
Chapter 5
Structural Analysis

Abstract This chapter uses the structure graph to describe the direct interactions
among the signals within a dynamical system. This graph allows to analyse the
redundancies within a system, which can be exploited for fault diagnosis and control
reconfiguration. A dynamical model is interpreted as a set of constraints, which leads
to a bipartite graph representing the system structure. Faults indicate violations of
the constraints. The analysis shows how component faults can be found by defining
and utilising analytic redundancy relations.

5.1 Introduction

This chapter investigates the structural properties of dynamical systems by analysing
their structural model. The structural model of a system is an abstraction of the
behavioural model in the sense that instead of the constraints themselves only the
structure of the constraints is considered. The structure graph is a representation of
the links between constraints and the variables and parameters occurring in each
constraint. The structure is represented by a bipartite graph, which is independent
of the nature of the constraints, and of the variables and parameter values. Structural
analysis can hence describe systems described by quantitative or qualitative relations,
by equations, by rules or by tabular relations. The structure graph will be shown to
represent a qualitative and easy-to-obtain model of the system.

Structural analysis is based on a description of the normal behaviour of a sys-
tem, through describing the normal behaviour of each component and the relation
(connection) the components have to variables we wish to consider in the system.
Using this approach, we will be able to diagnose whether a violation of a normal
behaviour has happened. This means we are no longer bound to describe all possible
faults that could happen in components of a system, as was the case with FMEA
and Fault Propagation Analysis methods presented in Chap. 4. Instead, the starting
point of analysis is a set of constraints, a set of nominal input–output relations, which
describe the system as a set of components, the normal behaviour of each component
and the topology of the components that constitute the system. Any violation of a
constraint is considered to be a fault, without specifying the physical reason behind
each possible fault.
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The structural model will be shown to be represented by a structure graph, com-
posed of constraints and variables. This graph is independent of the value of the
system parameters, and structural properties are deducted using graph theory for
graphs that are partitioned into two sets: constraints and variables. The properties of
this bipartitioned graph are explored in great detail in this chapter.

In spite of their apparent simplicity, structural models provide significant infor-
mation for use in fault diagnosis and fault-tolerant control. This approach is able to
identify those constraints, and related components of the system, which are—or are
not—monitorable, to provide calculation of residuals from the analytic redundancy
relations (ARR) that exist in a system, and to find those components whose failure
can be tolerated through reconfiguration.

In this chapter, structural investigations concern

• identification of the monitorable part of the system, i.e. the subset of the system
components whose faults can be detected and possibly isolated,

• direct generation of residuals for a system that is specified by its structure graph:
the behaviour described through constraints, the known and the unknown variables.

• how analytical redundancy relations (ARRs) are calculated with ease for linear or
nonlinear systems,

• how analytical redundancy relations in structural representation are transformed to
residuals in analytical form for use in fault diagnosis by algorithmic manipulations
on the structure graph (matching and backtracking),

• how to design residuals that meet specific fault diagnosis requirements, namely
being insensitive to disturbances and can be structured (i.e. sensitive to certain
faults and insensitive to others),

• demonstrate structural results for active isolation of possible faults in the structure
(violation of constraints) through imposing test signals on inputs to isolate an
otherwise non-isolable structural defect,

• discuss possibilities for reconfiguration to estimate and to control some variables
of interest in case of sensor, actuator or system component failures.

These important properties are found by the analysis of the structure graph and
its canonical decomposition. In order to introduce the canonical decomposition,
matchings on a bipartite graph are first presented and their interpretation is given.
Causality is introduced and adds orientation to the bipartite structure graph. Matching
of unknown variables in the structure graph is then investigated and it is shown how
ARRs are found among the constraints that are not needed for a particular matching.
It is shown how a set of ARRs and the set of constraints through which they are
calculated, lead to the important notions of structural detectability and isolability. It is
also shown how ARRs generated by structural analysis by design become insensitive
to unknown disturbances or to unknown parameters. Further, structural controllability
is discussed and fault tolerance is investigated through analysis of the structural
properties that exist for reconfiguration of a system in case of component failures.
The chapter finally summarises essential design procedures based on the structural
analysis methods.
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5.2 Structural Model

5.2.1 Structure as a Bipartite Graph

This section introduces the structural model of a system as a bipartite graph which
represents the links between a set of variables and a set of constraints. It is an
abstraction of the behavioural model, because it merely describes which variables
are connected by which constraints, but it does not say how these constraints look
like. Hence, the structural model shows the basic features and properties of a system,
which are independent of the system parameters.

Behaviour model. The behavioural model of a system is defined by a pair

S = (C, Z)

where

• Z = {z1, z2, . . . , zN } is a set of variables and parameters and
• C = {c1, c2, . . . , cM} is a set of constraints.

According to the granularity of the variables (quantitative, qualitative, fuzzy) and of
the time (continuous, discrete), the constraints may be expressed in several different
forms like algebraic and differential equations, difference equations, rules, etc.

Example 5.1 A differential-algebraic model
Consider the sets

Z = Xa ∪ Xd ∪ U ∪ Y
C = {g, h, m},

where Xa is the set of variables xa that appear only in algebraic constraints, and Xd the set of
variables xd whose derivative obeys some differential constraints g. A differential-algebraic
model is given by

ẋd(t) = g (xd(t), xa(t), u(t)) (5.1)

0 = m (xd(t), xa(t), u(t)) (5.2)

y(t) = h (xd(t), xa(t), u(t)). (5.3)

Note that it is possible to define a separate set of variables ẋd for the derivatives and a separate
set of constraints

ẋi(t) − d

dt
xi(t) = 0, i = 1, . . . , n, (5.4)
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so that the sets of variables and constraints have to be extended:

Z = Xa ∪ Xd ∪ Ẋd ∪ U ∪ Y
C =

{
g, h, m,

d

dt

}
,

where d
dt stands for the differential constraints (5.4) and all the constraints (5.1)–(5.3) are

algebraic.
The behaviour model of a dynamical system links present and past values of its variables

(for discrete time systems) or variables and their time derivatives up to a certain order (for
continuous-time systems). Giving two variables the names x(t) and ẋ(t) does not guarantee
that the second one is the time derivative of the first one. This is only true thanks to the
analyst’s interpretation, and this fact has to be represented, for automatic treatment, by separate
constraints like (5.4). �

Two basic assumptions express the fact that a model defined by some set of
constraints is well formed. These assumptions are used in the sequel.

Assumption 5.1

(a) All the constraints in C are compatible.
(b) All the constraints in C are independent.

Assumption 5.1(a) means that the set of the constraints is associated with a sound
model, namely a model whose set of solutions is not empty. In other words, the
constraints do not carry any contradiction.

Assumption 5.1(b) means that the model is minimal in the sense that no constraint
defines (at least locally) the same set of solutions as another one, or more generally
that in C there do not exist two different subsets C′ and C′′ such that

V (C′) ⊆ V (C′′)

holds, where V (C) is the set of solutions associated with the constraint set C. It will
be seen that this assumption may or may not hold, depending on the redundancy
which is present in the system.

Example 5.2 Dependent constraints
Consider the two constraints

c1 : z1 − 1 = 0

c2 : (z1 − 1)(z2 − 1) = 0.

They are obviously not independent, since one has V (c1)∩V (c2) = V (c1). In fact, constraint
c1 is sufficient to describe the set of the system solutions, and one has the implication

c1 is true ⇒ c2 is true. �
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Structure graph. The structure of a system is represented by a bipartite graph. A
graph is bipartite if its set of vertices can be separated into two disjoint sets C and Z
in such a way that every edge has one endpoint in C and the other one in Z .

Definition 5.1 (Structural model, structure graph) The structural model of the
system S = (C, Z) is a bipartite graph

G = (C, Z, E),

where E ⊂ C × Z is the set of edges defined as follows:

(ci, zj) ∈ E if the variable zj appears in the constraint ci.

G is also called the structure graph or the structure.

In the representation of a system as a pair S = (C,Z), the set C includes the
constraints describing the relations among the variables, whereas the vertex set C
of the graph G includes only the names of these constraints, which are used as the
names of vertices. Nevertheless, the same symbol C is used in S and G.

The bipartite graph is an undirected graph, which can be interpreted as follows: All
the variables and parameters zj ∈ Z that are connected with a given constraint-vertex
ci ∈ C have to satisfy the equation or rule that this constraint-vertex represents. The
structure graph can be built for rather general models including models of the form
of differential and algebraic equations.

In the following figures, the variable-vertices zj ∈ Z will be represented by circles
while the constraint-vertices ci ∈ C will be represented by bars. Note that the edges
are not oriented. The incidence matrix of the bipartite graph is used to represent
the graph as a set E of edges in an algebraic manner. The rows of this matrix are
associated with the constraints and the columns with the variables. A “1” in the
intersection of row ci and column zj indicates the existence of the edge

(
ci, zj

) ∈ E .
For an example, cf. (5.5).

Example 5.3 Structure graph of a linear system
Consider a linear system described by four constraints {c1, c2, c3, c4} with five variables
{x1, x2, ẋ1, ẋ2, u} as follows:

c1 : ẋ1 = dx1

dt
c2 : ẋ1 = ax2

c3 : ẋ2 = dx2

dt
c4 : ẋ2 = bx1 + cx2 + du.
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Fig. 5.1 Bipartite graph of
the linear system x1 x1

c2 c3 c4c1

x2 x u2

. .

Its structure graph has the incidence matrix

↗ u x1 x2 ẋ1 ẋ2

c1 1 1
c2 1 1
c3 1 1
c4 1 1 1 1

(5.5)

leading to the bipartite graph depicted in Fig. 5.1. �

Example 5.4 Tank system
Consider a tank system where the inflow qi(t) is controlled via a level sensor and an electric
pump and the outflow qo(t) is realised through an output pipe (Fig. 5.2).

The system consists of the components {tank, input valve, output pipe, level sensor, level
control algorithm}. A continuous-variable continuous-time model is given by the following
constraints:

Tank c1 : ḣ(t) = qi(t) − qo(t)
Input valve c2 : qi(t) = αu(t)

Output pipe c3 : q0(t) = k
√

h(t)
Level sensor c4 : y(t) = h(t)

Control algorithm c5 : u(t) =
{

1 if y(t) ≤ h0 − r
0 if y(t) ≥ h0 + r.

(5.6)

u

h

h

0

q (t)0

q (t)i

(t)

y(t)

Parameter 
Control

Tank

Level sensor

algorithm

r

Fig. 5.2 Single-tank system



5.2 Structural Model 125

u is the control variable, y the sensor output, h0 the given set point, and r and k are given
parameters. h denotes the liquid level, qi and qo the flow into or out of the tank. α is a valve
constant. Each component introduces one constraint. The separate constraint

c6 : ḣ(t) = dh(t)

dt

expresses the fact that ḣ(t) is the derivative of the level h(t).
This behavioural model of the tank system without controller leads to the structure graph

with the following incidence matrix:

Input/Output Internal variables

u(t) y (t) h(t) ḣ(t) qi (t) qo (t)

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

↑
Every column of the matrix corresponds to a circle-vertex and every row to a bar-vertex.

The structure graph is shown in Fig. 5.3.
If the controller is introduced, the graph is extended by a new bar-vertex for c5 and two

new circle-vertices for h0 and r. Furthermore, if the parameter k appearing in constraint c3 is
considered now as an important variable (rather than a fixed given parameter like the valve
constant α), a circle-vertex is introduced for k and linked with c3. These steps lead to the
following extended incidence matrix:

Input/Output Parameters Internal variables

u(t) y (t) h0 r k h(t) ḣ(t) qi(t) qo(t)

c1 1 1 1

c2 1 1

c3 1 1 1

c4 1 1

c5 1 1 1 1

c6 1 1

↑

For simplicity, only the ones appear in this matrix and empty boxes are zero. Figure 5.4 shows
the extended graph. �

Remark 5.1 (Structural representation by digraphs) For nonlinear systems

ẋ(t) = f (x(t), u(t))

y(t) = g(x(t))
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Fig. 5.3 Structure graph of
the single-tank system
without controller
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Fig. 5.4 Structure graph of
the controlled tank u r
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a popular structural representation uses the directed graph (digraph), whose set of
vertices is the set of the input, output and state variables and whose edges are defined
by the following rules:

• An edge exists from vertex xk (resp. from vertex ul) to vertex xi if and only if
the state variable xk (resp. the input variable ul) really occurs in function fi (i.e.
∂fi
∂xk

—resp. ∂fi
∂ul

—is not identically zero).
• An edge exists from vertex xk to vertex yj if and only if the state variable xk really

occurs in the function gj.

In the digraph representation edges are interpreted as “mutual influences” between
variables: an edge from xk to xi means that the time evolution of the derivative ẋi(t)
depends on the time evolution of xk(t). Similarly, an edge from xk to yj means that the
time evolution of the output yj(t) depends on the time evolution of the state variable
xk(t). In contrast to the bipartite graph, the signals xi and ẋi are not distinguished but
represented by the same vertex xi. �
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Fig. 5.5 Digraph of the
linear system

u y

x1

x2

Example 5.5 Digraph of a linear system
The digraph which describes the structure of the system

ẋ1(t) = x2(t) (5.7)

ẋ2(t) = ax2(t) + bu(t)

y(t) = x1(t)

is shown in Fig. 5.5. Obviously, the constraints given in the behavioural model are not explicitly
represented. �

5.2.2 Subsystems

Instead of considering the whole set of constraints which describe the behavioural
model of a system, it is sometimes convenient to consider only subsets of constraints.
A subsystem is defined by the set of constraints together with the set of variables
that occur in these constraints. This subsection introduces the vocabulary connected
with subsets of the constraints.

The symbol 2C denotes the set of all the subsets of C (also denoted as the power
set of C). Let G = (C, Z, E) be the structure graph of the system S = (C, Z) and
Q be a mapping between a set of constraints and the set of variables used in these
constraints:

Q : 2C → 2Z
φ �→ Q(φ) = {z ∈ Z; ∃c ∈ φ s.t. (c, z) ∈ E}. (5.8)

Q associates with any subset φ of constraints, the subset Q(φ) of those variables
which intervene in at least one of them. Correspondingly, the mapping R associates
a set of variables with a set of constraints where these variables appear:

R : 2Z → 2C
ξ �→ R(ξ) = {c ∈ C; ∃z ∈ ξ s.t. (c, z) ∈ E}. (5.9)
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Definition 5.2 (Subsystem) For a system S = (C,Z), a subsystem is a pair
(φ, Q(φ)) with φ ∈ 2C . The subgraph that is related with subsystem (φ, Q(φ))

represents the subsystem structure.

According to this definition, a subsystem is any subset φ of the system constraints
together with the set Q(φ) ⊂ Z of related variables. There are no specific require-
ments on the choice of the elements in φ ⊆ 2C . Of course, only some of them are of
interest in applications:

• First, subsystems can be associated with some physical interpretation. Complex
systems are often decomposed into subsystems which have a physical or a func-
tional meaning. For example, a boiler can be decomposed into a steam generator,
the instrumentation scheme and a control system. These subsystems are associated
with subsets of constraints, so that the fault of one or several subsystems results
in some of these constraints being changed.

• Second, subsystems can be associated with special properties. For example, fault
diagnosis is possible only for subsystems which exhibit redundancy properties as
shown later.

Example 5.6 Q and R mappings for the tank example
Consider the following incidence matrix for the single-tank system.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

Examples for the mappings Q and R are:

Q({c1, c3}) = {
h, ḣ, qi, qo

}
Q({c5}) = {u, y}

R({qi, qo}) = {c1, c2, c3}.

Hence, the pair
({c1, c3} ,

{
h, ḣ, qi, qo

}
)

is a subsystem and its structure is described by the subgraph with the incidence
matrix
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h ḣ qi qo

c1 1 1 1

c3 1 1

↑

5.2.3 Structural Properties

Two systems which have the same structure are said to be structurally equivalent.
Consequently, the structure graph G defines a class S(G) of structurally equivalent
systems. In particular, systems which only differ by the value of their parameters
belong to the same class.

The class of systems defined by the structure graph is large, because the structure
is independent of the form in which the constraints are expressed. For example,
suppose that the level sensor in the single-tank system does not provide an analog
output but a quantised one. Then its operation is described by the following table,
where α, β, γ are given constants:

h ∈ [0, α[ ∈ [α, β[ ∈ [β, γ[ ≥ γ

y empty low medium high

For structural considerations the important information included in this table is the
fact that the sensor reading y and the tank level h are connected and, hence, in the
structure graph there exist edges between the variable-vertices for y and h towards
the constraint-vertex for the sensor. This fact is obviously independent of the quan-
tisation. Hence, the structure of the sensor is exactly the same for analog and for
symbolic sensor readings.

Structural properties are properties of the system class S(G) rather than of a
single system Σ ∈ S(G), because they are properties of the graph G. The relation
between the results of the structural analysis and the results of a numerical analysis
of a single system is depicted in Fig. 5.6. The arrows from the left to the right part
of the figure show the abstraction process, which leads from the numerical values of
the system parameters to the links among the variables represented by the structure
of the constraints. Accordingly, the properties of the system class are abstractions of
properties of the (numerical) systems that are structurally equivalent.

As the aim of structural analysis is to elaborate properties that belong to the graph
G, but are relevant for all or at least for most of the systems Σ ∈ S(G), the analysis
usually concerns two similar properties P and P′, where P is a property defined for a
single system Σ and P′ is a property of the graph G. With respect to the figure, one
has to ensure that the “inverse abstraction” process from the properties of the class
S(G) towards the single system Σ is known. For most of the structural properties
P′ that are investigated in structural analysis there exists a property P such that the
following relation holds:
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Abstraction
Single system

∑

Fig. 5.6 Numerical and structural analysis of dynamical systems

If the system Σ ∈ S(G) has the property P, then the system class S(G) has
the property P′.

Hence, the requirement that the graph G possesses the property P′ is a necessary
condition for the system Σ ∈ S(G) to have the property P.
Example 5.7 Observability and structural observability
Consider the static system

(
y1
y2

)
=

(
a(θ) c(θ)

b(θ) d(θ)

)

︸ ︷︷ ︸
A(θ)

(
x1
x2

)
, (5.10)

for which the internal variables x1 and x2 should be determined for measured outputs y1 and
y2. Every single system Σ is characterised by Eq. (5.10) together with a parameter vector
θ ∈ |Rq. The system Σ is said to be observable if the model (5.10) can be used to determine
x1 and x2 in terms of y1 and y2, which is obviously the case if and only if the matrix A(θ) is
invertible. Hence,

rank A = n (5.11)

is a necessary and sufficient condition for the observability of the system Σ , where n is the
number of unknown variables to be observed. For observability analysis, which concerns the
left arrow “Numerical analysis” in Fig. 5.6, Eq. (5.11) has to be checked.

On the other hand, a structural analysis abstracts from the parameter values and uses a
graph with the incidence matrix

E =

x 1 x2

c1 [a(θ)] [c(θ)]
c2 [b(θ)] [d(θ)]

↑
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where c1 and c2 denote the first and the second equation in (5.10) and the symbol [ · ] denotes
the qualitative value of the matrix element considered. The qualitative value [a(θ)] is equal to
1 if the argument a(θ) does not vanish for all parameter vectors θ ∈ |Rq; otherwise it is zero.

The system class S(G) includes all systems Σ described by Eq. (5.10) for arbitrary para-
meter vectors that are consistent with the entries of the matrix E. Hence, if E has a vanishing
element, the corresponding element of the matrix A vanishes for all Σ ∈ S(G). This system
class is said to be structurally observable if at least one system Σ ∈ S(G) exists that is
observable (according to the definition given above). That is, there has to exist at least one
parameter vector θ for which the relation det A �= 0 holds. This is obviously the case if and
only if the structural rank of the matrix E is two or, more generally,

s-rank E = n. (5.12)

The structural rank of a matrix E is the maximum number of non-zero elements in different
rows and columns of E. The arrow “structural analysis” in Fig. 5.6 means to test Eq. (5.12).

The important aspect of this example is the fact that for the single system the notion of
observability and for a class of systems the notion of structural observability has been defined
in such a way that a system has to belong to a structurally observable system class if the system
should be observable. Both definitions are closely related to one another, but these properties
are not the same! The structural observability of the system class, which can be tested by the
graph, is a necessary condition for the observability of the system.

However, to belong to a structurally observable system class is not sufficient for a system
to be observable. Think of the system Σ with a = b = c = d = 1. This system violates
the condition for observability (as det A = 0) although it belongs to a structurally observable
system class. An important aspect of the structural investigations in the next sections concerns
the relations among these properties, in particular, the elaboration of conditions under which
the structural properties of a system class do not transfer to the (numerical) properties of every
single system of this class. For the observability properties considered in this example, this
condition is given by

s-rank E ≥ rank A,

which means that the rank of a matrix cannot exceed the structural rank of the graph that
represents the structure of this matrix. �

An important question asks under what conditions the structural property P′ of
S(G) does not transfer to the numerical property P of Σ ∈ S(G). Two cases can be
distinguished with respect to the example above:

1. In the first case, parameters θ always satisfy the relation det A = 0 and thus the
structural property is never translated into an actual property. This situation is
excluded in structural analysis, because the parameters are always supposed to be
independent, which means that they span the whole space |Rq. As an algebraic
relation like det A = 0 defines a manifold in the parameter space |Rq, it cannot
be satisfied by all θ ∈ |Rq. Otherwise, the equation det A = 0 should have been
included in the system model.

2. In the second case, the parameters θ of the system under investigation satisfy
the relation det A = 0, and thus the structural property is not translated into an
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actual property for that particular system. Structural analysis, however, implies
the interesting conclusion that under mild assumptions on the functions a, b, c, d
there always exists a parameter vector θ̃ in the neighbourhood of θ for which the
actual property coincides with the structural one.

In conclusion, (numerical) properties P can only occur if the corresponding struc-
tural properties P′ are satisfied. They can certainly not be true if the structural prop-
erties are not satisfied. Furthermore:

Structural properties are properties which hold for actual systems almost every-
where in the space of their independent parameters.

Hence, it is extremely unlikely that the system under consideration has a parameter
vector for which a structural property does not imply the corresponding numerical
property.

5.2.4 Known and Unknown Variables

The system variables and parameters can be classified as known and unknown ones.
The system inputs and outputs are examples of variables that are usually known. Sim-
ilarly, model parameters which have been previously identified are known. Unknown
variables are not directly measured, though there might exist some way to compute
their value from the values of known ones. In the tank example, the last four columns
of the incidence matrix

{
h, ḣ, qi, qo

}
correspond to unknown variables, while the

first five ones correspond to known variables and parameters {u, y, h0, r, k}.
Following that decomposition, the set of the variables is partitioned into

Z = K ∪ X ,

where K is the subset of the known variables and parameters and X is the subset of
the unknown ones. Similarly, the set of constraints is partitioned into

C = CK ∪ CX ,

where CK is the subset of those constraints which link only known variables and
CX includes those constraints in which at least one unknown variable appears. CK
is the largest subset of constraints such that Q(CK) ⊆ K. Obviously, the relations
defining control algorithms belong to CK because they introduce constraints among
the sensor output, the control objectives (set points, tracking references, final states)
and the control input, which are all known variables.

According to the partition of Z and C, the graph G = (C, Z, E) can be decom-
posed into two subgraphs which correspond to the two subsystems (CK, Q(CK))

and (CX , Z). The behavioural model of the subsystem (CK, Q(CK)) involves only
known variables. In some further developments, it will be of interest to focus on the
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subsystem (CX , Z) which leads to the reduced structure graph. This graph includes
only those constraints that refer to at least one unknown variable zi ∈ X .

A fundamental question of fault diagnosis concerns the determination of unknown
variables from known variables by means of constraints. The question whether this
is possible or not depends only upon the structure of the subgraph (CX , X , EX ) that
results from the complete structure graph G by deleting all known variables zi ∈ K
together with the corresponding edges. Therefore, in all further examples of structure
graphs the known variables are marked grey.

Example 5.8 Analysis of the structure graph of the tank system
Consider the tank, whose structure graph is given in Fig. 5.4. Assume that the input u and
the output y are known signals and, furthermore, h0, r and k are known parameters. Then the
decomposition of the variable set

Z = {h, ḣ, qi, qo, u, y, h0, r, k}

into set of known and unknown variables yields the sets

K = {u, y, h0, r, k} and X = {h, ḣ, qi, qo}.

By selecting all constraints whose variables are all in the set K, the set CK = {c5} is obtained.
All other constraints are comprised in the set

CX = {c1, c2, c3, c4, c6}.

Obviously, Q(CK) ⊆ K and

Q(CX ) = {u, y, qi, qo, h, ḣ}

hold. The incidence matrix of the structure graph can be reorganised as follows:

known unknown

u y h0 r k h ḣ qi qo

c5 1 1 1 1

c1 1 1 1

c2 1 1

c3 1 1 1

c4 1 1

c6 1 1

↑

The known variables are in the left columns and the constraint that refers merely to known
variables in the first row. The reduced structure graph which corresponds to the subsystem
(CX , Z) is given by the lower part of the incidence matrix. As the variables h0 and r do not
appear in this part of the matrix, their columns are deleted. Hence, the reduced structure graph
has the incidence matrix:
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known unknown

u y k h ḣ qi qo

c1 1 1 1

c2 1 1

c3 1 1 1

c4 1 1

c6 1 1

↑

The reduced graph is shown in Fig. 5.7a.
For diagnosis, another decomposition of the variables into known and unknown ones is

used. The parameters like k, h0 and r are assumed to be fixed and, hence, ignored in the
structure graph. The remaining variables represent signals, some of which are measured and
the others are unknown. Hence, for the tank system the fixed parameter k is deleted from the
structure graph, which results in the following incidence matrix and in the graph depicted in
Fig. 5.7b:

u y h ḣ qi qo

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

↑

The diagnosis problem for the tank system can be posed as the problem to decide whether the
“grey signals” u and y are consistent with the model whose structure is shown in Fig. 5.7b. �

5.3 Matching in Bipartite Graphs

The basic tool for the structural analysis is the concept of matching in bipartite
graphs, which is introduced in this section. In loose terms, a matching is a causal
assignment which associates with every unknown system variable a constraint that
can be used to determine the variable. Unknown variables which do not appear in a
matching cannot be calculated. Variables which can be matched in several ways can
be determined in different (redundant) ways. The last situation provides a means for
fault detection and for reconfiguration.
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Fig. 5.7 Reduced structure graph of the tank system (a) and structure graph used in diagnosis (b)

5.3.1 Definitions

Matching is a general notion that has been introduced for bipartite graphs. It is
introduced here in general terms for bipartite graphs G = (C, Z, E), but illustrated
for structure graphs of dynamical systems.

Edges of the graph G are said to be disjoint if they have no vertex in common
(neither in C nor in Z).

Definition 5.3 (Matching) A matching M ⊆ E is a set of disjoint edges of a bipartite
graph G.

In general, different matchings can be defined on a given bipartite graph as illus-
trated in Fig. 5.8 by the bold edges. These matchings are given by the following set
of disjoint edges:

M1 = {(c1, ḣ), (c2, qi), (c3, h), (c4, y)}
M2 = {(c6, ḣ), (c1, qi), (c4, h), (c3, qo)}.

The examples show that a set M of edges is called matching even if it does not
include a maximum number of disjoint edges. If it does, it is said to be a maximum
matching.

A maximum matching is hence a matching such that no edge of the graph G can
be added without violating the requirement that the edges have to be disjoint. Since
the set of matchings M is only partially ordered, it follows that there is in general
more than one maximum matching. The “size” of a matching M is its cardinality
|M|. In general, the relation

|M| ≤ min{|C| , |Z|}
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Fig. 5.8 Two matchings for
the tank system: The edges
e ∈ M are drawn by thick
lines

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

hh
.

qi q0 u y

hh
.

qi q0 u y

holds. The maximum cardinality over the set of matchings is called the matching
number and is denoted by

ν(G) = max
M∈M

|M|.

In the incidence matrix, a matching is represented by selecting at most one “1”
in each row and in each column and marking it by “①”. Each ① represents an edge
of the matching. No other edge should contain the same variable (thus it is the only
one in the row) or the same constraint (it is the only one in the column). The set M
of all matchings of a graph is a subset of 2E .

Structural analysis deals with matchings that include all vertices c ∈ C or all
vertices z ∈ Z .

Definition 5.4 (Complete matching) A matching is called complete with respect to
C if |M| = |C| holds. A matching is called complete with respect to Z if |M| = |Z|
holds.

For a matching M that is complete with respect to C, each constraint belongs to
exactly one edge of the matching:

∀c ∈ C : ∃z ∈ Z such that (c, z) ∈ M.

Similarly, for a matching that is complete with respect to Z , every variable belongs
to an edge:

∀z ∈ Z : ∃c ∈ C such that (c, z) ∈ M.

Structural analysis is mainly concerned with Z-complete matchings, because such
matchings show a way how to determine all unknown variables of the system.
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It is useful to define matchings, maximum matchings and complete matchings by
considering either the whole structure of the system or only subgraphs which refer
to subsets of the constraint set and the variable set. Since only unknown variables
in X need be determined by a constraint, variables in K like control input and
measurements are already known, the matching can be accomplished for the reduced
structure graph containing all unknown variables rather than for the whole structure
graph. As the incidence matrices and the graphical representations are given for
the complete graph, and since backtracking to known variables is needed at a later
stage in order to obtain residuals, matchings are preferably done using the complete
structure graph, but we can illustrate some properties of matching by considering the
reduced structure graph.

Example 5.9 Matchings on the reduced structure graph of the tank system
To illustrate the notion of maximum and complete matchings, consider the reduced structure
graph of the single-tank system. Only the unknown signals and the constraints among them
are concerned with. The edges of a matching are identified by a thick line in the drawings and
by “①” in the incidence matrices.

h ḣ qi qo

c1 1 1 1
c2 1
c3 1 1
c4 1
c6 1 1

Matching (a)

h ḣ qi qo

c1 1 1 1
c2 1
c3 1 1
c4 1
c6 1 1

Matching (b)

h ḣ qi qo

c1 1 1 1
c2 1
c3 1 1
c4 1
c6 1 1

Matching (c)

↑ ↑ ↑

As in the matchings unknown variables are associated with a constraint by means of which they
can be determined, an intuitive graphical representation of the matchings is given in Fig. 5.9
where the constraints are drawn on the left-hand side and the variables on the right-hand side.
The thick edges indicate the matching. The graphs are the same as in Fig. 5.7b.

Figure 5.9a shows an incomplete matching. It is not complete with respect to the constraints
because constraints c2 and c4 are not matched, nor is it complete with respect to the variables
because qo is not matched. However, no edge can be added to the matching without violating
Definition 5.3.

c1

c2

c3

c4

c6

c1

c2

c3

c4

c6

c1

c2

c3

c4

c6

qi

q0

h

h
.

qi

q0

h

h
.

qi

q0

h

h
.

(a) (b) (c)

Fig. 5.9 An incomplete matching (a) and two matchings (b), (c) that are complete with respect to Z
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Two complete matchings with respect to the set of unknown variables are shown in Fig. 5.9b,
c. There is no matching that is complete with respect to CX , because the number of constraints
is larger than the number of variables. Note that it is not guaranteed for the structure graphs
that a complete matching exists, neither with respect to CX nor with respect to X . �

5.3.2 Oriented Graph Associated with a Matching

Defining a matching on a structure graph introduces some orientations of the edges
which, until now, were undirected. Constraints which appear in the system description
have no direction, because all variables have the same status. For example, the tank
constraint

c1 : qi(t) − qo(t) − ḣ(t) = 0 (5.13)

can be used to compute any of the three variables whenever the two other variables
are known. It is written in the non-oriented form to stress that the constraint itself
has no preference for any of the three variables. Once a matching is chosen, this
symmetry is broken, because each matched constraint is now associated with one
matched variable and some non-matched ones.

For a given constraint, matched and non-matched variables are identified in the
graph incidence matrix by ① or 1, respectively. For example, according to the match-
ing in Fig. 5.9a, the constraint c1 described by Eq. (5.13) is used to compute qi(t).
This interpretation of a matching as a set of constraints that can be used to deter-
mine the value of unknown variables is valid if there exists an order, in which the
constraints can be used for such a calculation. However, a matching may result in an
“algebraic loop” (Fig. 5.15), which will be discussed in more detail later, where sev-
eral constraints together define the value of a set of variables. Then the interpretation
of a matching as a correspondence between unknown variables and constraints that
can be used to determine the variables is valid only for the set of variables and the
set of constraints rather than for single variables and single constraints.

In the graphical representation, the unsymmetries associated with a matching are
represented by transforming the originally non-oriented edges into oriented ones.
Since some constraints might not be matched, the following rules are applied:

• Matched constraints: The edges adjacent to a matched constraint are provided
with an orientation

– from the non-matched (input) variables towards the constraint,
– from the constraint towards the matched (output) variable (Fig. 5.10a).

• Non-matched constraints: All the variables are considered as inputs and, hence,
all edges are oriented from the variables to the constraint (Fig. 5.10b).

To understand the reason for these rules, consider a matching M and choose
an edge (c, x) ∈ M. Then the variable x can be considered as the output of the
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Fig. 5.10 Matched (a) and a non-matched constraint (5.13) (b)

constraint c while the other variables appearing in the set Q(c)\{x} are the inputs.1

The interpretation is that the matching represents some causality assignment by which
the constraint c is used to compute the variable x assuming the other variables to be
known. An explicit representation of the constraint c that can be used to determine
x is denoted by

x = γ (Q (c)\{x}).

For non-matched constraints, all variables are considered as inputs and no variable
of Q(c) can be considered as an output. Hence, the constraint can be written in the
form

γ (Q(c)) = 0

like Eq. (5.13). If the zero on the right-hand side is considered as output, the constraint
can be associated with a ZERO vertex like in Fig. 5.10b. Using no label at all is
considered as an implicit ZERO label.

Example 5.10 Determination of unknown variables of the tank system
For the single-tank system, the reduced graph shown in Fig. 5.7b and the three matchings
shown in Fig. 5.9 yield the oriented graphs depicted in Fig. 5.11. The directed edges show how
the internal variables qi, qo, h and ḣ can be determined for known values of u and y.

As Matching 1 is incomplete, the unknown variable qo cannot be computed as shown in the
graph. Matchings 2 and 3 are complete with respect to X but incomplete with respect to CX .
The non-matched constraint c1 or c4, respectively, leads to a ZERO output, that is, they have
to hold for the variables qi and ḣ or h and y that have been determined by other constraints or
have been measured, respectively. �

Note that subgraphs whose input and output nodes are all known provide the
system input–output relations. By using Matching 2 in Fig. 5.11 the two following
input–output relations are found. The first one is provided by the constraint c5, which
links only known variables and is, therefore, deleted when drawing the reduced graph.
The second one results from the non-matched constraint c1

1In Eq. (5.8), Q has been defined as a mapping from the power set of the set of constraints towards
the power set of the set of variables. It is used here also for a single constraint c where for notational
convenience Q({c}) is written as Q(c).
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Matching 1 Matching 2 Matching 3
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Fig. 5.11 Directed graphs corresponding to the three matchings

c5 (u, y) = 0

c1 (u, γ1 (γ3 (k, γ4(y)), γ6 (γ4(y)))) = 0,

where γi(z) denotes the output of constraint ci for the input z.

Alternated chains and reachability. The oriented graph that is obtained from the
causal interpretation of the structure graph with a matching has the following prop-
erty: Any existing path between two nodes (variables or constraints) alternates suc-
cessively variables and constraints nodes. Such a path is called an alternated chain.
Its length is the number of constraints that are crossed along the path. Note that if a
non-matched constraint belongs to an alternated chain, the chain ends with the ZERO
variable that is associated with the non-matched constraint.

Alternated chains can be used to define the notion of reachability.

Definition 5.5 (Reachability) A variable z2 is reachable from a variable z1 if there
exists an alternated chain from z1 to z2. A variable z2 is reachable from a subset
χ ⊆ Z\ {z2} of variables if there exists some variable z1 ∈ χ such that z2 is reachable
from z1. A subset Z2 of variables is reachable from a subset Z1 of variables if any
variable of Z2 is reachable from some variable of Z1.

Example 5.11 Alternated chains in the tank system
Alternated chains associated with the oriented graph of the tank system are the following:

y − c4 − h − c3 − q0 − c1 − qi

h − c6 − ḣ − c1 − qi.

It can be seen that any variable of the set
{
qi, qo, h, ḣ

}
is reachable from y. �
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5.3.3 Causal Interpretation of Oriented Structure Graphs

The aim of this subsection is to discuss the causal interpretation of the oriented
bipartite graph associated with a matching.

As stated above, selecting a pair (c, z) to belong to a matching implies a causality
assignment, by which the constraint c is used to compute the variable z, assuming
the other variables to be known. The oriented bipartite graph which results from
a causality assignment is named a causal graph. Causal graphs are used in quali-
tative reasoning, alarm filtering or in providing the computation chain needed for
the numerical or formal determination of some variables of interest, as shown by
the above interpretation. Although this interpretation is straightforward for simple
algebraic constraints, it has to be considered more carefully when strongly coupled
subgraphs or differential constraints are present. The following paragraphs deal with
these situations.

Algebraic constraints. Let c ∈ C be an algebraic constraint, Q(c) the set of the
variables occurring in c and nc = |Q(c)|. In the structural analysis, the following
assumption is made:

Assumption 5.2 Any algebraic constraint c ∈ C defines a manifold of dimension
nc − 1 in the space of the variables Q(c).

Since the constraint has to be satisfied at any time t, the variables of the set Q(c) are
not independent of each other. Assumption 5.2 means that only nc − 1 variables can
be chosen arbitrarily while the remaining variable is given by the constraint c. Hence,
there is at least one variable z ∈ Q(c) such that ∂c

∂z �= 0 holds almost everywhere
in the space of the variables Q(c).2 Therefore, from the implicit function theorem,
its value can be deduced (at least locally) from the constraint c and the values of
the nc − 1 other variables. This is exactly the causal interpretation of matching the
variable z with constraint c. Stated differently, the constraint c decreases by one the
degrees of freedom associated with the variables Q(c).

Example 5.12 Algebraic constraints
Consider the constraint

c1 : a1x1 + b1x2 − y1 = 0, (5.14)

where x1 and x2 are two unknowns, a1 and b1 are parameters, and y1 is known. This constraint
obviously defines a one-dimensional surface in the space of all vectors (x1, x2)T. Thus only
one degree of freedom is left because only one of the unknowns can be chosen arbitrarily, the
possible value(s) of the other one being deduced from (5.14).

The set Q(c1) of variables is given by

Q(c1) = {x1, x2, y1}

2The term ∂c
∂z denotes the derivative of the left-hand side of the constraint c(z1, z2 . . .) = 0.



142 5 Structural Analysis

because, for example,

∂c1

∂x1
= a1 �= 0

holds, which illustrates the use of the derivative ∂c
∂z used above.

Note that the structural point of view considers the most general case of any pair of
parameters a1 and b1. Particular cases result if a1 or b1 equals to zero, where Eq. (5.14) would
still define a one-dimensional manifold, or if a1 and b1 both equal to zero. In the latter case c1
would not define a one-dimensional manifold when y1 = 0, because any point (x1, x2)T in
the two-dimensional space would satisfy the constraint, and there would be no solution when
y1 �= 0. �

The fact that at least one variable can be matched in a given constraint under the
causal interpretation does not mean that any variable has this property. An obvious
situation in which (c, x) cannot be matched is when c is not invertible with respect
to x. The constraint shown in Fig. 5.12 defines a manifold of dimension 1 in |R2, and
it is always possible to compute x2 once x1 is given. Matching x2 with this constraint
can obviously be interpreted as explained above. However, the interpretation does not
apply to the matching of x1, because ∂c

∂x1
is not different from zero almost everywhere,

thus, the constraint c cannot be used to compute x1 whatever be the value of x2.

Differential constraints. The case of differential constraints has to be considered
carefully. Differential constraints can always be represented as

d : x2(t) − d

dt
x1(t) = 0, (5.15)

which means that the functions x1(t) and x2(t) cannot be chosen independently of
one other. This differential constraint has two possible matchings:

x1 x2
x

c c c

1 x2 x1

x c=2 x  1

x1

x2

x2

(   )

(a) (b) (c)

Fig. 5.12 Structure graph (a), possible (b) and impossible matching (c)
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• If the trajectory x1(t) is known, its derivative can always be computed (from an
analytical point of view, derivatives are here supposed to exist, and from a numer-
ical point of view, there might be problems rised by the presence of noise, which
are not considered here). It follows that the constraint can always be matched for
x2 which is then uniquely defined. This is called derivative causality.

• If, on the other hand, x2(t) is known, matching this constraint for x1 (which is
called integral causality) leads to the computation

x1(t) = x1(0) +
∫ t

0
x2(σ) dσ, (5.16)

which does not determine x1(t) uniquely, unless the initial condition x1(0) is
known.

Let (x1(t), x2(t))T be two functions which satisfy the constraint d. Then, any linear
combination (x1(t) + α, x2(t))T, where α is any constant function, also satisfies the
constraint d. Thus, computing x1 from constraint d may be possible or impossible,
depending on the context. Initial values are known in a simulation context, since they
are under the control of the user, but this is generally not true in a fault diagnosis
context. Hence, the use of integral causality needs to be carefully considered or just
avoided.

Remark 5.2 (Consequences for residual generation) Parity space or identification-
based residual generation approaches aim at eliminating the unknown initial values
by using the system input–output relations which are obtained through derivative
causality. The observer-based approaches use integral causality by implementing an
auxiliary system—the observer—which provides results that are (asymptotically)
independent of the estimate of the initial state. �

In summary, different cases have to be considered as far as the counterpart of
Assumption 5.2 is concerned stating that a differential constraint (5.15) defines a
manifold of dimension nc − 1 in the space of the variables Q(c):

• If x1(t) is known, x2(t) can be matched with constraint d which leads to differen-
tial causality. This provides a unique result for x2(t). Assumption 5.2 is satisfied
since constraint d leaves only one degree of freedom in the determination of
(x1(t), x2(t)).

• If x2(t) and the initial value x1(0) are known, x1(t) can be matched with constraint
d using integral causality. This situation leads to a unique result obtained from
Eq. (5.16). Assumption 5.2 is satisfied since constraint d leaves only one degree of
freedom in the determination of (x1(t), x2(t)).

• If only x2(t) is known, Assumption 5.2 is not satisfied, because whatever matching
is used, two degrees of freedom (the constant function α, and the input function
x2(t)) remain for the determination of (x1(t), x2(t)).
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Direction of calculability in the structure graph. To show direction of calculability
(causality) in a structure graph, the symbol x is used in position (i, j) indicates that
the variable in column j cannot be calculated from the constraint in row i. This is
illustrated in Example 5.14 where h cannot be calculated from c6.

Example 5.13 First-order system
A model whose solution exists but is not unique, as the result of Assumption 5.2 being not
satisfied, is given by the following single-input first-order system:

c1 : x2 − ax1 − bu = 0

c2 : x2 − d

dt
x1 = 0.

Constraint c1 is algebraic and expresses the fact that the vector (x1, x2)T lives in a linear
manifold of dimension one for every known input u. Constraint c2 does not allow to decrease
the dimension of the unknown vector. If x1 were known (which is not the case), one could
compute its derivative x2, but the knowledge of x2 (which could be obtained as a function of x1
and u in constraint c1) is of no help to compute x1 because one should proceed by integration
and the initial value x1(0) is unknown. �

Example 5.14 Derivative causality in the tank system
Consider the following matching in the tank structural model.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

Although it is complete with respect to the variables
{
h, ḣ, qi, qo

}
, it cannot be used for the

computation of these variables because it introduces an integral causality, where h should be
computed from ḣ by constraint c6, while its initial value is not known because constraint c4
is not matched.

Derivative causality can be forced, if necessary. To represent this situation, the symbol x
is used, which forbids integral matchings. The previous matching will not be obtained if the
tank structural model is written as
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h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 x 1

↑

where x means that although there is an edge between c6 and h, h cannot be matched with c6.
Instead, c6 is used to match ḣ. �

Strongly connected subgraphs. In the oriented graph associated with a matching,
strongly connected parts may occur for which the stepwise causal interpretation does
not lead to a sequence of calculations of the unknown variables, but another approach
is needed to obtain a matching. A subset of vertices is said to be strongly connected
if there exists a path between any pair of vertices belonging to this subset.

Strongly connected subgraphs are structures within the graph, which consist of
constraints and unknown variables that need be solved simultaneously.

The causal interpretation of a strongly connected subgraph is that the constraints
and variables belonging to the subgraph can be matched when all the other vari-
ables (not matched in the strongly connected subgraphs) are known. Suppose that nv
variables are constrained by a subsystem of nl constraints, and there is a matching
such that they form a cyclic structure (loop). Then, nl variables are internal (matched
within the loop), and nv − nl variables are external (not matched within the strongly
connected subgraph).

An example of strongly connected constraints are three linear equations with
two variables and both variables enter into each of the equations. Since there is no
equation (constraint) with only one unknown variable, two of the equations need be
solved simultaneously to determine the two unknowns. Alternatively, one constraint
is chosen to express one of the variables by the other, and this result is inserted in
one of the other constraints to solve for the second variable.

In more general terms, in structural analysis, an algebraic loop is always supposed
to have a unique solution (more precisely: a finite number of solutions), which in
the space of unknown variables corresponds to the intersection of nl manifolds of
dimension nl − 1, if the external variables are known (by Assumption 5.2). The loop
is associated with a subset of nl constraints that is written here as vector equation

hl(xl, xe) = 0,

where xl and xe are the vectors of the internal and the known external variables, and
each component of xl is matched with one constraint in hl.

It is worth noticing that the interpretation associated with causality in single
constraints is not directly extendable to strongly connected subgraphs, as shown by
the following example:



146 5 Structural Analysis

Example 5.15 Non-invertible constraints
Consider the non-invertible constraint from Example 5.12 and suppose now that there are two
constraints {c1, c2} of the same form, but with different parameters. The incidence matrix of
the structure graph of this system is

x1 x2

c1 1 1

c2 1 1

↑

A complete matching is given by

x1 x2

c1 1 1

c2 1 1

↑
The matching illustrated in Fig. 5.13 of x1 with c1 is obtained by choosing the variable that
should be computed from one specific constraint.

The correct interpretation comes from the fact that each constraint defines a (different)
manifold dimension one in |R2, and that, in general, such two manifolds intersect in a finite
number of points. To get no solution at all would be a particular case (which would not satisfy
Assumption 5.1), and an infinite number of solutions would be the result of the two manifolds
were the same one (at least locally). �

The uniqueness of the solution associated with a cyclic structure that contains
differential constraints depends upon the context of the problem. Consider a set of
nl + ne variables which is constrained by nl differential equations

zl = gl(xl, xe, u) (5.17)

zl = d

dt
xl,

where xl is the vector of the variables in the loop, gl are the constraints in the loop,
and xe are the external variables, which are supposed to be known. The system (5.17)
has a unique solution only if the initial value xl(0) is known. If this is not the case, the

Fig. 5.13 Two algebraic
constraints with two
unknowns

x2

x1

0c2 =(x l , x2)

0c1 =(x l , x2)
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h dh/dt

q0 qi

c3 c1

c6

c2

u

Fig. 5.14 A matching with a differential loop

solution will depend on the nl unknowns xl(0) and thus it will belong to a manifold
of dimension nl. Such a differential loop is called non-causal.

Example 5.16 Differential loop in the tank example
Consider the following matching

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

which is complete with respect to the variable set
{
h, ḣ, qi, qo

}
, and in which differential

causality is now used for constraint c6. The matching results in the differential loop h − c6 −
ḣ − c1 − q0 − c3 − h, which is shown in Fig. 5.14. Although the matching is complete with
respect to the set of unknown variables, it is impossible to determine h(t), because the initial
value h(0) is unknown. �

Following a classical graph-theoretic approach, a loop can be condensed into one
single node, which represents a subsystem of constraints to be solved simultaneously.
Another approach is to avoid loops (whenever possible) by some transformation of
the constraints, leading to diagonal or triangular system structures.

Example 5.17 Treatment of loops
Consider a subsystem with Z = {x1, x2, y1, y2}, C = {c1, c2}. The variables are real num-
bers, the constraints are linear, y1, y2 are supposed to be known, and the problem to be solved
concerns the computation of x1, x2 by using the constraints

c1 : a y1 + b x1 + c x2 = 0

c2 : α y2 + β x1 + γ x2 = 0. (5.18)

The incidence matrix of the structure graph and a complete matching w.r.t. {x1, x2} is given
as follows:
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(a) (b)
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Fig. 5.15 An algebraic loop

x 1 x 2 y1 y2

c1 1 1 1

c2 1 1 1

↑
Figure 5.15a shows the resulting loop in the associated oriented graph. In the structure graph
it is supposed that b and γ are non-zero. The linear equations c1 and c2 are solvable under the
condition b γ − c β �= 0, which cannot be seen from structural considerations.

Figure 5.15b illustrates the condensation in which the loop is “condensed” into one single
node, which means that the two equations with two unknowns are solved simultaneously, but
no detail is given by the condensed structure graph about how this is done.

Transforming the constraints may also lead to a loop-free oriented graph, because it may
give the system a diagonal or a triangular structure. For example, the two following systems
are equivalent to (5.18):

c′
1 : a γ y1 − α c y2 + (b γ − β c) x1 = 0 (5.19)

c′
2 : a β y1 − α b y2 + (c β − b γ) x2 = 0

and

c′
1 : a γ y1 − α c y2 + (b γ − β c) x1 = 0 (5.20)

c′′
2 : ay1 + bx1 + cx2 = 0.

y2 x1

x2y1

y2 x1

x2y1

c 2

c1
′

′′

c1
′

c1
′

Fig. 5.16 Two equivalent loop-free oriented graphs
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Figure 5.16 illustrates the loop-free graphs associated with the transformed systems (5.19) and
(5.20). Note that the new systems result from manipulations which are not purely structural,
but which are done on the behaviour model. �

5.4 Structural Decomposition of Systems

5.4.1 Canonical Subsystems

This section recalls a classical result from bipartite graph theory, which states that
any finite-dimensional graph can be decomposed into three subgraphs with specific
properties: an over-constrained, a just-constrained and an under-constrained sub-
graph. This decomposition is canonical, i.e. for a given system, it is unique. The
three subgraphs and the associated subsystems play a major role in the structural
analysis and lead to the important structural properties of observability, controllabil-
ity, monitorability and reconfigurability.

The following definition shows the consequences of the existence of complete
matchings for the solution of constraint sets that are structurally described by a
bipartite graph G.

Definition 5.6 (Over-constrained, just-constrained, under-constrained graph) A
graph G = (C, Z, E) is called

• over-constrained if there is a complete matching on the variables Z but not on the
constraints C,

• just-constrained if there is a complete matching on the variables Z and on the
constraints C,

• under-constrained if there is a complete matching on the constraints C but not on
the variables Z .

In an over-constrained graph, there remains a complete matching on Z after any
single constraint has been removed from the set C.

Example 5.18 Property of the reduced graph of the tank system.
Matching 2 of the structure graph of the tank system shown in Example 5.9 is complete with
respect to the variables, but there is still one non-matched constraint. Hence, the reduced graph
of the tank system is over-constrained.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

↑
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It can be furthermore noticed that any of the five constraints can be removed, and there still is
a complete matching on the resulting graph. �

A graph G may fail to conform to any of the three properties defined above. In
this case, it can be proved that there exists a unique decomposition of G into three
subgraphs, which are defined by the partitions

C = C− ∪ C0 ∪ C+
Z = Z− ∪ Z0 ∪ Z+ (5.21)

of the sets Z and C. The subgraphs are denoted by

G+ = (C+,Z+, E+)

G0 = (C0,Z0, E0)

G− = (C−,Z−, E−),

where E−, E0 and E+ are the subsets of E with the edges that connect vertices of C−
with Z−, C0 with Z0 or C+ with Z+, respectively. Note that the sets E−, E0 and E+
do not represent a partition of the edge set E of the overall graph, but a subset of it.
As the important fact of this decomposition, the graphs G−, G0 and G+ are under-
constrained, just-constrained or over-constrained, respectively. This decomposition
has been introduced by Dulmage and Mendelsohn in 1958 and is, therefore, also
called the DM decomposition.

Theorem 5.1 (DM decomposition of bipartite graphs) Each bipartite graph G =
(C,Z, E) can be decomposed into three subgraphs, which have the following prop-
erties:

• Over-constrained subgraph G+, which possesses a Z-complete matching that is
not C-complete,

• Just-constrained subgraph G0, which possesses a complete matching,

• Under-constrained subgraph G−, which possesses a C-complete matching that
is not Z-complete.

As the choice of matchings for a graph is not unique it is important to state that the
DM decomposition is unique. That is, the freedom in choosing matchings with the
completeness properties mentioned in the theorem is restricted to the subsets of the
vertices, which result from the decomposition (5.21).

As a consequence of the graph decomposition, the corresponding system S =
(C,Z) can be decomposed into three subsystems:
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S+ = (C+, Z+)

S0 =
(
C0, Z+ ∪ Z0

)

S− =
(
C−, Z+ ∪ Z0 ∪ Z−)

.

In analogy with the corresponding subgraphs, these subsystems are classified as
follows:

• S+ is called the over-constrained subsystem (also called the over-determined sub-
system) and abbreviated as SO. It has more constraints than variables.

• A structurally over-constrained system S is said to be proper structurally over-
constrained (PSO) if S = S+.

• S0 is called the just-constrained subsystem. It has the same number of unknown
variables and constraints if the variables of the set Z0 are interpreted as known
variables (|Z0| = |C0|).

• S− is called the under-constrained subsystem (under-determined subsystem). It
has less constraints than variables (|Z−| < |C−|).
Subsystems which cannot be decomposed into smaller ones are said to be minimal

subsystems.

Example 5.19 DM decomposition of a bipartite graph
The example graph in Fig. 5.17 illustrates the situation that a system S simultaneously can
comprise the three subgraphs mentioned above:

S+ = ({c1, c2, c3}, {z2, z3})
S0 = ({c4, c5, c6, c7}, {z4, z5, z6, z7})
S− = ({c8, c9}, {z8, z9, z10})

with the associated incidence matrices

c1

z2 z3 z8 z9 z10z4 z 5 z6 z 7

c2 c3 c4 c5 c8 c9c6 c7

Fig. 5.17 Example of the canonical decomposition of a bipartite graph
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E + =

z2 z3

c3 1

c1 1 1

c2 1

E 0 =

z4 z5 z6 z7

c4 1 1

c5 1 1

c7 1

c6 1 1 1

and E − =

z8 z10 z9

c8 1 1

c9 1 1

↑ ↑

↑
The subgraph G+ drawn on the left part has a Z-complete matching marked by the thick
edges. Hence, this graph is over-constrained. The middle subgraph G0 possesses a complete
matching and is just-constrained, whereas the right subgraph G− has a C-complete matching
and is under-constrained. Note that the vertices are ordered such that the edges belonging to
the matchings form a kind of “main diagonal” of the matrices. The edges that connect two
subgraphs do not contribute to these matchings.

The incidence matrix of the overall graph G can be ordered in such a way that it contains
the sub-matrices E+, E0 and E− together with further entries, which represent the edges
connecting the subgraphs,

E =

z2 z3 z4 z5 z6 z7 z8 z10 z9

c3 1

c1 1 1

c2 1

c4 1 1

c5 1 1 1

c7 1 1

c6 1 1 1

c8 1 1 1 1

c9 1 1

↑

Due to the ordering of the vertices in both sets, the matchings in all the three subgraphs build
a diagonal line, in which the more abstract representation of Fig. 5.18 is drawn as the diagonal
black line. The figure shows in an intuitive way those regions of the incidence matrix where the
non-zero elements appear (grey) and those which include only zero entries (white). It further
shows that the subgraph G+ has more vertices from the set C than from the set Z , because the
relation

|C+| > |Z+|

holds. Hence, the corresponding subsystem has more constraints than variables and is, hence,
over-determined. For the other two subgraphs the relations
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|C0| = |Z0| and |C−| < |Z−|

hold.
Whether or not all the three subgraphs appear in an overall graph G is not directly related

to the cardinalities of C and Z . That is, even if the graph has more Z-vertices than C-vertices,
it may still comprise a part that is over-constrained.

The DM decomposition includes more information about the graph, namely the connection
among the variables and the constraints. The DM decomposition is unique, which means that
the partition (5.21) of the sets C and Z is unique. Whatever complete matchings are used, the
same vertices appear in the three subgraphs in all resulting decompositions. What depends
upon the matchings used is the order of the vertices in the incidence matrix after the ① entries
have been brought into the main diagonal. For example, if in the subgraph G+ the matching

M = {(c3, z2), (c2, z3)}

is used, which is Z-complete as well, the order of the rows for c1 and c3 in the matrix E has
to be exchanged, but the DM decomposition remains the same. �

For later use, it is convenient to define a measure of structural redundancy, which
is associated with the over-constrained part of a system, S+.

Definition 5.7 (Structural redundancy measure) Given a set of constraints C, and
let Q(C) ⊆ Z be the subset of variables in Z connected to at least one constraint in
C. The structural redundancy measure is

�(C) = |C+| − |Q(C+)|. (5.22)

Example 5.20 DM decomposition of the single-tank system
Rearranging the rows and columns related to unknown variables of the structure graph for the
single-tank system introduced in Example 5.4 on p. 124, the incidence matrix becomes:

Fig. 5.18 Canonical
decomposition of the
structure graph

0 0

0

Z −Z+ Z 0

C+

C 0

C −
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h ḣ qo qi u y

c1 1 1 1

c4 1 1

c6 1 1

c3 1 1

c2 1 1

↑

As the ①-elements of a maximum matching show, the single-tank system is over-constrained:

S+ = {{c1, c4, c6, c3, c2}, {h, ḣ, qo, qi}}.

The decomposition is independent of the known variables, which are added to the right of the
table for completeness. The structural redundancy measure is

�(C) = |C+| − |Q(C+)| (5.23)

= |{c1, c4, c6, c3, c2}| − |{h, ḣ, qo, qi}| = 1 (5.24)

If c2 was removed from the system, the modified system would be just-constrained with

S0 = {{c4, c6, c3, c1}, {h, ḣ, qo, qi}}.

and �(C) = 0. �

Further decomposition of the just-constrained subgraph. The graph G0 =
(C0,Z0, E0) can be further decomposed as it will be explained in this paragraph. As
stated above, this graph includes a set of n0 constraints that can be used to determine
the same number of variables. The decomposition introduced now splits these sets
of constraints and variables in such a way that the smaller constraint sets can be
used consecutively to determine the associated unknown variables. What happens
in this decomposition can be seen in Fig. 5.19, where the incidence matrix of the
just-constrained subgraph is a lower block triangular matrix.

The decomposition starts after the edges of the just-constrained subgraph have
been given the directions described in Sect. 5.3.2, namely the orientation from the
C-vertex towards the Z-vertex for all edges belonging to the complete matching and
the opposite direction for all remaining edges. Then the resulting oriented graph
is decomposed into strongly connected components. The paths have to be built in
accordance with the directions of the edges. As the structure graph is bipartite, the sets
of strongly connected vertices include vertices of both kinds. If the corresponding
subsets of C0 and Z0 are enumerated in the same way, the decomposition of the
just-constrained subgraph G0 results in partitions of these sets:

C0 = C0
1 ∪ C0

2 ∪ · · · ∪ C0
q

Z0 = Z0
1 ∪ Z0

2 ∪ · · · ∪ Z0
q ,
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Fig. 5.19 Incidence matrix
after the detailed
decomposition of the
just-constrained subgraph

0 0

0

Z −Z+ Z 0

C+

C 0

C −

Fig. 5.20 Decomposition
of the just-constrained
subgraph G0 into strongly
connected components

c4 c5 c6 c7

z4 z5 z6 z6

where q is the number of strongly connected components obtained. If the rows
and columns of the incidence matrix belonging to the just-constrained subgraph
are ordered accordingly, the lower block-diagonal matrix shown in the middle of
Fig. 5.19 results.

Example 5.21 Decomposition of the just-constrained subgraph
Figure 5.20 shows the subgraph G0 of the bipartite graph introduced in Example 5.19. The
edges have the prescribed orientation from the C-vertex towards the Z-vertex for all edges
belonging to the complete matching and the opposite direction for the other edges. The grey
fields mark the three different strongly connected components. The constraint c6 and the
variable-vertex z7 belong together, because the edge c6 → z7 belongs to the matching used
in the DM decomposition. For the same reason, c7 and z6 represent a strongly connected
component.

After ordering the vertices according to this decomposition, the following incidence matrix
E0 is obtained:

E0 =

z4 z5 z7 z6

c4 1 1

c5 1 1

c7 1

c6 1 1 1

↑
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Hence, the just-constrained subgraph of this example can be further decomposed into three
subgraphs that can be used consecutively for determining the unknown variables. Note that
the variables z5 and z7 will be determined by the constraint c5 or z7, respectively, and these
results will influence the determination of the variable z6 by using the constraint c6. This fact
illustrates that the order of the subsets is important to retain the causality of the graph and,
hence, the order of the computation of the unknown variables. �

5.4.2 Interpretation of the Canonical Decomposition

This subsection addresses the canonical subsystems with respect to existence of
solutions, thus providing a key for later analysis of structural observability and con-
trollability.

First, it is clear that Assumption 5.1 (a) on p. 122 must be satisfied by each of the
subsets of constraints C+, C0 and C−. If this was not true, the system model would
have no solution, which contradicts with the fact that it describes the behaviour of a
physical system (which indeed has a solution).

Second, from the structural point of view, any algebraic constraint is assumed to
satisfy Assumption 5.2 on p. 141, thus, a subset of n variables completely matched
within a subset of n constraints is uniquely defined, while the result depends on the
causality and on the existence of differential loops when constraints of the form

d : z2(t) − d

dt
z1(t) = 0

are considered. Finally, it will be seen that there are cases in which Assumption 5.1 (b)
cannot hold true.

Static systems. The behavioural model of static systems contains only algebraic
constraints. In the over-constrained subsystem (C+, Q(C+)) the variables in the set
Z+ = Q(C+) have to satisfy more than n+ = |Z+| constraints. Since there are more
manifolds than variables, no solution can exist if they also satisfy Assumption 5.1 (b).
As the model should have at least one solution for a given physical system, one
concludes that the constraints in C+ are not independent, i.e. the system description
is redundant. In other words, for the system to have a solution, some compatibility
conditions must hold. Structural analysis always assumes the most general case, i.e.
the minimum number of relations between the system parameters. This means that
the number of independent constraints is maximal, thus leading to the following
equivalent conclusions:

• The over-constrained subsystem has a unique solution (more generally, it has a
finite number of solutions).

• The number of independent constraints in C+ is n+.
• The number of compatibility conditions is

∣∣C+∣∣ − n+.
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In the just-constrained subsystem, (C0, Q(C0)), the n0 variables in the set Z0

have to satisfy exactly n0 constraints, which satisfy Assumptions 5.2 and 5.1(a). A
unique solution exists, which is the intersection of the manifolds associated with the
constraints C0, which are assumed to satisfy Assumption 5.1(b). This being the most
general case, structural analysis proposes the following conclusions:

• The just-constrained subsystem has a unique solution.
• The number of independent constraints in C0 is n0.
• There is no compatibility condition.

In the under-constrained subsystem, (C−, Q(C−)), the n− variables in the set
Z− have to satisfy less than n− constraints, which satisfy Assumptions 5.2 and 5.1(a).
All what the model can tell is that the unique solution of the physical system belongs to
the intersection of less than n− manifolds, and thus the solution is not uniquely defined
by the model. It belongs to a manifold of dimension n−− ∣∣C−∣∣ if the constraints
also satisfy Assumption 5.1(b). This being the most general case, structural analysis
proposes the following conclusions:

• The under-constrained subsystem has no unique solution.
• The constraints in C− are independent.
• There is no compatibility condition.

Example 5.22 Compatibility conditions in an over-constrained subsystem
Consider the set of linear constraints

c1 : a1 x1 + b1 x2 − y1 = 0
c2 : a2 x1 + b2 x2 − y2 = 0
c3 : a3 x1 + b3 x2 − y3 = 0,

(5.25)

where a = (a1, a2, a3)T and b = (b1, b2, b3)T are known parameter vectors and y =
(y1, y2, y3)T is a known signal vector. This system is clearly over-constrained with respect
to the unknown variables (x1, x2). However, whether or not this system of linear equations
has a solution depends upon the following cases:

1. rank (a, b, y) = 3, i.e. a, b and y are linearly independent vectors. The
system (5.25) has no solution, because the three constraints are incompatible. Assump-
tions 5.1 and 5.2 cannot hold simultaneously.

2. If rank (a, b, y) = 2, one solution exists. Note that the parameters and the known variables
are no longer independent but the matrix (a, b, y) has a vanishing eigenvalue and

y = λa + μb

leads to the unique solution x1 = λ and x2 = μ.

3. If rank (a, b, y) = 1, the matrix (a b y) has two null eigenvalues. Any pair (x1, x2)

such that x1 + x2 − λμ = 0 satisfies Eq. (5.25). Note that in that case, two compatibility
conditions exist, and Assumption 5.1 does not hold.



158 5 Structural Analysis

u1 u2 i2i1
R2R1

v1 v2L1 L2v

Fig. 5.21 Circuit of a tail lamp

4. The last case is rank (a, b, y) = 0, i.e. a = b = y = 0. In this case, all parameters are
specified and any pair (x, y)T ∈ |R2 satisfies the system of equations. Assumption 5.2
does not hold.

Since Eq. (5.25) is the behavioural model of a physical system, it should exhibit at least
one solution. Then obviously the most general situation is Case 2 in which only one relation
holds between the parameters. This is what assumed in any structural analysis. �

Example 5.23 Structural analysis of a tail lamp
Figure 5.21 shows the simplified circuit of a tail lamp of a car, which is represented by the
following constraints:

c1 : v1 =
{

v if u1 = 1
0 if u1 = 0

c2 : v1 − i1R1 − (i1 − i2)RL1 = 0

c3 : v2 =
{

v1 − i1R1 if u2 = 1
0 if u2 = 0

c4 : v2 − i2R2 − i2RL2 = 0

with the set of variables
Z = {v, v1, v2, i1, i2, u1, u2}.

The structure graph is shown in Fig. 5.22a. In the analysis the circuit is considered for closed
switches, where the model can be reformulated as a set of linear equations, which is given by

⎛

⎜
⎜
⎝

1 0 0 0
1 −R1 − RL1 0 −RL1

−1 R1 1 0
0 0 1 −R2 − RL2

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
A

⎛

⎜
⎜
⎝

v1
i1
v2
i2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

v

0
0
0

⎞

⎟
⎟
⎠ , (5.26)

where the variable v is the known input voltage.
For given v, the reduced graph has the canonical decomposition shown by the arrows in

Fig. 5.22b. It is interesting to see that for linear static systems this decomposition determines
the structural rank of the matrix A, which is given by the maximum number of entries that
can be chosen in different rows and different columns as indicated by the ① in the following
scheme:
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(a) (b)c1

v1 i1 i2 v2 i1 i2 v2v1

c2 c3 c4 c

v

1 c2 c3 c4

Fig. 5.22 Structure graph of the circuit (a) and DM decomposition of the reduced structure graph (b)

s-rank

⎛

⎜⎜
⎝

① 0 0 0
1 ① 0 1
1 1 ① 0
0 0 1 ①

⎞

⎟⎟
⎠ = 4.

The structural rank is determined for the structure matrix [A] rather than the matrix A itself.
Therefore, all non-vanishing elements have been replaced by “1” in the structural rank con-
dition. The ① correspond to the oriented edges in the graph and, hence, make a complete
matching. The system is just-constrained.

The DM decomposition also shows how to determine the unknown variables i1, i2, v2 and
v1. The more detailed decomposition leads to the subsystems

S0
1 = ({c1}, {v1})

S0
2 = ({c2, c3, c4}, {v1, i1, i2, v2}).

Accordingly, in the first step, the constraint c1 is used to determine v1 in terms of the known
variable v

v1 = v.

Then the constraint set {c2, c3, c4} has to be used to determine the further three variables by
solving the linear equation

⎛

⎝
−R1 − RL1 0 −RL1

R1 1 0
0 1 −R2 − RL2

⎞

⎠

⎛

⎝
i1
v2
i2

⎞

⎠ =
⎛

⎝
−v1
v1
0

⎞

⎠

for given v1. The complete matching of this subsystem leads to an algebraic loop. Hence,
the constraints c2, c3 and c4 have to be used simultaneously to determine the three unknown
variables (Fig. 5.23).

In this example, again, the difference between structural and numerical properties can be
seen. As the structural rank of the matrix A is four, for almost all parameters occurring in the
matrix the inverse A−1 exists and the linear equations have a unique solution. For exceptional
cases, for which the determinant of A vanishes, the constraint set has no solution. For the tail
lamp, this exceptional case is given by the equality

0 = det

⎛

⎜
⎜
⎝

1 0 0 0
1 −R1 − RL1 0 −RL1

−1 R1 1 0
0 0 1 −R2 − RL2

⎞

⎟
⎟
⎠ .
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c1

c2

c3 c4
v v1

i1

v2 i2

Fig. 5.23 Scheme for determining the unknown variables of the tail lamp for given input voltage v

Hence, for all parameter values that do not satisfy this equality, that is, for all parameters with

R2 �= R1RL1

R1 + RL1
− RL2

the structural rank transfers to the numerical rank of A and the model of the circuit has a
unique solution for any given input voltage v. �

Dynamical systems. Remember that, when differential constraints are considered,
matching all the variables in a subsystem guarantees that there is a unique solution
under integral causality, i.e. if the initial conditions are known. Under derivative
causality, the solution is unique if and only if there is a matching which avoids
differential loops.

Let n+
1 (respectively, n0

1, n−
1 ) be the maximum number of variables which can

be matched in the over-constrained subsystem (respectively, in the just-constrained
or the under-constrained subsystems) without introducing any differential loop. One
obviously has n+

1 ≤ n+, n0
1 ≤ n0, n−

1 ≤ n−.
An over-constrained or a just-constrained subsystem is called causal if there exists

a complete matching with respect to the variables Z+ and Z0 which do not contain
any differential loop, i.e. if n+

1 = n+ or n0
1 = n0 holds. The under-constrained

subsystem cannot be causal, because there does not exist any complete matching
with respect to Z−.

Example 5.24 Causal over-constrained system
The following system

c1 : x2 − a x1 − bu = 0
c2 : x2 − α x1 − βu = 0
c3 : x2 − d

dt x1 = 0

is over-constrained with respect to the variables (x1, x2), where u is supposed to be known.
The system is causal because (x1, x2) can be matched with (c1, c2) without introducing a
differential loop. Thus, there is a unique solution, which is obtained from the intersection of
the two manifolds associated with (c1, c2):



5.4 Structural Decomposition of Systems 161

x1 = β − b

a − α
u

x2 =
(

a β − α b

a − α

)
u.

a − α is assumed not to be zero. Moreover, the constraint c3 is redundant, and acts as a
compatibility condition which has to be satisfied for the system solution to exist, namely

(
a β − α b

a − α

)
u − β − b

a − α
u̇ = 0.

If the constraint c2 does not exist, then the system is just-constrained but not causal. Its
solution is defined up to the constant x1(0), which is unknown under differential causality. �

5.5 Matching Algorithms

From the definition, a matching can be represented in the incidence matrix of the
bipartite graph by selecting at most one “1” in each row and in each column. This
subsection shows how the selection should be done in order to find maximum match-
ings. An intuitive simple algorithm, referred to as ranking, is first introduced. This
algorithm uses the causal interpretation of matchings and is well suited to understand
the matching process but it cannot handle cases with strongly coupled subgraphs.
As a general approach, the classical maximum matching algorithm is introduced
and is followed by a maximum flow algorithm that can find all matchings in an ele-
gant way that, however, is computationally heavy. A very efficient algorithm is then
reviewed, which is based on directly finding all minimal structurally over-determined
sets (MSO sets) in a structure graph. Examples are provided to show the use of the
different algorithms.

5.5.1 Ranking Algorithm

According to the causal interpretation described above, a complete causal matching
over the unknown variables identifies the computations to be done in order to express
the unknown variables as a function of the variables that are known or have already
been determined. If the matching is not complete with respect to the constraints,
non-matched constraints exist that must be satisfied by the variables obtained. These
facts are the basis of the following constraint propagation (or ranking) algorithm,
which can be used to find a matching. The idea of this intuitive algorithm is to start
with a known variable and to “propagate” the knowledge, step by step, by matching
the variables which are present in constraints where all other involved variables are
matched or known. The algorithm is not able to provide a matching in cases where
subsystems are so closely coupled that a set of constraints and variables need be
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solved simultaneously. Such problems require more elaborate algorithms that are
introduced later in this section.

Algorithm 5.1 Ranking of the constraints

Given: Incidence matrix of a bipartite graph

1. Mark all known variables with rank 0
i = 1

2. Find all constraints in the current table with exactly one
unmarked variable. Associate rank i with these constraints and
mark these constraints as well as the corresponding variable.

3. Set i := i + 1.

4. If there are unmarked constraints whose variables are all
marked, associate them with rank i, mark them and connect
them with the pseudo-variable ZERO.

5. If there are unmarked variables or constraints, continue with
Step 2.

Result: Ranking of the constraints.

In the first step, all known variables in the set K are marked and all unknown
variables remain unmarked. In the second step, every constraint that contains at most
one unmarked variable is assigned rank 1. It is matched for the unmarked variables
(or for ZERO, if there is none), and the variable is marked. This step is repeated with
an increasing rank number, until no new variables can be matched.

If every matched variable is also given a number, the rank can be interpreted as
the number of steps needed to calculate the corresponding variable from the known
ones.

The ranking algorithm stops before a complete matching is obtained if there exist
unmarked variables still to be determined, but if all constraints include more than
one unmarked variable. This situation occurs, for example, if two constraints have
to be used simultaneously to determine two variables (e. g. the constraints c1 and c2
for the variables x1 and x2 in Example 5.17).

Example 5.25 Ranking of constraints for the single-tank system
The ranking algorithm is applied to the tank example as follows. As u, y are known, only the
variable set {qi, qo, h, ḣ} has to be matched.

Starting set (rank 0): {u, y}
First step (rank 1): match qi with c2, match h with c4
Second step (rank 2): match q0 with c3, match ḣ with c6
End (every variable is matched)

The obtained matching is the following one:
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h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

Hence, the ranking algorithm can be used to get a complete matching for the tank system. �

Example 5.26 Two-tank system
The two-tank system introduced in Sect. 2.1 will be considered with u as the known control

input and qm as the measured outflow. The following equations lead to the structure graph in
Fig. 5.24:

qL

qPc
ZERO

Tank 1

Tank 2

Pipe

c6

c1

u

d4

c2

cm
c8

qm

q12

q2

h
.
1 h1

3

c3

d7

h
.
2 h2

Fig. 5.24 Structure graph of the two-tank system

http://dx.doi.org/10.1007/978-3-662-47943-8_2
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c1 : qL = cL
√

h1

c2 : qP = u · f (h1)

c3 : ḣ1 = 1

A
(qP − qL − q12)

d4 : ḣ1 = d

dt
h1

c5 : q12 = k1
√

h1 − h2

c6 : ḣ2 = 1

A
(q12 − q2)

d7 : ḣ2 = d

dt
h2

c8 : q2 = k2
√

h2

m1 : qm = km q2

m2 : qm12 = km q12

A, k1, k2 and km are known parameters. cL is the unknown parameter describing the size of the
fault. It can be assumed to be zero for the faultless case. In the structure graph the constraints
c1, c2, c3 and d4 representing the Tank 1 are separated from constraints c6, d7, c8 and cm
describing the Tank 2.

The following matching is found using the ranking algorithm, where the last column shows
the rank of the constraints obtained.

qL qP ḣ1 h1 q12 ḣ2 h2 q2 R
c1 1 1 5
c2 1 1 5
c3 1 1 1 1 6
d4 1 1 5
c5 1 1 1 4
c6 1 1 1 3
d7 1 1 2
c8 1 1 1
cm 1 0

↑qL = cL
√
h1

qP = u · f (h1)
0 =−qL+qp −q12 −Aḣ1

ḣ1 = d
dt

h1

h1 = h2 +
q12
k1

2

q12 =A ḣ2 +q2

ḣ2 = d
dth2

h2 = q2
k2

2

q2 = m
km

( (

( (

The matching obtained can alternatively be represented as follows:

c1 c2 c3 d4 c5 c6 d7 c8 m1 cm

1 qL qP 0 ḣ1 h1 ḣ2 0 h2 q12 q2

As the ranking algorithm may stop when encountering strongly connected sub-
graphs, more generic approaches to matching are introduced below.
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5.5.2 General Matching Algorithm

Let M be a matching on a graph G. An edge is said to be weak with respect to M
if it does not belong to M. A vertex is weak with respect to M if it is only incident
to weak edges. An M-alternating path is a path whose edges are alternating in M
and not in M (or conversely). An M-augmenting path is an alternating path whose
end vertices are both weak with respect to M . An M-alternating tree with root v

is a collection of disjoint M-alternating paths with the common root v.
The basic matching algorithm is built on the following theorem:

Theorem 5.2 (Berge 1957) A matching M in a graph G is maximum if and only if
there exists no M-augmenting path in G.

The idea of the proof of the theorem is that if an augmenting path would exist, a new
matching of size |M|+1 would be obtained by exchanging the roles of the matched
and non-matched edges in the path, as illustrated by the following example. This
step is called the transfer from the old to the new matching along the M-augmenting
path.

Example 5.27 An M-augmenting path
A matching M of size 3 is given by the bold edges in the bipartite graph of Fig. 5.25 (left).

It can be checked that there exists an M-augmenting path, namely

c1 − x1︸ ︷︷ ︸
weak

− x1 − c2︸ ︷︷ ︸
matched

− c2 − x3︸ ︷︷ ︸
weak

− x3 − c3︸ ︷︷ ︸
matched

− c3 − x4︸ ︷︷ ︸
weak

− x4 − c6︸ ︷︷ ︸
matched

− c6 − x5︸ ︷︷ ︸
weak

and, therefore, this matching is not maximum. By exchanging weak (dashed lines) and matched
(solid line) edges, the following matching of size 4 is found:

c1

c2

c3 3

c4

c5

c

c1

c2

c

c4

c5

c6

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5
6

Fig. 5.25 Finding a new matching by using an augmenting path
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c1 − x1︸ ︷︷ ︸
matched

− x1 − c2︸ ︷︷ ︸
weak

− c2 − x3︸ ︷︷ ︸
matched

− x3 − c3︸ ︷︷ ︸
weak

− c3 − x4︸ ︷︷ ︸
matched

− x4 − c6︸ ︷︷ ︸
weak

− c6 − x5︸ ︷︷ ︸
matched

. �

Based on the theorem above, the following algorithm extends an initially given
matching step-by-step by finding an augmenting path and augmenting the size of the
current matching by transferring it, until no further augmenting path can be found
and, therefore, the latest determined matching is maximum.

Algorithm 5.2 Algorithm for finding a maximum matching

Given: A bipartite graph G and an initial matching M0.

1. Let M be the current matching. If the number of weak vertices
with respect to M is less than or equal to one, the current match-
ing is maximum. Otherwise, let v be any weak vertex. Build an
alternating tree with root v.

2. If the tree contains an M-augmenting path then perform a trans-
fer along this path and update the matching on the initial graph.
Go back to 1.

Result: A maximum matching.

The initial matching can be the empty matching M0 = {}. In Step 2, the cardinality
of the matching is increased by one.

Example 5.28 Maximum matching algorithm
Let M0 = {(x1, c2), (x3, c3), (x4, c6)} be the initial matching shown on Fig. 5.25. The weak
edges are

{(x1, c1), (x1, c4), (x2, c2), (x2, c5), (x3, c2), (x4, c3), (x4, c4), (x5, c5), (x5, c6)} .

There are four weak vertices, namely {c1, x2, c4, c5}. For the first iteration, choosing c1 as
the root gives the alternating tree shown on Fig. 5.26a where the current matching is shown
in dashed lines. It is easily seen that there are two M0-augmenting paths, namely c1 − x1 −
c2 − x2 and c4 − x4 − c6 − x5. Since these paths are disjoint, the two transfers can be done
simultaneously, resulting in the matching

M1 = {(x1, c1), (x2, c2), (x4, c4), (x5, c6)} .

The weak edges are now

{(x1, c2), (x1, c4), (x2, c5), (x3, c2), (x3, c3), (x4, c3), (x4, c6), (x5, c5)}

and the weak vertices are {x3, c3, c5}. Choosing c3 as the root results in the alternated tree
of Fig. 5.26b, which exhibits the M1-augmenting path x3 − c2 − x2 − c5. Performing the
transfer gives the new matching
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Fig. 5.26 Alternating tree
with root c1 (a) and with root
c3 (b)

(a)

(b)

c1

c2

c5 c3

c3

c2 c4 c6

c5

x3 x4

x5
x2x1

c1

c6

x1

c4

x3

x5

x4x2

M2 = {(x1, c1), (x3, c2), (x2, c5), (x4, c4), (x5, c6)}

which is maximum, because the set of weak edges is now

{(x1, c2), (x1, c4), (x2, c2), (x3, c3), (x4, c3), (x4, c6), (x5, c5)}

and there remains only one single weak vertex c3. �

Example 5.29 Application to the single-tank system
The aim is to search for a maximum matching with respect to the reduced structure graph of
the single-tank system.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑
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Let M0 = {} . Then all vertices are weak. Selecting, e.g. h as the root gives the alternated tree

↗ c6 → ḣ
h −→ c4

↘ c3 → qo → c1 → qi → c2,

where two disjoint M0-augmenting paths are given by c6 − ḣ and h − c3 − qo − c1 − qi − c2
providing the new matching M1 = {(

ḣ, c6
)
, (h, c3), (qo, c1), (qi, c2)

}
which is complete

with respect to the unknown variables and, hence, the algorithm ends. �

5.5.3 Maximum Flow Algorithm

Finding a maximum matching in a bipartite graph can be transformed into a maximum
flow problem. The procedure is as follows: Construct a network N associated with
the graph G = (C,Z, E) by orienting all edges from Z to C, by inserting a source
vertex S with arcs to all vertices of Z and a sink vertex T with arcs from all vertices of
C, and by connecting T to S as shown on Fig. 5.27. Furthermore, assign the capacity
of all arcs from S to Z and from C to T as 1. The capacities of all other arcs are set
to ∞. Then, the maximum flow on N is associated with a maximum matching as
stated in the following theorem.

c

S

1= c 1=c=

x1

c1

c2

c3

c4

c5

c6

x2

x4

x5

x3

Fig. 5.27 Setting the maximum matching problem as a maximum flow problem. Flow in edges
from Z to C is 1 if an edge is used (labelled), otherwise 0
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Theorem 5.3 In a bipartite graph G, the matching number ν(G) equals the maximum
flow through the network N that is associated to the graph G.

Therefore, a maximum matching can be found by applying the classical maxi-
mum flow algorithm ofFord andFulkerson, which in the case of bipartite graphs is
called “the Hungarian method”. Like the preceding algorithm, this algorithm assumes
a given matching M is known and attempts to extend M by finding an augment-
ing path. This is done by marking vertices on weak edges so as to follow possible
augmenting paths.

Algorithm 5.3 Hungarian method for determining maximum matchings

Given: A bipartite graph and an initial matching M0.

1. Denote the current matching by M. Label with an * all vertices
of Z that are weak with respect to M, and alternately apply
Steps 2 and 3 until no further labelling is possible.

2. Select a newly labelled vertex in Z , say zi, and label with zi all
unlabelled vertices of C that are connected to zi by an edge that
is weak with respect to M . Repeat this step on all vertices of
Z that were labelled in the previous step.

3. Select a newly labelled vertex of C, say cj and label with cj the
vertex of Z which is connected to cj in M . Repeat this process
on all vertices of C labelled in the previous step.

4. The labellings will continue to alternate until one of two possi-
bilities occurs:

END 1: A weak vertex C has been labelled. Then an M-augmenting path
has been found, and it can be constructed by working backwards
through the labels until the vertex of Z which is labelled by a
*. Transferring this path gives an extended matching and the
algorithm is repeated by going back to Step 2.

END 2: It is not possible to label more vertices and END 1 has not
occured. Then M is a maximum matching.

Result: A maximum matching.

Example 5.30 Determination of a maximum matching by the Hungarian method
Let M0 = {(x1, c2), (x3, c3), (x4, c6)} be the initial matching shown on Fig. 5.25. The table
below shows the initial labelling and the sequence of labels obtained as Steps 2 and 3 alternate.
The bar over vertices c1, c4 and c5 indicate that these vertices are weak with respect to the
current matching.
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x1 x2 x3 x4 x5 c̄1 c2 c3 c̄4 c̄5 c6

Step 1 * *

Step 2-1 x2 x2 x5

Step 3-1 c2 c6

Step 2-2 x1 x4 x1

Step 3-2 c3

The table demonstrates the Steps 2 and 3 of the algorithm. However, in this example, the first
iteration would stop as early as after Step 2-1 because the weak vertex c5 has been labelled
(END 1). Tracking the labels backwards until a *-vertex is found gives the M0-augmenting
path c5 − x2, which results in the augmented matching

M1 = {(x1, c2), (x2, c5), (x3, c3), (x4, c6)}

from which the next iteration starts. �

Example 5.31 Hungarian method applied to the single-tank system
With M0 = {(

ḣ, c6
)}

being the initial matching, the first iteration gives the labels

h ḣ qi qo c̄1 c̄2 c̄3 c̄4 c̄5 c6

Step 1 * * *

Step 2 qi qi h h h

before END 1 occurs and the matching can be updated as

M1 = {(
ḣ, c6

)
, (h, c3), (qi, c1)

}
.

The second iteration gives

h ḣ qi qo c1 c̄2 c3 c̄4 c̄5 c6

Step 1 *

Step 2-1 q0 q0

Step 3-1 c3 c1

Step 2-2 qi h h

before END 1 occurs. The M1-augmenting path is given by c4 − h − c3 − q0 and leads to
the new matching

M2 = {(
ḣ, c6

)
, (h, c4), (qi, c1), (qo, c3)

}
.

This matching is complete with respect to the unknown variables and stops the algorithm.
Note that the solution is different from the one previously found, which illustrates the fact that
maximum matchings are not unique. �



5.5 Matching Algorithms 171

The above algorithm is computationally very heavy and experience showed that
alternative algorithms were needed to cope with industrial scale systems.

5.5.4 Minimal Over-Determined Subsystems Approach

The Minimal Structurally Over-determined (MSO) set approach offers another way
to find all analytical redundancy relations. The idea in the method is to calculate all
subsets MMSO ⊆ S+ of an over-constrained structure graph, which have exactly
one constraint more than the just-constrained subsystem. The structural redundancy
measure for such subset is �(MMSO) = 1 according to Eq. (5.22). Therefore, each
MSO set will comprise at least one constraint that can be used as an ARR. The
number of ARRs generated in this way will be larger than the set of ARRs found
from a single complete matching, but less or equal to the number of ARRs generated
by the brute-force approach of generating all possible complete matchings and get a
set of ARRs for each of these matchings.

The reason to generate more than the minimal set of ARRs available from a single
complete matching is that structural isolability can be enhanced by considering more
than the minimal number of ARRs.

Definition 5.8 (Minimal structurally over-constrained subsystem) A minimal struc-
turally over-determined subsystem (MSO subsystem) is a part of the over-constrained
part of a system graph from which removal of one constraint will make the subsystem
to become just-constrained.

The procedure to find MSO sets is based on examining the set M of constraints
of a proper structurally over-constrained structure graph. The PSO property means
M = C+. Denoting the set of unknown variables in X that are connected to at least
one constraint in M by Q(M), then

�(M) = |M+| − |Q(M+)|

(cf. Eq. (5.22)). Removing one constraint ci from the set M reduces the structural
redundancy by one,

�(M\{ci}) = �(M) − 1.

The set of constraints M is an MSO set if M is PSO and �(M) = 1.
These observations led to a computationally very efficient way to determine the

set of all possible ARRs for a system. The following computational procedure is
used recursively [187]:
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Algorithm 5.4 Determination of the set of all ARRs

Require M is a PSO set
Procedure MMSO := findmso(M)

if �(M) = 1 then
MMSO := {M};

else
MMSO := ∅;
for any ci ∈ M

M′ := (M \ {ci})+ ;
MMSO = MMSO ∪ findmso(M′);

end
endif
return MMSO

end

This procedure is used in the following algorithm to determine all MSO sets in a
structure graph.

Algorithm 5.5 Determination of minimal structurally over-determined sets

Given: Reduced structure graph S of a system

1. Using DM decomposition, select the constraints that form the
part of S which is PSO. Denote this set of constraints by M

2. Perform a complete search using the recursive procedure MMSO
:= findmso(M)

Result: Set MMSO of all possible MSO sets

The above algorithm finds MSO sets more than once. This can be avoided by find-
ing equivalence classes of constraints and make an extension of the basic algorithm
that is described in [187].

Example 5.32 Determination of MSO sets
This example shows how MSO sets and thereby ARRs are generated for the single-tank
example with extended measurements. Assume that the flow qo is measured in addition to the
input u and the inflow qi, which leads to an additional measurement constraint

c7 : y2 = qo.
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h ḣ qi qo u y1 y2

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

c7 1 1

↑

This structure graph is over-constrained with �(M) = 2.
Algorithm 5.5 determines the four MSO sets listed below.

c1 c2 c3 c4 c6 c7

M1 - - 0 h - qo

M2 ḣ qi - h 0 qo

M3 ḣ qi h - 0 qo

M4 ḣ qi qo h 0 -

The table has to be interpreted as follows: The MSO set M1 includes the constraint c3(h, qo) =
0 as an ARR and uses c4 to calculate h and c7 to calculate qo. Each of the MSO sets is, by the
definition of the MSO subsystem, also an ARR.

Algorithm 5.5 finds four MSO sets for this example. By comparison, the Ranking Algo-
rithm 5.1 finds one complete matching of the unknown variables and two ARRs, c1 and c3,
according to the following matching table:

h ḣ qi qo u y1 y2

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

c7 1 1

↑

�

5.6 Structural Diagnosability and Isolability

A system is said to be structurally diagnosable or monitorable if it is possible to test
whether the system constraints are satisfied or not. This section is concerned with the
analysis of system monitorability and with fault detection and isolation algorithms
based on Analytical Redundancy Relations (ARRs).
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Analytical redundancy occurs and analytical redundancy relations become avail-
able when there are constraints that are not needed to match the unknown variables
in a system. These additional constraints, as well as all others, need be satisfied when
the system obeys normal behaviour, so the additional, or redundant, constraints can
test whether the system behaviour is normal. Violation of a constraint that is used to
calculate an ARR would leave the ARR as not satisfied.

Residuals are derived from ARRs. A residual will only depend on known vari-
ables but the ARR might not represent causal computations. The analytical form of
a residual is a signal r(t) that can be calculated by causal operations in real time by
inserting the instantaneous values of known variables: the input u(t) and measure-
ments y(t). A residual signal r(t) is therefore obtained from the corresponding arr(t)
through filtering of the entire arr(t).

The terms analytical redundancy relation and residual generator are often used
as synonyms in the literature, although strictly speaking, the ARRs are found without
any consideration to stability and causality while a residual generator needs to be
both stable and causal to generate a signal r(t) that has the properties needed for
fault diagnosis. This is further elaborated in Chap. 6.

Analytical redundancy-based fault diagnosis tries to identify faults by comparing
the actual behaviour of the system, which is observed through the time evolution
of the known variables, with the behaviour described by the system constraints.
This comparison can be performed only if some redundant information exists. For
diagnosis it is not sufficient that the known variables and the set of constraints allow
to determine all unknown variables. There must be available at least one constraint
more with which one can test whether the obtained variables are consistent with the
model representing the faultless behaviour of the system. ARRs are the constraints
that express this redundancy.

In this section, the analytical redundancy relation-based approach to fault diag-
nosis is first briefly recalled and stated in the frame of structural analysis, leading to
characterise the structurally monitorable part of the system. Finding residuals that
are robust, meaning they are insensitive to disturbances or to unknown parameters,
are then discussed and residuals that are sensitive to certain structural faults, but not
to others (structured residuals) are then addressed.

5.6.1 Analytical Redundancy-Based Fault Detection
and Isolation

Analytical redundancy relations are static or dynamical constraints that will be sat-
isfied (equal to zero) when the system operates according to its normal operation
model. Once ARRs are found, the fault detection procedure checks whether they are
satisfied or not, and if not, the fault isolation procedure identifies the system compo-
nents which are to be suspected. The existence of ARR is thus a prerequisite to the

http://dx.doi.org/10.1007/978-3-662-47943-8_6
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elaboration of fault diagnosis procedures. Moreover, in order for the fault diagnosis
procedure to work properly, ARR should have the following properties:

• Robust, i.e. insensitive to unknown input and unknown parameters. This insures
that they are satisfied when no fault is present, so that false alarms are not issued.

• Sensitive to faults: This insures that they are not satisfied when a constraint is
violated, i.e. a fault is present, so that faults are detected.

• Structured: This insures that in the presence of a given fault, only a subset of the
ARRs is not satisfied, thus allowing to recognise the fault that occurred from the
subset of ARRs that are satisfied and the subset that is not satisfied.

Faults. In structural analysis, a fault is defined as a violation in a constraint. A system
is the interconnection of a number of components, each of which is described by its
behavioural model in normal operation. Let {Ci, i = 1, 2, . . . , N} be the set of the
system components. Each of them is a subsystem (φi, Q(φi)) which imposes the
set of constraints φi to the system variables Q(φi), where Q(φi) ∩ X are unknown
(unmeasured state variables, unknown input, unknown parameters) while Q(φi)∩K
are known (input, output, known parameters). A fault in component Ci is defined as
a change in at least one of the constraints ϕ ∈ φi.3 Note that this general definition of
faults allows to consider different fault modes associated with the same component.
Each subset of φi can in fact be considered as a fault mode of Ci. Note also that since
only the structure is of interest, there is no need to define, nor to model the nature of
the change (e.g. using additive or multiplicative fault models).

Example 5.33 Representation of faults in an insulated pipe
Consider an insulated pipe and suppose that one is interested in modelling the mass and the
heat transfers. A simple model is given by the two constraints

ϕ1 : qi(t) − qo(t) = 0

ϕ2 : qi(t) θi(t) − qo(t) θo(t) = 0,

where qi and qo are the input and the output flow of the (incompressible) fluid, and θi (respec-
tively, θo) is the input (respectively, the output) fluid temperature. A defect in the insulation
would obviously result in ϕ2 being violated, while a leak in the pipe would be modelled by
ϕ1 and ϕ2 being violated. �

Direct redundancy. Consider a constraint ϕ ∈ CK, where CK is the subset of con-
straints such that Q(CK) ⊆ K and let C be the component to which ϕ belongs. This
constraint is an ARR because it links only known variables, and it can be checked
in real time if it is satisfied or not, by taking the numerical values of the known
variables, putting them into constraint ϕ, and testing whether the result is ZERO
or not. If the constraint is not satisfied, it can be concluded that the system is not

3The notation ϕ is used—as a mnemonic for “fault”—instead of c which was a mnemonic for
“constraint”.
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in normal operation, while if the constraint is satisfied it can only be said that the
normal operation hypothesis is not falsified by the values of the observations.

In practical situations, variables are not very precisely known, measurements are
corrupted by noise, and models only approximate the system behaviour. Thus, the
obtained value for the constraint will never be exactly zero, even in normal operation.
Let rϕ(K) be the obtained value. rϕ(K) is called the residual associated with ARR
ϕ, and fault detection boils down to decide whether the residual is small enough so
that the ZERO hypothesis can be accepted. Fault isolation obviously follows fault
detection because only a fault in component C could cause constraint ϕ not to be
satisfied.

In all systems, the control algorithms are direct ARRs, because the subset CK
includes the constraints which describe them. Hence, they can be used to check
whether the controller is working properly. Although this might be of practical inter-
est, such direct redundancy relations are of little interest as far as structural analysis
is concerned, because the result is obvious. Therefore, the aim of the following part
of this chapter is to find ARRs in the subsystem (CX ,Z) which includes unknown
variables.

Deduced redundancy. Consider some constraint ϕ ∈ CX and again let C be the
component to which ϕ belongs. Let Xϕ = Q(ϕ) ∩ X be the subset of unknowns
which appear in constraint ϕ, and suppose that

Xϕ ⊆ Xobs (5.27)

holds, where Xobs is the subset of the observable variables. Then, any variable x ∈ Xϕ

can be expressed as a function of the known ones (possibly including their derivatives)
using the model. Suppose that there exists at least one alternated chain with target x
which does not include constraint ϕ. This means that even if constraint ϕ is removed,
x can still be matched and computed as a function of the known variables, which
indicates that constraint ϕ belongs to an over-constrained subsystem, as it will be
seen later. Then, this alternated chain can be used to compute x as a function of the
known variables, and one can put the obtained expression into ϕ, which produces
an ARR. The associated residual rϕ(K) should be ZERO when the system operates
properly.

However, fault isolation will be slightly different because the residual associated
with ϕ will be non-zero not only if C is not performing well, but also if the actual
values of the Xϕ variables are different from those computed from the observations
via the normal operation model. This may happen when the fault changes some con-
straint which belongs to an alternated chain whose target is in Xϕ. The conclusion
is that when rϕ(K) is non-zero, there is an associated set of components to be sus-
pected instead of a single one.4 It can be easily determined from the graph-based
interpretation.

4This set is called the structure of the residual in the control community and it is called a conflict
in the Artificial Intelligence community.
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Example 5.34 Single-tank system
Consider the tank whose structure graph is shown in Fig. 5.3. There are two
redundancy relations for this system. The first one is given by constraint c5 and is of no
interest because it is a direct redundancy relation which only duplicates the control algorithm.
The second one is given by c2 which should be satisfied when the system operates normally
and which will be false if one of the constraints {c1, c2, c3, c4} is not satisfied (c6 is a math-
ematical constraint which is not linked with any hardware or software component and thus it
cannot be faulty). �

5.6.2 Structurally Monitorable Subsystems

Unfortunately, not every fault can be detected. Therfore, it is important to find ways
for distinguishing diagnosable faults or diagnosable subsystems from undiagnosable
ones. Such ways will be described in this subsection.

Definition 5.9 (Structurally monitorable subsystem) The structurally diagnosable
(monitorable) part of the system is the subset of the constraints for which there exists
ARRs that are structurally sensitive to their change.

Such subsystems can be characterised by the following theorem:

Theorem 5.4 (Structural monitorability) The following two necessary conditions
for a fault ϕ to be structurally diagnosable (monitorable) are equivalent:

(i) Xϕ is structurally observable—according to (5.27)—in the system (C\{ϕ}, Z).
(ii) ϕ belongs to the structurally observable over-constrained part of the system

(C, Z).

Let (CX , X ) be a structurally observable over-constrained subsystem. Then there
exists a subset SX ⊂ CX of n = |X | constraints which (from a structural point
of view) can be solved uniquely for the variables X .5 These variables can thus be
computed as functions of the known variables K. Putting the obtained values into the
remaining constraint set RX = CX \SX (the symbol R is used as a mnemonic for
Remaining, or Redundant), one obtains |CX | − |X | relations which link only known
variables and which are, therefore, redundancy relations. For a more convenient
notation the function

X = ΓX (K) (5.28)

is introduced for the computation of the unknown variables, leading to expressions
for the set of constraints CX in the equivalent form

SX : X − ΓX (K) = 0

RX : (CX \SX ) ◦ ΓX (K) = 0, (5.29)

5The symbol S is used as a mnemonic for “solve”.
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where ◦ means the substitution of X by ΓX (K).
In general, several different complete matchings can be found in a given causal

over-constrained subsystem, which lead to different means of computing the unknown
variables X from the known ones. This fact will be used for the elaboration of
fault-tolerant observation schemes but it can also provide another interpretation of
redundancy, since obviously the unknown variables X have to be the same for all
matchings. For example, suppose that two matchings exist such that X is associ-
ated with SX ⊂ CX in the first one, leading to the relation X = ΓX (K), and with
PX ⊂ CX in the second one, leading to X = ΛX (K). The redundancy relations

ΓX (K) − ΛX (K) = 0

directly follow from the fact that the two results should be the same.

Example 5.35 Sensor redundancy
A good illustration of this idea is provided by sensor hardware redundancy. Suppose that two
sensors measure the same unknown variable x. The measurement equations are given by

Sensor 1 c1 : y1 − x − ε1 = 0

Sensor 2 c2 : y2 − x − ε2 = 0,

where ε1 and ε2 denote measurement noise with known distribution. The structure graph has
the following incidence matrix.

known unknown

y1 y2 ε1 ε2 x

c1 1 1 1

c2 1 1 1

↑

Here, ε1 and ε2 are considered as known variables because their probability distribution is
known. This system is over-constrained with CX = {c1, c2} and X = {x}. The unknown x can
be matched with each of the two constraints and, hence, be calculated by each of the sensor
equations. This is not only true from the structural point of view but x can be determined
numerically if dc1

dx and dc2
dx are both non-zero. Otherwise at least one of the sensors would be

completely useless.
For the matching

known unknown

y1 y2 ε1 ε2 x

c1 1 1 1

c2 1 1 1

↑

the oriented graph is given by Fig. 5.28, in which the unknown x is computed by

x = γ1(y1, ε1)
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Fig. 5.28 Oriented structure
graph for sensor monitoring y2ε2x

c1

c2

y1 ε1

ZERO

and c2 is used as a redundancy relation which can be written as

c2(γ1(y1, ε1), y2, ε2) = 0.

Choosing the second possible matching

known unknown

y1 y2 ε1 ε2 x

c1 1 1 1

c2 1 1 1

↑
provides

x = γ2(y2, ε2)

and the redundancy relation
c1 (y1, ε1, γ2 (y2, ε2)) = 0.

Since two matchings exist, the value of x can be computed either from the first or from the
second one and leads to the redundancy relation

γ1 (y1, ε1) − γ2 (y2, ε2) = 0. �

5.6.3 Finding Analytic Redundancy Relations

As explained in the preceding sections, redundancy relations are obtained from over-
constrained subgraphs of the reduced structure graph. They are composed of alter-
nated chains, which start with known variables and end with non-matched constraints
whose output is labelled ZERO. Designing a set of residuals calls for building maxi-
mum matchings on the given structure graph, and identifying the redundancy relations
as the non-matched constraints in which all the unknowns have been matched, and
subsequently expressing the non-matched constraints by known variables through
backtracking to known variables, according to the matching. This section gives a
complete illustration of this procedure.
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c6
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u
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qi
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q0

ḣ

ZERO

Fig. 5.29 Ranking for the single-tank system

Example 5.36 Finding an analytic redundancy relation for the single-tank
system
For the single-tank example, the incidence matrix of its reduced structure graph was given in
Example 5.9:

h ḣ qi qo

c1 1 1 1

c2 1

c3 1 1

c4 1

c6 x 1

↑

The result of the ranking algorithm is shown in the following table and in Fig. 5.29. The
matching is identical with the second matching in Example 5.9. Note that a new column
has been introduced to mark constraints which have the output ZERO. Since ZERO is not a
variable, it may be matched several times.

unknown Ranking

h ḣ qi qo ZERO Rank

c1 1 1 1 1 2

c2 1 0

c3 1 1 1

c4 1 0

c6 x 1 1

↑

Sorted according to the rank, the following constraint set is obtained:
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Rank Constraint Output

c2 qi (t)
0

c4 h(t)

c3 qo (t)
1

c6 ḣ

2 c1 ZERO

If the reduced structure graph is redrawn according to the ranking of the constraints, Fig. 5.29 is
obtained. The figure shows how the internal variables qi, h, qo and ḣ can be successively deter-
mined. The constraints are ordered according to their associated rank. Finally, the constraint
c1 is used to test whether the variables obtained are consistent with the model.

As all constraints are ranked, the system is fully observable and monitorable. By solving
the constraints for the matched variables, the following equations are obtained. The right-hand
column shows the path of the matching.

c2 : qi(t) = α · u(t) c2(u) → qi
c4 : h(t) = y(t) c4(y) → h
c3 : q0(t) = k

√
h(t) c6(h) → qo

c6 : ḣ(t) = d
dt h(t) c6(h) → ḣ

c1 : 0 = ḣ(t) + qo(t) − qi(t) c1(ḣ, qi, qo) → ZERO

(5.30)

These equations can be simplified to obtain the redundancy relations in one analytic expres-
sion:

c1 : 0 = d

dt
y(t) + k

√
y(t) − αu(t).

The order of operations on constraints was

c1(c6(c4(y)), c2(h), c3(c4(y))) → ZERO.

As all variables on the right-hand side of the two equations are known, these equations can
be applied to the known variables u and y, which are marked by grey circles in Fig. 5.29, to
illustrate this fact. �

5.6.4 Structural Detectability and Isolability

Assume that the over-constrained subsystem has been determined by finding a com-
plete matching on the unknown variables. Then, the main results of structural analysis
are obtained from the following steps:

1. List all analytic redundancy relations that exist for the system.
2. For all these relations, determine an explicit form if the constraints are explicitly

known.
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3. List which violations of constraints are detectable.
4. List which violations of constraints are isolable.

Calculate residuals from structural analysis. After a matching has been found,
the set C(u) ⊂ C of unmatched constraints

C(u) = {c : c(xc, kc) → 0, xc ∈ X , kc ∈ K}

is determined. To obtain analytical redundancy relations for diagnosis, also referred
to as parity relations, the unknown variables in each c ∈ C(u) must be substituted
by known ones entering through matched constraints. Backtracking along alternated
chains in the matching will facilitate such an elimination of the unknown variables.
Finally, each unmatched constraint c will give one parity relation r to be used for
diagnosis, and a violation of any constraint that was used in constructing the parity
relation will give a non-zero residual when all known variables enter by their real-time
values.

Furthermore, analytical redundancy relations show which residuals depend on
which constraints. One view on these relations is the Boolean mapping, the depend-
ability matrix or signature matrix,

M : c → r

from which structural detectability can be analysed. It can be checked that the
following definition is the practical translation of the monitorability condition in
Theorem 5.6.

Lemma 5.1 (Structural detectability) A violation of a constraint c is structurally
detectable if and only if it has a non-zero Boolean signature in some residual r

c ∈ Cdetectable ⇔ ∃r : c �= 0 ⇒ r �= 0.

Moreover, since for a given constraint c the set of all parity relations can be
partitioned into those in which its Boolean signature is zero and those in which its
Boolean signature is non-zero, the following result is straightforward.

Lemma 5.2 (Structural isolability) A violation of a constraint ci is structurally
isolable if and only if it has a unique signature in the residual vector, i.e. column mi

of M is independent of all other columns in M

ci ∈ Cisolable ⇔ ∀j �= i : mi �= mj.

Example 5.37 Nonlinear parity relations for ship
Consider the nonlinear model of a ship with dual measurements of heading angle ψ and with
no disturbance from waves:



5.6 Structural Diagnosability and Isolability 183

c1 : ω̇3 = b(η1ω3 + η3ω3
3) + bδ

c2 : ψ̇ = ω3
d1 : dω

dt = ω̇

d2 : dψ
dt = ψ̇

m1 : y1 = ψ
m2 : y2 = ψ

m3 : y3 = ψ̇
m4 : y4 = δ.

The set of unknown variables is X = {δ,ω3, ω̇3, ψ, ψ̇}, the set of known variables is K =
{y1, y2, y3, y4}. A complete matching on the unknown variables is traced in the left column
below, the right column shows the backtracking to known variables.

m1(y1) → ψ
m2(y2, ψ) → ZERO ⇒ m2(y2, m1(y1)) → ZERO
m3(y3) → ψ̇
m4(y4) → δ

d2(ψ, ψ̇) → ZERO ⇒ d2(m2(y2), m3(y3)) → ZERO
c2(ψ̇) → ω3
d1(ω3) → ψ̇
c1(δ,ω3, ω̇3) → ZERO ⇒ c1(m4(y4), c2(m3(y3)), d1(c2(m3(y3)))) → ZERO

(5.31)

The way constraints are used in the three parity relations as follows,

m1 m2 m3 m4 c1 c2 d1 d2
⎛

⎝
r1
r2
r3

⎞

⎠ ←
⎛

⎝
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 1
0 0 1 1 1 1 1 0

⎞

⎠ .

As a violation of any constraint is mapped onto the residuals, all faults are detectable. Con-
sidering isolability, five columns are independent: m1, m2, m3, d2. Hence it is only violations
in these constraints that are structurally isolable.

The matching obtained is summarised in condensed form in the following table:

c1 c2 d1 d2 m1 m2 m3 m4

1 0 ω ω̇ 0 0 ψ ψ̇ δ

The detectability and isolability properties are conveniently summarised in tabular form as
follows, where d and i denote structural detectability and isolability, n that a constraint cannot
fail.

c1 c2 d1 d2 m1 m2 m3 m4

1 d n n n i i i d
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The analytical form of the parity relations is obtained from the symbolic expressions from
the backtracking. This gives the expected result,

r1 = y2 − y1

r2 = ẏ2 − y3 (5.32)

r3 = ẏ3 − b(η1y3 + η3y3
3) − by4 . �

5.6.5 Design of Robust and Structured Residuals

Robust residuals. The set of constraints that describe the nominal operation of a
system might fail to represent all aspects of its actual behaviour. Discrepancies follow
from the existence of unknown inputs (disturbances) and from the fact that system
parameter values are never exactly known (uncertain parameters). Such discrepancies
might result in residuals firing false alarms.

Example 5.38 Residual discrepancies caused by unknown inputs
The unknown variables of the single-tank system were computed from the following con-
straints:

Component Constraint Constraint expression

Pump c2 : qi(t) = α · u(t)
Level sensor c4 : h(t) = y(t)
Output pipe c3 : q0(t) = k

√
h(t)

Derivative constraint c6 : ḣ(t) = d
dt h(t)

Putting these expressions into the constraint

c1 : ḣ (t) − qi(t) + qo (t) = 0,

the residual
r(t) = ẏ(t) + k

√
y(t) − αu(t)

is obtained. Assume that the level sensor output is affected by a constant bias δ (unknown
input):

Component Nominal constraint Actual constraint

Level sensor h(t) = y(t) h(t) = y(t) − δ.

Simple calculations show that the residual computed using the nominal model constraints
would have a non-zero value:
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Case Residual value

Nominal ẏ(t) + k
√

y(t) − αu(t) = 0

Sensor bias ẏ (t) − α · u(t) + k
√

y(t) − δ = k
(√

y(t) − δ − √
y(t)

)
�= 0.

Hence, although the system is faultless, the residual is non-zero due to the measurement bias
δ. �

Example 5.39 Residual discrepancies caused by uncertain parameters
Consider now the two following cases for the single-tank system

Component Nominal constraint Actual constraint

Pump qi(t) = α · u(t) qi(t) = ᾱ · u(t)
Output pipe q0(t) = k

√
y(t) q0(t) = k̄

√
y(t).

which refer to uncertainties in the pump and output pipe parameters. Then, the residual com-
puted using the nominal model constraints would have the following values:

Case Residual value

Behaviour without uncertainty ẏ(t) + k
√

y(t) − αu(t) = 0
Uncertainty of the pump model ẏ (t) + k

√
y(t) − ᾱu(t) = (α − ᾱ) u(t) �= 0

Uncertainty of the output pipe model ẏ(t) − αu(t) + k̄
√

y(t) = (k̄ − k)
√

y(t) �= 0.

Again, a non-zero residual results not from a fault, but from uncertainties of a parameter. �

Robustness refers to the property that residuals would not fire any false alarm as
the result of unknown inputs acting on the system or as the result of uncertainties
in the values of the system parameters. One means of designing robust residuals is
the exact decoupling approach, in which the designed residuals are insensitive to
unknown input and unknown or uncertain parameters. Therefore, they are satisfied
when no fault is present for any value of the unknown input or uncertain parameters.
Note that the robustness problem is automatically solved in structural analysis, using
the exact decoupling approach presented in Chap. 6, because it exhibits ARRs which
are, by definition, only dependent on known variables. Unknown variables which
affect the structurally monitorable subsystem are eliminated so that no residual can
depend on them. When unknown variables cannot be eliminated, the part of the
system they affect is not monitorable. When uncertain parameters are present, the
solution to the exact decoupling problem is simply to design the fault diagnosis
system considering them as unknown variables (this boils down to use the subset of
residuals in which no uncertain parameter intervenes). The consequence is that the
number of ARRs will in that case be smaller.
Structured residuals. As defined above, the structure of a residual is the set of the
constraints which can be suspected when this residual is not ZERO. Let R be a set

http://dx.doi.org/10.1007/978-3-662-47943-8_6
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of residuals, and let Φ(r) ∈ 2C be the structure of residual r ∈ R. This means that
r is expected to be non-zero when at least one of the constraints in Φ(r) is faulty.
Similarly, when some constraint ϕ ∈ C is faulty, then all the residuals whose structure
contains ϕ are expected to be non-zero. The pattern of ZERO and non-zero residuals
associated with a given fault is called its signature.

Faults which have different signatures are isolable from each other, while faults
which share the same signature are non-isolable. Let R = R0(t) ∪ R1(t) be the
decomposition of the set of residuals provided at some given time t by the decision
procedure, where R0(t) is the subset of the ZERO residuals and R1(t) is the subset
of non-zero ones. The subset of suspected constraints (the constraints which might
be unsatisfied) at time t is given by

Csusp(t) = ∩r∈R1(t) Φ(r).

Note that it is possible to define the subset of exonerated constraints (the constraints
which are certainly satisfied) at time t by

Cexo(t) = ∪r∈R0(t) Φ(r),

but one must be aware that this supposes all faults to be detectable. Exoneration is
based on the assumption that if a constraint is not satisfied then it will necessarily
show through the residuals whose structure it belongs to. The diagnosis at time t is

Cdiag(t) = Csusp(t) \Cexo(t).

In order to obtain good isolability properties, it may be of interest to find residuals
with given structure. Suppose that one wishes to have residuals which are insensitive
to the structural faults of a subset of constraints C′ and are sensitive to the structural
faults of the subset of constraints C \C′. A direct approach towards such residuals
is to consider only the system (C \C′, Z) in the design process. However, from the
structural monitorability condition, it is seen that the residuals can be made sensitive
only to the faults in the monitorable subsystem of (C \C′, Z), which may be smaller
than that of (C, Z), because the former contains less constraints.

Example 5.40 Two-tank system
The two-tank system introduced in Sect. 2.1 will first be considered with u as the known

control input and qm as the measured outflow. The following equations lead to the structure
graph in Fig. 5.24.

http://dx.doi.org/10.1007/978-3-662-47943-8_2
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c1 : qL = cL
√

h1

c2 : qP = u · f (h1)

c3 : ḣ1 = 1

A
(qP − qL − q12)

d4 : ḣ1 = d

dt
h1

c5 : q12 = k1
√

h1 − h2

c6 : ḣ2 = 1

A
(q12 − q2)

d7 : ḣ2 = d

dt
h2

c8 : q2 = k2
√

h2

cm : qm = q2.

A, k1, k2 are known parameters. cL is the unknown parameter describing the size of the fault.
It can be assumed to be zero for the faultless case. In the structure graph the constraints
c1, c2, c3 and d4 representing the Tank 1 are separated from constraints c6, d7, c8 and m1
describing the Tank 2.

The following matching is found using the ranking algorithm, where the last column shows
the rank of the constraints obtained.

qL qP ḣ1 h1 q12 ḣ2 h2 q2 R
c1 1 1 5
c2 1 1 5
c3 1 1 1 1 6
d4 1 1 5
c5 1 1 1 4
c6 1 1 1 3
d7 1 1 2
c8 1 1 1
m1 1 0

↑

0= −qL +qp −q12 −Aḣ1

))
ḣ1 = d

dt
h1

h1 = h2 +
q12
k1

2

q12 = Aḣ2 +q2

ḣ2 = d
dt
h2

h2 =
q2

k2

2

q2= qm

) )

)

qL= cL
√
h1

qP= u · f (h1)

The equations shown on the left are already solved for the matched variable. The corresponding
oriented graph is shown in Fig. 5.30. Simplifying these equations results in the following
redundancy relation,

arr(t) = u(t) · f (h1(t)) − Aḣ2(t) + qm(t) − Aḣ1(t)−cL
√

h1(t) (5.33)

with

h1(t) = h2(t)+
(

Aḣ2(t)

k1
+ qm(t)

k1

)2

(5.34)

h2(t) =
(

qm(t)

k2

)2
. (5.35)
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Equations (5.33)–(5.35) can be used to monitor the two-tank system. By using Eq. (5.35),
h2(t) and, hence, ḣ2(t) can be determined for given measurement qm(t). Then Eq. (5.34) yields
h1(t) and ḣ1(t). Finally, Eq. (5.33) is checked for known u(t), qm(t) and for h1(t), ḣ1(t) and
ḣ2(t) just obtained.

After redrawing the structure graph, Fig. 5.31 is obtained. This graph shows in which order
the constraints can be used to determine all internal variables for given measurement qm.
Finally, constraint c3 is used to test the consistency of the variables with the model. The
resulting value is denoted by r(t). This residual should vanish to indicate that the measured
values qm(t) and u(t) at time t are consistent with the set of constraints and, hence, we must
assume that no fault is present. For this example, the residual has the physical meaning of the
loss of liquid through a leakage.

A simulation result is depicted in Fig. 5.32 which shows from top to bottom the signals
u(t), x1(t) and x2(t), the measurement qm(t) and the right-hand side of Eq. (5.33). Note that
the states are reconstructed very nicely. The residual shows the occurrence of the fault very
precisely and without any delay. The little spike at time 155 s is due to the reversal of the flow
direction in the connection pipe, which represents a singular point in the linearised system.

The signal arr(t) is non-causal due to the two differentiations. To construct a residual,
low-pass filtering need be applied to get a causal residual generator. In Laplace transform
notation,

r(s) = 1

(1 + sτ )2 arr(s) (5.36)

here illustrated by a second-order low-pass filter with two real eigenvalues. It is essential that
it is never the signals ḣ1 and ḣ2 from h1 or h2, respectively, which are low-pass filtered, but the

Fig. 5.30 Oriented graph of
the two-tank system
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Fig. 5.31 Graph showing the order in which the unknown variables can be determined for given
qm

entire ARR expression. Otherwise, due to the phase lag introduced by filtering, the residual
given by Eq. (5.33) might no longer be zero for the faultless case.

Structured residuals. Assume now that the flow q12 between the two tanks can be measured
in addition to the input u and the outflow qm, which leads to the additional measurement
constraint

m2 : q12 = q12,mkm.

The system is over-constrained with two remaining constraints that lead to two residuals:

qL qP ḣ1 h1 q12 ḣ2 h2 q2 R
c1 1 1 3
c2 1 1 3
c3 1 1 1 1 4
d4 1 1 3
c5 1 1 1 2
c6 1 1 1 4
d7 1 1 2
c8 1 1 1
m1 1 0
m2 1 0

↑qL = cL
√
h1

qP = u·f (h1)

)

))

)

0 =−qL +qp −q12 −Aḣ1

ḣ1 = d
dt
h1

h1 = h2 +
q12
k1

2

0 = q12 −Aḣ2 −q2

ḣ2 = d
dt
h2

h2 = q2
k2

2

q2 = qm

q12 = q12,m

This matching results in the oriented graph shown in Fig. 5.33. Following the orientation of
the edges, it is easy to see that the first parity relation depends only on the variables

{u, qL, qP, ḣ1, h1, q12, q12,m, h2, q2, qm},

while the second depends on

{q12, q2, h2, ḣ2, q12,m, qm}.

These two conditions can be used to selectively monitor Tank 1 and Tank 2. Only a fault
in the connection flow q12 or its measurement would affect both constraints.

From the graph two ARRs arr1(t) and arr2(t) are obtained:
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Fig. 5.32 Simulation results of the two-tank system. From top to bottom input u; tank levels h1, h2;
measured qm; reconstructed levels h1, h2; right-hand side of Eq. (5.33)
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arr1(t) = u(t) · f (h1(t)) − q12,m(t) − Aḣ1(t)−cL
√

h1(t)

arr2(t) = q12,m(t) − Aḣ2(t) − qm(t)

km

with

h1(t) = h2(t)+
(

q12,m(t)

k1

)2

h2(t) =
(

qm(t)

kmk2

)2
.

These residuals are structured in the sense that they become non-zero if Tank 1 or Tank 2
is affected by some fault. Hence, the additional measurement makes it possible not only to
detect a fault in the overall system but to identify the affected component.

Structural isolability using the MSO approach. The ranking algorithm obtained one com-
plete matching of the unknown variables. The matching can be represented in condensed form
as follows, where 0 in a column denotes that the constraint is unmatched and used as an ARR.

c1 c2 c3 d4 c5 c6 d7 c8 m1 m2

1 qL qP 0 ḣ1 h1 ḣ2 0 h2 q2 q12

Giving rise to the two ARRs listed above, structural detectability and isolability is shown
in

Fig. 5.33 Oriented graph, in
which the arrows indicate the
order of matching
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c1 c2 c3 d4 c5 c6 d7 c8 m 1 m 2

1 d d d n d i n d d d

where d denotes structurally detectable, i structurally isolable and n that the particular con-
straint cannot fail. Differential constraints cannot fail as these are just definitions that relate
a variable ḣ with h through a differential operator. The result is that only one constraint is
structurally isolable. Using the MSO set approach, the following MSO sets are received:

c1 c2 c3 d4 c5 c6 d7 c8 m1 m2

M1 0 ḣ2 h2 q2 q12

M2 qL qP 0 ḣ1 h1 h2 q2 q12

M3 qL qP 0 ḣ1 h1 q2 ḣ2 h2 q12

M4 qL qP 0 ḣ1 h1 q12 ḣ2 h2 q2

The fields either contain the matched unknown variables, zeros to indicate an unmatched
constraints or nothing if constraints are not used in the MSO set. Four MSO sets are determined.

Using all four MSO sets and ARRs, the resulting detectability and isolability properties
are shown in the following table:

c1 c2 c3 d4 c5 c6 d7 c8 m1 m2

M1 n d n d d d

M2 d d d n d n d d d

M3 d d d n d d n d d

M4 d d d n d d n d d

all d d d n d i n i i i

Using all four ARR’s from MSO sets 1–4 results in enhanced isolability, now including both
measurements. �

It is a general finding that use of several ARR’s in parallel can enhance isolability.
Violation of some constraints remain only detectable, and isolating these as possible
sources of a fault requires another approach, referred to as active fault isolation.

5.6.6 Active Fault Isolation

Active structural isolation is an extension of the passive technique considered so
far, where residuals were formed from ARRs by backtracking to known variables,
input u(t) and measurements y(t), and evaluating the residual r(t) in real time. This
approach was seen to lead to cases where some violations of constraints could only
be detected but not isolated. We also encountered cases where violation of one of the
constraints within a group could be pinpointed as the possible source of violation but
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isolation could not be achieved, i.e. we could not distinguish which of the constraints
within the group had been violated (groupwise isolability).

Active fault isolation employs a perturbation in one or more of the input signals,
once it has been detected that some fault is present, to attempt to determine which
individual constraints have been violated.

Active isolation is needed if faults are groupwise isolable, i.e. within the group
individual faults are detectable but not structurally isolable to an individual con-
straint. This does not necessarily imply that isolation cannot be achieved in other
ways. Exciting the system with an input signal perturbation may make it possible
to discriminate different responses of the same residual set, or from input to output
in the system, when different constraints within the group are faulty. The following
observation is obvious:

Lemma 5.3 Active structural isolation is possible if and only if both a structural
condition and a quantitative condition are true.

• Structural condition: The known variables in the set of residuals associated with
a group of non-structurally isolable constraints include at least one control input.

• Quantitative condition 1: The transfer from control inputs to residuals is affected
differently by faults on different constraints.

• Quantitative condition 2: The transfer from control inputs to outputs is affected
differently by faults on different constraints.

Active structural isolation is possible if the structural condition and one or both
of the quantitative conditions are met. In order to express the quantitative condition
in rigorous terms, we need the following definitions, which are based on reachability
and monitorability.

Definition 5.10 (Presence in path from input to residual or to output) Let zj denote
residual rj or output yj. Let p(i,j) = {cf , cg, . . . , ch} be a path through the structure
graph from input ui to zj and

∏(i,j) the union of valid paths from ui to zj. Let

C(i,j)
reach =

{
cg |cg ∈

∏(i,j)
}

.

A constraint ch is present in a path from ui to zj, and the path includes the constraint

ch ∈ C(i,j)
reach if ch is reachable from ui and is monitorable from zj.

Lemma 5.4 Active structural isolability is from input to residual or to output.
Two constraints cg and ch are actively isolable from residual, respectively, output
signatures if

∃i, j, k, l : cg ∈ C(i,j)
reach, ch ∈ C(k,l)

reach and
{
cg, ch

}
/∈ C(i,j)

reach ∩ C(k,l)
reach.

This Lemma advises an easily verifiable way to determine whether one or more
constraints, which are only groupwise isolable with the passive approach outlined
earlier, could be subjected to active isolation.
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Fig. 5.34 Structure graph
for the active diagnosis
example
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Active isolation is employed once a fault has been detected but the exact loca-
tion could not be determined because the event only possess groupwise structural
isolability with the set of residuals used.

Algorithmic aspects. A path through a graph can be determined from the adjacency
matrix (cf. Chap. 4)

A : [C, Ki, Km] → [C, Ki, Km]

to show which nodes in a graph are connected. As the graph is bipartite, the adjacency
matrix is easily obtained from the incidence matrix S as

A =
(

O S
ST O

)
.

The adjacency matrix shows the result of a walk of length 1. A walk of length n
will be described by An. Reachability of element i from element j in the graph is
determined by investigating the element (i, j) in the sequence of matrices

A1, A2, A3, . . . , A2cn

where cn is the number of elements in {C, Ki, Km}. With the ith column of A being
an input, and the jth row an output, or the residual associated with the zero variable
belonging to an unmatched constraint, a path of length m exists from i to j if and
only if Am

ij �= 0. The nodes passed on the walk are determined by tracing the non-

zero elements of Am, Am−1, . . . , A1. While this algebraic method is intuitive and is
related to the structure graph S, it is computationally inefficient for large systems and
algorithmic methods exist that can find all paths from a given input to any variable
in a graph.

Example 5.41 Active diagnosis
Let a system be given by the structure graph shown in Fig. 5.34. The set of inputs is Ki =
{u1, u2}, the set of outputs Km = {y1, y2, y3}, unknown variables are X = {x1, x2, x3, x4}.
The associated incidence matrix is shown in the following table:

http://dx.doi.org/10.1007/978-3-662-47943-8_4
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u1 u2 y1 y2 y3 x 1 x 2 x 3 x 4

c1 1 0 0 0 0 1 0 0 0

c2 0 1 0 0 0 0 1 0 1

c3 0 0 0 0 0 1 1 1 0

c4 0 0 1 0 0 0 0 1 0

c5 0 0 0 1 0 0 0 1 0

c6 0 0 0 0 1 0 0 0 1

↑

A complete matching on the unknown variables can be achieved using the ranking algo-
rithm, leaving c6 and c3 as unmatched constraints. The path found by the matching is the
following:

c1(u1) → x1; c4(y1) → x3;
c5(x3) → x4; c2(u2, x4) → x2

⇒ c3(x1, x2, x3) = 0

⇔ c3(c1(u1), c2(u2, x4), c4(y1)) = 0

⇔ c3(c1(u1), c2(u2, c5(c4(y1))), c4(y1)) = 0

and

c6(y3, x4) = 0 ⇔ c6(y3, c5(x3)) = 0

⇔ c6(y3, c5(c4(y1))) = 0.

The analytical redundancy relations associated with c3 and c6 constitute two parity relations
for the system considered in the example and two residual generators are

r1 = c3(c1(u1), c2(u2, c5(c4(y1))), c4(y1))

r2 = c6(y3, c5(c4(y1))).

The dependency matrix between residuals and constraints shown in

c1 c2 c3 c4 c5 c6

r1 1 1 1 1 1 0

r2 0 0 0 1 1 1

↑

imply the detectability and the isolability as achievable from the two residuals. Linearly
independent columns show that violation of constraint c6 can be isolated. The sets

{c4, c5} and {c1, c2, c3}

are blockwise isolable but violation of any of the individual constraints will only be detectable.
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In a fault-tolerant control setting, inputs u1 and u2 can be individually perturbed by the
control system. The set of paths through constraints from u1 to the outputs are represented in
the reachability table

u1 ↓ c1 c2 c3 c4 c5 c6

y1 1 0 1 1 0 0

y2 1 0 1 0 1 0

y3 0 0 0 0 0 0

The reachability from u2 is shown in

u2 ↓ c1 c2 c3 c4 c5 c6

y1 0 1 1 1 0 0

y2 0 1 0 0 1 0

y3 0 1 0 0 0 1

Following Lemma 5.4, it is easily seen that {c1, c2, c3} are structurally isolable when active
isolation is employed, while c4 remains detectable. �

5.7 Structural Controllability and Structural Observability

Structural controllability and structural observability are two notions that have been
introduced long ago with the aim to show that dynamical systems have the properties
of controllability and of observability mainly for structural reasons. The well-known
rank conditions on the controllability matrix or the observability matrix can only be
satisfied if the non-zero entries of these matrices satisfy structural conditions.

This short section should show that as far as controllability and observability
are concerned, structural results obtained by the analysis methods explained in this
chapter by means of a bipartite graph are rather similar to those results that have been
derived in control theory by a structural representation of linear dynamical systems
by directed graphs.

5.7.1 Observability and Computability

Known and unknown variables. As before, the set of system variables Z is decom-
posed into the sets K of known variables and the set X of unknown variables. Known
variables are available in real time, while unknown variables are not directly mea-
sured. Observability is the system property that allows to determine all unknown
variables from all known variables. Analysing the system observability coincides
with identifying ways in which those unknown variables can be calculated.
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Consider the general system described by the Eqs. (5.1)–(5.4)

ẋd(t) = g (xd(t), xa(t), u(t)) (5.37)

0 = m (xd(t), xa(t), u(t)) (5.38)

y(t) = h (xd(t), xa(t), u(t)) (5.39)

ẋd(t) = d

dt
xd(t) (5.40)

with the set of known variables K = {u, y}, the set of unknown variables X =
{xa, xd, ẋd} and the set of constraints C = {g, m, h, d

dt }. According to the
decomposition of Z into K ∪ X , C is decomposed into CK ∪ CX :

CK = {c ∈ C; Q(c) ∩ X = ∅}
CX = {c ∈ C; Q(c) ∩ X �= ∅} .

CK is the largest subset of constraints such that Q(CK) ⊆ K. For the aim to analyse
the possibility of computing the unknowns in X , only the subgraph (CX , X , EX )

needs to be decomposed.

5.7.2 Structural Observability Conditions

For the canonical decomposition

S+ = (C+
X , X +)

S0 = (C0
X , X + ∪ X 0)

S− = (C−
X , X + ∪ X 0 ∪ X −)

of the subgraph (CX , X , EX ) associated with the system (5.37)–(5.40), structural
observability can be characterised as follows:

Theorem 5.5 (Structural observability) A necessary and sufficient condition for sys-
tem (5.37)–(5.40) to be structurally observable is that, under derivative causality,

1. all the unknown variables are reachable from the known ones,
2. the over-constrained and the just-constrained subsystems are causal,
3. no under-constrained subsystem exists.

Condition 1 says that there does not exist any subsystem whose behaviour is not
reflected in the behaviour of the known variables, while Conditions 2 and 3 impul
that all the variables can be matched using causal matchings and thus are uniquely
defined once the known variables are given.

Example 5.42 Non-reachability
Consider the following incidence matrix, in which the variable x3 is not reachable from the
output.
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x 1 x 2 x 3 ẋ 1 ẋ 2 ẋ 3 u y

c1 1 1 1 1

d1 x 1

c2 1 1 1

d2 x 1

c3 1 1

d3 x 1

m 1 1

↑

The constraint set associated with such a structure graph has the form

ẋ1(t) = g1 (x1(t), x2(t), u(t))
Subsystem 1: ẋ2(t) = g2 (x1(t), x2(t))

y(t) = h (x1(t))
Subsystem 2: ẋ3(t) = g3 (x3(t)).

(5.41)

It is seen that Subsystem 2 can by no means be observable. �

Example 5.43 Observability of a nonlinear system
Consider the following nonlinear dynamical system with two state variables, two input signals,
one parameter θ and one sensor:

c1 : ẋ1(t) = (θ − 1)x2(t) u1(t)

c2 : ẋ2(t) = u2(t)

m : y(t) = x1(t).

This system is over-constrained and satisfies the three conditions of the above theorem. The
following matching allows to compute the state.

ẋ 1 ẋ 2 x 1 x 2 u1 u2 y

c1 1 1 1

c2 1 1

d1 1 x

d2 1 x

m 1 1

↑

The variable x2 can be reached from the known variables if and only if the matching
(c1, x2) can be used, which means that the two conditions

u1 �= 0 and θ �= 1

simultaneously have to hold. If not, the system is not observable, because there is no matching
by means of which x2 could be computed under derivative causality.
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This example illustrates the fact that structural properties provide results which are valid
for almost every value of the system parameters and variables. �

5.7.3 Observability and Structural Observability
of Linear Systems

Let us consider the linear time-invariant system

ẋ(t) = Ax(t) (5.42)

y(t) = Cx(t), (5.43)

where x and y are of dimensions n and p. In linear system theory it has been proved
that the state is observable if and only if the following condition holds

rank

⎛

⎜
⎜
⎜
⎝

C
CA
...

CAn−1

⎞

⎟
⎟
⎟
⎠

= n, (5.44)

for which a necessary condition is

rank

(
A
C

)
= n. (5.45)

Equation (5.45) means, in structural terms, that the unknown variable x belongs to
a causal just-constrained or over-constrained subsystem, when derivative causality
is imposed. The structure graph is

ẋ y x

d I x

m I SC

c I SA

↑

where d are the derivative constraints, which express that dots mean derivatives, m
are the constraints (5.43) from the measurement, and c are the system constraints
(5.42). SC and SA are the structures associated with matrices C and A. Since no
variable in x can be matched from any constraint in d, the system ({c, m}, {ẋ, x, y})
must be over-constrained with respect to x. It can be noted that this requirement
does not constitute a sufficient condition, because the system parameters might have
values such that (5.44)—or (5.45)—is not satisfied.
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Example 5.44 Observability of linear systems
Consider the unobservable linear time-invariant system

⎛

⎝
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞

⎠ =
⎛

⎝
0 0 c
0 0 d
a b e

⎞

⎠

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠ (5.46)

y(t) = (0 0 f )

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠, (5.47)

where the parameters a, b, c, d, e, f can take any real value. Its structure graph has the
incidence matrix

ẋ 1 ẋ 2 ẋ 3 x 1 x 2 x 3 y

c1 1 1

c2 1 1

c3 1 1 1 1

d1 1 x

d2 1 x

d3 1 x

m 1 1

↑

where the constraints c1, c2, c3 represent the system (5.46), the constraints d1, d2, d3 express
the derivative link between the x1, x2, x3 and the ẋ1, ẋ2, ẋ3 and m is the measurement
Eq. (5.47). This system can be decomposed into a just-constrained part C0

X = {c1, c2, d3, m},
X 0 = {ẋ1, ẋ2, ẋ3, x3} from which ẋ1, ẋ2, ẋ3 and x3 can be computed as functions of y
for almost all values of the parameters, and an under-constrained part C−

X = {c3, d1, d2},
X− = {x1, x2} in which x1 and x2 should both be computed from the single constraint c3. It can
be checked that adding ẏ and the associated constraints, the subsystem ({c3, d1, d2}, {x1, x2})
remains under-constrained and that this will always be the case when higher derivatives y(i)

will be considered. Consequently, the information available from the sensor is enough to
place the vector (x1, x2)T in a subspace of dimension one (since they are linked by one con-
straint which is known to be linear), but is not enough to compute this vector completely. The
observability matrix ⎛

⎝
C

CA
CA2

⎞

⎠ =
⎛

⎝
0 0 f
af bf ef
aef bef (ac + bd + e2)f

⎞

⎠

is not full rank, whatever the coefficients a, b, c, d, e, f are, and it can be checked that no
more than the linear form ax1 + bx2 can be determined from the observation (y, ẏ, . . . , y(s))

for any s ≥ 1.
Consider now the case that the second state variable is measured:
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⎛

⎝
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞

⎠ =
⎛

⎝
0 0 c
0 0 d
a b e

⎞

⎠

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠ (5.48)

y(t) = (0 f 0)

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠. (5.49)

Then the system is observable. The structure graph has the incidence matrix

ẋ1 ẋ2 ẋ3 x1 x2 x3 y

c1 1 1

c2 1 1

c3 1 1 1 1

d1 1 x

d2 1 x

d3 1 x

m 1 1
↑

and the following causal matching shows that all the components of the state can be computed
from y and its derivatives.

ẋ1 ẋ2 ẋ3 x1 x2 x3 y

c1 1 1

c2 1 1

c3 1 1 1 1

d1 1 x

d2 1 x

d3 1 x

m 1 1

↑

5.7.4 Graph-Based Interpretation and Formal Computation

Since an oriented graph can be associated with each matching, the observability
property can be analysed from a graph-theoretical point of view. Let x be an observ-
able variable. Then x can be matched with a constraint the input of which is either
known or a set of observable variables. By repeating this argument, it follows that
for x to be observable, it is necessary that there exists at least one subgraph (a set
of alternated chains) which links this variable with the known variables u and y and
where no unobservable variable acts as an input in any constraint of this subgraph.
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This subgraph with the observable target variable x may contain algebraic loops, but
it does not contain any differential loop.

The constraints along the alternated chains show the computations which are to
be performed in order to compute x. If these constraints are combined, a formal
expression of x in terms of known variables can be obtained. A simple algebraic
constraint in the chain means that the matched variable is computed as a function
of the non-matched ones. An algebraic loop shows that a set of constraints has
to be solved simultaneously. A derivative constraint means that the non-matched
variable has to be derivated in order to obtain the matched variable (remember that
only derivative causality is allowed). The number of derivative constraints which are
included between a given input and the target variable shows the maximum order of
derivations needed on this input for computing this target.

Note that this interpretation expresses that x belongs to a just- or an over-
constrained causal subsystem. If x were to belong to an under-constrained subsystem,
the corresponding subgraph would have less constraints than variables, i.e. some
unknown variables would be input signals to constraints while being output of no
other constraint.

For example, Fig. 5.35 shows the two graphs associated with the linear systems
(5.46), (5.47) and (5.48), (5.49) which are non-observable or observable, respectively.
It can be seen that in the first case, either x2 or x1 stands as an unknown input of
constraint c3 while in the second case, both can be matched thus providing all the
states with known predecessors at some level.

When different estimation subgraphs with the same target variable exist, they
provide different computation schemes for the same variable. This feature is of
interest when monitorability and reconfigurability are considered as discussed in the
next section.

5.7.5 Structural Controllability

Controllability is a property which describes the links between the unknown variables
and the input variables, independently of the fact that some unknown variables might
be measured or not. Thus, it can be analysed from the structure graph in which the
measurement constraints have been removed. Roughly speaking, controllability is
concerned with the possibility of finding controls so as to achieve objectives, which
are defined in terms of the values one wishes the system variables to be given.

The reachable set of a system is the set of states in which the system can be
brought by an appropriate control input. Global controllability is a strong property,
which states that the reachable set is the whole state space. Local controllability is a
weaker property, which requires that any point in the open ball around a reachable
point is also reachable. For linear systems, local and global properties coincide.

Let us first consider static systems (C, Z) like

0 = h (xa, u), (5.50)
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Fig. 5.35 Graph-based interpretation of the observability property

where C = {h}, Z = {xa, u}. For such systems, global controllability means that
Eq. (5.50) can be solved for the unknown variables u for any value of the known
(wished) variables xa, thus justifying the decomposition of Z into Z = K ∪X , with
K = {xa}, X = {u}.
Theorem 5.6 (Controllability of static systems) Necessary and sufficient conditions
for system (5.50) to be structurally controllable are the following:

(i) The vertices of K are reachable in the structure graph from the input,
(ii) The canonical decomposition of (CX , X , EX ) contains no over-constrained

subsystem.

If K were not reachable from the input, there would be a decomposition of xa
into x′

a (the reachable part), and x′′
a (the unreachable part), such that the model can

be written as

0 = h′(x′
a, u)

0 = h′′(x′′
a ).

There is no solution to this model for any xa, namely when xa is such that the
part x′′

a does not satisfy the second equation. On the other hand, if the canonical
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decomposition contains an over-constrained subsystem, the known variables satisfy
some compatibility condition, which results in the existence of some manifold

α(xa) = 0

and in the impossibility to find any control u when the wished system states lie out
of this manifold.

The case of dynamical systems is more complex, and except for linear systems,
only the reachability condition of the above result can be extended. Consider the
general system

ẋd(t) = g (xd(t), xa(t), u(t), t) (5.51)

0 = m (xd(t), xa(t), u(t), t) (5.52)

ẋd(t) = d

dt
xd(t), (5.53)

where the known variables are K = {xa, ẋd}, the unknown variables are X = {xd, u}
and the constraints are C = {g, m, d

dt }. As the initial conditions xd(0) are known,
derivative as well as integral causality can be used.

Theorem 5.7 (Reachability condition) A necessary condition for system (5.51)–
(5.53) to be structurally controllable is that the vertices of K can be reached in the
structure graph from the input u.

This condition says that there does not exist any subsystem whose dynamical
behaviour is independent of the input. The “no over-constrained subsystem” con-
dition cannot be extended to the general case, but it holds for linear systems. For
simplicity, let us drop algebraic equations, and consider the system (5.54), (5.55)
with the known variables K = {ẋd}, the unknown variables X = {xd, u}, and the
constraints C = {g, d

dt }.

ẋd(t) = g (xd(t), u(t), t) (5.54)

ẋd(t) = d

dt
xd(t). (5.55)

Theorem 5.8 (Linear continuous systems) If the constraints g are linear, necessary
and sufficient conditions for system (5.54), (5.55) to be structurally controllable are
the following:

(i) The vertices of K are reachable in the structure graph from the input,
(ii) the canonical decomposition of (CX , X , EX ) contains no over-constrained sub-

system.

The existence of an over-constrained subsystem would imply that the known
variables (here ẋd) satisfy some compatibility conditions. For linear systems, these
would be expressed as



5.7 Structural Controllability and Structural Observability 205

αTẋd(t) = 0, (5.56)

where α is some constant vector, from which it follows that any system trajectory
would belong to the manifold

αTxd(t) − αTxd(t0) = 0.

Consequently, it is not possible to drive the system state to any point in the state
space.

Condition (ii) does not extend to nonlinear systems, because in order to define a
manifold the compatibility constraints (5.56) which would now be nonlinear should
also be integrable. This property does not follow from structural considerations.

5.8 Structural Analysis in Summary

Structural analysis is an important tool, which is of interest in the early stage of the
control and supervision system design. It can be employed even before detailed mod-
els are available, the structural analysis only needs that the principal behaviours of a
system are specified in order to perform a useful and quite comprehensive analysis.
Diagnosability and isolability of a behavioural fault (violation of a constraint) in a
system can be made based on such sparse information. Analytical redundancy rela-
tions for use in diagnosis can be generated either from a complete matching and
subsequent backtracking through the matching to known variables, or by using the
minimal structurally over-determined (MSO) sets approach followed by a similar
backtracking.

Disturbances or unknown parameters are handled in a structural analysis by defin-
ing such unknown quantities as additional unknown variables. When performing a
matching, one additional constraint will be needed in the just-determined subsys-
tem to calculate each additional unknown input. This means the available ARRs
will reduced in number but will be insensitive to these unknown quantities. It is a
salient feature of structural analysis that it generates ARRs equally well for linear
and nonlinear systems.

The fault diagnosis and fault-tolerant control results it provides are the identifica-
tion of the diagnosable part of the system, and the identification of the reconfiguration
possibilities of the estimation the control scheme. Since detailed behaviour models
need only to be developed for those parts of the system, structural analysis is also
a tool for deciding which modelling investments must be done for the design of the
control and supervision system.

The structural properties hold for the class S(G) defined by the structure graph G
and, hence, for “almost all” single systems included in this class. Only in exceptional
cases, the system under consideration does not have a property that the structural
analysis has found for the corresponding class. This relation has been demonstrated
in this chapter by several examples.
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Observability analysis is the main step to identify the diagnosable part, which is
the over-constrained subsystem within the observable one. Furthermore, structural
analysis not only provides the computation mechanisms for the estimation algo-
rithms and their reconfiguration, but it can also suggest which sensors should be
implemented so as to change the status of system components from undiagnosable
to diagnosable.

Structural analysis cannot help in defining fault accommodation strategies, because
these strategies are aimed at investigating the means of achieving the system objec-
tives, in spite of faults, without changing its structure. On the contrary, structural
analysis is of prime importance as far as reconfiguration is concerned, because
the results are expressed with reference to graph properties, whose changes can
be analysed when vertices and edges disappear, as the consequence of switching off
some system components, after a fault has occurred.

In summary, the following algorithm describes the design procedure for diagnosis
based on structural analysis.

Algorithm 5.6 Structural analysis aiming at diagnosis

Given: A set C of constraints
The sets X and K of unknown and known variables
The sets U and Y of inputs and outputs with U ∪ Y ⊆ K

1. Determine the structure graph G
2. Find a complete matching on the unknown variables to get a

proper over-determined set of constraints
3. Mark unmatched constraints cu

j for use as analytical redundancy
relations

3.a Alternatively, use MSO sets to find cu
j

4. Express cu
j as a function of known variables using backtracking

through the matching
5. Express residuals as ri = cu

j
6. Determine the dependency mapping r = Mcu for the set of

residuals and unmatched constraints
7. Test structural detectability and observability from the columns

of M
8. If isolability conditions are not satisfied, investigate whether the

active isolability approach can enhance isolation of faults
9. Insert the analytical expressions of constraints in the result of

Step 5 to get residuals in analytical form
Results: List of the existing analytic redundancy relations based on order

in which constraints are used (symbolic form)
List of detectable faults
List of isolable faults
List of residuals in analytical form obtained through backtrack-
ing
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Fig. 5.36 Position actuator open loop

5.9 Exercises

Exercise 5.1 Structural analysis for industrial actuator
Make a structural model of the actuator shown in Fig. 5.36.

1. Determine the sets K (known variables), X (unknown variables) and Z (all
variables).

2. List the set of constraints that describe the system shown in Fig. 5.36.
3. Derive the incidence matrix and draw the structure graph.
4. Ignore causality and determine a complete matching on X that is non-causal.
5. Use the ranking algorithm to determine a complete causal matching on X . List the

unmatched constraints.
6. Determine the parity relations found from the unmatched constraints by backtracking the

structure graph to known variables along the paths of the matching,

ci(Ki) = 0 ∧ Ki ⊆ K.

7. Express the parity relations in analytical form using the constraints from
question 2. �
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Fig. 5.37 Block diagram of DC motor with load torque and closed speed loop
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Fig. 5.38 Block diagram of single-axis satellite with input from two redundant actuators, redun-
dant measurements of attitude (angle), measurement of angular rate and measurement of delivered
actuator torques

Exercise 5.2 Structural analysis with unknown input
Consider the speed control loop of Fig. 5.37, where nref is the reference speed.

1. Using the known variables
K = {im, nm, θm, nref }

and the unknown variables
X = {

i, Ql, n, ṅ, θ, θ̇
}
,

determine the set of constraints that describe the system.
2. Build the structure graph for the system. Describe the graph as an incidence matrix and

draw the graph.

3. Apply the ranking algorithm on the graph to determine at least one causal matching. List
which constraints remain unmatched.

4. For each unmatched constraint, determine a parity relation ci(Ki) = 0, Ki ⊆ K. �

Exercise 5.3 Parity relations for single-axis satellite
This exercise considers structural analysis for a single-axis satellite described by the block
diagram in Fig. 5.38. The figure illustrates a single axis of a satellite.

There are two input signals u1 and u2 to actuators 1 and 2, respectively, one unknown input
d, and five measurements: y1 measures the state x1, y2 and y3 measure x2; y4 and y5 measure
torque from actuators 1 and 2, respectively.

1. Determine the sets of known variables, K, and unknown variables X . Verify that the
intersection Z = K ∪ X gives the total set of variables.

2. Determine the set of constraints that describe the system.

3. Determine the causal structure graph for the system. Represent the graph as an incidence
matrix and as a drawing.
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4. Use the ranking algorithm on the graph to find one or more complete matchings. List
which constraints remain unmatched.

5. From the unmatched constraints, determine the parity relations in analytic form:

ci(Ki) = 0, Ki ⊆ K.

You may wish to use the MATLAB programme SaTool to cope with the complexity of matching
or for checking your results. A GNU open source license of SaTool is available from the book
homepage. �

Exercise 5.4 Parity relations and addition of a sensor
Let a system be composed of 3 interconnected components, c1, c2, c3. Each component is
described by one constraint according to the system

c1 : ẋ1(t) − x1(t) = 0

c2 : ẋ1(t) − 2ẋ2(t) = 0

c3 : y(t) + 3x1(t) − x2(t) = 0.

The variables x1, x2 which characterise the operation of components c1, c2 are not mea-
sured, only the output y of component c3 is known.

1. Draw the structure graph of the system.

2. Find a redundancy relation which allows to detect a fault in one of the components.

3. Would it be worth to add a fourth component, that would measure x1 according to

c4 : z(t) = x1(t)

z is now an extra known variable, but of course component n◦4 may also be faulty. �

Exercise 5.5 A specialised arithmetic circuit
The following specialised computation circuit is composed of 3 multipliers M1, M2 and M3
and two adders A1 and A2 (Fig. 5.39).
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M3

M2

M1
a

b

c

d

e

x

z

y
f

g

Fig. 5.39 Specialised computation circuit
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Fig. 5.40 Schematic
representation of an
ABS test bed
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1. Write the model of each system component.

2. Give the incidence matrix of the structure graph (distinguish the known and the unknown
variables).

3. Find the analytical redundancy relations by eliminating the unknown variables.

4. For each ARR, give the list of the components the faults of which it is sensitive to.

5. Is there any non-detectable or non-isolable fault?

6. What are the possible diagnostics associated with the following measurements?.

a b c d e f g

2 2 3 3 2 10 12

Exercise 5.6 Diagnosability analysis of an ABS test bed
An ABS (anti-lock braking system) test bed is schematically drawn in Fig. 5.40. In a simplified
version, the test bed has two wheels, where the lower wheel is powered by a motor, whereas
the upper wheel has a brake with the braking torque MB. The wheel angular velocities are
denoted by ω1 and ω2, the forces between the wheels by Fz, the lateral force by Fx and the
masses and inertias by m1, m2, J1 and J2. The wheel vertical force Fz is determined by the
geometry of the test bed including the air pressure in the tyres (which may be too low by fault).

The model of the test bed is given below:

c1 : J1ω̇1(t) = −MB(t) + ML(t)

c2 : ML(t) = Fx(t)r1

c3 : Fx(t) = μ(t)Fz

c4 : μ(t) = f (λ(t)) (Slip diagram)

c5 : λ(t) = 1 − ω2(t)r2

ω1(t)r1
c6 : J2ω̇2(t) = −ML(t)

c7 : ω̇1(t) = dω1(t)

dt

c8 : ω̇2(t) = dω2(t)

dt
.
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Measurable signals are MB(t), ω1(t), ω2(t) whereas the signals ω̇1(t), ω̇2(t) may be measured
if this is necessary for fault diagnosis.

1. Draw the structure graph.
2. Analyse the test bed and determine analytical redundancy relations for fault

diagnosis.
3. Which signals have to be measured to make the test bed detectable or isolable? �

5.10 Bibliographical Notes

Offering a way to advise how to solve large sets of equations, structural concepts and
bipartite graphs were introduced and seminal theoretical results for bipartite graphs
were obtained in [17, 86, 87]. The structural approach was first brought into the field
of fault in [76].

Decomposition of large systems. Structural concepts have been used since the 1960
and 1970s for the decomposition of large systems of equations in view of their
hierarchical resolution [142, 341]. An important issue in that field is also the solv-
ability of large scale differential and algebraic equation systems, for which [193,
371] addressed and employed structural analysis.

Algorithms. Algorithms to compute maximum matchings were studied along with
the penetration of electronic computers into engineering research motivated by
important applications in operational analysis and in chemical engineering. An algo-
rithm of complexity O(N 3) to find maximum matchings was proposed in [89], while
[150] found an algorithm of complexity O(N 2.5) for bipartite graphs. Maximum
matchings can also be found from the solutions to the assignment problem [189], or
from the maximum flow problem [110, 111]. For details on the algorithms and more
bibliographical notes, refer to [17, 62, 131, 206]. Theorem 5.2 was proved in [17].

Looking into maximal isolability and minimum computational complexity, it
turned out that finding all possible analytical redundancy relations through find-
ing all possible complete matchings was impractical if not impossible for industrial
size systems. Inspired by experience from automotive diagnosis, references [184,
187] proposed to find MSO sets as a more direct way to determined all possible
ARRs for a given system and an alternative decomposition of the structure graph and
an extremely efficient algorithm (cf. Algorithm 5.4).

Observability, controlability. The technique has also been used for analysis of
system structural properties like observability and controllability, where most works
use a digraph representation and address linear systems [130, 195, 196, 232]. They
have also been extended to the design of multivariable control systems, including
considerations like disturbance rejection [286, 301].

Fault diagnosis. In the field of fault diagnosis, structural concepts have been used
since the beginning of the 1990s, for the analysis of system monitorability [76] and
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for the design of structured residuals [126], which provide straightforward decision
procedures for fault isolation [69]. An overview can be found in [325].

Realisability and optimization. Issues with realisation of residual generators in
large systems caused the development of selection procedures [19], continued by
implementations with mixed causality in [337, 352] considered further into issues
of causal computations. Furthermore, [354] suggested algorithms for realizability
constrained selection of residual generators.

Applications. Significant applications in marine systems were described in [23, 28,
159]. A significant effort related to diagnosis in car engines and for other automotive
applications were reported in [350, 352]. Application to large 3-phase systems was
discussed in [180]. Diagnosis to determine downhole drilling incidents in [387] and
combined diagnosis, active fault isolation and fault-tolerant control was demonstrated
for thruster assisted position mooring for offshore production vessels in [238].

Finally, structural concepts have been applied to the problem of sensor selection
[57, 230], for component-oriented analysis [370] and for service diagnosis [372,
373].

Relations to AI. The Artificial Intelligence approach to causality in device behaviour
[158], which is used in the theory of model-based diagnosis, is also very close to the
concept of matching in bipartite graphs. Since the obtained models are mainly under
a graphic form, the theory of bond graphs has brought about many specific tools for
structural analysis.

Multiple faults and active isolation. Structural analysis was also found useful to
cope with the complexity of analysis in cases of multiple faults [23]. An extension
of the structural analysis to advise on possibilities of active isolation was suggested
in [33] with an application reported in [238].

Algorithms and software tools. The SaTool software environment (GNU public
license) that has been used for several examples in this book was introduced in [31].
A large framework for diagnosis design in the automotive industry was presented
in [107]. Efficient algorithms for finding structurally minimal over-determined sets
were suggested in [187], and [6] compared different algorithms.
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