
Chapter 2
Examples

Abstract This chapter illustrates the main problems of diagnosis and fault-tolerant
control by means of three examples, which will be used later in the text.

2.1 Two-Tank System

Description of the system. As the first example, consider the two-tank system de-
picted in Fig. 2.1. The pump causes a liquid flow qP into Tank 1 where the input u(t)
describes the pump velocity. u is determined by a security switch-off, which prevents
an overflow of Tank 1. The inputs to the tank system prescribe the valve positions Va
and V12. The only measured signal is the outflow qM. Hence, the tank system results
in the simple block diagram shown in Fig. 2.2.

In the faultless case, the valve Va is closed and the valve V12 is used to control the
level of Tank 2. Only in case of a valve fault, the upper pipe is used for this purpose.

The control aim results from the requirement of a batch process, in which the
outflow of Tank 2 is used in succeeding parts of cascaded vessels and reactors. The
valve V12 is used to fill and refill Tank 2 accordingly, where Tank 1 is a storage tank,
which is to be filled to the height hmax, at which the security switch-off stops the
pump.

Faults. Two faults are considered. First, a leakage in Tank 1 may occur, which
causes the additional flow qL out of Tank 1. The “size” of the leakage is given by
the parameter cL (Table 2.1). The different approaches to fault diagnosis presented
in the following chapters use this two-tank example with different notions of this
fault. Either a parametric fault is considered where cL denotes the fault size to be
identified or a symbolic fault f is used which represents the faulty situation with the
outflow qL = cL

√
h1 out of Tank 1 where cL is the parameter given in Table 2.1.

The second fault is a blockage of the valve V12 in the closed position. This fault
can be modelled by setting the valve constant c12 to zero.
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The example is used for illustrating the following diagnostic and fault-tolerant
control problems:

• Fault detection: Determine whether a fault has occurred. The valve fault can be
detected due to the decreasing outflow from Tank 2, which eventually vanishes.
For the leakage the problem is more involved because neither the inflow qP nor
the level h1 is assumed to be measured. Hence, the stationary outflow from Tank 2
is the same as before and the leakage and the fault can only be found by small dy-
namical effects that are “visible” in the outflow measurement just after the leakage
occurs.

• Fault isolation: Determine which part of the system is faulty.

• Fault identification: Determine the size of the leakage.

• Fault accommodation: Design a fault-tolerant level controller that maintains the
liquid level in Tank 1 at a given set-point independently of whether the leakage is
present or not.

• Control reconfiguration: In case of the valve fault, the auxiliary valve Va has to
be used. The reconfiguration problem includes to automatically find that switching
to the second pipe is the strategy to apply.
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These problems are considered under different circumstances where the tank levels
or the outflow from Tank 2 are measured numerically or in a quantised way. Therefore,
different models are appropriate to describe the tank system and different methods
have to be used to solve the diagnostic problem.

For this simple example, it is obvious under what conditions and how the given
problems can be solved. If the pump is controlled according to level measurement
h1, a static tank level will be reached. However, the leakage can only be found if the
dynamical changes of the tank levels or of the outflow from Tank 2 are taken into
account, because the pump is assumed to be strong enough to maintain the level of
Tank 1 at the prescribed value even in case of the leakage. Hence, the system has the
same static behaviour with and without the fault.

The diagnostic result will certainly be different if the outflow is the only mea-
surement compared with the case in which all tank levels are measured. Also, the
diagnostic problem becomes more difficult if instead of the numerical values of the
tank levels only quantised measurements are possible.

If qP is an additional measurement, the fault can be detected by comparing the mean
value of qP with its nominal value. If this value is increased, more liquid flows out of
Tank 1 which under the given circumstances can only occur if the tank has a leakage.

The fault-tolerant controller is simply found as a PI-feedback of the tank level h1
towards the pump velocity uP. For reasonable leakages (reasonable values of qL) the
controller is able to hold the level at the prescribed value even if the fault occurs.

Model of the tank system. The two tanks have the liquid levels h1(t) and h2(t),
which are used as state variables in the model given below. The liquid flows are

Table 2.1 Signals and parameters of the tank system

Parameter Value and unit Meaning

h1 , h2 [m] Tank levels in meters

qM [l/min] Measured outflow in litres per minute

u [1] Control input to the pump

q12 , q2 , qP , qL [m3/s] Volume flows in cubic metres per second

A 1.54 · 10−2m2 Cross-section area of both tanks

hmax 0.60 m Height of both tanks

unom 1.0 Nominal pump velocity

umax 5.0 Maximal pump velocity

c12 6.0 · 10−4m5/2/s Flow constant of valve V12

c2 2.0 · 10−4m5/2/s Flow constant of the outlet of Tank 2

cL 8.0 · 10−4m5/2/s Flow constant of a leakage in Tank 1

cM 12.0 l/(min ·m1/2) Constant of outflow sensor

q̄P 1.5 · 10−4m3/s Flow constant of the pump



40 2 Examples

denoted by q, the ground area of the cylindric tanks by A. The parameters used in
the example are summarised in Table 2.1.

The following Eqs. (2.1), (2.2) describe the mass balance, where the tank levels h1
and h2 are related to the liquid flows indicated in Fig. 2.1 as follows:

ḣ1(t) = 1

A
(qP(t) − qL(t) − q12(t)) (2.1)

ḣ2(t) = 1

A
(q12(t) − q2(t)). (2.2)

The measured signal qM is proportional to the outflow q2:

qM = cM · q2. (2.3)

The different flows used in the equations above can be obtained by Toricelli’s law:

q12(t) =
{

c12 sign (h1(t) − h2(t))
√|h1(t) − h2(t)| if V12 is open

0 else
(2.4)

q2(t) =
{

c2
√

h2(t) if h2(t) > 0
0 else,

(2.5)

qP(t) =
{

u(t) · q̄P if h1(t) ≤ hmax

0 else,
(2.6)

qL(t) =
{

cL
√

h1(t) if h1(t) > 0 and Tank 1 has a leakage
0 else.

(2.7)

The pump is controlled by the security switch-off included in the level controller LC
shown in the figure such that the level in Tank 1 is maintained below the height hmax.
The pump velocity is given by the control input uP. Its nominal value is given by
u =unom, and its maximal value by umax. If a control problem should be illustrated
in the later chapters, then Eq. (2.6) is supplemented with an equation describing the
control law u = k(h1).

The equations given above are hybrid because they include differential and alge-
braic equations as well as switching conditions, which result from the physical laws
and from a security switch installed at Tank 1. Therefore, the differential equation
includes several inequalities that describe the validity range of the given functions.

The tank will be used in many places to illustrate methods and results. For sim-
plicity, often the parameter A is set to one so that the model gets the simpler form

ḣ = qi (t) − qo(t),

where qi and qo denote the input and the output flow.
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2.2 Three-Tank System

Consider the three coupled tanks depicted in Fig. 2.3. These tanks are connected by
pipes which can be controlled by different valves. Water can be filled into the left and
right tanks using two identical pumps. Measurements available from the process are
the continuous water levels hi of each tank and, additionally, from tank T2 discrete
signals from two capacitive proximity switches signalling whether the water level in
the tank is above or below the position of the sensor.

In the nominal case (Fig. 2.4), only the left tank T1 and the middle tank T2 are
used. The right tank T3 and pump P2 act as redundant hardware. The purpose of the
system is to provide a continuous water flow q2(t) = qN to a consumer. Therefore,
the water level in the middle supply-tank T2 has to be maintained within the interval
h2L < h2 < h2H, i. e. between the two discrete level sensors of tank T2.

Water flows between the tanks can be controlled by several valves (V12L, V12H,
V23L, V23H). All valves can only be completely opened or completely closed (on/off
valves). The connection pipes between the tanks are placed at the bottom of the tanks
(pipes with valves V12L, V23L) and at a height of hH (pipes with valves V12H, V23H).
One of the considered faults is a leakage in tank T1 (see below). If such a leakage
occurs, there is an additional outflow qL of tank T1 (cf. Fig. 2.3).

Dynamical model. Depending on the water levels and the position of the valves,
different nonlinear state-space models are valid. In general, the water flow qi j from
Tank i to Tank j can be calculated using Toricelli’s law

qi j = ci j · sign (hi − h j ) · √|hi − h j |,
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where ci j is a constant depending on the geometry of the connecting pipe and the
valve and hi , h j are the water levels. The change of water volume V in a tank is
described by

V̇ = A · ḣ =
∑

qin −
∑

qout, (2.8)

where
∑

qin is the sum over all water inflows and
∑

qout the sum over all water
outflows of the tank. In (2.8), A is the cross-section area and h the water level in the
cylindric tank. For the three tanks Eq. (2.8) yields:

ḣ1 = 1

A
(qP1 − q12L − q12H − qL) (2.9)

ḣ2 = 1

A
(q12L + q12H − q23L − q23H − q2) (2.10)

ḣ3 = 1

A
(qP2 + q23L + q23H). (2.11)

The flows in Eqs. (2.9)–(2.11) depend on the levels h1, h2 and h3 as well on the
position of the valves and the commands uP1, uP2 given to the pumps. For example,
the existence of the flow q12H depends on the water levels h1 and h2 and the position
of the valve V12H. The flow is only non-zero if the valve is open and at least one
liquid level exceeds the height hH of the upper connecting pipe.

More precisely, the following expressions are obtained for the flows, with the
parameters given in Table 2.2:

qP1 =

⎧⎪⎨
⎪⎩

cP1 · uP1 if h1 ≤ hmax and cP1 · uP1 < qmax
P1

qmax
P1 if h1 ≤ hmax and cP1 · uP1 ≥ qmax

P1
0 otherwise,
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qP2 =

⎧⎪⎨
⎪⎩

cP2 · uP2 if h3 ≤ hmax and cP2 · uP2 < qmax
P2

qmax
P2 if h3 ≤ hmax and cP2 · uP2 ≥ qmax

P2
0 otherwise,

q12L =
{

c12L sign (h1 − h2)
√|h1 − h2| if V12L open

0 otherwise,

q12H =

⎧⎪⎪⎨
⎪⎪⎩

c12H
√|h1 − hH| if h1>hH, h2 ≤hH, V12H open

−c12H
√|h2 − hH| if h1 ≤hH, h2>hH, V12H open

c12H sign (h1 − h2)
√|h1 − h2| if h1>hH, h2>hH, V12H open

0 otherwise,

q23L =
{

c23L sign (h2 − h3)
√|h2 − h3| if V23L open

0 otherwise,

q23H =

⎧⎪⎪⎨
⎪⎪⎩

c23H
√|h2 − hH| if h2>hH, h3 ≤hH, V23H open

−c23H
√|h3 − hH| if h2 ≤hH, h3>hH, V23H open

c23H sign (h2 − h3)
√|h2 − h3| if h2>hH, h3>hH, V23H open

0 otherwise,

q2 =
{

c2
√

h2 if h2 > 0
0 otherwise,

qL =
{

cL
√

h1 if h1 > 0 and leakage in tank 1
0 otherwise.

Nominal configuration. In the nominal case, valves V12L, V23H, V23L are closed
and not in use. Valve V12H is used to control the water level in tank T2, pump P1 to
control the level in tank T1. To control the water levels in the reservoir-tank T1 and
the supply-tank T2, a conventional PI-controller and an discrete (on–off) controller
are used (Fig. 2.4):

uP1(t) = k(h1(t), href
1 )

= KP · (href
1 − h1(t)) + KI ·

∫ ′

0
(href

1 − h1(τ ))dτ (2.12)

V12H =
⎧⎨
⎩

open : h2 ≤ h2L
close : h2 ≥ h2H
no change : h2L < h2 < h2H,

(2.13)

where KP and KI are controller parameters and href
1 is the set-point for tank T1.

Equation (2.13) describes under what conditions the on–off controller changes the
position of the valve from opened to closed or vice-versa. All parameters of the
controllers are given in Table 2.2.
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Table 2.2 Parameters and variables of the three-tank system and the controllers

h1, h2 , h3 [m] Tank levels in meters

qP1, qP2, q2 , qL [m3/s] Volume flows in cubic metres per second

q12L, q12H [m3/s] Volume flows in cubic metres per second

q23L, q23H [m3/s] Volume flows in cubic metres per second

A 1.54 · 10−2m2 Cross-section area of the three tanks

hmax 0.60 m Height of the three tanks

hH 0.60 m Height of the three tanks

c12L 1.6 · 10−4m5/2/s Flow constant of valve V12L

c12H 1.6 · 10−4m5/2/s Flow constant of valve V12H

c23L 1.6 · 10−4m5/2/s Flow constant of valve V23L

c23H 1.6 · 10−4m5/2/s Flow constant of valve V23H

c2 1.6 · 10−4m5/2/s Flow constant of the outlet of tank 2

cL 1.6 · 10−4m5/2/s Flow constant of a leakage in tank 1

cP1 1.0 · 10−4m3/s Flow constant of pump 1

cP2 1.0 · 10−4m3/s Flow constant of pump 2

qmax
P1 1.0 · 10−4m3/s Maximum flow of pump 1

qmax
P2 1.0 · 10−4m3/s Maximum flow of pump 2

h ref
1 0.50 m Set point of PI controller

K P 10.0 1/m Proportional gain of PI controller

K I 5.0 · 10−21/ms Integral gain of PI controller

h2L 0.09 m Position of lower discrete level sensor

h2H 0.11 m Position of upper discrete level sensor

In summary, the nominal behaviour is characterised by the following:

• Only the left tank and middle tank are in use, water level h2 must be medium, the
set-point for h1 is chosen to href

1 .
• Valves V12L, V23L, V23H are closed.
• No leakage occurs (qL = 0).
• The PI-controller (2.12) controls the level h1 of tank T1 with pump P1 using a

continuous level sensor.
• The on–off controller (2.13) controls the level h2 of tank T2 with valve V12H using

discrete level sensors.

Reconfiguration problem. Three different fault scenarios are given:

1. Fault f1: Valve V12H is closed and blocked.
2. Fault f2: Valve V12H is opened and blocked.
3. Fault f3: A leakage in Tank T1 occurs (qL �= 0).
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The reconfiguration task is to find automatically a new control configuration of the
three-tank system such that

• the water level h2 remains between h2L and h2H for all scenarios, i. e. the relation

[h2(k)] = medium (2.14)

should hold for k ≥ k̄ for a possibly small k̄.
• for scenario 3, the loss of water is minimal, i.e.

[h1(k)] = empty (2.15)

should hold for k ≥ k̄ for a possibly small k̄.

The reconfiguration task consists in finding a new control structure by selection of
actuators and sensors, new control laws and new set-points for the control loops,
such that the control aims above are met. If needed, the use of redundant hardware
components is possible. Obviously, the idea of reconfiguration cannot be satisfied
by simply changing the parameters KP or KI, but a structural change of the system
is necessary.

2.3 Ship Steering and Track Control

Ship navigation and steering is used as an example to illustrate different methods in
both diagnosis and fault-tolerant control. A ship is illustrated in Fig. 2.5. The ship is
steered by its rudder, the angle of which is δ. The ships heading angle is denoted ψ,
the turn rate ω3. The ship velocity ahead is v1, velocity sideways is v2.

To navigate a ship, information is needed on its position and heading angle as a
minimum. In confined waters, distance is needed to a desired track that the ship is
supposed to follow.

Fig. 2.5 Motion of a ship
steered by its rudder. A
rudder angle to port side
(left) generates a turn to the
port side of the ship. When
turning to port, there is also a
side velocity towards
starboard (right)

North

v1

v2
δ

ψ
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Fig. 2.6 Cascaded architecture of controllers for ship steering. The innermost loop is manual
steering with rudder demand as input. The second loop provides automatic heading control, the
third implements automatic track control

Should navigation data be wrong, ships may collide with banks or with other
vessels. As unexpected manoeuvres can have fairly serious consequences, natural
performance requirements exist to diagnosis and fault-tolerant control algorithms.
Requirements are derived from the maximal motion the ship could make before a
fault was diagnosed and a remedial action taken.

Control modes. In our ship steering example, three levels of steering control are
considered:

• Hand steering. The rudder demand is manually set by a helmsman.
• Course control. An autopilot sets the rudder demand according to the deviation

between instantaneous heading and a demanded course (heading reference). The
ship’s turn rate is used for derivative control action.

• Track control. A set of way-points specify a desired track for the ship to follow.
The distance of the ship to the track is calculated and used by the track controller to
command a heading reference to the heading controller. This reference is updated
in each sampling cycle by the track controller.

A block diagram of the ship with the above-mentioned controllers is shown in
Fig. 2.6.

Instrumentation. The ship motions and position are measured using dedicated sen-
sors. The ship’s heading is measured by some form of gyro compass, distance to a
desired track is calculated from a position measurement, with the position measured
by a GPS (Global Positioning System) receiver. Two identical gyro compasses are
commonly available due to the critical nature of the heading measurement. In the
sequel, we will consider the following types of instruments:

• Instrumentation with gyro compass and rate gyro as two separate units. The two
measurements are independent.
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Fig. 2.7 A simple dynamical model of a ship steered by the rudder. Waves act as unknown input
and measurement faults are considered on turn rate and heading angle measurements

• Measurement of track error by a navigation computer that measures ship’s position
using a GPS receiver.

Faults. For the example we consider four possible faults. These faults and the con-
sequences they will have in the example are as follows:

• Fault in the heading measurement: In heading control mode, this fault will cause
the ship to steer a wrong course. In track control mode, there will be a permanent
track error present.

• Fault in the turn rate measurement: In heading control mode, this fault will cause
a transient error in the heading, but will then be compensated by the controller. A
similar behaviour will be seen in track control mode.

• Fault in the measurement of distance to the desired track: This has no effect
in heading control. In track control mode, there will be an offset equal to the size
of the fault.

• Fault in the track controller: It causes the heading demand output from this
controller to remain at the value it had when the fault occurred. With heading
demand being input to the heading controller, this will sooner or later cause the
ship to steer away from the desired track.

The sensor faults are modelled as additive faults. The rate gyro measures ω3m and
the gyro measures the heading angle ψm. This is illustrated in the block diagram in
Fig. 2.7.

Dynamics of the ship. On a ship, a desired turn rate is obtained by turning the
rudder to a certain angle. The input variable is hence rudder angle and the output
is turn rate. Waves act as a disturbance to the turn rate, and the combined signal is
integrated to give the actual heading of the ship. This dynamics is illustrated in the
block diagram in Fig. 2.7. Turn rate and heading angle are measured variables, the
sensors are subject to faults. These are added as fault signals in Fig. 2.7.
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The following equations describe the steering problem using the simple model.
Waves contribute to turn rate by ωw. The control input is the rudder angle δ. The
measured signals are ψm and ω3m.

In sections dealing with the stochastic case, measurement noise is present on sensor
signals. If νω(t) and νψ(t) are noise signals on the turn rate or heading measurements,
respectively,

ω̇3(t) = b(δ(t) + H(ω3))

ψ̇(t) = ω3(t) + ωw(t)
ψm(t) = ψ(t) + fψ(t) + νψ(t)
ω3m(t) = ω3(t) + ωw(t) + fω(t) + νω(t)

(2.16)

where H(ω) is the steady-state relation between turn rate and rudder angle. In the
literature, this is the steering characteristic of the ship.

In the example, we treat the steering characteristic as linear such that

H(ω3) = η1 ω3

The sign convention is that angles are taken positive around the third axis, which
points downwards as seen from a surface ship. A positive rudder angle (clockwise)
will turn the ship counter-clockwise, which corresponds to a negative value of turn
rate. Hence, η1 is negative for a ship that is directionally stable.

In the real world, the relation between a rudder angle and the turn rate is not linear.

H(ω3) ≈ η0 + η1 ω3 + η2 |ω3| ω3

Large tankers or container ships may be directionally unstable in a region around
zero turn rate angle. This is a consequence of a balance between hydrodynamical
forces on the hull. As turn rate builds up, a directionally unstable ship eventually
becomes stable. A directionally unstable ship will enter into a steady turn and move
in a circle if the rudder is left in neutral position. A directionally unstable ship will
be used to illustrate diagnosis techniques for unstable physical systems.

The variables and parameters in the ship example are listed in Table 2.3.

Heading control. The autopilot to control the ship heading in this example is a
linear quadratic design, equivalent to a PD controller without any filtering, signal
smoothing or integral action

δ(t) = Lω ω3m + Lψ (ψref − ψm). (2.17)

A block diagram of the autopilot loop is shown in Fig. 2.8.

Track control. Track control means that the ship is commanded to follow a line
(great circle) over the sea bottom. The desired track is specified to the controller,
and position instruments provide the track error. The control architecture for track
control was shown in Fig. 2.6.

Requirements. The requirement to fault-tolerant control for the ship steering exam-
ple are the following:
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Table 2.3 Signals and parameters of the ship steering example

Parameter Typical value and unit Meaning

ω3, ωw [deg/s] Turn rate (angular velocity in yaw)

ψ [deg] Ship’s heading angle

δ [deg] Rudder angle

Lψ 1 [ deg]/[deg] Gain in heading control

Lω 2 [deg]/[deg/s] Rate gain heading control

Le 1 [deg]/[m] Gain in track controller

b 2.2 [deg/s2]/[deg] Gain factor for ship

η0 0.0 [deg] Rudder bias

η1 -10.0 [deg· s−1]/[deg] Slope of steering characteristic

(Stable ship)

η2 -20.0 [deg]/[deg2/s2] 2nd order parameter in steering

characteristic

v1 10 [m/s] Ship’s forward speed (surge)

Fig. 2.8 Simple heading
controller (autopilot) for the
ship example
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• An undesired alteration in the ship heading (ψ) must not exceed 5 deg.
• An undesired alteration in the ship turn rate (ω3) must not exceed 0.2 deg/s
• An undesired alteration in the ship position relative to the track (e)must not exceed

5 m
• An undesired alteration in the ship velocity perpendicular to the track (ė) must not

exceed 0.5 m/s

These requirements can be used as objective measures for requirements capture,
including detection delay and time to reconfigure.
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