
Chapter 11
Fault Diagnosis of Discrete-Event Systems

Abstract This chapter presents diagnostic methods for discrete-event systems that
are described by deterministic, nondeterministic or stochastic automata. Based on
the solution to the state observation problem for discrete systems, the fault diagnostic
problem is solved for all model classes by observing the unknown state of the model
of the faulty systems and, hence, by deciding which model is currently consistent
with the system behaviour.

11.1 Overview of Part III

This and the next chapters are devoted to discrete-event dynamical systems whose
behaviour is described by sequences of discrete inputs and outputs. In contrast to
the preceding chapters where the continuous changes of the signals occurring in the
system have been investigated, the class of discrete-event systems is characterised
by sequences of abrupt signal changes, because the signals have a finite value set.

Discrete-event systems occur naturally in the engineering practice. If the actuators
like switches or valves can only jump between discrete positions, the input signal
is binary and the signal values 0 and 1 are associated with the closed and the open
position. Sensors may indicate that a physical quantity like the liquid level in a tank
or a voltage exceeds a prescribed bound. Alarm sensors are typical examples for such
sensors. Also the internal state of the system is often a discrete variable. For example,
a robot gripper is empty or has grasped some part, a production step prescribed by a
recipe has been carried out or not.

Whether or not a given dynamical system is considered as a discrete-event system
depends upon the purpose of the investigations. It is typical for process supervision
problems that a rather broad view on the system behaviour can be adopted which is
based on a qualitative assessment of the signal values. If the supervisor should make
a robot carry out a given sequence of movements or apply a certain recipe, then its
decisions depend on discrete signal values like those mentioned in the examples and,
hence, a discrete-event view-point is adequate. However, if signals have to remain in
a narrow tolerance band, the continuous changes of these signals have to be consid-
ered and, thus, the continuous-systems point of view used in the preceding chapters

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_11

521

522 11 Fault Diagnosis of Discrete-Event Systems

is appropriate. The alternative considerations of the tank system as a continuous-
system for level control or as a discrete system for carrying out a batch process
demonstrates the dependence of the representation level of a dynamical system upon
the task to be performed. Note that the terms “continuous” and “discrete” refer to
the signal spaces and, hence, to the different description levels. If a distinction has to
be made concerning the temporal behaviour, the notions of continuous-time systems
and discrete-time systems will be used.

As the dynamical behaviour of discrete systems is described by the changes of the
discrete signal values that are called events, such systems are said to be discrete-event
systems. However, the behaviour of such systems can be equivalently represented by
the sequence of discrete values that the input, the state and the output assume in the
considered time interval. This notation will be used here, where the kth value of the
input is denoted by v(k) and the input sequence in the time horizon k = 0 . . . ke by

V (0 . . . ke) = (v(0), v(1), . . . , v(ke)). (11.1)

Similarly, the kth value of the output is denoted by w(k) and the output sequence by

W (0 . . . ke) = (w(0), w(1), . . . , w(ke)). (11.2)

Based on this information, the diagnostic system should identify which fault f ∈ F
has occurred (Fig. 11.1). The result is, in general, a set F(ke) ⊆ F of faults rather
than a unique element of the fault set F . Note that for discrete systems also the faults
are usually considered to be discrete phenomena with the symbol f denoting a single
fault that may or may not occur in the system.

Discrete-event
system

Diagnostic algorithm

Automaton

V (0... k)

(k)

f

W (0... k)

z0

∈ F

F

Fig. 11.1 Diagnostic problem

11.1 Overview of Part III 523

Consistency-based diagnosis of discrete-event systems. The main idea for solving
the diagnostic problem is to test the consistency of the measured I/O pair with a set
{A f | f ∈ F} of models that describe the system for all fault situations f ∈ F
considered. This model will have the form of a deterministic, nondeterministic or
stochastic automaton in this chapter. As in case of continuous-variable systems, the
consistency of a pair (V (0 . . . ke), W (0 . . . ke)) of input and output sequences (11.1),
(11.2) with finite time horizon ke (in short: an I/O pair) is defined with respect to the
behaviour B f that the system subject to fault f possesses (cf. Sect. 1.3). To show the
conceptual similarity of discrete-event and continuous-variable system diagnosis,
assume that the model A f of a discrete-event system is represented by a map φ f

that associates with each initial state z0 and with every input sequence V (0 . . . ke)

the output sequence W (0 . . . ke) of the system:

W (0 . . . ke) = φ f (z0, V (0 . . . ke)). (11.3)

The behaviour is the set of all I/O pairs (V, W) of arbitrary length ke ≥ 0 that are
consistent with the model A f :

B f = {(V (0 . . . ke), W (0 . . . ke)) | W (0 . . . ke) = φ f (z0, V (0 . . . ke)); ke ≥ 0}.

Diagnosis is based on the investigation to which behaviour B f , (f ∈ F) the measured
I/O pair belongs. An I/O pair is said to be consistent with the model A f if it belongs
to the behaviour B f :

(V (0 . . . ke), W (0 . . . ke)) ∈ B f . (11.4)

In this relation, the left-hand side represents the measurement data and the right-hand
side the behaviour of the system subject to fault f as it is represented by the model
φ f . If this relation holds, the fault f is called a fault candidate. The set of all fault
candidates, which is denoted by F∗, is the best possible diagnostic result:

F∗(V (0 . . . ke), W (0 . . . ke)) = { f ∈ F | (V (0 . . . ke), W (0 . . . ke)) ∈ B f }. (11.5)

It depends upon the time horizon ke and usually shrinks with increasing horizon
because the more information about the system behaviour is obtained by measure-
ments, the more faults can be excluded from the set of fault candidates.

The main problem of fault diagnosis of discrete-event systems is, hence, the elab-
oration of methods to test the consistency of I/O pairs with a model. This chapter
develops consistency tests for systems that are described by deterministic, nondeter-
ministic and stochastic automata.

Chapter overview. The theory of discrete-event systems has been developed rather
separately with respect to the theory of continuous-variable systems. Therefore, the
state of the art is different from what is known about continuous systems. The main
theoretical results concern the modelling, analysis and supervisory control of discrete
systems, but only a few results are available for diagnosis and fault-tolerant control.

http://dx.doi.org/10.1007/978-3-662-47943-8_1

524 11 Fault Diagnosis of Discrete-Event Systems

This is the reason why Part III of this book concerns mainly the fault diagnostic
problem and presents merely preliminary results on fault control reconfiguration.

In Sect. 11.2 models of discrete-event systems are introduced. Section 11.3 gives
a survey of the solutions to the diagnostic problems, which will be dealt with in
more detail in Sects. 11.4–11.7 for deterministic, nondeterministic and stochastic
automata. The common aspect is given by the fact that all diagnostic methods are
based on state observation methods for the corresponding automata, which will be
explained first and later extended to fault detection and to fault identification.

11.2 Models of Discrete-Event Systems

11.2.1 Deterministic and Nondeterministic Systems

This section explains the basic dynamical properties of discrete-event systems and
shows how such systems can be described. It extends the brief introduction to discrete-
event modelling given in Sect. 3.6.

Discrete-valued signals. The discrete input, state and output of the system are
denoted by the symbols v, z and w (Fig. 11.2) and the elements of their discrete
value sets are enumerated as follows:

v ∈ V = {1, 2, . . . , M}
z ∈ Z = {1, 2, . . . , N }
w ∈ W = {1, 2, . . . , R}.

It is assumed that the numbers M , N or R are finite.
In order to use scalar signals, in many applications the physical variables have

to be encoded. For example, if a tank system with 4 on/off valves is considered, the
input can be represented by a 4-vector v = (v1 v2 v3 v4)

T whose i th component
describes the position of the i th valve. As each component can assume either the
value 0 or 1 in correspondence with the closed or the open position, v has one of 16
different values. These 16 values are represented in the following by a scalar input
symbol v with the value set V = {1, 2, . . . , 16}. To do so, a mapping from the set of
the 16 values of v onto the set V of the scalar input v has to be defined.

Fig. 11.2 Discrete-event
system

Discrete-event
system

wv

z

http://dx.doi.org/10.1007/978-3-662-47943-8_3

11.2 Models of Discrete-Event Systems 525

Every change of the symbolic value of v, z or w is called an event. For example,
if the state z jumps from the value j to the value i , a state event denoted by eij occurs
(Fig. 11.3). However, the models introduced in this section use the sequences (11.1)
and (11.2) of symbolic values rather then the sequences of events to characterise the
behaviour of the discrete-event system under consideration.

Logical behaviour. The events occur at the time instants tk which are enumerated
as k = 0, 1, 2, . . . (Fig. 11.3). In the following, only the number k of the event is
considered but not the actual time tk . Therefore, the models used are called untimed
or logical. They describe in which order the events occur but they say nothing about
the temporal distance of these events. Besides the sequences (11.1) and (11.2) of
inputs and outputs, the sequence of states

Z(0 . . . ke) = (z(0), z(1), z(2), . . . , z(ke))

is used to represent the logical behaviour of the system.
The motivation for using untimed models is twofold. First, the basic ideas of

diagnosis and fault-tolerant control of discrete-event systems can be explained using
untimed models, which are much simpler than timed models. Extensions of the
methods to timed models are mentioned in the bibliographical notes. Second, in
many practical circumstances, the untimed model yields the wanted results. For
example, for many discrete-event systems faults can be detected due to the change
of the order in which the events occur and no temporal information is necessary.

A further simplification is made in this chapter like in literature with respect to
the synchronisation of the input, the state and the output. It is assumed that these
events occur synchronously. That is, the state can only change if the input changes,
which, at the same time, results in a change of the output. Repetitions of the symbols
indicate that no real event occurs but a signal remains constant (Fig. 11.4). To shift
the input, state and output events to the same time point is an abstraction that is
reasonable for many applications.

Fig. 11.3 Sequences of
symbolic states and event
sequences

(t2)

z

z (t0

t0

e e32 e31 e13 e23e32 e13

t1 t2 t3 t4 t5 t6
t

k

z z

z

3

2

1

0 1 2 3 4 5 6

)

(t1) (t3)

526 11 Fault Diagnosis of Discrete-Event Systems

v

3

2

1

z

3

2

1

z

3

2

1

v

3

2

1

w

k k

3

2

1

w

3

2

1

0 0 1 2 3 45 61 2 3 456 78 9...

Fig. 11.4 Asynchronous (left) and synchronous (right) input, state and output sequences

Deterministic and nondeterministic systems. The assumed synchronous occur-
rence of the input, state and output events lead to the following “working principle”
of discrete-event systems: At time k = 0, the system is in state z(0) = z0 and obtains
the input v(0) (Fig. 11.2). The system generates the output w(0) and its state jumps
to the next value z(1). Under the next input v(1) the system changes its state from
z(1) to z(2) and so on. In this way, for given initial state z0 and input sequence
V (0 . . . ke) the discrete system follows a state sequence Z(0 . . . ke) and generates an
output sequence W (0 . . . ke).

For deterministic systems, the generated state and output sequences Z and W are
uniquely defined by z0 and V . A standard form for describing deterministic systems
is the automaton, which will be introduced in this section. It is a formalisation of the
function φ, which has been used in Eq. (11.3) to represent a model of a deterministic
discrete-event system.

For nondeterministic systems the state and output sequences are not unique but the
system may generate any sequences of the sets Z(z0, V) and W(z0, V). This non-
determinism has to be understood in the following way. The technological system
under consideration has a unique performance, because it cannot assume different
states at the same time. Hence, for a fixed initial state and a fixed input sequence, an
unambiguous state sequence Z and an unambiguous output sequence W occur. Non-
deterministic behaviour occurs if the information about the system is not sufficient to
predict these sequences unambiguously. If the system is brought into a particular ini-
tial state z0 for several times and gets the same input sequence V , then the generated
state and output sequences may differ. Hence, the model used to diagnose or control

11.2 Models of Discrete-Event Systems 527

this system has to describe some sets Z(z0, V) and W(z0, V) of possible sequences
Z and W from which the real system “selects” one sequence. Such models have the
form of nondeterministic automata, stochastic automata or Petri nets.

11.2.2 Deterministic Automata

This and the next section introduce models which can be used to describe the relation
between the initial state z(0) and the input sequence V (0 . . . ke) on the one hand
and the state sequence Z(0 . . . ke) and output sequence W (0 . . . ke) that the discrete
system generates on the other hand.

The deterministic input–output automaton (I/O automaton) is defined by a 6-tuple

A = (Z,V,W, G, H, z0)

with

• Z - set of states,
• V - set of input values (also called the input alphabet),
• W - set of output values (also called the output alphabet),
• G : Z × V → Z - state transition function,
• H : Z × V → W - output function,
• z0 - initial state.

The dynamics of the automaton are described by the functions G and H in the
following recursive way:

z(k + 1) = G(z(k), v(k)), z(0) = z0 (11.6)

w(k) = H(z(k), v(k)). (11.7)

For the initial state z0 and the input sequence V (0 . . . ke), these functions yield
the state sequence Z(0 . . . ke +1) and output sequence W (0 . . . ke). If in the later
investigations the functions G and H should be analysed, the time counter k does
not matter and the equations above are written shorter as

z′ = G(z, v) (11.8)

w = H(z, v), (11.9)

where z′ denotes the “next state” following the state z.
The diagnostic problem may be considered for situations where the initial state

z0 is known or unknown. The initial state is known, for example, if the system to
be diagnosed performs a cyclic function and the diagnostic system can be invoked
whenever the system moves through its intial state. Also in the start-up phase of a
system, the initial state is usually known and one says that the automaton is initialised.

528 11 Fault Diagnosis of Discrete-Event Systems

Knowing the initial state z0 considerably simplifies the diagnosis. If z0 is unknown, a
state observation problem is included in the diagnostic problem, which makes the
overall problem much more involved. Then it is assumed that a set Z0 of possible
initial states is known (with Z0 = Z as the trivial assumption). Both situations will
be considered in this chapter.

Automaton graph. A nice graphical interpretation of an automaton is the automaton
graph, whose vertices depict the states z ∈ Z and whose edges show how the
state of the automaton can change (Fig. 11.5). Every directed edge represents a state
transition described by Eq. (11.8) together with the output that is generated according
to Eq. (11.9). In part (b) of the figure, the state transitions belonging to the input
v = 2 are drawn by dashed arrows to illustrate the influence of the input upon the
state transitions. The initial state is marked by an arrow not emerging from any other
vertex. For a given initial state z0 and input sequence V , the dynamical behaviour of
the automaton is represented by the path through the automaton graph that starts in
the vertex z0 and whose edges are associated with the input prescribed by V .

The automaton is deterministic because the state and the input unambiguously
determine the edge to follow in the automaton graph and, hence, the successor state
and output. For example, if the automaton in Fig. 11.5 is in state 3, depending on
the input v ∈ {1, 2} the automaton goes either towards state 4 or towards 5. In this
example, in both cases it generates the output 2.

Automaton map and behaviour. The automaton map

φ : Z × V∗ → W∗

associates with each initial state z0 ∈ Z and input sequence V (0 . . . ke) ∈ V∗ the
output sequence W (0 . . . ke) ∈ W∗ of the automaton, which is obtained by applying
Eqs. (11.46), (11.47) for z(0) = z0:

W (0 . . . ke) = φ(z0, V (0 . . . ke)). (11.10)

z z
1

1/1

1/2

1/2

1/2

1/1
2/1

2/1

2/1

2/2

2/2

2

3

45

v/ w

(a) (b)

′

Fig. 11.5 Automaton graph of a deterministic automaton

11.2 Models of Discrete-Event Systems 529

V∗ and W∗ denote the sets of arbitrary sequences V (0 . . . ke) or W (0 . . . ke) of any
length ke that can be built using the input or output symbols of V or W , respectively.
The automaton map shows that an I/O pair (V, W) is consistent with an automaton
if and only if the relation (11.10) holds.

The behaviour of an initialised automaton (A, z0) is the set of all I/O pairs (V, W)

that can be generated by the automaton map φ:

B = {(V (0 . . . ke), W (0 . . . ke)) | W (0 . . . ke) = φ(z0, V (0 . . . ke)); ke ≥ 0}.

In applications, usually not the automaton map φ, but the functions G and H are
used to carry out the consistency test included in the diagnostic problem. Therefore,
it is important to represent the behaviour B in terms of G and H . Obviously, the
relation (11.10) holds if there exists a state sequence

Z(0 . . . ke) = (z(0), z(1), . . . , z(ke))

that satisfies for the given input sequence V (0 . . . ke) the relation (11.6) and for which
the outputs generated by Eq. (11.7) coincides with the output sequence W (0 . . . ke):

B = {(V (0 . . . ke), W (0 . . . ke)) | ∃Z(0 . . . ke) : z(k + 1) = G(z(k), v(k)),

w(k) = H(z(k), v(k))}. (11.11)

11.2.3 Nondeterministic Automata

In the nondeterministic automaton

N = (Z,V,W, Ln,Z0)

the functions G and H occurring in the deterministic automaton are replaced by the
function

Ln : Z × W × Z × V → {0, 1}

that describes for every state z and input v which successor state z′ can be assumed
while generating the output w. This function represents the behaviour of the automa-
ton in terms of all 4-tuples (z′, w, z, v) that are consistent with the automaton and
form the set

R(Ln) = {(z′, w, z, v) : Ln(z
′, w, z, v) = 1} ⊆ Z×W×Z×V. (11.12)

As the set (11.12) is, mathematically, a relation, the function Ln is called behavioural
relation of the nondeterministic automaton.

530 11 Fault Diagnosis of Discrete-Event Systems

For nondeterministic automata, the initial state is usually assumed to belong to
a set Z0 of possible initial states. However, in some particular situations, the initial
state z0 may be unambiguously known.

The description of the dynamical behaviour of a nondeterministic automaton
differs from that of a deterministic automaton given by Eqs. (11.6) and (11.7). Instead
of a unique successor state z′ and output w, the behavioural relation Ln yields, for
the current state z(k) and input v(k), the following sets of possible successor states
and output values:

Z ′(z(k), v(k)) = {z′ : ∃w ∈ W such that Ln(z
′, w, z(k), v(k)) = 1} (11.13)

W(z(k), v(k)) = {w : ∃z′ ∈ Z such that Ln(z
′, w, z(k), v(k)) = 1}. (11.14)

Figure 11.6 depicts a part of the automaton graph of a nondeterministic automaton.
It shows that for the input v = 1, the state may change from 1 towards 2 or towards
10, whereas for v = 2 only the state transition 1 → 2 can occur. The state change
from 1 to 10 may either cause the output w = 1 or the output w = 2. Examples for
the sets defined in Eqs. (11.13) and (11.14) are the following:

Z ′(1, 1) = {2, 10}
W(1, 2) = {2}.

If the behavioural relation Ln associates with each pair z, v a unique successor
state z′ and output w it can be represented by a state transition function G and an
output function H and the nondeterministic automaton becomes deterministic.

The behaviour B of the nondeterministic automaton can be represented in terms
of the behavioural relation ln as follows. An I/O pair belongs to B if there exists a
state sequence

Z(0 . . . ke + 1) = (z(0), z(1), . . . , z(ke + 1))

that satisfies for the input sequence V (0 . . . ke) and the output sequence W (0 . . . ke)

the function Ln:

Ln(z(k + 1), w(k), z(k), v(k)) = 1, k = 0, 1, . . . , ke.

Fig. 11.6 Part of the
automaton graph of a
nondeterministic automaton

v=1, w=1
v=2, w=2

v=1, w=1
v=2, w=2

1

2

10

9

3

11.2 Models of Discrete-Event Systems 531

Hence, B can be represented as

B = {(V (0 . . . ke), W (0 . . . ke)) | (11.15)

∃Z(0 . . . ke + 1) : Ln(z(k + 1), w(k), z(k), v(k)) = 1, k = 0, . . . , ke}.

Markov property. Both the deterministic and the nondeterministic automaton pos-
sess an important property, which is referred to as the Markov property of these
models. This property means that the successor state z(k + 1) depends only upon
the current state z(k) and the current input v(k) but it does not depend on the whole
state sequence Z(0 . . . k) or the whole input sequence V (0 . . . k) that the automaton
has generated or obtained until time k. The Markov property makes it possible to
find the recursive relations (11.6) and (11.13) both of which are a relation between
the next state z(k + 1) and the current state z(k) and input v(k) only. In case of the
nondeterministic automaton, this relation does not determine the future state unam-
biguously, but it fixes the set of future states. Note that the set Z ′(z(k), v(k)) given
in Eq. (11.13) depends merely upon z(k) and v(k).

In applications, the question whether or not the system under investigation pos-
sesses the Markov property depends upon the definition of the state z. Roughly
speaking, if the state z includes all the information about the signals up to time k
which is necessary to determine the future behaviour of the system, then the future
state can be represented only in terms of the current state z(k) and there is no need
to refer to earlier states or input values occurring in the sequences Z(0 . . . k − 1) or
V (0 . . . k − 1). To define the state appropriately is an important modelling step.

11.2.4 Stochastic Automata

The stochastic automata introduced in this section extend the description of nonde-
terministic discrete-event systems in such a way that the frequency of the occurrence
of the different events can be assessed. They provide very useful additional infor-
mation, because nondeterministic systems often produce a large set of different state
and output sequences, but in practice these sets do by no means occur with the same
frequency. In particular, fault diagnosis has to deal with nominal state sequences that
occur (hopefully) with a very large frequency but the models have to include faulty
sequences that a system follows seldom. The model should provide information about
the frequency of occurrence.

The following explains how nondeterministic automata can be associated with
the probabilities with which the different sequences occur. First, the notion of a
stochastic process has to be introduced.

Stochastic processes. A stochastic process is a nondeterministic system for which
the state and output sequences are generated with a certain probability. Its nondeter-
minism is not only considered in terms of the sets Z ′(z0, V) and W(z0, V) defined

532 11 Fault Diagnosis of Discrete-Event Systems

in Eqs. (11.13) and (11.14) but also in terms of the frequency with which the different
elements of these sets are generated. Some of them may occur very often whereas
others occur rarely.

Capital letters V , Z and W are used to denote the random variables of the input,
state and output of the stochastic process. They are stochastic variables, that is, vari-
ables whose values are determined by chance. In every experiment, these variables
assume values from the sets V , Z or W , respectively (Fig. 11.7). As the ranges of
these variables and the time k are discrete, the process is called more precisely a
discrete stochastic process.

The stochastic automaton should describe the probability with which the system
assumes at time k the state z ∈ Z and generates the output w ∈ W

Prob(Z(k) = z), Prob(W (k) = w)

or with which the system follows a state trajectory Z(0 . . . ke). To do so, it has to
represent the generation law underlying the stochastic process, which is given by the
transition probability

Prob(Z(k + 1)= z(k + 1), W (k)=w(k) | Z(k)= z(k), V (k) = v(k)).

Representation of stochastic processes by stochastic automata. Stochastic proce-
sses with finite sets of input values, output values and states are represented by finite-
state stochastic automata

S = (Z,V,W, L , p0) (11.16)

with Z , V and W defined as before and

• L : Z × W × Z × V −→ [0, 1] - state transition probability (behavioural
relation)

• p0 - initial state probability distribution.

p0 is the set of the N probability values Prob(Z(0) = z0) for the N possible initial
states z0 ∈ Z . Hence, the automaton may start its behaviour in any state of the set

Z0 = {z0 ∈ Z : p0(z0) > 0}.

For each state z ∈ Z0 it is known with which probability Prob(Z(0) = z) = p0 this
state occurs as initial state of the system under investigation.

Fig. 11.7 Stochastic process

Stochastic
process

WV

Z

11.2 Models of Discrete-Event Systems 533

The function L represents the transition probability

L(z′, w, z, v) = Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v). (11.17)

In extension of the terminology used for the nondeterministic automaton, the function
L is called behavioural relation of the stochastic automaton. In order to indicate
that the behavioural relation is a conditional probability distribution, the symbol
L(z′, w | z, v) is used instead of L(z′, w, z, v).

The probability distribution has the properties

0 ≤ L(z′, w | z, v) ≤ 1, ∀z′, z ∈ Z, v ∈ V, w ∈ W∑

z′∈Z

∑

w∈W
L(z′, w | z, v) = 1, ∀z ∈ Z, v ∈ V (11.18)

and it leads to the two boundary distributions

G(z′ | z, v) =
∑

w∈W
L(z′, w | z, v) (11.19)

H(w | z, v) =
∑

z′∈Z
L(z′, w | z, v). (11.20)

G(z′|z, v) is called the state transition relation and H(w|z, v) the output relation of
the stochastic automaton. Due to Eq. (11.17) these relations represent the conditional
probability distributions

G(z′ | z, v) = Prob(Z(1)= z′ | Z(0)= z, V (0) = v) (11.21)

H(w | z, v) = Prob(W (0)=w | Z(0)= z, V (0) = v) (11.22)

and possess the properties

∑

z′∈Z
G(z′ | z, v) = 1 (11.23)

∑

w∈W
H(w | z, v) = 1 (11.24)

for all z ∈ Z and all v ∈ V . Note that the functions G and H defined in Eqs. (11.21)
and (11.22) include less information than the behavioural relation L because L also
reflects the stochastic dependence between z′ and w. Therefore, the following inves-
tigations refer to L rather than G and H . G is useful for problems in which only the
state sequence is considered and the output sequence ignored.

Stochastic automata for which the behavioural relation L can be reconstructed
from G and H are called stochastic Mealy automata. For them the relation

534 11 Fault Diagnosis of Discrete-Event Systems

L(z′, w | z, v) = G(z′ | z, v) · H(w | z, v)

holds for all z, z′ ∈ Z , v ∈ V and w ∈ W . For these automata, the conditional
probability distributions G and H defined in Eqs. (11.21) and (11.22) replace the
state transition function G and the output function H of the deterministic automaton
used in Eqs. (11.8) and (11.9).

The behaviour B of the stochastic automaton is the set of all I/O pairs for which
a state sequence

Z(0 . . . ke + 1) = (z(0), z(1), . . . , z(ke + 1))

exists with positive probability such that the behavioural relation L is satisfied for
all k in the time horizon considered:

L(z(k + 1), w(k) | z(k), v(k)) > 0, k = 0, 1, . . . , ke.

Hence, B can be represented as follows:

B = {(V (0 . . . ke), W (0 . . . ke)) | (11.25)

∃Z(0 . . . ke + 1) : L(z(k + 1), w(k), z(k), v(k)) > 0, k = 0, . . . , ke}.

Autonomous stochastic automaton. If the automaton has no input, it is called
an autonomous automaton. If, furthermore, the output coincides with the state, this
automaton is given by the triple

Sa = (Z, G, p0),

where G denotes the state transition relation given by Eq. (11.21) after neglecting
the input v:

G(z′ | z) = Prob(Z(1)= z′ | Z(0)= z).

Graph of stochastic automata. The automaton graph is a directed graph, whose
vertices denote the states and whose edges denote the possible state transitions.
Figure 11.8 gives an example. The edges are associated with the state transition
probability given by the value of the behavioural relation L for the pair of states
connected by the edges and for the input v obtained and the output w generated for
this state transition. The edge from state 4 towards state 5 shows the abbreviated
labels, where 1/2/1 means that the state transition occurs for the input v = 1 while
generating the output w = 2 with probability 1.

11.2 Models of Discrete-Event Systems 535

3

4

5

2 / 2 / 1
1 / 2 / 1

L(z ′= 4, w = 1 | z = 3, v = 1) = 0,5
L(z ′= 4, w = 2 | z = 3, v = 2) = 1,0

L(z ′= 5, w = 1 | z = 3, v = 1) = 0,2
L(z ′= 5, w = 2 | z = 3, v = 1) = 0,3

Fig. 11.8 Autonomous stochastic automaton

Beginning in any state z0 with Prob(Z(0) = z0) > 0, the automaton moves along
the directed edges according to the corresponding probabilities. If more than one
edge starts in a state, then all these edges can be followed which results in alternative
state and output sequences. The frequencies with which the automaton follows these
edges are described by the transition probabilities.

Example 11.1 Properties of stochastic automata
In the example shown in Fig. 11.9, the automaton may step from state 1 towards state 2 or state
10 if it obtains input v=1, but it is known to step towards state 2 if the input v=2 is applied.
Moreover, the automaton may produce either output w=1 or w=2. The behavioural relation
says that the probability to step from state 1 towards state 10 when getting the input v =1 is
0.2 if this step is associated with the output w=1 and 0.3 if w=2 occurs. The sum of 0.5 of
both values is the probability that the automaton steps from 1 to 10 under the input v=1 while
producing some output. Hence, G(10 | 1, 1) = 0.5 holds. Alternatively, the automaton may
step from 1 towards 2. It definitely does this step if it obtains input v = 2 and it is known to
produce output w=2 during this step. If the automaton gets input v=1, then the probability
to move to state 2 while generating output w=1 is 0.5.

The property (11.18) of the behavioural relation is satisfied, because for z = 1 and v = 1
the example yields

L(z ′= 2, w= 1 | z = 1, v= 1)= 0.5

L(z ′= 10, w= 1 | z= 1, v= 1)= 0.2

L(z ′= 10, w= 2 | z= 1, v= 1)= 0.3

L(z ′= 2, w= 2 | z = 1, v= 2)= 1.01

2

3

10

9

Fig. 11.9 Part of the automaton graph of a stochastic automaton with input and output

536 11 Fault Diagnosis of Discrete-Event Systems

∑

z′

∑

w

L(z′, w | z = 1, v = 1) =

= L(z′ =10, w=1 | z =1, v=1) + L(z′ =10, w=2 | z =1, v=1) +
+ L(z′ =2, w=1 | z =1, v=1)

= 0.2 + 0.3 + 0.5=1

and for z = 1 and v = 2

∑

z′∈Z

∑

w∈W
L(z′, w | z = 1, v = 2) = L(z′ =2, w=2 | z = 1, v = 2) = 1.

The state transition relation G defined in Eq. (11.19) ignores the output and considers merely
the transition between the states in dependence upon the input. For the example, the following
relations hold

G(z′ =10 | z =1, v=1) = 0.2 + 0.3 = 0.5

G(z′ =2 | z =1, v=1) = 0.5

G(z′ =2 | z =1, v=2) = 1.

They say that for the input v=1 the automaton goes from state 1 to state 2 or to state 10 with
probability 0.5, but if it obtains input v=2 the automaton is known to go towards state 2.

The output relation H defined in Eq. (11.20) says which output is produced independently
of the next state that is assumed by the automaton. For the example, the output relation has
the values

H(w=1 | z =1, v=1) = 0.7

H(w=2 | z =1, v=1) = 0.3

H(w=2 | z =1, v=2) = 1,

which means that the automaton is known to produce the output w = 2 if it obtains the input
v = 2 in state 1, but for the input v = 1 it may generate the output w = 1 with probability
0.7 and w = 2 with probability 0.3. Note that there is in general no way to reconstruct L from
given G and H as mentioned above. �

Prediction. Stochastic automata can be used to predict the behaviour of a discrete-
event system when starting from some state

z(0) = Z0 = {z ∈ Z : p0(z) > 0}

and getting the input sequence

V (0 . . . ke) = (v0, v1, . . . , vke).

For the initial state, the probability distribution is given by p0(z):

Prob(Z(0) = z) = p0(z).

11.2 Models of Discrete-Event Systems 537

If the first input symbol v0 has been obtained, the stochastic automaton carries out a

state transition z0
v0−→ z1 with z0 ∈ Z0 according to the state transition probability

G(z1 | z0):

Prob(Z(1) = z1 | v(0)) =
∑

z0∈Z0

G(z1 | z0) · Prob(Z(0) = z0).

More generally, after the input symbols up to time ke have been received, the automa-
ton is in the state zke+1 with the probability

Prob(Z(ke + 1) = zke+1 | V (0 . . . ke))

=
∑

zke ∈Z
G(zke+1 | zke) · Prob(Z(ke) = zke | V (0 . . . ke − 1)). (11.26)

Markov property. Stochastic automata describe discrete-event systems only if
several assumptions are satisfied, which are summarised now.

A discrete stochastic process is defined by the probability with which a certain
state change appears and an output symbol occurs at time k for a given sequence of
input symbols. In general, for the state z(k + 1) and the output w(k) this probability
depends on the sequence of states and the sequence of input symbols up to time k
and is thus described by the conditional probability

Prob

(
Z(k + 1)= z(k + 1),

W (k)=w(k)

∣∣∣∣∣
Z(0)= z(0), . . . , Z(k)= z(k),

V (0)=v(0), . . . , V (k)=v(k)

)
.

In the following, only those stochastic processes are considered that possess the
Markov property. For such processes, the relation

Prob(Z(k + 1)= z(k + 1), W (k)=w(k) | Z(k)= z(k), V (k) = v(k)) (11.27)

= Prob

(
Z(k + 1)= z(k + 1),

W (k)=w(k)

∣∣∣∣∣
Z(0)= z(0), . . . , Z(k)= z(k),

V (0)=v(0), . . . , V (k)=v(k)

)

holds for all k, z(k + 1), z(k), . . . , z(0), w(k), w(k − 1), . . . , w(0) and v(k), v(k −
1), . . . , v(0). It is common to say that z(k+1) and w(k) are conditionally independent
of the past variables for given z(k) and v(k). The consequence of this assumption is
the fact that the model of the system has only to include information of all single-
state transitions, which in the stochastic automaton is represented by the behavioural
relation L .

If the Markov property were not valid for a system, the model has to represent
relations over a longer time interval; for example, the information about the next
state if the system came into the current state 1 from the precessor state 5 or from
predecessor state 4.

538 11 Fault Diagnosis of Discrete-Event Systems

Furthermore, it is assumed that the process is homogeneous which means that the
transition probability does not explicitly depend on the time variable k. Whenever
the 4-tuple of successor state z′, output w, current state z and input v is considered,
the transition probability is the same. Hence, the relation

Prob(Z(k + 1)= z′, W (k)=w | Z(k)= z, V (k) = v)

= Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v) (11.28)

holds for all k. A discrete stochastic process whose generation law is described by
the state transition probability (11.28) is called homogenous Markov process with
input and output.

For describing the stochastic process by a stochastic automaton, it is assumed
furthermore that the appearance of a certain input symbol at time k is independent of
the states and of the input values that have occurred up to that time, and independent
of the time k. Therefore, the relation

Prob

(
V (k) = v

∣∣∣∣∣
Z(0) = z(0), . . . , Z(k) = z(k),

V (0) = v(0), . . . , V (k − 1) = v(k − 1)

)

= Prob(V = v) (11.29)

holds, where Prob(V = v) describes the probability with which the input symbol v

occurs. This assumption is not satisfied, for example, if the input v(k) is prescribed
by a supervisor that acts in dependence upon the measured output w(k). Then this
“feedback” needs to be included into the stochastic description of the process in order
to satisfy the assumption (11.29) which will be used in the following.

11.2.5 Model of the Faulty System

This section explains how the system representation by automata can be extended
to include information about the occurrence of a fault and the effect that the fault
has on the future behaviour of the system. In literature, two main ideas have been
followed in the past, both of which will be compared now.

Both ideas start from the interpretation of a fault as an unobservable event f .
The attribute “unobservable” means that the fault event does not directly generate a
measurement event that indicates this fault. The diagnostic method to be elaborated
should find the fault from the changes that this fault causes in the future state or
output sequences.

The first idea, which will be used later in this book, emphasises the fact that in many
technological applications a fault changes the dynamics of the system under consid-
eration. That means that the behaviour before the occurrence and after the occur-
rence of a fault f distinguishes from one another and, hence, has to be described by

11.2 Models of Discrete-Event Systems 539

different models. For example, if in a batch process a valve is blocked, the behaviour
of the process changes qualitatively because the effect of the fault may influence the
behaviour of the process at any future time.

This situation is depicted in Fig. 11.10. Part (a) of the figure shows two models,
which describe the system for the fault cases f0 and f1, where as usual f0 indicates
the faultfree situation. For shortage of notation, the I/O pairs that are represented by
the labels of the edges of the automaton graph are abbreviated here by the symbols a,
b, c and d. As long as the system is faultless, it generates I/O pairs that are repetitions
of (a, b, c, d). Hence, the left model, which is denoted by A0, is valid. After the fault
has occurred, the system behaviour is decribed by the right model, which is denoted
by A f and shows that the future I/O pairs are represented by repetitions of (b, a).

For this kind of faults, the diagnostic problem concerns the question which of
the two models represents the current behaviour of the system. Stated again in the
sense of consistency-based diagnosis, the diagnostic problem leads to the consistency
check for the measured I/O pair with respect to a set of models that is denoted by
{A f , f ∈ F}. The appearance of a fault is represented by the unobservable event,
which changes the valid model from A0 to A f .

The alternative approach is depicted in Fig. 11.11. The fault is again considered
as an unobservable event, but now such events occur as additional state transitions in
the model of the faultless system. Consequently, after the occurrence of the fault the
system behaves as before the fault. This situation is typical, for example, for computer
or control systems, where a fault event represents an erroneous modification of a data
set. The application of algorithms denoted by the labels a, b, c and d in the automaton
graph does not change, but their sequence is modified by the fault. Before and after
the fault f , the same algorithms are applied, possibly in a temporarily changed order.

(a) (b)

2
f
0

1
f
0

3
f
0

4
f
0

4
f
1

3
f
1

f
0

f
1

f

d
c

b a
a

Validity
of A

0
of A

f

Validity

ba c d a f b a d a t

tb

Fig. 11.10 Faults change the system properties

540 11 Fault Diagnosis of Discrete-Event Systems

(a) (b)
2

4

1 3

c d

a c d a b f

f

a b c d tb

Fig. 11.11 Fault interpreted as an unobservable event

In this situation, the fault has again to be found by comparing the measured I/O pair
with the model of the system, but the methods to do so differ from the methods to be
developed here because of the different assumptions on the faulty system behaviour.

Both approaches to include faulty events into the model of a system are similar, but
have been followed by different groups in literature. The similarity becomes obvious
if the fault event shown by the arrow in Fig. 11.11a between the state 1 and state 3
is introduced as a state transition between a state of the model A0 in Fig. 11.10a and
a state of the model A f . The difference of both approaches lies in the fact that in
the first approach the fault brings the state into another “region” of the state set of
the automaton that usually has a completely different structure than the state set of
the faultless behaviour.

Diagnosis as a model-selection problem. This and the next chapters follow the first
approach of fault modelling, in which the fault changes the dynamics and, hence, the
structure of the automaton graph of a system. Accordingly, the system is described
by a set of models, which is denoted by {A f , f ∈ F}, where F is the set of faults
considered. Every model has its own behavioural relation L f , where the index f
indicates the fault case. For this modelling approach, the diagnostic problem can be
stated as the problem to select the model of the current hehavior out of the model set,
(Fig. 11.12). If this model is valid for the fault f , then f is considered as a solution
to the diagnostic problem.

As the fault f changes, the dynamics of the system, the state transition function or
the behavioural relation of the model used depends upon f . If deterministic automata
are used to represent the system, the model set {A f , f ∈ F} consists of deterministic
automata

A f = (Z,V,W, G f , H f , z0),

where the state transition function G f and the output function H f depend upon the
fault f . The other components Z , V , W and z0 may also depend upon f , but to
simplify notation, it is assumed that these elements are the same for all models.

11.2 Models of Discrete-Event Systems 541

Fig. 11.12 Fault
identification as model
identification problem A0

V (0... k) W (0... k)A1

Aq

If nondeterministic automata

N f = (Z,V,W, Ln f , z0)

are used to represent the system, the behavioural relation Ln depends upon f and
these relations of different models are distinguished by the additional index f . For
stochastic automata

S f = (Z,V,W, L f , p0(z))

the state transition relation L changes with the occurrence of the fault f . The fault
appears as an additional element in the conditional probability distribution:

L f = Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v, F = f),

where F denotes the stochastic variable for the fault. In all three cases, the indices
f indicate that the corresponding functions depend upon the fault f considered.

All the given models can be used if the fault f does not change over time. This
assumption will be adopted in most parts of this chapter to elaborate the main ideas.
It does not mean that the system must be faulty from the beginning, but that the
models are set-up for the situation that the fault does not change during the online
application of the diagnostic algorithm. Of course, the algorithms developed in this
chapter can be used for changing faults, but then not all properties that are proved
for them are still valid.

Changing faults. If the diagnostic problem should be considered for changing
faults, the fault has to be interpreted as an external signal f (k) that is described by
the sequence

F(0 . . . ke) = (f (0), f (1), . . . , f (ke)). (11.30)

The models have to be extended to cope with the additional input (Fig. 11.13). In
the deterministic case, the functions G and H have now two input arguments such
that Eqs. (11.6) and (11.7) have to be replaced by

542 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.13 Fault interpreted
as an additional input

Discrete-event
system

wv

z

f

z(k + 1) = G(z(k), v(k), f (k)), z(0) = z0 (11.31)

w(k) = H(z(k), v(k), f (k)). (11.32)

For the nondeterministic automaton, the behavioural relation now describes the
behaviour of the system with the additional argument f (k) as follows:

Ln(z(k + 1), w(k), z(k), v(k), f (k)) = 1.

For stochastic automata, in the state transition probability distribution

L = Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v, F(k) = f)

the fault is now a time-dependent variable.

Fault model. It is usually too general to assume that the fault may follow an arbitrary
sequence (11.30), because this would mean that the fault may change with every event
occurring. If the fault is considered as an external signal, then the kind of signals to
be considered has to be restricted by a fault model. Its usefulness should be explained
here for the stochastic automaton, but the same idea is applicable for other forms of
discrete-event models too.

The fault model
Sf = (F , Gf , p f 0) (11.33)

Fig. 11.14 Representation
of a faulty system including
a fault model

Plant model
wv

z

f

Fault model
zf

11.2 Models of Discrete-Event Systems 543

says how the fault f (k) can behave. Hence, it describes a generator of the additional
input to the plant model as depicted in Fig. 11.14. Its state set corresponds to the fault
set F and the function Gf : F ×F −→ [0, 1] describes the conditional probability
that the fault changes from f towards f ′ within one time step:

Gf(f ′ | f) = Prob(F(1)= f ′ | F(0)= f). (11.34)

If the time steps are equidistant (like in discrete-time systems), these probabilities are
closely related to the well-known measure of mean time before failure. p f 0 denotes
the probability distribution over the initial fault set.

The combination of the plant model with the fault model depicted in Fig. 11.14
results in a stochastic automaton

S̃ = (Z̃,V,W, L̃, p̃0) (11.35)

whose state set is given by
Z̃ = Z × F (11.36)

and whose behavioural relation L̃ is obtained from L and Gf according to

L̃(z′, f ′, w | z, f, v) = L(z′, w | z, f, v) · Gf(f ′ | f) (11.37)

with z, z′ ∈ Z , v ∈ V , w ∈ W and f, f ′ ∈ F . If the elements z̃ ∈ Z̃ are written as
the vector

z̃ =
(

z

f

)
, (11.38)

the behavioural relation L̃ in Eq. (11.37) can be rewritten as

L̃(z̃′, w | z̃, v) = Prob(Z̃(1)= z̃′, W (0)=w | Z̃(0)= z̃, V (0)=v)

= Prob

((
Z(1)

F(1)

)
=

(
z′

f ′

)
, W (0)=w

∣∣∣

(
Z(0)

F(0)

)
=

(
z

f

)
, V (0)=v

)

which gives L̃ the standard form of the behavioural relation of stochastic automaton.

11.3 Diagnostic Problems and Ways of Solution

This sections gives a survey of the diagnostic problems for discrete-event systems
and ways of solutions that will be explained in more detail in the remaining part of
this chapter.

The diagnostic problem can be stated in a general form as follows (Fig. 11.1):

544 11 Fault Diagnosis of Discrete-Event Systems

Diagnostic problem for discrete-event systems

Given: Model set Af , (f ∈ F)

Input sequence V (0 ... ke)

Output sequence W (0 ... ke)

Find: Set of fault candidates.

As the set of fault candidates has been defined with respect to the behaviour B f

of the model set A f , (f ∈ F) and for the three models introduced in Sect. 11.2, the
behaviour has been defined in a uniform way by Eqs. (11.11), (11.15) or (11.25),
respectively, the solution of the diagnostic problem can be found by checking the
consistency of the measured I/O pair with the model set used.

As the diagnostic problem should be solved usually online with increasing time
horizon ke = 0, 1, . . . , an important aspect of all methods developed in this and the
following chapter lies in the fact that these methods are formulated in a recursive
way in which they use the diagnostic result up to the time horizon ke to find the
result for the extended time horizon ke + 1. As the intermediate result, the last state
z(ke) or a set Z(ke) of possible states has to be stored. These intermediate results
include all information about the input sequence V (0 . . . ke) and the output sequence
W (0 . . . ke) processed so far that is relevant for the future diagnostic result. Upon
arrival of the next measured values (v(ke +1), w(ke +1)) the diagnostic unit checks
which models of the set {A f , f ∈ F} are still consistent with the extended sequences
V (0 . . . ke +1) and W (0 . . . ke +1) and updates the set of fault candidates F∗(ke +1)

accordingly.
The main ideas of the diagnostic methods will be explained for constant faults

f , but the bibliographical notes include references, in which the extension for time-
varying faults are given.

The difficulty of solving the diagnostic problem depends upon the kind of models
used and the online information included in the I/O pair. The following classifica-
tion starts with the simplest problem and shows the increase in complexity of the
diagnostic problem if the model becomes more involved.

Diagnosis of deterministic automata with state measurements. In the simplest
case, the models A f , (f ∈ F) are deterministic automata and the current state z(k)

is measurable, which means that the output w(k) coincides with the model-state z(k).
Under this strong assumptions, the consistency test of the I/O pair with a model A f

reduces to check whether the last measured state transition z(ke) → z(ke + 1) can
occur in the model A f :

z(ke + 1) = G f (z(ke), v(ke)). (11.39)

In this relation, the three signal values z(ke), v(ke) and z(ke + 1) are known and
it is checked whether these symbols satisfy the state transition function G f of the
automaton A f .

11.3 Diagnostic Problems and Ways of Solution 545

To formulate the diagnostic method for all classes of systems considered in
this chapter in a uniform way, the result of the consistency test is described
by the binary variable p f (ke), where p f (ke) = 1 indicates that the I/O pair
(V (0 . . . ke), W (0 . . . ke)) is consistent with the model A f describing the system
subject to the fault f , whereas p f (ke) = 0 shows that the I/O pair is not consistent
with this model. Consequently, the set of fault candidates is given by

F∗(ke) = { f ∈ F : p f (ke) = 1}. (11.40)

Diagnosis of deterministic automata with output measurements. The diagnostic
problem becomes more involved if the initial state z0 of the system is unknown and
if instead of the state z some output w is measured. Then the diagnostic problem
includes a state observation problem.

The diagnostic method starts with the assumption that the initial state z0 belongs
to a given set Z0. After the first I/O pair (v(0), w(0)) is known, it is tested for which

initial states z0 ∈ Z0 there exists a state transition z0
v(0)/w(0)−→ z(1) to some state

z(1) that is consistent with the state transition function G f and the output function
H f of the automaton A f . What “consistent” means can be seen in the automaton
graph, in which an edge from z0 towards z(1) with the label v(0)/w(0) has to exist.
Formulated as equations, “consistency” means that the relations

z(1) = G f (z0, v(0))

w(0) = H f (z0, v(0))

are valid.
To represent this method in a recursive way, two sets of states are introduced:

Z f (0 | − 1) = Z0

Z f (0 | 0) = {z0 ∈ Z0 : w(0) = H f (z0, v(0))}.

The set Z f (0 | − 1) represents the a-priori information about the initial state, which
has to be given as input Z0 to the diagnostic algorithm. After the I/O pair v(0), w(0))

is known, the set Z f (0 | 0) is determined, which includes all elements of Z0 for which
the output H f (z0, v(0)) generated by the automaton coincides with the measured
output w(0). Furthermore the set

Z f (1 | 0) = {z(1) = G f (z0, v(0)) : z0 ∈ Z f (0 | 0)}

can be determined, which includes all states to which the model A f can move under
the input v(0).

The set Z f (1 | 0) is used as the starting point of the second recursion step. After
the I/O pair (v(1), w(1)) has been measured, the two sets

546 11 Fault Diagnosis of Discrete-Event Systems

Z f (1 | 1) = {z(1) ∈ Z f (1 | 0) : w(1) = H f (z(1), v(1))}
Z f (1 | 0) = {z(2) = G f (z(1), v(1)) : z(1) ∈ Z f (1 | 1)}

are determined in a similar way as the sets Z f (0 | 0) and Z f (1 | 0). In general, for
each time horizon ke the following two sets are generated alternately after the I/O
pair (v(ke), w(ke)) has been measured:

Z f (ke | ke) = {z(ke) ∈ Z f (ke | ke − 1) : (11.41)

w(ke) = H f (z(ke), v(ke))}
Z f (ke + 1 | ke) = {z(ke + 1) = G f (z(ke), v(ke)) : (11.42)

z(ke) ∈ Z f (ke | ke)}.

As long as both sets are not empty, there exists a state sequence for the automaton
A f such that the automaton generates for the measured input sequence the measured
output sequence and, consequently, the I/O pair is consistent with the model A f .
Hence, the indicator p f (ke) has now to be determined as

p f (ke) =
{

1 if Z f (ke + 1 | ke) �= ∅
0 else.

(11.43)

After this indicator is known for the current time horizon ke for all models of the set
{A f , f ∈ F}, the set of fault candidates is obtained by Eq. (11.40).

Diagnosis of nondeterministic automata. For systems described by nondeterminis-
tic automata N f , (f ∈ F) the diagnostic problem includes always a state observation
problem, because even if the initial state z0 is unambiguously known, the nondeter-
minism of the automaton can produce ambiguity with respect to the current state in
each state transition. The complexity of the diagnostic problem increases due to the
nondeterminism that allows the model to associate with each state z and input v a
set of successor states z′ rather than a unique state.

For the known I/O pair (v(ke), w(ke)), the sets Z f (ke | ke) and Z f (ke + 1 | ke)

have to be determined using the behavioural relation Ln f of the nondeterministic
automaton N f according to the relations

Z f (ke | ke) = {z(ke) ∈ Z f (ke | ke − 1) :
∃z(ke + 1) : Ln f (z(ke + 1), w(ke), z(ke), v(ke)) = 1}

Z f (ke + 1 | ke) = {z(ke + 1) :
∃z(ke) ∈ Z f (ke | ke) : Ln f (z(ke + 1), w(ke), z(ke), v(ke)) = 1}.

11.3 Diagnostic Problems and Ways of Solution 547

Then the indicator p f (ke) can be found by Eq. (11.43) and the set of fault candidates
by Eq. (11.40).

Diagnosis of stochastic automata. If the system is described by stochastic automata
S f , (f ∈ F), the ambiguities of the diagnostic result can be reduced by associating
with each element of the set of fault candidates the probability

p f (ke) = Prob(f | V (0 . . . ke), W (0 . . . ke)),

which replaces the binary indicator p f (ke) of consistency used for the deterministic
or nondeterministic automaton. For the set of fault candidates the relation (11.40) is
extended to become

F∗(ke) = { f ∈ F : p f (ke) > 0}, (11.44)

but besides this set the value of p f (ke) remains important for the interpretation of the
diagnostic result. This indicator shows with which certainty each fault f ∈ F∗(ke)

is present.
The basis for determining the probability p f (ke) is again the solution of the state

observation problem, which now means to calculate the probability

Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke), f)

that the system subject to fault f can be in state z after it has obtained the input
sequence V (0 . . . ke) and generated the output sequence W (0 . . . ke). This probability
is abbreviated as p f (z, ke):

p f (z, ke) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke), f).

Similarly, the probability to be in the state z′ at time ke + 1 after having received
the input sequence V (0 . . . ke) and generated the output sequence W (0 . . . ke) is
denoted by

p′
f (z

′, ke) = Prob(Z(ke + 1) = z′ | V (0 . . . ke), W (0 . . . ke), f).

In Sect. 11.6 a recursive representation of these two probabilities will be given to
complete the consistency test and to make it possible to determine the set of fault
candidates together with the mentioned probabilities.

Outline of the diagnostic methods. The diagnostic problem will be solved for the
three classes of automata in the next sections in a uniform way. This survey has
shown that the diagnostic problem includes a state observation problem unless the
state is measurable. Therefore, the state observation problem is solved first and later
extended to fault detection and fault identification.

548 11 Fault Diagnosis of Discrete-Event Systems

11.4 Diagnosis of Deterministic Automata

11.4.1 Diagnostic Algorithm

As the diagnostic problem is very simple if the state z is measurable (cf. Eq. (11.39)),
this section is devoted to deterministic automata with outputs w. A pair (V (0 . . . ke),
W (0 . . . ke)) of input and output sequences with finite time horizon ke is called
consistent with the deterministic automaton A f if there exists a state sequence

Z(0 . . . ke + 1) = (z(0), z(1), . . . , z(ke + 1)) (11.45)

for which the relations

z(k + 1) = G(z(k), v(k)), z(0) = z0 (11.46)

w(k) = H(z(k), v(k)) (11.47)

are satisfied for k = 0, 1, . . . , ke. If the initial state z0 is known, the consistency
can be tested by simply applying Eq. (11.46) for k = 0, 1, . . . , ke to generate for the
measured input sequence (11.1) the state sequence (11.45). Then Eq. (11.47) is used
to test whether the outputs w(k) obtained by the model are identical to the elements
of the measured output sequence (11.2). If the initial state is only known to belong to
a set Z0, then the sequences of state sets described in Eqs. (11.42) and (11.43) have
to be generated and consistency means that none of them is empty.

The following algorithm summarises the diagnostic steps to be performed for
deterministic automata. The algorithm starts for ke = 0 and considers an increasing
time horizon. The newest measured I/O pair (v(ke), w(ke)) is denoted by (v̄, w̄)

in the algorithm and the state sets Z f (ke | ke) and Z f (ke + 1 | ke) by Z f or Z ′
f ,

respectively, for f ∈ F .

Algorithm 11.1 Diagnosis of deterministic automata

Given: Deterministic automata A f , (f ∈ F)

Set of initial states Z0

Initialisation: Z ′
f = Z0 for all f ∈ F

ke = 0

Loop: 1. Measure the next I/O pair (v̄, w̄).

2. Determine Z f = {z ∈ Z ′
f : w̄ = H f (z, v̄)} for all f ∈ F .

3. Determine Z ′
f = {z′ = G f (z, v̄) : z ∈ Z f } for all f ∈ F .

4. Set p f (ke) = 1 if Z ′
f �= ∅ and p f (ke) = 0 otherwise for all

f ∈ F .

11.4 Diagnosis of Deterministic Automata 549

5. Determine F∗(ke) = { f ∈ F : p f (ke) = 1}.
6. ke := ke + 1

Continue with Step 1.

Result: Set of fault candidates F∗(ke) for increasing time horizon ke

This algorithm can be applied to a large number of different models A f and to I/O
sequences of arbitrary length ke because its complexity is only linear with respect to
the number of models and the length of the sequences. The algorithm gives the best
possible result, because it determines the set of fault candidates. For every element
of the set F∗(ke), the I/O pair is consistent with the corresponding model A f up to
time ke and there is no fault in the remaining set F\F∗(ke) for which the I/O pair is
consistent with the model A f .

The diagnostic result has the following consequences. If f0 does not belong to
F∗(ke), a fault is detected with certainty. For every time horizon ke, the system may
be subject to any fault f ∈ F∗(ke).

Diagnosability of deterministic automata. An important question asks under what
conditions the diagnostic method developed so far is able to detect a fault (fault
detectability) or to unambiguously identify the fault (fault identifiability). These two
properties will be investigated in the following paragraphs. As a basis for these
investigations, the next section reviews known results on the equivalence of states of
deterministic I/O automata from [211].

11.4.2 Results on Deterministic Automata
with Equivalent States

Equivalence of states. This section considers automata with arbitrary initial states
z0. It compares the behaviour of a single automaton if this automaton starts its move-
ment in two different initial states or the behaviour of two automata with different
initial states.

Definition 11.1 (Equivalent states) Two states z and z̃ of the automaton A =
(Z,V,W, G, H) are said to be equivalent if the relation

φ(z, V) = φ(z̃, V) (11.48)

holds for all V ∈ V∗. Otherwise they are called distinguishable.

550 11 Fault Diagnosis of Discrete-Event Systems

Equivalence of the states z and z̃ is indicated by z ∼ z̃. An automaton that has no
equivalent states is called minimal.

State equivalence of two automata. Definition 11.1 can be applied to states of two
distinct automata

Ai = (Zi ,V,W, Gi , Hi) and A j = (Z j ,V,W, G j , Hj).

Analogously to Eq. (11.48), the states z ∈ Zi and z̃ ∈ Z j are said to be equivalent if
the relation

φi (z, V) = φ j (z̃, V) (11.49)

is satisfied for all V ∈ V∗. Equation (11.49) can be written in the form (11.48), in
which the same automaton map φ occurs on both sides, if the automata Ai and A j

are lumped together to get the automaton

Ā = (Z̄,V,W, Ḡ, H̄)

with

Z̄ = Zi ∪ Z j

Ḡ(z, v) =
{

Gi (z, v) if z ∈ Zi

G j (z, v) if z ∈ Z j
H̄(z, v) =

{
Hi (z, v) if z ∈ Zi

H j (z, v) if z ∈ Z j .

Denote the automaton map of Ā by φ̄. Then the states z ∈ Zi and z̃ ∈ Z j of the two
automata Ai and A j are equivalent if the relation

φ̄(z, V) = φ̄(z̃, V) (11.50)

holds. Consequently, the equivalence test described in the next paragraph for a single
automaton can also be applied for testing the equivalence of states of two automata.

Equivalence test. The equivalence test uses the following recursive equivalence
definition:

• Two states z and z̃ are said to be 0-equivalent (z
0∼ z̃), if Eq. (11.48) holds for a

single input symbol V = v. This is true if and only if the relation

H(z, v) = H(z̃, v) for all v ∈ V

is satisfied. Accordingly, the state set Z is partitioned into sets Z0
i , (i =

1, 2, . . . , q0) such that a state pair (z, z̃) belongs to the same set Z0
i if and only if

the automaton produces for every input symbol the same output for both states:

11.4 Diagnosis of Deterministic Automata 551

z, z̃ ∈ Z0
i ⇐⇒ H(z, v) = H(z̃, v) for all v ∈ V. (11.51)

The function
H∗ : Z0 × V → W

with
Z0 = {Z0

i | i = 1, 2, . . . , q0}

is introduced to associate with each state set Z0
i and input v ∈ V the output

w = H(z, v) such that Eq. (11.51) holds:

H∗(Z0
i , v) = H(z, v) for all z ∈ Z0

i , v ∈ V. (11.52)

States belonging to two different sets Z0
i and Z0

j , (i �= j) are 0-distinguishable.

• For k ≥ 0 two states z and z̃ are said to be (k + 1)-equivalent (z
k+1∼ z̃), if

Eq. (11.48) holds for all input sequences V (0 . . . l) with time horizon l ≤ k + 1.
This is true if and only if the successor states z′ = G(z, v) and z̃′ = G(z̃, v) of z
or z̃, respectively, are k-equivalent:

G(z, v)
k∼ G(z̃, v) for all v ∈ V.

Hence, the kth partition of Z into the sets Zk
i , i = 1, 2, . . . , qk is refined to get

the (k + 1)st partition of Z into the sets Zk+1
i , (i = 1, 2, . . . , qk+1) such that the

relation

z, z̃ ∈ Zk+1
i ⇐⇒ ∀v ∈ V ∃ j : G(z, v), G(z̃, v) ∈ Zk

j (11.53)

holds. The function
G∗

k : Zk+1 × V → Zk

with

Zk = {Zk
i | i = 1, 2, . . . , qk}

Zk+1 = {Zk+1
i | i = 1, 2, . . . , qk+1}

associates with each state set Zk+1
i and each input v ∈ V the set Zk

j such that
Eq. (11.53) holds. Hence, the relation

G(z, v) ∈ G∗
k(Zk+1

i , v) for all z ∈ Zk+1
i , v ∈ V (11.54)

is valid.

If states are (N − 1)-equivalent with N = |Z|, they are equivalent according to
Definition 11.1. Then the final result of the recursive state partitioning is obtained

552 11 Fault Diagnosis of Discrete-Event Systems

and denoted by symbols Zi without superscript:

Z = ∪q
i=1Zi . (11.55)

The mapping G∗
N−2 is also denoted by G∗. Usually, the refinement of the state

partitioning finishes before the (N − 1)st refinement step.
If the states z and z̃ are not k-equivalent, they are called k-distinguishable.

Lemma 11.1 (Uniqueness of the state set partition) [211] The state set parti-
tion (11.55) is unique. Two states z, z̃ belong to the same set Zi if and only if they
are equivalent.

The lemma implies that the states z, z̃ are k-equivalent if and only if they belong
to the same set Zk

i of the kth state partition. Otherwise, they are k-distinguishable.
This test is summarised in the following algorithm:

Algorithm 11.2 Partitioning of the state set into sets of equivalent states

Given: Deterministic automaton A
1. Determine the partition Z0 such that Eq. (11.51) is satisfied.

2. For k = 0, 1, . . . , N − 2, determine the partition Zk+1 such that
Eq. (11.53) holds

If Zk+1 = Zk holds, finish this step.

3. Denote the final partition obtained by Zi , (i = 1, 2, . . . , q).

Result: Partition (11.55) of the state set into sets Zi of equivalent states.

This algorithm has the complexity O(N 2), where N is the cardinality of Z .

Properties of automata with equivalent states. Consider the state sequences that an
automaton can generate starting in a pair (z, z̃) of equivalent states. An important fact

Equivalent state pairs

z z

zz

v(0)/w(0)

v(0)/w(0)

v(1)/w(1) v(k)/w(k)

v(k)/w(k)v(1)/w(1)

v(k−1)/w(k−1)

v(k−1)/w(k−1)

Fig. 11.15 State trajectories over equivalent state pairs

11.4 Diagnosis of Deterministic Automata 553

is that for all input sequences V (0 . . . ke) with arbitrary time horizon ke these two state
sequences only go over equivalent state pairs (z, z̃), (z′, z̃′) etc. (Fig. 11.15, cf. [128],
Theorem 3.3). All state transitions involved have the same I/O pair (v(k), w(k)),
(k = 0, 1, . . . , ke).

For k-distinguishable state pairs (z, z̃), there exists an input sequence V (0 . . . k)

for which the output sequences that are generated by the automaton starting in the
initial state z or z̃, respectively, are not equal:

φ(z, V (0 . . . k)) �= φ(z̃, V (0 . . . k)). (11.56)

The input sequence V (0 . . . k) for which the relation (11.56) holds is called a distin-
guishing input sequence of the state pair (z, z̃).

If the states z and z̃ are distinguishable, distinguishing input sequences have
at most N − 1 symbols. Hence, for distinguishable states the output sequences are
identical for at most N −2 symbols and the fact that the states are distinguishable can
be identified, for a reasonably chosen input sequence, in finite time. Consequently,
all further investigations can be restricted to finite input sequences V (0 . . . ke) with
ke < N − 1.

If z and z̃ are (k − 1)-equivalent but k-distinguishable, then the output sequences
W are identical up to the element w(k − 1) and there exists a distinguishing input
sequence V̄ (0 . . . k) such that the output sequences are not completely identical:

φ(z, V) = φ(z̃, V) for all V ∈ V l , l = 0, 1, . . . , k

∃ V̄ ∈ Vk+1 : φ(z, V̄) �= φ(z̃, V̄). (11.57)

An important fact is that the output sequences

W (0 . . . k) = φ(z, V̄ (0 . . . k)) = (w(0), w(1), . . . , w(k))

W̃ (0 . . . k) = φ(z̃, V̄ (0 . . . k)) = (w̃(0), w̃(1), . . . , w̃(k))

differ only in in the last element w(k):

w(0) = w̃(0)

w(1) = w̃(1)

...

w(k − 1) = w̃(k − 1)

w(k) �= w̃(k).

Therefore, the state trajectories starting in the states z and z̃ go over state pairs with
decreasing equivalence properties (Fig. 11.16).

This fact has a direct interpretation. When starting in the two initial states z or z̃
the first k elements v(0), . . . , v(k − 1) of the input sequence V̄ (0 . . . k) are used to

554 11 Fault Diagnosis of Discrete-Event Systems

(k−1) - equivalent
k - distinguishable

(k−2) - equivalent
(k−1) - distinguishable

(k−3) - equivalent
(k−2) - distinguishable

0 - equivalent
1 - distinguishable

0 - distinguishable

˜

˜

˜
z z̃

z z0

0

v(0)/w(0)

v(0)/w(0)

v(1)/w(1)

v(1)/w(1)

v(k)/w(k)

w(k) / w(k)

v(k)/w(k)

v(k−2)/
w(k−2)

v(k−2)/
w(k−2)

v(k−1)/
w(k−1)

v(k−1)/
w(k−1)

=

Fig. 11.16 State trajectories generated by a distinguishing input sequence V̄ (0 . . . k) that start in a
k-distinguishable, (k − 1)-equivalent state pair

A
i
: A

j
:

1

1
1

5 6 7 84
2 3 1

2

2

2

3

3

Fig. 11.17 Two automata

bring the system into two states z(k) or z̃(k), respectively, that are 0-distinguishable.
Hence, for these states an input symbol v(k) exists for which the outputs w(k) and
w̃(k) generated in both states are different:

w(k) = H(z(k), v(k)) �= H(z̃(k), V (k)) = w̃(k).

If the states to be tested belong to different automata with Ni of N j states, respec-
tively, the maximum length necessary to distinguish these states depends on the car-
dinality of both state sets. At most maxi, j (Ni , N j) + 1 input symbols are necessary.
Figure 11.17 illustrates this fact for two automata with 3 or 5 states. To distinguish
the states 1 and 4, an input sequence of length 6 is necessary.

11.4 Diagnosis of Deterministic Automata 555

11.4.3 Fault Detectability

Fault detection concerns the question whether or not a fault has occurred in the
system. This section deals with the question under what conditions a fault f can be
detected.

The notion of fault detectability describes the property of a system to change
its behaviour in case of a fault f in such a way that a diagnostic system, knowing
the I/O pair and the model A0 of the faultless system, can detect the fault f . The
fault is detectable only if the I/O pair (V, W) generated by the faulty system is not
consistent with the behaviour B0 of the faultless system. Since for the system subject
to fault f , the output sequence is given by W = φ f (z f 0, V), this condition can be
represented as

(V, φ f (z f 0, V)) /∈ B0. (11.58)

Note that whether or not the relation (11.58) is satisfied depends upon the input
sequence V . There may exist input sequences V such that the I/O pair generated by
the faulty system coincides with some I/O pair of the faultless system and, hence,
do not give any indication for the diagnostic system to detect the fault, whereas for
other input sequences Eq. (11.58) holds.

Hence, fault detectability has to be defined as the chance to find out the presence
of the fault. This “chance” exists if there is some input sequence such that the rela-
tion (11.58) is satisfied. This fact is the motivation for the following definition, in
which, as before, it is assumed that the faultless system is described by the initialised
automaton (A0, z00) with the automaton map φ0 and the system subject to fault f
by the initialised automaton (A f , z f 0) with the automaton map φ f .

Definition 11.2 (Fault detectability) The fault f is said to be detectable if there
exists a finite input sequence V such that the relation

(V, φ f (z f 0, V)) /∈ B0 (11.59)

holds, where B0 denotes the behaviour of the faultless system A0.

Note that the detectability of a fault f is a property of the system to change its
dynamical behaviour with respect to the faultless system A0. For a system, there
may exist detectable and undetectable faults.

Detectability test. A direct consequence of the detectability definition is described
in the following lemma:

Lemma 11.2 A fault f is detectable if and only if the behaviour B f of the system
subject to fault f is different from the behaviour B0 of the faultless system

B f �= B0. (11.60)

Condition (11.60) claims that there exists at least one I/O pair occurring for the
faulty system that does not occur for the faultless system. In Fig. 11.18 the I/O pair

556 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.18 Illustration of the
detectability
condition (11.60)

(V 1,W 1)
(V 2,W 2)

(V 3,W 3)

B0
Bf

(V1, W1) satisfies the relation (11.59). It shows that if the input sequence V1 is applied
to the faulty system, the output sequence W1 occurs and the fault can be detected
because the I/O pair (V1, W1) is not consistent with the behaviour B0 of the faultless
system. The figure also shows that the fault can only be detected for specific input
sequences. If instead of V1 the input sequence V2 is applied, the faulty system results
in the I/O pair (V2, W2) that belongs not only to B f but also to B0 and the diagnostic
system does not get any indication for the presence of the fault.

The property of fault detectability can be tested as follows:

Theorem 11.1 (Detectability criterion) The fault f is detectable if and only if the
initial states z00 and z f 0 of the deterministic automata A0 or A f , respectively, are
distinguishable.

Proof (Sufficiency:) If the initial states are equivalent, then Eq. (11.49) holds, which for the
automata considered here reads as

φ f (z f 0, V) = φ0(z00, V) for all V ∈ V∗.

Hence, the behaviours B0 and B f of the automata A0 and A f are identical, which is in
contradiction to Eq. (11.60).

(Necessity:) If the initial states are distinguishable, then there exists an input sequence V
such that the inequality

W0 = φ0(z00, V) �= W f = φ f (z f 0, V)

holds. Hence, the I/O pair (V, W f) belongs to the behaviour B f of the faulty system
but not to the behaviour B0 of the faultless system and, due to Eq. (11.59), the fault
is detectable. �

Fault detectability test. According to Theorem 11.1, the detectability of a fault f
can be tested by applying the equivalence test described in Sect. 11.4.2 to the initial
states z00 and z f 0 of the automata A0 and A f . The complexity of this test is O(N 2).

Remarks. The degree of distinguishability of the initial states z0 and z f 0 is a measure
of the length of the input sequence V for which the fault f can be detected. If both
states are k-distinguishable, a distinguishing input sequence V (0 . . . k) of length k+1
exists. A method for finding distinguishing input sequences with minimum length
will be developed in Sect. 11.4.5.

11.4 Diagnosis of Deterministic Automata 557

To solve the fault detection task necessitates only the availability of the model A0
of the faultless system. However, the information included in this model is neither
sufficient for the test of the detectability of the faults f ∈ F nor for the determination
of a distinguishing input sequence V for which Eq. (11.59) holds. For both steps it has
to be known how the behaviour of the faulty system distinguishes from the behaviour
of the faultless system. This information is included in the model set {A f | f ∈ F}.

11.4.4 Fault Identifiability

Fault identification is the task to find the fault f ∈ F that the system is subject to.
This task requires to know the whole model set {A f | f ∈ F}.

This section deals with the important question under what conditions it is possible
to identify a fault f . Fault identifiability is a system property that depends upon the
automaton maps φ f or, equivalently, upon the state transition functions G f and
output functions H f of the system for all f ∈ F , but not on the diagnostic method.

The notion of fault identifiability should describe the situation that a diagnostic
unit can be able to identify a fault after a finite number of input symbols. That is, for
the I/O pairs generated for a specific input sequence V the relations

(V, W f̃) ∈ B f̃ (11.61)

(V, W f) /∈ B f for all f �= f̃ (11.62)

should hold for some fault f̃ . Like fault detectability, the possibility to find the fault
depends upon a reasonable choice of the input sequence V .

Figure 11.19 illustrates this situation for a system with the fault set F = {0, 1, 2}.
For every fault case f ∈ F , there exists an input sequence denoted by V f , (f ∈ F)
such that the output sequence

W f = φ(z f 0, V f)

Fig. 11.19 Illustration of
fault identification

(V 1,W 1)

(V 2,W 2)

(V 3,W 3)

B0
B1

B2

558 11 Fault Diagnosis of Discrete-Event Systems

generated by the system subject to fault f results in an I/O pair (V f , W f) that only
belongs to the behaviour B f relevant to this fault and not to the behaviour of the other
fault cases. If the system gets this input sequence, the fault f can be unumbiguously
identified.

Definition 11.3 (Fault identifiability) Consider a system that is described by a set
{A f | f ∈ F} of deterministic automata. The fault f̃ is called identifiable, if there
exists an input sequence V such that Eqs. (11.61) and (11.62) hold with W f =
φ f (z f 0, V) and, hence, the set of fault candidates is a singleton: F∗(V, W) = { f̃ }.
Identifiability test. Before stating the identifiability criterion, the fault identification
task is reformulated. Fault identification can be considered as the task to decide for a
given I/O pair (V, W) which component A f of the model set {A f | f ∈ F} generates
for the input sequence V the output sequence W . The overall model

Ā = (Z̄,V,W, Ḡ, H̄),

which includes the behaviour of all models A f , (f ∈ F) is obtained as follows:

Z̄ = ∪ f ∈FZ f (11.63)

Ḡ(z, v) = G f (z, v) if z ∈ Z f (11.64)

H̄(z, v) = H f (z, v) if z ∈ Z f . (11.65)

It is initialised with one of the initial states z f 0:

z̄ ∈ Z̄0 = {z f 0 | f ∈ F}. (11.66)

For such an initial state and an input sequence V , the automaton Ā generates one of
the output sequences that the models of the set {A f | f ∈ F} can generate. Hence,
its behaviour B̄ includes the behaviour of all models A f :

B̄ = ∪ f ∈FB f .

Theorem 11.2 (Identifiability criterion) [215] Assume that all automata A f , (f ∈
F) are minimal. Then all faults f ∈ F are identifiable if the automaton Ā is minimal.

Example 11.2 System with identifiable faults
As an example, consider the model A f , (f = 0, 1, 2) shown in Fig. 11.20. The absence of
equivalent states is proved by means of the state transition function Ḡ and the output function
H̄ of the automaton Ā obtained by Eqs. (11.64), (11.65):

Ḡ =
v

z
1 2 3 4 5

1 2 1 4 3 5

2 2 1 4 3 5

, H̄ =
v

z
1 2 3 4 5

1 1 2 1 1 1

2 1 2 1 2 1

11.4 Diagnosis of Deterministic Automata 559

Fig. 11.20 Models of three
fault cases

1/1, 2/1

1 2

3 4

5

1/1, 2/1

1/1, 2/2

1/1, 2/1

1/2, 2/2

A
0

:

A
1

:

A
2

:

The analysis of the output function H̄ results in the function H∗

H ∗
v

z Z0
1 Z0

2 Z0
3

1 3 5 2 4

1 1 1 1 2 1

2 1 1 1 2 2

=

and the sets
Z0

1 = {1, 3, 5}, Z0
2 = {2}, Z0

3 = {4}.

Note that in the table representing the function H∗, the columns belonging to all states of the
same set Z0

i are identical. For a given input v, the entry in the corresponding row represents

the value H∗(Z0
i , v). Furthermore, the function G∗ is obtained

G∗ =

v
z Z1

1 Z1
2 Z1

3 Z1
4 Z1

5

1 3 5 2 4

1 Z0
2 Z0

3 Z0
1 Z0

1 Z0
1

2 Z0
2 Z0

3 Z0
1 Z0

1 Z0
1

which proves that the automaton Ā is minimal.
To select input sequences for which the faults are identifiable, note that the automata A0

and A1 are in the initial states z00 = 1 or z01 = 3, respectively, as shown in the figure. With
the input sequence

Vdet = (1, 1)

a fault can be detected, because the output sequences

560 11 Fault Diagnosis of Discrete-Event Systems

W0det = (1, 2), W1det = (1, 1), W2det = (1, 1)

are different for the faultless case (W0det) and for the faulty cases (W1det, W2det). With the
input sequence

Vid = (1, 2)

the output sequences of the models A1 and A2 are different

W1id = (1, 2), W2id = (1, 1)

and the fault can be identified. In summary, the concatenated input sequence

V = Vdet · Vid = (1, 1, 1, 2)

yields the output sequences

W0 = W0det · W0id = (1, 2, 1, 2)

W1 = W1det · W1id = (1, 1, 1, 2)

W2 = W2det · W2id = (1, 1, 1, 1),

which unambiguously identify the fault. �

The example also shows that the length 4 = N1+N2+N3−1 of the distinguishing
input sequence V depends on the cardinality N1 + N2 + N3 of the overall model
Ā rather than on the separate cardinalities Ni of the state sets of the models Ai ,
(i = 0, 1, 2). However, the length 2 of the inputs Vdet and Vid are due to the cardinality
of pairs of submodels (2 = maxi �= j (Ni + N j) − 1).

11.4.5 Method for Determining Distinguishing
Input Sequences

The important result of the investigations of the preceding section is the fact that
for identifiable faults there exist distinguishing input sequences V with finite length
such that the pair (V, W) belongs to precisely one set B f , (f ∈ F). The question
considered in this section is how to find this input sequence:

Determination of distinguishing input sequences

Given: Deterministic automaton A with automaton map φ

State pair (z, z̃)

Find: Input sequence V such that φ(z, V) = φ(z̃, V)/

The main problem to be solved concerns the determination of the shortest input
sequence with which identifiable faults can be unambiguously identified. It should

11.4 Diagnosis of Deterministic Automata 561

Fig. 11.21 Automaton

21

4 5

3

1/0

1/0

1/0

2/1

2/1 2/1

1/1

1/1

2/12/1

become clear after a minimum number of input symbols to which behaviour B f ,
(f ∈ F) the I/O pair belongs.

The preceding section also has shown that the identification of a fault f can
be reduced to the problem of identifying the state of the automaton Ā. If the result
belongs to the state set Z f , then the fault f has been identified. As a consequence, this
section deals with the problem of finding the shortest distinguishing input sequence
for identifying the state of the automaton Ā.

Explanation of the method by an example. The solution to the problem stated
above will be explained first by considering the example automaton shown in
Fig. 11.21.

Example 11.3 Determination of distinguishing inputs
The automaton is described by the following state transition function G and output function
H :

G =
v

z
1 2 3 4 5

1 1 1 5 3 2

2 4 5 1 4 5

, H =
v

z
1 2 3 4 5

1 0 0 0 1 1

2 1 1 1 1 1

To determine 0-equivalent states the output function is analysed with the following result:

H ∗ =

Z0
1 Z0

2

1 2 3 4 5

v = 1 0 0 0 1 1

v = 2 1 1 1 1 1

562 11 Fault Diagnosis of Discrete-Event Systems

The further decomposition of the state set Z is obtained by means of the state transition
function G:

G∗
0

Z1
1 Z1

2 Z1
3

1 2 3 4 5

v = 1 Z0
1 Z0

1 Z0
2 Z0

1 Z0
1

v = 2 Z0
2 Z0

2 Z0
1 Z0

2 Z0
2

↓

G∗
1 =

Z2
1 Z2

2 Z2
3 Z2

4

1 2 3 4 5

v = 1 Z1
1 Z1

1 Z1
3 Z1

2 Z1
1

v = 2 Z1
3 Z1

3 Z1
1 Z1

3 Z1
3

↓

G∗
2 =

Z3
1 Z3

2 Z3
3 Z3

4 Z3
5

1 2 3 4 5

v = 1 Z2
1 Z2

1 Z2
4 Z2

2 Z2
1

v = 2 Z2
3 Z2

4 Z2
1 Z2

3 Z2
4

=

The result shows that the automaton does not possess equivalent states, because all state sets
obtained are singletons.

In the following, it will be shown that the sequence of results obtained when testing
the existence of equivalent states by means of Algorithm 11.2 can be used to determine
distinguishing input sequences. First consider the function H∗ defined in Eq. (11.52). The
decomposition shows that for the input v = 1 the state pairs (1, 4), (1, 5), (2, 4), (2, 5),
(3, 4), (3, 5) can be distinguished by the output that the system generates. For all six pairs,
the automaton A gives the output w = 0 if it is in the first state and the output w = 1 for the
second state. The listed state pairs are the elements of the set

Z0
1 × Z0

2 = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

These state pairs are 0-distinguishable and the distinguishing input is v = 1.
The function G∗

0 is obtained when partioning the state set Z0
1 into the sets Z1

1
and Z1

2 :
Z0

1 = Z1
1 ∪ Z1

2 .

It shows how to distinguish between the state pairs

Z1
1 × Z1

2 = {(1, 3), (2, 3)}.

11.4 Diagnosis of Deterministic Automata 563

Fig. 11.22 Determination of
the distinguishing input
sequence of 1-distinguishing
state pairs

w(1) = 0 w(1) = 1

v (1) = 1

v (0) = 1

0
1Z 0

2Z
1 2 3 4 5

0 0 0 1 1

11111

z =
v = 1
v = 2

H* =

G* =0

Z 1
1 Z 1

2 Z 1
3

1 2 3 4 5

Z 0
1 Z 0

1

Z 0
2 Z 0

2

Z 0
2 Z 0

1 Z 0
1

Z 0
1Z 0

2Z 0
2

v = 1
v = 2

z =

These state pairs are 1-distinguishable and 0-equivalent, because they belong to the same set
Z0

1 of the first decomposition and, thus, are not distinguishable without any state transition.
However, if an input sequence of length 2 is used and, hence, one state transition is caused,
these state pairs can be distinguished.

The distinguishing input sequence can be read off the decomposition by looking for a row in
the G∗

0 table with different entries for the state setsZ1
1 andZ1

2 . The entriesZ0
1 andZ0

2 in the first
row say that using the input symbol v(0) = 1 state transitions occur where the states z = 1 and
z = 2 are moved to one of the states z′ ∈ Z0

1 whereas from the state z̃ = 3 the automaton moves

towards one of the states z̃′ ∈ Z0
2 (Fig. 11.22). As the successor states belong to different sets of

0-distinguishable states, using the second input symbol v(1) = 1 the automaton gives the
output w(1) = 0 if it has started in the initial state z = 1 or z = 2; whereas it generates the
output w(1) = 1 if it has started in the state z̃ = 3. Consequently, the state pairs

(z, z̃) ∈ {(1, 3), (2, 3)}

are 1-distinguishable and a distinguishing input sequence is

V (0 . . . 1) = (1, 1).

As the final example, consider the last decomposition step of the state transition function
G, where the set Z2

1 is partitioned

Z2
1 = Z3

1 ∪ Z3
2 .

Hence, the states 1 and 2, which are the only elements of the sets Z3
1 and Z3

2 are distinguishable
after this decomposition step, which is the third one. Hence, these states are 3-distinguishable
and 4 input symbols for a distinguishing input sequence V (0 . . . 3) have to be found by re-
tracing the decomposition.

564 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.23 Determination of
the distinguishing input
sequence of 3-distinguishing
state pairs

w(3) = 0

z = 1 2

0
1

0
2

3 4 5

0 0 0 1 1
11111

v = 1
v = 2

v = 1
v = 2

H* =

G* =

G* =

w(3) = 1

v(3) = 1

v(2) = 1

v(1) = 1

v(0) = 2

Z Z

Z Z Z

Z Z Z Z

Z Z Z Z Z

v = 1
v = 2

v = 1
v = 2

0

Z Z Z
ZZZ Z

Z Z
Z

Z Z Z Z Z
ZZZZZ

Z Z Z Z Z
ZZZZZ

1
1

1
2

1
3

0
1

0
1

0
2

0
1
0
2

0
1
0
2

0
2

0
2

0
1

1
1

1
1

1
3

1
3

1
3

1
3

1
3

1
2

1
1

1
1

1 2 3 4 5

1 2 3 4 5

3
1

3
2

3
3

3
4

3
5

2
4

2
1

2
2
2
3

2
3
2
1

1 2 3 4 5
2
1

2
1
2
4

2
3

z =

z =

z =

1

G* =2

2
1

2
2

2
3

2
4

As Fig. 11.23 shows the input sequence

V (0 . . . 3) = (2, 1, 1, 1)

yields state transitions among the following state sets:

1
v(0)=2−→ Z2

3
v(1)=1−→ Z1

2
v(2)=1−→ Z0

2

2
v(0)=2−→ Z2

4
v(1)=1−→ Z1

1
v(2)=1−→ Z0

1 .

11.4 Diagnosis of Deterministic Automata 565

3
2/1

4 5
1/1 1/0 1/1

25 1
2/1 1/1 1/0 1/0

1

2

Fig. 11.24 State trajectories for determining whether the automaton is in the initial state 1 or 2

Obviously, the first three input symbols bring the automaton in a pair of 0-distinguishable
states. The last input symbol v(3) = 1 is used to get two different output symbols w(3) = 1
or w(3) = 0, where the first symbol indicates that the automaton has started its movement
in the state z(0) = 1; whereas the second symbol occurs if the automaton has had the initial
state z(0) = 2.

What the automaton really does for the distinguishing input sequence, can be determined
by means of the state transition function G and the output function H . The result is shown in
Fig. 11.24. For the first three input symbols, the output symbols generated by the automaton
are the same for both initial states. Only the last output symbol can be used as an indicator for
determining the initial state in which the automaton has started its movement. This figure has
the same structure as Fig. 11.16.

The analysis result can be summarised in the following table, which gives for all state pairs
the distinguishing input sequence and shows which last output symbol occurs for both initial
states:

z z̃ V (0 ... k) w(k) for z (0) = z w(k) for z (0) = z̃

1 2 (2 , 1, 1, 1) 1 0

1 3 (1 , 1) 0 1

1 4 1 0 1

1 5 1 0 1

2 3 (1 , 1) 0 1

2 4 1 0 1

2 5 1 0 1

3 4 1 0 1

3 5 1 0 1

4 5 (1 , 1, 1) 1 0

Note that there may be several distinguishing input sequences, but the sequences shown
here have minimum length. �

Algorithm. The method explained in the preceding section, for example automaton,
is now formalised to get an algorithm, which proceeds in two main steps:

1. The state set Z is partitioned into sets of equivalent states:

Z = ∪q
i=1Zi .

566 11 Fault Diagnosis of Discrete-Event Systems

As intermediate results, the partitions

Z = ∪qk
i=1Zk

i , k = 1, 2, . . . , N − 1

are obtained together with the functions H∗ and G∗
k , (k = 0, 1, . . . , N − 3) such

that Eq. (11.51) or (11.53) and

Zi = ZN−2
i , i = 1, 2, . . . , q

hold. If z and z̃ are not equivalent, they belong to different sets Zi and Z j (i �= j).
Otherwise, no distinguishing input sequence exists.

2. The result of the first step is evaluated backwards in the following way. First, find
the number ke for which the states z and z̃ are elements of a common set Zke−1

l

and of disjoint sets Zke
i and Zke

j , (i �= j):

ke : z, z̃ ∈ Zke−1
l and z ∈ Zke

i , z̃ ∈ Zke
j for some i �= j. (11.67)

Hence, z and z̃ are ke-distinguishable. Introduce the new symbols

Zke = Zke
i and Z̃ke = Zke

j .

Second, to find the distinguishing input sequence V (0 . . . ke) determine the input
v(ke − k) = vk for k = ke, ke − 1, . . . , 1 such that

G∗
k−1(Zk, vk) = Zk−1 �= G∗

k−1(Z̃k, vk) = Z̃k−1. (11.68)

Finally, choose the input v(ke) = v0 such that

H∗(Z0, v0) = w �= H∗(Z̃0, v) = w̃. (11.69)

The result is the distinguishing input sequence

V (0 . . . ke) = (v(0), v(1), . . . , v(ke)) = (vke , vke−1, . . . , v1, v0). (11.70)

These steps can be formally described as the following algorithm:

11.4 Diagnosis of Deterministic Automata 567

Algorithm 11.3 Determination of a distinguishing input sequence

Given: Deterministic automaton A and state pair (z, z̃)

1. Determine the sets Z0
i , (i = 1, . . . , q0) and the function H∗ accord-

ing to Eq. (11.52).

2. Determine the sets Zk
i , (k = 1, 2, . . . , N − 1, i = 1, . . . , qk) and

the functions G∗
k , (k = 1, 2, . . . , N − 2) according to Eq. (11.54).

If z and z̃ belong to the same set ZN−1
i , stop (they are not

distinguishable).

3. Determine the length ke of the distinguishing input sequence accord-
ing to Eq. (11.67).

4. For k = ke, ke − 1, . . . , 1 determine vk such that Eq. (11.68) holds.

5. Determine v0 by means of Eq. (11.69).

Result: Distinguhishing input sequence (11.70).

Theorem 11.3 (Minimum distinguishing input sequences) Algorithm 11.3 results
in a minimum distinguishing input sequence whenever the states z and z̃ are distin-
guishable.

Proof According to Lemma 11.1, the state set partition obtained by Steps 1 and 2 of the
algorithm is unique. The states z and z̃ belong to the same set Zk

i if and only if they are
k-equivalent. Hence, Eq. (11.67) ensures that the length ke of the input sequence is minimal.
Furthermore, the choice of the input symbols according to Eq. (11.68) ensures that the state
sequence ends in 0-distinguishing state sets and, finally, the output sequences generated by the
automaton A for the two different initial states z and z̃ distinguish in the last symbol w(ke).
Hence, the input sequence obtained by the algorithm is distinguishing. �

11.5 Diagnosis of Nondeterministic Automata

11.5.1 Method for Testing the Consistency of an I/O Pair
with a Nondeterministic Automaton

This section extends the diagnostic method explained in Sect. 11.4 for deterministic
automata towards nondeterministic automata

N = (Z,V,W, Ln,Z0).

568 11 Fault Diagnosis of Discrete-Event Systems

The main problems to be solved concern the new description of the system dynamics
by the behavioural relation Ln, which replaces the functions G and H of the deter-
ministic automaton, and the fact that the nondeterminism of the model brings about
ambiguities into the diagnostic result with any state transition.

The main idea is again the test of the consistency of the measured I/O pair
(V (0 . . . ke), W (0 . . . ke)) with the model N f of the system subject to fault f . As
this test is independent of the fault case, the index f is left out in the following
development of the test method. Z0 is a given set of states, in which the automaton
starts its movement.

According to the definition (11.4), an I/O pair (V, W) is consistent with a model
N if the relation

(V (0 . . . ke), W (0 . . . ke)) ∈ B

holds, where B is the behaviour (11.15) of the model N . In order to show clearly
how to carry out this test, the elements of the measured sequences are marked by a
bar:

V (0 . . . ke) = (v̄0, v̄2, . . . , v̄ke) (11.71)

W (0 . . . ke) = (w̄0, w̄2, . . . , w̄ke). (11.72)

For these representations, consistency with the model N claims that there exists a
state sequence

Z(0 . . . ke + 1) = (z0, z1, . . . , zke+1)

such that the relation
Ln(zk+1, w̄k, zk, v̄k) = 1

holds for k = 0, 1, . . . , ke and z0 ∈ Z0. Equivalently, the relation

∃Z(0 . . . ke + 1) :
ke∏

k=0

Ln(zk+1, w̄k, zk, v̄k) = 1 (11.73)

has to be valid, which can be represented by summing over all possible state
sequences:

∑

zke+1∈Z

∑

zke ∈Z
· · ·

∑

z0∈Z0

ke∏

k=0

Ln(zk+1, w̄k, zk, v̄k) ≥ 1. (11.74)

This fact is stated by the following lemma:

Lemma 11.3 The I/O pair (11.71), (11.72) is consistent with the nondeterministic
automaton N if and only if the condition (11.74) is satisfied.

11.5 Diagnosis of Nondeterministic Automata 569

Recursive test. The following presents a recursive test of the condition (11.74). The
function p(z′, ke + 1) is used as an indicator whether (p(z′, ke + 1) = 1) or not
(p(z′, ke + 1) = 0) a state sequence Z(0 . . . ke + 1) with the last element zke+1 = z′
exists for which the condition (11.73) is satisfied. This function can be determined
recursively as follows:

p′(z, 0) =
{

1 if z ∈ Z0

0 else
(11.75)

p′(z′, k + 1) =
⎢⎢⎢⎣

∑

z∈Z
Ln(z

′, w̄k, z, v̄k) · p′(z, k)

⎥⎥⎥⎦ , k = 0, . . . , ke, (11.76)

where the symbol �.� signifies the replacement of any positive integer by 1:

�p� =
{

0 if p = 0

1 if p ≥ 1.

The I/O pair (11.71), (11.72) is consistent with the model N if and only if the
inequality

p̄ =
⎢⎢⎢⎣

∑

z′∈Z
p′(z′, ke + 1)

⎥⎥⎥⎦ > 0 (11.77)

holds.
As a remark, it should be mentioned that the operation �.� reduces the value

of the argument to 1 in order to avoid increasing values in the sequence p(z, k),
(k = 0, 1, . . . , ke). The consistency test only distinguishes between vanishing and
non-vanishing values.

Lemma 11.4 The I/O pair (11.71), (11.72) is consistent with the model N if and only
if the condition (11.77) is satisfied, where p(z, ke + 1) is obtained by the recursion
relation (11.75), (11.76).

Proof The lemma is proved by showing that the condition (11.77) is satisfied if and only if
the condition (11.74) is satisfied, which is necessary and sufficient for the consistency. To do
so, define the function p̃(z, k) as follows:

p̃(z, 0) =
{

1 if z ∈ Z0

0 else
(11.78)

p̃(z′, k + 1) =
∑

z∈Z
Ln(z′, w̄k , z, v̄k) · p̃(z, k) k = 0, 1, . . . , ke. (11.79)

Obviously, p′(z, k) > 0 holds if and only if p̃(z, k) > 0 is valid. It will be proved now that
the equation

570 11 Fault Diagnosis of Discrete-Event Systems

p̃(zke+1, ke + 1) =
∑

zke ∈Z
· · ·

∑

z0∈Z0

ke∏

k=0

Ln(zk+1, w̄k , zk , v̄k) (11.80)

holds which proves the lemma.
The proof is done by induction. For ke = 0, Eqs. (11.78) and (11.79) yield

p̃(z1, 1) =
∑

z0∈Z
Ln(z1, w̄0, z0, v̄0) · p̃(z0, 0)

=
∑

z0∈Z0

Ln(z1, w̄0, z0, v̄0),

which is identical to Eq. (11.80) for ke = 0.
Now assume that Eq. (11.80) holds for some ke = ke

p̃(zke+1, ke + 1) =
∑

zke ∈Z
· · ·

∑

z0∈Z0

ke∏

k=0

Ln(zk+1, w̄k , zk , v̄k)

and prove that this relation is satisfied for ke = ke + 1:

p̃(zke+2, ke + 2) =
∑

zke+1∈Z
· · ·

∑

z0∈Z0

ke+1∏

k=0

Ln(zk+1, w̄k , zk , v̄k). (11.81)

A reformulation of the right-hand side of this equation results in

∑

zke+1∈Z

∑

zke ∈Z
· · ·

∑

z0∈Z0

ke+1∏

k=0

Ln(zk+1, w̄k , zk , v̄k)

=
∑

zke+1∈Z
Ln(zke+2, w̄ke+1, zke+1, v̄ke+1)

·
⎛
⎝ ∑

zke ∈Z
· · ·

∑

z0∈Z0

ke∏

k=0

Ln(zk+1, w̄k , zk , v̄k)

⎞
⎠

=
∑

zke+1∈Z
Ln(zke+2, w̄ke+1, zke+1), v̄ke+1) · p̃(zke+1, ke + 1)

= p̃(zke+2, ke + 2)

which proves Eq. (11.81). �

Test algorithm. The recursive test leads to the following algorithm:

11.5 Diagnosis of Nondeterministic Automata 571

Algorithm 11.4 Consistency test for nondeterministic automata

Given: Nondeterministic automaton N
I/O pair (11.71), (11.72)

1. Determine p′(z, 0) by Eq. (11.75)

2. Apply Eq. (11.76) for k = 0, 1, . . . , ke to determine p′(z′, ke + 1)

3. Test the condition (11.77).

Result: If and only if the condition (11.77) is satisfied, the I/O pair is consis-
tent with the model N

State observation result. As a byproduct of the consistency test, the set Z(ke + 1)

of states is obtained in which the automaton N can recide after it has accepted the
input sequence V (0 . . . ke) and generated the output sequence W (0 . . . ke). This set
is given by

Z(k + 1) = {z′ ∈ Z | p′(z′, k + 1) > 0}, k = 0, 1, . . . , ke. (11.82)

Hence, all state sequences Z(0 . . . ke) considered in the consistency tests end in a
state

z(ke + 1) ∈ Z(ke + 1). (11.83)

Corollary 11.1 The I/O pair (V (0 . . . ke), W (0 . . . ke)) is consistent with the model
N if and only if Z(ke + 1) �= ∅ holds.

To present the result of the consistency test in a similar way as for deterministic
automata, the indicator p(k) is introduced as follows:

p(ke) =
{

1 if Z(ke + 1) �= ∅
0 else.

11.5.2 Diagnostic Algorithm

The consistency test developed so far has to be applied to a set {N f | f ∈ F} of
nondeterministic automata to get a fault identification algorithm. This algorithm
works online, where the next measured I/O pair (v̄, w̄) is processed to get the sets Z
and Z ′ of possible current states z or possible future states z′, respectively, to decide
about the fault candidates. Instead of Z and Z ′, indicators p(z) and p′(z′) for the
states z, z′ ∈ Z to be elements of Z or Z ′, respectively, are determined. A model
N f is consistent with the I/O pair up to the current time horizon ke if these sets are

572 11 Fault Diagnosis of Discrete-Event Systems

non-empty, which is again represented by the indicator

p f (ke) =
{

1 if Z f (ke + 1) �= ∅
0 else.

With this information, the diagnostic algorithm for nondeterministic automata can
be formulated similarly to Algorithm 11.1 as follows:

Algorithm 11.5 Diagnosis of nondeterministic automata
Given: Nondeterministic automata N f , (f ∈ F)

Set of initial states Z0

Initialisation: p′
f (z) =

{
1 if z ∈ Z0

0 else
for all f ∈ F

ke = 0

Loop: 1. Measure the next I/O pair (v̄, w̄).

2. Determine p f (z) =
⌊∑

z′∈Z Ln(z′, w̄, z, v̄) · p′
f (z)

⌋
for all

f ∈ F .

3. Determine p′
f (z

′) = ⌊∑
z∈Z Ln(z′, w̄, z, v̄) · p f (z)

⌋
for all

f ∈ F .

4. Set p f (ke) =
⌊∑

z′∈Z p′
f (z

′)
⌋

for all f ∈ F .

5. Determine F∗(ke) = { f ∈ F : p f (ke) = 1}.
6. ke := ke + 1

Continue with Step 1.

Result: Set of fault candidates F∗(ke) for increasing time horizon ke

The sets Z f and Z ′
f of current states or future states that are necessary to decide

about the consistency can be obtained by

Z f = {z ∈ Z : p f (z) = 1}
Z ′

f = {z′ ∈ Z : p′
f (z

′) = 1}.

Algorithm 11.5 can be used to solve the following fault diagnostic tasks:

• Fault detection: If the algorithm is applied to the single model N0 describing the
faultless system, a fault is detected, if after Step 4 the relation p0(ke) = 0 holds.

11.5 Diagnosis of Nondeterministic Automata 573

• Fault identification: For a set of models N f , (f ∈ F), the algorithm yields the
set of fault candidates F∗(ke), which is the best possible diagnostic result.

Example 11.4 Fault detection of a nondeterministic automaton
Consider the nondeterministc automata N0 and N1 whose automaton graphs are depicted in
Fig. 11.25. They describe a system in the faultless case or subject to fault f = 1, respectively.

The initial state is assumed to belong to the set

Z0(0 | − 1) = {1, 2, 3, 4} and Z1(0 | − 1) = {5, 6, 7, 8},

which yields the initial value of Z ′
0 and Z ′

1 in the initialisation step of the algorithm. After
the first measurement

v(0) = 1 and w(0) = 1

has been obtained, Step 2 yields p0(z) and p1(z) for all z ∈ Z and, hence, the following sets

Z0(0 | 0) = {1, 2, 3} = Z0 and Z1(0 | 0) = {5, 6, 7} = Z1,

which represent all initial states z0 for which a state transition exists such that the nondeter-
ministic automaton generates the output w(0) = 1 for the input v(0) = 1. In the automaton
graphs this sets can be found by looking for all states z ∈ Z(0 | − 1) in which an edge starts
that is labelled with v = 1 and w = 1. Step 3 the algorithm determines the sets Z0(1 | 0) and
Z1(1 | 0) which in the notation used above coincide with the sets

Z ′
0 = {1, 2, 3, 4} and Z ′

1 = {5, 6, 7, 8}.

These are the sets of states in which the automata can be after they have generated the output
w(0) = 1 for the input v(0) = 1. As both automata are consistent with the measurement
obtained so far (p0(0)) = 1, p1(0) = 1), the set of fault candidates includes both faults:

F∗(0) = {0, 1}.

For the next measurement

1 2 3

5

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=1

6 7

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=2

4

8

v=1,
w=2

v=1,
w=3

v=1,
w=1

v=1,
w=1

N0

N1

Fig. 11.25 Automaton graph of the example

574 11 Fault Diagnosis of Discrete-Event Systems

v(1) = 1 and w(1) = 1

the Steps 2 and 3 of the algorithm yield again

Z0 = {1, 2, 3} and Z1 = {5, 6, 7}

and
Z ′

0 = {1, 2, 3, 4} and Z ′
1 = {5, 6, 7, 8}.

and for
v(2) = 1 and w(2) = 1

the same sets. An improvement of the diagnostic result is obtained after the measurement

v(3) = 1 and w(3) = 3

has been obtained, because then the results

Z0 = ∅ and Z1 = {8}

show that the measurement sequence is inconsistent with the faultless case and, thus, the set
of fault candidates only includes the single fault f = 1:

F∗(3) = {1}.

Hence, the I/O pair (1, 1, 1, 1), (1, 1, 1, 3) yields the diagnostic result that a fault has occurred
(the faultless case is inconsistent with the measurements) and that the set of fault candidates
only includes, as a single fault, the fault case f = 1. �

11.6 State Observation of Stochastic Automata

This and the next section extend the methods developed so far towards stochastic
automata

S = (Z,V,W, L , p0(z)).

The investigations are cut into two parts. In the first part described in this section, the
state observation problem is solved, which does not only yield a test for the consis-
tency of the measured I/O pair with a stochastic automaton, but also the probability
for each state to be the current state of the automaton after the I/O pair has appeared.
In the second part presented in the next section, this method is extended to determine
the probability distribution over the set F of all faults considered to get a diagnostic
result.

11.6 State Observation of Stochastic Automata 575

11.6.1 Method for Testing the Consistency of an I/O Pair
with a Stochastic Automaton

The basis for finding fault candidates is the check whether the measured I/O
pair belongs to the behaviour B, which is defined for the stochastic automaton in
Eq. (11.25). The consistency test should not only answer the question whether the
I/O pair (V, W) belongs to the behaviour B, but also with which probability this I/O
pair occurs for the automaton S. The probability information included in the behav-
ioural relation L should be used to distinguish between I/O pairs that may occur
often and those pairs that appear seldom. If this method is applied to the models
of the faulty system, it should be possible to distinguish between faults with higher
probability and rarely occurring faults.

This section extends the consistency test from nondeterministic towards stochastic
automata. As this test is independent of the fault case, the dependency of the model
upon the fault f ∈ F is omitted in this section.

The consistency test uses the representation (11.71), (11.72) of the I/O pair, where
the bar over the symbols indicate that these symbols are measured and, hence, known
in the test. The I/O pair defines the values for the stochastic variables V (k) and W (k),
(k = 0, 1, . . . , ke) that represent the current value of the input and the output signals.

An I/O pair is consistent with the model S if a state sequence

Z(0 . . . ke + 1) = (z0, z1, . . . , zke+1) (11.84)

with positive probability exists, which satisfies the relation

∃Z(0 . . . ke + 1) :
ke∏

k=0

L(zk+1, w̄k | zk, v̄k) · p0(z0) > 0. (11.85)

This inequality replaces Eq. (11.73) for the nondeterministic automaton. The last
term represents the a-priori probability of the initial state:

p0(z) = Prob(Z(0) = z).

Accordingly, Z0 = {z ∈ Z : p0(z) > 0} holds.
Analogously to Eq. (11.74) the condition (11.85) can be formulated as

∑

zke+1∈Z

∑

zke ∈Z
. . .

∑

z0∈Z

ke∏

k=0

L(zk+1, w̄k | zk, v̄k) · p0(z0) ≥ 0. (11.86)

Lemma 11.5 The I/O pair (11.71), (11.72) is consistent with the stochastic automa-
ton S if and only if the condition (11.86) is satisfied.

576 11 Fault Diagnosis of Discrete-Event Systems

Recursive solution of the state observation problem. If the condition (11.86) is
satisfied, there exists a state sequence that appears for the I/O pair (V, W) with pos-
itive probability. Hence, there is a non-empty set of states in which the automaton
S resides after this I/O pair has appeared. For the solution of the fault diagnostic
problem, it is not only necessary to know whether this set is non-empty, but also with
which probability the elements of this set appear as the possible state of the automa-
ton. The following recursive solution of the state observation problem produces this
probability distribution.

The probability of the state sequence (11.84) for the I/O pair (11.71), (11.72) is
denoted by

Prob(Z(ke) = zke , . . . , Z(0) = z0 |
V (ke) = v̄ke , . . . , V (0) = v̄0, W (ke) = w̄ke , . . . , W (0) = w̄0).

As this notation is rather complex, this probability will be abbreviated as

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke))

in the future with similar notations for other probabilities. The following lemma
shows how this probability can be determined.

Lemma 11.6 (Probability distribution of the state sequence) Consider a stochastic
automaton with initial state probability distribution p0(z) and a consistent I/O pair
(V, W). Then

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke))

=

∑
zke+1

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

∑
Z(0...ke+1)

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

(11.87)

describes the probability that the stochastic automaton has generated the state
sequence Z(0 . . . ke).

Note that the denominator in Eq. (11.87) does not vanish because the I/O pair
is assumed to be consistent and, hence, Eq. (11.86) holds. In the application of
Lemma 11.6 first the inequality (11.86) can be checked to find out whether the
I/O pair is consistent with the automaton and if this test is successful Eq. (11.87) is
applied to determine the probability distribution

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke))

for all state sequences Z(0 . . . ke) ∈ Z∗.

Proof According to Bayes’ formula, the relation

11.6 State Observation of Stochastic Automata 577

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke)) (11.88)

= Prob(Z(0 . . . ke), V (0 . . . ke), W (0 . . . ke))

Prob(V (0 . . . ke), W (0 . . . ke))

holds, where the inequality Prob(V (0 . . . ke), W (0 . . . ke)) > 0 holds because the pair (V, W)

is assumed to be consistent with the stochastic automaton. Equation (11.88) can be reformu-
lated as

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke)) (11.89)

=

∑
zke+1

Prob(z0, . . . , zke+1, v̄0, . . . , v̄ke , w̄0, . . . , w̄ke)

∑

Z(0...ke+1)

Prob(z0, . . . , zke+1, v̄0, . . . , v̄ke , w̄0, . . . , w̄ke)
.

The probability distribution that appears in the numerator and denominator of (11.89) can be
simplified as follows:

Prob(z0, . . . , zke+1, v̄0, . . . , v̄ke , w̄0, . . . , w̄ke) = (11.90)

Prob(zke+1, w̄ke | zke , v̄ke , Z(0 . . . ke − 1), V (0 . . . ke − 1), W (0 . . . ke − 1)) ·
· Prob(zke , v̄ke , Z(0 . . . ke − 1), V (0 . . . ke − 1), W (0 . . . ke − 1)) = (11.91)

Prob(zke+1, w̄ke | zke , v̄ke) ·
· Prob(z0, . . . , zke , v̄0, . . . , v̄ke , w̄0, . . . , w̄ke−1) (11.92)

= · · · =
Prob(zke+1, w̄ke | zke , v̄ke) · (11.93)

· Prob(zke , w̄ke−1 | zke−1, v̄ke−1) ·
· . . . · Prob(z1, w̄0 | z0, v̄0) · Prob(z0, v̄0, . . . , v̄ke) = (11.94)
ke∏

k=0

L(zk+1, w̄k | zk , v̄k) · p0(z0) · Prob(v̄0, . . . , v̄ke). (11.95)

To obtain Eq. (11.91), Bayes’ formula was used. The first probability in (11.91) can be refor-
mulated as (11.92) due to the Markov property (11.27). The second probability distribution
in (11.91) and (11.92) has a similar form as (11.90). Only the state z and output w with the
highest time index have disappeared in the list of arguments. Hence, the same simplification
steps can be carried out several times until Eq. (11.94) is obtained. As z0 is independent of
v̄0, . . . , v̄ke and

Prob(Z(k + 1) = z(k + 1), W (k) = w̄k | Z(k) = zk , V (k) = v̄k) = L(zk+1, w̄k | zk , v̄k)

represents the behavioural relation of the stochastic automaton, Eq. (11.95) is obtained.
Finally, (11.87) results from inserting (11.95) into (11.89) and simplifying the resulting
expression. �

578 11 Fault Diagnosis of Discrete-Event Systems

From Lemma 11.6, the solution to the observation problem is obtained by deter-
mining the conditional probability distributions

p(z, ke) = Prob(Z(ke) = z|V (0) = v0, V (1) = v1, . . . , V (ke) = vke ,

W (0) = w0, W (1) = w1, . . . , W (ke) = wke)

p′(z′, ke) = Prob(Z(ke + 1) = z′|V (0) = v0, V (1) = v1, . . . , V (ke) = vke ,

W (0) = w0, W (1) = w1, . . . , W (ke) = wke).

They replace the binary indicators p(z, ke) and p′(z′, ke) defined in Eq. (11.76),
which have been used to show whether or not the state z, z′ ∈ Z can be assumed by
the automaton N at time ke or ke + 1 if the automaton received the input sequence
V (0 . . . ke) and generated the output sequence W (0 . . . ke).

The results are summarised in the following theorem, which is a direct conse-
quence of Lemma 11.6:

Theorem 11.4 (Solution to the observation problem) Consider a stochastic automa-
ton with the initial state probability distribution p0(z). If the I/O pair (V, W) is
consistent with the automaton, the current state probability distribution is given by

p(zke , ke) =

∑
Z(0...ke−1)

∑
zke+1

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

∑
Z(0...ke+1)

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

(11.96)

and the set of current automaton states by

Z(ke | ke) = {zke : p(zke , ke) > 0}. (11.97)

Note that for time ke =0 Eq. (11.96) yields the a-posteriori probability distribution
p(z, 0), (z ∈ Z) that the automaton is in the initial state z and has generated the output

1 2 3

5

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=1, 0.2

6 7

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=2, 0.5

4

8

v=1,
w=2

v=1,
w=3

v=1,
w=1

v=1,
w=1

0.3
0.5

0.5 0.5
0.5

Fig. 11.26 Automaton graph of the example

11.6 State Observation of Stochastic Automata 579

w̄0 for the input v̄0. This probability is, in general, different from p0(z), which
represents the a-priori probability distribution of the initial state. Hence, the set

Z(0 | 0) = {z ∈ Z : p(z, 0) > 0}

is different from the a-priori information about the initial state represented by

Z(0 | − 1) = {z ∈ Z : p0(z) > 0} (11.98)

and satisfies the relation
Z(0 | 0) ⊆ Z(0 | − 1).

Example 11.5 State observation of a stochastic automaton
Consider the stochastic automaton whose automaton graph is shown in Fig. 11.26 and whose
initial state is uniformly distributed:

p0(z) = 1

8
z = 1, . . . , 8.

The value of the behavioural relation L is indicated at the corresponding edges of the
automaton graph unless its value is 1 for deterministic state transitions. The automaton graph

Table 11.1 Probability distribution Prob(Z | V, W) of the example automaton

ke = 0 ke = 1 ke = 2
V (0...0) = (1) V (0...1) = (1,1) V(0...2) = (1,1,1)
W(0...0) = (1) W(0...1) = (1,1) W(0...2) = (1,1,1)

Z(0...0) Prob(Z|V,W) Z(0...1) Prob(Z|V,W) Z(0...2) Prob(Z|V,W)

(1) 0.1818 (1,1) 0.0923 (1,1,1) 0.0632
(2) 0.1818 (1,2) 0.1538 (1,1,2) 0.1053
(3) 0.1818 (1,3) 0.0615 (1,1,3) 0.0421
(5) 0.1818 (2,3) 0.3077 (1,2,3) 0.3509
(6) 0.0909 (5,5) 0.1538 (5,5,5) 0.1754
(7) 0.1818 (5,6) 0.0769 (5,5,6) 0.0877

(6,7) 0.1538 (5,6,7) 0.1754

#1 #2 #3 #4 #5 #6

ke = 3 ke = 4
V (0...3) = (1,1,1,1) V (0...4) = (1,1,1,1,1)
W(0...3) = (1,1,1,3) W(0...4) = (1,1,1,3,3)

Z(0...3) Prob(Z |V,W) Z(0...4) Prob(Z |V,W)

(5,6,7,8) 1 (5,6,7,8,8) 1

#7 #8 #9 #10

580 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.27 Observation
result

0 1 2 3 4

1

2

3

4

5

6

7

8

steps k

st
at

es

a−posteriori current state distributions

consists of two separate parts and it is interesting to see how the probability p(z, ke) distributes
over these two parts for increasing ke.

All state sequences that occur with non-vanishing probability for the input sequence

V (0 . . . 4) = (1, 1, 1, 1, 1)

and yield the output sequence

W (0 . . . 4) = (1, 1, 1, 3, 3)

are shown in Table 11.1 together with the probabilities

Prob(z0 | v̄0, w̄0), Prob (Z(0 . . . 1) | V (0 . . . 1), W (0 . . . 1)),

. . . , Prob(Z(0 . . . 4) | V (0 . . . 4), W (0 . . . 4)),

which are obtained by means of Eq. (11.87). Note that the value of

Prob(Z(0 . . . 0) | V (0 . . . 0), W (0 . . . 0)) = Prob(z0 | v̄0, w̄0)

which is shown in column #2 differs from the a-priori probability distribution p0(z) = 1
8

because this a-posteriori probability includes the information provided by the I/O pair (v̄0, w̄0).
This is the reason why the states Z(0) = 4 and Z(0) = 8, both of which are assumed by the
automaton with the a-priori probability p0(z) = 1

8 do not appear in column #1.
The state probability distribution obtained by means of Eq. (11.96) is shown in Fig. 11.27.

The probabilities are depicted in greyscale. Black rectangles symbolise a probability of one,
white rectangles a probability of zero. The set Z(ke | ke) includes all states zke with non-zero
probability (grey and black boxes):

11.6 State Observation of Stochastic Automata 581

Z(0 | 0) = {1, 2, 3, 5, 6, 7}
Z(1 | 1) = {1, 2, 3, 5, 6, 7}

...

Z(4 | 4) = {8}. �

Recursive form of the solution. For the application, the elements of the sequen-
ces V (0 . . . ke) and W (0 . . . ke) appear one after the other for ke = 0, 1, 2, . . . and
should be processed in this way. Therefore, the following recursive form of the
solution to the state observation problem is important (for a proof cf. [218]). In the
representation given, the indicator p(z, ke) denotes the probability

p(z, ke) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke))

that z is the state at time ke and p′(z′, ke) the probability

p′(z′, ke) = Prob(Z(ke + 1) = z′ | V (0 . . . ke), W (0 . . . ke))

for z′ to be the next state.

Theorem 11.5 (Recursive solution to the state observation problem) Consider a
stochastic automaton with the initial state distribution p0(z). If the I/O pair (V, W)

is consistent with the stochastic automaton, the a-posteriori state probability distri-
bution is given by the recursive relations

p(z, ke) =
∑
z′

L(z′, w̄ke | z, v̄ke) · p′(z′, ke − 1)

∑
z′,z̃

L(z′, w̄ke | z̃, v̄ke) · p′(z′, ke − 1)
, (ke ≥ 0) (11.99)

with

p′(z′, ke)=
∑
z

L(z′, w̄ke | z, v̄ke) · p′(z, ke − 1)

∑
z,z̃

L(z̃, w̄ke | z, v̄ke) · p′(z, ke − 1)
, (ke > 0) (11.100)

p′(z′,−1) = p0(z
′), (ke = 0). (11.101)

Equation (11.100) is used after the pair (V (ke) = v̄ke , W (ke) = w̄ke) has been
measured. It describes the probability distribution of the future state Z(ke + 1) = z′
by using the information about the movement of the stochastic automaton until
time ke that is included in the I/O pair (V (0 . . . ke), W (0 . . . ke)). It is a recursive
relation with the initialisation given by Eq. (11.101). Equation (11.100) makes it
possible to determine p′(z′, ke), (z′ ∈ Z) for given p′(z, ke − 1), (z ∈ Z) and the
new measurements (v̄ke , w̄ke). Hence, only the probability distribution p′(z, ke −1),
(z ∈ Z) has to be stored in the computer memory, which consists of N values.

582 11 Fault Diagnosis of Discrete-Event Systems

Equation (11.99) describes how the prediction from the previous time point has
to be corrected after the new measurements v̄ke and w̄ke became available. This step
can be interpreted as a projection onto the set of those states Z(ke) = z from which
the automaton can have moved when generating the new measurement information
W (ke) = w̄ke . The result of the recursion is the a-posteriori probability distribution
p(z, ke) over all current states Z(ke) = z ∈ Z for the given measurements until
time ke. With this structure, the recursive solution to the state observation problem
shows a remarkable similarity to the Kalman filter, which likewise can be decomposed
into a prediction and a projection step.

A-priori knowledge about the initial state. In the solution to the state observation
problem, the initial state probability distribution p0(z) is assumed to be known. Since
in applications this a-priori knowledge is often not available, p0(z) is measured or
“guessed”. The question arises what happens if the a-priori knowledge about z0 is in
conflict with the actual initial state of the stochastic process.

To answer this question, assume that p̂0(z) denotes the approximate initial state
probability distribution and consider the sets

Z0 = {z : p0(z) > 0} ⊆ Z (11.102)

Ẑ0 = {z : p̂0(z) > 0} ⊆ Z. (11.103)

The stochastic process starts from an initial state z0 ∈ Z0, whereas the observation
algorithm assumes that the automaton starts from some state z0 ∈ Ẑ0. The a-priori
knowledge about the initial state is not in conflict with the real system, if the relation

Ẑ0 ⊇ Z0 (11.104)

holds true. Then, the solution to the observation problem ensures that the relation

Z(ke) ∈ Z(ke | ke)

is valid for all ke ≥ 0, i.e. the set of current states determined by the observation
algorithm includes the true state of the stochastic process. If the probability distrib-
ution p̂0(z) used in the observation algorithm is different from the real distribution
p0(z), the probability distribution p(z, ke) obtained by the algorithm is wrong, but
it is accepted in practice as solution to the observation problem due to the lack of a
better a-priori knowledge.

If, however, condition (11.104) is violated, then it is possible that the probability
Prob(W (0 . . . ke) | V (0 . . . ke), z0) is zero for all initial states z0 ∈ Ẑ0. Consequently,
like in the case of an inconsistent I/O pair, the violation of the condition (11.104)
makes the denominators in Eqs. (11.99) and (11.100) vanish, which can be used as
an indicator to stop the observation algorithm.

This and the preceding remark show that the observation algorithm cannot dis-
tinguish between an inconsistent I/O pair and a wrong initial state probability dis-
tribution. As a consequence, in an application the set Ẑ0 has to be chosen “large

11.6 State Observation of Stochastic Automata 583

enough”. A secure way is to choose p̂0(z) so that Ẑ0 = Z holds, for example, using
the uniform initial state distribution

p̂(z) = Prob(Z(0) = z) = 1

N
for all z ∈ Z. (11.105)

Besides the lack of knowledge of p0(z) another fact makes it reasonable to use the
a-priori probability distribution (11.105). For many stochastic automata, the solution
p(z, ke) of the observation problem is (nearly) independent of p0(z) for ke ≥ k̄ with
very small k̄. This is particularly true if the set Z(ke | ke) has only a few elements
compared to the cardinality N of the state set Z .

11.6.2 Observation Algorithm

To show how the observation method developed in this section can be applied online,
this section presents an observation algorithm, which is based on the recursive solu-
tion given in Theorem 11.5. The following symbols are used in the algorithm:

h(z) =
∑

z′
L(z′, w̄ke | z, v̄ke) · p′(z′, ke − 1)

p(z) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke))

p′(z′) = Prob(Z(ke + 1) = z′ | V (0 . . . ke), W (0 . . . ke))

Algorithm 11.6 Observation of stochastic automata
Given: Stochastic automaton S

Initial state probability distribution p0(z).

Initialisation: p′(z) = p0(z) for all z ∈ Z
ke = 0.

Loop:
1. Measure the current input v̄ and output w̄.

2. Determine h(z) = ∑
z′ L(z′, w̄ | z, v̄) · p′(z′) for all z ∈ Z

3. If
∑

z h(z) = 0 holds, stop the algorithm (inconsistent I/O
pair or wrong initial state distribution).

4. Determine p(z) : = h(z)∑

z

h(z)
for all z ∈ Z .

584 11 Fault Diagnosis of Discrete-Event Systems

5. Determine p′(z′) : =

∑

z

L(z′, w̄ | z, v̄) p′(z)
∑

z

h(z)
for all z ∈ Z .

6. Determine Z(ke | ke) according to Eq. (11.97).

7. ke := ke + 1

Continue with Step 1.

Result: p(z) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke)) and
Z(ke | ke) for increasing time horizon ke.

In Step 3, the consistency of the I/O pair and of the a-priori probability distribution
is tested. Steps 4 and 5 use Eq. (11.99) or (11.100), respectively. The test in Step 3
ensures that the denominators of both equations do not vanish.

Note that in each step of the algorithm very easy calculations have to be carried out,
which makes the algorithm applicable under relatively strong real-time constraints.
Since the algorithm is based on the recursive solution to the state observation problem,
its complexity does not increase with the length of the measurement sequences V and
W . Only the N values of the functions h(z) and p′(z) have to be stored in the memory.

11.6.3 Observability of Stochastic Automata

In this section, a notion of observability is introduced, which takes into account that
for stochastic automata the state generally cannot be determined unambiguously.
Even if the initial state is known, the automaton may produce an I/O pair that does
not allow to track the state trajectory with certainty.

System
V(0...ke)

Simulator

W (0...ke)

sim(V (0...ke))

System
V(0...ke)

Observer

W (0...ke)

(ke|ke)= (V (0...ke),W (0...ke))Z Z Z

Fig. 11.28 Comparison of simulation and observation

11.6 State Observation of Stochastic Automata 585

The observability definition is based on a comparison of the results that are
obtained by means of simulation and of observation (Fig. 11.28). Roughly speak-
ing, the stochastic automaton is called observable if it is possible to determine the
state more precisely by state observation than by simulation. Before defining the
observability in this way, simulation and observation have to be compared in more
detail.

For both simulation and observation, the initial state distribution p0(z) and the
input sequence V have to be known.

• In simulation, the initial state probability distribution is propagated according
to the state transition relation G of the stochastic automaton and yields the state
probability distribution Prob(Z(ke) = z | V (0 . . . ke − 1)), (z ∈ Z) of the state
at the end of the time interval considered. Accordingly, the set of states in which
the stochastic automaton recides at time ke with non-vanishing probability for the
given the input sequence V (0 . . . ke) is

Zsim(V (0 . . . ke)) = {z : Prob(Z(ke) = z | V (0 . . . ke)) > 0}. (11.106)

• In state observation described by Theorem 11.5 the additional information
included in the output sequence W is used to determine the probability

Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke)), z ∈ Z

according to Eq. (11.96). The set of states Z(ke | ke) is obtained by Eq. (11.97).

As the state observation uses the generated output sequence as additional constraint
when determining the set of possible states Z(ke), the relation

Zsim(V (0 . . . ke)) ⊇ Z(ke | ke)

holds.

Stochastic unobservability. An automaton is called unobservable if for all input
sequences V the I/O pair (V, W) does not include more information than the input
V alone. This definition can be stated more formally as follows:

Definition 11.4 (Stochastic unobservability) A stochastic automaton is called sto-
chastically unobservable if the behavioural relation L can be represented as the
product of two functions

G : Z × Z × V → [0, 1]
H : W × V → [0, 1]

such that
L(z′, w | z, v) = G(z′ | z, v) · H(w | v) (11.107)

holds for all z′, z ∈ Z , v ∈ V and w ∈ W .

586 11 Fault Diagnosis of Discrete-Event Systems

As before, the functions G(z′, z, v) and H(w, v) are denoted by G(z′ | z, v) or
H(w | v), respectively, because they turn out to be conditional probabilities.

Definition 11.4 has an obvious interpretation. Equation (11.107) says that the
output w does not depend on z and, hence, does not provide any information about
the current automaton state. Furthermore Eq. (11.107) implies that w does not depend
on z′ and, hence, the output does not provide any information about the successor
state either.

Observability test. Before the consequences of Eq. (11.107) will be discussed it
should be mentioned how this definition can be used to test whether a stochastic
automaton is stochastically unobservable. It is easy to see that the functions G and
H used in Eq. (11.107) are the conditional probabilities defined by Eqs. (11.19) and
(11.20). From this fact, it is clear that the decomposition of L in the form (11.107)
is found (if it exists) by determining G and H according to Eqs. (11.19) and (11.20)
and by testing whether Eq. (11.107) holds. Note that the function H obtained from
Eq. (11.20) is not allowed to depend upon z, but H(w | zi , v) = H(w | z j , v) has to
hold for all zi , z j ∈ Z , v ∈ V and w ∈ W .

Property of unobservable automata. The following lemma says that the definition
of unobservability satisfies the aim to call an automaton observable if the current
state can be determined more precisely by state observation than by simulation.

Lemma 11.7 [306] If the stochastic automaton is stochastically unobservable, then
for all consistent I/O pairs (V, W) the results of the state observation problem and
of the simulation are identical for all ke = 0, 1, 2, . . .:

Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke)) = Prob(Z(ke) = z | V (0 . . . ke))

Z(ke | ke) = Zsim(V (0 . . . ke)).

Hence, the output sequence W does not include any information about the state trajec-
tory of the automaton that cannot be obtained from the initial state probability p0(z)
and the input sequence V . In this case, the observers described by Theorems 11.4
and 11.5 work as simulators.

Stochastic unobservability of a state set. The stochastic automaton may not satisfy
the condition (11.107) for all z ∈ Z , but only for a subset Gz ⊆ Z , where Gz

should have at least two elements (|Gz | ≥ 2). Then a stochastic automaton is called
stochastically unobservable within a set Gz if the relation

LGz (z
′, w | z, v) = GGz (z

′ | z, v) · HGz (w | v) (11.108)

holds for all z, z′ ∈ Gz , v ∈ V , and w ∈ W , with

11.6 State Observation of Stochastic Automata 587

Fig. 11.29 Stochastic
automaton with
stochastically unobservable
set {1, 2}

3 4

1 2

0.56

w=2

0.14

0.24 0.06

0.27
0.63

0.07

0.8

0.2

0.9
0.1 0.03

w=1w=1 w=2

w=1

w
=3

w
=3

w=2

w
=

3

w
=

2

w=2

w
=2

LGz (z
′, w | z, v) = L(z′, w | z, v)∑

z′∈Gz

∑
w

L(z′, w | z, v)
(11.109)

GGz (z
′ | z, v) =

∑

w

LGz (z
′, w | z, v) (11.110)

HGz (w | v) =
∑

z′∈Gz

LGz (z
′, w | z, v). (11.111)

In this definition, the functions L , G and H appearing in Definition 11.4 are replaced
by LGz , GGz or HGz , respectively. These functions are normalised as shown in
Eqs. (11.109)–(11.111) so as to define conditional probability distributions. For these
new functions, Eq. (11.108) is, in principle, the same as Eq. (11.107), but it has only
to be satisfied for the states z, z′ that belong to the set Gz . Lemma 11.7 holds as long
as the automaton remains within the set Gz :

z(k) ∈ Gz for k = 0, 1, . . . , ke.

If the automaton is stochastically unobservable within the set Gz then the state
observer acts as a simulator as long as the state remains in the set Gz .

Example 11.6 Observability of stochastic automata
Consider the stochastic automaton shown in Fig. 11.29, which has the only input v = 1. The
automaton is not stochastically unobservable according to Definition 11.4. However, the state
set Gz = {1, 2} is stochastically unobservable. This can be verified by means of Eq. (11.107)
as shown in Table 11.2. Note that GGz · HGz is identical to LGz for all z, z′, w and v. �

Stochastic observability. The stochastic observability can now be defined as the
property of an automaton not to possess sets of unobservable states:

Definition 11.5 (Stochastic observability) A stochastic automaton is called stochas-
tically observable if it does not possess any set Gz of stochastically unobservable
states.

588 11 Fault Diagnosis of Discrete-Event Systems

Table 11.2 Test for stochastic unobservability of the state set Gz = {1, 2}
LGz GGz HGz GGz ·HGz

z= 1 z= 2 z= 1 z= 2 z= 1 z= 2 z= 1 z= 2

w= 1 0.9 0.63 0.9 0.9 0.9 0.63
z = 1 w= 2 0.1 0.07 1.0 0.7 0.1 0.1 0.1 0.07

w= 3 0 0 0 0 0 0

w= 1 0 0.27 0.9 0.9 0 0.27
z = 2 w= 2 0 0.03 0 0.3 0.1 0.1 0 0.03

w= 3 0 0 0 0 0 0

Consequently, the stochastic automaton is called observable if it is possible to deter-
mine every state more precisely by state observation than by simulation. This fact
is represented by the following corollary, which follows directly from Lemma 11.7
and Definition 11.5.

Corollary 11.2 If the stochastic automaton is stochastically observable, the follow-
ing relation holds:

Z(ke | ke) ⊆ Zsim(V (0 . . . ke)), (ke ≥ 0). (11.112)

Note that the equality sign may hold for some input sequence even if the automaton
is observable. The reason for this is given in Sect. 11.6.4.

Remark 11.1 (Observability test) The following remarks concern the test of a given
stochastic automaton concerning observability. The definition of unobservable state
sets implies that if the set Gz is stochastically unobservable then any subset G̃z ⊂ Gz

is stochastically unobservable as well, because Eq. (11.108) holds not only for all
z, z′ ∈ Gz but also for all z, z′ ∈ G̃z and the normalisation carried out in Eqs. (11.109)–
(11.111) does not influence this result. Hence, the test of a stochastic automaton starts
with testing all pairs z, z̄ whether or not they are unobservable sets. If no such pair
is found, the stochastic automaton does not possess any unobservable set and is,
therefore, stochastically observable. If such pairs exist, larger unobservable state
sets can be obtained (if they exist) from combinations of such unobservable pairs
according to the following corollary. �

Corollary 11.3 A stochastic automaton is stochastically unobservable within a set
Gz of at least three states (|Gz | ≥ 3) if and only if the stochastic automaton is
stochastically unobservable within all subsets Gi

z ⊂ Gz of two states (|Gi
z | = 2).

Therefore, the search for stochastically unobservable sets of states can be reduced
to the test of all pairs of states. The stochastic automaton is stochastically observable
if no unobservable pair of states is found.

11.6 State Observation of Stochastic Automata 589

11.6.4 Distinguishing Inputs

In this section, it is investigated under what conditions the observer improves its result
by processing the keth I/O pair (v̄ke , w̄ke) in comparison with the result obtained
for the I/O pair of length ke − 1. This analysis uses the recursive formulation of
the observer given in Theorem 11.5 and compares the observation result with the
simulation results obtained by the recursion (11.26). It will be shown that even if the
automaton is observable there exist input values v for which the next recursion step of
the observer yields the same result as the next recursion step of the simulator. Hence,
the movement of the automaton under this input cannot contribute to an improvement
of the knowledge about the current state.

To start the analysis, it is assumed that both simulation and observation have
obtained the same state probability distribution at time ke

Prob(Z(ke)= z | V (0 . . . ke − 1), W (0 . . . ke − 1)) =
= Prob(Z(ke)= z | V (0 . . . ke − 1))

= p′(z | ke − 1),

where both observation and simulation have used the information available until time
ke − 1. Consequently, both methods yield the same state set at time ke:

Z(ke − 1 | ke − 1)) = Zsim(V (0 . . . ke − 1))

= {z : p′(z, ke − 1) > 0}.

The set of successor states that the automaton can reach at time ke + 1 for the input
v̄ke = v̄ is given as follows:

Zsim(V (0 . . . ke)) = {z | G(z | z̃, v̄) > 0 for some z̃ ∈ Zsim(V (0 . . . ke − 1))}.

In the following, the question should be answered under what condition the keth
observation step yields a set Z(ke | ke) which is a proper subset of Zsim(V (0 . . . ke)).
The answer can be obtained from the considerations made in Sect. 11.6.3. Lemma 11.7
has shown that state observation yields the same result as simulation if the automaton
is unobservable; and hence, the behavioural relation can be decomposed according
to Eq. (11.107). This result is applied here for the fixed input v̄. If the decomposition
(11.107) is possible for the input v̄ke = v̄, simulation and observation lead to the
same set of states zke+1. This result is summarised in the following corollary. It shows
that the equality sign can hold in Eq. (11.112).

Corollary 11.4 Assume that the state probability distribution p′(z, ke −1) is known
and the stochastic automaton generates the output w̄ke = w̄ for the input v̄ke = v̄.
Then simulation and state observation yield the same state probability distribution

590 11 Fault Diagnosis of Discrete-Event Systems

p′(z, ke) = Prob(Z(ke + 1)= z | V (0 . . . ke), W (0 . . . ke))

= Prob(Z(ke + 1)= z | V (0 . . . ke))

for all z ∈ Z if and only if the relation

L(z′, w̄ | z, v̄) = G(z′ | z, v̄) · H(w̄ | v̄) (11.113)

holds with some constant H(w̄ | v̄) for all z ∈ Z(ke − 1 | ke − 1) and z′ ∈
Zsim(V (0 . . . ke)).

The condition (11.113) can be tested in each recursion step of the observation
algorithm in order to indicate whether the observer works really as an observer or
merely as a simulator. If the condition is satisfied, the observer yields the same
state probability distribution Prob(Z(ke + 1)= z | V (0 . . . ke)) as a simulation step
described by Eq. (11.26) (with ke replacing ke − 1).

This result has interesting consequences concerning the choice of the input. Even
if the stochastic automaton is observable according to Definition 11.5, not all indi-
vidual I/O pairs (v̄, w̄) lead to an improvement of the observation result compared
to the corresponding simulation step. The reason for this is given by the fact that
the observability definition claims that the decomposition of the behavioural relation
L according to Eq. (11.107) is impossible for all states z, z′ ∈ Z , all input values
v ∈ V and all output values w ∈ W . However, such a decomposition may be pos-
sible for the set Ṽ ⊂ V of input values even if it is impossible for all v ∈ V . If the
stochastic automaton gets, for some reason, only input values from Ṽ the solution
of the observation problem is not better than the simulation result (cf. Lemma 11.7),
although the stochastic automaton is observable. Therefore, it is important to know,
which input should be used in order to get an improved observation result. These
input values are called distinguishing. For such input values v̄ the decomposition
(11.107) is impossible for v = v̄ and all z′, z and w.

As a consequence, for every given state set Gz it is possible to partition the input
set V into two sets Ṽ(Gz) and V̄(Gz) such that the decomposition of L is possible for
all v ∈ Ṽ(Gz):

LGz (z
′, w | z, v) = GGz (z

′ | z, v) · HGz (w | v) (11.114)

for all z′, z ∈ Gz, v ∈ Ṽ(z), w ∈ W,

whereas such a decomposition of L is impossible for all v ∈ V̄(Gz). From
Lemma 11.7, it is obvious that the state observer cannot improve its result at time ke
for states zke , z(ke+1) ∈ Gz if the stochastic automaton obtains the input v̄ke ∈ Ṽ(Gz).
Hence, V̄(Gz) is the set of distinguishing inputs. Only if an input v ∈ V̄(Gz) is applied,
the state observer gets enough information for determining the state probability dis-
tribution better than it is determined by simulation.

In an application where the state of the system should be found as quickly as
possible, the input has to be chosen at every time instant from the current set of
distinguishing inputs. This set has to be determined at time ke as follows. Select

11.6 State Observation of Stochastic Automata 591

1 2
1/1 0.1
1/2 0.1
2/1 0.3

1/1 0.1
1/2 0.1
2/2 0.2

1/
1

0.
4

1/
2

0.
4

2/
2

0.
8

1/
1

0.
4

1/
2

0.
4

2/
1

0.
7

Fig. 11.30 Automaton graph of the example

the set Gz to include all possible current states zke ∈ Z(ke|ke − 1) and all possible
successor states zke+1, for which L(zke+1, w|zke , v) holds for some v and w. Then
V̄(Gz), which is obtained as described above, is the set of distinguishing inputs form
which the current input V (ke) should be selected. Note that the set V̄(Gz) changes
from one time step to the next because the set of current state changes. It depends
on the practical circumstances whether the input can really be chosen with the aim
of state observation or whether the selection of the input has to satisfy other control
aims. In any case, the set of distinguishing inputs is the set of preferred input signals
as far as state observation is concerned.

If the stochastic automaton is stochastically observable, for every state z there
exists at least one distinguishing input v. If, in particular, the decomposition (11.107)
is impossible for all v ∈ V , the stochastic automaton is called uniformly stochastically
observable. Then, every input is distinguishing and the observation result improves
in every recursion step.

Example 11.7 Distinguishing input values
Figure 11.30 shows the automaton graph of a stochastic automaton with two input symbols
v ∈ {1, 2} and two output symbols w ∈ {1, 2}. Only one output symbol is distinguishing.
The edges in Fig. 11.30 are labelled by the I/O pair v/w for which they occur and by the
corresponding probability. It can be seen that for v̄ = 1 the relation (11.113) holds with

H(w̄=1 | v̄=1) = 0.5 and H(w̄=2 | v̄=1) = 0.5

and

G(z′ =1 | z =1, v̄=1) = 0.8, G(z′ =1 | z =2, v̄=1) = 0.2

G(z′ =2 | z =1, v̄=1) = 0.2, G(z′ =2 | z =2, v̄=1) = 0.8.

Figures 11.31 and 11.32 show the effect of the non-distinguishing input on the observation
result. Starting with a uniform initial state distribution over the whole state set the observation
result is shown in Fig. 11.32. It is identical to the simulation result as long as the input is
v = 1 (time steps k = 0, 1, . . . , 7). Because of the symmetry of G(z′ | z, v̄), the simulation
yields uniform distributions for these times steps. Between time steps k = 8 and k = 13, the
distinguishing input v=2 is applied and, hence, the observation result improves immediately.
Instead of a uniform probability distribution, Fig. 11.32 shows that the observation results in
high probability for the state z = 2 at k = 8, 9 and for the state z = 1 at k = 10 . . . 13.

592 11 Fault Diagnosis of Discrete-Event Systems

0 3 6 13 16 19

1

2

in
pu

t v

steps
0 3 6 13 16 19

1

2

ou
tp

ut
 w

steps

(a) (b)

Fig. 11.31 Sequences of input (left) and output symbols (right)

Fig. 11.32 Observation
result

0 3 6 13 16 19

1

2
st

at
e

z

steps

When the input returns to the non-distinguishing input symbol v = 1 at time step k = 14 the
observation falls back into a simulation, quickly loosing all state information. �

11.7 Diagnosis of Stochastic Automata

11.7.1 Principle of Consistency-Based Diagnosis Applied
to Stochastic Automata

This section shows how the diagnostic problem can be solved for discrete-event
systems described by a set {S f , f ∈ F} of stochastic automata. The behaviour of
these automata is denoted by B f , f ∈ F .

The idea of consistency-based diagnosis is to ask whether the measured I/O pair
is consistent with the automaton S f . If the answer is in the affirmative

(V (0 . . . ke), W (0 . . . ke)) ∈ B f , (11.115)

11.7 Diagnosis of Stochastic Automata 593

the fault f may have occurred and is, thus, a fault candidate. In case of a negative
answer

(V (0 . . . ke), W (0 . . . ke)) /∈ B f , (11.116)

the conclusion is that the system is not subjected to the fault f . For stochastic
automata, for all fault candidates additional information can be obtained, which
is expressed as the probability

Prob(F = f | V (0 . . . ke), W (0 . . . ke))

that the fault f has occurred if the system has generated the I/O pair V (0 . . . ke),

W (0 . . . ke). Hence, diagnosing the stochastic automaton means to answer the
question:

With which probability has a fault f occurred if the system has generated the I/O pair
(V (0 . . . ke), W (0 . . . ke))?

The result is a set F∗(ke) of fault candidates, which are those faults f ∈ F for
which the I/O pair with time horizon ke is consistent with the model S f :

F∗(ke) = { f ∈ F : Prob(F = f | V (0 . . . ke), W (0 . . . ke)) > 0}.

11.7.2 Diagnosis of Stochastic Automata with Constant Faults

The diagnostic problem can be solved by observing the internal state for all models
S f and by selecting all those faults f for which the I/O pair is consistent with
the model. Further, the probability of the fault for the measured I/O pair has to be
determined. This idea will be explained in this section for constant faults F = F(k)

and extended to time-varying faults in the next section.
The idea is first to determine the common probability for the state z to occur at

time ke and the fault f to be present in the system

Prob(Z(ke) = z, F = f | V (0) = v̄0, V (1) = v̄1, . . . , V (ke) = v̄k,

W (0) = w̄0, W (1) = w̄1, . . . , W (ke) = w̄k),

where again the measured values of the input and the output are marked by a bar.
This probability is abbreviated as p f (z, ke). It is used to determine the marginal
probability of the fault:

Prob(F = f | V (0 . . . ke), W (0 . . . ke))

=
∑

z∈Z
Prob(Z(ke) = z, F = f | V (0 . . . ke), W (0 . . . ke)),

594 11 Fault Diagnosis of Discrete-Event Systems

which will be denoted later by p f (ke). To extend the state observation algorithm
for stochastic automata developed in Sect. 8.6 three probability distributions are
necessary:

p f (z, ke) = Prob(Z(ke) = z, F = f | V (0 . . . ke), W (0 . . . ke))

p′
f (z

′, ke) = Prob(Z(ke) = z′, F = f | V (0 . . . ke − 1), W (0 . . . ke − 1)).

The fault probability is abbreaviated as

p f (ke) = Prob(F = f | V (0 . . . ke), W (0 . . . ke))

and obtained as marginal probability of p f (z, ke). If p f (ke) = 0, the I/O pair with
time horizon ke is inconsistent with the stochastic automaton S f . Otherwise, f is a
fault candidate and p f (ke) is the probability with which this fault has occurred.

The extension of Eq. (11.99) towards faulty systems yields the diagnostic method,
which is summarised in the following theorem:

Theorem 11.6 (Recursive solution to the diagnostic problem) Consider a set
{S f , f ∈ F} of stochastic automata. The a-posteriori probabilities of the fault
f together with a state z can be recursively determined as follows:

p f (z, ke)=
∑
z′

L f (z′, w̄ke | z, v̄ke) · p′
f (z, ke − 1)

∑
z,z′, f

L f (z′, w̄ke | z, v̄ke) · p′
f (z, ke − 1)

(11.117)

and

p′
f (z

′, ke)=
∑
z

L f (z
′, w̄ke | z, v̄ke) · p′

f (z, ke − 1)

∑

z,z′, f
L f (z′, w̄ke | z, v̄ke) · p′

f (z, ke − 1)
(ke > 0) (11.118)

p′
f (z

′, −1) = p0(z′) · Prob(F = f), (ke = 0). (11.119)

where Prob(F = f) denotes the a-priori fault probability. The diagnostic result is

p f (ke) =
∑

z∈Z
p f (f, ke). (11.120)

This result is used now to extend Algorithm 11.6 for the state observation towards
the following algorithm for fault diagnosis:

http://dx.doi.org/10.1007/978-3-662-47943-8_8

11.7 Diagnosis of Stochastic Automata 595

Algorithm 11.7 Diagnosis of stochastic automata
Given: Set of stochastic automata {S f , f ∈ F}.

Initial state probability distribution p0(z)

Initial fault probability distribution Prob(F = f).

Initialisation: p′
f (z) = p0(z) · Prob(F = f) for all z ∈ Z and f ∈ F

ke = 0.

Loop:
1. Measure the current input v̄ and output w̄.

2. Determine h f (z) = ∑
z′ L f (z′, w̄ | z, v̄)· p′

f (z
′) for all z ∈ Z

and f ∈ F
3. If

∑
z h f (z) = 0 holds, the fault f is not a fault candidate:

p f (ke) = 0.

If
∑

z, f h f (z) = 0, the I/O pair is inconsistent with all models
of the set {S f , f ∈ F}. Stop the algorithm (an unknown fault
has occurred).

4. Determine p f (z) = h f (z)∑

z, f

h f (z)
for all z ∈ Z and f ∈ F .

5. Determine p′
f (z

′) =

∑

z

L(z′, w̄ | z, v̄) p′(z)
∑

z, f

h f (z)
for all z ∈ Z

and f ∈ F .

6. Determine p f (ke) = ∑
z∈Z p f (f, ke) and

F∗(ke) = { f ∈ F : p f (ke) > 0}.
7. ke := ke + 1

Continue with Step 1.

Result: Set of fault candidates F∗(ke) together with fault probability
p f (ke) for increasing time horizon ke.

The algorithm needs to get the a-priori fault probability distribution Prob(F(0) =
f), (f ∈ F) as an input. If nothing is known about the faults, a uniform distribution

Prob(F(0) = f) = 1

q
, f ∈ F

596 11 Fault Diagnosis of Discrete-Event Systems

1
1/1/0,5

2
1/1

3
1/1

4

1
1/1/0,5

2
1/1/0,5

3
1/1

4

1/1/0,2

1/2/0,5

1/1/0,3

1/1/0,5

1/2

1/3

S 0:

S 1:

Fig. 11.33 Model of the faultless and the faulty system

may be reasonable, where q is the number of faults considered.
The diagnostic result can be summarised as follows:

• Fault detection: If f0 /∈ F∗(ke) holds with f0 denoting the faultless case, then a
fault is detected in the system.

• Fault identification: The fault f that is present in the system belongs to the set
of fault candidates

f ∈ F∗(ke)

unless it is not considered in the set of faults F . If the set F∗(ke) is a singleton,
the fault is unambiguously identified. If this set includes more than one element,
the probability p f (ke), f ∈ F∗(ke) describes with which frequency these faults
appear.

Example 11.8 Diagnosis of a stochastic automaton
The automaton in Fig. 11.33 has the state Z̃ = (z, f)T for the two fault cases f = 0 und
f = 1. Assume that the initial state z0 = 1 is unambiguously known:

p0(z) = Prob(Z(0) = z) =
{

1 for z = 1

0 else.

For the fault, the a-priori probability distribution is assumed to be uniform:

Prob(F = f) = 0.5 for f = 0, 1,

which means that the diagnostic algorithm starts with the initial probabilities

p′
f (z) =

{
0.5 for z = 1, f = 0, 1

0 else.

Table 11.3 shows the diagnostic result for the I/O pair

11.7 Diagnosis of Stochastic Automata 597

Table 11.3 Probability distribution of the fault p f (ke)

ke = 0 ke = 1 ke = 2
V (0...0) = (1) V (0...1) = (1, 1) V (0...2) = (1, 1, 1)
W (0...0) = (1) W (0...1) = (1, 1) W (0...2) = (1, 1, 1)

f pf (0) pf (1) pf (2)
0 0.5 0.5714 0.5614
1 0.5 0.4286 0.4386

ke = 3 ke = 4
V (0...3) = (1, 1, 1, 1) V (0...3) = (1, 1, 1, 1, 1)
W (0...3) = (1, 1, 1, 3) W (0...3) = (1, 1, 1, 3, 3)

f pf (3) pf (4)
0 0 0
1 1 1

V (0 . . . 3) = (1, 1, 1, 1, 1)

W (0 . . . 3) = (1, 1, 1, 3, 3).

For the initial state z0 = 1, the first I/O pair (V (0) = 1, W (0) = 1) does not give any
information about the fault, because both models generate the same output. At time ke = 1,
the system can be in one of the following states:

Z0(1 | 0) = {1, 2, 3}
Z1(1 | 0) = {1, 2}

The I/O pair (V (1) = 1, W (1) = 1) excludes the state transition 2 → 4 and, hence, the
fault f = 1 is less probable than the fault f = 0 after the second measurement. After the
measurement W (3) = 3, the fault f = 1 is unambiguously identified. �

11.7.3 Extension to Time-Varying Faults

The diagnostic method developed in the last section for constant faults can be
extended to time-varying faults using the model

S̃ = (Z̃,V,W, L̃, Prob(z̃(0)))

given in Eq. (11.35), which includes the information about all fault cases and about
the dynamics of the fault F(k), (k = 0, 1, . . . , ke). The main idea is to replace the
behavioural relation L f , (f ∈ F) by the behavioural relation L̃ of the model S̃.

598 11 Fault Diagnosis of Discrete-Event Systems

Then, Eqs. (11.117)–(11.120) have to be replaced by the following relations:

p f (z, ke)=

∑

z′, f ′
L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′

f (z, ke − 1)

∑

z,z′, f, f ′
L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′

f (z, ke − 1)
(11.121)

p′
f (z

′, ke)=

∑
z, f

L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′
f (z, ke − 1)

∑

z,z′, f, f ′
L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′

f (z, ke − 1)
, ke > 0 (11.122)

p′
f (z

′,−1) = p0(z′) · Prob(F = f), ke = 0 (11.123)

p f (ke) =
∑

z∈Z
p f (f, ke). (11.124)

Discussion of the diagnostic results. The diagnostic algorithm yields the set F∗(ke)

of fault candidates for time ke. Each of the fault separately “explains” why the
measured I/O pair occurs. In addition to this set, the probability distribution p f (ke)

evaluates with which probability each fault candidate represents the real fault.
Under practical circumstances, several heuristic extensions can be made. For

example, a threshold s can be fixed and only those faults that occur with a probability
higher than s are announced to the human operator in the control room. Then the
threshold can be used to adapt the result of the diagnostic algorithm to the certainty
with which the behavioural relation of the automaton is known and to the degree of
danger that the different faults may have on the system performance. This adaptation
of the diagnostic results is analogous to the use of thresholds in the residual evaluation
of diagnostic methods for continuous-variable systems described in Chap. 6.

11.7.4 Diagnosability of Stochastic Automata

When solving practical problems, the diagnostic algorithm should provide a set
F∗(ke) which is a singleton for a possibly small time horizon ke. Whether or not
this is possible, depends on the diagnosability of the stochastic automaton, which is
investigated in this section. Note that the diagnosablity is a system property, which
depends upon the system dynamics described by the behavioural relation of the
automaton and by the measured signals v and w, but does not refer to the diag-
nostic method applied. Diagnosability claims that the fault f has to be found by
appropriately using all the information available.

It is not easy to find conditions under which the system is diagnosable, because
the question whether a fault can be detected does not only depend on the sys-
tem dynamics but also on the initial state and on the input sequence. However,
the frequent discussions among theoreticans and people from different application
fields on “hidden faults” that do not influence the measurement sequence and, thus,

http://dx.doi.org/10.1007/978-3-662-47943-8_6

11.7 Diagnosis of Stochastic Automata 599

cannot be found by any diagnostic algorithm, and discussions on the fact that differ-
ent faults have to bring about different effects on the system behaviour if they should
be discriminated, show that diagnosability is an important practical issue.

In this section, the results on the observability of stochastic automata presented
in Sect. 11.6.3 will be used to define and analyse the diagnosability of automata.
Like in Sect. 11.6.3, the starting point is the investigation under what conditions the
automaton is not diagnosable.

Definition 11.6 (Stochastic undiagnosability) A stochastic automaton S̃ with
behavioural relation

L̃(z′, f ′, w | z, v, f) = L(z′, w | z, v, f) · Gf(f ′ | f)

is called stochastically undiagnosable if it satisfies the property

L(z′, f ′, w | z, v, f) = L(z′, w | z, v) (11.125)

for all z′, z ∈ Z , w ∈ W , v ∈ V and f ∈ F .

Clearly, under the condition (11.125) the state and output sequences of the stochastic
automaton are independent of the fault f , because the fault does no longer appear in
L and, hence, the fault cannot be “seen” from the measured I/O pair. In analogy to
Lemma 11.7, it can be proved that for undiagnosable automata the diagnostic result
coincides with the result obtained by simulation of the faulty behaviour:

Lemma 11.8 If the stochastic automaton is stochastically undiagnosable, then for
all input sequences V and for all output sequences W the diagnostic result is identical
to the simulation result:

Prob(f (ke) | V (0 . . . ke), W (0 . . . ke)) = Prob(f (ke) | V (0 . . . ke)). (11.126)

The left-hand side of Eq. (11.126) is the result obtained from the diagnostic algorithm.
As the fault f does not depend on the input v, the right-hand side of Eq. (11.126) is
given by the relation

Prob(F(ke) = f | V (0 . . . ke))

=
∑

F(0...ke−1)

Gf(f | f (ke − 1)) · Gf(f (ke − 1) | f (ke − 2)) · . . .

· Gf(f (1) | f (0)) · Prob(F(0) = f (0)),

which predicts the state of the fault model S f . The fault changes with increasing
time horizon ke and so does the probability distribution

Prob(F(ke) = f | V (0 . . . ke)).

600 11 Fault Diagnosis of Discrete-Event Systems

However, the only information used for simulation is the state transition relation Gf
of the fault model. As the diagnostic algorithm uses further information given by the
output sequence W it is reasonable to expect that the diagnostic result is better than
the simulation result. The lemma says that for stochastically undiagnosable automata
this expectation is not met. The diagnostic algorithm cannot improve the simulation
result.

A given stochastic automaton is generally not completely stochastically undiag-
nosable according to Eq. (11.125), but there may exist one or more state sets Gz ⊂ Z
and one or more fault sets G f ⊂ F such that the behaviour within the set Gz does
not depend on the faults f ∈ G f . Then Eq. (11.125) does not hold for all z, z′ and f ,
but for all z, z′ ∈ Gz and all f ∈ G f . If a non-empty fault set F can be found such
that Eq. (11.125) is satisfied for all z, z′ ∈ Gz , the set Gz is called a stochastically
undiagnosable state set. If the stochastic automaton does not possess such a state
set, it is called diagnosable.

Definition 11.7 (Stochastic diagnosability) A stochastic automaton is called sto-
chastically diagnosable if it does not possess any stochastically undiagnosable state
set.

It is obvious from the investigations above that for stochastically diagnosable sys-
tems the diagnostic algorithm yield better results than a simulation of the behaviour
of the fault model.

Example 11.9 Diagnosability of stochastic automata
The stochastic automaton depicted in Fig. 11.33 is not stochastically undiagnosable. Neverthe-
less, the set of faults F is stochastically undiagnosable within the set of states Gz = {1, 2, 3}.
Hence, as long as the system is not in state z = 4 nor has the possibility to go to this state
within one time step, no information about the fault can be obtained. This result can be seen
from Example 11.8. The fault f = 1 is proved not to exist at time ke = 3 when the output
w = 3 occurs, which proves that the automaton is in the state z̃ = (4, 2)T. �

Example 11.10 Diagnosis of a stochastic automata
As an example, consider the task system to diagnose a fault by means of the automata
shown in Figs. 11.34 and 11.35. Both automata together describe the behavioural relation
L f (z

′, w | z, v). The fault is assumed to be constant.
A diagnosability check for v = 1 yields the result that the stochastic automaton is not

diagnoseable with respect to the set of faults F = {1, 2} within all states Gz = Z . For v = 2
the automaton is diagnosable.

Three experiments are considered. First, the input is fixed at v = 2 and the fault is f = 1.
An experiment with the initial state z = 6 yields the output sequence shown in the left part
of Fig. 11.36. A second experiment with the same initial state is made for v = 2 and f = 2
resulting in the output sequence shown in the middle part of Fig. 11.36, and a third experiment
with v=1 and f =1 leads to the right part of Fig. 11.36.

The diagnostic results corresponding to the three experiments are shown in Fig. 11.37. It
can be seen that the fault is isolated for v = 2, but for v = 1 the diagnostic result is merely
a simulation of the initially known fault distribution, which results for the given automa-
ton in a sequence of uniform distributions. The result is obtained because the automaton is
undiagnosable for v = 1 in the whole state set Z . �

11.7 Diagnosis of Stochastic Automata 601

4 5 6

1

2/11 w=3
1/11 w=2

1/11 w=3

2 3

1/5 w=1

1/2 w=2
1/2 w=3

3/11 w=3
4/11 w=2

1/ 3
w=

2
2/ 3

w=
12/ 5

w=
3

2/ 5
w=

2

1/2 w=2
1/2 w=3

3/5 w=1
3/10 w=2

1/2 w=1
1/5 w=2

7/10 w=1
3/10 w=2

1/10 w=2

1/
10

w
=

2
1/

10
w

=
3 3/11

w
=

3
4/11

w
=

2

2/ 5
w=

2

2/ 5
w=

3

1/
10

w
=

3
1/

10
w

=
2 1/5

w
=

1
7/10

w
=

2

3/10 w=1

1/10 w=1

2/11 w=2
2/11 w=3

7/10 w=1
3/10 w=2

input v=1
input v=2

Fig. 11.34 Automaton graph for fault f = 1

4 5 6

1 2 3

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

1/
2

w
=

2
1/

2
w

=
3

1/2
w

=
3

1/2
w

=
2

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

1/2 w=2
1/2 w=3

1/2 w=2
1/2 w=3

1/2 w=2
1/2 w=3 1/2 w=2

1/2 w=3

input v=1
input v=2

Fig. 11.35 Automaton graph for fault f = 2

602 11 Fault Diagnosis of Discrete-Event Systems

0 1 2 3 4 5

1

2

3
pr

oc
es

s
ou

tp
ut

steps
0 1 2 3 4 5

1

2

3

pr
oc

es
s

ou
tp

ut

steps
0 1 2 3 4 5

1

2

3

pr
oc

es
s

ou
tp

ut

steps

Fig. 11.36 Output sequences for v = 2, f = 1 (left), v = 2, f = 2 (middle) and v = 1, f = 1
(right)

0 1 2 3 4 5

1

2

di
ag

no
se

d
fa

ul
ts

steps
0 1 2 3 4 5

1

2

di
ag

no
se

d
fa

ul
ts

steps
0 1 2 3 4 5

1

2

di
ag

no
se

d
fa

ul
ts

steps

Fig. 11.37 Diagnostic results for the three experiments shown in Fig. 11.36 in the same order

11.8 Exercises

Exercise 11.1 Observability of stochastic automata
Assume that the current state probability distribution is given for time ke and denoted by
Prob(z(ke)). Prove the following fact: If at time ke + 1 an input v(ke + 1) and an output
w(ke + 1) occur for which a decomposition (11.107) is possible for the state set

Z(ke | ke) = {z : Prob(Z(ke)= z) > 0}

then in Steps 4 and 5 of the observation algorithm the same results are obtained as by simulating
the automaton behaviour according to Eq. (11.26). �

Exercise 11.2 Diagnosis of fixed faults
How can the Algorithm 11.7 be simplified if the fault is known not to change over time? �

Exercise 11.3 Diagnosis of a batch reactor
The reactor shown in Fig. 11.38 is used within a larger batch process, where it is filled and
emptied in order to bring a certain amount of liquid into another reactor. For the behaviour of
the reactor only the empty and the full state is distinguished, where the liquid level is above
the higher or below the lower border shown in the figure. These states are denoted by z1 and
z2.

To fill the reactor, the pump is switched on (input v1), to empty the reactor, the input v2
opens the valve. A security check ensures that the pump is not switched on if the valve is open.

1. Describe the reactor by a deterministic automaton

11.8 Exercises 603

Fig. 11.38 Batch reactor v
1

z
1

z
2

v
2

2. The fault f1 breaks the pump. Extend you model in order to describe the reactor for the
faultless and the faulty operation mode.

3. The faultless reactor remains faultless with the probability of 99 % in all state transitions
that are caused by switching the pump or opening and closing the valve. Extend you model
to get a stochastic automaton, which reflects this information. �

Exercise 11.4 Diagnosis of nondeterministic automata
How can the diagnostic method developed in this chapter be simplified if instead of a stochastic
automaton a nondeterministic automaton is used to describe the system under consideration?
Do the sets of fault candidates obtained by both methods distinguish? �

11.9 Bibliographical Notes

The first results concerning state observation of discrete-event systems occurred in
connection with the supervisory control theory developed in [284] where the supervi-
sor has to reconstruct the current state of the system from partially measurable states
or events. Reference [198] defined the notion of the observable language and devel-
oped results on the existence of the combined supervisory control and the observation
problem given. Reference [55] showed that for supervisory control the problem of
state observation can be reformulated as an event observation problem.

Observability of discrete-event-systems. The classical observability definition has
been given in [56] and was used also, for example, in the textbooks [51, 320]. Accord-
ing to this definition a stochastic automaton is called semi-deterministic or observable
if for all states z the successor state z′ = ϕ(z, v, w) can be unambiguously deter-
mined if the current state z, the current input v and current output w are known. This
definition is useful only if it can be assumed that the automaton state z at some time
k is precisely known. Then, the future sequence of states starting in z can be unam-
biguously determined. However, as long as this assumption is not satisfied, the notion

604 11 Fault Diagnosis of Discrete-Event Systems

of observability does not say anything about the solvability of the observation prob-
lem. Similar remarks hold true for other observability definitions like the one given
in [259] which likewise claim that the automaton state should be unambiguously
determined.

Several papers have been published about the connection of state observation
and fault diagnosis for discrete-event systems. Some of the aspects discussed are
summarised in [95].

Diagnosability and diagnostic methods. The diagnosis of discrete-event systems
was the subject of a steadily increasing number of papers in the past with the refer-
ences [12, 194, 277, 319] as early papers on the diagnostic problem for Petri nets, and
[179, 197, 216, 218, 297, 306] for nondeterministic or stochastic automata. Condi-
tions on the automaton under which the fault can be uniquely determined have been
derived in [197, 297]. If the input to the automaton should satisfy certain requirements
to avoid the situation where the system reaches forbidden states, the diagnosability
conditions appear to be stronger as shown in [268, 269]. A combination of Petri net
and automata theoretic approaches is described in [52].

In the stochastic setting, there are different definitions of diagnosability. In [366],
a stochastic automaton is said to be diagnosable if on all state trajectories the fault
can be detected and, hence, the fault is eventually unambiguously identified. In [218],
diagnosability means that the fault changes the I/O behaviour and leads to an increase
in its probability. Reference [179] describes detectability of a fault as the ability to
estimate the current state of a system with increasing certainty. Reference [277]
outlined the connections between discrete-event models and logical descriptions,
which opens the way to apply diagnostic methods elaborated in the field of artificial
intelligence to discrete-event systems (for survey cf. [139] or [212]). However, most
of the diagnostic methods developed in artificial intelligence can only be used for
static system descriptions, whereas the methods that have been developed here allow
to diagnose dynamical systems far from their equilibrium state.

Based on Algorithm 11.7 for the diagnosis of stochastic automata, a specific sensor
and actuator supervision system has been developed in [219].

The results on the diagnosability of deterministic automata developed in Sect. 11.4
have been published in [215]. The method for finding distinguishing inputs developed
in Sect. 11.4.5 is similar to the one described in [128] but uses an alternative notation
and, thus, directly extends a method for determining equivalent states of deterministic
automata. Details can be found in [303, 304].

Extensions. The issue of complexity reduction of the diagnosis of automata has
been considered in [210]. The basic idea was to lump unobservable states of the
model together because during the movement in such sets of states the observation
or diagnostic algorithm does not gain any additional information about the system.
It has been shown that this method of complexity reduction can be applied for non-
deterministic automata. However, for stochastic automata the complexity reduction
brings about biased diagnostic results.

The results reported in Sect. 11.5 have been developed in [218]. All proofs of the
results given here can be found in this reference.

11.9 Bibliographical Notes 605

The extension of the diagnostic method to remote diagnosis, where data loss in
the network has to be tolerated, is described in [114, 302].

The methods explained in this chapter can be extended to timed automata as shown
in [351].

The introduction to automata theory and the Exercise 11.3 follow the textbook
[209].

	11 Fault Diagnosis of Discrete-Event Systems
	11.1 Overview of Part III
	11.2 Models of Discrete-Event Systems
	11.2.1 Deterministic and Nondeterministic Systems
	11.2.2 Deterministic Automata
	11.2.3 Nondeterministic Automata
	11.2.4 Stochastic Automata
	11.2.5 Model of the Faulty System

	11.3 Diagnostic Problems and Ways of Solution
	11.4 Diagnosis of Deterministic Automata
	11.4.1 Diagnostic Algorithm
	11.4.2 Results on Deterministic Automata with Equivalent States
	11.4.3 Fault Detectability
	11.4.4 Fault Identifiability
	11.4.5 Method for Determining Distinguishing Input Sequences

	11.5 Diagnosis of Nondeterministic Automata
	11.5.1 Method for Testing the Consistency of an I/O Pair with a Nondeterministic Automaton
	11.5.2 Diagnostic Algorithm

	11.6 State Observation of Stochastic Automata
	11.6.1 Method for Testing the Consistency of an I/O Pair with a Stochastic Automaton
	11.6.2 Observation Algorithm
	11.6.3 Observability of Stochastic Automata
	11.6.4 Distinguishing Inputs

	11.7 Diagnosis of Stochastic Automata
	11.7.1 Principle of Consistency-Based Diagnosis Applied to Stochastic Automata
	11.7.2 Diagnosis of Stochastic Automata with Constant Faults
	11.7.3 Extension to Time-Varying Faults
	11.7.4 Diagnosability of Stochastic Automata

	11.8 Exercises
	11.9 Bibliographical Notes

