
Chapter 10
Distributed Fault Diagnosis
and Fault-Tolerant Control

Abstract Distributed systems are formed by the interconnection of several subsys-
tems or autonomous agents. Each entity is equipped with a local computing device
that runs the whole or a part of the diagnosis and fault-tolerant control algorithms.
This chapter explains the specific features of such systems and provides tools for the
design and the coordination of distributed algorithms that achieve the overall diag-
nosis and control specifications, under given communication structures and local
computing power limitations.

10.1 Introduction

The need for distributed control directly follows from the growing dimensions of
complex, large-scale, multi-agent systems. Star architectures that connect all field
devices (sensors and actuators) to one single computer running all the control laws
are unpractical for large-scale applications. Using several computers and hubs to
implement the control laws and connect the field devices is possible, thanks to local
area networks that transfer the needed measurements to the computing devices and
the generated control signals to the system actuators. The development of multi-
agent systems (teams of robots, fleets of unmanned vehicles) also heavily rests on
data transmissions between the individual entities and on local decision making.

Assuming a distributed control architecture, the implementation of a global diag-
noser may be an unpractical option because of the amount of needed communication
that sometimes makes it technically impossible. The diagnosis algorithms must then
also be distributed, by assigning a part of the global fault detection and isolation task
to each subsystem.

Fault-tolerant distributed systems have been considered for long in the soft-
ware community to cope with hardware, software and communication faults. More
recently, specific problems have been considered in the control community for fault-
tolerant estimation, diagnosis and control of large-scale systems. As far as control is
concerned, distributed systems introduce an information pattern, meaning that dif-
ferent data sets are available to different controllers, as opposed to the conventional
design where all controllers share the same information. The information pattern

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_10

467



468 10 Distributed Fault Diagnosis and Fault-Tolerant Control

plays also a very important role in distributed diagnosis, since the amount of known
data available to each subsystem is a key parameter for its detection and isolation
capabilities.

In this chapter, distributed systems are first presented. Distributed diagnosis is
then addressed in reference with the structural fault detection and isolation capability
of the overall system. According to the locally available model and data, the local
diagnosers provide more or less powerful conclusions that must be coordinated (or
aggregated) into a system-level overall diagnosis. Distribution algorithms are then
considered, based on information patterns that take into account the specificities
of the communication architecture. The constraints associated with possible local
computing power limitations are also considered. The second part of the chapter
addresses fault-tolerant distributed control. Since the solvability of the control design
problem depends on the information pattern that is implemented, it follows that a
fault that is not recoverable under a given information pattern might be recoverable
under another one. The reconfiguration of the information patterns appears therefore
as a powerful tool to achieve fault tolerance.

10.2 Distributed Systems

10.2.1 System Decomposition

Consider a system Σ equipped with a set I of m actuators, and a set J of p sensors.
Its behaviour is described by

ẋ(t) = f (x(t), u(t), d(t), t) (10.1)

y(t) = g (x(t), u(t), d(t), t), (10.2)

where x ∈ |Rn is the state, u ∈ |Rm is the control vector, y ∈ |Rp is themeasurement
vector and d ∈ |Rq is some disturbance vector.

Let {uk, k = 1, . . . , s} ,
{

yk, k = 1, . . . , s
}
and {xk, k = 1, . . . , s} be partitions

of u, y and x into s ≥ 1 subvectors, and let

ẋk(t) = f k(xk(t), xk(t), uk(t), uk(t), d(t), t) (10.3)

yk = gk (x(t), u(t), d(t), t) (10.4)

(k = 1, . . . , s) be the resulting decomposition of Eqs. (10.1) and (10.2), where xk

gathers all the components of x except xk .
Each equation in (10.3), (10.4) can be interpreted as describing the behaviour of

a subsystem Σk with uk ∈ |Rmk the local control vector associated with a subset Ik

of the actuators, yk ∈ |Rpk the local measurement vector associated with a subset
Jk of the sensors and xk ∈ |Rnk the local state. Note that I = {Ik, k = 1, . . . , s} and
J = {Jk, k = 1, . . . , s} are partitions of I and J .
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The functions f k(xk, xk, uk, uk, d, t) can take different forms. A specific case
occurs when f k(xk, xk, uk, uk, d, t) is decomposable, namely it is the sum of two
functions

f k(xk, xk, uk, uk, d, t) = f selfk (xk, uk, d, t) + f coupledk (xk, uk, d, t),

where

• f selfk (xk, uk, d, t) describes the self-dynamics of subsystem Σk and

• f coupledk (xk, uk, d, t) describes the coupled dynamics with respect to the other
subsystems (meaning the influence of the other subsystems on subsystem Σk).

Note that other decompositions of Σ could be defined, from the system global
model (10.1), (10.2) by changing the value of s and the partitions of u, y and x.
In practice, however, there is usually a natural decomposition into subprocesses
associated with the global process to be controlled (then, each subsystem describes
a given subprocess) or with the control system. Indeed, in large-scale processes, the
control system is composed of several computing devices, each of them running
some part of the real-time control algorithms (diagnosis, supervision, management,
etc.), and the sensors and actuators are connected to the distributed control system
through hubs and communication networks. In order to address distributed systems,
the simple network architecture in which each subsystem Σk performs a part of the
overall control and a part of the overall diagnosis is considered, as illustrated in
Fig. 10.1.

Sub-process Σ k

Sensors S j, j J∈ k Controller Ck

Diagnoser Dk

yk uk

Local measurements Local control

Controller Ck and
diagnoser Dk receive
data via the
communication
network

Influence of other sub-processes (coupled dynamics)

Local diagnosis

Actuators Ai, i Ik∈

Fig. 10.1 Local controller and diagnoser
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Example 10.1 System decomposition
Consider the sixth-order linear time invariant system

ẋ(t) = Ax(t) + Bu(t)

with
xT = (x1, x2, x3, x4, x5, x6),

controlled by a set of 5 actuators (I = {1, 2, 3, 4, 5}) whose control signals are components
of the vector

uT = (u1, u2, u3, u4, u5).

There are 26 − 2 different ways to decompose this system into two subsystems. Indeed, each
decomposition is obtained by considering a non-empty subset of the six states as the local
state of the first subsystem and the remaining subset (provided it is non-empty) as the local
state of the second subsystem.

More generally, the number of possible decompositions into s subsystems is the number
of partitions of the state variables into s non-empty classes. If covers are considered instead
of partitions, the result is a decomposition into overlapping subsystems, a case we shall not
consider here. For example, with the matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 2 1 −1 0 1
0 1 2 0 0 0
0.5 −0.5 −2 0 1 1
1 −1 −1 −2 0.4 0
0 0 0 1 −3 1
2 0 −1 −2 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0.5 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 1 0
0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(10.5)

and the decomposition (x1, x2), (x3, x4, x5, x6), the two subsystems are, respectively,

Σ1 :
(

ẋ1
ẋ2

)
=

(−1 2
0 1

)(
x1
x2

)
+

(
1 0
0 0.5

)(
u1
u2

)
+

(
1 −1 0 1
2 0 0 0

)
⎛
⎜⎜⎝

x3
x4
x5
x6

⎞
⎟⎟⎠

and

Σ2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2 0 1 1
−1 −2 0.4 0
0 1 −3 1

−1 −2 0 −4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x3
x4
x5
x6

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

1 0 0
0 2 0
0 1 0
0 0 2

⎞
⎟⎟⎠

⎛
⎝

u3
u4
u5

⎞
⎠

+

⎛
⎜⎜⎝

0.5 −0.5
1 −1
0 0
2 0

⎞
⎟⎟⎠

(
x1
x2

)
.
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Note that for linear systems, the state equations are decomposable whatever the partition of
the state that is considered, provided that the control signals do not simultaneously act on
different subsystems. In this example, actuator 4 directly influences the state variables x4 and
x5 and, therefore, decompositions in which these variables would belong to different subsys-
tems would not enjoy the property that their state equations are decomposable. Associating a
controller with each subsystem results in the determination of the control signals u1, u2 by
Σ1 and the determination of u3, u4, u5 by Σ2. Note that, unlike the control decomposition,
the diagnosis decomposition is not implied by the system decomposition. Indeed, in addition
to the computation of u1, u2, the computing device of subsystem Σ1 could be assigned any
part of some overall diagnosis algorithm (provided it is fed with the appropriate data and has
enough computing power), and the same applies of course to subsystem Σ2.

In the sequel, this example will be continued under the assumption that there is some
physical reason to distinguish four subsystems based on the partition of the state (x1, x2), (x3),
(x4, x5), (x6) and the partition of the actuators I1 = {1, 2} , I2 = {3} , I3 = {4} , I4 = {5}.
The considered system decomposition is

Σ1 :
(

ẋ1
ẋ2

)
=

(−1 2
0 1

) (
x1
x2

)
+

(
1 0
0 0.5

)(
u1
u2

)
+ · · ·

+
(
1 −1 0 1
2 0 0 0

)
⎛
⎜⎜⎝

x3
x4
x5
x6

⎞
⎟⎟⎠

Σ2 : ẋ3 = −2x3 + u3 + (
0.5 −0.5 0 1 1

)

⎛
⎜⎜⎜⎜⎝

x1
x2
x4
x5
x6

⎞
⎟⎟⎟⎟⎠

Σ3 :
(

ẋ4
ẋ5

)
=

(−2 0.4
1 −3

)(
x4
x5

)
+

(
2
1

)
u4 + · · ·

+
(
1 −1 −1 0
0 0 0 1

)
⎛
⎜⎜⎝

x1
x2
x3
x6

⎞
⎟⎟⎠

Σ4 : ẋ6 = −4x6 + 2u5 + (
2 0 −1 −2 0

)

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5

⎞
⎟⎟⎟⎟⎠

. �
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Process

Controller 1 Controller 2 Controller s

Communication system

u1
y1 y2 ys

ysy2y1
y1/z1

y2/z2

u2 us

ys/zs

…

Fig. 10.2 Distributed system architecture

10.2.2 Distributed Control

Local controllers. Assuming that each subsystem Σk to be equipped with its own
controller means that the overall control (i.e. the determination of vector u) is dis-
tributed among the s controllers and each of them is in charge of computing the
subvector uk . The design of efficient control algorithms might need some controllers
to use more measurements than the locally available ones. This is possible, thanks
to the existence of a communication network such that local controllers can use the
measurements zk ∈ |Rπk provided by a subset of sensors Zk . Since the local mea-
surements are always available to subsystem Σk , the relation Jk ⊆ Zk ⊆ J holds and
Zk \ Jk is the set of remote sensors whose measurements are made available to Σk

over the communication network. Since J = {Jk, k = 1, . . . , s} is a partition of J ,
it follows that {Zk, k = 1, . . . , s} is a cover of J, i.e. one has Zk �= ∅, (k = 1, . . . , s)
and ∪k=1,...,sZk = J . Figure10.2 displays the corresponding architecture (dotted
arrows mean that the variables may, or may not, be communicated). In the sequel,
for the sake of conciseness, we use the same notation for the sensors and the signals
they deliver (should they be ordered as vectors or not), for example yk ⊆ zk ⊆ y,
zk \ yk , etc.

Information pattern. Given a system decomposition, the s-tuple

Z = {zk, k = 1, . . . , s}

is an information pattern. The full information pattern is

Zmax = {zk = y, k = 1, . . . , s} ,

meaning that all the measurement signals y are available to each local controller.
Note that this is nothing but the centralised control architecture, when s = 1, and a
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distributed implementation of the centralised control when s > 1. On the contrary,
under the local information pattern

Zmin = {
zk = yk, k = 1, . . . , s

}
,

only locally produced measurements are used by each local controller, which char-
acterises the decentralised control scheme.

Example 10.2 Local controllers
Assume that the system of Example10.1 is equippedwith 4 sensors J = {1, 2, 3, 4} providing
the measurement signals

y =

⎛
⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞
⎟⎟⎟⎟⎟⎟⎠

and each controller is interfaced with one of them as follows:

J1 = {1} , J2 = {2} , J3 = {3} , J4 = {4} .

Assume that output feedback is investigated, for the sake of simplicity. Consider for example
the information pattern Z = {(y1, y2), y2, (y1, y3), (y2, y4)}. It needs the signal y1 to be
communicated from Σ1 to Σ3 and the signal y2 to be communicated from Σ2 to Σ1 and Σ4,
and it allows to use the controllers

u1(t) = k11y1(t) + k12y2(t)

u2(t) = k22y2(t)

u3(t) = k31y1(t) + k33y3(t)

u4(t) = k42y2(t) + k44y4(t),

where the kij are the real output feedback gains. By comparison, the full information pattern

Zmax = { y, y, y, y} allows the design u(t) = K y(t) with K ∈ |R5×4, but needs all the
measurements to be communicated, while in the local information pattern

Zmin = {y1, y2, y3, y4}

associated with decentralised control, no variable at all is communicated, but the output feed-
back must satisfy the constraints ui (t) = kii yi (t) where the kii are real numbers. �
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10.2.3 Distributed Diagnosis

Whatever the way they have been designed (analytical redundancy relations, obser-
vers, identification-based designs), a centralised diagnoser evaluates all the residuals
using the data available to it through its connection with the system sensors and
controllers. In a distributed architecture, each subsystem Σk , (k = 1, . . . , s) runs
its own local diagnoser, defined by a pair (rk, δk) where rk are the residuals it has
been assigned and δk is a decision procedure on the residuals rk . Let za

k ⊆ u and
zs

k ⊆ y be the control and measurement signals whose knowledge is needed to run
the residuals rk that have been assigned to subsystem Σk (za

k and zs
k are determined

by the computation form of the residuals in rk). Then, the information pattern that
allows the local diagnosers to perform their task is

Z = {(
za

k , zs
k

)
, k = 1, . . . , s

}
.

The full information pattern is Zmax = {(u, y), k = 1, . . . , s}, while the local infor-
mation pattern is Zmin = {(

uk, yk

)
, k = 1, . . . , s

}
.

10.2.4 Communication Cost

Given an information pattern Z , the sets zk \ yk , (k = 1, . . . , s) contain those mea-
surement signals that are needed by, but are not locally available to, the controller
of subsystem Σk . Similarly, the sets za

k \ uk and zs
k \ yk contain the control signals

(resp. the measurement signals) that are needed by, but are not locally available to,
the diagnoser of subsystem Σk . Those data are received through the communica-
tion network, that involves some communication cost. Whatever the network and the
communication protocol, the communication cost would clearly depend on the vari-
ables coding, transmission rate, checking procedures, management strategy, etc., and
it would be growing with the number of communicated variables. It is assumed that
the communication cost is expressed by a function com (K)whereK is the set of com-
municated variables, such that com (∅) = 0 and K1 ⊆ K2 ⇒ com (K1) ≤ com (K2).

10.2.5 Communication Schemes

Among many available communication schemes, this chapter builds on the pub-
lisher/subscriber and the bilateral agreements based ones. The publisher/subscriber
scheme is associated with diffusion-based networks and is well suited to factory
communication protocols, like communication between intelligent sensors, actua-
tors and subsystems, while the bilateral agreements scheme is well suited to describe
the communication between autonomous agents.
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Token is with controller i

Publication
table

Subscription
table

Controller j

Publication
table

Subscription
table

Publish
variable Inactive links

Input published
variable if it belongs to
the subscription table

Field bus

Fig. 10.3 The publisher/subscriber scheme

Diffusion-based networks. In diffusion-based networks,1 a variable that is published
in the communication system is available to all the subsystems that subscribe to it.
The process globally works as follows:

• When a controller gets the token, it takes control of the communication bus and
publishes the identifier and the value of the variables it is in charge of publishing
(they are in its publication table);

• The other controllers recognise the identifier of a variable they have subscribed to
(the list is in their subscription table). If recognised, they input its value; and

• The token passes to the next controller.

Figure10.3 illustrates the publisher/subscriber scheme.

Bilateral agreements. In this scheme, subsystems establish bilateral agreements by
which they share their data. Let a be the binary relation such that a

(
Σi , Σ j

) = 1
if Σi and Σ j share their data, a

(
Σi , Σ j

) = 0 otherwise. Note that a being reflex-
ive, symmetric and transitive, its graph A (which represents the set of agreements)
involves a partition of all subsystems {Σk, k = 1, . . . , s} into equivalence classes
E (A) = {El, l = 1, . . . ,σ}, with σ = s when A is empty and σ < s otherwise. It
follows that the same data z (El) are available to all the subsystems that belong to the
same class El, as illustrated by Fig. 10.4 for a system with five distributed controllers
and two equivalence classes.

Other schemes. Teams of autonomous agents most often use wireless communica-
tions, which restricts the communication possibilities of each agent to a subset of the
other agents in its neighbourhood. In such applications, the network is described by
a graph whose nodesNi are the individual agents, and an arc between agentsNi and
N j indicates that the first can send data to the second. Such communication schemes
are not considered in this chapter.

1Examples of diffusion-based networks are the Factory Instrumentation Protocol defined by the
European Standards EN50170 and the IEC 61158/IEC 61784 Communication Profile Family 5.
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Controller 1

Controller 2

Controller 3

Controller 4 Controller 5

Fig. 10.4 Two agreement classes between 5 controllers

10.3 Distributed Diagnosis Design

In order to design a local diagnoser for each subsystem, two problems are to be
solved:

1. characterise the system-level diagnosis that follows from the subsystem-level
diagnosis and

2. design the local diagnosers so as to obtain specified results at the global system
level.

These problems are addressed in this section and in the next one.
A direct means to evaluate the system-level diagnosis achieved by a set of dis-

tributed diagnosers is to compare it with the results that would be obtained with the
overall (centralised) diagnoser. In order to develop this comparison, we first highlight
the parameters that shape the design of a global diagnoser, namely its structural and
its quantitative properties, which were, respectively, presented in Chaps. 5, 6 and 7.

10.3.1 Structural Diagnoser

Remember that from a structural point of view, the dynamical behaviour of a system
Σ is described by a set of variables V and a set of constraints C that are satisfied when
it is healthy. For continuous systems, the constraints C are algebraic and differential
equations, the classical formulation of which is recalled here:

ẋ(t) = f (x(t), u(t), d(t), t) (10.6)

y(t) = g (x(t), u(t), d(t), t), (10.7)

where x ∈ |Rn is the state, u ∈ |Rm and d ∈ |Rq are, respectively, the known and
unknown inputs, and y ∈ |Rp are the knownmeasured outputs. In the sequel, we still
use the same notation for sets and vectors of variables, as well as for sets and vectors
of constraints, because no confusion is possible. Note that algebraic constraints on
the state can easily be introduced via Eq. (10.7) as a subset of sensors whose output
is constant and equal to zero. The variables V are partitioned into known K = u ∪ y
and unknown X = x ∪ d variables.

http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_7
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In order to characterise the global diagnoser’s properties, we first recall how ana-
lytical redundancy relations (ARR) are exhibited from the system canonical decom-
position and we present a basic result from the logical theory of diagnosis.

Canonical decomposition. The structural analysis of Σ is the analysis of the bipar-
tite graph G = (C, Z, E) introduced in Sect. 5.2, where Z is the set of variables,
C is the set of constraints and E is the set of edges in which each pair (ci , z j ) ∈ E
means that the variable z j appears in the constraint ci . The DM decomposition of the
graph G is explained in Sect. 5.4.1 that provides three canonical subsystems of Σ ,
namely an over-constrained, a just-constrained and an under-constrained subsystem.
The over-constrained subsystem exhibits more than one solution to the complete
matching problem of its unknown variables, while in the just-constrained subsys-
tem, the complete matching is unique, and there is no complete matching in the
under-constrained subsystem. Remember that the set Z of variables is decomposed
into the setK of known variables and the setX of unknown variables and that a com-
plete matching of the unknown variables allows to express the unknown variables as
functions of the known variables, which means that it is possible to eliminate them
in any constraint where they appear, simply by replacing them by their expression.

Analytical redundancy relations. The over-constrained subsystem is the moni-
torable part of Σ . Indeed, the existence of more than one complete matching of its
unknown variables implies that a set of compatibility condition must be satisfied by
the variables in K for Eqs. (10.6) and (10.7) to be consistent. These conditions are
the analytical redundancy relations (ARR).

The essence of ARR-based diagnosis is to check whether the ARR are satisfied
or not by the known data. This is done via a set of residuals whose computation
involves only known variables, and whose value should be zero in normal operation.
Let r (C,K) be the set of residuals associated with the set of constraints C and the
known variables K.

The computation of each residual ρ ∈ r (C,K) involves a subset K (ρ) ⊆ K of
known variables and a subset C (ρ) ⊆ C of constraints. K (ρ) is known from its
computation form, and C (ρ) ⊆ C defines its structure.

Remark 10.1 ARR-based residuals generally call for derivatives of the known vari-
ables, which is often argued against them in real-time applications. However, the
derivation order can be limited (at the cost of reducing the number of found ARR)
and moreover, it is in general possible to design observers whose outputs are equiv-
alent and do not suffer the noise sensitivity issues. �

10.3.2 Logical Theory of Diagnosis

The logical theory of diagnosis is a tool that will be used to explain the coordination
of several local diagnoses. It rests on the residuals signatures presented in Chap. 5
that are further analysed here.

http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_5
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Structural detectability. Since a fault changes one (or several) system constraint(s),
it follows that there is a contradiction between the two statements:

1. a residual ρ(t) is falsified by the data (ρ(t) �= 0) and
2. all the constraints in its structure C (ρ) hold true.

The structure of a falsified residual is named as conflict,meaning it contains at least
one faulty (untrue) constraint. It follows that for a faulty constraint to be detectable, it
must belong at least to one residual’s structure. The set of faults structurally detectable
by the residuals r is therefore D = ∪ρ∈rC (ρ), while the non-detectable faults are
D = C \ D. Remark that this explains the term monitorable that applies to the
over-constrained subsystem, because it is the only one that produces residuals.

Remark 10.2 It is important to remark that the system canonical decomposition is
unique. It follows that the set of detectable faults is also unique. In particular, it
cannot be extended by ARR combinations. �

Structural isolability. A constraint c ∈ D partitions the residuals r into r1 (c)
whose structure contains c and r0 (c) whose structure does not contain c. Let us first
consider single faults: when c is faulty, the residuals r0 (c) are satisfied while the
residuals r1 (c) are falsified. The signature of fault c is the vector s (c) whose j th
component gives the status of residual r j (0 when satisfied, 1 when falsified). The
diagnoser is characterised by its distinguishability partition

{Di , i = 0, 1, 2, . . .
}

where D0 = OK ∪ D are the situations that have the same signature as the healthy
system, namely s

(D0
)
such that r0(D0) = r and r1

(D0
) = ∅, and Di , (i �= 0) are

the faulty situations that have the same signature s
(Di

)
.

Assuming that fault cancellations do not occur, a multiple fault

C = {ci , i = 1, 2, . . .}

has the signature s (C) such that

r1 (C) = ∪c∈C r1 (c)

and
r0 (C) = r \ r1 (C).

Note that a special case of multiple faults is addressed in the partition

{
Di , i = 0, 1, 2, . . .

}

because the signature s
(Di

)
characterises any subset of faults that belong to the

same class Di , (i �= 0). The set of fault signatures can be studied by considering
every single and multiple faults. However, it is simpler to rely on the following result
from the logical theory of diagnosis.
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Minimal hitting sets and diagnosis. Let r = rs ∪ r f be a partition of the residuals
r into satisfied residuals rs and falsified residuals r f . A minimal subset of con-
straints Δi whose faults result in this very partition is a possible diagnosis. Since
more than one such subset may exist, the overall diagnosis is the set of possibilities
Δ = {

Δi , i = 1, 2, . . .
}
. Note that this definition automatically includes simple and

multiple faults.

Theorem 10.1 (Minimal hitting set) Let {C (ρ), ρ ∈ r f} be the set of conflicts asso-
ciated with the partition of the residuals into r = rs ∪ r f . A possible diagnosis is a
minimal hitting set of {C (ρ), ρ ∈ r f}.

A subset of constraints H is a hitting set of {C (ρ), ρ ∈ r f} if the two relations
• H ⊆ ∪ρ∈rfC (ρ) and
• H ∩ C (ρ) �= ∅,∀ρ ∈ r f

hold. H is minimal if no proper subset of H satisfies these two conditions. In words,
H is a minimal subset of constraints such that

• each of them belongs to at least one conflict and
• a corresponding multiple fault falsifies every residual in r f .

Example 10.3 Ship with dual measurements
The simplified non-linearmodel of a ship steering systemwith dualmeasurements was consid-
ered in Chap.5. The unknown variables are the heading angle ψ, the turn rate ω and the rudder
angle δ. There are four known variables {y1, y2, y3, y4}. From the state and measurement
equations

c1 :
c2 :

(
ω̇

ψ̇

)
=

(
η1ω + η3ω

3 + δ
ω

)

m1 :
m2 :
m3 :
m4 :

⎛
⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ψ
ψ

ψ̇
δ

⎞
⎟⎟⎠ ,

one finds three residuals whose computation forms and structures are, respectively, given by
Eq. (10.8) and Table10.1:

ρ1 = y2 − y1
ρ2 = ẏ1 − y3
ρ3 = ẏ3 − η1y3 − η3y33 − y4. (10.8)

A fault in any constraint is detectable since there is at least a “1” in each column of the
signature table. Some faults are not isolable, since they have identical signatures. The resulting
equivalence classes are D1 = {m1}, D2 = {m2}, D3 = {m3} and D4 = {m4, c1, c2}, which
gives the distinguishability Table10.2 (OK has been re-labelled as D0):

http://dx.doi.org/10.1007/978-3-662-47943-8_5


480 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Table 10.1 Structures of the
ship example residuals

OK m1 m2 m3 m4 c1 c2

ρ1

ρ2

ρ3

0

0

0

1

1

0

1

0

0

0

1

1

0

0

1

0

0

1

0

0

1

Table 10.2 Distinguishability
table of the ship example

D0 D1 D2 D3 D4

ρ1

ρ2

ρ3

0

0

0

1

1

0

1

0

0

0

1

1

0

0

1

Assume residual ρ1 is satisfied by the real-timemeasurements, residuals ρ2, ρ3 are falsified
and the signature 011 directly leads to the diagnosis D3. Now, suppose that although there is
no signature 111 in the table, all three residuals are falsified by the real-time measurements.
Using the notation Di × D j for a double fault diagnosis in which the first fault is a constraint
in Di and the second fault a constraint in D j , it is seen that this is indeed possible as the result
of the multiple faultsD1×D3∪D1×D4∪D2×D3, as it can be visually checked on Fig. 10.5
where D1 × D3, D1 × D4 and D2 × D3 are minimal hitting sets of {C (ρ1), C (ρ2), C (ρ3)}.

Considering all possible signatures (note that the signature 010 can never be obtained)
gives the diagnosis Table10.3.

D2

C (ρ1)

D1

D3

D4

C (ρ2)
C (ρ3)

Fig. 10.5 The three conflicts associated with the signature 111
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Table 10.3 Diagnosis table of
the ship example ρ1ρ2ρ3 Diagnosis

000 D0

001 D4

010 cannot happen

011 D3

100 D2

101 D2 × D4

110 D1

111 D1 × D3 ∪ D4 ∪ D2 × D3

Remark 10.3 The conclusion obtained via the logical theory of diagnosis may con-
tain many possible diagnosis, as it can be seen from the previous example, where
there are three sets of possible double faults associated with the signature 111. All
conclusions are indeed consistent from a logical point of view. However, in practical
applications, one may have to select only one of them. Under the assumption that
the joint probabilities of faults occurring in different constraints are known, it seems
of course appropriate to select the most probable one. �

10.3.3 Practical Diagnoser and Real-Time Operation

Structural versus actual properties. Structural properties are necessary but not
sufficient for actual properties to be true. A residual whose structure does not contain
a given fault can by no means allow its detection, but a structurally detectable fault
might never be detected in practice because the sensitivity of the residuals is too
small, or because the signal/noise ratio does not allow its detection. Similarly, two
isolable faults might never be isolated from each other if only a common subset of
residuals is sensitive enough to them.

A practical diagnoser is a pair (r, δ)where r is a set of residuals and δ is a decision
procedure that checks the residuals status (satisfied/falsified), using the available
knowledge on modelling errors, unknown inputs and measurement noises, in order
to reduce false alarms, missed detections, detection delays and mis-isolations, as
analysed in Chap.7.

Real-time operation. The real-time operation of a practical diagnoser follows 4
steps (steps 3 and 4 are optional depending on the application):

1. Compute the value of the residuals r from the values of the known variables K;
2. Fault detection: evaluate the residuals using the decision procedure δ and conclude

whether a fault has occurred (r f �= ∅) or if the system can possibly be healthy
(rs = r);

http://dx.doi.org/10.1007/978-3-662-47943-8_7
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3. Fault isolation: find the minimal hitting sets consistent with the observed signa-
ture, if a detection has been fired; and

4. Fault estimation: estimate the model of the faulty system.

Whatever the complexity of steps 2, 3 and 4, they apply to the residuals r issued
from the structural analysis. Implementing a centralised or a distributed diagnoser is
therefore based on implementing a centralised or a distributed computation scheme
for the residuals r . This is why only the fault detection and isolation properties of
structural diagnosers are considered in the sequel.

Centralised or distributed implementation. In a centralised system, the diagnoser
is run by a single computing device that is connected with all the sensors and con-
trollers. A centralised diagnosis implementation is based on the assumptions that

• the data involved in the computation form of any residual are available to the
central computing device;

• there is no data transmission delay, or if some delay is unavoidable, all the data
involved in the computation formof a given residual are available under compatible
time stamps.

In a distributed diagnosis scheme, each subsystem Σk , (k = 1, . . . , s) runs its
own diagnosis algorithm, and the above assumptions may be no longer satisfied:

• the data available to each subsystem depend on the information pattern that is
implemented;

• the communication network may introduce transmission errors, data losses and
unacceptable delays; and

• even when not faulty, the communication network may introduce different trans-
mission delays for different variables, due to the network scheduling procedures.

The design of a distributed diagnosis scheme rises two interrelated problems:

• Problem 1. Given a residual vector r and a set of subsystems Σk , (k = 1, . . . , s)
how to design an information pattern and how to distribute the residual computa-
tions between the different subsystems? and

• Problem 2. Given a set of local diagnosers how to achieve an overall decision that
is consistent with the locally achieved ones?

Because it is needed to understand the coordination procedure in order to design
the residuals distribution, we start with the solution of Problem 2.

10.3.4 Local Diagnosers and Their Coordination

As the data available to local diagnosers depend on the information pattern, we will
need tomanipulate these entities in order to understand the subsystem-level diagnosis
capabilities. The system-level coordination of all the subsystem-level diagnosis will
be addressed after.
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Information pattern. We first give a formal definition of the set of all information
patterns and define an order on this set.

Definition 10.1 (Information pattern) An information pattern is a set Z = {zk,

k = 1, . . . , s}, where zk is a pair
(

za
k , zs

k

)
such that uk⊆ za

k ⊆ u and yk ⊆ zs
k ⊆ y.

In other words, an information pattern is a s-tuple whose i th element is the subset of
input/output data available to the i th subsystem. The set of information patterns is
easily provided with a partial order relation defined as

Z1 � Z2 ⇔ ∀k = 1, . . . , s : za
1,k ⊆ za

2,k ∧ zs
1,k ⊆ zs

2,k .

In this case,Z2 is said to be wider thanZ1—orZ1 is narrower thanZ2. The minimal
information pattern

Zmin = {(
uk, yk

)
, k = 1, . . . , s

}

is narrower than any other information pattern, and the maximal information pattern

Zmax = {(u, y), k = 1, . . . , s}

is wider than any other one.
It follows from the definition that any information pattern

Z = {(
za

k , zs
k

)
, k = 1, . . . , s

}

is such that∪k=1,...,s za
k = u and∪k=1,...,s zs

k = y, in other words, the za
k , respectively,

and the zs
k are a cover of u, respectively, of y.

Local diagnosers. The structural analysis of the global system model (10.6), (10.7)

ẋ(t) = f (x(t), u(t), d(t), t)

y(t) = g (x(t), u(t), d(t), t)

results in the set of residuals r (C,K) where C = f ∪ g and K = u ∪ y. Assume
that for some reason, we are interested in the structural analysis of the constraints
C when there are less known variables than K, namely K− ⊆ K. The monotonicity
property

K− ⊆ K ⇒ r
(C,K−) ⊆ r (C,K)

holds true,with the conclusion that ifZ = {(
za

k , zs
k

)
, k = 1, . . . , s

}
is an information

pattern by which the known variables available to subsystem Σk are Kk = (
za

k , zs
k

)
,

the subset of residuals that can be computed by subsystemΣk is r (C,Kk) ⊆ r (C,K).
Similarly, letC− ⊆ C be a subset of constraints, thenwhatever the knownvariables

K one has r
(C−,K) ⊆ r (C,K), with the consequence that another monotonicity
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property holds true under the information pattern Z , namely

Ck ⊆ C ⇒ r (Ck,Kk) ⊆ r (C,Kk) ⊆ r (C,K).

Definition 10.2 (Distributed diagnosis scheme) Let C = {Ck, k = 1, . . . , s} be a
collection of constraint subsets and consider an information pattern Z = (zk, k =
1, . . . , s). A distributed diagnosis scheme is a set of local diagnosers (r (Ck, zk), δk)

where δk is the decision procedure associated with the evaluation of the residuals
r (Ck, zk).

The subset of constraints Ck associated with a local diagnoser need not be the con-
straints f k ∪gk that describe the behavioural model of subsystem Σk in Eqs. (10.3),
(10.4).

Before we describe different diagnosis schemes associated with different choices
of C, let us first investigate the relation between local and global diagnosis.

Local versus global detection. From a structural point of view, each local diagnoser
in a distributed diagnosis scheme is characterised by the partition

{
Di

k, i = 0, 1, 2, . . .
}

that defines the system situations and it is able to distinguish from its different
residual signatures. Note that such a local partition is necessarily wider than the
partition

{Di , i = 0, 1, 2, . . .
}
associated with the global diagnoser, since Di

k is the
union of several subsets D j in the global distinguishability table.

In order to be detected, a fault must be detectable by at least one local diagnoser.
The set of detectable faults in a distributed diagnosis scheme is therefore∪k=1,...,sDk

whereDk = ∪i �=0Di
k is the set of faults detectable by the local diagnoser Σk . As the

global scheme can detect the faults inD, the differenceD\∪k=1,...,sDk characterises
the loss of detectability caused by the distributed diagnosis with respect to the global
diagnosis.

Example 10.3 (cont.) Ship with dual measurements
Using the three residuals ρ1, ρ2, ρ3, the distinguishability partition associated with the ship
example was D0 = {OK}, D1 = {m1}, D2 = {m2}, D3 = {m3} and D4 = {m4, c1, c2}.
Assume a distributed diagnosis where the local diagnoser 1 runs only residual ρ1. Considering

only the first row of Table10.2, its local distinguishability partition is
{
D0
1, D1

1

}
, with D0

1 =
D0 ∪ D3 ∪ D4 and D1

1 = D1 ∪ D2. �

Local versus global isolation. In order to evaluate the combined performance of the
local diagnosers, one needs a coordination or aggregation procedure that provides
a global diagnosis from the set of local diagnosis. Without loss of generality, the
coordination procedure can be analysed for the case of two local diagnosers.

Theorem 10.2 Let Δk = {
Δi

k, i ∈ ik
}

be the local diagnosis delivered by two local
diagnosers (k = 1, 2), where Δ0

k = OK ∪ Dk , Dk are the faults non-detectable
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by diagnoser k and each Δi
k , (i �= 0) is a minimal hitting set of the conflicts{C (ρ), ρ ∈ r f (k)

}
. Consistent diagnosis are obtained as

Δ12 =
{
Δ00

12,Δ
0i
12,Δ

j0
12,Δ

ij
12, i, j �= 0

}
, (10.9)

where

Δ00
12 = OK ∪ (D1 × D2

)
(10.10)

i �= 0 :
{

Δ0i
12 = D1 × (Di

2 ∩ D1
)

Δi0
12 = D2 × (Di

1 ∩ D2
) (10.11)

i, j �= 0 : Δ
ij
12 = Di

1 × D j
2 (10.12)

under a simplification and a deletion rule:

1. Simplification rule: a double fault that consists of a pair of identical faults is
simplified into a single fault.

2. Deletion rule: non-minimal hitting sets are deleted.

Understanding the coordination procedure is quite simple: let r (1) and r (2) be
the residuals run by the local diagnosers. Associated with the signatures r (1) =
rs (1)∪ r f (1) and r (2) = rs (2)∪ r f (2) are the conflicts C (1) = {C (ρ), ρ ∈ r f (1)}
and C (2) = {C (ρ), ρ ∈ r f (2)}. Four cases can be distinguished, according to the
fact that C (1) and C (2) are empty or not.

• Case 1: rs (1) = r (1) and rs (2) = r (2). In this case, there is no conflict, and the
two local diagnosis are Δ0

1 = OK ∪D1 and Δ0
2 = OK ∪D2, whereD1 (resp.D2)

are the faults non-detectable by Σ1 (resp. by Σ2). The global diagnosis consistent
with the local ones is OK ∪ (D1 × D2

)
.

• Case 2: rs (1) = r (1) and r f (2) �= ∅. In this case, the first diagnosis is Δ0
1 =

OK ∪ D1, while the second is Δ1
2 = ∪i∈i2Di where Di , i ∈ i2 are the faults that

have the signature rs (2) ∪ r f (2). The global diagnosis consistent with the local
ones isD1 × (D1

2 ∩ D1
)
. Indeed, OK is inconsistent, since the residuals r f (2) are

falsified. Any fault in D1 satisfies r (1) and any fault in D1
2 falsifies r f (2). The

reason why only faults in D1
2 ∩ D1 are considered is that faults that falsify r f (2)

must also satisfy rs (1).
• Case 3: r f (1) �= ∅, rs (2) = r (2) is similar to case 2.
• Case 4: r f (1) �= ∅, r f (2) �= ∅. In this case, the first diagnosis is Δ1

1 = ∪i∈i1Di

and the second is Δ1
2 = ∪i∈i2Di . Any double fault inD1

1 ×D1
2 is indeed possible.

The simplification rule follows from the fact that when the same fault is concluded
to be present by each local diagnoser, the “double fault” is in fact a simple one. Finally,
each Δi

k, i �= 0 being a minimal hitting set of the conflicts {C (ρ), ρ ∈ r f (k)}, a pair
Di

1 × D j
2 , i, j �= 0 is a hitting set of

{C (ρ), ρ ∈ ∪k=1,2r f (k)
}
and it provides a
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possible conclusion as seen above. However, this hitting set may be non-minimal,
and in this case it cannot be a possible diagnosis.

Remark 10.4 The coordination unit provides the overall diagnosis consistent with
all the local diagnosers’ conclusions. It may be implemented in the computing device
of any subsystem (we are not discussing here its possible distribution). Technically,
it receives the local subsystems’ decisions and coordinates them according to the
procedure of Theorem10.2. Note that alternatively, the coordination could also be
done by a direct combination of all the locally obtained signatures according to the
global diagnoser’s distinguishability table. �

Example 10.3 (cont.) Ship with dual measurements
Let us exemplify the coordination procedure in the ship with dual measurements assum-
ing there are two computing devices Σ1 and Σ2, which are, respectively, interfaced with
the measurement signals y1, y2 and y3, y4. Under the minimal information pattern, noted
{(y1, y2), (y3, y4)}, they respectively run the residuals ρ1 and ρ3, since the computation form
of ρ2 is available to none of them. The local distinguishability tables are

D0 ∪ D3 ∪ D4 D1 ∪ D2

ρ1 0 1

D0 ∪ D1 ∪ D2 D3 ∪ D4

ρ3 0 1

and the application of Theorem10.2 gives

ρ1ρ3 Local diagnosis Δ1 Local diagnosis Δ2 Coordinated diagnosis Δ12

00 D0 ∪ D3 ∪ D4 D0 ∪ D1 ∪ D2 D0

01 D0 ∪ D3 ∪ D4 D3 ∪ D4 D3 ∪ D4

10 D1 ∪ D2 D0 ∪ D1 ∪ D2 D1 ∪ D2

11 D1 ∪ D2 D3 ∪ D4 D1 ∪ D2 × D3 ∪ D4( ( ( (

It can be checked that the coordinated diagnosis is the same as the centralised diagnosis based
on the two residuals ρ1 and ρ3. Indeed, the centralised distinguishability table would be

D0 D1 ∪ D2 D3 ∪ D4

ρ1

ρ3

0
0

1
0

0
1

with the diagnosis
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ρ1ρ3 Global diagnosis

00 D0

01 D3 ∪ D4

10 D1 ∪ D2

11 D1 ∪ D2 × D3 ∪ D4( ( ( (
Let us examine other information patterns. The publication of y3 by Σ2 and its subscrip-

tion by Σ1 allows the distributed diagnosis scheme ρ1, ρ2 by Σ1 and ρ3 by Σ2. The local
distinguishability tables and the coordination result are given in Tables10.4, 10.5 and 10.6. �

Table 10.4 Local distinguishibility table of Σ1

D0 ∪ D4 D1 D2 D3

ρ1

ρ2

0

0

1

1

1

0

0

1

Table 10.5 Local distinguishibility table of Σ2

D0 ∪ D1 ∪ D2 D3 ∪ D4

ρ3 0 1

Table 10.6 Coordination table for Σ1 and Σ2

ρ1ρ2ρ3 Δ1 Δ2 Δ12

000 D0 ∪ D4 D0 ∪ D1 ∪ D2 D0

001 D0 ∪ D4 D3 ∪ D4 D4

010 D3 D0 ∪ D1 ∪ D2 cannot happen

011 D3 D3 ∪ D4 D3 ∪ D4

100 D2 D0 ∪ D1 ∪ D2 D2

101 D2 D3 ∪ D4 D2 × D4

110 D1∪ D2 × D3 D0 ∪ D1 ∪ D2 D1 ∪ D2

111 D1∪ D2 × D3 D3 ∪ D4 D1 × D3 ∪ D4 ∪ D2 × D3(
( (

( ((
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10.3.5 Distribution Schemes

We now describe different distributed diagnosis schemes, associated with different
choices of the collection C = {Ck, k = 1, . . . , s}.
Global diagnoser in one subsystem. Let Cmax,k be defined by Ci = ∅, i �= k and
Ck = C, and the information patternZmax,k be such that zk = u∪ y. Then subsystem
Σk runs the global diagnosis algorithm, while the other subsystems do not perform
any diagnosis at all.

Global diagnoser with replicas. Let K be a subset of subsystems, let Cmax,K be
defined by Ci = ∅, (i /∈ K) and Ci = C, (i ∈ K) and let Zmax,K be an information
pattern such that ∀i ∈ K : zi = u ∪ y, then each subsystem in K runs a replica of
the global diagnoser, while the other ones do not perform any diagnosis at all.

Decentralised diagnosers. Under the collection Cmax = {Ck = C, k = 1, . . . , s} and
the local information pattern Zmin = {Kk = uk ∪ yk, k = 1, . . . , s

}
, each subsys-

tem runs the residuals whose computation form uses the local variables uk ∪ yk . This
scheme needs no data transmission for the computation of the local residuals (but
communication is still needed for the coordination task). It may yield weak results,
because only a subset of the global residuals is run (for example, it is easy to see that
a residual whose computation form needs measurements generated by sensors from
different subsystems will not be run at all). It is of course possible to consider an
even more reduced scheme with Ck ⊆ C, k = 1, . . . , s (at least one inclusion being
strict) under the local information pattern.

Distributed diagnosers. The collection C = {Ck = ϕk ∪ γk, k = 1, . . . , s} where
ϕk ⊆ f and γk ⊆ g is the most general one. Associated with the information
pattern Z = {(

za
k , zs

k

)
, k = 1, . . . , s

}
, each subsystem Σk sees the global state x as(

ξk, ξk

)
, the global control u as

(
za

k , za
k

)
and the global measurements y as

(
zs

k, zs
k

)
:

(
ξ̇k

ξ̇k

)
=

⎛
⎝ϕk

(
ξk, ξk, za

k , za
k , d, t

)

ϕk

(
ξk, ξk, za

k , za
k , d, t

)
⎞
⎠ (10.13)

(
zs

k
zs

k

)
=

(
γk

(
x, za

k , za
k , d, t

)

γk
(

x, za
k , za

k , d, t
)
)

(10.14)

which results in the local residuals rk
(
ϕk ∪ γk, za

k ∪ zs
k

)
.

Remark 10.5 The diagnosis decomposition needs by no means be identical to the
control decomposition (10.3) and (10.4). Taking ϕk = f k, k = 1, . . . , s is some-
times justified in the literature by the argument that under the decentralised infor-
mation pattern, the local residuals rk

(
ϕk ∪ gk, uk ∪ yk

)
are sensitive only to faults

in Σk , but this is true only if an over-constrained subsystem exists in the decom-
position of Σk . In general, both the interconnection variables and the consideration
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of wider information patterns introduce constraints from other subsystems whose
elimination (when possible) results in residual structures that do not contain only
local constraints.

Remark 10.6 za
k and zs

k being defined by the given information pattern, the largest set
of local residuals is obtainedwith Ck = f ∪γk, k = 1, . . . , s, whereγk is determined
by zs

k . This is nothing but the subset of global residuals whose computation form is
available to Σk . �
Replicas. Local diagnoser residualsmay have non-empty intersections. For example,
two subsystems that share data both see a common subset of constraints by means of
the same known variables, which results in identical local residuals. The same con-
clusion holds when two subsystems publish their data, and each of them subscribes
to the data published by the other one. It is a design decision to implement several
replicas of the same residuals in several local diagnosers. The decision has a cost
associated with multiple calculations of the same residuals, but it allows to detect
faults that might occur in the computing devices, using a voting scheme. Moreover,
the diagnosis remains available under such faults, if the number of replicas is large
enough. Note that the local to global coordination rules remain unchanged when
replicas are used, as it can be checked from the following example.

Example 10.3 (cont.) Ship with dual measurements
Assume thatΣ1 runs ρ1, ρ2 andΣ2 runs ρ2, ρ3. The local distinguishability partitions become

D0 D1 D2 D3 D4

ρ1

ρ2

0

0

1

1

1

0

0

1

0

0

and

D0 D1 D2 D3 D4

ρ2

ρ3

0

0

1

0

0

0

1

1

0

1

and they still provide the coordinated diagnosis:

ρ1ρ2ρ3 Δ1 Δ2 Δ12

000 D0 ∪ D4 D0 ∪ D2 D0

001 D0 ∪ D4 D4 D4

010 D3 D1 cannot happen

011 D3 D3 ∪ D4 × D1 D3 ∪ D4

100 D2 D0 ∪ D2 D2

101 D2 D4 D2 × D4

110 D1∪D2 × D3 D1 D1 ∪ D2

111 D1∪D2 × D3 D3 ∪ D4 × D1 D1 × D3 ∪ D4 ∪ D2 × D3( (
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10.4 Design of the Local Diagnosers

10.4.1 Specifications

The design of a distributed diagnosis scheme aims at satisfying functional and fault-
tolerance specifications, under local computing capacity constraints, at a minimal
communication cost.

Functional specifications. The functional specifications encompass the following
points:

• The detectability and isolability performances of the global system (C,K) are
entirely defined by the set of residuals r (C,K). In what follows, it is supposed
that the diagnosis performances of the distributed system are wished to be the
same as those of the centralised system. However, the approach can be applied
whatever the subset of residuals r ⊆ r (C,K) that are wished to be implemented.

• The computing cost of a subsystemΣk which has been assigned the set of residuals
rk is a function h (rk) assumed to be known. The capacity constraint is expressed
as h (rk) ≤ hk, k = 1, . . . , s.

• The communication cost depends on the information pattern that is implemented,
and it is an increasing function of the set of communicated variables. For the sake of
simplicity, information patterns are considered first under the publisher/subscriber
scheme. The extension to the bilateral agreement scheme is considered next.

Fault-tolerance specifications. Fault-tolerance specifications may be added to the
functional specifications. They specify the diagnosis performances that are still to
be achieved should faults occur in

• the sensors or in the communication system (they decrease the set of known inputs
that can be used by each local diagnoser),

• the process components (they decrease the set of healthy constraints upon which
the set of residuals to be used depends), and

• the local computing devices (the local diagnosis from faulty devices cannot be
used in the coordination procedure).

10.4.2 Simple Distribution Problem

Let us start with the following simple problem associated with the functional spec-
ifications: assuming there is no capacity constraint associated with the subsystems
Σk , (k = 1, . . . , s) distribute the residual computations among them so as to obtain
the same diagnosis performances as in the centralised scheme, at a minimal commu-
nication cost.
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Let r (C,K) be the residuals of the global system, and rk (C,Z) be the residuals
whose computation form is available to subsystem Σk under the information pattern
Z . Then, the distributed scheme achieves the same performances as the centralised
scheme if and only if

∪k=1,...,s rk (C,Z) = r (C,K) (10.15)

i.e. the residuals rk (C,Z), k = 1, . . . , s cover the residuals r (C, K).
From the monotonicity property Z+ � Z ⇒ rk

(C,Z+) ⊇ rk (C,Z), it follows
that if Eq. (10.15) is not satisfied under an information pattern Z it may be satisfied
under awider oneZ+. In the publisher/subscriber scheme,wider informationpatterns
are obtained by publishingmore variables. The set of all possible information patterns
is therefore the lattice of all publishable variables, namely L = 2u∪ y, which is
organised into levels Li that contain subsets of i variables. The algorithm that solves
the simple distribution problem is therefore

Algorithm 10.1 Simple distribution

Given: a set r (C,K) of residuals to be covered
a system decomposition into subsystemsΣk with local known
variables Kk = uk ∪ yk

Initialisation: Ei = Li , i = 0, 1, . . . |u ∪ y|.
Loop: While Et �= ∅

1. for each subset of published variables z ∈ Et , identify the
subsets of residuals rk (C,Z) ⊆ r (C,K), (k = 1, . . . , s)
whose computation form is available, and updateEt asEt \{z}

2. If Eq. (10.15) is satisfied, z solves the problem. List z in the
set of solutions Z∗ and update Et+1 as Et+1 \ P (Z∗) where
P (Z∗) = ∪z∈Z∗P (z) and P (z) are the predecessors of z in
the lattice L.

Result: List Z∗ of minimal subsets of variables to be published in
the publisher/subscriber scheme in order for the distributed
diagnosis to achieve the same performance as the centralised
diagnosis.

Comments.

1. Since any solution z ∈ Z∗ results in the running of all the residuals r (C,K), any
predecessor of z also results in running all the residuals. Because there are more
available data to the subsystems, some residuals may be replicated in several
subsystems.
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2. The process considers wider and wider information patterns, so it must eventually
terminate, with a non-empty set of solutions. Indeed, the worst case in which all
the publishable variables are published is associated with the information pattern
Zmax that implements the whole set of residuals r (C,K) in each subsystem.

3. The presentation has been aimed at distributing all the residuals in r (C,K) but
the approach can be applied whatever the subset of residuals r ⊆ r (C,K) that
are wished to be implemented.

Example 10.3 (cont.) Ship with dual measurements
Let us illustrate the simple distribution procedure with the ship example whose results have
been presented earlier. Let the two subsystems be Σ1 with local sensors {y1, y2} and Σ2 with
local sensors {y3, y4}. The specification is that the distributed diagnosis should be as powerful
as the centralised diagnosis.

The procedure starts with the minimal information pattern

Zmin = {(y1, y2), (y3, y4)}

associated with the decentralised system.
The first iteration provides the distribution ρ1 assigned to Σ1 and ρ3 assigned to Σ2 as

already seen, which is not admissible because there is a loss of detectability and isolability with
respect to the centralised scheme. In the second iteration, the constraints are considered under
wider information patterns. Under the publisher/subscriber scheme, four wider information
patterns can be obtained by publishing one single variable, namely

Z1 = {(y1, y2), (y1, y3, y4)}
Z2 = {(y1, y2), (y2, y3, y4)}
Z3 = {(y1, y2, y3), (y3, y4)}
Z4 = {(y1, y2, y4), (y3, y4)} .

From the residuals (10.8), the associated decompositions are

Information pattern Σ1 Σ2

Z1 ρ1 ρ2 , ρ3

Z2 ρ1 ρ3

Z3 ρ1 , ρ2 ρ3

Z4 ρ1 ρ3

Only Z1 and Z3 improve the diagnosis capability. The diagnosis performances under Z3 are
given in Tables10.4 and 10.5. They show that there is no loss of detectability/isolability with
respect to the global diagnosis scheme. It can be checked from the local tables

OK m1 m2 m3 m4 c1 c2

ρ1 0 1 1 0 0 0 0

and
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OK m1 m2 m3 m4 c1 c2

ρ2

ρ3

0

0

1

0

0

0

1

1

0

1

0

1

0

1

that the same conclusion holds under Z1, so the two schemes satisfy the diagnosis
specifications.

Finally, the information patterns Z1 and Z3 are the minimal ones for which the diagnosis
specifications can be obtained. Consideringwider information patterns is not necessary (unless
replications arewished), since the diagnosis performanceswould not be increased, but the local
computing costs could only be increased (because more residuals would be computed in each
subsystem). In order to illustrate this point, let us investigate the case where two variables are
published. There are six possible information patterns, which lead to six possible distributed
schemes, according to the table:

Information pattern Σ1 Σ2

Z12 = {(y1 , y2 ), (y1 , y2 , y3 , y4 )} ρ1 ρ1 , ρ2 , ρ3

Z13 = {(y1 , y2 , y3 ), (y1 , y3 , y4 )} ρ1 , ρ2 ρ2 , ρ3

Z14 = {(y1 , y2 , y4 ), (y1 , y3 , y4 )} ρ1 ρ2 , ρ3

Z23 = {(y1 , y2 , y3 ), (y2 , y3 , y4 )} ρ1 , ρ2 ρ3

Z24 = {(y1 , y2 , y4 ), (y2 , y3 , y4 )} ρ1 ρ3

Z34 = {(y1 , y2 , y3 , y4 ), (y3 , y4 )} ρ1 , ρ2 ρ3

All schemes (except Z24) satisfy the diagnosis specifications since they allow to distrib-
ute the computation of all residuals. Note that schemes Z12 and Z13 implement residuals
replications. Note also that any information pattern wider than the two minimal patterns Z1
and Z3 under which the specifications are satisfied also satisfies the specifications, as shown
in Fig. 10.6, where the different information patterns are displayed along with the associated
residual distribution. Information patterns under which the distributed diagnosis specifications
are satisfied are in white, and the minimal ones have a bold contour. �

10.4.3 Distribution Under Computing Cost Constraints

The simple distribution problem does not take into account the possible limitations
in the local computing power of the different subsystems. Assume there is a known
function hk (ρ) associated with each pair (ρ, k), ρ ∈ r (C,K), (k = 1, . . . , s) that
evaluates the computing cost of a residual ρ by the computing device of subsystem
Σk and that subsystem Σk can devote only an amount hk of computing effort to
the distributed diagnosis task. Then, assuming that computing costs are additive, the
previous distribution problemmust take into account the computing cost constraints:
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Fig. 10.6 Information patterns and diagnosis distribution in the ship example

∑

ρ∈rk

hk (ρ) ≤ hk . (10.16)

Starting with the results of the simple distribution algorithm, it is easily seen
that if the set Z∗ contains at least one solution that satisfies the computing cost
constraints, then the constrained problem is solved, by discarding those solutions
that are inadmissible.

Two situations must be distinguished when all solutions in Z∗ are inadmissible:

• First, an inadmissible solution can be transformed into an admissible one, if there
exists subsets of residuals in the overloaded subsystems whose deletion leads to
an admissible computing cost, but does not degrade the diagnosis performance
because they are replicas of residuals computed in other—non-overloaded—
subsystems.

• If no such possibility exists, non-minimal subsets of publishable data must be con-
sidered, in order to provide non-overloaded subsystem with replicas of residuals
that could be deleted from overloaded subsystems.

In order to implement this procedure, the previous algorithm is modified as
follows.
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Algorithm 10.2 Distribution under cost constraints

Given: A set r (C,K) of residuals to be covered
a system decomposition into subsystemsΣk with local known
variables Kk = uk ∪ yk , known computing costs hk (ρ), ρ ∈
r (C,K), and known computing power limitations hk

Initialisation: Ei = Li , i = 0, 1, . . . |u ∪ y|.
Loop: While Et �= ∅:

1. For each subset of published variables z ∈ Et , identify the
subsets of residuals rk (C,Z) ⊆ r (C,K), (k = 1, . . . , s)
whose computation form is available, and update Et as
Et \ {z},

2. If Eqs. (10.15) and (10.16) are satisfied, or if Eq. (10.15) is
satisfied and Eq. (10.16) is not satisfied but becomes satisfied
by deleting the replicated residuals in the overloaded subsys-
tems, z solves the problem. List z in the set of solutionsZ∗ and
update Et+1 as Et+1 \ P (Z∗) where P (Z∗) = ∪z∈Z∗P (z)
and P (z) are the predecessors of z in the lattice L.

Result: List Z∗ of minimal subsets of variables to be published in
the publisher/subscriber scheme in order for the distributed
diagnosis to achieve the same performance as the centralised
diagnosis while satisfying the computation cost constraints.

Comment. Since it explores wider and wider information patterns, the algorithm
must eventually terminate.However, a solution is not guaranteed to exist. A necessary
and sufficient condition for a solution to exist is that it exists under the maximal
information pattern. In that case, all subsystems are able to run all residuals r (C,K),
and the deletion of replicated residuals problem boils down to finding a partition of
the set r (C,K) into s classes such that the computing cost constraints are satisfied.
Let σk (ρ) be the binary variables such that σk (ρ) = 1 when residual ρ is assigned to
subsystemΣk and σk (ρ) = 0 when residual ρ is not assigned to subsystemΣk . Then
the residual distribution problem under computation cost constraints has a solution
if and only if the constraint satisfaction problem,

∀ρ ∈ r (C,K) :
∑

k=1,...,s

σk (ρ) = 1 (10.17)

k = 1, . . . , s :
∑

ρ∈r(C,K)

σk (ρ) hk (ρ) ≤ hk, (10.18)

has a solution, which can easily be checked since it is a classical task allocation
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problem (algorithms to solve a version of this problem—namely finding maximal
matchings in a bipartite graph—were given in Chap. 5).

10.4.4 The Bilateral Agreements Scheme

In the bilateral agreements scheme, the set of all subsystems is partitioned into equiv-
alence classes such that subsystems in the same class share all their data. Denoting
by KK the known data available to all subsystems in a class {Σk, k ∈ K}, these
bilateral agreements result in the residual assignments rk (C,KK) = rK, k ∈ K . It
follows that for each residual possibly run by subsystemΣk , there are |K|−1 replicas
possibly run by the other subsystems Σ j , ( j �= k) in the same class.

The following algorithm explores the increasing levels of a hierarchy built on
the atomic decomposition Σk , (k = 1, . . . , s). At each level of the hierarchy, two
subsystems are merged according to some merging policy, for example, the two sub-
systems whose merger implies the smallest communication cost, the two subsystems
whose merger implies the largest set of computable residuals, the two subsystems
with the best efficiency ratio computed from the increase in the communication cost
versus the increase in the number of computable residual, etc. The satisfaction of the
computing cost constraints is achieved by deleting from the overloaded subsystems
those residuals whose replica is present in some underloaded subsystem.

Algorithm 10.3 Bilateral agreements

Given: A set r (C,K) of residuals to be covered
a system decomposition into subsystemsΣk with local known
variables Kk = uk ∪ yk , known computing costs hk (ρ), ρ ∈
r (C,K), and known computing power limitations hk .

Initialisation: E0 = {
E0,k = Σk, k = 1, . . . , s

}

Loop: While Et is not a singleton

1. For each pair of classes Et,i and Et, j , evaluate their possible
merger in terms of the induced communication cost and of the
residuals that become computable, and select the pair whose
merger is preferred according to the selected merging policy.
Update Et+1 by replacing

{
Et,i , Et, j

}
in Et by Et,i ∪ Et, j .

2. If all residuals are covered and the computing cost constraints
are satisfied, or if they become satisfied by deleting the repli-
cated residuals in the overloaded subsystems, the decompo-
sition Et+1 solves the problem.

Result: a decomposition of the system into equivalence classes asso-
ciated with bilateral communication agreements that achieves
the same performance as the centralised diagnosis while sat-
isfying the computation cost constraints.

http://dx.doi.org/10.1007/978-3-662-47943-8_5
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Comments.

1. Since it explores increasing levels of the system hierarchy, the algorithm must
eventually terminate. The necessary and sufficient condition for a solution to exist
(and therefore to be found) is the same as in the publisher/subscriber scheme, that
has been given in Eqs. (10.17) and (10.18).

2. It is well known that hierarchical procedures are by noway optimal, sincemergers
are performed at each level following a greedy approach (the bestmerger at a given
level is not necessarily the best one from a global point of view), and are never
un-merged. However, they are very popular because of their simplicity. They are
in general run several times, under several merging policies, which allows for
comparison between the results and get a good idea of the main features of the
solutions.

Example 10.4 Hierarchical distribution algorithm
In this example, we consider the distribution of a set of nine residuals among four subsystems,
under the bilateral communication scheme. The structures of the residuals computation form
are

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

ρ1 1 1

ρ2 1 1 1

ρ3 1 1

ρ4 1 1

ρ5 1 1 1

ρ6 1 1

ρ7 1 1 1

ρ8 1 1 1

ρ9 1 1 1 1

and the local data are given by

Subsystem Σ1 Σ2 Σ3 Σ4

Local data z1 , z 2 z3 , z 4 , z 5 z6 , z 7 z8 , z 9 , z 10 , z 11

The atomic decomposition associated with the decentralised scheme leads to the computable
residuals

E 0 Σ1 Σ2 Σ3 Σ4

Computable residuals ρ6 ∅ ρ3 ρ5

that do not cover the whole set ρ1, . . . , ρ9, and therefore the information exchange must be
increased. At the first level of the hierarchy, there are six possible bilateral agreements, which
give the following results:
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Mergers Σ1 ∪ Σ2 Σ1 ∪ Σ3 Σ1 ∪ Σ4

Computable residuals ρ2ρ4ρ6ρ9 ρ3ρ6 ρ5ρ6

Communication load z1 z2 z3 z4 z5 z1 z2 z6 z7 z1 z2 z8 z9 z10 z11

Mergers Σ2 ∪ Σ3 Σ2 ∪ Σ4 Σ3 ∪ Σ4

Computable residuals ρ3ρ8 ρ5 ρ1ρ3ρ5ρ7ρ8

Communication load z3 z4 z5 z6 z7 z3 z4 z5 z8 z9 z10 z11 z6 z7 z8 z9 z10 z11

Assume that the merging policy that gives the largest number of computable residuals is
chosen. There are two decompositions at level 1 that both allow to compute six residuals,
namely

E 11 Σ1 Σ2 Σ3 ∪ Σ4

Computable residuals ρ6 ∅ ρ1ρ3ρ5ρ7ρ8

and

E 12 Σ1 ∪ Σ2 Σ3 Σ4

Computable residuals ρ2ρ4ρ6ρ9 ρ3 ρ5

Note that E12 needs less communication than E11, but neither E11 nor E12 covers the
whole set of wished residuals, so more communication has to be introduced by considering
the second level of the hierarchy.

From aggregating E11 and E12, one gets

E 21 Σ1 ∪ Σ2 Σ3 ∪ Σ4

Computable residuals ρ2ρ4ρ6ρ9 ρ1ρ3ρ5ρ7ρ8

that covers all the residuals, and from E12 one gets three possibilities, associated with the
mergers Σ3 ∪Σ4, Σ1 ∪Σ2 ∪Σ3 and Σ1 ∪Σ2 ∪Σ4 but none of them covers the whole set of
residuals. Note that in the solution E21, bothΣ1 andΣ2 are able to run the residuals ρ2ρ4ρ6ρ9
and bothΣ3 andΣ4 are able to run the residuals ρ1ρ3ρ5ρ7ρ8. Assuming each subsystem has a
sufficient computing power, the existence of the replicas makes the distributed scheme tolerant
to faults in the individual computing devices: for example, in the presence of a complete failure
of Σ1, the residuals ρ2ρ4ρ6ρ9 could still be run by Σ2 (of course, one should also consider
in this case the effects of such a failure on the control functionalities, but this is not the topic
of this section).

Assuming limited computing powers that do not allow full duplication, the set of residuals
ρ2ρ4ρ6ρ9 should be split into two subsets, respectively, run in Σ1 and Σ2, according to the
classical task allocation problem under constraints, a version of which has been used in the
comment on p. 499 to evaluate the existence of a solution to the distribution problem under
constraints. �
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10.4.5 Fault-Tolerant Distributed Diagnosis

Fault-tolerant distributed diagnosis considers the effect of faults on the diagnosis
capability of a distributed diagnosis system. It will not be developed in detail, since
most of the tools that are useful for the analysis and the design of fault-tolerant
diagnosis have been presented in this chapter and in previous chapters, as it appears
from the following analysis of the different fault consequences.

Faults in the process components. Faults in the process components decrease the
set of constraints that can be used to build the residuals. Less constraints means less
residuals, which means less detectability and distinguishability. The analysis of the
fault tolerance of a given diagnosis system is therefore nothing but the analysis of
the subsets of residuals that still allow to perform the desired detection and isolation
specifications. Considering subsets of residuals (i.e. residual configurations) is quite
similar to considering actuator or sensor configurations as in Chap. 8.

Faults in the sensors or in the communication network. Faults in the sensors or in
the communication network decrease the set of known variables that are available to
the local computing devices of the distributed system. Less known variables means
less residuals, which brings back to the above problem.

Faults in the local computing devices. Faults in the local computing devices result in
erroneous local diagnosis. Using replicas of the same residuals in different computing
devices allows to detect inconsistencies bymeans of appropriate voting schemes. The
general problem has been thoroughly studied in the computer science community,
and the reader is referred to the bibliographical notes for an overview of the main
results.

10.5 Fault-Tolerant Control by Information Pattern
Reconfiguration

The previous sections have shown the prominent role of the information pattern in
the design of a distributed diagnosis algorithm. Similarly, the role of the information
pattern is the main feature that distinguishes fault-tolerant control in distributed
systems from fault-tolerant control in embedded systems. Other features are that

• due to the interactions between subsystems, the specifications to be satisfied in
normal and in faulty operations must be considered at the system level, while the
control is designed at the subsystem level; and

• the fault recovery process is desired to be limited to the smallest possible number
of subsystems.

These features are now addressed in the frame of reconfiguration-based fault
tolerance.

http://dx.doi.org/10.1007/978-3-662-47943-8_8
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10.5.1 Admissibility and Reconfigurability

Remember that fault tolerance is the property that some specification P satisfied by
the nominal system is also satisfied in the presence of faults (performance degradation
may be allowed by introducing a less-demanding specification when faults occur).
When distributed systems are considered, an important question to decide is whether
each subsystem is responsible for finding an admissible control that achieves the part
of the global specification it has been assigned to fulfil (in this case, the specification
is said to be decomposable), or whether system-level admissibility is to be considered
(this is the non-decomposable specifications case).

Definition 10.3 (Decomposable specification) A specification P is decomposable
if it is equivalent to some set {Pk, k = 1, . . . , s} where Pk is a specification of
subsystem Σk .

Due to the coupling variables xk in Eq. (10.3), it appears that not all specifica-
tions are decomposable. In the sequel of this chapter, we consider non-decomposable
specifications. Indeed, there is no interest, when addressing fault-tolerant distributed
systems, in considering decomposable specifications: should the specification be
decomposable, one could simply address fault tolerancewithin each subsystem, using
the local subsystem model, and treating the interconnection variables as unknown
inputs. This would of course result in a distributed recovery algorithm (each subsys-
tem recovers its own faults, independently of the others), but would not bring much
new insight to the fault-tolerance problem of the distributed system, since each sub-
system would be treated as a system of its own, using the methods presented in the
previous chapters.

Example 10.5 Decomposable specifications

• The controllability of the system in Example10.1 is a structural property that depends on
the pair (A, B) given in Eq. (10.5). It is in general not equivalent to the controllability of
the four subsystems associated with the respective pairs of matrices:

Subsystem Matrix A Matrix B

Σ1

( −1 2
0 1

) (
1 0
0 0.5

)

Σ2 −2 1

Σ3

( −2 0.4
1 −3

) (
2
1

)

Σ4 −4 2

• Given an output feedback u = K y and a positive value of α, the system Σ is α-stable if
there exists a Lyapunov function V = xTQx such that V̇ ≤ −αV along its trajectories, i.e.

Q (A + BKC) + (A + BKC)T Q + αQ ≤ 0.

This is a non-structural property that depends on the control law (via the output feedback
matrix K), and again it is not equivalent to the α-stability of each subsystem Σk , k =
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1, . . . , 4 because the subsystems are coupled. As a matter of fact, it is well known that the
interconnection of several stable subsystems might well result in an unstable system, as
illustrated by the very simple example

(
ẋ1
ẋ2

)
=

( −1 θ12
θ21 −2

)(
x1
x2

)

which is unstable for any values of the interconnection parameters such that θ12θ21 > 2
although the self-dynamics of the two subsystems, respectively, ẋ1 = −x1 and ẋ2 = −2x2
are stable.

• Examples of degraded specifications would be to accept stabilisability instead of control-
lability, or a smaller decay rate in the α-stability specification. �

Recoverable faults. Let us first consider actuator faults under the reconfiguration
strategy (sensor or system component faults are treated the same way). Let IN ⊆ I be
an actuator configuration, i.e. the actuators that are available to achieve specification
P , if possible, when actuators in IF = I\IN are faulty and have been switched-off.
The set of all possible configurations (including the nominal one) is 2I the power
set of I , i.e. the set of all its subsets. Remember that 2I is a lattice, a mathematical
structure whose properties have already been used in previous chapters to address
implementation issues and evaluation measures. We will now use the lattice tool
for distributed control systems, by considering the set of all possible information
patterns, and analysing specific monotonicity properties of interest for the reconfig-
uration problem.

Remark that although configuration IN is decomposed into
{
IN,k, k = 1, . . . , s

}

where IN,k ⊆ Ik is the subset of actuators available in subsystem Σk , recoverability
must be analysed with respect to the global system, because non-decomposable
specifications are considered.

Let (u, Z) be a pair whereZ is an information pattern and u is a control law under
Z . The notation P (IN, u, Z) means that the pair (u, Z) achieves the specification
P when applied to the subset of actuators IN ⊆ 2I .

Definition 10.4 (Admissibility, admissibility span) A pair (u, Z) is admissible for
configuration IN, if it satisfies the specification P , i.e. if P (IN, u, Z). The admis-
sibility span of a pair (u, Z) is the set R (u, Z) of all configurations IN for which
the control law u is admissible:

R (u, Z) =
{

IN ∈ 2I : P (IN, u, Z)
}

.

Definition 10.5 (Recoverability, recoverability span) The fault IF - equivalently the
configuration IN - is recoverable under the information pattern Z if there exists
a control law u such that the pair (u, Z) is admissible for configuration IN. The
recoverability span of the information patternZ is the setR (Z) of all configurations
IN that are recoverable under Z:

R (Z) =
{

IN ∈ 2I : ∃ (u, Z) : P (IN, u, Z)
}

.
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Note that recoverability is a structural property, since it depends only on the pair
(IN, Z).

Example 10.6 Recoverability span
In Example10.1, assume that it is desired toα-stabilise the system by decentralised control via
output feedback. Under the information patternZmin = {y1, y2, y3, y4}, the design problem
is to find the parameters kij such that the control laws

(
u1
u2

)
=

(
k11
k21

)
y1

u3 = k32y2
u4 = k43y3
u5 = k54y4

α-stabilise the system. Remember that a system is α-stable if there exists a Lyapunov function
V = xTQx such that V̇ ≤ −αV along its trajectories, i.e.

Q (A + BKC) + (A + BKC)T Q + αQ ≤ 0.

It is easy to verify that under the nominal actuator configuration I = {1, 2, 3, 4, 5}, the
specification associated with α = 1 is achieved using the control laws:

(
u1
u2

)
=

(
1.2991
5.6882

)
y1

u3 = 4.6939y2
u4 = 0.1190y3
u5 = 3.3712y4.

(10.19)

Using the short notations 123 for configuration {1, 2, 3}, 2345 for configuration {2, 3, 4, 5},
etc., it can be easily checked that in the presence of actuator faults, configurations 2345, 1235,
1234, 1245, 245, 235, 234, 125 and 123 can still be α-stabilised using the local information
pattern, but this is true neither for configurations 1345, 345, 145, 135, 134 and 124 nor for
their subsets. The white nodes in Fig. 10.7 show the recoverability span associated with the
local information pattern Zmin = {y1, y2, y3, y4}. For example, it can be checked that the
α-stabilisation problem has a solution for configuration 245 which is

u2 = 15.6231y1
u4 = 16.0533y3
u5 = 5.4455y4,

while it has no solution for the grey configurations.
Note that the algorithmic complexity of the determination of the set of recoverable configu-

rations is limited by the fact that it is enough to find theminimal ones. Indeed, if a configuration
IN is recoverable under an information pattern Z , then any configuration that includes IN is
also recoverable under Z. In this example, there are two minimal recoverable configurations,
namely 23 and 25, that are shown with a bold contour on the figure. �
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Fig. 10.7 Recoverability span under Zmin

10.5.2 Information Pattern Reconfiguration

As the recoverability of a configuration depends on the information pattern that is
used, adapting the information pattern to the system situation is a means to achieve
fault tolerance. Let IC be the current system configuration (either nominal or the
result of previous faults), and ZC be the current information pattern, such that IC ∈
R (ZC), and assume a fault occurs, leading to configuration IN ⊂ IC. Then, either
IN ∈ R (ZC) or IN /∈ R (ZC).

In the first case (Problem 1), one has to find a control law under ZC that is
admissible for IN. Such a control law indeed exists, since IN ∈ R (ZC). In the
second case, no control law under ZC can achieve the specification P . A possibility
is therefore to relax the information pattern constraint by finding, if possible, an
information patternZN such that IN ∈ R (ZN) (Problem 2). OnceZN is determined,
Problem 1 is solved to find a control law that achieves the specification P under ZN.
If an information pattern ZN such that IN ∈ R (ZN) does not exist, the fault is not
recoverable at all and the objective reconfiguration level must be triggered.

In the sequel, we focus on the information pattern reconfiguration problem
(Problem 2), since Problem 1 is nothing but the classical fault-tolerance problem.

Ordering the set of information patterns. Let Z be the set of information patterns
that are considered. Note that while for distributed diagnosis, local diagnosers were
provided with local and possibly remote control and measurement signals, and in
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distributed control, each local controller has to be provided only with local and
possibly remote measurement signals. The information patterns considered here are
therefore simpler than in the distributed diagnosis case, being only associated with
covers of J . It follows that Z is associated with the set of covers of J , and that the
partial order relation on Z is also simplified as follows:

Definition 10.6 (Order on the set of information patterns) Let Z+ = {z+
k , k =

1, . . . , s} and Z− = {
z−

k , k = 1, . . . , s
}
be two information patterns in Z. Z+ is

wider than Z− (Z+ � Z−) if

∀k ∈ {1, . . . , s} , z−
k ⊆ z+

k .

Remark 10.7 Similar to the distributed diagnosis case, the full information pattern
Zmax is wider than any other, making Zmax the maximal element of Z. Also, there
exists no information pattern in Z that is narrower than Zmin (meaning that Zmin
would be wider than it); therefore, Zmin is the minimal element of Z (to see this,
consider any Z∗ � Zmin and conclude that Z∗ = Zmin if condition ∪k=1,...,sZk = J
is to be satisfied). �

A monotonicity property. Themain result here is that the information pattern recon-
figuration problem can be solved only for those configurations that are recoverable
under the full information pattern.

Theorem 10.3 Let (IC, ZC) be the current system situation and assume that a fault
occurs such that IN ⊂ IC. A necessary and sufficient condition for the existence of
an information pattern ZN such that IN ∈ R (ZN) is that IN ∈ R (Zmax).

This result is easy to understand from the fact that recoverability spans aremonoto-
nous with respect to the order � on Z, i.e. one has

Z+ � Z− ⇒ R (Z−) ⊆ R (Z+)
. (10.20)

Indeed, under the information patternZ+, each local controller can use a super-set of
the measurement signals available under the patternZ−. Therefore, if there exists an
admissible control under Z−, there is one under Z+. Now, assume IN /∈ R (Zmax),
and then from Eq. (10.20), there is no ZN � Zmax such that IN ∈ R (ZN), and the
fault is therefore non-recoverable.Assume now IN ∈ R (Zmax), and thenZN = Zmax
solves the problem.

Note that the result in Theorem10.3 is true whatever the status IN ∈ R (ZC) or
IN /∈ R (ZC). If IN ∈ R (ZC), one indeed has IN ∈ R (Zmax) but there is no need to
reconfigure the information pattern ZC (note that this does not mean that the control
laws should not be reconfigured, but only that the data they use do not need to be
changed!). If IN /∈ R (ZC) and IN /∈ R (Zmax), the fault is not recoverable, and
objective reconfiguration has to take place. We now consider the case IN /∈ R (ZC)

(the fault is not recoverable under the current information pattern) but IN ∈ R (Zmax)

(the fault is recoverable under the full information pattern).
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Application to fault-tolerant distributed control. Let (IC, ZC) be the current sys-
tem situation and consider a fault that is not recoverable under the current information
pattern, but is recoverable under the full information pattern. Solving the information
pattern reconfiguration problem is equivalent to determining the set:

Z (IN) = {Z ∈ Z : IN ∈ R (Z)} .

From an algorithmic point of view, testing every Z ∈ Z for the possibility to find
a control u such that (u, Z) is admissible for IN is a huge problem. Indeed, from
Remark10.7, one has

Z ∈ Z ⇒ Zmin � Z � Zmax

and since Zmin = {
yk, k = 1, . . . , s

}
and Zmax = { y, k = 1, . . . , s} , it follows

that for any information pattern Z = {zk, k = 1, . . . , s} one has zk = yk ∪ γk ,
where γk ⊆ y\ yk is the subset of measurements that are “added” to the ones already
available to subsystem Σk in the local information pattern Zmin. It follows that

Z =
∏

k=1,...,s

2 y\ yk .

Example 10.7 The number of candidate information patterns
Assume that four subsystems have the local measurement vectors y1 ∈ |R, y2 ∈ |R2,
y3 ∈ |R and y4 ∈ |R2. Then, in addition to y1, Σ1 could receive any subset of the other five
measurements, Σ2 could receive any subset of the other four in addition to y2, etc. This gives
a total of 25 × 24 × 25 × 24 information patterns that are wider than Zmin. �

Reducing the set of candidate information patterns. In this section, we consider
simple arguments that allow to reduce the number of information patterns to be
explored in order to determine Z (IN).

Theorem 10.4 Let (IC, ZC) be the current system situation and assume that a fault
occurs such that IN /∈ R (ZC) but IN ∈ R (Zmax). Then, it holds that

Z (IN) ⊆ Z\N (ZC),

where N (ZC) = {Z−
C : Z−

C � ZC
}

is the set of information patterns that are nar-
rower than ZC with respect to the order relation �. �

Indeed, noting that IN /∈ R (ZC) ⇒ ZC /∈ Z (IN), the result follows from
Eq. (10.20) which implies

Z−
C � ZC ⇐⇒ Z−

C /∈ Z (IN).

Furthermore, in order to determine all the elements of Z (IN), it is enough to find
its minimal ones. Remember that a minimal information pattern Zmin in Z (IN) is
such that
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Zmin ∈ Z (IN)

Z � Zmin ⇒ Z /∈ Z (IN).

Theorem 10.5 Let ZM (IN) be the set of minimal elements of Z (IN). Then one has

Z (IN) =
⋃

Z∈ZM(IN)

W (Z),

where W (Z) = {Z+ : Z � Z+}
is the set of information patterns that are wider

than Z with respect to the order relation �.

Indeed, it is clear that Zmin ∈ ZM (IN) ⇒ Zmin ∈ Z (IN). Then, the implication

Z ∈ Z (IN) \ZM (IN) ⇒ ∃Zmin ∈ ZM (IN) : Z ∈ W (Zmin)

is true, becauseZ being not minimal, and there exists an information patternZ1 such
that Z1 ∈ Z (IN) and Z ∈ W (Z1). If Z1 ∈ ZM (IN), the conclusion of the theorem
is obtained. If not, which means Z1 is not minimal, there exists an information
pattern Z2 such that Z2 ∈ Z (IN) and Z1 ∈ W (Z2), which implies Z ∈ W (Z2) by
transitivity. If Z2 ∈ ZM (IN), the conclusion is obtained; otherwise, the process is
repeated until the conclusion holds, which must eventually occur becauseZ contains
a finite number of information patterns. Finally, the monotonicity property (10.20)
implies that

Z ∈
⋃

Z∈ZM(IN)

W (Z) ⇒ Z ∈ Z (IN).

Remark 10.8 A subset of Z (IN) is found by exploring only a subset of Z\N (ZC),
provided it contains at least one admissible information pattern. This obviously hap-
pens withW (ZC) since one has IN ∈ R (Zmax). In the sequel, we look for solutions
within W (ZC) because information patterns that are wider than ZC are easy to
construct, especially if technological constraints associated with the communication
system are taken into account. The next sections, respectively, consider the pub-
lisher/subscriber and the bilateral agreements schemes. �

10.5.3 Publisher/Subscriber Scheme

Optimal subscriptions. Before we address the construction of wider information
patterns in the publisher/subscriber scheme, let us first remark that since the commu-
nication cost is associated with the published variables, the best use of the published
variables is achieved when the local controllers subscribe to all of them. Indeed,
let ZC = {

zC,k, k = 1, . . . , s
}
be the current information pattern, and let γC and

γC,k be, respectively, the current set of published variables, and the current set of
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variables subscribed by subsystem Σk (meaning that zC,k = yk ∪ γC,k). One has
γC,k ⊆ γC, k = 1, . . . , s but from Eq. (10.20) it follows that for the cost of pub-
lishing the variables γC, the largest sets of recoverable configurations are obtained
with the subscriptions γC,k = γC, k = 1, . . . , s. However, it is worth to remark that
in order to recover a given configuration, there is no obligation for all subsystems to
subscribe to all the published variables γC.

The set of wider information patterns. As opposed to distributed diagnosis, only
subsets of measurements are published for distributed fault-tolerant control. There-
fore, in the publisher/subscriber scheme, any information pattern wider than ZC
is associated with the publication of a subset of variables in y\γC. It follows that
W (ZC) is the lattice 2 y\γC . Note that the minimal elements inW (ZC) are the first
ones found when exploring 2 y\γC by increasing levels (indeed they are associated
with the minimal sets of measurements to be published in addition to those already
present in ZC).

Example 10.8 Information pattern reconfiguration in the publisher/subscriber
scheme
Let y1, y2, y3, y4 be the local measurements associated with a system composed of four sub-
systems. In the information pattern ZC = {(y1, y2), y2, (y1, y3),
(y2, y4)}, the published variables are {y1, y2}. However, Z = {(y1, y2), (y1, y2), (y1,
y2, y3), (y1, y2, y4)} is wider and has the same communication cost. Assume ZC is the cur-
rent information pattern and a fault that is not recoverable under ZC, but is recoverable under
Zmax occurs. Then, a subset of solutions to the information pattern reconfiguration problem
is generated by considering

W (ZC) = {Z (γ) : k = 1, . . . , 4, zk = zC,k ∪ γ, γ ⊆ y3 ∪ y4
}
.

Note that any information pattern in W (ZC) is obtained by publishing one subset of {y3, y4}
in addition to the variables already published in ZC. Note also that W (ZC) is a subset of
W (Zmin) because any ZC ∈ Z is wider than Zmin. Finally, note that W (Zmin) can be
determined off-line, since the set of publishable data is nothing but the lattice of the sensors
subsets. This lattice is displayed in Fig. 10.8, where ∅ corresponds to Zmin (no data are
published), while 1234, which stands for {y1, y2, y3, y4}, is associated withZmax (all sensor
outputs are published). Since {y1, y2} are currently published in ZC (so ZC is represented by
node 12), W (ZC) is the sub-lattice with grey nodes. �

10.5.4 Bilateral Communication Scheme

The set of wider information patterns. LetAC characterise the current set of agree-
ments, leading to the equivalence classes E (AC) = {

EC,l, l = 1, . . . ,σ
}
, and the

current information patternZC = {
ZC,k, k = 1, . . . , s

}
. Awider information pattern

can only be obtained by establishing a set of agreements whose graphAW is such that
AC ⊂ AW. This results in the equivalence classes E (AW) = {

EW,k, k = 1, . . . , ρ
}

where ρ < σ such that each class of E (AW) is equal to one class of E (AC), or is the
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Fig. 10.8 Publishable sets of data

union of several classes of E (AC). The set W (ZC) of information patterns wider
than ZC is then

W (ZC) =
{ZW = {

zW,i, i = 1, . . . , s : Σi ∈ EW,k −→ zW,i = z
(
EW,k

)
,∀AW ⊃ AC

}}
.

Hierarchical decomposition. In order to construct W (ZC), remark that sets of
agreements and system decompositions are related. Indeed, given a set of agreements
A and the equivalence classesE (A) = {El, l = 1, . . . ,σ}, all the subsystems in class
El share the same information, and therefore they constitute one (high-level) subsys-
temΣ (El), l = 1, . . . ,σ whose state x (El) and control u (El) are the concatenation
of the local states {xi , Σi ∈ El} and controls {ui , Σi ∈ El}. Since E (A) is a partition
of Σ into σ ≤ s classes, the decomposition of Σ defined by {Σ (El), l = 1, . . . ,σ}
is coarser than {Σi , i = 1, . . . , s}, meaning that every subsystem Σi is included in
one and only one Σ (El).

It follows that there is a one to one correspondence between the set of all bilateral
agreements and a hierarchy H of decompositions of Σ .

Definition 10.7 (Hierarchy of decompositions) A hierarchyH is a set of decompo-
sitions ofΣ organised into levelsHσ that contain decompositions into σ subsystems.
LevelH1 is the overall system,while levelHs is {Σi , i = 1, . . . , s}, called the atomic
decomposition. Two decompositions E0 and E1 that belong to two adjacent levelsHσ
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and Hσ−1 contain the same subsystems, except for one subsystem in E1 that is the
union of two subsystems in E0.

Figure10.9 illustrates two possible hierarchies for the decomposition of a system
with four subsystems. Each subsystem is represented by its index, for example, 1
stands forΣ1 while 34 represents the union of the two subsystemsΣ3∪Σ4 and 1234
stands for the overall system ∪i=1,...,4Σi .

Based on the correspondence between bilateral agreements and decomposition
hierarchies, it follows that the minimal elements of W (ZC) are associated with
the first decompositions found when exploring the hierarchy by decreasing levels
(indeed, they concern the minimum sets of variables shared between subsystems in
addition to the variables already shared in the previous step).

Example 10.9 Information pattern reconfiguration in the bilateral agreements
scheme
Figure10.10 displays the hierarchy associated with all possible information patterns under
bilateral agreements, for the four subsystems’ example.The atomicdecomposition {Σ1,Σ2,Σ3,

Σ4} is abbreviated as 1, 2, 3, 4, while 1234 stands for the overall system ∪i=1,...,4Σi , and
14, 23 represent the decomposition into two subsystems Σ1 ∪ Σ4 and Σ2 ∪ Σ3. Assum-
ing the current information pattern is ZC = {(y1, y3), y2, (y1, y3), y4} (represented by the
nodes 13, 2, 4 with a bold contour in Fig. 10.10), the white sub-lattice shows the set W (ZC)

under the bilateral agreements communication scheme. The minimal elements are (123, 4),
(134, 2) and (13, 24). The figure also shows the three hierarchies associated with the three
paths between the node (13, 2, 4) associated with the current information pattern and the node
(1234) associated with the maximal information pattern. �

Example 10.10 Information pattern reconfiguration
Figure10.7 displays the non-recoverable configurations under the local information pattern
associated with the decentralised control of the system in Example10.1. Applying Theo-
rem10.3, it can be checked that some configurations that are non-recoverable under the local
information pattern become recoverable by an information pattern extension.

12 3

1234

12 3 4

1 32

12 34

1234

32

Levels of the hierarcy

1
(whole system)

2

3

4
(atomic decomposition)

4

4

123 4

4 1

Fig. 10.9 Two possible decomposition hierarchies
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134, 2

12, 3, 4 13, 2, 4 14, 2, 3 1, 23, 4 1, 24, 3 1, 2, 34

1234

12, 34

1, 2, 3, 4

123, 4 124, 3 13, 24 14, 23 1, 234

1 3 4 2 1 3 2 41 3 2 4

Fig. 10.10 Information patterns under bilateral agreements for four subsystems

Let us focus, for example, on configuration 1345 which is recoverable under a reconfig-
ured information pattern. The publication of y2 leads to the reconfigured information pattern
Z1345 = {(y1, y2), y2, (y2, y3), (y2, y4)} under which there exists a reconfigured distributed
control of the form:

u1 = k11y1 + k12y2
u3 = k32y2

u4 = k42y2 + k43y3
u5 = k52y2 + k54y4.

(10.21)

It can indeed be checked that the reconfigured control laws,

u1 = 9.6660y1 + 8.3264y2
u3 = 0.6995y2
u4 = 2.9872y2 + 13.8406y3
u5 = 1.7713y2 + 2.0056y4,

allows the system to be recovered after the fault. However, it is interesting to remark that the
solution ofEq. (10.21) is not unique. Indeed, Eq. (10.22) exhibits another solution, such that k42
and k52 are both equal to zero, meaning that Σ2, Σ3 and Σ4 still work in a decentralised way.
This illustrates the fact that while Z1345 is the most efficient information pattern associated
with the publication of y2 as noted in the presentation of the publisher/subscriber scheme
(Optimal subscriptions), solutions based on narrower information patterns might also exist.
Clearly, the publication of y2 is necessary for configuration 1345 to become recoverable, but
that does not mean that all subsystems have to subscribe to the newly published variable y2:
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u1 = 9.8167y1 + 8.800y2
u3 = 0.7470y2
u4 = 9.2974y3
u5 = 9.1418y4.

(10.22)

On another hand, should the bilateral communication scheme be of interest, the hierarchy of
Fig. 10.10 suggests the reconfigured information pattern Z1345 = {(y1, y2), (y1, y2), y3, y4}
which results in an admissible controller:

u1 = 9.5717y1 + 8.0028y2
u3 = 4.8538y1 + 1.4189y2

u4 = 8.4352y3
u5 = 18.3147y4. �

(10.23)

10.5.5 Extensions

Several extensions of the information pattern reconfiguration frame can be consid-
ered. The simplest one addresses sensor (or general system component) faults, since
only actuator faults (hence actuator configurations) have been considered up to now.
Other extensions address optimality issues in the information pattern reconfigura-
tion process, namely the selection of an optimal information pattern reconfiguration
from the point of view of the communication cost and the more complex issue of
minimising the reconfiguration effort.

Sensor faults. Only actuator faults have been considered up to now, for the sake of
simplicity. It is easy to see that sensor faults (more generally system components
faults) can easily be dealt with in the reconfiguration strategy. Indeed, assume there
is a set JF of faulty sensors, then the available sensors are JN = J\JF (note that faults
in the communication system that prevent the measurements of some sensors to be
transmitted to the controllers that need them are also represented by this model).
The pre-fault information pattern Z = {zk, k = 1, . . . , s} becomes the post-fault
information pattern ZN = {

zk ∩ yN , k = 1, . . . , s
}
, and Zmax = {y, k = 1, . . . , s}

becomes ZNmax = {
yN, k = 1, . . . , s

}
. The fault is recoverable if and only if the

current actuator configuration IN and the current sensor configuration JN are such
that IN ∈ R (ZNmax).

Minimal communication cost. Since each Z ∈ Z (IN) is associated with the com-
munication cost com (Z,J ), selecting the information pattern Z∗ such that

Z∗ = arg min
Z∈Z(IN)

com (Z,J ) (10.24)

provides an optimally reconfigured information pattern with respect to the communi-
cation cost. It is easily proved, from themonotonicity of the cost function com (Z,J ),
that the solutions of Eq. (10.24) belong to the set ZM (IN) of the minimal elements
of Z (IN). Following Remark10.8, sub-optimal solutions are easily obtained from
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Z∗
sub = arg min

Z∈W(ZC)
com (Z,J ) (10.25)

once the setW (ZC) has been determined.

10.5.6 Minimal Reconfiguration Effort

Let us consider again the case where the system is operating with the current subset
of actuators IC ⊆ I and the current information pattern ZC, and a fault occurs such
that the post-fault configuration IN ⊂ IC no longer belongs toR (ZC). Theorem10.3
gives a necessary and sufficient condition for the existence of a solution to the infor-
mation pattern reconfiguration problem, namely “Is there an information pattern
ZN such that IN ∈ R (ZN)?” When solutions exist, Theorem10.5 and Remark10.8
provide some practical tools to find such information patterns, whose communica-
tion cost can be minimised by solving the problem (10.24) (or (10.25)). However,
these results do not provide any characterisation of the number of subsystems whose
data or control laws have to be reconfigured, a number that clearly characterises the
reconfiguration effort. In order to address this point, wewill now consider constraints
on the possible reconfigured information patterns or the possible reconfigured control
laws.

ΣK-recoverability. We first start with the notion of ΣK-recoverability, which
addresses the number of subsystems whose available data have to be reconfigured
after the occurrence of a fault.

Definition 10.8 (ΣK-recoverability) Let ΣK = {Σk, k ∈ K ⊆ {1, . . . , s}} be a sub-
set of subsystems. A configuration IN isΣK-recoverable if it is recoverable by recon-
figuring only the data available to the subsystems in ΣK.

Theorem 10.6 Let (IC,ZC) be the current system configuration, and assume a fault
occurs such that the resulting configuration is IN ⊂ IC. A necessary and sufficient
condition for configuration IN to be ΣK-recoverable is that IN ∈ R (ZK,max

)
where

ZK,max = ZC except for zk = y, k ∈ K.

The idea of this theorem is quite similar to the idea of Theorem10.3.

Comments.

1. Taking K = {1, . . . , s}, i.e. accepting the possibility for the data of all the sub-
systems to be reconfigured, is just the problem addressed by Theorem10.3.

2. The set of all possible subsets ΣK is the lattice 2{1,...,s}, which implies the
monotonicity property that if IN is ΣL-recoverable, and L ⊆ K , then IN is ΣK-
recoverable. It follows that theminimal subsetsΣL such that IN isΣL-recoverable,
defined by
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IN ∈ R (ZL,max
)

∀K ⊂ L, IN /∈ R (ZK,max
)

can be found using a classical bottom-up algorithm on the lattice 2{1,...,s}.

Example 10.11 ΣK-recoverability
It has been seen that configuration 1345 is not recoverable under the decentralised information
pattern Zmin = {y1, y2, y3, y4} but becomes recoverable when it is reconfigured as Z1345 =
{(y1, y2), y2, y3, y4}.

Figure10.11 shows all the subsets ΣK such that configuration 1345 is ΣK recoverable.

12 13 14 23 24 34

1234

134

1 2

123 124 234

3 4

Fig. 10.11 ΣK-recoverability of configuration 1345

Remark 10.9 The ΣK-recoverability of a configuration IN means that IN becomes
recoverable if the system information pattern is reconfigured so that only the data
available to the subsystems in ΣK are reconfigured (and so are the corresponding
control laws). Although their available data remain unchanged, note that the control
parameters of the subsystems that do not belong to ΣK are allowed to change. A
stronger version of the minimal reconfiguration effort problem is set by constraining
the controls of those subsystems that do not belong to ΣK to remain unchanged. In
order to solve this problem, strong ΣK-recoverability is now defined. �

Strong ΣK-recoverability. The following notion is defined for a more detailed
analysis:

Definition 10.9 (Strong ΣK-recoverability) Let ΣK = {Σk, k ∈ K ⊆ {1, . . . , s}}
be a subset of subsystems and let u be decomposed into (uK, uK) where uK gathers
the controls of those subsystems that belong to ΣK while uK gathers the controls of
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the other ones. A configuration IN is strongly ΣK-recoverable if it is recoverable by
reconfiguring only the data available to the subsystems in ΣK and the control laws
in uK.

Theorem 10.7 Let ΣK = {Σk, k ∈ K ⊆ {1, . . . , s}} be a subset of subsystems and
let u be decomposed into (uK, uK). Let (IC,ZC) be the current system situation,
and assume a fault occurs which results in configuration IN ⊂ IC. A necessary
and sufficient condition for configuration IN to be strongly ΣK-recoverable is that
there exists a control law vK such that (vK, uK) is admissible under ZK,max where
ZK,max = ZC except for Zk = J,∀k ∈ K.

Example 10.12 Strong ΣK-recoverability
Let us consider again configuration 1345, which is not recoverable under the decentralised
information pattern Zmin = {y1, y2, y3, y4} but becomes recoverable when it is reconfigured
as Z1345 = {(y1, y2), y2, y3, y4}. By comparing Eqs. (10.19) and (10.22), it is seen that
although the data they use were unchanged, subsystems Σ2, Σ3 and Σ4 did reconfigure the
parameters of their control laws from u3 = 4.6939y2, u4 = 0.1190y3, u5 = 3.3712y4 to
u3 = 0.7470y2, u4 = 9.2974y3, u5 = 9.1418y4. Unfortunately, there exists no solution to
the strong Σ1-recoverability problem: it is indeed impossible to recover configuration 1345
by changing only the data and the control law of subsystem Σ1. Figure10.12 displays the
result obtained when applying Theorem10.7: the white nodes are those subsets of subsystems
with respect to which actuator configuration 1345 is strongly recoverable. In other words, it
is possible to recover configuration 1345 by reconfiguring only the data sets and control laws
of those subsystems. Note that if a configuration is strongly ΣK-recoverable, then it is also
strongly ΣL-recoverable for any subset of subsystems ΣL that includes ΣK. In the figure,
the minimal subsets of subsystems such that 1345 is strongly recoverable are shown with
a bold contour. These subsystems are associated with the minimal reconfiguration effort to
recover the configuration of interest, namely the minimal number of data and control laws to
be reconfigured for its recovery to be possible. In this example, it is seen that configuration
1345 is strongly Σ2-recoverable. It can indeed be checked that the control laws,

u1 = 1.2991y1
u3 = 9.3399y1 + 6.7874y2 + 7.5774y3 + 8.4913y4

u4 = 0.1190y3
u5 = 3.3712y4

where u1, u4 and u5 are unchanged from the nominal decentralised case, satisfy theα-stability
specification.

10.6 Exercises

Exercise 10.1 Diagnosis of the two-tank system
In this exercise, we develop the complete diagnosis scheme of the two-tank system in Chap. 2,
where two level sensors h1m and h2m were implemented in addition to the flow sensor qm .
The set of constraints and unknown variables are the following:

http://dx.doi.org/10.1007/978-3-662-47943-8_2
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Fig. 10.12 Strong ΣK-recoverability of configuration 1345

f ∪ g = {c1, c2, c3, d4, c5, c6, d7, c8, cm, ch1, ch2}
X = {

qL, qP, h1, ḣ1, h2, ḣ2, q2, q12
}
.

The correspondence with the model in Chap.2 is as follows: c1 is Eq. (2.7), c2 is Eq. (2.6),
c3 is Eq. (2.1), c5 is Eq. (2.4), c6 is Eq. (2.2) and c8 is Eq. (2.5). The measurement equations
are cm which is Eq. (2.3) and ch1, ch2 which are, respectively, the added measurements of the
two levels h1 and h2. The constraints d4 and d7, respectively, express that ḣ1 and ḣ2 are the
time derivatives of h1 and h2. The incidence matrix with respect to X is:

Σ1 qL qP ḣ1 h1 q12 h2 ḣ2 q2

c1 1 1

c2 1 1

c3 1 1 1 1

d4 1 1

c5 1 1 1

ch1 1

c6 1 1 1

d7 1 1

c8 1 1

cm 1

ch2 1

Based on the complete matching shown by the entries ①, the over-constrained subsystem
produces three residuals whose structures are

http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
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C (ρ1) = {c1, c2, c3, c5, ch1, ch2}
C (ρ2) = {c1, c2, c3, c6, d7, cm, ch1, ch2}
C (ρ3) = {c8, cm, ch2} .

1. What is the residuals’ signature table.
2. Themathematical constraints d4 and d7 specify that ḣ1 and ḣ2 are the derivatives of h1 and

h2.Discarding them (since they cannot be faulty), determine the system’s distinguishability
classes and draw the distinguishability table.

3. For each of the eight possible residual configurations, find the minimal hitting sets and
draw the diagnosis table. �

Exercise 10.2 Two-tank system decomposition
This exercise illustrates Remark 10.5 still with the two-tank system. Assume each tank is a
subsystem with the structures:

f 1 ∪ g1 = {c1, c2, c3, d4, c5, ch1}
x1 = {

qL, qP, h1, ḣ1, q12
}

x1 = {h2}
f 2 ∪ g2 = {c6, d7, c8, cm, ch2}

x2 = {
h2, ḣ2, q2

}

x2 = {q12} .

The global incidence matrix is decomposed as follows,

Σ1 qL qP ḣ1 h1 q12 h2

c1 1 1

c2 1 1

c3 1 1 1 1

d4 1 1

c5 1 1 1

ch1 1

Σ2 ḣ2 h2 q2 q12

c6 1 1 1

d7 1 1

c8 1 1

cm 1

ch2 1

and two complete matchings with respect to the unknown variables are shown by ①:
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1. How many local residuals are, respectively, provided by Σ1 and Σ2 and what are their
structures?

2. Can you explain why there are less local residuals than when considering the global
structure? �

Exercise 10.3 Coordination of local diagnosis
Consider a system inwhich there are three different estimation versions of an unknownvariable
x from the known variables u′ ∪ y′ (remember that the notation u′, y′ means u, y and a number
of their time derivatives):

x = f1
(
u′, y′) using the subset of constraints C1 = {a, b, c, d}

x = f2
(
u′, y′) using the subset of constraints C2 = {e, f }

x = f3
(
u′, y′) using the subset of constraints C3 = {b, f, g, h} .

Three residuals are obtained:

ρ1 = f1
(
u′, y′) − f2

(
u′, y′)

ρ2 = f1
(
u′, y′) − f3

(
u′, y′)

ρ3 = f2
(
u′, y′) − f3

(
u′, y′) .

1. What are the structures of the residuals?
2. What is the distinguishability table?
3. Assuming there are three subsystems that run one residual each,what are the local diagnosis

tables?
4. What is the coordinated diagnosis table? �

10.7 Bibliographical Notes

Fault-tolerant computing. Due to the increasing complexity of software applica-
tions and the increasing size of data bases, distributed computing and related reliabil-
ity issues have been an important research area in the Computer Science community.
A conceptual taxonomy of the basic concepts in the dependability of computer sys-
tems (reliability, availability, safety, confidentiality, integrity, maintainability, etc.)
is presented in [10]. Many solutions have been proposed, ranging from node-level
to system-level approaches: redundant execution of critical programmes on several
nodes, providing each node with a fail-aware ability, with the capacity of testing its
neighbours, of estimating the state of all nodes, of entering a fail-silent state [2, 101].

New problems in networked and multi-agent systems. A huge research activity
has also been triggered in the control community on large-scale control systems
distributed over networks and multi-agent systems. New theoretical problems range
from the role of the information pattern in the problem solvability [137] to the
controllability and observability analysis of networked dynamical systems [413].
Technological problems are not only connected with the controlled process (sensors,
actuators, process components faults) but also with channel limitations (packet rates,
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sampling, delays) or channel failures (packet dropouts). The impact of such faults
on the system stability and performance is analysed in [144, 369], and a survey
of recent results on estimation, analysis and controller synthesis can be found in
[60, 146, 307]. Estimation by means of geographically distributed sensors has been
thoroughly studied using linear estimation [53, 81, 315] and Kalman filtering [1].

Analytical redundancy-based diagnosers. Although it involves signal derivatives,
the applicability of the Analytical Redundancy-based approach is well established by
observers or specific integration schemes, examples of which can be found in [350].
The logical theory of model-based FDI was developed in the artificial intelligence
community [77], and its connections with the structural analysis approach were
further analysed in [70].

Distributed diagnosis schemes. When the implementation of a global diagnoser
is not technically possible, distributed diagnosis schemes rest on assigning a part
of the global task to each subsystem/agent [74, 229]. Under specific assumptions
about the locally available models and data, the investigated problems range from
distributed estimation [53, 81, 83] and the design of a coordination process [312,
315] to robustness with respect to network uncertainties [144, 262, 360, 378], or
model uncertainties and non-linearities. Global system models are often assumed to
be available [100, 411], or local models are used along with a real-time estimator of
the interconnections [314], based on global or only locally sensed information [295].

Distributed control and fault-tolerant control. The main features underlying the
control or fault-tolerant control of distributed dynamical systems or networks of
dynamical agents are the (often unknown) interactions between subsystems/agents
and the limited amount of information available to make their local decisions. Net-
works of dynamical agents are a wide application area: [137] addresses the synthesis
of control laws via a sub-optimal algorithm, the agents coordination problem is stud-
ied in [404] and the problem of achieving a consensus under partial information is
the subject of [312]. For control systems distributed over a network, a generic fault-
tolerance strategy is proposed in [267]. Reference [260] analyses the fault accom-
modation problem under partially available information, while the reconfiguration
of the information pattern was recently shown to allow fault tolerance under some
conditions [338].

Operations research and mathematical tools. The basic tools of operations
research (task allocation problem) and lattices that are used in this chapter can be
found in [73, 382].
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