
Chapter 8
Reconfigurability Analysis

Abstract Fault-tolerant control brings together several theoretic frameworks that
are needed to treat the different problems it involves. This chapter addresses these
problems from a global perspective that includes the specification and the develop-
ment of control solutions, as well as the implementation and the evaluation of these
solutions. Among many possible control problems, this chapter uses linear quadratic
control theory to illustrate the above-mentioned problems, under the two possible
fault-tolerance strategies, namely fault accommodation, where the controller para-
meters are adapted to the parameters of the faulty plant, and system reconfiguration,
where the subset of system components in operation is changed (and so is of course
the control law). A variety of other control approaches will be developed in the next
chapter.

8.1 The Fault-Tolerant Control Problem

8.1.1 Standard Control Problem

In order to explain the fault-tolerant control problem in more detail, the standard
control problem is first stated as a problem that is defined by a given objective, a set
of constraints and a set of admissible control laws. Standard control aims at finding a
control law in a given set of control laws U , such that the controlled system achieves
the control objectives O , while its behaviour satisfies a set of constraints C . Thus,
the solution of the problem is completely defined by the triple < O, C, U >.

Problem 8.1 (The control problem)
Solve the problem < O, C, U >.

The following remarks should explain this problem in more detail:

• The set U of admissible control laws defines the algorithms that can be imple-
mented, e.g. open-loop control (a mapping from the time domain to the control
space), closed-loop control (a mapping from the output × reference spaces to the
control space), using continuous or discrete-valued arguments for the variables,
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344 8 Reconfigurability Analysis

allowing for continuous or discontinuous, differentiable or non-differentiable map-
pings, etc.

• The objective O defines what the system is expected to achieve, when controlled by
the above-mentioned control law. It may range from very general statements (e.g.
achieve closed-loop stability) to much more specific ones (e.g. reach a given point,
on a given circular orbit around the earth, at a given time, for a space rendez-vous).

• Constraints C are functional relations that the behaviour of the controlled system
must satisfy over time. They are expressed by algebraic and differential or differ-
ence equations, when continuous variables are considered, and by other models
when discrete values are of interest (see Chap. 2). Inequality constraints express
that some saturations act on the system admissible solutions (e.g. any trajectory
which results from an admissible control law must end on a given point of a given
circular orbit, at a given time, but the energy consumed all along the trajectory is
limited by the capacity of the vessel’s reservoirs).

Example 8.1 Control of the single-tank system
Consider the problem of filling an initially empty tank up to a certain mass m of some liquid,
as fast as possible, so as to start a batch operation process in the food industry. Let m(t) be
the mass present in the tank at time t , and let u(t) be the controlled input flow. The control
problem is a very classical minimum time problem defined by the triple:

O: The objective is to change the mass m(t) from its initial value m(t0) = 0 to the given
final value m(tf ) = M, in minimum time, i.e. minimising the functional

∫ tf

t0
dt.

C : The behaviour of the system is constrained by the state equation

ṁ(t) = u(t).

U : The control law belongs to the class of piecewise continuous open-loop controls with
saturation

u : |R+ → |R
t �−→ u(t)

u(t) ∈ [0, umax]
u ∈ C0

Once the tank has been filled with the mass m of liquid, the production process of the batch
will start. Assume that for the proper biological reaction to take place, the temperature η(t)
must be regulated around some given reference ηref . The associated control problem is again
well known. A PI-regulation example is given below:

O: The objective is to regulate the temperature η(t) of the batch around the reference value
ηref , during the processing period [0, T ]. It is expressed by

http://dx.doi.org/10.1007/978-3-662-47943-8_2
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|ηref − η(t)| ≤ λ, ∀t ∈ [T0, T ] ,

where λ is some constant which defines the admissible temperature excursion around
the reference on the time interval [T0, T ], and T0 > 0 is the time value after which the
neighbourhood of the reference temperature must have been reached.

C : The behaviour of the system is described by the state and measurement equations

η̇(t) = f (η(t)) + ζ(t) + v(t)

ζ̇(t) = g(η(t), t)

y(t) = η(t) + ε(t),

which expresses that the temperature variation is the result of thermal losses f (η(t)), of
the exothermic character of the biological reaction (the reaction energy is ζ(t), whose
evolution is given by g(η(t), t) in the second state equation), and of the control v(t), and
that the available measurement signal is the temperature, which is corrupted by some
measurement error ε(t).

U : The control law belongs to the class of closed-loop PI controls

v : Ψref × Y → |R
(ηref , y(t)) �−→ v(t) = kP(ηref − y(t)) + kI

∫ t

0
(ηref − y(τ )) dτ ,

where kP and kI are coefficients to be found as the solution of the control problem, Ψref
is the set of possible references and Y is the set of the sensor output values. �

8.1.2 Impacts of Faults on the Control Problem

Fault-tolerant control is concerned with the control of the faulty system. This can be
done by changing the control law without changing the plant which is operated (this
is the fault accommodation strategy), or by changing both the control and the system
(this is the reconfiguration strategy). Since the control algorithm just implements
the solution of a control problem for a given system, changing the control or the
system means that the control problem has been changed as the result of faults. In
order to understand the different strategies which can be applied to the design of
fault-tolerant control, let us first consider the impact of faults on the control problem
< O, C(θ), U >, where C(θ) denotes the dependency of the constraint C upon the
parameter θ, which in turn depends upon the fault. The different fault-tolerant control
strategies will then be introduced, as a consequence of the available knowledge.

System objectives. The occurrence of faults should not change the system objectives.
The objectives are associated with the users (they define what the users expect the
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system to achieve), and the very nature of fault-tolerant control is to still try to
achieve these objectives, in spite of the faults. However, this will be possible or not.
Therefore, two cases have to be distinguished:

1. There is a mean of still achieving the system objectives in the presence of certain
faults. The system is said to be fault tolerant, with respect to that objectives and
to these faults. Equivalently, the faults are said to be recoverable. The control
engineer’s task is to design some control law which is able to do that.

2. The objectives cannot be achieved in the presence of the considered faults. The
system is not fault tolerant with respect to that objectives and these faults, in other
terms the faults are not recoverable. However, it is not enough to stand with this
conclusion. The control engineer should provide, in this case, indications about
what to do with the system. Since the current objectives cannot be achieved,
the problem is transformed into finding new objectives that are of interest in the
current situation, and to design the structure and the parameters of the new control
law to achieve these new objectives.

System constraints. The occurrence of faults may obviously change the constraints
C(θ) of the control problem.

• First, the constraints may remain the same but the parameters may change, thus
transforming the control problem < O, C(θn), U > into the problem
< O, C(θf), U >, where θn (respectively θf ) denotes the nominal (respectively
the faulty) system parameters.

• Second, the constraints themselves might change, transforming the control prob-
lem < O, Cn(θn), U > into the problem < O, Cf(θf), U >, where Cn is the set
of nominal constraints, and Cf(θf) is a set of new constraints with new associated
parameters.

Both cases may be summarised by the change of Cn(θn) into Cf(θf) since the
change of parameters only is a particular case, described by Cf = Cn.

Example 8.2 A tank with two exit pipes
Consider for example a tank with two exit pipes, respectively, situated at levels l1 and l2
metres. The system nominal constraints are the following:

x(t) ∈ [0, l1[ ẋ(t) = qi (t)
x(t) ∈ [l1, l2[ ẋ(t) = qi (t) − q1(v1, t)

x(t) ≥ l2 ẋ(t) = qi (t) − q1(v1, t) − q2(v2, t),

where x(t) is the level in the tank, qi (t) is the input flow, q1(v1, t) (respectively q2(v2, t )) is
the output flow through pipe 1 (respectively through pipe 2) which depends on some external
variable or control signal v1 (respectively v2). This might be, for example, the level in another
tank connected to the pipe, or the control signal of an output valve on the pipe. Suppose now
that pipe 1 is clogged, then as the result of the fault, the system constraints become
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x(t) ∈ [0, l1[ ẋ(t) = qi (t)
x(t) ∈ [l1, l2[ ẋ(t) = qi (t) ∀v1(t)

x(t) ≥ l2 ẋ(t) = qi (t) − q2(v2, t),

which can also be represented by adding a fourth constraint to the three nominal ones

x(t) ∈ [0, l1[ ẋ(t) = qi (t)
x(t) ∈ [l1, l2[ ẋ(t) = qi (t) − q1(v1, t)

x(t) ≥ l2 ẋ(t) = qi (t) − q1(v1, t) − q2(v2, t)
q1(v1, t) = 0,∀v1, t. �

Admissible control laws. The occurrence of faults may also change the set of
admissible control laws since faults may occur in the computing and communi-
cation devices in which they are implemented. As in the previous subsection, the
new set of admissible control laws is noted Uf while the nominal one is Un.

Example 8.1 (cont.) Control of a single-tank system
Consider the standard control problem of filling a tank in minimum time for processing a
batch in food industry: find the control law in the set Un of piecewise continuous functions
satisfying

u : |R+ → |R
t �−→ u(t)

u(t) ∈ [0, umax]
u ∈ C0

such that the initial mass m(t0) = 0 is changed into the final mass m(tf ) = M, in minimum
time, while satisfying the state equation ṁ(t) = u(t). Suppose now that the pump is faulty
and can only deliver a fraction of its nominal maximum output flow, namely umax is changed
into u′

max < umax. The set Un is changed into the set Uf , where the saturation level is lower
(thus leading to a larger filling time for the optimal solution). �

8.1.3 Passive Versus Active Fault-Tolerant Control

In the passive approach, the control algorithm is designed so that the system is able
to achieve its given objectives, in healthy as well as in faulty situations, without any
change in the control law. Therefore, passive fault-tolerant control sets the control
problem in a context, where the ability of the system to achieve its given objective
is preserved, using the same control law, whatever the system situation (healthy or
faulty).

In active approaches, the control law is changed when faults occur, so that the
ability of the system to achieve its given objective is preserved, using a control law
adapted to each fault situation. Therefore, active fault-tolerant control algorithms
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implement the solution of problems which are specifically set for each of the possible
(healthy and faulty) situations.

As the result of faults, the control problem is transformed

from < O, Cn(θn), Un > into < O, Cf(θf), Uf >.

Suppose that both Cf(θf) and Uf are perfectly known, then the fault-tolerant
control law has to solve < O, Cf(θf), Uf >. If such a solution exists, the system is
fault tolerant with respect to the objective O and the fault situation Cf(θf), Uf . If
the problem < O, Cf(θf), Uf > has no solution, then the system is not fault tolerant
and objective reconfiguration has to be explored, as previously explained.

The difference between passive and active fault-tolerant control can now be very
simply explained.

Passive fault tolerance. In passive fault tolerance, the control law is not changed
when faults occur. This means that the system objectives can be obtained when the
system is healthy (thus it solves < O, Cn(θn), Un >), as well as when the system
is faulty (thus it also solves < O, Cf(θf), Uf >). Implementing passive fault tol-
erance for a given set of faults means that there is a common solution to problem
< O, Cn(θn), Un > and to all problems < O, Cf(θf), Uf >, ( f ∈ F), where F
indexes the set of all the considered faults.

This is a very particular situation, which is fulfilled, in general, only for objectives
associated with very low levels of performances (this is a so-called conservative
approach). Note that since the control law is not changed, the passive fault-tolerance
approach is similar to the robust approach when uncertain systems are considered (cf.
Chap. 1). Indeed, faults can be considered as uncertainties which affect the system
parameters. The difference lies not only in the size and interpretation of these changes,
but also in the fact that the structure of the constraints may change as the result of
faults.

Active fault tolerance. In active fault tolerance, each of the problems

< O, Cn(θn), Un > and < O, Cf(θf), Uf >,

f ∈ F , has its own specific solution, thus allowing for much more demanding
objectives. However, for each of these problems to be solved the knowledge about
Cf(θf) and Uf must be available. This is the role of fault detection and isolation
algorithms. This chapter deals with active fault-tolerant control.

8.1.4 Available Knowledge

Providing information about the fault impact is the aim of the fault diagnosis algo-
rithms. However, the power and efficiency of these algorithms are limited. Fault
detection informs that the problem to solve is no longer < O, Cn(θn), Un >. Fault
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isolation informs about the subset of the constraints Cn(θn) which are unchanged
(those associated with the still healthy components), and the subset Uf ⊆ Un of
control laws which can still be used. The knowledge about the changed constraints
calls for fault estimation, which is a new function to be considered for the design of
fault-tolerant control. According to its performances, three cases must be considered:

1. The fault diagnosis algorithm is able to provide an estimate Ĉf(θ̂f), Ûf of the
fault impact. Then, the problem to be solved is the standard control problem
< O, Ĉf(θ̂f), Ûf >. Note that, when a solution exists, there is still a risk that the
actual faulty system (described by Cf(θf) and Uf ) fails to satisfy the objectives
O , although the available model of the faulty system does satisfy them.

2. The fault diagnosis algorithm is able to provide an estimate Γ̂f(�̂f), Uf of the
fault impact, where Γ̂f is a set of possible constraints and �̂f is a set of asso-
ciated parameters. Then the problem to be solved is the robust control problem
< O, Γ̂f(�̂f), Ûf >. When a solution exists, the actual faulty system will satisfy
the objectives O provided the actual constraints Cf(θf) ∈ Γ̂f(�̂f), otherwise, the
same risk as above exists.

3. The fault diagnosis algorithm detects and isolates the faults, but it cannot provide
any estimate of the fault impact. The control engineer is faced with the problem
of designing the control of a completely unknown system, which is not possible.
Obtaining knowledge about that system could be thought of, using e.g. learning
approaches, but then an estimation of the fault impact could indeed be obtained,
which would bring the problem back to case 2.

Other possible cases are those where the fault diagnosis system detects the fault,
but it cannot isolate it nor is it able to provide any estimate, and the case, where
the fault diagnosis system does not even detect the fault. In the first case, the only
possibility to keep mastering the system is to move to a fall back mode, while in the
second case, any catastrophic behaviour is possible. Active fault tolerance is only
concerned with cases 1, 2 and 3.

8.1.5 Active Fault-Tolerant Control Strategies

Fault accommodation. Fault accommodation is the fault-tolerant control strategy
which is associated with cases 1 and 2. It solves the problem < O, Ĉf(θ̂f), Ûf >

or < O, Γ̂f(Θ̂f), Ûf >, which is associated with the control of the faulty system.
The fault situation can be accommodated with respect to the objectives O when the
problem has a solution.

Problem 8.2 (Fault accommodation problem)
Solve the control problem < O, Ĉf(θ̂f), Ûf >, where Ĉf(θ̂f) is the estimate of the
actual constraints provided by the fault diagnosis algorithms.
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Note that the interpretation of fault accommodation is that it is a strategy by which
the faulty system is controlled in a specific way, so as to still achieve the objectives
which were (before the fault) achieved by the healthy system.

System reconfiguration. System reconfiguration is the fault-tolerant control strategy
which is associated with case 3. Remind that in this case the faulty system is absolutely
unknown, but the control engineer wishes to design a control that achieves the system
objectives. The only means to set any control problem is to switch off the faulty
components (which are known from the isolation function), and to try to achieve the
objectives using only the remaining (healthy) ones. Let Cf(θf) = C ′

n(θn) ∪ C ′′
f (θf),

where C ′
n(θn) is the subset of the constraints which are associated with the healthy

part of the system, and C ′′
f (θf) is the subset of the constraints which are associated

with the faulty part.

Problem 8.3 (Reconfiguration problem)
Find a new set of system constraints Cf (θf) such that the control problem< O, Cf(θf),

U > has a solution, find and activate this solution.

The choice of a new set of constraints will imply that the input–output relations
between the controller and the plant are changed.

Note that the constraints C ′
n(θn) are known while C ′′

f (θf) are unknown. Using
similar notations, let Uf = U ′

n ∪ U ′′
f . Then, the reconfiguration strategy solves the

problem < O, C ′
n(θn), U ′

n >, i.e. it tries to achieve the system objectives by con-
trolling only the healthy part of the system.

Fault accommodation and reconfiguration are distinguished according to whether
the I/O signals between the controller and the plant are changed. Reconfiguration
implies the use of different I/O relations between the controller and the system.
Switching the system to a different internal structure, to change its mode of operation,
is an example of such I/O switching. Accommodation does not use such means.

Both fault accommodation and system reconfiguration strategies may need new
control laws in response to faults. They also have to manage transient behaviour,
which result from the change of control law or change of the constraints’ structure.

8.1.6 Supervision

Suppose that the accommodation and the reconfiguration strategies fail to provide a
solution. This means that there is no possibility, using the faulty system (accommo-
dation) or a subsystem of it (reconfiguration) to achieve the objective. In this case,
another objective has to be provided to the system. This introduces the most general
problem, defined by the 3-tuple < O, C(θ), U >, where O is a set of possible control
objectives. This problem is called the supervision problem. It is a decision problem
in which the system objective is not pre-defined, but has to be determined, accord-
ing to the system possibilities at each time, taking into account the actual system
possibilities.
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A supervision problem is thus a fault-tolerant control problem associated with
a decision problem: if faults are such that fault tolerance cannot be achieved, the
system goal itself has to be changed. When far-reaching decisions with respect to
the system goal have to be taken, human operators are generally involved.

It may happen that no achievable objective exists under the actual system possi-
bilities. This can be a design error, or a deliberate choice to accept certain failure
scenarios, e.g. for reasons of benefit or small likelihood of certain events. Note that
fail-to-safe conditions are intended to avoid this case in some situations, since they
express that for certain classes of faults, the objective of stopping the system must
always be achievable.

8.2 Fault-Tolerant Control Architecture

The method to achieve fault tolerance, which is considered in this chapter, relies
on employing fault diagnosis schemes on-line and on reacting to the results of the
diagnosis. A discrete-event signal to a supervisor agent is generated by the diagnos-
tic algorithm when a fault is detected, another when it is isolated. This activates an
alternative control that is supposed to handle the fault. The control for the partic-
ular case could be pre-determined for each type of critical fault or obtained from
real-time analysis and on-line re-design. In any event, the design process must run
through a number of cases equal to the number of faults to be handled and the control
system needs to be re-designed for each such case. Some types of faults in sensors
and actuators are simple to handle, others require a detailed re-design. It is, thus,
worthwhile to first consider the simplest possibilities, thereafter the more general
and complicated case of re-design.

The architecture of a fault-tolerant control system is illustrated in Fig. 8.1. A fault
is a discrete event that acts on a system and by that changes some of its properties.
Having diagnosed a fault, a decision needs to be taken about a remedial action.

The goal of fault-tolerant control is to respond to the occurrence of a fault such
that the faulty system still satisfies the given specifications. Due to the discrete nature
of the fault occurrence and reconfiguration, fault-tolerant control systems are hybrid
in nature (cf. Sect. 3.7). In the figure, σf denotes fault events, σa are control events
reconfiguring the system and qc the control mode, which selects a control law. The
actual physical mode qp of the plant may be viewed as the discrete state of an
automaton which is driven by plant internal events σp, the fault events σf and the
control events σa. While many different approaches can be used to solve the fault-
tolerant control problem, it may not be possible to control the system to a desired
performance for an arbitrary change of parameter or structure. A final remedial
action is then to close down to a safe state should proper control not be possible.
The key issue is to be able to obtain certain specified properties of the control of the
faulty system, and this chapter, therefore, focusses on methods for re-design based
on specifications.

http://dx.doi.org/10.1007/978-3-662-47943-8_3
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Fig. 8.1 The plant can change in a discrete way through change in states, a plant fault can cause a
discrete event. Plant architecture can be changed by switch-over functions. Parameters or structure
of the controller can be changed by logic in a supervisor automaton. The automaton gets its input
from fault diagnosis

A fault in the plant can affect the structure and the parameters of a plant. The
complexity of designing a controller for the faulty system is therefore immense, and
there is no single, systematic way to design a control system with reconfiguration
as depicted. Most research work deal either with diagnosis or controller reconfigu-
ration, but not both. One approach is based on a bank of controllers, each one being
associated to a healthy or a faulty plant working mode. The selection of the controller
to be used for the present working mode must be assumed to be achieved with some
delay and possibly false alarms.

The theory of logic-based switching control also relies on a bank of controllers
(Fig. 8.2). It has recently been used for fault-tolerant control. The supervisor is made
of a set of estimators, followed by performance evaluation, and a switching logic
scheme (Fig. 8.3).

Each estimator reconstructs the plant output in either one of the healthy or faulty
working modes. Its performance is evaluated by computing a norm of the output
estimation error, and the estimator that yields the smallest performance index is
assumed to correspond to the present working mode. The output of the switching
logic η is the integer associated with that estimator, i.e. the estimator number. The
corresponding controller is applied to the process using the switching logic.

This approach, however, presupposes that for each fault a reasonable controller has
been designed before the plant is put into operation. From a practical point of view,
this is not reasonable if a considerable number of faults has to be taken into account.
To deal with this problem, two approaches are presented in this chapter, namely first
methods that re-design the controller on-line after a fault has been identified to avoid
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Fig. 8.3 Logic within a supervisor selects an output estimate from a bank of estimators

the use of a pre-determined bank of control laws, and second methods for reducing
the size of pre-determined banks of control laws.

Note that a pre-determined bank of control laws needs possibly large memory
space for their implementation but allow fast on-line reaction: once the fault has
been isolated, the adequate control is just switched on, without any extra calculations.
On the other hand, on-line re-design of the control law does not need extra storage
but one has to wait for the design algorithm to be completed before the appropriate
control law can be used.

In the sequel of this chapter, different approaches to the fault-tolerant control
problem are presented, which refer to different objectives and faults. Although the
presented approaches can also be used in different frames, this chapter builds on
optimal control, actuator faults and the reconfiguration strategy. The linear quadratic
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problem under actuator faults is considered in Sect. 8.3. Section 8.4 presents the
lattice of actuator subsets whose properties are important since only the subset of
healthy actuators controls the system under the reconfiguration strategy. Section 8.5
discusses the implementation problem associated with on-line re-design versus bank
of control laws. The evaluation of fault tolerance is the subject of Sect. 8.6.

8.3 Fault-Tolerant Linear Quadratic Design

8.3.1 Control Problem

Linear quadratic (LQ) problems constitute a very popular frame for control design.
In this section, the LQ problem is analysed with respect to the possible occurrence
of actuator faults. It is shown that fault tolerance can only be achieved if admissible
(rather than optimal) solutions exist. Conditions on an actuator fault to be possibly
tolerated are given both for the fault accommodation and for the system reconfigu-
ration strategies.

Consider the system whose nominal operation is modelled by

ẋ(t) = Ax(t) + Bu(t) = Ax(t) +
∑
i∈I

Bi ui (t). (8.1)

x ∈ X ⊂ |Rn is the state vector and u ∈ U ⊂ |Rm is the control vector. I is the set
of the actuators, ui (t) ∈ |Rmi is the input of actuator i ∈ I, and m = ∑

i∈I mi . A
and B are constant matrices of suitable dimensions, and it is assumed that the pair
(A, B) is controllable. The following optimal control problem is considered:

Problem 8.4 (Optimal control problem)

1. Objective O: Transfer the system state from x(0) = γ towards x(∞) = 0, where
γ ∈ |Rn , and x(∞) stands for limt−→∞ x(t) while minimising the functional

J (u, γ) = 1

2

∫ ∞

0
(uT(t)Ru(t) + xT(t) Qx(t)) dt, (8.2)

where Q and R are symmetric matrices, and Q ≥ 0, R > 0.
2. Constraints C : Equation (8.1) is satisfied ∀t ∈ [0, ∞), x(t) and u(t) are con-

tinuous functions of time, and X = |Rn , U = |Rm hold.

8.3.2 Control of the Nominal Plant

The solution of Problem 8.4 is well known from the classical theory of optimal
control. Let H(x, u, p, t) be the system Hamiltonian
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H(x(t), u(t), p(t), t)

= −1

2
(uT(t)Ru(t) + xT(t) Qx(t)) + pT(t) (Ax(t) + Bu(t)),

where p(t) is the adjoint state vector, then the necessary optimality condition is

ẋ(t) = ∂H

∂p
(x(t), u(t), p(t), t) = Ax(t) + Bu(t) (8.3)

ṗ(t) = −∂H

∂x
(x(t), u(t), p(t), t) = Qx(t) − AT p(t) (8.4)

0 = ∂H

∂u
(x(t), u(t), p(t), t) = u(t) − R−1 BT p(t).

It is easy to show that the optimal solution is given by

p(t) = −P x(t)

u(t) = −R−1 BT P x(t),

where P is the (symmetric) solution of the algebraic Riccati equation

Q + AT P + P A − P B R−1 BT P = 0

such that the closed-loop system

ẋ(t) =
(

A − B R−1 BT P
)

x(t)

is stable. The solution exists since the pair (A, B) is controllable, and the optimal
value of the criterion is given by

J (0, ∅, γ) = 1

2
γT Pγ, (8.5)

where the argument 0, ∅ recalls that there is no faulty actuator on the time window
[0, ∞).

Nominal performances. Equation (8.5) shows that the nominal performance of the
actuator set I depends on the value of γ.

Γ = {γ ∈ |Rn, s.t.
1

2
γT Pγ ≤ 1}

represents the set of points in the state space from which the origin can be reached with
a cost less than 1. The characterisation of the actuation scheme I independently of the
control objective γ leads to consider the worst control problem from the quadratic
criterion point of view: transfer the system state from x(0) = γ∗ to x(∞) = 0,
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where
γ∗ = arg max|γ|=1

J (0,∅,γ).

The set of actuators I is thus characterised by the maximum eigenvalue of P which
is interpreted as the maximum cost which might be spent in transferring the system
state from x(0) = γ to x(∞) = 0 for some γ ∈ |Rn such that |γ| = 1

J
(
0,∅,γ∗) = 1

2
λmax(P). (8.6)

8.3.3 Fault Tolerance with Respect to Actuator Faults

This section considers the situation in which the system is faultless until the time
instant tf and has afterwards a fault in one or several actuators. Hence, the whole set
of actuators I is healthy in the time interval (0, tf [ while there is a subset IF of faulty
actuators in the interval [tf , ∞). Let I = IN ∪ IF, where IN is the subset of the still
normal actuators. After tf the faulty system behaviour is described by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

βi (ui (t), θi ), (8.7)

where βi (ui (t), θi ) describes the contribution of the faulty actuator i . This vec-
tor may be known, known with unknown parameters θi or completely unknown,
depending on the faults which are considered, and of the capability of the fault diag-
nostic algorithm to estimate them. The objective, constraints and criterion of the
fault-tolerant control problem are identical to those of the control problem, with the
exception of constraint (8.1) being valid on (0, tf [ and being replaced by constraint
(8.7) on [tf , ∞).

Problem constraints. Two cases can be considered as far as the status of constraint
(8.7) is concerned.

1. In the first case, the fault tolerance analysis is done (off-line) for given faults,
which are known to possibly occur in the considered system (from the failure-
modes and effect analysis, for example). Therefore, constraint (8.7) is known and
the fault-tolerant control can be designed beforehand (but it can be applied on-line
only when the actual fault matches the fault for which it has been designed, which
needs the actual fault to be identified).

2. In the second case, the analysis is done for any kind of fault which might occur
during the system operation and, therefore, constraint (8.7) being not known
has again to be identified (or replaced by another constraint if identification
is impossible or not available). The identification of the subset IF of faulty
actuators is normally done by the fault diagnostic algorithm, which detects and
isolates the faults. Defining the constraints resumes to identifying the functions
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βi (ui (t), θi ), i ∈ IF. This is not usually done by fault diagnostic algorithms,
and could be referred to as a diagnostic (or fault estimation) possibility, which
rests on fault modelling and on fault parameter identification, and it could be—or
not—provided by the fault diagnostic system.

Therefore, the two approaches to fault-tolerant control can be applied in depen-
dence upon the situation. Fault accommodation consists of controlling the faulty
system after replacing Eq. (8.7) by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

β̂i

(
ui (t), θ̂i

)
, (8.8)

where the functions β̂i (ui (t), θ̂i ) and parameters θ̂i , i ∈ IF are estimated. System
reconfiguration consists of controlling only the healthy part of the system (thus
switching off the faulty actuators), which means replacing Eq. (8.7) by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t). (8.9)

Admissible solutions. Whatever the selected strategy, a solution to the fault-tolerant
control problem exists provided the objective x(∞) = 0 can still be reached from
the initial state x(0) = γ. When solutions are needed to exist for any objective γ, it
is obviously necessary that the system (8.7) or (8.9) is still controllable.

Suppose that the fault-tolerant control problem has a solution, i.e. the system state
can be transferred from x(0) = γ to x(∞) = 0, and introduce the notation

J ((0, tf), (∅, IF), γ) (8.10)

for the minimal cost associated with the two time instants (0, tf) at which the failed
actuators are respectively (∅, IF). Obviously, the fact that a solution exists does not
mean that it is satisfactory. Two cases can be distinguished.

• The cost is of no importance provided the system objective is achieved in spite of
the fault. In this case, the actuation scheme I is fault tolerant with respect to the
situation IF occurring at time tf if and only if system (8.8)—when accommodation
is used—or (8.9)—when reconfiguration is concerned—is controllable.

• Some cost limitation is considered. Although optimal, the cost might be too high,
thus denying the actuation scheme I to deserve the “fault-tolerant” label with
respect to the situation IF.

Definition 8.1 (Admissibility) Let IF be a fault situation occurring at time tf . The
solution of the fault-tolerant control problem is admissible with respect to the control
objective γ if and only if
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J ((0, tf), (∅, IF), γ) ≤ ρ(γ)J (0, ∅, γ), (8.11)

where ρ(γ) ≥ 1 is some pre-defined function.

In Eq. (8.11), ρ(γ) is the maximal loss of efficiency which is allowed when a
control solution, which still achieves the objective γ but under the situation where
the fault IF occurs at time tf , is used. Three special choices of ρ(γ) may be of
interest.

• ρ(γ) = ∞, ∀γ ∈ |Rn .
In this case, fault tolerance is only concerned with the existence of an optimal
solution, whatever its cost, thus reducing the fault-tolerance property to the per-
manence of the controllability property: any fault such that the system remains
controllable is recoverable,

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

defines a uniform bound σ for the cost of controlling the faulty system, whatever
the initial state in the unit sphere: any fault such that there exists a stabilising
control whose cost is less than σ is recoverable,

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

defines a uniform bound for the loss of efficiency in the control of the faulty system,
whatever the control objective: any fault such that there exists a stabilising control
associated with a cost degradation factor less than ρ∗ is recoverable.

Based on the definition of admissibility, fault tolerance can be defined as follows.

Definition 8.2 (Fault tolerance of a system subject to actuator faults) The actuation
scheme I is fault tolerant with respect to the fault IF occurring at time tf for the control
objective γ if the accommodation or the reconfiguration problem has an admissible
solution (equivalently, fault IF occurring at time tf is said to be recoverable).

8.3.4 Fault Accommodation

The accommodation strategy is now analysed for the system described by

ẋ(t) = Ax(t) +
∑
i∈I

Bi ui (t) for t ∈ [0, tf [

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

βi (ui (t), θi ), x(tf) = xf ,

for t ∈ [tf , ∞).

Identifying the faulty system. Since the functions βi (ui (t), θi ) and parameters θi ,

i ∈ IF are not known, they must be estimated, and therefore the LQ control problem
is set for the model
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ẋ(t) = Ax(t) +
∑
i∈I

Bi ui (t) for t ∈ [0, tf [

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

β̂i

(
ui (t), θ̂i

)
for t ∈ [tf , ∞),

where the functions β̂i

(
ui (t), θ̂i

)
and parameters θ̂i , i ∈ IF are known. This

approach obviously needs some fault model to be defined, and its parameters to be
identified.

Assume it is known that the faulty actuators can still be described by a linear
model

β̂i

(
ui (t), θ̂i

)
= B̂i ui (t), i ∈ IF

and, therefore, the model of the faulty system is

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
j∈IF

B̂ j u j (t) (8.12)

= Ax(t) + Bf u(t),

where Bf = (BN, B̂F) is the new actuator matrix, formed by the concatenation of
the Bi matrices associated with the healthy actuators BN = (Bi , i ∈ IN) and the
B̂ j matrices associated with the faulty actuators B̂F = (B̂ j , j ∈ IF).

Accomodating the control to the faulty system. From Bellman’s optimality prin-
ciple, the accommodation strategy consists of applying the optimal control solution
to system (8.12), with initial condition xf = x(tf), on the time interval [tf , ∞), thus
leading to compute the accommodated control and trajectories as the solution of

ẋ(t) = Ax(t) + Bf u(t)
ṗ(t) = Qx(t) − AT p(t)
u(t) = R−1 BT

f P x(t)
(8.13)

with the result that the value of the criterion is now

J ((0, tf), (∅, IF), γ)) = J0 f + 1

2
xT

f P f xf (8.14)

instead of

J (0, ∅, γ) = 1

2
γT Pγ,

where J0 f is the cost already spent between t = 0 and t = tf and P f is the solution
of the algebraic Riccati equation in which B has been replaced by Bf , namely

Q + AT P f + P f A − P f Bf R−1 BT
f P f = 0. (8.15)
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Testing the admissibility of the accommodated control. From simple calculations,
and taking into account that

J (0, ∅, γ) = J0 f + 1

2
xT

f P xf

one has

J0 f = 1

2
γT Pγ − 1

2
xT

f P xf

and therefore

J ((0, tf), (∅, IF), γ)) = 1

2
γT Pγ + 1

2
xT

f (P f − P) xf . (8.16)

From (8.14) and the different definitions of admissibility, the set of triples

(Bf , tf ,γ)

which can be tolerated by an accommodation strategy are characterised as follows:

• ρ(γ) = ∞, ∀γ ∈ |Rn

(A, Bf) controllable (8.17)

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

(A, Bf) controllable
xT

f (P f − P) xf ≤ σ − γT Pγ
(8.18)

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

(A, Bf) controllable
xT

f (P f − P) xf ≤ (ρ∗ − 1) γT Kγ
(8.19)

Note that these conditions depend on the value of the state xf at the time of the fault
occurrence, which is computed by

xf(t) = e Atf γ +
∫ tf

0
e A(tf−t) Bu(t) dt,

where u(t) is the optimal control computed from (8.4), and can also be expressed as

xf = e
(

A−B R−1 BT P
)

tf γ.

Since tf is unknown beforehand, these conditions can only be checked on-line, at
time tf when the fault is detected, isolated and diagnosed. Of course, it might be
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unpleasant to discover on-line that the fault that just occurred cannot be accommo-
dated. Therefore, it is interesting to look for sufficient conditions, which could be
checked off-line. Such conditions can be found under the reasonable assumption that
if the objective can be reached by an admissible control using the faulty system from
the beginning, then it can also be reached by an admissible control when the nominal
system is first used and replaced (at an unknown time) by the faulty one.

This assumption is satisfied as it can be seen by considering the worst case value
of xf in the previous conditions. Under the assumption that (P f − P) ≥ 0 (which is
reasonable since it states that the faulty actuators are less efficient than the healthy
ones), the worst case situation is that in which the fault occurs right at time tf = 0,
and therefore one has xf = γ, which leads to the sufficient conditions (8.20)–(8.22)
for the fault IF to be tolerated using an accommodation strategy. Note that these
conditions characterise all the pairs (Bf ,γ) for which the system is fault tolerant,
whatever the time at which the fault Bf occurs.

• ρ(γ) = ∞,∀γ ∈ |Rn

(A, Bf) controllable (8.20)

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

(A, Bf) controllable
γT P fγ ≤ σ

(8.21)

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

(A, Bf) controllable
γT (P f − ρ∗ · P)γ ≤ 0

(8.22)

The conditions under which the fault Bf can be tolerated for any objective γ,
whatever the time at which it occurs, are given by

• ρ(γ) = ∞, ∀γ ∈ |Rn

(A, Bf) controllable, (8.23)

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

(A, Bf) controllable
λmax (P f) ≤ σ,

(8.24)

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

(A, Bf) controllable
λmax (P f − ρ∗ · P) ≤ 0.

(8.25)
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8.3.5 Control Reconfiguration

Reconfiguration strategies set the control problem of a system in which the faulty part
has been switched off. The choice of a reconfiguration strategy might follow from
the impossibility of estimating the fault, or it can be deliberate, so as to implement
fault-tolerant strategies which provide guaranteed results, and are as simple and as
understandable as possible by operators. In many cases, reconfiguration is understood
as the replacement of the faulty part by some non-faulty one. Considering the problem
under investigation, this means that some actuators were not in service before the
fault occurrence and that they can be switched on after the fault.

Let Ioff be the set of those actuators, which are assumed without loss of generality
to be non-faulty. It obviously follows that considering from the beginning the whole
set of actuators I ∪ Ioff reduces the problem to that of reconfiguring the system
Ioff ∪ IN ∪ IF by simply removing the faulty part. Thus, including Ioff within I
(namely, into IN), one can go on with unchanged notations. In this situation, the
fault-tolerant control problem has to be analysed replacing Eq. (8.7) by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t).

Therefore, all the previous results and statements also apply to the reconfiguration

strategy, provided Bf =
(

BN, B̂F

)
is replaced by Bf = (BN, O).

It is easily seen that Bf only depends on the subset of actuators IN whatever
the faults that act on the subset of actuators IF. Therefore, neither is it needed to
assume that the faulty actuators be described by a linear model B̂f , nor is it needed
to identify this model. Moreover, since there is only a finite number of actuator
subsets, the reconfigured controls can be computed off-line for each possible subset
IF, and the solution can be switched on-line as soon as the FDI has provided the
current subset of faulty actuators (this needs only fault detection and isolation). Note
that for some subsets IF an admissible solution will not exist, therefore it is of interest
to analyse off-line all the possible subsets of faulty actuators.

8.4 The Lattice of Actuator Subsets

The accommodation and reconfiguration strategies have been presented in the previ-
ous section for the case of actuator faults in the Linear Quadratic problem. However,
whatever the control objectives, the reconfiguration strategy always deals with con-
trolling only the subset of the system’s healthy components (the faulty ones are
switched off) and therefore, the analysis of the system’s component subsets is the
general frame in which the reconfiguration problem is to be considered. This is the
goal of this section.
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8.4.1 Actuator Configurations

Since I is the set of all actuators in the system, the power set 2I is the set of all
possible actuator subsets, also named actuator configurations. According to the fact
that the pair (A, Bf) associated with a given configuration IN satisfies or not the
admissibility conditions, 2I can be partitioned into

2I = R ∪ R

where

R = {IN ⊆ I : the fault IF = I\IN can be tolerated}
R = {J ⊂ I : the fault IF = I\IN cannot be tolerated}.

Definition 8.3 (Recoverable fault, recoverable configuration) A fault IF is said to be
recoverable if configuration IN ∈ R. It is non-recoverable if configuration IN ∈ R.
In the sequel we also use the wording recoverable/non-recoverable configuration.

It is well known that power sets have a lattice structure. That means that 2I

can be represented by a hierarchical graph, where nodes are actuator configurations
organised into levels as follows:

• level 0 contains only I,
• level 1 contains all configurations IN such that IF has only one element,
• level 2 contains all configurations IN such that IF has two elements,
• etc. ...
• the last level is the empty set (IF contains all actuators I ).

Each configuration at a given level belongs either to R or to R. Edges connect
configurations which belong to adjacent levels and differ by only one actuator.

Definition 8.4 (Successors, predecessors) Let IN be a configuration, S (IN) the set
of its successors and P (IN) the set of its predecessors are defined as

S(IN) = {I ′ ∈ 2I : I ′ ⊆ IN}
P(IN) = {I ′′ ∈ 2I : I ′′ ⊇ IN}.

Note that from this definition, any configuration IN belongs both to S(IN) and
P(IN). Remark also that since a successor of IN is included in IN it represents
a configuration with more faulty actuators while a predecessor of IN represents a
configuration with less faulty actuators.

Example 8.3 Reconfiguration after actuator faults
Consider a system with 7 states, and 4 actuators: I = {1, 2, 3, 4}. The matrices A and BT

are as follows:
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A = diag {−1, −0.5, −3, −4, −2, −1.5, −2.5} ,

BT =

⎛
⎜⎜⎝

0 1 1 1 1 1 0
1 0 1 1 1 0 1
1 1 0 1 0 1 1
1 0 1 0 1 1 1

⎞
⎟⎟⎠ .

The considered criterion is

J (u, γ) = 1

2

∫ ∞
0

uT(t)u(t) dt,

which means that only the control energy is of interest and R is the identity matrix. In that
case, it is known that

J (I, 0, γ) = γTW−1
c γ,

where Wc is the Gramian associated with the pair (A, B), i.e.

Wc =
∫ ∞

0
e At B BT

(
e At

)T
dt.

The maximal eigenvalue is λmax

(
W−1

c (I )
)

= 0.4357 energy units.

Assume that admissible solutions are defined such that the worst situation control cost
should not exceed 1.125 energy units. Then, there are 10 fault situations in which the system
is controllable by reconfiguration, namely when only actuators 1234, 234, 134, 124, 123, 34,
23, 14, 12, 13 remain available (using the short notations 1234 for {1, 2, 3, 4}, 24 for {2, 4},
etc.) but only 6 of them are admissible when energy limitation is considered, as shown by
Table 8.1.

Table 8.1 Admissible
actuators subsets and
associated characteristics

Actuator λmax

subsets (energy units)

1234 0.4357

234 1.1197

134 0.4676

124 0.8274

123 0.4778

34 3.0201

23 1.3948

14 2.2576

12 1.0612

13 1.1452
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34 24 23 14 13 12

1234

124

4 3

234 134 123

2 1

Φ

Fig. 8.4 The lattice of the actuators subsets in the example

Figure 8.4 shows the actuators lattice and its five levels. Dark grey nodes are configurations
that cannot control the system (the corresponding pair (A, Bf ) is not controllable), light grey
nodes are configurations by which the system is controllable, but energy limitations are not
met, white nodes are configurations which allow to control the system in an admissible way,
i.e. they are recoverable. Grey nodes correspond to faults that cannot be tolerated, i.e. they
represent non-recoverable configurations. �

Discrete state behaviour of the actuation system. Define the discrete state of the
actuation system as the subset of actuators IN(t), that are healthy at time t and
assume, without loss of generality, that IN (0) = I. Assume that at time t1 actuator
σ1 becomes faulty, then the reconfiguration mechanism, by discarding actuator σ1,

results in the discrete state IN(t1) = I \ {σ1} which belongs to S (I ). Further faults
will result in discrete states IN (t) moving to lower levels in the lattice, according to
the dynamical dicrete state equation

IN(t+) = IN(t−) \ Σf (t),

where IN(t−) is the discrete state before the fault, Σf (t) ⊆ IN(t−) is the subset
of actuators that become faulty at time t, and IN(t+) is the discrete state after the
system reconfiguration. Symmetrically, repair operations move the discrete state to
higher levels, according to
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IN(t+) = IN(t−) ∪ Σr (t),

where Σr (t) ⊆ I \ IN(t−) is the subset of actuators that have been repaired at time
t (it can be checked that subsets of faulty or repaired actuators can be treated one
by one, in an arbitrary order, resulting in the same post-fault or post-maintenance
configuration in the lattice). Repair operations have an important impact on system
reliability (by means of fault avoidance), but they are not considered here.

8.4.2 Critical Actuator Subsets and Minimal
Recoverable Configurations

Consider a recoverable configuration IN ∈ R. Loosing a subset of actuators Σ ⊂ IN
can be tolerated as long as the resulting configuration IN\Σ is still recoverable.

Definition 8.5 (Critical actuator subsets) A critical actuator subset associated with
the recoverable configuration IN is a minimal subset Σ ⊂ IN such that IN\Σ ∈ R.

Critical subsets are in general not unique. Let C (IN) be the ones associated with
configuration IN. Note that minimality is required in the definition because the loss
of any superset of a critical actuator subset could obviously not be tolerated.

Definition 8.6 (Minimal recoverable configuration) A minimal recoverable config-
uration is a configuration that belongs to R while all its successors belong to R.

This is a very interesting property: in spite of those actuators already switched
off, a minimal recoverable configuration is indeed recoverable, and so are all its pre-
decessors, but loosing any extra actuator results in a non-recoverable configuration.
As a result, the set of all recoverable configurations is completely known once the
minimal recoverable ones have been found. Note also that the critical actuator sub-
sets associated with a minimal recoverable configuration are the singletons formed
with each actuator in the configuration.

Example 8.4 Critical subsets, Minimal recoverable configurations
It is easily seen on Fig. 8.4 that the set of recoverable configurations is

R = {1234, 123, 124, 134, 234, 12}

The minimal recoverable configurations are therefore {12, 134, 234}. Indeed, loosing one
more actuator in any of these configurations moves the system to a non-recoverable con-
figuration, whatever the lost actuator. Note that any subset of a non-recoverable config-
uration is non-recoverable, while any superset of a recoverable configuration is recov-
erable. The critical actuator subsets associated with the nominal configuration 1234 are
C(1234) = {24, 23, 14, 13, 12}, while the critical actuator subsets associated with configu-
ration 234 are C(234) = {2, 3, 4}, which is not a surprise since 234 is a minimal recoverable
configuration. �
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8.5 Implementational Issues of Fault-Tolerant Control

8.5.1 On-Line Re-design Versus Bank of Control Laws

In the Fault-Tolerant Linear Quadratic problem, on-line re-design computes the con-
trol law u(t) = −R−1 BT

f P f x(t) adapted to the faulty system by solving the Riccati
equation

Q + AT P f + P f A − P f Bf R−1 BT
f P f = O

where the post-fault actuation matrix Bf is known from a fault estimation proce-
dure when accommodation is applied or from zeroing the columns associated with
the faulty actuators when reconfiguration is used. Note that a solution exists under
the condition that the fault is recoverable, but the delay between the occurrence of
the fault and the availability of the re-designed control law may lead to possibly
unpleasant transient behaviours, during the time when the faulty system is still con-
trolled by the nominal control law (an approach to this problem will be presented in
Chap. 9). While on-line re-design is compulsory in fault accommodation because Bf
is not known in advance, it is optional in system reconfiguration. Indeed, since there
is a limited number of possible Bf matrices (each one is associated with an actuator
configuration), the control law associated with each of them can be designed off-line,
and stored in a control bank from which the appropriate one is selected as soon as
the faulty actuators have been isolated, i.e. the current configuration is known. The
control bank contains as many control laws as the number of recoverable configura-
tions, which may be unpractical if this number is large. A solution to this problem,
the so-called Passive–Active approach, is presented now.

8.5.2 The Passive–Active Approach

The Passive–Active (PACT) approach is intended to decrease the number of control
laws that allow to recover all the recoverable faults. It is based on a result known as
the “Reliable Control Theorem”.

Theorem 8.1 (Reliable Control) Consider the Linear Quadratic problem associated
with the nominal system

ẋ(t) = Ax(t) + Bu(t), x(0) = γ

J (u,γ) = 1

2

∫ ∞

0

[
xT(t) Qx(t) + uT(t)Ru(t)

]
dt

where matrices A, B, R, Q are given (R is assumed to be diagonal) and such that
the Riccati equation

Q + AT P + P A − P B R−1 BT P = O

http://dx.doi.org/10.1007/978-3-662-47943-8_9


368 8 Reconfigurability Analysis

has a unique positive definite stabilising solution. The optimal control law is
therefore u(t) = −R−1 BT P x(t). Let {IN, IF} be a partition of the set of actua-
tors I and let B = BN + BF where BN (resp. BF) is obtained by zeroing those
columns in B that are associated with the actuators in IF (resp. IN). Assume that the
Riccati equation

Q + AT PN + PN A − PN BN R−1 BT
N PN = O (8.26)

has a unique definite positive stabilising solution, then the control law uN(t) =
−R−1 BT PNx(t) has the following properties:

1. It stabilises the system when only controlled by the actuators in IN, at the quadratic
cost

J (uN,γ) = 1

2
γT PNγ

2. It also stabilises the system when controlled by the actuators in IN ∪ If where If
is any subset of IF, at a quadratic cost less than or equal to 1

2γT PNγ.

Discussion. Let {IN, IF} be a partition of the set of actuators I such that IN
is a minimal recoverable configuration. It follows that the control law uN(t) =
−R−1 BT PNx(t) where PN is the unique stabilising solution of Eq. (8.26) is admis-
sible, i.e. the quadratic cost 1

2γT PNγ associated with the stable closed-loop system

ẋ(t) =
[

A − BN R−1 BT PN

]
x(t)

satisfies the cost constraint. From the second property of the Reliable Control Theo-
rem, this control law is also admissible for any system configuration IN ∪ If where
If ⊆ IF. It is therefore concluded that under this control law, the system is passively
fault tolerant with respect to all faults that are “smaller” than IF (i.e. the set of faulty
actuators is included in IF). Since the set of those faults corresponds to the set of
configurations that are the predecessors of configuration IN, the Reliable Control
Theorem can be reformulated as follows.

Theorem 8.2 (Reliable Control reformulated) Let IN be a minimal recoverable con-
figuration. Then, the control law uN(t) = −R−1 BT PNx(t) where PN is the unique
definite positive stabilising solution of Eq. (8.26) is admissible for all its predeces-
sors.

Practical implementation. This new formulation shows that a mix of passive and
active fault tolerance is able to cope with all the recoverable configurations: each
minimal recoverable configuration is associated with its own control law (the active
part of the strategy), and this control law recovers the set of all its predecessors
(the passive part). The result is that instead of containing as many control laws as
the number of recoverable configurations, the control bank now contains as many
control laws as the number of minimal recoverable configurations, which may be
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much smaller. However, there is a non-uniqueness problem to be dealt with, since a
recoverable configuration may belong to the predecessors of more than one minimal
recoverable configuration, hence several control laws are available for its recovery.
Since all of them are admissible the designer is free to select the one that best fits some
extra design criterion, for example selecting the one associated with the minimal cost.

Example 8.5 PACT control bank
Consider the linear quadratic problem associated with a system with 6 states and 4 actuators
I = {1, 2, 3, 4} where the matrices A and B are as follows

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 2 0 0
−1 1 1 0 0 0
2 2 0 1 0 0
0 1 0 0 0 0
1 0 0 0 1 −1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, BT =

⎛
⎜⎜⎝

1 0 1 0 1 1
1 1 1 0 0 0
1 0 0 0 1 0
0 0 1 1 1 0

⎞
⎟⎟⎠

and the cost is defined by

J (x0, u) = 1

2

∫ ∞
0

[
x(t)T Qx(t) + u(t)T Ru(t)

]
dt.

Let Q and R be identity matrices of appropriate dimensions. The optimal control of the
nominal system is u∗(t) = −R−1 BT P x(t). It results in the minimal cost J (γ) = 1

2 γT Pγ
where γ is the initial condition and P is the unique symmetric positive definite stabilising
solution of the Riccati equation associated with the nominal system. It can be checked that
for the nominal configuration, the optimal state-feedback control results in a cost matrix P
whose maximal eigenvalue is λmax (P) = 7.3554.

Now, controlling a configuration IN ⊆ I by some control law u results in the cost

JN(γ, u) = 1

2

∫ ∞
0

[
x(t)T Qx(t) + u(t)T RNu(t)

]
dt

where RN = diag {ri , i = 1, 2, 3, 4} and ri ∈ {0, 1} according to the fact that actuator i is
present or not in configuration IN (indeed, switched off actuators do not imply any energy
cost, whatever the control signal that is sent to them). The specification is that a control law
u is admissible if it satisfies

∀γ ∈ Rn : JN(γ, u) ≤ 1

2
ργT Pγ (8.27)

where ρ > 1 is the admissible performance degradation factor, meaning that performance
degradation is accepted as long as the degraded cost does not exceed ρ times the optimal
nominal cost. It follows that a recoverable configuration IN is such that there exists a unique
symmetric positive definite stabilising solution PN to the Riccati equation associated with IN
which satisfies:

∀γ : γT(PN − ρP)γ ≤ 0

(indeed, the minimal cost achievable by configuration IN is 1
2 γT PNγ).
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Let the specification be defined by ρ = 15. Still naming the configurations after the
actuators they contain, e.g. the nominal configuration I is 1234, the failure of actuator 2
results in configuration 134, etc., the set of recoverable configurations is

Rρ=15 = {1234, 123, 124, 12, 134, 234, 23, 24}

while the minimal recoverable configurations are Mρ=15 = {12, 134, 23, 24}. Figure 8.5
shows the lattice of configurations where recoverable configurations are white, non-recoverable
configurations are grey, and minimal recoverable ones have a bold contour.

Active control bank. Each recoverable configuration being associated with its own
control law, the active control bank contains 8 laws, for example the 8 optimal state
feedbacks associated with the 8 recoverable configurations:

Uactive =
{

uN(t) = −R−1 BT
N PNx(t), IN ∈ Rρ=15

}

Note that choosing the optimal control law associated with each configuration insures
the minimal cost is obtained when this configuration occurs as the result of faults, but
there is no need for the control laws to be optimal: they might be chosen arbitrarily
provided they satisfy the admissibility constraints.

Passive–active control bank. In this scheme, each minimal recoverable configura-
tion is associated with a control law that is admissible for all its predecessors. The
bank now contains only 4 control laws, namely,

UPACT =
{

uN(t) = −R−1 BT PNx(t), IN ∈ Mρ=15

}
. (8.28)

1234

124134234

34 24 23

123

14 13 12

4 3 2 1

Φ

Fig. 8.5 The lattice of actuator configurations
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Note that the law uN(t) is optimal for configuration IN ∈ Mρ=15 but is only
admissible for the predecessors P (IN)\ IN. The respective performance indexes are

λmax (P12) = 17.4285

λmax (P134) = 32.9450

λmax (P23) = 16.5649

λmax (P24) = 18.6938.

Let R (u) be the set of configurations recovered by the control law u, one has

R(u12) = {
1234, 123, 124, 12, 234, 23

}
R (u134) = {

1234, 123, 134, 234
}

R (u23) : {1234, 123, 234, 23}
R (u24) : {1234, 124, 234, 24} .

One remarks that R (
uIN

)
indeed not only includes, for each minimal recoverable

configuration IN, all its predecessors, but it may also include more (those that are
underlined). Another remark is that non-minimal recoverable configurations can be
recovered by several control laws, hence the need for a decision procedure.

Table 8.2 gives, for each recoverable configuration, the list of control laws by
which it can be recovered. The simplest decision procedure selects the one with the
best performance (underlined). �
Reducing the control bank size. Let U be a passive–active control bank that
recovers all the recoverable faults. It may happen that the designer is happy with
a bank U smaller that contains a smaller number of laws at the price of recovering
only a subset of recoverable faults (i.e. at the price of being less fault-tolerant). This
trade-off will be considered later since it is connected with the evaluation of fault tol-
erance, as one can guess from the wording “being less fault-tolerant”. This section
investigates the minimality of the control bank for a given subset of faults to be
recovered.

Table 8.2 Control laws for recovery

Configurations 1234 123 124 12 134 234 23 24

Admissible
control
laws

u12

u134

u23

u24

u12

u134

u23

u12

u24
u12 u134

u12

u134

u23

u24

u12

u23
u24
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Definition 8.7 (Minimal Control bank) A control bank U is minimal with respect
to a given set of faults if there is no proper subset of U that recovers all these faults.

Given a passive–active control bank U that recovers a set of faults R (U) the
reduction to a minimal control bank problem has to be found in the following problem:

Problem 8.5 (Reduction problem)

1. Check whether U is minimal or not,
2. if not, find a minimal control bank Umin.

Let R (U) be the set of faults recovered by all the control laws in the bank U then
one has

R (U) = ∪u∈UR (u).

Let U ⊂ U be a proper subset of control laws. It recovers the set of faults:

R (U ) = ∪u∈UR (u).

By comparing R (U) and R (U ), it is concluded that if R (U )= R (U) then U is
not minimal (indeed U is a proper subset that recovers the same faults), and either U
or some subsets of U are minimal. On the contrary, if R (U )⊂ R (U) then neither
U nor any of its successors can recover all the faults to be recovered. This remark
leads to the following algorithm for the determination of the minimal control banks
that recover the same set if faults as a given PACT control bank.

Algorithm 8.1 Reduction of a PACT bank of control laws

Given: Bank of control laws U
Recovered faults R (U).

Initialisation: Put U into the list “possible”, initialize two empty lists “min-
imal” and “impossible”

While the list “Possible” is not empty
For each member V of this list
If all its direct successors U are such that R (U )⊂ R (U)

then remove V from the list “possible” and move it into the
list “minimal”
else give the direct successors that satisfy R (U )= R (V) the
label “possible” and change the label of V into “impossible”

Result: list of minimal banks that recover all the faults R (U).

Example 8.6 Minimal control bank
The passive–active control bank of Example 8.5 resulted in a control bank with four control
laws: UPACT = {u12, u134, u23, u24}
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Table 8.3 Level 1 subsets

Subsets Recovered faults Comment

{u12 , u 134 , u 23} {1234, 123, 124, 12, 234, 23, 134, 24} Possibly minimal

{u12 , u 134 , u 24} {1234, 123, 124, 12, 234, 23, 134, 24} Possibly minimal

{u12 , u 23 , u 24} {1234, 123, 124, 12, 234, 23, 24} Impossible

{u134 , u 23 , u 24} {1234, 123, 134, 234, 23, 124, 24} Impossible

Table 8.4 Level 2 subsets

Subsets Recovered faults Comment

{u12 , u 134 } {1234, 123, 124, 12, 234, 23, 134} Impossible

{u12 , u 23} {1234, 123, 124, 12, 234, 23} Impossible

{u134 , u 23} {1234, 134, 123, 234, 23} Impossible

that were able to recover all the recoverable faults { 1234, 123, 124, 12, 134, 234,

23, 24 } according to the following list:

R(u12) = {
1234, 123, 124, 12, 234, 23

}
R(u134) = {

1234, 123, 134, 234
}

R(u23) = {1234, 123, 234, 23}
R(u24) = {1234, 124, 234, 24}

Exploring the Level 1 subsets of UPACT shows that two banks with 3 control laws, namely
{u12, u134, u23} and {u12, u134, u24} are able to recover all the recoverable faults (Table 8.3).

Analysing the subsets of {u12, u134, u23} and {u12, u134, u24} shows that none of them
can recover all the faults (Table 8.4 shows the results for {u12, u134, u23}).

It is, therefore, concluded that the PACT control bank UPACT = {u12, u134,

u23, u24} can be replaced with no loss of recoverability by a 3-laws control bank: either
{u12, u134, u23} or {u12, u134, u24}. �

8.5.3 Reducing the Reliability Over-Cost

Let M be the set of minimal recoverable configurations of a given system, and let
U be the PACT control bank where each control law uN(t) ∈ U is associated with
one minimal recoverable configuration IN ∈ M.

Reliability over-cost. As already noted, uN(t) is optimal for configuration IN, but
for any other configuration IK ∈ P (IN) it is only admissible. Indeed, configu-
ration IK achieves the minimal cost 1

2γT P K γ under the control law uK (t) =
−R−1 BT P K x(t) where P K is the unique solution of the Riccati equation

Q + AT P K + P K A − P K BK R−1 BT
K P K = O
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while it is well known that under the (non-optimal) control law

uN(t) = −R−1 BT PNx(t)

the cost is 1
2γT PN,Kγ where PN,K is symmetric positive definite and given by the

Lyapunov equation:

Q + PN B R−1 BT PN + PN,K

(
A − BK R−1 BT PN

)
+

(
A − BK R−1 BT PN

)T
PN,K = O

It is concluded that for configuration IK , the reliability over-cost to be paid for using
uN(t) instead of uK (t) is 1

2γT
[

PN,K − P K
]
γ.

Trade-off control bank. Since the nominal configuration I is expected to occur most
of the time, it may be sensible to add the nominal control law to the minimal PACT
bank. It follows that no reliability over-cost is paid in the nominal configuration, at
the cost of abandoning the minimality of the control bank.

Example 8.7 Trade-off control bank
In Example 8.6, a minimal control bank with three laws, namely {u12, u134, u23} or
{u12, u134, u24} was able to recover all the recoverable configurations. In this case, one
would have chosen the first bank, since it contains u23 which gives the smallest cost

1

2
γT P23,1234γ

in the nominal situation, as highlighted in Table 8.2. However, implementing the trade-off
bank {u1234, u12, u134, u23} results in an optimal cost for the nominal system and a minimal
number of control laws to obtain an admissible cost for the other (recoverable) configurations.
�

More generally, a trade-off control bank can be designed by associating some
recoverable configurations (Subset1) with their optimal control law, while the rest
(Subset2) is controlled by the PACT bank associated with the minimal recoverable
configurations. The system performances are optimal as long as the current config-
uration belongs to Subset1, at the cost of increasing the number of control laws in
the overall control bank. For Subset2, the cost reduction problem can be stated as
follows:

Problem 8.6 (Cost reduction problem)
Given a minimal recoverable configuration IN, find a control law that minimises the
cost achieved by some pre-selected configuration IL ∈ P (IN) under the constraint
that it is admissible for all the configurations in P (IN).

Note that the optimal control of configuration IL indeed minimises the cost
achieved by this configuration, but there is no reason for it to be admissible for all the
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configurations in P (IN). Conversely, the reliable control uN(t) = −R−1 BT PNx(t)
is admissible for all the configurations in P (IN) but there is no reason for it to yield
the minimal cost when applied to IL .

The cost reduction problem can be addressed by introducing a degree of free-
dom H in the control law, namely u(t) = −R−1 BT H x(t) instead of u(t) =
−R−1 BT PNx(t), where H is symmetric positive definite. Applying this control law
to a configuration IK ∈ P (IN) results in the closed-loop matrix A − BK R−1 BT H
and (assuming it is stable), in the cost 1

2γTW K γ where W K is symmetric positive
definite and given by the Lyapunov equation:

Q + H B R−1 BT H + W K

(
A − BK R−1 BT H

)
+

(
A − BK R−1 BT H

)T
W K = O (8.29)

Let H be the set of symmetric positive definite matrices H that satisfy the condi-
tions that A − BK R−1 BT H is stable and ∀IK ∈ P (IN), 1

2γTW K γ is admissible.
Applying the control law u(t) = −R−1 BT H x(t) to configuration IL results

in the cost 1
2γTW Lγ and therefore, the cost reduction problem is nothing but the

optimisation problem: find H so as to minimise λmax (W L) under the constraints
H ∈ H.

Unfortunately, this problem appears to be non-convex and difficult to solve. How-
ever, it is possible to build a sequence of control laws uk(t) = −R−1 BT Hk x(t),
(k = 1, 2, . . .) that improve the cost of the selected configuration while satisfying
the constraints. The following algorithm is based on an adaptation of the Newton-
Kleinman procedure. It can be shown that it produces a converging sequence of
control laws uk(t) = −R−1 BT Hk x(t), (k = 1, 2, . . .) that stabilise all the config-
urations in P (IN) and are such that P L ≤ · · · ≤ W k+1

L ≤ W k ≤ · · · ≤ PN where
W k+1

L ≤ W k means that for any initial condition γ, the quadratic form γTW kγ is a
decreasing function of k.

Algorithm 8.2 Cost reduction problem

Given: A minimal recoverable configuration IN
a pre-selected configuration IL ∈ P (IN)

an arbitrary small positive number ε, a matrix norm ‖.‖
Initialisation: H0 = PN and W−1

L = ∞
While: STOP condition not fulfilled

1. Solve the Lyapunov equation Q + Hk B R−1 BT Hk +
W k

(
A − BL R−1 BT Hk

) + (
A − BL R−1 BT Hk

)T
W k =

O for W k

2. Update Hk+1 = pk Hk + qk W k , where qk =
max

{
ζ : ζ ∈ [0, 1] , Hk+1 ∈ H}

and pk = 1 − qk
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3. Check the STOP condition
∥∥∥W k+1

L − W k
∥∥∥ ≤ ε

Result: a convergent sequence of control laws
uk(t) = −R−1 BT Hk x(t), (k = 1, 2, . . .)

that satisfy the admissibility constraints for all configurations
inP (IN) and decrease the quadratic cost associated with con-
figuration IL .

Notice that the pure Newton-Kleinman scheme is obtained if the updating proce-
dure in Step 2 is applied with pk = 0 and qk = 1 for all k. This scheme produces
the optimal control matrix associated with configuration IL under no constraint. The
updating procedure in Step 2 is aimed at satisfying the constraints H ∈ H.

Example 8.8 Cost reduction
In Example 8.7, consider the minimal recoverable configuration 12. The control law u12 is
admissible for configurations {1234, 123, 124, 12, 234, 23

}
but using it in the nominal con-

figuration 1234 gives the cost matrix P12,1234 whose maximal eigenvalue isλmax
(

P12,1234
) =

12.267. However, any control law u(t) = −R−1 BT H x(t), where H = HT > 0 is better
than u12 and admissible for all configurations in P (12) if it satisfies the following conditions:

• the predecessors are stable: ∀IK ∈ {1234, 123, 124, 12}, A − BK R−1 BT H is Hurwitz,
• the predecessors are admissible: ∀IK ∈ {1234, 123, 124, 12}, WK ≤ 15P1234, where

WK is the solution of Eq. (8.29)
• for any initial condition the cost associated with the nominal configuration 1

2 γTW1234γ is

smaller than 1
2 γT P12,1234γ.

It can be checked that, applying the pure Newton-Kleinman algorithm pk = 0, qk = 1 for
all k, results in a sequence of cost matrices Wk

1234 that decrease from the solution W0
1234 =

P12,1234 of the Lyapunov equation

Q + P12 B R−1 BT P12 + W0
1234

(
A − B R−1 BT P12

)

+
(

A − B R−1 BT P12

)T
W0

1234 = O

to the optimal solution W∞
1234 = P1234 associated with the nominal system. However, as soon

as the first iteration, H1 violates the admissibility constraint, so the update law in the algorithm
must be used. The result is displayed in Table 8.5. The control u(t) = −R−1 BT H2x(t) is

Table 8.5 Results for configuration 12

Iteration 0 1 2

λmax W k
1234 12.267 10.159 10.159

qmax 0.648 0.000 0.000
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Table 8.6 Results for all configurations

Reliable control Cost reduction Decrease

Configuration 12 12.267 10.159 17.18%

Configuration 134 19.340 15.892 17.83%

Configuration 23 12.743 7.873 38.22%

Configuration 24 10.869 9.182 15.53%

admissible for all the predecessors P (12), and decreases the nominal configuration cost by
17.18 % when compared with the reliable control u12.

Table 8.6 compares the nominal configuration costs achieved by the control law associated
with each configuration in Mρ=15 respectively for the reliable control and the cost reduced
control. �

8.6 Fault-Tolerance Evaluation

The system is tolerant to actuator faults, when the reconfiguration strategy is used, as
long as the current configuration IN(t)belongs to the set of recoverable configurations
R. Introducing some measure μ (R) of this set should therefore give an idea about
the overall system fault tolerance. On another hand, let the system configuration
be IN(t) at time t and assume there is no repair during its operation, then actuator
failures can only move the discrete state to configurations within the set of successors
S(IN(t)), among which only those in the intersection R∩ S(IN(t)) are recoverable.
The “remaining” fault tolerance at time t can therefore be evaluated by the measure
μ (R ∩ S (IN(t))). Note that R = R ∩ S (I ) because S (I ) = 2I , and therefore
the measure μ(R) is the “remaining” fault tolerance at the initial time, assuming
that the system is then in its nominal configuration. Two kinds of measures, namely
deterministic or probabilistic measures can be used.

8.6.1 Deterministic Measures

Deterministic measures do not use any model of the transitions from one configu-
ration to another. The most important ones are the redundancy degrees which are
based on the number of levels, in the lattice of system configurations, between a
recoverable configuration IN(t) and the set of non-recoverable ones.

Definition 8.8 (Strong redundancy degree) The strong redundancy degree is the
measure μ (R ∩ S (IN(t))) defined by:

kstrong [IN(t)] = min
{|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ R}

, (8.30)
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where |Σ | is the cardinal number of the set Σ.

kstrong [IN(t)] is the length of the shortest path, in the lattice of system config-
urations, between a recoverable configuration IN(t) and the set of non-recoverable
configurations. In other words, no matter which actuators are lost, as long as their
number does not exceed kstrong [IN(t)] − 1, the fault is recoverable.

Definition 8.9 (Weak redundancy degree) The weak redundancy degree is the mea-
sure μ (R ∩ S (IN(t))) defined by:

kweak [IN(t)] = max {|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ R} (8.31)

It is the length of the longest path, in the lattice of system configurations, between
a recoverable configuration IN(t) and the set of non-recoverable ones. In other words,
the largest set of actuators whose loss can be tolerated from the current configuration
IN(t) is of size kweak [IN(t)].

The redundancy degrees enjoy nice practical interpretations. It follows from their
definition that

∀In(t) ∈ R, kstrong [IN(t)] ≤ kweak [IN(t)] .

The coverage is another deterministic measure that is sometimes used in addition
to the redundancy degrees.

Definition 8.10 (Coverage) The coverage is the measure μ (R ∩ S (IN(t))) defined
by the ratio between the number of recoverable configurations and the total number
of possible configurations.

Its interpretation is not so straightforward as that of the redundancy degrees, but it is
easy to compute, and it may provide some useful insight with respect to the usefulness
of the individual system components. For example, it allows a quick evaluation of
the individual components usefulness, as discussed in Sect. 8.6.3.

8.6.2 Probabilistic Measures

Probabilistic measures assume that a model that governs the transitions from one
configuration to another one is available. Then, the setR ∩ S(IN(t)) can be measured
using reliability concepts. Indeed, for any pair of time instants t1, t2 such that t2 > t1
let πσ(t1, t2) be the probability for actuator σ to be healthy at time t2 subject to
the condition that it was healthy at time t1. Assume this function is known for all
actuators, that actuators faults are independent, and that the nominal configuration
I is the current one at the initial time. Then, the probability for the system discrete
state to be IN at time t is given by

Pr [IN, 0, t] =
∏
σ∈IN

πσ(t, 0)
∏
σ /∈IN

[1 − πσ (t, 0)] . (8.32)
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Let the time window [0, T ] define the duration of the system mission, then fault
tolerance is guaranteed provided no configuration in R becomes active on [0, T ]
(indeed, the specification is satisfied as long as the current configuration belongs to
R). It follows that the success probability on [0, T ] is given by

Pr [I, 0, T ] =
∑

IN∈R
Pr [IN, 0, T ] . (8.33)

Starting with the nominal configuration I at the initial time, the time during which
the system will operate successfully is the time before it enters a configuration in
R. This is a random variable, whose probability distribution is given by Eq. (8.33).
A possible alternative measure of the fault-tolerance capability is the mean-time to
failure:

MTTF (I, 0) =
∞∫

0

Pr [I, 0, T ] dT . (8.34)

8.6.3 Sensitivity

The size of R (and consequently the size of R∩ S(IN(t)) depends on the difficulty
for the specification to be satisfied and on the size of I . It follows that two kinds of
sensitivities can be considered.

Sensitivity with respect to the specifications. Consider the triple (I, Spec1, Spec2),
where Spec1 and Spec2 are two specifications, then one has

(Spec1 ⇒ Spec2) ⇒ RSpec1 ⊆ RSpec2, (8.35)

where Spec1 ⇒ Spec2 means that Specification 2 is weaker than—or is a degraded
specification with respect to—Specification 1, and RSpec1 (resp. RSpec2) is the set
of configurations that are recoverable when the nominal set of actuators is I and the
specification is Spec1 (resp. Spec2). Indeed, any configuration that satisfies Spec1
also satisfies Spec2.

The sensitivity with respect to the specifications is easily evaluated from the
difference of the above deterministic or probabilistic measures associated with each
set of recoverable configurations. For example, the strong redundancy degree of a
given configuration IN(t) is

kstrong [IN(t)] = min
{|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ RSpec1

}

or
kstrong [IN(t)] = min

{|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ RSpec2
}
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according to the selected specifications.
An interesting development is associated with specifications Spec (θ) that are

monotonous with respect to some parameter θ in the following sense:

θ1 ≤ θ2 ⇒ RSpec(θ1) ⊆ RSpec(θ2)

θ may for example be interpreted as a cost: the more one is ready to spend, the
larger the set of recoverable configurations. With this interpretation in mind, letRwish
be a set of configurations that are wished to be recoverable. The value

θoptimal = min
{
θ : RSpec(θ) ⊇ Rwish

}

is the minimal cost at which the wished fault-tolerance specifications are achieved.
Note that the particular value θcritical associated with Rwish = { I } appears as the

minimal cost to be paid for the existence of at least one solution (the nominal one)
to the specification satisfaction problem.

Sensitivity with respect to the components. Similarly, for a given specification
Spec let IComp1 and IComp2 be two sets of actuators (more generally two sets of
components), then:

(
IComp1 ⊆ IComp2

) ⇒ RComp1 ⊆ RComp2, (8.36)

where RComp1 (resp. RComp2) is the set of configurations that are recoverable when
the nominal set of actuators is IComp1 (resp. IComp2). The sensitivity with respect to
the components is easily evaluated from the difference of the above deterministic or
probabilistic measures associated with the sets IComp1 and IComp2.

Two consequences of Eq. (8.36) may be of interest:

• Assume that two sets of components are such that IComp1 ⊂ IComp2 andRComp1 =
RComp2. Then the components in IComp2 \ IComp1 are useless for achieving the
system objectives. It is concluded that the difference of the measures associated
with RComp1 and RComp2 gives an idea of the usefulness of the subset of compo-
nents IComp2 \ IComp1.

• Assume that two sets of components are such that IComp1 ⊂ IComp2 and that
RComp1 = ∅ while RComp2 �= ∅, then the subset IComp2 \ IComp1 is (or con-
tains) a critical component subset. Therefore, its removal from IComp2 implies the
impossibility that it will be impossible to satisfy the system specifications.

Example 8.9 Fault-tolerance evaluation
Assume the system in the previous example is expected to operate on the time interval
[0, T ] with T = 105 h. Actuators 1 and 2 reliability data are r1(t, 0) = r2(t, 0) =
exp

(
−4 × 10−6t

)
, while actuators 3 and 4 are less prone to failures, namely r3(t, 0) =

r4(t, 0) = exp
(
−4 × 10−7t

)
.

Starting with the nominal configuration 1234 at the initial time, the PACT control bank
UPACT = {u12, u134, u23, u24} allows to recover all recoverable configurations. This results
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in the redundancy degrees kstrong [1234] = 1, and kweak [1234] =2, meaning that the system
operation can go on in the single failure case, whatever the failed actuator (the system is said
to be fail-operational with respect to the first fault), and still works when some double faults
occur. Note that using the smaller control bank U = {u12, u134, u23} does not change the
redundancy degrees, since the set of recoverable configurations remains unchanged (however,
the performance of some configurations will be lower, although still admissible).

Using UPACT = {u12, u134, u23, u24}, and assuming actuator failures are independent,

the success probability computed from Eq. (8.33) is Pr
[
1234, 0, 105

]
= 0.8740. Decreasing

UPACT to U = {u12, u134, u23} does not change this figure.
Assuming the minimality of the control bank is an important point, note that if the bank

{u12, u134, u23} is further decreased to {u12, u134} the recoverable configuration 24 cannot
be recovered anymore. However, the probability for this configuration to occur within the
mission time is so small (0.0083) that one could decide to implement the bank {u12, u134} at
the cost of not recovering fault 24 should it occur. Note that in this case, the redundancy degrees
are still kstrong [1234] = 1 and kweak [1234] = 2, but the success probability decreases from
0.8740 to 0.8657.

The admissible cost specification was defined by ρ = 15: a configuration is recoverable
if there exists a control law such that the quadratic cost does not exceed 15 times the optimal
cost of the nominal configuration. Table 8.7 shows the results obtained for different values of
the cost parameter ρ ∈ {1, 2, . . . , 7}. Only the values at which changes occur are displayed,
and the last column recalls the results for ρ = 15.

To evaluate the sensitivity with respect to components, the effect of removing actuator
subsets from I is computed. Table 8.8 shows the results for ρ = 15. Subsets whose removal
results in R = ∅ are not shown.

It is clearly seen that there is no useless component and that the critical component subsets
are {12, 23, 24}: the failure of any of these subsets results in a non-recoverable configuration.
This analysis is very useful for the architecture design problem, which consists in selecting the
appropriate actuators to control the system in a fault tolerant way. For example, implementing
only actuators123 would giveR = {123, 12, 23} , kmax [123] = 0 and kmin [123] = 1, mean-
ing that the single fault fail operational property is lost. The success probability is drastically
decreased to 0.0259. �

Table 8.7 Sensitivity to cost specification

ρ 1 2 4 5 15

Minimal recoverable configurations 1234 234

123

124

234

124

23

12

134

23

24

Strong redundancy degree 0 0 0 0 1

Weak redundancy degree 0 1 1 2 2

Success probability 0.4148 0.6188 0.6526 0.6609 0.8740
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Table 8.8 Sensitivity to components

Removed subsets 1 2 3 4 13 14 34

Recoverable configurations

234

24

23

134

124

24

12

123

12

23

24 23 12

Strong redundancy degree 0 0 0 0 0 0 0

Weak redundancy degree 1 0 1 1 0 0 0

Success probability (×102) 21.06 20.40 2.59 2.59 0.83 0.83 0.07

8.7 Exercises

Exercise 8.1 Lattice-based analysis
Consider an over-actuated system with three actuators and two sensors:

(
ẋ1(t)
ẋ2(t)

)
=

(
0 1
−1 2

)(
x1(t)
x2(t)

)
+

(
0 1 1
1 0 1

)⎛
⎝

u1(t)
u2(t)
u3(t)

⎞
⎠

(
y1(t)
y2(t)

)
=

(
0 1
1 1

) (
x1(t)
x2(t)

)

In order to understand the generality of the lattice-based analysis, this exercise considers,
instead of the quadratic control problem, a simple specification that allows hand calculations.
The specification is as follows: the two closed-loop eigenvalues are wished to be real and equal
to −2 when output feedback is used, namely for i = 1, 2, 3 one has ui (t) = ki1 y1(t)+ki2 y2(t)
where ki1, ki2 are the control gains to be designed.

1. Characterise the set of admissible nominal control laws.
2. Assuming the two sensors are not faulty, analyse the effect of actuator faults under the

reconfiguration strategy.
3. Is it possible to analyse the effect of sensor faults under the reconfiguration strategy in the

same way? �

Exercise 8.2 Reliable control
Let abcd be the four actuators of a linear time-invariant system:

A =

⎛
⎜⎜⎝

0 0.17 0.17 0.33
−0.17 −0.17 0.17 0
0.33 0.33 0 0.17

0 0.17 0 0

⎞
⎟⎟⎠

B0 =

⎛
⎜⎜⎝

0.50 0 0 0
0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

⎞
⎟⎟⎠ ,
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where matrix A is unstable, having the following set of eigenvalues:

Λ (A) = {−0.39; −0.031 ± 0.141 j; 0.28} .

We are interested in the optimal quadratic control using the following weighting matrices:

Q =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ and R = I4.

Faulty actuators are recovered, if possible, using the reconfiguration strategy. Under the recov-
erability specification that the optimal cost of the reconfigured system should not exceed
four times the optimal cost of the healthy system, all configurations are recoverable except
{ac, ad, bc, a, b, c, d} as shown in Fig. 8.6, where the white nodes are recoverable while the
grey nodes are not.

abcd

acd abd abc

ab

a

ac

b

adbc

bcd

bdcd

cd

Φ

Fig. 8.6 Recoverable configurations

1. From Fig. 8.6 identify the minimal recoverable configurations.

2. Compute the coverage and the redundancy degrees. Is the system fail-operational with
respect to the first fault? Configurations ab, bd, cd are respectively recovered by the opti-
mal state feedbacks uab = Kab x, ubd = K bd x and ucd = K cd x where the feedback
gains are given below and result in the cost matrices W∗

ab, W∗
bd , W∗

cd whose maximal
eigenvalues are 18.53, 23.76 and 21.60:
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Fig. 8.7 Structural graph of
the measurement system

a

b

c

e

d
x4

x3

x2

x1

y3

y2

y1

y5

y4

Kab =

⎛
⎜⎜⎝

−1.27 −0.95 −1.10 −0.88
−0.47 −1.85 −1.64 −1.36
−0.55 −1.64 −1.91 −1.09
−0.44 −1.36 −1.09 −1.19

⎞
⎟⎟⎠

K bd =

⎛
⎜⎜⎝

−3.18 −2.18 −2.32 −2.41
−1.09 −1.88 −1.82 −1.49
−1.16 −1.82 −2.23 −1.28
−1.20 −1.49 −1.28 −1.63

⎞
⎟⎟⎠

K cd =

⎛
⎜⎜⎝

−3.15 −1.72 −1.73 −2.37
−0.86 −1.87 −1.51 −1.58
−0.86 −1.51 −1.67 −1.17
−1.18 −1.58 −1.17 −1.82

⎞
⎟⎟⎠

3. Let U be the reliable control bank that recovers all the recoverable configurations. List the
control laws in U . For each recoverable configuration list the control laws by which it is
recovered. If several control laws allow to recover a given configuration, which one is to
be selected?

4. Assume the control bank can implement only two control laws. What is the control law to
be discarded? What is the influence on the coverage and the redundancy degrees? Is the
system still fail-operational with respect to the first fault? �

Exercise 8.3 Sensor network design
Consider a measurement system with four unknown variables x1, x2, x3, x4 and five sensors
a, b, c, d, e that provide five measurement signals y1, y2, y3, y4, y5. Its structure graph is
given by Fig. 8.7.

We are interested in the output-connection property (denoted P), which is a very important
structural property of sensor networks. A system is output-connected if there is a path in the
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Fig. 8.8 The new system
with b removed and a
duplicated

a1

a2

c

e

d

x1

x2

x3

x4

y2

y1

y3

y5

y4

structural graph from any unknown variable to a sensor (this is a necessary condition for
the structural observability of the unknown variables). From Fig. 8.7, the system is clearly
output-connected when the five sensors are used.

1. The lattice of system configurations allows to analyse the situations in which sensors are
lost or removed from the sensor network. Determine whether property P holds or not
for all the 4 sensor configurations (the configurations where one sensor is lost from the
nominal configuration).

2. We now wish to determine whether the property holds or not for the sensor configurations
where two sensors are lost. Do we need to analyse the subsets of bcde ?

3. What is the output-connection span, what are its minimal configurations.
4. Compute the coverage, and the weak and strong redundancy degrees of the nominal con-

figuration abcde. Is property P fail operational with respect to the first fault?
5. What are the critical sensor subsets.
6. What can be said about sensor b.
7. Note that the critical subset a is a singleton; therefore the probability to loose property

P because of the loss of a is one order of magnitude larger than the probability to loose
property P because of the loss of ce or de (assuming their failures are independent). Since
b is useless, it might be interesting to remove sensor b from the sensor network and to
duplicate sensor a. The new system a1a2cde is shown on Fig. 8.8.

Go through questions 1–6 with the new system, and make comparisons. �
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8.8 Bibliographical Notes

The fault-tolerant control problem. Defining the fault-tolerant control problem
and understanding the differences with the classical control problem has motivated
many early works [30, 32]. A formalisation of the problem can be found in [122,
329].

Recoverability is concerned with the possibility either to accommodate the faults
or to reconfigure the system when faults occur. Early works on the recoverability
problem are [113, 121, 170, 392] for a class of switched systems.

Recoverable faults can be handled by fault accommodation or system reconfig-
uration. A survey on fault accommodation is given in [264, 285], and interesting
results can be found in [172, 327]. Many approaches have been developed to provide
the model of the faulty system that is required by fault accommodation, most of
them based on the development of adaptive or learning observers [171, 335, 336].
A control mixer approach to deal with actuator faults was pursued by [400, 401].
A wider area of reconfiguration was studied in [393, 399]. The general model of
reconfiguration based fault tolerance was introduced in [330] and the use of generic
models for reconfiguration analysis was considered in [331].

When faults are not recoverable, human intervention is most commonly needed to
find another achievable system objective, using decision support from the diagnosis
and overall goals for the plant [199]. Appropriate switching of the system operating
mode is the goal of the supervisory system [169]. In fact, due to the discrete nature
of fault occurrence and reconfiguration, fault-tolerant control systems are hybrid in
nature according to [112, 113].

The properties of combined fault diagnosis and control were treated in [264].

Fault-tolerant linear quadratic design. The fault-tolerant linear quadratic design
problem was introduced in [321] for actuator faults. Sensor faults and sensor network
design were addressed in [149].

The model-predictive control technique allows to take into account inequality
constraints, that are rather difficult to consider in linear quadratic control, at the
price of an increased on-line computing power. This technique was used in [223]
for fault accommodation and reconfiguration. The model-predictive controller uses
all available input signals ui and measurable output signals yi which comprise the
vectors u and y as before rather than only those input and output signals are used
in the nominal feedback loop. If on the supervision level a fault f is detected, the
inequality constraints included in the optimisation problem can be changed so that
the model-predictive controller adapts to the faulty system. This can be done in a very
easy way for actuator faults. If the diagnostic algorithm shows that the j th actuator
is faulty, the equality constraint u j = 0 is included in the optimisation problem in
order to ensure that the controller does not really use the j th input. Then the model-
predictive controller moves its control activity towards the available actuators, which
can be interpreted as an on-line reconfiguration of the control loop.

As model-predictive control necessitates a rather large on-line computing capacity
and as its reconfigurability property is, more or less, restricted to actuator faults this
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method should be used for ensuring fault tolerance only if the advantages of model-
predictive control have to be exploited for the faultless plant as well. For applications,
where a fixed (linear) controller is sufficient for satisfying the control requirements
for the faultless plant, the reconfiguration should be carried out by methods described
in the earlier sections, which eventually result in a new fixed control law.

Implementation issues. The general theory of reconfiguration-based fault tolerance,
including the passive–active design, was developed in [333]. The optimisation of
the reliable control specifications was analysed in [332] while the reduction of the
reliability over-cost was first presented in [16].

Fault-tolerance evaluation. Fault-tolerance evaluation is in some sense a measure
of how many faults are or are not recoverable. It has been considered from the point of
view of the system structural properties, e.g. observability or controllability, extend-
ing the evaluation of these properties to the faulty system. For example, the smallest
second-order mode, first introduced in [231], has been proposed as a reconfigura-
bility measure in [392]. A general approach to fault-tolerance evaluation under the
reconfiguration strategy was presented in [68] with application to the measure of the
system components’ usefulness, and specification to the structural analysis approach.
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