
Chapter 4
Analysis Based on Components
and Architecture

Abstract This chapter presents methods for modelling and analysing the compo-
nent architecture of a system. It deals with the information that can be deduced
from components and the way in which the components are connected. Simple and
aggregated components are described in terms of their generic properties, which
include the service offered by a component in different modes of operations and the
conditions under which component faults occur. Properties of selected simple compo-
nents are discussed and their aggregation into generic components at a higher level
is illustrated. Formal methods for describing generic components are introduced.
Algebraic and graph-theoretic methods are employed to analyse the propagation of
faults through the faulty system.

4.1 Introduction

Architecture models describe a system as a set of interconnected components. This
statement is true at any hierarchical level. Low-level components, such as sensors and
actuators, are directly interfaced with the process. They provide low-level services:
measurement of, or action on some specific process variable. Subsystems, composed
of several components, can also be considered. They form higher-level devices which
can be aggregated to even higher levels. Higher-level devices provide higher-level
services. The primary track control loop in the ship example provides the ship to
follow a desired path through shallow water; the cooling unit in a chemical reactor
provides control of an exothermic reaction. The highest aggregation level is that of
the system itself, when it is considered as one single component.

At any considered level, a component, whether simple or aggregated, can be
described by its generic model. The services it provides can be organised in a number
of use-modes. At the highest aggregation level, each of the system use-modes is
associated with a given number of objectives to perform, and the system services are
used to achieve those system objectives. The definition of the use-modes set, and for
each use-mode the associated objectives result directly from the specification of the
considered system.
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Fig. 4.1 Automaton of a batch process illustrated through use-modes

Example 4.1 Tank system
Suppose that the tank system is used in a food industry batch production process, where the
processing of each batch needs the temperature to be controlled at a given value during a given
period of time. Six different use-modes (UM) can be distinguished:

UM 0: No operation,
UM 1: Filling the tank,
UM 2: Processing the batch,
UM 3: Emptying the tank via the normal pipe,
UM 4: Emptying the tank via the “lost production” pipe, and
UM 5: Cleaning the tank.

The associated use-mode automaton is illustrated in Fig. 4.1.
There are six objectives associated with the different use-modes, namely

• Objective 0: No action (UM 0),
• Objective 1: Reach the full level set-point (UM 1),
• Objective 2: Regulate the temperature (UM 2),
• Objective 3: Reach the empty level set-point (UM 3 and UM 4),
• Objective 4: Clean the tank (UM 5), and
• Objective 5: Preserve the environment (UM 1, 2, 3, 4 and 5). �
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The analysis of fault tolerance should answer the essential question whether a
given system, in a given fault situation, is still able to achieve its objective. Overall
objectives are associated with use-modes, and they are achieved using the services
offered at the system level. Thus, the analysis of fault tolerance first needs the generic
model to be derived at the system level. This can be done by defining procedures
which aggregate low-level generic models into higher-level ones. The second step
is to analyse the situation when faults appear, in order to conclude about the way
services are affected.

This chapter presents two approaches for the analysis of fault tolerance using
architecture models, the first studying fault propagation mechanisms and the second
analysing the availability of services (which means the possibility of achieving the
objectives) at the system level.

4.2 Faults in Components and Their Consequences

Having defined availability of services and the key concept in the generic description
of components, tools are needed to analyse which conditions could cause a certain
version of a service to become unavailable. Faults or partial failure in components
would clearly be candidates for a service to become unavailable. This section intro-
duces a Boolean formalism to analyse propagation of faults and the consequences
faults can have on the services offered by a generic component.

Shut-down functions and interlocks are commonly used in industrial automation
to prevent failures to dilate from one sub-system to another. The use of such functions
has, however, the consequence that plant availability is sometimes reduced without
good reason. With the ever higher degree of automation, this has been the key cause
to increased vulnerability to simple faults, particularly in sensors and actuators. The
approach in this text is to obtain dependability by giving a generic component or
subsystem an ability to detect and isolate faults and react with actions that accom-
modate the control system to the fault. Fault accommodation is predetermined at the
design stage. The scope of the methods presented in this section is to give a formal
technique to obtain a list of which faults should be handled to regain an acceptable
version services after faults have occurred locally in a generic component.

Open and closed-loop systems. Handling of faults in open-loop systems, e.g., mon-
itoring and remote control, is technically straight-forward, but the reactions used to
accommodate a fault need to be designed with careful consideration to safety and
availability of the total plant. Optimisation at a local level may easily violate an
overall safety goal.

Handling of faults in closed-loop components is a more difficult and challenging
task. Properly designed systems can accommodate the effects of faults whereas less
careful designs can let fault effects propagate to other subsystems.

Connection with reliability analysis. For the reasons given above, fault analy-
sis need to incorporate analysis throughout a system. Traditional methods for fault
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detection and isolation do not cover this problem. They are very able to detect the
presence of a fault as a difference between actual and expected behaviour. Isolation
of a particular fault requires a hypothesis about the observed effects from this fault.
This is obtained by ad hoc engineering and requires deep process knowledge and
engineering skills to make a successful design. It is expensive in terms of both key
personnel and time.

Analysis of system reliability is not only mandatory for safety critical systems
but is also more and more often used for common industrial systems, driven by the
increasing environment and safety awareness in recent years. The state of the art is
such that no method can guarantee a complete description of all possible fault modes
of a system. Certain forms of risk analysis provide, nevertheless, a very systematic
approach to fault modelling once possible component faults have been identified.
Faults in common industrial components are subject to constant study, and a method-
ology based on component fault modelling could use accumulated knowledge for
each type of component. The number of principally different components in a certain
branch of industry is small enough to make this a manageable exercise.

A systematic approach. A systematic approach can be made if the basic method-
ology from risk analysis is adopted to the detailed mathematical models needed for
real-time fault diagnosis. A link has to be established from quantitative, static risk
models at the component level to qualitative, dynamical fault diagnosis descriptions
of input–output relations to achieve this goal.

The link is obviously to merge the component-based generic dynamical mod-
els (energy, momentum and flow relations) with component fault models from the
risk analysis. The generic dynamical models can be extended to subsystem input–
output descriptions, for example using a system behaviour description approach.
This methodology guarantees that all relevant component faults are included in a
mathematical system model, and all relevant dynamical relations are preserved due
to modelling being done at the component level.

The systematic approach shall provide the following information:

1. List of faults to detect,
2. Mathematical model for use in fault diagnosis,
3. Basic character/criticality of each fault, and
4. Required reaction to each fault.

This is elaborated in the following.

4.3 Fault Propagation Analysis

Several approaches exist to analyse systems based on the components they com-
prise. The fields of risk analysis and reliability engineering have developed several
approaches to assess the risks associated with component breakdown. On commonly
accepted standard in everyday industrial use is the failure modes and effects analysis
(FMEA) technique. It is based on description of the failure modes of the individual
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components, and would thus serve our purpose. The failure mode and effects analy-
sis technique is well established and supported by both databases with breakdown
information and mean-time between failure history for many components. It was
hence natural to develop a method for analysis of fault propagation based on such
available information on component failure modes.

Failure modes and effects analysis. Failure modes and effects analysis is a tool
originally developed by reliability engineers. It analyses potential effects caused
by simple or aggregated components ceasing to behave as intended, i.e. they stop
providing the service designated to the component. A failure modes and effects
analysis procedure starts with listing, for each component, in which ways can this
component fail. This is referred to as failure modes. Databases are available with
information about failure modes for a large number of industrial components. The
output of a failure modes and effects analysis procedure is the effect on the system and
its environment that would be the consequence if the particular component should
fail in each of the ways available to it (failure effects).

An example for a typical failure modes and effects analysis worksheet is illustrated
for a pressure gauge in the following table.

item failure failure failure risk assess.

ident. mode cause effect sev prob

press. false high defective toxins not

gauge reading stuck destroyed
4 0.0002

false low defective potential
PG 24

reading stuck burns
3 0.0002

The failure modes and effects analysis worksheet has columns for item identification,
failure modes, failure cause, failure effect and risk assessment for the end effects at
system/environment level. There are also columns for risk code and actions required,
not shown here.

The information on end effects in a failure modes and effect analysis scheme
is firmly linked to the system architecture, which is not explicit in the worksheet.
Analysis and design of fault-tolerant systems require a fully flexible representation
not offered by the failure modes and effect analysis scheme itself, but the information
on component failure modes is very useful and is exploited in the following.

Fault propagation matrix. A traditional failure mode and effects analysis starts with
selection of the lowest level of analysis. In the present context, this means sensors,
valves, motors and similar components. All potential faults and their effects are
determined. A fault propagation scheme for each component shows how fault effects
out of the component relate to faults at input, output, or parts within the components.
This is illustrated in Fig. 4.2.

Analysis of the propagation of faults is conveniently based on matrix methods.
The fault propagation analysis (FPA) uses a Boolean mapping of faults onto effects
for each component or each set of aggregated components.
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Fig. 4.2 Traditional failure modes and effects analysis scheme illustrated graphically for two
component levels

Definition 4.1 (Fault propagation matrix) For a given Boolean mapping M

M : F × E → {0, 1}

of the set of component faults fc ∈ F onto the set of effects ec ∈ E , the fault
propagation matrix is defined as follows:

mij =
{

1 if fcj = 1 ⇒ eci = 1
0 otherwise.

A fault propagation matrix scheme can be expressed as

eci ← M f
i ⊗ f ci,

where M f
i is a Boolean matrix representing the propagation. The operator ⊗ is the

inner product disjunction operator that performs the Boolean operation

ecik ← (mik1 ∧ fci1) ∨ (mik2 ∧ fci2) . . . ∨ (mikn ∧ fcin).

When effects propagate from other components, we get, at level i :
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eci ← M f
i ⊗

(
f ci

ec (i−1)

)
.

This is a surjective mapping from faults to effects: there is a unique path from fault
to end effect, but several different faults may cause the same end effect.

System descriptions are obtained from interconnection of component descriptions.
Merging three levels gives the end effects at the second level,

ec2 ←
(

M f
2 ⊗

(
I 0
0 M f

1

))
⊗

(
f c2
f c1

)
.

Eventually, end effects at the system level are reached.

Reverse analysis. The effect vector corresponding to a particular fault fk is hence
the kth column of M f . Reversely, given a particular e, the set of faults that could
cause this effect is obtained by checking which columns of M f match the observed
e. This can be written using the operator 	 defined by the operation

fi ← (mi1 = e1) ∧ (mi2 = e2) . . . ∧ (min = en)

i = 1, . . . , dim f

and apply this on
(

M f
)T

,

f c =
(

M f
)T 	 ec.

Analysis of the system matrix can easily show where in the system the propagation
should be detected and stopped, the operation we would achieve by fault handling.
Proper handling of a fault would imply the particular entry(ies) in the M f matrix
change from “1” to “0”.

Experience from applying fault propagation analysis to larger systems shows that
we might need to include occurrence of one fault and the non-occurrence of another in

the description. This would imply to extend f i to
[

f i , f̄ j

]T
in the above expressions.

Analysis of a system with three simple components and a description of their
architecture is shown in the following example.

Example 4.2 Propagation with three components
A system with three components and open-loop structure is

ec3 ← M f
3 ⊗

(
fc3
ec2

)

ec2 ← M f
2 ⊗

(
fc2
ec1

)

ec1 ← M f
1 ⊗ ( fc1)
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The fault effect scheme for this example is

ec3 ← M f
3 ⊗

(
fc3
ec2

)
⇒

ec3 ←
(

M f
3 ⊗

(
I 0

0 M f
2

))
⊗

⎛
⎝ fc3

fc2
ec1

⎞
⎠ ⇒

ec3 ←
⎛
⎜⎝M f

3 ⊗
⎛
⎜⎝

I 0

0 M f
2 ⊗

(
I 0

0 M f
1

)
⎞
⎟⎠

⎞
⎟⎠ ⊗

⎛
⎝ fc3

fc2
fc1

⎞
⎠ ⇒

ec3 ← M f
3 ⊗

(
I 0

0 M f
2

)
⊗

(
I 0

0 M f
1

)
⊗

⎛
⎝ fc3

fc2
fc1

⎞
⎠ ≡ M f

sys ⊗ fsys

Effects are seen to be propagated to the next level of analysis and act as part’s faults at that level.
This is continued until the system level is reached. The schemes give an surjective mapping
from faults to effects: There is a unique path from fault to end effect, but different faults may
cause the same end effect. �

It is noted that the Boolean propagation matrix can be split into columns propa-
gating faults and columns propagating input effects,

M f
i =

(
M f

i, f |M f
i,e

)

Merging two levels can then be re-written

ec2 ←
(

M f
2 ⊗

(
I 0
0 M f

1

))
⊗

(
fc2
ec1

)
⇒

ec2 ←
(

M f
2, f M f

2,e ⊗ M f
1

)
⊗

(
fc2
fc1

)

This illustrates how faults from the current level are propagated through the compo-
nent being considered, while faults from a lower level propagate through this lower
level and through the present.

Remark 4.1 (Single-fault assumption) This discussion of fault propagation is based
on the assumption that only a single fault is present. If the analysis should cover the
occurrence of multiple faults, or propagation of one particular fault being dependent
on a particular other fault not being present, we would need a more complex logic
description than introduced above. Results do exist, but are considered outside the
scope of the present text. �
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Example 4.3 Autopilot - gyro system diagnosis
Failure of ship’s motion control systems have been the cause of many severe accidents. Some
of these were caused by faults in the gyro-system providing the heading and turn rate motion
feedback to the autopilot. Early detection of such faults could prevent the control system from
unwanted alteration of the ship’s heading. This example illustrates fault detection on a ship’s
gyro compass and an associated turn rate sensor.

Faults are possible in either of the two measurements and the purpose of the fault detection
is to isolate the faulty sensor. Subsequent fault accommodation should then switch the faulty
sensor out and estimate the missing signal from that of the good sensor. Fault-tolerance against
these faults is obtained by implementing the scheme as an autonomous part of the heading
control loop.

FPA scheme for rate gyro. FPA schemes describe the properties of signals or first physical
quantities related to the function or output of the component. The effects listed in the first row
are quantised descriptions of the properties of the signals. The relationship from input to output
is indicated in matrix form in the propagation analysis. The causes due to different effects of
the component are listed in the table. These very specific details about component failure
are not used in our analysis, but are used as a good starting point for a systematic analysis.
FPA schemes are available from several databases of component reliability, in particular from
components used in the nuclear, space and avionics industries, where post-failure analysis has
been made systematically. The scheme for the rate gyro is illustrated in the following table.

Signal low high fluctuating undefined

Electric short Electric short Wire defect Wire defect
Fault Electrical or Electrical Unit Unit

mechanical defect damaged damaged
defect

Input: low rate high rate supply power dismounted

The FPA matrix for the rate gyro is defined by considering a generic failure of the rate gyro,
which can cause any of the output signal conditions: low, high, fluctuating or undefined.

erg ← M f
rg ⊗

(
f ω

eship

)
⎛
⎜⎜⎝

erg,l
erg,h
erg, f
erg,u

⎞
⎟⎟⎠ ←

⎛
⎜⎜⎝

1 1 0
1 0 1
1 0 0
1 0 0

⎞
⎟⎟⎠ ⊗

⎛
⎝ fω

eship,l
eship,h

⎞
⎠

Observation of the set of end effects would show which fault(s) could be the cause(s) to a
particular end effect combination,
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(
f rg

eship

)
← Mb

rg 	 erg

⎛
⎝ frg

eship,l
eship,h

⎞
⎠ ←

⎛
⎝ 1 1 1 1

1 0 0 0
0 1 0 0

⎞
⎠ 	

⎛
⎜⎜⎝

erg,l
erg,h
erg, f
erg,u

⎞
⎟⎟⎠

The interpretation is clearly that

erg,l ∧ erg,h ∧ erg, f ∧ erg,u ⇒ frg

erg,l ∧ ¬erg,h ∧ ¬erg, f ∧ ¬erg,u ⇒ eship,l etc.

A complete systematic analysis will show which faults have severe end effects, i.e. effects
that could cause the ship to make an unexpected alteration of heading. These include faults on
either of the rate or heading gyro units, a fault in the steering gear and a fault in the heading
reference to the autopilot. This list of faults is used when modelling the system and the faults
to be diagnosed are identified from this list of high severity fault events. The fault propagation
analysis uses knowledge of the overall characteristics of the effects of faults. To proceed in
further detail with detection, we will later need a model where the specific faults are described
as change of the parameters in a generic mathematical model. A generic fault model for the rate
gyro is

ω3m(t) = (1 + αω(t))ω3(t) + fω(t) + νω(t),

where ω3m is the measured signal, ω3 the true turn rate. Faults will occur as changes in either
of the signals αω or fω , both of which are functions of time. The signal fω(t) is additive in
this model, αω(t) is non-additive. Both are zero when no faults are present. The signal νω(t)
represents measurement noise. Note that a non-additive fault can be omitted in the fault model,
since a gain fault can be modelled through an additive term as

fω(t) = α(t)ω3(t). �

Completeness. Completeness of the fault effect vector is a necessary prerequisite for
later fault detection and isolation, since the only faults that can be isolated are those
specified in the design. Completeness is obtained if all possible component faults are
considered. This is not achievable in a rigorous sense, but engineering experience
from risk analysis makes it possible for practical purposes.

It is noted that completeness does not ensure that component fault isolation is
possible because the mapping from fault to effects is not an isomorphism (one-to-
one mapping): An observed effect could be caused by any out of several component
faults.
Definition of generic components. The above introduction of fault propagation
matrix to characterise propagation of fault through components leads to include the
fault propagation matrix in the formal definition of a generic component
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Definition 4.2 (Generic component model (extended)) A system component is
defined by the model given in Definition 4.2 together with the additional model part:

< FPA input | use-mode > ::={< list of internal faults;
list of input effects >| use-mode}

< FPA output | use-mode > ::={< list of output effects >| use-mode}
< FPA description | use-mode > ::={< FPA input; FPA output;

FPA matrix; > | use-mode}.
Example 4.4 Temperature control
This example illustrates the aggregation of simple components into a complex component that
provides a temperature control service. The problem considered is to accommodate some of
the faults that would stop the primary service of the temperature control loop in Fig. 4.3. A
three-way valve controls the mixing of hot water returning from a tank with tempered water
from a heat exchanger. The control objective is to keep the cooling water temperature of an
exogenous process in the tank at a constant value. The valve is controlled by the temperature
control loop, which consists of

• the actuator with AC motor,
• the temperature sensor (T),
• the controller with process interface (AI, AO, A/D, D/A), and
• the filter system.

The control loop is shown in Fig. 4.3.
The temperature control loop is a cascade control with position control of the valve as the

inner loop. Stability of the total loop is not guaranteed if the inner loop becomes open due to
a component fault.

Three-way valve actuator. The valve is driven by an AC motor that will rotate left or
right, when activated to either side by a double acting relay. End-stop switches are supposed
to avoid motor overload by preventing the motor from turning further when an end stop
switch is reached. The potentiometer gives position feedback. The position loop fails if either
potentiometer or end-stop switches fail.

Figure 4.4 shows the graphical representation of the FPA scheme for the closed-loop valve
position controller. Bold lines in the scheme show how faults propagate. The important obser-
vation is that propagation could be stopped at the points marked with stars. This means that
fault handling should be applied exactly at these points.

It is intuitive that accommodation of a position or limit switch fault could be done fairly
simple:

1. Use an estimate of the valve position in the motor controller instead of a faulty position
signal.

2. Override a limit switch information if both position sensor feedback and an estimated
position show that a limit switch fault has occurred.

An observer for this purpose is elementary. The estimated valve position is increased or
decreased in proportion to the time either of the two motor relays. This requires no additional
hardware but a few lines of observer code. Accommodation of any of these sensor faults
will make it possible to continue operation while giving an alert about required maintenance.
Without accommodation, the temperature control loop would probably fail due to the loop
becoming unstable without the internal position feedback.
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Fig. 4.3 Piping and instrumentation diagram representation of a temperature control loop with
three-way valve

Figure 4.4 shows the FPA scheme in block diagram form for the valve control part of the
loop. The components are potentiometer, limit switches, motor, three-way valve and digital
controller.

Faults in a limit switch will prevent motion in clockwise or counter-clockwise direction—
opening or closing of the valve. The consequence is a severe offset of the temperature control
if fault handling is not initiated. A breakdown of the position feedback element will cause a
breakdown of the temperature control loop because the motor will be driven rapidly to fully
open or fully closed position.

Because several faults can cause the same effect, it is necessary to isolate the failure source.
When the source is isolated it is possible to decide the reaction:

• Actuator fault. Fault in the valve up–down relay switch or in the ac-motor: The position
controller must stop immediately. This will cause a loss of the temperature control service.

• Actuator fault. Fault in the valve end-stop switch: The position controller switches to
use the position sensor and up–down commands for estimation of position. The service
continues until maintenance.

• Position sensor fault. The controller should be re-configured. In the analytical relation
between duration of relay pulses and motor shaft position, a position estimate is readily
available. The estimate is used until the fault is repaired.

• Temperature sensor fault. The reference to the position controller fails. The controller is
re-configured and a time-history roll-back is made of the reference signal and the mean is
used as the new reference until the fault has been repaired.

This examples illustrate situations where temperature would deviate significantly or the
control would simply fail with a commonly applied controller design. The temperature control
service would no longer be available, and the overall use-mode of the tank would need to
be changed to emptying, for safety reasons. By contrast, fault accommodation could assure
availability of a reduced temperature control service, for several likely faults, thus enhancing
the overall plant availability with simple means. �
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4.4 Graph Representation of Component Architecture

The above discussion has shown that a block diagram for the FPA analysis of an
aggregated component consists of

• the external input faults or effects propagated to the component,
• the FPA representation of lower level components within the aggregated

component, and
• the end effects for the aggregated component.

The latter can be considered output of the FPA analysis. The task of dealing with
closed-loops in the FPA diagram can be eased by employing a graph formulation.
An appropriate FPA graph is first defined. It is then shown that how closed loops are
identified and finally how cut sets can be obtained.

Definition 4.3 (Fault propagation analysis graph) Let a system be comprised the
following items: input effects ι, components with FPA blocks γ and output effects
ζ. Define a set of vertices as V = {ι, γ, ζ} of an FPA graph. Connections between
the system items are edges of the graph. The edges constitute the set E . The FPA
graph Γ is an ordered pair of disjoint sets (V, E). V = V (Γ ) is the set of vertices
and E = E(Γ ) the edge set.

We further define an orientation of the edges in the FPA graph.

Definition 4.4 (Orientation) An edge (i, j) is said to connect a vertice j to i . If an
edge is oriented and connects vertice j with i , then eij = 1.

This leads to a matrix representation of the FPA graph with oriented edges.

Definition 4.5 (Directed adjacency matrix) The directed adjacency matrix D of Γ,

with respect to a given orientation of Γ, is the n × n matrix (dij) whose entries are

dij =
{

1 if vi is the positive end of an edge from v j

0 otherwise,

where the number of vertices in the graph is n.

The directed adjacency matrix is thus square. The entries of the i th row show
which connections point to the i th item (input, component, or output) in the fault
propagation diagram. The cardinality of “1” entries in the directed adjacency matrix
is equal to the number of edges in the graph.

Remark 4.2 (Input vertex) The i th vertex is an input vertex if and only if the i th row
in the adjacency matrix comprises zeroes only. �

Remark 4.3 (Output vertex) The j th vertex is an output vertex if and only if the j th
column in the adjacency matrix comprises zeroes only. �
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Definition 4.6 (Walk of length k) A walk of length k in Γ is a finite sequence of
vertices in the graph Γ {v0, v1, . . . , vk} such that vt−1 and vt are adjacent for
1 ≤ t ≤ k.

Graph theory is very useful in respect to showing some general properties of the
graph Γ.

Lemma 4.1 (Biggs) The number of walks of length k in Γ from vi to v j is the entry
in position (i, j) of the matrix Dk .

A closed loop is a walk that leads from an item and back to itself. Hence, a closed
loop of length k will appear as a 1 in the diagonal of Dk for each vertex that is part
of the loop. This gives an algorithm to find closed loops in a fault propagation graph.

Theorem 4.1 (Loops of length k in a fault propagation graph) A graph with a vertex
vi has exactly one walk back to itself of length k if and only if the i th diagonal entry
of Dk is 1. Each vertex in the loop has its diagonal entry equal to 1.

A vertex vi that participates in n closed loops will have a diagonal entry in Dk

equal to n. The number n will include possible multiple rounds in a loop if its length
is an integer fraction of k.

Diagonal elements of a vertice hence show how many closed loops of length k or
k/M the vertice is part of, where M is an integer number. The power k of D used in
the calculation shall not exceed the number of vertices in the graph.

Example 4.5 Closed loops in a fault propagation graph
A fault propagation graph is illustrated in Fig. 4.5.

The directed adjacency matrix is D in Eq. (4.1). Powers of the adjacency matrix are

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 1 0 1
0 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 1 1 0 0
1 0 0 1 0 1
1 1 0 1 0 1
0 1 1 0 0 0
0 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.1)

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 2 1 1 0 1
0 1 1 1 0 0
1 1 1 2 0 1
1 1 0 1 0 1
1 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, D4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2 2 1 3 0 2
1 2 1 1 0 1
1 3 2 2 0 1
1 1 1 2 0 1
1 1 1 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

D5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2 4 3 4 0 2
2 2 1 3 0 2
3 4 2 4 0 3
1 3 2 2 0 1
1 3 2 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, D6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
4 7 4 6 0 4
2 4 3 4 0 2
4 6 4 7 0 4
3 4 2 4 0 3
3 4 2 4 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The diagonal of the Dk matrix shows the special characteristics:
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Fig. 4.5 A fault propagation
graph example. One vertice
is input (1), another is output
(5) input output

1 2

3

4 5

6

• D2: 1 loop of length 2. It is {(2,4)}.
• D3: 2 loops through 2 and 4, one through 3 and 6. They are {(2,3,4), (2,6,4) }.
• D4: 2 loops through 2 and 4, one through 3 and 6. They are {(4,2,4,2), (3,4,6,2)}.
• D5: 4 loops through 2 and 4, one through 3 and 6. They are {(2,3,4,2,4), (6,2,4,2,4),

(2,4,6,2,4), (2,4,2,3,4)}.

Element (5,1) in Dk shows for which k there is a connection from input to output. The shortest
walk from input (1) to output (5) has length 3, as seen from element (5,1) in D3.

It should be noted that multiple rounds in loops are indeed part of the loop count for a
vertex as seen in the diagonal entry of the Dk matrix. �

4.5 Fault Propagation with a Closed Loop

The failure mode and effects analysis scheme for a set of components connected in
a closed logical loop is principally described as

eci ← (M f
i I) ⊗

(
f ci
eci

)
.

Looking at the logic operation of this equation, the solution is

e+
ci ←

{
M f

i ⊗ ( fci) if and only if e−
ci = “0”

“1” if and only if e−
ci = “1”,

where e−
c1 is the state prior to the calculation, e+

ci is the state resulting from the
calculation. It is seen that once triggered, the effect eci remains permanently true, also
after the fault disappears. This mechanism is a penalty of the Boolean representation
of faults and their propagation, and the price for this is to get a fast tool for a first
analysis of fault propagation.

When a closed logical loop is present, we hence need to cut an appropriate connec-
tion within the loop and investigate whether a “true” signal into the broken connection
will produce a “true” at the other end of the cut. If this is the case, the loop is a tau-
tology, a formula that is true in every interpretation, which can be eliminated. If the
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“true” in produces a “false” at the other end of the cut, the logical loop is a contra-
diction and no solution exists. We then need to define the input of the cut as a new
input in our failure mode and effects analysis description of the system, and analyse
the propagation of an imagined “fault” condition = “true” from this point.

The non-existence of a logical model for a closed loop is not equivalent to insta-
bility in the continuous model representation. The stability of a closed-loop system
cannot be determined from the properties of an over-simplified logical model of fault
propagation.

In FMEA analysis, the closed-loop problem is artificially circumvented by treating
the closed loop as a unit without feedback. The FMEA approach is hence to ignore
the feedback loop as such and consider the closed-loop operation of the component
as the functionality of the component and its’ closed-loop considered as an extended
component. Failure within the feedback loop itself is then treated by modelling this
event as a separate fault. In essence, this is exactly what is done in this Boolean
fault propagation analysis approach that was presented here. When we meet a closed
loop, analysis can be achieved by extending the system with auxiliary faults. This
technique is illustrated below.

4.5.1 Cutting the Closed Fault Propagation Loop

The existence and location of closed logical loops can be determined quite easily
with the graph-theory-based tool we presented in Sect. 4.5. The directed adjacency
matrix D and powers of D up to degree k showed which vertices of the FPA graph
are parts of closed loops, if any, and it informed on the paths from input to output.

When a logical loop cut has to be made, it should be made such that the path
from input to output is not interrupted, while cutting the relevant loop(s). The cut
is conducted by cutting an edge, defining a new input and output as needed. The
variables associated with the extra (new) input and output vertices are given by
the variables associated with the edge that was cut. Logic analysis of the system is
carried out using the new input as additional faults. The new output is observed. If the
variable (effects) at the output is identical with the input, the relation is a tautology
and can be removed from the analysis. If the result is a logic contradiction, the new
input needs to remain in the analysis, and the logical loop remains open.

In conclusion, the representation of a fault effect as a Boolean signal {0, 1} and the
fact that Boolean algebra prohibits dealing with closed-loop logic, unless the logic
signals are clocked and therefore delayed as in flip-flop circuits, is a serious obstacle
to a pure Boolean analysis of fault propagation.

Example 4.6 Ship track control - fault propagation
The propagation of faults from the track error sensor to the track controller are investigated in
this example.

Track error sensor. An analysis of the track error sensor leads to the following internal failure
modes
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• ftes,hardware: hardware fault causing abrupt fault (no output signal)

The input effects are effects from other components or external faults that are propagated to
the component. Here effects from faults in the GPS receiver are considered:

• egps,o: GPS signal offset
• egps,u: GPS signal unavailable.

The output from the track error sensor is the track error signal. The effects are track_error low
ete,l, track_error high ete,h and track_error unavailable ete,u.

⎛
⎝ete,l

ete,h
ete,u

⎞
⎠ ←

⎛
⎝ 1 1 0

1 1 0
0 0 1

⎞
⎠ ⊗

⎛
⎝ ftes,hardware

egps,o
egps,u

⎞
⎠

Track controller. One internal fault in the track controller is considered in this example:

• ftc,software: Software fault causing constant heading demand signal as output

⎛
⎜⎜⎝

eψdem,l

eψdem,h

eψdem,f

eψdem,u

⎞
⎟⎟⎠ ←

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

ftc,software
ete,l
ete,h
ete,u

⎞
⎟⎟⎠

Combining the Boolean propagation matrices for the track error sensor and the steering con-
troller leads to a description of the propagation of the combined fault vectors for the two
components to the output of the steering controller (Fig. 4.6).

M f
tes→tc =

(
M f

tc,f M tc,e ⊗ M f
tes

)

=

⎛
⎜⎜⎝

0
0
0
1

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 0
0 0 1

⎞
⎟⎟⎠ ⊗

⎛
⎝ 1 1 0

1 1 0
0 0 1

⎞
⎠

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 1 1 0
0 1 1 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠

The resulting fault propagation is then

⎛
⎜⎜⎝

eψdem,l

eψdem,h

eψdem,f

eψdem,u

⎞
⎟⎟⎠ ←

⎛
⎜⎜⎝

0 1 1 0
0 1 1 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

(
ftc,software

)
⎛
⎝ ftes,hardware

egps,o
egps,u

⎞
⎠

⎞
⎟⎟⎠ . �
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Track error
sensor

Tracking
controller

egps ete eψ

ftes ftc

Fig. 4.6 Propagation of faults through the track error sensor and track controller

4.5.2 Assessment of the Severity of the Fault Effects

The consequences of a fault are judged from the implications the end effects could
have on safety, on availability of the plant, on environment etc. A judgement of
severity should be made of the possible combination of end effects, considering end
effects that can arise from any single fault. This has as prerequisite that a single-fault
assumption is sufficient for the analysis.

If a double fault is considered, the underlying logic description of fault propagation
matrices must support such analysis.

4.5.3 Decision About Fault Handling

The implication is that an automated analysis will need to consider closed loops as
special cases. The interpretation of a closed loop in an FPA scheme is merely the
observation that closed-loop operation may amplify or attenuate the effects of a fault.
Which of the two happens depends on the dynamical properties of the control loop
and this question is outside the scope of the FPA analysis.

The component-based analysis can thus provide both a list of fault effects and
a suggestion of where in a system fault propagation can be stopped. In the design
method, it is then up to the designer to evaluate the severity of each fault effect and
determine which fault accommodation actions shall be implemented.

The question how to handle faults will be discussed in Chap. 7.

4.6 Generic Component Models

Generic component models describe the system architecture from a formal point of
view, so as to perform systematic manipulations for the purpose of fault diagnosis
and fault-tolerant-control design. Contrary to box models, which carry no informa-
tion about the component behaviour in different operating situations (normal, faulty,
different modes), generic component models describe components, which offer ser-
vices according to the current use-mode. The user may be a human operator (who

http://dx.doi.org/10.1007/978-3-662-47943-8_7
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directly accesses the component through some man–machine interface) or another
component, which accesses the services either through direct or remote connection
(as in distributed systems in which services are requested via a local area network).

A generic model of a component describes its operational mode through the
services it provides.

4.6.1 Services

From the user viewpoint, a system component provides one or several services. For
example, a level sensor provides a signal which is a one-to-one correspondence
to the level in the tank. However, the signal may be validated or not, it may be
filtered or not, the sensor might memorise the minimal (the maximal) level value
encountered on a given time window, it might provide an alarm if the level exceeds
a given threshold, etc. All these are examples of services the sensor might provide
in the normal operating mode. Other services could be provided in the installation,
initialisation, degraded operation, maintenance modes.

Input, output and procedures. A service can be described by input variables, output
variables, and some procedure which transforms the former into the latter. For exam-
ple, a tank consumes input and output mass flows, and produces a stored mass, using
an integration procedure (note that the output flow is indeed an input variable for
the integration procedure), thus providing an integration service whose behavioural
model is

ḣ(t) = qi (t) − qo(t),

where qi is mass flow in qo is mass flow out and ḣ is mass increase rate. The mea-
surement service of a sensor consumes energy from the outside world and produces
a signal which is the image of the measured variable, by means of the transducer.
The controller service of a controller consumes signals from sensors and produces
signals to actuators. It also consumes data (the set-point) that have been previously
written in the data base (using the write service).

Requests and enabling conditions. Services may be provided unconditionally or on
specific request. For example, the integration service is systematically provided by a
tank (no special request is necessary), at any time and whatever the values of the input
and output as long as the tank level is within its rated capacity (no activation condition
is needed). A sensor connected on some input port of a microprocessor system would
provide the measurement service on a read request, which would be associated with
some specific clock signal (the activation condition) issued to the analog to digital
converter. A new set-point would be entered in the regulator memory on a specific
write request from the human operator (again the request would be associated with an
activation condition). The distinction between a request and an activation condition
is that the request for a service is issued by the user, while the activation condition
is processed by the component.
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Resources. The normal running of a service needs some hardware resources. The tank
is obviously necessary for the integration service to be performed. The transducer,
filter, analog to digital converter, power supply and amplifier are necessary for the
sensor to perform the measurement service. The microprocessor system is needed
by the controller to provide the regulation service.

Summarising the preceding description under a formal model, a service is a 6-
tuple:

<consumed variables, produced variables, procedure, request, activation condi-
tion, resources>.

As a consequence, a component is viewed as the set of services it can provide to
the users, thus leading to the component model

S(k) = {si (k), i ∈ Is(k)} (4.2)

si (k) = {
consi (k), prodi (k), proci (k), rqsti (k), activei (k), resi (k)

}
, (4.3)

where S(k) is the set of services of component k, Is is the set of the indices of the
possible services, and the other notations are straightforward.

Modes of operation. Obviously, not all the services provided by a component can
be requested at any time during the system’s life. A system generally goes through
different operating modes, each with its set of prerequisites to function. For example,
a request for the level control service from the controller of the single-tank system
is denied: when the set-point has not been written (this calls for some initialisation
mode); when the tank is empty (during a no-operation mode); when it is emptying
during a cleaning mode.

For that reason, definition (4.2) is further extended, by adding some organising
structure on the set of services. Normal operating modes are called use-modes. They
provide the formal model of the structure of the set of services.

Definition 4.7 (Use-mode (UM)) A use-mode is a subset of services of a component.
The set of use-modes covers the set of services, i.e. each service belongs at least to
one use-mode, and each use-mode contains at least one service.

Let M(k) = {mi (k), i ∈ Im(k)} be the set of use-modes of component k and
Si (k) ⊆ S(k) be the services available in mode mi (k). Note that the formal defi-
nition of a use-mode does not tell which subsets of services have to be selected to
form consistent use-modes. This matter is left to the design engineer, who indeed
must group into use-modes subsets of services which are consistent in some given
operation frame. In the single-tank system, the six possible use-modes are Filling
the tank, Processing batch, No operation etc.
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4.6.2 Introduction of the Generic Component Model

The consequence of the use-mode definition is that the component model must now
include a (higher) level description, which models the component possible transitions
from one use-mode to another one, and the conditions under which these transitions
take place. Indeed, at any time t, the component is in one and only one use-mode,
a discrete-event system behaviour which is easily modelled using a deterministic
automaton (see Sect. 3.4. for an extensive presentation of discrete-event models).
Note also that in order to obtain transitions between use-modes, it is necessary to
add new services to S(k). In the controller example, three possible use-modes and
the corresponding list of services could be the following:

No-operation : m1={set_mode_m2, set_mode_m3}
Initialise : m2={enter_set-point, display_set-point,

set_mode_m1, set_mode_m3}
In-control : m3={read_set-point, calculate_control_signal,

set_mode_m1}.

Taking into account the services and their organisation into use-modes, the generic
model of a component is now defined.

Definition 4.8 (Generic component model) A system component is defined by the
following formal model1:

< component k >::=< state transition graph G(M(k), τ (k), m0(k)) >

< M(k) >::=< set of use-modes {mi (k), i ∈ Im(k)} >

< τ (k) >::=< set of transitions
{
τij(k), i, j ∈ Im(k)

}
>

< m0(k) >::=< initial use-mode >

< use-mode mi (k) >::=< set of services Si (k) ⊆ S(k) >

< service sl(k) >::=< pre-ordered versions{
s j

l (k), j ∈ J (sl(k))
}

>

< version s j
l (k) >::=< consumed vars cons j

l (k),

produced vars prodl(k),

procedures proc j
l (k), request rqstl(k),

activation cond. activ j
l (k),

hardware and software resources res j
l (k) >

< transition τij(k) >::=< condition cij(k), origin mi (k),

destination m j (k) >.

This definition will be extended later.

1The notion of versions has been introduced in Sect. 3.2 and will be elaborated in more detail in
Sect. 4.6.4.

http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_3
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4.6.3 Simple Components

A simple component is described by the services offered and its use-mode automaton.
A component is considered simple when it has no internal means to change the
services it provides. Simple components are typically without build-in computational
means. Two examples of an actuator and a sensor are treated below.

Actuator for flow control. Flow control is the most widespread actuator function
in machinery systems. It is used where a shut-off of a pipe connection is needed,
where the flow of a medium is to be controlled, and where control loops manipulate
a flow of a liquid in order to change a temperature. Flow control can be open/closed,
variable throughput, or redirection of flow from one pipe into two (three-way valves).

The actuator system consists of a three-way valve. It has a common port and two
other ports, referred to as A and B. The rotor position determines the opening area
between the common port and ports A and B. The valve distributes the flow between
ports A and B. The distribution is controlled by the rotor angle. An electro-mechanical
device is attached to the valve to control the rotor position.

The electro-mechanical valve actuator consists of a motor and a gear. The rotor
position is changed by running the motor in clockwise or counter-clockwise direc-
tions. The motor can be in one of the following states: stopped, rotation clockwise,
or rotation counter-clockwise.

The state is controlled by activation of two relay contacts. They are denoted
“open” and “close”, respectively. A potentiometer is used to measure the actual
rotor position. Figure 4.7 shows the principle in the actuator operation and electrical
connections.

Limit switches on the rotor provide indication of rotor end positions and provide
overload protection by preventing the motor to turn further in the direction of which
the limit switch has been activated.

The service provided by the flow control valve is described by the six-tuple:

Motor

Limit Switches (LS)

Potentiometer

A
C

B

AC

a
Close

Open

b

Computer
Digital Output Relay

LS b

LS a

Fig. 4.7 Operation of three-way valve actuator with relay-operated induction motor. (Abbrevia-
tions: o open, c close, LS Limit switch, AC Alternating Current)
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< consumed variables > ::=< open, close, in_limit >,

< produced variables > ::=< angle of output shaft, measured angle,
in_limit >,

< procedure > ::=< angle = ∫
up · dt − ∫

down · dt >,

< request > ::=< none >,

< activation condition > ::=< 220 V present >,

< resources > ::=< pot. meter, limit switches, controller,
geared motor >.

The produced variable is the angle of output shaft, which influences the flow.
Various faults can cause the flow to differ from the expected or desired value. The
following table summarises various faults that can cause such a deviation.

Component/ Flow too low Flow not rela- Fluctuating Flow too

Effect ted to control flow high output

angle

Pipe broken, Pipe clogged, Setpoint fluc- Too high in-

setpoint low, pipe leak tuating put flow, set-

power low point high

Fault Pipe clogged Pipe A or B

broken,

clogged or

leak

Damage, wear Hysteresis Damage, wear

Potentiometer. A potentiometer changes the position of contact between a resistance
element and a wiper when the turning angle is changed. The potentiometer can be
considered a voltage divider with a division ratio that is a function of the turning
angle. Figure 4.8 shows the typical connection diagram.

Component/ Signal too Not related to Fluctuating Signal too

Effect low angle signal high

Broken wire Loss of supply Vibration Broken wire

at A, short at A, short-

at A-B circuit A-C

Fault Short B-C Broken wire loose conec-

at C tion

Stuck, shaft Wiper fault

or element

broken



4.6 Generic Component Models 103

A

V

V

B

C

Potentiometer

a

b

iF

c

Wirering ISC

Fig. 4.8 Electrical diagram of potentiometer and computer interface to enable fault detection at
the single sensor level

The service provided by the potentiometer as a sensor is an electrical signal propor-
tional to the physical angle of rotation. Several faults will cause loss of this service.
Short-circuit of any terminal to supply or to ground, or arbitrary wire disconnection
are common events to cause component faults.

4.6.4 Complex Components

From a formal point of view, a component is a set of services. The consideration of
aggregated, complex components leads to extend this description to the consideration
of fault-tolerance capabilities.
Versions of services. Let si (k) be a service provided by component k, and suppose
that embedded fault tolerance is available. This means that the service si (k) would
not be interrupted even if the resources it needs were no longer available. This is
only possible if it exists within component k under several versions, namely si (k) ={

s j
i (k), j ∈ J (si (k))

}
where s j

i (k) is the j th version of service si (k).

From this extension, definition (4.2) can now be stated as:

S(k) = {si (k), i ∈ Is(k)}
si (k) =

{
s j

i (k), j ∈ J (si (k))
}

,
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where each version s j
i (k) of service si (k) is a 6-tuple like (4.3), which can be used

indifferently for the same purpose.

Versions pre-ordering. Designing the activation conditions of service versions rests
on the definition of a pre-ordering. The versions of a service are separated into classes
such that a service in class l is preferred to a service in class m if and only if l < m.
For example, some versions might be more precise, faster, less consuming, etc. than
others.

The design of the activation conditions is then straightforward: at time t when
the request for service si (k) is issued (or at any time if no request is necessary),
the version which is to be run is the lowest rank one whose resources are all non-
faulty. Two services in the same class are not ranked, which means that the choice is
indifferent. Thus the activation conditions of each version can be chosen arbitrarily,
provided they are mutually exclusive. Two examples of commonly used strategies
are as follows:

1. Give an arbitrary preference order. Use version 1 as long as its resources are not
faulty. Move to version 2 should version 1 fail.

2. Use the preceding scheme but regularly change the service ranking (e.g. in a
circular way) so as to distribute the operation equally over time of the different
versions.

A simple example of versions ranking is given by the measurement service of a
sensor which includes two redundant transducers to measure the same variable. Let

Rate
sensor

Tracking
controller

Heading
sensor

Speed
sensor

Position
sensor

Heading
controller

Rudder
actuator

Ship
dynamics

Fig. 4.9 Fault propagation in the ship steering problem
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y1(t) = x(t) + ε1(t), ε(t) ∼ N (0, σ1)

y2(t) = x(t) + ε2(t), ε(t) ∼ N (0, σ2)

be the two measurement equations, with σ2 > σ1. The following table gives the
different versions of the measurement service which are provided by this (intelligent)
sensor, along with their ranking.

Class Procedure Fault situation

0 y(t) = 1
σ1+σ2

[σ2y1 (t) + σ1y2 (t)] No fault

1 y(t) = y1(t) Transducer 2 faulty

2 y(t) = y2(t) Transducer 1 faulty

Example 4.7 Component analysis of ship track control
To illustrate the component analysis, it will be applied to the ship steering example introduced
in Sect. 2.3 (Fig. 4.9). The subcomponents of the ship steering controller are as follows:

• Rate sensor (rate gyro),
• Heading sensor assembly (gyro compass),
• Track error sensor (Navigation computer with GPS input),
• Speed sensor (ship’s log),
• Track control algorithm (software), and
• Heading control algorithm (software).

Ship steering controller. The ship steering controller has the following use-modes:

UM 0: No operation,
UM 1: Hand steering,
UM 2: Heading control mode, and
UM 3: Tracking control mode.

For each use-mode, a set of services are offered to the user (person or other subsystem)

s(0) = < set_track; set_heading >

s(1) = < set_track; set_heading >

s(2) = < set_track; set_heading; keep_heading >

s(3) = < set_track; keep_track >.

The keep_heading service calculates the necessary rudder action in order to maintain the
heading of the ship based on the measured rate and heading. The service can be defined as

keep_heading = < ψ, ψref , ωm >;
< δ >;
< heading controller >;
< ψref defined >;
< none >;
< Gyro, rate sensor >.

The keep_track service calculates the necessary heading in order to maintain the track of the
ship based on the measured rate, heading and position. The service can be defined as

http://dx.doi.org/10.1007/978-3-662-47943-8_2
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keep_track = < track_error e, track, ship speed v1 >;
< ψref >;
< track controller >;
< track, reference defined >;
< none >;
< Gyro, rate sensor, speed sensor >.

The set_track service prompts the user to input waypoints for the desired track:

set_track = < waypoints >;
< track >;
< track planner >;
< user input >;
< none >;
< electronic seamap >.

The set_heading service prompts the user to set a desired heading:

set_heading = < ψin >;
< ψref >;
< ψref = ψin >;
< user input >;
< none >;
< none >.

In the above service definitions, some resources are not considered, for example electrical
power. �

4.6.5 Building Systems from Components

Systems are built from the interconnection of different components. Components are
interconnected because the services delivered by some of them consume variables
which are produced by services of others. The measurement service of a sensor,
for example, consumes variables produced by the environment of the system, and
produces variables which are consumed by the regulation service of the regulator,
which in turn produces variables which are consumed by the power modulation
service of the actuator.

In the generic model approach, interconnections are taken into account by consid-
ering higher-level components which are composed of lower level ones. Therefore,
systems are built following a bottom-up approach.

Indeed, system architectures can be described at different hierarchical levels. Sen-
sors, actuators, process components are at the field-level. Higher-level components
can be built from the aggregation of lower level ones at any hierarchical level. For
example, the aggregation of a tank, an input valve, an output pipe, a level sensor and
a regulator (with consistent connections between them) is a high-level component,
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the “single-tank system”. Whatever the component level, its generic model can be
built defining its use-mode automaton, and the services which are available in each
use-mode. Aggregation procedures have to be defined in order to build the generic
model of high-level components from the generic models of the low-level compo-
nents they are composed of. High-level services allow to fulfil the system mission,
and the analysis of the overall system fault tolerance can be based on the search of
the existence of different versions of high-level services.

Aggregation of operation modes. The generic model of a component is first given
by its use-mode automaton. In each use-mode, the component is able to perform a set
of services (each of them under a variety of versions) in order to achieve some pre-
specified objective. Recall that the use-mode automaton which describes a compo-
nent is a graph A(M, τ , m0). Let A(M(k), τ (k), m0(k)) and A(M(l), τ (l), m0(l))
be the deterministic automata associated with two components k and l, and let
kl be a higher-level component, which aggregates these two ones. The automa-
ton A(M(kl), τ (kl), m0(kl)) associated with the component kl is obviously con-
tained in the asynchronous product of the two automata A(M(k), τ (k), m0(k)) and
A(M(l), τ (l), m0(l)):

• M(kl) ⊆ M(k) × M(l)
• τ (kl) ⊆ τ (k) ∪ τ (l)
• m0(kl) = (

m0(k), m0(l)
)

Let (α, β) = μ ∈ M(k) × M(l). This means that the mode μ of the high-level
device kl is defined as component k being in mode α and component l being in mode
β. Since not every such association is meaningful, the set of modes M(kl) has to be
selected by the designer, by eliminating from M(k) × M(l) the non-significant or
non-allowed associations.

Example 4.8 Temperature controller
Consider a temperature controller as a high-level component, obtained by the aggregation of
three low-level ones, namely a temperature sensor, a PI regulator, and a heating valve. The
use-modes of the low-level components are as follows:

Sensor: {off, calibration, automatic}
Regulator: {off, on }
Valve:{off, manual, automatic},

where the calibration mode of the sensor and the manual mode of the valve are used for
maintenance operations. Then, the asynchronous product of the three use-mode automata
gives 18 compound modes. Many combinations are inconsistent, e.g. (off, on, manual) or
(calibration, on, automatic), leaving only three consistent modes to describe the tempera-
ture controller device. The three use-modes of the high-level component are, therefore, {off,
maintenance, automatic}, and they are defined as follows from the use-modes of the low-level
components:

off = (off, off, off)

maintenance = (calibration, off, off) ∨ (calibration, off, manual)

∨(off, off, manual)

automatic = (automatic, on, automatic). �
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Aggregation of services. Let S(k) and S(l) be the services offered by two low-level
components k and l, and let us consider the high-level component kl which is their
aggregation. Let (α, β) = μ ∈ M(kl) be a consistent use-mode, then any combi-
nation of the services Sα(k) (available when component k is in mode α) and Sβ(l)
(available when component l is in mode β) can be used. In other words, any program
using the services of Sα(k) and Sβ(k) as instructions can be a service available in
the mode μ. Again, every combination is not consistent, and only programs with
functional interpretations in the application framework are to be considered.

Example 4.8 (cont.) Temperature controller
The following program defines a high-level service, available in the automatic mode of the
temperature controller component:

Regulation service:
Repeat,

Request the measurement service of the sensor,
Request the calculation service of the regulator,
Request the actuation service of the valve,

Until end of the regulation service.

Note that if the measurement service of the sensor is available under three versions, the
calculation service under two versions, and the actuation service under two versions, then the
regulation service is available under twelve versions. �

Hierarchical levels. System architectures can be described at different hierarchical
levels. Sensors, actuators, process components are at the field-level (they exchange
data at fieldbus level). Higher-level components can be built from the aggregation of
lower level ones at any hierarchical level. For example, the aggregation of a tank, an
input valve, an output pipe, a level sensor and a controller (with consistent connec-
tions between them) is a high-level component which can be named the single-tank
subsystem. Whatever the component level, its generic model can be built defining
its use-mode automaton, and the services which are available in each use-mode.
Aggregation procedures have to be defined in order to build the generic model of
higher-level components from the generic models of lower level components. High-
level services enable fulfilment of the system mission, and the analysis of the overall
system fault tolerance can be based on the search of the existence of different versions
of high-level services.

4.7 Fault-Tolerance Analysis

Fault tolerance is defined as the possibility of achieving a given (set of) objective(s)
in the presence of a given (set of) fault(s). In the generic model, objectives and
services are associated with each use-mode. Thus, the system is fault tolerant in the
current use-mode as long as services which allow to achieve the current objectives
are available in this use-mode.

Therefore, the analysis of fault tolerance rests on three points.
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1. Are there services which allow to achieve the current objectives?
2. How are these services to be managed when faults occur?
3. How are the use-modes to be managed when faults occur?

4.7.1 Relation Between Services and Objectives

The generic component model describes the normal behaviour of the system com-
ponents, at any hierarchical level, since high-level components are built, following
a bottom-up approach, from the aggregation of low-level ones.

At the highest hierarchical level, the system itself is modelled as a single com-
ponent, which aggregates all the elementary components, and whose services corre-
spond to the missions or objectives that it has to achieve. Different aggregation paths
can be followed between the field-level (associated with elementary components)
and the system level. A natural way of building the bottom-up aggregation proce-
dure is to make use of the intuitive decomposition of the system into subsystems
whose functions (and services) can be clearly defined.

System pyramidal decomposition. Hierarchical decomposition splits a system into
a set of subsystems, which can themselves be further decomposed, each subsystem
being associated with a clear functional viewpoint. For example, a chemical process
can be decomposed into

• a subsystem which aims at controlling the pH,
• a subsystem which aims at controlling the level, and
• a subsystem which aims at controlling the temperature.

The pH control subsystem may be further decomposed into the valve controlling the
acid inflow, the valve controlling the base inflow and the stirr motor.

Since some components may belong to several subsystems, it is convenient to
use a pyramidal decomposition (Fig. 4.10) whose number of levels is decided by the
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Fig. 4.10 Aggregation of low-level components into high-level ones
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designer so as to obtain the view of the system which suits him best. Let l = 1 be
the lowest decomposition level (the level of the field components) and l = n be the
highest decomposition level (the level of the system itself).

In a pyramidal decomposition, the following properties hold (l ≥ 2):

• Each component of level l − 1 belongs to at least one component of level l.
• Any component of level l includes at least one component of level l − 1.

High-level services. Let Cl be the set of components modelled at level l, (l =
1, . . . , n), and let c ∈ Cl and γ ∈ Cl−1 (l ≥ 2). Remember that the services of
high-level components are behaviours which use the services of the low-level com-
ponents they aggregate. Of course, not any combination of low-level services makes
sense, and it is necessary, for the subsystems of the pyramidal decomposition to be
consistent, that component γ ∈ Cl−1 is included in component c ∈ Cl only if at least
one service of component γ is used in at least one program which defines a service
of component c associated with a known functional interpretation. Indeed, associat-
ing elementary services to define a high-level service is always realised to answer a
functional requirement of the application. The system pyramidal decomposition is
in this case, a real help define high-level services from low-level ones.

Let S(γ) be the services offered by a component γ ∈ Cl−1 and let c ∈ Cl be the
aggregation of a set Γ of such components. Let

cons (c) = ∪γ∈Γ ∪s∈S(γ) cons (s)

prod (c) = ∪γ∈Γ ∪s∈S(γ) prod (s).

Note that cons(c)∩prod(c) may be non-empty, since some components in Γ may
consume variables produced by some other ones. Note also that any relation between
a subset of variables of cons(c) and a subset of variables of prod(c) can be obtained
as the result of a program using the services of ∪γ∈Γ S(γ). If there exists such a
relation which makes sense from a functional point of view in the system, then the
subsystem c ∈ Cl can be created at level l and the procedure which establishes such
a relation can be defined as a service of the aggregated component c. Note finally that
there might exist several subsets of components in Γ and several procedures which
establish the same relation between the above mentioned variables. Then, the service
exists under several versions. The set of all the versions of a service which can be
obtained by aggregation of lower level ones can be found in a rather automated way,
for simple kinds of programs composed of sequences and parallel executions.

Once the services of the subsystems have been determined at any level (including
the overall system level), the ordering of the versions is left to the designer.

Example 4.9 High-level regulation service
Consider the three following low-level components:

• γ1 is the temperature sensor, whose measurement service is defined by

< θ, θ̂, f1, rqst1, enable1, res1 >
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where θ is the actual temperature, θ̂ is its estimate provided by the sensor, f1 is the procedure
which is used to produce the estimate: θ̂ = f1(θ). The request, enabling conditions and
resources are not of interest here.

• γ2 is the controller, whose computation service is defined by

< (θ̂, θ∗), u, f2, rqst2, enable2, res2 >

where θ∗ is the temperature set-point, u is the control signal, and f2 is the procedure which
is used to produce the control signal: u = f2(θ̂, θ∗).

• γ3 is the actuator, whose heating service is defined by

< u, π, f3, rqst3, enable3, res3 >

where u is the control signal, π is the delivered heating power, and f3 is the procedure
which is used to produce the heating power: π = f3(u).

Considering the set Γ = {γ1, γ2, γ3} as a candidate for aggregation into one higher-level

component c, the above sets are cons (c) =
{
θ, θ̂, θ∗, u

}
and prod (c) =

{
θ̂, u, π

}
, from

which it is seen that the simple program sequence “measure, compute, actuate” can provide a
relation between θ, θ∗ and π, whose functional interpretation is of course that of a “regulation”
service.

Moreover, note that if the measurement service is provided e.g. under four versions (as
in the following example), and the heating service is provided under two versions, then the
regulation service is provided under eight different versions. �

4.7.2 Management of Service Versions

Consider a service s at the system level. It is a set of pre-ordered versions s ={
s j , j ∈ J (s)

}
. Each version can be used for the same purpose, namely to achieve the

system objective(s) in a given use-mode, but the pre-ordering expresses a preference
between them.

Two conditions have to be fulfilled for service versions to be enabled at some given
time. First, the service must belong to the list of services of the current use-mode.
This is a straightforward condition, which insures that only services consistent with
the current objectives can be run.

The second condition is related with faults. Suppose that some resource from
the set res j is detected faulty by the fault diagnosis procedure at time t . Then,
obviously, running the version s j of the service s would produce incorrect values of
the variables prod, and this should be forbidden, putting enable j = 0. Note that this
might be impossible, since faults might have ever-lasting delivery of some service
as a consequence.
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Example 4.10 Unavailable and ever-lasting services
Let V _open and V _close be two services delivered by an on/off valve, and suppose that the
valve is blocked closed. Then, the service V _open becomes unavailable while the service
V _close is permanent in time. �

Thus, the consequence of faults is that some services become permanent in time,
while some others exist under a number of available versions which depend on the
remaining, non-faulty resources. The status of these service obviously depends on
the number of available versions, according to the following classification:

• at least one version is available: the service is available,
• no version is available: the service is unavailable.

Note that when more than one version is available, the lowest rank version of the
service (which is the most preferred among the available ones) is to be run when the
service is requested. Note also that the severity of the failure of a given resource with
respect to the service can be evaluated by counting the number of versions which
still are available after the failure has occurred. A resource for which this number
is zero, or whose failure causes the service to run permanently in time is called a
critical resource.

Example 4.11 Management of service versions in an intelligent sensor
Consider again the measurement service of the temperature sensor and suppose that it includes
two redundant transducers and an observer. Let

y1(t) = x(t) + ε1(t), ε1(t) ∼ N (0, σ1)

y2(t) = x(t) + ε2(t), ε2(t) ∼ N (0, σ2)

be the two local measurement equations, and

ŷ(t) = f (z1(t), z2(t))

be the observer algorithm, where z1(t), z2(t) are remote measurements obtained from a local
area network communication (LAN) system. The following table gives the different versions
of the measurement service which are provided by this sensor, along with their ranking.

Class Procedure Faultsituation

0 y (t) = 1
σ1+σ2(σ2y1(t) + σ1y2(t)) no fault

1 y (t) = y1(t) T1 ok., T2 faulty, A/D ok.

1 y (t) = y2(t) T2 ok., T1 faulty, A/D ok.
2 y (t) = y (t) T1 and T2 or A/D faulty, LAN ok.ˆ

Suppose that the measurement request is issued by the system clock according to some sam-
pling period, and that the measurement service is consistent with the current use-mode. Then,
it will be provided under version 0 if both transducers are operating well, and under version 1 in
the presence of a single transducer fault (note that the two versions 1 are mutually exclusive,
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so that no conflict is possible). If the local Analog to Digital Converter (ADC) fails, version 2
can still be used, and the service will become unavailable only when local measurements and
fieldbus communication will be all faulty. Remind that the local ADC was a critical resource
when no observer was included in the sensor. Note also that version 2 of the measurement ser-
vice might be much more unprecise than versions 0 and 1, thus the service would be degraded
when this version is used. However, it would still be acceptable, otherwise version 2 should
never have been included in the list of versions by the design engineer. �

4.7.3 Management of Operation Modes

Remember that the set of services is organised into use-modes, whose behaviour is
described by a deterministic automaton. Let A(M, τ , m0) be the use-mode automa-
ton at the system level

• M = {mi , i ∈ Im} is the set of the use-modes. Remember that each of these modes
mi is associated with the set of the services Si ⊆ S by which it is defined,

• τ = {
τij, i, j ∈ Im

}
is the set of transitions,

• m0 is the initial use-mode.

Critical services. In this chapter, use-modes have been further associated with objec-
tives which have to be fulfilled thanks to those services. Let Oi be a set of objectives
associated with use-mode mi . As long as the set of services Si ⊆ S associated
with mi are available, the objectives Oi can obviously be achieved (otherwise, the
component would be inconsistently designed). Note that this is true, by definition,
whatever the version of the service. Versions of high rank provide degraded service,
thus achieving the objective in a degraded but still acceptable manner. If not, the
versions of that rank should not have been included in the list of possible versions
of the service.

Suppose now that some fault has occurred such that some services of Si become
unavailable or run permanently. Then some objectives of Oi might become impos-
sible to achieve. Let critical services be services whose unavailability or permanent
running implies that at least one objective of the mode to which they belong can-
not be achieved. Then, the A(M, τ , m0) automaton model is extended as follows:
M = {mi , i ∈ Im} is the set of the use-modes. Each mode mi is associated with the
set of objectives Oi and the set of the services Si ⊆ S which is decomposed into
Si = Sc

i ∪ Snc
i , where Sc

i are the critical and Snc
i are the uncritical ones.

Example 4.12 Critical service in the single-tank system
Consider the single-tank system given in the introduction, used in a food industry batch
production process, and suppose the current use-mode is UM2: processing the batch. In that
use-mode, the system objective is to regulate the temperature, and the regulation service is
thus a critical resource, since UM2 objective cannot be achieved if this service is lost. �

Staying in a mode. Consider the system operation in a given current use-mode,
and suppose that faults occur which cause the loss or permanent running of services
(remember that as long as at least one service version is available, the service is
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not lost). When non-critical services are lost or run permanently, the system can
obviously remain in the current use-mode, since this use-mode objectives can still
be achieved—eventually in a degraded manner—and thus the system is fault tolerant
with respect to the current objectives and the current fault situation.

On the contrary, when critical services of the current use-mode are lost or run per-
manently, the objectives associated with that use-mode can no longer be achieved,
and the system is to be given other objectives. This strategy is called an objective
reconfiguration strategy. The only way it can be implemented is by firing a transi-
tion towards another use-mode, whose objectives will become the current ones (for
example change the production recipe, or stop the production and transfer the system
to a safe state, in which maintenance can be undertaken).

In general, several other use-modes can be reached from the current one, and the
choice of the destination use-mode (i.e. of the new system objectives) is a difficult
decision problem, which has to be considered in the system design stage. Unless the
system objectives can be ranked according to a total ordering relation, the solution to
that problem can in general only be partially automated, thus leaving a very important
role to human operators in fault situations.

Transitions between modes. When objective reconfiguration is necessary, the sys-
tem is commanded to another use-mode whose objectives will become the new ones.
The system should, obviously, be able to achieve these new objectives, which means
that in the destination use-mode, no critical service is unavailable nor is permanently
running as a result of the current fault situation.

This remark is also valid when the transition does not follow from an objective
reconfiguration strategy but from the normal operation of the system.

4.8 Exercises

Exercise 4.1 Fault propagation analysis for industrial actuator
Consider the component block diagram of the position servo shown in Fig. 4.11. The blocks
in the figure are motor, amplifier, controller, potentiometer, gear and reference.

1. Construct a fault propagation matrix Mp for the potentiometer (use the FMEA matrix
from p. 102). Use angle as input and voltage vC at terminal C as output. Consider only
the fault f p1, which indicates the broken wire at C.

2. Using the above figure, define the component architecture in form of the directed adja-
cency matrix D.

3. Determine which node is an input node from the adjacency matrix.
4. Determine the number of closed loops and the length of these.
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Amplifier Motor
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Gear Potentio-
meter

nmicom

vC

Fig. 4.11 Component diagram for speed loop part of the industrial actuator

The combined fault propagation matrix for motor and amplifier is defined by input and
internal faults:

fa1 low gain in amplifier
fm1 brush partial disconnect
ea1 low input command
ea2 high input command
ea3 fluctuating input command

output:

en1 low output speed
en2 high output command
en3 fluctuating output speed
en4 output speed not related to input command

Mam =

⎛
⎜⎜⎝

1 1 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 0 0 0

⎞
⎟⎟⎠ .

Without further explanation, assume that the gear has the propagation matrix

Mg =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

5. Determine the fault propagation from icom to θm , using Mam, Mg and Mp.

6. Compute the inverse fault propagation matrix, i.e. observe the end effects on θm and see
which faults or input effects could cause the end effects. �
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Exercise 4.2 Component-based analysis of battery charger
A battery charger component diagram is given as shown in Fig. 4.12. The behaviours of the
individual components are not known in detail but are given as

Power stage mean current: I = d · max(Vsup − Vbat, 0)

Current control: d = fi (Icom − Imes)

Voltage control: Icom = fv(Vref − Vmes)

Current sensor: Imes = I
Voltage sensor: Vmes = Vbat
Harness: Ibat = I

Battery voltage: Vbat = αbat
Cbat

t∫
0

Ibat(t) dt, αbat � 0.7.

(4.4)

1. Define one fault for each of the components: PWM converter, controller block (current
and voltage control), current sensor, voltage sensor. Assume that the supply voltage and
battery cannot fail.

2. Determine the fault propagation matrices for these components.
3. Determine the closed logical loops in the battery charger.
4. Cut the loop at the signal dcom and determine whether the logical loop has a solution. If

not, define dcom as an ancillary input.
5. Determine the end effects (on Ibat and Vbat) for the faults you defined.
6. Express the inverse propagation and list the end effects.
7. Suggest how a fault in the current sensor could be accommodated. �

Duty-cycle
control

Battery

Voltage
regulator

Icom

Vsup

VbatA/D A/D

Ibat

Vref

dcom

Imes
Vmes

Current
regulator

VI

Fig. 4.12 Component diagram of battery charger
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4.9 Bibliographical Notes

Architecture models. Basic bibliographical notes on architecture and generic com-
ponent models were given in Chap. 2. With the purpose of describing complex inter-
connected systems, modelling extensions have been suggested in form of a bottom-
up procedure, which allows to describe high-level devices by the interconnection of
low-level ones, see [49, 50].

Generic component models. A semantics for services based on generic component
models was developed in [324] where a graphic analysis was found to be very useful.
A review of the use of graphical methods was provided in [47].

Failure modes and effects analysis. FMEA is a classical and widely used tool
in industry [147]. Presentation of a matrix formulation suited for computational
treatment of FMEA schemes was first presented by [192]. The fault propagation
analysis was proposed in [22] and further elaborated in [42].

Fault reasoning and data validation. Reasoning and detection of faults, and hierar-
chical data validation was introduced in [14], while alarm filtering applications were
considered in [258]. Systematic analysis of fault propagation [22, 42] was shown to
be an essential tool for determination of severity of fault effects and for assessment
of remedial actions early in the design phase. Reference [72] presented a compre-
hensive diagnosis methodology for complex hybrid systems and an application to
aircraft power generator diagnosis was included in [358].

Fault tolerance. The analysis of fault propagation has also penetrated to design
of industrial systems, Fault-tolerant steering by wire was obtained in [35] and a
fault-tolerant three-phase speed drive for AC motors was described in [118].

Distributed systems. Fault tolerance in distributed systems has mainly been based on
modular models [165]. The generic component model was used for defining the faulty
resources management and the mode management layers [120]. Reconfigurability
analysis was developed more recently [121]. Important application areas is prognosis
and health management and an application for a distributed medical equipment a
distributed concept was illustrated in [102].

Other applications and trends. Consequences of faults and how faults propagate
attain continuous attention and documentation of fault effects properties are manda-
tory in product development in many areas. Transportation systems are among those
expected and required by society to be safe. In these and many other systems, the
complexity is an obstacle when attempting to conduct covering assessments. The
complexity of computer-based safety systems was considered in [271], where a new
method was proposed for joint design optimization and engineering failure analysis.
The criticality of component failures in the petrochemical processes were treated in
[136].

Software. All major functionalities in automation systems depend on software imple-
mentation and computer hardware. The complexity of software is immense and

http://dx.doi.org/10.1007/978-3-662-47943-8_2
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analysis of failure modes and of fault propagation in software is a discipline in itself,
which is not within the scope of the present text. Nevertheless it could be mentioned
that [135] analysed and experimented with software fault injection aiming at FMEA.
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