem posed in Exam-
ple 9.3 is considered. The tank system is described by the nonlinear state-space model

ḣ1(t) = Q1max

A1
(−kI xr(t) − kP (h1(t) − u1(t)))

− Q1max

S

√
2g(h1(t) − hv)u2(t) − Q1max

S

√
2gh1(t)u3(t)

ẋr(t) = h1(t) − u1(t)

ḣ2(t) = 1

A2

(
S
√

2g(h1(t) − hv)u2(t) + S
√

2gh1(t)u3(t) − S
√

2gh2(t)d(t)
)

yc(t) = h2(t)

that includes the controller of the left tank, which is a PI controller

ẋr(t) = h1(t) − u1(t)

ũ1(t) = −kI xr(t) − kP (h1(t) − u1(t)).

This model uses the following parameters:

Symbol Physical meaning

A 1 , A 2 Cross section areas of the two tanks

Q1max Maximum flow through the pump

hv Height of the upper pipe above the tank bottom

S Constant of the valves

g gravity constant

k I , kP Controller parameters

After the linearisation of the model around the operation point described by h̄1, h̄2, ū1, ū2,
ū3, the linear model (9.35), (9.36) with
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A =
⎛

⎝
−0.0478 −0.0004 0
1.0000 0 0
0.0058 0 −0.0058

⎞

⎠

B =
⎛

⎝
0.0406 −0.0058 −0.0092

−1.0000 0 0
0 0.0046 0.0073

⎞

⎠

C = (0 0 1)

E =
⎛

⎝
0
0

−0.0454

⎞

⎠

is obtained. Is is assumed that the upper valve fails and is, therefore, completely closed and
no longer used as actuator of the right level controller. Then, the second column in the matrix
B has to be set to zero to obtain the matrix B f :

B =
⎛

⎝
0.0406 0 −0.0092

−1.0000 0 0
0 0 0.0073

⎞

⎠ .

Static reconfiguration. A complete reconfiguration of the controller is possible, because the
condition (9.16) is satisfied due to the lower valve, which represents a redundant control input
with similar effects on the tank system as the upper valve. In fact, the last column of B is
linearly dependent upon the second column:

0.6325

⎛

⎝
−0.0092

0
0.0073

⎞

⎠ =
⎛

⎝
−0.0058

0
0.0046

⎞

⎠ .

Hence, the reconfiguration is possible with a static reconfiguration block (9.74), for which the
following parameters are obtained (Fig. 9.14):

Fig. 9.14 Static
reconfiguration of
the tank system
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Nominal controller

Tank system

y

u3

u2
yref



9.2 Control Reconfiguration for Actuator or Sensor Failures 419

Fig. 9.15 Behaviour of the
reconfigured closed-loop
system where the
reconfigured controller
uses the input u3
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u f (t) =
⎛

⎝
0 0 −2.7039
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0 0 1

⎞

⎠ uc(t).

Figure 9.15 shows the reference tracking behaviour of the right tank for changing level
set-point. The right tank has the same behaviour with the reconfigured controller as in the
nominal case. In the lower subplot the control input u3 used by the reconfigured controller
is compared to the input u2 of the nominal controller, which is shown by the dashed lines.
Clearly, the new input has to be smaller than the nominal one, because the lower valve between
the tanks has a higher effectiveness than the upper one, which can be seen by comparing the
corresponding columns in the matrix B.

Reconfiguration by means of the virtual actuator. If the lower valve is not available for
the reconfiguration, the right controller has only the input u1, which is the command signal
of the left controller, as its disposal. With the third columns deleted, the matrices B and B f
do no longer satisfy the condition (9.16). Hence, a dynamical reconfiguration block has to be
used. The matrix N of the virtual actuator is chosen according to Eq. (9.18):
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N =
⎛

⎝
1 −0.0002 −0.0004
0 0 0
0 0 0

⎞

⎠ .

The nominal closed-loop system has the eigenvalues −0.0427, −0.0124±0.0058i . Therefore,
the matrix M of the virtual actuator is chosen so as to place the eigenvalues of the matrix
A − B f M to the left of these eigenvalues, namely at −0.05, −0.06 and −0.07. As M should
use only the first input, its non-zero elements are restricted to the first row:

M =
⎛

⎝
−0.9968 −0.0048 −0.0002

0 0 0
0 0 0

⎞

⎠ .

In summary, the virtual actuator (9.58), (9.59) results

ẋΔ(t) =
⎛

⎝
−0.0074 −0.0002 0
0.0032 −0.0048 −0.0002
0.0058 0 −0.0058

⎞

⎠ xΔ(t) +

+
⎛

⎝
0 −0.0058 −0.0091
0 −0.0002 −0.0004
0 0.0046 0.0073

⎞

⎠ u2c(t)

u1(t) = (−0.9968 − 0.0048 − 0.0002) xΔ(t) +
+(1 − 0.0002 0.0004) yc(t),

where u2c(t) is the control input generated by the nominal level controller of the right tank.
This signal is used now as an input of the virtual actuator (Fig. 9.16).

Figure 9.17 shows the disturbance behaviour of the tank system after the controller has
been extended by a virtual actuator shown above. The response is slower than the nominal

Fig. 9.17 Behaviour of the
reconfigured closed-loop
system where the
reconfigured controller
uses the input u1
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response, which is drawn by dashed lines to make a comparison possible. The slower response
results from the fact that the controller of the right tank uses now the command input of the
controller of the left tank as control input. �

9.2.5 Duality Between Virtual Sensors and Virtual Actuators

The comparison of the reconfiguration blocks developed in the preceding sections
clearly shows the duality of the approaches for sensor and actuator failures. The
variables correspond to each other in the following way:

Note that the duality involves more than just swapping input and output and
transposing the matrices. It requires that the directions of the signals be reversed.
Summation points become signal knots and vice versa. The diagrams also require
mirroring to preserve the clockwise signal direction of the control loop.

A short mathematical demonstration of the duality is given here. If the system
(9.48) is transposed, the input and output matrices are exchanged, and all system
matrices are transposed, the following model results:

(
ẋ f (t)
ˆ̇x(t)

)
=

(
AT CT

f LT

O AT − CT
f LT

)(
x f (t)
x̂(t)

)

+
(

CT
f PT

CT − CT
f PT

)

u f (t)

yc(t) = (
B B

)
(

x f (t)
x̂(t)

)
.

Apart from the different variable names according to Table 9.1, the result is identical
to (9.65)–(9.66). The duality holds for most properties, but not for the reference
tracking. The reason is that yref and y do not have symmetric positions in the system.

9.2.6 Experimental Evaluation: Level and Temperature
Control

Reconfiguration of a level and temperature control loop. For a demonstration of
the control reconfiguration in case of an actuator failure the part of the chemical
process shown in Fig. 9.18 is considered. The control objectives are to maintain a
constant liquid level and a constant temperature in the reactor tank B1 and, thus,
producing a constant product outflow. To achieve this, hot and cold liquid can be

Table 9.1 Duality of the system variables

Virtual sensor A B C K L P x̂ u y

Virtual actuator AT CT BT KT MT NT x̃ y u
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Fig. 9.18 Plant used for control reconfiguration (LC - level control, TC - temperature control)

brought into the reactor from Tanks B2 and B5. The main reactor B1 can be heated
and cooled.

In the nominal case, the liquid level is controlled by adjusting the cold liquid
inflow from Tank B5 and the temperature by means of the heating.

Plant model. The plant model contains three states: the reactor content VB1, the
reactor temperature ϑB1 and the content of the cold liquid tank VB5. From a mass
balance, the following equations are obtained

V̇B5(t) = kP2uP2(t) − q51(t)

V̇B1(t) = q21(t) + q51(t) − q1out(t)

ϑ̇B1(t) = (ϑB2(t) − ϑB1(t))
q21(t)

VB1(t)
+ (ϑB5(t) − ϑB1(t))

q51(t)

VB1(t)

+uheat(t)kheat

VB1(t)
,

where for the liquid flows the relations

q21(t) = kP1uP1(t)

q51(t) = kV1 124.5uV1(t)
√

hB5(t) + 1.07

q1out(t) = kV2

√
VB1(t)

AB1
+ 1.4



9.2 Control Reconfiguration for Actuator or Sensor Failures 423

hold. hB5(t) is the liquid level in the spherical tank B5, uheat(t) the heating power,
kheat a heating coefficient, uP1(t), uP2(t) and uV1(t) the control input to the two
pumps and to the Valve V1 and AB1 the cross-section area of the Tank B1. After a
linearisation of this nonlinear model around the operating point of ϑB1 = 40 ◦C, the
following linear model is obtained:

⎛

⎝
V̇B5(t)
V̇B1(t)
ϑ̇B1(t)

⎞

⎠ = 10−3

⎛

⎝
−0.46 0 0
+0.46 −0.33 0
−0.48 0.008 −1.1

⎞

⎠

⎛

⎝
VB5(t)
VB1(t)
ϑB1(t)

⎞

⎠

+
⎛

⎝
0.09 −0.023 0 0

0 +0.023 +0.05 0
0 −0.024 +0.02 0.223

⎞

⎠

⎛

⎜
⎜
⎝

uP2(t)
uV1(t)
uP1(t)
uheat(t)

⎞

⎟
⎟
⎠

y =
⎛

⎝
hB5(t)
hB1(t)
ϑB1(t)

⎞

⎠ .

The nominal proportional controllers are defined by:

uV1(t) = −0.5 VB1(t)

uheat(t) = −0.5 ϑB1(t)

uP2(t) = −1 VB5(t).

They can be represented as

u(t) = −K y(t) with K =

⎛

⎜
⎜
⎝

0.5 0 0
0 1 0
0 0 0
0 0 0.5

⎞

⎟
⎟
⎠ .

Note that these controllers do not use the control input uP1, because the matrix K
has a vanishing third row.

Faults. Several severe faults can occur that open the control loops. For example, due
to a heating failure, the reactor can no longer be heated, or clogging or blockage of
Valve V1 can bring the level controller out of operation. In the following, the heating
failure and a blockage of Valve V1 in its nominal position will be considered.

Controller reconfiguration after a heating failure. After a heating failure has
occurred, the temperature controller

uheat(t) = −0.5 ϑB1(t)

has no influence on the process. The system in the nominal and the faulty case has
the matrices
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B =
⎛

⎝
0.09 −0.023 0 0

0 +0.023 +0.05 0
0 −0.024 +0.02 0.223

⎞

⎠

B f =
⎛

⎝
0.09 −0.023 0 0

0 +0.023 +0.05 0
0 −0.024 +0.02 0

⎞

⎠ ,

which distinguish in the last column. Both matrices have the same rank and can be
related to one another by the matrix

N =

⎛

⎜
⎜
⎝

1 0 0 −1.72
0 1 0 −6.72
0 0 1 3.09
0 0 0 0

⎞

⎟
⎟
⎠

such that the equation

B f N = B

holds. Hence, a complete reconfiguration is possible by using the third control input,
which is not used in the nominal case. The reconfigured controller

u(t) = −N K y(t)

has the controller matrix

N K =

⎛

⎜
⎜
⎝

0.5 0 −0.86
0 1 −3.36
0 0 1.55
0 0 0

⎞

⎟
⎟
⎠ .

Obviously, the fourth actuator is no longer used. The effect of this actuator is dis-
tributed among the three remaining actuators, which can be seen in the last column
of the new controller matrix. With the reconfigured controller, the behaviour of the
nominal system is completely reproduced.

Controller reconfiguration by means of a virtual actuator. The loss of the actuator
V1 does not affect the operation point, but it breaks the level control loop for the reactor
B1. The use of a reduced virtual actuator allows to keep the nominal controller while
changing the control structure as little as possible.

In the terminology of Sect. 9.2.3, the directly influenceable part xF1 of the plant
state is defined by VB5 and ϑB1, while xF2 is the single state variable VB1:

xf1(t) =
(

BB5(t)
ϑB5(t)

)
, xf2(t) = VB1(t).
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The (1, 2)-parameter matrix M is determined by pole placement. The element
of M that is acting on ϑB1 has no influence on the actuator pole and is, therefore,
set to 0. The other value is chosen so that the actuator pole lies at −0.004 in order
to make the influence of the virtual actuator on the closed-loop dynamics as small
as possible. The application of the method explained in Sect. 9.2.4 to this example
leads to

˙̂x2(t) = −0.004 x̂2(t) + 0.0229 uV2,R(t)

û(t) =
⎛

⎝
0.015

−0.318
0

⎞

⎠ x̂2(t) +
⎛

⎝
−0.107

1.78
0

⎞

⎠ uV2,R(t)

ŷ(t) =
⎛

⎝
−8
0
1

⎞

⎠ x̂2(t).

The function of the reduced virtual actuator can be described as follows (Fig. 9.19).
The input uV1(t) is not available to control the inflow into the main reactor, but this
inflow also depends on the level in Tank B5 and, hence, on VB5. In order to reach the
same effect as the broken actuator, VB5(t) is increased or decreased by influencing
the Pump P2 via the input uP2(t). As VB5(t) cannot be changed instantaneously, this
“replacement action” is slower than the direct action of the nominal control loop on
the valve V1 and leads to a slower reaction of the system under the influence of the
reconfigured controller.

In mathematical terms, the virtual actuator brings about an additional pole which
yields the slower dynamics. The difference between the nominal and the new behav-
iour is determined by the virtual actuator and deducted from the measurements of

Fig. 9.19 Reconfigured
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Fig. 9.20 Results of the reconfiguration experiment (Reactor temperature ϑB1(t) (top), reactor
content VB1(t) (middle) and reactor content VB5(t)

VB1(t) and VB5(t). In this way, the additional pole remains hidden from the level
controller and this controller acts like in the nominal case.

The experimental results are shown in Fig. 9.20. The state VB1(t) is disturbed
by withdrawing a considerable amount of liquid until time t = 10 s. The virtual
actuator increases the level VB5(t) in Tank B5 by increasing the pump input uP1(t).
The effect of this manipulation and of the fault is “simulated” by the virtual actuator,
subtracted from the sensor’s data and, therefore, hidden from the nominal controller.
After 180 s the tank level VB5(t) reaches its maximum and after another 800 s the
state deviation has been reasonably compensated. A static deviation remains because
of some modelling inaccuracies.

The dashed lines show the behaviour of the faultless closed-loop system. The
slower reaction of the level controller results in the slower disturbance attenuation
shown in the middle part of the figure, where the nominal system reaches the set-
point of 19 dm3 quicker than the reconfigured system. Hence, the operation of the
main reactor can be restored with a minor performance degradation.

In the lower part of the figure the different behaviour of Tank B5 can be seen.
The difference is due to the different functions that this tank has in both situations.
In the faultless case the level controller of this tank adjusts the liquid content to the
set-point, whereas under faulty conditions this variable is used as a means to control
the inflow into Tank B1 and, thus, to control the contents of B1.
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Fig. 9.21 Part of the chemical plant VERA used in the experiment

9.2.7 Experimental Evaluation: Conductivity Control Loop

The second application of the reconfiguration method that uses the virtual actuator
is the fault-tolerant control of the conductivity of a liquid. Figure 9.21 shows the
experimental set-up and Fig. 9.22 the schematic diagram of the three reactors involved
in the control loop considered. The sequence of the two Reactors TM and TB with the
Reactor TS is used to produce a liquid with prescribed temperature and conductivity.
Several control loops have to be used, which are shown in the schematic diagram
with the abbreviations LC for level controller, TC for temperature controller and CC
for concentration controller. If actuator failures occur, these loops are brought out of
operation. Typical failures concern the valve VCW and the heating Pel .

The nominal controller uses the inputs uPS, uTS and uTB, the three variables to
be controlled are the temperature ϑTB, the liquid level lTS in the Reactor TS and the
conductivity λTS of the liquid in the Reactor TS (Fig. 9.23). The block diagram also
shows the redundant inputs uCW and uTM, which will be used for the reconfiguration.

Nonlinear model. The following nonlinear model is obtained from balance equa-
tions that concern the different components of the plant. To shorten the notation of
the equations, the dependency of the signals from the time t is omitted:
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• Change of the liquid temperature of Reactor TS:

ϑ̇TS = 1

ATSρlTS

{
Pel,TS − Q̇PL,TS

cp
+ ṁTB(ϑTB − ϑTS) +

ṁTM(ϑTM − ϑTS) + ṁCW(ϑCW − ϑTS)

}

• Change of the liquid volume in Reactor TS:

l̇TS(t) = ṁTB(t) + ṁTM(t) + ṁCW(t) − ṁTW(t)

ATSρ

: redundancy

: subordinate loop

: main loop wastewater

PS

TS
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Fig. 9.22 Schematic diagram of the process
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• Change of the concentration in Reactor TS:

ċTS(t)

= ṁTB(t)(cTB − cTS(t)) + ṁTM(t)(cTM − cTS(t)) − ṁCW(t)cTS(t)

ATSρlTS(t)

• Change of the liquid temperature in Reactor TB:

ϑ̇TB(t)

= 1

ATBρlTB

{
Pel,TB(t) − Q̇PL,TB(t)

cp
+ ṁT 124(t)(ϑT 124 − ϑTB(t))

}

• Behaviour of the cold water Valve VCW:

ẋCW(t) = = − 1

TCW
xCW(t) + 1

TCW
uCW(t)

ṁCW(t) = xCW(t) with TCW = 3, 7 s

• Actuator dynamics of the heating of the Reactor TB:
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ẋTB(t) = = − 1

Tel,TB
xTB(t) + 1

Tel,TB
uTB(t)

Pel,TB(t) = kTBxTB(t),

with Tel,TB = 27 s, kTB = 18 kW

• Actuator dynamics of the heating of the Reactor TS:

ẋTS(t) = = − 1

Tel,TS
xTS(t) + 1

Tel,TS
uTS(t)

Pel,TS(t) = kTSxTS(t),

with Tel,TS = 65 s, kTS = 4 kW

Besides the state variables ϑTB and lTS, the conductivity is the third variable to be
controlled. This signal is obtained by the following relation:

λTS(t) = 0,4469
mS

cm
+ 2047,7

mS

cm
cTS(t).

All these equations use the following mass and heat flows:
• Mass flow from Rector TB towards Reactor TS:

ṁTB(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
0,019 kg

s
√

m
+ 0,727 kg

s
√

m
(uTB(t) − 0,13)

)√
lTB + 0,3 m,

if uTB ≥ 0,13
0 kg

s ,

else

• Mass flow from Rector TM towards Reactor TS:

ṁTM(t) =

⎧
⎪⎨

⎪⎩

(
0,047 kg

s
√

m
+ 0.605 kg

s
√

m
(uTM(t) − 0,04)

)√
lTM + 0.3 m

if uTM ≥ 0.04
0 kg

s else.

• Mass flow out of the Reactor TS:

ṁPS(t) = ṁTW(t) = 0,1679
kg

s
√

m
uPS(t)

√
lTS(t) + 0,36 m

• Heat balance of the Reactor TS:

Q̇PL,TS(ϑTS(t)) =
{

Q̇PL,TS,on(ϑTS(t)), if heating is on
Q̇PL,TS,off(ϑTS(t)), if heating is off

with
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Q̇PL,TS,on(ϑTS(t)) =
{

46,9403 W◦C (ϑTS(t) − 22,5 ◦C), if ϑTS ≥ 22,5 ◦C
0 W, if ϑTS < 22,5 ◦C

Q̇PL,TS,off(ϑTS(t)) =
{

4,8968 W◦C (ϑTS(t) − 22,5 ◦C), if ϑTS ≥ 22,5 ◦C
0 W, if ϑTS < 22,5 ◦C

• Heat balance of the Reactor TB:

Q̇PL,TB(ϑTB(t)) =
{

Q̇PL,TB,on(ϑTB(t)), if heating is on
Q̇PL,TB,off(ϑTB(t)), if heating is off

Q̇PL,TB,on(ϑTB(t)) =
{

135,468 W◦C (ϑTB(t) − 22,5 ◦C), if ϑTB ≥ 22,5 ◦C
0 W, if ϑTB < 22,5 ◦C

Q̇PL,TB,off(ϑTB(t)) =
{

4,8968 W◦C (ϑTB(t) − 22,5 ◦C), if ϑTB ≥ 22,5 ◦C
0 W, if ϑTB < 22,5 ◦C

The given equations can be lumped together to get a nonlinear state-space model

x(k+1) = g(x(k), u(k)), x(0) = x0

y(k) = h(x(k), u(k))

with the state, input and output vectors

x(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϑTS(t)
lTS(t)
cTS(t)
ϑTB(t)
xCW(t)
xTB(t)
xTS(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, u(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

uTM(t)
uTB(t)
uTB(t)
uTS(t)
uCW(t)
uPS(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, y(t) =

⎛

⎜
⎜
⎝

ϑTS(t)
lTS(t)
λTS(t)
ϑTB(t)

⎞

⎟
⎟
⎠ .

Linearised model. A linearised state-space model

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)

is obtained from the nonlinear model with the following matrices:
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A = 10−3 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3, 46 0 0 1, 46 −59, 12 0 39, 36
0 −0, 76 0 0 1, 41 0 0
0 0 −3, 15 0 −0, 0034 0 0
0 0 0 −1, 34 0 157, 46 0
0 0 0 0 −270, 27 0 0
0 0 0 0 0 −37, 03 0
0 0 0 0 0 0 −15, 38

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B = 10−3 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−10, 62 0 0 0 0 0
7, 11 8, 49 0 0 0 −1, 98

0, 0249 0, 0235 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 15, 38 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

C =

⎛

⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 2047, 7 0 0 0 0
0 0 0 1 0 0 0

⎞

⎟
⎟
⎠

D = O.

The set of eigenvalues of the matrix A

σ = {−0, 2703;−0, 0370;−0, 0154;−0, 0035;−0, 0032;−0, 0013;−0, 0008}

gives an impression of the dynamical properties of the plant.

Models of the faulty system. The three actuator failures cause a change of the
matrix B of the linearised state-space model:
• Failure f1 of the Valve VTB, which gets the input signal uTB:

Bf1 = 10−3 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−10, 62 0 0 0 0 0
7, 11 0 0 0 0 −1, 98

0, 0249 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 15, 38 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• Failure f2 of the heating of the Reactor TS, which acts according to the control
input uTS:
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Bf2 = 10−3 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−10, 62 0 0 0 0 0
7, 11 8, 49 0 0 0 −1, 98

0, 0249 0, 0235 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• Failure f3 of the Pump P S, which runs according to the control input uPS:

Bf3 = 10−3 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−10, 62 0 0 0 0 0
7, 11 8, 49 0 0 0 0

0, 0249 0, 0235 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 15, 38 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

These matrices differ from the matrix B for the nominal model with respect to one
column each, which is set to zero for the failed actuator.

Control reconfiguration by a virtual actuator. For all three fault cases, the virtual
actuator described in Definition 9.2 is used for the control reconfiguration (Fig. 9.24).
The scheme is the same in all cases, only the matrix B f , which is a parameter of
the virtual actuator, differs. This shows that the control reconfiguration is completely
automatic in the sense that a general reconfiguration algorithm can be applied, which
adapts the effect of the nominal controller to the failure that has occurred.

The first experiment concerns the reconfiguration with the goal to retain the stabil-
ity of the closed-loop system. For this task, a virtual actuator with parameter matrix
N = O is used.

In case of the failure of the Valve VTB, the virtual actuator has been designed to
have the following set of eigenvalues:

σV A
!= 25σ (9.80)

= {−6.7568;−0.9259; 0.3846;−0.0866;−0.0790;−0.0335;−0.0190}

This eigenvalue assignment is accomplished by the feedback matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−12.31 −16.05 77.63 0.15 5.11 0.40 −3.71
0 0 0 0 0 0 0

13.39 −0.01 5770 90.07 −23.71 178.06 15.41
17.18 −0.06 7332 23.26 −31.85 39.14 25.31
−1.48 −0.01 −642.30 −2.04 2.11 −3.43 −1.81

−130.19 −192.04 239.73 0.75 18.61 2.21 −12.85

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Fig. 9.24 Reconfiguration by means of a virtual actuator

It is possible, because the pair (A, Bf1) is completely controllable. The eigenvalues
are chosen with respect to the eigenvalues of the plant. They make the virtual actuator
much quicker than the plant. The zero row of the matrix M ensures that the failed
valve is no longer used for feedback control. Due to the separation property of the
virtual actuator, the overall closed-loop system has the eigenvalues of the nominal
closed-loop system and the eigenvalues given in Eq. (9.80) for the virtual actuator.
Hence, the reconfigured system is stable.

Figure 9.25 approves this result. The two bars placed at time t = 350 s mark
the time instant at which the valve is blocked and the controller reconfigured. The
temperature ϑTS and the level lTS remain at the set-points, whereas the conductivity
cannot follow precisely the set-point change at time t = 300 s marked by the dashed
line. This is due to the proportional controller used.

Figure 9.26 shows the six control inputs. After the valve VTB is blocked, the signal
uTB shown in the top-right corner of the figure does no longer change. The virtual
actuator uses the input signals uTS, uTB and uPS which are also used by the nominal
controller. In addition to this, the virtual actuator exploits the input uCW to the cold
water Valve VCW, whereas the other additional input uTM is not used.

The choice how to distribute the effect of the blocked valve over the remaining
actuators is made implicitly by the virtual actuator. No selection procedure, with
a possible involvement of a human control designer, is necessary. Therefore, the
concept of the virtual actuator can be applied completely automatically.

The second experiment concerns the aim to bring all variables to be controlled
back to their set-points. Here the “complete” virtual actuator with the two parameter
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Fig. 9.25 Reconfiguration in case of the valve VTB-failure with N = O

matrices M and N is used. Besides the matrix M given above, the direct feedthrough
is chosen as

N =
(

C(A − B f M)−1 B f

)−1 (
C(A − B f M)−1 B

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.291 −0.016 0.053 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −0.588 0.031 −0.037 1 0
0 −4.250 −0.012 −0.004 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which ensures set-point following, because the reconfigured closed-loop system has
the same static reinforcement as the nominal control loop.

The reconfiguration result is depicted in Fig. 9.27. For the same experiment as
before now all three control outputs are moved back to their set-points.
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Fig. 9.26 Absolute values of the control inputs after the reconfiguration in case of the valve VTB-
failure

As Fig. 9.28 shows, the virtual actuator uses now the additional inputs uCW and
uTM. The reconfiguration is completely successful including the restoration of the
set-point.

9.3 Fault Recovery by Nominal Trajectory Tracking

Active fault-tolerant control implements control laws that are specific to the diag-
nosed fault and to the system objective to be achieved. Model-matching and the
pseudo-inverse method were first introduced in flight control systems with the objec-
tive to minimise the differences between the dynamics of the healthy and the faulty
systems, so as to allow pilots to keep faulty systems at hand. However, in some situa-
tions, rather than requiring the faulty system dynamics to mimic the nominal system
dynamics, it is sensible to require that the faulty system follows (a best approxima-
tion of) the nominal system trajectory. Nominal trajectory tracking is of interest, for
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Fig. 9.27 Reconfiguration after valve VTB-failure with feedthrough N �= O

example, when unmanned vehicles are used in space missions where a rescheduling
of the whole set of trajectories is impossible. Nominal trajectory tracking is the goal
of the approach presented in this section.

9.3.1 Problem Setting

Nominal system. Let
ẋn(t) = Anxn(t) + Bnun(t) (9.81)

be the LTI model of the nominal system, where

un(t) = K nxn(t) (9.82)

is the nominal state feedback, that results in the closed-loop behaviour
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Fig. 9.28 Control input after the reconfiguration for valve VTM-failure

ẋn(t) = (An + Bn K n)xn(t) = Mnxn(t), (9.83)

where Mn is chosen so as to satisfy some nominal requirements including stability.
For example, choosing

Mn = A − B R−1 BT P,

where P is the solution of some Riccati equation associated with the linear quadratic
problem setting gives the nominal system an optimal LQ behaviour.

Faulty system. Assume a fault occurs at time tf such that the faulty system can still
be described by a model associated with the pair (Af , Bf) and the control law is
changed to uf(t) = K f xf(t). In fault accommodation, the pair (Af , Bf) is estimated
by the fault estimation module, while in system reconfiguration, it is known from
the new model that results from switching off the faulty components that have been
isolated by the fault isolation module.

Let [tf , t0[ be the time interval during which the detection, isolation, fault esti-
mation and accommodation takes place. The post-fault trajectory satisfies:
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t ∈ [tf , t0[ : ẋf(t) = (Af + Bf K n)xf(t)

t ≥ t0 : ẋf(t) = (Af + Bf K f)xf(t) = Mf xf(t)

It follows that for t ≥ t0 the trajectory of the accommodated system is given by

xf(t) = Φf(t − t0)xf(t)(t0)

while the trajectory of the nominal system would have been

xn(t) = Φn(t − t0)xn(t0)

with Φ i (t − t0) = eM i (t−t0), (i = f, n). While the model-matching approach is
concerned with the difference Mn − Mf , the nominal trajectory tracking considers
the difference Φn(t−t0)−Φf(t−t0), and requests the trajectory of the accommodated
system to mimic as closely as possible the trajectory of the nominal one in an attempt
to rub out the effect of the fault.

Introducing two symmetric matrices Q ≥ 0, and R > 0 and measuring the
closeness of the trajectories by means of the quadratic cost

J = 1

2

∫ ∞

t0
(xf(t) − xn(t))

T Q (xf(t) − xn(t))

+ (uf(t) − un(t))
T R (uf(t) − un(t)) dt (9.84)

provides a problem setting that allows to achieve a compromise between the discrep-
ancies of the accommodated to nominal trajectory and the accommodated to nominal
control signal.

9.3.2 Solution

Optimality condition. From the classical theory of optimal control, one gets the
following set of necessary conditions

ẋf(t) = Af xf(t) + Bf uf(t) (9.85)

ṗf(t) = Q (xf(t) − xn(t)) − AT
f pf(t) (9.86)

O = R (uf(t) − K nxn(t)) − BT
f pf(t), (9.87)

where pf is the adjoint state vector. From (9.87), the accommodated control is

uf(t) = K nxn(t) + R−1 BT
f pf(t). (9.88)
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Following a classical approach, the adjoint state is assumed to have the form

pf(t) = H xf(t) + Gxn(t),

where H and G are two matrices to be determined. Making use of (9.81), (9.85) and
(9.88) one gets

ṗf(t) = H
(

Af + Bf R−1 BT
f H

)
xf(t)

+
(

H Bf K n + Bf R−1 BT
f G + G (An + Bn K n)

)
xn(t)

From (9.86) it follows that

ṗf(t) =
(

Q − AT
f H

)
xf(t) −

(
Q + AT

f G
)

xn(t)

holds and, therefore,

(
Q − AT

f H − H Af − H Bf R−1 BT
f H

)
xf(t) = (+H Bf K n + · · ·

· · · + H Bf R−1 BT
f G + G (An + Bn K n) + AT

f G)xn(t)

so that H and G must satisfy the relations

AT
f H + H Af + H Bf R−1 BT

f H − Q = O (9.89)

Q + H Bf K n + G (An + Bn K n) +
(

H Bf R−1 BT
f + AT

f

)
G = O. (9.90)

Equation (9.89) is a classical algebraic Riccati equation and (9.90) a Lyapunov equa-
tion that is easily solved once H has been found.

Stability. From (9.87) one gets

uf(t) = un(t) + R−1 BT
f (H xf(t) + Gxn(t)) (9.91)

and, therefore, the accommodated control is obtained by adding the compensating
term R−1 BT

f (H xf(t) + Gxn(t)) to the nominal control, leading to the accommo-
dated dynamics:

ẋf =
(

Af + Bf R−1 BT
f H

)
xf(t) + Bf

(
K n + R−1 BT

f G
)

xn(t). (9.92)

Let zT(t) = (
xn(t)T xf(t)T

)
. Then from Eqs. (9.83) and (9.92) one gets ż(t) =

M z(t) with
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M =
(

An + Bn K n O
Bf

(
K n + R−1 BT

f G
)

Af + Bf R−1 BT
f H

)
.

Since K n is chosen such that the nominal closed-loop matrix An+Bn K n is stable, the
stability of the accommodated system follows from the stability of Af +Bf R−1 BT

f H,

which is well known to be achieved by a unique solution H provided that the pair
(Af , Bf) is still controllable and that the pair (C, Af) is observable with Q = CTC.

Admissibility. Let (Af , Bf) be a fault such that (Af , Bf) is controllable and (C, Af)

is observable, then there exists a unique pair (H, G) such that the accommodated
control uf(t) = un(t)+ R−1 BT

f (H xf(t) + Gxn(t)) stabilises the faulty system and
is optimal with respect to the cost (9.84). However, not any such fault is recoverable,
because although minimal, the cost (9.84) might be too high for the accommodated
behaviour to be accepted as close enough to the nominal one.

Let εs(t) = xf(t) − xn(t) and εu(t) = uf(t) − un(t) be the differences between
the faulty and the nominal system behaviour. Using Eq. (9.91) one gets

εT
s (t) Qεs(t) + εT

u (t)Rεu(t) = zT(t)Sz(t)

with

S =
(

Q + GT Bf R−1 BT
f G − Q + GT Bf R−1 BT

f H
− Q + HT Bf R−1 BT

f G Q + HT Bf R−1 BT
f H

)
.

The cost can now be easily computed. Since M is stable, there is a symmetric negative
definite matrix P such that

MT P + P M = S

It follows that

d

dt
zT(t)P z(t) = zT(t)Sz(t)

and

J = 1

2

∫ ∞

t0

d

dt
zT(t)P z(t)dt = −1

2
zT(t0)P z(t0).

As already seen, different admissibility conditions can be stated. For example, one
can define a constant admissibility limit η, resulting in recoverable faults that satisfy
the inequality

− 1

2
zT(t0)P z(t0) ≤ η (9.93)
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or a quadratic admissibility limit− 1
2 zT(t0)Pminz (t0) resulting in the recoverable

faults if

P − Pmin ≥ 0 (9.94)

holds.

Remark 9.2 The state discrepancy in the time window [tf , t0[ is not taken into
account in the cost (9.84) since it depends on the fault only and the control has
not yet been accommodated.

Remark 9.3 (Recoverability versus accommodation delay) The larger the fault the
larger is the initial state difference εs(t0) = xf(t0)−xn(t0). It follows that, depending
on the admissibility condition that is defined, the recoverability of a fault depends on
the fault itself (for example faults that result in the loss of controllability of unstable
systems are not recoverable), but also partly on the delay introduced by the diagnosis
and accommodation processes, as Eq. (9.93) suggests.

Remark 9.4 The model-matching approach can in no case provide any optimal solu-
tion to the trajectory tracking problem, since it results in the trajectories ẋf(t) =
Mf xf(t) obtained by synthesising a matrix Mf closest to Mn. Whatever way Mf
is computed, the input xn(t) is never taken into account, as (9.91) shows it should
be. �

Example 9.5 Nominal trajectory tracking
Consider, a set of second order systems (A, B (θ)), where θ ∈ [0, 1] is a parameter, such

that θ = 0 characterises the nominal system An =
( −1 0

0 −1

)
, Bn =

(
1
5

)
and θ > 0 is

associated with the faulty system Af =
(−1 0

0 −1

)
, Bf =

(
1 − 2θ
5 − 4θ

)
. Note that for θ = 0.5

the faulty system is not controllable.
Under the state feedback control u = k1x1 + k2x2 the closed-loop matrix is

M (k1, k2, θ) =
(

k1 (1 − 2θ) − 1 k2 (1 − 2θ)
k1 (5 − 4θ) k2 (5 − 4θ) − 1

)
.

Assuming that the control objective is to obtain the behaviour associated with the reference

model Mn =
(−2 0

−5 −1

)
, the pseudo-inverse method results in the feedback gains:

k1 (θ) = 22θ − 26

(1 − 2θ)2 + (5 − 4θ)2

k2 (θ) = 0.

It is easily seen that the Frobenius norm ‖M (k1, k2, θ) − Mn‖F can be zeroed to obtain an
exact model-matching result only in the nominal case θ = 0 and this minimum is associated
with the nominal control un(t) = (−1 0)xn(t). For θ �= 0, the pseudo-inverse method results
in the closed-loop matrix:
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MPIM
f (θ) =

⎛

⎝
−64θ2 + 118θ − 52

20θ2 − 44θ + 26
0

−88θ2 + 214θ − 130
20θ2 − 44θ + 26

−1

⎞

⎠

whose eigenvalues are

λ1 (θ) = −1 λ2 (θ) = −64θ2 + 118θ − 52
20θ2 − 44θ + 26

.

It can be checked that the pseudo-inverse method provides an unstable solution for all faults
wiht θ > 0.728.

Let us now investigate the nominal trajectory tracking approach, using Q = I2 and R = 1.
The post-fault optimal control is obtained as uf (t) = H xf (t)+Gxn(t) provided that θ �= 0.5.
With

W (θ) =
(

(1 − 2θ)2 (1 − 2θ) (5 − 4θ)

(5 − 4θ) (1 − 2θ) (5 − 4θ)2

)

the matrix H is given by
HW (θ) H − 2H − I2 = O

while G is the solution of

I2 + H
(− (1 − 2θ) 0

− (5 − 4θ) 0

)
+ G

( −2 0
−5 −1

)
+ (W (θ) − I2) G = O.

Stable case. Let us first illustrate the case where the pseudo-inverse method (PIM) provides
a stable closed loop by assuming the fault θ = 0.6. The PIM solution is

uf (t)
PIM = −1.88235xPIM

1

which gives the closed-loop matrix

MPIM
f =

(−0.6235 0
−4.8941 −1

)
.

The nominal trajectory tracking optimal control uf (t) is defined by the pair

H =
(−0.4986 −0.0181

−0.0181 −0.2650

)
, G =

(
0.2789 0.0181

−0.1258 −0.2650

)

that satisfies the equations

H
(

0.04 −0.52
−0.52 6.76

)
H − 2H − I2 = O

H
(

0.2 0
−2.6 0

)
+ I2 + G

(−2 0
−5 −1

)
+

( −0.96 −0.52
−0.52 5.76

)
G = O.
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Figure 9.29 shows the nominal xn(t), PIM xPIM
f (t) and NTT (nominal trajectory track-

ing) xf (t) state trajectories, assuming that during the first 2 s, the faulty system is still con-
trolled by the nominal control. As a result, the xPIM

f (t) and xf (t) trajectories are identical
for t ∈ [10, 12[, and xf (t) shows a behaviour closer to xn(t) only after t = 12. Figure 9.30
shows the significant improvements in the quadratic costs associated with the discrepan-

cies
(

xn(t) − xPIM
f (t), un(t) − uf (t)

PIM
)

and (xn(t) − xf (t), un(t) − uf (t)) again for a

2 s delay.

Unstable case. Let us now consider the case θ = 1 in which the PIM control uf (t)
PIM = −2x1

gives the closed-loop matrix MPIM
f =

(
1 0

−2 −1

)
, which is unstable. The modified PIM

approach gives the control law uf (t)
MPIM = −0.8x1 which results in the stable matrix

MMPIM
f =

( −0.2 0
−0.8 −1

)
.

The nominal control uf (t) is defined by the pair

H =
( −0.433 −0.067

−0.067 −0.433

)
, G =

(
2.134 0.5

1.8 −0.5

)

that satisfies

H
(

1 −1
−1 1

)
H − 2H − I2 = O

H
(

1 0
−1 0

)
+ G

( −2 0
−5 −1

)
+

(
0 −1

−1 0

)
G + I2 = O.
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Fig. 9.29 Nominal, PIM and NTT state trajectories
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Fig. 9.31 Nominal, MPIM and NTT state trajectories

Figure 9.31 shows the state xn(t), modified PIM xf (t)
MPIM and nominal trajectory track-

ing xf (t) trajectories, for three different fault detection, isolation, diagnosis and accom-
modation delays, while Fig. 9.32 shows the quadratic costs associated with the discrepan-

cies
(

xn(t) − xf (t)
MPIM, un(t) − uf (t)

MPIM
)

and (xn(t) − xf (t), un(t)− uf (t)) for the

2 s delay case.
In order to illustrate Remark 9.3, Fig. 9.33 shows how the trajectory tracking cost increases

with the diagnosis and accommodation delay. It follows that for small delays the fault may
be recoverable, while it becomes non-recoverable for larger ones, because the cost becomes
inadmissible. �
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9.4 Fault-Tolerant H∞ Design

This section introduces fault-tolerant control strategies that can be applied in a general
fault case. It starts with a characterisation of all controllers that stabilise a linear
system and also satisfy H2 or H∞ norm conditions. This characterisation makes it
possible to evaluate the severity of the fault with respect to the control aims and to
find methods for redesign the controller automatically.

The complete description of all stabilising controllers is given by the Youla-
Kucera or Q-parametrisation. The Youla parametrisation was originally defined by
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using coprime factorisation. However, it is simple to give an equivalent description
of the Youla-Kucera parametrisation as a state-space formulation, where the para-
metrisation turns out to be an observer-based controller.

One of the facilities by using this parametrisation is that the closed-loop transfer
function turns out to be affine in the controller parameters. This affine structure is
very useful in connection with design of controllers using optimisation methods.
Therefore, the method also fits well to solve the control problem arising when we
wish to make a redesign for a controller when a system is in a faulty state.

The salient feature offered by the Youla-Kucera parametrisation is that it offers
an elegant and very fast solution to the redesign problem for some classes of faults
that leave the system stable with the existing controller but make it unable to meet
the required performance.

9.4.1 System Description

Consider the plant

ẋ(t) = Ax(t) + B1w(t) + B2u(t)
z(t) = C1x(t) + D11w(t) + D12u(t)
y(t) = C2x(t) + D21w(t) + D22u(t),

(9.95)

where x ∈ |Rn is the state, u ∈ |Rr , is the control input, w ∈ |Rk is the external input
or disturbance, z ∈ |Rl is the controlled output and y ∈ |Rm is the measurement
output. For brevity, it is common to denote this system by the shorter notation

G(s) =
⎛

⎝
A C1 C2

B1 D11 D21
B2 D12 D22

⎞

⎠ ,

It is assumed that (A, B2) is stabilisable and (C2, A) is detectable.
Described in transfer function form

(
x(s)
y(s)

)
=

(
G11(s) G12(s)
G21(s) G22(s)

)(
w(s)
u(s)

)
,

the transfer function matrix G(s) is decomposed as

G(s) =
(

G11(s) G12(s)
G21(s) G22(s)

)
.

Further, in order to later study the design of diagnosis in conjunction with closed-
loop control, let the plant (9.95) be controlled by an output feedback controller
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u(t) = K y(t).

We have now the following definition of stabilisation by output feedback.

Definition 9.3 A proper system G(s) is said to be stabilisable by output feedback if
there exists a proper controller K (s) internally stabilising G(s). Moreover, a proper
controller K (s) is said to be admissible if it internally stabilises G(s).

Next, we have the following result for the existence of a stabilising controller
K (s) for the system G(s), where here and in the following

K (s) =
[

M N
P Q

]

is used as abbreviation of

K (s) = P(s I − M)−1 N + Q.

Lemma 9.4 There exists a proper controller K (s) achieving internal stability of the
closed-loop system if and only if (A, B2) is stabilisable and (C2, A) is detectable.
Further, let F and L be two matrices such that A + B2 F and A + LC2 are stable,
then an observer-based stabilising controller is given by

K (s) =
[

A + B2 F + LC2 + L D22 F F
−L O

]
.

It is important to note that the stabilising controller for G(s) depends only on
G22(s). We need, therefore, only to look at G22(s) when we are looking for stabilising
controllers. This is also the case when we are using the Youla-Kucera parametrisation.
In the following the argument s of transfer functions will often be omitted.

9.4.2 Youla-Kucera Parameterisation in Coprime
Factorisation Form

First, let us consider two polynomials m(s) and n(s) with real coefficients. m and n
are said to be coprime, if their greatest common divisor is 1 (they have no common
zeros). It follows from Euclid’s algorithm that f and g are coprime if and only if
there exists polynomials x(s) and y(s) such that

mx + ny = 1. (9.96)

This equation is called a Bezout identity. Similarly, the two stable transfer functions
m and n are said to be coprime if there exists stable x and y such that Eq. (9.96) is
satisfied.
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Generally, two stable matrices M and N are right coprime if they have equal
number of columns and there exists stable matrices X and Y such that

(X Y)

(
M
N

)
= X M + Y N = I .

This is equivalent to saying that the matrix

(
M
N

)
is stable left invertible.

Similarly, two stable matrices M and N are left coprime if they have equal number
of rows and there exists stable X and Y such that

(M N)

(
X
Y

)
= M X + NY = I

holds. Equivalently, (M N) is stable right invertible.
Now, let G22(s) be a proper real-rational matrix. A right coprime factorisation of

G22(s) is a factorisation G22 = N M−1, where N and M are stable right coprime

matrices. Similarly, a left coprime factorisation has the form G22 = M̃
−1

Ñ , where
Ñ and M̃ are left coprime. Note that, in these definitions, it is required that the
matrices M and M̃ are square and non-singular.

Based on the above, there exists the following result.

Lemma 9.5 For each proper real-rational matrix G22(s) there exists eight stable
matrices satisfying the equations

G22 = N M−1 = M̃
−1

Ñ
(

X̃ Ỹ
−Ñ M̃

) (
M −Y
N X

)
= I .

This lemma defines a double coprime factorisation of G22(s). It should be noted
that it is always possible to make a coprime factorisation, if the system is stabilisable
and detectable.

Now, let K̃ (s) be a stabilising controller for G22(s) and let K̃ have the following
factorisation

K̃ = U V−1 = Ṽ
−1

Ũ .

A feedback system with positive feedback is stable if and only if

(
I −K̃

−G22 I

)−1

is stable.

Using the coprime factorisation of K̃ we get the following conditions for internal
stability.
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Lemma 9.6 Let G22(s) be a proper real-rational matrix and

G22 = N M−1 = M̃
−1

Ñ

be the stable right and left coprime factorisation. Then, there exists a controller

K̃ 0 = U0V−1
0 = Ṽ

−1
0 Ũ0

with U0, V 0, Ũ0 and Ṽ 0 stable such that

(
Ṽ 0 −Ũ0

−Ñ M̃

)(
M U0
N V 0

)
= I .

Based on the above results, it is now possible to give a parametrisation of all
controllers that stabilise G22(s).

Theorem 9.6 Let G22(s) be a proper real-rational matrix and

G22 = N M−1 = M̃
−1

Ñ

be the stable right and left coprime factorisation. Then, the set of all proper con-
trollers achieving internal stability is parameterised either by

K = (U0 + M Qr)(V 0 + N Qr)
−1 (9.97)

det(I + V−1
0 N Qr)(∞) �= 0

for stable Qr or by

K = (Ṽ 0 + Ql Ñ)−1 (Ũ0 + Ql M̃) (9.98)

det(I + Ql Ñ Ṽ
−1
0 )(∞) �= 0

for stable Ql , where U0, V 0, Ũ0 and Ṽ 0 stable satisfied the Bezout identities:

Ṽ 0 M − Ũ0 N = I

M̃V 0 − ÑU0 = I .

Moreover, if U0, V 0, Ũ0 and Ṽ 0 are chosen such that

(
Ṽ 0 −Ũ0

−Ñ M̃

)(
M U0
N V 0

)
= I .

Then we have
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K = (
U0 + M Qr

) (
V 0 + N Qr

)−1

=
(

Ṽ 0 + Qr Ñ
)−1 (

Ũ0 + Qr M̃
)

= Fl(J r, Qr),

(9.99)

where

J r =
(

U0V−1
0 Ṽ

−1
0

V−1
0 −V−1

0 N

)

and Qr is stable and satisfies that (I + V−1
0 N Qy)(∞) is invertible.

The Youla-Kucera parametrisation is shown in Fig. 9.34.

Fig. 9.34 Controller
structure for the
Youla-Kucera
parametrisation

G 22

U 0V 0

Q r
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~ ~-1

9.4.3 Parametrisation in the State-Space Form

The Youla-Kucera parametrisation derived in the above section was based on coprime
factorisation, which may not be the form in which a particular fault-tolerant control
problem is described. Further, popular toolboxes support a state-space description
(e.g. MATLAB). Therefore, a state-space description will be given in this section
together with a representation of the closed-loop transfer function as function of the
free stable parameter Q.

For the coprime factorisation in a state-space form using state feedback and
observers, the following result is available: Let two coprime factorisations of G22(s)
be given by
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(
M U0
N V 0

)
=

⎛

⎝
A + B2 F F C2 + D22 F

B2 I D22
−L O I

⎞

⎠

(
Ṽ 0 −Ũ0

−Ñ M̃

)
=

⎛

⎝
A + LC2 F C2

−(B2 + L D22) I −D22
L O I

⎞

⎠ ,

where F and L are chosen such that A+ B2 F and A+ LC2 are both stable. It is now
quite simple to give a state-space realisation of the Q-parametrisation of all internal
stabilising controllers. From Theorem 9.6 we have the linear fractional transforma-
tion formulation of all stabilising controllers. Using the state-space description of
the coprime factorisation in J y we get the following result.

Theorem 9.7 Let F and L be such that A + B2 F and A + LC2 are stable. Then
all controllers that internally stabilise G(s) can be parameterised as the transfer
matrix from y to u given by Fl(J y, Q), where

J y =
⎛

⎝
A + B2 F + LC2 + L D22 F F −(C2 + D22 F)

−L O I
B2 + L D22 I −D22

⎞

⎠

with any Q ∈ RH∞ and I + D22 Q(∞) is non-singular.

The controller given in the theorem is sometimes called the Q-observer-based
controller. For Q = O the nominal controller turns out to be a standard full-order
observer-based controller. Moreover, it can be shown that the separation between
the design of the state feedback gain F and the observer gain L is still valid as well
as a separation between the nominal controller and the Q parameter. This can be
shown by setting up a state-space description of the controller together with the Q
parameter and use the state vector x̄ = (

x x − x̂ xq
)
, where xq is the state vector

for Q.
Next, let us look at the closed-loop transfer function when we have applied a

Q-parameterised controller as given in Theorem 9.7. The closed-loop transfer func-
tion is given by the following linear fractional transformation:

z = Fl(G, K )w = Fl(G, Fl(Jy, Q))w = Fl(T , Q)w.

We need now just to give a state-space description of T . By using straightforward
and tedious algebra, we get the following result.

Theorem 9.8 Let F and L be such that A + B2 F and A + LC2 are stable. Then,
the set of a closed-loop transfer matrices from w to z achievable by an stabilising
proper controller is equal to

Fl(T , Q) = T 11 + T 12 QT 21, Q ∈ RH∞, I + D22 Q(∞),
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where T is given by

T =
(

T 11 T 12
T 21 T 22

)
=

⎛

⎜
⎜
⎝

A + B2 F −B2 F B1 B2
O A + LC2 B1 + L D21 O

C1 + D12 F −D12 F D11 D12
O C2 D21 O

⎞

⎟
⎟
⎠ .

It is important to note that the closed-loop transfer matrix T is an affine function
of the controller parameter matrix Q, since T 22 = O. This is the reason why
the Q-parametrisation is so useful, particularly in connection with optimisation of
controllers by using numerical tools.

9.4.4 Simultaneous Design of the Controller and the Residual
Generator

In the closed loop, there is an interaction between the sensitivity of the residual
generated by a fault detection filter and the natural suppression of any fault within a
closed loop. The design of closed-loop control and residual generator can, therefore,
be considered an integrated design problem. Consider, the simultaneous design of
the feedback controller and the residual generator. The design setup is illustrated in
Fig. 9.35 (left). It uses the standard problem philosophy.

Fig. 9.35 Control system in
standard configuration (left)
and in generalised setup for
fault-tolerant control (right)

(a)

(b)

G (s)

K (s)

e

u y

d

P (s)

K (s)

e

u y

v
d
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As stated earlier, the standard design provides a controller K (s) for which the
closed loop is internally stable and a suitable norm of the closed-loop transfer function
from w to z is minimised or made smaller than a pre-specified level.

Instead of using a standard controller as shown in Fig. 9.35 (left), a controller with
two outputs can be employed:

(
u
a

)
=

(
K 1
K 2

)
y.

The additional output signal a is a diagnostic signal, which will be applied to derive
an estimate of faults in the controlled system.

Let the open-loop transfer function be given by:

(
e
y

)
=

(
Ged Gef Geu
Gyd Gyf Gyu

)
⎛

⎝
d
f
u

⎞

⎠ (9.100)

To obtain a good estimation of the individual faults, fault models are included in the
generalised system as frequency weightings on the faults signals

f = W f(s)v,

where v is a signal that is anticipated to have a flat power spectrum. The generalised
setup is shown in Fig. 9.35 (right).

Now we need to formulate the design setup in Fig. 9.35 (right) as a standard design
problem as illustrated in Fig. 9.35 (left). For doing this, define an additional output
r as the fault estimation error:

r = f − a. (9.101)

This is the standard way of formulating a filter design problem in the standard setup.
The generalised system P(s) is then given by:

⎛

⎝
d
r
y

⎞

⎠ = P(s)

⎛

⎝
d
v

u

⎞

⎠ (9.102)

with

P(s) =
⎛

⎝
Ged Gef W f Geu O
O W f O −I

Gyd Gyf W f Gyu O

⎞

⎠ .

Using the system setup in (9.102) and the controller
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u = K (s) y

we get the following closed-loop transfer function

(
e
r

)
= T cl(s)

(
d
v

)

with

T cl(s) =
(

Ged Gef W f
O W f

)
+

(
Geu O
O −I

)
K (s)(I − (

Gyu O
)

K (s))−1 (
Gyd Gyf W f

)
.

For simplicity, assume that G(s) is open-loop stable (the unstable case can be
dealt with as well in this methodology, but is computationally more difficult). Then,
the Youla-Kucera parameterisation of all stabilising controllers can be obtained by
making the substitutions

Q(s) = K (s)(I − (
Gyu O

)
K (s))−1

K (s) = Q(s)(I + (
Gyu O

)
Q(s))−1,

(9.103)

where Q(s) is a stable proper transfer function, namely the Youla parameter. Further,
let Q(s) be partitioned as:

Q(s) =
(

Q1(s)
Q2(s)

)
.

Then, the following equation for the closed-loop transfer function T cl is obtained:

T cl(s) =
(

Ged + Geu Q1Gyd Gef W f + Geu Q1Gyf W f
− Q2Gyd W f − Q2Gyf W f

)
. (9.104)

Note that Q1 only appears in the first row of T cl and Q2 only in the second row.
A separation between the design of Q1 and Q2 has, therefore, been obtained, which
is a salient feature of this design approach.

Calculating K (s) directly from (9.103) results in the following equation:

K (s) =
(

Q1(s)(I + Gyu Q1(s))
−1

Q2(s)(I + Gyu Q1(s))
−1

)

=
(

Q1(s)(I + Gyu Q1(s))
−1

Q2(s)(I − Gyu K 1(s))

)
.

(9.105)
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Controller 1
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u1

uyref y

Controller 2
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Fig. 9.36 Two-controller scheme

The result indicates that also the original controller structure is separated in a
design of the feedback controller K 1(s) and a design of the fault detection filter
K 2(s), which depends upon the controller K 1(s).

This result is essential for proper design of residual generators working in closed
loop. It is also important for the redesign problem since the effect that the redesigned
controller has on the diagnostic filters cannot be ignored.

9.5 Handling the Fault Recovery Transients

9.5.1 Switching Between Controllers

In the previous sections, controller reconfiguration or accommodation often amounts
to switching from the nominal controller to a newly designed controller or from one
to another element of a bank of controllers. When the considered control laws are
of the state feedback or output feedback type, no precaution is required to switch
between controllers with the same reference input. However, the situation is different
for dynamical controllers. Indeed, the state of the controller which is not in the loop
has to be initialised properly before this controller is introduced in the loop, in order
to avoid bumps in the system response. One method to achieve this goal is presented
here. It amounts to feeding back to each controller, be it active in the loop or not, the
manipulated variable actually applied to the process (namely the process input). This
mechanism is similar to an anti-windup strategy, which is normally used to handle
actuator saturation in a control loop.

Without loss of generality, a situation with two controllers is considered here,
so that one controller, say controller 1, is active in the loop, and controller 2 is
the controller towards which switching occurs in the fault case (Fig. 9.36). Both
controllers are supposed to be described by a linear state-space model of the form

ẋci (t) = Aci xci (t) + Bci yref(t) + Eci y(t) xci (0) = x0
ci

ui (t) = Cci xci (t) + Dci yref(t) + Fci y(t) i = 1, 2,
(9.106)
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Fig. 9.37 Two-controller
scheme with anti-windup
mechanism

Controller 1

u2

u1

uyref

Controller 2

+

y
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_

+_

where xci (t), ui (t), y(t) and yref(t) are respectively the controller state, the controller
output, the measured plant output and the reference.

As explained in the previous paragraph, to obtain a smooth switching towards
controller 2, the state of this controller must be properly initialised. This can be
achieved thanks to an observer-based anti-windup mechanism. It amounts to feeding
back the difference u(t)−u2(t) between the plant input and the output of controller 1
towards controller 2:

ẋc2(t) = Ac2xc2(t) + Bc2 yref(t) + Ec2 y(t) + L2(u(t) − u2(t))
u2(t) = Cc2xc2(t) + Dc2 yref(t) + Fc2 y(t).

(9.107)

Substituting the output equation for u2(t) in the state equation of (9.107) yields

ẋc2(t) = (Ac2 − L2Cc2)xc2(t) + (Bc2 − L2 Dc2) yref(t)
+(Ec2 − L2 Fc2) y(t) + L2u(t)

u2(t) = Cc2xc2(t) + Dc2 yref(t) + Fc2 y(t)
(9.108)

and shows that L2 should be chosen in such a way that (Ac2 − L2Cc2) has all its
eigenvalues inside the open left-half plane in order for xc2(t) to reach a steady-state
value when controller 2 is not inserted in the loop, in the absence of change in yref(t),
y(t) and u(t). Possible options consist in choosing L2 so that all eigenvalues lie at
the origin, or to use L2 = Bc2 D−1

c2 , which corresponds to the so-called conditioning
technique. The latter approach requires a square full-rank matrix Dc2, although this
conditions can be weakened. It also requires that the zeros of the controller lie in the
open left-half plane.

Obviously, for reason of symmetry, to allow switching from controller 2 to con-
troller 1, the latter controller must be provided with a similar anti-windup feature.
Its state-space equation is thus written like (9.108), with index 1 substituted for 2.
The resulting block diagram is given in Fig. 9.37.
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9.5.2 Progressive Fault Accommodation

In the ideal fault-tolerant linear quadratic problem described in Sect. 7.2 the fault
detection, isolation and estimation process take no time. However, it has been already
noted that in practice, three time periods exist:

Time window System situation System Controller

[0, t f [ Nominal operation (A , B) u = −R−1 B P x

[t f , t a [ Fault detection, isolation (A , Bf) u = −R−1 BTP x

and estimation process,

fault accommodation

process delay

[ta , ∞) Fault is accommodated (A , Bf ) u f = −R−1BT
f Pfx

′

During the time period [tf , ta[ the faulty system (A, Bf) is still controlled by the
nominal control u = −R−1 BT P x. This control is optimal for (A, B) and the
closed loop A − B R−1 BT P is stable, but no guarantee can be given when B is
replaced by Bf and the closed loop A − Bf R−1 BT P may be unstable. If ta − tf is
not small enough, although the new control law uf will recover the system stability
and provide the best possible performance when applied, the system state may violate
some physical limits or it may lead to a non-admissible value of the system cost. Note
that physical limits are not formalised in the standard LQ problem setting, but they
are usually taken into account by an appropriate choice of the weighting matrices Q
and R.

Therefore, to solve practical problems the fault detection, isolation and estimation
process delay as well as the fault accommodation process delay have to be made as
small as possible. As far as fault accommodation is concerned, this can be obtained
by two complementary strategies:

• Design an algorithm that computes the accommodated control uf (i.e. that solves
the algebraic Riccati equation) in minimum time,

• Design an algorithm that computes a sequence of controls that will eventually
converge to uf and will stabilise the system as soon as possible. Such an algorithm
belongs to the family of “anytime” algorithms, which means that the result of any
iteration is acceptable, and it will improve as the number of iterations increases.
This is the progressive accommodation strategy.

Newton-Raphson iteration scheme for solving the algebraic Riccati equation.
The Newton-Raphson iteration scheme has been proposed in the literature as an
effective way of solving the algebraic Riccati equation. Let P i be the unique solution
of the Lyapunov equation

P i (A − Bf Fi−1) + (A − Bf Fi−1)
T P i = − Q − FT

i−1 RFi−1, (9.109)

where

http://dx.doi.org/10.1007/978-3-662-47943-8_7


9.5 Handling the Fault Recovery Transients 459

Fi = R−1 Bf P i (9.110)

for all i = 1, 2, . . . and the initial F0 is given. If A− Bf F0 is stable, then all matrices
P i are positive definite, and one has the convergence result

(1) P0 ≥ P1 ≥ · · · ≥ P i ≥ P i+1 ≥ · · · ≥ P f , i = 1, 2, . . .

(2) limi→∞ P i = P f ,
(9.111)

where P f is the solution of the algebraic Riccati equation

P f(A − Bf Ff) + (A − Bf Ff)
T P f = − Q − FT

f RFf .

Progressive Accommodation (PA) scheme. The PA scheme is based on the Newton-
Raphson algorithm. Assume that iteration i takes a timeΔi , and consider the sequence

ti = tinit +
i∑

j=1

Δ j , i = 1, 2, . . . ,

where tinit is the time at which the Newton-Raphson algorithm is initialised after the
fault has been detected, isolated and estimated (note that tf < t f di < tinit). ti is the
time at which the result Fi becomes available (note that the constancy of Δi is not
necessary, the scheme can, therefore, be employed whatever the tasks scheduling
strategy of the FTC computer). The idea of progressive accommodation is to apply
the feedback control law ui = −Fi x on the time interval

[
ti , ti+1

[
. As a result, the

system behaviour after the fault occurrence is

ẋ(t) = (A − Bf R−1 BT P)x(t), t ∈ [tf , tinit[ (9.112)

ẋ = (A − Bf F0)x, t ∈ [tinit, t1[ (9.113)

ẋ = (A − Bf Fi )x, t ∈ [ti , ti+1[ i = 1, 2, . . . , (9.114)

where F0 is the Newton-Raphson initialisation at time tinit. It can be shown from
(9.111) that if the system (A, Bf) is stabilised by F0, then it is stabilised by all Fi ,
and each Fi is better than the previous one with respect to the LQ cost. Moreover, PA
results in a lower cost than the one associated with controlling the system by the nom-
inal control until the Newton-Raphson algorithm has converged (which means the
accommodated solution is computed) and then applying the accommodated control.
Figure 9.38 shows the fault-tolerant system architecture using the PA scheme.

A − Bf F0 being stable is only a sufficient condition for the PA procedure to
converge. Convergence may be obtained in some cases, even when the initial feedback
does not stabilise the system. This happens in the following example.

Example 9.6 Progressive accommodation of a first-order system
Consider the following LQ problem
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Fig. 9.38 Progressive accommodation scheme

ẋ(t) = −x(t) + u(t), x(0) = 4

J =
∫ ∞

0
[x2(t) + u2(t)]dt.

The nominal Algebraic Riccati Equation is P2 + 2P − 1 = O leading to the optimal control
u(t) = (1 − √

2)x(t), and closed-loop behaviour ẋ = −√
2x. Let the faulty system be

ẋ(t) = −x − 2
√

2u(t) t ≥ 1

Under the nominal control, the faulty system behaviour is ẋ(t) = (3 − 2
√

2)x(t) which is
unstable. The new Algebraic Riccati Equation is 8P2

f + 2P f − 1 = O whose stable solution

gives the optimal control of the faulty system uf =
√

2
2 x and the closed-loop behaviour

ẋ(t) = −3x(t). The Newton-Raphson algorithm results in

P i = 1 + 8P2
i−1

2(1 + 8P i−1)
,

which converges to the solution of the new Algebraic Riccati Equation. The table below
shows the evolution of P i , while Fig. 9.39 shows the evolution of the system state when
fault accommodation is applied after convergence of the Newton-Raphson scheme (which
takes 3 iterations, with Δ = 1s) (classical approach, dashed line), and using the progressive
accommodation scheme (continuous line).

i 0 1 2 3 4 5

k i × 102 41.42 27.5 25.08 25 25 25

Example 9.7 Progressive accommodation in nominal trajectory tracking
Let us consider again the second-order system of the nominal trajectory tracking example,
under the fault
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Fig. 9.39 Comparison of the classical and the progressive accommodation schemes

Af =
( −1 0

0 −1

)
, Bf =

( −1
1

)

associated with the fault parameter θ = 1. Remember that in this case, the pseudo-inverse
method leads to an unstable system, and the modified pseudo-inverse method (MPIM) has to
be applied. The alternative approach based on optimal nominal trajectory tracking gives the
control

uf (t) =
(

K n + R−1 BT
f G

)
xn(t) + R−1 BT

f H xf (t)

where

H =
(−0.433 −0.067

−0.067 −0.433

)
and G =

(
2.134 0.5
1.800 −0.5

)

satisfy the Riccati equation

H
(

1 −1
−1 1

)
H − 2H − I2 = O (9.115)

and the Lyapunov equation

H
(

1 0
−1 0

)
+ G

( −2 0
−5 −1

)
+

(
0 −1

−1 0

)
G + I2 = O. (9.116)

Figure 9.31 that shows the state xn, MPIM xMPIM
f and nominal trajectory tracking xf

trajectories, for three different fault detection, isolation, diagnosis and accommodation delays
is recalled here as Fig. 9.40.
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Fig. 9.40 Nominal, MPIM and NTT state trajectories

Assume a 2 s accommodation delay, which is composed of 1 s for the detection, isolation
and diagnosis procedure, which ends with an estimate of matrix Bf , and 1 s for control accom-
modation that solves Eqs. (9.115) and (9.116) based on this estimate. Let us now illustrate how
much the efficiency of the fault accommodation scheme is improved by using the Progres-
sive Accommodation approach. Solving the Riccati equation takes five Newton-Ralphson
iterations, according to the following sequence:

H1 =
( −1 1

1 −1

)
, H2 =

( −0.7 0.2
0.2 −0.7

)

H3 =
( −0.4839 −0.0161

−0.0161 −0.4839

)
, H4 =

(−0.4357 −0.0643
−0.0643 −0.4357

)

H5 =
( −0.4330 −0.0670

−0.0670 −0.4330

)
.

For this system, using the first iteration value H1 (which is obtained after 0, 2 s) instead of
waiting the Riccati equation solution H5 for 1 s, allows to stabilise the system much sooner,
and hence gives improved results.

Figure 9.41 compares the direct accommodation control and the progressive accommo-
dation one. It is seen that progressive accommodation practically rubs out the effect of the
accommodation delay: the resulting trajectories are quite close to the ones associated with a
1 s delay. �
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9.6 Exercises

Exercise 9.1 Reconfiguration by model-matching techniques
Consider a stable plant

(
ẋ1(t)
ẋ2(t)

)
=

(
− 1

T1
0

1
T2

− 1
T2

) (
x1(t)
x2(t)

)
+

(
1 2
2 3

)(
u1(t)
u2(t)

)

y(t) = (1 1)

(
x1(t)
x2(t)

)

and the stabilising proportional controller

(
u1(t)
u2(t)

)
=

( −k1
0

)
y(t).

If the actuator 1 fails, the control loop should be closed with the help of the redundant control
input u2(t). Does the model-matching approach yield a stable closed-loop system? Is the
performance of the closed-loop system improved with respect to the nominal loop if the
Markov parameter approach is used? �

Exercise 9.2 Fault-tolerant control of the three-tank system
Consider the three-tank system introduced in Sect. 2.2, where in the first part of the exercise
the redundant hardware is switched off. Use a continuous PI-controller for the level h1(t) of
the left tank and assume that the sensor used in this control loop fails. What is the result of the
model-matching approach to this problem if the level h2(t) of the second tank is continuously
measured and used for the controller of the left tank?

2.5
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0.5

-0.5

0

1

2

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

1

Xf
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Increasing time
sampling 0.1 s

Fault occurs
(no delay)

1 second delay

2 seconds delay

Fig. 9.41 Progressive accommodation in the nominal trajectory tracking state trajectories

http://dx.doi.org/10.1007/978-3-662-47943-8_2
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Consider now a continuous level controller for Tank T2 and assume that the actuator V12H
fails. The level h2(t) should be controlled by switching on the Tank T3 and using the set-point
h3ref (t) of the level controller of this tank as the control input to bring the level h2(t) of
Tank T2 towards the setpoint h2ref (t). Apply the existence conditions for model-matching
and the virtual actuator to this problem. How can the failure of the control loop in Tank T2 be
compensated? �

Exercise 9.3 Virtual actuator
For the unstable system

(
ẋ1(t)
ẋ2(t)

)
=

(
0 1
1 −2

)(
x1(t)
x2(t)

)
+

(
2 0
1 1

)(
u1(t)
u2(t)

)

y(t) = (2 1)

(
x1(t)
x2(t)

)

a proportional controller (
u1(t)
u2(t)

)
= −

(
0
k2

)
y(t).

should be found that stabilises the system. In case of the actuator failure a virtual actuator
should be used to stabilise the system with the nominal controller. Find reasonable parameters
of the virtual actuator and prove that the reconfigured closed-loop system is stable. �

Exercise 9.4 Nominal and model-matching control for a single-axis satellite
This exercise is a continuation of Exercises 5.3, 6.3 and 6.4. The objective is to perform attitude
control for a single axis of a satellite. In this exercise, actuator dynamics need be considered
and two states x3 and x4 have been added to describe actuator dynamics.

A state-space model for the nominal plant is given by:

ẋ1(t) = I−1(x3(t) + x4(t) + d(t))
ẋ2(t) = x1(t)

τ1 ẋ3(t) = −x3(t) + b1u1(t)
τ2 ẋ4(t) = −x4(t) + b3u2(t)

y1(t) = x1(t) + w1(t)
y2(t) = x2(t) + w2(t)
y3(t) = x3(t) + w3(t).

The system has actuator 1 (the input to which is u1(t)) as the primary actuator. A second
actuator (with input u2(t)) is intended for secondary actuation should the primary one fail.
The secondary actuator has a time constant that is larger than that of actuator 1.

Parameters. The nominal values of parameters are

τ1 = 0.5 s
τ2 = 2.5 s
b1 = 1.0
b2 = 1.0

http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_6
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1. Design a nominal controller that use sy1(t) and y2(t) as measurements and u1(t) as actuator
input,

u1(t) = −(l1 y1(t) + l2 y2(t)). (9.117)

The closed-loop system should have two real eigenvalues at s = −0.5 rad
s . Disregard the

actuator that is not in use.

A fault on actuator 1 renders this actuator useless and it is needed to use actuator 2 instead.

2. Investigate whether ideal model matching is possible with this form of controller when
this fault happens.

3. Design a dynamical controller that will provide model matching in the frequency domain.�

9.7 Bibliographical Notes

Fault-tolerant model-matching design. [151] is one of the earliest papers on con-
troller reconfiguration by model-matching. [117] describes an improvement of the
pseudo-inverse method for the ensurance of stability. A survey of the methods are
given in [216]. A proof of Lemma 9.4 can be found in [412].

Further extensions of the pseudo-inverse method that result in the admissible
model-matching approach have been recently given in [322], with extensions to the
linear quadratic problem in [40, 328] and aerospace applications in [39].

Control reconfiguration for actuator or sensor failures. The ideas of the virtual
sensor and virtual actuator have been developed in [220]. A thorough treatment can
be found in the monographs [288, 340]. These concepts have been experimentally
tested at a laboratory process [289], a two-degrees-of-freedom helicopter model
[221] and a fuel cell [282]. The generalised version of the virtual actuator, which
is explained in this chapter, has been proposed in [213]. Design methods for virtual
sensors and virtual actuators can be found in [216, 290, 294, 310, 311] with extensions
to nonlinear systems in [291, 293]. The conceptual similarities and differences of
the virtual actuator and the dual observer are described in [292]. Alternative method
that likewise use the fault-hiding principle are described, for example, in [202].

Fault-tolerant H∞ design. Controller redesign based on the Youla-Kucera para-
metrisation is described in [188, 251, 359]. In [248], the Youla-Kucera parametrisa-
tion has been applied in connection with tuning controllers. The exact, the almost
exact and the optimal design problems for Q have been considered in detail in [296].

The results in Sect. 9.4 are based on [344, 345] which focus on the use of fault esti-
mation within a reliable control framework [375]. The methods for reconfiguration
design are new within the fault-tolerant control domain. A few schemes have come
into real application. Predetermined design for accommodation was demonstrated
for a satellite in [42, 43].
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The design methods considered in Sect. 9.5 are based on the same conditions as
the methods described in [317]. Further results on using the Youla-Kucera para-
meterisation for fault-tolerant control in the additive fault, multiplicative fault and
parameter fault cases can be found in [243, 247, 250, 251, 346]. An architecture
for fault-tolerant control, based on joint controller and FDI design was presented in
[241].

Theorem 9.6 has been proved in [412].

Handling of the fault recovery transients. The link between mastering the transient
of controller switching and handling actuator saturation has been recognised for a
long time. Indeed, both problems involve the discrepancy between the controller
output and the process input, which might lead to performance degradation and even
instability of the closed-loop. Anti-windup methods have thus been developed with a
view to handle both problems (see [9] for the observer-based approach, and [140, 141,
276] for the conditioning technique). In [134, 406], they are explicitly introduced in
multi-controller schemes such as found in hybrid or switched-mode systems in order
to avoid undesirable switching transients. The anti-windup mechanisms used in [134]
are high-gain feedback loops around each idle controller, which force the controller
outputs to track the process input, while in [406] each controller is augmented with
dynamics identical to that of the plant in order to allow the controller state to evolve
in an appropriate way when the controller is not connected to the plant input. The
latter scheme is cumbersome when the number of controllers is large.

Dedicated methods have also been studied for handling transients in controller
switching. In [133], the authors recast the problem in an associated tracking prob-
lem, where the standby controller is viewed as a dynamical system of which the
output should track the manipulated signal (plant input) by means of a two-degree-
of-freedom controller. In [397], a simple new realisation of a set of linear SISO
controllers is described that inherently assures bumpless transient upon switching
between controllers.

Reference [396] made a rigorous analysis of controller switching and suggested
an adaptive method to obtain bounded signals with a nominal controller from the
instant a fault is detected until controller reconfiguration is made.

Progressive accommodation was first introduced in [402] to handle aircraft actu-
ator faults, and the general approach was presented in [403]. In [66] “anytime algo-
rithms” are used as an interesting tool to address fault recovery transients, since they
produce solutions that are improving as the number of iterations increases, while any
current solution can be applied before complete convergence is achieved.

In [334] the fault-tolerant linear quadratic problem is extended to the trajectory
tracking problem which arises when a pre-designed system trajectory is to be fol-
lowed as closely as possible (for example in space rendez-vous missions) instead of
recomputing an optimal trajectory associated with the current configuration.
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