
Mogens Blanke · Michel Kinnaert
Jan Lunze · Marcel Staroswiecki

Diagnosis and
Fault-Tolerant
Control
 Third Edition

Diagnosis and Fault-Tolerant Control

Mogens Blanke • Michel Kinnaert
Jan Lunze • Marcel Staroswiecki

Diagnosis and
Fault-Tolerant Control

123

Third Edition

With 218 Figures, 129 Examples, and 43 Exercises

Mogens Blanke
Department of Electrical Engineering,
Automation and Control Group

Technical University of Denmark
Kongens Lyngby
Denmark

Michel Kinnaert
Service d’Automatique et d’Analyse des
Systémes

Université Libre de Bruxelles
Brussels
Belgium

Jan Lunze
Ruhr-Universität Bochum
Bochum
Germany

Marcel Staroswiecki
Ecole Polytechnique Universitaire de Lille
Université Lille I
Villeneuve d’Ascq cedex
France

ISBN 978-3-662-47942-1 ISBN 978-3-662-47943-8 (eBook)
DOI 10.1007/978-3-662-47943-8

Library of Congress Control Number: 2015944440

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2003, 2006, 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

Technological systems are vulnerable to faults. Actuator faults reduce the perfor-
mance of control systems and may even cause a complete breakdown of the system.
Erroneous sensor readings are the reason for operating points that are far from the
optimal ones. Wear reduces the efficiency and quality of a production line. In many
fault situations, the system operation has to be stopped to avoid damage to
machinery and humans.

As a consequence, the detection and the handling of faults play an increasing
role in modern technology, where many highly automated components interact in a
complex way such that a fault in a single component may cause the malfunction
of the whole system. Due to the simultaneously increasing economic demands and
the numerous ecological and safety requirements to be met, high dependability of
technological systems has become a dominant goal in industry.

This book introduces the main ideas of fault diagnosis and fault-tolerant control.
It gives a thorough survey of new methods that have been developed in the recent
years and demonstrates them with examples. To the knowledge of the authors, all
major aspects of fault-tolerant control are treated for the first time in a single book
from a common viewpoint.

Scope. Whereas fault diagnosis has been the subject of intensive research since the
1970s and there are several good books on this subject, systematic methods for fault
handling is a new area of automatic control. The book considers both steps of
fault-tolerant control together and shows how the information gained by
model-based diagnosis can be used to find remedial actions that adapt the control
algorithms to the faulty conditions in order to keep a system in operation. Basically,
such actions can be classified as fault accommodation, which deals with the
autonomous adaptation of the controller parameters to the faulty plant behaviour,
and control reconfiguration, which includes the selection of a new control con-
figuration and the online re-design of the controller.

The solution of these problems includes new analysis tasks like the test of the
reconfigurability of the plant or the search for redundant sensors and actuators,
which can replace faulty components. The aim is to close the control loop after a

v

breakdown of a component in the control loop has brought the controller out of
operation. With respect to fault accommodation and control reconfiguration, the
book presents the current state of the art.

The fault diagnostic parts of the book describe those methods and ideas which
can be used to identify the fault with sufficient detail for fault accommodation or
reconfiguration. The detection of a fault alone is not sufficient for fault-tolerant
control, because the fault location and, possibly, the fault magnitude have to be
known to activate appropriate remedial actions.

The design and implementation of fault-tolerant control necessitates a variety of
techniques. The search for redundancies concerning the information and the pos-
sible control activities in a system, the selection of a reasonable control configu-
ration, and the combination of diagnostic methods with controller design methods
are some of the problems to be tackled. This set of different tasks cannot be dealt
with by a single analytical model of the system under consideration, but different
viewpoints have to be combined. For this reason, the book introduces a variety of
models of dynamical systems and describes how these models can be used in
fault-tolerant control. A component-oriented description of the system architecture
is used to find the cause-effect chains from the primary faults towards the measured
fault symptoms. A structural analysis based on bi-partite structure graphs is intro-
duced to elaborate the analytical redundancies that can be used for fault diagnosis
and fault-tolerant control actions. For the well-known continuous system repre-
sentations like the state-space model and the transfer function, diagnostic methods
and their extensions to fault-tolerant control are explained. With the presentation of
diagnostic and reconfiguration methods for discrete-event systems, the book pro-
vides further novel material that has not yet been described in monographs or
textbooks.

Structure of the book. This monograph consists of three parts:

• Part I: Analysis based on components and system structure. It is shown how
abstract models of dynamical systems like component-oriented representations
or structural graphs can be used to identify the connections between faults and
symptoms and to find analytic redundancy relations for diagnosing faults.

• Part II: Continuous systems. Method for fault detection, fault identification
and the re-design of the controller for a faulty system are described for
continuous-variable systems that are represented by differential equations, dif-
ference equations or state-space models.

• Part III: Discrete-event systems. Methods for fault diagnosis and control
reconfiguration are presented for discrete-event systems, whose behaviour is
characterised by sequences of discrete signal changes and represented by
deterministic, nondeterministic or stochastic automata.

As each of the models used requires its own mathematical background and the
methods based on these models follow different lines of thinking, the book cannot
present the methods in all details. The aim is to give the readers a broad view of the
field and provide them with bibliographical notes for further reading. A further

vi Preface

reason for the different depth with which the chapters tackle the fault-tolerant
control problems is given by the current status of research. Whereas for
continuous-variable systems, fault diagnostic and fault-tolerant control methods
have been developed for long, discrete-event systems became the subject of sub-
stantial research with respect to the topic of this book not before the 1990s. Hence,
this field has not yet reached the same maturity as fault-tolerant control of con-
tinuous systems.

Many of the ideas are illustrated by two running examples that concern a
simple tank system and a ship autopilot. The common use of these examples in
several chapters makes a comparison of the alternative approaches very easy. It is
the knowledge of the aims, models, ideas and methods used for different problems
of fault diagnosis and fault-tolerant control that enables a control engineer to tackle
practical problems under the circumstances given by the particular field of appli-
cation. To introduce him to this knowledge is the primary aim of this book.

Level of the book. The intended readers of the book are graduate students of
control, electrical, mechanical or process engineering with knowledge in dynamical
systems, control design and filtering. The authors use the text in regular courses at
the Université Libre de Bruxelles, the Ruhr-Universität Bochum, the Technical
University of Denmark and the Norwegian University of Science and Technology.

In the introductory parts of all chapters the problems to be solved are posed in a
framework that is familiar to practising engineers. They describe the new ideas and
concepts of fault diagnosis and fault-tolerant control in an intuitive way, before
these ideas are brought into a strict mathematical form. Examples illustrate the
applicability of the methods. Bibliographical notes at the end of each chapter point
to the origins of the presented ideas and the current research lines. The evaluation
of the methods and the application studies should help the readers to assess the
available methods and the limits of the present knowledge about fault-tolerant
control with respect to their particular field of application.

The book is self-contained with a review of some basics in the appendices. Many
figures illustrate the problems, methods and results in an intuitive way and make the
interpretation of the rigorous mathematical treatment easier.

Common research. The large scope of the book was made possible by the close
cooperation and by the common research of the four authors together with their
Ph.D. students and colleagues. The introductory part (Chaps. 1 through 3) describe
common ideas and results. The presentation of the methods for dealing with the
system architecture (Chap. 4) is common work of the groups of Mogens Blanke in
Aalborg and Lyngby (Denmark) and Marcel Staroswiecki in Lille (France). The
part on structural analysis (Chap. 5) introduces the methods developed in Lille as
they have been extended later on in Bochum and Lyngby. Diagnostic methods for
continuous systems have been elaborated by many groups. The presentation
of these ideas that can be used in fault-tolerant control (Chaps. 6 and 7) resulted
from the common work and teaching experiences of Mogens Blanke, Michel
Kinnaert (Brussels, Belgium) and Marcel Staroswiecki. Chapters 8–10 on fault

Preface vii

http://dx.doi.org/10.1007/978-3-662-47943-8_1
http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_4
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_7
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_10

accommodation and control reconfiguration describe ideas of the four authors. The
methods for dealing with discrete-event systems (Chaps. 11 and 12) have been
elaborated by the group of Jan Lunze in Hamburg and Bochum (Germany).

Industrial applications. The methodologies presented in this book have been used
in numerous industrial applications, among others in the automotive industry
(fault-tolerant steering-by-wire, air system diagnosis), for aerospace (fault diagnosis
of autonomous aircraft, fault-tolerant control of the Danish Øersted satellite,
detection of control surface vibrations, monitoring of the engine lubrication
system), in the marine industry (fault-tolerant sensor fusion for navigation and for
position mooring control), in offshore industry (prognosis and diagnosis of
down-hole-drilling incidents), for wind turbines (pitch, load and yaw systems fault
diagnosis, diagnosis of generator cooling), for electrical drives and in the process
industry. The experiences gained by these applications are reflected in the selection
and presentation of the material of this book.

Acknowledgements. The authors express their gratitude to the European Science
Foundation and the European Union for financial support of the collaboration of the
four groups in the COSY and the DAMADICS projects and to the national science
funding organisations (Danish Research Council, Denmark; Région Wallonne,
Belgium; Deutsche Forschungsgemeinschaft, Germany; Centre National de la
Recherche Scientifique and Ministère de la Recherche, France; The Research
Council of Norway) for supporting numerous projects in the field of fault diagnosis
and fault-tolerant control.

Special thanks are due to our former and current PhD students and research
associates, particularly to ROOZBEH IZADI-ZAMANABADI, JAKOB STOUSTRUP and JESPER
S. THOMSEN (Aalborg), HENRIK NIEMANN, TORSTEN LORENTZEN, RAGNAR I. JÓNSSON,
SØREN HANSEN, LIDIA FURNO, DIMITRIOS PAPAGEORGIOU and MIKKEL C. NIELSEN

(Lyngby), MANUEL GÁLVEZ CARRILLO and LAURENT RAKOTO (Brussels), FRANK
SCHILLER and JOCHEN SCHRÖDER (Hamburg), THOMAS STEFFEN (Hamburg/Bochum),
JÖRG NEIDIG, JAN RICHTER, THORSTEN SCHLAGE, SVEN BODENBURG, DANIEL VEY,
SEBASTIAN PRÖLL, MELANIE SCHUH and MARKUS ZGORZELSKI (Bochum), and
ANNE-LISE GÉHIN and BELKACEM OULD BOUAMAMA (Lille).

We are grateful for the valuable help of Ms. ANDREA MARSCHALL (Bochum) for
drawing many of the figures and of Ms. SUSANNE MALOW (Bochum) and Dr. ARBEN

CELA (Paris) for technical assistance.

Third edition. After this book was used for a decade by several research groups,
the third edition resulted from a major rewriting and restructuring of the material. In
particular, Chap. 5 on structural analysis has been rewritten with more emphasis on
the algorithms for finding analytical redundancy relations and the relation between
structural and numerical properties of dynamical systems. Chapter 7 now includes
more material on statistical change detection and isolation. In Chaps. 8 and 9, the
reconfigurability analysis is presented separately from fault accommodation and
reconfiguration methods and new methods have been inserted to extend this part
towards the state of the art. Distributed diagnosis and distributed fault-tolerant

viii Preface

http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_7
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_9

control have been included as a new topic for both continuous and discrete-event
systems in Chaps. 10 and 12, respectively. Chapters 11 and 12 have been com-
pletely rewritten. The application chapter of the former editions has been moved to
the book website.

Several new exercises should stimulate the readers to apply the methods
presented to simple examples. The bibliographical notes have been updated and
extended.1

Kongens Lyngby Mogens Blanke
Brussels Michel Kinnaert
Bochum Jan Lunze
Paris Marcel Staroswiecki
May 2015

1The book homepage at www.atp.rub.de/n/buch/ftcbook provides supplementary material for this
book including lecture slides. A solutions manual can be made available for lecturers.

Preface ix

http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://www.atp.rub.de/n/buch/ftcbook

Contents

1 Introduction to Diagnosis and Fault-Tolerant Control 1
1.1 Technological Processes Subject to Faults 1
1.2 Faults and Fault Tolerance . 3

1.2.1 Faults . 3
1.2.2 Requirements and Properties of Systems Subject

to Faults . 8
1.3 Elements of Fault-Tolerant Control . 10

1.3.1 Structure of Fault-Tolerant Control Systems 10
1.3.2 Main Ideas of Fault Diagnosis 13
1.3.3 Main Ideas of Controller Redesign 18
1.3.4 A Practical View on Fault-Tolerant Control 22

1.4 Architecture of Fault-Tolerant Control 23
1.4.1 Architectural Options. 23
1.4.2 Distributed Systems. 24
1.4.3 Remote Control and Diagnosis 27

1.5 Survey of the Book . 31
1.6 Bibliographical Notes . 34

2 Examples . 37
2.1 Two-Tank System. 37
2.2 Three-Tank System . 41
2.3 Ship Steering and Track Control . 45

Part I Analysis Based on Components and System Structure

3 Models of Dynamical Systems . 53
3.1 Fundamental Notions. 53
3.2 Modelling the System Architecture . 57
3.3 System Behaviour - Basic Modelling Features 59
3.4 Continuous-Variable Systems . 61

xi

http://dx.doi.org/10.1007/978-3-662-47943-8_1
http://dx.doi.org/10.1007/978-3-662-47943-8_1
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_1#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_2#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_2#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_2#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_2#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_2#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec4

3.5 System Structure . 65
3.6 Discrete-Event Systems . 67
3.7 Hybrid Systems . 70
3.8 Links Between the Different Models 72
3.9 Exercises . 74
3.10 Bibliographical Notes . 77

4 Analysis Based on Components and Architecture 79
4.1 Introduction . 79
4.2 Faults in Components and Their Consequences. 81
4.3 Fault Propagation Analysis . 82
4.4 Graph Representation of Component Architecture 92
4.5 Fault Propagation with a Closed Loop 94

4.5.1 Cutting the Closed Fault Propagation Loop 95
4.5.2 Assessment of the Severity of the Fault Effects. 97
4.5.3 Decision About Fault Handling. 97

4.6 Generic Component Models . 97
4.6.1 Services . 98
4.6.2 Introduction of the Generic Component Model 100
4.6.3 Simple Components . 101
4.6.4 Complex Components . 103
4.6.5 Building Systems from Components 106

4.7 Fault-Tolerance Analysis . 108
4.7.1 Relation Between Services and Objectives 109
4.7.2 Management of Service Versions 111
4.7.3 Management of Operation Modes 113

4.8 Exercises . 114
4.9 Bibliographical Notes . 117

5 Structural Analysis . 119
5.1 Introduction . 119
5.2 Structural Model . 121

5.2.1 Structure as a Bipartite Graph 121
5.2.2 Subsystems . 127
5.2.3 Structural Properties . 129
5.2.4 Known and Unknown Variables 132

5.3 Matching in Bipartite Graphs . 134
5.3.1 Definitions . 135
5.3.2 Oriented Graph Associated with a Matching 138
5.3.3 Causal Interpretation of Oriented Structure Graphs . . . 141

5.4 Structural Decomposition of Systems. 149
5.4.1 Canonical Subsystems . 149
5.4.2 Interpretation of the Canonical Decomposition 156

xii Contents

http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_3#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_4
http://dx.doi.org/10.1007/978-3-662-47943-8_4
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_4#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec13

5.5 Matching Algorithms. 161
5.5.1 Ranking Algorithm . 161
5.5.2 General Matching Algorithm 165
5.5.3 Maximum Flow Algorithm. 168
5.5.4 Minimal Over-Determined Subsystems Approach 171

5.6 Structural Diagnosability and Isolability 173
5.6.1 Analytical Redundancy-Based Fault Detection

and Isolation. 174
5.6.2 Structurally Monitorable Subsystems 177
5.6.3 Finding Analytic Redundancy Relations 179
5.6.4 Structural Detectability and Isolability 181
5.6.5 Design of Robust and Structured Residuals 184
5.6.6 Active Fault Isolation . 192

5.7 Structural Controllability and Structural Observability 196
5.7.1 Observability and Computability 196
5.7.2 Structural Observability Conditions 197
5.7.3 Observability and Structural Observability

of Linear Systems . 199
5.7.4 Graph-Based Interpretation and Formal

Computation. 201
5.7.5 Structural Controllability . 202

5.8 Structural Analysis in Summary . 205
5.9 Exercises . 207
5.10 Bibliographical Notes . 211

Part II Continuous-Variable Systems

6 Fault Diagnosis of Deterministic Systems 215
6.1 Introduction . 215
6.2 Analytical Redundancy in Nonlinear Deterministic Systems . . . 218

6.2.1 Logical Background . 218
6.2.2 Analytical Redundancy Relations

with No Unknown Inputs . 219
6.2.3 Unknown Inputs, Exact Decoupling. 222
6.2.4 How to Find Analytical Redundancy Relations 223
6.2.5 ARR-based Diagnosis . 223

6.3 Analytical Redundancy Relations for Linear Deterministic
Systems - Time Domain . 226

6.4 Analytical Redundancy Relations for Linear Deterministic
Systems - Frequency Domain . 231
6.4.1 Fault Detection . 231
6.4.2 Solution by the Parity Space Approach 232

Contents xiii

http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec28
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec28
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec29
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec29
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec29
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec30
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec30
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec30
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec31
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec31
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec32
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec32
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec33
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec33
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec34
http://dx.doi.org/10.1007/978-3-662-47943-8_5#Sec34
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec11

6.4.3 Fault Isolation. 241
6.4.4 Fault Estimation . 244

6.5 Optimisation-Based Approach to Diagnosis 248
6.5.1 Problem Statement . 248
6.5.2 Solution Using the Standard Setup Formulation 252
6.5.3 Residual Generation . 255

6.6 Residual Evaluation. 261
6.6.1 Residual - General Case. 261
6.6.2 Evaluation Against a Threshold 263

6.7 Exercises . 268
6.8 Bibliographical Notes . 273

7 Fault Diagnosis of Stochastic Systems . 275
7.1 Introduction . 275
7.2 Change Detection Algorithms . 276

7.2.1 Sequential Change Detection: The Scalar Case 276
7.2.2 Detection of a Known Change - The CUSUM

Algorithm . 278
7.2.3 Detection Properties for the CUSUM Algorithm 283
7.2.4 Detection of an Unknown Change - The

Generalised Likelihood Ratio Algorithm 288
7.2.5 Sequential Change Detection: The Vector Case. 296
7.2.6 Sequential Change Detection and Isolation:

The Vector Case . 306
7.3 Kalman Filter Approach to Diagnosis 311

7.3.1 Model . 311
7.3.2 Fault Detection . 312
7.3.3 Fault Estimation . 331
7.3.4 Fault Isolation. 333

7.4 Exercises . 338
7.5 Bibliographical Notes . 341

8 Reconfigurability Analysis . 343
8.1 The Fault-Tolerant Control Problem 343

8.1.1 Standard Control Problem . 343
8.1.2 Impacts of Faults on the Control Problem 345
8.1.3 Passive Versus Active Fault-Tolerant Control 347
8.1.4 Available Knowledge . 348
8.1.5 Active Fault-Tolerant Control Strategies. 349
8.1.6 Supervision . 350

8.2 Fault-Tolerant Control Architecture . 351
8.3 Fault-Tolerant Linear Quadratic Design 354

8.3.1 Control Problem . 354
8.3.2 Control of the Nominal Plant 354

xiv Contents

http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_6#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_7
http://dx.doi.org/10.1007/978-3-662-47943-8_7
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_7#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec11

8.3.3 Fault Tolerance with Respect to Actuator Faults 356
8.3.4 Fault Accommodation . 358
8.3.5 Control Reconfiguration . 362

8.4 The Lattice of Actuator Subsets . 362
8.4.1 Actuator Configurations . 363
8.4.2 Critical Actuator Subsets and Minimal

Recoverable Configurations 366
8.5 Implementational Issues of Fault-Tolerant Control 367

8.5.1 On-Line Re-design Versus Bank of Control Laws 367
8.5.2 The Passive–Active Approach. 367
8.5.3 Reducing the Reliability Over-Cost 373

8.6 Fault-Tolerance Evaluation . 377
8.6.1 Deterministic Measures . 377
8.6.2 Probabilistic Measures . 378
8.6.3 Sensitivity . 379

8.7 Exercises . 382
8.8 Bibliographical Notes . 386

9 Fault Accommodation and Reconfiguration Methods 389
9.1 Fault-Tolerant Model-Matching Design 389

9.1.1 Reconfiguration Problem . 389
9.1.2 Pseudo-Inverse Method . 391
9.1.3 Model-Matching Control for Sensor Failures 393
9.1.4 Model-Matching Control for Actuator Failures 394
9.1.5 Markov Parameter Approach to Control

Reconfiguration for Actuator Failures 398
9.2 Control Reconfiguration for Actuator or Sensor Failures 402

9.2.1 The Idea of Virtual Sensors and Virtual Actuators. . . . 402
9.2.2 Reconfiguration Problem . 404
9.2.3 Virtual Sensor. 406
9.2.4 Virtual Actuator . 410
9.2.5 Duality Between Virtual Sensors

and Virtual Actuators. 421
9.2.6 Experimental Evaluation: Level

and Temperature Control . 421
9.2.7 Experimental Evaluation: Conductivity Control

Loop . 427
9.3 Fault Recovery by Nominal Trajectory Tracking 436

9.3.1 Problem Setting . 437
9.3.2 Solution . 439

9.4 Fault-Tolerant H1 Design . 446
9.4.1 System Description . 447
9.4.2 Youla-Kucera Parameterisation in Coprime

Factorisation Form . 448

Contents xv

http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_8#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_9
http://dx.doi.org/10.1007/978-3-662-47943-8_9
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec20

9.4.3 Parametrisation in the State-Space Form. 451
9.4.4 Simultaneous Design of the Controller

and the Residual Generator. 453
9.5 Handling the Fault Recovery Transients 456

9.5.1 Switching Between Controllers 456
9.5.2 Progressive Fault Accommodation. 458

9.6 Exercises . 463
9.7 Bibliographical Notes . 465

10 Distributed Fault Diagnosis and Fault-Tolerant Control 467
10.1 Introduction . 467
10.2 Distributed Systems. 468

10.2.1 System Decomposition. 468
10.2.2 Distributed Control . 472
10.2.3 Distributed Diagnosis . 474
10.2.4 Communication Cost . 474
10.2.5 Communication Schemes . 474

10.3 Distributed Diagnosis Design . 476
10.3.1 Structural Diagnoser . 476
10.3.2 Logical Theory of Diagnosis 477
10.3.3 Practical Diagnoser and Real-Time Operation 481
10.3.4 Local Diagnosers and Their Coordination. 482
10.3.5 Distribution Schemes . 488

10.4 Design of the Local Diagnosers . 490
10.4.1 Specifications . 490
10.4.2 Simple Distribution Problem. 490
10.4.3 Distribution Under Computing Cost Constraints 493
10.4.4 The Bilateral Agreements Scheme 496
10.4.5 Fault-Tolerant Distributed Diagnosis 499

10.5 Fault-Tolerant Control by Information Pattern
Reconfiguration . 499
10.5.1 Admissibility and Reconfigurability 500
10.5.2 Information Pattern Reconfiguration 503
10.5.3 Publisher/Subscriber Scheme 506
10.5.4 Bilateral Communication Scheme 507
10.5.5 Extensions . 511
10.5.6 Minimal Reconfiguration Effort 512

10.6 Exercises . 514
10.7 Bibliographical Notes . 517

xvi Contents

http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_9#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec28
http://dx.doi.org/10.1007/978-3-662-47943-8_10#Sec28

Part III Discrete-Event Systems

11 Fault Diagnosis of Discrete-Event Systems 521
11.1 Overview of Part III . 521
11.2 Models of Discrete-Event Systems . 524

11.2.1 Deterministic and Nondeterministic Systems. 524
11.2.2 Deterministic Automata . 527
11.2.3 Nondeterministic Automata 529
11.2.4 Stochastic Automata . 531
11.2.5 Model of the Faulty System 538

11.3 Diagnostic Problems and Ways of Solution 543
11.4 Diagnosis of Deterministic Automata. 548

11.4.1 Diagnostic Algorithm . 548
11.4.2 Results on Deterministic Automata

with Equivalent States . 549
11.4.3 Fault Detectability . 555
11.4.4 Fault Identifiability . 557
11.4.5 Method for Determining Distinguishing

Input Sequences . 560
11.5 Diagnosis of Nondeterministic Automata 567

11.5.1 Method for Testing the Consistency of an I/O Pair
with a Nondeterministic Automaton. 567

11.5.2 Diagnostic Algorithm . 571
11.6 State Observation of Stochastic Automata 574

11.6.1 Method for Testing the Consistency of an I/O Pair
with a Stochastic Automaton 575

11.6.2 Observation Algorithm. 583
11.6.3 Observability of Stochastic Automata 584
11.6.4 Distinguishing Inputs. 589

11.7 Diagnosis of Stochastic Automata . 592
11.7.1 Principle of Consistency-Based Diagnosis Applied

to Stochastic Automata . 592
11.7.2 Diagnosis of Stochastic Automata

with Constant Faults . 593
11.7.3 Extension to Time-Varying Faults 597
11.7.4 Diagnosability of Stochastic Automata 598

11.8 Exercises . 602
11.9 Bibliographical Notes . 603

12 Diagnosis of I/O Automata Networks . 607
12.1 Centralised Versus Decentralised Diagnosis

of Discrete-Event Systems . 607
12.2 Representation of Complex Systems

by I/O Automata Networks . 610

Contents xvii

http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec20
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec21
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec22
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec23
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec24
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec25
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec26
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec27
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec28
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec28
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec29
http://dx.doi.org/10.1007/978-3-662-47943-8_11#Sec29
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec1
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec2
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec2

12.2.1 Composite Systems to Be Diagnosed. 610
12.2.2 Model of the Overall System 612

12.3 Decentralised Consistency Test . 616
12.3.1 Consistency Test for the Overall System 616
12.3.2 Consistency Test for the Subsystems 617
12.3.3 State Observation Result . 620

12.4 Centralised Versus Decentralised Diagnosis 620
12.4.1 Completeness of the Diagnostic Result 620
12.4.2 Centralised Diagnosis . 621
12.4.3 Decentralised Diagnosis . 622

12.5 System Properties and Simplification of Diagnosis 623
12.5.1 Aim of Analysis . 623
12.5.2 Autonomy of Subsystems. 623
12.5.3 Asynchronous State Transitions 627
12.5.4 Extensions . 636

12.6 Exercises . 637
12.7 Bibliographical Notes . 639

Appendix A: Some Prerequisites on Vectors and Matrices 641

Appendix B: Notions of Probability Theory . 645

Appendix C: Nomenclature . 659

Appendix D: Terminology . 661

Appendix E: Dictionary . 667

References. 671

Index . 689

xviii Contents

http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec3
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec4
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec5
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec6
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec7
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec8
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec9
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec10
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec11
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec12
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec13
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec14
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec15
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec16
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec17
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec18
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec19
http://dx.doi.org/10.1007/978-3-662-47943-8_12#Sec19

About the Authors

Mogens Blanke is professor in automation and control at the Technical University
of Denmark and adjunct professor at Institute of Technical Cybernetics at
the Norwegian University of Science and Technology. His research interests
include autonomous and fault-tolerant systems, fault diagnosis and systems archi-
tecture design to obtain desired safety properties. Professor Blanke's experiences
include the development of fault-tolerant control for the Danish Ørsted satellite, for
marine automation and control, for mobile robots and for diagnosis for small air-
craft. Professor Blanke is Technical Editor for Fault-Tolerant Systems for IEEE
Transactions on Aerospace and Electronic Systems and he is Associate Editor for
Control Engineering Practice.

Michel Kinnaert is professor in the Department of Control Engineering and
System Analysis at the Université Libre de Bruxelles (Belgium). He has held a
visiting professor position at the LAGEP at the Université Claude Bernard Lyon 1
and a postdoctoral position at the University of Newcastle (Australia). His research
interests include fault diagnosis and fault-tolerant control for linear and nonlinear
systems with applications in the process industry, in mechatronics and in wind
farms. Professor Kinnaert has been the chairman of the IFAC Technical
Committee SAFEPROCESS.

Jan Lunze is professor of automatic control and head of the Institute of
Automation and Computer Control at the Ruhr-Universität Bochum (Germany). His
research interests include fault diagnosis and reconfigurable control of
discrete-event and hybrid systems, control theory with applications in the auto-
motive and process industries, and networked control systems, where he has been
the coordinator of a priority program of the German Research Foundation. He is
author of numerous research papers and of monographs and textbooks on control
theory, discrete-event systems and artificial intelligence with applications to
dynamical systems.

Marcel Staroswiecki is Honorary Professor of automatic control at the Université
des Sciences et Technologies de Lille (France). He is the former head of the

xix

Laboratoire d’Automatique et d’Informatique Industrielle de Lille (LAIL-CNRS)
and is currently with the Laboratoire SATIE-CNRS at Ecole Normale Supérieure de
Cachan. Professor Staroswiecki and his group have been working on fault detec-
tion, isolation and recovery algorithms since 1986. His research addresses model,
signal and data-based approaches to the supervision of complex and embedded
systems with emphasis on structural analysis, intelligent instruments and compo-
nents, and applications in the process industry and to transportation systems.

xx About the Authors

Chapter 1
Introduction to Diagnosis
and Fault-Tolerant Control

Abstract This chapter introduces the aims, notions, concepts and ideas of fault
diagnosis and fault-tolerant control and outlines the contents of the book.

1.1 Technological Processes Subject to Faults

Our modern society depends strongly upon the availability and correct function of
complex technological processes as numerous examples show. Manufacturing sys-
tems consist of many different machine tools, robots and transportation systems all
of which have to correctly satisfy their purpose in order to ensure an efficient and
high-quality production. Economy and everyday life depend on the function of large
power distribution networks and transportation systems, where faults in a single
component have major effects on the availability and performance of the system as
a whole. Mobile communication provides another example where networked com-
ponents interact so heavily that component faults have far-reaching consequences.
For automobiles strict legal regulations for protecting the environment claim that the
engines have to be supervised and shut off in case of a fault.

In the general sense, a fault is something that changes the behaviour of a system
such that the system no longer satisfies its purpose. It may be an internal event in
the system, which stops the power supply, breaks an information link, or creates a
leakage in a pipe. It may be a change in the environmental conditions that cause
an ambient temperature increase and eventually stop a reaction or even destroy the
reactor. It may be a wrong control action given by the human operator that brings
the system out of the required operation point, or it may be an error in the design
of the system, which remained undetected until the system moves into an operation
point where this error reduces the performance considerably. In any case, the fault is
the primary cause of changes in the system structure or parameters that eventually
lead to a degraded system performance or even the loss of the system function.

In large systems, the overall system works satisfactorily only if all components
provide the service they are designed for. Therefore, a fault in a single component
usually changes the performance of the whole system.

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_1

1

2 1 Introduction to Diagnosis and Fault-Tolerant Control

Fig. 1.1 Fault-tolerant
system

Plant

Fault-tolerant
controller

f

In order to avoid production deteriorations or damage to machines and humans,
faults have to be found as quickly as possible and decisions that stop the propagation
of their effects have to be made. These measures should be carried out by the control
equipment with the aim to make the system fault tolerant. If they are successful,
the system function is satisfied also after the appearance of a fault, possibly after
a short time of degraded performance in which the control algorithm adapts to the
faulty plant.

From a systems-theoretic viewpoint, fault-tolerant control concerns the interaction
between a given system (plant) and a controller (Fig. 1.1). The term “controller”
is used here in a very general sense. It not only includes the usual feedback or
feedforward control law, but also the decision-making layer that determines the
control configuration. This layer analyses the behaviour of the plant in order to
identify faults and changes the control law to hold the closed-loop system in a region
of acceptable performance.

Controllers are usually designed for the faultless plant so that the closed loop meets
the given performance specifications. Fault-tolerant control concerns the situation
that the plant is subject to some fault f , which prevents the overall system from
satisfying its goal in the future. A fault-tolerant controller has the ability to react
to the existence of the fault by adjusting its activities to the faulty behaviour of the
plant. Hence, for an observer who evaluates the function of the closed-loop system
shown in Fig. 1.1, the system is fault-tolerant if it may be subject to some fault, but
the fault is not “visible”, because the system remains satisfying its designated goal.

Generally, the way to make a system fault-tolerant consists of two steps:

1. Fault diagnosis: The existence of faults has to be detected and the faults
have to be identified.

2. Control redesign: The controller has to be adapted to the faulty situation
so that the overall system continues to satisfy its goal.

These steps are not carried out by the usual feedback controller, but by a supervision
system that prescribes the control structure and selects the algorithm and parameters
of the feedback controller. As the supervision system reacts to the occurrence of a
fault and changes the control loop, this two-step approach to fault-tolerant control is
also referred to as active fault-tolerant control. As an alternative, it may be possible

1.1 Technological Processes Subject to Faults 3

for faults with small effects on the plant that the control loop tolerates the fault due
to its robustness. Then, one speaks of passive fault-tolerant control.

Physical versus analytical redundancy. Engineers have been using this principle
for a long time. Traditional methods for fault diagnosis include limit checking or
spectral analysis of selected signals, which make the detection of specific faults
possible. After a fault has been detected, the controller switches to a redundant
component. For example, important elements of an aircraft use this principle with a
threefold redundancy.

These traditional means for fault tolerance can only be applied to safety-critical
systems. Indeed, for a more general use they are unnecessarily complicated and too
expensive for two reasons. First, the traditional methods for fault diagnosis presup-
pose that for every fault to be detected there is a measurable signal that indicates
the existence of the fault by, for example, the violation of a threshold or by chang-
ing its spectral properties. In complex systems with many possible faults, such a
direct relation between a fault and an associated symptom does not exist or it is too
expensive to measure all such signals. Second, this kind of fault tolerance is based
on physical redundancy, where important components are implemented more than
once. Industry cannot afford to use such kind of fault tolerance on a large scale.

The methods described in this book are based on analytical redundancy. An
explicit mathematical model is used to perform the two steps of fault-tolerant con-
trol. The fault is diagnosed by using the information included in the model and in
the online measurement signals. Then the model is adapted to the faulty situation
and the controller is redesigned so that the closed-loop system including the faulty
plant satisfies again the given specifications. Model-based fault-tolerant control is a
cheaper way to enhance the dependability of systems than traditional methods based
on physical redundancy.

The aim of the book is to describe the existing methods for model-based fault-
tolerant control and to demonstrate their applicability by examples.

1.2 Faults and Fault Tolerance

1.2.1 Faults

A fault in a dynamical system is a deviation of the system structure or the system
parameters from the nominal situation. Examples for structural changes are the block-
ing of an actuator, the loss of a sensor or the disconnection of a system component.
In these situations, the set of interacting components of the plant or the interface
between the plant and the controller are changed by the fault. Parametrical changes
are brought about, for example, by wear or damage. All these faults yield deviations
of the dynamical input/output (I/O) properties of the plant from the nominal ones
and, hence, change the performance of the closed-loop system which further results
in a degradation or even a loss of the system function.

4 1 Introduction to Diagnosis and Fault-Tolerant Control

System behaviour. For a more detailed analysis of the impact of faults consider
the plant in Fig. 1.1 from the viewpoint of the controller. The fault is denoted by f .
F is the set of all faults for which the function of the system should be retained.
To simplify the presentation, the faultless case is also included in the fault set F
and denoted by f0. For the performance of the overall system it is important with
which output y(t) of the plant reacts if it gets the input u(t). The pair (u, y) is called
input/output pair (I/O pair) and the set of all possible pairs that may occur for a given
plant define the behaviour B. Note that for a single-input single-output system u and
y denote the functions u : |R → |R and y : |R → |R, which describe the input or
output signals rather than the values of these functions for a specific time point.

Figure 1.2 gives a graphical interpretation. The behaviour B is a subset of the space
U×Y of all possible combinations of input and output signals. The dot A = (u A, yA)

in the figure represents a specific I/O pair that may occur for the given system whereas
C = (uC , yC) represents a pair that is not consistent with the system dynamics. That
is, for the input uC the system produces an output y �= yC .

To illustrate the system behaviour in some more detail, consider a static linear
system

y(t) = ks u(t), (1.1)

where ks is the static gain. For static systems, the I/O pair can be considered for
single time points t , for which the input and the output are elements of the set |R of
real numbers. The set of all I/O pairs is given by

B = {(u, y) : y = ksu},

which can be graphically represented as a straight line in the u/y-coordinate system.
Equation (1.1) describes, which values of u and y belong together. Faults are found,
if this equation is violated, i.e. if the measured I/O pair (u, y) does not belong to the
behaviour B like the pair depicted by the point C in Fig. 1.2.

For a dynamical system the behaviour becomes more involved because the I/O
pairs have to include the whole time functions u(·) and y(·) that represent the input and
output signals. In a discrete-time setting, the input u is represented by the sequence

U = (u(0), u(1), u(2), . . . , u(ke))

Fig. 1.2 Graphical
illustration of the system
behaviour

C

A•

•

U × Y

B

1.2 Faults and Fault Tolerance 5

of input values that occur at the time instants k = 0, 1,…, ke, where ke denotes the
time horizon over which the sequence is considered. Often, ke is the current time
instant, until which the input sequence is stored. Likewise, the output is described
by the sequence

Y = (y(0), y(1), y(2), . . . , y(ke)).

Consequently, the signal spaces |R used for the static system have to be replaced by
U = |Rke and Y = |Rke for single-input single-output systems and by signal spaces
of higher dimensions if the system has more than one input and one output. Then the
behaviour B is a subset of the Cartesian product U × Y = |Rke × |Rke :

B ⊂ |Rke × |Rke

(Fig. 1.2). B includes all sequences U and Y that may occur for the faultless plant.
For dynamical systems, the I/O pair is a pair (U, Y) of sequences rather than a pair
(u, y) of current signal values.

Fault effects on the system behaviour. A fault changes the system behaviour as
illustrated in Fig. 1.3. Instead of the white set, the system behaviour is moved by the
fault towards the grey set. If a common input sequence U is applied to the faultless and
the faulty system, then both systems answer with the output YA or YB , respectively.
The points A = (U, YA) and B = (U, YB) differ and lie in the white or the grey set.
This change in the system behaviour makes the detection and isolation of the fault
possible, unless the faulty I/O pair lies in the intersection of B0 and B f .

In the strict sense, the fault is the primary cause of a malfunction. It has to be
distinguished from the effects of the fault, which are described by the change of the
I/O behaviour. Therefore, fault diagnosis has to trace back the cause–effect relations
from the measured I/O pair, which is found to be different from the nominal one, to
the primary cause of this change, which is the fault to be identified.

Faultless system

u yfy u
f

Faulty system

A•
•B

0 fB B
U × Y

Fig. 1.3 System subject to faults

6 1 Introduction to Diagnosis and Fault-Tolerant Control

Modelling of faulty systems. For fault-tolerant control, dynamical models have to
describe the plant subject to the faults f ∈ F . These models will play a major role
throughout this book. They describe the behaviour of the faultless and the faulty
system, i.e. they restrict the possible I/O pairs to those that appear in the behaviour
B0 or B f in Fig. 1.3. Therefore, models represent constraints on the signals U and Y
that appear at the plant. The notion of constraints will be used synonymously with
the notion of model equations in this book.

In dependence upon the kind of systems considered, constraints can have the
form of algebraic relations, differential or difference equations, automata tables or
behavioural relations of automata. A set of such constraints constitutes a model,
which can be used as a generator of the system behaviour. For a given input U the
model yields the corresponding output Y . If the model is used for a specific fault, it
shows how the system output Y is affected by this fault.

In fault diagnosis, the constraints are usually used to check the consistency of
measured I/O pairs with the behaviour of the faultless or the faulty system. In this
situation, not only the input U , but also the output Y is known and it is checked
whether the pair (U, Y) belongs to the behaviour B f :

(U, Y)
?∈ B f , f ∈ F .

Faults versus disturbances and model uncertainties. Like faults, disturbances and
model uncertainties change the plant behaviour. In order to explain the distinction,
consider a continuous-variable system that is described by an analytical model (e.g.
differential equation). For this kind of systems, faults are usually represented as
additional external signals or as parameter deviations. In the first case, the faults are
called additive faults, because in the model the faults are represented by an unknown
input that enters the model equation as addend. In the second case, the faults are
called multiplicative faults because the system parameters depending on the fault
size are multiplied with the input or system state.

In principle, disturbances and model uncertainties have similar effects on the sys-
tem. Disturbances are usually represented by unknown input signals that have to be
added up to the system output. Model uncertainties change the model parameters in a
similar way as multiplicative faults. However, an important distinction between dis-
turbances, model uncertainties and faults can be seen in the fact that disturbances and
model uncertainties are always present, while faults may be present or not. Distur-
bances represent the action of the environment on the system, whereas uncertainties
are a result of the modelling activities that end up with a model as an approximate
representation of the system behaviour. Hence, both phenomena are nuisances whose
effects on the system performance are handled by appropriate measures like filtering,
feedback control or robust design. They do not call for fault-tolerant control, but for
controllers designed so as to attenuate their effects.

On the other hand, improved maintenance and repair operations can remove
existing faults or decrease the frequency of fault occurrence, but they will not

1.2 Faults and Fault Tolerance 7

Actuators Plant

Actuator
faults

u
Sensors

y

Plant
faults

Sensor
faults

Fig. 1.4 Distinction between actuator faults, plant faults and sensor faults

suppress disturbances or model uncertainties. Since faults are changes whose effects
on the plant behaviour cannot be suppressed by a fixed controller, fault-tolerant con-
trol must change the control law so as to cancel the effects of the faults or to attenuate
them to an acceptable level.

Classification of faults. The faults are often classified as follows (Fig. 1.4):

• Plant faults: Such faults change the dynamical I/O properties of the system.

• Sensor faults: The plant properties are not affected, but the sensor readings have
substantial errors.

• Actuator faults: The plant properties are not affected, but the influence of the
controller on the plant is interrupted or modified.

Due to the “location” of sensor and actuator faults at the end or the beginning of the
cause–effect-chain of the plant, there are specific methods for detecting and fighting
against them. For example, several sections in Chaps. 8 and 9 deal with control
reconfiguration for sensor or actuator failures, which open the control loop and can
be overcome only by using an alternative sensor or actuator, respectively.

Faults can be distinguished concerning their size and temporal behaviour. Abrupt
faults occur, for example, in a breakdown of the power supply whereas steadily
increasing faults are brought about by wear, and intermittent faults by an intermitted
electrical contact. All these different kinds of faults will be considered in this book,
although not all methods are suitable to tackle all kinds of faults.

Fault versus failure. A short note is necessary concerning the distinction of the
notions of fault and failure with respect to their current use in the engineering termi-
nology. As explained above, a fault causes a change in the characteristics of a com-
ponent such that the mode of operation or performance of the component is changed
in an undesired way. Hence the required specifications on the system performance
are no longer met. However, a fault can be “worked around” by fault-tolerant control
so that the faulty system remains operational.

In contrast to this, the notion of a failure describes the inability of a system or
component to accomplish its function. The system or a component has to be shut
off, because the failure is an irrecoverable event. With these notions the idea of
fault-tolerant control can be stated as follows:

http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_9

8 1 Introduction to Diagnosis and Fault-Tolerant Control

Fault-tolerant control has to prevent a component fault from causing a failure
at the system level.

Unfortunately, the notions of faults and failures are not clearly distinguished in the
literature, but they are used precisely in the sense defined above all over this book.

1.2.2 Requirements and Properties of Systems Subject
to Faults

As faults may cause substantial damage to the machinery, to the environment and
risk for human life, engineers have investigated their appearance and impacts for
decades. Different notions like safety, reliability, availability and dependability have
been defined and investigated. In this section, the aims of fault-tolerant control are
related to these notions, which result from different views on faulty systems.

• Safety describes the absence of danger. A safety system is a part of the control
equipment that protects a technological system from permanent damage. It enables
a controlled shutdown, which brings the technological process into a safe state.
To do so, it evaluates the information about critical signals and activates dedicated
actuators to stop the process if specified conditions are met. The overall system is
then called a fail-safe system.

• Reliability is the probability that a system accomplishes its intended function for
a specified period of time under normal conditions. Reliability studies evaluate
the frequency with which the system is faulty, but they cannot say anything about
the current fault status. Fault-tolerant control cannot change the reliability of the
plant components, but it improves the reliability of the overall system, because
with a fault-tolerant controller the overall system remains operational after the
appearance of faults.

• Availability is the probability of a system to be operational when needed. Contrary
to reliability it also depends on the maintenance policies, which are applied to the
system components.

• Dependability lumps together the three properties of reliability, availability and
safety. A dependable system is a fail-safe system with high availability and
reliability.

As explained earlier, a fault-tolerant system has the property that faults do not
develop into a failure of the closed-loop system. In the strict form, the performance
remains the same. Then the system is said to be fail-operational. In a reduced form, the
system remains in operation after faults have occurred, but the system has degraded
performance. Then it is called to be fail-graceful.

Safety versus fault tolerance. Due to its importance, the relation between safety and
fault tolerance is elaborated now in more detail. Assume that the system performance
can be described by the two variables y1 and y2. Then Fig. 1.5 shows the different
regions that have to be considered.

1.2 Faults and Fault Tolerance 9

Threshold
Region of danger

Recovery

Fault

Region of degraded perfomance

Region of required
 performance

Region of
unacceptable
performance

y2

y1

Where Safety
system is
involved

Fig. 1.5 Regions of required and degraded performance

In the region of required performance, the system satisfies its function. This is the
region where the system should remain during its time of operation. The controller
makes the nominal system remain in this region in spite of disturbances and uncer-
tainties of the model used for the controller design. The controller may even hold the
system in this region if small faults occur, although this is not its primary goal. In
this case, the controller “hides” the effect of faults, which is not its intended purpose
and makes the fault diagnostic task more difficult.

The region of degraded performance shows where the faulty system is allowed to
remain, although in this region the performance does not satisfy the given require-
ments but may be considerably degraded. Faults bring the system from the region of
the required performance into the region of degraded performance. The fault-tolerant
controller should be able to initiate recovery actions that prevent a further degrada-
tion of the performance towards the unacceptable or dangerous regions and it should
move the system back into the region of required performance. At the border between
the two regions, the supervision system is invoked, which diagnoses the faults and
adjusts the controller to the new situation.

The region of unacceptable performance should be avoided by means of fault-
tolerant control. This region lies between the region of acceptable performance in
which the system should remain and the region of danger, which the system should
never reach.

A safety system interrupts the operation of the overall system to avoid danger
for the system and its environment. It is invoked if the outer border of the region
of unacceptable performance is exceeded. This shows that the safety system and
the fault-tolerant controller work in separate regions of the signal space and satisfy

10 1 Introduction to Diagnosis and Fault-Tolerant Control

complementary aims. In many applications, they represent two separate parts of the
control system. For example, in the process industry, safety systems and supervision
systems are implemented in separate units. This separation makes it possible to design
fault-tolerant controllers without the need to meet safety standards.

1.3 Elements of Fault-Tolerant Control

1.3.1 Structure of Fault-Tolerant Control Systems

The architecture of fault-tolerant control is depicted in Fig. 1.6. The two blocks
“diagnosis” and “controller redesign” carry out the two steps of active fault-tolerant
control introduced on p. 2.

1. The diagnostic block uses the measured input and output signals and tests their
consistency with the plant model. Its result is a characterisation of the fault f
with sufficient accuracy for the controller redesign.

2. The redesign block uses the fault information and adjusts the controller to the
faulty situation.

To be successful in Step 2, there must exist a solution to the controller redesign prob-
lem in the faulty situation. If such a solution exists, the fault is said to be recoverable,
otherwise it is non-recoverable. With respect to Fig. 1.5, a recoverable fault allows
the controller to bring the system back into the region of required (or degraded)
performance. For a non-recoverable fault, there does not exist any controller that is
able to prevent the system from drifting into the region of unacceptable performance
or even into the region of danger. Then, the supervision level has to make a decision
about the system objectives (e.g. safe shutdown), since the current objectives can no
longer be achieved. To decide which situation occurs with respect to the present fault
is the aim of the recoverability test in Fig. 1.6.

Since the notion of the controller is used here in a very broad sense, the input u
to the plant includes all signals that can be influenced by the control decision units.
The aims and methods associated with both blocks will be discussed in more detail
below.

In Fig. 1.6 all simple arrows represent signals. The connection between the con-
troller redesign block and the controller is drawn by a double arrow in order to
indicate that this connection represents an information link in a more general sense.
The redesign of the controller may not only result in new controller parameters, but
also in a new control configuration. Then the old and the new controllers differ with
respect to the input and output signals that they use (Sect. 1.3.3).

The figure shows that fault-tolerant control extends the usual feedback controller
by a supervisor, which includes the diagnosis and the controller redesign blocks. In
the faultless case, the nominal controller attenuates the disturbance d and ensures set

1.3 Elements of Fault-Tolerant Control 11

Controller
re-design Diagnosis

Controller Plant

f

y
u

f
ff

Recoverable
fault?

yes

no

Objective reconfiguration

Supervision
level
Execution
level

d

y
ref

Fig. 1.6 Architecture of fault-tolerant control

point following and other requirements on the closed-loop system. The main control
activities occur on the execution level. On the supervision level the diagnostic block
simply recognises that the closed-loop system is faultless and no change of the control
law is necessary.

If a fault f occurs, the supervision level makes the control loop fault-tolerant.
The diagnostic block identifies the fault and the controller redesign block adjusts the
control law to the new situation. Afterwards, the execution level alone continues to
satisfy the control aims.

In Fig. 1.6 as well as in the next figures the diagnostic result f is assumed to be
identical to the fault f occurring in the system. This reflects an idealised situation,
because in many applications disturbances or model uncertainties bring about uncer-
tainties of the diagnostic results so that instead of the fault f only an approximate
fault f̂ or a set Fc of fault candidates is obtained. This fact will be investigated in
detail in all chapters of this book. Here, however, the idealised situation is considered
in order to explain the basic ideas of fault diagnosis and fault-tolerant control.

Established methods for ensuring fault tolerance. To a certain extent, fault tol-
erance can also be accomplished without the structure given in Fig. 1.6 by means
of well-established control methods. As this is possible only for a restricted class
of faults, these methods will not be dealt with in more detail in this book, but they
should be mentioned here.

• Robust control: A fixed controller is designed that tolerates changes of the plant
dynamics. The controlled system satisfies its goals under all faulty conditions. Fault
tolerance is obtained without changing the controller parameters. It is, therefore,

12 1 Introduction to Diagnosis and Fault-Tolerant Control

a method providing passive fault tolerance. However, the theory of robust control
has shown that robust controllers exist only for a restricted class of changes of the
plant behaviour that may be caused by faults. Further, a robust controller is not the
best controller for the nominal plant because its parameters are fixed so as to get
a trade-off between performance and robustness.

• Adaptive control: The controller parameters are adapted to changes of the plant
parameters. If these changes are caused by some fault, adaptive control may provide
active fault tolerance. However, the theory of adaptive control shows that this
principle is particularly efficient only for plants that are described by linear models
with slowly varying parameters. These restrictions are usually not met by systems
under the influence of faults, which typically have a nonlinear behaviour with
sudden and large parameter changes.

From a structural point of view, adaptive control has a similar structure as fault-
tolerant control, if the diagnostic block is replaced by a block that identifies the current
plant parameters and the controller redesign block adapts the controller parameters
to the identification result (Fig. 1.6). However, in fault-tolerant control the size of the
changes of the plant behaviour is larger and not restricted to parameter changes and
to continuous-variable systems.

If the modifications of the plant dynamics brought about by faults satisfy the
requirements that are necessary to apply robust or adaptive control schemes, then
these schemes provide reasonable solutions to the fault-tolerant control problem.
However, for severe or sudden faults, these methods are not applicable and the ideas
presented in this book have to be used.

Fault-tolerant control at the component level and the overall system level. Mod-
ern technological systems consist of several, often many subsystems, which are
strongly connected. The effect of a fault in a single component propagates through
the overall system. In Fig. 1.7 the fault occurring in Component 2 influences all other
components.

The effect of a fault in a single component may be of minor importance to this
component. However, due to its propagation throughout the overall system, the fault

Fig. 1.7 Fault propagation
in interconnected systems

1 2 3

4

6 7

f

1.3 Elements of Fault-Tolerant Control 13

may eventually initiate the safety system to shut off the whole system. In the terms
defined above, the fault has then caused a system failure.

There are two possibilities to stop the propagation of the fault. Either the fault
propagation is stopped inside the affected component by making the component fault-
tolerant or the propagation of the fault among the components has to be stopped. As
the propagation of the fault effects through the overall system usually takes time,
the controller of the affected component has the chance to adjust its behaviour to the
faulty situation and, hence, to keep the overall system in operation.

1.3.2 Main Ideas of Fault Diagnosis

The first task of fault-tolerant control concerns the detection and identification of
existing faults. Figure 1.8 illustrates the diagnostic problem. A dynamical system
with input u and output y is subjected to some fault f . The system behaviour depends
on the fault f ∈ F where the element f0 ∈ F symbolises the faultless case. The
diagnostic system obtains the I/O pair (U, Y), which consists of the sequences

U = (u(0), u(1), u(2), . . . , u(ke))

Y = (y(0), y(1), y(2), . . . , y(ke))

of input and output values measured at discrete-time points k = 0, 1, . . . , ke within
a given time horizon ke. It has to solve the following problem:

Diagnostic Problem. For a given I/O pair (U, Y), find the fault f .

If the unique result is f0, the diagnostic system indicates that the system is faultless
or that a non-detectable fault has occurred as explained below.

It should be emphasised that the problem considered here concerns online diagno-
sis based on the available measurement data. No inspection of the process is possible.
The diagnostic problem has to be solved under real-time constraints by exploitation

Fig. 1.8 Fault diagnosis

System

d

u

Model

y

f

x0
^

x0

f

Information
flow

Diagnostic
algorithm

14 1 Introduction to Diagnosis and Fault-Tolerant Control

of the information included in a dynamical model and in the time evolution of the
signals u and y. Therefore, the term process diagnosis is used if these aspects should
be emphasised.

Diagnostic steps. For fault-tolerant control, the location and the magnitude of the
fault have to be found. Different names are used to distinguish the diagnostic steps
according to their “depth”:

• Fault detection: Decide whether or not a fault has occurred. This step determines
the time at which the system is subject to some fault.

• Fault isolation: Find in which component a fault has occurred. This step deter-
mines the location of the fault.

• Fault identification and fault estimation: Identify the fault and estimate its mag-
nitude. This step determines the kind of fault and its severity.

Consistency-based diagnosis. Different diagnostic methods are explained through-
out this book. Although they use different kinds of dynamical models and have dif-
ferent assumptions concerning the measurement information available, they follow
a common principle, which can be explained by using the notion of the system
behaviour.

In order to be able to detect a fault, the measurement information (U, Y) alone is
not sufficient, but a reference, which describes the nominal plant behaviour, is neces-
sary. This reference is given by a plant model, which describes the relation between
the possible input sequences and output signals. This model is a representation of
the plant behaviour B.

The idea of consistency-based diagnosis should be explained now by means of
Fig. 1.2 on p. 4. Assume that the current I/O pair (U, Y) is represented by point A in
the figure. If the system is faultless (and the model is correct) then A lies in the set B.
However, if the system is faulty, it generates a different output Ŷ for the given input
U . If the new I/O pair (U, Ŷ) is represented by point C , which is outside of B then
the fault is detectable. However, if the faulty system produces the I/O pair represented
by point B in Fig. 1.3, no inconsistency occurs in spite of the fault. Hence, the fault
is not detectable.

The principle of consistency-based diagnosis is to test whether or not the mea-
surement (U, Y) is consistent with the system behaviour. If the I/O pair is checked
with respect to the nominal system behaviour, a fault is detected if (U, Y) /∈ B holds.
If the I/O pair is consistent with the behaviour B f of the system subject to the fault
f , the fault f may be present in the system. In this case, f is called a fault candidate.
The diagnostic result is usually a set Fc ⊆ F of fault candidates.

To illustrate this result, assume that the system behaviour is known for the faults
f0, f1 and f2. The corresponding behaviours B0, B1 and B2 are different, but they
usually overlap, and there exist I/O pairs that may occur for more than one fault. If
the I/O pair is represented by the points A, C or D in Fig. 1.9, the faults found are
f0, f1 or f2, respectively. If, however, the measurement sequences are represented
by point B, the system may be subjected to one of the faults f0 or f1. The diagnostic

1.3 Elements of Fault-Tolerant Control 15

Fig. 1.9 Behaviour of the
faultless and the faulty
system

A

B

C
D

2 0

1
•

•

•

B

BB

algorithm cannot distinguish between these faults because the measured I/O pair may
occur for both faults. Hence, the ambiguity of the diagnostic result is caused by the
system and not by the diagnoser, because the system generates the same information
for both faults. No diagnostic method can remove this ambiguity by means of the
given measurement information (U, Y). This results in the set Fc = { f0, f1} of
fault candidates.

The question of whether or not a certain fault can be detected concerns the diag-
nosability or fault detectability of the system, which are important system properties
to be considered in several chapters of this book.

In summary, the diagnostic principle can be described as follows:

• Consistency-based diagnosis: For given models that describe the behaviour
B f of the system subject to the faults f ∈ F , test whether the I/O pair (U, Y)

satisfies the relation
(U, Y) ∈ B f .

• Fault detection: If the I/O pair is inconsistent with the behaviour B0 of the
faultless system

(U, Y) /∈ B0

then a fault is known to have occurred.
• Fault isolation and identification: If the I/O pair is consistent with the

behaviour B f

(U, Y) ∈ B f ,

then the fault f may have occurred. f is a fault candidate.

To diagnose a system by testing the consistency of the measurements with a model
is a general idea, which does not depend on the kind of model used.

16 1 Introduction to Diagnosis and Fault-Tolerant Control

Several direct consequences of this principle should be mentioned:

• Fault detection is possible without any information about the behaviour of the
faulty plant. Fault detection algorithms use only a model of the nominal plant.
The main idea is to identify deviations of the current system behaviour from the
nominal behaviour, which is possible without a list of all possible faults and the
corresponding plant models.

• Without information about the faults and about the way in which the faults affect
the system, no fault isolation and identification is possible. In order to identify the
fault, fault models have to be known.

• Consistency-based diagnosis excludes faults f ∈ F as fault candidates. There
is no possibility to prove that a certain fault is present. This would necessitate
further assumptions like the assumption that the present fault f is an element of a
given fault set F . For example, such an assumption holds true if the faults can be
restricted to be a sensor fault.

• With a given measurement configuration, not all faults can be distinguished. Diag-
nosability considerations can be used to determine those faults that can be sepa-
rately identified.

Consistency-based diagnosis concerns the comparison of the measured I/O pair
with a plant model. For discrete-event systems this comparison is done in a direct
way as described in Chaps. 11 and 12. For continuous-variable systems the usual way
of comparison consists in using the difference between the measured system output
and the model output in the way explained below.

Diagnosis of continuous-variable systems. Continuous-variable systems, which
will be investigated in Chaps. 6 and 7, are usually described by differential equa-
tions or transfer functions. With these models, the principle of consistency-based
diagnosis can be transformed into the scheme shown in Fig. 1.10. The model is used
to determine, for the measured input sequence U , the model output sequence Ŷ .
The consistency of the system with the model can be checked at every time t by
determining the difference

r(t) = y(t) − ŷ(t),

which is called a residual. In the faultless case, the residual vanishes or is close to
zero. A non-vanishing residual indicates the existence of a fault.

Diagnostic algorithms for continuous-variable systems generally consist of two
components:

1. Residual generation: The model and the I/O pair are used to determine resid-
uals, which describe the degree of consistency between the plant and the model
behaviour.

2. Residual evaluation: The residuals are evaluated in order to detect, isolate and
identify faults.

In both steps, model uncertainties, disturbances and measurement noise have to be
taken into account.

http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_7

1.3 Elements of Fault-Tolerant Control 17

Fig. 1.10 Diagnosis of
continuous-variable systems

System

Model

f

Residual
evaluation

r

ŷ
_

u y

f d

Figure 1.10 shows the fact mentioned earlier that fault-tolerant control employs
analytical redundancy. The model is an integral part of the diagnostic system. The
residual is found by using more than one way for determining the variable y. The
sensor value y is compared with the analytically computed value ŷ of the same signal.
This procedure avoids physical redundancy where at least three sensors are used to
measure the same quantity in order to get fault indicators.

General properties of diagnostic algorithms. Some further general remarks should
be made concerning practical problems encountered in process diagnosis. First, the
behaviour of a dynamical system does not only depend on the input but also on
the initial state. In Fig. 1.8 the initial state of the plant is denoted by x0 and that of
the model by x̂0. Inconsistencies may result from a deviation of both initial states.
As the initial state of the system is usually immeasurable, every diagnostic problem
includes a kind of state observation problem.

Second, the disturbance d that influences the plant is usually immeasurable. As it
influences the plant behaviour, it has to be taken into account in the consistency check.
For continuous-variable systems, this problem may be solved for certain classes of
disturbances by including filters into the residual evaluation block.

Fault diagnosis for fault-tolerant control. In fault-tolerant control, the information
obtained from the diagnostic algorithm should be used in the controller redesign.
Hence, process diagnosis should not only indicate that some faults have occurred but
it has to identify the fault locations and fault magnitudes with sufficient precision.
This information will make it possible to set up a model of the faulty system, which
can be used for the controller redesign.

18 1 Introduction to Diagnosis and Fault-Tolerant Control

Fault isolation and fault identification are essential for active fault-tolerant control.
This contrasts with safety systems for which the information about the existence
of some (unspecified) fault is sufficient. This fact shows another difference of the
measures to be taken for fault tolerance or for safety, respectively.

1.3.3 Main Ideas of Controller Redesign

Controller redesign considers the problem of changing the control structure and the
control law after a fault has occurred in the plant. The aim is to satisfy the requirements
on the closed-loop system in spite of the faulty behaviour of the plant.

The necessity and aim of the controller redesign can be illustrated without refer-
ence to a particular class of systems by using again the notion of the system behaviour
(Fig. 1.11). The faultless plant has the behaviour B0 and the controller has the behav-
iour BC. The set BC describes the I/O pairs (U, Y) that satisfy the control law. Since
the I/O pairs of the closed-loop system are consistent with both the plant and the con-
troller, the behaviour of the closed-loop system is given by the intersection B0 ∩BC,
which is drawn in grey on the left-hand side of the figure. This behaviour satisfies the
control specifications, which likewise can be formulated in the behavioural setting
as the set Bspec of those I/O pairs that meet these requirements. Its border is drawn by
the thick rectangle in the figure. As the grey set lies completely within the set Bspec

B0 ∩ BC ⊂ Bspec

the closed-loop systems satisfies the performance specifications.
If the plant becomes faulty, it changes its behaviour, which is now given by the set

Bf . Hence, the closed-loop system behaviour changes to become Bf ∩BC, which may
no longer be a subset of Bspec. On the right-hand side of the figure, this situation occurs
because the grey set only partly overlaps with the set Bspec. Hence, the controller
has to be redesigned in order to restrict the behaviour of the faulty system to the
set Bspec. This explains the necessity of the controller redesign from the behavioural
viewpoint.

Control of the faultless system Control of the faulty system

0
C

spec

f
C

spec

B
B

B

BB

B

Fig. 1.11 Behaviour of the faultless and the faulty closed-loop system

1.3 Elements of Fault-Tolerant Control 19

The figure also shows that fault tolerance may or may not be possible depending
on the properties of the faulty system. If the behaviour Bf overlaps with the specified
behaviour Bspec, a controller may be found that restricts this set to a new set Bf ∩BC
which satisfies the relation

Bf ∩ BC ⊂ Bspec

(Fig. 1.12). This controller makes it possible to hold the faulty system in operation.
When adapting the controller parameter to the faulty plant, the set BC cannot be
chosen arbitrarily because restrictions concerning the realisability of the control law
have to be satisfied. These restrictions bring about further difficulties into the fault-
tolerant control problem, which will be discussed later.

There may be faults, for which the behaviour Bf does not overlap with Bspec.
Then a new control configuration has to be chosen, which changes the signals under
consideration and, hence, the behaviour of the plant severely. There may even be
faults for which no controller can make the closed-loop system satisfy the specifica-
tion and the system has to be shut off. Hence, the question whether a fault-tolerant
controller exists is not a property of the controller or the control redesign method,
but a property of the plant subject to faults. Faults for which redesigned controllers
exist, are called recoverable, otherwise unrecoverable. An illustrative example for
an unsolvable fault-tolerant control problem is to consider a plant whose unstable
modes become uncontrollable or unobservable due to faults. Then no controller exists
which stabilises the faulty plant and a new system mode of operation, for example,
a safe shut-off operation, has to be invoked (Fig. 1.6).

Two principal ways of controller redesign have to be distinguished, which are
described in more detail now: fault accommodation and control reconfiguration.

Fault accommodation. Fault accommodation means to adapt the controller parame-
ters to the dynamical properties of the faulty plant. The input and output of the plant
used in the control loop remain the same as for the faultless case (Fig. 1.13). Hence,
the set U × Y of input and output signals is not changed and fault accommodation
is the situation illustrated by Fig. 1.12.

A simple but well-established way of fault accommodation is based on pre-
designed controllers, each of which has been selected offline for a specific fault.
The redesign step then simply sets the switch among the different control laws.
This step is quick and can meet strong real-time constraints. However, the controller
redesign has to be made for all possible faults before the system is put into operation
and all resulting controllers have to be stored in the control software.

Fig. 1.12 Behavioural
representation of fault
accommodation

C

specB

B
Bf

20 1 Introduction to Diagnosis and Fault-Tolerant Control

Controller

Fault
accommodation

d

y

f

Diagnosis

Plant
yref

f

New controller
parameters

Fig. 1.13 Fault accommodation

More general ways of fault accommodation will be explained in Chap. 9. This
treatment also includes the development of conditions under which fault accommo-
dation is possible (recoverability analysis), which means that the plant is recoverable
from the fault.

Control reconfiguration. If fault accommodation is impossible, the complete control
loop has to be reconfigured. Reconfiguration includes the selection of a new control
configuration where alternative input and output signals are used. The selection of
these signals depends upon the existing faults. Then, a new control law has to be
designed online (Fig. 1.14).

d
yu

f

New control
configuration

Reconfiguration Diagnosis

Nominal
controller Plant

New
controller

y'u'

y'ref

yref

f

Supervision
level

Execution
level

Fig. 1.14 Control reconfiguration

http://dx.doi.org/10.1007/978-3-662-47943-8_9

1.3 Elements of Fault-Tolerant Control 21

Control reconfiguration is necessary after severe faults have occurred that lead to
serious structural changes of the plant dynamics:

• Sensor failures break the information link between the plant and the controller.
They may make the plant partially unobservable. New measurements have to be
selected and used in order to solve the control task.

• Actuator failures disturb the possibilities to influence the plant. They may make
the plant partially uncontrollable. Other actuators have to be used.

• Plant faults change the dynamical behaviour of the process. If these changes can-
not be tolerated by any control law, the overall control loop has to be reconfigured.

The necessity of control reconfiguration is particularly obvious if sensor or actuator
failures are considered. If these components stop working completely, the fault leads
to a breakdown of the control loop. There is no possibility to adapt the controller
by simply changing its parameters to the faulty situation. Instead, other actuators or
sensors have to be found, which are not affected by the fault and which have similar
interactions with the plant so that a reasonably selected controller is able to satisfy
the performance specifications on the closed-loop system. General method for the
selection of a new control configuration and the redesign of the controller for the new
configuration after sensor or actuator failures are given in Chaps. 8 and 9. Again, the
possibility of finding a new controller that satisfies the control aims for the faulty
system is a property of the plant, which is called here reconfigurability. Conditions
for the reconfigurability are given in terms of the plant model.

Real-time aspects of fault accommodation and control reconfiguration. Both
fault accommodation and control reconfiguration imply the online redesign of the
controller, which is reminiscent of the “usual” controller design. However, although
they may use well-known design methods, they also pose new problems that did not
appear in the usual controller design problem, since they have to be carried out under
additional restrictions and new circumstances:

• The design process has to be completely automatic, i.e. without interaction with a
human designer.

• The methods used for fault accommodation and control reconfiguration have to
guarantee a solution to the design problem (if the fault is recoverable) even if the
performance is not optimal.

• Fault accommodation and control reconfiguration have to be done under real-time
constraints.

• With the controller of the nominal system, a solution to the controller design
problem is known, which may be used for control reconfiguration.

The real-time constraints can be seen from a detailed analysis of the time sequence
that takes place between the occurrence of a fault and its recovery (i.e. the time when
the accommodated or reconfigured control that satisfies the control objectives is
applied). The following time windows can be distinguished:

http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_9

22 1 Introduction to Diagnosis and Fault-Tolerant Control

• Before the fault occurrence at time tf , the nominal system is controlled using the
nominal control and the control objectives are satisfied.

• Between fault occurrence and fault recovery at time tr, the faulty system is con-
trolled using the nominal control law, and control objectives are in general not
satisfied. The system may even become unstable.

• After the fault recovery time t > tr, the faulty system is controlled using the
accommodated or reconfigured control and the system objectives are satisfied
again.

The second point above is critical, and the associated time window t ∈ [tf , tr]
should be made as short as possible. Note that this time window occurs due to three
reasons:

• Fault detection and isolation delay
• Fault estimation delay
• Delay for the redesign of the accommodated or reconfigured control.

The fault detection and isolation delay is unavoidable in active fault-tolerant control.
The fault estimation delay is unavoidable if online fault accommodation is used, since
the model of the faulty system must be identified. The delay for the redesign is very
short, if fault accommodation is implemented as switching between pre-designed
controllers.

Fault accommodation and control reconfiguration is a recently started subject
of research. There are several promising solutions, which are summarised in this
book. In particular, Chap. 4 describes methods for fault propagation analysis, which
can be used to find out where the fault propagation can be stopped. The structural
analysis explained in Chap. 5 shows the redundancies that can be used for diagnosis
and reconfiguration. Specific methods for continuous-variable plants are explained
in Chaps. 8 and 9.

1.3.4 A Practical View on Fault-Tolerant Control

This section takes a view on fault-tolerant control from a practical perspective and
emphasises the possible fields of application.

Physical redundancy versus analytical redundancy. The main advantage of fault-
tolerant control over other measures for fault tolerance is the fact that fault-tolerant
control makes “intelligent” use of the redundancies included in the system and in the
information about the system in order to increase the system availability. The book
describes systematic ways of fault-tolerant control, which give better solutions than
ad hoc engineering based on experience and process knowledge. It utilises an analytic
redundancy, which is cheaper than physically duplicating all vulnerable components.
Note that the principle of reliability theory to build a reliable system by using less
reliable components is applicable only if more components are used than necessary

http://dx.doi.org/10.1007/978-3-662-47943-8_4
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_9

1.3 Elements of Fault-Tolerant Control 23

for a given function. Fault-tolerant control does not always necessitate duplication
of components but changes components (controllers) after faults have occurred.

Fault tolerance necessitates redundancies. One needs redundancies to detect faults
by measuring all input and output signals. These measurements provide more infor-
mation than the sole measurements of the input, which are sufficient for prediction
tasks. On the other hand, redundant sensors or actuators are necessary for control
reconfiguration. However, this does not mean that all sensors or actuators have to be
implemented in duplicate. One additional sensor or actuator may provide analytical
redundancy for every single sensor or actuator fault.

Performance degradation. In certain practical situations the performance speci-
fications for the faulty system may be reduced in comparison to the faultless sys-
tem. Clearly, the weaker the performance specifications the larger can the tolerable
faults be.

Implementation. Another important issue results from the fact that fault-tolerant
control methods cannot be sufficiently tested in operation (in contrast to control
methods for the nominal system), because under practical circumstances it is usually
impossible to provoke faults in the plant in order to test the reaction of the control
system. It is, therefore, of high practical importance that the book presents system-
atic solutions to the analysis and design steps included in fault-tolerant control, the
validity of which can be proved under the given assumptions. The implementation
of the algorithms in the control equipment is not the subject of this book. To avoid
faults in this step, methods for verification of control algorithms, for fault-tolerant
computing and for fault-tolerant communication have to be used.

Severity of faults. A principal “threshold” for achieving fault tolerance is the
fact that no method can guarantee a complete description of all possible faults of
a system. Hence, 100 %-fault tolerance is impossible. However, for many applica-
tions, complete fault tolerance is not necessary. A reasonable application of fault-
tolerant control starts with the selection of the most critical faults and continues with
the investigation of fault tolerance against these faults.

Insignificant faults are difficult to detect but easy to compensate for, whereas
severe faults are easy to identify but difficult to handle. This experience underlines
the importance of fault diagnosis for fault-tolerant control.

1.4 Architecture of Fault-Tolerant Control

1.4.1 Architectural Options

The architecture of fault-tolerant control describes which components of the plant,
the controller and the diagnostic system work together and which information is
exchanged among these components. It is determined by different practical aspects

24 1 Introduction to Diagnosis and Fault-Tolerant Control

like the availability of computer resources, the character of the system to be con-
trolled, which can have a large physical size or may be a small single entity, and
the software structure used. These aspects will be considered in this book only with
respect to the consequences for the diagnostic and control redesign methods.

The typical situation, which is mainly considered in the literature on fault-tolerant
control, concerns the embedded systems approach, where the diagnostic and the
controller redesign tasks are accomplished on a single computer board, which is
directly connected to the system to be controlled. All measurement information are
available on this board and, hence, all algorithms can utilise all information. This is
the situation shown in Figs. 1.8, 1.13 and 1.14, where there is a single component for
each task and all arrows represent perfect information links.

However, there are important practical circumstances under which the embedded
systems structure cannot be applied and a distributed or a remote systems approach
has to be used, where the fault-tolerant control algorithms and the available infor-
mation are distributed among different components. These situations, which will be
explained in the next paragraphs, have important consequences for the fault-tolerant
control algorithms, because they distinguish from the embedded systems approach
with respect to the information available. Either the algorithms have access only to
a subset of the overall information used or the information links bring about severe
time delays and even cause a dropout of data. These practical circumstances have to
be taken into account when elaborating fault-tolerant control algorithms.

1.4.2 Distributed Systems

Distributed diagnosis. The term “distributed diagnosis” summarises three situations
where the information is distributed among several components that are to ensure
the fault tolerance of the system. Their main characteristics will be explained in the
following for a diagnostic system, but the same considerations can be made for the
controller redesign.

• Distributed diagnosis (in the narrow sense): The diagnostic system is designed as
a unique entity and the resulting diagnostic algorithm is distributed over different
components to cope with the computational effort needed. The result obtained is
the same as in the embedded systems approach provided that the communication
system does not restrict the performance. This method is elaborated for continuous
systems in Chap. 10.

• Decentralised diagnosis: The diagnostic problem is decomposed into different
subproblems which refer to the subsystems of the overall system under consid-
eration. The subproblems are solved independent of each other. This approach is
explained for discrete-event systems in Chap. 12.

http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_12

1.4 Architecture of Fault-Tolerant Control 25

• Coordinated diagnosis: Like in decentralised diagnosis the overall problem is
decomposed, but the solutions obtained independently for the subproblems are
combined by some coordinators to ensure their consistency.

Decentralised and coordinated diagnosis are illustrated by Figs. 1.15 and 1.16.
Both methods are reasonable if the system to be diagnosed is composed of several
interconnected subsystems. Usually such a structural decomposition is given by the
physical system structure and the subsystems are often weakly coupled. This situation
suggests a decomposition of the diagnostic task in such a way that the subtasks can
be associated with the subsystems. It is then reasonable to implement N different
diagnosers Di for the N subsystems Σi of the overall system.

Fig. 1.15 Decentralised
diagnosis Physical interactions

u1

D1 DND2

y

F F F

1 u2 y2 uN yN

s1 s2 sN

1 2 N

z1 z2 zN

NΣ1 Σ

• ••

• ••2 Σ

Fig. 1.16 Coordinated
diagnosis

Fc

Physical interactions

Coordinator

u1

D1 DND2

y1 u2 y2 uN yN

s1 s2 sNz1 z2 zN

NΣ1 Σ

• ••

• ••2 Σ

26 1 Introduction to Diagnosis and Fault-Tolerant Control

In decentralised diagnosis, the diagnoser Di has available only the local input ui

and the local output yi . It solves its task by means of a model of the subsystem Σi .
The result is given by the set Fi of fault candidates.

The main problem with this scheme is the consideration of the interactions among
the subsystems, because the coupling signals si (t) and zi (t), (i = 1, 2, . . . , N) are
not assumed to be known to the diagnosers. Different approaches have been devel-
oped to solve this problem. The simplest way is to assume that there is no interaction,
which means that the model used by the diagnoser Di describes the isolated subsys-
tem Σi . This is successful only if the interactions among the subsystems are weak.
Other approaches use coarse models of the interactions. In any case, as there is no
information exchange among the diagnosers, the overall diagnostic result

Fd = ∪iFi

typically includes more fault candidates than the result Fg that a single diagnoser of
the overall system would determine:

Fd ⊇ Fg.

This is the price for the complexity reduction of the diagnostic problem with respect to
both the diagnostic algorithms applied and the information links to be implemented.

From an architectural point of view, the diagnosers are agents that solve their diag-
nostic problems independently of each other, which is in line with modern software
structures and principles. However, as these explanations show, the overall diagnostic
result is worse than a global solution.

The disadvantage of decentralised diagnosis compared to a centralised solution
can be overcome by extending the diagnosers of the subsystems by a coordinator
that combines the results Fi obtained for the subsystems to a result Fc of the overall
system. As the coordinator has a model of the interconnections of the subsystems,
the overall result Fc is better than the result of the decentralised diagnosis:

Fc ⊆ Fd.

If the link between the diagnosers and the coordinator is bidirectional, the coordinator
can send information to the diagnosers that can be used to improve the local diagnostic
results. The aim of the coordination is to retain the result of a global diagnosis

Fc = Fg.

Then the main advantage of coordinated diagnosis in comparison to a global diag-
noser is the structure of the diagnostic system, which reduces the complexity of the
overall algorithm.

Distributed control. From the viewpoints of the communication capacity and the
local processing power, the distributed fault-tolerant control problem seems quite

1.4 Architecture of Fault-Tolerant Control 27

comparable to the distributed diagnosis problem. Indeed, in decentralised control,
each controller makes use of the locally available data yi in order to produce the local
control ui , while in distributed control it can use more data and therefore achieve
better performance—or it can compensate for more faults. These possibilities are of
course open under the condition that the communication system has the capacity to
provide the data and the local computing device has the capacity to process them.

However, this is a rather simplistic view, because generally the overall system
specifications are not decomposable, which means that they cannot be split into a
set of independent local specifications for each subsystem. Because of the coupling
variables it is well known, for example, that the interconnection of several stable
systems does not necessarily result in a stable overall system. Conversely, if an
unstable subsystem has lost all its actuators, the overall system might be stabilised
by changing the controls of the other subsystem in such a way that it will be stabilised
by the action of the coupling variables. Therefore, addressing fault-tolerant control
for a distributed system is the problem of designing or redesigning several local
controllers, whose actions interfere due to the coupling variables in such a way that
the global specifications are satisfied, both in normal operation and in the presence
of faults.

Redesigning the control law may result in recovery transients that are difficult
to handle in embedded systems (Sect. 9.5 specifically addresses this problem). The
recovery transient problem is even magnified in distributed systems, and the design
of a fault-tolerant distributed control strategy has to consider the minimisation of the
reconfiguration effort, which depends on the number of subsystems whose parameters
or control laws are to be changed in order to recover a fault. These topics are addressed
in Chap. 10, where a fault-tolerant control strategy is developed by which the set of
data available to each local controller is increased. This strategy is called information
pattern reconfiguration.

1.4.3 Remote Control and Diagnosis

Modern data communication networks provide the means to connect control and
supervison components whenever data links can improve the performance of these
components. Different architectures of networked control systems are currently
investigated under the common headline of cyberphysical systems (Fig. 1.17), which
consist of three layers: the physical layer that includes the system to be controlled
as a composite system consisting of several subsystems Σi , (i = 1, 2, . . . , N), the
layer of embedded systems, and the global network. From the control engineering
viewpoint, the embedded systems are the computing facilities in which the con-
trol and supervision algorithms are implemented. These algorithms include means
for fault diagnosis, feedback control and control reconfiguration. The data network
can be used to connect any of these components. The flexibility of the communica-
tion structure on the one hand and the possible time delays and information packet
dropouts on the other hand are characteristic elements that the global network intro-
duces into the control system. To emphasise these network properties, the network
is drawn as a cloud in the figures below.

http://dx.doi.org/10.1007/978-3-662-47943-8_9
http://dx.doi.org/10.1007/978-3-662-47943-8_10

28 1 Introduction to Diagnosis and Fault-Tolerant Control

Fig. 1.17 Structure of a
cyberphysical system Physical couplings

Physical
 system

Embedded

GlobalCommunication network

C1 C2 CN

Σ••• NΣ2Σ1

network

systems

The digital network can be used in several ways to implement data connections
between the sensors and actuators of the physical system and the controllers or
among the control stations of a systems. Two architectures have attracted considerable
interest in the literature on fault-tolerant control: networked diagnosis and remote
diagnosis. The main ideas are explained in the following paragraphs:

Networked diagnosis. The notion of networked diagnosis is used if the sensor and
actuator data are communicated over a digital network to the diagnostic units. If this
communication is quick enough in comparison to the plant time constants, nothing is
new in comparison to the structures considered before. However, the network has to
be modelled as a separate element in the overall system if it may introduce substantial
time delay due to heavy information traffic. Then diagnostic algorithms have to be
developed and implemented that tolerate this time delay.

On the other hand, the communication network can be used to couple diagnos-
tic units that run on the control equipment of separate subsystems. If these units
do not interact, a decentralised diagnosis is implemented; otherwise a distributed
or a coordinated structure is used. The specific properties of networked diagnosis
appears if during the operation of the diagnostic units the communication struc-
ture is deliberately changed in order to improve the diagnostic result. This situation
uses the flexibility offered by modern communication means. An important question
asks how to adapt the communication structure to the intermediate diagnostic result.
Methods have to be elaborated to answer this question in a systematic way and under
real-time constraints.

Remote diagnosis. If the control unit, which is directly linked to the process under
consideration, is not powerful enough to solve all its tasks it can be extended by
remote components that are linked to the process via data networks like the Internet.

Figure 1.18 illustrates the situation of remote diagnosis for a car where the on-
board component runs on the embedded control equipment of the car and the off-
board component is implemented on a remote computer. The on-board diagnostic
system has to cope with limited computation and memory resources whereas the
remote system can take advantage of the larger computer capacity but has to solve
its tasks by means of the restricted information obtained via the data network. This
situation is typical also for other application areas like energy distribution networks

1.4 Architecture of Fault-Tolerant Control 29

Fig. 1.18 Remote diagnosis

On-board
diagnosis

Off-board
diagnosis

or building automation. The terms “on-board” or “off-board” components which are
common in automotive applications are used here as general terms also for these
other application fields.

In a general setting, remote diagnosis uses both an on-board and an off-board
component. The practical circumstances under which these components have to work
can be summarised as follows:

• The on-board component has to work with restricted computing power and mem-
ory size, which limits the algorithmic complexity of the task to be performed.

• The off-board component has (nearly) unlimited computing power but has to
cope with limited and possibly biased measurement data.

• The data link causes time delays and data losses and restricts the amount of data
that can be transmitted under real-time constraints.

The decomposition of the overall diagnostic task into subtasks for the on-board or
the off-board component, respectively, has to take these restrictions into account.

The diagnostic process is usually structured in several diagnostic steps as described
on p. 14, where the complexity of the model and the amount of measurement data to
be used increase from fault detection over fault isolation towards fault identification.
This fact together with the practical circumstances under which the on-board and the
off-board component works lead to the following decomposition of the diagnostic
task (Fig. 1.19):

• The on-board component solves the problem of fault detection. For this task,
only the model of the faultless system is necessary. The result is a yes/no answer
to the question whether a fault has occurred.

• The off-board component isolates and identifies the fault. These tasks can be
solved only if detailed models of the faulty system together with fault models are
available.

Both components work with appropriately selected input and output signals. All
available input and output data are represented, respectively, by the sequences

V (0, . . . , ke) = (v(0), v(1), . . . , v(ke))

W (0, . . . , ke) = (w(0), w(1), . . . , w(ke)).

30 1 Introduction to Diagnosis and Fault-Tolerant Control

Data
network

Selection of
relevant data

On-board diagnosis

Fault detection

Nominal
model

Fault identification

Off-board diagnosis

Model of faulty
system

Process to be
diagnosed

V W

WDVD

V I

WI
VI WI

~~

Fig. 1.19 Decomposition of the diagnostic task

Only part of these sequences have to be used for fault detection. That is, some data
included in the sequence V (0, . . . , ke) can be deleted to get the reduced sequence
VD(0, . . . , ke). The same happens with the sequence W (0, . . . , ke) to get the sequence
WD(0, . . . , ke) used for fault detection.

A similar selection process concerns the data VI(0, . . . , ke) and WI(0, . . . , ke)

used for fault identification. These data are transmitted over the data network, where
data losses may change them into the new sequences ṼI(0, . . . , ke) and W̃I(0, . . . , ke)

which are received by the off-board component.
Figure 1.19 shows that a design problem of remote diagnosis is to decide which

data should be used by the on-board diagnostic component and which data should
be transmitted over the data network to the off-board component. A further design
problem concerns the adaptation of this selection to the intermediate diagnostic result.
If the data link is used in a bidirectional way, the off-board component can send
requests towards the data selection block in order to obtain those specific data that
can bring about the best possible progress of the fault isolation or identification tasks.

An important issue of remote diagnosis is the asynchronous operation mode of
the on-board and off-board components. Due to the information link, which is used
only in certain time intervals and brings about time delays, both components cannot
be synchronised but their activities have to be structured in such a way that they
tolerate the asynchronous operation modes.

The scheme depicted in Fig. 1.19 is general enough to be applicable for the remote
diagnosis of continuous-variable as well as discrete-event systems. It can be extended
to fault-tolerant control, where the on-board component is either fault-tolerant itself
or obtains accommodation or reconfiguration commands from the off-board compo-
nent. This fault tolerance extends the autonomy of the on-board component.

1.5 Survey of the Book 31

1.5 Survey of the Book

Compared with the well-known controller design task, the main new problems to be
solved in fault-tolerant control can be summarised as follows:

• Modelling of dynamical systems subject to faults.
The dynamical model of the plant should not only describe the faultless, but also
the faulty system for all faults f ∈ F . Hence, it is not sufficient to have the model
available, which has been used for the design of the nominal controller, but this
model has to be extended for the fault cases. Furthermore, for the solution of
the diagnostic problem and for the selection of reasonable control configurations,
model classes other than differential equations or automata tables have to be used.
Consequently, this book presents alternative means for describing dynamical sys-
tems, which are appropriate to answer the basic questions of fault-tolerant control.
It is structured according to these models, where each of the Chaps. 4 through 12
deal with another kind of models and structures of fault-tolerant control.

• Analysis of fault effects.
Fundamental problems concern the fault propagation through the system and the
diagnosability of the faults. The analysis has to show whether the selected mea-
surements provide sufficient information for detecting, isolating and identifying
faults. For the controller redesign, the controllability and observability of the faulty
system is important. Any fault-tolerant control has to rely on redundancies in the
system, which can be activated to stop the evolution of the fault. These fundamen-
tal properties depend upon the structure of the system under investigation and,
consequently, Chaps. 4 and 5 deal with structural models and structural analysis
methods for investigating these properties.

• Methods for fault detection and isolation.
The diagnostic methods explained in this book have been selected for the purpose of
fault-tolerant control. Emphasis is laid on methods that do not only detect, but also
isolate or identify faults. The structural analysis for finding analytical redundancy
relations for fault detection and isolation in continuous-variable systems explained
in Chap. 5 and the diagnostic methods for discrete-event systems described in
Chap. 11 provide novel means of fault identification, which have not yet been
published in a monograph or textbook.

• Redesign of the controller.
Fault accommodation and control reconfiguration methods include severe exten-
sions of well-known controller design methods, because they have to be carried
out completely automatically without any interaction of a human designer. A fur-
ther important issue is the reconfigurability analysis explained in Chaps. 4, 5 and 8.
Chapter 8 presents the two possible fault-tolerance strategies, namely fault accom-
modation and control reconfiguration. The reconfiguration strategy is analysed
from a global perspective that includes the specification and the development of
control solutions, as well as their implementation and their evaluation. Chapter 9

http://dx.doi.org/10.1007/978-3-662-47943-8_4
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://dx.doi.org/10.1007/978-3-662-47943-8_4
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_4
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_9

32 1 Introduction to Diagnosis and Fault-Tolerant Control

develops specific approaches to the fault accommodation and system reconfigura-
tion problems.

• Implementation problems.
Because of the real-time constraints of fault-tolerant control there is a trade-off
to be addressed between the online redesign of the control law (small memory
requirements, but delayed fault recovery due to the redesign procedure) and the
switching to a specific control law in a pre-computed bank of control laws (larger
memory requirements but faster response to the fault occurrence). This trade-off
is addressed in Chap. 8, where a mixed passive–active strategy is introduced to
design a bank of controllers while minimising the number of elements in the bank.
In distributed systems, a similar trade-off appears between the performance of
local controllers and the amount of data that are to be communicated through the
communication network (powerful local controllers imply more communicated
data). Similarly, the performance of local diagnosers depends on the data they are
provided with. Chapter 10 presents an approach based on the notions of minimal
information patterns and minimal communication costs that achieve the desired
diagnostic result.

• Fault-tolerance evaluation.
An important issue in engineering design is the evaluation of the design result.
Whereas for diagnostic systems evaluation criteria have been introduced, e.g.
false alarm or missed detection probabilities, average time between false alarms,
detection delays, mis-isolation measures, there are only a few approaches to the
evaluation of the efficiency of fault-tolerance strategies. Roughly speaking, a fault-
tolerance strategy is more efficient if it allows the recovery of more faults, in a faster
way, with better performances, etc. Fault-tolerance evaluation is a research field
still to be developed and this book presents some preliminary results in Chap. 8,
which introduces several deterministic or probabilistic measures.

• Architectures of fault-tolerant control.
The basic ideas of fault diagnosis and fault-tolerant control will be explained for a
centralised structure, where one diagnostic or control unit is responsible for both
tasks. However, in applications many systems consist of several subsystems that
are physically coupled. For such systems, the control and supervision components
are distributed over the subsystems and have to accomplish their tasks either inde-
pendently of each other or with information exchange. Distributed architectures
are introduced in Chap. 10 for continuous-variable systems and in Chap. 12 for
discrete-event systems.

Outline of the book. The book is structured into three main parts and an introduc-
tion. The introduction (Chaps. 1 and 2) describes the main problems of fault-tolerant
control and introduces two running examples that will be used throughout the book
to illustrate the ideas and methods developed.

Part I of the book (Chaps. 3–5) summarises the models used for fault-tolerant con-
trol and explains methods for the structural analysis of dynamical systems subject to

http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_12
http://dx.doi.org/10.1007/978-3-662-47943-8_1
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_5

1.5 Survey of the Book 33

faults. The main results to be obtained by the methods presented refer to the possibil-
ity to detect and identify faults (diagnosability analysis), the ways that fault influence
a system (fault propagation analysis) and ways to circumvent faults (reconfigurabil-
ity analysis). All results are obtained by means of global models that describe the
system under consideration in terms of its components or that represent the couplings
of the signals describing the system behaviour.

Part II deals with continuous-variable systems (Chaps. 6–10). It summarises
results on fault diagnosis of deterministic or stochastic systems, explains how to
analyse the recoverability of systems with respect to faults and introduces new meth-
ods for fault accommodation and reconfigurable control. Chapter 10 extends these
methods to interconnected systems where the diagnostic units have to be distributed
over the subsystems.

Part III is devoted to discrete-event systems (Chaps. 11 and 12). It concentrates
on systems described by non-deterministic or stochastic automata and explains the
main ideas of fault detection with centralised and decentralised structures.

In summary, this book covers a large range of problems and methods of fault-
tolerant control starting with modelling of faulty systems, presenting diagnostic
methods for different kinds of dynamical systems and finishing with new methods for
fault accommodation and control reconfiguration. With this scope, it includes a lot of
material that has not yet been published in a unified form. This particularly concerns
structural methods of fault-tolerant control and diagnosis of discrete-event systems.
The aim is not to provide an exhaustive survey of all methods but rather to give a
detailed presentation of important methods and tools that proved to be effective in
applications. Precise algorithmic descriptions, guidelines for parameter tuning and
examples should help the reader to gain a thorough understanding of the material.

Comparison to other monographs. Several monographs have appeared during the
last decade in the area of fault diagnosis and a few on fault-tolerant control. The fol-
lowing remarks should explain how this book differs from these recent publications.

Most of the monographs are restricted to a relatively narrow and advanced research
topic, but describe their subjects in many details like the book [228] on robust esti-
mation and its use for fault detection, [54] on active fault detection with the design
of proper auxiliary signals, [190] on diagnosis of a specific class of discrete-event
systems called active systems, [226, 227] on active fault-tolerant control systems
with Markovian parameters, and [5] for sliding mode concepts of fault-tolerant con-
trol. Statistical tests represent broadly used methods to deal with uncertainties in
fault diagnosis as explained in detail in [79] and demonstrated by several applica-
tions. An alternative method uses set-theoretic approaches to represent and process
uncertainties [342].

The textbooks [64, 78, 124, 316] are essentially dedicated to fault diagnosis based
on analytical models of the supervised process by observer-based approaches, parity
space approaches and parameter identification techniques. The first one provides
a thorough study of the observer-based approach including robustness issues and
an introduction to nonlinear systems. The second one is essentially dedicated to
the parity space approach, both in a deterministic and a stochastic context. It also

http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_10
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_12

34 1 Introduction to Diagnosis and Fault-Tolerant Control

includes a discussion of robustness issues and an introduction to statistical testing
and parameter identification methods.

The very recent books [156, 157] give a large survey of various methods for
fault diagnosis and design of fault-tolerant structures and their applications. Fault
diagnosis is tackled with model-based approaches (observer-based, parity space,
and parameter identification methods), data-based techniques (simple single signal-
based methods and classification approaches). Besides, basic redundant structures are
presented for fault-tolerant control. Data-driven methods are thoroughly discussed in
the monographs [182, 383] which also briefly introduce analytical and knowledge-
based methods. These books also explain diagnostic methods based on fuzzy set
theory and artificial neural networks.

Furthermore, several monographs on specific application areas appeared, for
example, [395] on fault-tolerant control of aerospace vehicles, [91] on a flight control
benchmark problem and [254] on process applications.

1.6 Bibliographical Notes

Consistency-based diagnosis. The logical background of consistency-based diag-
nosis is that experiments which are consistent with a given conjecture do not prove
the conjecture to be true, but inconsistency indeed proves it false. This is the basis
of the growth of scientific knowledge as analysed by the philosopher of science, Sir
Karl Popper [278]. The interested reader may also consult [279] for an intellectual
biography.

Consistency-based diagnosis is a general diagnostic principle, which compares the
measurements with the behaviour of some model. This idea has been elaborated first
in the field of artificial intelligence [139, 212]. In Chap. 9 of the monograph [8] the
behavioural notation has been used to show the common foundation of quantitative
and qualitative methods for diagnosis. This interpretation of diagnosis uses the notion
of the system behaviour defined in [384]. Several attempts have been made to combine
diagnostic methods elaborated in control engineering and artificial intelligence [18].

Fault detection and fault isolation. Fault detection has been the subject of long
research with [148, 273] as two of the earliest descriptions of the field. [79, 124, 266]
provide a broad look at the current state of the art for continuous-variable systems,
for which diagnostic methods are mainly based on state observation, on the parity
space approach and on parameter estimation techniques. The monograph [316] gives
a thorough introduction into fault diagnosis by means of identification techniques.
[233] describes the main methods for evaluating the dependability of engineering
systems in a broader perspective. The different structures of centralised, decentralised
and coordinated diagnosis have been discussed for discrete-event systems in [235],
the main issues of remote diagnosis in [114, 302].

http://dx.doi.org/10.1007/978-3-662-47943-8_9

1.6 Bibliographical Notes 35

Fault-tolerant control. Fault accommodation methods have been developed in the
1990s based on robust and adaptive control. The third approach is based on the
switching among controllers, which have been designed offline for different fault
situations. Surveys of these methods are given in [217, 264, 285, 410].

The systematic treatment of fault-tolerant control by reconfiguring the control
loop concerned aerospace examples with [117, 151] being two of the earliest papers
that used model matching or a pseudoinverse technique to give the new control loop
a similar performance as the nominal closed-loop system. A major impetus for the
development of new methods has been given by the COSY-benchmark problems pub-
lished in [163]. Solutions to these problems which have been obtained by alternative
methods are described in Chaps. 12 and 13 of the monograph [8].

Fault-tolerant control of networked systems. Data networking poses restrictions
with respect to the amount of data received, time delays and packet dropouts, all
of which are introduced by the network. These aspects have been investigated, for
example, in [234, 272, 299, 379, 380, 407].

http://dx.doi.org/10.1007/978-3-662-47943-8_12

Chapter 2
Examples

Abstract This chapter illustrates the main problems of diagnosis and fault-tolerant
control by means of three examples, which will be used later in the text.

2.1 Two-Tank System

Description of the system. As the first example, consider the two-tank system de-
picted in Fig. 2.1. The pump causes a liquid flow qP into Tank 1 where the input u(t)
describes the pump velocity. u is determined by a security switch-off, which prevents
an overflow of Tank 1. The inputs to the tank system prescribe the valve positions Va
and V12. The only measured signal is the outflow qM. Hence, the tank system results
in the simple block diagram shown in Fig. 2.2.

In the faultless case, the valve Va is closed and the valve V12 is used to control the
level of Tank 2. Only in case of a valve fault, the upper pipe is used for this purpose.

The control aim results from the requirement of a batch process, in which the
outflow of Tank 2 is used in succeeding parts of cascaded vessels and reactors. The
valve V12 is used to fill and refill Tank 2 accordingly, where Tank 1 is a storage tank,
which is to be filled to the height hmax, at which the security switch-off stops the
pump.

Faults. Two faults are considered. First, a leakage in Tank 1 may occur, which
causes the additional flow qL out of Tank 1. The “size” of the leakage is given by
the parameter cL (Table 2.1). The different approaches to fault diagnosis presented
in the following chapters use this two-tank example with different notions of this
fault. Either a parametric fault is considered where cL denotes the fault size to be
identified or a symbolic fault f is used which represents the faulty situation with the
outflow qL = cL

√
h1 out of Tank 1 where cL is the parameter given in Table 2.1.

The second fault is a blockage of the valve V12 in the closed position. This fault
can be modelled by setting the valve constant c12 to zero.

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_2

37

38 2 Examples

P

u

qLC

Tank 1

Tank 2

h

h

max

1

h2

P

Va

V12

q2

qM

qLLeakage q12

Fig. 2.1 Two-tank system

Fig. 2.2 Block diagram of
the tank system

Two-tank system
qMva

f

v12

The example is used for illustrating the following diagnostic and fault-tolerant
control problems:

• Fault detection: Determine whether a fault has occurred. The valve fault can be
detected due to the decreasing outflow from Tank 2, which eventually vanishes.
For the leakage the problem is more involved because neither the inflow qP nor
the level h1 is assumed to be measured. Hence, the stationary outflow from Tank 2
is the same as before and the leakage and the fault can only be found by small dy-
namical effects that are “visible” in the outflow measurement just after the leakage
occurs.

• Fault isolation: Determine which part of the system is faulty.

• Fault identification: Determine the size of the leakage.

• Fault accommodation: Design a fault-tolerant level controller that maintains the
liquid level in Tank 1 at a given set-point independently of whether the leakage is
present or not.

• Control reconfiguration: In case of the valve fault, the auxiliary valve Va has to
be used. The reconfiguration problem includes to automatically find that switching
to the second pipe is the strategy to apply.

2.1 Two-Tank System 39

These problems are considered under different circumstances where the tank levels
or the outflow from Tank 2 are measured numerically or in a quantised way. Therefore,
different models are appropriate to describe the tank system and different methods
have to be used to solve the diagnostic problem.

For this simple example, it is obvious under what conditions and how the given
problems can be solved. If the pump is controlled according to level measurement
h1, a static tank level will be reached. However, the leakage can only be found if the
dynamical changes of the tank levels or of the outflow from Tank 2 are taken into
account, because the pump is assumed to be strong enough to maintain the level of
Tank 1 at the prescribed value even in case of the leakage. Hence, the system has the
same static behaviour with and without the fault.

The diagnostic result will certainly be different if the outflow is the only mea-
surement compared with the case in which all tank levels are measured. Also, the
diagnostic problem becomes more difficult if instead of the numerical values of the
tank levels only quantised measurements are possible.

If qP is an additional measurement, the fault can be detected by comparing the mean
value of qP with its nominal value. If this value is increased, more liquid flows out of
Tank 1 which under the given circumstances can only occur if the tank has a leakage.

The fault-tolerant controller is simply found as a PI-feedback of the tank level h1
towards the pump velocity uP. For reasonable leakages (reasonable values of qL) the
controller is able to hold the level at the prescribed value even if the fault occurs.

Model of the tank system. The two tanks have the liquid levels h1(t) and h2(t),
which are used as state variables in the model given below. The liquid flows are

Table 2.1 Signals and parameters of the tank system

Parameter Value and unit Meaning

h1 , h2 [m] Tank levels in meters

qM [l/min] Measured outflow in litres per minute

u [1] Control input to the pump

q12 , q2 , qP , qL [m3/s] Volume flows in cubic metres per second

A 1.54 · 10−2m2 Cross-section area of both tanks

hmax 0.60 m Height of both tanks

unom 1.0 Nominal pump velocity

umax 5.0 Maximal pump velocity

c12 6.0 · 10−4m5/2/s Flow constant of valve V12

c2 2.0 · 10−4m5/2/s Flow constant of the outlet of Tank 2

cL 8.0 · 10−4m5/2/s Flow constant of a leakage in Tank 1

cM 12.0 l/(min ·m1/2) Constant of outflow sensor

q̄P 1.5 · 10−4m3/s Flow constant of the pump

40 2 Examples

denoted by q, the ground area of the cylindric tanks by A. The parameters used in
the example are summarised in Table 2.1.

The following Eqs. (2.1), (2.2) describe the mass balance, where the tank levels h1
and h2 are related to the liquid flows indicated in Fig. 2.1 as follows:

ḣ1(t) = 1

A
(qP(t) − qL(t) − q12(t)) (2.1)

ḣ2(t) = 1

A
(q12(t) − q2(t)). (2.2)

The measured signal qM is proportional to the outflow q2:

qM = cM · q2. (2.3)

The different flows used in the equations above can be obtained by Toricelli’s law:

q12(t) =
{

c12 sign (h1(t) − h2(t))
√|h1(t) − h2(t)| if V12 is open

0 else
(2.4)

q2(t) =
{

c2
√

h2(t) if h2(t) > 0
0 else,

(2.5)

qP(t) =
{

u(t) · q̄P if h1(t) ≤ hmax

0 else,
(2.6)

qL(t) =
{

cL
√

h1(t) if h1(t) > 0 and Tank 1 has a leakage
0 else.

(2.7)

The pump is controlled by the security switch-off included in the level controller LC
shown in the figure such that the level in Tank 1 is maintained below the height hmax.
The pump velocity is given by the control input uP. Its nominal value is given by
u =unom, and its maximal value by umax. If a control problem should be illustrated
in the later chapters, then Eq. (2.6) is supplemented with an equation describing the
control law u = k(h1).

The equations given above are hybrid because they include differential and alge-
braic equations as well as switching conditions, which result from the physical laws
and from a security switch installed at Tank 1. Therefore, the differential equation
includes several inequalities that describe the validity range of the given functions.

The tank will be used in many places to illustrate methods and results. For sim-
plicity, often the parameter A is set to one so that the model gets the simpler form

ḣ = qi (t) − qo(t),

where qi and qo denote the input and the output flow.

2.2 Three-Tank System 41

2.2 Three-Tank System

Consider the three coupled tanks depicted in Fig. 2.3. These tanks are connected by
pipes which can be controlled by different valves. Water can be filled into the left and
right tanks using two identical pumps. Measurements available from the process are
the continuous water levels hi of each tank and, additionally, from tank T2 discrete
signals from two capacitive proximity switches signalling whether the water level in
the tank is above or below the position of the sensor.

In the nominal case (Fig. 2.4), only the left tank T1 and the middle tank T2 are
used. The right tank T3 and pump P2 act as redundant hardware. The purpose of the
system is to provide a continuous water flow q2(t) = qN to a consumer. Therefore,
the water level in the middle supply-tank T2 has to be maintained within the interval
h2L < h2 < h2H, i. e. between the two discrete level sensors of tank T2.

Water flows between the tanks can be controlled by several valves (V12L, V12H,
V23L, V23H). All valves can only be completely opened or completely closed (on/off
valves). The connection pipes between the tanks are placed at the bottom of the tanks
(pipes with valves V12L, V23L) and at a height of hH (pipes with valves V12H, V23H).
One of the considered faults is a leakage in tank T1 (see below). If such a leakage
occurs, there is an additional outflow qL of tank T1 (cf. Fig. 2.3).

Dynamical model. Depending on the water levels and the position of the valves,
different nonlinear state-space models are valid. In general, the water flow qi j from
Tank i to Tank j can be calculated using Toricelli’s law

qi j = ci j · sign (hi − h j) · √|hi − h j |,

Pump

LC

Tank T Tank T

Leakage

Outflow to
Redundant hardware

consumer

P1 PumpP2

qP1

V12H 2 Tank T

LC

3

V12L V23L

V23H

q23L

q23Hq12H

hmax

h1

qL q2q12L

h2

hH hH

hmaxqP2

h3

h2H
h2L

1

Fig. 2.3 Three-tank system

42 2 Examples

Pump P

PI

LI

LC

Redundant harware

controller

on-off
controller

consumer
Outflow to

Tank T

Leakage

h

1 Pump P2

1 Tank T2 Tank T3

ref
1

h1

h2H
h2LV12L

V12H V23H

V23L
• • •

• • •

hmax hmax

Fig. 2.4 Nominal configuration of the three-tank system

where ci j is a constant depending on the geometry of the connecting pipe and the
valve and hi , h j are the water levels. The change of water volume V in a tank is
described by

V̇ = A · ḣ =
∑

qin −
∑

qout, (2.8)

where
∑

qin is the sum over all water inflows and
∑

qout the sum over all water
outflows of the tank. In (2.8), A is the cross-section area and h the water level in the
cylindric tank. For the three tanks Eq. (2.8) yields:

ḣ1 = 1

A
(qP1 − q12L − q12H − qL) (2.9)

ḣ2 = 1

A
(q12L + q12H − q23L − q23H − q2) (2.10)

ḣ3 = 1

A
(qP2 + q23L + q23H). (2.11)

The flows in Eqs. (2.9)–(2.11) depend on the levels h1, h2 and h3 as well on the
position of the valves and the commands uP1, uP2 given to the pumps. For example,
the existence of the flow q12H depends on the water levels h1 and h2 and the position
of the valve V12H. The flow is only non-zero if the valve is open and at least one
liquid level exceeds the height hH of the upper connecting pipe.

More precisely, the following expressions are obtained for the flows, with the
parameters given in Table 2.2:

qP1 =

⎧⎪⎨
⎪⎩

cP1 · uP1 if h1 ≤ hmax and cP1 · uP1 < qmax
P1

qmax
P1 if h1 ≤ hmax and cP1 · uP1 ≥ qmax

P1
0 otherwise,

2.2 Three-Tank System 43

qP2 =

⎧⎪⎨
⎪⎩

cP2 · uP2 if h3 ≤ hmax and cP2 · uP2 < qmax
P2

qmax
P2 if h3 ≤ hmax and cP2 · uP2 ≥ qmax

P2
0 otherwise,

q12L =
{

c12L sign (h1 − h2)
√|h1 − h2| if V12L open

0 otherwise,

q12H =

⎧⎪⎪⎨
⎪⎪⎩

c12H
√|h1 − hH| if h1>hH, h2 ≤hH, V12H open

−c12H
√|h2 − hH| if h1 ≤hH, h2>hH, V12H open

c12H sign (h1 − h2)
√|h1 − h2| if h1>hH, h2>hH, V12H open

0 otherwise,

q23L =
{

c23L sign (h2 − h3)
√|h2 − h3| if V23L open

0 otherwise,

q23H =

⎧⎪⎪⎨
⎪⎪⎩

c23H
√|h2 − hH| if h2>hH, h3 ≤hH, V23H open

−c23H
√|h3 − hH| if h2 ≤hH, h3>hH, V23H open

c23H sign (h2 − h3)
√|h2 − h3| if h2>hH, h3>hH, V23H open

0 otherwise,

q2 =
{

c2
√

h2 if h2 > 0
0 otherwise,

qL =
{

cL
√

h1 if h1 > 0 and leakage in tank 1
0 otherwise.

Nominal configuration. In the nominal case, valves V12L, V23H, V23L are closed
and not in use. Valve V12H is used to control the water level in tank T2, pump P1 to
control the level in tank T1. To control the water levels in the reservoir-tank T1 and
the supply-tank T2, a conventional PI-controller and an discrete (on–off) controller
are used (Fig. 2.4):

uP1(t) = k(h1(t), href
1)

= KP · (href
1 − h1(t)) + KI ·

∫ ′

0
(href

1 − h1(τ))dτ (2.12)

V12H =
⎧⎨
⎩

open : h2 ≤ h2L
close : h2 ≥ h2H
no change : h2L < h2 < h2H,

(2.13)

where KP and KI are controller parameters and href
1 is the set-point for tank T1.

Equation (2.13) describes under what conditions the on–off controller changes the
position of the valve from opened to closed or vice-versa. All parameters of the
controllers are given in Table 2.2.

44 2 Examples

Table 2.2 Parameters and variables of the three-tank system and the controllers

h1, h2 , h3 [m] Tank levels in meters

qP1, qP2, q2 , qL [m3/s] Volume flows in cubic metres per second

q12L, q12H [m3/s] Volume flows in cubic metres per second

q23L, q23H [m3/s] Volume flows in cubic metres per second

A 1.54 · 10−2m2 Cross-section area of the three tanks

hmax 0.60 m Height of the three tanks

hH 0.60 m Height of the three tanks

c12L 1.6 · 10−4m5/2/s Flow constant of valve V12L

c12H 1.6 · 10−4m5/2/s Flow constant of valve V12H

c23L 1.6 · 10−4m5/2/s Flow constant of valve V23L

c23H 1.6 · 10−4m5/2/s Flow constant of valve V23H

c2 1.6 · 10−4m5/2/s Flow constant of the outlet of tank 2

cL 1.6 · 10−4m5/2/s Flow constant of a leakage in tank 1

cP1 1.0 · 10−4m3/s Flow constant of pump 1

cP2 1.0 · 10−4m3/s Flow constant of pump 2

qmax
P1 1.0 · 10−4m3/s Maximum flow of pump 1

qmax
P2 1.0 · 10−4m3/s Maximum flow of pump 2

h ref
1 0.50 m Set point of PI controller

K P 10.0 1/m Proportional gain of PI controller

K I 5.0 · 10−21/ms Integral gain of PI controller

h2L 0.09 m Position of lower discrete level sensor

h2H 0.11 m Position of upper discrete level sensor

In summary, the nominal behaviour is characterised by the following:

• Only the left tank and middle tank are in use, water level h2 must be medium, the
set-point for h1 is chosen to href

1 .
• Valves V12L, V23L, V23H are closed.
• No leakage occurs (qL = 0).
• The PI-controller (2.12) controls the level h1 of tank T1 with pump P1 using a

continuous level sensor.
• The on–off controller (2.13) controls the level h2 of tank T2 with valve V12H using

discrete level sensors.

Reconfiguration problem. Three different fault scenarios are given:

1. Fault f1: Valve V12H is closed and blocked.
2. Fault f2: Valve V12H is opened and blocked.
3. Fault f3: A leakage in Tank T1 occurs (qL �= 0).

2.2 Three-Tank System 45

The reconfiguration task is to find automatically a new control configuration of the
three-tank system such that

• the water level h2 remains between h2L and h2H for all scenarios, i. e. the relation

[h2(k)] = medium (2.14)

should hold for k ≥ k̄ for a possibly small k̄.
• for scenario 3, the loss of water is minimal, i.e.

[h1(k)] = empty (2.15)

should hold for k ≥ k̄ for a possibly small k̄.

The reconfiguration task consists in finding a new control structure by selection of
actuators and sensors, new control laws and new set-points for the control loops,
such that the control aims above are met. If needed, the use of redundant hardware
components is possible. Obviously, the idea of reconfiguration cannot be satisfied
by simply changing the parameters KP or KI, but a structural change of the system
is necessary.

2.3 Ship Steering and Track Control

Ship navigation and steering is used as an example to illustrate different methods in
both diagnosis and fault-tolerant control. A ship is illustrated in Fig. 2.5. The ship is
steered by its rudder, the angle of which is δ. The ships heading angle is denoted ψ,
the turn rate ω3. The ship velocity ahead is v1, velocity sideways is v2.

To navigate a ship, information is needed on its position and heading angle as a
minimum. In confined waters, distance is needed to a desired track that the ship is
supposed to follow.

Fig. 2.5 Motion of a ship
steered by its rudder. A
rudder angle to port side
(left) generates a turn to the
port side of the ship. When
turning to port, there is also a
side velocity towards
starboard (right)

North

v1

v2
δ

ψ

46 2 Examples

Ship

Disturbances

Heading
controller

Track
error

Track
controller

Track
data

Manual
heading
demand

Manual
rudder

demand

ref etr

ref, 1, 2

m, 3m

etr,m

δψ

ψ

ψ

ψ

ω

ν ν

Fig. 2.6 Cascaded architecture of controllers for ship steering. The innermost loop is manual
steering with rudder demand as input. The second loop provides automatic heading control, the
third implements automatic track control

Should navigation data be wrong, ships may collide with banks or with other
vessels. As unexpected manoeuvres can have fairly serious consequences, natural
performance requirements exist to diagnosis and fault-tolerant control algorithms.
Requirements are derived from the maximal motion the ship could make before a
fault was diagnosed and a remedial action taken.

Control modes. In our ship steering example, three levels of steering control are
considered:

• Hand steering. The rudder demand is manually set by a helmsman.
• Course control. An autopilot sets the rudder demand according to the deviation

between instantaneous heading and a demanded course (heading reference). The
ship’s turn rate is used for derivative control action.

• Track control. A set of way-points specify a desired track for the ship to follow.
The distance of the ship to the track is calculated and used by the track controller to
command a heading reference to the heading controller. This reference is updated
in each sampling cycle by the track controller.

A block diagram of the ship with the above-mentioned controllers is shown in
Fig. 2.6.

Instrumentation. The ship motions and position are measured using dedicated sen-
sors. The ship’s heading is measured by some form of gyro compass, distance to a
desired track is calculated from a position measurement, with the position measured
by a GPS (Global Positioning System) receiver. Two identical gyro compasses are
commonly available due to the critical nature of the heading measurement. In the
sequel, we will consider the following types of instruments:

• Instrumentation with gyro compass and rate gyro as two separate units. The two
measurements are independent.

2.3 Ship Steering and Track Control 47

Rudder
angle

b

H(ω)

13

3

3m

W

m

Steering Rate

ff

measurement
Heading

measurementcharacteristic

Wave
disturbance

ψ

ψ

ψ

ω

ω

ω

ω

ω
ω

δ

δ

1

∫ ∫+ +

+ +13
η

Fig. 2.7 A simple dynamical model of a ship steered by the rudder. Waves act as unknown input
and measurement faults are considered on turn rate and heading angle measurements

• Measurement of track error by a navigation computer that measures ship’s position
using a GPS receiver.

Faults. For the example we consider four possible faults. These faults and the con-
sequences they will have in the example are as follows:

• Fault in the heading measurement: In heading control mode, this fault will cause
the ship to steer a wrong course. In track control mode, there will be a permanent
track error present.

• Fault in the turn rate measurement: In heading control mode, this fault will cause
a transient error in the heading, but will then be compensated by the controller. A
similar behaviour will be seen in track control mode.

• Fault in the measurement of distance to the desired track: This has no effect
in heading control. In track control mode, there will be an offset equal to the size
of the fault.

• Fault in the track controller: It causes the heading demand output from this
controller to remain at the value it had when the fault occurred. With heading
demand being input to the heading controller, this will sooner or later cause the
ship to steer away from the desired track.

The sensor faults are modelled as additive faults. The rate gyro measures ω3m and
the gyro measures the heading angle ψm. This is illustrated in the block diagram in
Fig. 2.7.

Dynamics of the ship. On a ship, a desired turn rate is obtained by turning the
rudder to a certain angle. The input variable is hence rudder angle and the output
is turn rate. Waves act as a disturbance to the turn rate, and the combined signal is
integrated to give the actual heading of the ship. This dynamics is illustrated in the
block diagram in Fig. 2.7. Turn rate and heading angle are measured variables, the
sensors are subject to faults. These are added as fault signals in Fig. 2.7.

48 2 Examples

The following equations describe the steering problem using the simple model.
Waves contribute to turn rate by ωw. The control input is the rudder angle δ. The
measured signals are ψm and ω3m.

In sections dealing with the stochastic case, measurement noise is present on sensor
signals. If νω(t) and νψ(t) are noise signals on the turn rate or heading measurements,
respectively,

ω̇3(t) = b(δ(t) + H(ω3))

ψ̇(t) = ω3(t) + ωw(t)
ψm(t) = ψ(t) + fψ(t) + νψ(t)
ω3m(t) = ω3(t) + ωw(t) + fω(t) + νω(t)

(2.16)

where H(ω) is the steady-state relation between turn rate and rudder angle. In the
literature, this is the steering characteristic of the ship.

In the example, we treat the steering characteristic as linear such that

H(ω3) = η1 ω3

The sign convention is that angles are taken positive around the third axis, which
points downwards as seen from a surface ship. A positive rudder angle (clockwise)
will turn the ship counter-clockwise, which corresponds to a negative value of turn
rate. Hence, η1 is negative for a ship that is directionally stable.

In the real world, the relation between a rudder angle and the turn rate is not linear.

H(ω3) ≈ η0 + η1 ω3 + η2 |ω3| ω3

Large tankers or container ships may be directionally unstable in a region around
zero turn rate angle. This is a consequence of a balance between hydrodynamical
forces on the hull. As turn rate builds up, a directionally unstable ship eventually
becomes stable. A directionally unstable ship will enter into a steady turn and move
in a circle if the rudder is left in neutral position. A directionally unstable ship will
be used to illustrate diagnosis techniques for unstable physical systems.

The variables and parameters in the ship example are listed in Table 2.3.

Heading control. The autopilot to control the ship heading in this example is a
linear quadratic design, equivalent to a PD controller without any filtering, signal
smoothing or integral action

δ(t) = Lω ω3m + Lψ (ψref − ψm). (2.17)

A block diagram of the autopilot loop is shown in Fig. 2.8.

Track control. Track control means that the ship is commanded to follow a line
(great circle) over the sea bottom. The desired track is specified to the controller,
and position instruments provide the track error. The control architecture for track
control was shown in Fig. 2.6.

Requirements. The requirement to fault-tolerant control for the ship steering exam-
ple are the following:

2.3 Ship Steering and Track Control 49

Table 2.3 Signals and parameters of the ship steering example

Parameter Typical value and unit Meaning

ω3, ωw [deg/s] Turn rate (angular velocity in yaw)

ψ [deg] Ship’s heading angle

δ [deg] Rudder angle

Lψ 1 [deg]/[deg] Gain in heading control

Lω 2 [deg]/[deg/s] Rate gain heading control

Le 1 [deg]/[m] Gain in track controller

b 2.2 [deg/s2]/[deg] Gain factor for ship

η0 0.0 [deg] Rudder bias

η1 -10.0 [deg· s−1]/[deg] Slope of steering characteristic

(Stable ship)

η2 -20.0 [deg]/[deg2/s2] 2nd order parameter in steering

characteristic

v1 10 [m/s] Ship’s forward speed (surge)

Fig. 2.8 Simple heading
controller (autopilot) for the
ship example

L

L

ref
w

f

W

3
Ship

Wave

3m m

f

δ

ω ω

ω

ω

ψ

ψ

ψ

ψ

ψ

• An undesired alteration in the ship heading (ψ) must not exceed 5 deg.
• An undesired alteration in the ship turn rate (ω3) must not exceed 0.2 deg/s
• An undesired alteration in the ship position relative to the track (e)must not exceed

5 m
• An undesired alteration in the ship velocity perpendicular to the track (ė) must not

exceed 0.5 m/s

These requirements can be used as objective measures for requirements capture,
including detection delay and time to reconfigure.

Part I
Analysis Based on Components and System

Structure

Chapter 3
Models of Dynamical Systems

Abstract Dynamical systems can be modelled from different viewpoints. This
chapter summarises the main notions. Each of the succeeding chapters uses one
of these models for fault diagnosis and fault-tolerant control.

3.1 Fundamental Notions

Fault-tolerant control is based on models. These models have to describe the nominal
as well as the faulty system. The following introduces the different models which
can be used for fault-tolerant control, starting with the definition of a system as a set
of interconnected components, and introducing faults as events which prevent the
system components to perform the function they have been designed for.

Dynamical systems. A system is a set of interconnected components. Each of the
components has been chosen (or designed) by the system engineer so as to achieve
some function of interest. A function describes what the design engineer expects
the component to perform, independently of how it is performed. A component
performs some function because it has been designed so as to exploit some physical
principles, which in general are expressed by some relationships between the time
evolution of some system variables. Such relationships are called constraints, and
the time evolution of a variable is called its trajectory.

The components are interconnected by energy or information flows. Energy flows
characterise physical systems, which are called “process”. Information flows char-
acterise information and control systems.

To illustrate these notions, consider for example a tank. “Storage”, which is the
function classically associated with it, refers to a special operating mode in which
the input and the output flows are both equal to zero. In that mode, the mass in the
tank stays constant, which indeed justifies the “storage” denomination. However,
many different functions could be assigned to a tank, for example, the decoupling
(smoothing) of the output flow from some variations of the input flow. This example
shows that the notion of function is not univoque, unless the function is understood
through the mathematical expression of the constraint that it introduces. In the tank

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_3

53

54 3 Models of Dynamical Systems

Plant

Actuators Process Sensors

Control algorithm

u y

Fig. 3.1 Controlled system

example, the tank function would be the “integration” one, since the associated
constraint is

dA(h)h(t)

dt
= qi (t) − qo(t),

where A(h) is the cross-sectional area, h(t) is the level of the liquid contained in the
tank at time t and qi (t) and qo(t) are the inflow and outflow at time t .

Controlled systems. Some of the components may have been introduced with the
aim of controlling the process, i.e. being able to choose, between all the possible
system trajectories, the one which will bring some expected result (Fig. 3.1). Those
components which allow to impose the trajectory of a given variable (or to influence
the trajectory of a given variable) are called actuators. They establish some constraint
between the variables of the process and some control variable, which is called control
signal.

For example, the function of an input valve is to control the input flow in some
tank. An analog input valve is associated with the constraint

qi (t) = ku(t)
√

Δp(t),

where k is some constant parameter, u(t) is the control signal and Δp(t) is the
differential pressure on both sides of the valve. Note that, as it is seen from the
expression of the constraint, the input valve actually controls the input flow only
when the differential pressure Δp(t) is controlled (or fixed) by another means. In
practice, the signal u(t) controls the ratio qi (t)√

Δp(t)
.

If instead of a continuous valve an on–off valve is used, a different constraint is
associated, namely

u(t) = 0 ⇒ qi (t) = 0

u(t) = 1 ⇒ qi (t) = α,

3.1 Fundamental Notions 55

where α is a given constant and 0, 1 are two logic values which stand for the control
signals of “closed valve” or “open valve”, respectively.

Actuators may be driven (i.e. control signals may be generated) by human op-
erators or by control algorithms. In both cases, closed-loop control demands some
information about the actual values of some system variables to be known. Sensors
are components which are designed so as to provide this information. An example
of such a component is a level sensor, whose function is to provide an image of the
actual level in the tank. An analog sensor is associated with the constraint

y(t) = h(t) + ε(t),

where y(t) is the signal provided by the sensor at time t and ε(t) is some stochastic
process which models the measurement noise, e.g. with normal distribution N (0,σ).
A discrete sensor is associated with a constraint expressed by a set of rules, an example
of which is given in the following table:

h(t) ∈ [0,α[⇒ y(t) = 0
h(t) ∈ [α,β[⇒ y(t) = a
h(t) ∈ [β, γ[⇒ y(t) = b
h(t) ∈ ≥ γ ⇒ y(t) = c,

where a, b, c and α,β, γ are given constants.

Thus a controlled system is a quadruple:

<process, actuators, sensors, control devices and algorithms>.

Example 3.1 Single-tank system
Consider the following controlled system:

<(tank, output pipe), input valve, level sensor, level controller>.

• Component 1: Tank
Function: integration
Constraint: A dh(t)

dt = qi (t) − qo(t)

• Component 2: On–off input valve
Function: control the input flow
Constraint: qi (t) = α if u(t) = 1

qi (t) = 0 if u(t) = 0

• Component 3: Output pipe
Function: deliver the output flow
Constraint: q0(t) = k

√
h(t) where k is some parameter (the output pressure is supposed to

be known).

56 3 Models of Dynamical Systems

• Component 4: Analog level sensor
Function: provide an image of the actual level in the tank
Constraint: y(t) = h(t) + ε(t), ε ∼ N (0, σ)

• Component 5: On–off control algorithm
Function: regulate the level in the tank
Constraint: if y(t) ≤ h0 − r then u(t) = 1,

if y(t) ≥ h0 + r then u(t) = 0, where h0 and r are given constants. �

Faults. Systems are designed in order to achieve some objectives. Normal operation
is an operating mode in which the system objectives are achieved. Normal operation
is defined as the simultaneous occurrence of two situations:

1. The components perform properly the functions they have been assigned. This
means that they really behave as the designer expected when he designed them,
i.e. the constraints they apply to the system variables are the nominal ones.

2. The variables occuring in the component constraints have values in some domains
that are compatible with the system objectives.

From this, it follows that two kinds of faults can be distinguished. Internal faults
change the constraints describing the components. External faults are associated
with variables whose value does not allow to achieve the system objectives. It can
be noticed that internal faults refer to the system state, while external faults refer
to the system objectives. Indeed, healthy systems might be unable to achieve the
objectives they have been assigned, as the result of inadequate input signals or strong
disturbances. On the contrary, faulty systems might still be able to achieve their
objective through fault accommodation procedures.

Example 3.2 Internal faults of the tank
Consider the single-tank system. Examples of internal faults are the following:

• Process fault: The tank is leaking.
Then the description of Component 1 introduced in Example 3.1 is replaced by the follow-
ing:
Component 1: Leaking tank
Constraint: dh(t)

dt = qi (t) − qo(t) − ql(t) where ql(t) is some (unknown) leakage flow.
• Actuator fault: The input valve is blocked open.

Then Component 2 is described by the following:
Component 2: Blocked-open input valve
Constraint: qi (t) = α whatever the value of u(t).

• Sensor fault: The measurement noise has improper statistical characteristics.
Then Component 3 is described by the following:
Component 3: Level sensor
Constraint: y(t) = h(t) + ε(t) with ε ∼ N (0,Σ) (instead of N (0, σ)). �

Example 3.3 External fault of the tank
Component 4 defined in Example 3.1 is a control algorithm whose function is to regulate the
level in the tank, the objective being to keep h(t) within the interval (h0 − r, h0 + r) for any
initial value of the level which belongs to this interval. Note that this objective is expressed in
terms of two inequality constraints:

3.1 Fundamental Notions 57

h(t) ≤ h0 + r

h(t) ≥ h0 − r.

The control signal generated by this algorithm is the input of Component 2 (the actuator)
which delivers an input flow α if y(t) ≤ h0 − r holds. It is easily seen that even in the absence
of any internal fault, the system objective cannot be achieved for output flows q0(t) which
satisfy, in some time interval (t1, t2), the relation

1

A

t2∫
t1

q0(t)dt > h(t1) + α(t2 − t1) − h0 + r.

One can also notice that in the presence of a leakage in the tank (internal fault), the system
objective may still be achieved provided that the above inequality does not hold when q0(t)
is replaced by q0(t) + ql(t). �

3.2 Modelling the System Architecture

Generic component models describe the system architecture, by describing the sys-
tem components and their interconnection. For example, sensors, actuators and uni-
tary process devices are elementary components, but higher level ones can be built
from their interconnection. A set of interconnected components can be seen, at a
higher hierarchical level, as one single complex aggregated component. For exam-
ple, the aggregation of a tank, an input valve, an output pipe, a level sensor and
a regulator (with consistent connection between them) is a high-level component,
namely the single-tank system. Thus, components can be considered at any level
in the system hierarchical decomposition, and any subsystem (including the whole
system itself) can be considered as a component.

Therefore, the system architecture can be described by instantiating a generic
component model, at any level of the system hierarchical description. The aim of
the generic component model is to provide a common formal modelling frame for
every system component, so as to perform systematic manipulations for the purpose
of fault diagnosis and fault-tolerant control design. It is not intended to describe the
behaviour of the variables which are associated with the component (this is the aim
of the behaviour model), but the services that the component provides seen from the
user viewpoint. In that context, the user is either another component or the human
operator.

Services. A component S is first described by the list of the services that it provides
to its users, S = {si , i ∈ Is}. A service si is a transformation of some consumed
variables (consi) into some produced variables (prodi), which is performed by the
component according to a given procedure (proci), either in a systematic way, or
only upon some specific request (rqsti).

58 3 Models of Dynamical Systems

For example, a tank consumes input and output mass flows, and produces a stored
mass, using an integration procedure (note that the output flow is indeed an input
variable for the integration procedure), thus providing an integration service (whose
behaviour model is ḣ(t) = qi (t) − qo(t)). This transformation does obviously not
need to be requested. On the contrary, the measurement service of a sensor consumes
(an often neglected amount of) energy from the outside world and produces a signal
which is the image of the measured variable, by means of the transducer, at each
system clock pulse which requests the sensor analog to digital converter operation.

In general, the transformation procedure needs some resources (resi) to be avail-
able, and it may be enabled or disabled at different times (enablei). Therefore, the
description of a service is a 6-tuple:

si = {consi , prodi , proci , rqsti , enablei , resi } (3.1)

For example, the integration service of the tank is defined by the 6-tuple:

cons = {qi (t), qo(t)}
prod = {h(t)}
proc : ḣ(t) = qi (t) − qo(t)
rqst = 1 (which means that it is always true)
enable = 1
res = {tank, input pipe, output pipe} .

Versions. Some components exhibit built-in fault tolerance possibilities, which
means that they are still able to provide some services even if the associated re-
sources are faulty and no longer available. This is only possible if there are different
means to perform the same transformation, among which at least one does not use
the faulty resources. In that case, the service is said to exist under several versions,
where each version is a 6-tuple like (3.1), which can be used indifferently for the
same purpose. It is worth noting that all the versions of the same service share the
same request and produce the same output value, but they cannot be simultaneously
enabled, and at least one among the input signals, procedures and hardware resources
are different from one version to another one. Moreover, since several versions might
be able to provide the same result at a given time, there is the need for a mechanism
which enables only one of them when the request for the service is issued.

For example, consider a sensor which includes two redundant transducers to mea-
sure the same variable. Let

y1(t) = x(t) + ε1(t), ε1(t) ∼ N (0,σ1)

y2(t) = x(t) + ε2(t), ε2(t) ∼ N (0,σ2)

be the two measurement equations, where x(t) is the unknown variable to be mea-
sured, yi (t), i = 1, 2 are, respectively, the two transducers output, and εi , i = 1, 2
are the measurement noises, with the two Gaussian distributions N (0,σi), i = 1, 2.
The measurement service of this sensor could obviously be provided under different
versions, namely

3.2 Modelling the System Architecture 59

Version Procedure

1 y(t) = σ2
σ1+σ2

y1(t) + σ1
σ1+σ2

y2(t)
2 y(t) = y1(t)
3 y(t) = y2(t)

where version 1 could be the nominal one, version 2 could be used when transducer
2 is faulty and version 3 would be used when transducer 1 is faulty.

Use-modes. Not all the services provided by a component are enabled at any time.
For that reason, subsets of services are gathered into use-modes, whose evolution is
described by an automaton, which shows the possible transitions from one use-mode
to another one, and the conditions under which these transitions are fired.

For example, a typical controller could be described by three use-modes, namely
Off, Initialise, On, whose content (services) and evolution (automaton) are given in
the following table:

Mode Possible transitions Enabled services

Off To_Initialise, To_On
On To_Off, To_Initialise Compute_control, Display_set_point
Initialise To_Off, To_On Enter_set_point, Display_set_point

Building systems from components. As already mentioned, systems (or subsys-
tems) are high-level components, which are built by the aggregation of lower level
ones, following a bottom-up approach. Whatever the component level, its generic
model includes its use-mode automaton, and the services which are available in each
use-mode. Systematic aggregation procedures are defined in order to compose the
generic models of low-level components and obtain the generic models of high-level
ones.

Fault tolerance analysis. A use-mode is associated with one or several objectives that
the component or system must achieve. At any time, the current use-mode defines the
current objective, and the enabled services (requests for other services are rejected).
The system fault tolerance results from the fact that, in spite of the failure of some
resources, the services which are necessary to achieve the objectives of the current
use-mode still exist (under at least one version).

3.3 System Behaviour - Basic Modelling Features

Variables. A first question which arises is to select those variables which are of in-
terest to describe the system behaviour. Process components generally introduce
power and energy variables, while control systems introduce control and infor-
mation signals. Therefore, the system variables to be considered are all quantities
which are constrained by system components (process, actuators, sensors, control and

60 3 Models of Dynamical Systems

estimation algorithms). Note that for systems that obey the Markov property, there
is a minimal set of variables which summarise the whole past history of the system
until time t (the state variables). The evolution of the state at time t only depends on
its value at time t and on the values of the input at time t .

Once the system variables are defined, a second question is to decide about the set
of values they can be assigned. Quantitative variables take their values in a subset of
the real numbers (which is totally ordered, and provided with the four classical oper-
ations), while qualitative variables take their values in a given finite set of symbols,
which may be ordered or not. It can be useful to define variables whose values are
the segments of some partition of the real line. The coarser the partition, the coarser
the granularity of the variable. A symbol is often associated with each segment of
the partition, e.g. small, medium, large. Abrupt transitions from one value to another
one can be avoided using fuzzy segments instead of crisp ones.

Time. The most classical time variable takes its values in the set of positive real
numbers (continuous time). In discrete-time systems, the set of positive integers (or
any set isomorphic to that one) is used when sampled-data systems are considered.
This time representation is called synchronous since practical sampling systems are
driven by a clock. On the contrary, in event-driven systems, time is considered only
at each event occurence.

Constraints. The evolution of the system is described by a set of constraints which
apply to the system variables. The constraints can be classified according to what
they represent and to the form they take.

What constraints represent. In the basic modelling step, each system component
is described by its own (local) constraints, and the overall system formed by the in-
terconnection of the components is described by the concatenation of all constraints.
In further steps, it may be interesting to solve some constraints and to summarise
them within a more compact model.

Example 3.4 Single-tank system
For example, the tank associated with an input pump and an output pipe is a three-component
system described by the three local constraints:

M0 :
⎧⎨
⎩

Tank: Aḣ(t) = qi (t) − q0(t)
Pump: qi (t) = α · u(t)
Pipe: q0(t) = k

√
h(t)

where u(t) is the control signal, and α and k are two parameters. More condensed models
may be created as follows:

M1 :
{

Tank + pump: Aḣ (t) = α · .u(t) − q0 (t)
Pipe: q0 (t) = k

√
h(t)

M2 :
{

Tank + pipe: Aḣ (t) = qi (t) − k
√

h(t)
Pump: qi (t) = α.u(t)

M3 : {
Tank + pump + pipe: Aḣ (t) = α.u(t) − k

√
h(t)

3.3 System Behaviour - Basic Modelling Features 61

Note that the last model uses the minimal number of variables (but it condenses the three
components into one single constraint). In fact, h(t) is the system state: the knowledge of
h(t0) and of the input u(τ), τ ∈ [t0, t] is the only knowledge that is necessary to produce h(t)
for any time t . �

The form constraints take. According to the different descriptions of the variables
and of time, the constraints have different forms:

• The evolution of continuous variables (whose values are in the set of real numbers)
can be described in continuous or in discrete time. Continuous-time descriptions
basically use algebraic and differential equations and transfer functions (Laplace
transform). Discrete-time descriptions are useful when computer controlled sys-
tems are considered, since the data are sampled at a constant rate by the system
clock. They basically use algebraic and difference equations, and transfer functions
(based on z-transform). Continuous-variable models will be described in Sect. 3.4.

• The evolution of qualitative (or symbolic) variables is best described using discrete-
event models such as automata, Petri nets and sets of rules. Such models will be
described in Sect. 3.6. Fuzzy variables (and models) can be used when it is wished
to avoid abrupt transitions from one qualitative value to another one.

• In many real-life systems, continuous variables and qualitative variables co-exist.

Example 3.5 On/off temperature control system
For example, an on/off temperature control system would be described by the
continuous model

dθ

dt
= −aθ + b

when the heater is on, and by the model

dθ

dt
= −aθ

when the heater is off (θ is the temperature to be controlled, and a, b are system parameters).
The time evolution of such a system is described not only by the temperature (which is a
continuous variable) but also by the heating mode (on/off) which is a qualitative one. Such
systems are described by “hybrid models”, which will be developed in Sect. 3.7. �

3.4 Continuous-Variable Systems

In continuous-variable systems, the input, state and output variables are defined for a
continuum of values in IR. Two types of signals can enter such systems: continuous-
time or discrete-time signals. For the first, the independent variable t is continuous,
and thus such signals are defined over a continuum of time values. Discrete-time
signals, on the other hand, are only defined over a time variable k, which belongs to
a discrete set. A continuous-time (discrete-time) system processes continuous-time

62 3 Models of Dynamical Systems

(discrete-time) input signals and generates a continuous-time (discrete-time) output.
Models for these two classes of systems are presented next.

Continuous-time model. A quite general state-space model for a continuous-time
continuous-variable nonlinear system can be written as

ẋ(t) = g(x(t), u(t), d(t)), x(0) = x0 (3.2)

y(t) = h(x(t), u(t), d(t)), (3.3)

where x ∈ |Rn , u ∈ |Rm , y ∈ |Rp denote the state vector, the vector of known input
signals, and the vector of measured output values and the dot the time-derivative:

ẋ(t) = dx(t)

dt
.

d ∈ |Rnd stands for the vector of unknown input signals or disturbances acting on
the process. The functions g and h are, respectively, |Rn-valued and |Rp -valued
and they are assumed to be smooth. A model of the form (3.2), (3.3) can be obtained
using physical laws to describe the considered process.

Example 3.6 Single-tank model
A continuous-valued signal u(t) is considered instead of a binary one like in Example 3.4.
Introducing the pipe constraint into the tank model and assuming a noise-free measurement
of the level yield

Aḣ(t) = −k
√

h(t) + αu(t) (3.4)

y(t) = h(t), (3.5)

which has the form indicated above with d(t) = 0. �

Linear time-invariant systems can be used to describe the behaviour of a nonlinear
system of the form (3.2), (3.3) around a specific set point. Linearisation around a
point of operation x̄, ū, d̄ is obtained by introducing x̃ = x− x̄, ũ = u−ū, d̃ = d− d̄
and ỹ = y − ȳ by performing the Taylor expansion

dx̃
dt

= ∂g(x̄, ū, d̄)

∂x
x̃ + ∂g(x̄, ū, d̄)

∂u
ũ + ∂g(x̄, ū, d̄)

∂d
d̃

ỹ = ∂h(x̄, ū, d̄)

∂x
x̃ + ∂h(x̄, ū, d̄)

∂u
ũ + ∂h(x̄, ū, d̄)

∂d
d̃

to obtain a set of linear equations (see Appendix A)

dx̃(t)

dt
= Ac x̃(t) + Bc ũ(t) + Ex,c d̃(t), x̃(0) = x0 (3.6)

ỹ(t) = Cc x̃(t) + Dc ũ(t) + Ey,c d̃(t), (3.7)

3.4 Continuous-Variable Systems 63

where the variables x(t), u(t), y(t) and d(t) are defined as above, and Ac, Bc, . . .

are matrices of appropriate dimensions with constant entries in IR. In the sequel, x(t)
is used instead of x̃(t) following the tradition of linear systems theory.

Example 3.6 (cont.) Single-tank system
Let h0 denote the nominal level around which the tank is normally operated. The nominal
control signal u0 is obtained by looking for the steady-state solution of (3.4) at h = h0, which
yields u0 = k

√
h0/α. Define h̃(t) = h(t) − h0 and ũ(t) = u(t) − u0. A straigthforward

computation yields

A
dh̃(t)

dt
= −βh̃(t) + αũ(t) (3.8)

ỹ(t) = h̃(t), (3.9)

where β = k/(2
√

h0). In the sequel, h̃(t), ũ(t) and ỹ(t) are replaced by h(t), u(t) and y(t),
respectively, keeping in mind that the latter represents discrepancies with respect to their
nominal value. �

Discrete-time model. Discrete-time models can be used to model sampled-data
systems. All signals are assumed to be sampled synchronously at a fixed sampling
period Ts . The traditional theory of sampled-data systems relies on the assumption
that the input signals are constant over Ts . This holds true for the control variables,
as the output of digital to analog converters has this property. It is, however, an
approximation for disturbances and faults.

By integrating the state Eq. (3.6) over one sampling period, the following discrete-
time model can be deduced from (3.6), (3.7)

x(k + 1) = Ad x(k) + Bdu(k) + Ex,d d(k), x(0) = x0

y(k) = Cd x(k) + Ddu(k) + Ey,d d(k),

where k (actually standing for kTs) denotes the discrete-time instants,

Ad = exp (AcTs)

Bd =
∫ Ts

0
exp (Act) Bcdt.

Ex,d is defined in a similar way as Bd. Furthermore, the relations Cd = Cc, Dd =
Dc, Ey,d = Ey,c hold.

Example 3.6 (cont.) Discrete-time model of the single-tank system
Letting φ = exp (−βTs) and

γ =
∫ Ts

0
α exp (−βt) dt = α

β
(1 − exp (−βTs)),

64 3 Models of Dynamical Systems

the discrete-time model deduced from (3.8), (3.9) is written as

h(k + 1) = φh(k) + γu(k)

y(k) = h(k). �

Stochastic disturbances and measurement noise. For discrete-time stochastic
models, measurement noise and stochastic disturbances possibly acting on the state
variables are described by stochastic sequences (Appendix B). A discrete-time state-
space model for the system then takes the form

x(k + 1) = Ad x(k) + Bdu(k) + Ex,d d(k) + w(k), x(0) = x0

y(k) = Cd x(k) + Ddu(k) + Ey,d d(k) + v(k).

The only new notations are v(k) andw(k). They are samples of white noise sequences
with zero mean and covariance matrix

E

{(
w(k)

v(k)

)
(w(�)T v(�)T)

}
=

(
Qw Qwv
QT

wv Qv

)
δk�.

Fault model. Fault signals are usually separated into two classes: additive and non-
additive (or multiplicative) faults. Additive faults appear as additional terms in the
state equations of a linear time-invariant system. For stochastic models, they result
in changes of the mean value of the measured signals only. Multiplicative faults
correspond to changes in the parameters of the state equations, namely changes in
the entries of the matrices Ac, Bc, Cc, Dc for a continuous-time model (or Ad,
Bd, Cd, Dd for a discrete-time model) or changes in the variance of the stochastic
disturbance and noise.

A continuous-time linear system subject to additive faults can thus be modelled by

ẋ(t) = Ac x(t) + Bc u(t) + Ex,c d(t) + Fx,c f (t), x(0) = x0

y(t) = Cc x(t) + Dc u(t) + Ey,c d(t) + Fy,c f (t).

The types of faults that are accounted for in the above model include sensor faults,
actuator faults and some component faults.

A continuous-time model subject to non-additive faults can be written as

ẋ(t) = Ac (θ)x(t) + Bc (θ)u(t), x(0) = x0

y(t) = Cc (θ)x(t) + Dc (θ)u(t),

where the entries in the different matrices are smooth functions of the parameter
vector θ. Under healthy working conditions, the relation θ = θ0 holds, while in
faulty conditions, the relation θ �= θ0 is valid. An example of multiplicative fault is
an abnormal change in the armature resistance of a DC motor.

3.4 Continuous-Variable Systems 65

Example 3.6 (cont.) Single-tank system
Consider again the continuous-time model (3.8), (3.9) and assume the process can be subject
to sensor and actuator faults denoted, respectively, fs and fa. Equations (3.8) and (3.9) are
modified as follows to account for such faults:

A
dh(t)

dt
= −βh(t) + αu(t) + α fa(t)

y(t) = h(t) + fs(t).

Assume now that a leakage at the bottom of the tank occurs. To account for this phenom-
enon, (3.4) becomes

A
dh(t)

dt
= −k

√
h(t) − kleak(t)

√
h(t) + αu(t). (3.10)

If Eq. (3.10) is linearised around the nominal level h0 and the nominal parameter kleak,0 = 0,
the fault appears to be additive in the linear approximation. Indeed, the latter can be written as

A
dh(t)

dt
= −βh(t) + αu(t) − √

h0kleak(t). �

3.5 System Structure

Detailed behavioural models are seldom available in the first phases of system de-
sign, and/or are very expensive to develop, especially when complex processes, with
hundreds of variables, are considered, and simpler models have to be used. In such
situations, structural models provide an interesting approach to the system analysis,
since they only need a very primitive level of knowledge about the system behaviour.

Structural model. The structural model of a system is an abstraction of its behav-
ioural model. For continuous-variable systems, the behaviour is described by a set
of algebraic and differential equations. Analysing the structure of these equations
amounts to analysing the links which exist between variables and parameters, inde-
pendently on the form of the underlying equations.

For example, consider a system described by Ohm’s law

u − Ri = 0. (3.11)

The structural model associated with this system says: “There exists one constraint
(call it c), which links two variables (u, i) and one parameter (R)”. It is represented
by a bi-partite graph (C, Z, A), where C is the set of constraints, Z is the set of
variables or parameters and A is the set of edges between C and Z or, equivalently,
by this graph adjacency matrix, as shown in Fig. 3.2, where bars represent constraints
and circles represent variables or parameters.

66 3 Models of Dynamical Systems

u i R

u i R

c

c 1 1 1

Fig. 3.2 Structure of Ohm’s law

Structural properties. Structural properties of a system are properties of its struc-
ture graph. Two systems which have the same structure are said to be structurally
equivalent. This is possible, since the structure of a set of constraints is independent
of the nature of these constraints, of the variables and of the value of the parameters.
Indeed, the structural model would be the same if, instead of Eq. (3.11), Ohm’s law
was expressed by a look-up table, or if another system, which obeys the numerical
model u(i2 + 3i + 1) = R, was considered.

Since structural properties are properties of the structure graph, they are obviously
shared by all the systems which have the same structure. Thus, structural properties
are properties of a system which are independent of the values of its parameters.

Known and unknown variables. Two kinds of variables appear in the system con-
straints, namely the known and the unknown ones. Therefore, the set of variables
Z is decomposed into two subsets Z = X ∪ K. Control and measurement signals
are known variables, while the system states are unknown. Known variables obey
measurement equations, which are introduced in the structural model. Assuming the
voltage u is measured by a sensor whose output is y1, the previous system obeys the
two constraints

u − Ri = 0

y1 − u = 0

and, dropping the parameter R, its structure becomes

y1 u i

c 1 1 1
m1 1 1

which shows that all the unknown variables in the system can be computed, since u
can be computed from y1 using the measurement equation m1 (this is symbolised by
the bold 1) and, therefore, i can be computed from y1 and u. Structural observability
is indeed one of the properties that structural analysis allows to study. This is of
course only a potential property, since constraints m1 and c might be more complex

3.5 System Structure 67

ones, and the numerical computations might be impossible in some particular cases
(change, for example, constraint m1 into y1(1 − u) = 1 and suppose that the known
value of y1 is zero!).

Faults. When faults occur, the system components do not any longer obey the equa-
tions which define their nominal behaviour. Therefore, a given fault mode is described
in structural analysis by the subset of constraints which do no longer hold when this
fault occurs. These constraints are said to be violated. For example, the short circuit
of the previous resistor is described by constraint c being violated when the nominal
value of R is used, while a malfunction of the voltage sensor would be described by
constraint m1 being violated.

3.6 Discrete-Event Systems

From a global viewpoint, some dynamical systems can be seen as systems whose
signals switch from one value to another one rather than changing their value contin-
uously. In fault diagnosis, systems with discrete measurements occur naturally in the
process industry where alarm messages represent discrete information, because the
alarm can only be alerted or not and, hence, the corresponding signal is only known
to exceed a given threshold or not. As the dynamical behaviour of such systems is
described by events denoting the switches of the signal from one discrete value to
the next, these systems are called discrete-event systems.

Discrete-valued signals. Due to the symbolic nature of the input, state and output,
the symbols v, z and w are used for them. The discrete value sets are enumerated
such that

v ∈ V = {1, 2, . . . , M}
z ∈ Z = {1, 2, . . . , N }
w ∈ W = {1, 2, . . . , R}

hold (Fig. 3.3). Every change of the symbolic value of v, z or w is called an event.
For example, if the state jumps from the value j to the value i , a state event denoted
by ei j occurs. In Fig. 3.4, the events e13 and e32 are marked.

The model that will be introduced now describes in which order the events oc-
cur but it says nothing about the temporal distance of these events. The sequences
of discrete values that the input, state or output assume for a time horizon ke are
denoted by

V (0 . . . ke) = (v(0), v(1), v(2), . . . , v(ke))

Z(0 . . . ke) = (z(0), z(1), z(2), . . . , z(ke))

W (0 . . . ke) = (w(0), w(1), w(2), . . . , w(ke)).

68 3 Models of Dynamical Systems

Fig. 3.3 Discrete-event
dynamical system Discrete-event system

z(k)
(k)(k)v w

1

32
e

13
e

0
0

1

2

3

z

3 2 4 5 6 k

Fig. 3.4 Symbolic signal values and event sequence

In diagnosis, ke denotes the current time instant and V (0 . . . ke) and W (0 . . . ke) the
measured sequences to be processed.

Deterministic automata. A standard form for describing discrete-event systems is
the deterministic automaton

A = (Z, V, W, G, H, z0),

which has the set of states Z , the input set V and the output set W . G and H are
the state transition function and the output function, which determine the successor
state or output in the following way:

z(k+1) = G(z(k), v(k)), z(0) = z0 (3.12)

w(k) = H(z(k), v(k)). (3.13)

z0 is the initial state. k denotes the place that the input, state and output values have
in the corresponding sequence.

Obviously, for a given initial state z0 and input sequence V (0 . . . ke), the state
and output sequences Z(0 . . . ke) and W (0 . . . ke) can be generated by applying
Eqs. (3.12) and (3.13) ke times. The automaton is deterministic because the initial
state and the input sequence unambiguously determine the state and output sequence.

Nondeterministic automaton. In the nondeterministic automaton

N (Z, V, W, Ln, z0),

3.6 Discrete-Event Systems 69

the functions G and H of the deterministic automaton are replaced by the behavioural
relation Ln

Ln : Z × W × Z × V ∈ {0, 1}

which for every given state z(k) and input v(k) describes which successor state
z(k +1) can be assumed while generating the output w(k). Hence, the dynamical
behaviour of the automaton is described by all 4-tuples for which

Ln(z(k+1), w(k), z(k), v(k)) = 1 (3.14)

holds. Equation (3.14) replaces Eqs. (3.12), (3.13) of the deterministic automaton.
Obviously, for z0 and V (0 . . . ke), the sequences Z(0 . . . ke) and W (0 . . . ke) are not
unique.

If the probabilities with which the automaton assumes the different 4-tuples on the
left-hand side of Eq. (3.14) are known, instead of the nondeterministic automaton, a
stochastic automaton

S = (Z, V, W, L , Prob(z(0)))

can be used to describe the discrete-event system. The behavioural relation

L : Z × W × Z × V −→ [0, 1]
L(z′, w, z, v) = Prob (Z(1) = z′, W (0) = w | Z(0) = z, V (0) = v)

describes the probability that the automaton steps from state z towards state z′ while
generating the output w if it gets the input v. Hence, a probability measure can be
associated with each state sequence Z and output sequence W .

Model of a faulty discrete-event system. In order to describe the behaviour of a
discrete-event system under the influence of faults, the fault f (k) is introduced as an
additional discrete-valued input. The fault may change over time and, thus, generate
the sequence

F(0 . . . ke) = (f (0), f (1), . . . , f (ke)).

The additional input f extends the stochastic automaton, which becomes

S = (Z, V, F, W, L , Prob (z0))

with F denoting the set of possible fault values. The behavioural relation L is now
a function of five arguments:

L(z′, w, z, f, v) =
Prob

(
Z(1) = z′, W (0) = w|Z(0) = z, F(0) = f, V (0) = v

)
.

70 3 Models of Dynamical Systems

1

1, w =1

1, w =1

1, w =1 1, w =1

0.4, w =2

0.4, w =2

0.4, w =2
0.4, w =10.4, w =1

0.1, w =2

0.2, w =20.1, w =2

0.6, w =2

0.5, w =1
0.5, w =2

2 3

4 5 6

7high

high
h1

h2

medium

medium

low

low

8 9

Fig. 3.5 Stochastic automaton describing the tank system for faulty pump (qP = 0)

Example 3.7 Discrete-event model of the two-tank system
The question whether a given system should be dealt with as a continuous-variable or a
discrete-event system depends not only on its properties but also on the task to be solved
with the model. If for the two-tank system the tank levels should simply remain in a “high”
region, it is sufficient to distinguish the levels “high”, “medium” and “low” and to describe
the behaviour of the system as a switching among these qualitative levels. The graph of the
stochastic automaton describing this behaviour is depicted in Fig. 3.5. The automaton state
z = 1 corresponds to the tank state (h1, h2)T, where both tank levels are “low”, i.e. do not
exceed a given threshold. The other states are defined in a similar way as illustrated by Fig. 3.5.
The automaton graph is drawn for faulty pump (no inflow to Tank 1) which makes the input
useless. The output w = 1 denotes a small and w = 2 a large outflow from Tank 2. The labels
of the arcs describe the outflow together with the probability with which the state transition
described by the arc occurs. The automaton says, for example, that if the tank system is in
state 6 (h1 is high, h2 medium) then it assumes next one of the states 5, 2 or 3 and that it goes
from state 6 towards state 2 while generating the output w = 2 with the probability 0.4. All
paths through the automaton symbolise a possible state sequence Z and define an associated
output sequence W . �

3.7 Hybrid Systems

For many technological systems, both continuous and discrete phenomena play im-
portant roles. The mixture of discrete and continuous signals and discrete and con-
tinuous forms of the models used is typical for supervisory control tasks and plays a

3.7 Hybrid Systems 71

particular role in diagnosis and fault-tolerant control. As the system possesses both
real-valued and discrete-valued signals, combinations of differential equations and
automata have to be used for its description (Fig. 3.6).

The main problem in dealing with hybrid systems results from the different ranges
of the signals. The transition between these different ranges are represented by quan-
tisers and injectors. The quantiser transforms a real-valued signal into a sequence
of symbols, where the real-valued signal or signal vector is denoted by a lower-case
letter like y or u and the corresponding quantised signals by [y] or [u]. If, in the
simplest case, the quantiser decides to which real interval of a given set of intervals
the current value y(t) belongs, the value of the quantised signal [y(t)] at the same
time instant t is the number of the corresponding interval. Clearly, this interval can
be associated with symbolic names like “normal”, “high” or “low”, which give a
semantic signal value. As long as the signal does not leave a given interval, the quan-
tised value remains the same. Hence, a continuous change of y(t) is transformed into
a sequence of discrete changes of [y(t)], where the quantiser does not only determine
the symbolic value of the signal but also the time instants at which these symbolic
values change.

The injector carries out the inverse mapping. Its input is a symbolic signal like
[u], which is associated with a real-valued signal u. The relation between [u] and u
can be either deterministic where every symbolic value is associated with a unique
real value or nondeterministic where the associated real value is randomly selected
from a given set of signal values or may vary within this set as long as the symbolic
value does not change. In any case, the injector is the interface between symbolic
and real-valued signals.

A standard structure of hybrid systems is shown in Fig. 3.6. The system has con-
tinuous input and output (uc and yc) as well as discrete input and output (ud and
yd), where the attribute “discrete” refers to the signal value. In addition to that, the
system may be considered as a discrete-time system where all signals are known
only at given sampling time instants.

Continuous-variable

subsystem

Injector Quantiser

Discrete-event

subsystem

uc yc

ud yd

Fig. 3.6 Hybrid dynamical system

72 3 Models of Dynamical Systems

3.8 Links Between the Different Models

Since different models can be built in order to describe the same system, there must
be some relations between them. The aim of this section is to present and discuss
those relations.

Relation among the models. The most important difference between the models in-
troduced so far concerns the value set of the signals. Continuous-variable descriptions
refer to signals with real signal values, whereas discrete-event models use signals
with discrete-signal values. The question which model is appropriate for a particu-
lar application depends upon the question whether the continuous movement of the
system or a sequence of discrete events generated by the given system has to be
investigated for solving the given task. Therefore, a given system may be considered
simultaneously as a continuous system or a discrete system if different problems
have to be solved.

For example, a tank system has to be considered as a continuous system if the
level of the tank or a concentration of a certain substance in the liquid filling the
tank has to be controlled. Level or concentration controllers measure the numerical
value of the level or the concentration with a given sampling rate and fix the control
input to be applied at the next time instant. The same tank system may be considered
as a discrete-event system if it is a part of a batch process. Then a certain recipe
is realised by imposing a discrete control sequence on the tank where the control
command opens or closes valves to fill or empty the tank, heat or cool the liquid,
etc. The controller, which is usually a programmable logic controller, reacts only on
events, which are generated if the liquid or the temperature crosses given thresholds.
The temporal distance of these events is of minor importance and, therefore, not
described by the model.

Architecture and functions. Although functional models have not been developed in
this chapter, it may be worth to discuss the link between architecture and function. The
architecture model describes the system as a network of interconnected components.
The reason why a given component belongs to the system is that it has been chosen
to perform a specific function, in a given system operating mode. Thus, each service
of a component is associated with a given function the component is expected to
fulfil in some operating mode. For example, the “open” service of valve Va in the
tank example is associated with the function “increase the level in Tank T2” when
the level in Tank T1 is higher than the level in Tank T2 and higher than the level of
the connecting pipe.

Architecture and behaviour. Components provide services which transform con-
sumed variables into produced variables, according to some given procedure.
Variables which are processed by services may be quantitative or qualitative. In
any case, the procedures which describe the services of a component are nothing
else than constraints which link the values of the variables associated with this com-
ponent. The temporal behaviour of these variables is thus defined once the procedures

3.8 Links Between the Different Models 73

are given. Note that these procedures introduce algebraic and differential constraints
for quantitative variables and discrete-event models for qualitative variables.

Example 3.8 Different models of the tank system
For example, the “open” service of valve V12 considered above introduces an
algebraic constraint between the flow from tank T1 to tank T2 and the two levels h1 and
h2

q12 = k(u)
√

h1 − h2 if h1 ≥ max (h12, h2)

q12 = 0 if max (h1, h2) ≤ h12
q12 = −k(u)

√
h1 − h2 if h2 ≥ max (h12, h1),

where k(u) is some coefficient which depends on u, the opening position of the valve, while
the “close” service introduces the constraint

q12 = 0, ∀ h1, h2.

Also note that, since the set of services (i.e. the set of constraints, and therefore the behav-
ioural model) depends on the system operating mode, the generic component model directly
introduces a hybrid model for the system description. In the valve example, three operating
modes should be considered to describe the behavioural model, namely

valve is open and max (h1, h2) ≤ h12
then q12 = 0

valve is open and h1 ≥ max (h12, h2) or h2 ≥ max (h12, h1)

then q12 = sign (h1 − h2)k(u)
√|h1 − h2|

valve is closed
then q12 = 0.

If the functions are considered, two different operating modes have to be associated with the
situation q12 �= 0, namely

valve is open and h1 ≥ max (h12, h2)

then q12 = k(u)
√

h1 − h2 and level h2 increases
valve is open and h2 ≥ max (h12, h1)

then q12 = −k(u)
√

h2 − h1 and level h2 decreases.

It can be checked that a discrete-event model of this system can be built by considering
the following events:

e1: valve V12 opens
e2: valve V12 closes
e3: both levels h1 and h2 become lower than h12
e4: h1 becomes higher than max (h12, h2)

e5: h2 becomes higher than max (h12, h1). �

Behaviour and structure. The link between the behavioural model and the structural
model is obvious, since the structural model is nothing but an abstraction of the

74 3 Models of Dynamical Systems

behavioural model. In each operating mode, there is a set of constraints C which link
the values of the system variables Z = X ∪ K. The structure of these constraints is
directly represented by the set of edges A in the bi-partite graph (C, Z , A) whose
nodes are, respectively, C and Z .

Example 3.9 Structure of a valve in different operation modes
In the valve example, there are two different structures associated with the four different
operating modes which appear on the hybrid description of the system behaviour:

• Structure 1: If the valve is open and max(h1, h2) ≤ h12 or if the valve is closed, the
following relation holds:

↗ h1 h2 q12 u

c1 1
c2 1

Constraint c1 expresses that the control u is known, and constraint c2 expresses that the
flow q12 is also known (since q12 = 0).

• Structure 2: If the valve is open and h1 ≥ max (h12, h2) or h2 ≥ max (h12, h1),

↗ h1 h2 q12 u

c1 1
c2 1 1 1 1

where constraint c1 expresses that the control u is known, and constraint c2 expresses the
relation between the flow q12, the control u and the two levels h1and h2. �

3.9 Exercises

Exercise 3.1 Model of ship dynamics
Using the notation from Sect. 2.3, the dynamical model of a ship is

ω̇3 = b(η1ω3 + η3ω3
3) + bδ

ψ̇ = ω3 + ωw

y1 = ψ

y2 = ψ̇

y3 = δ.

1. Derive a linear model in state-space form, linearising about the point of operation

ω̄3 = ωo, ψ̄ = ψo, δ̄ = δo.

2. Find also the model for the special case

ω̄3 = 0, ψ̄ = 0, δ̄ = 0. �

http://dx.doi.org/10.1007/978-3-662-47943-8_2

3.9 Exercises 75

Exercise 3.2 Model of industrial actuator
A block diagram of an industrial actuator is shown in Fig. 3.7. It consists of the following
components:

• DC motor with input current i and motor speed n,
• power drive with known current command icom,
• gear with gear ratio N efficiency η and output angle θ, and
• unknown load torque Ql.

Measurements are θm the angle after the gear and nm the shaft speed at the motor.
The faults concern

• fθ - position sensor fault
• fn - tachometer fault
• fi - actuator fault.

With

x(t) = (n(t), θ(t))T

u(t) = icom(t)

d = Ql (t)

f (t) = (fi (t), fn(t), fθ(t))
T

y(t) = (nm(t), θm(t))T,

the actuator has the following state-space representation:

ẋ(t) = Ax(t) + Bu(t) + Exd(t) + Fx f (t) (3.15)

y(t) = Cx(t) + Fy f (t).

1. Show that

A =
(− α

Itot
0

1
N 0

)

and determine the remaining matrices in the state-space model.

α

fn f

Power
drive

icom

nm

n

θm

θ

θ

1
I tot

kqη
1
N

Ql

+
n θi

+ +

Gear

+

fi

_
∫ ∫

Fig. 3.7 Block diagram of actuator with additive faults-open loop

76 3 Models of Dynamical Systems

2. Show that the system transfer function (Laplace domain) is

x(s) = (s I − A)−1(Bu(s) + Exd(s) + Fx f (s))

y(s) = C(s I − A)−1(Bu(s) + Exd(s) + Fx f (s)) + Fy f (s).

3. Using the shorthand notation

y(s) = Hyu(s)u(s) + Hyd(s)d(s) + Hyf f (s),

determine the three transfer function matrices Hyu, Hyd and Hyf . Verify what is apparent
from the block diagram,

nm(s) = 1

s Itot + α
(kqηicom(s) + Ql(s) + kqη fi (s)) + fn(s). �

Exercise 3.3 Discrete-time model of industrial actuator
The following parameters apply to the industrial actuator described in Exercise 3.2: kq =
0.5 Nm/A, η = 0.8, N = 100, Itot = 2 · 10−3 kgm2, α = 10−4 Nms/rad.

1. Determine the numerical transfer function matrices Hyu, Hyd, Hyf . Find the values of
gains and the location of poles and zeros;

2. Make a discrete-time model using a sampling time of 2 ms. Note values of gains, discrete-
time (z-plane) poles and zeros in the discrete-time model; and

3. Determine the steady-state properties of the change in measurement values when step-wise
faults and disturbance are applied. Faults or load steps appear one at a time and are not
simultaneously present. �

Exercise 3.4 Industrial actuator with speed control
Figure 3.8 shows an actuator with speed control, a limit in the maximum current from the power
drive and measurement of motor current im. The speed controller is icom = kt (nref − nm).
The power drive has a gain of 1 in the linear range |i | ≤ imax, otherwise i = imax sign (icom).

1. Write a dynamical model of the actuator in the form

d

dt

(
n(t)
θ(t)

)
= Acl

(
n(t)
θ(t)

)
+ Bclnref (t) + Ex,cl Ql(t) + Fx,cl f (t)

⎛
⎝ nm(t)

θm(t)
im(t)

⎞
⎠ = Ccl

(
n(t)
θ(t)

)
+ Dclnref (t) + Ey,cl Ql(t) + Fy,cl f (t)

in the linear operating range and determine the elements of all parameter matrices
Acl, Bcl, . . . in the model;

2. Implement a simulation of the continuous-time model of the actuator of Fig. 3.8. Use
kt = 1.0 As/rad and imax = ±20 A in the current limiter block in the simulation; and

3. Validate the responses to step-wise changes in reference, load torque and fault signals and
compare with those of the theoretical model. �

3.9 Exercises 77

α

kqη

k t
Speed control

fn f

Power
drive

icom

nm

n

θm

θ

θ

1
I tot

im

1
N

Q l

+

n ref

n θi

+ +

Gear

+

fi

∫ ∫

Fig. 3.8 Actuator with angular velocity feedback

Exercise 3.5 Model of a coffee machine
Describe the steps to produce a coffee with milk by means of a coffee machine by a deter-
ministic automaton. How can this automaton be extended to hybrid model if the differen-
tial equations describing the continuous processes are associated to some of the automaton
states? �

3.10 Bibliographical Notes

Modelling the system architecture. Modular- and object-oriented models have been
developed to describe architectures of automated systems [4, 167, 224]. Such models
are used in the description and the validation of real-time and distributed systems
[363], and specific tools, like state charts, have been developed to describe their
real-time operation [143]. Generic component models are architecture models, first
developed for the description of intelligent sensors and actuators [323]. They have
been used for the interoperability analysis of distributed architectures [3, 48]. There
exists a bridge between SyncCharts and generic component models, which provides
a means of analysing both the system architecture and its associated real-time be-
haviour [15].

For an introduction into the wide field of system identification, the reader is
referred to the monographs [201, 318, 377].

Good introductions to discrete-event systems are [59, 211].

Chapter 4
Analysis Based on Components
and Architecture

Abstract This chapter presents methods for modelling and analysing the compo-
nent architecture of a system. It deals with the information that can be deduced
from components and the way in which the components are connected. Simple and
aggregated components are described in terms of their generic properties, which
include the service offered by a component in different modes of operations and the
conditions under which component faults occur. Properties of selected simple compo-
nents are discussed and their aggregation into generic components at a higher level
is illustrated. Formal methods for describing generic components are introduced.
Algebraic and graph-theoretic methods are employed to analyse the propagation of
faults through the faulty system.

4.1 Introduction

Architecture models describe a system as a set of interconnected components. This
statement is true at any hierarchical level. Low-level components, such as sensors and
actuators, are directly interfaced with the process. They provide low-level services:
measurement of, or action on some specific process variable. Subsystems, composed
of several components, can also be considered. They form higher-level devices which
can be aggregated to even higher levels. Higher-level devices provide higher-level
services. The primary track control loop in the ship example provides the ship to
follow a desired path through shallow water; the cooling unit in a chemical reactor
provides control of an exothermic reaction. The highest aggregation level is that of
the system itself, when it is considered as one single component.

At any considered level, a component, whether simple or aggregated, can be
described by its generic model. The services it provides can be organised in a number
of use-modes. At the highest aggregation level, each of the system use-modes is
associated with a given number of objectives to perform, and the system services are
used to achieve those system objectives. The definition of the use-modes set, and for
each use-mode the associated objectives result directly from the specification of the
considered system.

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_4

79

80 4 Analysis Based on Components and Architecture

Filling
the tank

No
operation

Emptying
tank

production
wasted

Processing
batch

Emptying
tank

normal

Cleaning
tank

Start a batch Problem in
operation

Level set-point reached

End of batch
operation

Tank is empty

Tank is empty

Tank is clean

Fig. 4.1 Automaton of a batch process illustrated through use-modes

Example 4.1 Tank system
Suppose that the tank system is used in a food industry batch production process, where the
processing of each batch needs the temperature to be controlled at a given value during a given
period of time. Six different use-modes (UM) can be distinguished:

UM 0: No operation,
UM 1: Filling the tank,
UM 2: Processing the batch,
UM 3: Emptying the tank via the normal pipe,
UM 4: Emptying the tank via the “lost production” pipe, and
UM 5: Cleaning the tank.

The associated use-mode automaton is illustrated in Fig. 4.1.
There are six objectives associated with the different use-modes, namely

• Objective 0: No action (UM 0),
• Objective 1: Reach the full level set-point (UM 1),
• Objective 2: Regulate the temperature (UM 2),
• Objective 3: Reach the empty level set-point (UM 3 and UM 4),
• Objective 4: Clean the tank (UM 5), and
• Objective 5: Preserve the environment (UM 1, 2, 3, 4 and 5). �

4.1 Introduction 81

The analysis of fault tolerance should answer the essential question whether a
given system, in a given fault situation, is still able to achieve its objective. Overall
objectives are associated with use-modes, and they are achieved using the services
offered at the system level. Thus, the analysis of fault tolerance first needs the generic
model to be derived at the system level. This can be done by defining procedures
which aggregate low-level generic models into higher-level ones. The second step
is to analyse the situation when faults appear, in order to conclude about the way
services are affected.

This chapter presents two approaches for the analysis of fault tolerance using
architecture models, the first studying fault propagation mechanisms and the second
analysing the availability of services (which means the possibility of achieving the
objectives) at the system level.

4.2 Faults in Components and Their Consequences

Having defined availability of services and the key concept in the generic description
of components, tools are needed to analyse which conditions could cause a certain
version of a service to become unavailable. Faults or partial failure in components
would clearly be candidates for a service to become unavailable. This section intro-
duces a Boolean formalism to analyse propagation of faults and the consequences
faults can have on the services offered by a generic component.

Shut-down functions and interlocks are commonly used in industrial automation
to prevent failures to dilate from one sub-system to another. The use of such functions
has, however, the consequence that plant availability is sometimes reduced without
good reason. With the ever higher degree of automation, this has been the key cause
to increased vulnerability to simple faults, particularly in sensors and actuators. The
approach in this text is to obtain dependability by giving a generic component or
subsystem an ability to detect and isolate faults and react with actions that accom-
modate the control system to the fault. Fault accommodation is predetermined at the
design stage. The scope of the methods presented in this section is to give a formal
technique to obtain a list of which faults should be handled to regain an acceptable
version services after faults have occurred locally in a generic component.

Open and closed-loop systems. Handling of faults in open-loop systems, e.g., mon-
itoring and remote control, is technically straight-forward, but the reactions used to
accommodate a fault need to be designed with careful consideration to safety and
availability of the total plant. Optimisation at a local level may easily violate an
overall safety goal.

Handling of faults in closed-loop components is a more difficult and challenging
task. Properly designed systems can accommodate the effects of faults whereas less
careful designs can let fault effects propagate to other subsystems.

Connection with reliability analysis. For the reasons given above, fault analy-
sis need to incorporate analysis throughout a system. Traditional methods for fault

82 4 Analysis Based on Components and Architecture

detection and isolation do not cover this problem. They are very able to detect the
presence of a fault as a difference between actual and expected behaviour. Isolation
of a particular fault requires a hypothesis about the observed effects from this fault.
This is obtained by ad hoc engineering and requires deep process knowledge and
engineering skills to make a successful design. It is expensive in terms of both key
personnel and time.

Analysis of system reliability is not only mandatory for safety critical systems
but is also more and more often used for common industrial systems, driven by the
increasing environment and safety awareness in recent years. The state of the art is
such that no method can guarantee a complete description of all possible fault modes
of a system. Certain forms of risk analysis provide, nevertheless, a very systematic
approach to fault modelling once possible component faults have been identified.
Faults in common industrial components are subject to constant study, and a method-
ology based on component fault modelling could use accumulated knowledge for
each type of component. The number of principally different components in a certain
branch of industry is small enough to make this a manageable exercise.

A systematic approach. A systematic approach can be made if the basic method-
ology from risk analysis is adopted to the detailed mathematical models needed for
real-time fault diagnosis. A link has to be established from quantitative, static risk
models at the component level to qualitative, dynamical fault diagnosis descriptions
of input–output relations to achieve this goal.

The link is obviously to merge the component-based generic dynamical mod-
els (energy, momentum and flow relations) with component fault models from the
risk analysis. The generic dynamical models can be extended to subsystem input–
output descriptions, for example using a system behaviour description approach.
This methodology guarantees that all relevant component faults are included in a
mathematical system model, and all relevant dynamical relations are preserved due
to modelling being done at the component level.

The systematic approach shall provide the following information:

1. List of faults to detect,
2. Mathematical model for use in fault diagnosis,
3. Basic character/criticality of each fault, and
4. Required reaction to each fault.

This is elaborated in the following.

4.3 Fault Propagation Analysis

Several approaches exist to analyse systems based on the components they com-
prise. The fields of risk analysis and reliability engineering have developed several
approaches to assess the risks associated with component breakdown. On commonly
accepted standard in everyday industrial use is the failure modes and effects analysis
(FMEA) technique. It is based on description of the failure modes of the individual

4.3 Fault Propagation Analysis 83

components, and would thus serve our purpose. The failure mode and effects analy-
sis technique is well established and supported by both databases with breakdown
information and mean-time between failure history for many components. It was
hence natural to develop a method for analysis of fault propagation based on such
available information on component failure modes.

Failure modes and effects analysis. Failure modes and effects analysis is a tool
originally developed by reliability engineers. It analyses potential effects caused
by simple or aggregated components ceasing to behave as intended, i.e. they stop
providing the service designated to the component. A failure modes and effects
analysis procedure starts with listing, for each component, in which ways can this
component fail. This is referred to as failure modes. Databases are available with
information about failure modes for a large number of industrial components. The
output of a failure modes and effects analysis procedure is the effect on the system and
its environment that would be the consequence if the particular component should
fail in each of the ways available to it (failure effects).

An example for a typical failure modes and effects analysis worksheet is illustrated
for a pressure gauge in the following table.

item failure failure failure risk assess.

ident. mode cause effect sev prob

press. false high defective toxins not

gauge reading stuck destroyed
4 0.0002

false low defective potential
PG 24

reading stuck burns
3 0.0002

The failure modes and effects analysis worksheet has columns for item identification,
failure modes, failure cause, failure effect and risk assessment for the end effects at
system/environment level. There are also columns for risk code and actions required,
not shown here.

The information on end effects in a failure modes and effect analysis scheme
is firmly linked to the system architecture, which is not explicit in the worksheet.
Analysis and design of fault-tolerant systems require a fully flexible representation
not offered by the failure modes and effect analysis scheme itself, but the information
on component failure modes is very useful and is exploited in the following.

Fault propagation matrix. A traditional failure mode and effects analysis starts with
selection of the lowest level of analysis. In the present context, this means sensors,
valves, motors and similar components. All potential faults and their effects are
determined. A fault propagation scheme for each component shows how fault effects
out of the component relate to faults at input, output, or parts within the components.
This is illustrated in Fig. 4.2.

Analysis of the propagation of faults is conveniently based on matrix methods.
The fault propagation analysis (FPA) uses a Boolean mapping of faults onto effects
for each component or each set of aggregated components.

84 4 Analysis Based on Components and Architecture

To third level

E1 EnE2

E1 EnE2 E1 EnE2

Faults

Input1

Input2

Faults

Faults

Faults

Faults

Faults

Faults

Unit 2Unit 1

F3
F2
F1

F4
F5

F6
F7
F8

F3
F2
F1

F3
F2
F1

F4
F5

F6
F7
F8

First level
analysis

analysis
Second level

E2
E1

En

E2
E1

En

Fig. 4.2 Traditional failure modes and effects analysis scheme illustrated graphically for two
component levels

Definition 4.1 (Fault propagation matrix) For a given Boolean mapping M

M : F × E → {0, 1}

of the set of component faults fc ∈ F onto the set of effects ec ∈ E , the fault
propagation matrix is defined as follows:

mij =
{

1 if fcj = 1 ⇒ eci = 1
0 otherwise.

A fault propagation matrix scheme can be expressed as

eci ← M f
i ⊗ f ci,

where M f
i is a Boolean matrix representing the propagation. The operator ⊗ is the

inner product disjunction operator that performs the Boolean operation

ecik ← (mik1 ∧ fci1) ∨ (mik2 ∧ fci2) . . . ∨ (mikn ∧ fcin).

When effects propagate from other components, we get, at level i :

4.3 Fault Propagation Analysis 85

eci ← M f
i ⊗

(
f ci

ec (i−1)

)
.

This is a surjective mapping from faults to effects: there is a unique path from fault
to end effect, but several different faults may cause the same end effect.

System descriptions are obtained from interconnection of component descriptions.
Merging three levels gives the end effects at the second level,

ec2 ←
(

M f
2 ⊗

(
I 0
0 M f

1

))
⊗

(
f c2
f c1

)
.

Eventually, end effects at the system level are reached.

Reverse analysis. The effect vector corresponding to a particular fault fk is hence
the kth column of M f . Reversely, given a particular e, the set of faults that could
cause this effect is obtained by checking which columns of M f match the observed
e. This can be written using the operator 	 defined by the operation

fi ← (mi1 = e1) ∧ (mi2 = e2) . . . ∧ (min = en)

i = 1, . . . , dim f

and apply this on
(

M f
)T

,

f c =
(

M f
)T 	 ec.

Analysis of the system matrix can easily show where in the system the propagation
should be detected and stopped, the operation we would achieve by fault handling.
Proper handling of a fault would imply the particular entry(ies) in the M f matrix
change from “1” to “0”.

Experience from applying fault propagation analysis to larger systems shows that
we might need to include occurrence of one fault and the non-occurrence of another in

the description. This would imply to extend f i to
[

f i , f̄ j

]T
in the above expressions.

Analysis of a system with three simple components and a description of their
architecture is shown in the following example.

Example 4.2 Propagation with three components
A system with three components and open-loop structure is

ec3 ← M f
3 ⊗

(
fc3
ec2

)

ec2 ← M f
2 ⊗

(
fc2
ec1

)

ec1 ← M f
1 ⊗ (fc1)

86 4 Analysis Based on Components and Architecture

The fault effect scheme for this example is

ec3 ← M f
3 ⊗

(
fc3
ec2

)
⇒

ec3 ←
(

M f
3 ⊗

(
I 0

0 M f
2

))
⊗

⎛
⎝ fc3

fc2
ec1

⎞
⎠ ⇒

ec3 ←
⎛
⎜⎝M f

3 ⊗
⎛
⎜⎝

I 0

0 M f
2 ⊗

(
I 0

0 M f
1

)
⎞
⎟⎠

⎞
⎟⎠ ⊗

⎛
⎝ fc3

fc2
fc1

⎞
⎠ ⇒

ec3 ← M f
3 ⊗

(
I 0

0 M f
2

)
⊗

(
I 0

0 M f
1

)
⊗

⎛
⎝ fc3

fc2
fc1

⎞
⎠ ≡ M f

sys ⊗ fsys

Effects are seen to be propagated to the next level of analysis and act as part’s faults at that level.
This is continued until the system level is reached. The schemes give an surjective mapping
from faults to effects: There is a unique path from fault to end effect, but different faults may
cause the same end effect. �

It is noted that the Boolean propagation matrix can be split into columns propa-
gating faults and columns propagating input effects,

M f
i =

(
M f

i, f |M f
i,e

)

Merging two levels can then be re-written

ec2 ←
(

M f
2 ⊗

(
I 0
0 M f

1

))
⊗

(
fc2
ec1

)
⇒

ec2 ←
(

M f
2, f M f

2,e ⊗ M f
1

)
⊗

(
fc2
fc1

)

This illustrates how faults from the current level are propagated through the compo-
nent being considered, while faults from a lower level propagate through this lower
level and through the present.

Remark 4.1 (Single-fault assumption) This discussion of fault propagation is based
on the assumption that only a single fault is present. If the analysis should cover the
occurrence of multiple faults, or propagation of one particular fault being dependent
on a particular other fault not being present, we would need a more complex logic
description than introduced above. Results do exist, but are considered outside the
scope of the present text. �

4.3 Fault Propagation Analysis 87

Example 4.3 Autopilot - gyro system diagnosis
Failure of ship’s motion control systems have been the cause of many severe accidents. Some
of these were caused by faults in the gyro-system providing the heading and turn rate motion
feedback to the autopilot. Early detection of such faults could prevent the control system from
unwanted alteration of the ship’s heading. This example illustrates fault detection on a ship’s
gyro compass and an associated turn rate sensor.

Faults are possible in either of the two measurements and the purpose of the fault detection
is to isolate the faulty sensor. Subsequent fault accommodation should then switch the faulty
sensor out and estimate the missing signal from that of the good sensor. Fault-tolerance against
these faults is obtained by implementing the scheme as an autonomous part of the heading
control loop.

FPA scheme for rate gyro. FPA schemes describe the properties of signals or first physical
quantities related to the function or output of the component. The effects listed in the first row
are quantised descriptions of the properties of the signals. The relationship from input to output
is indicated in matrix form in the propagation analysis. The causes due to different effects of
the component are listed in the table. These very specific details about component failure
are not used in our analysis, but are used as a good starting point for a systematic analysis.
FPA schemes are available from several databases of component reliability, in particular from
components used in the nuclear, space and avionics industries, where post-failure analysis has
been made systematically. The scheme for the rate gyro is illustrated in the following table.

Signal low high fluctuating undefined

Electric short Electric short Wire defect Wire defect
Fault Electrical or Electrical Unit Unit

mechanical defect damaged damaged
defect

Input: low rate high rate supply power dismounted

The FPA matrix for the rate gyro is defined by considering a generic failure of the rate gyro,
which can cause any of the output signal conditions: low, high, fluctuating or undefined.

erg ← M f
rg ⊗

(
f ω

eship

)
⎛
⎜⎜⎝

erg,l
erg,h
erg, f
erg,u

⎞
⎟⎟⎠ ←

⎛
⎜⎜⎝

1 1 0
1 0 1
1 0 0
1 0 0

⎞
⎟⎟⎠ ⊗

⎛
⎝ fω

eship,l
eship,h

⎞
⎠

Observation of the set of end effects would show which fault(s) could be the cause(s) to a
particular end effect combination,

88 4 Analysis Based on Components and Architecture

(
f rg

eship

)
← Mb

rg 	 erg

⎛
⎝ frg

eship,l
eship,h

⎞
⎠ ←

⎛
⎝ 1 1 1 1

1 0 0 0
0 1 0 0

⎞
⎠ 	

⎛
⎜⎜⎝

erg,l
erg,h
erg, f
erg,u

⎞
⎟⎟⎠

The interpretation is clearly that

erg,l ∧ erg,h ∧ erg, f ∧ erg,u ⇒ frg

erg,l ∧ ¬erg,h ∧ ¬erg, f ∧ ¬erg,u ⇒ eship,l etc.

A complete systematic analysis will show which faults have severe end effects, i.e. effects
that could cause the ship to make an unexpected alteration of heading. These include faults on
either of the rate or heading gyro units, a fault in the steering gear and a fault in the heading
reference to the autopilot. This list of faults is used when modelling the system and the faults
to be diagnosed are identified from this list of high severity fault events. The fault propagation
analysis uses knowledge of the overall characteristics of the effects of faults. To proceed in
further detail with detection, we will later need a model where the specific faults are described
as change of the parameters in a generic mathematical model. A generic fault model for the rate
gyro is

ω3m(t) = (1 + αω(t))ω3(t) + fω(t) + νω(t),

where ω3m is the measured signal, ω3 the true turn rate. Faults will occur as changes in either
of the signals αω or fω , both of which are functions of time. The signal fω(t) is additive in
this model, αω(t) is non-additive. Both are zero when no faults are present. The signal νω(t)
represents measurement noise. Note that a non-additive fault can be omitted in the fault model,
since a gain fault can be modelled through an additive term as

fω(t) = α(t)ω3(t). �

Completeness. Completeness of the fault effect vector is a necessary prerequisite for
later fault detection and isolation, since the only faults that can be isolated are those
specified in the design. Completeness is obtained if all possible component faults are
considered. This is not achievable in a rigorous sense, but engineering experience
from risk analysis makes it possible for practical purposes.

It is noted that completeness does not ensure that component fault isolation is
possible because the mapping from fault to effects is not an isomorphism (one-to-
one mapping): An observed effect could be caused by any out of several component
faults.
Definition of generic components. The above introduction of fault propagation
matrix to characterise propagation of fault through components leads to include the
fault propagation matrix in the formal definition of a generic component

4.3 Fault Propagation Analysis 89

Definition 4.2 (Generic component model (extended)) A system component is
defined by the model given in Definition 4.2 together with the additional model part:

< FPA input | use-mode > ::={< list of internal faults;
list of input effects >| use-mode}

< FPA output | use-mode > ::={< list of output effects >| use-mode}
< FPA description | use-mode > ::={< FPA input; FPA output;

FPA matrix; > | use-mode}.
Example 4.4 Temperature control
This example illustrates the aggregation of simple components into a complex component that
provides a temperature control service. The problem considered is to accommodate some of
the faults that would stop the primary service of the temperature control loop in Fig. 4.3. A
three-way valve controls the mixing of hot water returning from a tank with tempered water
from a heat exchanger. The control objective is to keep the cooling water temperature of an
exogenous process in the tank at a constant value. The valve is controlled by the temperature
control loop, which consists of

• the actuator with AC motor,
• the temperature sensor (T),
• the controller with process interface (AI, AO, A/D, D/A), and
• the filter system.

The control loop is shown in Fig. 4.3.
The temperature control loop is a cascade control with position control of the valve as the

inner loop. Stability of the total loop is not guaranteed if the inner loop becomes open due to
a component fault.

Three-way valve actuator. The valve is driven by an AC motor that will rotate left or
right, when activated to either side by a double acting relay. End-stop switches are supposed
to avoid motor overload by preventing the motor from turning further when an end stop
switch is reached. The potentiometer gives position feedback. The position loop fails if either
potentiometer or end-stop switches fail.

Figure 4.4 shows the graphical representation of the FPA scheme for the closed-loop valve
position controller. Bold lines in the scheme show how faults propagate. The important obser-
vation is that propagation could be stopped at the points marked with stars. This means that
fault handling should be applied exactly at these points.

It is intuitive that accommodation of a position or limit switch fault could be done fairly
simple:

1. Use an estimate of the valve position in the motor controller instead of a faulty position
signal.

2. Override a limit switch information if both position sensor feedback and an estimated
position show that a limit switch fault has occurred.

An observer for this purpose is elementary. The estimated valve position is increased or
decreased in proportion to the time either of the two motor relays. This requires no additional
hardware but a few lines of observer code. Accommodation of any of these sensor faults
will make it possible to continue operation while giving an alert about required maintenance.
Without accommodation, the temperature control loop would probably fail due to the loop
becoming unstable without the internal position feedback.

90 4 Analysis Based on Components and Architecture

T

AO
Control

Algorithm
AI

Filter

y1
temperature

position

open/close
command

hot cold return

y2

u

Fig. 4.3 Piping and instrumentation diagram representation of a temperature control loop with
three-way valve

Figure 4.4 shows the FPA scheme in block diagram form for the valve control part of the
loop. The components are potentiometer, limit switches, motor, three-way valve and digital
controller.

Faults in a limit switch will prevent motion in clockwise or counter-clockwise direction—
opening or closing of the valve. The consequence is a severe offset of the temperature control
if fault handling is not initiated. A breakdown of the position feedback element will cause a
breakdown of the temperature control loop because the motor will be driven rapidly to fully
open or fully closed position.

Because several faults can cause the same effect, it is necessary to isolate the failure source.
When the source is isolated it is possible to decide the reaction:

• Actuator fault. Fault in the valve up–down relay switch or in the ac-motor: The position
controller must stop immediately. This will cause a loss of the temperature control service.

• Actuator fault. Fault in the valve end-stop switch: The position controller switches to
use the position sensor and up–down commands for estimation of position. The service
continues until maintenance.

• Position sensor fault. The controller should be re-configured. In the analytical relation
between duration of relay pulses and motor shaft position, a position estimate is readily
available. The estimate is used until the fault is repaired.

• Temperature sensor fault. The reference to the position controller fails. The controller is
re-configured and a time-history roll-back is made of the reference signal and the mean is
used as the new reference until the fault has been repaired.

This examples illustrate situations where temperature would deviate significantly or the
control would simply fail with a commonly applied controller design. The temperature control
service would no longer be available, and the overall use-mode of the tank would need to
be changed to emptying, for safety reasons. By contrast, fault accommodation could assure
availability of a reduced temperature control service, for several likely faults, thus enhancing
the overall plant availability with simple means. �

4.3 Fault Propagation Analysis 91

To filter

Evl1 Evl2 Evl3 Evl4 Evl5 Evl6

Faults
Faults
Faults

Faults
Faults
Faults

Emg1

Emg1 Emg2 Emg3

Emg2
Emg3

Faults
Faults
Faults
Emg1
Emg2
Emg3

Three-way valve

Epcl
Epc2
Epc3
Epc4

Epcl Epc2 Epc3 Epc4

Motor/Gear

Epm1
Epm2
Epm3
Epm4
Els1
Els2
Els3
Els4
Etc1
Etc2
Etc3
Etc4

From
temp ctrl

Position controller

Epm1 Epm2 Epm3 Epm4

Potentiometer

Els1 Els2 Els3 Els4

Limit switch

Fig. 4.4 Propagation of fault effects in closed-loop control of three-way valve. Solid lines show
fault propagation, points marked with star show where propagation can be stopped

92 4 Analysis Based on Components and Architecture

4.4 Graph Representation of Component Architecture

The above discussion has shown that a block diagram for the FPA analysis of an
aggregated component consists of

• the external input faults or effects propagated to the component,
• the FPA representation of lower level components within the aggregated

component, and
• the end effects for the aggregated component.

The latter can be considered output of the FPA analysis. The task of dealing with
closed-loops in the FPA diagram can be eased by employing a graph formulation.
An appropriate FPA graph is first defined. It is then shown that how closed loops are
identified and finally how cut sets can be obtained.

Definition 4.3 (Fault propagation analysis graph) Let a system be comprised the
following items: input effects ι, components with FPA blocks γ and output effects
ζ. Define a set of vertices as V = {ι, γ, ζ} of an FPA graph. Connections between
the system items are edges of the graph. The edges constitute the set E . The FPA
graph Γ is an ordered pair of disjoint sets (V, E). V = V (Γ) is the set of vertices
and E = E(Γ) the edge set.

We further define an orientation of the edges in the FPA graph.

Definition 4.4 (Orientation) An edge (i, j) is said to connect a vertice j to i . If an
edge is oriented and connects vertice j with i , then eij = 1.

This leads to a matrix representation of the FPA graph with oriented edges.

Definition 4.5 (Directed adjacency matrix) The directed adjacency matrix D of Γ,

with respect to a given orientation of Γ, is the n × n matrix (dij) whose entries are

dij =
{

1 if vi is the positive end of an edge from v j

0 otherwise,

where the number of vertices in the graph is n.

The directed adjacency matrix is thus square. The entries of the i th row show
which connections point to the i th item (input, component, or output) in the fault
propagation diagram. The cardinality of “1” entries in the directed adjacency matrix
is equal to the number of edges in the graph.

Remark 4.2 (Input vertex) The i th vertex is an input vertex if and only if the i th row
in the adjacency matrix comprises zeroes only. �

Remark 4.3 (Output vertex) The j th vertex is an output vertex if and only if the j th
column in the adjacency matrix comprises zeroes only. �

4.4 Graph Representation of Component Architecture 93

Definition 4.6 (Walk of length k) A walk of length k in Γ is a finite sequence of
vertices in the graph Γ {v0, v1, . . . , vk} such that vt−1 and vt are adjacent for
1 ≤ t ≤ k.

Graph theory is very useful in respect to showing some general properties of the
graph Γ.

Lemma 4.1 (Biggs) The number of walks of length k in Γ from vi to v j is the entry
in position (i, j) of the matrix Dk .

A closed loop is a walk that leads from an item and back to itself. Hence, a closed
loop of length k will appear as a 1 in the diagonal of Dk for each vertex that is part
of the loop. This gives an algorithm to find closed loops in a fault propagation graph.

Theorem 4.1 (Loops of length k in a fault propagation graph) A graph with a vertex
vi has exactly one walk back to itself of length k if and only if the i th diagonal entry
of Dk is 1. Each vertex in the loop has its diagonal entry equal to 1.

A vertex vi that participates in n closed loops will have a diagonal entry in Dk

equal to n. The number n will include possible multiple rounds in a loop if its length
is an integer fraction of k.

Diagonal elements of a vertice hence show how many closed loops of length k or
k/M the vertice is part of, where M is an integer number. The power k of D used in
the calculation shall not exceed the number of vertices in the graph.

Example 4.5 Closed loops in a fault propagation graph
A fault propagation graph is illustrated in Fig. 4.5.

The directed adjacency matrix is D in Eq. (4.1). Powers of the adjacency matrix are

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 1 0 1
0 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 1 1 0 0
1 0 0 1 0 1
1 1 0 1 0 1
0 1 1 0 0 0
0 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.1)

D3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 2 1 1 0 1
0 1 1 1 0 0
1 1 1 2 0 1
1 1 0 1 0 1
1 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, D4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2 2 1 3 0 2
1 2 1 1 0 1
1 3 2 2 0 1
1 1 1 2 0 1
1 1 1 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

D5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2 4 3 4 0 2
2 2 1 3 0 2
3 4 2 4 0 3
1 3 2 2 0 1
1 3 2 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, D6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
4 7 4 6 0 4
2 4 3 4 0 2
4 6 4 7 0 4
3 4 2 4 0 3
3 4 2 4 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The diagonal of the Dk matrix shows the special characteristics:

94 4 Analysis Based on Components and Architecture

Fig. 4.5 A fault propagation
graph example. One vertice
is input (1), another is output
(5) input output

1 2

3

4 5

6

• D2: 1 loop of length 2. It is {(2,4)}.
• D3: 2 loops through 2 and 4, one through 3 and 6. They are {(2,3,4), (2,6,4) }.
• D4: 2 loops through 2 and 4, one through 3 and 6. They are {(4,2,4,2), (3,4,6,2)}.
• D5: 4 loops through 2 and 4, one through 3 and 6. They are {(2,3,4,2,4), (6,2,4,2,4),

(2,4,6,2,4), (2,4,2,3,4)}.

Element (5,1) in Dk shows for which k there is a connection from input to output. The shortest
walk from input (1) to output (5) has length 3, as seen from element (5,1) in D3.

It should be noted that multiple rounds in loops are indeed part of the loop count for a
vertex as seen in the diagonal entry of the Dk matrix. �

4.5 Fault Propagation with a Closed Loop

The failure mode and effects analysis scheme for a set of components connected in
a closed logical loop is principally described as

eci ← (M f
i I) ⊗

(
f ci
eci

)
.

Looking at the logic operation of this equation, the solution is

e+
ci ←

{
M f

i ⊗ (fci) if and only if e−
ci = “0”

“1” if and only if e−
ci = “1”,

where e−
c1 is the state prior to the calculation, e+

ci is the state resulting from the
calculation. It is seen that once triggered, the effect eci remains permanently true, also
after the fault disappears. This mechanism is a penalty of the Boolean representation
of faults and their propagation, and the price for this is to get a fast tool for a first
analysis of fault propagation.

When a closed logical loop is present, we hence need to cut an appropriate connec-
tion within the loop and investigate whether a “true” signal into the broken connection
will produce a “true” at the other end of the cut. If this is the case, the loop is a tau-
tology, a formula that is true in every interpretation, which can be eliminated. If the

4.5 Fault Propagation with a Closed Loop 95

“true” in produces a “false” at the other end of the cut, the logical loop is a contra-
diction and no solution exists. We then need to define the input of the cut as a new
input in our failure mode and effects analysis description of the system, and analyse
the propagation of an imagined “fault” condition = “true” from this point.

The non-existence of a logical model for a closed loop is not equivalent to insta-
bility in the continuous model representation. The stability of a closed-loop system
cannot be determined from the properties of an over-simplified logical model of fault
propagation.

In FMEA analysis, the closed-loop problem is artificially circumvented by treating
the closed loop as a unit without feedback. The FMEA approach is hence to ignore
the feedback loop as such and consider the closed-loop operation of the component
as the functionality of the component and its’ closed-loop considered as an extended
component. Failure within the feedback loop itself is then treated by modelling this
event as a separate fault. In essence, this is exactly what is done in this Boolean
fault propagation analysis approach that was presented here. When we meet a closed
loop, analysis can be achieved by extending the system with auxiliary faults. This
technique is illustrated below.

4.5.1 Cutting the Closed Fault Propagation Loop

The existence and location of closed logical loops can be determined quite easily
with the graph-theory-based tool we presented in Sect. 4.5. The directed adjacency
matrix D and powers of D up to degree k showed which vertices of the FPA graph
are parts of closed loops, if any, and it informed on the paths from input to output.

When a logical loop cut has to be made, it should be made such that the path
from input to output is not interrupted, while cutting the relevant loop(s). The cut
is conducted by cutting an edge, defining a new input and output as needed. The
variables associated with the extra (new) input and output vertices are given by
the variables associated with the edge that was cut. Logic analysis of the system is
carried out using the new input as additional faults. The new output is observed. If the
variable (effects) at the output is identical with the input, the relation is a tautology
and can be removed from the analysis. If the result is a logic contradiction, the new
input needs to remain in the analysis, and the logical loop remains open.

In conclusion, the representation of a fault effect as a Boolean signal {0, 1} and the
fact that Boolean algebra prohibits dealing with closed-loop logic, unless the logic
signals are clocked and therefore delayed as in flip-flop circuits, is a serious obstacle
to a pure Boolean analysis of fault propagation.

Example 4.6 Ship track control - fault propagation
The propagation of faults from the track error sensor to the track controller are investigated in
this example.

Track error sensor. An analysis of the track error sensor leads to the following internal failure
modes

96 4 Analysis Based on Components and Architecture

• ftes,hardware: hardware fault causing abrupt fault (no output signal)

The input effects are effects from other components or external faults that are propagated to
the component. Here effects from faults in the GPS receiver are considered:

• egps,o: GPS signal offset
• egps,u: GPS signal unavailable.

The output from the track error sensor is the track error signal. The effects are track_error low
ete,l, track_error high ete,h and track_error unavailable ete,u.

⎛
⎝ete,l

ete,h
ete,u

⎞
⎠ ←

⎛
⎝ 1 1 0

1 1 0
0 0 1

⎞
⎠ ⊗

⎛
⎝ ftes,hardware

egps,o
egps,u

⎞
⎠

Track controller. One internal fault in the track controller is considered in this example:

• ftc,software: Software fault causing constant heading demand signal as output

⎛
⎜⎜⎝

eψdem,l

eψdem,h

eψdem,f

eψdem,u

⎞
⎟⎟⎠ ←

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

ftc,software
ete,l
ete,h
ete,u

⎞
⎟⎟⎠

Combining the Boolean propagation matrices for the track error sensor and the steering con-
troller leads to a description of the propagation of the combined fault vectors for the two
components to the output of the steering controller (Fig. 4.6).

M f
tes→tc =

(
M f

tc,f M tc,e ⊗ M f
tes

)

=

⎛
⎜⎜⎝

0
0
0
1

⎛
⎜⎜⎝

1 0 0
0 1 0
0 0 0
0 0 1

⎞
⎟⎟⎠ ⊗

⎛
⎝ 1 1 0

1 1 0
0 0 1

⎞
⎠

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 1 1 0
0 1 1 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠

The resulting fault propagation is then

⎛
⎜⎜⎝

eψdem,l

eψdem,h

eψdem,f

eψdem,u

⎞
⎟⎟⎠ ←

⎛
⎜⎜⎝

0 1 1 0
0 1 1 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ ⊗

⎛
⎜⎜⎝

(
ftc,software

)
⎛
⎝ ftes,hardware

egps,o
egps,u

⎞
⎠

⎞
⎟⎟⎠ . �

4.5 Fault Propagation with a Closed Loop 97

Track error
sensor

Tracking
controller

egps ete eψ

ftes ftc

Fig. 4.6 Propagation of faults through the track error sensor and track controller

4.5.2 Assessment of the Severity of the Fault Effects

The consequences of a fault are judged from the implications the end effects could
have on safety, on availability of the plant, on environment etc. A judgement of
severity should be made of the possible combination of end effects, considering end
effects that can arise from any single fault. This has as prerequisite that a single-fault
assumption is sufficient for the analysis.

If a double fault is considered, the underlying logic description of fault propagation
matrices must support such analysis.

4.5.3 Decision About Fault Handling

The implication is that an automated analysis will need to consider closed loops as
special cases. The interpretation of a closed loop in an FPA scheme is merely the
observation that closed-loop operation may amplify or attenuate the effects of a fault.
Which of the two happens depends on the dynamical properties of the control loop
and this question is outside the scope of the FPA analysis.

The component-based analysis can thus provide both a list of fault effects and
a suggestion of where in a system fault propagation can be stopped. In the design
method, it is then up to the designer to evaluate the severity of each fault effect and
determine which fault accommodation actions shall be implemented.

The question how to handle faults will be discussed in Chap. 7.

4.6 Generic Component Models

Generic component models describe the system architecture from a formal point of
view, so as to perform systematic manipulations for the purpose of fault diagnosis
and fault-tolerant-control design. Contrary to box models, which carry no informa-
tion about the component behaviour in different operating situations (normal, faulty,
different modes), generic component models describe components, which offer ser-
vices according to the current use-mode. The user may be a human operator (who

http://dx.doi.org/10.1007/978-3-662-47943-8_7

98 4 Analysis Based on Components and Architecture

directly accesses the component through some man–machine interface) or another
component, which accesses the services either through direct or remote connection
(as in distributed systems in which services are requested via a local area network).

A generic model of a component describes its operational mode through the
services it provides.

4.6.1 Services

From the user viewpoint, a system component provides one or several services. For
example, a level sensor provides a signal which is a one-to-one correspondence
to the level in the tank. However, the signal may be validated or not, it may be
filtered or not, the sensor might memorise the minimal (the maximal) level value
encountered on a given time window, it might provide an alarm if the level exceeds
a given threshold, etc. All these are examples of services the sensor might provide
in the normal operating mode. Other services could be provided in the installation,
initialisation, degraded operation, maintenance modes.

Input, output and procedures. A service can be described by input variables, output
variables, and some procedure which transforms the former into the latter. For exam-
ple, a tank consumes input and output mass flows, and produces a stored mass, using
an integration procedure (note that the output flow is indeed an input variable for
the integration procedure), thus providing an integration service whose behavioural
model is

ḣ(t) = qi (t) − qo(t),

where qi is mass flow in qo is mass flow out and ḣ is mass increase rate. The mea-
surement service of a sensor consumes energy from the outside world and produces
a signal which is the image of the measured variable, by means of the transducer.
The controller service of a controller consumes signals from sensors and produces
signals to actuators. It also consumes data (the set-point) that have been previously
written in the data base (using the write service).

Requests and enabling conditions. Services may be provided unconditionally or on
specific request. For example, the integration service is systematically provided by a
tank (no special request is necessary), at any time and whatever the values of the input
and output as long as the tank level is within its rated capacity (no activation condition
is needed). A sensor connected on some input port of a microprocessor system would
provide the measurement service on a read request, which would be associated with
some specific clock signal (the activation condition) issued to the analog to digital
converter. A new set-point would be entered in the regulator memory on a specific
write request from the human operator (again the request would be associated with an
activation condition). The distinction between a request and an activation condition
is that the request for a service is issued by the user, while the activation condition
is processed by the component.

4.6 Generic Component Models 99

Resources. The normal running of a service needs some hardware resources. The tank
is obviously necessary for the integration service to be performed. The transducer,
filter, analog to digital converter, power supply and amplifier are necessary for the
sensor to perform the measurement service. The microprocessor system is needed
by the controller to provide the regulation service.

Summarising the preceding description under a formal model, a service is a 6-
tuple:

<consumed variables, produced variables, procedure, request, activation condi-
tion, resources>.

As a consequence, a component is viewed as the set of services it can provide to
the users, thus leading to the component model

S(k) = {si (k), i ∈ Is(k)} (4.2)

si (k) = {
consi (k), prodi (k), proci (k), rqsti (k), activei (k), resi (k)

}
, (4.3)

where S(k) is the set of services of component k, Is is the set of the indices of the
possible services, and the other notations are straightforward.

Modes of operation. Obviously, not all the services provided by a component can
be requested at any time during the system’s life. A system generally goes through
different operating modes, each with its set of prerequisites to function. For example,
a request for the level control service from the controller of the single-tank system
is denied: when the set-point has not been written (this calls for some initialisation
mode); when the tank is empty (during a no-operation mode); when it is emptying
during a cleaning mode.

For that reason, definition (4.2) is further extended, by adding some organising
structure on the set of services. Normal operating modes are called use-modes. They
provide the formal model of the structure of the set of services.

Definition 4.7 (Use-mode (UM)) A use-mode is a subset of services of a component.
The set of use-modes covers the set of services, i.e. each service belongs at least to
one use-mode, and each use-mode contains at least one service.

Let M(k) = {mi (k), i ∈ Im(k)} be the set of use-modes of component k and
Si (k) ⊆ S(k) be the services available in mode mi (k). Note that the formal defi-
nition of a use-mode does not tell which subsets of services have to be selected to
form consistent use-modes. This matter is left to the design engineer, who indeed
must group into use-modes subsets of services which are consistent in some given
operation frame. In the single-tank system, the six possible use-modes are Filling
the tank, Processing batch, No operation etc.

100 4 Analysis Based on Components and Architecture

4.6.2 Introduction of the Generic Component Model

The consequence of the use-mode definition is that the component model must now
include a (higher) level description, which models the component possible transitions
from one use-mode to another one, and the conditions under which these transitions
take place. Indeed, at any time t, the component is in one and only one use-mode,
a discrete-event system behaviour which is easily modelled using a deterministic
automaton (see Sect. 3.4. for an extensive presentation of discrete-event models).
Note also that in order to obtain transitions between use-modes, it is necessary to
add new services to S(k). In the controller example, three possible use-modes and
the corresponding list of services could be the following:

No-operation : m1={set_mode_m2, set_mode_m3}
Initialise : m2={enter_set-point, display_set-point,

set_mode_m1, set_mode_m3}
In-control : m3={read_set-point, calculate_control_signal,

set_mode_m1}.

Taking into account the services and their organisation into use-modes, the generic
model of a component is now defined.

Definition 4.8 (Generic component model) A system component is defined by the
following formal model1:

< component k >::=< state transition graph G(M(k), τ (k), m0(k)) >

< M(k) >::=< set of use-modes {mi (k), i ∈ Im(k)} >

< τ (k) >::=< set of transitions
{
τij(k), i, j ∈ Im(k)

}
>

< m0(k) >::=< initial use-mode >

< use-mode mi (k) >::=< set of services Si (k) ⊆ S(k) >

< service sl(k) >::=< pre-ordered versions{
s j

l (k), j ∈ J (sl(k))
}

>

< version s j
l (k) >::=< consumed vars cons j

l (k),

produced vars prodl(k),

procedures proc j
l (k), request rqstl(k),

activation cond. activ j
l (k),

hardware and software resources res j
l (k) >

< transition τij(k) >::=< condition cij(k), origin mi (k),

destination m j (k) >.

This definition will be extended later.

1The notion of versions has been introduced in Sect. 3.2 and will be elaborated in more detail in
Sect. 4.6.4.

http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_3

4.6 Generic Component Models 101

4.6.3 Simple Components

A simple component is described by the services offered and its use-mode automaton.
A component is considered simple when it has no internal means to change the
services it provides. Simple components are typically without build-in computational
means. Two examples of an actuator and a sensor are treated below.

Actuator for flow control. Flow control is the most widespread actuator function
in machinery systems. It is used where a shut-off of a pipe connection is needed,
where the flow of a medium is to be controlled, and where control loops manipulate
a flow of a liquid in order to change a temperature. Flow control can be open/closed,
variable throughput, or redirection of flow from one pipe into two (three-way valves).

The actuator system consists of a three-way valve. It has a common port and two
other ports, referred to as A and B. The rotor position determines the opening area
between the common port and ports A and B. The valve distributes the flow between
ports A and B. The distribution is controlled by the rotor angle. An electro-mechanical
device is attached to the valve to control the rotor position.

The electro-mechanical valve actuator consists of a motor and a gear. The rotor
position is changed by running the motor in clockwise or counter-clockwise direc-
tions. The motor can be in one of the following states: stopped, rotation clockwise,
or rotation counter-clockwise.

The state is controlled by activation of two relay contacts. They are denoted
“open” and “close”, respectively. A potentiometer is used to measure the actual
rotor position. Figure 4.7 shows the principle in the actuator operation and electrical
connections.

Limit switches on the rotor provide indication of rotor end positions and provide
overload protection by preventing the motor to turn further in the direction of which
the limit switch has been activated.

The service provided by the flow control valve is described by the six-tuple:

Motor

Limit Switches (LS)

Potentiometer

A
C

B

AC

a
Close

Open

b

Computer
Digital Output Relay

LS b

LS a

Fig. 4.7 Operation of three-way valve actuator with relay-operated induction motor. (Abbrevia-
tions: o open, c close, LS Limit switch, AC Alternating Current)

102 4 Analysis Based on Components and Architecture

< consumed variables > ::=< open, close, in_limit >,

< produced variables > ::=< angle of output shaft, measured angle,
in_limit >,

< procedure > ::=< angle = ∫
up · dt − ∫

down · dt >,

< request > ::=< none >,

< activation condition > ::=< 220 V present >,

< resources > ::=< pot. meter, limit switches, controller,
geared motor >.

The produced variable is the angle of output shaft, which influences the flow.
Various faults can cause the flow to differ from the expected or desired value. The
following table summarises various faults that can cause such a deviation.

Component/ Flow too low Flow not rela- Fluctuating Flow too

Effect ted to control flow high output

angle

Pipe broken, Pipe clogged, Setpoint fluc- Too high in-

setpoint low, pipe leak tuating put flow, set-

power low point high

Fault Pipe clogged Pipe A or B

broken,

clogged or

leak

Damage, wear Hysteresis Damage, wear

Potentiometer. A potentiometer changes the position of contact between a resistance
element and a wiper when the turning angle is changed. The potentiometer can be
considered a voltage divider with a division ratio that is a function of the turning
angle. Figure 4.8 shows the typical connection diagram.

Component/ Signal too Not related to Fluctuating Signal too

Effect low angle signal high

Broken wire Loss of supply Vibration Broken wire

at A, short at A, short-

at A-B circuit A-C

Fault Short B-C Broken wire loose conec-

at C tion

Stuck, shaft Wiper fault

or element

broken

4.6 Generic Component Models 103

A

V

V

B

C

Potentiometer

a

b

iF

c

Wirering ISC

Fig. 4.8 Electrical diagram of potentiometer and computer interface to enable fault detection at
the single sensor level

The service provided by the potentiometer as a sensor is an electrical signal propor-
tional to the physical angle of rotation. Several faults will cause loss of this service.
Short-circuit of any terminal to supply or to ground, or arbitrary wire disconnection
are common events to cause component faults.

4.6.4 Complex Components

From a formal point of view, a component is a set of services. The consideration of
aggregated, complex components leads to extend this description to the consideration
of fault-tolerance capabilities.
Versions of services. Let si (k) be a service provided by component k, and suppose
that embedded fault tolerance is available. This means that the service si (k) would
not be interrupted even if the resources it needs were no longer available. This is
only possible if it exists within component k under several versions, namely si (k) ={

s j
i (k), j ∈ J (si (k))

}
where s j

i (k) is the j th version of service si (k).

From this extension, definition (4.2) can now be stated as:

S(k) = {si (k), i ∈ Is(k)}
si (k) =

{
s j

i (k), j ∈ J (si (k))
}

,

104 4 Analysis Based on Components and Architecture

where each version s j
i (k) of service si (k) is a 6-tuple like (4.3), which can be used

indifferently for the same purpose.

Versions pre-ordering. Designing the activation conditions of service versions rests
on the definition of a pre-ordering. The versions of a service are separated into classes
such that a service in class l is preferred to a service in class m if and only if l < m.
For example, some versions might be more precise, faster, less consuming, etc. than
others.

The design of the activation conditions is then straightforward: at time t when
the request for service si (k) is issued (or at any time if no request is necessary),
the version which is to be run is the lowest rank one whose resources are all non-
faulty. Two services in the same class are not ranked, which means that the choice is
indifferent. Thus the activation conditions of each version can be chosen arbitrarily,
provided they are mutually exclusive. Two examples of commonly used strategies
are as follows:

1. Give an arbitrary preference order. Use version 1 as long as its resources are not
faulty. Move to version 2 should version 1 fail.

2. Use the preceding scheme but regularly change the service ranking (e.g. in a
circular way) so as to distribute the operation equally over time of the different
versions.

A simple example of versions ranking is given by the measurement service of a
sensor which includes two redundant transducers to measure the same variable. Let

Rate
sensor

Tracking
controller

Heading
sensor

Speed
sensor

Position
sensor

Heading
controller

Rudder
actuator

Ship
dynamics

Fig. 4.9 Fault propagation in the ship steering problem

4.6 Generic Component Models 105

y1(t) = x(t) + ε1(t), ε(t) ∼ N (0, σ1)

y2(t) = x(t) + ε2(t), ε(t) ∼ N (0, σ2)

be the two measurement equations, with σ2 > σ1. The following table gives the
different versions of the measurement service which are provided by this (intelligent)
sensor, along with their ranking.

Class Procedure Fault situation

0 y(t) = 1
σ1+σ2

[σ2y1 (t) + σ1y2 (t)] No fault

1 y(t) = y1(t) Transducer 2 faulty

2 y(t) = y2(t) Transducer 1 faulty

Example 4.7 Component analysis of ship track control
To illustrate the component analysis, it will be applied to the ship steering example introduced
in Sect. 2.3 (Fig. 4.9). The subcomponents of the ship steering controller are as follows:

• Rate sensor (rate gyro),
• Heading sensor assembly (gyro compass),
• Track error sensor (Navigation computer with GPS input),
• Speed sensor (ship’s log),
• Track control algorithm (software), and
• Heading control algorithm (software).

Ship steering controller. The ship steering controller has the following use-modes:

UM 0: No operation,
UM 1: Hand steering,
UM 2: Heading control mode, and
UM 3: Tracking control mode.

For each use-mode, a set of services are offered to the user (person or other subsystem)

s(0) = < set_track; set_heading >

s(1) = < set_track; set_heading >

s(2) = < set_track; set_heading; keep_heading >

s(3) = < set_track; keep_track >.

The keep_heading service calculates the necessary rudder action in order to maintain the
heading of the ship based on the measured rate and heading. The service can be defined as

keep_heading = < ψ, ψref , ωm >;
< δ >;
< heading controller >;
< ψref defined >;
< none >;
< Gyro, rate sensor >.

The keep_track service calculates the necessary heading in order to maintain the track of the
ship based on the measured rate, heading and position. The service can be defined as

http://dx.doi.org/10.1007/978-3-662-47943-8_2

106 4 Analysis Based on Components and Architecture

keep_track = < track_error e, track, ship speed v1 >;
< ψref >;
< track controller >;
< track, reference defined >;
< none >;
< Gyro, rate sensor, speed sensor >.

The set_track service prompts the user to input waypoints for the desired track:

set_track = < waypoints >;
< track >;
< track planner >;
< user input >;
< none >;
< electronic seamap >.

The set_heading service prompts the user to set a desired heading:

set_heading = < ψin >;
< ψref >;
< ψref = ψin >;
< user input >;
< none >;
< none >.

In the above service definitions, some resources are not considered, for example electrical
power. �

4.6.5 Building Systems from Components

Systems are built from the interconnection of different components. Components are
interconnected because the services delivered by some of them consume variables
which are produced by services of others. The measurement service of a sensor,
for example, consumes variables produced by the environment of the system, and
produces variables which are consumed by the regulation service of the regulator,
which in turn produces variables which are consumed by the power modulation
service of the actuator.

In the generic model approach, interconnections are taken into account by consid-
ering higher-level components which are composed of lower level ones. Therefore,
systems are built following a bottom-up approach.

Indeed, system architectures can be described at different hierarchical levels. Sen-
sors, actuators, process components are at the field-level. Higher-level components
can be built from the aggregation of lower level ones at any hierarchical level. For
example, the aggregation of a tank, an input valve, an output pipe, a level sensor and
a regulator (with consistent connections between them) is a high-level component,

4.6 Generic Component Models 107

the “single-tank system”. Whatever the component level, its generic model can be
built defining its use-mode automaton, and the services which are available in each
use-mode. Aggregation procedures have to be defined in order to build the generic
model of high-level components from the generic models of the low-level compo-
nents they are composed of. High-level services allow to fulfil the system mission,
and the analysis of the overall system fault tolerance can be based on the search of
the existence of different versions of high-level services.

Aggregation of operation modes. The generic model of a component is first given
by its use-mode automaton. In each use-mode, the component is able to perform a set
of services (each of them under a variety of versions) in order to achieve some pre-
specified objective. Recall that the use-mode automaton which describes a compo-
nent is a graph A(M, τ , m0). Let A(M(k), τ (k), m0(k)) and A(M(l), τ (l), m0(l))
be the deterministic automata associated with two components k and l, and let
kl be a higher-level component, which aggregates these two ones. The automa-
ton A(M(kl), τ (kl), m0(kl)) associated with the component kl is obviously con-
tained in the asynchronous product of the two automata A(M(k), τ (k), m0(k)) and
A(M(l), τ (l), m0(l)):

• M(kl) ⊆ M(k) × M(l)
• τ (kl) ⊆ τ (k) ∪ τ (l)
• m0(kl) = (

m0(k), m0(l)
)

Let (α, β) = μ ∈ M(k) × M(l). This means that the mode μ of the high-level
device kl is defined as component k being in mode α and component l being in mode
β. Since not every such association is meaningful, the set of modes M(kl) has to be
selected by the designer, by eliminating from M(k) × M(l) the non-significant or
non-allowed associations.

Example 4.8 Temperature controller
Consider a temperature controller as a high-level component, obtained by the aggregation of
three low-level ones, namely a temperature sensor, a PI regulator, and a heating valve. The
use-modes of the low-level components are as follows:

Sensor: {off, calibration, automatic}
Regulator: {off, on }
Valve:{off, manual, automatic},

where the calibration mode of the sensor and the manual mode of the valve are used for
maintenance operations. Then, the asynchronous product of the three use-mode automata
gives 18 compound modes. Many combinations are inconsistent, e.g. (off, on, manual) or
(calibration, on, automatic), leaving only three consistent modes to describe the tempera-
ture controller device. The three use-modes of the high-level component are, therefore, {off,
maintenance, automatic}, and they are defined as follows from the use-modes of the low-level
components:

off = (off, off, off)

maintenance = (calibration, off, off) ∨ (calibration, off, manual)

∨(off, off, manual)

automatic = (automatic, on, automatic). �

108 4 Analysis Based on Components and Architecture

Aggregation of services. Let S(k) and S(l) be the services offered by two low-level
components k and l, and let us consider the high-level component kl which is their
aggregation. Let (α, β) = μ ∈ M(kl) be a consistent use-mode, then any combi-
nation of the services Sα(k) (available when component k is in mode α) and Sβ(l)
(available when component l is in mode β) can be used. In other words, any program
using the services of Sα(k) and Sβ(k) as instructions can be a service available in
the mode μ. Again, every combination is not consistent, and only programs with
functional interpretations in the application framework are to be considered.

Example 4.8 (cont.) Temperature controller
The following program defines a high-level service, available in the automatic mode of the
temperature controller component:

Regulation service:
Repeat,

Request the measurement service of the sensor,
Request the calculation service of the regulator,
Request the actuation service of the valve,

Until end of the regulation service.

Note that if the measurement service of the sensor is available under three versions, the
calculation service under two versions, and the actuation service under two versions, then the
regulation service is available under twelve versions. �

Hierarchical levels. System architectures can be described at different hierarchical
levels. Sensors, actuators, process components are at the field-level (they exchange
data at fieldbus level). Higher-level components can be built from the aggregation of
lower level ones at any hierarchical level. For example, the aggregation of a tank, an
input valve, an output pipe, a level sensor and a controller (with consistent connec-
tions between them) is a high-level component which can be named the single-tank
subsystem. Whatever the component level, its generic model can be built defining
its use-mode automaton, and the services which are available in each use-mode.
Aggregation procedures have to be defined in order to build the generic model of
higher-level components from the generic models of lower level components. High-
level services enable fulfilment of the system mission, and the analysis of the overall
system fault tolerance can be based on the search of the existence of different versions
of high-level services.

4.7 Fault-Tolerance Analysis

Fault tolerance is defined as the possibility of achieving a given (set of) objective(s)
in the presence of a given (set of) fault(s). In the generic model, objectives and
services are associated with each use-mode. Thus, the system is fault tolerant in the
current use-mode as long as services which allow to achieve the current objectives
are available in this use-mode.

Therefore, the analysis of fault tolerance rests on three points.

4.7 Fault-Tolerance Analysis 109

1. Are there services which allow to achieve the current objectives?
2. How are these services to be managed when faults occur?
3. How are the use-modes to be managed when faults occur?

4.7.1 Relation Between Services and Objectives

The generic component model describes the normal behaviour of the system com-
ponents, at any hierarchical level, since high-level components are built, following
a bottom-up approach, from the aggregation of low-level ones.

At the highest hierarchical level, the system itself is modelled as a single com-
ponent, which aggregates all the elementary components, and whose services corre-
spond to the missions or objectives that it has to achieve. Different aggregation paths
can be followed between the field-level (associated with elementary components)
and the system level. A natural way of building the bottom-up aggregation proce-
dure is to make use of the intuitive decomposition of the system into subsystems
whose functions (and services) can be clearly defined.

System pyramidal decomposition. Hierarchical decomposition splits a system into
a set of subsystems, which can themselves be further decomposed, each subsystem
being associated with a clear functional viewpoint. For example, a chemical process
can be decomposed into

• a subsystem which aims at controlling the pH,
• a subsystem which aims at controlling the level, and
• a subsystem which aims at controlling the temperature.

The pH control subsystem may be further decomposed into the valve controlling the
acid inflow, the valve controlling the base inflow and the stirr motor.

Since some components may belong to several subsystems, it is convenient to
use a pyramidal decomposition (Fig. 4.10) whose number of levels is decided by the

c

System

Subsystem 1

Subsystem 3 Subsystem 4 Subsystem 5

Comp 1 Comp 2 Comp 3 Comp n...

c i,

c −1

cj, −1

ls

l0

Subsystem 6

Subsystem 2

Fig. 4.10 Aggregation of low-level components into high-level ones

110 4 Analysis Based on Components and Architecture

designer so as to obtain the view of the system which suits him best. Let l = 1 be
the lowest decomposition level (the level of the field components) and l = n be the
highest decomposition level (the level of the system itself).

In a pyramidal decomposition, the following properties hold (l ≥ 2):

• Each component of level l − 1 belongs to at least one component of level l.
• Any component of level l includes at least one component of level l − 1.

High-level services. Let Cl be the set of components modelled at level l, (l =
1, . . . , n), and let c ∈ Cl and γ ∈ Cl−1 (l ≥ 2). Remember that the services of
high-level components are behaviours which use the services of the low-level com-
ponents they aggregate. Of course, not any combination of low-level services makes
sense, and it is necessary, for the subsystems of the pyramidal decomposition to be
consistent, that component γ ∈ Cl−1 is included in component c ∈ Cl only if at least
one service of component γ is used in at least one program which defines a service
of component c associated with a known functional interpretation. Indeed, associat-
ing elementary services to define a high-level service is always realised to answer a
functional requirement of the application. The system pyramidal decomposition is
in this case, a real help define high-level services from low-level ones.

Let S(γ) be the services offered by a component γ ∈ Cl−1 and let c ∈ Cl be the
aggregation of a set Γ of such components. Let

cons (c) = ∪γ∈Γ ∪s∈S(γ) cons (s)

prod (c) = ∪γ∈Γ ∪s∈S(γ) prod (s).

Note that cons(c)∩prod(c) may be non-empty, since some components in Γ may
consume variables produced by some other ones. Note also that any relation between
a subset of variables of cons(c) and a subset of variables of prod(c) can be obtained
as the result of a program using the services of ∪γ∈Γ S(γ). If there exists such a
relation which makes sense from a functional point of view in the system, then the
subsystem c ∈ Cl can be created at level l and the procedure which establishes such
a relation can be defined as a service of the aggregated component c. Note finally that
there might exist several subsets of components in Γ and several procedures which
establish the same relation between the above mentioned variables. Then, the service
exists under several versions. The set of all the versions of a service which can be
obtained by aggregation of lower level ones can be found in a rather automated way,
for simple kinds of programs composed of sequences and parallel executions.

Once the services of the subsystems have been determined at any level (including
the overall system level), the ordering of the versions is left to the designer.

Example 4.9 High-level regulation service
Consider the three following low-level components:

• γ1 is the temperature sensor, whose measurement service is defined by

< θ, θ̂, f1, rqst1, enable1, res1 >

4.7 Fault-Tolerance Analysis 111

where θ is the actual temperature, θ̂ is its estimate provided by the sensor, f1 is the procedure
which is used to produce the estimate: θ̂ = f1(θ). The request, enabling conditions and
resources are not of interest here.

• γ2 is the controller, whose computation service is defined by

< (θ̂, θ∗), u, f2, rqst2, enable2, res2 >

where θ∗ is the temperature set-point, u is the control signal, and f2 is the procedure which
is used to produce the control signal: u = f2(θ̂, θ∗).

• γ3 is the actuator, whose heating service is defined by

< u, π, f3, rqst3, enable3, res3 >

where u is the control signal, π is the delivered heating power, and f3 is the procedure
which is used to produce the heating power: π = f3(u).

Considering the set Γ = {γ1, γ2, γ3} as a candidate for aggregation into one higher-level

component c, the above sets are cons (c) =
{
θ, θ̂, θ∗, u

}
and prod (c) =

{
θ̂, u, π

}
, from

which it is seen that the simple program sequence “measure, compute, actuate” can provide a
relation between θ, θ∗ and π, whose functional interpretation is of course that of a “regulation”
service.

Moreover, note that if the measurement service is provided e.g. under four versions (as
in the following example), and the heating service is provided under two versions, then the
regulation service is provided under eight different versions. �

4.7.2 Management of Service Versions

Consider a service s at the system level. It is a set of pre-ordered versions s ={
s j , j ∈ J (s)

}
. Each version can be used for the same purpose, namely to achieve the

system objective(s) in a given use-mode, but the pre-ordering expresses a preference
between them.

Two conditions have to be fulfilled for service versions to be enabled at some given
time. First, the service must belong to the list of services of the current use-mode.
This is a straightforward condition, which insures that only services consistent with
the current objectives can be run.

The second condition is related with faults. Suppose that some resource from
the set res j is detected faulty by the fault diagnosis procedure at time t . Then,
obviously, running the version s j of the service s would produce incorrect values of
the variables prod, and this should be forbidden, putting enable j = 0. Note that this
might be impossible, since faults might have ever-lasting delivery of some service
as a consequence.

112 4 Analysis Based on Components and Architecture

Example 4.10 Unavailable and ever-lasting services
Let V _open and V _close be two services delivered by an on/off valve, and suppose that the
valve is blocked closed. Then, the service V _open becomes unavailable while the service
V _close is permanent in time. �

Thus, the consequence of faults is that some services become permanent in time,
while some others exist under a number of available versions which depend on the
remaining, non-faulty resources. The status of these service obviously depends on
the number of available versions, according to the following classification:

• at least one version is available: the service is available,
• no version is available: the service is unavailable.

Note that when more than one version is available, the lowest rank version of the
service (which is the most preferred among the available ones) is to be run when the
service is requested. Note also that the severity of the failure of a given resource with
respect to the service can be evaluated by counting the number of versions which
still are available after the failure has occurred. A resource for which this number
is zero, or whose failure causes the service to run permanently in time is called a
critical resource.

Example 4.11 Management of service versions in an intelligent sensor
Consider again the measurement service of the temperature sensor and suppose that it includes
two redundant transducers and an observer. Let

y1(t) = x(t) + ε1(t), ε1(t) ∼ N (0, σ1)

y2(t) = x(t) + ε2(t), ε2(t) ∼ N (0, σ2)

be the two local measurement equations, and

ŷ(t) = f (z1(t), z2(t))

be the observer algorithm, where z1(t), z2(t) are remote measurements obtained from a local
area network communication (LAN) system. The following table gives the different versions
of the measurement service which are provided by this sensor, along with their ranking.

Class Procedure Faultsituation

0 y (t) = 1
σ1+σ2(σ2y1(t) + σ1y2(t)) no fault

1 y (t) = y1(t) T1 ok., T2 faulty, A/D ok.

1 y (t) = y2(t) T2 ok., T1 faulty, A/D ok.
2 y (t) = y (t) T1 and T2 or A/D faulty, LAN ok.ˆ

Suppose that the measurement request is issued by the system clock according to some sam-
pling period, and that the measurement service is consistent with the current use-mode. Then,
it will be provided under version 0 if both transducers are operating well, and under version 1 in
the presence of a single transducer fault (note that the two versions 1 are mutually exclusive,

4.7 Fault-Tolerance Analysis 113

so that no conflict is possible). If the local Analog to Digital Converter (ADC) fails, version 2
can still be used, and the service will become unavailable only when local measurements and
fieldbus communication will be all faulty. Remind that the local ADC was a critical resource
when no observer was included in the sensor. Note also that version 2 of the measurement ser-
vice might be much more unprecise than versions 0 and 1, thus the service would be degraded
when this version is used. However, it would still be acceptable, otherwise version 2 should
never have been included in the list of versions by the design engineer. �

4.7.3 Management of Operation Modes

Remember that the set of services is organised into use-modes, whose behaviour is
described by a deterministic automaton. Let A(M, τ , m0) be the use-mode automa-
ton at the system level

• M = {mi , i ∈ Im} is the set of the use-modes. Remember that each of these modes
mi is associated with the set of the services Si ⊆ S by which it is defined,

• τ = {
τij, i, j ∈ Im

}
is the set of transitions,

• m0 is the initial use-mode.

Critical services. In this chapter, use-modes have been further associated with objec-
tives which have to be fulfilled thanks to those services. Let Oi be a set of objectives
associated with use-mode mi . As long as the set of services Si ⊆ S associated
with mi are available, the objectives Oi can obviously be achieved (otherwise, the
component would be inconsistently designed). Note that this is true, by definition,
whatever the version of the service. Versions of high rank provide degraded service,
thus achieving the objective in a degraded but still acceptable manner. If not, the
versions of that rank should not have been included in the list of possible versions
of the service.

Suppose now that some fault has occurred such that some services of Si become
unavailable or run permanently. Then some objectives of Oi might become impos-
sible to achieve. Let critical services be services whose unavailability or permanent
running implies that at least one objective of the mode to which they belong can-
not be achieved. Then, the A(M, τ , m0) automaton model is extended as follows:
M = {mi , i ∈ Im} is the set of the use-modes. Each mode mi is associated with the
set of objectives Oi and the set of the services Si ⊆ S which is decomposed into
Si = Sc

i ∪ Snc
i , where Sc

i are the critical and Snc
i are the uncritical ones.

Example 4.12 Critical service in the single-tank system
Consider the single-tank system given in the introduction, used in a food industry batch
production process, and suppose the current use-mode is UM2: processing the batch. In that
use-mode, the system objective is to regulate the temperature, and the regulation service is
thus a critical resource, since UM2 objective cannot be achieved if this service is lost. �

Staying in a mode. Consider the system operation in a given current use-mode,
and suppose that faults occur which cause the loss or permanent running of services
(remember that as long as at least one service version is available, the service is

114 4 Analysis Based on Components and Architecture

not lost). When non-critical services are lost or run permanently, the system can
obviously remain in the current use-mode, since this use-mode objectives can still
be achieved—eventually in a degraded manner—and thus the system is fault tolerant
with respect to the current objectives and the current fault situation.

On the contrary, when critical services of the current use-mode are lost or run per-
manently, the objectives associated with that use-mode can no longer be achieved,
and the system is to be given other objectives. This strategy is called an objective
reconfiguration strategy. The only way it can be implemented is by firing a transi-
tion towards another use-mode, whose objectives will become the current ones (for
example change the production recipe, or stop the production and transfer the system
to a safe state, in which maintenance can be undertaken).

In general, several other use-modes can be reached from the current one, and the
choice of the destination use-mode (i.e. of the new system objectives) is a difficult
decision problem, which has to be considered in the system design stage. Unless the
system objectives can be ranked according to a total ordering relation, the solution to
that problem can in general only be partially automated, thus leaving a very important
role to human operators in fault situations.

Transitions between modes. When objective reconfiguration is necessary, the sys-
tem is commanded to another use-mode whose objectives will become the new ones.
The system should, obviously, be able to achieve these new objectives, which means
that in the destination use-mode, no critical service is unavailable nor is permanently
running as a result of the current fault situation.

This remark is also valid when the transition does not follow from an objective
reconfiguration strategy but from the normal operation of the system.

4.8 Exercises

Exercise 4.1 Fault propagation analysis for industrial actuator
Consider the component block diagram of the position servo shown in Fig. 4.11. The blocks
in the figure are motor, amplifier, controller, potentiometer, gear and reference.

1. Construct a fault propagation matrix Mp for the potentiometer (use the FMEA matrix
from p. 102). Use angle as input and voltage vC at terminal C as output. Consider only
the fault f p1, which indicates the broken wire at C.

2. Using the above figure, define the component architecture in form of the directed adja-
cency matrix D.

3. Determine which node is an input node from the adjacency matrix.
4. Determine the number of closed loops and the length of these.

4.8 Exercises 115

Controller

Amplifier Motor

Reference

Gear Potentio-
meter

nmicom

vC

Fig. 4.11 Component diagram for speed loop part of the industrial actuator

The combined fault propagation matrix for motor and amplifier is defined by input and
internal faults:

fa1 low gain in amplifier
fm1 brush partial disconnect
ea1 low input command
ea2 high input command
ea3 fluctuating input command

output:

en1 low output speed
en2 high output command
en3 fluctuating output speed
en4 output speed not related to input command

Mam =

⎛
⎜⎜⎝

1 1 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 0 0 0

⎞
⎟⎟⎠ .

Without further explanation, assume that the gear has the propagation matrix

Mg =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

5. Determine the fault propagation from icom to θm , using Mam, Mg and Mp.

6. Compute the inverse fault propagation matrix, i.e. observe the end effects on θm and see
which faults or input effects could cause the end effects. �

116 4 Analysis Based on Components and Architecture

Exercise 4.2 Component-based analysis of battery charger
A battery charger component diagram is given as shown in Fig. 4.12. The behaviours of the
individual components are not known in detail but are given as

Power stage mean current: I = d · max(Vsup − Vbat, 0)

Current control: d = fi (Icom − Imes)

Voltage control: Icom = fv(Vref − Vmes)

Current sensor: Imes = I
Voltage sensor: Vmes = Vbat
Harness: Ibat = I

Battery voltage: Vbat = αbat
Cbat

t∫
0

Ibat(t) dt, αbat � 0.7.

(4.4)

1. Define one fault for each of the components: PWM converter, controller block (current
and voltage control), current sensor, voltage sensor. Assume that the supply voltage and
battery cannot fail.

2. Determine the fault propagation matrices for these components.
3. Determine the closed logical loops in the battery charger.
4. Cut the loop at the signal dcom and determine whether the logical loop has a solution. If

not, define dcom as an ancillary input.
5. Determine the end effects (on Ibat and Vbat) for the faults you defined.
6. Express the inverse propagation and list the end effects.
7. Suggest how a fault in the current sensor could be accommodated. �

Duty-cycle
control

Battery

Voltage
regulator

Icom

Vsup

VbatA/D A/D

Ibat

Vref

dcom

Imes
Vmes

Current
regulator

VI

Fig. 4.12 Component diagram of battery charger

4.9 Bibliographical Notes 117

4.9 Bibliographical Notes

Architecture models. Basic bibliographical notes on architecture and generic com-
ponent models were given in Chap. 2. With the purpose of describing complex inter-
connected systems, modelling extensions have been suggested in form of a bottom-
up procedure, which allows to describe high-level devices by the interconnection of
low-level ones, see [49, 50].

Generic component models. A semantics for services based on generic component
models was developed in [324] where a graphic analysis was found to be very useful.
A review of the use of graphical methods was provided in [47].

Failure modes and effects analysis. FMEA is a classical and widely used tool
in industry [147]. Presentation of a matrix formulation suited for computational
treatment of FMEA schemes was first presented by [192]. The fault propagation
analysis was proposed in [22] and further elaborated in [42].

Fault reasoning and data validation. Reasoning and detection of faults, and hierar-
chical data validation was introduced in [14], while alarm filtering applications were
considered in [258]. Systematic analysis of fault propagation [22, 42] was shown to
be an essential tool for determination of severity of fault effects and for assessment
of remedial actions early in the design phase. Reference [72] presented a compre-
hensive diagnosis methodology for complex hybrid systems and an application to
aircraft power generator diagnosis was included in [358].

Fault tolerance. The analysis of fault propagation has also penetrated to design
of industrial systems, Fault-tolerant steering by wire was obtained in [35] and a
fault-tolerant three-phase speed drive for AC motors was described in [118].

Distributed systems. Fault tolerance in distributed systems has mainly been based on
modular models [165]. The generic component model was used for defining the faulty
resources management and the mode management layers [120]. Reconfigurability
analysis was developed more recently [121]. Important application areas is prognosis
and health management and an application for a distributed medical equipment a
distributed concept was illustrated in [102].

Other applications and trends. Consequences of faults and how faults propagate
attain continuous attention and documentation of fault effects properties are manda-
tory in product development in many areas. Transportation systems are among those
expected and required by society to be safe. In these and many other systems, the
complexity is an obstacle when attempting to conduct covering assessments. The
complexity of computer-based safety systems was considered in [271], where a new
method was proposed for joint design optimization and engineering failure analysis.
The criticality of component failures in the petrochemical processes were treated in
[136].

Software. All major functionalities in automation systems depend on software imple-
mentation and computer hardware. The complexity of software is immense and

http://dx.doi.org/10.1007/978-3-662-47943-8_2

118 4 Analysis Based on Components and Architecture

analysis of failure modes and of fault propagation in software is a discipline in itself,
which is not within the scope of the present text. Nevertheless it could be mentioned
that [135] analysed and experimented with software fault injection aiming at FMEA.

Chapter 5
Structural Analysis

Abstract This chapter uses the structure graph to describe the direct interactions
among the signals within a dynamical system. This graph allows to analyse the
redundancies within a system, which can be exploited for fault diagnosis and control
reconfiguration. A dynamical model is interpreted as a set of constraints, which leads
to a bipartite graph representing the system structure. Faults indicate violations of
the constraints. The analysis shows how component faults can be found by defining
and utilising analytic redundancy relations.

5.1 Introduction

This chapter investigates the structural properties of dynamical systems by analysing
their structural model. The structural model of a system is an abstraction of the
behavioural model in the sense that instead of the constraints themselves only the
structure of the constraints is considered. The structure graph is a representation of
the links between constraints and the variables and parameters occurring in each
constraint. The structure is represented by a bipartite graph, which is independent
of the nature of the constraints, and of the variables and parameter values. Structural
analysis can hence describe systems described by quantitative or qualitative relations,
by equations, by rules or by tabular relations. The structure graph will be shown to
represent a qualitative and easy-to-obtain model of the system.

Structural analysis is based on a description of the normal behaviour of a sys-
tem, through describing the normal behaviour of each component and the relation
(connection) the components have to variables we wish to consider in the system.
Using this approach, we will be able to diagnose whether a violation of a normal
behaviour has happened. This means we are no longer bound to describe all possible
faults that could happen in components of a system, as was the case with FMEA
and Fault Propagation Analysis methods presented in Chap. 4. Instead, the starting
point of analysis is a set of constraints, a set of nominal input–output relations, which
describe the system as a set of components, the normal behaviour of each component
and the topology of the components that constitute the system. Any violation of a
constraint is considered to be a fault, without specifying the physical reason behind
each possible fault.

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_5

119

http://dx.doi.org/10.1007/978-3-662-47943-8_4

120 5 Structural Analysis

The structural model will be shown to be represented by a structure graph, com-
posed of constraints and variables. This graph is independent of the value of the
system parameters, and structural properties are deducted using graph theory for
graphs that are partitioned into two sets: constraints and variables. The properties of
this bipartitioned graph are explored in great detail in this chapter.

In spite of their apparent simplicity, structural models provide significant infor-
mation for use in fault diagnosis and fault-tolerant control. This approach is able to
identify those constraints, and related components of the system, which are—or are
not—monitorable, to provide calculation of residuals from the analytic redundancy
relations (ARR) that exist in a system, and to find those components whose failure
can be tolerated through reconfiguration.

In this chapter, structural investigations concern

• identification of the monitorable part of the system, i.e. the subset of the system
components whose faults can be detected and possibly isolated,

• direct generation of residuals for a system that is specified by its structure graph:
the behaviour described through constraints, the known and the unknown variables.

• how analytical redundancy relations (ARRs) are calculated with ease for linear or
nonlinear systems,

• how analytical redundancy relations in structural representation are transformed to
residuals in analytical form for use in fault diagnosis by algorithmic manipulations
on the structure graph (matching and backtracking),

• how to design residuals that meet specific fault diagnosis requirements, namely
being insensitive to disturbances and can be structured (i.e. sensitive to certain
faults and insensitive to others),

• demonstrate structural results for active isolation of possible faults in the structure
(violation of constraints) through imposing test signals on inputs to isolate an
otherwise non-isolable structural defect,

• discuss possibilities for reconfiguration to estimate and to control some variables
of interest in case of sensor, actuator or system component failures.

These important properties are found by the analysis of the structure graph and
its canonical decomposition. In order to introduce the canonical decomposition,
matchings on a bipartite graph are first presented and their interpretation is given.
Causality is introduced and adds orientation to the bipartite structure graph. Matching
of unknown variables in the structure graph is then investigated and it is shown how
ARRs are found among the constraints that are not needed for a particular matching.
It is shown how a set of ARRs and the set of constraints through which they are
calculated, lead to the important notions of structural detectability and isolability. It is
also shown how ARRs generated by structural analysis by design become insensitive
to unknown disturbances or to unknown parameters. Further, structural controllability
is discussed and fault tolerance is investigated through analysis of the structural
properties that exist for reconfiguration of a system in case of component failures.
The chapter finally summarises essential design procedures based on the structural
analysis methods.

5.2 Structural Model 121

5.2 Structural Model

5.2.1 Structure as a Bipartite Graph

This section introduces the structural model of a system as a bipartite graph which
represents the links between a set of variables and a set of constraints. It is an
abstraction of the behavioural model, because it merely describes which variables
are connected by which constraints, but it does not say how these constraints look
like. Hence, the structural model shows the basic features and properties of a system,
which are independent of the system parameters.

Behaviour model. The behavioural model of a system is defined by a pair

S = (C, Z)

where

• Z = {z1, z2, . . . , zN } is a set of variables and parameters and
• C = {c1, c2, . . . , cM} is a set of constraints.

According to the granularity of the variables (quantitative, qualitative, fuzzy) and of
the time (continuous, discrete), the constraints may be expressed in several different
forms like algebraic and differential equations, difference equations, rules, etc.

Example 5.1 A differential-algebraic model
Consider the sets

Z = Xa ∪ Xd ∪ U ∪ Y
C = {g, h, m},

where Xa is the set of variables xa that appear only in algebraic constraints, and Xd the set of
variables xd whose derivative obeys some differential constraints g. A differential-algebraic
model is given by

ẋd(t) = g (xd(t), xa(t), u(t)) (5.1)

0 = m (xd(t), xa(t), u(t)) (5.2)

y(t) = h (xd(t), xa(t), u(t)). (5.3)

Note that it is possible to define a separate set of variables ẋd for the derivatives and a separate
set of constraints

ẋi(t) − d

dt
xi(t) = 0, i = 1, . . . , n, (5.4)

122 5 Structural Analysis

so that the sets of variables and constraints have to be extended:

Z = Xa ∪ Xd ∪ Ẋd ∪ U ∪ Y
C =

{
g, h, m,

d

dt

}
,

where d
dt stands for the differential constraints (5.4) and all the constraints (5.1)–(5.3) are

algebraic.
The behaviour model of a dynamical system links present and past values of its variables

(for discrete time systems) or variables and their time derivatives up to a certain order (for
continuous-time systems). Giving two variables the names x(t) and ẋ(t) does not guarantee
that the second one is the time derivative of the first one. This is only true thanks to the
analyst’s interpretation, and this fact has to be represented, for automatic treatment, by separate
constraints like (5.4). �

Two basic assumptions express the fact that a model defined by some set of
constraints is well formed. These assumptions are used in the sequel.

Assumption 5.1

(a) All the constraints in C are compatible.
(b) All the constraints in C are independent.

Assumption 5.1(a) means that the set of the constraints is associated with a sound
model, namely a model whose set of solutions is not empty. In other words, the
constraints do not carry any contradiction.

Assumption 5.1(b) means that the model is minimal in the sense that no constraint
defines (at least locally) the same set of solutions as another one, or more generally
that in C there do not exist two different subsets C′ and C′′ such that

V (C′) ⊆ V (C′′)

holds, where V (C) is the set of solutions associated with the constraint set C. It will
be seen that this assumption may or may not hold, depending on the redundancy
which is present in the system.

Example 5.2 Dependent constraints
Consider the two constraints

c1 : z1 − 1 = 0

c2 : (z1 − 1)(z2 − 1) = 0.

They are obviously not independent, since one has V (c1)∩V (c2) = V (c1). In fact, constraint
c1 is sufficient to describe the set of the system solutions, and one has the implication

c1 is true ⇒ c2 is true. �

5.2 Structural Model 123

Structure graph. The structure of a system is represented by a bipartite graph. A
graph is bipartite if its set of vertices can be separated into two disjoint sets C and Z
in such a way that every edge has one endpoint in C and the other one in Z .

Definition 5.1 (Structural model, structure graph) The structural model of the
system S = (C, Z) is a bipartite graph

G = (C, Z, E),

where E ⊂ C × Z is the set of edges defined as follows:

(ci, zj) ∈ E if the variable zj appears in the constraint ci.

G is also called the structure graph or the structure.

In the representation of a system as a pair S = (C,Z), the set C includes the
constraints describing the relations among the variables, whereas the vertex set C
of the graph G includes only the names of these constraints, which are used as the
names of vertices. Nevertheless, the same symbol C is used in S and G.

The bipartite graph is an undirected graph, which can be interpreted as follows: All
the variables and parameters zj ∈ Z that are connected with a given constraint-vertex
ci ∈ C have to satisfy the equation or rule that this constraint-vertex represents. The
structure graph can be built for rather general models including models of the form
of differential and algebraic equations.

In the following figures, the variable-vertices zj ∈ Z will be represented by circles
while the constraint-vertices ci ∈ C will be represented by bars. Note that the edges
are not oriented. The incidence matrix of the bipartite graph is used to represent
the graph as a set E of edges in an algebraic manner. The rows of this matrix are
associated with the constraints and the columns with the variables. A “1” in the
intersection of row ci and column zj indicates the existence of the edge

(
ci, zj

) ∈ E .
For an example, cf. (5.5).

Example 5.3 Structure graph of a linear system
Consider a linear system described by four constraints {c1, c2, c3, c4} with five variables
{x1, x2, ẋ1, ẋ2, u} as follows:

c1 : ẋ1 = dx1

dt
c2 : ẋ1 = ax2

c3 : ẋ2 = dx2

dt
c4 : ẋ2 = bx1 + cx2 + du.

124 5 Structural Analysis

Fig. 5.1 Bipartite graph of
the linear system x1 x1

c2 c3 c4c1

x2 x u2

. .

Its structure graph has the incidence matrix

↗ u x1 x2 ẋ1 ẋ2

c1 1 1
c2 1 1
c3 1 1
c4 1 1 1 1

(5.5)

leading to the bipartite graph depicted in Fig. 5.1. �

Example 5.4 Tank system
Consider a tank system where the inflow qi(t) is controlled via a level sensor and an electric
pump and the outflow qo(t) is realised through an output pipe (Fig. 5.2).

The system consists of the components {tank, input valve, output pipe, level sensor, level
control algorithm}. A continuous-variable continuous-time model is given by the following
constraints:

Tank c1 : ḣ(t) = qi(t) − qo(t)
Input valve c2 : qi(t) = αu(t)

Output pipe c3 : q0(t) = k
√

h(t)
Level sensor c4 : y(t) = h(t)

Control algorithm c5 : u(t) =
{

1 if y(t) ≤ h0 − r
0 if y(t) ≥ h0 + r.

(5.6)

u

h

h

0

q (t)0

q (t)i

(t)

y(t)

Parameter
Control

Tank

Level sensor

algorithm

r

Fig. 5.2 Single-tank system

5.2 Structural Model 125

u is the control variable, y the sensor output, h0 the given set point, and r and k are given
parameters. h denotes the liquid level, qi and qo the flow into or out of the tank. α is a valve
constant. Each component introduces one constraint. The separate constraint

c6 : ḣ(t) = dh(t)

dt

expresses the fact that ḣ(t) is the derivative of the level h(t).
This behavioural model of the tank system without controller leads to the structure graph

with the following incidence matrix:

Input/Output Internal variables

u(t) y (t) h(t) ḣ(t) qi (t) qo (t)

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

↑
Every column of the matrix corresponds to a circle-vertex and every row to a bar-vertex.

The structure graph is shown in Fig. 5.3.
If the controller is introduced, the graph is extended by a new bar-vertex for c5 and two

new circle-vertices for h0 and r. Furthermore, if the parameter k appearing in constraint c3 is
considered now as an important variable (rather than a fixed given parameter like the valve
constant α), a circle-vertex is introduced for k and linked with c3. These steps lead to the
following extended incidence matrix:

Input/Output Parameters Internal variables

u(t) y (t) h0 r k h(t) ḣ(t) qi(t) qo(t)

c1 1 1 1

c2 1 1

c3 1 1 1

c4 1 1

c5 1 1 1 1

c6 1 1

↑

For simplicity, only the ones appear in this matrix and empty boxes are zero. Figure 5.4 shows
the extended graph. �

Remark 5.1 (Structural representation by digraphs) For nonlinear systems

ẋ(t) = f (x(t), u(t))

y(t) = g(x(t))

126 5 Structural Analysis

Fig. 5.3 Structure graph of
the single-tank system
without controller

c

u

2

qi

c1 c6 c3

c4

q0

h h

y

.

Fig. 5.4 Structure graph of
the controlled tank u r

c2

qi
q0

c1 c6 c3

c5

0h h
.

h

k

y

c4

a popular structural representation uses the directed graph (digraph), whose set of
vertices is the set of the input, output and state variables and whose edges are defined
by the following rules:

• An edge exists from vertex xk (resp. from vertex ul) to vertex xi if and only if
the state variable xk (resp. the input variable ul) really occurs in function fi (i.e.
∂fi
∂xk

—resp. ∂fi
∂ul

—is not identically zero).
• An edge exists from vertex xk to vertex yj if and only if the state variable xk really

occurs in the function gj.

In the digraph representation edges are interpreted as “mutual influences” between
variables: an edge from xk to xi means that the time evolution of the derivative ẋi(t)
depends on the time evolution of xk(t). Similarly, an edge from xk to yj means that the
time evolution of the output yj(t) depends on the time evolution of the state variable
xk(t). In contrast to the bipartite graph, the signals xi and ẋi are not distinguished but
represented by the same vertex xi. �

5.2 Structural Model 127

Fig. 5.5 Digraph of the
linear system

u y

x1

x2

Example 5.5 Digraph of a linear system
The digraph which describes the structure of the system

ẋ1(t) = x2(t) (5.7)

ẋ2(t) = ax2(t) + bu(t)

y(t) = x1(t)

is shown in Fig. 5.5. Obviously, the constraints given in the behavioural model are not explicitly
represented. �

5.2.2 Subsystems

Instead of considering the whole set of constraints which describe the behavioural
model of a system, it is sometimes convenient to consider only subsets of constraints.
A subsystem is defined by the set of constraints together with the set of variables
that occur in these constraints. This subsection introduces the vocabulary connected
with subsets of the constraints.

The symbol 2C denotes the set of all the subsets of C (also denoted as the power
set of C). Let G = (C, Z, E) be the structure graph of the system S = (C, Z) and
Q be a mapping between a set of constraints and the set of variables used in these
constraints:

Q : 2C → 2Z
φ �→ Q(φ) = {z ∈ Z; ∃c ∈ φ s.t. (c, z) ∈ E}. (5.8)

Q associates with any subset φ of constraints, the subset Q(φ) of those variables
which intervene in at least one of them. Correspondingly, the mapping R associates
a set of variables with a set of constraints where these variables appear:

R : 2Z → 2C
ξ �→ R(ξ) = {c ∈ C; ∃z ∈ ξ s.t. (c, z) ∈ E}. (5.9)

128 5 Structural Analysis

Definition 5.2 (Subsystem) For a system S = (C,Z), a subsystem is a pair
(φ, Q(φ)) with φ ∈ 2C . The subgraph that is related with subsystem (φ, Q(φ))

represents the subsystem structure.

According to this definition, a subsystem is any subset φ of the system constraints
together with the set Q(φ) ⊂ Z of related variables. There are no specific require-
ments on the choice of the elements in φ ⊆ 2C . Of course, only some of them are of
interest in applications:

• First, subsystems can be associated with some physical interpretation. Complex
systems are often decomposed into subsystems which have a physical or a func-
tional meaning. For example, a boiler can be decomposed into a steam generator,
the instrumentation scheme and a control system. These subsystems are associated
with subsets of constraints, so that the fault of one or several subsystems results
in some of these constraints being changed.

• Second, subsystems can be associated with special properties. For example, fault
diagnosis is possible only for subsystems which exhibit redundancy properties as
shown later.

Example 5.6 Q and R mappings for the tank example
Consider the following incidence matrix for the single-tank system.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

Examples for the mappings Q and R are:

Q({c1, c3}) = {
h, ḣ, qi, qo

}
Q({c5}) = {u, y}

R({qi, qo}) = {c1, c2, c3}.

Hence, the pair
({c1, c3} ,

{
h, ḣ, qi, qo

}
)

is a subsystem and its structure is described by the subgraph with the incidence
matrix

5.2 Structural Model 129

h ḣ qi qo

c1 1 1 1

c3 1 1

↑

5.2.3 Structural Properties

Two systems which have the same structure are said to be structurally equivalent.
Consequently, the structure graph G defines a class S(G) of structurally equivalent
systems. In particular, systems which only differ by the value of their parameters
belong to the same class.

The class of systems defined by the structure graph is large, because the structure
is independent of the form in which the constraints are expressed. For example,
suppose that the level sensor in the single-tank system does not provide an analog
output but a quantised one. Then its operation is described by the following table,
where α, β, γ are given constants:

h ∈ [0, α[∈ [α, β[∈ [β, γ[≥ γ

y empty low medium high

For structural considerations the important information included in this table is the
fact that the sensor reading y and the tank level h are connected and, hence, in the
structure graph there exist edges between the variable-vertices for y and h towards
the constraint-vertex for the sensor. This fact is obviously independent of the quan-
tisation. Hence, the structure of the sensor is exactly the same for analog and for
symbolic sensor readings.

Structural properties are properties of the system class S(G) rather than of a
single system Σ ∈ S(G), because they are properties of the graph G. The relation
between the results of the structural analysis and the results of a numerical analysis
of a single system is depicted in Fig. 5.6. The arrows from the left to the right part
of the figure show the abstraction process, which leads from the numerical values of
the system parameters to the links among the variables represented by the structure
of the constraints. Accordingly, the properties of the system class are abstractions of
properties of the (numerical) systems that are structurally equivalent.

As the aim of structural analysis is to elaborate properties that belong to the graph
G, but are relevant for all or at least for most of the systems Σ ∈ S(G), the analysis
usually concerns two similar properties P and P′, where P is a property defined for a
single system Σ and P′ is a property of the graph G. With respect to the figure, one
has to ensure that the “inverse abstraction” process from the properties of the class
S(G) towards the single system Σ is known. For most of the structural properties
P′ that are investigated in structural analysis there exists a property P such that the
following relation holds:

130 5 Structural Analysis

Behavioural
modelling

Behaviour model

Numerical
analysis

Properties of

∑

Abstraction

Abstraction

Class of systems
S(G)

Structural
modelling

Structure graph

Structural
analysis

Properties of
S(G)

Abstraction
Single system

∑

Fig. 5.6 Numerical and structural analysis of dynamical systems

If the system Σ ∈ S(G) has the property P, then the system class S(G) has
the property P′.

Hence, the requirement that the graph G possesses the property P′ is a necessary
condition for the system Σ ∈ S(G) to have the property P.
Example 5.7 Observability and structural observability
Consider the static system

(
y1
y2

)
=

(
a(θ) c(θ)

b(θ) d(θ)

)

︸ ︷︷ ︸
A(θ)

(
x1
x2

)
, (5.10)

for which the internal variables x1 and x2 should be determined for measured outputs y1 and
y2. Every single system Σ is characterised by Eq. (5.10) together with a parameter vector
θ ∈ |Rq. The system Σ is said to be observable if the model (5.10) can be used to determine
x1 and x2 in terms of y1 and y2, which is obviously the case if and only if the matrix A(θ) is
invertible. Hence,

rank A = n (5.11)

is a necessary and sufficient condition for the observability of the system Σ , where n is the
number of unknown variables to be observed. For observability analysis, which concerns the
left arrow “Numerical analysis” in Fig. 5.6, Eq. (5.11) has to be checked.

On the other hand, a structural analysis abstracts from the parameter values and uses a
graph with the incidence matrix

E =

x 1 x2

c1 [a(θ)] [c(θ)]
c2 [b(θ)] [d(θ)]

↑

5.2 Structural Model 131

where c1 and c2 denote the first and the second equation in (5.10) and the symbol [·] denotes
the qualitative value of the matrix element considered. The qualitative value [a(θ)] is equal to
1 if the argument a(θ) does not vanish for all parameter vectors θ ∈ |Rq; otherwise it is zero.

The system class S(G) includes all systems Σ described by Eq. (5.10) for arbitrary para-
meter vectors that are consistent with the entries of the matrix E. Hence, if E has a vanishing
element, the corresponding element of the matrix A vanishes for all Σ ∈ S(G). This system
class is said to be structurally observable if at least one system Σ ∈ S(G) exists that is
observable (according to the definition given above). That is, there has to exist at least one
parameter vector θ for which the relation det A �= 0 holds. This is obviously the case if and
only if the structural rank of the matrix E is two or, more generally,

s-rank E = n. (5.12)

The structural rank of a matrix E is the maximum number of non-zero elements in different
rows and columns of E. The arrow “structural analysis” in Fig. 5.6 means to test Eq. (5.12).

The important aspect of this example is the fact that for the single system the notion of
observability and for a class of systems the notion of structural observability has been defined
in such a way that a system has to belong to a structurally observable system class if the system
should be observable. Both definitions are closely related to one another, but these properties
are not the same! The structural observability of the system class, which can be tested by the
graph, is a necessary condition for the observability of the system.

However, to belong to a structurally observable system class is not sufficient for a system
to be observable. Think of the system Σ with a = b = c = d = 1. This system violates
the condition for observability (as det A = 0) although it belongs to a structurally observable
system class. An important aspect of the structural investigations in the next sections concerns
the relations among these properties, in particular, the elaboration of conditions under which
the structural properties of a system class do not transfer to the (numerical) properties of every
single system of this class. For the observability properties considered in this example, this
condition is given by

s-rank E ≥ rank A,

which means that the rank of a matrix cannot exceed the structural rank of the graph that
represents the structure of this matrix. �

An important question asks under what conditions the structural property P′ of
S(G) does not transfer to the numerical property P of Σ ∈ S(G). Two cases can be
distinguished with respect to the example above:

1. In the first case, parameters θ always satisfy the relation det A = 0 and thus the
structural property is never translated into an actual property. This situation is
excluded in structural analysis, because the parameters are always supposed to be
independent, which means that they span the whole space |Rq. As an algebraic
relation like det A = 0 defines a manifold in the parameter space |Rq, it cannot
be satisfied by all θ ∈ |Rq. Otherwise, the equation det A = 0 should have been
included in the system model.

2. In the second case, the parameters θ of the system under investigation satisfy
the relation det A = 0, and thus the structural property is not translated into an

132 5 Structural Analysis

actual property for that particular system. Structural analysis, however, implies
the interesting conclusion that under mild assumptions on the functions a, b, c, d
there always exists a parameter vector θ̃ in the neighbourhood of θ for which the
actual property coincides with the structural one.

In conclusion, (numerical) properties P can only occur if the corresponding struc-
tural properties P′ are satisfied. They can certainly not be true if the structural prop-
erties are not satisfied. Furthermore:

Structural properties are properties which hold for actual systems almost every-
where in the space of their independent parameters.

Hence, it is extremely unlikely that the system under consideration has a parameter
vector for which a structural property does not imply the corresponding numerical
property.

5.2.4 Known and Unknown Variables

The system variables and parameters can be classified as known and unknown ones.
The system inputs and outputs are examples of variables that are usually known. Sim-
ilarly, model parameters which have been previously identified are known. Unknown
variables are not directly measured, though there might exist some way to compute
their value from the values of known ones. In the tank example, the last four columns
of the incidence matrix

{
h, ḣ, qi, qo

}
correspond to unknown variables, while the

first five ones correspond to known variables and parameters {u, y, h0, r, k}.
Following that decomposition, the set of the variables is partitioned into

Z = K ∪ X ,

where K is the subset of the known variables and parameters and X is the subset of
the unknown ones. Similarly, the set of constraints is partitioned into

C = CK ∪ CX ,

where CK is the subset of those constraints which link only known variables and
CX includes those constraints in which at least one unknown variable appears. CK
is the largest subset of constraints such that Q(CK) ⊆ K. Obviously, the relations
defining control algorithms belong to CK because they introduce constraints among
the sensor output, the control objectives (set points, tracking references, final states)
and the control input, which are all known variables.

According to the partition of Z and C, the graph G = (C, Z, E) can be decom-
posed into two subgraphs which correspond to the two subsystems (CK, Q(CK))

and (CX , Z). The behavioural model of the subsystem (CK, Q(CK)) involves only
known variables. In some further developments, it will be of interest to focus on the

5.2 Structural Model 133

subsystem (CX , Z) which leads to the reduced structure graph. This graph includes
only those constraints that refer to at least one unknown variable zi ∈ X .

A fundamental question of fault diagnosis concerns the determination of unknown
variables from known variables by means of constraints. The question whether this
is possible or not depends only upon the structure of the subgraph (CX , X , EX) that
results from the complete structure graph G by deleting all known variables zi ∈ K
together with the corresponding edges. Therefore, in all further examples of structure
graphs the known variables are marked grey.

Example 5.8 Analysis of the structure graph of the tank system
Consider the tank, whose structure graph is given in Fig. 5.4. Assume that the input u and
the output y are known signals and, furthermore, h0, r and k are known parameters. Then the
decomposition of the variable set

Z = {h, ḣ, qi, qo, u, y, h0, r, k}

into set of known and unknown variables yields the sets

K = {u, y, h0, r, k} and X = {h, ḣ, qi, qo}.

By selecting all constraints whose variables are all in the set K, the set CK = {c5} is obtained.
All other constraints are comprised in the set

CX = {c1, c2, c3, c4, c6}.

Obviously, Q(CK) ⊆ K and

Q(CX) = {u, y, qi, qo, h, ḣ}

hold. The incidence matrix of the structure graph can be reorganised as follows:

known unknown

u y h0 r k h ḣ qi qo

c5 1 1 1 1

c1 1 1 1

c2 1 1

c3 1 1 1

c4 1 1

c6 1 1

↑

The known variables are in the left columns and the constraint that refers merely to known
variables in the first row. The reduced structure graph which corresponds to the subsystem
(CX , Z) is given by the lower part of the incidence matrix. As the variables h0 and r do not
appear in this part of the matrix, their columns are deleted. Hence, the reduced structure graph
has the incidence matrix:

134 5 Structural Analysis

known unknown

u y k h ḣ qi qo

c1 1 1 1

c2 1 1

c3 1 1 1

c4 1 1

c6 1 1

↑

The reduced graph is shown in Fig. 5.7a.
For diagnosis, another decomposition of the variables into known and unknown ones is

used. The parameters like k, h0 and r are assumed to be fixed and, hence, ignored in the
structure graph. The remaining variables represent signals, some of which are measured and
the others are unknown. Hence, for the tank system the fixed parameter k is deleted from the
structure graph, which results in the following incidence matrix and in the graph depicted in
Fig. 5.7b:

u y h ḣ qi qo

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

↑

The diagnosis problem for the tank system can be posed as the problem to decide whether the
“grey signals” u and y are consistent with the model whose structure is shown in Fig. 5.7b. �

5.3 Matching in Bipartite Graphs

The basic tool for the structural analysis is the concept of matching in bipartite
graphs, which is introduced in this section. In loose terms, a matching is a causal
assignment which associates with every unknown system variable a constraint that
can be used to determine the variable. Unknown variables which do not appear in a
matching cannot be calculated. Variables which can be matched in several ways can
be determined in different (redundant) ways. The last situation provides a means for
fault detection and for reconfiguration.

5.3 Matching in Bipartite Graphs 135

u

c2 c2

qi q0 q0k

c1

c4

c6 c3

h
.

qi

c

u

1 c6 c3

c4

h h

y

.
h

y

(a) (b)

Fig. 5.7 Reduced structure graph of the tank system (a) and structure graph used in diagnosis (b)

5.3.1 Definitions

Matching is a general notion that has been introduced for bipartite graphs. It is
introduced here in general terms for bipartite graphs G = (C, Z, E), but illustrated
for structure graphs of dynamical systems.

Edges of the graph G are said to be disjoint if they have no vertex in common
(neither in C nor in Z).

Definition 5.3 (Matching) A matching M ⊆ E is a set of disjoint edges of a bipartite
graph G.

In general, different matchings can be defined on a given bipartite graph as illus-
trated in Fig. 5.8 by the bold edges. These matchings are given by the following set
of disjoint edges:

M1 = {(c1, ḣ), (c2, qi), (c3, h), (c4, y)}
M2 = {(c6, ḣ), (c1, qi), (c4, h), (c3, qo)}.

The examples show that a set M of edges is called matching even if it does not
include a maximum number of disjoint edges. If it does, it is said to be a maximum
matching.

A maximum matching is hence a matching such that no edge of the graph G can
be added without violating the requirement that the edges have to be disjoint. Since
the set of matchings M is only partially ordered, it follows that there is in general
more than one maximum matching. The “size” of a matching M is its cardinality
|M|. In general, the relation

|M| ≤ min{|C| , |Z|}

136 5 Structural Analysis

Fig. 5.8 Two matchings for
the tank system: The edges
e ∈ M are drawn by thick
lines

c1 c2 c3 c4 c5 c6

c1 c2 c3 c4 c5 c6

hh
.

qi q0 u y

hh
.

qi q0 u y

holds. The maximum cardinality over the set of matchings is called the matching
number and is denoted by

ν(G) = max
M∈M

|M|.

In the incidence matrix, a matching is represented by selecting at most one “1”
in each row and in each column and marking it by “①”. Each ① represents an edge
of the matching. No other edge should contain the same variable (thus it is the only
one in the row) or the same constraint (it is the only one in the column). The set M
of all matchings of a graph is a subset of 2E .

Structural analysis deals with matchings that include all vertices c ∈ C or all
vertices z ∈ Z .

Definition 5.4 (Complete matching) A matching is called complete with respect to
C if |M| = |C| holds. A matching is called complete with respect to Z if |M| = |Z|
holds.

For a matching M that is complete with respect to C, each constraint belongs to
exactly one edge of the matching:

∀c ∈ C : ∃z ∈ Z such that (c, z) ∈ M.

Similarly, for a matching that is complete with respect to Z , every variable belongs
to an edge:

∀z ∈ Z : ∃c ∈ C such that (c, z) ∈ M.

Structural analysis is mainly concerned with Z-complete matchings, because such
matchings show a way how to determine all unknown variables of the system.

5.3 Matching in Bipartite Graphs 137

It is useful to define matchings, maximum matchings and complete matchings by
considering either the whole structure of the system or only subgraphs which refer
to subsets of the constraint set and the variable set. Since only unknown variables
in X need be determined by a constraint, variables in K like control input and
measurements are already known, the matching can be accomplished for the reduced
structure graph containing all unknown variables rather than for the whole structure
graph. As the incidence matrices and the graphical representations are given for
the complete graph, and since backtracking to known variables is needed at a later
stage in order to obtain residuals, matchings are preferably done using the complete
structure graph, but we can illustrate some properties of matching by considering the
reduced structure graph.

Example 5.9 Matchings on the reduced structure graph of the tank system
To illustrate the notion of maximum and complete matchings, consider the reduced structure
graph of the single-tank system. Only the unknown signals and the constraints among them
are concerned with. The edges of a matching are identified by a thick line in the drawings and
by “①” in the incidence matrices.

h ḣ qi qo

c1 1 1 1
c2 1
c3 1 1
c4 1
c6 1 1

Matching (a)

h ḣ qi qo

c1 1 1 1
c2 1
c3 1 1
c4 1
c6 1 1

Matching (b)

h ḣ qi qo

c1 1 1 1
c2 1
c3 1 1
c4 1
c6 1 1

Matching (c)

↑ ↑ ↑

As in the matchings unknown variables are associated with a constraint by means of which they
can be determined, an intuitive graphical representation of the matchings is given in Fig. 5.9
where the constraints are drawn on the left-hand side and the variables on the right-hand side.
The thick edges indicate the matching. The graphs are the same as in Fig. 5.7b.

Figure 5.9a shows an incomplete matching. It is not complete with respect to the constraints
because constraints c2 and c4 are not matched, nor is it complete with respect to the variables
because qo is not matched. However, no edge can be added to the matching without violating
Definition 5.3.

c1

c2

c3

c4

c6

c1

c2

c3

c4

c6

c1

c2

c3

c4

c6

qi

q0

h

h
.

qi

q0

h

h
.

qi

q0

h

h
.

(a) (b) (c)

Fig. 5.9 An incomplete matching (a) and two matchings (b), (c) that are complete with respect to Z

138 5 Structural Analysis

Two complete matchings with respect to the set of unknown variables are shown in Fig. 5.9b,
c. There is no matching that is complete with respect to CX , because the number of constraints
is larger than the number of variables. Note that it is not guaranteed for the structure graphs
that a complete matching exists, neither with respect to CX nor with respect to X . �

5.3.2 Oriented Graph Associated with a Matching

Defining a matching on a structure graph introduces some orientations of the edges
which, until now, were undirected. Constraints which appear in the system description
have no direction, because all variables have the same status. For example, the tank
constraint

c1 : qi(t) − qo(t) − ḣ(t) = 0 (5.13)

can be used to compute any of the three variables whenever the two other variables
are known. It is written in the non-oriented form to stress that the constraint itself
has no preference for any of the three variables. Once a matching is chosen, this
symmetry is broken, because each matched constraint is now associated with one
matched variable and some non-matched ones.

For a given constraint, matched and non-matched variables are identified in the
graph incidence matrix by ① or 1, respectively. For example, according to the match-
ing in Fig. 5.9a, the constraint c1 described by Eq. (5.13) is used to compute qi(t).
This interpretation of a matching as a set of constraints that can be used to deter-
mine the value of unknown variables is valid if there exists an order, in which the
constraints can be used for such a calculation. However, a matching may result in an
“algebraic loop” (Fig. 5.15), which will be discussed in more detail later, where sev-
eral constraints together define the value of a set of variables. Then the interpretation
of a matching as a correspondence between unknown variables and constraints that
can be used to determine the variables is valid only for the set of variables and the
set of constraints rather than for single variables and single constraints.

In the graphical representation, the unsymmetries associated with a matching are
represented by transforming the originally non-oriented edges into oriented ones.
Since some constraints might not be matched, the following rules are applied:

• Matched constraints: The edges adjacent to a matched constraint are provided
with an orientation

– from the non-matched (input) variables towards the constraint,
– from the constraint towards the matched (output) variable (Fig. 5.10a).

• Non-matched constraints: All the variables are considered as inputs and, hence,
all edges are oriented from the variables to the constraint (Fig. 5.10b).

To understand the reason for these rules, consider a matching M and choose
an edge (c, x) ∈ M. Then the variable x can be considered as the output of the

5.3 Matching in Bipartite Graphs 139

qi

c1

h
.

q0

qi

h
.

q0

c1

ZERO

(a) (b)

Fig. 5.10 Matched (a) and a non-matched constraint (5.13) (b)

constraint c while the other variables appearing in the set Q(c)\{x} are the inputs.1

The interpretation is that the matching represents some causality assignment by which
the constraint c is used to compute the variable x assuming the other variables to be
known. An explicit representation of the constraint c that can be used to determine
x is denoted by

x = γ (Q (c)\{x}).

For non-matched constraints, all variables are considered as inputs and no variable
of Q(c) can be considered as an output. Hence, the constraint can be written in the
form

γ (Q(c)) = 0

like Eq. (5.13). If the zero on the right-hand side is considered as output, the constraint
can be associated with a ZERO vertex like in Fig. 5.10b. Using no label at all is
considered as an implicit ZERO label.

Example 5.10 Determination of unknown variables of the tank system
For the single-tank system, the reduced graph shown in Fig. 5.7b and the three matchings
shown in Fig. 5.9 yield the oriented graphs depicted in Fig. 5.11. The directed edges show how
the internal variables qi, qo, h and ḣ can be determined for known values of u and y.

As Matching 1 is incomplete, the unknown variable qo cannot be computed as shown in the
graph. Matchings 2 and 3 are complete with respect to X but incomplete with respect to CX .
The non-matched constraint c1 or c4, respectively, leads to a ZERO output, that is, they have
to hold for the variables qi and ḣ or h and y that have been determined by other constraints or
have been measured, respectively. �

Note that subgraphs whose input and output nodes are all known provide the
system input–output relations. By using Matching 2 in Fig. 5.11 the two following
input–output relations are found. The first one is provided by the constraint c5, which
links only known variables and is, therefore, deleted when drawing the reduced graph.
The second one results from the non-matched constraint c1

1In Eq. (5.8), Q has been defined as a mapping from the power set of the set of constraints towards
the power set of the set of variables. It is used here also for a single constraint c where for notational
convenience Q({c}) is written as Q(c).

140 5 Structural Analysis

Matching 1 Matching 2 Matching 3

u

2ZERO

ZERO

ZEROc4

c3

h

y

c

6c
1c

q0qi

u

2

c4

c3

h

y

c

6c
1c

q0qi

h
.

u

2

ZEROc4

c3

h

y

c

6c
1c

q0qi

h
.

h
.

Fig. 5.11 Directed graphs corresponding to the three matchings

c5 (u, y) = 0

c1 (u, γ1 (γ3 (k, γ4(y)), γ6 (γ4(y)))) = 0,

where γi(z) denotes the output of constraint ci for the input z.

Alternated chains and reachability. The oriented graph that is obtained from the
causal interpretation of the structure graph with a matching has the following prop-
erty: Any existing path between two nodes (variables or constraints) alternates suc-
cessively variables and constraints nodes. Such a path is called an alternated chain.
Its length is the number of constraints that are crossed along the path. Note that if a
non-matched constraint belongs to an alternated chain, the chain ends with the ZERO
variable that is associated with the non-matched constraint.

Alternated chains can be used to define the notion of reachability.

Definition 5.5 (Reachability) A variable z2 is reachable from a variable z1 if there
exists an alternated chain from z1 to z2. A variable z2 is reachable from a subset
χ ⊆ Z\ {z2} of variables if there exists some variable z1 ∈ χ such that z2 is reachable
from z1. A subset Z2 of variables is reachable from a subset Z1 of variables if any
variable of Z2 is reachable from some variable of Z1.

Example 5.11 Alternated chains in the tank system
Alternated chains associated with the oriented graph of the tank system are the following:

y − c4 − h − c3 − q0 − c1 − qi

h − c6 − ḣ − c1 − qi.

It can be seen that any variable of the set
{
qi, qo, h, ḣ

}
is reachable from y. �

5.3 Matching in Bipartite Graphs 141

5.3.3 Causal Interpretation of Oriented Structure Graphs

The aim of this subsection is to discuss the causal interpretation of the oriented
bipartite graph associated with a matching.

As stated above, selecting a pair (c, z) to belong to a matching implies a causality
assignment, by which the constraint c is used to compute the variable z, assuming
the other variables to be known. The oriented bipartite graph which results from
a causality assignment is named a causal graph. Causal graphs are used in quali-
tative reasoning, alarm filtering or in providing the computation chain needed for
the numerical or formal determination of some variables of interest, as shown by
the above interpretation. Although this interpretation is straightforward for simple
algebraic constraints, it has to be considered more carefully when strongly coupled
subgraphs or differential constraints are present. The following paragraphs deal with
these situations.

Algebraic constraints. Let c ∈ C be an algebraic constraint, Q(c) the set of the
variables occurring in c and nc = |Q(c)|. In the structural analysis, the following
assumption is made:

Assumption 5.2 Any algebraic constraint c ∈ C defines a manifold of dimension
nc − 1 in the space of the variables Q(c).

Since the constraint has to be satisfied at any time t, the variables of the set Q(c) are
not independent of each other. Assumption 5.2 means that only nc − 1 variables can
be chosen arbitrarily while the remaining variable is given by the constraint c. Hence,
there is at least one variable z ∈ Q(c) such that ∂c

∂z �= 0 holds almost everywhere
in the space of the variables Q(c).2 Therefore, from the implicit function theorem,
its value can be deduced (at least locally) from the constraint c and the values of
the nc − 1 other variables. This is exactly the causal interpretation of matching the
variable z with constraint c. Stated differently, the constraint c decreases by one the
degrees of freedom associated with the variables Q(c).

Example 5.12 Algebraic constraints
Consider the constraint

c1 : a1x1 + b1x2 − y1 = 0, (5.14)

where x1 and x2 are two unknowns, a1 and b1 are parameters, and y1 is known. This constraint
obviously defines a one-dimensional surface in the space of all vectors (x1, x2)T. Thus only
one degree of freedom is left because only one of the unknowns can be chosen arbitrarily, the
possible value(s) of the other one being deduced from (5.14).

The set Q(c1) of variables is given by

Q(c1) = {x1, x2, y1}

2The term ∂c
∂z denotes the derivative of the left-hand side of the constraint c(z1, z2 . . .) = 0.

142 5 Structural Analysis

because, for example,

∂c1

∂x1
= a1 �= 0

holds, which illustrates the use of the derivative ∂c
∂z used above.

Note that the structural point of view considers the most general case of any pair of
parameters a1 and b1. Particular cases result if a1 or b1 equals to zero, where Eq. (5.14) would
still define a one-dimensional manifold, or if a1 and b1 both equal to zero. In the latter case c1
would not define a one-dimensional manifold when y1 = 0, because any point (x1, x2)T in
the two-dimensional space would satisfy the constraint, and there would be no solution when
y1 �= 0. �

The fact that at least one variable can be matched in a given constraint under the
causal interpretation does not mean that any variable has this property. An obvious
situation in which (c, x) cannot be matched is when c is not invertible with respect
to x. The constraint shown in Fig. 5.12 defines a manifold of dimension 1 in |R2, and
it is always possible to compute x2 once x1 is given. Matching x2 with this constraint
can obviously be interpreted as explained above. However, the interpretation does not
apply to the matching of x1, because ∂c

∂x1
is not different from zero almost everywhere,

thus, the constraint c cannot be used to compute x1 whatever be the value of x2.

Differential constraints. The case of differential constraints has to be considered
carefully. Differential constraints can always be represented as

d : x2(t) − d

dt
x1(t) = 0, (5.15)

which means that the functions x1(t) and x2(t) cannot be chosen independently of
one other. This differential constraint has two possible matchings:

x1 x2
x

c c c

1 x2 x1

x c=2 x 1

x1

x2

x2

()

(a) (b) (c)

Fig. 5.12 Structure graph (a), possible (b) and impossible matching (c)

5.3 Matching in Bipartite Graphs 143

• If the trajectory x1(t) is known, its derivative can always be computed (from an
analytical point of view, derivatives are here supposed to exist, and from a numer-
ical point of view, there might be problems rised by the presence of noise, which
are not considered here). It follows that the constraint can always be matched for
x2 which is then uniquely defined. This is called derivative causality.

• If, on the other hand, x2(t) is known, matching this constraint for x1 (which is
called integral causality) leads to the computation

x1(t) = x1(0) +
∫ t

0
x2(σ) dσ, (5.16)

which does not determine x1(t) uniquely, unless the initial condition x1(0) is
known.

Let (x1(t), x2(t))T be two functions which satisfy the constraint d. Then, any linear
combination (x1(t) + α, x2(t))T, where α is any constant function, also satisfies the
constraint d. Thus, computing x1 from constraint d may be possible or impossible,
depending on the context. Initial values are known in a simulation context, since they
are under the control of the user, but this is generally not true in a fault diagnosis
context. Hence, the use of integral causality needs to be carefully considered or just
avoided.

Remark 5.2 (Consequences for residual generation) Parity space or identification-
based residual generation approaches aim at eliminating the unknown initial values
by using the system input–output relations which are obtained through derivative
causality. The observer-based approaches use integral causality by implementing an
auxiliary system—the observer—which provides results that are (asymptotically)
independent of the estimate of the initial state. �

In summary, different cases have to be considered as far as the counterpart of
Assumption 5.2 is concerned stating that a differential constraint (5.15) defines a
manifold of dimension nc − 1 in the space of the variables Q(c):

• If x1(t) is known, x2(t) can be matched with constraint d which leads to differen-
tial causality. This provides a unique result for x2(t). Assumption 5.2 is satisfied
since constraint d leaves only one degree of freedom in the determination of
(x1(t), x2(t)).

• If x2(t) and the initial value x1(0) are known, x1(t) can be matched with constraint
d using integral causality. This situation leads to a unique result obtained from
Eq. (5.16). Assumption 5.2 is satisfied since constraint d leaves only one degree of
freedom in the determination of (x1(t), x2(t)).

• If only x2(t) is known, Assumption 5.2 is not satisfied, because whatever matching
is used, two degrees of freedom (the constant function α, and the input function
x2(t)) remain for the determination of (x1(t), x2(t)).

144 5 Structural Analysis

Direction of calculability in the structure graph. To show direction of calculability
(causality) in a structure graph, the symbol x is used in position (i, j) indicates that
the variable in column j cannot be calculated from the constraint in row i. This is
illustrated in Example 5.14 where h cannot be calculated from c6.

Example 5.13 First-order system
A model whose solution exists but is not unique, as the result of Assumption 5.2 being not
satisfied, is given by the following single-input first-order system:

c1 : x2 − ax1 − bu = 0

c2 : x2 − d

dt
x1 = 0.

Constraint c1 is algebraic and expresses the fact that the vector (x1, x2)T lives in a linear
manifold of dimension one for every known input u. Constraint c2 does not allow to decrease
the dimension of the unknown vector. If x1 were known (which is not the case), one could
compute its derivative x2, but the knowledge of x2 (which could be obtained as a function of x1
and u in constraint c1) is of no help to compute x1 because one should proceed by integration
and the initial value x1(0) is unknown. �

Example 5.14 Derivative causality in the tank system
Consider the following matching in the tank structural model.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

Although it is complete with respect to the variables
{
h, ḣ, qi, qo

}
, it cannot be used for the

computation of these variables because it introduces an integral causality, where h should be
computed from ḣ by constraint c6, while its initial value is not known because constraint c4
is not matched.

Derivative causality can be forced, if necessary. To represent this situation, the symbol x
is used, which forbids integral matchings. The previous matching will not be obtained if the
tank structural model is written as

5.3 Matching in Bipartite Graphs 145

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 x 1

↑

where x means that although there is an edge between c6 and h, h cannot be matched with c6.
Instead, c6 is used to match ḣ. �

Strongly connected subgraphs. In the oriented graph associated with a matching,
strongly connected parts may occur for which the stepwise causal interpretation does
not lead to a sequence of calculations of the unknown variables, but another approach
is needed to obtain a matching. A subset of vertices is said to be strongly connected
if there exists a path between any pair of vertices belonging to this subset.

Strongly connected subgraphs are structures within the graph, which consist of
constraints and unknown variables that need be solved simultaneously.

The causal interpretation of a strongly connected subgraph is that the constraints
and variables belonging to the subgraph can be matched when all the other vari-
ables (not matched in the strongly connected subgraphs) are known. Suppose that nv
variables are constrained by a subsystem of nl constraints, and there is a matching
such that they form a cyclic structure (loop). Then, nl variables are internal (matched
within the loop), and nv − nl variables are external (not matched within the strongly
connected subgraph).

An example of strongly connected constraints are three linear equations with
two variables and both variables enter into each of the equations. Since there is no
equation (constraint) with only one unknown variable, two of the equations need be
solved simultaneously to determine the two unknowns. Alternatively, one constraint
is chosen to express one of the variables by the other, and this result is inserted in
one of the other constraints to solve for the second variable.

In more general terms, in structural analysis, an algebraic loop is always supposed
to have a unique solution (more precisely: a finite number of solutions), which in
the space of unknown variables corresponds to the intersection of nl manifolds of
dimension nl − 1, if the external variables are known (by Assumption 5.2). The loop
is associated with a subset of nl constraints that is written here as vector equation

hl(xl, xe) = 0,

where xl and xe are the vectors of the internal and the known external variables, and
each component of xl is matched with one constraint in hl.

It is worth noticing that the interpretation associated with causality in single
constraints is not directly extendable to strongly connected subgraphs, as shown by
the following example:

146 5 Structural Analysis

Example 5.15 Non-invertible constraints
Consider the non-invertible constraint from Example 5.12 and suppose now that there are two
constraints {c1, c2} of the same form, but with different parameters. The incidence matrix of
the structure graph of this system is

x1 x2

c1 1 1

c2 1 1

↑

A complete matching is given by

x1 x2

c1 1 1

c2 1 1

↑
The matching illustrated in Fig. 5.13 of x1 with c1 is obtained by choosing the variable that
should be computed from one specific constraint.

The correct interpretation comes from the fact that each constraint defines a (different)
manifold dimension one in |R2, and that, in general, such two manifolds intersect in a finite
number of points. To get no solution at all would be a particular case (which would not satisfy
Assumption 5.1), and an infinite number of solutions would be the result of the two manifolds
were the same one (at least locally). �

The uniqueness of the solution associated with a cyclic structure that contains
differential constraints depends upon the context of the problem. Consider a set of
nl + ne variables which is constrained by nl differential equations

zl = gl(xl, xe, u) (5.17)

zl = d

dt
xl,

where xl is the vector of the variables in the loop, gl are the constraints in the loop,
and xe are the external variables, which are supposed to be known. The system (5.17)
has a unique solution only if the initial value xl(0) is known. If this is not the case, the

Fig. 5.13 Two algebraic
constraints with two
unknowns

x2

x1

0c2 =(x l , x2)

0c1 =(x l , x2)

5.3 Matching in Bipartite Graphs 147

h dh/dt

q0 qi

c3 c1

c6

c2

u

Fig. 5.14 A matching with a differential loop

solution will depend on the nl unknowns xl(0) and thus it will belong to a manifold
of dimension nl. Such a differential loop is called non-causal.

Example 5.16 Differential loop in the tank example
Consider the following matching

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

which is complete with respect to the variable set
{
h, ḣ, qi, qo

}
, and in which differential

causality is now used for constraint c6. The matching results in the differential loop h − c6 −
ḣ − c1 − q0 − c3 − h, which is shown in Fig. 5.14. Although the matching is complete with
respect to the set of unknown variables, it is impossible to determine h(t), because the initial
value h(0) is unknown. �

Following a classical graph-theoretic approach, a loop can be condensed into one
single node, which represents a subsystem of constraints to be solved simultaneously.
Another approach is to avoid loops (whenever possible) by some transformation of
the constraints, leading to diagonal or triangular system structures.

Example 5.17 Treatment of loops
Consider a subsystem with Z = {x1, x2, y1, y2}, C = {c1, c2}. The variables are real num-
bers, the constraints are linear, y1, y2 are supposed to be known, and the problem to be solved
concerns the computation of x1, x2 by using the constraints

c1 : a y1 + b x1 + c x2 = 0

c2 : α y2 + β x1 + γ x2 = 0. (5.18)

The incidence matrix of the structure graph and a complete matching w.r.t. {x1, x2} is given
as follows:

148 5 Structural Analysis

(a) (b)

y1

c1

c2

y2

x2 x1

x2

c ,c1 2

y2

y1

x2

Fig. 5.15 An algebraic loop

x 1 x 2 y1 y2

c1 1 1 1

c2 1 1 1

↑
Figure 5.15a shows the resulting loop in the associated oriented graph. In the structure graph
it is supposed that b and γ are non-zero. The linear equations c1 and c2 are solvable under the
condition b γ − c β �= 0, which cannot be seen from structural considerations.

Figure 5.15b illustrates the condensation in which the loop is “condensed” into one single
node, which means that the two equations with two unknowns are solved simultaneously, but
no detail is given by the condensed structure graph about how this is done.

Transforming the constraints may also lead to a loop-free oriented graph, because it may
give the system a diagonal or a triangular structure. For example, the two following systems
are equivalent to (5.18):

c′
1 : a γ y1 − α c y2 + (b γ − β c) x1 = 0 (5.19)

c′
2 : a β y1 − α b y2 + (c β − b γ) x2 = 0

and

c′
1 : a γ y1 − α c y2 + (b γ − β c) x1 = 0 (5.20)

c′′
2 : ay1 + bx1 + cx2 = 0.

y2 x1

x2y1

y2 x1

x2y1

c 2

c1
′

′′

c1
′

c1
′

Fig. 5.16 Two equivalent loop-free oriented graphs

5.3 Matching in Bipartite Graphs 149

Figure 5.16 illustrates the loop-free graphs associated with the transformed systems (5.19) and
(5.20). Note that the new systems result from manipulations which are not purely structural,
but which are done on the behaviour model. �

5.4 Structural Decomposition of Systems

5.4.1 Canonical Subsystems

This section recalls a classical result from bipartite graph theory, which states that
any finite-dimensional graph can be decomposed into three subgraphs with specific
properties: an over-constrained, a just-constrained and an under-constrained sub-
graph. This decomposition is canonical, i.e. for a given system, it is unique. The
three subgraphs and the associated subsystems play a major role in the structural
analysis and lead to the important structural properties of observability, controllabil-
ity, monitorability and reconfigurability.

The following definition shows the consequences of the existence of complete
matchings for the solution of constraint sets that are structurally described by a
bipartite graph G.

Definition 5.6 (Over-constrained, just-constrained, under-constrained graph) A
graph G = (C, Z, E) is called

• over-constrained if there is a complete matching on the variables Z but not on the
constraints C,

• just-constrained if there is a complete matching on the variables Z and on the
constraints C,

• under-constrained if there is a complete matching on the constraints C but not on
the variables Z .

In an over-constrained graph, there remains a complete matching on Z after any
single constraint has been removed from the set C.

Example 5.18 Property of the reduced graph of the tank system.
Matching 2 of the structure graph of the tank system shown in Example 5.9 is complete with
respect to the variables, but there is still one non-matched constraint. Hence, the reduced graph
of the tank system is over-constrained.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

↑

150 5 Structural Analysis

It can be furthermore noticed that any of the five constraints can be removed, and there still is
a complete matching on the resulting graph. �

A graph G may fail to conform to any of the three properties defined above. In
this case, it can be proved that there exists a unique decomposition of G into three
subgraphs, which are defined by the partitions

C = C− ∪ C0 ∪ C+
Z = Z− ∪ Z0 ∪ Z+ (5.21)

of the sets Z and C. The subgraphs are denoted by

G+ = (C+,Z+, E+)

G0 = (C0,Z0, E0)

G− = (C−,Z−, E−),

where E−, E0 and E+ are the subsets of E with the edges that connect vertices of C−
with Z−, C0 with Z0 or C+ with Z+, respectively. Note that the sets E−, E0 and E+
do not represent a partition of the edge set E of the overall graph, but a subset of it.
As the important fact of this decomposition, the graphs G−, G0 and G+ are under-
constrained, just-constrained or over-constrained, respectively. This decomposition
has been introduced by Dulmage and Mendelsohn in 1958 and is, therefore, also
called the DM decomposition.

Theorem 5.1 (DM decomposition of bipartite graphs) Each bipartite graph G =
(C,Z, E) can be decomposed into three subgraphs, which have the following prop-
erties:

• Over-constrained subgraph G+, which possesses a Z-complete matching that is
not C-complete,

• Just-constrained subgraph G0, which possesses a complete matching,

• Under-constrained subgraph G−, which possesses a C-complete matching that
is not Z-complete.

As the choice of matchings for a graph is not unique it is important to state that the
DM decomposition is unique. That is, the freedom in choosing matchings with the
completeness properties mentioned in the theorem is restricted to the subsets of the
vertices, which result from the decomposition (5.21).

As a consequence of the graph decomposition, the corresponding system S =
(C,Z) can be decomposed into three subsystems:

5.4 Structural Decomposition of Systems 151

S+ = (C+, Z+)

S0 =
(
C0, Z+ ∪ Z0

)

S− =
(
C−, Z+ ∪ Z0 ∪ Z−)

.

In analogy with the corresponding subgraphs, these subsystems are classified as
follows:

• S+ is called the over-constrained subsystem (also called the over-determined sub-
system) and abbreviated as SO. It has more constraints than variables.

• A structurally over-constrained system S is said to be proper structurally over-
constrained (PSO) if S = S+.

• S0 is called the just-constrained subsystem. It has the same number of unknown
variables and constraints if the variables of the set Z0 are interpreted as known
variables (|Z0| = |C0|).

• S− is called the under-constrained subsystem (under-determined subsystem). It
has less constraints than variables (|Z−| < |C−|).
Subsystems which cannot be decomposed into smaller ones are said to be minimal

subsystems.

Example 5.19 DM decomposition of a bipartite graph
The example graph in Fig. 5.17 illustrates the situation that a system S simultaneously can
comprise the three subgraphs mentioned above:

S+ = ({c1, c2, c3}, {z2, z3})
S0 = ({c4, c5, c6, c7}, {z4, z5, z6, z7})
S− = ({c8, c9}, {z8, z9, z10})

with the associated incidence matrices

c1

z2 z3 z8 z9 z10z4 z 5 z6 z 7

c2 c3 c4 c5 c8 c9c6 c7

Fig. 5.17 Example of the canonical decomposition of a bipartite graph

152 5 Structural Analysis

E + =

z2 z3

c3 1

c1 1 1

c2 1

E 0 =

z4 z5 z6 z7

c4 1 1

c5 1 1

c7 1

c6 1 1 1

and E − =

z8 z10 z9

c8 1 1

c9 1 1

↑ ↑

↑
The subgraph G+ drawn on the left part has a Z-complete matching marked by the thick
edges. Hence, this graph is over-constrained. The middle subgraph G0 possesses a complete
matching and is just-constrained, whereas the right subgraph G− has a C-complete matching
and is under-constrained. Note that the vertices are ordered such that the edges belonging to
the matchings form a kind of “main diagonal” of the matrices. The edges that connect two
subgraphs do not contribute to these matchings.

The incidence matrix of the overall graph G can be ordered in such a way that it contains
the sub-matrices E+, E0 and E− together with further entries, which represent the edges
connecting the subgraphs,

E =

z2 z3 z4 z5 z6 z7 z8 z10 z9

c3 1

c1 1 1

c2 1

c4 1 1

c5 1 1 1

c7 1 1

c6 1 1 1

c8 1 1 1 1

c9 1 1

↑

Due to the ordering of the vertices in both sets, the matchings in all the three subgraphs build
a diagonal line, in which the more abstract representation of Fig. 5.18 is drawn as the diagonal
black line. The figure shows in an intuitive way those regions of the incidence matrix where the
non-zero elements appear (grey) and those which include only zero entries (white). It further
shows that the subgraph G+ has more vertices from the set C than from the set Z , because the
relation

|C+| > |Z+|

holds. Hence, the corresponding subsystem has more constraints than variables and is, hence,
over-determined. For the other two subgraphs the relations

5.4 Structural Decomposition of Systems 153

|C0| = |Z0| and |C−| < |Z−|

hold.
Whether or not all the three subgraphs appear in an overall graph G is not directly related

to the cardinalities of C and Z . That is, even if the graph has more Z-vertices than C-vertices,
it may still comprise a part that is over-constrained.

The DM decomposition includes more information about the graph, namely the connection
among the variables and the constraints. The DM decomposition is unique, which means that
the partition (5.21) of the sets C and Z is unique. Whatever complete matchings are used, the
same vertices appear in the three subgraphs in all resulting decompositions. What depends
upon the matchings used is the order of the vertices in the incidence matrix after the ① entries
have been brought into the main diagonal. For example, if in the subgraph G+ the matching

M = {(c3, z2), (c2, z3)}

is used, which is Z-complete as well, the order of the rows for c1 and c3 in the matrix E has
to be exchanged, but the DM decomposition remains the same. �

For later use, it is convenient to define a measure of structural redundancy, which
is associated with the over-constrained part of a system, S+.

Definition 5.7 (Structural redundancy measure) Given a set of constraints C, and
let Q(C) ⊆ Z be the subset of variables in Z connected to at least one constraint in
C. The structural redundancy measure is

�(C) = |C+| − |Q(C+)|. (5.22)

Example 5.20 DM decomposition of the single-tank system
Rearranging the rows and columns related to unknown variables of the structure graph for the
single-tank system introduced in Example 5.4 on p. 124, the incidence matrix becomes:

Fig. 5.18 Canonical
decomposition of the
structure graph

0 0

0

Z −Z+ Z 0

C+

C 0

C −

154 5 Structural Analysis

h ḣ qo qi u y

c1 1 1 1

c4 1 1

c6 1 1

c3 1 1

c2 1 1

↑

As the ①-elements of a maximum matching show, the single-tank system is over-constrained:

S+ = {{c1, c4, c6, c3, c2}, {h, ḣ, qo, qi}}.

The decomposition is independent of the known variables, which are added to the right of the
table for completeness. The structural redundancy measure is

�(C) = |C+| − |Q(C+)| (5.23)

= |{c1, c4, c6, c3, c2}| − |{h, ḣ, qo, qi}| = 1 (5.24)

If c2 was removed from the system, the modified system would be just-constrained with

S0 = {{c4, c6, c3, c1}, {h, ḣ, qo, qi}}.

and �(C) = 0. �

Further decomposition of the just-constrained subgraph. The graph G0 =
(C0,Z0, E0) can be further decomposed as it will be explained in this paragraph. As
stated above, this graph includes a set of n0 constraints that can be used to determine
the same number of variables. The decomposition introduced now splits these sets
of constraints and variables in such a way that the smaller constraint sets can be
used consecutively to determine the associated unknown variables. What happens
in this decomposition can be seen in Fig. 5.19, where the incidence matrix of the
just-constrained subgraph is a lower block triangular matrix.

The decomposition starts after the edges of the just-constrained subgraph have
been given the directions described in Sect. 5.3.2, namely the orientation from the
C-vertex towards the Z-vertex for all edges belonging to the complete matching and
the opposite direction for all remaining edges. Then the resulting oriented graph
is decomposed into strongly connected components. The paths have to be built in
accordance with the directions of the edges. As the structure graph is bipartite, the sets
of strongly connected vertices include vertices of both kinds. If the corresponding
subsets of C0 and Z0 are enumerated in the same way, the decomposition of the
just-constrained subgraph G0 results in partitions of these sets:

C0 = C0
1 ∪ C0

2 ∪ · · · ∪ C0
q

Z0 = Z0
1 ∪ Z0

2 ∪ · · · ∪ Z0
q ,

5.4 Structural Decomposition of Systems 155

Fig. 5.19 Incidence matrix
after the detailed
decomposition of the
just-constrained subgraph

0 0

0

Z −Z+ Z 0

C+

C 0

C −

Fig. 5.20 Decomposition
of the just-constrained
subgraph G0 into strongly
connected components

c4 c5 c6 c7

z4 z5 z6 z6

where q is the number of strongly connected components obtained. If the rows
and columns of the incidence matrix belonging to the just-constrained subgraph
are ordered accordingly, the lower block-diagonal matrix shown in the middle of
Fig. 5.19 results.

Example 5.21 Decomposition of the just-constrained subgraph
Figure 5.20 shows the subgraph G0 of the bipartite graph introduced in Example 5.19. The
edges have the prescribed orientation from the C-vertex towards the Z-vertex for all edges
belonging to the complete matching and the opposite direction for the other edges. The grey
fields mark the three different strongly connected components. The constraint c6 and the
variable-vertex z7 belong together, because the edge c6 → z7 belongs to the matching used
in the DM decomposition. For the same reason, c7 and z6 represent a strongly connected
component.

After ordering the vertices according to this decomposition, the following incidence matrix
E0 is obtained:

E0 =

z4 z5 z7 z6

c4 1 1

c5 1 1

c7 1

c6 1 1 1

↑

156 5 Structural Analysis

Hence, the just-constrained subgraph of this example can be further decomposed into three
subgraphs that can be used consecutively for determining the unknown variables. Note that
the variables z5 and z7 will be determined by the constraint c5 or z7, respectively, and these
results will influence the determination of the variable z6 by using the constraint c6. This fact
illustrates that the order of the subsets is important to retain the causality of the graph and,
hence, the order of the computation of the unknown variables. �

5.4.2 Interpretation of the Canonical Decomposition

This subsection addresses the canonical subsystems with respect to existence of
solutions, thus providing a key for later analysis of structural observability and con-
trollability.

First, it is clear that Assumption 5.1 (a) on p. 122 must be satisfied by each of the
subsets of constraints C+, C0 and C−. If this was not true, the system model would
have no solution, which contradicts with the fact that it describes the behaviour of a
physical system (which indeed has a solution).

Second, from the structural point of view, any algebraic constraint is assumed to
satisfy Assumption 5.2 on p. 141, thus, a subset of n variables completely matched
within a subset of n constraints is uniquely defined, while the result depends on the
causality and on the existence of differential loops when constraints of the form

d : z2(t) − d

dt
z1(t) = 0

are considered. Finally, it will be seen that there are cases in which Assumption 5.1 (b)
cannot hold true.

Static systems. The behavioural model of static systems contains only algebraic
constraints. In the over-constrained subsystem (C+, Q(C+)) the variables in the set
Z+ = Q(C+) have to satisfy more than n+ = |Z+| constraints. Since there are more
manifolds than variables, no solution can exist if they also satisfy Assumption 5.1 (b).
As the model should have at least one solution for a given physical system, one
concludes that the constraints in C+ are not independent, i.e. the system description
is redundant. In other words, for the system to have a solution, some compatibility
conditions must hold. Structural analysis always assumes the most general case, i.e.
the minimum number of relations between the system parameters. This means that
the number of independent constraints is maximal, thus leading to the following
equivalent conclusions:

• The over-constrained subsystem has a unique solution (more generally, it has a
finite number of solutions).

• The number of independent constraints in C+ is n+.
• The number of compatibility conditions is

∣∣C+∣∣ − n+.

5.4 Structural Decomposition of Systems 157

In the just-constrained subsystem, (C0, Q(C0)), the n0 variables in the set Z0

have to satisfy exactly n0 constraints, which satisfy Assumptions 5.2 and 5.1(a). A
unique solution exists, which is the intersection of the manifolds associated with the
constraints C0, which are assumed to satisfy Assumption 5.1(b). This being the most
general case, structural analysis proposes the following conclusions:

• The just-constrained subsystem has a unique solution.
• The number of independent constraints in C0 is n0.
• There is no compatibility condition.

In the under-constrained subsystem, (C−, Q(C−)), the n− variables in the set
Z− have to satisfy less than n− constraints, which satisfy Assumptions 5.2 and 5.1(a).
All what the model can tell is that the unique solution of the physical system belongs to
the intersection of less than n− manifolds, and thus the solution is not uniquely defined
by the model. It belongs to a manifold of dimension n−− ∣∣C−∣∣ if the constraints
also satisfy Assumption 5.1(b). This being the most general case, structural analysis
proposes the following conclusions:

• The under-constrained subsystem has no unique solution.
• The constraints in C− are independent.
• There is no compatibility condition.

Example 5.22 Compatibility conditions in an over-constrained subsystem
Consider the set of linear constraints

c1 : a1 x1 + b1 x2 − y1 = 0
c2 : a2 x1 + b2 x2 − y2 = 0
c3 : a3 x1 + b3 x2 − y3 = 0,

(5.25)

where a = (a1, a2, a3)T and b = (b1, b2, b3)T are known parameter vectors and y =
(y1, y2, y3)T is a known signal vector. This system is clearly over-constrained with respect
to the unknown variables (x1, x2). However, whether or not this system of linear equations
has a solution depends upon the following cases:

1. rank (a, b, y) = 3, i.e. a, b and y are linearly independent vectors. The
system (5.25) has no solution, because the three constraints are incompatible. Assump-
tions 5.1 and 5.2 cannot hold simultaneously.

2. If rank (a, b, y) = 2, one solution exists. Note that the parameters and the known variables
are no longer independent but the matrix (a, b, y) has a vanishing eigenvalue and

y = λa + μb

leads to the unique solution x1 = λ and x2 = μ.

3. If rank (a, b, y) = 1, the matrix (a b y) has two null eigenvalues. Any pair (x1, x2)

such that x1 + x2 − λμ = 0 satisfies Eq. (5.25). Note that in that case, two compatibility
conditions exist, and Assumption 5.1 does not hold.

158 5 Structural Analysis

u1 u2 i2i1
R2R1

v1 v2L1 L2v

Fig. 5.21 Circuit of a tail lamp

4. The last case is rank (a, b, y) = 0, i.e. a = b = y = 0. In this case, all parameters are
specified and any pair (x, y)T ∈ |R2 satisfies the system of equations. Assumption 5.2
does not hold.

Since Eq. (5.25) is the behavioural model of a physical system, it should exhibit at least
one solution. Then obviously the most general situation is Case 2 in which only one relation
holds between the parameters. This is what assumed in any structural analysis. �

Example 5.23 Structural analysis of a tail lamp
Figure 5.21 shows the simplified circuit of a tail lamp of a car, which is represented by the
following constraints:

c1 : v1 =
{

v if u1 = 1
0 if u1 = 0

c2 : v1 − i1R1 − (i1 − i2)RL1 = 0

c3 : v2 =
{

v1 − i1R1 if u2 = 1
0 if u2 = 0

c4 : v2 − i2R2 − i2RL2 = 0

with the set of variables
Z = {v, v1, v2, i1, i2, u1, u2}.

The structure graph is shown in Fig. 5.22a. In the analysis the circuit is considered for closed
switches, where the model can be reformulated as a set of linear equations, which is given by

⎛

⎜
⎜
⎝

1 0 0 0
1 −R1 − RL1 0 −RL1

−1 R1 1 0
0 0 1 −R2 − RL2

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
A

⎛

⎜
⎜
⎝

v1
i1
v2
i2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

v

0
0
0

⎞

⎟
⎟
⎠ , (5.26)

where the variable v is the known input voltage.
For given v, the reduced graph has the canonical decomposition shown by the arrows in

Fig. 5.22b. It is interesting to see that for linear static systems this decomposition determines
the structural rank of the matrix A, which is given by the maximum number of entries that
can be chosen in different rows and different columns as indicated by the ① in the following
scheme:

5.4 Structural Decomposition of Systems 159

(a) (b)c1

v1 i1 i2 v2 i1 i2 v2v1

c2 c3 c4 c

v

1 c2 c3 c4

Fig. 5.22 Structure graph of the circuit (a) and DM decomposition of the reduced structure graph (b)

s-rank

⎛

⎜⎜
⎝

① 0 0 0
1 ① 0 1
1 1 ① 0
0 0 1 ①

⎞

⎟⎟
⎠ = 4.

The structural rank is determined for the structure matrix [A] rather than the matrix A itself.
Therefore, all non-vanishing elements have been replaced by “1” in the structural rank con-
dition. The ① correspond to the oriented edges in the graph and, hence, make a complete
matching. The system is just-constrained.

The DM decomposition also shows how to determine the unknown variables i1, i2, v2 and
v1. The more detailed decomposition leads to the subsystems

S0
1 = ({c1}, {v1})

S0
2 = ({c2, c3, c4}, {v1, i1, i2, v2}).

Accordingly, in the first step, the constraint c1 is used to determine v1 in terms of the known
variable v

v1 = v.

Then the constraint set {c2, c3, c4} has to be used to determine the further three variables by
solving the linear equation

⎛

⎝
−R1 − RL1 0 −RL1

R1 1 0
0 1 −R2 − RL2

⎞

⎠

⎛

⎝
i1
v2
i2

⎞

⎠ =
⎛

⎝
−v1
v1
0

⎞

⎠

for given v1. The complete matching of this subsystem leads to an algebraic loop. Hence,
the constraints c2, c3 and c4 have to be used simultaneously to determine the three unknown
variables (Fig. 5.23).

In this example, again, the difference between structural and numerical properties can be
seen. As the structural rank of the matrix A is four, for almost all parameters occurring in the
matrix the inverse A−1 exists and the linear equations have a unique solution. For exceptional
cases, for which the determinant of A vanishes, the constraint set has no solution. For the tail
lamp, this exceptional case is given by the equality

0 = det

⎛

⎜
⎜
⎝

1 0 0 0
1 −R1 − RL1 0 −RL1

−1 R1 1 0
0 0 1 −R2 − RL2

⎞

⎟
⎟
⎠ .

160 5 Structural Analysis

c1

c2

c3 c4
v v1

i1

v2 i2

Fig. 5.23 Scheme for determining the unknown variables of the tail lamp for given input voltage v

Hence, for all parameter values that do not satisfy this equality, that is, for all parameters with

R2 �= R1RL1

R1 + RL1
− RL2

the structural rank transfers to the numerical rank of A and the model of the circuit has a
unique solution for any given input voltage v. �

Dynamical systems. Remember that, when differential constraints are considered,
matching all the variables in a subsystem guarantees that there is a unique solution
under integral causality, i.e. if the initial conditions are known. Under derivative
causality, the solution is unique if and only if there is a matching which avoids
differential loops.

Let n+
1 (respectively, n0

1, n−
1) be the maximum number of variables which can

be matched in the over-constrained subsystem (respectively, in the just-constrained
or the under-constrained subsystems) without introducing any differential loop. One
obviously has n+

1 ≤ n+, n0
1 ≤ n0, n−

1 ≤ n−.
An over-constrained or a just-constrained subsystem is called causal if there exists

a complete matching with respect to the variables Z+ and Z0 which do not contain
any differential loop, i.e. if n+

1 = n+ or n0
1 = n0 holds. The under-constrained

subsystem cannot be causal, because there does not exist any complete matching
with respect to Z−.

Example 5.24 Causal over-constrained system
The following system

c1 : x2 − a x1 − bu = 0
c2 : x2 − α x1 − βu = 0
c3 : x2 − d

dt x1 = 0

is over-constrained with respect to the variables (x1, x2), where u is supposed to be known.
The system is causal because (x1, x2) can be matched with (c1, c2) without introducing a
differential loop. Thus, there is a unique solution, which is obtained from the intersection of
the two manifolds associated with (c1, c2):

5.4 Structural Decomposition of Systems 161

x1 = β − b

a − α
u

x2 =
(

a β − α b

a − α

)
u.

a − α is assumed not to be zero. Moreover, the constraint c3 is redundant, and acts as a
compatibility condition which has to be satisfied for the system solution to exist, namely

(
a β − α b

a − α

)
u − β − b

a − α
u̇ = 0.

If the constraint c2 does not exist, then the system is just-constrained but not causal. Its
solution is defined up to the constant x1(0), which is unknown under differential causality. �

5.5 Matching Algorithms

From the definition, a matching can be represented in the incidence matrix of the
bipartite graph by selecting at most one “1” in each row and in each column. This
subsection shows how the selection should be done in order to find maximum match-
ings. An intuitive simple algorithm, referred to as ranking, is first introduced. This
algorithm uses the causal interpretation of matchings and is well suited to understand
the matching process but it cannot handle cases with strongly coupled subgraphs.
As a general approach, the classical maximum matching algorithm is introduced
and is followed by a maximum flow algorithm that can find all matchings in an ele-
gant way that, however, is computationally heavy. A very efficient algorithm is then
reviewed, which is based on directly finding all minimal structurally over-determined
sets (MSO sets) in a structure graph. Examples are provided to show the use of the
different algorithms.

5.5.1 Ranking Algorithm

According to the causal interpretation described above, a complete causal matching
over the unknown variables identifies the computations to be done in order to express
the unknown variables as a function of the variables that are known or have already
been determined. If the matching is not complete with respect to the constraints,
non-matched constraints exist that must be satisfied by the variables obtained. These
facts are the basis of the following constraint propagation (or ranking) algorithm,
which can be used to find a matching. The idea of this intuitive algorithm is to start
with a known variable and to “propagate” the knowledge, step by step, by matching
the variables which are present in constraints where all other involved variables are
matched or known. The algorithm is not able to provide a matching in cases where
subsystems are so closely coupled that a set of constraints and variables need be

162 5 Structural Analysis

solved simultaneously. Such problems require more elaborate algorithms that are
introduced later in this section.

Algorithm 5.1 Ranking of the constraints

Given: Incidence matrix of a bipartite graph

1. Mark all known variables with rank 0
i = 1

2. Find all constraints in the current table with exactly one
unmarked variable. Associate rank i with these constraints and
mark these constraints as well as the corresponding variable.

3. Set i := i + 1.

4. If there are unmarked constraints whose variables are all
marked, associate them with rank i, mark them and connect
them with the pseudo-variable ZERO.

5. If there are unmarked variables or constraints, continue with
Step 2.

Result: Ranking of the constraints.

In the first step, all known variables in the set K are marked and all unknown
variables remain unmarked. In the second step, every constraint that contains at most
one unmarked variable is assigned rank 1. It is matched for the unmarked variables
(or for ZERO, if there is none), and the variable is marked. This step is repeated with
an increasing rank number, until no new variables can be matched.

If every matched variable is also given a number, the rank can be interpreted as
the number of steps needed to calculate the corresponding variable from the known
ones.

The ranking algorithm stops before a complete matching is obtained if there exist
unmarked variables still to be determined, but if all constraints include more than
one unmarked variable. This situation occurs, for example, if two constraints have
to be used simultaneously to determine two variables (e. g. the constraints c1 and c2
for the variables x1 and x2 in Example 5.17).

Example 5.25 Ranking of constraints for the single-tank system
The ranking algorithm is applied to the tank example as follows. As u, y are known, only the
variable set {qi, qo, h, ḣ} has to be matched.

Starting set (rank 0): {u, y}
First step (rank 1): match qi with c2, match h with c4
Second step (rank 2): match q0 with c3, match ḣ with c6
End (every variable is matched)

The obtained matching is the following one:

5.5 Matching Algorithms 163

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

Hence, the ranking algorithm can be used to get a complete matching for the tank system. �

Example 5.26 Two-tank system
The two-tank system introduced in Sect. 2.1 will be considered with u as the known control

input and qm as the measured outflow. The following equations lead to the structure graph in
Fig. 5.24:

qL

qPc
ZERO

Tank 1

Tank 2

Pipe

c6

c1

u

d4

c2

cm
c8

qm

q12

q2

h
.
1 h1

3

c3

d7

h
.
2 h2

Fig. 5.24 Structure graph of the two-tank system

http://dx.doi.org/10.1007/978-3-662-47943-8_2

164 5 Structural Analysis

c1 : qL = cL
√

h1

c2 : qP = u · f (h1)

c3 : ḣ1 = 1

A
(qP − qL − q12)

d4 : ḣ1 = d

dt
h1

c5 : q12 = k1
√

h1 − h2

c6 : ḣ2 = 1

A
(q12 − q2)

d7 : ḣ2 = d

dt
h2

c8 : q2 = k2
√

h2

m1 : qm = km q2

m2 : qm12 = km q12

A, k1, k2 and km are known parameters. cL is the unknown parameter describing the size of the
fault. It can be assumed to be zero for the faultless case. In the structure graph the constraints
c1, c2, c3 and d4 representing the Tank 1 are separated from constraints c6, d7, c8 and cm
describing the Tank 2.

The following matching is found using the ranking algorithm, where the last column shows
the rank of the constraints obtained.

qL qP ḣ1 h1 q12 ḣ2 h2 q2 R
c1 1 1 5
c2 1 1 5
c3 1 1 1 1 6
d4 1 1 5
c5 1 1 1 4
c6 1 1 1 3
d7 1 1 2
c8 1 1 1
cm 1 0

↑qL = cL
√
h1

qP = u · f (h1)
0 =−qL+qp −q12 −Aḣ1

ḣ1 = d
dt

h1

h1 = h2 +
q12
k1

2

q12 =A ḣ2 +q2

ḣ2 = d
dth2

h2 = q2
k2

2

q2 = m
km

((

((

The matching obtained can alternatively be represented as follows:

c1 c2 c3 d4 c5 c6 d7 c8 m1 cm

1 qL qP 0 ḣ1 h1 ḣ2 0 h2 q12 q2

As the ranking algorithm may stop when encountering strongly connected sub-
graphs, more generic approaches to matching are introduced below.

5.5 Matching Algorithms 165

5.5.2 General Matching Algorithm

Let M be a matching on a graph G. An edge is said to be weak with respect to M
if it does not belong to M. A vertex is weak with respect to M if it is only incident
to weak edges. An M-alternating path is a path whose edges are alternating in M
and not in M (or conversely). An M-augmenting path is an alternating path whose
end vertices are both weak with respect to M . An M-alternating tree with root v

is a collection of disjoint M-alternating paths with the common root v.
The basic matching algorithm is built on the following theorem:

Theorem 5.2 (Berge 1957) A matching M in a graph G is maximum if and only if
there exists no M-augmenting path in G.

The idea of the proof of the theorem is that if an augmenting path would exist, a new
matching of size |M|+1 would be obtained by exchanging the roles of the matched
and non-matched edges in the path, as illustrated by the following example. This
step is called the transfer from the old to the new matching along the M-augmenting
path.

Example 5.27 An M-augmenting path
A matching M of size 3 is given by the bold edges in the bipartite graph of Fig. 5.25 (left).

It can be checked that there exists an M-augmenting path, namely

c1 − x1︸ ︷︷ ︸
weak

− x1 − c2︸ ︷︷ ︸
matched

− c2 − x3︸ ︷︷ ︸
weak

− x3 − c3︸ ︷︷ ︸
matched

− c3 − x4︸ ︷︷ ︸
weak

− x4 − c6︸ ︷︷ ︸
matched

− c6 − x5︸ ︷︷ ︸
weak

and, therefore, this matching is not maximum. By exchanging weak (dashed lines) and matched
(solid line) edges, the following matching of size 4 is found:

c1

c2

c3 3

c4

c5

c

c1

c2

c

c4

c5

c6

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5
6

Fig. 5.25 Finding a new matching by using an augmenting path

166 5 Structural Analysis

c1 − x1︸ ︷︷ ︸
matched

− x1 − c2︸ ︷︷ ︸
weak

− c2 − x3︸ ︷︷ ︸
matched

− x3 − c3︸ ︷︷ ︸
weak

− c3 − x4︸ ︷︷ ︸
matched

− x4 − c6︸ ︷︷ ︸
weak

− c6 − x5︸ ︷︷ ︸
matched

. �

Based on the theorem above, the following algorithm extends an initially given
matching step-by-step by finding an augmenting path and augmenting the size of the
current matching by transferring it, until no further augmenting path can be found
and, therefore, the latest determined matching is maximum.

Algorithm 5.2 Algorithm for finding a maximum matching

Given: A bipartite graph G and an initial matching M0.

1. Let M be the current matching. If the number of weak vertices
with respect to M is less than or equal to one, the current match-
ing is maximum. Otherwise, let v be any weak vertex. Build an
alternating tree with root v.

2. If the tree contains an M-augmenting path then perform a trans-
fer along this path and update the matching on the initial graph.
Go back to 1.

Result: A maximum matching.

The initial matching can be the empty matching M0 = {}. In Step 2, the cardinality
of the matching is increased by one.

Example 5.28 Maximum matching algorithm
Let M0 = {(x1, c2), (x3, c3), (x4, c6)} be the initial matching shown on Fig. 5.25. The weak
edges are

{(x1, c1), (x1, c4), (x2, c2), (x2, c5), (x3, c2), (x4, c3), (x4, c4), (x5, c5), (x5, c6)} .

There are four weak vertices, namely {c1, x2, c4, c5}. For the first iteration, choosing c1 as
the root gives the alternating tree shown on Fig. 5.26a where the current matching is shown
in dashed lines. It is easily seen that there are two M0-augmenting paths, namely c1 − x1 −
c2 − x2 and c4 − x4 − c6 − x5. Since these paths are disjoint, the two transfers can be done
simultaneously, resulting in the matching

M1 = {(x1, c1), (x2, c2), (x4, c4), (x5, c6)} .

The weak edges are now

{(x1, c2), (x1, c4), (x2, c5), (x3, c2), (x3, c3), (x4, c3), (x4, c6), (x5, c5)}

and the weak vertices are {x3, c3, c5}. Choosing c3 as the root results in the alternated tree
of Fig. 5.26b, which exhibits the M1-augmenting path x3 − c2 − x2 − c5. Performing the
transfer gives the new matching

5.5 Matching Algorithms 167

Fig. 5.26 Alternating tree
with root c1 (a) and with root
c3 (b)

(a)

(b)

c1

c2

c5 c3

c3

c2 c4 c6

c5

x3 x4

x5
x2x1

c1

c6

x1

c4

x3

x5

x4x2

M2 = {(x1, c1), (x3, c2), (x2, c5), (x4, c4), (x5, c6)}

which is maximum, because the set of weak edges is now

{(x1, c2), (x1, c4), (x2, c2), (x3, c3), (x4, c3), (x4, c6), (x5, c5)}

and there remains only one single weak vertex c3. �

Example 5.29 Application to the single-tank system
The aim is to search for a maximum matching with respect to the reduced structure graph of
the single-tank system.

h ḣ qi qo u y

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c5 1 1

c6 1 1

↑

168 5 Structural Analysis

Let M0 = {} . Then all vertices are weak. Selecting, e.g. h as the root gives the alternated tree

↗ c6 → ḣ
h −→ c4

↘ c3 → qo → c1 → qi → c2,

where two disjoint M0-augmenting paths are given by c6 − ḣ and h − c3 − qo − c1 − qi − c2
providing the new matching M1 = {(

ḣ, c6
)
, (h, c3), (qo, c1), (qi, c2)

}
which is complete

with respect to the unknown variables and, hence, the algorithm ends. �

5.5.3 Maximum Flow Algorithm

Finding a maximum matching in a bipartite graph can be transformed into a maximum
flow problem. The procedure is as follows: Construct a network N associated with
the graph G = (C,Z, E) by orienting all edges from Z to C, by inserting a source
vertex S with arcs to all vertices of Z and a sink vertex T with arcs from all vertices of
C, and by connecting T to S as shown on Fig. 5.27. Furthermore, assign the capacity
of all arcs from S to Z and from C to T as 1. The capacities of all other arcs are set
to ∞. Then, the maximum flow on N is associated with a maximum matching as
stated in the following theorem.

c

S

1= c 1=c=

x1

c1

c2

c3

c4

c5

c6

x2

x4

x5

x3

Fig. 5.27 Setting the maximum matching problem as a maximum flow problem. Flow in edges
from Z to C is 1 if an edge is used (labelled), otherwise 0

5.5 Matching Algorithms 169

Theorem 5.3 In a bipartite graph G, the matching number ν(G) equals the maximum
flow through the network N that is associated to the graph G.

Therefore, a maximum matching can be found by applying the classical maxi-
mum flow algorithm ofFord andFulkerson, which in the case of bipartite graphs is
called “the Hungarian method”. Like the preceding algorithm, this algorithm assumes
a given matching M is known and attempts to extend M by finding an augment-
ing path. This is done by marking vertices on weak edges so as to follow possible
augmenting paths.

Algorithm 5.3 Hungarian method for determining maximum matchings

Given: A bipartite graph and an initial matching M0.

1. Denote the current matching by M. Label with an * all vertices
of Z that are weak with respect to M, and alternately apply
Steps 2 and 3 until no further labelling is possible.

2. Select a newly labelled vertex in Z , say zi, and label with zi all
unlabelled vertices of C that are connected to zi by an edge that
is weak with respect to M . Repeat this step on all vertices of
Z that were labelled in the previous step.

3. Select a newly labelled vertex of C, say cj and label with cj the
vertex of Z which is connected to cj in M . Repeat this process
on all vertices of C labelled in the previous step.

4. The labellings will continue to alternate until one of two possi-
bilities occurs:

END 1: A weak vertex C has been labelled. Then an M-augmenting path
has been found, and it can be constructed by working backwards
through the labels until the vertex of Z which is labelled by a
*. Transferring this path gives an extended matching and the
algorithm is repeated by going back to Step 2.

END 2: It is not possible to label more vertices and END 1 has not
occured. Then M is a maximum matching.

Result: A maximum matching.

Example 5.30 Determination of a maximum matching by the Hungarian method
Let M0 = {(x1, c2), (x3, c3), (x4, c6)} be the initial matching shown on Fig. 5.25. The table
below shows the initial labelling and the sequence of labels obtained as Steps 2 and 3 alternate.
The bar over vertices c1, c4 and c5 indicate that these vertices are weak with respect to the
current matching.

170 5 Structural Analysis

x1 x2 x3 x4 x5 c̄1 c2 c3 c̄4 c̄5 c6

Step 1 * *

Step 2-1 x2 x2 x5

Step 3-1 c2 c6

Step 2-2 x1 x4 x1

Step 3-2 c3

The table demonstrates the Steps 2 and 3 of the algorithm. However, in this example, the first
iteration would stop as early as after Step 2-1 because the weak vertex c5 has been labelled
(END 1). Tracking the labels backwards until a *-vertex is found gives the M0-augmenting
path c5 − x2, which results in the augmented matching

M1 = {(x1, c2), (x2, c5), (x3, c3), (x4, c6)}

from which the next iteration starts. �

Example 5.31 Hungarian method applied to the single-tank system
With M0 = {(

ḣ, c6
)}

being the initial matching, the first iteration gives the labels

h ḣ qi qo c̄1 c̄2 c̄3 c̄4 c̄5 c6

Step 1 * * *

Step 2 qi qi h h h

before END 1 occurs and the matching can be updated as

M1 = {(
ḣ, c6

)
, (h, c3), (qi, c1)

}
.

The second iteration gives

h ḣ qi qo c1 c̄2 c3 c̄4 c̄5 c6

Step 1 *

Step 2-1 q0 q0

Step 3-1 c3 c1

Step 2-2 qi h h

before END 1 occurs. The M1-augmenting path is given by c4 − h − c3 − q0 and leads to
the new matching

M2 = {(
ḣ, c6

)
, (h, c4), (qi, c1), (qo, c3)

}
.

This matching is complete with respect to the unknown variables and stops the algorithm.
Note that the solution is different from the one previously found, which illustrates the fact that
maximum matchings are not unique. �

5.5 Matching Algorithms 171

The above algorithm is computationally very heavy and experience showed that
alternative algorithms were needed to cope with industrial scale systems.

5.5.4 Minimal Over-Determined Subsystems Approach

The Minimal Structurally Over-determined (MSO) set approach offers another way
to find all analytical redundancy relations. The idea in the method is to calculate all
subsets MMSO ⊆ S+ of an over-constrained structure graph, which have exactly
one constraint more than the just-constrained subsystem. The structural redundancy
measure for such subset is �(MMSO) = 1 according to Eq. (5.22). Therefore, each
MSO set will comprise at least one constraint that can be used as an ARR. The
number of ARRs generated in this way will be larger than the set of ARRs found
from a single complete matching, but less or equal to the number of ARRs generated
by the brute-force approach of generating all possible complete matchings and get a
set of ARRs for each of these matchings.

The reason to generate more than the minimal set of ARRs available from a single
complete matching is that structural isolability can be enhanced by considering more
than the minimal number of ARRs.

Definition 5.8 (Minimal structurally over-constrained subsystem) A minimal struc-
turally over-determined subsystem (MSO subsystem) is a part of the over-constrained
part of a system graph from which removal of one constraint will make the subsystem
to become just-constrained.

The procedure to find MSO sets is based on examining the set M of constraints
of a proper structurally over-constrained structure graph. The PSO property means
M = C+. Denoting the set of unknown variables in X that are connected to at least
one constraint in M by Q(M), then

�(M) = |M+| − |Q(M+)|

(cf. Eq. (5.22)). Removing one constraint ci from the set M reduces the structural
redundancy by one,

�(M\{ci}) = �(M) − 1.

The set of constraints M is an MSO set if M is PSO and �(M) = 1.
These observations led to a computationally very efficient way to determine the

set of all possible ARRs for a system. The following computational procedure is
used recursively [187]:

172 5 Structural Analysis

Algorithm 5.4 Determination of the set of all ARRs

Require M is a PSO set
Procedure MMSO := findmso(M)

if �(M) = 1 then
MMSO := {M};

else
MMSO := ∅;
for any ci ∈ M

M′ := (M \ {ci})+ ;
MMSO = MMSO ∪ findmso(M′);

end
endif
return MMSO

end

This procedure is used in the following algorithm to determine all MSO sets in a
structure graph.

Algorithm 5.5 Determination of minimal structurally over-determined sets

Given: Reduced structure graph S of a system

1. Using DM decomposition, select the constraints that form the
part of S which is PSO. Denote this set of constraints by M

2. Perform a complete search using the recursive procedure MMSO
:= findmso(M)

Result: Set MMSO of all possible MSO sets

The above algorithm finds MSO sets more than once. This can be avoided by find-
ing equivalence classes of constraints and make an extension of the basic algorithm
that is described in [187].

Example 5.32 Determination of MSO sets
This example shows how MSO sets and thereby ARRs are generated for the single-tank
example with extended measurements. Assume that the flow qo is measured in addition to the
input u and the inflow qi, which leads to an additional measurement constraint

c7 : y2 = qo.

5.5 Matching Algorithms 173

h ḣ qi qo u y1 y2

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

c7 1 1

↑

This structure graph is over-constrained with �(M) = 2.
Algorithm 5.5 determines the four MSO sets listed below.

c1 c2 c3 c4 c6 c7

M1 - - 0 h - qo

M2 ḣ qi - h 0 qo

M3 ḣ qi h - 0 qo

M4 ḣ qi qo h 0 -

The table has to be interpreted as follows: The MSO set M1 includes the constraint c3(h, qo) =
0 as an ARR and uses c4 to calculate h and c7 to calculate qo. Each of the MSO sets is, by the
definition of the MSO subsystem, also an ARR.

Algorithm 5.5 finds four MSO sets for this example. By comparison, the Ranking Algo-
rithm 5.1 finds one complete matching of the unknown variables and two ARRs, c1 and c3,
according to the following matching table:

h ḣ qi qo u y1 y2

c1 1 1 1

c2 1 1

c3 1 1

c4 1 1

c6 1 1

c7 1 1

↑

�

5.6 Structural Diagnosability and Isolability

A system is said to be structurally diagnosable or monitorable if it is possible to test
whether the system constraints are satisfied or not. This section is concerned with the
analysis of system monitorability and with fault detection and isolation algorithms
based on Analytical Redundancy Relations (ARRs).

174 5 Structural Analysis

Analytical redundancy occurs and analytical redundancy relations become avail-
able when there are constraints that are not needed to match the unknown variables
in a system. These additional constraints, as well as all others, need be satisfied when
the system obeys normal behaviour, so the additional, or redundant, constraints can
test whether the system behaviour is normal. Violation of a constraint that is used to
calculate an ARR would leave the ARR as not satisfied.

Residuals are derived from ARRs. A residual will only depend on known vari-
ables but the ARR might not represent causal computations. The analytical form of
a residual is a signal r(t) that can be calculated by causal operations in real time by
inserting the instantaneous values of known variables: the input u(t) and measure-
ments y(t). A residual signal r(t) is therefore obtained from the corresponding arr(t)
through filtering of the entire arr(t).

The terms analytical redundancy relation and residual generator are often used
as synonyms in the literature, although strictly speaking, the ARRs are found without
any consideration to stability and causality while a residual generator needs to be
both stable and causal to generate a signal r(t) that has the properties needed for
fault diagnosis. This is further elaborated in Chap. 6.

Analytical redundancy-based fault diagnosis tries to identify faults by comparing
the actual behaviour of the system, which is observed through the time evolution
of the known variables, with the behaviour described by the system constraints.
This comparison can be performed only if some redundant information exists. For
diagnosis it is not sufficient that the known variables and the set of constraints allow
to determine all unknown variables. There must be available at least one constraint
more with which one can test whether the obtained variables are consistent with the
model representing the faultless behaviour of the system. ARRs are the constraints
that express this redundancy.

In this section, the analytical redundancy relation-based approach to fault diag-
nosis is first briefly recalled and stated in the frame of structural analysis, leading to
characterise the structurally monitorable part of the system. Finding residuals that
are robust, meaning they are insensitive to disturbances or to unknown parameters,
are then discussed and residuals that are sensitive to certain structural faults, but not
to others (structured residuals) are then addressed.

5.6.1 Analytical Redundancy-Based Fault Detection
and Isolation

Analytical redundancy relations are static or dynamical constraints that will be sat-
isfied (equal to zero) when the system operates according to its normal operation
model. Once ARRs are found, the fault detection procedure checks whether they are
satisfied or not, and if not, the fault isolation procedure identifies the system compo-
nents which are to be suspected. The existence of ARR is thus a prerequisite to the

http://dx.doi.org/10.1007/978-3-662-47943-8_6

5.6 Structural Diagnosability and Isolability 175

elaboration of fault diagnosis procedures. Moreover, in order for the fault diagnosis
procedure to work properly, ARR should have the following properties:

• Robust, i.e. insensitive to unknown input and unknown parameters. This insures
that they are satisfied when no fault is present, so that false alarms are not issued.

• Sensitive to faults: This insures that they are not satisfied when a constraint is
violated, i.e. a fault is present, so that faults are detected.

• Structured: This insures that in the presence of a given fault, only a subset of the
ARRs is not satisfied, thus allowing to recognise the fault that occurred from the
subset of ARRs that are satisfied and the subset that is not satisfied.

Faults. In structural analysis, a fault is defined as a violation in a constraint. A system
is the interconnection of a number of components, each of which is described by its
behavioural model in normal operation. Let {Ci, i = 1, 2, . . . , N} be the set of the
system components. Each of them is a subsystem (φi, Q(φi)) which imposes the
set of constraints φi to the system variables Q(φi), where Q(φi) ∩ X are unknown
(unmeasured state variables, unknown input, unknown parameters) while Q(φi)∩K
are known (input, output, known parameters). A fault in component Ci is defined as
a change in at least one of the constraints ϕ ∈ φi.3 Note that this general definition of
faults allows to consider different fault modes associated with the same component.
Each subset of φi can in fact be considered as a fault mode of Ci. Note also that since
only the structure is of interest, there is no need to define, nor to model the nature of
the change (e.g. using additive or multiplicative fault models).

Example 5.33 Representation of faults in an insulated pipe
Consider an insulated pipe and suppose that one is interested in modelling the mass and the
heat transfers. A simple model is given by the two constraints

ϕ1 : qi(t) − qo(t) = 0

ϕ2 : qi(t) θi(t) − qo(t) θo(t) = 0,

where qi and qo are the input and the output flow of the (incompressible) fluid, and θi (respec-
tively, θo) is the input (respectively, the output) fluid temperature. A defect in the insulation
would obviously result in ϕ2 being violated, while a leak in the pipe would be modelled by
ϕ1 and ϕ2 being violated. �

Direct redundancy. Consider a constraint ϕ ∈ CK, where CK is the subset of con-
straints such that Q(CK) ⊆ K and let C be the component to which ϕ belongs. This
constraint is an ARR because it links only known variables, and it can be checked
in real time if it is satisfied or not, by taking the numerical values of the known
variables, putting them into constraint ϕ, and testing whether the result is ZERO
or not. If the constraint is not satisfied, it can be concluded that the system is not

3The notation ϕ is used—as a mnemonic for “fault”—instead of c which was a mnemonic for
“constraint”.

176 5 Structural Analysis

in normal operation, while if the constraint is satisfied it can only be said that the
normal operation hypothesis is not falsified by the values of the observations.

In practical situations, variables are not very precisely known, measurements are
corrupted by noise, and models only approximate the system behaviour. Thus, the
obtained value for the constraint will never be exactly zero, even in normal operation.
Let rϕ(K) be the obtained value. rϕ(K) is called the residual associated with ARR
ϕ, and fault detection boils down to decide whether the residual is small enough so
that the ZERO hypothesis can be accepted. Fault isolation obviously follows fault
detection because only a fault in component C could cause constraint ϕ not to be
satisfied.

In all systems, the control algorithms are direct ARRs, because the subset CK
includes the constraints which describe them. Hence, they can be used to check
whether the controller is working properly. Although this might be of practical inter-
est, such direct redundancy relations are of little interest as far as structural analysis
is concerned, because the result is obvious. Therefore, the aim of the following part
of this chapter is to find ARRs in the subsystem (CX ,Z) which includes unknown
variables.

Deduced redundancy. Consider some constraint ϕ ∈ CX and again let C be the
component to which ϕ belongs. Let Xϕ = Q(ϕ) ∩ X be the subset of unknowns
which appear in constraint ϕ, and suppose that

Xϕ ⊆ Xobs (5.27)

holds, where Xobs is the subset of the observable variables. Then, any variable x ∈ Xϕ

can be expressed as a function of the known ones (possibly including their derivatives)
using the model. Suppose that there exists at least one alternated chain with target x
which does not include constraint ϕ. This means that even if constraint ϕ is removed,
x can still be matched and computed as a function of the known variables, which
indicates that constraint ϕ belongs to an over-constrained subsystem, as it will be
seen later. Then, this alternated chain can be used to compute x as a function of the
known variables, and one can put the obtained expression into ϕ, which produces
an ARR. The associated residual rϕ(K) should be ZERO when the system operates
properly.

However, fault isolation will be slightly different because the residual associated
with ϕ will be non-zero not only if C is not performing well, but also if the actual
values of the Xϕ variables are different from those computed from the observations
via the normal operation model. This may happen when the fault changes some con-
straint which belongs to an alternated chain whose target is in Xϕ. The conclusion
is that when rϕ(K) is non-zero, there is an associated set of components to be sus-
pected instead of a single one.4 It can be easily determined from the graph-based
interpretation.

4This set is called the structure of the residual in the control community and it is called a conflict
in the Artificial Intelligence community.

5.6 Structural Diagnosability and Isolability 177

Example 5.34 Single-tank system
Consider the tank whose structure graph is shown in Fig. 5.3. There are two
redundancy relations for this system. The first one is given by constraint c5 and is of no
interest because it is a direct redundancy relation which only duplicates the control algorithm.
The second one is given by c2 which should be satisfied when the system operates normally
and which will be false if one of the constraints {c1, c2, c3, c4} is not satisfied (c6 is a math-
ematical constraint which is not linked with any hardware or software component and thus it
cannot be faulty). �

5.6.2 Structurally Monitorable Subsystems

Unfortunately, not every fault can be detected. Therfore, it is important to find ways
for distinguishing diagnosable faults or diagnosable subsystems from undiagnosable
ones. Such ways will be described in this subsection.

Definition 5.9 (Structurally monitorable subsystem) The structurally diagnosable
(monitorable) part of the system is the subset of the constraints for which there exists
ARRs that are structurally sensitive to their change.

Such subsystems can be characterised by the following theorem:

Theorem 5.4 (Structural monitorability) The following two necessary conditions
for a fault ϕ to be structurally diagnosable (monitorable) are equivalent:

(i) Xϕ is structurally observable—according to (5.27)—in the system (C\{ϕ}, Z).
(ii) ϕ belongs to the structurally observable over-constrained part of the system

(C, Z).

Let (CX , X) be a structurally observable over-constrained subsystem. Then there
exists a subset SX ⊂ CX of n = |X | constraints which (from a structural point
of view) can be solved uniquely for the variables X .5 These variables can thus be
computed as functions of the known variables K. Putting the obtained values into the
remaining constraint set RX = CX \SX (the symbol R is used as a mnemonic for
Remaining, or Redundant), one obtains |CX | − |X | relations which link only known
variables and which are, therefore, redundancy relations. For a more convenient
notation the function

X = ΓX (K) (5.28)

is introduced for the computation of the unknown variables, leading to expressions
for the set of constraints CX in the equivalent form

SX : X − ΓX (K) = 0

RX : (CX \SX) ◦ ΓX (K) = 0, (5.29)

5The symbol S is used as a mnemonic for “solve”.

178 5 Structural Analysis

where ◦ means the substitution of X by ΓX (K).
In general, several different complete matchings can be found in a given causal

over-constrained subsystem, which lead to different means of computing the unknown
variables X from the known ones. This fact will be used for the elaboration of
fault-tolerant observation schemes but it can also provide another interpretation of
redundancy, since obviously the unknown variables X have to be the same for all
matchings. For example, suppose that two matchings exist such that X is associ-
ated with SX ⊂ CX in the first one, leading to the relation X = ΓX (K), and with
PX ⊂ CX in the second one, leading to X = ΛX (K). The redundancy relations

ΓX (K) − ΛX (K) = 0

directly follow from the fact that the two results should be the same.

Example 5.35 Sensor redundancy
A good illustration of this idea is provided by sensor hardware redundancy. Suppose that two
sensors measure the same unknown variable x. The measurement equations are given by

Sensor 1 c1 : y1 − x − ε1 = 0

Sensor 2 c2 : y2 − x − ε2 = 0,

where ε1 and ε2 denote measurement noise with known distribution. The structure graph has
the following incidence matrix.

known unknown

y1 y2 ε1 ε2 x

c1 1 1 1

c2 1 1 1

↑

Here, ε1 and ε2 are considered as known variables because their probability distribution is
known. This system is over-constrained with CX = {c1, c2} and X = {x}. The unknown x can
be matched with each of the two constraints and, hence, be calculated by each of the sensor
equations. This is not only true from the structural point of view but x can be determined
numerically if dc1

dx and dc2
dx are both non-zero. Otherwise at least one of the sensors would be

completely useless.
For the matching

known unknown

y1 y2 ε1 ε2 x

c1 1 1 1

c2 1 1 1

↑

the oriented graph is given by Fig. 5.28, in which the unknown x is computed by

x = γ1(y1, ε1)

5.6 Structural Diagnosability and Isolability 179

Fig. 5.28 Oriented structure
graph for sensor monitoring y2ε2x

c1

c2

y1 ε1

ZERO

and c2 is used as a redundancy relation which can be written as

c2(γ1(y1, ε1), y2, ε2) = 0.

Choosing the second possible matching

known unknown

y1 y2 ε1 ε2 x

c1 1 1 1

c2 1 1 1

↑
provides

x = γ2(y2, ε2)

and the redundancy relation
c1 (y1, ε1, γ2 (y2, ε2)) = 0.

Since two matchings exist, the value of x can be computed either from the first or from the
second one and leads to the redundancy relation

γ1 (y1, ε1) − γ2 (y2, ε2) = 0. �

5.6.3 Finding Analytic Redundancy Relations

As explained in the preceding sections, redundancy relations are obtained from over-
constrained subgraphs of the reduced structure graph. They are composed of alter-
nated chains, which start with known variables and end with non-matched constraints
whose output is labelled ZERO. Designing a set of residuals calls for building maxi-
mum matchings on the given structure graph, and identifying the redundancy relations
as the non-matched constraints in which all the unknowns have been matched, and
subsequently expressing the non-matched constraints by known variables through
backtracking to known variables, according to the matching. This section gives a
complete illustration of this procedure.

180 5 Structural Analysis

c6

c1

c4

c3

c2

u

y

qi

h

q0

ḣ

ZERO

Fig. 5.29 Ranking for the single-tank system

Example 5.36 Finding an analytic redundancy relation for the single-tank
system
For the single-tank example, the incidence matrix of its reduced structure graph was given in
Example 5.9:

h ḣ qi qo

c1 1 1 1

c2 1

c3 1 1

c4 1

c6 x 1

↑

The result of the ranking algorithm is shown in the following table and in Fig. 5.29. The
matching is identical with the second matching in Example 5.9. Note that a new column
has been introduced to mark constraints which have the output ZERO. Since ZERO is not a
variable, it may be matched several times.

unknown Ranking

h ḣ qi qo ZERO Rank

c1 1 1 1 1 2

c2 1 0

c3 1 1 1

c4 1 0

c6 x 1 1

↑

Sorted according to the rank, the following constraint set is obtained:

5.6 Structural Diagnosability and Isolability 181

Rank Constraint Output

c2 qi (t)
0

c4 h(t)

c3 qo (t)
1

c6 ḣ

2 c1 ZERO

If the reduced structure graph is redrawn according to the ranking of the constraints, Fig. 5.29 is
obtained. The figure shows how the internal variables qi, h, qo and ḣ can be successively deter-
mined. The constraints are ordered according to their associated rank. Finally, the constraint
c1 is used to test whether the variables obtained are consistent with the model.

As all constraints are ranked, the system is fully observable and monitorable. By solving
the constraints for the matched variables, the following equations are obtained. The right-hand
column shows the path of the matching.

c2 : qi(t) = α · u(t) c2(u) → qi
c4 : h(t) = y(t) c4(y) → h
c3 : q0(t) = k

√
h(t) c6(h) → qo

c6 : ḣ(t) = d
dt h(t) c6(h) → ḣ

c1 : 0 = ḣ(t) + qo(t) − qi(t) c1(ḣ, qi, qo) → ZERO

(5.30)

These equations can be simplified to obtain the redundancy relations in one analytic expres-
sion:

c1 : 0 = d

dt
y(t) + k

√
y(t) − αu(t).

The order of operations on constraints was

c1(c6(c4(y)), c2(h), c3(c4(y))) → ZERO.

As all variables on the right-hand side of the two equations are known, these equations can
be applied to the known variables u and y, which are marked by grey circles in Fig. 5.29, to
illustrate this fact. �

5.6.4 Structural Detectability and Isolability

Assume that the over-constrained subsystem has been determined by finding a com-
plete matching on the unknown variables. Then, the main results of structural analysis
are obtained from the following steps:

1. List all analytic redundancy relations that exist for the system.
2. For all these relations, determine an explicit form if the constraints are explicitly

known.

182 5 Structural Analysis

3. List which violations of constraints are detectable.
4. List which violations of constraints are isolable.

Calculate residuals from structural analysis. After a matching has been found,
the set C(u) ⊂ C of unmatched constraints

C(u) = {c : c(xc, kc) → 0, xc ∈ X , kc ∈ K}

is determined. To obtain analytical redundancy relations for diagnosis, also referred
to as parity relations, the unknown variables in each c ∈ C(u) must be substituted
by known ones entering through matched constraints. Backtracking along alternated
chains in the matching will facilitate such an elimination of the unknown variables.
Finally, each unmatched constraint c will give one parity relation r to be used for
diagnosis, and a violation of any constraint that was used in constructing the parity
relation will give a non-zero residual when all known variables enter by their real-time
values.

Furthermore, analytical redundancy relations show which residuals depend on
which constraints. One view on these relations is the Boolean mapping, the depend-
ability matrix or signature matrix,

M : c → r

from which structural detectability can be analysed. It can be checked that the
following definition is the practical translation of the monitorability condition in
Theorem 5.6.

Lemma 5.1 (Structural detectability) A violation of a constraint c is structurally
detectable if and only if it has a non-zero Boolean signature in some residual r

c ∈ Cdetectable ⇔ ∃r : c �= 0 ⇒ r �= 0.

Moreover, since for a given constraint c the set of all parity relations can be
partitioned into those in which its Boolean signature is zero and those in which its
Boolean signature is non-zero, the following result is straightforward.

Lemma 5.2 (Structural isolability) A violation of a constraint ci is structurally
isolable if and only if it has a unique signature in the residual vector, i.e. column mi

of M is independent of all other columns in M

ci ∈ Cisolable ⇔ ∀j �= i : mi �= mj.

Example 5.37 Nonlinear parity relations for ship
Consider the nonlinear model of a ship with dual measurements of heading angle ψ and with
no disturbance from waves:

5.6 Structural Diagnosability and Isolability 183

c1 : ω̇3 = b(η1ω3 + η3ω3
3) + bδ

c2 : ψ̇ = ω3
d1 : dω

dt = ω̇

d2 : dψ
dt = ψ̇

m1 : y1 = ψ
m2 : y2 = ψ

m3 : y3 = ψ̇
m4 : y4 = δ.

The set of unknown variables is X = {δ,ω3, ω̇3, ψ, ψ̇}, the set of known variables is K =
{y1, y2, y3, y4}. A complete matching on the unknown variables is traced in the left column
below, the right column shows the backtracking to known variables.

m1(y1) → ψ
m2(y2, ψ) → ZERO ⇒ m2(y2, m1(y1)) → ZERO
m3(y3) → ψ̇
m4(y4) → δ

d2(ψ, ψ̇) → ZERO ⇒ d2(m2(y2), m3(y3)) → ZERO
c2(ψ̇) → ω3
d1(ω3) → ψ̇
c1(δ,ω3, ω̇3) → ZERO ⇒ c1(m4(y4), c2(m3(y3)), d1(c2(m3(y3)))) → ZERO

(5.31)

The way constraints are used in the three parity relations as follows,

m1 m2 m3 m4 c1 c2 d1 d2
⎛

⎝
r1
r2
r3

⎞

⎠ ←
⎛

⎝
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 1
0 0 1 1 1 1 1 0

⎞

⎠ .

As a violation of any constraint is mapped onto the residuals, all faults are detectable. Con-
sidering isolability, five columns are independent: m1, m2, m3, d2. Hence it is only violations
in these constraints that are structurally isolable.

The matching obtained is summarised in condensed form in the following table:

c1 c2 d1 d2 m1 m2 m3 m4

1 0 ω ω̇ 0 0 ψ ψ̇ δ

The detectability and isolability properties are conveniently summarised in tabular form as
follows, where d and i denote structural detectability and isolability, n that a constraint cannot
fail.

c1 c2 d1 d2 m1 m2 m3 m4

1 d n n n i i i d

184 5 Structural Analysis

The analytical form of the parity relations is obtained from the symbolic expressions from
the backtracking. This gives the expected result,

r1 = y2 − y1

r2 = ẏ2 − y3 (5.32)

r3 = ẏ3 − b(η1y3 + η3y3
3) − by4 . �

5.6.5 Design of Robust and Structured Residuals

Robust residuals. The set of constraints that describe the nominal operation of a
system might fail to represent all aspects of its actual behaviour. Discrepancies follow
from the existence of unknown inputs (disturbances) and from the fact that system
parameter values are never exactly known (uncertain parameters). Such discrepancies
might result in residuals firing false alarms.

Example 5.38 Residual discrepancies caused by unknown inputs
The unknown variables of the single-tank system were computed from the following con-
straints:

Component Constraint Constraint expression

Pump c2 : qi(t) = α · u(t)
Level sensor c4 : h(t) = y(t)
Output pipe c3 : q0(t) = k

√
h(t)

Derivative constraint c6 : ḣ(t) = d
dt h(t)

Putting these expressions into the constraint

c1 : ḣ (t) − qi(t) + qo (t) = 0,

the residual
r(t) = ẏ(t) + k

√
y(t) − αu(t)

is obtained. Assume that the level sensor output is affected by a constant bias δ (unknown
input):

Component Nominal constraint Actual constraint

Level sensor h(t) = y(t) h(t) = y(t) − δ.

Simple calculations show that the residual computed using the nominal model constraints
would have a non-zero value:

5.6 Structural Diagnosability and Isolability 185

Case Residual value

Nominal ẏ(t) + k
√

y(t) − αu(t) = 0

Sensor bias ẏ (t) − α · u(t) + k
√

y(t) − δ = k
(√

y(t) − δ − √
y(t)

)
�= 0.

Hence, although the system is faultless, the residual is non-zero due to the measurement bias
δ. �

Example 5.39 Residual discrepancies caused by uncertain parameters
Consider now the two following cases for the single-tank system

Component Nominal constraint Actual constraint

Pump qi(t) = α · u(t) qi(t) = ᾱ · u(t)
Output pipe q0(t) = k

√
y(t) q0(t) = k̄

√
y(t).

which refer to uncertainties in the pump and output pipe parameters. Then, the residual com-
puted using the nominal model constraints would have the following values:

Case Residual value

Behaviour without uncertainty ẏ(t) + k
√

y(t) − αu(t) = 0
Uncertainty of the pump model ẏ (t) + k

√
y(t) − ᾱu(t) = (α − ᾱ) u(t) �= 0

Uncertainty of the output pipe model ẏ(t) − αu(t) + k̄
√

y(t) = (k̄ − k)
√

y(t) �= 0.

Again, a non-zero residual results not from a fault, but from uncertainties of a parameter. �

Robustness refers to the property that residuals would not fire any false alarm as
the result of unknown inputs acting on the system or as the result of uncertainties
in the values of the system parameters. One means of designing robust residuals is
the exact decoupling approach, in which the designed residuals are insensitive to
unknown input and unknown or uncertain parameters. Therefore, they are satisfied
when no fault is present for any value of the unknown input or uncertain parameters.
Note that the robustness problem is automatically solved in structural analysis, using
the exact decoupling approach presented in Chap. 6, because it exhibits ARRs which
are, by definition, only dependent on known variables. Unknown variables which
affect the structurally monitorable subsystem are eliminated so that no residual can
depend on them. When unknown variables cannot be eliminated, the part of the
system they affect is not monitorable. When uncertain parameters are present, the
solution to the exact decoupling problem is simply to design the fault diagnosis
system considering them as unknown variables (this boils down to use the subset of
residuals in which no uncertain parameter intervenes). The consequence is that the
number of ARRs will in that case be smaller.
Structured residuals. As defined above, the structure of a residual is the set of the
constraints which can be suspected when this residual is not ZERO. Let R be a set

http://dx.doi.org/10.1007/978-3-662-47943-8_6

186 5 Structural Analysis

of residuals, and let Φ(r) ∈ 2C be the structure of residual r ∈ R. This means that
r is expected to be non-zero when at least one of the constraints in Φ(r) is faulty.
Similarly, when some constraint ϕ ∈ C is faulty, then all the residuals whose structure
contains ϕ are expected to be non-zero. The pattern of ZERO and non-zero residuals
associated with a given fault is called its signature.

Faults which have different signatures are isolable from each other, while faults
which share the same signature are non-isolable. Let R = R0(t) ∪ R1(t) be the
decomposition of the set of residuals provided at some given time t by the decision
procedure, where R0(t) is the subset of the ZERO residuals and R1(t) is the subset
of non-zero ones. The subset of suspected constraints (the constraints which might
be unsatisfied) at time t is given by

Csusp(t) = ∩r∈R1(t) Φ(r).

Note that it is possible to define the subset of exonerated constraints (the constraints
which are certainly satisfied) at time t by

Cexo(t) = ∪r∈R0(t) Φ(r),

but one must be aware that this supposes all faults to be detectable. Exoneration is
based on the assumption that if a constraint is not satisfied then it will necessarily
show through the residuals whose structure it belongs to. The diagnosis at time t is

Cdiag(t) = Csusp(t) \Cexo(t).

In order to obtain good isolability properties, it may be of interest to find residuals
with given structure. Suppose that one wishes to have residuals which are insensitive
to the structural faults of a subset of constraints C′ and are sensitive to the structural
faults of the subset of constraints C \C′. A direct approach towards such residuals
is to consider only the system (C \C′, Z) in the design process. However, from the
structural monitorability condition, it is seen that the residuals can be made sensitive
only to the faults in the monitorable subsystem of (C \C′, Z), which may be smaller
than that of (C, Z), because the former contains less constraints.

Example 5.40 Two-tank system
The two-tank system introduced in Sect. 2.1 will first be considered with u as the known

control input and qm as the measured outflow. The following equations lead to the structure
graph in Fig. 5.24.

http://dx.doi.org/10.1007/978-3-662-47943-8_2

5.6 Structural Diagnosability and Isolability 187

c1 : qL = cL
√

h1

c2 : qP = u · f (h1)

c3 : ḣ1 = 1

A
(qP − qL − q12)

d4 : ḣ1 = d

dt
h1

c5 : q12 = k1
√

h1 − h2

c6 : ḣ2 = 1

A
(q12 − q2)

d7 : ḣ2 = d

dt
h2

c8 : q2 = k2
√

h2

cm : qm = q2.

A, k1, k2 are known parameters. cL is the unknown parameter describing the size of the fault.
It can be assumed to be zero for the faultless case. In the structure graph the constraints
c1, c2, c3 and d4 representing the Tank 1 are separated from constraints c6, d7, c8 and m1
describing the Tank 2.

The following matching is found using the ranking algorithm, where the last column shows
the rank of the constraints obtained.

qL qP ḣ1 h1 q12 ḣ2 h2 q2 R
c1 1 1 5
c2 1 1 5
c3 1 1 1 1 6
d4 1 1 5
c5 1 1 1 4
c6 1 1 1 3
d7 1 1 2
c8 1 1 1
m1 1 0

↑

0= −qL +qp −q12 −Aḣ1

))
ḣ1 = d

dt
h1

h1 = h2 +
q12
k1

2

q12 = Aḣ2 +q2

ḣ2 = d
dt
h2

h2 =
q2

k2

2

q2= qm

))

)

qL= cL
√
h1

qP= u · f (h1)

The equations shown on the left are already solved for the matched variable. The corresponding
oriented graph is shown in Fig. 5.30. Simplifying these equations results in the following
redundancy relation,

arr(t) = u(t) · f (h1(t)) − Aḣ2(t) + qm(t) − Aḣ1(t)−cL
√

h1(t) (5.33)

with

h1(t) = h2(t)+
(

Aḣ2(t)

k1
+ qm(t)

k1

)2

(5.34)

h2(t) =
(

qm(t)

k2

)2
. (5.35)

188 5 Structural Analysis

Equations (5.33)–(5.35) can be used to monitor the two-tank system. By using Eq. (5.35),
h2(t) and, hence, ḣ2(t) can be determined for given measurement qm(t). Then Eq. (5.34) yields
h1(t) and ḣ1(t). Finally, Eq. (5.33) is checked for known u(t), qm(t) and for h1(t), ḣ1(t) and
ḣ2(t) just obtained.

After redrawing the structure graph, Fig. 5.31 is obtained. This graph shows in which order
the constraints can be used to determine all internal variables for given measurement qm.
Finally, constraint c3 is used to test the consistency of the variables with the model. The
resulting value is denoted by r(t). This residual should vanish to indicate that the measured
values qm(t) and u(t) at time t are consistent with the set of constraints and, hence, we must
assume that no fault is present. For this example, the residual has the physical meaning of the
loss of liquid through a leakage.

A simulation result is depicted in Fig. 5.32 which shows from top to bottom the signals
u(t), x1(t) and x2(t), the measurement qm(t) and the right-hand side of Eq. (5.33). Note that
the states are reconstructed very nicely. The residual shows the occurrence of the fault very
precisely and without any delay. The little spike at time 155 s is due to the reversal of the flow
direction in the connection pipe, which represents a singular point in the linearised system.

The signal arr(t) is non-causal due to the two differentiations. To construct a residual,
low-pass filtering need be applied to get a causal residual generator. In Laplace transform
notation,

r(s) = 1

(1 + sτ)2 arr(s) (5.36)

here illustrated by a second-order low-pass filter with two real eigenvalues. It is essential that
it is never the signals ḣ1 and ḣ2 from h1 or h2, respectively, which are low-pass filtered, but the

Fig. 5.30 Oriented graph of
the two-tank system

q12m

q2
qm

q12

qP

qL

cm

m1

c3

c6

c5

d4

h1

c

u
2

c1

ZERO

ZERO ḣ2 h2

c8

d7

ḣ1

5.6 Structural Diagnosability and Isolability 189

ḣ2 h1

ḣ1

d4

c1

c2

h2q2

cm

qm

c8 c

u

6 c5d7
q12

qP

qL

c3

ZERO

Fig. 5.31 Graph showing the order in which the unknown variables can be determined for given
qm

entire ARR expression. Otherwise, due to the phase lag introduced by filtering, the residual
given by Eq. (5.33) might no longer be zero for the faultless case.

Structured residuals. Assume now that the flow q12 between the two tanks can be measured
in addition to the input u and the outflow qm, which leads to the additional measurement
constraint

m2 : q12 = q12,mkm.

The system is over-constrained with two remaining constraints that lead to two residuals:

qL qP ḣ1 h1 q12 ḣ2 h2 q2 R
c1 1 1 3
c2 1 1 3
c3 1 1 1 1 4
d4 1 1 3
c5 1 1 1 2
c6 1 1 1 4
d7 1 1 2
c8 1 1 1
m1 1 0
m2 1 0

↑qL = cL
√
h1

qP = u·f (h1)

)

))

)

0 =−qL +qp −q12 −Aḣ1

ḣ1 = d
dt
h1

h1 = h2 +
q12
k1

2

0 = q12 −Aḣ2 −q2

ḣ2 = d
dt
h2

h2 = q2
k2

2

q2 = qm

q12 = q12,m

This matching results in the oriented graph shown in Fig. 5.33. Following the orientation of
the edges, it is easy to see that the first parity relation depends only on the variables

{u, qL, qP, ḣ1, h1, q12, q12,m, h2, q2, qm},

while the second depends on

{q12, q2, h2, ḣ2, q12,m, qm}.

These two conditions can be used to selectively monitor Tank 1 and Tank 2. Only a fault
in the connection flow q12 or its measurement would affect both constraints.

From the graph two ARRs arr1(t) and arr2(t) are obtained:

190 5 Structural Analysis

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

u

Two tank system example: residuum generation

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

x1
/m

,x
2/

m

System state

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5 x 10
−3

qM
/(

l/
m

in
)

System output

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

x1
/m

,x
2/

m

Observed state

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6 x 10−4

Z
E

R
O

Residuum ZERO

Leak

t/s

Fig. 5.32 Simulation results of the two-tank system. From top to bottom input u; tank levels h1, h2;
measured qm; reconstructed levels h1, h2; right-hand side of Eq. (5.33)

5.6 Structural Diagnosability and Isolability 191

arr1(t) = u(t) · f (h1(t)) − q12,m(t) − Aḣ1(t)−cL
√

h1(t)

arr2(t) = q12,m(t) − Aḣ2(t) − qm(t)

km

with

h1(t) = h2(t)+
(

q12,m(t)

k1

)2

h2(t) =
(

qm(t)

kmk2

)2
.

These residuals are structured in the sense that they become non-zero if Tank 1 or Tank 2
is affected by some fault. Hence, the additional measurement makes it possible not only to
detect a fault in the overall system but to identify the affected component.

Structural isolability using the MSO approach. The ranking algorithm obtained one com-
plete matching of the unknown variables. The matching can be represented in condensed form
as follows, where 0 in a column denotes that the constraint is unmatched and used as an ARR.

c1 c2 c3 d4 c5 c6 d7 c8 m1 m2

1 qL qP 0 ḣ1 h1 ḣ2 0 h2 q2 q12

Giving rise to the two ARRs listed above, structural detectability and isolability is shown
in

Fig. 5.33 Oriented graph, in
which the arrows indicate the
order of matching

c1

c2

ZERO

qm

c

c6

cm

3 d4

c8

c3

d 7

qL

qP

q12

q2

h
.

1

h
.

2

u

h1

h2

192 5 Structural Analysis

c1 c2 c3 d4 c5 c6 d7 c8 m 1 m 2

1 d d d n d i n d d d

where d denotes structurally detectable, i structurally isolable and n that the particular con-
straint cannot fail. Differential constraints cannot fail as these are just definitions that relate
a variable ḣ with h through a differential operator. The result is that only one constraint is
structurally isolable. Using the MSO set approach, the following MSO sets are received:

c1 c2 c3 d4 c5 c6 d7 c8 m1 m2

M1 0 ḣ2 h2 q2 q12

M2 qL qP 0 ḣ1 h1 h2 q2 q12

M3 qL qP 0 ḣ1 h1 q2 ḣ2 h2 q12

M4 qL qP 0 ḣ1 h1 q12 ḣ2 h2 q2

The fields either contain the matched unknown variables, zeros to indicate an unmatched
constraints or nothing if constraints are not used in the MSO set. Four MSO sets are determined.

Using all four MSO sets and ARRs, the resulting detectability and isolability properties
are shown in the following table:

c1 c2 c3 d4 c5 c6 d7 c8 m1 m2

M1 n d n d d d

M2 d d d n d n d d d

M3 d d d n d d n d d

M4 d d d n d d n d d

all d d d n d i n i i i

Using all four ARR’s from MSO sets 1–4 results in enhanced isolability, now including both
measurements. �

It is a general finding that use of several ARR’s in parallel can enhance isolability.
Violation of some constraints remain only detectable, and isolating these as possible
sources of a fault requires another approach, referred to as active fault isolation.

5.6.6 Active Fault Isolation

Active structural isolation is an extension of the passive technique considered so
far, where residuals were formed from ARRs by backtracking to known variables,
input u(t) and measurements y(t), and evaluating the residual r(t) in real time. This
approach was seen to lead to cases where some violations of constraints could only
be detected but not isolated. We also encountered cases where violation of one of the
constraints within a group could be pinpointed as the possible source of violation but

5.6 Structural Diagnosability and Isolability 193

isolation could not be achieved, i.e. we could not distinguish which of the constraints
within the group had been violated (groupwise isolability).

Active fault isolation employs a perturbation in one or more of the input signals,
once it has been detected that some fault is present, to attempt to determine which
individual constraints have been violated.

Active isolation is needed if faults are groupwise isolable, i.e. within the group
individual faults are detectable but not structurally isolable to an individual con-
straint. This does not necessarily imply that isolation cannot be achieved in other
ways. Exciting the system with an input signal perturbation may make it possible
to discriminate different responses of the same residual set, or from input to output
in the system, when different constraints within the group are faulty. The following
observation is obvious:

Lemma 5.3 Active structural isolation is possible if and only if both a structural
condition and a quantitative condition are true.

• Structural condition: The known variables in the set of residuals associated with
a group of non-structurally isolable constraints include at least one control input.

• Quantitative condition 1: The transfer from control inputs to residuals is affected
differently by faults on different constraints.

• Quantitative condition 2: The transfer from control inputs to outputs is affected
differently by faults on different constraints.

Active structural isolation is possible if the structural condition and one or both
of the quantitative conditions are met. In order to express the quantitative condition
in rigorous terms, we need the following definitions, which are based on reachability
and monitorability.

Definition 5.10 (Presence in path from input to residual or to output) Let zj denote
residual rj or output yj. Let p(i,j) = {cf , cg, . . . , ch} be a path through the structure
graph from input ui to zj and

∏(i,j) the union of valid paths from ui to zj. Let

C(i,j)
reach =

{
cg |cg ∈

∏(i,j)
}

.

A constraint ch is present in a path from ui to zj, and the path includes the constraint

ch ∈ C(i,j)
reach if ch is reachable from ui and is monitorable from zj.

Lemma 5.4 Active structural isolability is from input to residual or to output.
Two constraints cg and ch are actively isolable from residual, respectively, output
signatures if

∃i, j, k, l : cg ∈ C(i,j)
reach, ch ∈ C(k,l)

reach and
{
cg, ch

}
/∈ C(i,j)

reach ∩ C(k,l)
reach.

This Lemma advises an easily verifiable way to determine whether one or more
constraints, which are only groupwise isolable with the passive approach outlined
earlier, could be subjected to active isolation.

194 5 Structural Analysis

Fig. 5.34 Structure graph
for the active diagnosis
example

x1 x3

c2

c4

c5

c6

u1

u2

y1

c3c1

x2

x4

y2

y3

Active isolation is employed once a fault has been detected but the exact loca-
tion could not be determined because the event only possess groupwise structural
isolability with the set of residuals used.

Algorithmic aspects. A path through a graph can be determined from the adjacency
matrix (cf. Chap. 4)

A : [C, Ki, Km] → [C, Ki, Km]

to show which nodes in a graph are connected. As the graph is bipartite, the adjacency
matrix is easily obtained from the incidence matrix S as

A =
(

O S
ST O

)
.

The adjacency matrix shows the result of a walk of length 1. A walk of length n
will be described by An. Reachability of element i from element j in the graph is
determined by investigating the element (i, j) in the sequence of matrices

A1, A2, A3, . . . , A2cn

where cn is the number of elements in {C, Ki, Km}. With the ith column of A being
an input, and the jth row an output, or the residual associated with the zero variable
belonging to an unmatched constraint, a path of length m exists from i to j if and
only if Am

ij �= 0. The nodes passed on the walk are determined by tracing the non-

zero elements of Am, Am−1, . . . , A1. While this algebraic method is intuitive and is
related to the structure graph S, it is computationally inefficient for large systems and
algorithmic methods exist that can find all paths from a given input to any variable
in a graph.

Example 5.41 Active diagnosis
Let a system be given by the structure graph shown in Fig. 5.34. The set of inputs is Ki =
{u1, u2}, the set of outputs Km = {y1, y2, y3}, unknown variables are X = {x1, x2, x3, x4}.
The associated incidence matrix is shown in the following table:

http://dx.doi.org/10.1007/978-3-662-47943-8_4

5.6 Structural Diagnosability and Isolability 195

u1 u2 y1 y2 y3 x 1 x 2 x 3 x 4

c1 1 0 0 0 0 1 0 0 0

c2 0 1 0 0 0 0 1 0 1

c3 0 0 0 0 0 1 1 1 0

c4 0 0 1 0 0 0 0 1 0

c5 0 0 0 1 0 0 0 1 0

c6 0 0 0 0 1 0 0 0 1

↑

A complete matching on the unknown variables can be achieved using the ranking algo-
rithm, leaving c6 and c3 as unmatched constraints. The path found by the matching is the
following:

c1(u1) → x1; c4(y1) → x3;
c5(x3) → x4; c2(u2, x4) → x2

⇒ c3(x1, x2, x3) = 0

⇔ c3(c1(u1), c2(u2, x4), c4(y1)) = 0

⇔ c3(c1(u1), c2(u2, c5(c4(y1))), c4(y1)) = 0

and

c6(y3, x4) = 0 ⇔ c6(y3, c5(x3)) = 0

⇔ c6(y3, c5(c4(y1))) = 0.

The analytical redundancy relations associated with c3 and c6 constitute two parity relations
for the system considered in the example and two residual generators are

r1 = c3(c1(u1), c2(u2, c5(c4(y1))), c4(y1))

r2 = c6(y3, c5(c4(y1))).

The dependency matrix between residuals and constraints shown in

c1 c2 c3 c4 c5 c6

r1 1 1 1 1 1 0

r2 0 0 0 1 1 1

↑

imply the detectability and the isolability as achievable from the two residuals. Linearly
independent columns show that violation of constraint c6 can be isolated. The sets

{c4, c5} and {c1, c2, c3}

are blockwise isolable but violation of any of the individual constraints will only be detectable.

196 5 Structural Analysis

In a fault-tolerant control setting, inputs u1 and u2 can be individually perturbed by the
control system. The set of paths through constraints from u1 to the outputs are represented in
the reachability table

u1 ↓ c1 c2 c3 c4 c5 c6

y1 1 0 1 1 0 0

y2 1 0 1 0 1 0

y3 0 0 0 0 0 0

The reachability from u2 is shown in

u2 ↓ c1 c2 c3 c4 c5 c6

y1 0 1 1 1 0 0

y2 0 1 0 0 1 0

y3 0 1 0 0 0 1

Following Lemma 5.4, it is easily seen that {c1, c2, c3} are structurally isolable when active
isolation is employed, while c4 remains detectable. �

5.7 Structural Controllability and Structural Observability

Structural controllability and structural observability are two notions that have been
introduced long ago with the aim to show that dynamical systems have the properties
of controllability and of observability mainly for structural reasons. The well-known
rank conditions on the controllability matrix or the observability matrix can only be
satisfied if the non-zero entries of these matrices satisfy structural conditions.

This short section should show that as far as controllability and observability
are concerned, structural results obtained by the analysis methods explained in this
chapter by means of a bipartite graph are rather similar to those results that have been
derived in control theory by a structural representation of linear dynamical systems
by directed graphs.

5.7.1 Observability and Computability

Known and unknown variables. As before, the set of system variables Z is decom-
posed into the sets K of known variables and the set X of unknown variables. Known
variables are available in real time, while unknown variables are not directly mea-
sured. Observability is the system property that allows to determine all unknown
variables from all known variables. Analysing the system observability coincides
with identifying ways in which those unknown variables can be calculated.

5.7 Structural Controllability and Structural Observability 197

Consider the general system described by the Eqs. (5.1)–(5.4)

ẋd(t) = g (xd(t), xa(t), u(t)) (5.37)

0 = m (xd(t), xa(t), u(t)) (5.38)

y(t) = h (xd(t), xa(t), u(t)) (5.39)

ẋd(t) = d

dt
xd(t) (5.40)

with the set of known variables K = {u, y}, the set of unknown variables X =
{xa, xd, ẋd} and the set of constraints C = {g, m, h, d

dt }. According to the
decomposition of Z into K ∪ X , C is decomposed into CK ∪ CX :

CK = {c ∈ C; Q(c) ∩ X = ∅}
CX = {c ∈ C; Q(c) ∩ X �= ∅} .

CK is the largest subset of constraints such that Q(CK) ⊆ K. For the aim to analyse
the possibility of computing the unknowns in X , only the subgraph (CX , X , EX)

needs to be decomposed.

5.7.2 Structural Observability Conditions

For the canonical decomposition

S+ = (C+
X , X +)

S0 = (C0
X , X + ∪ X 0)

S− = (C−
X , X + ∪ X 0 ∪ X −)

of the subgraph (CX , X , EX) associated with the system (5.37)–(5.40), structural
observability can be characterised as follows:

Theorem 5.5 (Structural observability) A necessary and sufficient condition for sys-
tem (5.37)–(5.40) to be structurally observable is that, under derivative causality,

1. all the unknown variables are reachable from the known ones,
2. the over-constrained and the just-constrained subsystems are causal,
3. no under-constrained subsystem exists.

Condition 1 says that there does not exist any subsystem whose behaviour is not
reflected in the behaviour of the known variables, while Conditions 2 and 3 impul
that all the variables can be matched using causal matchings and thus are uniquely
defined once the known variables are given.

Example 5.42 Non-reachability
Consider the following incidence matrix, in which the variable x3 is not reachable from the
output.

198 5 Structural Analysis

x 1 x 2 x 3 ẋ 1 ẋ 2 ẋ 3 u y

c1 1 1 1 1

d1 x 1

c2 1 1 1

d2 x 1

c3 1 1

d3 x 1

m 1 1

↑

The constraint set associated with such a structure graph has the form

ẋ1(t) = g1 (x1(t), x2(t), u(t))
Subsystem 1: ẋ2(t) = g2 (x1(t), x2(t))

y(t) = h (x1(t))
Subsystem 2: ẋ3(t) = g3 (x3(t)).

(5.41)

It is seen that Subsystem 2 can by no means be observable. �

Example 5.43 Observability of a nonlinear system
Consider the following nonlinear dynamical system with two state variables, two input signals,
one parameter θ and one sensor:

c1 : ẋ1(t) = (θ − 1)x2(t) u1(t)

c2 : ẋ2(t) = u2(t)

m : y(t) = x1(t).

This system is over-constrained and satisfies the three conditions of the above theorem. The
following matching allows to compute the state.

ẋ 1 ẋ 2 x 1 x 2 u1 u2 y

c1 1 1 1

c2 1 1

d1 1 x

d2 1 x

m 1 1

↑

The variable x2 can be reached from the known variables if and only if the matching
(c1, x2) can be used, which means that the two conditions

u1 �= 0 and θ �= 1

simultaneously have to hold. If not, the system is not observable, because there is no matching
by means of which x2 could be computed under derivative causality.

5.7 Structural Controllability and Structural Observability 199

This example illustrates the fact that structural properties provide results which are valid
for almost every value of the system parameters and variables. �

5.7.3 Observability and Structural Observability
of Linear Systems

Let us consider the linear time-invariant system

ẋ(t) = Ax(t) (5.42)

y(t) = Cx(t), (5.43)

where x and y are of dimensions n and p. In linear system theory it has been proved
that the state is observable if and only if the following condition holds

rank

⎛

⎜
⎜
⎜
⎝

C
CA
...

CAn−1

⎞

⎟
⎟
⎟
⎠

= n, (5.44)

for which a necessary condition is

rank

(
A
C

)
= n. (5.45)

Equation (5.45) means, in structural terms, that the unknown variable x belongs to
a causal just-constrained or over-constrained subsystem, when derivative causality
is imposed. The structure graph is

ẋ y x

d I x

m I SC

c I SA

↑

where d are the derivative constraints, which express that dots mean derivatives, m
are the constraints (5.43) from the measurement, and c are the system constraints
(5.42). SC and SA are the structures associated with matrices C and A. Since no
variable in x can be matched from any constraint in d, the system ({c, m}, {ẋ, x, y})
must be over-constrained with respect to x. It can be noted that this requirement
does not constitute a sufficient condition, because the system parameters might have
values such that (5.44)—or (5.45)—is not satisfied.

200 5 Structural Analysis

Example 5.44 Observability of linear systems
Consider the unobservable linear time-invariant system

⎛

⎝
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞

⎠ =
⎛

⎝
0 0 c
0 0 d
a b e

⎞

⎠

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠ (5.46)

y(t) = (0 0 f)

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠, (5.47)

where the parameters a, b, c, d, e, f can take any real value. Its structure graph has the
incidence matrix

ẋ 1 ẋ 2 ẋ 3 x 1 x 2 x 3 y

c1 1 1

c2 1 1

c3 1 1 1 1

d1 1 x

d2 1 x

d3 1 x

m 1 1

↑

where the constraints c1, c2, c3 represent the system (5.46), the constraints d1, d2, d3 express
the derivative link between the x1, x2, x3 and the ẋ1, ẋ2, ẋ3 and m is the measurement
Eq. (5.47). This system can be decomposed into a just-constrained part C0

X = {c1, c2, d3, m},
X 0 = {ẋ1, ẋ2, ẋ3, x3} from which ẋ1, ẋ2, ẋ3 and x3 can be computed as functions of y
for almost all values of the parameters, and an under-constrained part C−

X = {c3, d1, d2},
X− = {x1, x2} in which x1 and x2 should both be computed from the single constraint c3. It can
be checked that adding ẏ and the associated constraints, the subsystem ({c3, d1, d2}, {x1, x2})
remains under-constrained and that this will always be the case when higher derivatives y(i)

will be considered. Consequently, the information available from the sensor is enough to
place the vector (x1, x2)T in a subspace of dimension one (since they are linked by one con-
straint which is known to be linear), but is not enough to compute this vector completely. The
observability matrix ⎛

⎝
C

CA
CA2

⎞

⎠ =
⎛

⎝
0 0 f
af bf ef
aef bef (ac + bd + e2)f

⎞

⎠

is not full rank, whatever the coefficients a, b, c, d, e, f are, and it can be checked that no
more than the linear form ax1 + bx2 can be determined from the observation (y, ẏ, . . . , y(s))

for any s ≥ 1.
Consider now the case that the second state variable is measured:

5.7 Structural Controllability and Structural Observability 201

⎛

⎝
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞

⎠ =
⎛

⎝
0 0 c
0 0 d
a b e

⎞

⎠

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠ (5.48)

y(t) = (0 f 0)

⎛

⎝
x1(t)
x2(t)
x3(t)

⎞

⎠. (5.49)

Then the system is observable. The structure graph has the incidence matrix

ẋ1 ẋ2 ẋ3 x1 x2 x3 y

c1 1 1

c2 1 1

c3 1 1 1 1

d1 1 x

d2 1 x

d3 1 x

m 1 1
↑

and the following causal matching shows that all the components of the state can be computed
from y and its derivatives.

ẋ1 ẋ2 ẋ3 x1 x2 x3 y

c1 1 1

c2 1 1

c3 1 1 1 1

d1 1 x

d2 1 x

d3 1 x

m 1 1

↑

5.7.4 Graph-Based Interpretation and Formal Computation

Since an oriented graph can be associated with each matching, the observability
property can be analysed from a graph-theoretical point of view. Let x be an observ-
able variable. Then x can be matched with a constraint the input of which is either
known or a set of observable variables. By repeating this argument, it follows that
for x to be observable, it is necessary that there exists at least one subgraph (a set
of alternated chains) which links this variable with the known variables u and y and
where no unobservable variable acts as an input in any constraint of this subgraph.

202 5 Structural Analysis

This subgraph with the observable target variable x may contain algebraic loops, but
it does not contain any differential loop.

The constraints along the alternated chains show the computations which are to
be performed in order to compute x. If these constraints are combined, a formal
expression of x in terms of known variables can be obtained. A simple algebraic
constraint in the chain means that the matched variable is computed as a function
of the non-matched ones. An algebraic loop shows that a set of constraints has
to be solved simultaneously. A derivative constraint means that the non-matched
variable has to be derivated in order to obtain the matched variable (remember that
only derivative causality is allowed). The number of derivative constraints which are
included between a given input and the target variable shows the maximum order of
derivations needed on this input for computing this target.

Note that this interpretation expresses that x belongs to a just- or an over-
constrained causal subsystem. If x were to belong to an under-constrained subsystem,
the corresponding subgraph would have less constraints than variables, i.e. some
unknown variables would be input signals to constraints while being output of no
other constraint.

For example, Fig. 5.35 shows the two graphs associated with the linear systems
(5.46), (5.47) and (5.48), (5.49) which are non-observable or observable, respectively.
It can be seen that in the first case, either x2 or x1 stands as an unknown input of
constraint c3 while in the second case, both can be matched thus providing all the
states with known predecessors at some level.

When different estimation subgraphs with the same target variable exist, they
provide different computation schemes for the same variable. This feature is of
interest when monitorability and reconfigurability are considered as discussed in the
next section.

5.7.5 Structural Controllability

Controllability is a property which describes the links between the unknown variables
and the input variables, independently of the fact that some unknown variables might
be measured or not. Thus, it can be analysed from the structure graph in which the
measurement constraints have been removed. Roughly speaking, controllability is
concerned with the possibility of finding controls so as to achieve objectives, which
are defined in terms of the values one wishes the system variables to be given.

The reachable set of a system is the set of states in which the system can be
brought by an appropriate control input. Global controllability is a strong property,
which states that the reachable set is the whole state space. Local controllability is a
weaker property, which requires that any point in the open ball around a reachable
point is also reachable. For linear systems, local and global properties coincide.

Let us first consider static systems (C, Z) like

0 = h (xa, u), (5.50)

5.7 Structural Controllability and Structural Observability 203

x3

dx2/dt x2

x1dx3/dt

dx1/dt

c2

c1

c3d3m

x2

x1

x3dx2/dt

dx1/dt

dx3/dt

d3c2m

c3

d2

c1

y

y

Fig. 5.35 Graph-based interpretation of the observability property

where C = {h}, Z = {xa, u}. For such systems, global controllability means that
Eq. (5.50) can be solved for the unknown variables u for any value of the known
(wished) variables xa, thus justifying the decomposition of Z into Z = K ∪X , with
K = {xa}, X = {u}.
Theorem 5.6 (Controllability of static systems) Necessary and sufficient conditions
for system (5.50) to be structurally controllable are the following:

(i) The vertices of K are reachable in the structure graph from the input,
(ii) The canonical decomposition of (CX , X , EX) contains no over-constrained

subsystem.

If K were not reachable from the input, there would be a decomposition of xa
into x′

a (the reachable part), and x′′
a (the unreachable part), such that the model can

be written as

0 = h′(x′
a, u)

0 = h′′(x′′
a).

There is no solution to this model for any xa, namely when xa is such that the
part x′′

a does not satisfy the second equation. On the other hand, if the canonical

204 5 Structural Analysis

decomposition contains an over-constrained subsystem, the known variables satisfy
some compatibility condition, which results in the existence of some manifold

α(xa) = 0

and in the impossibility to find any control u when the wished system states lie out
of this manifold.

The case of dynamical systems is more complex, and except for linear systems,
only the reachability condition of the above result can be extended. Consider the
general system

ẋd(t) = g (xd(t), xa(t), u(t), t) (5.51)

0 = m (xd(t), xa(t), u(t), t) (5.52)

ẋd(t) = d

dt
xd(t), (5.53)

where the known variables are K = {xa, ẋd}, the unknown variables are X = {xd, u}
and the constraints are C = {g, m, d

dt }. As the initial conditions xd(0) are known,
derivative as well as integral causality can be used.

Theorem 5.7 (Reachability condition) A necessary condition for system (5.51)–
(5.53) to be structurally controllable is that the vertices of K can be reached in the
structure graph from the input u.

This condition says that there does not exist any subsystem whose dynamical
behaviour is independent of the input. The “no over-constrained subsystem” con-
dition cannot be extended to the general case, but it holds for linear systems. For
simplicity, let us drop algebraic equations, and consider the system (5.54), (5.55)
with the known variables K = {ẋd}, the unknown variables X = {xd, u}, and the
constraints C = {g, d

dt }.

ẋd(t) = g (xd(t), u(t), t) (5.54)

ẋd(t) = d

dt
xd(t). (5.55)

Theorem 5.8 (Linear continuous systems) If the constraints g are linear, necessary
and sufficient conditions for system (5.54), (5.55) to be structurally controllable are
the following:

(i) The vertices of K are reachable in the structure graph from the input,
(ii) the canonical decomposition of (CX , X , EX) contains no over-constrained sub-

system.

The existence of an over-constrained subsystem would imply that the known
variables (here ẋd) satisfy some compatibility conditions. For linear systems, these
would be expressed as

5.7 Structural Controllability and Structural Observability 205

αTẋd(t) = 0, (5.56)

where α is some constant vector, from which it follows that any system trajectory
would belong to the manifold

αTxd(t) − αTxd(t0) = 0.

Consequently, it is not possible to drive the system state to any point in the state
space.

Condition (ii) does not extend to nonlinear systems, because in order to define a
manifold the compatibility constraints (5.56) which would now be nonlinear should
also be integrable. This property does not follow from structural considerations.

5.8 Structural Analysis in Summary

Structural analysis is an important tool, which is of interest in the early stage of the
control and supervision system design. It can be employed even before detailed mod-
els are available, the structural analysis only needs that the principal behaviours of a
system are specified in order to perform a useful and quite comprehensive analysis.
Diagnosability and isolability of a behavioural fault (violation of a constraint) in a
system can be made based on such sparse information. Analytical redundancy rela-
tions for use in diagnosis can be generated either from a complete matching and
subsequent backtracking through the matching to known variables, or by using the
minimal structurally over-determined (MSO) sets approach followed by a similar
backtracking.

Disturbances or unknown parameters are handled in a structural analysis by defin-
ing such unknown quantities as additional unknown variables. When performing a
matching, one additional constraint will be needed in the just-determined subsys-
tem to calculate each additional unknown input. This means the available ARRs
will reduced in number but will be insensitive to these unknown quantities. It is a
salient feature of structural analysis that it generates ARRs equally well for linear
and nonlinear systems.

The fault diagnosis and fault-tolerant control results it provides are the identifica-
tion of the diagnosable part of the system, and the identification of the reconfiguration
possibilities of the estimation the control scheme. Since detailed behaviour models
need only to be developed for those parts of the system, structural analysis is also
a tool for deciding which modelling investments must be done for the design of the
control and supervision system.

The structural properties hold for the class S(G) defined by the structure graph G
and, hence, for “almost all” single systems included in this class. Only in exceptional
cases, the system under consideration does not have a property that the structural
analysis has found for the corresponding class. This relation has been demonstrated
in this chapter by several examples.

206 5 Structural Analysis

Observability analysis is the main step to identify the diagnosable part, which is
the over-constrained subsystem within the observable one. Furthermore, structural
analysis not only provides the computation mechanisms for the estimation algo-
rithms and their reconfiguration, but it can also suggest which sensors should be
implemented so as to change the status of system components from undiagnosable
to diagnosable.

Structural analysis cannot help in defining fault accommodation strategies, because
these strategies are aimed at investigating the means of achieving the system objec-
tives, in spite of faults, without changing its structure. On the contrary, structural
analysis is of prime importance as far as reconfiguration is concerned, because
the results are expressed with reference to graph properties, whose changes can
be analysed when vertices and edges disappear, as the consequence of switching off
some system components, after a fault has occurred.

In summary, the following algorithm describes the design procedure for diagnosis
based on structural analysis.

Algorithm 5.6 Structural analysis aiming at diagnosis

Given: A set C of constraints
The sets X and K of unknown and known variables
The sets U and Y of inputs and outputs with U ∪ Y ⊆ K

1. Determine the structure graph G
2. Find a complete matching on the unknown variables to get a

proper over-determined set of constraints
3. Mark unmatched constraints cu

j for use as analytical redundancy
relations

3.a Alternatively, use MSO sets to find cu
j

4. Express cu
j as a function of known variables using backtracking

through the matching
5. Express residuals as ri = cu

j
6. Determine the dependency mapping r = Mcu for the set of

residuals and unmatched constraints
7. Test structural detectability and observability from the columns

of M
8. If isolability conditions are not satisfied, investigate whether the

active isolability approach can enhance isolation of faults
9. Insert the analytical expressions of constraints in the result of

Step 5 to get residuals in analytical form
Results: List of the existing analytic redundancy relations based on order

in which constraints are used (symbolic form)
List of detectable faults
List of isolable faults
List of residuals in analytical form obtained through backtrack-
ing

5.8 Structural Analysis in Summary 207

power
drive

icom nm

n

1
Itot

kqη

im

1
N

i

θ

θm

∫∫

Fig. 5.36 Position actuator open loop

5.9 Exercises

Exercise 5.1 Structural analysis for industrial actuator
Make a structural model of the actuator shown in Fig. 5.36.

1. Determine the sets K (known variables), X (unknown variables) and Z (all
variables).

2. List the set of constraints that describe the system shown in Fig. 5.36.
3. Derive the incidence matrix and draw the structure graph.
4. Ignore causality and determine a complete matching on X that is non-causal.
5. Use the ranking algorithm to determine a complete causal matching on X . List the

unmatched constraints.
6. Determine the parity relations found from the unmatched constraints by backtracking the

structure graph to known variables along the paths of the matching,

ci(Ki) = 0 ∧ Ki ⊆ K.

7. Express the parity relations in analytical form using the constraints from
question 2. �

kqη

k t

power
drive

icom

nm

n

1
Itot

im

1
N

Q l

+

n ref

_
+

n

i
θ

θm

θ∫ ∫

Fig. 5.37 Block diagram of DC motor with load torque and closed speed loop

208 5 Structural Analysis

k2

k1

+
1x 2x

y3y2y1y5

u2

d

u1

y4

1
I ∫ ∫

Fig. 5.38 Block diagram of single-axis satellite with input from two redundant actuators, redun-
dant measurements of attitude (angle), measurement of angular rate and measurement of delivered
actuator torques

Exercise 5.2 Structural analysis with unknown input
Consider the speed control loop of Fig. 5.37, where nref is the reference speed.

1. Using the known variables
K = {im, nm, θm, nref }

and the unknown variables
X = {

i, Ql, n, ṅ, θ, θ̇
}
,

determine the set of constraints that describe the system.
2. Build the structure graph for the system. Describe the graph as an incidence matrix and

draw the graph.

3. Apply the ranking algorithm on the graph to determine at least one causal matching. List
which constraints remain unmatched.

4. For each unmatched constraint, determine a parity relation ci(Ki) = 0, Ki ⊆ K. �

Exercise 5.3 Parity relations for single-axis satellite
This exercise considers structural analysis for a single-axis satellite described by the block
diagram in Fig. 5.38. The figure illustrates a single axis of a satellite.

There are two input signals u1 and u2 to actuators 1 and 2, respectively, one unknown input
d, and five measurements: y1 measures the state x1, y2 and y3 measure x2; y4 and y5 measure
torque from actuators 1 and 2, respectively.

1. Determine the sets of known variables, K, and unknown variables X . Verify that the
intersection Z = K ∪ X gives the total set of variables.

2. Determine the set of constraints that describe the system.

3. Determine the causal structure graph for the system. Represent the graph as an incidence
matrix and as a drawing.

5.9 Exercises 209

4. Use the ranking algorithm on the graph to find one or more complete matchings. List
which constraints remain unmatched.

5. From the unmatched constraints, determine the parity relations in analytic form:

ci(Ki) = 0, Ki ⊆ K.

You may wish to use the MATLAB programme SaTool to cope with the complexity of matching
or for checking your results. A GNU open source license of SaTool is available from the book
homepage. �

Exercise 5.4 Parity relations and addition of a sensor
Let a system be composed of 3 interconnected components, c1, c2, c3. Each component is
described by one constraint according to the system

c1 : ẋ1(t) − x1(t) = 0

c2 : ẋ1(t) − 2ẋ2(t) = 0

c3 : y(t) + 3x1(t) − x2(t) = 0.

The variables x1, x2 which characterise the operation of components c1, c2 are not mea-
sured, only the output y of component c3 is known.

1. Draw the structure graph of the system.

2. Find a redundancy relation which allows to detect a fault in one of the components.

3. Would it be worth to add a fourth component, that would measure x1 according to

c4 : z(t) = x1(t)

z is now an extra known variable, but of course component n◦4 may also be faulty. �

Exercise 5.5 A specialised arithmetic circuit
The following specialised computation circuit is composed of 3 multipliers M1, M2 and M3
and two adders A1 and A2 (Fig. 5.39).

A1

A2

M3

M2

M1
a

b

c

d

e

x

z

y
f

g

Fig. 5.39 Specialised computation circuit

210 5 Structural Analysis

Fig. 5.40 Schematic
representation of an
ABS test bed

m2
r2

J2,

m1,J1

r1

Fx

M B

Fz

Fx

Fz

ω1

ω2

1. Write the model of each system component.

2. Give the incidence matrix of the structure graph (distinguish the known and the unknown
variables).

3. Find the analytical redundancy relations by eliminating the unknown variables.

4. For each ARR, give the list of the components the faults of which it is sensitive to.

5. Is there any non-detectable or non-isolable fault?

6. What are the possible diagnostics associated with the following measurements?.

a b c d e f g

2 2 3 3 2 10 12

Exercise 5.6 Diagnosability analysis of an ABS test bed
An ABS (anti-lock braking system) test bed is schematically drawn in Fig. 5.40. In a simplified
version, the test bed has two wheels, where the lower wheel is powered by a motor, whereas
the upper wheel has a brake with the braking torque MB. The wheel angular velocities are
denoted by ω1 and ω2, the forces between the wheels by Fz, the lateral force by Fx and the
masses and inertias by m1, m2, J1 and J2. The wheel vertical force Fz is determined by the
geometry of the test bed including the air pressure in the tyres (which may be too low by fault).

The model of the test bed is given below:

c1 : J1ω̇1(t) = −MB(t) + ML(t)

c2 : ML(t) = Fx(t)r1

c3 : Fx(t) = μ(t)Fz

c4 : μ(t) = f (λ(t)) (Slip diagram)

c5 : λ(t) = 1 − ω2(t)r2

ω1(t)r1
c6 : J2ω̇2(t) = −ML(t)

c7 : ω̇1(t) = dω1(t)

dt

c8 : ω̇2(t) = dω2(t)

dt
.

5.9 Exercises 211

Measurable signals are MB(t), ω1(t), ω2(t) whereas the signals ω̇1(t), ω̇2(t) may be measured
if this is necessary for fault diagnosis.

1. Draw the structure graph.
2. Analyse the test bed and determine analytical redundancy relations for fault

diagnosis.
3. Which signals have to be measured to make the test bed detectable or isolable? �

5.10 Bibliographical Notes

Offering a way to advise how to solve large sets of equations, structural concepts and
bipartite graphs were introduced and seminal theoretical results for bipartite graphs
were obtained in [17, 86, 87]. The structural approach was first brought into the field
of fault in [76].

Decomposition of large systems. Structural concepts have been used since the 1960
and 1970s for the decomposition of large systems of equations in view of their
hierarchical resolution [142, 341]. An important issue in that field is also the solv-
ability of large scale differential and algebraic equation systems, for which [193,
371] addressed and employed structural analysis.

Algorithms. Algorithms to compute maximum matchings were studied along with
the penetration of electronic computers into engineering research motivated by
important applications in operational analysis and in chemical engineering. An algo-
rithm of complexity O(N 3) to find maximum matchings was proposed in [89], while
[150] found an algorithm of complexity O(N 2.5) for bipartite graphs. Maximum
matchings can also be found from the solutions to the assignment problem [189], or
from the maximum flow problem [110, 111]. For details on the algorithms and more
bibliographical notes, refer to [17, 62, 131, 206]. Theorem 5.2 was proved in [17].

Looking into maximal isolability and minimum computational complexity, it
turned out that finding all possible analytical redundancy relations through find-
ing all possible complete matchings was impractical if not impossible for industrial
size systems. Inspired by experience from automotive diagnosis, references [184,
187] proposed to find MSO sets as a more direct way to determined all possible
ARRs for a given system and an alternative decomposition of the structure graph and
an extremely efficient algorithm (cf. Algorithm 5.4).

Observability, controlability. The technique has also been used for analysis of
system structural properties like observability and controllability, where most works
use a digraph representation and address linear systems [130, 195, 196, 232]. They
have also been extended to the design of multivariable control systems, including
considerations like disturbance rejection [286, 301].

Fault diagnosis. In the field of fault diagnosis, structural concepts have been used
since the beginning of the 1990s, for the analysis of system monitorability [76] and

212 5 Structural Analysis

for the design of structured residuals [126], which provide straightforward decision
procedures for fault isolation [69]. An overview can be found in [325].

Realisability and optimization. Issues with realisation of residual generators in
large systems caused the development of selection procedures [19], continued by
implementations with mixed causality in [337, 352] considered further into issues
of causal computations. Furthermore, [354] suggested algorithms for realizability
constrained selection of residual generators.

Applications. Significant applications in marine systems were described in [23, 28,
159]. A significant effort related to diagnosis in car engines and for other automotive
applications were reported in [350, 352]. Application to large 3-phase systems was
discussed in [180]. Diagnosis to determine downhole drilling incidents in [387] and
combined diagnosis, active fault isolation and fault-tolerant control was demonstrated
for thruster assisted position mooring for offshore production vessels in [238].

Finally, structural concepts have been applied to the problem of sensor selection
[57, 230], for component-oriented analysis [370] and for service diagnosis [372,
373].

Relations to AI. The Artificial Intelligence approach to causality in device behaviour
[158], which is used in the theory of model-based diagnosis, is also very close to the
concept of matching in bipartite graphs. Since the obtained models are mainly under
a graphic form, the theory of bond graphs has brought about many specific tools for
structural analysis.

Multiple faults and active isolation. Structural analysis was also found useful to
cope with the complexity of analysis in cases of multiple faults [23]. An extension
of the structural analysis to advise on possibilities of active isolation was suggested
in [33] with an application reported in [238].

Algorithms and software tools. The SaTool software environment (GNU public
license) that has been used for several examples in this book was introduced in [31].
A large framework for diagnosis design in the automotive industry was presented
in [107]. Efficient algorithms for finding structurally minimal over-determined sets
were suggested in [187], and [6] compared different algorithms.

Part II
Continuous-Variable Systems

Chapter 6
Fault Diagnosis of Deterministic Systems

Abstract This chapter provides solutions to the fault detection, isolation and esti-
mation problems for systems described by deterministic continuous-variable models.
The chapter considers faults that can be modelled as additive signals acting on the
process. The methods presented lead to a diagnostic system which is separated in
two parts: a residual generation module and a residual evaluation module.

6.1 Introduction

Continuous-variable models (or analytical models) consist of sets of differential or
difference equations. They can be deduced by application of the laws of physics,
chemistry, etc. to the supervised and/or controlled process. The external variables
entering these equations are called inputs. One distinguishes control inputs, which
are known and can be manipulated, from disturbances which cannot be manipulated.
Disturbances that are not measured are called unknown inputs. Besides, imperfec-
tions in the model and measurement noise may be represented by stochastic processes
(or sequences) appearing as additional inputs. When such random input is used, one
speaks about stochastic models, as opposed to deterministic models. This chapter
and the next one will show the design of fault detection, isolation and/or estimation
systems for processes described by deterministic continuous-variable models with
unknown input. Such systems are made of two parts as already indicated in Chap. 1:
a residual generation module and a residual evaluation module (or decision system)
(Fig. 6.1).

The residuals are signals that, in the absence of faults, deviate from zero only due
to modelling uncertainties, with nominal value being zero, or close to zero under
actual working conditions. If a fault should occur, the residuals deviate from zero
with a magnitude such that the new condition can be distinguished from the fault free
working mode. The role of the decision system is to determine whether the residuals
differ significantly from zero and, from the pattern of zero and non-zero residuals, to
decide which is the most likely fault being present, if any, and in turn, isolate which
component(s) could be the origin of a fault. When the diagnostic system is used in a

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_6

215

http://dx.doi.org/10.1007/978-3-662-47943-8_1

216 6 Fault Diagnosis of Deterministic Systems

Fig. 6.1 Structure of a fault
diagnosis system

Residual

generator

Decision

system

Measured

plant input

Measured

plant output

Residual signals

Hypothesis about

faulty components

fault-tolerant controller, as described in Chaps. 1 and 8, details in the diagnostic task
will depend on the type of faulty device and on the way the faulty condition could
be treated.

Sensor faults can often be handled through estimating the faulty output signal
using an estimator based on other available measurements less the one isolated as
faulty. Observability of the reduced system is naturally required in this case. For this
type of sensor fault, the diagnostic system needs only to perform fault detection and
isolation to determine which measured signals should be disregarded. For an actuator
fault which does not cause a complete loss of command, a remedial action could be
to modify the control signal to the set of actuators by an increment computed in such
a way that the fault is compensated. In this case, an estimate of the fault signal is
needed.

The fundamental notion on which residual generation for continuous-variable
systems rests is analytical redundancy. Analytical redundancy relations are equations
that are deduced from an analytical model, which solely use measured variables as
input. Analytical redundancy relations must be consistent in the absence of a fault,
and can thus be used for residual generation. A simple example is given to introduce
this notion, before considering more formal developments in subsequent sections.

Example 6.1 Residuals for the ship autopilot
Consider, the following part of the ship autopilot example (see Sect. 2.2). The turn rate ω3 and
the heading angle ψ are related through

ψ̇ (t) = ω3 (t). (6.1)

http://dx.doi.org/10.1007/978-3-662-47943-8_1
http://dx.doi.org/10.1007/978-3-662-47943-8_8
http://dx.doi.org/10.1007/978-3-662-47943-8_2

6.1 Introduction 217

Let us neglect the effect of waves and assume that the measurements can only be affected by
a bias. Hence, sensor faults are represented by additive signals and the measurement equations
can be written:

ψm (t) = ψ (t) + fψ (t) (6.2)

ω3m (t) = ω3 (t) + fω (t) (6.3)

where the index m denotes measured quantities, and fψ (t), fω (t) are the potential biases.
Since most supervision systems are implemented as a software, only sampled data are available.
They are linked through the following discrete model deduced from (6.1):

ψ (k + 1) = ψ (k) + ω3 (k)Ts , (6.4)

where Ts stands for sampling period. By considering the equation error, r , resulting from
(6.4) when the variables are substituted by their measured value, the following expression is
obtained:

r(k) = ψm (k) − ψm (k − 1) − ω3m (k − 1)Ts . (6.5)

This quantity has the properties expected for a residual. Indeed, introducing
(6.2), (6.3) into (6.5) yields

r(k) = fψ (k) − fψ (k − 1) − fω (k − 1)Ts .

This shows that, in the absence of a fault (namely when fψ (k) = fψ (k−1) = fω (k−1) = 0),
r(k) is zero. Upon occurrence of a bias in the measurement of ω3 say at time k0, r(k) takes a
constant non-zero value for all k ≥ k0. Finally, the appearance of a bias on the measurement of
ψ at time instant k0 shows up as a spike at time k0, but has no permanent effect on r . Both faults
thus affect r and this signal is zero in the absence of fault. Hence it can be named a residual
signal. For decision making, it suffices to compare the residual to a specified threshold. The
latter should be chosen in such a way that biases that appear to be significant for the considered
application are detected.

When measurement noise is significant, comparison to a simple threshold might not be
practicable, because the change in the mean of the residual due to the fault can be hidden by
the effect of the noise on the residual. This noise needs to be taken into account as described
in the following two discretised “noisy” versions of (6.2), (6.3):

ψm (k) = ψ (k) + fψ (k) + vψ (k) (6.6)

ω3m (k) = ω3 (k) + fω (k) + vω (k), (6.7)

where vψ (i), vω (i), i = 1, 2, . . . are mutually uncorrelated white noise sequences with vari-

ance E(v2
ψ(k)) = Qψ and E(v2

ω(k)) = Qω3 respectively.
Substituting (6.6) and (6.7) into (6.5) yields:

r(k) = fψ (k) − fψ (k − 1) − fω (k − 1)Ts + vψ (k) − vψ (k − 1) − vω (k − 1)Ts .

(r(1), . . . , r(k)) is now a random sequence which must be evaluated by suitable algorithms.
Only its mean value is equal to zero in the absence of fault. �

218 6 Fault Diagnosis of Deterministic Systems

The difference of treatment between deterministic and stochastic models is
reflected in the organisation of the chapter: Sects. 6.2–6.4 deal with the first class
of models and Sects. 6.5 and 6.6 with the second one. Analytical redundancy
relations (ARR) based on a deterministic model were already addressed in the pre-
vious chapter where structural models were used for their determination. The link
with this chapter is the object of Sect. 6.2 were the principle of the determination
of ARR from a deterministic nonlinear state-space model is presented. The partic-
ular case of a deterministic linear state-space model is considered in Sect. 6.3, and
a complete algorithm is provided to design a specific type of analytical redundancy
relations. A more general presentation of parity relations for fault detection, isolation
and estimation is then presented in Sect. 6.4 from a linear input-output model of the
process.

The methods of Sects. 6.2 and 6.3 assure perfect insensitivity (or decoupling) of
the residuals from an unknown input. When this is not possible, e.g. due to model
uncertainty, or small amounts of noise on sensors or on the process, approximate
disturbance decoupling of the residual with respect to the unknown input can be
obtained by an optimisation approach. This is the subject of Sect. 6.5. Finally, Sect. 6.6
treats residual evaluation for the deterministic case.

6.2 Analytical Redundancy in Nonlinear Deterministic
Systems

6.2.1 Logical Background

Analytical redundancy can be seen as a tool for obtaining conditions, based on
available measurements, that are necessarily fulfilled when the supervised system
works in a specific operating mode. In order to illustrate the principle of analytical
redundancy, consider deterministic systems described in normal operation by state
and measurement equations

ẋ(t) = g(x(t), u(t), d(t), θ, t) (6.8)

y(t) = h(x(t), u(t), d(t), θ, t), (6.9)

where x ∈ |Rn is the state vector, which is not available, u ∈ |Rm is the control
input vector, d ∈ |Rnd is an uncontrolled deterministic vector (disturbance). θ is a
parameter vector which is considered to be known, and y ∈ |Rp is the measurement
vector. Let H0 be the situation corresponding to normal operation, and H1 = ¬H0
some faulty situation. The following logical statements are true

H0 ⇐⇒ [ẋ(t) = g(x(t), u(t), d(t), θ, t)] ∧ [
y(t) = h(x(t), u(t), d(t), θ, t)

]
H1 ⇐⇒ [ẋ(t) �= g(x(t), u(t), d(t), θ(t))] ∨ [

y(t) �= h(x(t), u(t), d(t), θ(t))
]
.

6.2 Analytical Redundancy in Nonlinear Deterministic Systems 219

The violation of equality constraints that results from faults may be described in
two ways:

• In the first option, faults are assumed to result from parametric variations, which
is represented as

θ f (t) �= θ ⇐⇒ θ f (t) = θ + f (t), f (t) �= 0,

where θ f (t) stands for the parameter vector associated with the faulty system.
• In the second option, no hypothesis is made about the origin of the discrepancy,

which is just represented as an additive vector

[ẋ(t) �= g(x(t), u(t), d(t), θ(t))] ∨ [
y(t) �= h(x(t), u(t), d(t), θ(t))

]
⇐⇒
∃ (

f x, f y

) �= (0, 0) :[
ẋ(t) = g(x(t), u(t), d(t), θ(t)) + f x(t)

]
∨ [

y(t) = h(x(t), u(t), d(t), θ(t)) + f y(t)
]
.

In both cases, the normal and the faulty system are represented using some “fault
vector” f (t) where normal operation is associated with f (t) = 0. Most often, the
preliminary analysis of the system has identified a set of faults that are likely to occur,
and that the FDI system to be designed should detect, isolate and estimate. When
such knowledge is available, it results in the logical statement

i ∈ I : Hi ⇐⇒ f (t) = f i (ηi , t) �= 0,

where Hi denotes the i th fault situation, I = {
1, 2, . . . , n f

}
where n f is the number

of possible fault modes, and the knowledge available about each fault is modelled
by the possible time evolution of the vector f which depends on some unknown
parameters ηi (fault estimation therefore directly refers to the estimation of these
parameters).

6.2.2 Analytical Redundancy Relations with No Unknown
Inputs

Introducing the fault vector f (t) in the state and measurement equations, and setting
d(t) = 0, for all t one gets 1

ẋ(t) = g(x(t), u(t), f (t)), y(t) = h(x(t), u(t), f (t)), (6.10)

where, since θ is known, the dependency of the state and measurement equations on
the parameter is no longer made explicit, and time-invariant systems are considered

1The same symbols g and h as in (6.8), (6.9) are used by an abuse of notation.

220 6 Fault Diagnosis of Deterministic Systems

in order to shorten the notations. It turns out that from (6.10), it is possible to construct
residuals, i.e. quantities which can be computed in real time from the available data,
and whose behaviour is different under the different situations H0 and H1. Such
residuals are obtained from a two step construction:

Step 1: Derivation of the outputs. Assuming that all functions are differentiable
with respect to their arguments, it is possible to construct the derivative ẏ(t) of the
output signal y(t):

ẏ(t) = ∂h
∂x

(·)ẋ(t) + ∂h
∂u

(·)u̇(t) + ∂h
∂ f

(·) ḟ (t)

Replacing ẋ(t) by its value, one gets

ẏ(t) = ∂h
∂x

(·)g(x(t), u(t), f (t)) + ∂h
∂u

(·)u̇(t) + ∂h
∂ f

(·) ḟ (t)

:= h1(x(t), ū(1)(t), f̄
(1)

(t)),

where ū(1)(t) is a short notation for
(
uT(t), u̇T(t)

)T
. Iterating this process until

some order of derivation q (to be determined later), and assuming the existence of
all required derivatives, one obtains

ȳ(q)(t) = Hq
(

x(t), ū(q)(t), f̄
(q)

(t)
)

(6.11)

which is a set of (q + 1) p equations—or constraints—(the dimension of ȳ(q)(t)),
where the different variables have the following dimensions: x ∈ IRn, ū(q)(t) ∈
IR(q+1)×m, f̄

(q)
(t) ∈ IR(q+1)×n f . The known variables are ȳ(q) and ū(q) while the

unknown variables are x. f̄
(q)

(t) has a particular status, since it is known (equal to
zero) when H0 is true, while it is unknown when H1 is true.

Example 6.2 Redundancy in a nonlinear system
Applying the above procedure with s = 2 to the system

(
ẋ1(t)
ẋ2(t)

)
=

(−x1(t) + x2
2 (t) + u(t) + f1(t)

−2x2(t) + f2(t)

)

y(t) = x1(t) + f3(t)

gives

ẏ(t) = −x1(t) + x2
2 (t) + u(t) + f1(t) + ḟ3(t)

ÿ(t) = x1(t) − 5x2
2 (t) − u(t) − f1(t) + 2x2(t) f2(t) + u̇(t) + ḟ1(t) + f̈3(t).

(6.11) is thus a system of three equations

6.2 Analytical Redundancy in Nonlinear Deterministic Systems 221

ȳ(2)(t) =
⎛
⎝ y(t)

ẏ(t)
ÿ(t)

⎞
⎠ (6.12)

=
⎛
⎝ x1(t) + f3(t)

−x1(t) + x2
2 (t) + u(t) + f1(t) + ḟ3(t)

x1(t) − 5x2
2 (t) − u(t) − f1(t) + 2x2(t) f2(t) + u̇(t) + ḟ1(t) + f̈3(t)

⎞
⎠ . �

Step 2: Elimination of the state. Assume that (q + 1) p > n and the Jacobian
∂Hq (·)

∂x is of rank n. Note that the first condition gives a lower bound on the order
of derivation that is necessary in establishing (6.11). It follows that (6.11) can be
decomposed into

(
ȳ(q)

m (t)

ȳ(q)
nm(t)

)
−

⎛
⎝ Hq

m

(
x(t), ū(q)(t), f̄

(q)
(t)

)
Hq

nm

(
x(t), ū(q)(t), f̄

(q)
(t)

)
⎞
⎠ = 0 (6.13)

where the first subsystem is of dimension n and allows to compute x(t) (at least
locally) as a function of the other variables

x(t) = φ(ȳ(q)
m (t), ū(q)(t), f̄

(q)
(t))

(this results from the implicit function theorem). Replacing x(t) by its value in the
second subsystem, which is of dimension (q + 1) p − n, one obtains a system that
is equivalent to (6.11)

x(t) = φ(ȳ(q)
m (t), ū(q)(t), f̄

(q)
(t)) (6.14)

0 = r(ȳ(q)(t), ū(q)(t), f̄
(q)

(t)), (6.15)

where

r(ȳ(q)(t), ū(q)(t), f̄
(q)

(t))

= ȳ(q)
nm(t) − Hq

nm(φ(ȳq
m(t)), ū(q)(t), f̄

(q)
(t)), ū(q)(t), f̄

(q)
(t)).

The set of constraints (6.15) is seen to contain only inputs, outputs and fault signals
(along with their derivatives). It is called an analytical redundancy relations (ARR)

associated with the pair (g, h) and r(ȳ(q), ū(q), f̄
(q)

) is called the residual vector.

Remark 6.1 (Link to structural approach) A structural condition for ARR to exist
is that (6.11) is overconstrained with respect to the unknowns x(t), i.e. there is a
matching which is complete with respect to x(t). Decomposing the set of constraints
(6.11) into matched (index m) and non-matched ones (index nm) yields (6.13), where
the matched subsystem has n constraints while the non-matched subsystem has
(q + 1) p − n constraints. From the interpretation of matchings in the previous
chapter, x(t) is computed in the matched subsystem, as a function of the other

222 6 Fault Diagnosis of Deterministic Systems

variables φ
(

ȳ(q)
m (t), ū(q)(t), f̄

(q)
(t)

)
and replacing x(t) by its value in the non-

matched subsystem gives the redundancy relations. �
Example 6.2 (cont.) Redundancy in a nonlinear system
Step 2 is now applied to (6.12). The variable t is omitted below. The state (x1, x2)T can be
computed from the first two equations of (6.12) leading to the equivalent system

x1 = y − f3
x2 = ±

√
ẏ + y − f3 − u − f1 − ḟ3

0 = ÿ − y + f3 + 5
(

ẏ + y − f3 − u − f1 − ḟ3
) + u + · · ·

· · · + f1 + 2
(√

ẏ + y − f3 − u − f1 − ḟ3
)

f2 − u̇ − ḟ1 − f̈3,

(6.16)

where the third equation is seen to depend only on the available inputs and outputs and on the
faults. �

6.2.3 Unknown Inputs, Exact Decoupling

When unknown inputs are present, a state-space model of the system takes the form2

ẋ(t) = g(x(t), u(t), d(t), f (t)) (6.17)

y(t) = h(x(t), u(t), d(t), f (t)).

Applying the same technique as above leads to

ȳ(q)(t) = Hq
(

x(t), ū(q)(t), d̄
(q)

(t), f̄
(q)

(t)
)

. (6.18)

Under the condition that (q + 1) p > n + (q + 1) nd and the Jacobian

[
∂Hq (·)

∂x
∂Hq (·)
∂ d̄

(q)

]

is of rank n + (q + 1) nd both the state and the unknown inputs can be eliminated,
leading to the equivalent system

(
x(t)

d̄
(q)

(t)

)
=

(
φx (ȳ(q)

m (t), ū(q)(t), f̄
(q)

(t))

φd(ȳ(q)
m (t), ū(q)(t), f̄

(q)
(t))

)
(6.19)

0 = r(ȳ(q)(t), ū(q)(t), f̄
(q)

(t)), (6.20)

where (6.20) are the analytical redundancy relations, which are independent of the
unknown inputs, hence the name “exact decoupling” which is given to this approach.

2Again the same functions g and h as above are used by an abuse of notation.

6.2 Analytical Redundancy in Nonlinear Deterministic Systems 223

Note that exact decoupling is possible only if the structural graph of system (6.18)

is overconstrained with respect to both the unknowns x and d̄
(q)

.

6.2.4 How to Find Analytical Redundancy Relations

There are several procedures by which ARR can be found. They all rest on the

elimination of x(t) (and d̄
(q)

(t) when unknown inputs are present), either by starting
with (6.8) and (6.9) or by establishing first (6.11).

Elimination procedures fit the nature of the functions g and h. When all functions
are linear, projection approaches are well suited: this is the parity space approach
which will be described in Sect. 6.3. Most often, nonlinear models involve polynomial
functions (because polynomials can approximate any smooth nonlinear function).
There are, basically, three elimination techniques for polynomial functions. All three
require the components of the state to be eliminated according to some selected order.
Elimination theory rests on Euclidean division and derivation. Gröbner bases uses
Euclidean division and the computation of so-called S-polynomials. Characteristic
sets (also called Ritt’s algorithm) rest on Euclidean division and derivation. The
state is directly eliminated from the system (6.8), (6.9), and ARR with minimum
derivative order can be obtained.

6.2.5 ARR-based Diagnosis

Fault detection. In the absence of unknown inputs, or when exact decoupling is
possible, the following logical statements hold

(6.10) ⇐⇒ (6.14), (6.15)⇒ r(ȳ(q)(t), ū(q)(t), f̄
(q)

(t)) = 0

(6.17) ⇐⇒ (6.19) ⇒ r(ȳ(q)(t), ū(q)(t), f̄
(q)

(t)) = 0
(6.21)

From (6.21) it follows that in both cases necessary conditions for normal system
operation are given by

H0 ⇒ r(ȳ(q)(t), ū(q)(t), 0) = 0

Therefore, fault detection immediately follows from

r(ȳ(q)(t), ū(q)(t), 0) �= 0 ⇒ H1.

Remark 6.2 (Non detectable faults) Note that r(ȳ(q)(t), ū(q)(t), 0) = 0 does not
imply H0 since the condition expressed by the analytical redundancy relation is only
necessary. In fact, r(ȳ(q)(t), ū(q)(t), 0) = 0 is to be read: H0 is not falsified by

224 6 Fault Diagnosis of Deterministic Systems

the observations, or in other terms “it is not impossible that the system is healthy”.
In fact, special fault values that are not detectable through analytical redundancy
could exist. They correspond to non-zero values of f (t) that yield r(ȳ(q)(t), ū(q)(t),

f̄
(q)

(t)) = 0. �

Example 6.2 (cont.) Redundancy in a nonlinear system
The redundancy relation in (6.16) writes

ÿ + 5ẏ + 4y − 4u − u̇

= f1 − 2

(√
ẏ + y − f3 − u − f1 − ḟ3

)
f2 + 4 f3 + ḟ1 + 5 ḟ3 + f̈3.

Therefore, the residual is

r
(

ȳ(2), ū(2), 0
)

= ÿ + 5ẏ + 4y − 4u − u̇

and the fault detection rule is

ÿ + 5ẏ + 4y − 4u − u̇ �= 0 ⇒ H1. �

Fault isolation. Fault isolation is approached in a similar way, by the design of
structured residuals. Assume it is possible to separate the set of faults I into two
subsets I1 and I2 such that I = I1 ∪ I2. Set

f (t) = (f T
I1
(t) f T

I2
(t))T,

where only f I1
(t) (f I2

(t)) is non-zero upon occurrence of a fault in I1 (I2). If the
set of residuals can also be separated in two subsets

r(ȳ(s)(t), ū(s)(t), f̄ (s)(t)) =
(

r1(ȳ(s)(t), ū(s)(t), f̄ (s)(t))
r2(ȳ(s)(t), ū(s)(t), f̄ (s)(t))

)
, (6.22)

so that (a) r1 is insensitive to faults in I2 but sensitive to faults in I1 while (b) r2
is insensitive to faults in I1 but sensitive to faults in I2, then, as shown below, it is
possible to distinguish between the occurrence of a fault from the class I1 or I2. The
logical expressions corresponding to these assumptions are

(a)
∀i ∈ I1 : f I1

(t) = f i (ηi , t) = 0
∃i ∈ I2 : f I2

(t) = f i (ηi , t) �= 0

}
⇒ r1(ȳ(s)(t), ū(s)(t), f̄ (s)(t)) = 0

r2(ȳ(s)(t), ū(s)(t), f̄ (s)(t)) �= 0

(b)
∃i ∈ I1 : f I1

(t) = f i (ηi , t) �= 0
∀i ∈ I2 : f I2

(t) = f i (ηi , t) = 0

}
⇒ r1(ȳ(s)(t), ū(s)(t), f̄ (s)(t)) �= 0

r2(ȳ(s)(t), ū(s)(t), f̄ (s)(t)) = 0.

There are four possible situations (logical 0 means r = 0 while logical 1 means
r �= 0) and the following conclusions are true.

6.2 Analytical Redundancy in Nonlinear Deterministic Systems 225

r1 r2 Conclusion

0 0 H0 is not falsified (no fault is detected)

0 1 H0 is falsified by a fault i ∈ I2

1 0 H0 is falsified by a fault i ∈ I1

1 1 H0 is falsified by a fault i ∈ I1 and a fault j ∈ I2

Therefore, under (6.22), it is possible to isolate a fault within the subset I1 or within
the subset I2. By designing several partitions of the set of faults into two classes
it is obviously possible to isolate faults within smaller subsets that result from the
intersections of all these partitions.

Remark 6.3 (Non-isolable faults) Only a limited number of partitions into two
classes enjoying property (6.22) can be obtained for a given system. Therefore,
it may happen that whatever the partition such that (6.22) holds, two given faults,
say i and j are always in the same class. These faults always have the same effect on
the analytical redundancy relations, and therefore, they are not isolable from each
other, which means that every FDI conclusion will contain “the fault is either i or j
(or both)”. �

Example 6.3 Two-tank system
In Example 5.40, the set of constraints associated with the two-tank system components wrote

Pump: qP = u. f (h1)

Tank 1: ḣ1 = 1
A (qP − qL − q12)

Tank 2: ḣ2 = 1
A (q12 − q2)

Pipe between tanks (h1 > h2): q12 = k1
√

h1 − h2

Output pipe: q2 = k2
√

h2

Outflow measurement: qm = km .q2.

The state-space equations are

(
ḣ1
ḣ2

)
=

(
− k1

A
√

h1 − h2 + f (h1)
A .u − 1

A .qL
k1
A

√
h1 − h2 − k2

A
√

h2

)
(6.23)

and the measurement equation is
qm = kmk2

√
h2. (6.24)

Derivating once the output gives

q̇m = kmk2 (h2)−1/2 ḣ2 (6.25)

q̇m = kmk2 (h2)−1/2
(

k1

A

√
h1 − h2 − k2

A

√
h2

)
.

http://dx.doi.org/10.1007/978-3-662-47943-8_5

226 6 Fault Diagnosis of Deterministic Systems

From (6.24) and (6.25) the two states h1 and h2 can be computed

h2 =
(

qm

kmk2

)2
(6.26)

h1 = q2
m

(
1 + (1 + q̇m)2

)
.

Derivating once again gives

q̈m = (h1 − h2)−1/2 √
h2

(
ḣ1 − ḣ2

) − (h2)−1/2 ḣ2 (h1 − h2)1/2

h2
,

where replacing h1, h2, ḣ1, ḣ2 by their values taken from (6.26), (6.23) and (6.24)–(6.25)
gives the redundancy relation

r(qm , q̇m , q̈m , u, qL)

= √
h2 (h1 − h2)1/2 q̈m − ḣ1 + ḣ2 + (h2)−1 ḣ2 (h1 − h2) = 0 (6.27)

and the leakage detection rule

r(qm , q̇m , q̈m , u, 0) �= 0 ⇒ qL �= 0. �

6.3 Analytical Redundancy Relations for Linear
Deterministic Systems - Time Domain

Let us consider the following continuous-time state-space model

ẋ(t) = Ax(t) + Bu(t) + Ex d(t) + Fx f (t), x(0) = x0, (6.28)

y(t) = Cx(t) + Du(t) + E y d(t) + Fy f (t),

where x ∈ |Rn denotes the state vector, u ∈ |Rm , is the vector of measured input
signals, y ∈ |Rp is the vector of measured plant output signals, d ∈ |Rnd and
f ∈ |Rn f are vectors of unknown input signals. f represents the faults one wishes
to detect, while d are unknown disturbances that should not be detected.

The aim is to solve the following problem.

Problem 6.1 (Design of linear analytical redundancy relations) Given a model of
the supervised process of the form (6.28), determine, if possible, a set of linear
relations between the measured inputs and outputs and their derivatives up to a
certain order, say q , such that,

• in the absence of fault,

6.3 Analytical Redundancy Relations for Linear … 227

q∑
i=1

W y,i y(i)(t) +
q∑

i=1

Wu,i u(i)(t) = 0,

where z(i)(t) denotes the i th derivative of z(t) and W y,i , Wu,i are nr × p and nr ×m
matrices of real elements, nr being the number of relations (to be determined),

• in the presence of a fault,

q∑
i=1

W y,i y(i)(t) +
q∑

i=1

Wu,i u(i)(t) �= 0.

Such relations are a particular kind of analytical redundancy relations called parity
relations.

In order to solve this problem, let us consider the successive time derivatives of
y up to order q:

y(t) = Cx(t) + Du(t) + Ey d(t) + Fy f (t)
ẏ(t) = Cẋ(t) + Du̇(t) + Ey ḋ(t) + Fy ḟ (t)

= C Ax(t) + C Bu(t) + Du̇(t) + C Ex d(t)
+E y ḋ(t) + C Fx f (t) + Fy ḟ (t),

(6.29)

where the last equality is deduced by substitution of (6.28) for ẋ(t). By iterating this
process, the following expression for the qth derivative of y is obtained:

y(q)(t) = C Aq x(t) + C A(q−1) Bu(t) + · · · + C Bu(q−1)(t) + Du(q)(t) +
+ C A(q−1) Exd(t) + · · · + C Ex d(q−1)(t) + E y d(q)(t) +
+ C A(q−1) Fx f (t) + · · · + C Fx f (q−1)(t) + Fy f (q)(t). (6.30)

The above set of equations can be concatenated into the expression

ȳ(q)(t) = Ox(t) + T u,q ū(q)(t) + T d,q d̄
(q)

(t) + T f,q f̄
(q)

, (6.31)

where ȳ(q)(t) = (
y(t)T ẏ(t)T . . . y(q)(t)T

)T
, and ū(q)(t), d̄

(q)
(t), f̄

(q)
(t) have a

similar form with u(t), d(t) and f (t) substituted for y(t),

O =

⎛
⎜⎜⎜⎝

C
C A
...

C Aq

⎞
⎟⎟⎟⎠ , T u,q =

⎛
⎜⎜⎜⎝

D 0 0 . . . 0
C B D 0 . . . 0
...

. . .
. . .

C Aq−1 B C B D

⎞
⎟⎟⎟⎠

and a similar definition holds for the block Toeplitz matrices T d,q , T f,q with respec-
tively Ey and Ex or Fy and Fx substituted for D and B.

228 6 Fault Diagnosis of Deterministic Systems

If there exists a value of q such that

rank
(O T d,q

)
< (q + 1)p,

the left nullspace of
(O T d,q

)
is not empty. The dimension of this subspace, say nr ,

is given as nr = (q + 1)p − rank
(O T d,q

)
. Let W be a nr × (q + 1)p matrix of

which each row is a basis vector for this subspace. Multiplying (6.31) on the left by
W results in the following equality

W ȳ(q)(t) − W T u,q ū(q)(t) = W T f,q f̄
(q)

(t), (6.32)

since W has been specifically computed to eliminate the terms in x(t) and d̄
(q)

(t).
Equation (6.32) describes nr analytical redundancy relations. Indeed, in the absence
of fault, the right-hand side is equal to zero, and it is normally different from zero in
the presence of a fault.

In order to implement such relations, and thus to compute the quantity

r(t) = W ȳ(q)(t) − W T u,q ū(q)(t), (6.33)

it is necessary to evaluate the derivatives that appear in the above relation. Such
signals are highly sensitive to noise, so that filtered estimates of the derivatives have
to be used. One approach is to resort to a state variable filter, which amounts to
implementing the scheme of Fig. 6.2. Such a filter is used for each component of
y(t) and u(t). Letting z(t) denote the input of such a filter, the i th integrator output
provides the i th filtered derivative of z, z(i)

f . This filter corresponds to the analog
simulation of the observability canonical state-space representation for the relation

z f (s) = 1

sq + a1s(q−1) + · · · + aq
z(s).

By taking this filter into account, (6.33) can be rewritten in the frequency domain as

r f (s) = (W y(s) y(s) + Wu(s)u(s))/p f (s), (6.34)

where

W y(s) =
q∑

i=0

W i s
i

with W i , the matrix made of columns i p + 1 to (i + 1)p of W , Wu(s) is defined
similarly with W T u,q substituted for W and

p f (s) = sq + a1s(q−1) + · · · + aq .

6.3 Analytical Redundancy Relations for Linear … 229

∫

-a1

-a2

-a3

+ ∫ ∫
.. .

zf
...

z zf zf zf

Fig. 6.2 Block diagram of a third-order state variable filter

Vector r is called a parity vector. It has generally different directions and magni-
tudes in the presence of the different fault modes. The nr dimensional space of all
such vectors is called the parity space, and any linear combination of the rows of
(6.33) is called a parity relation.

The procedure for designing and implementing parity relations is now summarised.

Algorithm 6.1 Parity relations for deterministic linear systems

Given: A linear state-space model of the form (6.28) and a
suitable order of derivation q

Compute off-line: 1. Matrices O, T d,q , T u,q

2. A basis W for the left null space of
(O T d,q

)
3. State space filters for the estimation of the deriva-

tives of y and u up to order q.

At each
time instant:

1. Acquire the new data y(t), u(t).
2. Compute r f (t) from (6.34).

Result: A residual vector r f (t) for an increasing time
horizon.

An alternative approach to determine analytical redundancy relations can be
deduced from the input-output model of the supervised process, namely in the fre-
quency domain. It directly results in relations involving the filtered derivatives of the
measured signals. By extension this method is called the (generalised) parity space
approach. It is the object of the next section. Fault isolation can be handled in the
linear case in a similar way as for the nonlinear case. The detailed treatment of this
issue is deferred to Sect. 6.4.3.

230 6 Fault Diagnosis of Deterministic Systems

Example 6.4 Parity relations for the ship
A linearised model of the ship example can be written as

(
ω̇3
ψ̇

)
=

(
bη1 0
1 0

)(
ω3
ψ

)
+

(
b
0

)
δ +

(
0
1

)
ωw (6.35)

(
ω3m
ψm

)
=

(
1 0
0 1

)(
ω3
ψ

)
+

(
1 0
0 1

)(
fω
fψ

)
+

(
1
0

)
ωw, (6.36)

when linearisation around ω3 = 0 is considered. Here δ, the rudder angle, is a known input,
while ωw , the wave disturbance, is an unknown input.

Straightforward computations yield the following expression for (6.31) with q = 1:

⎛
⎜⎜⎝

ω3m
ψm
ω̇3m
ψ̇m

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0
0 1

bη1 0
1 0

⎞
⎟⎟⎠

(
ω3
ψ

)
+

⎛
⎜⎜⎝

0 0
0 0
b 0
0 0

⎞
⎟⎟⎠

(
δ

δ̇

)

+

⎛
⎜⎜⎝

1 0
0 0
0 1
1 0

⎞
⎟⎟⎠

(
ωw

ω̇w

)
+

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fω
fψ
ḟω
ḟψ

⎞
⎟⎟⎠ (6.37)

The block matrix
(O Td,1

)
takes the form:

(O Td,1
) =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 0

bη1 0 0 1
1 0 1 0

⎞
⎟⎟⎠ .

A basis vector for the one-dimensional left nullspace of this matrix can be written

W = (
1 0 0 −1

)
.

Expression (6.32) then yields
ω3m − ψ̇m = fω − ḟψ .

Hence a residual can be computed according as:

r f (s) = (ω3m(s) − sψm(s))/(s + a), (6.38)

where a is a design parameter to be adjusted according to the noise level. This expression is
a particular case of the more general form (6.52) below for a residual for the ship example.
Further discussion of the proposed residual is provided in Sect. 6.3. �

6.4 Analytical Redundancy Relations for Linear … 231

6.4 Analytical Redundancy Relations for Linear
Deterministic Systems - Frequency Domain

In this section, the problems of fault detection, fault isolation and fault estimation are
solved using the parity space approach to residual generation, from an input-output
model of the supervised system. An alternative method would be to design observer-
based residual generators, which yields similar filters, as indicated in the bibliograph-
ical notes. The observer-based approach will be used in the section on diagnosis
systems design from a stochastic model, so that the reader will be acquainted with
both methods.

6.4.1 Fault Detection

Consider again a system described by a linear continuous-time state-space model of
the form

ẋ(t) = Ax(t) + Bu(t) + Ex d(t) + Fx f (t), x(0) = x0

y(t) = Cx(t) + Du(t) + E y d(t) + Fy f (t), (6.39)

where x ∈ |Rn denotes the state vector, u ∈ |Rm , is the vector of measured input
signals, y ∈ |Rp is the vector of measured plant output signals, d ∈ |Rnd and
f ∈ |Rn f are vectors of unknown input signals. f represents the faults one wishes
to detect, while d are unknown disturbances that should not be detected.

Such a model can also be written in terms of transfer functions:

y(s) = Hyu(s)u(s) + Hyd(s)d(s) + Hyx(s)x(0) + Hyf(s) f (s), (6.40)

where
Hyu(s) = C(s I − A)−1 B + D
Hyx(s) = C(s I − A)−1

Hyd(s) = C(s I − A)−1 Ex + E y

Hyf(s) = C(s I − A)−1 Fx + Fy .

As indicated in Fig. 6.1, a residual generator is a filter with input u and y. As
supervision of linear time-invariant systems is addressed here, the class of considered
filters will be restricted to linear time-invariant systems of the following form

ż(t) = Az z(t) + Bzu u(t) + Bzy y(t), z(0) = z0

r(t) = Crz z(t) + Dru u(t) + Dry y(t) (6.41)

or, in transfer function form, assuming zero initial conditions:

232 6 Fault Diagnosis of Deterministic Systems

r(s) = V ru(s)u(s) + V ry(s) y(s) = (
V ru(s) V ry(s)

) (
u(s)
y(s)

)
. (6.42)

The problem of residual generator design for fault detection based on a determin-
istic model can be stated as follows:

Problem 6.2 (Residual generator design for fault detection based on a determin-
istic model) Given, a model of the supervised process of the form (6.39) or (6.40)
determine a stable linear time-invariant system (6.41) or (6.42) such that:

• In the absence of fault (f (t) = 0 for all t), the output signal r(t), t > 0 asymp-
totically decays to zero for any input u(t), d(t), t > 0 and any initial conditions
x(0), z(0).

• r(t) is affected by f (t).

The first condition assures that, after a transient due to the effect of initial condi-
tions, the residual is almost equal to zero. The second condition is a fault detectability3

condition. The output r(t) is affected by f (t) when the transfer matrix between f (s)
and r(s) obtained by combining (6.40) and (6.42) is non-zero. A time domain defin-
ition of this notion is somewhat more cumbersome, hence, we defer it to Sect. 7.3.2.

Quite often, each component of the vector f (t) corresponds to a different fault.
The detectability condition is then defined component-wise. One distinguishes the
following notions:

Definition 6.1 (Weak detectability) The i th fault (fi (t) �= 0 for all t ≥ t0) is weakly
detectable if there exists a stable residual generator such that r(t) is affected by fi (t).

In the literature, weak detectability is also referred to as detectability.

Definition 6.2 (Strong detectability) A fault fi is strongly detectable if there exists
a stable residual generator such that r(t) reaches a non-zero steady-state value for a
fault signal that has a bounded final value different from zero.

6.4.2 Solution by the Parity Space Approach

In order to determine the conditions to be fulfilled by V ru(s) and V ry(s) for (6.42)
to be a residual generator, (6.40) is substituted for y(s) in (6.42):

r(s) = V ru(s)u(s) + V ry(s)
(

Hyu(s)u(s) + Hyx(s)x(0)

+ Hyd(s)d(s) + Hyf(s) f (s)
)

= (
V ru(s) + V ry(s)Hyu(s) V ry(s)Hyd(s)

)(
u(s)
d(s)

)

+ V ry(s)Hyx(s)x(0) + V ry(s)Hyf(s) f (s) (6.43)

3This notion should not be confused with the detectability of a linear system or a pair (C, A); indeed,
the latter notion depends on the map from state to measured output, while the fault detectability is
an input(i.e. fault)/output(i.e. residual) property.

http://dx.doi.org/10.1007/978-3-662-47943-8_7

6.4 Analytical Redundancy Relations for Linear … 233

Figure 6.3 illustrates this residual generator.
Fulfillment of the first condition in Problem 6.2 requires:

(
V ru(s) + V ry(s)Hyu(s) V ry(s)Hyd(s)

) = O (6.44)

together with the asymptotic stability of V ry(s)Hyx(s). Since, in healthy working
mode, the plant is normally stabilised by an appropriate controller, the latter con-
dition amounts to requiring the stability of the filter. This can be guaranteed by an
appropriate choice of the denominator of V ru(s) and V ry(s). Therefore, we concen-
trate now on the way to achieve (6.44). The question of fault detectability will be
addressed once the class of all filters that fulfil (6.44) is characterised.

Note that (6.44) can be rewritten:

(
V ry(s) V ru(s)

) (
Hyu(s) Hyd(s)

I O

)
= 0. (6.45)

For any filter, the least common multiple of the denominators of the entries of
V ry(s) and V ru(s), p(s) can be determined. Using p(s), the left most matrix in (6.45)
can be written: (

V ry(s) V ru(s)
) =

(
V̄ ry(s) V̄ ru(s)

)
p(s)

, (6.46)

H yd(s)

H yf(s)

H yu(s)

V ru(s) V ry(s)

d(s)

f(s)

u(s)

y(s)

r(s)

+

+

Fig. 6.3 Structure of residual generator in the parity space formulation

234 6 Fault Diagnosis of Deterministic Systems

where V̄ ry(s) and V̄ ru(s) are suitable polynomial matrices. Hence, the whole class
of filters that meet (6.45) can be obtained by characterising the set of polynomial
matrices

(
V̄ ry(s) V̄ ru(s)

)
that fulfil:

(
V̄ ry(s) V̄ ru(s)

) (
Hyu(s) Hyd(s)

I O

)
= 0. (6.47)

This is the set of polynomial matrices that lie in the left nullspace of

H(s) =
(

Hyu(s) Hyd(s)
I O

)
. (6.48)

This space is denoted NL(H(s)). Its dimension is equal to the difference between
the number of rows of H(s) and its rank, namely

dim(NL(H(s))) = m + p − rank H(s) = m + p − (m + nd) = p − nd,

where m is the number of inputs, p the number of outputs, and nd the number of
unknown inputs (disturbances). It has been assumed that Hyu(s) and Hyd(s) have
full column rank.4 Note that the number of plant output signals must be larger than
the number of disturbances for the left nullspace to be non-zero.

One way to characterise the set of polynomial matrices
(

V̄ ry(s) V̄ ru(s)
)

that meet
(6.47) is to determine an irreducible polynomial basis, for the rational vector space
NL(H(s)). Further, let F(s) be a matrix of which the rows make such an irreducible
polynomial basis, then any suitable matrix

(
V̄ ry(s) V̄ ru(s)

)
can be obtained by

combinations of the rows of F(s), namely

(
V̄ ry(s) V̄ ru(s)

) = Q(s)F(s), (6.49)

where Q(s) is an arbitrary polynomial matrix with appropriate number of columns.
A general parametrisation of the family of residual generators is obtained from

(6.49). Substitution of (6.49) into (6.46) yields

(
V ry(s) V ru(s)

) = Q(s)F(s)

p(s)
.

Introducing this expression into (6.42) finally results in

r(s) = Q(s)F(s)

p(s)

(
y(s)
u(s)

)
. (6.50)

4The notion of rank considered here is the normal rank computed as maxs rank H(s) where the
maximum is taken over all complex values of s.

6.4 Analytical Redundancy Relations for Linear … 235

The choice of the matrix Q(s) and the polynomial p(s) depends on the specification
of the diagnosis problem. Typically, the residual generator should ensure filtering of
high frequency disturbances which always exist, even though they were not consid-
ered in the model, and adequate properties at low frequencies. Sometimes, precise
information on the frequency range of the fault is available, and Q(s)/p(s) can be
designed to perform appropriate filtering.

Remark 6.4 (Link with parity relations deduced from the state-space model) Equa-
tion (6.34) clearly has the same form as (6.42) and, by construction, it fulfils the first
condition of Problem 6.2 provided p f (s) has all its roots in the open left-half plane.
Hence, there exist a matrix Q(s) and a polynomial p(s) for which (6.34) and (6.50)
are identical. �

Modelling uncertainty. Although modelling uncertainties have not been introduced
here, they can be accounted for a posteriori when F(s) has several rows. Q(s) is then
used to select appropriate rows in F(s). To explain the idea, let Fi (s), i = 1, . . . , nr

denote the i th row of F(s) and consider the scalar residuals

ri (s) = Fi (s)

p(s)

(
y(s)
u(s)

)
i = 1, . . . , nr .

By performing a simulation of all these filters with actual plant measurements as
input, one may compare how significantly the actual residuals ri (t), i = 1, . . . , nr

deviate from zero in the absence of fault, once the transient due to initial conditions
has vanished. This reflects the effect of modelling errors on the residuals. Besides,
by using faulty data obtained with a simulation or corresponding to actual plant
measurements it is also possible to compare the actual sensitivities to faults. A kind
of “signal to noise ratio” could be defined for each residual as

SNRi =
∫ t0+T

t0
r F2

i (t)dt∫ t1+T
t1

r F F2

i (t)dt
, (6.51)

where r F
i (t) denotes the residual obtained with the measurement associated to the

faulty mode, and r F F
i corresponds to the fault free situation. T is a user defined

horizon, t0 and t1 are time instants associated to faulty and fault free data sequences.
Matrix Q(s) should then be chosen to select the components of r(s) for which the
“signal-to-noise ratio” is significantly larger than 1.

Computational aspects. The problem of finding an irreducible polynomial basis
for NL(H(s)) can be transformed into the determination of a similar basis for a
polynomial matrix instead of the rational matrix H(s). It suffices to notice that

H(s) = H̄(s)/h(s),

236 6 Fault Diagnosis of Deterministic Systems

where h(s) is the least common multiple of all denominators. An irreducible polyno-
mial basis for H̄(s) is also an irreducible polynomial basis for H(s), and vice-versa.
Numerically stable algorithms for the computation of an irreducible polynomial basis
are available in the literature, and they have been programmed in the polynomial tool-
box of MATLAB.

The symbolic tools Maple and Mathematica can calculate a basis for the left
nullspace of H(s). The Maple command nullspace basis applied to the matrix HT(s)
will provide the row basis given in analytical form. Calculation of a basis is not
unique, so the result can be expanded or reduced by a polynomial fraction as desired.
The result is not necessarily irreducible, either, but the reduction to an irreducible
basis is usually straightforward once a factorisation is made of the entries in the
nullspace basis.5

Example 6.4 (cont.) Parity relations for the ship
A model of the form (6.40) can be easily deduced from the linear state-space model for the
ship example. The following transfer matrices are obtained when sensor faults are considered,
and when state and sensor noise are neglected:

Hyu(s) =
(

b
s−bη1

b
(s−bη1)s

)
, Hyd(s) =

(
1
1
s

)
, Hyx(s) =

(
1

s−bη1
0

1
s(s−bη1)

1
s

)

and Hyf = I2. In the above expressions,

x(t) = (ω3 (t) ψ (t))T

y(t) = (ω3m (t) ψm (t))T

d(t) = ωw(t)

u(t) = δ(t)

f (t) = (
fω (t) fψ (t)

)T

hold. It is assumed that η1 is negative, so that the ship is stable. Hyx(s) is not asymptotically
stable however, due to the integrator linking speed and position. We shall see below what
slight modification must be introduced in the theory to handle the pole at the origin.

The matrix H(s) takes the form:

H(s) =

⎛
⎜⎜⎝

b
s − bη1

1
b

s(s − bη1)
1
s

1 0

⎞
⎟⎟⎠ = 1

s(s − bη1)

⎛
⎝ bs s(s − bη1)

b (s − bη1)

s(s − bη1) 0

⎞
⎠ .

5The Maple symbolic mathematics engine is a stand-alone product. It is also a part of the MATLAB
Symbolic Toolbox. MATLAB�, Maple� and Mathematica� are registered trademarks of their
respective owners.

6.4 Analytical Redundancy Relations for Linear … 237

The last matrix corresponds to H̄(s). An irreducible basis for its left nullspace can be calcu-
lated, or found by inspection, to be

F(s) = (1 − s 0).

Thus, any vector of rational functions of the form

(
q(s)
p(s)

−sq(s)
p(s) 0

)
,

where p(s) is an arbitrary polynomial with roots in the left-half plane and q(s) is an arbitrary
polynomial with degree less than p(s), fulfils condition (6.45). Candidate residual generators
have the form:

r(s) = q(s)

p(s)
ω3m(s) − sq(s)

p(s)
ψm(s). (6.52)

Note that, by setting q(s) = 1, one recovers (6.38) with p(s) = s + a.
Substituting the model equations for ω3(s) and ψ(s) yields

r(s) = q(s)

p(s)

(
b

s − bη1
δ(s) + ωw(s) + 1

s − bη1
ω3(0) + fω(s)

)

− sq(s)

p(s)

(
b

s(s − bη1)
δ(s) + ωw(s)

s
+ 1

s(s − bη1)
ω3(0) + 1

s
ψ(0) + fψ(s)

)

= − q(s)

p(s)
ψ(0) + q(s)

p(s)
fω(s) − sq(s)

p(s)
fψ(s).

In order to assure that the residual asymptotically vanishes, two solutions are possible:

• Introduction of a derivative action in q(s), so that q(s) = sq̄(s) and the term involving
ψ(0) in the above equation is null at steady state.

• Modification of (6.52) by adding a correction term associated with the initial position
(supposed to be measured correctly). This yields

r(s) = q(s)

p(s)
ψ(0) + q(s)

p(s)
ω3m(s) − sq(s)

p(s)
ψm(s)

or, after substitution of ω3m(s) and ψm(s) in terms of the model equations:

r(s) = q(s)

p(s)
fω(s) − sq(s)

p(s)
fψ(s). (6.53)

The first solution also introduces a derivative action in the transfer functions between fω(s)
and r(s), and between fψ(s) and r(s). Hence step like faults do not have any steady-state effect
on the residual. On the other hand, in (6.53), q(s) can be chosen so that a step-like fault fω
has a steady-state effect on r , but a step-like fault in fψ can only influence temporarily r due

to the zero at the origin in sq(s)
p(s) . Application of the theory below will indicate that, indeed,

fault fω is strongly detectable, but fψ is only weakly detectable. �

238 6 Fault Diagnosis of Deterministic Systems

Example 6.5 Parity relations - ship with three output measurements
Some useful observations can be made later from the above example but using an additional
instrument to measure the ship heading. This third instrument is taken to be independent of
the other two. This is a realistic case since redundant heading instruments are required for
most merchant ships.

With two independent heading angle measurements

y2(s) = ψ
(1)
m (s)

and
y3(s) = ψ

(2)
m (s),

the matrix H(s) takes the form:

H(s) = 1

s(s − bη1)

⎛
⎜⎜⎝

bs s(s − bη1)

b (s − bη1)

b (s − bη1)

s(s − bη1) 0

⎞
⎟⎟⎠ .

The left nullspace basis for H(s) is computed to be

(−1
s 1 0 0

−1
s 0 1 0

)
.

This means a family of candidate residual generators exist, which have the form

r(s) = q(s)

p(s)

(−1
s 1 0 0

−1
s 0 1 0

)
⎛
⎜⎜⎜⎝

ω3m(s)

ψ
(1)
m (s)

ψ
(2)
m (δ)
δ(s)

⎞
⎟⎟⎟⎠ .

The relation between components of the residual vector r(s) to faults f (s) and wave distur-
bance ωw is

r1(s) = q(s)
p(s)

(
−1

s fω(s) + f (1)
ψ (s)

)

r2(s) = q(s)
p(s)

(
−1

s fω(s) + f (2)
ψ (s)

)
.

It is evident that all elements of the residual are decoupled from the wave disturbance, which
was the intention.

Forming a third residual using the plain difference between heading angle measurements

r3(s) = ψ
(1)
m (s) − ψ

(2)
m (s),

which would be a straightforward choice as an output parity equation, is indeed possible, but
since this would be a linear relation between the two residuals already defined, this would not
add to the information contained in the residual vector. �

6.4 Analytical Redundancy Relations for Linear … 239

Fault detectability. To deduce theoretical results on fault detectability, the expres-
sion of the residual in the presence of faults must be determined. Substituting (6.45)
into (6.43) yields

r(s) = V ry(s)Hyx(s)x(0) + V ry(s)Hyf(s) f (s) (6.54)

= V ry (s)Hyx(s)x(0) +
n f∑
i=1

V ry(s)H i
yf(s) fi (s),

where H i
yf(s) denotes the i th column of Hyf(s). It can be shown that a necessary

and sufficient condition for detectability of the i th fault is:

V ry(s)H i
yf(s) �= 0, (6.55)

where V ry(s) also fulfils
V ry(s)Hyd(s) = 0. (6.56)

The latter condition comes from the second entry in (6.44). For (6.55) and (6.56)
to be simultaneously verified, one should not be able to express H i

yf(s) as a linear
combination of the columns of Hyd(s). In other words, there cannot exists any non-
zero polynomial set α0(s), α1(s), . . . ,αnd (s) such that:

α0(s)H i
yf(s) + α1(s)H1

yd(s) + · · · + αnd (s)Hnd
yd(s) = O

This condition is fulfilled when

rank
(

Hyd(s) H i
yf(s)

)
> rank Hyd(s), (6.57)

where
rank A(s) = max

s
rank A(s)

denotes the normal rank of the rational matrix A(s). In the latter expression, the
rank-operation in the right-hand side acts on a matrix of complex numbers obtained
for a specific value of s. It can thus be evaluated in the standard way. Equation (6.57)
is a necessary and sufficient condition for the i th fault to be weakly detectable.

To determine a test for strong fault detectability, substitute the model (6.40) for
y(s) in the parametrisation of the class of residual generators (6.50)

r(s) = Q(s)F(s)

p(s)

(
Hyu(s) Hyd(s) Hyf(s)
I O O

)⎛
⎝ u(s)

d(s)
f (s)

⎞
⎠

= Q(s)F(s)

p(s)

(
Hyf(s)

O

)
f (s), (6.58)

240 6 Fault Diagnosis of Deterministic Systems

where the second equality accounts for the fact that F(s) is a basis for the left
nullspace of H(s). The transient term due to x(0) was not considered as its effect
vanishes when t tends to infinity. Strong detectability of the fault fi is thus achieved
if there exists some polynomial p(s) and polynomial matrix Q(s) such that

Q(s)F(s)

p(s)

(
H i

yf(s)
O

)∣∣∣∣
s=0

�= 0. (6.59)

As p(0) is necessarily chosen non-zero to assure asymptotic stability of the filter,
and Q(s) can be chosen arbitrarily, a necessary and sufficient condition for strong
fault detectability is

F(s)

(
H i

yf(s)
O

)∣∣∣∣
s=0

�= 0. (6.60)

Note that this expression may be different from F(0)

(
H i

yf(0)

O

)T

and, hence, sub-

stitution by s = 0 must be performed after computation of the matrix product.

Example 6.6 Detectability - ship with two output measurements
To check that fault fω is detectable, (6.57) is applied as follows

rank

(
1 1
1
s 0

)
> rank

(
1
1
s

)
.

Similarly, the inequality

rank

(
1 0
1
s 1

)
> rank

(
1
1
s

)

ensures that fψ is detectable. Condition (6.60) is now used to check strong fault detectability.
For fault fω it yields

(1 − s 0)

⎛
⎝1

0
0

⎞
⎠

∣∣∣∣∣∣
s=0

= 1.

Thus fault fω is strongly detectable. For fault fψ one gets

(1 − s 0)

⎛
⎝0

1
0

⎞
⎠

∣∣∣∣∣∣
s=0

= 0,

which indicates that fψ is not strongly detectable, as was expected. �

The procedure for residual generator design can be summarised as follows.

6.4 Analytical Redundancy Relations for Linear … 241

Algorithm 6.2 Residual generator design with the parity space method

Given: A model of the supervised system in the form (6.40).

Computation:
1. Compute matrix H(s) as defined by (6.48).

2. Determine an irreducible polynomial basis for NL(H(s)),
and let F(s) be the matrix whose rows make such a basis.
If F(s) = O, the problem has no solution.

3. Design the filter Q(s)
p(s) as a low-pass or a band-pass filter

which possibly selects appropriate rows in F(s) according
to SN Ri , (i = 1, . . . ,β) in Eq. (6.51).

4. Check for weak or strong fault detectability as needed.

Result: A residual generator in the form (6.50).

6.4.3 Fault Isolation

For fault-tolerant control, faults should not only be detected, but also be isolated,
namely the faulty components should be determined. The problem of residual gen-
erator design for fault detection and isolation based on a deterministic model can be
stated as follows.

Consider, a system described by a continuous-time linear state-space model of
the form

ẋ(t) = Ax(t) + Bu(t) +
n f∑
j=1

F j
x f j (t), x(0) = x0

y(t) = Cx(t) + Du(t) +
n f∑
j=1

F j
y f j (t), (6.61)

where f j ∈ |Rn f j , j = 1, . . . , n f represent the faults that must be detected and
isolated. In terms of transfer functions, (6.61) can be written as

y(s) = Hyu(s)u(s) + Hyx(s)x(0) +
n f∑
j=1

H y f j (s) f j (s), (6.62)

where

242 6 Fault Diagnosis of Deterministic Systems

Table 6.1 Effects of the
faults on the residuals f1 f2 f3

r1 × 0 0

r2 0 × 0

r3 0 0 ×

Hyu(s) = C(s I − A)−1 B + D, Hyx(s) = C(s I − A)−1

and
H y f j (s) = C(s I − A)−1 F j

x + F j
y .

Problem 6.3 (Residual generator design for fault detection and isolation based on
a deterministic model) Given a model of the supervised process of the form (6.61)
or (6.62), determine a set of n f stable linear time-invariant filters described by

ż�(t) = Az,�z�(t) + Bzu,�u(t) + Bzy,� y(t), z�(0) = z0,� (6.63)

r�(t) = Crz,�z�(t) + Dru,�u(t) + Dry,� y(t), � = 1, . . . , n f

or, in transfer function form, assuming zero initial conditions,

r�(s) = V ru,�(s)u(s) + V ry,�(s) y(s), � = 1, . . . , n f , (6.64)

such that the following conditions are met.

• r�(t) asymptotically decays to zero for any u(t) and any
f j (t), j = 1, . . . , n f , j �= �, t > 0.

• r�(t) is affected by f�(t).

In this problem statement, the �th residual can only be affected by the �th fault,
and not by the others. The table below represents this situation when n f = 3.
A symbol × in Table 6.1 indicates that the fault in the corresponding column affects
the residual of the corresponding row.

The faults that do not affect the �th residual can be seen as unknown inputs to
which this residual should not be sensitive. Hence, to design a residual generator
that output r�, it suffices to use the solution of the problem of residual generation for
fault detection in which vector d is replaced by (f T

1 . . . f T
�−1 f T

�+1 . . . f T
n f

)T. n f

such problems should be solved for � = 1, . . . , n f in order to obtain the n f filters
that make a solution to the fault isolation problem.

From the conditions for fault detectability, the following conditions can be
deduced for the above scheme to work:

rank
(

Hy, f� (s) Hy, f j (s)
)

> rank Hy, f j (s) (6.65)

for all �, j = 1, . . . , n f , � �= j.

6.4 Analytical Redundancy Relations for Linear … 243

Table 6.2 Effects of the
faults on the residuals—
non-diagonal structure

f1 f2 f3

r1 × × 0

r2 × 0 ×

A necessary condition for (6.65) to hold is

∑
j = 1, n f

j �= �

n f j < p, (6.66)

where p is the number of measured output signals (dimension of y).
When condition, (6.65) is not met, the diagonal structure of Table 6.1 cannot be

obtained, and one should attempt to group the fault vectors in different classes and
to generate residuals that are affected by a specific fault class and not by the others.
The table below illustrates one way to perform such a grouping, in a situation where
n f = 3 and two residual generators are designed.

In the situation of Table 6.2, all three faults can be distinguished as the combination
of r1 and r2 reacts differently to each fault. However, simultaneous faults cannot be
isolated because they affect both residuals in all cases.

Example 6.7 Isolability - ship with three output measurements
For the ship with one rate measurement and two heading measurements (Example 6.5), a
residual generator is achieved, which was decoupled from the disturbance,

(
r1(s)
r2(s)

)
=

(− 1
s 1 0

− 1
s 0 1

) ⎛
⎜⎝

fω3(s)

f (1)
ψ (s)

f (2)
ψ (s)

⎞
⎟⎠ . (6.67)

This residual generator has the properties shown in Table 6.2. �

Sensor fault isolation in a fault-tolerant control setting. If it has been detected that
one out of a set of faults is present, but it has not been possible to isolate which fault is
actually present, and this was due to the design of the residual generator specification,
alternatives are available on the fault-tolerant setting because the supervisory system
has control of the input signals to the plant. Similar to system identification, where a
dedicated test signal is applied to obtain the optimal information about a particular
parameter, a dedicated test signal can be applied on the control input to help confirm
particular hypotheses. This procedure can help to reduce the time to diagnose and,
hence, the time to reconfigure a controller.

Example 6.8 Dedicated test signal for isolation - ship steering
If two identical rate sensors are available in the ship steering example, and the residual gener-
ator was designed to be insensitive to the wave disturbance, it is not possible to isolate faults

244 6 Fault Diagnosis of Deterministic Systems

f 1
ω and f 2

ω . In a fault-tolerant control setting, we employ active test signal generation to isolate
the fault once it has been detected that one of the rate sensor units is defect. Let us define a
dedicated test signal

δ(t) = δ̃(t), t ⊂ [0, T],

which is applied immediately after the hypothesis of

{
f̂ 1
ω (t) ∨ f̂ 2

ω (t)
}

�= 0

is confirmed. Observe a-priori the response in the non-faulty condition

ωrec
3 (t) = gω3 (δ̃(t), U (t)), t ⊂ [0, T]

note that the function gω3 is not calculated, the angular rate is merely recorded and stored.
Calculate the correlations

cor31(t) = 1

t

∫ t

0
ωrec

3 (τ)ω1
3m (τ)dτ

cor21(t) = 1

t

∫ t

0
ω2

3m (τ)ω1
3m (τ)dτ

cor32(t) = 1

t

∫ t

0
ωrec

3 (τ)ω2
3m (τ)dτ .

These correlation signals with appropriate normalisation make it straightforward to determine
which hypothesis is the most likely. �

6.4.4 Fault Estimation

The isolation schemes signify which fault is present but do not assess the magnitude
of the fault. Fault estimates are needed in certain fault accommodation approaches
as was indicated in Sect. 6.1. This notion is defined as follows.

Definition 6.3 (Fault estimation) Fault estimation is the ability to estimate the mag-
nitude of a fault f i (t) and its time history.

Combining (6.42) and (6.58), the link between the fault vector f (s) and the
residual r(s) is seen to be

r(s) = V ru(s)u(s) + V ry(s) y(s) = Q(s)F(s)

p(s)

(
Hyf(s)

O

)
f (s), (6.68)

where it is assumed that initial conditions have vanished. Letting

F(s) = (F1(s) F2(s)),

6.4 Analytical Redundancy Relations for Linear … 245

where F1(s) has p columns and F2(s) has m columns, Eq. (6.68) can be written

r(s) = V ru(s)u(s) + V ry(s) y(s) = Q(s)F1(s)

p(s)
Hyf(s) f (s). (6.69)

On the other hand, Eq. (6.54) yields the following relation when the transient due
to the initial conditions is neglected

r(s) = V ry(s)Hyf(s) f (s),

hence

V ry(s) := Q(s)F1(s)

p(s)
. (6.70)

As a compact notation, introduce Hrf(s) by

Hrf(s) := V ry(s)Hyf(s) = Q(s)F1(s)

p(s)
Hyf(s).

If it is possible to determine a suitable left inverse to Hrf(s), say G(s), an estimate
of f (s) would be

f̂ (s) = G(s)r(s) = G(s)(V ru(s)u(s) + V ry(s) y(s)). (6.71)

Left inverse transformation. If the polynomial matrix Hrf(s) is square, then the
estimate f̂ (s) = Hrf

−1(s) where the ijth element of Hrf
−1, call it hi j is the usual

inverse

hi j (s) = 1

det(Hrf(s))
(−1)i+ j (M ji(s)),

where M ji(s) is the determinant of the matrix formed by Hrf(s) after deleting row
j and column i .

If Hrf(s) is non-square, with l rows and n f columns, then, there exists a left
pseudo-inverse G(s) of Hrf(s) if and only if

rank (Hrf(s)) = n f ,

where the normal rank is considered. G(s) is given as

G(s) = (HT
rf(s)Hrf(s))

−1 HT
rf(s). (6.72)

The pseudo-inverse has the property

G(s)Hrf(s) = In f

246 6 Fault Diagnosis of Deterministic Systems

with In f being the unity matrix of dimension n f .

Remark 6.5 (Causality of solution) To be able to implement the filter Eq. (6.71),
G(s) V ru(s) and G(s) V ry(s) must be proper and stable transfer functions. This may
not be true when G(s) is computed as above. A modified procedure can be found in
the literature (see the bibliographical notes for this chapter). �

Fault estimation after isolation. A necessary condition to be able to compute the
above rational estimate, based on a pseudo inverse transformation, is that the rank
of the Hrf matrix is equal to the number of faults to be estimated. As the number of
faults is often larger than the number of independent residuals, it is necessary to take
advantage of the results of the fault isolation to limit estimation of faults to those that
the isolation algorithm found to be present in the system.

Assume the subset of the fault vector f i , i ∈ [j, . . . , k] has been determined
necessary to estimate by the isolation algorithm. The above general expressions then
hold for the entries of the transfer function matrices that relate to fi , i ∈ [j, . . . , k].

Assume a single fault has been determined present. Then, a single column in
Hrf(s) needs to be considered. The result for this simplest case can be formulated
as follows.

Given, the stable residual generator

r(s) = V ru(s)u(s) + V ry(s) y(s))

and a transfer function model relating this residual to faults

r(s) = Hrf(s) f (s).

Assume that the isolation procedure indicates that fault number i is present, and let
the i th column of Hrf(s) be

hi (s) = h̄i (s)

η(s)
,

where h̄i (s) is a polynomial vector with entries h̄ji(s) and η(s) is the least common
denomination of the entries of hi (s).

Theorem 6.1 (Single fault estimation) On the condition that η(s) and h̃
T
i (s)h̃i (s) =

l∑
j=1

h̄
2
ji(s) are stable polynomials, an estimate of f i , f̂ i is given by:

f̂ i (s) =
(

hT
i (s) hi (s)

)−1
hi (s)

Tr(s). (6.73)

This estimator is causal when deg η(s) = max deg h̄ji(s). This is easily proved
by direct computation of the pseudo inverse in Eq. (6.73):

6.4 Analytical Redundancy Relations for Linear … 247

(
hi (s)

T hi (s)
)−1

hi (s)
T = (s)

l∑
i=1

h̄
2
ji(s)

(
h̄1i (s), . . . , h̄li (s)

)
. (6.74)

If the above condition on the degree is not met, a low-pass approximation for the fault
estimate can be obtained by multiplying the denominator of Eq. (6.74) by (s +)β ,
where α ∈ |R+and β is chosen so that all entries in Eq. (6.74) are causal.

Example 6.9 Fault estimation - ship with three output measurements
Fault estimation following isolation for the ship with three output measurements results from
the residual generator obtained in Example 6.7

Hrf(s) =
(− 1

s 1 0

− 1
s 0 1

)
= 1

s

(−1 s 0
−1 0 s

)
.

Fault 1 isolated: The estimate of fault number 1 is

f̂1 = s

2
(r1(s) + r2(s)).

Since this filter is not causal, a low-pass filtered approximation for the rate gyro fault is needed,
where α ∈ |R+

f̂1 = s

2(s + α)
(r1(s) + r2(s)). (6.75)

Fault 2 isolated: The estimate of fault number 2 is

f̂ 2 = r1(s).

Fault 3 isolated: The estimate of fault number 3 is

f̂ 3 = r2(s).

It should be noted that an erroneous isolation will give gross errors in the fault estimate.
In an implementation, the above fault estimators would run in parallel. Once a particular

fault is isolated, the estimate can be rapidly provided. �

Alternative methods to fault estimation. In cases, where the above algebraic
approach to fault estimation fails, asymptotic estimation of faults may be achievable
using an observer on an augmented system, where the state is augmented by the
fault(s) to be estimated (modelling faults to be constant):

d

dt

(
x
f

)
=

(
A Fx

O O

) (
x
f

)
+

(
B
0

)
u(t)

y(t) = (
C Fy

) (
x
f

)
.

248 6 Fault Diagnosis of Deterministic Systems

A necessary condition for an asymptotically stable estimator to exist is that
the pair ((

A Fx

O O

)
,
(
C Fy

))

is observable. Observer-based methods are covered extensively in the literature (see
the bibliographical notes for references).

In summary, the procedure for estimating the magnitude of a fault is as follows:

Algorithm 6.3 Fault estimation

Given: A model of the supervised process of the form (6.40) and a
residual generator of the form (6.42)

Compute:
1. The transfer matrix Hrf(s) relating residuals to faults

2. A left inverse to Hrf(s)

3. An estimator of the form (6.71), possibly after appropriate fil-
tering of the left inverse in order to obtain a causal and stable
estimator for all faults.

Result: A causal and stable fault estimator based on the measurements
of u(s) and y(s).

6.5 Optimisation-Based Approach to Diagnosis

6.5.1 Problem Statement

The above methods were based on algebraic or polynomial manipulations, and relied
on the ability to achieve exact decoupling from disturbances and from input to the
residual. When this is not possible, the influence d(t) and u(t) have on the residual
competes with that generated by faults f (t). If the effects of input and disturbance
on the residual are non-zero, we do not obtain

(
V ru(s) + V ry(s)Hyu(s) V ry(s)Hyd(s)

)(
u(s)
d(s)

)
= 0 (6.76)

for all u(s) and d(s) and

6.5 Optimisation-Based Approach to Diagnosis 249

r(s) = (
V ru(s) + V ry(s)Hyu(s) V ry(s)Hyd(s)

) (
u(s)
d(s)

)

+V ry(s)Hyf(s) f (s) + V ry(s)Hyx(s)x(0) (6.77)

is strictly speaking not a residual generator according to the definition.
The purpose of this section is to find ways to relax the requirement on exact

decoupling for the residual generator. Instead, some optimal approximation should
be obtained in the sense that the design shall satisfy certain criteria.

The design objectives should be to

1. Provide a sufficient suppression of disturbances d seen from the residual,
2. Maximise the sensitivity r of the residual with respect to all or a to a selected set

of faults in f .

3. Make the residual signal sufficiently insensitive to variations in the input
signal u.

4. Provide the designer with tools to enter a specification of the desired performance.

Formulating the design objectives as performance indices will enable a rigorous
treatment. From the condition Eq. (6.76), perfect decoupling of disturbance requires

V ry(s)Hyd(s) = O.

Insensitivity to input requires the model to fulfil

V ru(s) + V ry(s)Hyu(s) = O

and both are subject to the constraint that sensitivity to faults is not vanishing

V ry(s)Hyf(s) �= O

Norms and gains. In order to treat the relaxed condition, it is not required that the
right-hand sides are exactly zero, but we wish to obtain minimal values subject to
constraints like stable systems and causal realisation of filters. In order to formulate
adequate optimisation problems, recall the definitions of the vector norm and the
matrix norm induced by a vector norm: Let x ∈ |Rn . Then the vector p-norm of x
is

|x|p =
(

n∑
i=1

|xi |p

)1/p

In particular, when p = 2,∞,

|x|2 =
√√√√ n∑

i=1

|xi |2

250 6 Fault Diagnosis of Deterministic Systems

and

|x|∞ = max
1≤i≤n

|xi | .

Further, let A = (
ai j

) ∈ |Rm×n and x ∈ |Rn . The matrix norm induced by a vector
p-norm is defined as

|A|p = sup
x �=0

|Ax|p

|x|p

In particular, when p = 2,∞,

|A|2 =
√

λmax(AT A) = σ̄(A)

and

|A|∞ = max
1≤i≤m

n∑
j=1

∣∣ai j
∣∣ (maximum absolute row sum),

where λmax is the largest eigenvalue, and σ̄ is the largest singular value.
It is noted that an induced norm can be viewed as a mapping from a vector space

Cn equipped with a norm |·|p to a vector space Cm with a norm |·|p. The induced
norms have the interpretation of input/output amplification gains.

Let H(jω) ∈ Cm×n be a stable transfer function, i.e. with all poles strictly in the
left-half plane. Then the 2-norm is

|H|2 = trace

(
1

2π

∫ ∞

−∞
H(jω) HT(−jω) dω

) 1
2

and the ∞-norm

|H|∞ = max
ω

σ̄ (H(jω)).

An important result is that

|H f |22 ≤ |H|2∞ | f |22 = max
ω

σ̄(H(jω))2 | f |22

6.5 Optimisation-Based Approach to Diagnosis 251

since

|H f |22 = 1

2π

∫ ∞

−∞
f T(−jω)HT(−jω)H(jω) f (jω) dω

≤ |H|2∞
1

2π

∫ ∞

−∞
f T(−jω) f (jω) dω

= |H|2∞ | f |22 ,

which shows |H|2∞ is the upper bound for the signal power transmitted from input
to output of the transfer function H(s).

Formulation as an optimisation problem. The first property of a relaxed residual
generator should be minimisation of the effect of disturbances in the residual.

A direct minimisation of the effect the disturbance has on the residual is expressed
in the induced norm

min
V ry

J id = min
V ry

∣∣V ry(s)Hyd(s)d(s)
∣∣2
2

|d(s)|22
= min

V ry

∣∣V ry(s)Hyd(s)
∣∣2
∞

subject to

V ry(s)Hyf(s) �= O.

The constraint prevents the trivial solution V ry(s) = 0.
The signal power comprised in the residual caused by the disturbance over the

power generated by faults should be minimised, hence a feasible index could be

max
V ry

J2 = max
V ry

(∣∣V ry(s)Hyf(s) f (s)
∣∣2
2∣∣V ry(s)Hyd(s)d(s)

∣∣2
2

)

|d|�=0

.

The interpretation of this index is to maximise the signal over noise ratio in the
residual, using the total power, i.e. over all frequencies. This index cannot be easily
optimised. If we, however, make a slight modification to the optimisation criterion,
standard tools are available.

As a general tool for optimisation, the standard setup formulation is widely used
in robust and optimal control theory and is widely supported by computer aided
design tools. Hence, it is advantageous to describe the optimisation problem in the
standard setup formulation.

Application of the standard methods require a specific formulation of the problem,
which is first illustrated using manipulation on the block diagram in Fig. 6.4 for the
case, where the objective is to find a polynomial matrix F(s) such that a signal e(s)
is insensitive to a disturbance d(s)

e(s) = (
Hzd(s) − F(s)Hyd(s)

)
d(s).

252 6 Fault Diagnosis of Deterministic Systems

d(s) e(s)

y(s)
F(s)H yd(s)

H zd(s)

+

+

+

–

H zd(s)

H yd(s)

− I

d(s) e(s)

F(s)

y(s)

F(s)

d(s) e(s)

y(s)

z(s)ˆ

z(s)

z(s)ˆ

z(s)ˆ

H zd(s) − I

H yd(s) 0

Fig. 6.4 Manipulation of the block diagram to arrive at a standard problem formulation. The upper
two diagrams are equivalent, the lower is the representation used to determine F(s) by standard
methods

6.5.2 Solution Using the Standard Setup Formulation

We introduce first the basic notion of the standard estimation setup and the standard
estimation problem, which have a direct bearing on design of residual generators.

Definition 6.4 (Standard estimation setup) Let a system be given by input vector
(known and unknown input) d ∈ |Rnd , state vector x ∈ |Rn, an auxiliary output

6.5 Optimisation-Based Approach to Diagnosis 253

z ∈ |Rl and measured output vector y ∈ |Rp with state-space equation

ẋ(t) = Ax(t) + Exd(t)
z(t) = Cz x(t) + Ez d(t)
y(t) = C y x(t) + E y d(t)

(6.78)

and, ignoring initial conditions, represented in the Laplace domain by

z(s) = Hzd(s)d(s)
y(s) = Hyd(s)d(s),

(6.79)

where

Hzd(s) =
(

A Ex
Cz Ez

)
= Cz(s I − A)−1 Ex + Ez (6.80)

Hyd(s) =
(

A Ex
C y E y

)
= Cy(s I − A)−1 Ex + Ey. (6.81)

Problem 6.4 (Standard estimation problem) Let ẑ(s) be an estimate of z(s). Denote
the difference by ez(s) = z(s)− ẑ(s). For the system defined by the standard problem
setup (6.79), determine a stable transfer function matrix F(s) to provide an estimate
of the auxiliary output given the measured output,

ẑ(s) = F(s) y(s) (6.82)

subject to a suitable norm of the estimation error, |ez(s)| being less than a chosen
gain factor

sup
F(s)

|ez(s)| < γ ⇔ sup
F(s)

∣∣Hzd(s) − F(s)Hyd(s)
∣∣ < γ, (6.83)

where the norm can be of types H2 or H∞ for instance.

Equation (6.83) follows from expanding the estimation error:

ez(s) = z(s) − ẑ(s)

= z(s) − F(s) y(s)

= (Hzd(s) − F(s)Hyd(s))d(s). (6.84)

Remark 6.6 Different filtering and estimation problems can be easily formulated
within this general estimation framework. The state can be estimated using Cz = In,n

and Ez = O. The input can be estimated using Cz = O and Ez = Il,l . The estimation
setup will be used later for residual generation. �

Standard H2 and H∞ methods that find the minimum of function according to
the selected norm can also be applied to find a suitable F(s) transfer function matrix

254 6 Fault Diagnosis of Deterministic Systems

for the estimation problem. Use of widely available software for this purpose (for
example the MATLAB μ toolbox) requires formulation in what is referred to as the
standard system setup and standard problem in robust control.

Definition 6.5 (Standard system setup) Let a system be described in the Laplace
domain by the transfer function matrix P(s), and four vectors, input u(s) ∈ Cm ,
auxiliary input d(s) ∈ Cnd , auxiliary output e(s) ∈ Cme and measured output y(s) ∈
C p. Input and output are related through P(s) ∈ C(p+me)×(m+nd) as

(
e(s)
y(s)

)
= P(s)

(
d(s)
u(s)

)
=

(
Ped(s) Peu(s)
Pyd(s) Pyu(s)

)(
d(s)
u(s)

)

Let the transfer function matrix F(s) ∈ Cm×p be a feedback controller for the system,
between y and u,

u(s) = F(s) y(s)

Using this setup and utilising solutions for two fundamental optimisation problems
in the design of residual generators, the H∞ sub-optimal control problem and the
H2 sub-optimal control problem.

Problem 6.5 (H∞ sub-optimal control) Given a system in form of the standard
system setup of Definition 6.5. Design a stabilising controller F(s) such that the norm
of the closed-loop transfer function T ed(s) from auxiliary input d(s) to auxiliary
output e(s) is lower than a specified bound γ:

sup
F

|Ted |∞ < γ ⇔ sup
F(jω)

σ̄(Ted(jω)) < γ,

where σ̄ denotes the largest singular value.

The H∞ norm gives the maximum sinusoidal gain of the system (energy gain or
induced L2 system gain).

Problem 6.6 (H2 sub-optimal control problem) Given a system in form of the stan-
dard system setup in Definition 6.5. Design a stabilising controller F(s) such that
the H2 norm of the closed-loop transfer function T ed(s) from auxiliary input d(s)
to auxiliary output e(s) is minimised.

The standard estimation problem of Fig. 6.4 can be formulated in the standard
setup. The generalised system P(s) then takes the form

P(s) =
(

Hzd(s) −I
Hyd(s) O

)
.

Note that there is no feedback through the system since Pyu(s) = O.

6.5 Optimisation-Based Approach to Diagnosis 255

6.5.3 Residual Generation

The above result can be applied in connection with detection, isolation and estimation
of faults. We aim at making ẑ(s) a residual signal. We investigate two problems. The
first is to suppress disturbances as well as possible. The second is to make a balanced
optimisation, where the fault signature is preserved in the residual while disturbances
are suppressed to the extent possible. Both results follow from appropriate formula-
tion of the standard problem. The strategy is to select an auxiliary output z(s) and
give it the properties that the residual should have. This means the formulation of
z(s) is directly a specification of the residual. In designing the estimate ẑ(s) to track
z(s) as closely as possible, according to a given criterion, a sub-optimal estimator is
obtained for the ideal residual. The accuracy with which the specification is met is
seen in the choice of the optimisation coefficient γ.

The basic residual generator will have the form

r(s) = F(s)(y(s) − Hyu(s)u(s)). (6.85)

The design problem is to determine the operator F(s).

Remark 6.7 (Relation to parity space formulation) The residual generator Eq. (6.43)
had as prerequisite, following from Problem 6.2, that

V ru + V ry Hyu = O

hence

r(s) = V ry(s) y(s) + V ruu(s)

= V ry(s) y(s) − V ry(s)Hyuu(s)

= V ry(s)(y(s) − Hyu(s)u(s)).

Comparison with Eq. (6.85) shows that finding the solution F(s) in the standard
setup is equivalent to determining the operator V ry(s). �

In the design, two requirements have to be combined.

Residual generation with specification on fault sensitivity and disturbance sup-
pression. The goal is now to have the residual replicating a fault through a specified
dynamical relation while the disturbance should be suppressed as far as possible.
Therefore, we include the fault vector f (s) in the system description and define the
auxiliary output z(s) to be dependent only of the fault vector:

y(s) = Hyd(s)d(s) + Hyf(s) f (s)

z(s) = Hzf(s) f (s)

ẑ(s) = V ry(s) y(s)

ez(s) = z(s) − ẑ(s)

256 6 Fault Diagnosis of Deterministic Systems

The selection of the auxiliary output reflects directly the properties that the residual
should have. Hzd = O is chosen because we wish to interpret d(s) as a disturbance
and decouple it from the residual. The specification of Hzf(s) is a design choice.
There may not exist a solution V ry(s) for all arbitrary specifications, so Hzf(s) is
the key design parameter.

The performance that should be achieved is that the residual follows z(s) as close
as possible, hence, the relation

∣∣Hzf(s) − V ry(s)Hyf(s)
∣∣∞ < γs

should hold, where γs characterises the desired fault sensitivity (or tracking) perfor-
mance. Simultaneously, the effect of the disturbance should be below a certain level,
hence

∣∣V ry(s)Hyd(s)
∣∣∞ < γr ,

where γr is a measure of robustness with respect to input effects. Combining the
two, the physically motivated optimisation problem yields:

∣∣(−V ry(s)Hyd(s)
) (

Hzf(s) − V ry(s)Hyf(s)
)∣∣∞ < γ. (6.86)

Since

z(s) − V ry(s) y(s)

= (
Hzf(s) − V ry(s)Hyf(s)

)
f (s) − V ry(s)Hyd(s)d(s)

= ((−V ry(s)Hyd(s)
) (

Hzf(s) − V ry(s)Hyf(s)
))(

d(s)
f (s)

)

Equation (6.86) is equivalent to

sup(
d
p

)
�=0

∣∣z(jω) − V ry(jω) y(jω)
∣∣
2∣∣∣∣

(
d(jω)

f (jω)

)∣∣∣∣
2

< γ ⇔ sup(
d
p

)
�=0

|ez(jω)|2∣∣∣∣
(

d(jω)

f (jω)

)∣∣∣∣
2

< γ.

The residual generation design problem is illustrated in Fig. 6.5. The upper dia-
gram in the Figure depicts the residual generator with both specifications Hzd and
Hzf given. In formulating the requirement that disturbance feed-through to the resid-
ual should be minimal, Hzd = O is specified in the setup shown in the lower part of
Fig. 6.5.

6.5 Optimisation-Based Approach to Diagnosis 257

+

+

Hzd(s)

−I

d(s)
e(s)

F(s)

y(s)
ry(s)

F(s)

d(s) e(s)

y(s)

f(s)

ry(s)

Hyd(s)

f(s)

Hzf(s)

Hyf(s)

(0 −I

(H yd(s) 0Hyf(s))

Hzf(s))

Fig. 6.5 Residual generator depicted in a standard setup formulation with specifications Hzf and
Hzd in the upper part of the figure. Hzd is specified as zero in the design problem shown in the
lower part of the figure

In the standard setup, the residual generator design has the following form:

Problem 6.7 (Residual generation with specification on fault sensitivity and distur-
bance suppression) Given, an LTI system with input u(s), unknown input (distur-
bances) d(s) and faults f(s) and let input-output relations of the system be described
by (Hyu, Hyd, Hyf). Introduce an auxiliary variable z(s) and specify a transfer func-
tion matrix Hzf and a real number γs . Let z(s) = Hzf f(s). Determine V ry such that
the maximal deviation between ẑ(s) = V ryy(s) and z(s) is bounded by γs :

|z(s) − z(ŝ)| < γs (6.87)

258 6 Fault Diagnosis of Deterministic Systems

The solution to this problem of residual generation design has the following form:

1. Define the standard problem setup:

aux.input : d(s) ←
(

d(s)
f (s)

)

input : u(s) ← r(s)

aux.output : e(s) ← ez(s) = z(s) − r(s)

output : y(s) ← y(s)

P(s) ←
((

O Hzf(s)
) −I(

Hyd(s) Hyf(s)
)

O

)

F(s) ← V ry(s)

2. Use software that solves the standard problem to determine a solution in form of
a stable transfer function V ry(s) that satisfies the inequality

sup(
d
f

)
�=0

|ez|2∣∣∣∣
(

d
f

)∣∣∣∣
2

< γ

which is equivalent to finding a solution to

∣∣(−V ry Hyd Hzf − V ry Hyf
)∣∣∞ < γ.

If a result exists, which is not guaranteed, the result is strong in the sense it provides
the residual generator with optimal weighting between suppression of disturbances
and specified sensitivity to faults.

In practice it is worthwhile to start a design with investigating the extent to which
disturbances can be suppressed using the disturbance suppression problem. When
insight in the problem has been gained, continue with supplying a specification to the
problem and iterate until a suitable compromise has been found between disturbance
suppression and fault tracking.

Fault detection. When the purpose is to design a pure fault detection filter, a sensible
way to specify Hzf(s) is to require that it is a row vector with non-zero causal and
stable entries. When a residual vector is sought the specification becomes:

∀ω; jω �= zk :
{

rank (Hzf(jω)) ≥ 1
∀i : hi (jω) �= 0,

where hi (jω) stands for the i th column of Hzf(jω) and zk are the zeros of Hzf(s).

6.5 Optimisation-Based Approach to Diagnosis 259

Fault isolation. If the number of faults to be isolated is n f and simultaneous faults
can occur, Hzf(s) has to fulfil the requirement:

rank Hzf(s) = n f ,

where, as usual, the normal rank is considered.
When simultaneous faults are not considered, a vector z of size l is sufficient

to isolate 2l − 1 faults by considering suitable coding sets. This translates into the
following specification for matrix Hzf(s). To isolate n f faults, choose a matrix
Hzf(s) such that:

rank Hzf(s) ≥ log2(n f + 1)

rank
(
hi (s) h j (s)

) = 2 with i = 1, . . . , n f i �= j, j = 1, . . . , n f .

Fault estimation. Fault estimation can be obtained by specifying Hzf(s) = I . In
this case,

z(s) = I f (s)

and

e(s) = z(s) − ẑ(s).

In the ideal situation, where no disturbance exists, this specification aims at assuring
that ẑ tracks the fault f by guaranteeing that

sup
| ẑ − z|2

| f |2 < γ.

When disturbances do exist, a trade-off is made between fault tracking and insensi-
tivity of ẑ to the disturbance. The block diagram to specify fault estimation from the
solution to a standard problem is shown in Fig. 6.6.

Design considerations. In connection with using H2 or H∞ optimisation to design
the residual generator, a weight function can further be included in the setup to some
advantage of the designer. The weight function W(s) can be applied to specify the
frequency range(s), where detection, isolation or estimation should be obtained most
effectively. The way to include a weight matrix in the design is to modify the P(s)
system matrix to

P(s) =
((

O W Hzf
) −W(

Hyd Hyf
)

O

)
.

The weighting matrix specifies which frequency ranges a designer emphasizes to
meet the bound γ and where it can be relaxed.

260 6 Fault Diagnosis of Deterministic Systems

+

+

0

− I

d(s) e(s)

F(s)

y(s)

ry(s)

F(s)

e(s)

y(s)
ry(s)

Hyd(s)

f(s)

I

Hyf (s)

(0 − I

(Hyd (s) 0Hyf (s))

I)d(s)
f(s)

Fig. 6.6 If a solution F(s) exists, fault estimation is obtained by solving the standard problem
using the specification Hzd = O, Hzf = I

The main issue in using the standard setup to obtain sub-optimal residual genera-
tors of the different classes described above is the selection of a proper specification
Hzf(s). Whereas the optimisation itself is left to the software tools available, good
results are only obtained if a good specification is provided. An iterative design
method has proved useful in practice.

6.5 Optimisation-Based Approach to Diagnosis 261

Algorithm 6.4 Residual generator design

1. Formulate problem: Formulate the relevant version of the standard
setup for the problem.

2. Design specification: Specify an initial qualified guess on the spec-
ification Hzf(s). The specification needs to be bounded from below,
otherwise, the optimal solution will be F = O and Hzf = O.

3. Solve problem: Find the function F(s) in the residual generator

r(s) = F(s)(y(s) − Hyu(s)u(s)),

where F(s) is the best obtainable solution to the problem given the
specification Hzf(s).

4. Iterate until converged: Continue until the value of γ obtained has
converged.

5. Iterate in specification: Based on this residual generator, specify a new
Hzf(s) and repeat the design.

The procedure usually requires very few iterations.

6.6 Residual Evaluation

Given, a residual generator for the deterministic case, i.e. there are only insignificant
random disturbances or measurement noise, the purpose of this section is to find a
method for residual evaluation that will determine whether a fault is present.

6.6.1 Residual - General Case

Let a set of residuals obtained from structural analysis have the form

r = (r1, r2, . . . , rn)T.

Consider one of these residuals

r j (t) = p j (ki , ci , t) ki ∈ K (j), ci ∈ C (j), j = 1, . . . , n, (6.88)

where p j is of the form in which the constraints in C (j) were formulated: linear,
nonlinear, tabular, quantised, logical or hybrid. As it is useful to categorise known
variables into the natural categories input u, measured y, and parameters θ, the parity

262 6 Fault Diagnosis of Deterministic Systems

relation is written as

r j (t) = p j (ui , yi , θi , ci , t) ui , yi , θi ∈ K (j), ci ∈ C (j), j = 1, . . . , n. (6.89)

The parity relations implemented for residual generation would not be the true system
constraints ci nor the true parameters θi but would be estimates of those, ĉi , θ̂i ,
respectively.

In order to shape the signatures of faults in the residuals or suppress noise, filtering
of the raw parity relation Eq. (6.89) will usually take place, and also the filtered
version is a residual,

r j (t) =
∫ t

0
w j (t − τ)p j (ui , yi , θ̂i , ĉi , τ)dτ , j = 1, . . . , n, (6.90)

where w j (t − τ) is the impulse response of the filter applied to parity relation j .
Further, the vector of residuals could be constructed as a linear combination of

the elements from the above residuals, Eq. (6.90),

r(t) = W

⎛
⎜⎝

r1(t)
...

rn(t)

⎞
⎟⎠ , (6.91)

where W ∈ |Rn×n, det(W) �= 0.

Uncertainty. In real life, ĉi �= ci , and θ̂i �= θi , hence r j (t) could be non-zero even
though there was no violation of a constraint in relation j , ∀ci ∈ C (j) : ci = 0. In
particular, actuator demand and disturbances could drive the residual away from zero
when parameters and constraints are not exactly equal to those of the real object. In
order to make residual evaluation under such uncertainty, it is necessary to accept
that a residual can have some deviation from zero even in the no-fault case. However,
the effect on r j (t) has to be bounded, hence p j (ui , yi , θ̂i , ĉi , t) is bounded,

∥∥∥p j (ui , yi , θ̂i , ĉi , t)
∥∥∥ ≤ α j (ui , yi , t) ∧ 0 < α(ui , yi , t) < ∞. (6.92)

LTI case. If the object for diagnosis is linear and time-invariant (LTI), the residual
generator could be LTI with a frequency representation

r(s) = H ru(s)u(s) + Hrd(s)d(s) + Hrf(s) f (s) (6.93)

being an explicit function of input, disturbances and faults.
In an ideal case, residual generation is perfect and we have H ru(s) = O and

Hrd(s) = O. Residual evaluation then reduces to investigating the properties of

6.6 Residual Evaluation 263

r(s) = Hrf(s) f (s). (6.94)

In the general case, still with an LTI system, model uncertainty and unmodelled
dynamics will give rise to H ru(s) �= O and Hrd(s) �= O. Residual evaluation
need then be made such that false alarms are avoided from control input u(t) and
disturbances d(t) within the normal range.

6.6.2 Evaluation Against a Threshold

Validating that no fault is present is equivalent with checking that the residual vector
is zero. Validating the presence of a fault means checking whether the residual is or
has been different from zero. The two hypotheses and the associated condition on
the residual vector are

H0(0, t) :
H1(f j , t j) :

no fault is present ‖r‖ = 0
fault f j was present since time t j ‖r(t)‖ �= 0, t ≥ t j ,

(6.95)

where ‖r‖ is an appropriate norm of the residual.

Test function. For generality, introduce a test function ϕ(r(t)), which provides a
measure (norm) of the residual’s deviation from zero. Some common test functions
are the following

• Absolute value
ϕ(r j (t)) = ∣∣r j (t)

∣∣ . (6.96)

• An approximation to the two-norm of the residual vector

ϕ(r j (t)) =
⎛
⎝ 1

T

t∫
t−T

∣∣r j (τ)
∣∣2 dτ

⎞
⎠

1
2

. (6.97)

• Square root of filtered absolute value, squared,

ϕ(r j (t)) =
(∫ t

0
w(j)

ϕ (t − τ)
∣∣r j (τ)

∣∣ dτ

) 1
2

. (6.98)

• Filtered mean square value of signal

ϕ(r j (t)) =
∫ t

0
w(j)

ϕ (t − τ)

(
r j (τ) − 1

T

∫ τ

τ−T
r j (τ2)dτ2

)2

dτ , (6.99)

264 6 Fault Diagnosis of Deterministic Systems

where w
(j)
ϕ (t) is the impulse response of a filter used particularly for evaluation

of residual j . In this context, the test function given in Eq. (6.96) is considered
further.

Threshold function. The next step in residual evaluation is to determine a threshold
function Φ(t) for evaluation of the test function ϕ(t). Φ(t) should have the properties

no fault: ∀t ≥ 0, f (t) = 0 : ϕ(r(t)) ≤ Φ(t)
weakly detectable fault: ∃t ≥ t0 : f (t) �= 0 : ϕ(r(t)) > Φ(t)
strongly detectable fault: ∀t ≥ t1 ≥ t0 : f (t) �= 0, t ≥ t0 : ϕ(r(t)) > Φ(t)

LTI case. In the ideal LTI case, Eq. (6.94), Φ(t) could be chosen constant and as
close to zero as allowed by practical values of bias and noise in the residual.

In the non-ideal case, Eq. (6.93) applies and input and disturbances have some
feed-through to the residual. With the test function ϕ(t) = ∥∥r j (t)

∥∥
2 , the threshold

need be determined such that

Φ j (t) ≥ sup
f =0,‖u,d‖<ε

(ϕ(r j (t)))

is achieved in the time domain. The fact that total power calculated in the time domain
and in the frequency domain are equal is used to determine the threshold function,

||r(jω)||2 = 1

2π

∫ ∞

0
r(jω)r(−jω) dω = lim

T →∞

∫ T

0
|r(t)|2dt = ||r(t)||2.

From Eq. (6.93), the residual is given in the frequency domain. Component j of the
residual is

r j (s) = (H ru(s)u(s))(j) + (Hrd(s)d(s))(j) + (
Hrf(s) f (s)

)(j)
.

With k control inputs

∥∥r j (jω)
∥∥

2 ≤ ‖H ru(jω)u(jω)‖(j)
2 + ‖Hrd(jω)d(jω)‖(j)

2 (6.100)

≤
k∑

i=1

‖H ru(jω)‖(j i)∞ ‖ui (jω)‖2 + ‖Hrd(jω)d(jω)‖(j)∞

for all admissible u and d. The first term in the right hand side is a gain times input
power. The second is the maximal contribution to the residual from disturbances.

Let the effect of disturbances on the residual be bounded by

‖Hrd(jω)d(jω)‖(j)∞ < β
(j)
d , (6.101)

6.6 Residual Evaluation 265

then Φ(t) should be chosen as the time-varying function

Φ j (t) =
k∑

i=1

βi ‖ui (t)‖2 + β
(j)
d (6.102)

βi = ‖H ru(jω)‖(j i)∞ .

This threshold is a function of maximal gains from control inputs to residual
and of the maximum gain from disturbances to residual. It is often referred to as a
time-varying threshold in the literature. The term adaptive threshold has also been
used.

If the time-varying threshold Eq. (6.102) is too conservative, a dynamical bound
could be specified as

Φ j (t) =
k∑

i=1

(∫ t

0
ĥ(j i)

ru (t − τ)ui (τ)dτ

)
+ β

(j)
d , (6.103)

where ĥ(j i)
ru is an estimate of the maximum (envelope) of impulse response functions

from input i to residual j for a given model uncertainty.

Example 6.10 Ship example (LTI case)
Assume the ship was LTI,

y1(s) = ω3(s) + ωw(s) + fω(s) = b

s − bη1
δ(s) + ωw(s) + fω(s) (6.104)

y2(s) = ψ(s) + fψ(s) = 1

s
(ω3(s) + ωw(s)) + fψ(s)

the design model was

ω̂3(s) = b̂

s − b̂η̂1
δ

ψ̂(s) = 1

s
ω̂3(s)

and a residual generator is chosen as

r1(s) = y1(s) − ω̂3(s) =
(

b

s − bη1
− b̂

s − b̂η̂1

)
δ(s) + ωw(s) + fω(s)

r2(s) = τ

1 + sτ
(sy2(s) − y1(s)) = sτ

1 + sτ
fψ(s) − τ

1 + sτ
fω(s).

266 6 Fault Diagnosis of Deterministic Systems

With no faults

‖r1(jω)‖2 ≤
∥∥∥∥∥

b

jω − bη1
− b̂

jω − b̂η̂1

∥∥∥∥∥∞
‖δ(jω)‖2 + ‖ωw(jω)‖∞

and

‖r1(jω)‖2 ≤
∥∥∥∥∥

b

jω + bη1
− b̂

jω + b̂η̂1

∥∥∥∥∥∞
‖δ(t)‖2 + ‖ωw(jω)‖∞ (6.105)

Φ1(t) =
∥∥∥∥∥

b

jω − bη1
− ˆjω

jω − b̂η̂1

∥∥∥∥∥∞
‖δ(t)‖2 + ‖ωw(jω)‖∞ (6.106)

with ‖ωw(jω)‖∞ ≤ βd,

Φ1(t) =
∣∣∣∣ η̂1 − η1

η1η̂1

∣∣∣∣ ‖δ(t)‖2 + βd = βu ‖δ(t)‖2 + βd. (6.107)

In real time, we evaluate
‖r(t)‖2 ≤ βu ‖δ(t)‖2 + βd (6.108)

using Eq. (6.97) as an approximation to the two norm. �

General case. In the general case, if the parity relation is bounded by

ϕ(p j (ui , yi , θ̂i , ĉi , t)) ≤ α j (ui , yi , t) ∧ 0 < α(ui , yi , t) < ∞. (6.109)

The threshold function can obviously be chosen as

Φ j (t) ≥ α j (ui , yi , t) (6.110)

If more detailed information is available, e.g.

α j (ui , yi , t) ≤ β0 +
k∑

i=1

βji |ui | (6.111)

such information should be utilised when specifying the threshold, in this case as

Φ j (t) = β0 +
k∑

i=1

βji |ui | . (6.112)

Return to normal. The above procedure tested for the change H0 to H1. When
a fault has been detected, ϕ(r j (t)) ≥ Φ j (t) ⇒ H (j) = H1, change to normal is
usually made with a hysteresis, γ : ϕ(r j (t)) < γΦ j (t) ⇒ H (j) = H0. A common
choice of hysteresis is γ ⊂ [0.5, 0.8].

6.6 Residual Evaluation 267

If a fault is only weakly detectable in residual j , but strongly detectable in other
residuals, ∀ j : ϕ(r j (t)) < γΦ j (t) ⇒ H (j) = H0 should be used.

It is obvious that simulation and tests in the real environment some engineering
judgement need be employed before good choices can be made of the time-varying
threshold function Φ j (t) and of the hysteresis γ.

This leads to algorithms for deterministic change detection,

Algorithm 6.5 Test against time-varying threshold

Given: A residual r j = p j (ui , yi , θ̂i , ĉi , t) and the object for diagnosis
assumed in the no-fault condition.

1. Determine a test function ϕ(r(t)) according to Eqs. (6.96) to
(6.99).

2. Determine a threshold function Φ j (t): for the LTI case according
to Eq. (6.102), for the general case according to Eq. (6.109) or
Eq. (6.102) when specific information is available.

Initialise: H (j) = H0.
Do:

1. Calculate ϕ(r j (t)) and Φ j (t).
2. If H (j) = H0,∀ j :.

If ϕ(r j (t)) ≥ Φ j (t) set hypothesis to H (j) = H1.
Else:

If ϕ(r j (t)) < γ Φ j (t) for ∀ j set hypothesis to H (j) = H0.

Example 6.11 Time-varying threshold for ship
Let the ship’s true constraints be:

c1 : ω̇3 = bη1ω3 + bη3ω3
3 + bδ

c2 : ψ̇ = ω3 + ωw

m1 : y1 = ψ̇
m2 : y2 = ψ

(6.113)

And let a model used for design be

ĉ1 : ω̇3 = b̂η̂1ω3 + b̂δ

ĉ2 : ψ̇ = ω3
m1 : y1 = ψ̇
m2 : y2 = ψ

(6.114)

268 6 Fault Diagnosis of Deterministic Systems

Using the model for design, a residual generator is suggested as

r1 = d
dt y1 − d

dt ŷ1

r2 = d
dt y2 − y1

(6.115)

then, the real residual will vary with input and

r1(t) = (bη1 − b̂η̂1)ω3 + bη3ω3
3 + (b − b̂)δ(t) + d

dt ωw(t)
r2(t) = 0

|r1(t)| ≤
∣∣∣bη1 − b̂η̂1

∣∣∣ |y1| + |bη3|
∣∣∣y3

1

∣∣∣ +
∣∣∣b − b̂

∣∣∣ |δ| +
∣∣∣∣ d

dt
ωw(t)

∣∣∣∣
sup

≤ β1 |y1| + β3

∣∣∣y3
1

∣∣∣ + α1 |δ| + βd ≤ α2 |δ| + βd. �

6.7 Exercises

Exercise 6.1 Residual generator for position actuator
Consider the system in Fig. 3.8 and parameters given in Exercise 3.3. There is no measurement
noise in the exercise.

1. Implement a candidate residual generator. Use the parity equations

e(s) = ym(s) − ŷ(s),

where

ŷ1(s) = 1

s Itot + α

(
kqη im(s)

)
,

and

ŷ2(s) = 1

Ns
(nm(s)).

Investigate the properties of these potential residual generators by applying step changes
on either of the faults.

2. Consider, further the possible fault in the shaft speed sensor. Investigate experimentally
whether all three faults can be detected and isolated.

3. Derive the transfer function matrix Hyf (s) and use this to explain the observations. �

Exercise 6.2 Residual generation using the parity space approach
This exercise deals with residual generator for the industrial actuator. Refer to Fig. 3.7. The
disturbance is Ql. The input is icom. The measurements are nm and θm .

1. Determine the transfer function matrices Hyu(s) and Hyd(s).
2. Write the transfer function matrix

http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_3

6.7 Exercises 269

H(s) =
(

Hyu(s) Hyd(s)
I O

)
.

3. Write H(s) in the form

H(s) = 1

h(s)
H̃(s)

where H̃ is a polynomial matrix.
4. Determine the rank of H̃(s).

5. Determine the nullspace of H̃
T
(s).

6. From the nullspace of H̃
T
(s), determine residual generator(s)

r(s) = V ru(s)u(s) + V ry(s) y(s)

that make the residual independent of unknown input. Verify this property by showing that

V ry(s)Hyd = O.

7. Determine the transfer function between f (s) and r(s) V ry(s)Hyf (s) and test which of
the three faults fi , fn and fθ are detectable. �

Exercise 6.3 Residual generation for single-axis satellite
In continuation of Exercise 5.3 this exercise deals with residual generation for the single-axis
satellite.

A state-space model for the single axis is given by

ẋ1 = 1
I (k1u1 + k2u2 + w0)

ẋ2 = x1
y1 = x1 + f1
y2 = x2 + f2
y3 = x2 + f3
y4 = k1u1 + f4
y5 = k2u2 + f5,

where x1 is the angular velocity, x2 the angle of the satellite and nominal parameters are

I = 14.33 kg m2

k1 = k2 = 0.5.

There are two input signals, u1 and u2 to actuators 1 and 2, respectively. There is one
unknown input d. The magnitude of d is not known prior to the launch of the satellite, but it
is known that d is constant over time.

There are five measurements: y1 measures the state x1, y2 and y3 measure the state x2. y4
measures the actual torque from actuator 1, y5 measures the actual torque from actuator 2.

1. Determine the transfer function matrices Hyu(s) and Hyd(s).
2. Determine the transfer function matrix

http://dx.doi.org/10.1007/978-3-662-47943-8_5

270 6 Fault Diagnosis of Deterministic Systems

H(s) =
(

Hyu(s) Hyd(s)
I O

)
.

3. Write H(s) in the form

H(s) = 1

h(s)
H̃(s)

where H̃ is a polynomial matrix.
4. Determine the rank of H̃(s).
5. How many independent residual generators can be expected that are independent of input

u(s) and of disturbances d(s).
6. Find the left nullspace of H̃(s).
7. Determine a residual generator based on the nullspace. �

Exercise 6.4 Properties of residual generators for single-axis satellite
This exercise is a continuation of Exercise 6.3.

1. Determine the response of the residual vector to the additive faults on y1 to y5 by calculating

r(s) = V ry(s)Hyf (s) f (s).

2. Determine which of the above faults are detectable and which are strongly detectable.
3. Determine which of above faults can be isolated.

As pure differentiation or integration are not feasible in the presence of measurement noise,
a filter is applied on one of the residuals. Investigate the features of two proposed residual
generators. Both have the form

r12(s) = 1

s + α
y1(s) − s

s + α
y2(s)

r23(s) = y2(s) − y3(s).

Version (a) has α = 0.01, version (b) has α = 10.
4. Discuss the properties of the two residual generators (detectability, strong

detectability, isolability). Apply a fixed threshold on either set of generators to detect
if a fault is present and verify your results by simulation. �

Exercise 6.5 Residual generator design - optimisation method
This exercise addresses the position servo from Exercise 3.2, (Fig. 5.36 on p. 207). The exercise
is to design residual generators based on the standard setup used in robust control. It is assumed
that only a single fault can appear at a time.

1. Formulate the FDI problem for the system as a standard problem. Identify the matrices
that need to be selected in connection with the design.

2. Design residual generators for fault detection using the standard setup and standard design
methods.

3. Design a residual generator for fault isolation and fault estimation using the standard setup
and standard design methods. �

Exercise 6.6 Residual generator with an explicit specification
This exercise addresses the position servo from Exercise 3.2, (Fig. 5.37 on p. 207). Assume
the load possess a dominant disturbance above 0.5 rad/s.

http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_5

6.7 Exercises 271

1. Formulate a specification Hzd(s) and Hzf (s) for the design.
2. Formulate the fault detection and isolation problem for the system as a standard problem.

Identify the matrices that need to be selected in connection with the design.
3. Design residual generators for fault detection using the standard setup and standard design

methods.
4. Design a residual generator for fault isolation and fault estimation using the standard setup

and standard design methods. �

Exercise 6.7 Residual generation by a Luenberger observer
Consider the following linear time-invariant system

(
ẋ1
ẋ2

)
=

(
0 1

−2 −3

)(
x1
x2

)
+

(
f1
f2

)

y = (
1 0

) (
x1
x2

)
+ f3

where x =
(

x1
x2

)
is the state, f =

⎛
⎝ f1

f2
f3

⎞
⎠ is the fault vector (f = 0 ⇐⇒ normal

operation) and y is the measured output.

1. Define the parameters k1 and k2 of a Luenberger observer

(
ż1
ż2

)
=

(
0 1

−2 −3

) (
z1
z2

)
+

(
k1
k2

)(
y − ŷ

)

ŷ = (
1 0

) (
z1
z2

)

which has the following property: in the absence of faults, the estimation error

(
z1 − x1
z2 − x2

)

converges to zero with a dynamics associated with the two eigenvalues λ1 = λ2 = −5.
2. Determine the transfer function between the residual r = y − ŷ and the fault vector f

under the form
r = G1(s) f1 + G2(s) f2 + G3(s) f3. � (6.116)

Exercise 6.8 Static and dynamical redundancy
Consider the following system composed of four components: process, sensor 1, sensor 2, sen-
sor 3 (see Fig. 6.7). It is assumed that it can be described by the following linear time-invariant
model

272 6 Fault Diagnosis of Deterministic Systems

(
ẋ1 (t)
ẋ2 (t)

)
=

(
0 1

−2 −3

)(
x1 (t)
x2 (t)

)
+

(
0
1

)
u(t)

+
(

0 0 0 0
0 0 0 1

)
⎛
⎜⎜⎝

f1 (t)
f2 (t)
f3 (t)
f4 (t)

⎞
⎟⎟⎠

⎛
⎝ y1 (t)

y2 (t)
y3 (t)

⎞
⎠ =

⎛
⎝ 1 0

1 1
2 1

⎞
⎠

(
x1 (t)
x2 (t)

)
+

⎛
⎝ 1 0 0 0

0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎜⎜⎝

f1 (t)
f2 (t)
f3 (t)
f4 (t)

⎞
⎟⎟⎠

where

x(t) =
(

x1 (t)
x2 (t)

)

characterises the state of the process component, u(t) is the control input,

y(t) =
⎛
⎝ y1 (t)

y2 (t)
y3 (t)

⎞
⎠

is the vector of all measurements and

f(t) =

⎛
⎜⎜⎝

f1 (t)
f2 (t)
f3 (t)
f4 (t)

⎞
⎟⎟⎠

is the fault vector.

1. What is the association between the faults fi , (i = 1, 2, 3, 4) and the system components.
2. Is the state x(t) observable?
3. Is there any static redundancy in this system? What are the detectable or isolable faults?
4. Assume that during a given period of time, only sensor y1 is operational (for example,

y2 and y3 are disconnected for maintenance). Is it still possible to estimate the state or to
detect and isolate the faults? �

Process
state x(t)

Sensor 1

Sensor 2

Sensor 3

y1(t)

y2(t)

y3(t)

u(t) x(t)

Fig. 6.7 System with three sensors

6.8 Bibliographical Notes 273

6.8 Bibliographical Notes

Parity relations. The parity relations that were initially studied in [65, 125, 205] are
functions of a sliding window of the most recent sensor output and actuator input
values. The idea used to develop parity relations in the time domain was extended to
the frequency domain. This has lead to the generalised parity relations [376] which
do not necessarily involve only the data of a sliding window. Later, this distinction
between parity relations and generalised parity relations tended to disappear. The
presentation given here is in the line of [256]. A way to assure causality and stability
of a filter involving the inverse of a transfer matrix can be found in [177]. A thorough
study of the parity space approach to residual generation can also be found in [124].
The equivalence between observer-based and parity space approaches is developed
in [225] for instance. Further results on the design of residual generators in the
frequency domain can be found in [177].

Analytic redundancy relations. The systematic computation of analytical redun-
dancy relations for polynomial nonlinear models was developed in [326, 409].
Details on elimination theory may be found in [82, 309]. For Gröbner bases used in
Buchberger’s algorithm [44], details and definitions can be found in [71]. The reader
is referred to [129] for details as the use of characteristic sets.

Diagnosis as an optimisation problem. A comprehensive reference to fault diag-
nosis treated as an optimisation problem is [228]. Earlier research results, that relate
to the presentation in this book, were published in [103, 105]. The book [64] has a
chapter devoted to this subject. The design of fault diagnosis filters using the standard
setup presented in this book originates in [249, 343].

Time-varying thresholds. More information on threshold selection can be found
in the classical presentation of this subject of [92] and, for later results, in [80, 161].

Observer-based residual generation. The observer-based approach for residual
generation has been the object of numerous studies. The reader can refer to the
book [265] for an introductory treatment and references on early works in this area.
Reference [64] provides more recent developments on the topic as well as a very
complete list of references.

Active detection and isolation. Active fault detection and isolation has been briefly
mentioned in this chapter. The problem of determining an optimal input signal to
distinguish between different models (representing healthy and faulty modes) for
a given process has been the object of a thorough study in [54, 239]. Reference
[242] suggested novel ways to achieve active fault isolation while a plant is running.
Recently, [308] has proposed a method for input design that guarantees fault diagnosis
using zonotopes.

Chapter 7
Fault Diagnosis of Stochastic Systems

Abstract Solutions to the fault detection, estimation and isolation problems are
presented when the model of the supervised system is a linear stochastic continuous-
variable system. Faults are modelled as additive signals. The resulting diagnosis
system is separated in two parts: a residual generator based on Kalman filters, and a
decision system based on stochastic change detection/isolation algorithms. The link
between these two parts is the object of particular attention.

7.1 Introduction

In the previous chapter, measurement noise and process disturbances could be intro-
duced as inputs with bounded energy and handled through the optimization-based
design. This might, however, lead to a conservative design. An alternative way to
account for measurement noise is to resort to stochastic sequences. Such random
inputs can also be used to represent various disturbances like wind turbulence affect-
ing the operation of wind turbines and airplanes notably. As dealing with random
inputs is easier in a discrete-time framework than in a continuous-time framework,
a discrete-time model of the supervised process will be considered in this chapter.
Such a model can be deduced from a linear stochastic differential equation via the
procedure recalled in the appendix on random variables and stochastic processes.

The fault detection, isolation and/or estimation systems based on stochastic mod-
els keep the same structure as in the deterministic case (see Fig. 6.1 in Chap. 6). They
are thus made of a residual generator and a decision system. As measurement noise
typically affects all sensor outputs, perfect decoupling of the residual with respect to
these signals cannot be achieved. Residuals are thus stochastic signals and, to process
them properly, statistical change detection/isolation algorithms are needed.

There is a well-developed theoretical framework for statistical change detec-
tion/isolation, and we will provide an introduction to this topic before applying
it to fault diagnosis. The presentation aims at providing detailed algorithms for
implementing the methods and for tuning the design parameters according to typi-
cal specifications. The latter consist of false alarm and missed alarm probabilities,

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_7

275

http://dx.doi.org/10.1007/978-3-662-47943-8_6

276 7 Fault Diagnosis of Stochastic Systems

for non-sequential tests, and of mean detection delay and mean time between false
alarms, for online change detection algorithms.

The chapter is organised as follows. Section 7.2 presents statistical change detec-
tion/isolation algorithms and their tuning, with particular emphasis on methods for
detecting a change in the mean of a normally distributed independent sequence.
Residual generation on the basis of a linear stochastic model is addressed in Sect. 7.3.
Next, the statistical properties of the residuals are investigated and appropriate resid-
ual evaluation methods are developed by resorting to the statistical change detec-
tion/isolation algorithms presented in Sect. 7.2.

7.2 Change Detection Algorithms

When the residual generator is designed on the basis of a linear stochastic model,
residual evaluation reduces, under suitable hypotheses, to the problem of detecting a
change in the mean of a normally distributed random sequence. This can be achieved
by sequential change detection algorithms. Therefore, this topic is considered before
addressing fault detection, isolation and estimation in the case of additive faults.

7.2.1 Sequential Change Detection: The Scalar Case

Introduction. The sequential change detection algorithms are first derived in the
simple case of processing a sequence of independent random variables with proba-
bility density function depending on a scalar parameter θ. The situation where θ is
the mean of a Gaussian distribution is used to illustrate the theory, since this is the
problem often encountered in residual evaluation. As the sequential algorithms will
be used to process residuals, the above theory is generalised to the case of detecting
changes in the mean of sequences of Gaussian vectors, which is done in a subsequent
paragraph.

Problem statement. Consider a sequence of independent random variables z(i),
i = 1, 2, . . ., with probability density function pθ(z) depending upon one scalar
parameter θ. Before an unknown change time, k0, θ is equal to θ0. At time k0, it
changes to θ = θ1 �= θ0. The change detection problem is then threefold:

• detect whether the condition is normal, θ = θ0, or the parameter θ has changed
to θ1,

• estimate the change time,
• estimate the value of the change in the parameter if the change magnitude is

unknown.

The detection problem in the first bullet point is referred to as distinguishing
between two hypotheses: H0 - the nominal case, H1 - a change has taken place. The

7.2 Change Detection Algorithms 277

condition under H0 are assumed to be known so that the parameter θ0 is known. Two
situations are then considered for θ1, namely θ1 known and θ1 unknown. This will
be shown to lead to two different classes of change detection algorithms:

-detecting a known change leads to the cumulative sum (CUSUM) algorithm.
-detecting an unknown change leads to the generalised likelihood ratio (GLR) algo-

rithm.

Both the CUSUM and the GLR algorithms rely on the Neyman–Pearson’s
approach to detection. It is thus assumed that no prior knowledge is available
about the probability for the system to be in the condition H0 : p(z) = pθ0(z)
or H1 : p(z) = pθ1(z). In other words no prior information on the probability
distribution of the change time is assumed. A fundamental measure to investigate
whether data correspond to a probability density function pθ0(z) or pθ1(z) is the
ratio between the two probability density functions. Since probability distributions
are often assumed to be Gaussian (Appendix B), the logarithm of this probability
ratio gives very convenient calculations. The log-likelihood ratio of an observation
z, is defined as:

s(z) = ln
pθ1(z)

pθ0(z)
. (7.1)

The name comes from the fact that the likelihood function of the observation z
is by definition equal to the probability density pθ(z) of the underlying random
variable evaluated at z. Given the observation z, the log-likelihood function is thus a
deterministic function of θ.

The log-likelihood ratio has the following fundamental statistical property:

Eθ0(s) =
∫ ∞

−∞
s(z) pθ0 (z) dz < 0, (7.2)

Eθ1(s) =
∫ ∞

−∞
s(z) pθ1 (z) dz > 0. (7.3)

Eθ0 (Eθ1) denotes expectation of s(z) under the distribution associated to pθ0(z)
(pθ1(z)). This property can be easily understood from the following example. Assume
that pθ(z) is a Gaussian probability density function and that the parameter θ is the
mean of this distribution, which will be denoted μ.

Consider Fig. 7.1. When the random variable z has pμ0(z) (pμ1(z)) as probability
density function, its realisations are most often in the “neighbourhood” of μ0 (μ1).

Take the realisation z1 for instance. Clearly
pμ1 (z1)

pμ0 (z1)
< 1. As z1 is most probably

obtained when the random variable z has pμ0(z) as probability density function, this

illustrates that the logarithm of
pμ1 (z)
pμ0 (z) is on the average negative when z has pμ0(z)

as probability density function. The property described by (7.2), (7.3) is exploited in
the next section to provide an intuitive derivation of the CUSUM algorithm.

278 7 Fault Diagnosis of Stochastic Systems

Fig. 7.1 Two Gaussian
probability density functions
with mean μ0 = 0 and
μ1 = 2, and with the same
variance σ2 = 1

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

z1 2

7.2.2 Detection of a Known Change - The CUSUM Algorithm

The problem stated in the previous section, with θ1 known, is addressed. Consider
the cumulative sum:

Cumulative sum: S(k) =
k∑

i=1

s(z(i)) =
k∑

i=1

ln
pθ1(z(i))

pθ0(z(i))
. (7.4)

In this expression, and in the remaining part of this section, k denotes the present
time instant. From (7.2) and (7.3), S(k) is expected to exhibit a negative drift before
change, and a positive drift after change. This is illustrated in Figs. 7.2 and 7.3.

Fig. 7.2 Realisation of a
sequence of independent
random variables with
distributions depicted in
Fig. 7.1. Time on the x-axis
is expressed in number of
samples

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3

4

5

6

7.2 Change Detection Algorithms 279

Fig. 7.3 Evolution of S(k)

for the sequence of Fig. 7.2,
as a function of time in
number of samples

0 200 400 600 800 1000
−1000

−800

−600

−400

−200

0

200

In Fig. 7.2, a realisation of a sequence of independent random variables with
distribution pθ0(z) before k = 500 and pθ1(z) after k = 500 is depicted. Here pθ0(z)
and pθ1(z) correspond to the Gaussian distributions pμ0(z) and pμ1(z) of Fig. 7.1.
Figure 7.3 gives the evolution of S(k), which behaves as expected. The difference
between S(k) and the minimum value of S(j), 1 ≤ j ≤ k yields relevant information
on the change. Hence the following decision function g(k) is considered

g(k) = S(k) − m(k) (7.5)

with m(k) = min1≤ j≤k S(j). The stopping time (also called alarm time), ka is
the time instant at which g(k) crosses a user-defined positive threshold h. The fault
occurrence time, k0, can be estimated as the time instant k̂0 at which S(k) has changed
from negative to positive slope. It is formally expressed by

k̂0 = argmin 1≤ j≤ka S(j).

The expression of the cumulative sum (7.4) can easily be computed for the distribu-
tions considered in Fig. 7.1, as shown in the example below.

Example 7.1 Change in the mean of a Gaussian sequence
Remember that the Gaussian probability density function for a random variable with mean μ
and variance σ is

pμ(z) = 1√
2πσ

exp

(
− (z − μ)2

2σ2

)
. (7.6)

The resulting likelihood ratio for detecting a change in the mean from μ0 to μ1 is

pμ1(z)

pμ0 (z)
= exp

(
− (z − μ1)2

2σ2 + (z − μ0)2

2σ2

)
.

280 7 Fault Diagnosis of Stochastic Systems

×
z(k)

z− 1

Comparator

(μ 1 + μ 0)/2

−

+

+

(μ 1 − μ 0)/ σ 2

h + m(k)

+

Fig. 7.4 Block diagram for the CUSUM test (7.4), (7.5), (7.7)

Hence straightforward computations yield the following expression for the log-likelihood ratio
s(z):

s(z) = 2(μ1 − μ0)z + (μ2
0 − μ2

1)

2σ2 = μ1 − μ0

σ2

(
z − μ0 + μ1

2

)
. (7.7)

Figure 7.3 has been obtained by substituting (7.7) (with z = z(i)) for s(z(i)) in
(7.4), which yields the algorithm depicted in the block diagram of Fig. 7.4. Note that
the signal-to-noise ratio μ1−μ0

σ appears in (7.7), and it is thus automatically accounted
for in the testing procedure.
Alternatively, the situation where the mean of the signal remains constant but its
variance changes is considered as the following case:

Example 7.2 Change in the variance
If the variance changes after a fault, the following relation

pσ1(z)

pσ0 (z)
= σ0

σ1
exp

(
− (z − μ)2

2σ2
1

+ (z − μ)2

2σ2
0

)

holds and the log-likelihood ratio is

s(z) = ln
σ0

σ1
+ (z − μ)2

2

(
1

σ2
0

− 1

σ2
1

)
.

Such a variance change may correspond to increased measurement noise, due to a deteriorated
connection for instance. �

Remark 7.1 (Mean and variance of cumulative sum increments) Important proper-
ties of any detector are related to the properties of the test statistics, g(k). For the
CUSUM algorithm, and the case of z(i) being a Gaussian sequence with mean μ
and variance σ2, we will later need expressions for the mean and variance of the

7.2 Change Detection Algorithms 281

individual increments s(z) used to calculate g(k). The mean μs and the variance σ2
s

of the cumulative sum increments (7.7) can be computed in a straightforward way as

μs = μ1 − μ0

σ2

(
μ − μ1 + μ0

2

)
(7.8)

and

σ2
s = (μ1 − μ0)

2

σ2 (7.9)

In particular,

when μ = μ0, Eμ0(z) = μ0 and μs = Eμ0 (s(z)) = − (μ1 − μ0)
2

2σ2 ,

when μ = μ1, Eμ1(z) = μ1 and μs = Eμ1 (s(z)) = (μ1 − μ0)
2

2σ2 . �

The CUSUM algorithm - formal derivation. A more formal derivation of the
CUSUM algorithm which is helpful for the subsequent description of the GLR algo-
rithm is now presented. It is called the offline statistical derivation, and it is based on
the following reformulation of the problem:

Problem 7.1 (Offline statistical formulation) Consider the sequence of independent
random variables z(1), . . . , z(k) with probability density function pθ(z) depending
on one scalar parameter θ. Choose at time instant k between the hypotheses:

H0 : θ = θ0 for 1 ≤ i ≤ k.

H1 : θ = θ0 for 1 ≤ i ≤ k0 − 1 and θ = θ1 for k0 ≤ i ≤ k, where the
time instant k0 is unknown.

From classical results in hypothesis testing due to Neyman and Pearson, it is
known that tests to decide between H0 and H1 that are optimal in some sense are
based on the log-likelihood ratio between both hypotheses. As k0 is unknown, let
j be a hypothetical change time. The log-likelihood ratio between H0 and H1 with
k0 = j is given as

Λk
1(j) =

j−1∏
i=1

pθ0(z(i))
k∏

i= j

pθ1(z(i))

k∏
i=1

pθ0(z(i))

. (7.10)

The independence between the random variables z(i), i = 1, . . . , k was used to
express Λk

1(j) in terms of the marginal probability density function pθ (z(i)). From
(7.10), the following cumulative sum of log-likelihood ratios is deduced:

282 7 Fault Diagnosis of Stochastic Systems

Sk
j = ln Λk

1(j) =
k∑

i= j

ln
pθ1(z(i))

pθ0(z(i))
. (7.11)

As the change time is unknown, the standard statistical approach consists of replacing
it by its maximum likelihood estimate, namely, in looking for the value of j that
maximises the numerator in (7.10). This is also the value of j that maximises (7.11).
The log-likelihood ratio between H0 and H1 is thus estimated by max1≤ j≤k Sk

j . The
result due to Neyman and Pearson invoked above actually states that the optimal
decision function for Problem 7.1 is

g(k) = max
1≤ j≤k

k∑
i= j

ln
pθ1(z(i))

pθ0(z(i))
= max

1≤ j≤k

k∑
i= j

s(z(i)) (7.12)

and the optimal test consists of the following decisions:

if g(k) ≤ h accept H0
if g(k) > h accept H1.

(7.13)

The way optimality is understood here involves several concepts. The reader should
consult the reference section for precisions on this topic.

When H1 is accepted, an estimate of the change time is provided by:

k̂0 = argmax 1≤ j≤ka Sk
j ,

where ka is the alarm time, namely the value of k for which g(k) crosses the
threshold h.

The decision functions (7.5) and (7.12) are identical. Indeed, with reference to

Fig. 7.3,
∑k

i= j ln
pθ1 (z(i))
pθ0 (z(i) is maximum when all the successive likelihood ratios which

correspond to a positive slope on average are considered. This is precisely the way
(7.5) was obtained.

CUSUM recursive implementation. An efficient way to implement the CUSUM
algorithm is to use its recursive form. From (7.5) and Fig. 7.3 or from (7.12), and from
the fact that the threshold h is positive, it is seen that only the contributions to the
cumulative sum that add up to a positive number must be taken into account in order
to determine the decision function. It justifies the following recursive computation
of this function:

g(k) = max(0, g(k − 1) + s(z(k))). (7.14)

To obtain an estimate of the fault occurrence time, the number of successive
observations for which the decision function remains strictly positive is computed as:

N (k) = N (k − 1) 1{g(k−1)>0} + 1, (7.15)

7.2 Change Detection Algorithms 283

where 1{x} is the indicator of event x , namely, 1{x} = 1 when x is true, and 1{x} = 0
otherwise. An estimate for the fault occurrence time is then given as

k̂0 = ka − N (ka), (7.16)

where ka is the stopping or alarm time.

Example 7.1 (cont.) Change in the mean of a Gaussian sequence
Considering again the detection of a change in the mean of a Gaussian sequence, (7.14)
together with (7.7) yields:

g(k) = max

(
0, g(k − 1) + μ1 − μ0

σ2

(
z(k) − μ0 + μ1

2

))
(7.17)

which must be introduced in the decision logic (7.13). �

Remark 7.2 (Two-sided CUSUM algorithm) Quite often, both positive and negative
changes in the mean of a Gaussian sequence with mean μ0 and variance σ2 have to
be detected. Letting β denote the magnitude of this change, the following two-sided
CUSUM algorithm can be used for this purpose.

g+(k) = max

(
0, g+(k − 1) + z(k) − μ0 − β

2

)
(7.18)

g−(k) = max

(
0, g−(k − 1) − z(k) + μ0 − β

2

)
. (7.19)

An alarm is generated when either g+(k) or g−(k) reaches the threshold h̄ = hσ2/β.
Note that the factor μ1−μ0

σ2 that appears in (7.17) has been omitted from the deci-
sion functions g+(k) and g−(k) in (7.18) and (7.19). Instead equivalently, it is now
included in the threshold h̄. The expression for g−(k) is deduced from (7.17) by
looking for a positive change in the mean of the sequence −z(i), i = 1, 2, . . . �

7.2.3 Detection Properties for the CUSUM Algorithm

In this section, the focus is on the case of a change in the mean, μ, of a Gaussian
sequence.

Parameters of the CUSUM algorithm. Normally, the data associated to hypothesis
H0 correspond to a fault free working mode. Hence parameter μ0 can be estimated
from a set of experimental data, Z0 = {z0(1), . . . , z0(N0)}, obtained in the absence
of fault by taking the empirical mean of these data. The variance σ2 can also be
estimated in this way. The estimates are denoted μ̂0 or σ̂2, respectively.

There are thus two design parameters left in the CUSUM algorithm, h and μ1.
Indeed, although the algorithm was derived under the hypothesis that μ1 is known,
this is seldom the case in practice. Nevertheless, the algorithm can be useful even

284 7 Fault Diagnosis of Stochastic Systems

when μ1 is replaced by an approximate value. These parameters can be determined
to meet specifications in terms of mean delay for detection and mean time between
false alarms, as explained below.

Average Run Length (ARL) for CUSUM algorithm. Exact computation of the
mean delay for detection and the mean time between false alarms is involved, but
approximate expressions and bounds are available in the case of the detection of a
change in the mean of a Gaussian sequence. Both quantities can be determined from
the average run length (ARL) function defined as

L(μ) = Eμ (ka)

which is thus the expected value of the alarm time instant of the CUSUM algorithm
when the data sequence is normally distributed with mean μ and variance σ2. It is
a function of the mean μ. When μ = μ0 (data recorded in healthy conditions), the
value of the ARL function L(μ0) is equal to the mean time between false alarms, T̄ .
On the other hand, L(μ1) gives the mean delay for detection, τ̄ . An approximation
for the ARL function is given by the following expression: ([11], p. 219)

L̂(μ) = (7.20)(
exp

[
−2

(
μs h

σ2
s

+ 1.166
μs

σs

)]
− 1 + 2

(
μs h

σ2
s

+ 1.166
μs

σs

))(
σ2

s

2μ2
s

)

where μs �= 0 is linked to μ by

μs = μ1 − μ0

σ2

(
μ − μ1 + μ0

2

)
. (7.21)

μs and σs are the mean and the standard deviation of the increments of the cumulative
sum, respectively, as computed in Remark 7.1.

Hence the mean time for detection can be estimated as

ˆ̄τ = L̂

(
(μ1 − μ0)

2

2σ2

)
= L̂

(
β2

2σ2

)
, (7.22)

where β = μ1 −μ0 and the estimated mean time between false alarms is obtained as

ˆ̄T = L̂

(
− (μ1 − μ0)

2

2σ2

)
= L̂

(
− β2

2σ2

)
. (7.23)

These expressions will be used for tuning the parameters of the CUSUM algorithm.

Tuning of CUSUM parameters. Two situations can be distinguished.

1. μ1 and either an acceptable mean detection delay, τ̄acc , or an acceptable mean time
between false alarms, T̄acc, are given. The tuning then amounts to determining h.

7.2 Change Detection Algorithms 285

2. Acceptable values for the mean detection delay and a lower bound for the mean
time between false alarms are given. The tuning then amounts to determining μ1
and h.

They are successively considered below.
A user specified value for μ1 (or equivalently β) can correspond to the most likely

magnitude of the change, or it can be deduced from a minimum value of the change
for which one wishes the algorithm to generate an alarm. In the latter case, if we
let βmin denote this value. It is then advisable to choose μ1 = μ̂0 + 2βmin. Indeed,
let pμ̂0(z) and pμ̂0+2βmin(z) denote the Gaussian probability density functions with
respective mean μ̂0 and μ̂0 + 2βmin and with variance σ2. It is easy to check that
pμ̂0(z) = pμ̂0+2βmin(z) is achieved for z = μ̂0 + βmin. Thus any sequence of values
of z greater than μ̂0 +βmin on average will yield a sequence of positive log-likelihood

ratio ln
pμ̂0+2βmin

(z)
pμ̂0

(z) on average, and an alarm will be triggered after some time for

such a sequence.
Once μ1 is fixed, a simple way to determine the test threshold from (7.22) or (7.23)

is to plot ˆ̄τ and ˆ̄T as a function of h. To this end, considering (7.22) for instance,
(μ1−μ̂0)

2

2σ̂2 is substituted for μs and (μ1−μ̂0)
2

σ̂2 is substituted for σ2
s in (7.20). Knowing

the acceptable value for ˆ̄τ or ˆ̄T , one then determines from the plot an appropriate
value for h.

In the second situation, τ̄acc and T̄acc can be substituted for ˆ̄τ and ˆ̄T in (7.22)
and (7.23) respectively, as well as the estimates, μ̂0 and σ̂2. This yields a system of
two equations in two unknowns, h and μ1. The solution provides the lowest change
magnitude (μ1 − μ0) that can be detected while meeting the specifications.

A qualitative analysis of the effect of an error on μ1 is provided in the following
remark:

Remark 7.3 (Effect of an error on μ1) The objective of this remark is to illustrate
that the CUSUM algorithm for detection of a change in the mean of a Gaussian
sequence can detect changes even when μ1 is overestimated. To this end, let us
consider Fig. 7.5.

In the left-hand figure, the density functions represented by continuous lines cor-
respond to the actual data, which have mean μ0 = 0 before the change and mean
μ1 = 2 after the change. Figure 7.2 represents a data sequence which was generated
from these density functions. The evolution of the recursive CUSUM decision func-
tion tuned with μ0 = 0 and μ1 = 2 obtained by processing the data of Fig. 7.2 is the
upper line in Fig. 7.5b. Let us now process the same data with a CUSUM algorithm
tuned with a mean value after change equal to 3 (instead of 2). The resulting decision
function is represented by the lower line in Fig. 7.5b. One notices that, when the
value of μ1 in the function g(k) is higher than the real μ, the decision function still
increases on average upon occurrence of a change, however, the slope of the deci-
sion function is lower than with the correct value of μ1. To understand this phenom-
enon, let us look again at Fig. 7.5a, where the Gaussian density function with mean
equal to 3 is plotted with a dash-dotted line. Let p0(z), p2(z) and p3(z) denote the

286 7 Fault Diagnosis of Stochastic Systems

Fig. 7.5 a Gaussian
probability density functions
with actual (continuous line)
and overestimated means
(dash-dotted line), b
evolution of the recursive
CUSUM decision functions
computed with the exact
(continuous line) and
approximated likelihood
ratios (dash-dotted line) for
the data sequence of Fig. 7.2

0.4

0.35

0.3

0.25

0.2

0.1

0.05

0

0.15

A

B

C

-5 0 5 10

1000

1000

800

800

600

600

400

400

200

20000

(a)

(b)

density functions with mean 0, 2 and 3, respectively. After the change in the mean,
a typical data sample from the actual data sequence, says z̃ will have a value in the
neighbourhood of 2. The associated values of the density functions are represented
by the points A (p2(z̃)), B(p3(z̃)) or C (p0(z̃)), respectively. The contribution to the
CUSUM decision function associated to z̃ is equal to p2(z̃)

p0(z̃) when the correct tuning is

used, and to p3(z̃)
p0(z̃)

when μ1 is overestimated. Both values are clearly larger than one,

but p3(z̃)
p0(z̃)

<
p2(z̃)
p0(z̃)

which explains the lower slope of the CUSUM decision function
when μ1 is overestimated. �

The configuration and the implementation of the CUSUM algorithm to detect
changes in the mean of a Gaussian sequence can be summarised as follows if the
first situation is considered for the specifications:

7.2 Change Detection Algorithms 287

Algorithm 7.1 CUSUM algorithm for detection of a change in the mean of a
Gaussian sequence

Given: A set of experimental data Z0, a change magnitude β, and
a specified mean time for detection, τ̄acc, or a specified
mean time between false alarms, T̄acc.

Initialisation: 1. Determine μ̂0 and σ̂2 from Z0

2. Choose h to meet either τ̄acc or T̄acc using (7.22) or (7.23).

At each
sample time:

1. Acquire the new data z(k)

2. Compute g(k) by (7.17) and N (k) by (7.15)
3. If g(k) > h, issue an alarm, provide an estimate of the

change occurrence time k̂0 by (7.16) and reinitialise the
decision function to 0.

Result: A sequence of alarm time instants ka and estimated change
occurrence times k̂0, for increasing time horizon k.

The reinitialisation after an alarm allows one to check whether the change in the
mean persists as time elapses. More on this issue will be said when the algorithm
will be used for fault detection applications.

Example 7.1 (cont.) Change in the mean of a Gaussian sequence
From the first 500 data samples plotted in Fig. 7.2, the following estimates were obtained

μ̂0 = 0.0445 σ̂2 = 0.946.

Letting β = 2 yields μ̂1 = 2.0445. Figure 7.6 gives the mean detection delay and the mean
time between false alarms as a function of the threshold h, computed from (7.22) and (7.23)
were the estimated values are substituted for μ0, μ1 and σ2. The threshold h = 10 gives an
estimated mean time between false alarms larger than 105, while assuring an estimated mean
detection delay lower than 6 samples. The CUSUM algorithm (7.17) is applied to the data of
Fig. 7.2 with the above parameter settings. Figure 7.7 gives a zoom of the decision function in
the vicinity of the change time (namely time 500). The alarm will be issued at time 503 which
corresponds to a detection delay of three samples (of the order of magnitude of the estimated
one). �

Another option regarding the choice of θ1 (the value of the parameter after
change) consists in replacing it by the most likely value computed a posteriori from
experimental data. This leads to the generalised likelihood ratio algorithm described
in the next section.

288 7 Fault Diagnosis of Stochastic Systems

Fig. 7.6 Estimated mean
detection delay in number of
samples, as a function of h
(a) and mean time between
false alarms expressed in
multiples of 105 samples as a
function of h (b)

2 4 6 8 10 12
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

(a)

(b)

7.2.4 Detection of an Unknown Change - The Generalised
Likelihood Ratio Algorithm

The problem can be stated in a similar way as for the offline derivation of the CUSUM
algorithm (cf. Problem 7.1), except that θ1 is unknown. By the same reasoning
as above, the log-likelihood between hypotheses H0 and H1, with an hypothetical
change time j , can be computed as

Sk
j (θ1) =

k∑
i= j

ln
pθ1 (z(i))

pθ0 (z(i))
. (7.24)

7.2 Change Detection Algorithms 289

Fig. 7.7 Zoom on the
decision function resulting
from the recursive algorithm
for the data of Fig. 7.2

494 496 498 500 502

0

2

4

6

8

10

For a given time instant k, it is a function of both j , the change time, and θ1, the
value of the parameter θ after the change. The standard statistical approach to estimate
(7.24) is to replace j and θ1 by their maximum likelihood estimates. The latter are
obtained by solving the following double maximisation problem:

(k̂0, θ̂1) = arg

{
max

1≤ j≤k
max

θ1
Sk

j (θ1)

}
, (7.25)

where k̂0 denotes the estimate of the change time. The GLR decision function takes
the form:

g(k) = max
1≤ j≤k

max
θ1

Sk
j (θ1). (7.26)

The configuration and the implementation of the algorithm can be summarised as
follows:

Algorithm 7.2 GLR algorithm with scalar parameter

Given:
1. A sequence of data z(1), . . . , z(k) with probability density

function pθ(z) depending on the scalar parameter θ.

2. A threshold h.

Compute: g(k) using (7.24), (7.26).

Decide to 1. accept H0 if g(k) ≤ h.

2. accept H1 if g(k) > h.

290 7 Fault Diagnosis of Stochastic Systems

The maximisation in (7.26) is performed over all possible past time instants. As
time elapses, the considered time span increases which induces an increasing search
duration for finding the optimum. To avoid that problem, the fault occurrence time
is restricted to the last M time instants in practice. This amounts to assuming that
the delay for detection is lower than M so that faults can be detected in M sampling
periods at most. The actual decision function obtained from (7.26) is thus:

g(k) = max
k−M+1≤ j≤k

max
θ1

Sk
j (θ1). (7.27)

Example 7.1 (cont.) Change in the mean of a Gaussian sequence
In the particular case of z being a Gaussian sequence with independent and identically distrib-
uted increments (IID), it is possible to find an explicit expression for μ̂1(k, j), the maximum
likelihood estimate of μ1 at the present time instant k, assuming that the fault occurred at time
instant j . Indeed, from (7.7), Sk

j (μ1) takes the following form:

Sk
j (μ1) = μ1 − μ0

σ2

k∑
i= j

(
z(i) − μ0 + μ1

2

)
(7.28)

In order to maximise this expression with respect to μ1, one has to take the derivative of
Sk

j (μ1) with respect to μ1 and equate that expression to zero:

∂Sk
j (μ1)

∂μ1
= 1

σ2

k∑
i= j

(
z(i) − μ0 + μ1

2

)
− k − j + 1

2

(μ1 − μ0)

σ2 = 0. (7.29)

Equation (7.29) yields the following estimate for μ1:

μ̂1(k, j) = 1

k − j + 1

k∑
i= j

z(i). (7.30)

Substituting this expression for μ1 in (7.28) results, after straightforward computations, in:

Sk
j (μ̂1(k, j)) = 1

2σ2
1

k − j + 1

⎡
⎣ k∑

i= j

(z(i) − μ0)

⎤
⎦

2

. (7.31)

Hence the GLR decision function can be written:

g(k) = 1

2σ2 max
k−M+1≤ j≤k

1

k − j + 1

⎡
⎣ k∑

i= j

(z(i) − μ0)

⎤
⎦

2

. (7.32)

If H1 is accepted in the above GLR algorithm, at the alarm time ka, the estimated change
occurrence time is given as:

7.2 Change Detection Algorithms 291

k̂0 = arg

⎧⎪⎨
⎪⎩

1

2σ2 max
ka−M+1≤ j≤ka

1

ka − j + 1

⎡
⎣ ka∑

i= j

(z(i) − μ0)

⎤
⎦

2
⎫⎪⎬
⎪⎭ . (7.33)

�

Computing the most likely fault occurrence time might not be necessary. In this
case, a cheap way to proceed, from a computational point of view consists of taking
samples of fixed size, in a moving window say of length M , and in deciding between
the following two hypotheses at the current time instant k (larger than M − 1):

H0: θ = θ0 for k − M + 1 ≤ i ≤ k,
H1: θ = θ1 for k − M + 1 ≤ i ≤ k.

The decision function becomes:

gM (k) = max
θ1

Sk
k−M+1(θ1) (7.34)

In the particular case of a change in the mean of a Gaussian sequence, it is easy to
check that gM (k) takes the following form:

gM (k) = 1

2σ2 M

[
k∑

i=k−M+1

(z(i) − μ0)

]2

. (7.35)

Parameter tuning for the generalised likelihood ratio algorithm. Two approaches
will be considered, depending on the specifications and the need to estimate the most
likely fault occurrence time or not. In all cases, a change in the mean of a Gaussian
sequence is considered.

No estimation of the fault occurrence time - Tuning from the statistical distrib-
ution of the test statistics. In this case, the probability law of the decision function
gM (k) can be determined. This allows specifying the threshold h and the horizon M
of the GLR test function (7.35) in order to meet a given probability of false alarm,
α, and a given probability of correct detection, β.

To follow this approach, notice that

SM (k) = 1√
Mσ

[
k∑

i=k−M+1

(z(i) − μ0)

]

has the following probability law:

L (SM (k)) = N (0, 1) under H0 (7.36)

L (SM (k)) = N
(√

M(μ1 − μ0)

σ
, 1

)
under H1 (7.37)

292 7 Fault Diagnosis of Stochastic Systems

From the definition of the χ2 distribution recalled below, the probability law for
gM (k) is deduced:

L(2gM (k)) = χ2(1) under H0 (7.38)

L(2gM (k)) = χ2(1,
M(μ1 − μ0)

2

σ2) under H1 (7.39)

where χ2(1) denotes the chi-square distribution with one degree of freedom, and
χ2(1,λ) denotes the chi-square distribution with one degree of freedom and non-
centrality parameter λ.

Remark 7.4 (Chi-square distribution) If ξ(i), i = 1, . . . , N are independent nor-
mally distributed random variables with zero mean and unit variance, then

X =
N∑

i=1

ξ(i)2

has a chi-square distribution with N degrees of freedom. Its probability density
function is

pχ2(X; N) =
⎧⎨
⎩

1

2
N
2 Γ (N

2)
X

N
2 −1e− X

2 X ≥ 0

0 X < 0
. (7.40)

where Γ (u) denotes the gamma function. The mean of X is equal to N , and its
variance is 2N .

If the mean of ξ(i) changes to μi , X has a chi-square distribution with N degrees
of freedom and with non-centrality parameter λ = ∑N

i=1μ
2
i . Its mean is equal to

N + λ, and its variance is 2N + 4λ. The probability density function of the non-
central chi-square distribution is

pχ2(X; N ,λ) = 1

2

(
X

λ

) N−2
4

exp

(
− X + λ

2

)
I N

2 −1(
√

λX), (7.41)

where Ir (u) is the modified Bessel function of first kind and order r . This prob-
ability density function is available in numerical form in software for statistical
calculations. �

In order to enforce the given probabilities of false and correct detection, notice
that the first is given as

PF = P(g > h|H0) =
∫ ∞

h
p(g|H0) dg (7.42)

and the second as

PD = P(g ≥ h|H1) =
∫ ∞

h
p(g|H1) dg (7.43)

7.2 Change Detection Algorithms 293

where p(g|H0) (p(g|H1)) denotes de probability density function of the test function,
g, conditioned on H0 (H1). Accounting to the previously determined probability
density functions, Eqs. (7.42) and (7.43) yield

∫ ∞

2h
pχ2(X; 1)d X = α (7.44)

and ∫ ∞

2h
pχ2

(
X; 1,

M(μ1 − μ0)
2

σ2

)
d X = β (7.45)

Equations (7.44), (7.45) is a system of two nonlinear equations for the two unknowns
h and M .

In industrial applications, data often violate the theoretical assumptions above.
They are not IID and they are not Gaussian distributed. The actual distribution of
the test statistic can be very different from the χ2 statistics obtained from the theory
above. One approach to address this issue is to identify an appropriate distribution for
the test statistics from experimental data. This approach is explained and illustrated
by an example below.

If data are available for both H0 and H1 cases, the cumulative density functions
(CDF) F(gM |H0; M) and F(gM |H1;μ1, M) can be estimated from these data for
different values of the horizon M . From these CDFs, the test threshold h and horizon
M can be determined to achieve a required probability of false alarm α and a required
probability of correct detection β. This can be expressed formally as:

α = 1 − F(h|H0; M) ⇒ h = F−1(1 − α; M) (7.46)

and

β = 1 − F(h|H1;μ1, M) ⇒ M = F−1(1 − β;μ1, h) (7.47)

Hence it is possible to determine a window size that provides a desired probability
of detection.

Enforcing a probability of false alarm and correct detection is in the spirit of the
design of non-sequential tests. When specifications are in terms of mean detection
delay and/or mean time between false alarms, and the estimate of the fault occur-
rence time matters, we propose to resort to an experimental approach to adjust the
parameters h and M .

Estimation of the fault occurrence time - Tuning from experimental data.
Although the method is described with reference to Example 7.1, it can be gen-
eralised easily to other types of changes than jumps in the mean of a Gaussian
sequence. The threshold should be determined on the basis of healthy and faulty
process data. A computation of the decision function based on a set of healthy data,
Z0 = {z0(1), . . . , z0(N0)}, allows one to determine the typical range of values of
this function in the absence of fault, and to set the threshold in such a way that
the time between false alarms is very high. This choice can then be validated by

294 7 Fault Diagnosis of Stochastic Systems

processing data obtained in faulty working mode, Z1 = {z1(1), . . . , z1(N1)}, and
checking that detection is achieved with an acceptable delay. Should experimental
data corresponding to a faulty behaviour not be available, a simulator could possibly
be used to obtain data that could be used as a substitute. An adjustment of the hori-
zon M and the threshold h may be needed to obtain the right compromise between
false alarm rate and detection delay. Indeed, the lower M , the lower h has to be
chosen in order to achieve detection in the window [k − M + 1, k]. Decreasing the
detection delay thus increases the false alarm rate. For the evaluation of the GLR
decision function (7.32) required in the above procedure, empirical estimates μ̂0 and
σ̂2 should be substituted for μ0 and σ2.

The initialisation procedure thus takes the form:

Algorithm 7.3 Initialisation procedure

Given: Data sets Z0 and Z1, and an acceptable maximum detec-
tion delay τmax .

Initialisation:
1. Choose M larger than or equal to τmax .
2. Determine μ̂0 and σ̂2 from Z0.
3. Compute the decision function g(i), i = M + 1, . . . , N0

for the data setZ0 by using (7.32) and choose the threshold
h so that g(i) < h, i = M + 1, . . . , N0.

4. Compute the decision function g(i), i = M + 1, . . . , N1
for the data set Z1 by (7.32) and the estimated change
magnitude by (7.30). Check that the fault is detected and
that the delay for detection is acceptable.

5. Possibly iterate on the choice of M and h.
6. Acquire M − 1 data samples.

Reinitilisation. Again the particular case of a change in the mean of a Gaussian
sequence is considered here. The reinitialisation allows one to detect a new change
in the mean. The mean value of the data after change is thus considered as the new
value of μ0. This reinitialisation could use μ̂1(ka, k̂0) as an estimate of the mean
after the change occurred. However, if the delay for detection is short (one or a few
samples), very few data are used to compute μ̂1(ka, k̂0), and this estimate of the
mean might be poor when the noise on the data is significant. It is the reason why the
reinitialisation is based on a data set of fixed length obtained by collecting additional
data. Here the length of the data set is chosen equal to M , but an additional parameter
different from M might be introduced. It should be determined in such a way that a
reliable estimate of the mean after change is obtained. More on this can be found in
the appendix on random variables and stochastic processes, where the statistics of
the empirical mean is studied.

7.2 Change Detection Algorithms 295

With this in mind, the global GLR algorithm to detect a change in the mean of a
Gaussian sequence can be summarised as follows:

Algorithm 7.4 GLR algorithm to detect and estimate changes in the mean of
a Gaussian sequence

Initialisation
1. Run the above described initialisation procedure (Algo-

rithm 7.3) from available fault free and faulty data sets.

At each
sampling time:

R1. Acquire the new data z(k).
R2. Compute g(k) from (7.32).
R3. If g(k) > h, generate an alarm, provide the alarm time

instant ka = k, the estimate of the change occurrence time
k̂0 by (7.33), and compute μ̂1(ka, k̂0) by (7.30).

Reinitialisation:
1. Collect a set of M data from time k̂0 to k̂0 + M − 1.
2. Compute the new value of μ̂0 from these data.
3. Restart the online algorithm from k = k̂0 + M onwards

(step R1).

Result: A sequence of alarm time instants ka, estimated change
occurrence times k̂0 and mean signal values μ̂1(ka, k̂0),
for increasing time horizon k.

Example 7.1 (cont.) Change in the mean of a Gaussian sequence
Consider again the data of Fig. 7.2. Let the set Z0 be made of the first 500 samples, while
Z1 consists of samples 400–1000. One gets, as before, μ̂0 = 0.0445, σ̂2 = 0.9455.
Figure 7.8a gives the value of the GLR decision function obtained by processing the sequence
z0(1), . . . , z0(N0) with a window M of length 10 samples. A threshold above 15 appears to be
suitable in this case. Hence, h is set to 20. Running the algorithm on the set z1(1), . . . , z1(N1),
one observes that an alarm is generated at time 105 (Fig. 7.8b). The estimate of the change
magnitude is 2.69, and the estimate of the change occurrence time is 103, while the actual
change occurred at the 101st sample in the set. Due to the noise on the signal, the estimate
of the change magnitude is in error by 30 %. This could be partly alleviated by increasing the
threshold, so that more data are used to estimate the fault magnitude; this would increase the
detection delay, however. �

296 7 Fault Diagnosis of Stochastic Systems

Fig. 7.8 Two GLR decision
functions

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

0 20 40 60 80 100 120
0

5

10

15

20

25

(a)

(b)

7.2.5 Sequential Change Detection: The Vector Case

Problem statement. The previous discussion dealt with detection of changes in a
scalar signal. In the fault detection applications, the signal to be processed is issued
by a residual generator, and it is generally a vector signal. The combined information
comprised in this vector should be considered in our algorithm. Since fault detection
will be reduced to the detection of changes in the mean of a Gaussian vector sequence,
the solution to the following problem will be needed.

Problem 7.2 (Detection of a change in the mean of a Gaussian vector sequence)
Consider a sequence of nz-dimensional random vectors z(1), . . . , z(k) that are
independent and distributed as N (μ, Q), where Q is known, as well as the nominal
value for μ, μ0. Choose between the following two hypotheses:

7.2 Change Detection Algorithms 297

• H0 : L(z(i)) = N (μ0, Q), (i = 1, . . . , k)

• H1 : From time instant 1 up to an unknown time instant k0, z(i), i = 1, . . . , k0 −1
is distributed as

L(z(i)) = N (μ0, Q) (7.48)

while for time instants i ≥ k0

L(z(i)) = N (μ1, Q) (7.49)

with μ1 �= μ0.

Besides detecting the possible change in the mean, one should also estimate its
time of occurrence, and possibly its magnitude.

When μ1 is known, the detection algorithm is a direct generalisation of the
CUSUM algorithm. In the second situation which is considered in this paragraph, the
change in μ has known direction but unknown magnitude. This yields a GLR algo-
rithm. Finally, the situation, where μ1 is replaced by a dynamical profile of change
will be considered, as this is a result needed at a later stage.
μ1 known - CUSUM algorithm. By using the expression of the probability density
function of a n-dimensional Gaussian vector z with mean μ and variance Q

pμ(z) = 1√
(2π)ndet Q

exp

(
−1

2
(z − μ)T Q−1(z − μ)

)
, (7.50)

the following expression is obtained for the log-likelihood ratio associated to the
above problem:

s(z(k)) = ln
pμ1(z(k))

pμ0(z(k))

= −1

2

(
z(k) − μ1

)T Q−1 (
z(k) − μ1

) + 1

2

(
z(k) − μ0

)T Q−1 (
z(k) − μ0

)

= (
μ1 − μ0

)T Q−1
(

z(k) − 1

2
(μ0 + μ1)

)
(7.51)

This log-likelihood ratio is scalar, so the recursive computation of the CUSUM deci-
sion function can be performed in a similar way as for the scalar case (cf. Eq. (7.14))

g(k) = max(0, g(k − 1) + s(z(k))). (7.52)

The alarm or stopping time, ka, is the smallest time instant at which g(k) crosses a
given threshold.

Known direction of change - GLR algorithm. Let μ1 be of the form

μ1 = μ0 + Γ ν,

298 7 Fault Diagnosis of Stochastic Systems

where Γ is a known vector, and ν is an unknown scalar change magnitude. Substi-
tuting this expression for μ1 in (7.51) allows one to deduce the following expression
of the cumulative sum Sk

j (ν), where j denotes an hypothetical value of the change
time k0,

Sk
j (ν) =

k∑
i= j

ln
pμ0 +Γ ν(z(i))

pμ0(z(i))
(7.53)

=
k∑

i= j

(
νΓ T Q−1 (

z(i) − μ0
) − 1

2
ν2Γ T Q−1 Γ

)
.

Equating
∂Sk

j (ν)

∂ν
to zero yields

∂Sk
j (ν)

∂ν
=

k∑
i= j

Γ T Q−1 (
z(i) − μ0

) − (k − j + 1)Γ T Q−1Γ ν

= (k − j + 1)Γ T Q−1
(

Z̄
k
j − μ0

)
− (k − j + 1)Γ T Q−1Γ ν (7.54)

= 0

with Z̄
k
j = 1

k− j+1

k∑
i= j

z(i).

Hence, the maximum likelihood estimate of ν at time k, assuming the fault
occurred at time j is obtained from (7.54) as

ν̂(k, j) = Γ T Q−1(Z̄
k
j − μ0)

Γ T Q−1Γ
. (7.55)

Substituting (7.55) for ν into (7.53) finally yields the GLR decision function in a
similar way as (7.32) was deduced from (7.30) and (7.31)

g(k) = max
k−M+1≤ j≤k

Sk
j (ν̂(k, j)) = max

k−M+1≤ j≤k
(k − j + 1)·

·
(

ν̂(k, j)Γ T Q−1
(

Z̄
k
j − μ0

)
− 1

2
ν̂(k, j)2 Γ T Q−1Γ

)
.

The estimated fault occurrence time upon acceptance of hypothesisH1 at time instant
ka is given as

k̂0 = arg

{
max

ka−M+1≤ j≤ka
(ka − j + 1)·

·
(

ν̂(ka, j)Γ T Q−1
(

Z̄
ka
j − μ0

)
− 1

2
ν̂(ka, j)2 Γ T Q−1Γ

)}
.

7.2 Change Detection Algorithms 299

Known dynamical profile of change - CUSUM algorithm. There is a need to
generalise the previous result by replacing Γ ν by a time-varying change direction,
as this is precisely the situation which is encountered when detecting additive faults
in linear systems. This leads to the following modified version of Problem 7.2.

Problem 7.3 (Change detection, known dynamical profile of change) Consider a
sequence of nz-dimensional random vectors z(1), . . . , z(k) that are independent and
distributed as N (μ, Q), where Q is known, as well as the nominal value for μ, μ0.
Choose between the following two hypotheses:

• H0 : L(z(i)) = N (μ0, Q), (i = 1, . . . , k)

• H1 : From time instant 1 up to an unknown time instant k0, z(i), i = 1, . . . , k0−1
is distributed as

L(z(i)) = N (μ0, Q) (7.56)

while for time instants i ≥ k0:

L(z(i)) = N (μ0 + ρ(i − k0), Q), (7.57)

where ρ(i − k0) is a known vector profile which is non-zero only for i ≥ k0.

Besides detecting the possible change in the mean, one should also estimate its
time of occurrence.

The cumulative sum for this problem setting, with j as an hypothetical value for
k0, is given as

Sk
j =

k∑
i= j

ln
pμ0 +ρ(i− j) (z(i))

pμ0(z(i))

=
k∑

i= j

(
−1

2
(z(i) − μ0 − ρ(i − j))T Q−1(z(i) − μ0 − ρ(i − j))

)
+

+1

2

k∑
i= j

(z(i) − μ0)
T Q−1 (

z(i) − μ0
)

=
k∑

i= j

ρ(i − j)T Q−1 (
z(i) − μ0

) − 1

2

k∑
i= j

ρ(i − j)T Q−1ρ(i − j)

(7.58)

and the decision function, obtained in a similar way as for the scalar case, is given
as (cf. Eq. (7.12))

g(k) = max
1≤ j≤k

Sk
j

with Sk
j as in (7.58).

300 7 Fault Diagnosis of Stochastic Systems

This algorithm can be written in a recursive form ([11], pp. 283–284):

g(k) = max(0, S(k)) (7.59)

N (k) = N (k − 1) 1{g(k−1)>0} + 1 (7.60)

S(k) = S(k − 1) 1{g(k−1)>0} + ρ(N (k) − 1)T Q−1(z(k) − μ0) −
−0.5ρ(N (k) − 1)T Q−1ρ (N (k) − 1). (7.61)

N (k) is thus the number of observations after the last time instant for which the
decision function g was null. Note that this algorithm requires the hypothesis ρ(0) �=
0, which is included in the problem statement, otherwise the decision function would
always remain equal to zero.

Example 7.3 Data exhibiting a dynamical profile of change
The aim of this example is to illustrate the type of vector signal on which the above algorithm
can be applied. Consider a vector signal made of two components, z1 and z2. Suppose that
the dynamical profile of the change in z1 (z2) can be modelled as the step response to a first-
order system with transfer function 0.5

z−0.5 (1.4
z−0.3). In other words, the sequence z j (i), i =

1, 2, . . . , j = 1, 2, takes the form

z j (i) = z0
j (i) + ρs, j (i − k0) 1{i≥k0}, (7.62)

where
L(z0

1 (i)) = L(z0
2 (i)) = N (0, 0.025),

hold and ρs, j (�), which are tabulated below for � = 0, . . . , 9, j = 1, 2, are the step responses

(hence the index s) associated to 0.5
z−0.5 and 1.4

z−0.3 . Figure 7.9 gives a realisation of the sequence
(7.62) for k0 = 20.

The superimposition of the deterministic step response and the stochastic sequence is
clearly visible. To apply algorithm (7.59)–(7.61) to detect the change in the sequence, one
should take ρ j (�) = ρs, j (� + 1), (� = 0, 1, 2 . . ., j = 1, 2) in order to assure that ρ(0) be
non-zero. �

Fig. 7.9 Realisation of the
vector sequence (7.62)

0 10 20 30 40
−0.5

0

0.5

1

1.5

2

2.5

7.2 Change Detection Algorithms 301

Table 7.1 First 10 values of
the dynamical profile of the
change

ρs,1 ρs,2

0 0 0

1 0.5000 1.4000

2 0.7500 1.8200

3 0.8750 1.9460

4 0.9375 1.9838

5 0.9688 1.9951

6 0.9844 1.9985

7 0.9922 1.9996

8 0.9961 1.9999

9 0.9980 2.0000

Known dynamical profile of change up to an unknown constant - GLR
algorithm. Yet a more general situation occurs when the form of the dynamical
profile of change is known (Table 7.1), but its magnitude is not known.

Problem 7.4 (Change detection, known dynamical profile of change up to an
unknown constant) Consider a sequence of nz-dimensional random vectors z(1), . . . ,

z(k) that are independent and distributed as N (μ, Q), where Q is known, as well
as the nominal value for μ, μ0. Choose between the following two hypotheses:

• H0 : L(z(i)) = N (μ0, Q), (i = 1, . . . , k)

• H1 : From time instant 1 up to an unknown time instant k0, z(i), (i = 1, . . . , k0−1)

is distributed as
L(z(i)) = N (μ0, Q) (7.63)

while for time instants i ≥ k0

L(z(i)) = N (μ0 + ρ̃ (i − k0)ν, Q), (7.64)

where ρ̃ (i − k0) is a known vector profile which is non-zero only for i ≥ k0,
k0 is an unknown time instant, and ν is an unknown scalar.

Besides detecting the possible change in the mean, one should also estimate its
time of occurrence and its magnitude ν.

The cumulative sum for this problem setting, with j as an hypothetical value for
k0, is given as

302 7 Fault Diagnosis of Stochastic Systems

Sk
j (ν) =

k∑
i= j

ln
pμ0 + ρ̃ (i− j)ν(z(i))

pμ0(z(i))

= ν

k∑
i= j

ρ̃ (i − j)T Q−1 (
z(i) − μ0

) − ν2

2

k∑
i= j

ρ̃ (i − j)T Q−1ρ̃ (i − j).

(7.65)

Similar computations as for the case of a constant direction of the parameter change
yield the following maximum likelihood estimate of ν at time k, assuming the fault
occurred at time j ,

ν̂(k, j) =

k∑
i= j

ρ̃ (i − j)T Q−1 (
z(i) − μ0

)

k∑
i= j

ρ̃ (i − j)T Q−1ρ̃ (i − j)

(7.66)

The GLR decision function is directly deduced from (7.65) and (7.66) as

g(k) = max
k−M+1≤ j≤k

max
ν

Sk
j (ν)

= max
k−M+1≤ j≤k

{ν̂(k, j)
k∑

i= j

ρ̃ (i − j)T Q−1 (
z(i) − μ0

)

− ν̂(k, j)2

2

k∑
i= j

ρ̃ (i − j)T Q−1ρ̃ (i − j)}. (7.67)

The estimated fault occurrence time upon acceptance of hypothesis H1 at time
instant ka is given as

k̂0 = arg

⎧⎨
⎩ max

ka−M+1≤ j≤ka
ν̂(ka, j)

ka∑
i= j

ρ̃ (i − j)T Q−1 (
z(i) − μ0

) −

− ν̂(ka, j)2

2

ka∑
i= j

ρ̃ (i − j)T Q−1ρ̃ (i − j)

⎫⎬
⎭ . (7.68)

Parameter setting for the CUSUM algorithm. For the CUSUM algorithm associ-
ated to a known vector μ1, the expressions of the ARL function (7.20) remains valid
in the vector case. It suffices to replace μs and σs by:

7.2 Change Detection Algorithms 303

μs = ± (μ1 − μ0)
T Q−1(μ1 − μ0)

2
σ2

s = (μ1 − μ0)
T Q−1(μ1 − μ0),

where the plus or the minus sign are chosen according to the value of μ, the expected
value of z(i) (cf. Remark 7.1). The mean time for detection and the mean time
between false alarms can, respectively, be estimated as

ˆ̄τ = L̂

((
μ1 − μ0

)T Q−1 (
μ1 − μ0

)
2

)
= L̂

(
1

2
βT Q−1β

)
, (7.69)

where β = μ1 − μ0

ˆ̄T = L̂

(
−

(
μ1 − μ0

)T Q−1 (
μ1 − μ0

)
2

)
. (7.70)

In order to evaluate the above expressions, given a set of experimental data recorded
in fault free condition, Z0 = {z0(1), . . . , z0(N0)}, and a change magnitude β, the
empirical mean and variances μ̂0 and Q̂ should be substituted for μ0 and Q. These
empirical estimates should also be used for the implementation of (7.51)–(7.52).

The algorithm for the vector parameter case is thus similar to the scalar case,
namely,

Algorithm 7.5 CUSUM algorithm for Gaussian vector sequence with step-
like change (μ1 known)

Given: A set of experimental data Z0, a change magnitude β, and a
specified mean time for detection τ̄acc or a specified mean time
between false alarms T̄acc.

Initialisation:
1. Determine μ̂0 and Q̂ from Z0

2. Choose h to meet either τ̄acc or T̄acc using (7.69) or (7.70).

At each
sample time:

1. Acquire the new data vector z(k).

2. Compute g(k) by (7.52).

3. If g(k) > h, issue an alarm and reinitialise the decision function
to 0.

Result: A sequence of alarm time instants ka and estimated change occur-
rence times k̂0, for increasing time horizon k.

304 7 Fault Diagnosis of Stochastic Systems

When the dynamical profile of the change is accounted for (as in (7.57)), the
study of the properties of the algorithm such as mean delay for detection and mean
time between false alarms becomes much more difficult. The difficulty stems from
the fact that the increments in the cumulative sum of log-likelihood ratios are not
identically distributed. Therefore, an experimental approach for setting the design
parameters is proposed in the algorithm below. Data sets Z0 = {z0(1), . . . , z0(N0)}
and Z1 = {z1(1), . . . , z1(N1)}, respectively, recorded under hypothesis H0 and H1
are considered.

Algorithm 7.6 CUSUM algorithm for Gaussian vector sequence with known
dynamical profile of change

Given: Data setsZ0 andZ1 and a dynamical profile of change ρ(i) �=
0, i ≥ 0.

Initialisation:
1. Determine μ̂0 and Q̂ from Z0.
2. Compute the decision function g(i), i = 1, . . . , N0 for the

data set Z0 by (7.59)–(7.61) and choose the threshold h so
that g(i) < h, i = 1, . . . , N0.

3. Compute the decision function g(i), i = 1, . . . , N1 for the
data set Z1 by (7.59)–(7.61); check that the fault is detected
and that the delay for detection is acceptable.

4. Possibly iterate on the choice of h.
At each

sampling time:
R1. Acquire the new data z(k).
R2. Compute g(k) from (7.59)–(7.61).
R3. If g(k) > h, generate an alarm by setting ka = k, and provide

an estimate of the change occurrence time as ka − N (ka) by
(7.60).

Reinitialisation:
1. Reset g(ka), N (ka), and S(ka) to zero in (7.59)–(7.61).
2. Restart the recursive algorithm with (step R1).

Result: A sequence of alarm time instants ka and estimated fault
occurrence times k̂0, for increasing time horizon k.

Remark 7.5 (Reinitialisation procedure) The reinitialisation may depend on what
one wishes to detect. Here it is assumed that one wishes to check whether the observed
change remains present. By reinitialising the algorithm as proposed, repeated alarms
will occur as long as the change is present in the signal. Another option for reinitial-
isation is to change the sign of the log-likelihood ratio which amounts to changing
the sign of the last two terms in (7.61) and to reset all variables to zero as indicated
in step 1 of the reinitialisation. In this way a return to normal will generate an alarm.

7.2 Change Detection Algorithms 305

The proposed reinitilisation policies require that the dynamical profile of change
does not asymptotically vanish. Should this not hold, one should resort to a GLR
algorithm as illustrated in the ship example in Sect. 7.3.4. �

An example of application of this algorithm in the framework of a fault detection
system is given below in Sect. 7.3.2.

Parameter setting for the GLR algorithm. Here also an experimental approach
is used to set the design parameters. The algorithm is only presented for a change
characterised by a dynamical profile with unknown magnitude.

The initialisation algorithm is similar to Algorithm 7.3 except that, besides Z0
and Z1 and an acceptable detection delay, a dynamical profile of change ρ̃(i), i ≥ 0,
is also given. Furthermore, all scalar values should be replaced by their vector or
matrix counterpart. In particular, in steps 3 and 4, the decision function should be
computed from (7.66), (7.67) instead of (7.30), (7.32).

Algorithm 7.7 GLR algorithm with known dynamical profile but unknown
change magnitude

Initialisation:
1. Run the initialisation procedure (Algorithm 7.3) with the

above mentioned changes.

At each
sampling time:

R1. Acquire the new data z(k).

R2. Compute g(k) from (7.66), (7.67)

R3. If g(k) > h, generate an alarm, provide the estimate of the
change occurrence time, k̂0, by (7.68), and the estimated
change magnitude ν̂(k, k̂0) computed by (7.66).

Reinitialisation:
1. Collect a set of M data from time k̂0 to k̂0 + M − 1.

2. Compute the estimated change magnitude ν̂(k̂0 +
M − 1, k̂0) for these data by (7.66).

3. Restart the recursive algorithm from k = k̂0 + M onwards
with step R1 while accounting for the remark below.

Result: A sequence of alarm time instants ka, estimated change
occurrence times k̂0 and change magnitudes ν̂(k, k̂0).

306 7 Fault Diagnosis of Stochastic Systems

Remark 7.6 (Reinitialisation for GLR algorithm)

• The reason for collecting a set of M data to estimate ν̂(k̂0 + M −1, k̂0) is to assure
a sufficient precision of the estimated change magnitude so that updating the mean
of the signal is performed properly.

• After reinitialisation, (7.66) and (7.67) should be replaced in step R2 by the follow-
ing expression which accounts for the estimated mean of the signal after change

ν̂(k, j) =

k∑
i= j

ρ̃ (i − j)T Q−1
(

z(i) − μ̂0 − ν̂ρ̃(i − k̂0)
)

k∑
i= j

ρ̃ (i − j)T Q−1ρ̃ (i − j)

(7.71)

g(k) = max
k−M+1≤ j≤k

⎧⎨
⎩ν̂(k, j)

k∑
i= j

ρ̃ (i − j)T Q−1
(

z(i) − μ̂0 − ν̂ρ̃(i − k̂0)
)

−

− ν̂(k, j)2

2

k∑
i= j

ρ̃ (i − j)T Q−1ρ̃ (i − j)

⎫⎬
⎭ , (7.72)

where ν̂ stands for ν̂(k̂0 + M − 1, k̂0). �

The method will be illustrated in Sect. 7.3.3, as a part of a fault detection and
estimation system.

Note that, in this section only two possible distributions are considered for the
vector data sample z(i). However, when dealing with a residual vector, a different
distribution will typically be associated to each faulty mode. Fault detection and
isolation then consists of detecting a change from the fault free situation, and fault
isolation aims at determining the most likely fault hypothesis. The corresponding
multi-hypotheses decision-making problem is addressed in the next subsection.

7.2.6 Sequential Change Detection and Isolation:
The Vector Case

Introduction. An offline statistical approach will first be presented to explain the rea-
soning for solving the problem. Next, a recursive algorithm inspired by this solution
will be described. We refer the reader to the bibliographical note for the theoretical
properties of the offline and the recursive algorithms.

Problem statement. Consider a sequence of nz-dimensional independent random
vectors z(1), . . . , z(k) with probability density function pθ(z) depending on the
vector parameter θ. Choose at time instant k between the hypotheses:

• H0: θ = θ0, (1 ≤ i ≤ k)

7.2 Change Detection Algorithms 307

• H�: From time instant 1 up to an unknown time instant k0 − 1, θ = θ0, and for
k0 ≤ i ≤ k, θ = θ�, where � = 1, . . . , n f .

An alarm should be issued as soon as a transition to one of the hypotheses H�,
� = 1, . . . , n f is detected. The known vectors θ0 and θ�, � = 1, . . . , n f are all
distinct.

Note that the problem of deciding for H� can be seen as a hypothesis testing
problem between hypothesis H� and the composite hypothesis H̄� made of all other
alternative hypotheses, namely: H̄� = ⋃

0≤q �=�≤n f
Hq . In the same spirit as the

GLR algorithm presented previously, the most likely hypothesis is chosen among
the set {H0,H1, . . . ,H�−1,H�+1, . . . ,Hn f }. Hence the generalised log-likelihood
ratio for testing between H� and H̄� can be written:

g�(k) = max
1≤ j≤k

k∑
i= j

ln
pθ�

(z(i))
max0≤q �=�≤n f pθq (z(i))

(7.73)

= max
1≤ j≤k

k∑
i= j

ln min
0≤q �=�≤n f

pθ�
(z(i))

pθq (z(i))

= max
1≤ j≤k

min
0≤q �=�≤n f

k∑
i= j

ln
pθ�

(z(i))
pθq (z(i))

(7.74)

The maximisation with respect to j aims at determining the most likely fault
occurrence time, while the maximisation with respect to q in (7.73) aims at selecting
the most likely hypothesis in the indicated set.

Let us introduce the following notation for the log-likelihood ratio between
hypothesis H� and Hq assuming the change time is equal to j .

Sk
j (�, q) =

k∑
i= j

ln
pθ�

(z(i))
pθq (z(i))

(7.75)

=
k∑

i= j

si (�, q) (7.76)

Note that, this is a change of notation from the previous sections. Indeed, the
arguments (�, q) are added to indicate the considered pair of hypotheses and the
index i is substituted for the argument (z(i)) in the log-likelihood associated to
the i th data sample.

Expression (7.74) can be rewritten as:

g�(k) = max
1≤ j≤k

min
0≤q �=�≤n f

Sk
j (�, q) (7.77)

The decision rule is then the following:

308 7 Fault Diagnosis of Stochastic Systems

if g�(k) > h for some � ∈ {1, . . . , n f } accept H�

and generate an alarm,

else accept H0.

(7.78)

In other words, an alarm is generated for a change from θ0 to θ� at the time instant

ka� = inf{k ≥ 1 : g�(k) > h} (7.79)

In the above algorithm, the maximisation over j is performed over a window of
increasing size as time elapses. One approach to alleviate this pitfall is to resort to a
recursive algorithm that solves the same problem.

Recursive algorithm. The derivation of this algorithm is based on the following
observation. Note that the log-likelihood ratio si (�, q) can be deduced from si (�, 0)

and si (q, 0) since
si (�, q) = si (�, 0) − si (q, 0) (7.80)

Similarly,
Sk

j (�, q) = Sk
j (�, 0) − Sk

j (q, 0) (7.81)

Hence the decision function (7.77) can be written alternatively

g�(k) = max
1≤ j≤k

min
0≤q �=�≤n f

(
Sk

j (�, 0) − Sk
j (q, 0)

)
(7.82)

To deduce a recursive algorithm, let us introduce the following n f CUSUM decision
functions that correspond to testing between hypotheses H0 and Hq :

ḡq0(k) = max(0, ḡq0(k − 1) + sk(q, 0)) q = 1, . . . , n f (7.83)

with ḡq0(0) = 0

By similarity with the equivalence between (7.77) and (7.82), the decision functions
to decide on the occurrence of a change from θ0 to θ�, � = 1, . . . , n f are defined as

g�(k) = min
0≤q �=�≤n f

(ḡ�0(k) − ḡq0(k)) (7.84)

where ḡ00(k) = 0. An alarm for a change to θ = θ� is issued when g�(k) > h, where
h is a user defined threshold, indicating that hypothesis H� holds true. Otherwise H0
is decided.

The algorithm is now particularised to normally distributed random vectors as
this situation will be encountered when processing residual vectors.

Problem 7.5 (Change detection and isolation in the mean of a Gaussian sequence)
Consider a data sequence {z(1), . . . , z(k)} of independent samples with Gaussian

7.2 Change Detection Algorithms 309

probability density that depends on the mean vector μ. Choose at time instant k
between the following hypotheses:

• H0: L(z(i)) = N (0, Q), (1 ≤ i ≤ k)

• H�: From time instant 1 up to an unknown time instant k0−1,L(z(i)) = N (0, Q),
and for k0 ≤ i ≤ k, L(z(i)) = N (μ�, Q), (� = 1, . . . , n f).

An alarm should be issued as soon as a transition to one of the hypotheses H�,
(� = 1, . . . , n f) is detected. The known vectors μ�, (� = 1, . . . , n f) are all distinct.

In this case, sk(q, 0) takes the following form:

sk(q, 0) = μT
q Q−1(z(k) − 1

2
μq) (7.85)

and the change detection/isolation problem can be directly solved by substituting
this expression in (7.83) and using the decision functions (7.84).

The reinitialisation of the algorithm after the occurrence of an alarm is now
addressed, as well as the tuning of the threshold h.

Practical issues. Reinitialisation of the algorithm upon occurrence of an alarm
should be performed by resetting all CUSUM decision functions to zero in (7.83).
Indeed, the approach based on inverting the likelihood ratio used in the case of fault
detection would be quite cumbersome to extend to this multi-hypotheses situation.

Let us now turn to the tuning of the threshold h. To this end, the notion of Kullabck
Leibler information between two probability density functions say pμq (z) and pμ�

(z)
is useful. It is defined as

κq,� =
∫

pμq (z) ln
pμq (z)

pμ�
(z)

d z

= Eq(si (q, �)) q �= �, q, � ∈ {0, . . . , n f }

Notice that for the particular case where the log-likelihood ratio is associated to a
change in the mean of Gaussian distributions, κq,� takes a very simple form, namely:

κq,� = 1

2
(μq − μ�)

T Q−1(μq − μ�) (7.86)

Assuming that κq,� is bounded and non-zero for q �= � with q, � ∈ {0, . . . , n f }, an
asymptotic upper bound for the mean detection/isolation delay, τ̄�, for a change from
μ = μ0 to μ = μ� has been computed. More precisely, it has been proved that, for
a sufficiently large threshold (theoretically as h tends to infinity),

τ̄� ≤ γ� with γ� = h

minq �=� κq,�

(7.87)

where the minimum is taken over all q, � ∈ {0, . . . , n f } with q �= �.

310 7 Fault Diagnosis of Stochastic Systems

Note that, in the original work of I. Nikiforov (see reference section), separate
detection and an isolation thresholds are considered. They are assumed to be identi-
cal here for the sake of simplicity, but this limits the flexibility in setting the detec-
tion/isolation delay.

We can now summarise the algorithm to solve Problem 7.5. To this end, let us
introduce the notations Z0 = {z0(1), . . . , z0(N0)} a set of zero mean data corre-
sponding to hypothesis H0, and μ�, � = 1, . . . , n f , the mean of the vector signal
under hypothesis H�. The latter corresponds to twice the minimum magnitude of the
change to be detected and isolated, or to the most likely magnitude of this change.

Algorithm 7.8 Multi-CUSUM algorithm for change detection and isolation
in a Gaussian vector sequence

Given: A data set Z0, changes in the mean μ�, � = 1, . . . , n f and a
specified maximum mean detection/isolation delay τ̄d/ i .

Initialisation:
1. Compute an estimate of the covariance matrix Q, Q̂, from

Z0.

2. Choose h such that max�=1,...,n f γ� < τ̄d/ i whereγ� is defined
in (7.87)

3. Set gq0(0) = 0, q = 1, . . . , n f

At each
sampling time:

R1. Acquire the new data z(k).

R2. Compute ḡq0(k), q = 1, . . . , n f from (7.83) and g�(k), � =
1, . . . , n f from (7.84)

R3. If g�(k) > h, generate an alarm for hypothesis H� by setting
ka� = k

Reinitialisation:
1. Reset ḡq0(ka�), q = 1, . . . , n f to zero.

2. Restart the recursive algorithm with step R1

Result: A sequence of alarm time instants {ka�1, ka�2 , . . . , ka�i , . . .}
with �i ∈ {1, . . . , n f } for the increasing time horizon k.

Remark 7.7 (Accounting for a dynamical profile of change) The method can be
extended to account for a known dynamical profile of change as considered in
Problem 7.3. The interested reader is referred to the reference section for more
information. �

7.3 Kalman Filter Approach to Diagnosis 311

7.3 Kalman Filter Approach to Diagnosis

After a presentation of the model of the supervised process, the problems of detection,
isolation and estimation of additive faults in a stochastic system will be successively
considered in this section.

7.3.1 Model

Let us consider a system described by a linear discrete-time model of the form

x(k + 1) = Ax(k) + Bu(k) + Fd d(k) + F f f (k) + w(k)

x(0) = x0
y(k) = Cx(k) + Du(k) + Ed d(k) + E f f (k) + v(k),

(7.88)

where x ∈ |Rn , u ∈ |Rm , y ∈ |Rp are respectively the state vector, the vector of
known input signals and the vector of measured output signals, w is the vector of
state noise, v denotes the measurement noise. w(k) and v(k) are samples of vector
white noise sequences with zero mean and covariance matrix:

E

[(
w(k)

v(k)

)(
w(�)Tv(�)T

)]
=

(
Qw Qwv

QT
wv Qv

)
δk�.

x0 is a stochastic vector with mean m0 and varianceΠ0 uncorrelated with the state and
measurement noise sequences. Finally, d ∈ |Rnd is a vector of unknown input signals
or disturbances (deterministic or stochastic with non-zero mean), and f ∈ |Rn f is
a vector of unknown input signals representing the faults to be detected. The faults
are said to be additive, since they enter linearly in the model as additional input.

Such a model can also be written in terms of a single vector white noise sequence,
with variance equal to the identity matrix by considering the factorisation

(
Qw Qwv

QT
wv Qv

)
=

(
Bε

Dε

)(
BT

ε DT
ε

)
.

A sample of this sequence will be denoted ε(k), hence the index in Bε and Dε.
It is a nε-dimensional random vector, where nε is the rank of the variance of
(w(k)T v(k)T)T, generally equal to n + p. The state-space model (7.88) can thus
be rewritten as

x(k + 1) = Ax(k) + Bu(k) + Fd d(k) + F f f (k) + Bεε(k)

x(0) = x0
y(k) = Cx(k) + Du(k) + Ed d(k) + E f f (k) + Dεε(k).

(7.89)

312 7 Fault Diagnosis of Stochastic Systems

7.3.2 Fault Detection

Problem statement. Fault detection amounts to determining whether the supervised
process is working in a normal (or healthy) operating mode. The problem can be
stated as follows:

Problem 7.6 (Fault detection) Given

• a model of the process of the form (7.88) or (7.89)
• a sequence of measured process input and output (y(i), u(i))1≤i≤k, where k

denotes the current time instant.

Choose between the following two hypotheses:

H0: healthy operating condition,
H1: faulty operating condition.

The quality of a fault detection system is measured in terms of detection delay
and time between false alarms. A typical objective is to minimise the mean delay for
detection of a change subject to a fixed mean time between false alarms before the
change time.

To achieve this goal, the task is usually divided into two parts: residual generation
and residual evaluation. Each of them is addressed successively in the following
subsections:

Residual generation. As in the deterministic case, the residual generators are filters
with input signals u and y, belonging to the following class of linear time-invariant
systems

z(k + 1) = Az z(k) + Bzu u(k) + Bzy y(k), z(0) = z0

r(k) = C rz z(k) + Dru u(k) + Dry y(k) (7.90)

or, in transfer function form, after taking the z-transform of the above equations and
assuming zero initial conditions:

r(z) = V ru (z)u(z) + V ry (z) y(z) (7.91)

= (
V ru (z) V ry (z)

) (
u(z)

y(z)

)
.

The problem of designing a residual generator can be stated as follows:

Problem 7.7 (Residual generator design for fault detection) Determine a stable
linear time-invariant filter (7.90) or (7.91) such that:

1. The sequence of output values r(k), k = 1, 2, . . . is a zero mean white noise
vector sequence (which is not affected by u and d), once the transient due to
initial conditions has vanished.

7.3 Kalman Filter Approach to Diagnosis 313

2. In the presence of a fault (f (k) �= 0 for all k ≥ k0), the mean of r(k) is different
from zero for at least some k ≥ k0.

As u and d are arbitrary signals, they cannot affect r for the latter to be a white
noise sequence. To define rigorously what is meant by this statement, notice that the
global system made of the supervised process and the residual generator, obtained
by combining Eqs. (7.89) and (7.90), is seen to have as input signals u, d, f , ε, and
state (x z)T. Hence the residual at time k can be considered as a function of the
above input and the initial state, namely:

r(k) = r(k; u, d, f , ε; x0, z0).

Saying that the residual is not affected by u and d means that, for any two distinct
input sequences u1(k), u2(k) and d1(k), d2(k), k = 1, 2, . . .,

r
(

k; u1, d, f , ε; x0, z0

)
= r

(
k; u2, d, f , ε; x0, z0

)

and
r
(

k; u, d1, f , ε; x0, z0

)
= r

(
k; u, d2, f , ε; x0, z0

)
,

whatever the initial state and the input sequences.
One way to solve the problem is to design a filter which meets the first condition

in Problem 7.7, and then to check whether the second requirement is fulfilled. In
order to maximise the chances for this second condition to hold, one should make
sure that, when imposing condition 1, no useful information contained in y is lost.
Only the information corrupted by an unknown input should be cancelled. A filter
that meets the latter condition, together with the first condition of Problem 7.7 is
called an innovation filter for reasons that will be clarified in the next subsection.

To construct a residual generator, one will first solve the innovation filter design
problem below. Next fault sensitivity of the filter output will be checked to see
whether condition 2 is met in Problem 7.7. In the affirmative, the innovation filter is
a residual generator. The issue of fault sensitivity is the object of a specific subsection.

Problem 7.8 (Innovation filter design) Determine a stable linear time-invariant filter
(7.91) with the least number of output signals such that:

1. In the absence of fault (i.e. f (k) = 0 for all k), the sequence of output values
r(k), k = 1, 2, . . . is a zero mean white noise vector sequence which is not
affected by u and d, once the transient due to initial conditions has vanished.

2. No information on the fault contained in y is lost, except if it is affected by the
unknown input vector d.

An observer-based approach will be used to solve the Problem 7.8. Two situations
have to be distinguished, namely the absence of unknown input (Ed = O and
Fd = O) and the presence of unknown input.

314 7 Fault Diagnosis of Stochastic Systems

No unknown input. In this situation the design of an innovation filter amounts to the
design of a steady state Kalman filter. Such a filter provides a prediction of the output
y(k), ŷ(k), given the data up to time k − 1, namely, given u(i), y(i), i = 1, 2, . . . ,

k − 1. The output prediction error, r(k) = y(k) − ŷ(k) is called the innovation in
standard Kalman filter literature, because it consists of the new information contained
in y(k), which was not available in y(1), . . . , y(k − 1). The innovation sequence
is known to be a white noise sequence not affected by u (once the transient due to
initial conditions has decayed to zero). Hence it fulfils condition 1 of Problem 7.8.
Besides, the information about f contained in the sequence of data is also contained
in the innovation sequence. For this reason, the innovation is said to be a sufficient
statistics for the fault vector f . Thus condition 2 of Problem 7.8 is also fulfilled by
the innovation sequence, and hence the latter is a suitable candidate as a residual
sequence. It is the fact that the innovation sequence meets conditions 1 and 2 of
Problem 7.8 that justifies the name innovation filter.

To state the design procedure precisely, let us introduce the notion of a regular
quadruple (A, B, C, D).

Definition 7.1 (Regular quadruple) The quadruple (A, B, C, D) is regular if the
matrix (−z I + A B

C D

)

has full row rank for all z on the unit circle (z = exp(jω), ω ∈ |R).

It is assumed below that the pair (C, A) is detectable, and (A, Bε, C, Dε) is
regular.

Remark 7.8 (Uncorrelated state and measurement noise sequences) In the particular
case where the sequence w(k) and v(k) are uncorrelated (which amounts to Bε DT

ε =
O), the above regularity assumption can be replaced by the classical requirement that
the pair (A, Bε) has no uncontrollable mode on the unit circle. �

Under such hypotheses, the equations for the steady state Kalman filter can be
written as

x̂(k + 1) = Ax̂(k) + Bu(k) − K (y(k) − Cx̂(k) − Du(k)),

x̂(0) = x̂0
r(k) = y(k) − Cx̂(k) − Du(k),

(7.92)

where the filter gain K is given by

K = −(APCT + Qwv)(Qv + C PCT)−1, (7.93)

P being the symmetric semi-positive definite solution of the following discrete alge-
braic Riccati equation

7.3 Kalman Filter Approach to Diagnosis 315

^()() (k) –Du(k)k–Cx= yk

^ ^ ()(x k+1)= k(A + KC)x

r

+ ()B + KD ()ku –Ky (k)

() (k) (k) (k)(x k+1)= Ax k + Bu + Ff f + w

())()(() (k) + v+ Ff f k kk+ Du= Cxy k

v(k)w(k)f(k)

u(k) y(k)

r(k)

Fig. 7.10 Block diagram of the supervised system together with the innovation filter

P = AP AT − (APCT + Qwv)(Qv + C PCT)−1 ·
· (C P AT + QT

wv) + Qw. (7.94)

Figure 7.10 illustrates the state-space implementation of the innovation filter.
In a transfer function form, this filter is described by

r(z) = V ru (z)u(z) + V ry (z) y(z)
= (−C(z I − A − K C)−1(B + K D) − D)u(z) +

+ (C(z I − A − K C)−1 K + I) y(z).
(7.95)

If the pair (C, A) is not detectable, it is still possible to design an innovation filter
by extracting the observable part of system (7.89) and designing a Kalman filter
for this observable subsystem. Note that this approach can also be considered when
(7.89) is detectable but not observable, if one wishes to obtain a residual generator
with the lowest possible order.

The following two remarks present other forms of Kalman filter that may prove
useful for residual generation.

Remark 7.9 (Time-varying Kalman filter) To assure coherency with Sect. 7.2.5 and
to ease the study of the sensitivity to the fault, a steady state Kalman filter is considered
above. This implies that whiteness of the sequence r(k) is only reached after the
transient has vanished. A white noise sequence can be generated from time k = 0,
if a (time-varying) Kalman filter is used instead of a steady state Kalman filter.
Equations (7.92), (7.93) and (7.94) are then replaced by

x̂(k + 1) = Ax̂(k) + Bu(k) − K (k)(y(k) − Cx̂(k) − Du(k))

x̂(0) = m0
r(k) = y(k) − Cx̂(k) − Du(k),

(7.96)

316 7 Fault Diagnosis of Stochastic Systems

where the filter gain K (k) is given by

K (k) = −(AP(k)CT + Qwv)(Qv + C P(k)CT)−1, (7.97)

P(k) being the solution of the following discrete Riccati equation

P(k + 1) = AP(k)AT − (AP(k)CT + Qwv)(Qv + C P(k)CT)−1 ·
· (C P(k)AT + QT

wv) + Qw, P(0) = Π0. � (7.98)

For implementation purpose, it is interesting to separate the equations of the
Kalman filter in a two-stage update procedure at each sampling time: a measurement
update and a time update. The approach is the object of the following remark. This
implementation of the Kalman filter allows one to handle missing measurements in
a straightforward way.

Remark 7.10 (Handling missing measurements) The measurement update consists
of taking into account the new information brought by an additional measurement,
say y(k), in order to compute x̂(k|k), the best estimate (in the least square sense)
of x(k) given u(i), y(i), i = 1, 2, . . . , k. The latter is deduced from u(k), y(k) and
from x̂(k) the best prediction of x(k) given u(i), y(i), i = 1, 2, . . . , k − 1. The
time update then uses the plant model in order to predict the state evolution one step
ahead.

An additional hypothesis is needed to use the algorithm below: the variance of
the measurement noise, Qv should be positive definite and diagonal. Thus, Qv =
diag (qv,1 . . . qv,p), where qvi > 0, i = 1, . . . , p. The diagonal form can be enforced
by a suitable change of output variable when Qv is positive definite. It suffices to set
yd(k) = Q−1/2

v y(k), so that the variance of yd(k) is the p × p identity matrix.
The following notations are introduced in the algorithm below: ci and di denote,

respectively, the i th row of C and D.

Algorithm 7.9 Measurement and time update for the innovation filter
Initialisation: Set P(0) = Π0, x̂(0) = m0.

At each
sampling time:

1 Measurement update.
Set P0(k) = P(k), x̂0(k|k) = x̂(k).
For i = 1 up to p, compute P i (k|k)−1 = P i−1(k)−1 + cT

i ci/qv,i .
Set P(k|k) = P p(k|k).
For i = 1 up to p, compute

K f,i (k) = P(k|k)cT
i /qv,i

x̂i (k|k) = x̂i−1(k|k) + K f,i (k)(yi (k) − ci x̂(k) − di u(k)).

Set x̂(k|k) = x̂ p(k|k).

7.3 Kalman Filter Approach to Diagnosis 317

2 Time update.
Compute successively

K f (k) = P(k|k)CT Q−1
v

P(k + 1) = AP(k|k)AT + Qw − Qwv(Qv + C P(k)CT)−1 QT
wv

−AK f (k) QT
wv − Qwv K f (k)T AT

x̂(k + 1) = Ax̂(k|k) + Qwv(Qv + C P(k)CT)−1 ·
·(y(k) − Cx̂(k) − Du(k)).

3 Computation of the residual.
For i = 1 up to p, compute the components of the residual vector

ri (k) = yi (k) − ci x̂(k) − di u(k).

Result: Residual vector r(k) for increasing time horizon k.

When a measurement is missing, it suffices to skip the corresponding measurement
update, namely to skip the corresponding value of index i in the “for” loops. �
With unknown input. In this case, the design of an innovation filter consists of a
two-step procedure. First, a reduced system having no unknown input is extracted
from the original system. Then a steady state Kalman filter is designed for this
subsystem and the candidate residual signal is nothing but the innovation associated
to this filter. As above, to check whether the innovation sequence is a residual, its
sensitivity to the fault vector f has to be verified, which is the object of the next
subsection.

The idea behind the extraction of the subsystem will first be sketched in the case,
where Ed = O (no unknown input affecting y). Next a complete algorithm will
be provided to solve Problem 7.8. The justification of this algorithm is relatively
involved, and the interested reader is invited to consult the bibliography for the
proofs.

To extract a subsystem which has not d as input, let xsub denote the state of this
subsystem and set

xsub(k) = Πx(k), (7.99)

where Π is an nsub × n matrix (with nsub ≤ n) to be determined. By multiplying the
first Eq. (7.89) by Π on the left, and by taking (7.99) into account, one gets

xsub(k + 1) = Π Ax(k) + Π Bu(k) + Π Fdd(k)

+Π F f f (k) + Π Bεε(k). (7.100)

318 7 Fault Diagnosis of Stochastic Systems

If the following relations are imposed

Π A = ĀΠ + B̄C (7.101)

Π Fd = O, (7.102)

where Ā and B̄ are unknown matrices to be determined, then (7.100) can be written as

xsub(k + 1) = Āxsub (k) + B̄
(

y(k) − Du(k) − E f f (k) − Dε ε(k)
)

+Π Bu(k) + Π F f f (k) + Π Bεε(k) (7.103)

by using (7.99) and the output of Eq. (7.89) (in which Ed is assumed to be null).
Introducing the abbreviations

B̃ = Π B − B̄ D

F̃ f = Π F f − B̄ E f

B̃ε = Π Bε − B̄ Dε

into (7.103) yields

xsub(k + 1) = Āxsub (k) + B̃u(k) + B̄ y(k) + F̃ f f (k) + B̃ε ε(k). (7.104)

This system has no unknown input d as could be expected by imposing (7.102).
To design a Kalman filter based on the state Eq. (7.104) when f = 0, the part of the
measurement y which depends on xsub, u and ε only should be determined. This is
achieved by defining the signal ysub as

ysub(k) = M y(k) = MCx(k) + M Du(k) + M Dε ε(k), (7.105)

where M is unknown. Imposing

MC = LΠ, (7.106)

Equation (7.105) becomes

ysub(k) = Lxsub (k) + M Du(k) + M Dε ε(k), (7.107)

which has the required form.
Now, provided (L, Ā) is detectable, and (Ā, B̃ε, L, M Dε) is regular, a Kalman

filter can be designed for the subsystem (7.104), (7.107), when f = 0

x̂sub(k + 1) = Āx̂sub (k) + B̃u(k) + B̄ y(k) − K sub
(

ysub

− Lx̂sub(k) − M Du(k)
)
, (7.108)

7.3 Kalman Filter Approach to Diagnosis 319

where

K sub = −
(

ĀP sub LT + B̃ε DT
ε MT

)(
M Dε DT

ε MT + L P sub LT
)−1

with P sub the symmetric semi-positive definite solution of

P sub = ĀP sub Ā
T −

(
ĀP sub LT + B̃ε DT

ε MT
) (

M Dε DT
ε MT

+L P sub LT
)−1 (

L P sub Ā
T + M Dε B̃

T
ε

)
+ B̃ε B̃

T
ε .

The associated output reconstruction error is given by

r(k) = ysub (k) − Lx̂sub (k) − M Du(k). (7.109)

which can be evaluated from the available data. It can be checked that it fulfils the
conditions for an innovation sequence. Indeed, the state estimation error, x̃sub(k) =
xsub(k) − x̂sub(k), verifies the following equation obtained by subtracting (7.108)
from (7.104):

x̃sub(k + 1) = (
Ā + K sub L

)
x̃sub (k) + F̃ f f (k)

+
(

B̃ε + K sub M Dε

)
ε(k). (7.110)

This error is clearly not affected by d and u, and so is the associated innovation
r(k) = Lx̃sub (k) + M Dε ε(k). Condition 1 of Problem 7.8 is thus fulfilled. To
assure that the maximum amount of information on the fault has been kept (condition
2 of Problem 7.8), xsub should have the largest possible dimension (Π should have
the largest possible number of rows). The implementation of the innovation filter is
summarised in the block diagram of Fig. 7.11.

The design of an innovation filter essentially amounts to solving the set of non-
linear algebraic Eqs. (7.101), (7.102), (7.106). Despite the nonlinearity, an algorithm
based only on linear algebraic operations can be derived. It is presented below in the
general situation, where Ed �= O.

The algorithm relies on the following matrix equation:

(−z Insub + Asub Bsub
Csub Dsub

)
= Γ

(−z In + A Fd Bε

C Ed Dε

)

·
(

Φ O
O Inε

)
. (7.111)

320 7 Fault Diagnosis of Stochastic Systems

_ ~
_

()(k) +1x = Ax(k) + + w w k(B Fd Ff)
()u k
()d k
()f k

()y(k) = Cx (k) + + v k(D O Ef)
()u k
()d k
()f k

()v k()w k()f kd (k)

()u k ()y k

()r k
^ ^ ()()x sub k+ 1 = k()A + Ksub L xsub + (B + Ksub MD)

^ () ()() () – MDu kk–Lxsubk= M yr k

+ ()B –Ksub M()u k ()y k

(
(

(
(

Fig. 7.11 Block diagram of the supervised system together with the innovation filter in the presence
of unknown inputs

where Asub and Csub are respectively nsub × nsub and psub × nsub matrices. It also
involves the reduced system described by

xsub(k + 1) = Asub xsub (k) + B̃sub u(k) − Γ 12 y(k)

+Bsub εsub(k) (7.112)

xsub(0) = xsub,0

ysub(k) = Γ 22 y(k) = Csub xsub(k) + D̃sub u(k)

+Dsub εsub(k), (7.113)

where εsub(k) is a sample of a white noise sequence with variance equal to the
identity matrix,

Γ =
(
Γ 11 Γ 12
Γ 21 Γ 22

)

with Γ 11, Γ 12, Γ 21, Γ 22 respectively nsub × n, nsub × p, psub × n and psub × p -
dimensional matrices,

B̃sub = Γ 11 B + Γ 12 D,

D̃sub = Γ 21 B + Γ 22 D.

7.3 Kalman Filter Approach to Diagnosis 321

Algorithm 7.10 Innovation filter design for a system with unknown input
Given: A system of the form (7.89).

Compute:
1. Determine the integer nsub together with full row rank and full

column rank matricesΓ andΦ respectively such that Eq. (7.111)
is fulfilled. The Algorithm 7.11 presented below can be used
to compute nsub, Γ and Φ. The nsub-dimensional subsystem
(Asub, Bsub, Csub, Dsub) has no unknown input.

2. Design a Kalman filter for the reduced system (7.112)–(7.113)
The resulting innovation qualifies as a residual.

Result: An innovation filter for system (7.89).

The algorithm to be used in step 1 is presented below. It involves the singular
value decomposition of several matrices which is denoted as follows for an arbitrary
matrix X :

X =
(

U1
X U2

X

)(
Σ X O
O O

)(
V 1

X

V 2
X

)
(7.114)

For a matrix with full column rank V 2
X = 0 and we write V 1

X = V X

Algorithm 7.11 Computation of nsub, Γ , Φ

Initialisation: Let

Z =
(−In On × nd

O p × n O p × nd

)
, W =

(
A Fd
C Ed

)
.

Set
Z∗ = Z , W∗ = W , M = In+p and N = In+nd .

Compute:
a. While Z∗ is not full column rank, do

1. perform a singular value decomposition of Z∗,
and compress the columns of Z∗ by computing the right-hand
side of the first equality below:(

Z∗
1 O

) = Z∗ (
V 1T

Z∗ V 2T
Z∗

) = (
U1

Z∗Σ Z∗ O
)
.

2. Let
(
W∗

1 W∗
2

) = W∗ (
V 1T

Z∗ V 2T
Z∗

)
.

3. Find the highest rank full row rank matrix L satisfying
LW∗

2 = 0 by using the singular value decomposition of W∗
2,

namely L = U2T

W ∗
2

.

322 7 Fault Diagnosis of Stochastic Systems

4. Let Z∗ = L Z∗
1 , W∗ = LW∗

1 , M = L M ,

N = NV 1T

Z∗ , end do.
b. Determine an invertible matrix T such that

T Z∗ =
(−I

O

)
,

where the dimension of I is obviously equal to rankZ∗. Such
a matrix can be computed as follows:

T =
(
(Σ Z∗ V Z∗)−1 O

O I

) (
U1T

Z∗

U2T
Z∗

)
,

c. Set Γ = T − M, Φ = N ,(
Asub

Csub

)
= −Γ WΦ,

(
Bsub

Dsub

)
= Γ

(
Bε

Dε

)
.

The above design procedure may fail in different ways:

• When the dimensions of Γ and Φ are such that

(
Asub

Csub

)
is a square matrix, the

obtained subsystem has no output, and hence no Kalman filter can be designed
and no residual generator can be obtained. This typically occurs when nd ≥ p.

• When (
z I + Asub Bsub

Csub Dsub

)

has full generic rank, but it loses rank for z = exp(−jω), ω ∈ |R, then it is not
possible to design a residual generator as the regularity assumption needed for the
design of the Kalman filter is not fulfilled.1

• When the regularity assumption ceases to be met due to Bsub = O, Dsub = O or
due to (−z I + Asub Bsub

Csub Dsub

)

having not full generic rank, the design is more involved and the reader is referred
to the bibliography for this case.

Example 7.4 Innovation filter design for the ship example
Let us consider the linearised augmented ship-steering model described by combining the
wave model and the ship-steering system

1Fulfilment of this condition can be checked by computing the zeros of system
(Asub, Bsub, Csub, Dsub) and by verifying that none of them lies on the unit circle.

7.3 Kalman Filter Approach to Diagnosis 323

⎛
⎜⎜⎝

ẋw1
ẋw2
ω̇3
ψ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2ηω σ0 −σ2
0 0 0

1 0 0 0
0 0 bη1 0
1 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

xw1
xw2
ω3
ψ

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0
b
0

⎞
⎟⎟⎠ δ +

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ wω

(
ω3m

ψm

)
=

(
1 0 1 0
0 0 0 1

)
⎛
⎜⎜⎝

xw1
xw2
ω3
ψ

⎞
⎟⎟⎠ +

(
fω

fψ

)
+

(
νω

νψ

)
.

A sampled-data model of this system has been obtained at a sampling rate of 0.5 Hz. The
resulting equations are:

⎛
⎜⎜⎝

xw1 (k + 1)

xw2 (k + 1)

ω3 (k + 1)

ψ (k + 1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.1281 −0.6365 0 0
0.9945 0.1106 0 0

0 0 0.0000 0
0.9945 −0.8894 0.0500 1.0000

⎞
⎟⎟⎠

⎛
⎜⎜⎝

xw1 (k)

xw2 (k)

ω3 (k)

ψ (k)

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0
0

0.0500
0.0975

⎞
⎟⎟⎠ δ(k) + w(k) (7.115)

(
ω3m (k)

ψm (k)

)
=

(
1 0 1 0
0 0 0 1

)
⎛
⎜⎜⎝

xw1 (k)

xw2 (k)

ω3 (k)

ψ (k)

⎞
⎟⎟⎠

+
(

fω (k)

fψ (k)

)
+

(
vω (k)

vψ (k)

)
. (7.116)

The covariance matrix of the state noise w(k) can be evaluated by the sampling procedure
described in Appendix B. It yields

E(w(k)w(k)T) = Qw =

⎛
⎜⎜⎝

0.0015 0.0056 0.0019 0.0056
0.0056 0.0322 0.0077 0.0322
0.0019 0.0077 0.0024 0.0077
0.0056 0.0322 0.0077 0.0322

⎞
⎟⎟⎠ .

The measurement noise sequence is characterised by a covariance matrix given as

Qv =
(

0.0001 0
0 0.005

)
.

State and measurement noises are supposed to be uncorrelated, hence Qwv = O.
The considered input signal δ(t) is a sine wave with period 20π s.
Figure 7.12 gives the evolution of the sampled output signals in healthy working mode

(first 300 samples), when a 0.1 deg/s bias on the turn rate ω3(k) is added (from sample 301
to sample 600), and when this bias disappears bringing the system back to healthy working

324 7 Fault Diagnosis of Stochastic Systems

mode (sample 601 to 900) In other words, a step-like fault fω occurs between sample 301 and
600.

From the above model, the following Kalman filter is deduced.2

⎛
⎜⎜⎝

x̂w1 (k + 1)

x̂w2 (k + 1)

ω̂3 (k + 1)

ψ̂ (k + 1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.1281 −0.6365 0 0
0.9945 0.1106 0 0

0 0 0.0000 0
0.9945 −0.8894 0.0500 1.0000

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̂w1 (k)

x̂w2 (k)

ω̂3 (k)

ψ̂ (k)

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0
0

0.0500
0.0975

⎞
⎟⎟⎠ δ(k) +

⎛
⎜⎜⎝

−0.3265 −0.4544
0.6710 0.0067
0.0000 0.0000
0.6880 0.0119

⎞
⎟⎟⎠

·

⎛
⎜⎜⎝

(
ω3m(k)

ψm(k)

)
−

(
1 0 1 0
0 0 0 1

)⎛
⎜⎜⎝

x̂w1 (k)

x̂w2 (k)

ω̂3 (k)

ψ̂ (k)

⎞
⎟⎟⎠

⎞
⎟⎟⎠.

(7.117)

The innovation is computed from

r(k) =
(

ω3m(k)

ψm(k)

)
−

(
1 0 1 0
0 0 0 1

) ⎛
⎜⎜⎝

x̂w1 (k)

x̂w2 (k)

ω̂3 (k)

ψ̂ (k)

⎞
⎟⎟⎠ . (7.118)

Fig. 7.12 Sampled output
sequence of ship model in
healthy and faulty working
modes; ω3m as a function of
sample number (continuous
line), ψm as a function of
sample number (dash-dotted
line)

0 500 1000
-1

0

1

2

3

2The gain of this filter can be computed by MATLAB function dlqe for instance.

7.3 Kalman Filter Approach to Diagnosis 325

Fig. 7.13 Innovation
sequences computed by
(7.117), (7.118) from the
data of Fig. 7.12; first
component (continuous
line); second component
(dash-dotted line)

0 500 1000
-1

-0.5

0

0.5

1

The innovation sequences for the data of Fig. 7.12 is plotted in Fig. 7.13. The change in the
mean of the innovation sequence due to the fault is visible. However, such a change cannot be
detected by comparing the signals to a simple threshold. �

The existence of a filter that meets the conditions in Problem 7.8 does not guarantee
that the filter output (namely, the innovation) is useful for fault detection. It should
be affected by f in order to meet the second condition of Problem 7.7, and thus to
be suitable as a residual. This issue is addressed in the next subsection.
Sensitivity to faults or fault detectability. There are several ways to define the
sensitivity of an innovation signal to a fault f or, equivalently, the detectability of a
fault by a given innovation signal.

In a similar way as for the deterministic case, an innovation filter for system (7.89)
is said to be fault sensitive if its output is affected by f . Equivalently, the fault is said
to be detectable in this case.

If the transfer function from f to r is left invertible, then the innovation filter is
strictly fault sensitive.

It can be shown that system (7.89) has a (strict) fault sensitive innovation filter
which solves Problem 7.8 if and only if every innovation filter solution of Problem 7.8
is (strictly) fault sensitive. Thus (strict) fault sensitivity is a property of the supervised
system (7.89), and it does not depend upon the choice of innovation filter. Therefore,
(strict) fault sensitivity of (7.89) will be referred to in the sequel.

Assuming the pair (Csub, Asub) resulting from the design procedure is observable,
the following necessary and sufficient conditions for sensitivity can be exploited:

System (7.89) is fault sensitive if and only if 3:

3The image (space)
(X) of a linear transformation associated to the n × m matrix X is the set
of all vectors y in |Rn that equal Xu for some u in |Rm . The kernel (or null space) K er(X) of a
linear transformation associated to the n × m matrix X is the set of all vectors u in |Rm that fulfil
Xu = 0.

326 7 Fault Diagnosis of Stochastic Systems

(

F f

E f

)
�⊂ K er(Γ). (7.119)

System (7.89) is strictly fault sensitive if and only if system (Asub, F f,sub, Csub,
E f,sub), where (

F f,sub

E f,sub

)
= Γ

(
F f

E f

)
(7.120)

is left invertible.
Yet another notion is strong fault sensitivity, which is typically considered for

scalar faults. As for a deterministic residual, the innovation signal is strongly fault
sensitive when it reaches a non-zero steady state value for a step-like fault, f (k) =
f̄ 1{k>k0}, for any constant non-zero f̄ . This property can be checked a posteriori
by computing the steady state gain of the transfer function between fault f and
innovation r and verifying that it has at least one non-zero entry.

Remark 7.11 (Comments on strong fault detectabilty) In a deterministic framework,
necessary and sufficient conditions for the existence of a residual generator which
is strongly fault sensitive for a given system have been developed [255]. The corre-
sponding fault is said to be strongly detectable. It is unclear whether the innovation
signal computed as the output of the filter (7.92) (or as the innovation of a Kalman
filter for the subsystem in step 2 of the Algorithm 7.10) is necessarily strongly fault
sensitive, when a strongly detectable fault is considered. �

Distribution of the residual vector and residual evaluation. For proper choice of
the residual evaluation method, it is necessary to analyse the statistical distribution
of r(k). For the sake of simplicity, the situation, where x0, v(k), w(k), k = 0, 1, . . .,
are normally distributed is considered. Then, the residual has asymptotically (as k
tends to infinity) a Gaussian distribution with known variance and with zero mean or
non-zero mean, depending on whether f (k) asymptotically vanishes or not assuming
the fault is strongly detectable. The normal distribution results from the linearity of
the filter and the supervised process.

In order to characterise this distribution, let us consider the situation, where there is
no unknown input, and hence the residual generator is given by (7.92). The reasoning
below also applies to the Kalman filter designed for the system given in step 2 of the
Algorithm 7.10, but the notations are more cumbersome. The first two moments of
the distribution of r(k) can be computed as follows. Let x̃(k) = x(k) − x̂(k). Then
classical results on steady state Kalman filters provide the following expression for
the mean and the variance of x̃(k) in the absence of fault:

lim
k→∞ E(x̃(k)) = 0

lim
k→∞ E

(
x̃(k) x̃(k)T

)
= P,

7.3 Kalman Filter Approach to Diagnosis 327

with P given as the semi-positive definite solution of (7.94). By substituting the
second equation of (7.89) (with Ed = O) for y(k) in the expression (7.92) for r(k),
the residual can be written as

r(k) = Cx̃(k) + E f f (k) + Dε ε(k). (7.121)

When f (k) vanishes as k tends to infinity, one deduces from (7.121) with f (k) = 0:

rm = lim
k→∞ E (r(k)) = 0

Qr = lim
k→∞ E

(
(r(k) − rm) (r(k) − rm)T

)
= C PCT + Dε DT

ε .

If, on the contrary limk→∞ f (k) = f̄ �= 0, the residual mean is non-zero. It can be
obtained from the transfer function between f (z) and r(z) deduced from (7.89) and
(7.95), namely, V ry (z)

(
C (z I − A)−1 F f + E f

)
. Indeed, the mean of the residual

is nothing but the steady state value of the residual for f (k) = f̄ . Thus,

rm = lim
k→∞ E (r(k)) = V ry (1)

(
C(I − A)−1 F f + E f

)
f̄ .

Stability of the supervised system is implicitly assumed when writing this expression.
The variance of the residual is unchanged, since the fault signal is considered as
deterministic.

The problem of fault detection thus amounts to deciding between the following
two hypotheses:

H0 : L (r(k)) = As N (0, Qr) (7.122)

H1 : L (r(k)) = As N
(

V ry (1)
(

C (I − A)−1 F f + E f

)
f̄ , Qr

)
, (7.123)

where the notation L (r(k)) denotes the distribution of r(k), and

L (r(k)) = As N (a, X)

indicates that this distribution is normal with mean a and variance X as k tends to
infinity. Note that the residual must be strongly sensitive to fault f for the distributions
under H0 and H1 to be different.

The asymptotic character of (7.122), (7.123) is due to the effects of initial con-
ditions and filter transient upon occurrence of a fault. Neglecting this transient, and
assuming that f̄ is known, one can recast the above problem as the following test of
hypotheses:

Problem 7.9 (Test of hypotheses: transient not accounted for) Given a sequence
of residual vectors r(1), . . . , r(k), obtained as the output of filter (7.92), choose
between the following two hypotheses at the current time instant k:

328 7 Fault Diagnosis of Stochastic Systems

Fig. 7.14 Fault detection
system

f w v

Supervised
system

CUSUM
algorithm

Decision

u

Vru Vry

r

y

H0: L (r(i)) = N (0, C PCT + Dε DT
ε) for 1 ≤ i ≤ k,

H1: From time instant 1 up to an unknown time instant k0, r(i), i = 1, . . . , k0−1
is distributed as

L (r(i)) = N
(

0, C PCT + Dε DT
ε

)

while for time instant i ≥ k0

L (r(i)) = N
(
(V ry(1) C (I − A)−1 F f + E f) f̄ , C PCT + Dε DT

ε

)
.

This problem is of the form of a change detection in the mean of a Gaussian vector
sequence (Problem 7.2) with z(i) replaced by r(i), μ0 = 0, Q = C PCT + Dε DT

ε
and μ1 = (

V ry(1) C(I − A)−1 F f + E f
)

f̄ . Hence, the CUSUM algorithm based
on a step-like change can be used for residual evaluation, with f̄ taken as twice the
minimum magnitude of the fault to be detected or as the most likely magnitude of
this fault. The complete fault detection system is depicted in Fig. 7.14.

Remark 7.12 (χ2 -test) In some applications, particularly in the area of predictive
maintenance, the delay for detection may not be a crucial factor, and one may resort
to an offline approach to solve a simplified version of the above hypotheses testing
problem. The most recent data over a sliding window [k − M +1, k] are considered,
and the time instant k0 is set to 1, which amounts to considering that the change

7.3 Kalman Filter Approach to Diagnosis 329

has affected all elements of the batch of data. The method to solve this hypotheses
testing problem relies on a χ2-test. �

When stating the above hypotheses testing problem, the transient of the system
and the residual generator upon occurrence of a fault are not taken into account.
This may significantly affect the detection delay. If a priori knowledge on the fault
sequence f (i), i = k0, k0 + 1, . . . is available, the performance of the detection
system can be improved by introducing a suitable dynamical profile of change in the
CUSUM algorithm.

Most commonly, step-like changes in the fault sequence are considered, namely,

f (i) = 0 i = 1, 2, . . . , k0 − 1
f (i) = f̄ i ≥ k0

(7.124)

or, in a compact way, f (i) = f̄ 1{i≥k0}, where f̄ is a constant vector.
Due to the linearity of the system (7.89) and the filter (7.92), the residual sequence

can be written as
r(k) = r0(k) + ρ (k, k0), (7.125)

where r0(k) is the value of the residual in the absence of fault, and ρ (k, k0) is the
contribution to r(k) of a fault occurring at time k0 ≤ k. In the case of a step-like fault
considered above, ρ(k, k0) can be computed easily; it only depends on the difference
k − k0, and hence, is written with an abuse of notation ρ(k, k0) = ρ(k − k0). For
the sake of simplicity, only a scalar fault sequence is considered. Then, ρ (k − k0) =
ρ̃ (k − k0) f̄ , where ρ̃ (k) is the response of system (7.89), (7.92) to a fault signal
of the form (7.124) with f̄ = 1, for u(k) = 0, d(k) = 0 and ε(k) = 0 for all
k > 0, and for zero initial conditions. It coincides with the step response of the
system with transfer function V ry(z)

(
C(z I − A)−1 E f + F f

)
. The hypotheses

testing problem when taking into account the dynamical profile of the change can be
written as

Problem 7.10 (Test of hypotheses: transient accounted for) Given a sequence of
residual vectors r(1), . . . , r(k), obtained as the output of filter (7.92), choose between
the following two hypotheses at the current time instant k

H0: L(r(i)) = N (0, C PCT + Dε DT
ε) for 1 ≤ i ≤ k,

H1: From time instant 1 up to an unknown time instant k0, r(i),
i = 1, . . . , k0 − 1 is distributed as

L (r(i)) = N (0, C PCT + Dε DT
ε) (7.126)

while for time instant i ≥ k0,

L (r(i)) = N (ρ̃ (i − k0) f̄ , C PCT + Dε DT
ε). (7.127)

330 7 Fault Diagnosis of Stochastic Systems

This problem is in the form of Problem 7.3. (7.126), (7.127) precisely have the
form (7.56), (7.57) with r(i) replacing z(i), C PCT+Dε DT

ε replacing Q, ρ̃ (i−k0) f̄
replacing ρ(i −k0) and μ0 = 0. The CUSUM algorithm based on a known dynamical
profile of change can thus be applied with ρ(k) = ρ̃ (k) f̄ , where f̄ is taken as twice
the minimum magnitude of the change to be detected or as the most likely magnitude
of this change.

Remark 7.13 (Delay in dynamical profile) In the statement of Problem 7.3, ρ(j) is
supposed to be different from zero for j > 0. This hypothesis is not verified when the
transfer function V ry(z)

(
C(z I − A)−1 E f + F f

)
has no direct feedthrough term.

In this case, one should use ρ(k) = ρ̃(k − τ) f̄ , where τ denotes the minimum delay
in the nr elements of the mentioned transfer function. �

Note that strong fault sensitivity is no more a required property of the residual
in order to achieve fault detection, when the dynamical profile of the change is
accounted for. Indeed, it suffices that the mean of the distributions (7.126), (7.127)
be different for some time interval. Checking that the fault subsists by reinitialisation
of the CUSUM algorithm is, however, impossible when the residual is not strongly
fault sensitive.

Remark 7.14 (Fault sequence) The choice of a step-like fault sequence can be made
without loss of generality. Indeed, other signal forms could possibly be represented
as the step response of a linear system, and this linear model could be included in
the state-space Eqs. (7.88). �

Example 7.4 (cont.) Ship example
The CUSUM algorithm based on the knowledge of the dynamical profile of change will be
used to detect the occurrence of fault fω . In order to determine the dynamical profile of the
change to be used in the algorithm, it suffices to consider the response of the system made
of Eqs. (7.115)–(7.118) to a step-like fault fω , keeping all other input signals equal to zero
and starting with zero initial conditions. This corresponds to the step response of the transfer

function V ry (z)
(

C (z I − A)−1 E f + F f

)
with respect to the first input.

Given the specifications, one decides that the smallest bias on ω3 to be detected is
0.025 deg/s. f̄ω is set to twice this value, which yields 0.05 deg/s. A step of magnitude
0.05 deg/s is thus applied as signal for fω . The vector dynamical profile of change with
respect to fault fω , 0.05 ρ̃ω is plotted in Fig. 7.15.

The evolution of the CUSUM decision functions for detection of fω , gω3 is plotted in
Fig. 7.16. The indicated threshold (dashed line) has been set on the basis of the value of the
decision function for the first 300 samples (healthy working mode). The reinitialisation policy
is the reset procedure indicated in the description of the algorithm. One notices the repeated
threshold crossing of the decision function gω while the fault is present (from sample 300 to
600). �

7.3 Kalman Filter Approach to Diagnosis 331

Fig. 7.15 Dynamic profile
of change for fault fω ; first
component of 0.05 ρ̃ω

(continuous line); second
component (dash-dotted
line)

0 50 100 150 200
-0 .15

-0 .1

-0 .05

0

0 .05

0 .1

Fig. 7.16 CUSUM decision
function resulting from
application to the innovation
sequence of Fig. 7.13 of the
CUSUM algorithm based on
the known dynamical profile
of change (Fig. 7.15)

0
0

5

10

15

20

500 1000

7.3.3 Fault Estimation

In this section, a model of the form (7.88) with n f = 1 is considered. Besides, it is
assumed that step-like faults of unknown magnitude occur. Thus a scalar sequence
f (i), i = 1, 2, . . . of the form (7.124) with an unknown constant f̄ is assumed. The
problem can be stated as follows:

Problem 7.11 (Fault estimation) Given

1. a model of the process of the form (7.88) subject to a scalar step-like fault sequence
f (i) = f̄ 1{i≥k0} of unknown magnitude f̄ .

2. a sequence of measured process input and output values: (y(i), u(i))1≤i≤k ,

where k denotes the current time instant.

332 7 Fault Diagnosis of Stochastic Systems

Choose between the following two hypotheses:

H0: healthy operating condition,
H1: faulty operating condition.

When H1 is selected, an estimate of the fault occurrence time, k̂0, and of the fault

magnitude, ˆ̄f , should be provided.

As for the fault detection problem, a two-step procedure is used to solve this
problem. The first step, namely the residual generation, is the same for both problems.
For residual evaluation, a generalised likelihood ratio algorithm is used to obtain an
estimate of the fault magnitude. Indeed, given the specific fault model, the residual
evaluation reduces to Problem 7.10 in which f̄ is unknown. Hence, it is of the form
of Problem 7.4. Equations (7.126), (7.127) precisely have the form of Eqs. (7.63),
(7.64) with r(i) replacing z(i), C PCT + Dε DT

ε replacing Q, f̄ replacing ν and
μ0 = 0. The GLR algorithm based on a known dynamical profile of change but an
unknown fault magnitude can thus directly be used to process the residual vector in
order to obtain an online solution to Problem 7.11.

Example 7.4 (cont.) Ship example
Let us again consider the innovation sequence depicted in Fig. 7.13. Instead of using a CUSUM
algorithm, we now perform a GLR algorithm on this sequence. A dynamical profile of change
has to be provided. It can be computed as for the CUSUM algorithm and one gets a profile
similar to Fig. 7.15 except that the minimum fault magnitude is not accounted for. Thus to
obtain the dynamical profile ρ̃ω , the signal fω which is used is a step function with unit
magnitude instead of the magnitude of 0.05 deg/s used previously.

M is chosen as 50. This allows one to determine a quite precise estimate of the fault
magnitude in the reinitialisation procedure. Given the values of the decision function obtained
for the first 300 data, which correspond to the set {z0(1), . . . , z0(N0)}, and given its values
upon occurrence of the fault, the threshold h is set to 30. The evolution of the GLR decision
function is plotted in Fig. 7.17. Each time the threshold is crossed, an alarm is generated, and
the decision function remains equal to zero until enough data are available for estimating the
fault magnitude in a reliable way. The recursive algorithm restarts at k̂0 + M .

Note that successive changes separated by less than M samples cannot be handled properly.
For the considered data, an alarm is generated at time instants 308 and 606. The estimated
change times are 300 and 601, while the actual changes occur at 301 and 601. All numbers
should be multiplied by the sampling period to obtain time in seconds. The estimates of the
change magnitude used for reinitilisation are, respectively, 0.1020 for the positive change
and −0.1073 for the negative change (disappearance of the fault). Remember that the actual
change magnitude is 0.1 in both cases. Note that the estimate of the change magnitude plotted
in Fig. 7.18 converges relatively fast after occurrence of a fault. Hence the horizon M could
possibly be chosen smaller for this situation, yet this value is used to make the convergence
of the estimate visible in the plot.

7.3 Kalman Filter Approach to Diagnosis 333

Fig. 7.17 GLR decision
function resulting from
application to the innovation
sequence of Fig. 7.13 of the
algorithm with known
dynamical profile of change

0 500 1000
0

10

20

30

40

Fig. 7.18 Estimate of the
change magnitude resulting
from application to the
innovation sequence of
Fig. 7.13 of the GLR
algorithm with known
dynamical profile of change

0 500 1000
-0.4

-0.2

0

0.2

0.4

7.3.4 Fault Isolation

Up to now the plant model used in the stochastic framework only contained one
single (possibly vector) fault to be detected. However, most often several faults may
affect the behaviour of the supervised process, and one should not only detect them,
but also isolate the faulty components. An appropriate model to describe the process
then takes the form

334 7 Fault Diagnosis of Stochastic Systems

x(k + 1) = Ax(k) + Bu(k) +
n f∑
i=1

Fi fi (k) + Bε ε(k)

x(0) = x0 (7.128)

y(k) = Cx(k) + Du(k) +
n f∑
i=1

Ei fi (k) + Dε ε(k),

where, for the sake of simplicity, scalar faults fi , i = 1, . . . , n f are considered.
Besides, in the residual evaluation stage, it will be assumed that fi asymptotically
tends to a constant value, say f̄i , i = 1, . . . , n f .

Two approaches can be distinguished to handle this situation. The first one is
similar to the method presented in Sect. 6.4. It aims at ensuring fault isolation by
enforcing a specific structure in the mapping from faults to residuals. The second
one resorts to a multi-CUSUM approach to distinguish between different directions
in the residual space, while using a single innovation filter for residual generation.
Both methods are presented below and their respective advantages and drawbacks
are discussed.

Method based on structured residuals. A set of residual generators are designed
in such a way that each of them provides an output that is only affected by certain
faults. This can be achieved by recasting the problem as a fault detection problem
for a specific system with unknown input. An ideal situation is reached when the
structure depicted in Table 7.2 can be enforced, assuming a situation with three faults.

An × in Table 7.2 indicates that the fault in the corresponding column affects the
residual in the corresponding row. In this case, the fault detection problem corre-
sponding to row α is based on model (7.88) with

d = (
f1, . . . , fα−1, fα+1, . . . , fn f

)T

and f = fα. n f such problems must be solved to obtained the n f residual generators.
From the conditions for fault detectability indicated in Sect. 6.4, the following

necessary conditions can be deduced for the above scheme to work

rank
(

Hy, f� (s) Hy, f j (s)
)

> rank Hy, f j (s) (7.129)

for all �, j = 1, . . . , n f , � �= j,

Table 7.2 Effects of the
faults on the residuals f1 f2 f3

r1 ×
r2 0 × 0

r3

0 0

0 0 ×

http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_6

7.3 Kalman Filter Approach to Diagnosis 335

where Hy, f� (z) is the transfer matrix between f� and y.4 Roughly speaking, this
indicates that two different faults have not the same effect on the measured output
vector.

When it is not possible to design residual generators in such a way that each
residual is only sensitive to a single fault, it is still possible to achieve fault isolation
provided the zero entries in the table characterising the effect of the faults on the
residual have a different pattern in each column. However, only a diagonal structure
such as in Table 7.2 allows isolation of multiple simultaneous faults. An issue to keep
in mind, however, is the effect of the modelling uncertainties on the decoupling of
the residual vectors r i with respect to the faults to which they should not be sensitive.

For processing the global residual vector generated according to Table 7.2, the first
idea would be to handle each r i , i = 1, . . . , n f individually by a GLR algorithm
or a CUSUM algorithm according as an estimate of the fault magnitude is needed
or not. However, this approach does not account for the correlation between the
different vector residuals. A better solution, when no estimate of fault magnitude is
needed is to resort to a multi-CUSUM algorithm (see Sect. 7.2.6) that processes at

once the vector r(k) = (
r1(k)T r2(k)T . . . rn f (k)T

)T
. This algorithm is also the

easiest alternative when a non-diagonal structure is used for residual generation. Its
application is illustrated in the next section where the residual is generated from a
single innovation filter exploiting all measurements at once.

Method based on a single innovation filter. The residual issued by a single innova-
tion filter is determined from (7.92) which is repeated here for the sake of readability

x̂(k + 1) = Ax̂(k) + Bu(k) − K (y(k) − Cx̂(k) − Du(k)),

x̂(0) = x̂0
r(k) = y(k) − Cx̂(k) − Du(k),

(7.130)

with filter gain computed from (7.93). The concatenated system made of model
(7.128) and (7.130) can be seen as a system with inputs u, f�, � = 1, . . . , n f , ε and
output r . Following the same reasoning that led to (7.122), (7.123), the distribution
of the residual under fault free and faulty situation can be directly deduced, namely,

L (r(k)) = As N (0, Qr) in the absence of fault

L (r(k)) = As N
([

V ry (1)
(

C (I − A)−1 F f + E f

)]
.,�

f̄ �, Qr

)

in the presence of fault �, � = 1, . . . , n f

where [.].,� denotes the �th column of a matrix and Qr = C PCT + Dε DT
ε .

The problem of fault detection and isolation can thus be formulated in the form of
Problem 7.5 with Q = Qr and μ� = [

V ry (1)
(
C (I − A)−1 F f + E f

)]
.,�

f̄ �. It
can be solved by the multi-CUSUM algorithm presented in Sect. 7.2.6. Notice that,
upon occurrence of a fault, the residual signal will exhibit a transient which is not

4rank H(z) stands for the normal rank of matrix H(z); it can be computed as maxz rank H(z).

336 7 Fault Diagnosis of Stochastic Systems

accounted for in the present approach. If a specific fault pattern is assumed, say a
step-like fault for instance, the corresponding profile in the residual sequence can
be accounted for in the change detection/isolation algorithm, as mentioned in the
reference section.

Example 7.4 (cont.) Ship example
Faults on both the rate sensor and the angular position sensor are now considered. Figure 7.19
depicts the measurement signals obtained when step-like faults with magnitude 0.1 deg/s
and 0.5 deg are, respectively, introduced on ω3m between time instant 301 and 600 and on
ψm between time instant 900 and 1200. All time data are expressed in number of sampling
periods.

In order to achieve fault isolation, two residual signals are generated, one being sensitive
to fω , the other to fψ . To this end, consider the sampled-data ship model (7.115), (7.116). If a
Kalman filter is designed for this system using only the first measurement equation in (7.116),
the resulting residual will only be affected by fω . Such a filter cannot be designed because
the resulting system is not detectable. However, there is no need to estimate the whole state to
generate a residual; it suffices to design a Kalman filter for the first 3 state equations in (7.115)
and the first measurement equation. This filter takes the form:

⎛
⎝ x̂w1 (k + 1)

x̂w2 (k + 1)

ω̂3 (k + 1)

⎞
⎠ =

⎛
⎝ −0.1281 −0.6365 0

0.9945 0.1106 0
0 0 0.0000

⎞
⎠

⎛
⎝ x̂w1 (k)

x̂w2 (k)

ω̂3 (k)

⎞
⎠

+
⎛
⎝ 0

0
0.0500

⎞
⎠ δ(k) +

⎛
⎝ −0.6760

0.8104
0.0000

⎞
⎠ ·

⎛
⎝ω3m (k) − (1 0 1)

⎛
⎝ x̂w1 (k)

x̂w2 (k)

ω̂3 (k)

⎞
⎠

⎞
⎠ (7.131)

The innovation is computed from

rω3 (k) = ω3m (k) − (1 0 1)

⎛
⎝ x̂w1 (k)

x̂w2 (k)

ω̂3 (k)

⎞
⎠ (7.132)

Fig. 7.19 Angular rate and
heading measurements

0 500 1000 1500
-1

0

1

2

3

4

7.3 Kalman Filter Approach to Diagnosis 337

0 500 1000 1500
-0.5

0

0.5

1
(a)

0 500 1000 1500
-1.5

-1

-0.5

0

0.5

1
(b)

Fig. 7.20 Residual affected by fω (a) or fψ (b) only

It is plotted in Fig. 7.20a. A significant change in the mean of this signal is visible when the
fault on ω3 is present.

The design of a residual generator for detection and isolation of fψ is based on the model
made of Eqs. (7.115) and (7.116). This system is detectable and the innovation, rψ , of the
Kalman filter based on the above model is affected by fault fψ as can be seen in Fig. 7.20b.
However, the latter fault is not strongly detectable.

Hence for evaluation of residual rψ , one has to resort to the GLR algorithm, since it is not
possible to detect fault disappearance by successive reinitilisation of a CUSUM algorithm.
The latter option is possible for evaluation of rω3 however. Figure 7.21 represent the CUSUM
decision function obtained by processing the residual of Fig. 7.20a and the GLR decision
function obtained by processing the residual sequence of Fig. 7.20b. Repeated alarms are
issued by the CUSUM algorithm, the first occurring at time 300, the last one at time 597.
In this time interval, the CUSUM decision function crosses its threshold every 5 samples on
the average. Appearance and disappearance of the fault on the angular rate measurement can
thus be detected and isolated. As far as the GLR decision function of Fig. 7.21b is concerned,
it reaches its threshold at time 904, and the estimated fault occurrence time of fψ is 900
(actual value 901). The estimated fault magnitude based on the residual in the time window

0 500 1000 1500
0

5

10

15
(a)

0 500 1000 1500
0

10

20

30

40

50
(b)

Fig. 7.21 CUSUM decision function and GLR decision function resulting from evaluation of rψ

(a) and rω3 (b)

338 7 Fault Diagnosis of Stochastic Systems

[900 949] is 0.449, which is in error by 10 %. After reinitialisation, the GLR algorithm detects
fault disappearance at time 1203 and it provides instant 1201 as the estimate of the change
occurrence time, namely the correct time instant. The estimated change magnitude is −0.618
which is in error by 23 %.

7.4 Exercises

Exercise 7.1 Covariance of high-pass filter output–input is band-limited noise
Given a high-pass filter with the state-space representation

ẋ(t) = −αx(t) + αw(t)

y(t) = w(t) − x(t)

with input w(t), a band-limited random signal generated by

ẇ(t) = −βw(t) + σw

√
2βv(t),

where v(t) has the intensity Sv = 1.

1. Represent the filter in the form

ẋ(t) = Ax(t) + Bv(t).

2. Let the covariance matrix be

Q = E

{(
w(t)
x(t)

) (
w(t) x(t)

)} =
(

a c
c b

)
.

Calculate the covariance Q as the solution to the Lyapunov equation

A Q + Q AT + BSv BT = O.

3. Show that the variance on y , σ2
y , is

σ2
y = β

α + β
σ2

w (7.133)

and determine the value of the pole α required to obtain a desired value of σ2
y given σ2

w .
�

Exercise 7.2 Industrial actuator-fault detection using threshold and CUSUM tests
The task is to implement a residual generator in, e.g. MATLAB/Simulink and investigate how
faults propagate in the residual generators in the presence of
measurement noise and random disturbances. The system is the industrial actuator used in
Exercise 3.4. The residual generator is described by the parity equations

http://dx.doi.org/10.1007/978-3-662-47943-8_3

7.4 Exercises 339

r1(s) = nm(s) − 1
s Itot+α kqηim(s)

r2(s) = τ f s
τ f s+1θm(s) − 1

N (τ f s+1)
τ f nm(s)

(7.134)

where τ f = 1 s. A noise specification for the measurements im, nm and θm is given by the
autocorrelation function

Rii (τ) = σ2
i e−βi |τ | (7.135)

where
nm : σn = 3 rad/s β = 10
θm : σθ = 0.01 rad β = 2
im : σi = 1 mA β = 10

(7.136)

The system is depicted in Fig. 3.8 where also the parameters are given.

1. Implement a simple threshold (level) detector on the two residuals from the parity equations
(Eq. 7.134). Investigate whether you can detect
(a) fn : a step change of 3.5 rad/s in the speed feedback.
(b) fi : a step change of 0.15 A in the power drive current.

2. Design a scalar CUSUM detector of change in mean value. Test for the hypothesis that a
fault is present and reflected in the mean value change of the values given above.

3. Design a detector for the speed sensor fault that has a time to detect of 2.5 s. Determine
the average time between false alarms. Increase the specified time to detect to 10 s and
determine the new average between false alarms.

4. Investigate experimentally (by simulation) whether the two faults can be detected.
5. Verify the time to detect and the false alarm rates using different seeds in your measurement

noise generators.
Note 1: The results on time to detect and mean time between false alarms assume white
noise statistics of the log-likelihood test quantity s(k). When s(k) is not white, the statistical
results are only approximate figures that can only be used as guidelines for design. �

Exercise 7.3 Industrial actuator change detection using the GLR test
Design a generalised likelihood ratio test (GLRT). Assume that faults are of unknown mag-
nitude and a GLRT-based detector is hence needed. The simulation of the velocity controlled
actuator from Exercise 7.2 is reused.

1. Design and implement a scalar GLRT-based detector for residual r1. Implementation in
Simulink is conveniently done using an embedded MATLAB block from the Simulink user
defined functions part of the block set.

2. Simulate the system without any fault and with a fault on nm. The no-fault case is denoted
H0, the one with a fault is H1. Plot the histograms of g(k) for the two cases: (1) no
faults, (2) fn = 3.5 rad/s. Make also a probability plot of the two distributions using the
MATLAB probplot command.

3. Determine the threshold you should use for the GLRT to get a false alarm probability of
PF A ≤ 0.001.

4. Investigate which influence the choice of GLRT window size M has on the choice of
threshold for the test. �

Exercise 7.4 Single-axis satellite: Detection of a fault of known magnitude
Referring to Exercise 6.3, measurements on the satellite are subject to noise. A state-space
model for the single-axis satellite is given by:

http://dx.doi.org/10.1007/978-3-662-47943-8_3
http://dx.doi.org/10.1007/978-3-662-47943-8_6

340 7 Fault Diagnosis of Stochastic Systems

ẋ1 = 1
I (u1k1 + u2k2 + d)

ẋ2 = x1
y1 = x1 + f1 + w1
y2 = x2 + f2 + w2
y3 = x2 + f3 + w3
y4 = u1k1 + f4
y5 = u2k2 + f5
ẋ1 = dx1

dt

ẋ2 = dx2
dt

(7.137)

The noise specification is given as

Rii (τ) = σ2
i e−βi |τ | (7.138)

where the standard deviations are

w1 : σ1 = 2 × 10−4 rad/s β = 10
w2 : σ2 = 1 × 10−5 rad β = 10
w3 : σ3 = 2 × 10−3 rad β = 10

(7.139)

Consider the two residuals

r12(s) = 1
s+α y1(s) − s

s+α y2(s)
r23(s) = y2(s) − y3(s)

(7.140)

where α = 0.01. The system parameters are given in Exercise 6.3. For residual generation,
measurements are sampled with a sampling interval of 1 s

1. Design a set of scalar-based change detection algorithms for the case where the fault on
y2 has a magnitude of μ21 = 2 × 10−3 rad and the change is a step. Verify that you are
able to detect the fault within 10 samples. It is desired to use r23 to isolate the fault but the
variance on y3 is too large to detect a change of this magnitude.

2. Determine which variance y3 should have to isolate the fault on y2 within 10 samples.
Design a low-pass filter to obtain such reduced variance of y3 and verify by simulation
that isolation is possible. �

Exercise 7.5 Single-axis satellite: Vector-based detection of change signature
Consider again the system (7.137)–(7.139) and residual generator (7.140).

1. Determine the fault signature in the residual vector assuming a fault on y2 appears as a
step.

2. Design a vector-based change detection algorithm for the case where the fault on y2 has a
magnitude of 2×10−3 rad and appears as a step. Discuss the properties of the vector-based
change detection compared with the set of scalar algorithms. �

Exercise 7.6 Hardware redundancy
Consider a set of three sensors measuring a single quantity denoted x . The measurement
system can be modelled as:

http://dx.doi.org/10.1007/978-3-662-47943-8_6

7.4 Exercises 341

⎡
⎣ y1(k)

y2(k)

y3(k)

⎤
⎦ =

⎡
⎣ 1

1
1

⎤
⎦ x(k) +

⎡
⎣ f1(k)

f2(k)

f3(k)

⎤
⎦ +

⎡
⎣ v1(k)

v2(k)

v3(k)

⎤
⎦ (7.141)

where yi (k), vi (k) and fi (k), i = 1, 2, 3, respectively, denote the sensor measurement, the
measurement noise and a possible additive fault. vi (k), i = 1, 2, 3 is assumed to be a Gaussian
white noise sequence with zero mean and variance σ2

1 = σ2
2 = 1 and σ2

3 = 2. Besides, the
noise sequences are mutually uncorrelated. The faults are modelled as unknown deterministic
signals, and it is assumed that simultaneous faults do not occur. A fault on sensor i thus
corresponds to a non-zero value for fi (k) from an unknown fault occurrence time, say k0.

1. Let us rewrite Eq. (7.141) more compactly as

y(k) = [
1 1 1

]T x(k) + f (k) + v(k) (7.142)

where y(k) = [
y1(k) y2(k) y3(k)

]T and similarly for f (k) and v(k). Let Ω denote a

basis for the left null space of
[

1 1 1
]T. Show that r(k) ≡ Ω y(k) is independent of x(k).

2. Prove that r(k) has zero mean in the absence of fault and that its mean is equal to Ω.,i fi (k)

in the presence of a fault on sensor i . Here Ω.,i denotes the i th column of matrix Ω . Besides,
show that the variance of r(k) is equal to Qr = Ω QΩT where Q = diag (σ2

1, σ2
2, σ2

3)

3. Let rn = (Ω QΩT)− 1
2 r(k). Show that rn(k) is distributed as N (O, I) when no faults are

present and as N ((Ω QΩT)− 1
2 Ω.,i fi (k), I) upon occurrence of a fault on the i th sensor.

4. Assume that positive step-like faults with minimum magnitude equal to 0.5 can occur.
Design a multi-CUSUM algorithm of the form presented in Sect. 7.2.6 to detect and isolate
such faults.

5. Generate a data sequence according to model (7.141) in which x(k) = sin(0.1k), the noise
properties are as described above, and f1(k) = 0.5 1{k≥20}, f2(k) = f3(k) = 0 for all k.

6. Process the data generated in point (e) by the multi-CUSUM algorithm designed in point
(d), and check its effectiveness.

7. Check how the magnitude of the fault affects the obtained results by repeating points (e)
and (f) for different fault magnitudes. �

7.5 Bibliographical Notes

Change detection. The non-sequential and sequential algorithms for change detec-
tion in signals are described in details in the book [11]. The proof of the optimality of
tests based on the likelihood ratio between two hypotheses can be found in Sect. 4.2.2
of [11]. The properties of sequential algorithms deduced from the ARL function are
investigated in Chap. 4 of [11]. A heuristic approach for choosing the design para-
meters of the GLR algorithm for detection of changes in the mean is presented in
[275]. The statistical properties of the multi-CUSUM algorithm for change detection
and isolation are studied in [245]. The algorithm has been extended to account for
a dynamical profile of change in [178], and the benefit of the extension has been
demonstrated on a case study.

342 7 Fault Diagnosis of Stochastic Systems

Kalman filters as residual generator. A numerically stable algorithm to extract
the observable part of a given system can be found on p. 220 of [63]; it can be
used as a first step to design a residual generator based on a Kalman filter for an
unobservable system. The design of a residual generator based on a Kalman filter
for a system subject to unknown input and additive faults is adapted from [246]. An
alternative approach to compute an innovation sequence is to use parity relations and
to filter the obtained residual by an appropriate whitening filter. This method has
been considered in [275] for instance.

Robustness and alternative methods for FDI of additive faults. It was not possible
to examine here the question of robustness with respect to modelling uncertainties of
the statistical approach to fault detection. A valuable reference to study this question
is [228]. An alternative to the combined use of an innovation filter and a statistical
change detection/isolation algorithm for the diagnosis of additive faults in linear sys-
tems has recently been proposed in [257]. The formulation consists of a constrained
least-squares problem with sum-of-norm regularisation. Quantifying fault diagnos-
ability is an important issue that has been studied in [93] by resorting to a statistical
measure, namely, the Kullback–Leibler divergence.

Fault diagnosis based on parameter estimation. System identification based meth-
ods for fault detection, estimation and isolation have not been considered in this
chapter but they have also proved useful in many applications. They can be sepa-
rated in two classes: methods based on explicit parameter estimation and methods
based on statistics (such as the statistical local approach). An introduction to the
first class of methods can be found in [153, 154]. For the second class, the reader is
referred to [11, 408].

Appendix on random variables and stochastic processes. For more information
on the material in the appendix on random variables and stochastic processes, the
reader can consult [9, 166, 261] for instance. In particular the approach for sampling
a linear stochastic differential equation is borrowed from pp. 147–151 of [9].

Chapter 8
Reconfigurability Analysis

Abstract Fault-tolerant control brings together several theoretic frameworks that
are needed to treat the different problems it involves. This chapter addresses these
problems from a global perspective that includes the specification and the develop-
ment of control solutions, as well as the implementation and the evaluation of these
solutions. Among many possible control problems, this chapter uses linear quadratic
control theory to illustrate the above-mentioned problems, under the two possible
fault-tolerance strategies, namely fault accommodation, where the controller para-
meters are adapted to the parameters of the faulty plant, and system reconfiguration,
where the subset of system components in operation is changed (and so is of course
the control law). A variety of other control approaches will be developed in the next
chapter.

8.1 The Fault-Tolerant Control Problem

8.1.1 Standard Control Problem

In order to explain the fault-tolerant control problem in more detail, the standard
control problem is first stated as a problem that is defined by a given objective, a set
of constraints and a set of admissible control laws. Standard control aims at finding a
control law in a given set of control laws U , such that the controlled system achieves
the control objectives O , while its behaviour satisfies a set of constraints C . Thus,
the solution of the problem is completely defined by the triple < O, C, U >.

Problem 8.1 (The control problem)
Solve the problem < O, C, U >.

The following remarks should explain this problem in more detail:

• The set U of admissible control laws defines the algorithms that can be imple-
mented, e.g. open-loop control (a mapping from the time domain to the control
space), closed-loop control (a mapping from the output × reference spaces to the
control space), using continuous or discrete-valued arguments for the variables,

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_8

343

344 8 Reconfigurability Analysis

allowing for continuous or discontinuous, differentiable or non-differentiable map-
pings, etc.

• The objective O defines what the system is expected to achieve, when controlled by
the above-mentioned control law. It may range from very general statements (e.g.
achieve closed-loop stability) to much more specific ones (e.g. reach a given point,
on a given circular orbit around the earth, at a given time, for a space rendez-vous).

• Constraints C are functional relations that the behaviour of the controlled system
must satisfy over time. They are expressed by algebraic and differential or differ-
ence equations, when continuous variables are considered, and by other models
when discrete values are of interest (see Chap. 2). Inequality constraints express
that some saturations act on the system admissible solutions (e.g. any trajectory
which results from an admissible control law must end on a given point of a given
circular orbit, at a given time, but the energy consumed all along the trajectory is
limited by the capacity of the vessel’s reservoirs).

Example 8.1 Control of the single-tank system
Consider the problem of filling an initially empty tank up to a certain mass m of some liquid,
as fast as possible, so as to start a batch operation process in the food industry. Let m(t) be
the mass present in the tank at time t , and let u(t) be the controlled input flow. The control
problem is a very classical minimum time problem defined by the triple:

O: The objective is to change the mass m(t) from its initial value m(t0) = 0 to the given
final value m(tf) = M, in minimum time, i.e. minimising the functional

∫ tf

t0
dt.

C : The behaviour of the system is constrained by the state equation

ṁ(t) = u(t).

U : The control law belongs to the class of piecewise continuous open-loop controls with
saturation

u : |R+ → |R
t �−→ u(t)

u(t) ∈ [0, umax]
u ∈ C0

Once the tank has been filled with the mass m of liquid, the production process of the batch
will start. Assume that for the proper biological reaction to take place, the temperature η(t)
must be regulated around some given reference ηref . The associated control problem is again
well known. A PI-regulation example is given below:

O: The objective is to regulate the temperature η(t) of the batch around the reference value
ηref , during the processing period [0, T]. It is expressed by

http://dx.doi.org/10.1007/978-3-662-47943-8_2

8.1 The Fault-Tolerant Control Problem 345

|ηref − η(t)| ≤ λ, ∀t ∈ [T0, T] ,

where λ is some constant which defines the admissible temperature excursion around
the reference on the time interval [T0, T], and T0 > 0 is the time value after which the
neighbourhood of the reference temperature must have been reached.

C : The behaviour of the system is described by the state and measurement equations

η̇(t) = f (η(t)) + ζ(t) + v(t)

ζ̇(t) = g(η(t), t)

y(t) = η(t) + ε(t),

which expresses that the temperature variation is the result of thermal losses f (η(t)), of
the exothermic character of the biological reaction (the reaction energy is ζ(t), whose
evolution is given by g(η(t), t) in the second state equation), and of the control v(t), and
that the available measurement signal is the temperature, which is corrupted by some
measurement error ε(t).

U : The control law belongs to the class of closed-loop PI controls

v : Ψref × Y → |R
(ηref , y(t)) �−→ v(t) = kP(ηref − y(t)) + kI

∫ t

0
(ηref − y(τ)) dτ ,

where kP and kI are coefficients to be found as the solution of the control problem, Ψref
is the set of possible references and Y is the set of the sensor output values. �

8.1.2 Impacts of Faults on the Control Problem

Fault-tolerant control is concerned with the control of the faulty system. This can be
done by changing the control law without changing the plant which is operated (this
is the fault accommodation strategy), or by changing both the control and the system
(this is the reconfiguration strategy). Since the control algorithm just implements
the solution of a control problem for a given system, changing the control or the
system means that the control problem has been changed as the result of faults. In
order to understand the different strategies which can be applied to the design of
fault-tolerant control, let us first consider the impact of faults on the control problem
< O, C(θ), U >, where C(θ) denotes the dependency of the constraint C upon the
parameter θ, which in turn depends upon the fault. The different fault-tolerant control
strategies will then be introduced, as a consequence of the available knowledge.

System objectives. The occurrence of faults should not change the system objectives.
The objectives are associated with the users (they define what the users expect the

346 8 Reconfigurability Analysis

system to achieve), and the very nature of fault-tolerant control is to still try to
achieve these objectives, in spite of the faults. However, this will be possible or not.
Therefore, two cases have to be distinguished:

1. There is a mean of still achieving the system objectives in the presence of certain
faults. The system is said to be fault tolerant, with respect to that objectives and
to these faults. Equivalently, the faults are said to be recoverable. The control
engineer’s task is to design some control law which is able to do that.

2. The objectives cannot be achieved in the presence of the considered faults. The
system is not fault tolerant with respect to that objectives and these faults, in other
terms the faults are not recoverable. However, it is not enough to stand with this
conclusion. The control engineer should provide, in this case, indications about
what to do with the system. Since the current objectives cannot be achieved,
the problem is transformed into finding new objectives that are of interest in the
current situation, and to design the structure and the parameters of the new control
law to achieve these new objectives.

System constraints. The occurrence of faults may obviously change the constraints
C(θ) of the control problem.

• First, the constraints may remain the same but the parameters may change, thus
transforming the control problem < O, C(θn), U > into the problem
< O, C(θf), U >, where θn (respectively θf) denotes the nominal (respectively
the faulty) system parameters.

• Second, the constraints themselves might change, transforming the control prob-
lem < O, Cn(θn), U > into the problem < O, Cf(θf), U >, where Cn is the set
of nominal constraints, and Cf(θf) is a set of new constraints with new associated
parameters.

Both cases may be summarised by the change of Cn(θn) into Cf(θf) since the
change of parameters only is a particular case, described by Cf = Cn.

Example 8.2 A tank with two exit pipes
Consider for example a tank with two exit pipes, respectively, situated at levels l1 and l2
metres. The system nominal constraints are the following:

x(t) ∈ [0, l1[ẋ(t) = qi (t)
x(t) ∈ [l1, l2[ẋ(t) = qi (t) − q1(v1, t)

x(t) ≥ l2 ẋ(t) = qi (t) − q1(v1, t) − q2(v2, t),

where x(t) is the level in the tank, qi (t) is the input flow, q1(v1, t) (respectively q2(v2, t)) is
the output flow through pipe 1 (respectively through pipe 2) which depends on some external
variable or control signal v1 (respectively v2). This might be, for example, the level in another
tank connected to the pipe, or the control signal of an output valve on the pipe. Suppose now
that pipe 1 is clogged, then as the result of the fault, the system constraints become

8.1 The Fault-Tolerant Control Problem 347

x(t) ∈ [0, l1[ẋ(t) = qi (t)
x(t) ∈ [l1, l2[ẋ(t) = qi (t) ∀v1(t)

x(t) ≥ l2 ẋ(t) = qi (t) − q2(v2, t),

which can also be represented by adding a fourth constraint to the three nominal ones

x(t) ∈ [0, l1[ẋ(t) = qi (t)
x(t) ∈ [l1, l2[ẋ(t) = qi (t) − q1(v1, t)

x(t) ≥ l2 ẋ(t) = qi (t) − q1(v1, t) − q2(v2, t)
q1(v1, t) = 0,∀v1, t. �

Admissible control laws. The occurrence of faults may also change the set of
admissible control laws since faults may occur in the computing and communi-
cation devices in which they are implemented. As in the previous subsection, the
new set of admissible control laws is noted Uf while the nominal one is Un.

Example 8.1 (cont.) Control of a single-tank system
Consider the standard control problem of filling a tank in minimum time for processing a
batch in food industry: find the control law in the set Un of piecewise continuous functions
satisfying

u : |R+ → |R
t �−→ u(t)

u(t) ∈ [0, umax]
u ∈ C0

such that the initial mass m(t0) = 0 is changed into the final mass m(tf) = M, in minimum
time, while satisfying the state equation ṁ(t) = u(t). Suppose now that the pump is faulty
and can only deliver a fraction of its nominal maximum output flow, namely umax is changed
into u′

max < umax. The set Un is changed into the set Uf , where the saturation level is lower
(thus leading to a larger filling time for the optimal solution). �

8.1.3 Passive Versus Active Fault-Tolerant Control

In the passive approach, the control algorithm is designed so that the system is able
to achieve its given objectives, in healthy as well as in faulty situations, without any
change in the control law. Therefore, passive fault-tolerant control sets the control
problem in a context, where the ability of the system to achieve its given objective
is preserved, using the same control law, whatever the system situation (healthy or
faulty).

In active approaches, the control law is changed when faults occur, so that the
ability of the system to achieve its given objective is preserved, using a control law
adapted to each fault situation. Therefore, active fault-tolerant control algorithms

348 8 Reconfigurability Analysis

implement the solution of problems which are specifically set for each of the possible
(healthy and faulty) situations.

As the result of faults, the control problem is transformed

from < O, Cn(θn), Un > into < O, Cf(θf), Uf >.

Suppose that both Cf(θf) and Uf are perfectly known, then the fault-tolerant
control law has to solve < O, Cf(θf), Uf >. If such a solution exists, the system is
fault tolerant with respect to the objective O and the fault situation Cf(θf), Uf . If
the problem < O, Cf(θf), Uf > has no solution, then the system is not fault tolerant
and objective reconfiguration has to be explored, as previously explained.

The difference between passive and active fault-tolerant control can now be very
simply explained.

Passive fault tolerance. In passive fault tolerance, the control law is not changed
when faults occur. This means that the system objectives can be obtained when the
system is healthy (thus it solves < O, Cn(θn), Un >), as well as when the system
is faulty (thus it also solves < O, Cf(θf), Uf >). Implementing passive fault tol-
erance for a given set of faults means that there is a common solution to problem
< O, Cn(θn), Un > and to all problems < O, Cf(θf), Uf >, (f ∈ F), where F
indexes the set of all the considered faults.

This is a very particular situation, which is fulfilled, in general, only for objectives
associated with very low levels of performances (this is a so-called conservative
approach). Note that since the control law is not changed, the passive fault-tolerance
approach is similar to the robust approach when uncertain systems are considered (cf.
Chap. 1). Indeed, faults can be considered as uncertainties which affect the system
parameters. The difference lies not only in the size and interpretation of these changes,
but also in the fact that the structure of the constraints may change as the result of
faults.

Active fault tolerance. In active fault tolerance, each of the problems

< O, Cn(θn), Un > and < O, Cf(θf), Uf >,

f ∈ F , has its own specific solution, thus allowing for much more demanding
objectives. However, for each of these problems to be solved the knowledge about
Cf(θf) and Uf must be available. This is the role of fault detection and isolation
algorithms. This chapter deals with active fault-tolerant control.

8.1.4 Available Knowledge

Providing information about the fault impact is the aim of the fault diagnosis algo-
rithms. However, the power and efficiency of these algorithms are limited. Fault
detection informs that the problem to solve is no longer < O, Cn(θn), Un >. Fault

http://dx.doi.org/10.1007/978-3-662-47943-8_1

8.1 The Fault-Tolerant Control Problem 349

isolation informs about the subset of the constraints Cn(θn) which are unchanged
(those associated with the still healthy components), and the subset Uf ⊆ Un of
control laws which can still be used. The knowledge about the changed constraints
calls for fault estimation, which is a new function to be considered for the design of
fault-tolerant control. According to its performances, three cases must be considered:

1. The fault diagnosis algorithm is able to provide an estimate Ĉf(θ̂f), Ûf of the
fault impact. Then, the problem to be solved is the standard control problem
< O, Ĉf(θ̂f), Ûf >. Note that, when a solution exists, there is still a risk that the
actual faulty system (described by Cf(θf) and Uf) fails to satisfy the objectives
O , although the available model of the faulty system does satisfy them.

2. The fault diagnosis algorithm is able to provide an estimate Γ̂f(�̂f), Uf of the
fault impact, where Γ̂f is a set of possible constraints and �̂f is a set of asso-
ciated parameters. Then the problem to be solved is the robust control problem
< O, Γ̂f(�̂f), Ûf >. When a solution exists, the actual faulty system will satisfy
the objectives O provided the actual constraints Cf(θf) ∈ Γ̂f(�̂f), otherwise, the
same risk as above exists.

3. The fault diagnosis algorithm detects and isolates the faults, but it cannot provide
any estimate of the fault impact. The control engineer is faced with the problem
of designing the control of a completely unknown system, which is not possible.
Obtaining knowledge about that system could be thought of, using e.g. learning
approaches, but then an estimation of the fault impact could indeed be obtained,
which would bring the problem back to case 2.

Other possible cases are those where the fault diagnosis system detects the fault,
but it cannot isolate it nor is it able to provide any estimate, and the case, where
the fault diagnosis system does not even detect the fault. In the first case, the only
possibility to keep mastering the system is to move to a fall back mode, while in the
second case, any catastrophic behaviour is possible. Active fault tolerance is only
concerned with cases 1, 2 and 3.

8.1.5 Active Fault-Tolerant Control Strategies

Fault accommodation. Fault accommodation is the fault-tolerant control strategy
which is associated with cases 1 and 2. It solves the problem < O, Ĉf(θ̂f), Ûf >

or < O, Γ̂f(Θ̂f), Ûf >, which is associated with the control of the faulty system.
The fault situation can be accommodated with respect to the objectives O when the
problem has a solution.

Problem 8.2 (Fault accommodation problem)
Solve the control problem < O, Ĉf(θ̂f), Ûf >, where Ĉf(θ̂f) is the estimate of the
actual constraints provided by the fault diagnosis algorithms.

350 8 Reconfigurability Analysis

Note that the interpretation of fault accommodation is that it is a strategy by which
the faulty system is controlled in a specific way, so as to still achieve the objectives
which were (before the fault) achieved by the healthy system.

System reconfiguration. System reconfiguration is the fault-tolerant control strategy
which is associated with case 3. Remind that in this case the faulty system is absolutely
unknown, but the control engineer wishes to design a control that achieves the system
objectives. The only means to set any control problem is to switch off the faulty
components (which are known from the isolation function), and to try to achieve the
objectives using only the remaining (healthy) ones. Let Cf(θf) = C ′

n(θn) ∪ C ′′
f (θf),

where C ′
n(θn) is the subset of the constraints which are associated with the healthy

part of the system, and C ′′
f (θf) is the subset of the constraints which are associated

with the faulty part.

Problem 8.3 (Reconfiguration problem)
Find a new set of system constraints Cf (θf) such that the control problem< O, Cf(θf),

U > has a solution, find and activate this solution.

The choice of a new set of constraints will imply that the input–output relations
between the controller and the plant are changed.

Note that the constraints C ′
n(θn) are known while C ′′

f (θf) are unknown. Using
similar notations, let Uf = U ′

n ∪ U ′′
f . Then, the reconfiguration strategy solves the

problem < O, C ′
n(θn), U ′

n >, i.e. it tries to achieve the system objectives by con-
trolling only the healthy part of the system.

Fault accommodation and reconfiguration are distinguished according to whether
the I/O signals between the controller and the plant are changed. Reconfiguration
implies the use of different I/O relations between the controller and the system.
Switching the system to a different internal structure, to change its mode of operation,
is an example of such I/O switching. Accommodation does not use such means.

Both fault accommodation and system reconfiguration strategies may need new
control laws in response to faults. They also have to manage transient behaviour,
which result from the change of control law or change of the constraints’ structure.

8.1.6 Supervision

Suppose that the accommodation and the reconfiguration strategies fail to provide a
solution. This means that there is no possibility, using the faulty system (accommo-
dation) or a subsystem of it (reconfiguration) to achieve the objective. In this case,
another objective has to be provided to the system. This introduces the most general
problem, defined by the 3-tuple < O, C(θ), U >, where O is a set of possible control
objectives. This problem is called the supervision problem. It is a decision problem
in which the system objective is not pre-defined, but has to be determined, accord-
ing to the system possibilities at each time, taking into account the actual system
possibilities.

8.1 The Fault-Tolerant Control Problem 351

A supervision problem is thus a fault-tolerant control problem associated with
a decision problem: if faults are such that fault tolerance cannot be achieved, the
system goal itself has to be changed. When far-reaching decisions with respect to
the system goal have to be taken, human operators are generally involved.

It may happen that no achievable objective exists under the actual system possi-
bilities. This can be a design error, or a deliberate choice to accept certain failure
scenarios, e.g. for reasons of benefit or small likelihood of certain events. Note that
fail-to-safe conditions are intended to avoid this case in some situations, since they
express that for certain classes of faults, the objective of stopping the system must
always be achievable.

8.2 Fault-Tolerant Control Architecture

The method to achieve fault tolerance, which is considered in this chapter, relies
on employing fault diagnosis schemes on-line and on reacting to the results of the
diagnosis. A discrete-event signal to a supervisor agent is generated by the diagnos-
tic algorithm when a fault is detected, another when it is isolated. This activates an
alternative control that is supposed to handle the fault. The control for the partic-
ular case could be pre-determined for each type of critical fault or obtained from
real-time analysis and on-line re-design. In any event, the design process must run
through a number of cases equal to the number of faults to be handled and the control
system needs to be re-designed for each such case. Some types of faults in sensors
and actuators are simple to handle, others require a detailed re-design. It is, thus,
worthwhile to first consider the simplest possibilities, thereafter the more general
and complicated case of re-design.

The architecture of a fault-tolerant control system is illustrated in Fig. 8.1. A fault
is a discrete event that acts on a system and by that changes some of its properties.
Having diagnosed a fault, a decision needs to be taken about a remedial action.

The goal of fault-tolerant control is to respond to the occurrence of a fault such
that the faulty system still satisfies the given specifications. Due to the discrete nature
of the fault occurrence and reconfiguration, fault-tolerant control systems are hybrid
in nature (cf. Sect. 3.7). In the figure, σf denotes fault events, σa are control events
reconfiguring the system and qc the control mode, which selects a control law. The
actual physical mode qp of the plant may be viewed as the discrete state of an
automaton which is driven by plant internal events σp, the fault events σf and the
control events σa. While many different approaches can be used to solve the fault-
tolerant control problem, it may not be possible to control the system to a desired
performance for an arbitrary change of parameter or structure. A final remedial
action is then to close down to a safe state should proper control not be possible.
The key issue is to be able to obtain certain specified properties of the control of the
faulty system, and this chapter, therefore, focusses on methods for re-design based
on specifications.

http://dx.doi.org/10.1007/978-3-662-47943-8_3

352 8 Reconfigurability Analysis

Supervisor
automaton

Diagnosis

Γd

Γp

σaσc

σp

σf-fault

Control
Plant

cq
pq

px

y = h
xc = fc(xc, qc, u)

(xc, qc, u)

.

y = h
xc = fp

p

(xp, qp, u)
(xp, qp, u)

.y

yu

Fig. 8.1 The plant can change in a discrete way through change in states, a plant fault can cause a
discrete event. Plant architecture can be changed by switch-over functions. Parameters or structure
of the controller can be changed by logic in a supervisor automaton. The automaton gets its input
from fault diagnosis

A fault in the plant can affect the structure and the parameters of a plant. The
complexity of designing a controller for the faulty system is therefore immense, and
there is no single, systematic way to design a control system with reconfiguration
as depicted. Most research work deal either with diagnosis or controller reconfigu-
ration, but not both. One approach is based on a bank of controllers, each one being
associated to a healthy or a faulty plant working mode. The selection of the controller
to be used for the present working mode must be assumed to be achieved with some
delay and possibly false alarms.

The theory of logic-based switching control also relies on a bank of controllers
(Fig. 8.2). It has recently been used for fault-tolerant control. The supervisor is made
of a set of estimators, followed by performance evaluation, and a switching logic
scheme (Fig. 8.3).

Each estimator reconstructs the plant output in either one of the healthy or faulty
working modes. Its performance is evaluated by computing a norm of the output
estimation error, and the estimator that yields the smallest performance index is
assumed to correspond to the present working mode. The output of the switching
logic η is the integer associated with that estimator, i.e. the estimator number. The
corresponding controller is applied to the process using the switching logic.

This approach, however, presupposes that for each fault a reasonable controller has
been designed before the plant is put into operation. From a practical point of view,
this is not reasonable if a considerable number of faults has to be taken into account.
To deal with this problem, two approaches are presented in this chapter, namely first
methods that re-design the controller on-line after a fault has been identified to avoid

8.2 Fault-Tolerant Control Architecture 353

Controller 1

Controller 2

Controller n

y

y

y

Supervisor

Plant
y

Fig. 8.2 Structure of logic-based switching controller

Plant

Estimator 1

Estimator 2

Estimator 3

u

u

y

u

u

y

y

Switching
logic

yest
(1)

yest
(2)

yest
(3)

+

+

+

ym = [y1, y2,y3]

Fig. 8.3 Logic within a supervisor selects an output estimate from a bank of estimators

the use of a pre-determined bank of control laws, and second methods for reducing
the size of pre-determined banks of control laws.

Note that a pre-determined bank of control laws needs possibly large memory
space for their implementation but allow fast on-line reaction: once the fault has
been isolated, the adequate control is just switched on, without any extra calculations.
On the other hand, on-line re-design of the control law does not need extra storage
but one has to wait for the design algorithm to be completed before the appropriate
control law can be used.

In the sequel of this chapter, different approaches to the fault-tolerant control
problem are presented, which refer to different objectives and faults. Although the
presented approaches can also be used in different frames, this chapter builds on
optimal control, actuator faults and the reconfiguration strategy. The linear quadratic

354 8 Reconfigurability Analysis

problem under actuator faults is considered in Sect. 8.3. Section 8.4 presents the
lattice of actuator subsets whose properties are important since only the subset of
healthy actuators controls the system under the reconfiguration strategy. Section 8.5
discusses the implementation problem associated with on-line re-design versus bank
of control laws. The evaluation of fault tolerance is the subject of Sect. 8.6.

8.3 Fault-Tolerant Linear Quadratic Design

8.3.1 Control Problem

Linear quadratic (LQ) problems constitute a very popular frame for control design.
In this section, the LQ problem is analysed with respect to the possible occurrence
of actuator faults. It is shown that fault tolerance can only be achieved if admissible
(rather than optimal) solutions exist. Conditions on an actuator fault to be possibly
tolerated are given both for the fault accommodation and for the system reconfigu-
ration strategies.

Consider the system whose nominal operation is modelled by

ẋ(t) = Ax(t) + Bu(t) = Ax(t) +
∑
i∈I

Bi ui (t). (8.1)

x ∈ X ⊂ |Rn is the state vector and u ∈ U ⊂ |Rm is the control vector. I is the set
of the actuators, ui (t) ∈ |Rmi is the input of actuator i ∈ I, and m = ∑

i∈I mi . A
and B are constant matrices of suitable dimensions, and it is assumed that the pair
(A, B) is controllable. The following optimal control problem is considered:

Problem 8.4 (Optimal control problem)

1. Objective O: Transfer the system state from x(0) = γ towards x(∞) = 0, where
γ ∈ |Rn , and x(∞) stands for limt−→∞ x(t) while minimising the functional

J (u, γ) = 1

2

∫ ∞

0
(uT(t)Ru(t) + xT(t) Qx(t)) dt, (8.2)

where Q and R are symmetric matrices, and Q ≥ 0, R > 0.
2. Constraints C : Equation (8.1) is satisfied ∀t ∈ [0, ∞), x(t) and u(t) are con-

tinuous functions of time, and X = |Rn , U = |Rm hold.

8.3.2 Control of the Nominal Plant

The solution of Problem 8.4 is well known from the classical theory of optimal
control. Let H(x, u, p, t) be the system Hamiltonian

8.3 Fault-Tolerant Linear Quadratic Design 355

H(x(t), u(t), p(t), t)

= −1

2
(uT(t)Ru(t) + xT(t) Qx(t)) + pT(t) (Ax(t) + Bu(t)),

where p(t) is the adjoint state vector, then the necessary optimality condition is

ẋ(t) = ∂H

∂p
(x(t), u(t), p(t), t) = Ax(t) + Bu(t) (8.3)

ṗ(t) = −∂H

∂x
(x(t), u(t), p(t), t) = Qx(t) − AT p(t) (8.4)

0 = ∂H

∂u
(x(t), u(t), p(t), t) = u(t) − R−1 BT p(t).

It is easy to show that the optimal solution is given by

p(t) = −P x(t)

u(t) = −R−1 BT P x(t),

where P is the (symmetric) solution of the algebraic Riccati equation

Q + AT P + P A − P B R−1 BT P = 0

such that the closed-loop system

ẋ(t) =
(

A − B R−1 BT P
)

x(t)

is stable. The solution exists since the pair (A, B) is controllable, and the optimal
value of the criterion is given by

J (0, ∅, γ) = 1

2
γT Pγ, (8.5)

where the argument 0, ∅ recalls that there is no faulty actuator on the time window
[0, ∞).

Nominal performances. Equation (8.5) shows that the nominal performance of the
actuator set I depends on the value of γ.

Γ = {γ ∈ |Rn, s.t.
1

2
γT Pγ ≤ 1}

represents the set of points in the state space from which the origin can be reached with
a cost less than 1. The characterisation of the actuation scheme I independently of the
control objective γ leads to consider the worst control problem from the quadratic
criterion point of view: transfer the system state from x(0) = γ∗ to x(∞) = 0,

356 8 Reconfigurability Analysis

where
γ∗ = arg max|γ|=1

J (0,∅,γ).

The set of actuators I is thus characterised by the maximum eigenvalue of P which
is interpreted as the maximum cost which might be spent in transferring the system
state from x(0) = γ to x(∞) = 0 for some γ ∈ |Rn such that |γ| = 1

J
(
0,∅,γ∗) = 1

2
λmax(P). (8.6)

8.3.3 Fault Tolerance with Respect to Actuator Faults

This section considers the situation in which the system is faultless until the time
instant tf and has afterwards a fault in one or several actuators. Hence, the whole set
of actuators I is healthy in the time interval (0, tf [while there is a subset IF of faulty
actuators in the interval [tf , ∞). Let I = IN ∪ IF, where IN is the subset of the still
normal actuators. After tf the faulty system behaviour is described by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

βi (ui (t), θi), (8.7)

where βi (ui (t), θi) describes the contribution of the faulty actuator i . This vec-
tor may be known, known with unknown parameters θi or completely unknown,
depending on the faults which are considered, and of the capability of the fault diag-
nostic algorithm to estimate them. The objective, constraints and criterion of the
fault-tolerant control problem are identical to those of the control problem, with the
exception of constraint (8.1) being valid on (0, tf [and being replaced by constraint
(8.7) on [tf , ∞).

Problem constraints. Two cases can be considered as far as the status of constraint
(8.7) is concerned.

1. In the first case, the fault tolerance analysis is done (off-line) for given faults,
which are known to possibly occur in the considered system (from the failure-
modes and effect analysis, for example). Therefore, constraint (8.7) is known and
the fault-tolerant control can be designed beforehand (but it can be applied on-line
only when the actual fault matches the fault for which it has been designed, which
needs the actual fault to be identified).

2. In the second case, the analysis is done for any kind of fault which might occur
during the system operation and, therefore, constraint (8.7) being not known
has again to be identified (or replaced by another constraint if identification
is impossible or not available). The identification of the subset IF of faulty
actuators is normally done by the fault diagnostic algorithm, which detects and
isolates the faults. Defining the constraints resumes to identifying the functions

8.3 Fault-Tolerant Linear Quadratic Design 357

βi (ui (t), θi), i ∈ IF. This is not usually done by fault diagnostic algorithms,
and could be referred to as a diagnostic (or fault estimation) possibility, which
rests on fault modelling and on fault parameter identification, and it could be—or
not—provided by the fault diagnostic system.

Therefore, the two approaches to fault-tolerant control can be applied in depen-
dence upon the situation. Fault accommodation consists of controlling the faulty
system after replacing Eq. (8.7) by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

β̂i

(
ui (t), θ̂i

)
, (8.8)

where the functions β̂i (ui (t), θ̂i) and parameters θ̂i , i ∈ IF are estimated. System
reconfiguration consists of controlling only the healthy part of the system (thus
switching off the faulty actuators), which means replacing Eq. (8.7) by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t). (8.9)

Admissible solutions. Whatever the selected strategy, a solution to the fault-tolerant
control problem exists provided the objective x(∞) = 0 can still be reached from
the initial state x(0) = γ. When solutions are needed to exist for any objective γ, it
is obviously necessary that the system (8.7) or (8.9) is still controllable.

Suppose that the fault-tolerant control problem has a solution, i.e. the system state
can be transferred from x(0) = γ to x(∞) = 0, and introduce the notation

J ((0, tf), (∅, IF), γ) (8.10)

for the minimal cost associated with the two time instants (0, tf) at which the failed
actuators are respectively (∅, IF). Obviously, the fact that a solution exists does not
mean that it is satisfactory. Two cases can be distinguished.

• The cost is of no importance provided the system objective is achieved in spite of
the fault. In this case, the actuation scheme I is fault tolerant with respect to the
situation IF occurring at time tf if and only if system (8.8)—when accommodation
is used—or (8.9)—when reconfiguration is concerned—is controllable.

• Some cost limitation is considered. Although optimal, the cost might be too high,
thus denying the actuation scheme I to deserve the “fault-tolerant” label with
respect to the situation IF.

Definition 8.1 (Admissibility) Let IF be a fault situation occurring at time tf . The
solution of the fault-tolerant control problem is admissible with respect to the control
objective γ if and only if

358 8 Reconfigurability Analysis

J ((0, tf), (∅, IF), γ) ≤ ρ(γ)J (0, ∅, γ), (8.11)

where ρ(γ) ≥ 1 is some pre-defined function.

In Eq. (8.11), ρ(γ) is the maximal loss of efficiency which is allowed when a
control solution, which still achieves the objective γ but under the situation where
the fault IF occurs at time tf , is used. Three special choices of ρ(γ) may be of
interest.

• ρ(γ) = ∞, ∀γ ∈ |Rn .
In this case, fault tolerance is only concerned with the existence of an optimal
solution, whatever its cost, thus reducing the fault-tolerance property to the per-
manence of the controllability property: any fault such that the system remains
controllable is recoverable,

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

defines a uniform bound σ for the cost of controlling the faulty system, whatever
the initial state in the unit sphere: any fault such that there exists a stabilising
control whose cost is less than σ is recoverable,

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

defines a uniform bound for the loss of efficiency in the control of the faulty system,
whatever the control objective: any fault such that there exists a stabilising control
associated with a cost degradation factor less than ρ∗ is recoverable.

Based on the definition of admissibility, fault tolerance can be defined as follows.

Definition 8.2 (Fault tolerance of a system subject to actuator faults) The actuation
scheme I is fault tolerant with respect to the fault IF occurring at time tf for the control
objective γ if the accommodation or the reconfiguration problem has an admissible
solution (equivalently, fault IF occurring at time tf is said to be recoverable).

8.3.4 Fault Accommodation

The accommodation strategy is now analysed for the system described by

ẋ(t) = Ax(t) +
∑
i∈I

Bi ui (t) for t ∈ [0, tf [

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

βi (ui (t), θi), x(tf) = xf ,

for t ∈ [tf , ∞).

Identifying the faulty system. Since the functions βi (ui (t), θi) and parameters θi ,

i ∈ IF are not known, they must be estimated, and therefore the LQ control problem
is set for the model

8.3 Fault-Tolerant Linear Quadratic Design 359

ẋ(t) = Ax(t) +
∑
i∈I

Bi ui (t) for t ∈ [0, tf [

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
i∈IF

β̂i

(
ui (t), θ̂i

)
for t ∈ [tf , ∞),

where the functions β̂i

(
ui (t), θ̂i

)
and parameters θ̂i , i ∈ IF are known. This

approach obviously needs some fault model to be defined, and its parameters to be
identified.

Assume it is known that the faulty actuators can still be described by a linear
model

β̂i

(
ui (t), θ̂i

)
= B̂i ui (t), i ∈ IF

and, therefore, the model of the faulty system is

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t) +
∑
j∈IF

B̂ j u j (t) (8.12)

= Ax(t) + Bf u(t),

where Bf = (BN, B̂F) is the new actuator matrix, formed by the concatenation of
the Bi matrices associated with the healthy actuators BN = (Bi , i ∈ IN) and the
B̂ j matrices associated with the faulty actuators B̂F = (B̂ j , j ∈ IF).

Accomodating the control to the faulty system. From Bellman’s optimality prin-
ciple, the accommodation strategy consists of applying the optimal control solution
to system (8.12), with initial condition xf = x(tf), on the time interval [tf , ∞), thus
leading to compute the accommodated control and trajectories as the solution of

ẋ(t) = Ax(t) + Bf u(t)
ṗ(t) = Qx(t) − AT p(t)
u(t) = R−1 BT

f P x(t)
(8.13)

with the result that the value of the criterion is now

J ((0, tf), (∅, IF), γ)) = J0 f + 1

2
xT

f P f xf (8.14)

instead of

J (0, ∅, γ) = 1

2
γT Pγ,

where J0 f is the cost already spent between t = 0 and t = tf and P f is the solution
of the algebraic Riccati equation in which B has been replaced by Bf , namely

Q + AT P f + P f A − P f Bf R−1 BT
f P f = 0. (8.15)

360 8 Reconfigurability Analysis

Testing the admissibility of the accommodated control. From simple calculations,
and taking into account that

J (0, ∅, γ) = J0 f + 1

2
xT

f P xf

one has

J0 f = 1

2
γT Pγ − 1

2
xT

f P xf

and therefore

J ((0, tf), (∅, IF), γ)) = 1

2
γT Pγ + 1

2
xT

f (P f − P) xf . (8.16)

From (8.14) and the different definitions of admissibility, the set of triples

(Bf , tf ,γ)

which can be tolerated by an accommodation strategy are characterised as follows:

• ρ(γ) = ∞, ∀γ ∈ |Rn

(A, Bf) controllable (8.17)

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

(A, Bf) controllable
xT

f (P f − P) xf ≤ σ − γT Pγ
(8.18)

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

(A, Bf) controllable
xT

f (P f − P) xf ≤ (ρ∗ − 1) γT Kγ
(8.19)

Note that these conditions depend on the value of the state xf at the time of the fault
occurrence, which is computed by

xf(t) = e Atf γ +
∫ tf

0
e A(tf−t) Bu(t) dt,

where u(t) is the optimal control computed from (8.4), and can also be expressed as

xf = e
(

A−B R−1 BT P
)

tf γ.

Since tf is unknown beforehand, these conditions can only be checked on-line, at
time tf when the fault is detected, isolated and diagnosed. Of course, it might be

8.3 Fault-Tolerant Linear Quadratic Design 361

unpleasant to discover on-line that the fault that just occurred cannot be accommo-
dated. Therefore, it is interesting to look for sufficient conditions, which could be
checked off-line. Such conditions can be found under the reasonable assumption that
if the objective can be reached by an admissible control using the faulty system from
the beginning, then it can also be reached by an admissible control when the nominal
system is first used and replaced (at an unknown time) by the faulty one.

This assumption is satisfied as it can be seen by considering the worst case value
of xf in the previous conditions. Under the assumption that (P f − P) ≥ 0 (which is
reasonable since it states that the faulty actuators are less efficient than the healthy
ones), the worst case situation is that in which the fault occurs right at time tf = 0,
and therefore one has xf = γ, which leads to the sufficient conditions (8.20)–(8.22)
for the fault IF to be tolerated using an accommodation strategy. Note that these
conditions characterise all the pairs (Bf ,γ) for which the system is fault tolerant,
whatever the time at which the fault Bf occurs.

• ρ(γ) = ∞,∀γ ∈ |Rn

(A, Bf) controllable (8.20)

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

(A, Bf) controllable
γT P fγ ≤ σ

(8.21)

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

(A, Bf) controllable
γT (P f − ρ∗ · P)γ ≤ 0

(8.22)

The conditions under which the fault Bf can be tolerated for any objective γ,
whatever the time at which it occurs, are given by

• ρ(γ) = ∞, ∀γ ∈ |Rn

(A, Bf) controllable, (8.23)

• ρ(γ) = σ
γT Pγ

, ∀γ ∈ |Rn, |γ| ≤ 1

(A, Bf) controllable
λmax (P f) ≤ σ,

(8.24)

• ρ(γ) = ρ∗, ∀γ ∈ |Rn

(A, Bf) controllable
λmax (P f − ρ∗ · P) ≤ 0.

(8.25)

362 8 Reconfigurability Analysis

8.3.5 Control Reconfiguration

Reconfiguration strategies set the control problem of a system in which the faulty part
has been switched off. The choice of a reconfiguration strategy might follow from
the impossibility of estimating the fault, or it can be deliberate, so as to implement
fault-tolerant strategies which provide guaranteed results, and are as simple and as
understandable as possible by operators. In many cases, reconfiguration is understood
as the replacement of the faulty part by some non-faulty one. Considering the problem
under investigation, this means that some actuators were not in service before the
fault occurrence and that they can be switched on after the fault.

Let Ioff be the set of those actuators, which are assumed without loss of generality
to be non-faulty. It obviously follows that considering from the beginning the whole
set of actuators I ∪ Ioff reduces the problem to that of reconfiguring the system
Ioff ∪ IN ∪ IF by simply removing the faulty part. Thus, including Ioff within I
(namely, into IN), one can go on with unchanged notations. In this situation, the
fault-tolerant control problem has to be analysed replacing Eq. (8.7) by

ẋ(t) = Ax(t) +
∑
i∈IN

Bi ui (t).

Therefore, all the previous results and statements also apply to the reconfiguration

strategy, provided Bf =
(

BN, B̂F

)
is replaced by Bf = (BN, O).

It is easily seen that Bf only depends on the subset of actuators IN whatever
the faults that act on the subset of actuators IF. Therefore, neither is it needed to
assume that the faulty actuators be described by a linear model B̂f , nor is it needed
to identify this model. Moreover, since there is only a finite number of actuator
subsets, the reconfigured controls can be computed off-line for each possible subset
IF, and the solution can be switched on-line as soon as the FDI has provided the
current subset of faulty actuators (this needs only fault detection and isolation). Note
that for some subsets IF an admissible solution will not exist, therefore it is of interest
to analyse off-line all the possible subsets of faulty actuators.

8.4 The Lattice of Actuator Subsets

The accommodation and reconfiguration strategies have been presented in the previ-
ous section for the case of actuator faults in the Linear Quadratic problem. However,
whatever the control objectives, the reconfiguration strategy always deals with con-
trolling only the subset of the system’s healthy components (the faulty ones are
switched off) and therefore, the analysis of the system’s component subsets is the
general frame in which the reconfiguration problem is to be considered. This is the
goal of this section.

8.4 The Lattice of Actuator Subsets 363

8.4.1 Actuator Configurations

Since I is the set of all actuators in the system, the power set 2I is the set of all
possible actuator subsets, also named actuator configurations. According to the fact
that the pair (A, Bf) associated with a given configuration IN satisfies or not the
admissibility conditions, 2I can be partitioned into

2I = R ∪ R

where

R = {IN ⊆ I : the fault IF = I\IN can be tolerated}
R = {J ⊂ I : the fault IF = I\IN cannot be tolerated}.

Definition 8.3 (Recoverable fault, recoverable configuration) A fault IF is said to be
recoverable if configuration IN ∈ R. It is non-recoverable if configuration IN ∈ R.
In the sequel we also use the wording recoverable/non-recoverable configuration.

It is well known that power sets have a lattice structure. That means that 2I

can be represented by a hierarchical graph, where nodes are actuator configurations
organised into levels as follows:

• level 0 contains only I,
• level 1 contains all configurations IN such that IF has only one element,
• level 2 contains all configurations IN such that IF has two elements,
• etc. ...
• the last level is the empty set (IF contains all actuators I).

Each configuration at a given level belongs either to R or to R. Edges connect
configurations which belong to adjacent levels and differ by only one actuator.

Definition 8.4 (Successors, predecessors) Let IN be a configuration, S (IN) the set
of its successors and P (IN) the set of its predecessors are defined as

S(IN) = {I ′ ∈ 2I : I ′ ⊆ IN}
P(IN) = {I ′′ ∈ 2I : I ′′ ⊇ IN}.

Note that from this definition, any configuration IN belongs both to S(IN) and
P(IN). Remark also that since a successor of IN is included in IN it represents
a configuration with more faulty actuators while a predecessor of IN represents a
configuration with less faulty actuators.

Example 8.3 Reconfiguration after actuator faults
Consider a system with 7 states, and 4 actuators: I = {1, 2, 3, 4}. The matrices A and BT

are as follows:

364 8 Reconfigurability Analysis

A = diag {−1, −0.5, −3, −4, −2, −1.5, −2.5} ,

BT =

⎛
⎜⎜⎝

0 1 1 1 1 1 0
1 0 1 1 1 0 1
1 1 0 1 0 1 1
1 0 1 0 1 1 1

⎞
⎟⎟⎠ .

The considered criterion is

J (u, γ) = 1

2

∫ ∞
0

uT(t)u(t) dt,

which means that only the control energy is of interest and R is the identity matrix. In that
case, it is known that

J (I, 0, γ) = γTW−1
c γ,

where Wc is the Gramian associated with the pair (A, B), i.e.

Wc =
∫ ∞

0
e At B BT

(
e At

)T
dt.

The maximal eigenvalue is λmax

(
W−1

c (I)
)

= 0.4357 energy units.

Assume that admissible solutions are defined such that the worst situation control cost
should not exceed 1.125 energy units. Then, there are 10 fault situations in which the system
is controllable by reconfiguration, namely when only actuators 1234, 234, 134, 124, 123, 34,
23, 14, 12, 13 remain available (using the short notations 1234 for {1, 2, 3, 4}, 24 for {2, 4},
etc.) but only 6 of them are admissible when energy limitation is considered, as shown by
Table 8.1.

Table 8.1 Admissible
actuators subsets and
associated characteristics

Actuator λmax

subsets (energy units)

1234 0.4357

234 1.1197

134 0.4676

124 0.8274

123 0.4778

34 3.0201

23 1.3948

14 2.2576

12 1.0612

13 1.1452

8.4 The Lattice of Actuator Subsets 365

34 24 23 14 13 12

1234

124

4 3

234 134 123

2 1

Φ

Fig. 8.4 The lattice of the actuators subsets in the example

Figure 8.4 shows the actuators lattice and its five levels. Dark grey nodes are configurations
that cannot control the system (the corresponding pair (A, Bf) is not controllable), light grey
nodes are configurations by which the system is controllable, but energy limitations are not
met, white nodes are configurations which allow to control the system in an admissible way,
i.e. they are recoverable. Grey nodes correspond to faults that cannot be tolerated, i.e. they
represent non-recoverable configurations. �

Discrete state behaviour of the actuation system. Define the discrete state of the
actuation system as the subset of actuators IN(t), that are healthy at time t and
assume, without loss of generality, that IN (0) = I. Assume that at time t1 actuator
σ1 becomes faulty, then the reconfiguration mechanism, by discarding actuator σ1,

results in the discrete state IN(t1) = I \ {σ1} which belongs to S (I). Further faults
will result in discrete states IN (t) moving to lower levels in the lattice, according to
the dynamical dicrete state equation

IN(t+) = IN(t−) \ Σf (t),

where IN(t−) is the discrete state before the fault, Σf (t) ⊆ IN(t−) is the subset
of actuators that become faulty at time t, and IN(t+) is the discrete state after the
system reconfiguration. Symmetrically, repair operations move the discrete state to
higher levels, according to

366 8 Reconfigurability Analysis

IN(t+) = IN(t−) ∪ Σr (t),

where Σr (t) ⊆ I \ IN(t−) is the subset of actuators that have been repaired at time
t (it can be checked that subsets of faulty or repaired actuators can be treated one
by one, in an arbitrary order, resulting in the same post-fault or post-maintenance
configuration in the lattice). Repair operations have an important impact on system
reliability (by means of fault avoidance), but they are not considered here.

8.4.2 Critical Actuator Subsets and Minimal
Recoverable Configurations

Consider a recoverable configuration IN ∈ R. Loosing a subset of actuators Σ ⊂ IN
can be tolerated as long as the resulting configuration IN\Σ is still recoverable.

Definition 8.5 (Critical actuator subsets) A critical actuator subset associated with
the recoverable configuration IN is a minimal subset Σ ⊂ IN such that IN\Σ ∈ R.

Critical subsets are in general not unique. Let C (IN) be the ones associated with
configuration IN. Note that minimality is required in the definition because the loss
of any superset of a critical actuator subset could obviously not be tolerated.

Definition 8.6 (Minimal recoverable configuration) A minimal recoverable config-
uration is a configuration that belongs to R while all its successors belong to R.

This is a very interesting property: in spite of those actuators already switched
off, a minimal recoverable configuration is indeed recoverable, and so are all its pre-
decessors, but loosing any extra actuator results in a non-recoverable configuration.
As a result, the set of all recoverable configurations is completely known once the
minimal recoverable ones have been found. Note also that the critical actuator sub-
sets associated with a minimal recoverable configuration are the singletons formed
with each actuator in the configuration.

Example 8.4 Critical subsets, Minimal recoverable configurations
It is easily seen on Fig. 8.4 that the set of recoverable configurations is

R = {1234, 123, 124, 134, 234, 12}

The minimal recoverable configurations are therefore {12, 134, 234}. Indeed, loosing one
more actuator in any of these configurations moves the system to a non-recoverable con-
figuration, whatever the lost actuator. Note that any subset of a non-recoverable config-
uration is non-recoverable, while any superset of a recoverable configuration is recov-
erable. The critical actuator subsets associated with the nominal configuration 1234 are
C(1234) = {24, 23, 14, 13, 12}, while the critical actuator subsets associated with configu-
ration 234 are C(234) = {2, 3, 4}, which is not a surprise since 234 is a minimal recoverable
configuration. �

8.5 Implementational Issues of Fault-Tolerant Control 367

8.5 Implementational Issues of Fault-Tolerant Control

8.5.1 On-Line Re-design Versus Bank of Control Laws

In the Fault-Tolerant Linear Quadratic problem, on-line re-design computes the con-
trol law u(t) = −R−1 BT

f P f x(t) adapted to the faulty system by solving the Riccati
equation

Q + AT P f + P f A − P f Bf R−1 BT
f P f = O

where the post-fault actuation matrix Bf is known from a fault estimation proce-
dure when accommodation is applied or from zeroing the columns associated with
the faulty actuators when reconfiguration is used. Note that a solution exists under
the condition that the fault is recoverable, but the delay between the occurrence of
the fault and the availability of the re-designed control law may lead to possibly
unpleasant transient behaviours, during the time when the faulty system is still con-
trolled by the nominal control law (an approach to this problem will be presented in
Chap. 9). While on-line re-design is compulsory in fault accommodation because Bf
is not known in advance, it is optional in system reconfiguration. Indeed, since there
is a limited number of possible Bf matrices (each one is associated with an actuator
configuration), the control law associated with each of them can be designed off-line,
and stored in a control bank from which the appropriate one is selected as soon as
the faulty actuators have been isolated, i.e. the current configuration is known. The
control bank contains as many control laws as the number of recoverable configura-
tions, which may be unpractical if this number is large. A solution to this problem,
the so-called Passive–Active approach, is presented now.

8.5.2 The Passive–Active Approach

The Passive–Active (PACT) approach is intended to decrease the number of control
laws that allow to recover all the recoverable faults. It is based on a result known as
the “Reliable Control Theorem”.

Theorem 8.1 (Reliable Control) Consider the Linear Quadratic problem associated
with the nominal system

ẋ(t) = Ax(t) + Bu(t), x(0) = γ

J (u,γ) = 1

2

∫ ∞

0

[
xT(t) Qx(t) + uT(t)Ru(t)

]
dt

where matrices A, B, R, Q are given (R is assumed to be diagonal) and such that
the Riccati equation

Q + AT P + P A − P B R−1 BT P = O

http://dx.doi.org/10.1007/978-3-662-47943-8_9

368 8 Reconfigurability Analysis

has a unique positive definite stabilising solution. The optimal control law is
therefore u(t) = −R−1 BT P x(t). Let {IN, IF} be a partition of the set of actua-
tors I and let B = BN + BF where BN (resp. BF) is obtained by zeroing those
columns in B that are associated with the actuators in IF (resp. IN). Assume that the
Riccati equation

Q + AT PN + PN A − PN BN R−1 BT
N PN = O (8.26)

has a unique definite positive stabilising solution, then the control law uN(t) =
−R−1 BT PNx(t) has the following properties:

1. It stabilises the system when only controlled by the actuators in IN, at the quadratic
cost

J (uN,γ) = 1

2
γT PNγ

2. It also stabilises the system when controlled by the actuators in IN ∪ If where If
is any subset of IF, at a quadratic cost less than or equal to 1

2γT PNγ.

Discussion. Let {IN, IF} be a partition of the set of actuators I such that IN
is a minimal recoverable configuration. It follows that the control law uN(t) =
−R−1 BT PNx(t) where PN is the unique stabilising solution of Eq. (8.26) is admis-
sible, i.e. the quadratic cost 1

2γT PNγ associated with the stable closed-loop system

ẋ(t) =
[

A − BN R−1 BT PN

]
x(t)

satisfies the cost constraint. From the second property of the Reliable Control Theo-
rem, this control law is also admissible for any system configuration IN ∪ If where
If ⊆ IF. It is therefore concluded that under this control law, the system is passively
fault tolerant with respect to all faults that are “smaller” than IF (i.e. the set of faulty
actuators is included in IF). Since the set of those faults corresponds to the set of
configurations that are the predecessors of configuration IN, the Reliable Control
Theorem can be reformulated as follows.

Theorem 8.2 (Reliable Control reformulated) Let IN be a minimal recoverable con-
figuration. Then, the control law uN(t) = −R−1 BT PNx(t) where PN is the unique
definite positive stabilising solution of Eq. (8.26) is admissible for all its predeces-
sors.

Practical implementation. This new formulation shows that a mix of passive and
active fault tolerance is able to cope with all the recoverable configurations: each
minimal recoverable configuration is associated with its own control law (the active
part of the strategy), and this control law recovers the set of all its predecessors
(the passive part). The result is that instead of containing as many control laws as
the number of recoverable configurations, the control bank now contains as many
control laws as the number of minimal recoverable configurations, which may be

8.5 Implementational Issues of Fault-Tolerant Control 369

much smaller. However, there is a non-uniqueness problem to be dealt with, since a
recoverable configuration may belong to the predecessors of more than one minimal
recoverable configuration, hence several control laws are available for its recovery.
Since all of them are admissible the designer is free to select the one that best fits some
extra design criterion, for example selecting the one associated with the minimal cost.

Example 8.5 PACT control bank
Consider the linear quadratic problem associated with a system with 6 states and 4 actuators
I = {1, 2, 3, 4} where the matrices A and B are as follows

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 2 0 0
−1 1 1 0 0 0
2 2 0 1 0 0
0 1 0 0 0 0
1 0 0 0 1 −1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, BT =

⎛
⎜⎜⎝

1 0 1 0 1 1
1 1 1 0 0 0
1 0 0 0 1 0
0 0 1 1 1 0

⎞
⎟⎟⎠

and the cost is defined by

J (x0, u) = 1

2

∫ ∞
0

[
x(t)T Qx(t) + u(t)T Ru(t)

]
dt.

Let Q and R be identity matrices of appropriate dimensions. The optimal control of the
nominal system is u∗(t) = −R−1 BT P x(t). It results in the minimal cost J (γ) = 1

2 γT Pγ
where γ is the initial condition and P is the unique symmetric positive definite stabilising
solution of the Riccati equation associated with the nominal system. It can be checked that
for the nominal configuration, the optimal state-feedback control results in a cost matrix P
whose maximal eigenvalue is λmax (P) = 7.3554.

Now, controlling a configuration IN ⊆ I by some control law u results in the cost

JN(γ, u) = 1

2

∫ ∞
0

[
x(t)T Qx(t) + u(t)T RNu(t)

]
dt

where RN = diag {ri , i = 1, 2, 3, 4} and ri ∈ {0, 1} according to the fact that actuator i is
present or not in configuration IN (indeed, switched off actuators do not imply any energy
cost, whatever the control signal that is sent to them). The specification is that a control law
u is admissible if it satisfies

∀γ ∈ Rn : JN(γ, u) ≤ 1

2
ργT Pγ (8.27)

where ρ > 1 is the admissible performance degradation factor, meaning that performance
degradation is accepted as long as the degraded cost does not exceed ρ times the optimal
nominal cost. It follows that a recoverable configuration IN is such that there exists a unique
symmetric positive definite stabilising solution PN to the Riccati equation associated with IN
which satisfies:

∀γ : γT(PN − ρP)γ ≤ 0

(indeed, the minimal cost achievable by configuration IN is 1
2 γT PNγ).

370 8 Reconfigurability Analysis

Let the specification be defined by ρ = 15. Still naming the configurations after the
actuators they contain, e.g. the nominal configuration I is 1234, the failure of actuator 2
results in configuration 134, etc., the set of recoverable configurations is

Rρ=15 = {1234, 123, 124, 12, 134, 234, 23, 24}

while the minimal recoverable configurations are Mρ=15 = {12, 134, 23, 24}. Figure 8.5
shows the lattice of configurations where recoverable configurations are white, non-recoverable
configurations are grey, and minimal recoverable ones have a bold contour.

Active control bank. Each recoverable configuration being associated with its own
control law, the active control bank contains 8 laws, for example the 8 optimal state
feedbacks associated with the 8 recoverable configurations:

Uactive =
{

uN(t) = −R−1 BT
N PNx(t), IN ∈ Rρ=15

}

Note that choosing the optimal control law associated with each configuration insures
the minimal cost is obtained when this configuration occurs as the result of faults, but
there is no need for the control laws to be optimal: they might be chosen arbitrarily
provided they satisfy the admissibility constraints.

Passive–active control bank. In this scheme, each minimal recoverable configura-
tion is associated with a control law that is admissible for all its predecessors. The
bank now contains only 4 control laws, namely,

UPACT =
{

uN(t) = −R−1 BT PNx(t), IN ∈ Mρ=15

}
. (8.28)

1234

124134234

34 24 23

123

14 13 12

4 3 2 1

Φ

Fig. 8.5 The lattice of actuator configurations

8.5 Implementational Issues of Fault-Tolerant Control 371

Note that the law uN(t) is optimal for configuration IN ∈ Mρ=15 but is only
admissible for the predecessors P (IN)\ IN. The respective performance indexes are

λmax (P12) = 17.4285

λmax (P134) = 32.9450

λmax (P23) = 16.5649

λmax (P24) = 18.6938.

Let R (u) be the set of configurations recovered by the control law u, one has

R(u12) = {
1234, 123, 124, 12, 234, 23

}
R (u134) = {

1234, 123, 134, 234
}

R (u23) : {1234, 123, 234, 23}
R (u24) : {1234, 124, 234, 24} .

One remarks that R (
uIN

)
indeed not only includes, for each minimal recoverable

configuration IN, all its predecessors, but it may also include more (those that are
underlined). Another remark is that non-minimal recoverable configurations can be
recovered by several control laws, hence the need for a decision procedure.

Table 8.2 gives, for each recoverable configuration, the list of control laws by
which it can be recovered. The simplest decision procedure selects the one with the
best performance (underlined). �
Reducing the control bank size. Let U be a passive–active control bank that
recovers all the recoverable faults. It may happen that the designer is happy with
a bank U smaller that contains a smaller number of laws at the price of recovering
only a subset of recoverable faults (i.e. at the price of being less fault-tolerant). This
trade-off will be considered later since it is connected with the evaluation of fault tol-
erance, as one can guess from the wording “being less fault-tolerant”. This section
investigates the minimality of the control bank for a given subset of faults to be
recovered.

Table 8.2 Control laws for recovery

Configurations 1234 123 124 12 134 234 23 24

Admissible
control
laws

u12

u134

u23

u24

u12

u134

u23

u12

u24
u12 u134

u12

u134

u23

u24

u12

u23
u24

372 8 Reconfigurability Analysis

Definition 8.7 (Minimal Control bank) A control bank U is minimal with respect
to a given set of faults if there is no proper subset of U that recovers all these faults.

Given a passive–active control bank U that recovers a set of faults R (U) the
reduction to a minimal control bank problem has to be found in the following problem:

Problem 8.5 (Reduction problem)

1. Check whether U is minimal or not,
2. if not, find a minimal control bank Umin.

Let R (U) be the set of faults recovered by all the control laws in the bank U then
one has

R (U) = ∪u∈UR (u).

Let U ⊂ U be a proper subset of control laws. It recovers the set of faults:

R (U) = ∪u∈UR (u).

By comparing R (U) and R (U), it is concluded that if R (U)= R (U) then U is
not minimal (indeed U is a proper subset that recovers the same faults), and either U
or some subsets of U are minimal. On the contrary, if R (U)⊂ R (U) then neither
U nor any of its successors can recover all the faults to be recovered. This remark
leads to the following algorithm for the determination of the minimal control banks
that recover the same set if faults as a given PACT control bank.

Algorithm 8.1 Reduction of a PACT bank of control laws

Given: Bank of control laws U
Recovered faults R (U).

Initialisation: Put U into the list “possible”, initialize two empty lists “min-
imal” and “impossible”

While the list “Possible” is not empty
For each member V of this list
If all its direct successors U are such that R (U)⊂ R (U)

then remove V from the list “possible” and move it into the
list “minimal”
else give the direct successors that satisfy R (U)= R (V) the
label “possible” and change the label of V into “impossible”

Result: list of minimal banks that recover all the faults R (U).

Example 8.6 Minimal control bank
The passive–active control bank of Example 8.5 resulted in a control bank with four control
laws: UPACT = {u12, u134, u23, u24}

8.5 Implementational Issues of Fault-Tolerant Control 373

Table 8.3 Level 1 subsets

Subsets Recovered faults Comment

{u12 , u 134 , u 23} {1234, 123, 124, 12, 234, 23, 134, 24} Possibly minimal

{u12 , u 134 , u 24} {1234, 123, 124, 12, 234, 23, 134, 24} Possibly minimal

{u12 , u 23 , u 24} {1234, 123, 124, 12, 234, 23, 24} Impossible

{u134 , u 23 , u 24} {1234, 123, 134, 234, 23, 124, 24} Impossible

Table 8.4 Level 2 subsets

Subsets Recovered faults Comment

{u12 , u 134 } {1234, 123, 124, 12, 234, 23, 134} Impossible

{u12 , u 23} {1234, 123, 124, 12, 234, 23} Impossible

{u134 , u 23} {1234, 134, 123, 234, 23} Impossible

that were able to recover all the recoverable faults { 1234, 123, 124, 12, 134, 234,

23, 24 } according to the following list:

R(u12) = {
1234, 123, 124, 12, 234, 23

}
R(u134) = {

1234, 123, 134, 234
}

R(u23) = {1234, 123, 234, 23}
R(u24) = {1234, 124, 234, 24}

Exploring the Level 1 subsets of UPACT shows that two banks with 3 control laws, namely
{u12, u134, u23} and {u12, u134, u24} are able to recover all the recoverable faults (Table 8.3).

Analysing the subsets of {u12, u134, u23} and {u12, u134, u24} shows that none of them
can recover all the faults (Table 8.4 shows the results for {u12, u134, u23}).

It is, therefore, concluded that the PACT control bank UPACT = {u12, u134,

u23, u24} can be replaced with no loss of recoverability by a 3-laws control bank: either
{u12, u134, u23} or {u12, u134, u24}. �

8.5.3 Reducing the Reliability Over-Cost

Let M be the set of minimal recoverable configurations of a given system, and let
U be the PACT control bank where each control law uN(t) ∈ U is associated with
one minimal recoverable configuration IN ∈ M.

Reliability over-cost. As already noted, uN(t) is optimal for configuration IN, but
for any other configuration IK ∈ P (IN) it is only admissible. Indeed, configu-
ration IK achieves the minimal cost 1

2γT P K γ under the control law uK (t) =
−R−1 BT P K x(t) where P K is the unique solution of the Riccati equation

Q + AT P K + P K A − P K BK R−1 BT
K P K = O

374 8 Reconfigurability Analysis

while it is well known that under the (non-optimal) control law

uN(t) = −R−1 BT PNx(t)

the cost is 1
2γT PN,Kγ where PN,K is symmetric positive definite and given by the

Lyapunov equation:

Q + PN B R−1 BT PN + PN,K

(
A − BK R−1 BT PN

)
+

(
A − BK R−1 BT PN

)T
PN,K = O

It is concluded that for configuration IK , the reliability over-cost to be paid for using
uN(t) instead of uK (t) is 1

2γT
[

PN,K − P K
]
γ.

Trade-off control bank. Since the nominal configuration I is expected to occur most
of the time, it may be sensible to add the nominal control law to the minimal PACT
bank. It follows that no reliability over-cost is paid in the nominal configuration, at
the cost of abandoning the minimality of the control bank.

Example 8.7 Trade-off control bank
In Example 8.6, a minimal control bank with three laws, namely {u12, u134, u23} or
{u12, u134, u24} was able to recover all the recoverable configurations. In this case, one
would have chosen the first bank, since it contains u23 which gives the smallest cost

1

2
γT P23,1234γ

in the nominal situation, as highlighted in Table 8.2. However, implementing the trade-off
bank {u1234, u12, u134, u23} results in an optimal cost for the nominal system and a minimal
number of control laws to obtain an admissible cost for the other (recoverable) configurations.
�

More generally, a trade-off control bank can be designed by associating some
recoverable configurations (Subset1) with their optimal control law, while the rest
(Subset2) is controlled by the PACT bank associated with the minimal recoverable
configurations. The system performances are optimal as long as the current config-
uration belongs to Subset1, at the cost of increasing the number of control laws in
the overall control bank. For Subset2, the cost reduction problem can be stated as
follows:

Problem 8.6 (Cost reduction problem)
Given a minimal recoverable configuration IN, find a control law that minimises the
cost achieved by some pre-selected configuration IL ∈ P (IN) under the constraint
that it is admissible for all the configurations in P (IN).

Note that the optimal control of configuration IL indeed minimises the cost
achieved by this configuration, but there is no reason for it to be admissible for all the

8.5 Implementational Issues of Fault-Tolerant Control 375

configurations in P (IN). Conversely, the reliable control uN(t) = −R−1 BT PNx(t)
is admissible for all the configurations in P (IN) but there is no reason for it to yield
the minimal cost when applied to IL .

The cost reduction problem can be addressed by introducing a degree of free-
dom H in the control law, namely u(t) = −R−1 BT H x(t) instead of u(t) =
−R−1 BT PNx(t), where H is symmetric positive definite. Applying this control law
to a configuration IK ∈ P (IN) results in the closed-loop matrix A − BK R−1 BT H
and (assuming it is stable), in the cost 1

2γTW K γ where W K is symmetric positive
definite and given by the Lyapunov equation:

Q + H B R−1 BT H + W K

(
A − BK R−1 BT H

)
+

(
A − BK R−1 BT H

)T
W K = O (8.29)

Let H be the set of symmetric positive definite matrices H that satisfy the condi-
tions that A − BK R−1 BT H is stable and ∀IK ∈ P (IN), 1

2γTW K γ is admissible.
Applying the control law u(t) = −R−1 BT H x(t) to configuration IL results

in the cost 1
2γTW Lγ and therefore, the cost reduction problem is nothing but the

optimisation problem: find H so as to minimise λmax (W L) under the constraints
H ∈ H.

Unfortunately, this problem appears to be non-convex and difficult to solve. How-
ever, it is possible to build a sequence of control laws uk(t) = −R−1 BT Hk x(t),
(k = 1, 2, . . .) that improve the cost of the selected configuration while satisfying
the constraints. The following algorithm is based on an adaptation of the Newton-
Kleinman procedure. It can be shown that it produces a converging sequence of
control laws uk(t) = −R−1 BT Hk x(t), (k = 1, 2, . . .) that stabilise all the config-
urations in P (IN) and are such that P L ≤ · · · ≤ W k+1

L ≤ W k ≤ · · · ≤ PN where
W k+1

L ≤ W k means that for any initial condition γ, the quadratic form γTW kγ is a
decreasing function of k.

Algorithm 8.2 Cost reduction problem

Given: A minimal recoverable configuration IN
a pre-selected configuration IL ∈ P (IN)

an arbitrary small positive number ε, a matrix norm ‖.‖
Initialisation: H0 = PN and W−1

L = ∞
While: STOP condition not fulfilled

1. Solve the Lyapunov equation Q + Hk B R−1 BT Hk +
W k

(
A − BL R−1 BT Hk

) + (
A − BL R−1 BT Hk

)T
W k =

O for W k

2. Update Hk+1 = pk Hk + qk W k , where qk =
max

{
ζ : ζ ∈ [0, 1] , Hk+1 ∈ H}

and pk = 1 − qk

376 8 Reconfigurability Analysis

3. Check the STOP condition
∥∥∥W k+1

L − W k
∥∥∥ ≤ ε

Result: a convergent sequence of control laws
uk(t) = −R−1 BT Hk x(t), (k = 1, 2, . . .)

that satisfy the admissibility constraints for all configurations
inP (IN) and decrease the quadratic cost associated with con-
figuration IL .

Notice that the pure Newton-Kleinman scheme is obtained if the updating proce-
dure in Step 2 is applied with pk = 0 and qk = 1 for all k. This scheme produces
the optimal control matrix associated with configuration IL under no constraint. The
updating procedure in Step 2 is aimed at satisfying the constraints H ∈ H.

Example 8.8 Cost reduction
In Example 8.7, consider the minimal recoverable configuration 12. The control law u12 is
admissible for configurations {1234, 123, 124, 12, 234, 23

}
but using it in the nominal con-

figuration 1234 gives the cost matrix P12,1234 whose maximal eigenvalue isλmax
(

P12,1234
) =

12.267. However, any control law u(t) = −R−1 BT H x(t), where H = HT > 0 is better
than u12 and admissible for all configurations in P (12) if it satisfies the following conditions:

• the predecessors are stable: ∀IK ∈ {1234, 123, 124, 12}, A − BK R−1 BT H is Hurwitz,
• the predecessors are admissible: ∀IK ∈ {1234, 123, 124, 12}, WK ≤ 15P1234, where

WK is the solution of Eq. (8.29)
• for any initial condition the cost associated with the nominal configuration 1

2 γTW1234γ is

smaller than 1
2 γT P12,1234γ.

It can be checked that, applying the pure Newton-Kleinman algorithm pk = 0, qk = 1 for
all k, results in a sequence of cost matrices Wk

1234 that decrease from the solution W0
1234 =

P12,1234 of the Lyapunov equation

Q + P12 B R−1 BT P12 + W0
1234

(
A − B R−1 BT P12

)

+
(

A − B R−1 BT P12

)T
W0

1234 = O

to the optimal solution W∞
1234 = P1234 associated with the nominal system. However, as soon

as the first iteration, H1 violates the admissibility constraint, so the update law in the algorithm
must be used. The result is displayed in Table 8.5. The control u(t) = −R−1 BT H2x(t) is

Table 8.5 Results for configuration 12

Iteration 0 1 2

λmax W k
1234 12.267 10.159 10.159

qmax 0.648 0.000 0.000

8.5 Implementational Issues of Fault-Tolerant Control 377

Table 8.6 Results for all configurations

Reliable control Cost reduction Decrease

Configuration 12 12.267 10.159 17.18%

Configuration 134 19.340 15.892 17.83%

Configuration 23 12.743 7.873 38.22%

Configuration 24 10.869 9.182 15.53%

admissible for all the predecessors P (12), and decreases the nominal configuration cost by
17.18 % when compared with the reliable control u12.

Table 8.6 compares the nominal configuration costs achieved by the control law associated
with each configuration in Mρ=15 respectively for the reliable control and the cost reduced
control. �

8.6 Fault-Tolerance Evaluation

The system is tolerant to actuator faults, when the reconfiguration strategy is used, as
long as the current configuration IN(t)belongs to the set of recoverable configurations
R. Introducing some measure μ (R) of this set should therefore give an idea about
the overall system fault tolerance. On another hand, let the system configuration
be IN(t) at time t and assume there is no repair during its operation, then actuator
failures can only move the discrete state to configurations within the set of successors
S(IN(t)), among which only those in the intersection R∩ S(IN(t)) are recoverable.
The “remaining” fault tolerance at time t can therefore be evaluated by the measure
μ (R ∩ S (IN(t))). Note that R = R ∩ S (I) because S (I) = 2I , and therefore
the measure μ(R) is the “remaining” fault tolerance at the initial time, assuming
that the system is then in its nominal configuration. Two kinds of measures, namely
deterministic or probabilistic measures can be used.

8.6.1 Deterministic Measures

Deterministic measures do not use any model of the transitions from one configu-
ration to another. The most important ones are the redundancy degrees which are
based on the number of levels, in the lattice of system configurations, between a
recoverable configuration IN(t) and the set of non-recoverable ones.

Definition 8.8 (Strong redundancy degree) The strong redundancy degree is the
measure μ (R ∩ S (IN(t))) defined by:

kstrong [IN(t)] = min
{|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ R}

, (8.30)

378 8 Reconfigurability Analysis

where |Σ | is the cardinal number of the set Σ.

kstrong [IN(t)] is the length of the shortest path, in the lattice of system config-
urations, between a recoverable configuration IN(t) and the set of non-recoverable
configurations. In other words, no matter which actuators are lost, as long as their
number does not exceed kstrong [IN(t)] − 1, the fault is recoverable.

Definition 8.9 (Weak redundancy degree) The weak redundancy degree is the mea-
sure μ (R ∩ S (IN(t))) defined by:

kweak [IN(t)] = max {|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ R} (8.31)

It is the length of the longest path, in the lattice of system configurations, between
a recoverable configuration IN(t) and the set of non-recoverable ones. In other words,
the largest set of actuators whose loss can be tolerated from the current configuration
IN(t) is of size kweak [IN(t)].

The redundancy degrees enjoy nice practical interpretations. It follows from their
definition that

∀In(t) ∈ R, kstrong [IN(t)] ≤ kweak [IN(t)] .

The coverage is another deterministic measure that is sometimes used in addition
to the redundancy degrees.

Definition 8.10 (Coverage) The coverage is the measure μ (R ∩ S (IN(t))) defined
by the ratio between the number of recoverable configurations and the total number
of possible configurations.

Its interpretation is not so straightforward as that of the redundancy degrees, but it is
easy to compute, and it may provide some useful insight with respect to the usefulness
of the individual system components. For example, it allows a quick evaluation of
the individual components usefulness, as discussed in Sect. 8.6.3.

8.6.2 Probabilistic Measures

Probabilistic measures assume that a model that governs the transitions from one
configuration to another one is available. Then, the setR ∩ S(IN(t)) can be measured
using reliability concepts. Indeed, for any pair of time instants t1, t2 such that t2 > t1
let πσ(t1, t2) be the probability for actuator σ to be healthy at time t2 subject to
the condition that it was healthy at time t1. Assume this function is known for all
actuators, that actuators faults are independent, and that the nominal configuration
I is the current one at the initial time. Then, the probability for the system discrete
state to be IN at time t is given by

Pr [IN, 0, t] =
∏
σ∈IN

πσ(t, 0)
∏
σ /∈IN

[1 − πσ (t, 0)] . (8.32)

8.6 Fault-Tolerance Evaluation 379

Let the time window [0, T] define the duration of the system mission, then fault
tolerance is guaranteed provided no configuration in R becomes active on [0, T]
(indeed, the specification is satisfied as long as the current configuration belongs to
R). It follows that the success probability on [0, T] is given by

Pr [I, 0, T] =
∑

IN∈R
Pr [IN, 0, T] . (8.33)

Starting with the nominal configuration I at the initial time, the time during which
the system will operate successfully is the time before it enters a configuration in
R. This is a random variable, whose probability distribution is given by Eq. (8.33).
A possible alternative measure of the fault-tolerance capability is the mean-time to
failure:

MTTF (I, 0) =
∞∫

0

Pr [I, 0, T] dT . (8.34)

8.6.3 Sensitivity

The size of R (and consequently the size of R∩ S(IN(t)) depends on the difficulty
for the specification to be satisfied and on the size of I . It follows that two kinds of
sensitivities can be considered.

Sensitivity with respect to the specifications. Consider the triple (I, Spec1, Spec2),
where Spec1 and Spec2 are two specifications, then one has

(Spec1 ⇒ Spec2) ⇒ RSpec1 ⊆ RSpec2, (8.35)

where Spec1 ⇒ Spec2 means that Specification 2 is weaker than—or is a degraded
specification with respect to—Specification 1, and RSpec1 (resp. RSpec2) is the set
of configurations that are recoverable when the nominal set of actuators is I and the
specification is Spec1 (resp. Spec2). Indeed, any configuration that satisfies Spec1
also satisfies Spec2.

The sensitivity with respect to the specifications is easily evaluated from the
difference of the above deterministic or probabilistic measures associated with each
set of recoverable configurations. For example, the strong redundancy degree of a
given configuration IN(t) is

kstrong [IN(t)] = min
{|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ RSpec1

}

or
kstrong [IN(t)] = min

{|Σ | : Σ ⊆ IN(t) ∧ IN(t) \ Σ ∈ RSpec2
}

380 8 Reconfigurability Analysis

according to the selected specifications.
An interesting development is associated with specifications Spec (θ) that are

monotonous with respect to some parameter θ in the following sense:

θ1 ≤ θ2 ⇒ RSpec(θ1) ⊆ RSpec(θ2)

θ may for example be interpreted as a cost: the more one is ready to spend, the
larger the set of recoverable configurations. With this interpretation in mind, letRwish
be a set of configurations that are wished to be recoverable. The value

θoptimal = min
{
θ : RSpec(θ) ⊇ Rwish

}

is the minimal cost at which the wished fault-tolerance specifications are achieved.
Note that the particular value θcritical associated with Rwish = { I } appears as the

minimal cost to be paid for the existence of at least one solution (the nominal one)
to the specification satisfaction problem.

Sensitivity with respect to the components. Similarly, for a given specification
Spec let IComp1 and IComp2 be two sets of actuators (more generally two sets of
components), then:

(
IComp1 ⊆ IComp2

) ⇒ RComp1 ⊆ RComp2, (8.36)

where RComp1 (resp. RComp2) is the set of configurations that are recoverable when
the nominal set of actuators is IComp1 (resp. IComp2). The sensitivity with respect to
the components is easily evaluated from the difference of the above deterministic or
probabilistic measures associated with the sets IComp1 and IComp2.

Two consequences of Eq. (8.36) may be of interest:

• Assume that two sets of components are such that IComp1 ⊂ IComp2 andRComp1 =
RComp2. Then the components in IComp2 \ IComp1 are useless for achieving the
system objectives. It is concluded that the difference of the measures associated
with RComp1 and RComp2 gives an idea of the usefulness of the subset of compo-
nents IComp2 \ IComp1.

• Assume that two sets of components are such that IComp1 ⊂ IComp2 and that
RComp1 = ∅ while RComp2 �= ∅, then the subset IComp2 \ IComp1 is (or con-
tains) a critical component subset. Therefore, its removal from IComp2 implies the
impossibility that it will be impossible to satisfy the system specifications.

Example 8.9 Fault-tolerance evaluation
Assume the system in the previous example is expected to operate on the time interval
[0, T] with T = 105 h. Actuators 1 and 2 reliability data are r1(t, 0) = r2(t, 0) =
exp

(
−4 × 10−6t

)
, while actuators 3 and 4 are less prone to failures, namely r3(t, 0) =

r4(t, 0) = exp
(
−4 × 10−7t

)
.

Starting with the nominal configuration 1234 at the initial time, the PACT control bank
UPACT = {u12, u134, u23, u24} allows to recover all recoverable configurations. This results

8.6 Fault-Tolerance Evaluation 381

in the redundancy degrees kstrong [1234] = 1, and kweak [1234] =2, meaning that the system
operation can go on in the single failure case, whatever the failed actuator (the system is said
to be fail-operational with respect to the first fault), and still works when some double faults
occur. Note that using the smaller control bank U = {u12, u134, u23} does not change the
redundancy degrees, since the set of recoverable configurations remains unchanged (however,
the performance of some configurations will be lower, although still admissible).

Using UPACT = {u12, u134, u23, u24}, and assuming actuator failures are independent,

the success probability computed from Eq. (8.33) is Pr
[
1234, 0, 105

]
= 0.8740. Decreasing

UPACT to U = {u12, u134, u23} does not change this figure.
Assuming the minimality of the control bank is an important point, note that if the bank

{u12, u134, u23} is further decreased to {u12, u134} the recoverable configuration 24 cannot
be recovered anymore. However, the probability for this configuration to occur within the
mission time is so small (0.0083) that one could decide to implement the bank {u12, u134} at
the cost of not recovering fault 24 should it occur. Note that in this case, the redundancy degrees
are still kstrong [1234] = 1 and kweak [1234] = 2, but the success probability decreases from
0.8740 to 0.8657.

The admissible cost specification was defined by ρ = 15: a configuration is recoverable
if there exists a control law such that the quadratic cost does not exceed 15 times the optimal
cost of the nominal configuration. Table 8.7 shows the results obtained for different values of
the cost parameter ρ ∈ {1, 2, . . . , 7}. Only the values at which changes occur are displayed,
and the last column recalls the results for ρ = 15.

To evaluate the sensitivity with respect to components, the effect of removing actuator
subsets from I is computed. Table 8.8 shows the results for ρ = 15. Subsets whose removal
results in R = ∅ are not shown.

It is clearly seen that there is no useless component and that the critical component subsets
are {12, 23, 24}: the failure of any of these subsets results in a non-recoverable configuration.
This analysis is very useful for the architecture design problem, which consists in selecting the
appropriate actuators to control the system in a fault tolerant way. For example, implementing
only actuators123 would giveR = {123, 12, 23} , kmax [123] = 0 and kmin [123] = 1, mean-
ing that the single fault fail operational property is lost. The success probability is drastically
decreased to 0.0259. �

Table 8.7 Sensitivity to cost specification

ρ 1 2 4 5 15

Minimal recoverable configurations 1234 234

123

124

234

124

23

12

134

23

24

Strong redundancy degree 0 0 0 0 1

Weak redundancy degree 0 1 1 2 2

Success probability 0.4148 0.6188 0.6526 0.6609 0.8740

382 8 Reconfigurability Analysis

Table 8.8 Sensitivity to components

Removed subsets 1 2 3 4 13 14 34

Recoverable configurations

234

24

23

134

124

24

12

123

12

23

24 23 12

Strong redundancy degree 0 0 0 0 0 0 0

Weak redundancy degree 1 0 1 1 0 0 0

Success probability (×102) 21.06 20.40 2.59 2.59 0.83 0.83 0.07

8.7 Exercises

Exercise 8.1 Lattice-based analysis
Consider an over-actuated system with three actuators and two sensors:

(
ẋ1(t)
ẋ2(t)

)
=

(
0 1
−1 2

)(
x1(t)
x2(t)

)
+

(
0 1 1
1 0 1

)⎛
⎝ u1(t)

u2(t)
u3(t)

⎞
⎠

(
y1(t)
y2(t)

)
=

(
0 1
1 1

) (
x1(t)
x2(t)

)

In order to understand the generality of the lattice-based analysis, this exercise considers,
instead of the quadratic control problem, a simple specification that allows hand calculations.
The specification is as follows: the two closed-loop eigenvalues are wished to be real and equal
to −2 when output feedback is used, namely for i = 1, 2, 3 one has ui (t) = ki1 y1(t)+ki2 y2(t)
where ki1, ki2 are the control gains to be designed.

1. Characterise the set of admissible nominal control laws.
2. Assuming the two sensors are not faulty, analyse the effect of actuator faults under the

reconfiguration strategy.
3. Is it possible to analyse the effect of sensor faults under the reconfiguration strategy in the

same way? �

Exercise 8.2 Reliable control
Let abcd be the four actuators of a linear time-invariant system:

A =

⎛
⎜⎜⎝

0 0.17 0.17 0.33
−0.17 −0.17 0.17 0
0.33 0.33 0 0.17

0 0.17 0 0

⎞
⎟⎟⎠

B0 =

⎛
⎜⎜⎝

0.50 0 0 0
0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

⎞
⎟⎟⎠ ,

8.7 Exercises 383

where matrix A is unstable, having the following set of eigenvalues:

Λ (A) = {−0.39; −0.031 ± 0.141 j; 0.28} .

We are interested in the optimal quadratic control using the following weighting matrices:

Q =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ and R = I4.

Faulty actuators are recovered, if possible, using the reconfiguration strategy. Under the recov-
erability specification that the optimal cost of the reconfigured system should not exceed
four times the optimal cost of the healthy system, all configurations are recoverable except
{ac, ad, bc, a, b, c, d} as shown in Fig. 8.6, where the white nodes are recoverable while the
grey nodes are not.

abcd

acd abd abc

ab

a

ac

b

adbc

bcd

bdcd

cd

Φ

Fig. 8.6 Recoverable configurations

1. From Fig. 8.6 identify the minimal recoverable configurations.

2. Compute the coverage and the redundancy degrees. Is the system fail-operational with
respect to the first fault? Configurations ab, bd, cd are respectively recovered by the opti-
mal state feedbacks uab = Kab x, ubd = K bd x and ucd = K cd x where the feedback
gains are given below and result in the cost matrices W∗

ab, W∗
bd , W∗

cd whose maximal
eigenvalues are 18.53, 23.76 and 21.60:

384 8 Reconfigurability Analysis

Fig. 8.7 Structural graph of
the measurement system

a

b

c

e

d
x4

x3

x2

x1

y3

y2

y1

y5

y4

Kab =

⎛
⎜⎜⎝

−1.27 −0.95 −1.10 −0.88
−0.47 −1.85 −1.64 −1.36
−0.55 −1.64 −1.91 −1.09
−0.44 −1.36 −1.09 −1.19

⎞
⎟⎟⎠

Kbd =

⎛
⎜⎜⎝

−3.18 −2.18 −2.32 −2.41
−1.09 −1.88 −1.82 −1.49
−1.16 −1.82 −2.23 −1.28
−1.20 −1.49 −1.28 −1.63

⎞
⎟⎟⎠

K cd =

⎛
⎜⎜⎝

−3.15 −1.72 −1.73 −2.37
−0.86 −1.87 −1.51 −1.58
−0.86 −1.51 −1.67 −1.17
−1.18 −1.58 −1.17 −1.82

⎞
⎟⎟⎠

3. Let U be the reliable control bank that recovers all the recoverable configurations. List the
control laws in U . For each recoverable configuration list the control laws by which it is
recovered. If several control laws allow to recover a given configuration, which one is to
be selected?

4. Assume the control bank can implement only two control laws. What is the control law to
be discarded? What is the influence on the coverage and the redundancy degrees? Is the
system still fail-operational with respect to the first fault? �

Exercise 8.3 Sensor network design
Consider a measurement system with four unknown variables x1, x2, x3, x4 and five sensors
a, b, c, d, e that provide five measurement signals y1, y2, y3, y4, y5. Its structure graph is
given by Fig. 8.7.

We are interested in the output-connection property (denoted P), which is a very important
structural property of sensor networks. A system is output-connected if there is a path in the

8.7 Exercises 385

Fig. 8.8 The new system
with b removed and a
duplicated

a1

a2

c

e

d

x1

x2

x3

x4

y2

y1

y3

y5

y4

structural graph from any unknown variable to a sensor (this is a necessary condition for
the structural observability of the unknown variables). From Fig. 8.7, the system is clearly
output-connected when the five sensors are used.

1. The lattice of system configurations allows to analyse the situations in which sensors are
lost or removed from the sensor network. Determine whether property P holds or not
for all the 4 sensor configurations (the configurations where one sensor is lost from the
nominal configuration).

2. We now wish to determine whether the property holds or not for the sensor configurations
where two sensors are lost. Do we need to analyse the subsets of bcde ?

3. What is the output-connection span, what are its minimal configurations.
4. Compute the coverage, and the weak and strong redundancy degrees of the nominal con-

figuration abcde. Is property P fail operational with respect to the first fault?
5. What are the critical sensor subsets.
6. What can be said about sensor b.
7. Note that the critical subset a is a singleton; therefore the probability to loose property

P because of the loss of a is one order of magnitude larger than the probability to loose
property P because of the loss of ce or de (assuming their failures are independent). Since
b is useless, it might be interesting to remove sensor b from the sensor network and to
duplicate sensor a. The new system a1a2cde is shown on Fig. 8.8.

Go through questions 1–6 with the new system, and make comparisons. �

386 8 Reconfigurability Analysis

8.8 Bibliographical Notes

The fault-tolerant control problem. Defining the fault-tolerant control problem
and understanding the differences with the classical control problem has motivated
many early works [30, 32]. A formalisation of the problem can be found in [122,
329].

Recoverability is concerned with the possibility either to accommodate the faults
or to reconfigure the system when faults occur. Early works on the recoverability
problem are [113, 121, 170, 392] for a class of switched systems.

Recoverable faults can be handled by fault accommodation or system reconfig-
uration. A survey on fault accommodation is given in [264, 285], and interesting
results can be found in [172, 327]. Many approaches have been developed to provide
the model of the faulty system that is required by fault accommodation, most of
them based on the development of adaptive or learning observers [171, 335, 336].
A control mixer approach to deal with actuator faults was pursued by [400, 401].
A wider area of reconfiguration was studied in [393, 399]. The general model of
reconfiguration based fault tolerance was introduced in [330] and the use of generic
models for reconfiguration analysis was considered in [331].

When faults are not recoverable, human intervention is most commonly needed to
find another achievable system objective, using decision support from the diagnosis
and overall goals for the plant [199]. Appropriate switching of the system operating
mode is the goal of the supervisory system [169]. In fact, due to the discrete nature
of fault occurrence and reconfiguration, fault-tolerant control systems are hybrid in
nature according to [112, 113].

The properties of combined fault diagnosis and control were treated in [264].

Fault-tolerant linear quadratic design. The fault-tolerant linear quadratic design
problem was introduced in [321] for actuator faults. Sensor faults and sensor network
design were addressed in [149].

The model-predictive control technique allows to take into account inequality
constraints, that are rather difficult to consider in linear quadratic control, at the
price of an increased on-line computing power. This technique was used in [223]
for fault accommodation and reconfiguration. The model-predictive controller uses
all available input signals ui and measurable output signals yi which comprise the
vectors u and y as before rather than only those input and output signals are used
in the nominal feedback loop. If on the supervision level a fault f is detected, the
inequality constraints included in the optimisation problem can be changed so that
the model-predictive controller adapts to the faulty system. This can be done in a very
easy way for actuator faults. If the diagnostic algorithm shows that the j th actuator
is faulty, the equality constraint u j = 0 is included in the optimisation problem in
order to ensure that the controller does not really use the j th input. Then the model-
predictive controller moves its control activity towards the available actuators, which
can be interpreted as an on-line reconfiguration of the control loop.

As model-predictive control necessitates a rather large on-line computing capacity
and as its reconfigurability property is, more or less, restricted to actuator faults this

8.8 Bibliographical Notes 387

method should be used for ensuring fault tolerance only if the advantages of model-
predictive control have to be exploited for the faultless plant as well. For applications,
where a fixed (linear) controller is sufficient for satisfying the control requirements
for the faultless plant, the reconfiguration should be carried out by methods described
in the earlier sections, which eventually result in a new fixed control law.

Implementation issues. The general theory of reconfiguration-based fault tolerance,
including the passive–active design, was developed in [333]. The optimisation of
the reliable control specifications was analysed in [332] while the reduction of the
reliability over-cost was first presented in [16].

Fault-tolerance evaluation. Fault-tolerance evaluation is in some sense a measure
of how many faults are or are not recoverable. It has been considered from the point of
view of the system structural properties, e.g. observability or controllability, extend-
ing the evaluation of these properties to the faulty system. For example, the smallest
second-order mode, first introduced in [231], has been proposed as a reconfigura-
bility measure in [392]. A general approach to fault-tolerance evaluation under the
reconfiguration strategy was presented in [68] with application to the measure of the
system components’ usefulness, and specification to the structural analysis approach.

Chapter 9
Fault Accommodation and Reconfiguration
Methods

Abstract This chapter gives an overview of methods for re-adjusting the controller
to faulty plants. Small faults can be tackled by fault accommodation, where the con-
troller parameters are adapted to the parameters of the faulty plant. When accommo-
dation cannot be used like in the case of an actuator or sensor breakdown, the control
loop has to be reconfigured and a new control law designed.

9.1 Fault-Tolerant Model-Matching Design

9.1.1 Reconfiguration Problem

The basic scheme of fault-tolerant control is depicted in Fig. 1.1 on p. 2. At the
execution level, a feedback controller

u(t) = k(y(t), yref(t))

is used to attenuate the disturbance d and to ensure command tracking with respect
to the command input yref . The control law k is designed so that the closed-loop
system satisfies the given requirements for the faultless plant. Before a fault f occurs
the supervision level shown in the figure only checks that the plant has its nominal
behaviour.

If the diagnostic unit detects and identifies a fault, the adaptation of the controller
to the faulty system is accomplished at the supervision level. This process results
in new controller parameters and possibly in a new control configuration. If the
sensors and actuators work differently as before but the faulty plant is still observable
and controllable, the control configuration can remain as before but the controller
parameters have to be adapted to the faulty system. This process is called fault
accommodation.

However, if the sensor or actuator faults break the control loop, new sensors or
actuators, respectively, have to be used. Then, the control loop has to be “recon-
figured” in the sense that the whole process of selecting a suitable structure and

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_9

389

http://dx.doi.org/10.1007/978-3-662-47943-8_1

390 9 Fault Accommodation and Reconfiguration Methods

Actuators Plant

Actuator
faults

Sensors

Sensor
faults

Fault-tolerant controller

Plant
faults

u y

yref

Fig. 9.1 Fault-tolerant controller

appropriate controller parameters has to be repeated after the fault is present. The
control problem has to be considered “from the scratch” by appropriately choosing

• the signal vector y to be controlled and the input vector u to be used,
• the control law k including the controller parameters,
• the set-point yref of underlying control loops.

Control reconfiguration can be thought of as an “analytical repair” of the closed-
loop system, where instead of repairing the plant the control algorithm and, hence,
the controller software is changed while exploiting the redundant measurement or
control signals for satisfying the control specifications in spite of the fault (Fig. 9.1).

To solve the fault-tolerant control problem, it is assumed that a state-space model

ẋ(t) = g(x(t), u(t), f), x(0) = x0 (9.1)

y(t) = h(x(t), u(t), f) (9.2)

with state x ∈ |Rn , input u ∈ |Rm and output y ∈ |Rr is available, which also
describes the dependence of the plant dynamics upon the faults f ∈ F . Furthermore,
it is assumed that a diagnostic algorithm has identified the current fault f .

According to these assumptions, the fault-tolerant control problem can be sum-
marised as follows:

Problem 9.1 (Fault-tolerant control problem)

Given: Model (9.1), (9.2) of the plant
Nominal controller k
Control specifications
Fault f

Find: Control configuration and new control law k f .

Note that in contrast to the usual controller design problem, also a nominal con-
troller k is given. One of the important aspects of fault-tolerant control is to take
advantage of the knowledge of the nominal controller k when solving the control
problem stated above.

9.1 Fault-Tolerant Model-Matching Design 391

9.1.2 Pseudo-Inverse Method

One of the earliest methods for the controller redesign is based on model-matching.
As the nominal closed-loop system is known, the model of this system can be used
as a description of the dynamical properties that the new controller should produce
in connection with the faulty plant. That is, the closed-loop system should match the
model of the nominal loop.

The idea of model-matching is depicted in Fig. 9.2. The nominal closed-loop
system is composed of the linear nominal plant

ẋ(t) = Ax(t) + Bu(t) (9.3)

y(t) = Cx(t) (9.4)

and a nominal controller, which is assumed to be a state feedback controller u(t) =
−K x(t). Both components yield the model of the closed-loop system

ẋ(t) = (A − B K) x(t)

y(t) = Cx(t).

If the controller does not use all the inputs ui of the input vector u, the matrix K
has zero rows, which is typical for plants with redundant actuators. When the fault
f occurs, the faulty plant is given by

ẋ(t) = A f x(t) + B f u(t) (9.5)

y(t) = C f x(t), (9.6)

Fig. 9.2 Idea of the
model-matching approach
to control reconfiguration

Faulty
plant

Re-designed
controller

PlantController
_

yref

Nominal closed-loop system

y

_

yref

Nominal closed-loop system

y

=

u

u

392 9 Fault Accommodation and Reconfiguration Methods

where the fault f has changed the system properties, which are now described by
the matrices A f , B f and C f . If the sets of available input or output signals have
changed, the matrices B f and C f have vanishing columns or rows, respectively. A
new state feedback controller

u(t) = −K f x(t)

should be found such that the closed-loop system

ẋ(t) = (A f − B f K f) x(t)

y(t) = C f x(t)

behaves like the nominal loop. For the models used here, model-matching means to
satisfy the relation

A − B K = A f − B f K f , (9.7)

which means that both closed-loop systems have similar dynamics.
Equation (9.7) cannot be satisfied unless B and B f have the same image (like in

the case of a redundant actuator). Therefore, the new controller K f is chosen so as
to minimise the difference

‖(A − B K) − (A f − B f K f)‖. (9.8)

The solution to this problem is given by

K f = B+
f

(
A f − A + B K

) =
(

BT
f B f

)−1
BT

f

(
A f − A + B K

)
, (9.9)

where B+
f denotes the pseudoinverse of B f given on the right-hand side of (9.9). Its

use provides the reason for the name pseudo-inverse method of this approach.
The new controller (9.9) is adapted to the faulty system and minimises the differ-

ence (9.8) between the dynamical properties of the nominal loop and the closed-loop
system with the faulty plant. Although the controller K f is the best possible solution
to the controller redesign problem, it does not ensure that the closed-loop system
behaves satisfactorily. In particular, it does not ensure the stability of the closed-loop
system. Therefore, the stability of A f − B f K f and the performance of the control
loop have to be evaluated separately. Extensions of this method ensure the stability
without a separate test.

Fault accommodation and control reconfiguration. The method described so far
is rather general. It includes both fault accommodation and control reconfiguration.
Depending on the sensors and the actuators used, the controller is simply adapted
to the new plant dynamics or it uses sensors or actuators that have not been used in
the nominal case. In the latter case, vanishing rows in the nominal controller K are

9.1 Fault-Tolerant Model-Matching Design 393

replaced by non-zero elements, which means that new actuators are used and, hence,
a new control configuration results.

9.1.3 Model-Matching Control for Sensor Failures

This section considers the case of complete sensor failures. If the i th sensor fails,
the output yi is set to zero. In the plant model the matrix C changes to C f , whose
i th row is zero, but the other matrices remain the same as in the nominal case. The
corresponding reconfiguration problem will be investigated here for output feedback

u(t) = −K y(t),

for which the nominal closed-loop system is described by

ẋ(t) = (A − B K C) x(t)

y(t) = Cx(t).

For the faulty plant, the new controller

u(t) = −K f y f (t)

should be found such that the closed loop

ẋ(t) = (A − B K f C f) x(t)

y f (t) = C f x(t)

has the same dynamics as the nominal loop.
The controller has to satisfy the simplified version of Eq. (9.7)

K f C f = K C. (9.10)

To find an appropriate matrix K f is possible only if the condition

Kern(C f) ⊆ Kern(C) (9.11)

is satisfied, where Kern denotes the kernel1 of a matrix. The condition means that
the measurement information obtained by the full output vector y is the same as the
information obtained by the remaining sensors through y f . The condition (9.11) can
be written in an equivalent form as

1The kernel of C is the set of vectors x for which Cx = 0 holds.

394 9 Fault Accommodation and Reconfiguration Methods

rank C f = rank

(
C

C f

)
.

Lemma 9.1 In case of sensor failures, exact model-matching can be reached if the
relation (9.11) holds. Then, the controller

u(t) = −K P y(t) (9.12)

solves the reconfiguration problem where

P = CC+
f = CCT

f

(
C f CT

f

)−1
(9.13)

satisfies the relation

C = PC f . (9.14)

The reconfigured controller K f = K P produces a closed-loop system that has
exactly the same properties as the faultless closed-loop system.

Situations where the requirement (9.11) is satisfied include the following:

• The fault has changed the sensitivity of the sensor, but the signal is not completely
lost. Hence, y f = a y holds for some scalar a.

• A sensors is at fault which has at least one parallel redundant sensor. The matrix
P switches the output to the redundant sensor.

• An analytic relation between the faulty output and several other output values
exists, which can be reformulated by using the matrix P .

The later two cases are only possible if C does not have full rank, which is likely in
special applications only.

9.1.4 Model-Matching Control for Actuator Failures

In case of an actuator failure, the matrix B is replaced by the matrix B f with zero
column for the failing actuator. The output feedback

u(t) = −K y(t)

which leads to the closed-loop system

ẋ(t) = (
A − B f K C

)
x(t)

y(t) = Cx(t).

9.1 Fault-Tolerant Model-Matching Design 395

should be replaced by a new controller

u f (t) = −K f y(t)

such that the closed loop

ẋ(t) = (A − B f K f C) x(t)

y(t) = Cx(t)

has the same dynamics as the nominal loop.
The controller has to satisfy the simplified version of Eq. (9.7)

B f K f = B K . (9.15)

A solution K f to this equation exists only if the condition

Im (B f) ⊇ Im (B) (9.16)

holds, where Im denotes the image2 of a matrix. An equivalent formulation of the
condition (9.16) is given by

rank B f = rank
(

B B f
)
.

Lemma 9.2 In case of actuator failures, exact model-matching is possible if Eq.
(9.16) holds. Then, the reconfigured controller is given by

u(t) = −N K y(t), (9.17)

where

N = B+
f B =

(
BT

f B f

)−1
BT

f B (9.18)

is a matrix satisfying the relation

B f N = B. (9.19)

The new controller K f = N K yields a closed-loop system with exactly the same
properties as the nominal loop.

Example 9.1 Model-matching for actuator failures
This example demonstrates the model-matching approach for actuator failures and shows the
main idea and a situation in which this approach fails.

2The image of C is the set of vectors y, for which a vector x exists such that y = Cx holds.

396 9 Fault Accommodation and Reconfiguration Methods

Fig. 9.3 Example
demonstrating the
model-matching
reconfiguration strategy

M

M

LC

u
2

d

u
1

Consider the tank system shown in Fig. 9.3 which has two input pipes. Obviously, for level
control, only one pipe is necessary as control input and the redundant input can be used in
case of an actuator failure.

Assume first, that the valve positions are used directly as the control inputs. Then the
system can be described by a state-space model (9.3), (9.4) where the matrix

B = (b kb)

has two linearly depending columns because the two inputs influence the system in the same
way and the effects of the two actuators distinguish only with respect to some constant factor
k. In the nominal system, the first control input is used:

u1(t) = uC (t) = −K y(t)

for some controller K and some output y of the tank system.
If the corresponding actuator fails, the controller should be switched to the second input,

where

B f = (0 kb)

holds. The model-matching solutions yields the (2, 1)-element of the matrix N

N21 = (k2bTb)−1kbTb = 1

k
,

which means that the output uC (t) of the nominal controller is transformed into the input

u2(t) = 1

k
uC (t)

to the second actuator. This is an obvious solution: As the gain of the new actuator is k-times
the gain of the old one, the old input uC is multiplied by 1

k . A perfect reconfiguration results.

9.1 Fault-Tolerant Model-Matching Design 397

Now change the situation by including the motors for the valves as shown in Fig. 9.3. As
these motors have integral dynamics, two additional states have to be added to the state

x̃ =
⎛
⎝ xa1

xa2
x

⎞
⎠

such that the model now reads as

˙̃x(t) =
⎛
⎝ 0 0 0

0 0 0
b kb A

⎞
⎠ x̃(t) +

⎛
⎝ 1 0

0 1
0 0

⎞
⎠ (

u1(t)
u2(t)

)

y(t) = (O O C) x̃(t)

In principle, the same solution as before is possible. However, the model-matching approach
yields for

B =
⎛
⎝ 1

0
0

⎞
⎠ and B f =

⎛
⎝ 0

1
0

⎞
⎠

the solution

N21 =
⎛
⎜⎝

⎛
⎝ 0

1
0

⎞
⎠

T ⎛
⎝ 0

1
0

⎞
⎠

⎞
⎟⎠

−1 ⎛
⎝ 0

1
0

⎞
⎠

T ⎛
⎝ 1

0
0

⎞
⎠ = O,

where the pseudo-inverse matrix has been built after the zero columns for the no longer
available inputs have been deleted. Hence, there is no control input at all. The model-matching
approach fails.

The reason for this result lies in the fact that the model-matching idea tries to reproduce the
effect Bu of the nominal controller by the reconfigured controller B f Nu. This is impossible
in this example, because the nominal controller has a direct effect only on the state variable
xa1 an no effect at all on the state variable xa2 whereas the redundant input leads to the reverse
situation. Hence, no choice of N can reproduce any of the effects of the nominal input. The
failure of the model-matching approach lies in this idea and can be circumvented by extending
the model-matching aim to the whole plant as described below. �

398 9 Fault Accommodation and Reconfiguration Methods

9.1.5 Markov Parameter Approach to Control Reconfiguration
for Actuator Failures

The model-matching approach using the pseudo-inverse of the input matrix fails
because if concentrates on the forcing action at point P© in Fig. 9.4. In the approach
shown in this section, the goal refers to the I/O-behaviour of the plant. By this
formulation, analytical redundancies become amenable which are based on internal
couplings via the system matrix on the one hand and the selection of relevant states
via the output matrix on the other hand, see point Q© in the figure. Such redundancies
are hidden from a forcing action perspective.

The Markov parameters

Gi = C Ai−1 B, i = 1, . . . , n (9.20)

completely describe the I/O-behaviour of a linear system (9.3), (9.4) in terms of its
transfer function

P(s) =
∞∑

i=0

Gi s
−i . (9.21)

The Markov parameter-based approach to control reconfiguration tries to recover
the nominal plant Markov parameters after an actuator failure by using the static
reconfiguration block

uc(t) = Nu f (t). (9.22)

A

B f C

N

uf

xf

yf

Controller
ycuc

Faulty plant

P Q∫

Fig. 9.4 Input/output-based reconfiguration after actuator failures

9.1 Fault-Tolerant Model-Matching Design 399

If the Markov parameters of a reconfigured plant match those of the nominal
plant (9.3), (9.4) exactly, the dynamical I/O-behaviour is recovered exactly, which is
both necessary and sufficient for successful static I/O-reconfiguration.

With the observability matrix

SO =

⎛
⎜⎜⎜⎝

C
C A
...

C An−1

⎞
⎟⎟⎟⎠ ∈ |Rn·m×n (9.23)

the design problem to Markov parameter recovery can be posed as

N = arg min
N

‖SO B f N − SO B‖ (9.24)

with the solution

N = (SO B f)
+SO B. (9.25)

If the condition

Im (SO B f) ⊇ Im (SO B) (9.26)

holds, then perfect I/O-reconfiguration results in the sense that all Markov parameters
are exactly recovered. This condition is equivalent to

rank (SO B f) = rank (SO B f SO B). (9.27)

If this condition is violated, an approximate solution is obtained in this way which
matches the original Markov parameters as closely as possible.

Lemma 9.3 In case of actuator failures, exact model-matching with respect to the
I/O-behaviour can be reached if the condition (9.26) holds. Then the reconfigured
controller is given by

u(t) = −N K y(t), (9.28)

where

N = (SO B f)
+SO B (9.29)

is a matrix satisfying the relation

C A(i−1) B f N = C A(i−1) B, i = 1, . . . , n. (9.30)

400 9 Fault Accommodation and Reconfiguration Methods

The new controller yields a closed-loop system with exactly the same I/O-behaviour
as the nominal loop.

Remark 9.1 (Generality of the method) The approach is valid in connection with
any controller, since the plant I/O-response is recovered and the fault is hidden from
the controller. If the nominal loop was internally stable, this property is preserved
under reconfiguration if condition (9.26) holds, as an analysis using the Kalman
decomposition reveals. �

Example 9.1 (cont.) Model-matching for actuator failures: Markov approach
The example is now solved using the Markov parameter approach. It is shown that the problems
of the pseudo-inverse method are overcome.

The construction of the observability matrix (9.23) yields

SO B = (γ kγ)b with γ = (C C A...)T, (9.31)

whereas after the fault the relation

SO B f = (0 kγ)b (9.32)

holds. Condition (9.26) is met and the admissible solution to the problem

SO B f N = SO B (9.33)

is found using Eq. (9.25) as

N =
(

0 0
1
k 1

)
. (9.34)

As expected, the control input meant for the first valve is redirected to the second valve with
the correct gain adjustment. �

Example 9.2 Markov parameter approach applied to the two-tank example
The plant consists of the two tanks T1 and T2 interconnected by valves uL , u H , where
T1 is filled via pump uP as shown in Fig. 9.5. Valves are electromechanically driven with
the motor states vL , vH . The controlled quantities are the levels h1 and h2. With the state
x = (vL , vH , h1, h2)T, the tank system is described by the linear model (9.3), (9.4) with

A = 103

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−3.2 −3.4 −7.1 3.6
3.2 3.4 7.1 −18

⎞
⎟⎟⎠

B = 103

⎛
⎜⎜⎝

0 10−3 0
0 0 10−3

8.1 0 0
0 0 0

⎞
⎟⎟⎠ , B f = 103

⎛
⎜⎜⎝

0 0 0
0 0 10−3

8.1 0 0
0 0 0

⎞
⎟⎟⎠

C =
(

0 0 1 0
0 0 0 1

)

and controlled by two decentralised proportional controllers LC.

9.1 Fault-Tolerant Model-Matching Design 401

Fig. 9.5 Reconfiguration of
a two-tank system

up

T1

h2

h02

h01

h1

T
2

uU

uL

LC

LC

After a blocking of the lower valve at fault time t f , which yields uL (t) = 0 for t ≥ tf ,
the plant is statically I/O-reconfigurable according to the condition (9.27). The reconfigura-
tion (9.29) yields

N =
⎛
⎝ 1 0 0

0 0 0
0 0.9167 1

⎞
⎠ .

The behaviour of the successfully reconfigured plant with fault f occurring at t f = 250 s
is shown in Fig. 9.6. After the fault appearing at t f = 250 s and the reconfiguration accom-
plished at t = 260 s, the control action is redirected from the lower to the upper valve. This
action appears logical, but it cannot be found by the pseudo-inverse method. �

100 200 300 400 500 600 700 800

0.06

0.07

0.08
Level in T2

h T
2

[m
]

100 200 300 400 500 600 700 800
0.2

0.4

0.6

0.8

Valves

Time t [s]

u L
/u

H

Fig. 9.6 Experimental results with the reconfigured tank system: After the failure of the lower
valve (uL , solid line) the controller acts at the upper valve (u H , dashed line)

402 9 Fault Accommodation and Reconfiguration Methods

9.2 Control Reconfiguration for Actuator or Sensor Failures

9.2.1 The Idea of Virtual Sensors and Virtual Actuators

Severe faults such as the complete failure of actuators or sensors open the control
loop with the nominal controller. In order to hold the system in operation, it is
necessary to use a different set of input or output signals to accomplish the control
task. Once the new control configuration is selected, new controller parameters have
to be found. The goal of the reconfiguration is to stabilise the faulty process and to
keep it operational with sufficient performance.

Figure 9.7 shows the main idea of the methods explained in this section. Instead
of adapting the controller to the faulty plant, a reconfiguration block is used to adapt
the faulty plant to the nominal controller. The faulty plant together with the reconfig-
uration block should produce, for a given input uc, the same (or approximately the
same) output yc as the nominal plant. Hence, the controller “sees” the same plant as
before and reacts in the same way as before.

This solution of the reconfiguration problem tries to apply a minimal change to
the control loop. In particular, the nominal controller remains an unchanged block
of the control loop. The rationale for keeping the controller as before is given by
the fact that the existing control law includes valuable implicit knowledge about the
process and the possible performance of the closed-loop system. This knowledge
was acquired during the design cycle and is not represented in the process model.
For example, during the design it became obvious, which control objectives (like
overshoot, bandwidth, settling time) can be met with reasonable control effort and
which not. The trade-off between the different control objectives is represented by
the nominal controller.

In case of a sensor breakdown, the reconfiguration block results from the appli-
cation of a Luenberger observer to reconstruct the immeasurable output. It is called

Actuators Plant

Actuator
failure

uf

Sensors

Sensor
failure

Reconfiguration block

Nominal Controller
uc

yf

yc

Reconfigured
plant

Reconfigured
controlleryref

Fig. 9.7 Principle of control reconfiguration for actuator or sensor failures

9.2 Control Reconfiguration for Actuator or Sensor Failures 403

a “virtual sensor”, because it reconstructs that element yi of the output vector yc
from the other measured output signals that the faulty sensor does no longer mea-
sure. If an actuator becomes faulty, the reconfiguration block is obtained in a dual
way. The reconfiguration block is called a “virtual actuator”, because it acts like the
faulty actuator but replaces the effect of this actuator by using the control input of
the other actuators appropriately. The reconfigured controller, which is to be applied
to the faulty plant, consists of the nominal controller and the reconfiguration block
(Fig. 9.7).

The way to find appropriate reconfiguration blocks, which will be described in
this section, uses an alternative interpretation of the reconfigured control loop: The
faulty process and the reconfiguration block together are called the reconfigured
plant, which is connected to the nominal controller. If the reconfigured plant behaves
like the nominal plant, the loop consisting of the reconfigured plant and the controller
behaves like the nominal closed-loop system. This is true for an arbitrary nominal
controller.

Example 9.3 Two-tank reconfiguration problem
The reconfiguration problem and a way of its solution are illustrated by the two coupled tanks
depicted in Fig. 9.8.

The main mission of the system is to store water at a certain level in the right tank for some
consumer. During the nominal operation there exists two level controllers, with the set-points
y1ref and y2ref . The right controller uses the upper valve, whose position is given by the input
u2. A redundant control input is provided by the lower valve with input signal u3. In the
nominal case, the valve V12 is closed. The right controller has to attenuate the disturbance
d and to hold the tank level at a given value y2ref . The control specifications include the
stability, the set-point following requirement and the specification that the command step
response should not have a large overshoot.

P

uP
qP

h
1

u
2

h
2

u
3 d

V
a

V
12

Tank 1
Tank 2

Level
Controller

Level
Controller

u
1 y

1ref

y
2ref

Fig. 9.8 Reconfiguration problem for the tank example

404 9 Fault Accommodation and Reconfiguration Methods

Tank system
Level

controller
u2

u1

u3

yref y = h2

d

−

Fig. 9.9 Block diagram of the reconfiguration problem

For the reconfiguration problem, three actuator faults are considered:

• Valve Va is closed and blocked.
• Valve Va is open and blocked.
• A level sensor is faulty.

In these cases, one of the two control loops does no longer work. The reconfiguration task
consists in finding a new control structure by selecting appropriate actuators, new control
laws and new set-points for the control loops such that the control aims described above are
obtained (Fig. 9.9).

Obviously, the reconfiguration task cannot be solved by simply changing the parameters
of the given controllers, but a structural change of the control configuration is necessary:

• If Valve Va is closed and blocked, the level controller of the right tank has to use the lower
valve V12 as control input. In this case, the controller of the left tank can remain unchanged.

• If Valve Va is open and blocked, in addition to the change of the level controller of the right
tank as before, the set-point of the level controller of the left tank has to be set to a value
which is lower then the position of Valve Va. Another possibility is to use the set-point of
the level controller of the left tank as control input of the level controller of the right tank.

• In case of the sensor fault, the missing sensor reading has to be reconstructed by means of
the remaining output measurements.

All these solutions, which for this simple example seem to be obvious, have to be found
automatically by a fault-tolerant control algorithm. �

9.2.2 Reconfiguration Problem

Before explaining the reconfiguration method, the problem to be solved is formally
stated. The model of the nominal process is given in state-space form:

ẋ(t) = Ax(t) + Bu(t) + Ed(t), x(0) = x0 (9.35)

y(t) = Cx(t). (9.36)

9.2 Control Reconfiguration for Actuator or Sensor Failures 405

The standard model is extended by the disturbance d ∈ |Rp.
It is important that the process model includes all available input and output signals

including those that are not used by the nominal controller. Unlike in the traditional
design problem, B and C may not have full rank.

The nominal process is stabilised by a nominal controller with output u(t) and
inputs y(t) and yref(t). The reconfiguration method explained here can be applied
without further assumptions on the controller, which may have arbitrary dynamics
and even be nonlinear. However, to demonstrate the properties of the resulting control
loop a linear feedback controller

uc(t) = −K yc(t) + V yref(t) (9.37)

is used.
Process and controller form the nominal control loop for u(t) = uc(t) and y(t) =

yc(t):

ẋ(t) = (A − B K C) x(t) + BV yref(t) + Ed(t), x(0) = x0 (9.38)

y(t) = Cx(t). (9.39)

This control loop is assumed to be stable and to satisfy the performance requirements
concerning set-point tracking and disturbance rejection.

Fault cases. In the case that the fault f indicates a loss of sensor i , the i th row
of the matrix C is changed into zeros and the new matrix is denoted by C f . If the
j th actuator fails, the j th column of the matrix B is set to zero and the resulting
matrix denoted by B f . In this way, the number of input signals, output signals and
state variables is not changed in the model, though some of them may have lost their
function. It is assumed that the faulty process is still controllable and observable.
This assumption implies that a stabilising controller exists. The input and the output
of the faulty plant are denoted by u f or y f , respectively.

Reconfiguration task. The aim is to find a reconfigured controller that makes the
closed-loop system satisfy the following conditions, which, depending on the control
task, refer to the autonomous behaviour, reference tracking and disturbance rejection:

• Strong reconfiguration goal:
The controller should make the reconfigured control loop behave in exactly the
same way as the nominal control loop, i.e. the relation

y f (t) = y(t)

should hold for any d(t), yref(t) and x0.

It will be demonstrated that this strong goal is only feasible in very special cases.
Therefore, a weaker goal is defined in terms of the dynamical and the static behaviour
of the reconfigured loop.

406 9 Fault Accommodation and Reconfiguration Methods

• Weak reconfiguration goal:
The weak goal consists of a static and a dynamical part. Considering the static
behaviour, the output y f of the reconfigured loop should have the same value as
for the nominal system. This means that for constant values of yref and d, the
relation

y f (t) → y(t) for t → ∞

should hold. The transient behaviour is determined by the poles and zeros of the
system which should not differ significantly in the nominal and the reconfigured
control loop. This requirement applies for the autonomous, the disturbance, and
the command following behaviour of the reconfigured loop. Additional poles (and
zeros) are allowed only if they are fast enough not to dominate the system behav-
iour.

9.2.3 Virtual Sensor

This section describes a reconfiguration block that reconstructs a measurement yi

from the remaining sensor signals after the i th sensor is no longer available. The
main idea is to use an observer for the faulty system, which represents the main part
of the reconfiguration block to be built. This block is called virtual sensor due to its
function of replacing a broken sensor.

The plant with faulty sensor is described by the state-space model

ẋ f (t) = Ax f (t) + Bu f (t) + Ed(t), x f (0) = xf0 (9.40)

y f (t) = C f x f (t), (9.41)

where the sensor failure is reflected by the matrix C f . If the condition (9.11) is
satisfied, the complete output vector y can be reconstructed from y f and the recon-
figured controller (9.12) can be used. This new control structure can be interpreted
as consisting of a reconfiguration block

yc(t) = P y f (t) + yΔ

u f (t) = uc(t)

and the nominal controller. That is, under the condition (9.11) the virtual sensor is a
static reconfiguration block.

In the following, the general case is considered, where the condition (9.11) is
violated. Then, the reconfiguration block includes a state observer and a direct
feedthrough:

Definition 9.1 (Virtual sensor) Consider the plant (9.40), (9.41) with faulty sensor.
The virtual sensor is defined as the system

9.2 Control Reconfiguration for Actuator or Sensor Failures 407

ẋV(t) = AVxV(t) + BVuc(t) + L y f (t), xV(0) = xV0 (9.42)

u f (t) = uc(t) (9.43)

yc(t) = CΔxV(t) + P y f (t) (9.44)

with the state xV ∈ |Rn and with matrices

AV = A − LC f (9.45)

BV = B (9.46)

CV = C − PC f . (9.47)

P and L denote matrices that can be freely chosen.

The main part of the virtual sensor is the state observer with the state vector
xV(t). The complete output yc(t) of the plant can be approximately determined:
yc(t) ≈ CxV(t). This observation result is improved by using the available sensor
values and by observing only the difference between the nominal and the faulty
output. In a generalised form, this approach is represented by Eq. (9.44), where the
matrix P is a design parameter. For P = O only observed values are used.

Model of the reconfigured plant. The plant together with the virtual sensor is
described by Eqs. (9.40)–(9.47):

(
ẋ f (t)
ẋV(t)

)
=

(
A O

LC f A − LC f

)(
x f (t)
xV(t)

)
(9.48)

+
(

B
B

)
uc(t) +

(
E
O

)
d(t)

yc(t) = (
PC f CV

) (
x f (t)
xV(t)

)
. (9.49)

A state transformation is performed in order to introduce the observation error
xΔ(t) = xV(t) − x f (t): Eqs. (9.48), (9.49) are equivalent to

(
ẋ f (t)
ẋΔ(t)

)
=

(
A O
O A − LC f

) (
x f (t)
xΔ(t)

)
(9.50)

+
(

B
O

)
uc(t) +

(
E

−E

)
d(t)

yc(t) = (
C CV

) (
x f (t)
xΔ(t)

)
(9.51)

(
x f (0)

xΔ(0)

)
=

(
xf0

xV0 − xf0

)
.

Model of the reconfigured loop. For the analysis of the closed-loop behaviour
the model of the reconfigured plant is combined with the linear feedback con-
troller (9.37):

408 9 Fault Accommodation and Reconfiguration Methods

(
ẋ f (t)
ẋΔ(t)

)
=

(
A − B K C −B K CV

O A − LC f

)(
x f (t)
xΔ(t)

)
+

+
(

E
−E

)
d(t) +

(
BV
O

)
yref(t) (9.52)

y f (t) = (
C f O

) (
x f (t)
xΔ(t)

)
. (9.53)

The trajectory of this system depends on the initial state, the reference input yref and
the disturbance d (Fig. 9.10). As the system is linear, the behaviour can be analysed
separately for these three excitations.

Autonomous behaviour. For yref(t) = 0 and d(t) = 0 the system (9.52), (9.53)
simplifies to

(
ẋ f (t)
ẋΔ(t)

)
=

(
A − B K C −B K CV

O A − LC f

)(
x f (t)
xΔ(t)

)
(9.54)

y f (t) = (
C f O

) (
x f (t)
xΔ(t)

)
(9.55)

(
x f (0)

xΔ(0)

)
=

(
xf0

xV0 − xf0

)
.

Fig. 9.10 Reconfiguration
by using a virtual sensor

Faulty plant

∫B

E

d

A

Cf

Virtualsensor

B

L

A

Cf

uf xf yf

xV

yΔ

Nominal controller
yc

yref

uc

CΔ

P

-

∫

9.2 Control Reconfiguration for Actuator or Sensor Failures 409

The separation principle of state observers applies: The matrix K influences the
behaviour of the process state x f (t) through the submatrix A − B K C (controller
design), while L affects the behaviour of the observation error xΔ through the sub-
matrix A − LC f (observer design). There are cross-couplings in one direction only
from xΔ(t) to x f (t). The strength of the couplings and the influence of xΔ(t) on the
output can be reduced by a suitable choice of the matrix P .

Theorem 9.1 (Separation principle for the virtual sensor) The set σ of eigenvalues of
the reconfigured closed-loop system (9.54), (9.55) consists of the set of eigenvalues
of the nominal closed-loop system (9.38), (9.39) and the set of eigenvalues of the
virtual sensor (9.42):

σ = σ{A − B K C} ∪ σ{A − LC f }.

The stability of the closed-loop is guaranteed if the nominal control loop is sta-
ble (depending on K) and if the observer is stable (depending on L). The second
condition can be satisfied by an appropriate choice of L because the pair (A, C f) is
assumed to be observable. The equilibrium state is zero for both the faulty and the
nominal system.

Tracking behaviour. For xf0 = xV0 = 0 and d = 0, the system (9.52), (9.53)
simplifies to

ẋ f (t) = (A − B K C) x f (t) + BV yref(t), x f (0) = O

y f (t) = C f x f (t),

which is identical to the behaviour of the nominal closed-loop system (9.38), (9.39).
Hence, the reference tracking behaviour of the reconfigured control loop is identical
to that of the nominal control loop.

Disturbance behaviour. For the disturbance behaviour it is assumed that the initial
state and the reference input are zero. This leads to the following closed-loop system:

(
ẋ f (t)
ẋΔ(t)

)
=

(
A − B K C −B K CV

O A − LC f

)(
x f (t)
xΔ(t)

)
+

(
E

−E

)
d(t)

y f (t) = (
C f O

) (
x f (t)
xΔ(t)

)
(

x f (0)

xΔ(0)

)
=

(
O
O

)
.

It is obvious that the output y f is different from the output y of the nominal control
loop. The dynamical disturbance behaviour is much more complex because the num-
ber of states of the reconfigured process is 2n instead of n for the nominal process.
The poles of the disturbance rejection behaviour depend on K and L, while the zeros
are affected by P .

These results are summarised in the following theorem.

410 9 Fault Accommodation and Reconfiguration Methods

Theorem 9.2 (Virtual sensor) For sensor faults, the virtual sensor (9.42)–(9.44)
solves the reconfiguration problem such that the weak reconfiguration goal is reached
provided that the faulty process is observable. The strong goal is reached for the
reference tracking behaviour.

The analysis has shown how the virtual sensor works. The direct feedthrough P
reconstructs or at least approximates the output yc of the faultless plant from the
remaining output y f . If the condition (9.11) is satisfied and P is chosen according
to Eq. (9.13), the virtual sensor shrinks to a static reconfiguration block

yc(t) = CCT
f

(
CT

f C f

)−1
y f (t)

u f (t) = uc(t),

because CV = O results. This solution to the reconfiguration problem coincides with
the solution obtained by the model-matching approach. The strong reconfiguration
goal is satisfied.

If the condition (9.11) is not satisfied, the virtual sensor reconstructs the missing
sensor information. Its state xV(t) approximates the plant state x f (t). The strong
reconfiguration goal is satisfied only for the reference tracking behaviour. The dis-
turbance behaviour of the reconfigured closed-loop system is typically slower com-
pared with the nominal behaviour. The smaller the state xΔ(t) in the model of the
disturbance behaviour is, the better approximates the reconfigured loop the nominal
behaviour.

9.2.4 Virtual Actuator

This section develops a solution to the reconfiguration problem for actuator failures.
The notion of a virtual actuator is introduced as the dual system to the virtual sensor.

The system under consideration is described by

ẋ f (t) = Ax f (t) + B f u f (t) + Ed(t), x f (0) = xf0 (9.56)

y f (t) = Cx f (t), (9.57)

where zero columns in the matrix B f reflect the failing actuators. If the condi-
tion (9.16) is satisfied, the static reconfiguration block

u f (t) = Nuc(t)

yc(t) = y f (t)

can be used. In the following, the more general case is investigated, where this
condition is not satisfied.

9.2 Control Reconfiguration for Actuator or Sensor Failures 411

To explain the structure of the virtual actuator, the dual system of the reconfigured
control loop for sensor faults shown in Fig. 9.11 is constructed. The result is shown
in Fig. 9.12.

Definition 9.2 (Virtual actuator) Consider the plant (9.56), (9.57) with faulty actu-
ator. The virtual actuator is defined as the system

ẋΔ(t) = AΔxΔ(t) + BΔuc(t), xΔ(0) = xΔ0 (9.58)

u f (t) = CΔxΔ(t) + DΔuc(t) (9.59)

yc(t) = CxΔ(t) + y f (t) (9.60)

with the state xΔ ∈ |Rn and the matrices

AΔ = A − B f M (9.61)

BΔ = B − B f N (9.62)

CΔ = M (9.63)

DΔ = N. (9.64)

E CΔ

C

A

B

A

∫

∫

Difference system
L

Nominal closed-loop system

E

V

K

-

yf

Cf

-
yref

d

Cf

xΔ-

xf

Fig. 9.11 Analysis of the closed-loop system with virtual sensor

412 9 Fault Accommodation and Reconfiguration Methods

Nominal controller

ABΔ

N Bf C

M

A

CBf

E

Faulty plant

d

Virtual Actuator

-

uf xf yf

xΔ yΔ

uΔ

yc

yref

uc

∫

∫

Fig. 9.12 Reconfiguration by means of a virtual actuator

M and N denote matrices that can be freely chosen.

Analysis of the reconfigured plant. The plant together with the virtual actuator
leads to the following model of the reconfigured plant:

(
ẋ f (t)
ẋΔ(t)

)
=

(
A B f M
O A − B f M

)(
x f (t)
xΔ(t)

)
(9.65)

+
(

B f N
B − B f N

)
uc(t) +

(
E
O

)
d(t)

yc(t) = (
C C

) (
x f (t)
xΔ(t)

)
. (9.66)

9.2 Control Reconfiguration for Actuator or Sensor Failures 413

The introduction of the new state x̂(t) = x f (t) + xΔ(t) leads to the following
equivalent model:

d

dt

(
x̂(t)

xΔ(t)

)
=

(
A O
O A − B f M

)(
x̂(t)

xΔ(t)

)

+
(

B
B − B f N

)
uc(t) +

(
E
O

)
d(t)

yc(t) = (
C O

) (
x̂(t)

xΔ(t)

)
(

x̂(0)

xΔ(0)

)
=

(
x0 + xΔ0

xΔ0

)
.

Note that the state xΔ of the second subsystem is not observable by yc. Hence, this
state does not influence the I/O-behaviour of the reconfigured plant, whose model
can be reduced to

ẋ(t) = Ax(t) + Buc(t), x(0) = x0 + xΔ0

yc(t) = Cx(t).

This model is identical to the nominal plant provided that xΔ0 = 0 holds.

Theorem 9.3 The reconfigured plant (9.56)–(9.64) has the same I/O-behaviour as
the nominal plant (9.38), (9.39) for arbitrary parameter matrices M and N of the
virtual actuator.

Hence, the virtual actuator yields a reconfigured plant that satisfies the fault-hiding
goal for arbitrary matrices M and N .

Separation principle for the virtual actuator. The reconfigured closed-loop sys-
tem consists of the reconfigured plant and the controller (9.37), both of which are
considered for vanishing disturbance d and command input yref . If the transformed
model is used, the reconfigured closed-loop system is described by

d

dt

(
x̂(t)

xΔ(t)

)
=

(
A − B K C O
−BΔ K C A − B f M

)(
x̂(t)

xΔ(t)

)
(

x̂(0)

xΔ(0)

)
=

(
x0 + xΔ0

xΔ0

)
.

As the system matrix is a block triangular matrix, the following result is obtained:

Theorem 9.4 (Separation principle for the virtual actuator) The set σ of eigenval-
ues of the reconfigured closed-loop system (9.37), (9.56)–(9.64) consists of the set
of eigenvalues of the nominal closed-loop system (9.37)–(9.39) and the set of eigen-
values of the virtual actuator (9.58):

σ = σ{A − B K C} ∪ σ{A − B f M}.

414 9 Fault Accommodation and Reconfiguration Methods

This theorem holds true for arbitrary matrices M and N of the virtual actuator.
Clearly, a corollary of this theorem is that the matrix M has to be chosen so that
the matrix A − B f M has eigenvalues with negative real parts in order to ensure the
stability of the reconfigured closed-loop system.

Corollary 9.1 The stability of the reconfigured closed-loop system can be ensured
by appropriately choosing the matrix M of the virtual actuator if and only if the pair
(A, B f) is stabilisable.

This corollary shows that the stabilisation goal can be satisfied by using the gener-
alised virtual actuator as long as the faulty plant is stabilisable.

I/O-behaviour of the reconfigured closed-loop system. The following investigates
the I/O-behaviour of the reconfigured closed-loop system and derives guidelines for
choosing the parameter matrices M and N of the virtual actuator. If the models of
the faulty plant (9.56), (9.57) is combined with the virtual actuator (9.58)–(9.60)
and the controller (9.37), the following model is obtained after the state x̂ has been
introduced as before:

d

dt

(
x̂(t)

xΔ(t)

)
=

(
A − B K C O
−BΔ K C A − B f M

)(
x(t)

xΔ(t)

)
(9.67)

+
(

BV
BΔV

)
yref(t) +

(
E
O

)
d(t)

(
x̂(0)

xΔ(0)

)
=

(
x0 + xΔ0

xΔ0

)

yc(t) = (C O)

(
x̂(t)

xΔ(t)

)
(9.68)

y f (t) = (C − C)

(
x̂(t)

xΔ(t)

)
. (9.69)

The block diagram that illustrates this model is shown in Fig. 9.13. The lower block
represents the nominal closed-loop system. The control error e = V yref − yc is fed
into the “difference system”

ẋΔ(t) = (A − B f M)xΔ(t) + BΔe(t), xΔ(0) = xΔ0 (9.70)

yΔ(t) = CxΔ(t), (9.71)

whose name results from its output yΔ, which is the difference between the output yc
of the nominal closed-loop system and the output y f of the reconfigured closed-loop
system. Hence, yΔ shows how the reconfigured closed-loop system differs from the
nominal loop.

This model yields two corollaries:

• The I/O-behaviour with respect to the disturbance input d or the command input
yref , respectively, and to the output yc is identical to the corresponding I/O-
behaviour of the nominal closed-loop system.

9.2 Control Reconfiguration for Actuator or Sensor Failures 415

M

Bf

BΔ

∫ C

A

E

CV B

A

K

Difference system

Nominal closed-loop system

-
uf

yf

xΔ

yΔ

-
yref

d

x

yc

e

ˆ
∫

Fig. 9.13 Transformed closed-loop system showing the separation principle

• The I/O-behaviour with respect to the disturbance input d or the command input
yref , respectively, and to the output y f differs from that of the nominal closed-loop
system due to the influence of the difference system (9.70), (9.71).

To summarise these results, the virtual actuator presents a successful reconfig-
uration block in case of actuator failures. It creates a stable control loop with n
placeable additional poles. However, it does not restore the original equilibrium
unless the equilibrium is zero.

Theorem 9.5 (Virtual actuator) For actuator failures, the virtual actuator (9.58)–
(9.64) is a solution to the reconfiguration problem such that the weak reconfiguration
goal is reached provided that the faulty process is controllable.

The following part of this section concerns the question how to choose the matrices
M and N of the virtual actuator in order to get a small difference yΔ between the
behaviour of the nominal and the reconfigured closed-loop system.

Complete reconfiguration. As Fig. 9.13 and Eqs. (9.70), (9.71) show, a complete
reconfiguration is possible if the matrix N can be chosen such that the matrix BΔ

vanishes.

416 9 Fault Accommodation and Reconfiguration Methods

Corollary 9.2 If the matrix N can be chosen such that

BΔ = B − B f N = O (9.72)

holds, the I/O-behaviour of the reconfigured closed-loop system is identical to that
of the nominal control loop for both the disturbance input d and the command input
yref . Furthermore, if

xΔ(0) = 0 (9.73)

holds, the reconfigured loop has the same free motion as the nominal loop.

The condition (9.72) can be satisfied for an arbitrary controller (9.37) if and only if
the relation (9.16) holds. Then the virtual actuator (9.58), (9.60) reduces to the static
reconfiguration block

u f (t) = (BT
f B f)

−1 BT
f Buc(t) (9.74)

yc(t) = y f (t), (9.75)

which is identical to the reconfiguration solution described in Sect. 9.1.4.
If the condition (9.16) is violated, this static reconfiguration block does not solve

the reconfiguration problem, the inequality BΔ �= O holds and the dynamical part
of the virtual actuator becomes active.

Design of the virtual actuator by disturbance decoupling methods. If the transfer
function matrix of the difference system (9.70), (9.71) vanishes

G(s) = C(s I − A + B f M)−1(B − B f N) = O, (9.76)

the reconfiguration is complete as well. Then the difference model (9.70), (9.71),
which can be equivalently written as

ẋΔ(t) = AxΔ(t) + Buc(t) + B f u f (t), xΔ(0) = xΔ0 (9.77)

uΔ(t) = MxΔ(t) + Nuc(t) + Qũ(t) (9.78)

has a vanishing output. To select the matrices N and M such that the condition (9.76)
holds is a disturbance decoupling problem for known disturbance uc. It has been
shown in [340] that the solution to this problem yields a complete reconfiguration.
This solution exist, however, only under restrictive conditions.

Restoration of the static behaviour. The static behaviour is completely recon-
structed if the gain of the difference system vanishes:

G(0) = −C(A − B f M)−1(B − B f N) = O. (9.79)

9.2 Control Reconfiguration for Actuator or Sensor Failures 417

Approximate solution. The generalised virtual actuator has the property that the
effect of the virtual actuator “disappears” if the matrix BΔ can be made very small
by choosing the matrix N appropriately.

Corollary 9.3 For‖BΔ‖ → 0, the behaviour of the reconfigured closed-loop system
approaches that of the nominal loop:

‖yc(t) − y f (t)‖ → 0.

Hence, if ‖BΔ‖ is sufficiently small it is reasonable to use the static reconfiguration
block only.

Example 9.4 Reconfiguration of the two-tank system
To illustrate the reconfiguration by means of the virtual actuator, the problem posed in Exam-
ple 9.3 is considered. The tank system is described by the nonlinear state-space model

ḣ1(t) = Q1max

A1
(−kI xr(t) − kP (h1(t) − u1(t)))

− Q1max

S

√
2g(h1(t) − hv)u2(t) − Q1max

S

√
2gh1(t)u3(t)

ẋr(t) = h1(t) − u1(t)

ḣ2(t) = 1

A2

(
S
√

2g(h1(t) − hv)u2(t) + S
√

2gh1(t)u3(t) − S
√

2gh2(t)d(t)
)

yc(t) = h2(t)

that includes the controller of the left tank, which is a PI controller

ẋr(t) = h1(t) − u1(t)

ũ1(t) = −kI xr(t) − kP (h1(t) − u1(t)).

This model uses the following parameters:

Symbol Physical meaning

A 1 , A 2 Cross section areas of the two tanks

Q1max Maximum flow through the pump

hv Height of the upper pipe above the tank bottom

S Constant of the valves

g gravity constant

k I , kP Controller parameters

After the linearisation of the model around the operation point described by h̄1, h̄2, ū1, ū2,
ū3, the linear model (9.35), (9.36) with

418 9 Fault Accommodation and Reconfiguration Methods

A =
⎛
⎝ −0.0478 −0.0004 0

1.0000 0 0
0.0058 0 −0.0058

⎞
⎠

B =
⎛
⎝ 0.0406 −0.0058 −0.0092

−1.0000 0 0
0 0.0046 0.0073

⎞
⎠

C = (0 0 1)

E =
⎛
⎝ 0

0
−0.0454

⎞
⎠

is obtained. Is is assumed that the upper valve fails and is, therefore, completely closed and
no longer used as actuator of the right level controller. Then, the second column in the matrix
B has to be set to zero to obtain the matrix B f :

B =
⎛
⎝ 0.0406 0 −0.0092

−1.0000 0 0
0 0 0.0073

⎞
⎠ .

Static reconfiguration. A complete reconfiguration of the controller is possible, because the
condition (9.16) is satisfied due to the lower valve, which represents a redundant control input
with similar effects on the tank system as the upper valve. In fact, the last column of B is
linearly dependent upon the second column:

0.6325

⎛
⎝ −0.0092

0
0.0073

⎞
⎠ =

⎛
⎝ −0.0058

0
0.0046

⎞
⎠ .

Hence, the reconfiguration is possible with a static reconfiguration block (9.74), for which the
following parameters are obtained (Fig. 9.14):

Fig. 9.14 Static
reconfiguration of
the tank system

N

Nominal controller

Tank system

y

u3

u2
yref

9.2 Control Reconfiguration for Actuator or Sensor Failures 419

Fig. 9.15 Behaviour of the
reconfigured closed-loop
system where the
reconfigured controller
uses the input u3

0
0.1
0.2
0.3
0.4

h
2 in

 m
0 200 400 600 800

0

0.5

1

Time in sec

u 2, u
3

u f (t) =
⎛
⎝ 0 0 −2.7039

0 0 0.6325
0 0 1

⎞
⎠ uc(t).

Figure 9.15 shows the reference tracking behaviour of the right tank for changing level
set-point. The right tank has the same behaviour with the reconfigured controller as in the
nominal case. In the lower subplot the control input u3 used by the reconfigured controller
is compared to the input u2 of the nominal controller, which is shown by the dashed lines.
Clearly, the new input has to be smaller than the nominal one, because the lower valve between
the tanks has a higher effectiveness than the upper one, which can be seen by comparing the
corresponding columns in the matrix B.

Reconfiguration by means of the virtual actuator. If the lower valve is not available for
the reconfiguration, the right controller has only the input u1, which is the command signal
of the left controller, as its disposal. With the third columns deleted, the matrices B and B f
do no longer satisfy the condition (9.16). Hence, a dynamical reconfiguration block has to be
used. The matrix N of the virtual actuator is chosen according to Eq. (9.18):

Fig. 9.16 Reconfigured
system with virtual actuator Virtual

Actuator
P

1

u
2c

u
1

u
P

y
2c

h
2

h2h1h
1

Level
Controller

Level
Controller

blocked
openˆ

ˆ

420 9 Fault Accommodation and Reconfiguration Methods

N =
⎛
⎝ 1 −0.0002 −0.0004

0 0 0
0 0 0

⎞
⎠ .

The nominal closed-loop system has the eigenvalues −0.0427, −0.0124±0.0058i . Therefore,
the matrix M of the virtual actuator is chosen so as to place the eigenvalues of the matrix
A − B f M to the left of these eigenvalues, namely at −0.05, −0.06 and −0.07. As M should
use only the first input, its non-zero elements are restricted to the first row:

M =
⎛
⎝ −0.9968 −0.0048 −0.0002

0 0 0
0 0 0

⎞
⎠ .

In summary, the virtual actuator (9.58), (9.59) results

ẋΔ(t) =
⎛
⎝ −0.0074 −0.0002 0

0.0032 −0.0048 −0.0002
0.0058 0 −0.0058

⎞
⎠ xΔ(t) +

+
⎛
⎝ 0 −0.0058 −0.0091

0 −0.0002 −0.0004
0 0.0046 0.0073

⎞
⎠ u2c(t)

u1(t) = (−0.9968 − 0.0048 − 0.0002) xΔ(t) +
+(1 − 0.0002 0.0004) yc(t),

where u2c(t) is the control input generated by the nominal level controller of the right tank.
This signal is used now as an input of the virtual actuator (Fig. 9.16).

Figure 9.17 shows the disturbance behaviour of the tank system after the controller has
been extended by a virtual actuator shown above. The response is slower than the nominal

Fig. 9.17 Behaviour of the
reconfigured closed-loop
system where the
reconfigured controller
uses the input u1

0 200 400 600 800
0

0.1
0.2
0.3
0.4

Time in sec

h 2in
 m

0 200 400 600 800
0

0.5

1

Time in sec

u 1

9.2 Control Reconfiguration for Actuator or Sensor Failures 421

response, which is drawn by dashed lines to make a comparison possible. The slower response
results from the fact that the controller of the right tank uses now the command input of the
controller of the left tank as control input. �

9.2.5 Duality Between Virtual Sensors and Virtual Actuators

The comparison of the reconfiguration blocks developed in the preceding sections
clearly shows the duality of the approaches for sensor and actuator failures. The
variables correspond to each other in the following way:

Note that the duality involves more than just swapping input and output and
transposing the matrices. It requires that the directions of the signals be reversed.
Summation points become signal knots and vice versa. The diagrams also require
mirroring to preserve the clockwise signal direction of the control loop.

A short mathematical demonstration of the duality is given here. If the system
(9.48) is transposed, the input and output matrices are exchanged, and all system
matrices are transposed, the following model results:

(
ẋ f (t)
ˆ̇x(t)

)
=

(
AT CT

f LT

O AT − CT
f LT

)(
x f (t)
x̂(t)

)

+
(

CT
f PT

CT − CT
f PT

)
u f (t)

yc(t) = (
B B

) (
x f (t)
x̂(t)

)
.

Apart from the different variable names according to Table 9.1, the result is identical
to (9.65)–(9.66). The duality holds for most properties, but not for the reference
tracking. The reason is that yref and y do not have symmetric positions in the system.

9.2.6 Experimental Evaluation: Level and Temperature
Control

Reconfiguration of a level and temperature control loop. For a demonstration of
the control reconfiguration in case of an actuator failure the part of the chemical
process shown in Fig. 9.18 is considered. The control objectives are to maintain a
constant liquid level and a constant temperature in the reactor tank B1 and, thus,
producing a constant product outflow. To achieve this, hot and cold liquid can be

Table 9.1 Duality of the system variables

Virtual sensor A B C K L P x̂ u y

Virtual actuator AT CT BT KT MT NT x̃ y u

422 9 Fault Accommodation and Reconfiguration Methods

B2 B1

P1

Product

Heating
TC

LC

LC

V1

LS
07 LI

06
TI
1

TI
5

LI
20

LS
17

LS
18

LS
19

LS
08

LS
09

P2

B5

50˚C

Hot water
Cold water

20˚C

Fig. 9.18 Plant used for control reconfiguration (LC - level control, TC - temperature control)

brought into the reactor from Tanks B2 and B5. The main reactor B1 can be heated
and cooled.

In the nominal case, the liquid level is controlled by adjusting the cold liquid
inflow from Tank B5 and the temperature by means of the heating.

Plant model. The plant model contains three states: the reactor content VB1, the
reactor temperature ϑB1 and the content of the cold liquid tank VB5. From a mass
balance, the following equations are obtained

V̇B5(t) = kP2uP2(t) − q51(t)

V̇B1(t) = q21(t) + q51(t) − q1out(t)

ϑ̇B1(t) = (ϑB2(t) − ϑB1(t))
q21(t)

VB1(t)
+ (ϑB5(t) − ϑB1(t))

q51(t)

VB1(t)

+uheat(t)kheat

VB1(t)
,

where for the liquid flows the relations

q21(t) = kP1uP1(t)

q51(t) = kV1 124.5uV1(t)
√

hB5(t) + 1.07

q1out(t) = kV2

√
VB1(t)

AB1
+ 1.4

9.2 Control Reconfiguration for Actuator or Sensor Failures 423

hold. hB5(t) is the liquid level in the spherical tank B5, uheat(t) the heating power,
kheat a heating coefficient, uP1(t), uP2(t) and uV1(t) the control input to the two
pumps and to the Valve V1 and AB1 the cross-section area of the Tank B1. After a
linearisation of this nonlinear model around the operating point of ϑB1 = 40 ◦C, the
following linear model is obtained:

⎛
⎝ V̇B5(t)

V̇B1(t)
ϑ̇B1(t)

⎞
⎠ = 10−3

⎛
⎝−0.46 0 0

+0.46 −0.33 0
−0.48 0.008 −1.1

⎞
⎠

⎛
⎝ VB5(t)

VB1(t)
ϑB1(t)

⎞
⎠

+
⎛
⎝ 0.09 −0.023 0 0

0 +0.023 +0.05 0
0 −0.024 +0.02 0.223

⎞
⎠

⎛
⎜⎜⎝

uP2(t)
uV1(t)
uP1(t)
uheat(t)

⎞
⎟⎟⎠

y =
⎛
⎝ hB5(t)

hB1(t)
ϑB1(t)

⎞
⎠ .

The nominal proportional controllers are defined by:

uV1(t) = −0.5 VB1(t)

uheat(t) = −0.5 ϑB1(t)

uP2(t) = −1 VB5(t).

They can be represented as

u(t) = −K y(t) with K =

⎛
⎜⎜⎝

0.5 0 0
0 1 0
0 0 0
0 0 0.5

⎞
⎟⎟⎠ .

Note that these controllers do not use the control input uP1, because the matrix K
has a vanishing third row.

Faults. Several severe faults can occur that open the control loops. For example, due
to a heating failure, the reactor can no longer be heated, or clogging or blockage of
Valve V1 can bring the level controller out of operation. In the following, the heating
failure and a blockage of Valve V1 in its nominal position will be considered.

Controller reconfiguration after a heating failure. After a heating failure has
occurred, the temperature controller

uheat(t) = −0.5 ϑB1(t)

has no influence on the process. The system in the nominal and the faulty case has
the matrices

424 9 Fault Accommodation and Reconfiguration Methods

B =
⎛
⎝ 0.09 −0.023 0 0

0 +0.023 +0.05 0
0 −0.024 +0.02 0.223

⎞
⎠

B f =
⎛
⎝ 0.09 −0.023 0 0

0 +0.023 +0.05 0
0 −0.024 +0.02 0

⎞
⎠ ,

which distinguish in the last column. Both matrices have the same rank and can be
related to one another by the matrix

N =

⎛
⎜⎜⎝

1 0 0 −1.72
0 1 0 −6.72
0 0 1 3.09
0 0 0 0

⎞
⎟⎟⎠

such that the equation

B f N = B

holds. Hence, a complete reconfiguration is possible by using the third control input,
which is not used in the nominal case. The reconfigured controller

u(t) = −N K y(t)

has the controller matrix

N K =

⎛
⎜⎜⎝

0.5 0 −0.86
0 1 −3.36
0 0 1.55
0 0 0

⎞
⎟⎟⎠ .

Obviously, the fourth actuator is no longer used. The effect of this actuator is dis-
tributed among the three remaining actuators, which can be seen in the last column
of the new controller matrix. With the reconfigured controller, the behaviour of the
nominal system is completely reproduced.

Controller reconfiguration by means of a virtual actuator. The loss of the actuator
V1 does not affect the operation point, but it breaks the level control loop for the reactor
B1. The use of a reduced virtual actuator allows to keep the nominal controller while
changing the control structure as little as possible.

In the terminology of Sect. 9.2.3, the directly influenceable part xF1 of the plant
state is defined by VB5 and ϑB1, while xF2 is the single state variable VB1:

xf1(t) =
(

BB5(t)
ϑB5(t)

)
, xf2(t) = VB1(t).

9.2 Control Reconfiguration for Actuator or Sensor Failures 425

The (1, 2)-parameter matrix M is determined by pole placement. The element
of M that is acting on ϑB1 has no influence on the actuator pole and is, therefore,
set to 0. The other value is chosen so that the actuator pole lies at −0.004 in order
to make the influence of the virtual actuator on the closed-loop dynamics as small
as possible. The application of the method explained in Sect. 9.2.4 to this example
leads to

˙̂x2(t) = −0.004 x̂2(t) + 0.0229 uV2,R(t)

û(t) =
⎛
⎝ 0.015

−0.318
0

⎞
⎠ x̂2(t) +

⎛
⎝−0.107

1.78
0

⎞
⎠ uV2,R(t)

ŷ(t) =
⎛
⎝−8

0
1

⎞
⎠ x̂2(t).

The function of the reduced virtual actuator can be described as follows (Fig. 9.19).
The input uV1(t) is not available to control the inflow into the main reactor, but this
inflow also depends on the level in Tank B5 and, hence, on VB5. In order to reach the
same effect as the broken actuator, VB5(t) is increased or decreased by influencing
the Pump P2 via the input uP2(t). As VB5(t) cannot be changed instantaneously, this
“replacement action” is slower than the direct action of the nominal control loop on
the valve V1 and leads to a slower reaction of the system under the influence of the
reconfigured controller.

In mathematical terms, the virtual actuator brings about an additional pole which
yields the slower dynamics. The difference between the nominal and the new behav-
iour is determined by the virtual actuator and deducted from the measurements of

Fig. 9.19 Reconfigured
controller including a
virtual actuator

B1–
LC

TC

LI
06
TI
1

TI

LI
20

LS
17

LS
18

LS
195

Heating

Virtual
actuator

LC
P2

V1

B5–

426 9 Fault Accommodation and Reconfiguration Methods

0 10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55
h 1

/m
System State

0 10 20 30 40 50 60 70 80 90 100

0.08

0.1

0.12

h 2
/m

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

u

t/s

System Input

Pump

Valve

Fig. 9.20 Results of the reconfiguration experiment (Reactor temperature ϑB1(t) (top), reactor
content VB1(t) (middle) and reactor content VB5(t)

VB1(t) and VB5(t). In this way, the additional pole remains hidden from the level
controller and this controller acts like in the nominal case.

The experimental results are shown in Fig. 9.20. The state VB1(t) is disturbed
by withdrawing a considerable amount of liquid until time t = 10 s. The virtual
actuator increases the level VB5(t) in Tank B5 by increasing the pump input uP1(t).
The effect of this manipulation and of the fault is “simulated” by the virtual actuator,
subtracted from the sensor’s data and, therefore, hidden from the nominal controller.
After 180 s the tank level VB5(t) reaches its maximum and after another 800 s the
state deviation has been reasonably compensated. A static deviation remains because
of some modelling inaccuracies.

The dashed lines show the behaviour of the faultless closed-loop system. The
slower reaction of the level controller results in the slower disturbance attenuation
shown in the middle part of the figure, where the nominal system reaches the set-
point of 19 dm3 quicker than the reconfigured system. Hence, the operation of the
main reactor can be restored with a minor performance degradation.

In the lower part of the figure the different behaviour of Tank B5 can be seen.
The difference is due to the different functions that this tank has in both situations.
In the faultless case the level controller of this tank adjusts the liquid content to the
set-point, whereas under faulty conditions this variable is used as a means to control
the inflow into Tank B1 and, thus, to control the contents of B1.

9.2 Control Reconfiguration for Actuator or Sensor Failures 427

Fig. 9.21 Part of the chemical plant VERA used in the experiment

9.2.7 Experimental Evaluation: Conductivity Control Loop

The second application of the reconfiguration method that uses the virtual actuator
is the fault-tolerant control of the conductivity of a liquid. Figure 9.21 shows the
experimental set-up and Fig. 9.22 the schematic diagram of the three reactors involved
in the control loop considered. The sequence of the two Reactors TM and TB with the
Reactor TS is used to produce a liquid with prescribed temperature and conductivity.
Several control loops have to be used, which are shown in the schematic diagram
with the abbreviations LC for level controller, TC for temperature controller and CC
for concentration controller. If actuator failures occur, these loops are brought out of
operation. Typical failures concern the valve VCW and the heating Pel .

The nominal controller uses the inputs uPS, uTS and uTB, the three variables to
be controlled are the temperature ϑTB, the liquid level lTS in the Reactor TS and the
conductivity λTS of the liquid in the Reactor TS (Fig. 9.23). The block diagram also
shows the redundant inputs uCW and uTM, which will be used for the reconfiguration.

Nonlinear model. The following nonlinear model is obtained from balance equa-
tions that concern the different components of the plant. To shorten the notation of
the equations, the dependency of the signals from the time t is omitted:

428 9 Fault Accommodation and Reconfiguration Methods

• Change of the liquid temperature of Reactor TS:

ϑ̇TS = 1

ATSρlTS

{
Pel,TS − Q̇PL,TS

cp
+ ṁTB(ϑTB − ϑTS) +

ṁTM(ϑTM − ϑTS) + ṁCW(ϑCW − ϑTS)

}

• Change of the liquid volume in Reactor TS:

l̇TS(t) = ṁTB(t) + ṁTM(t) + ṁCW(t) − ṁTW(t)

ATSρ

: redundancy

: subordinate loop

: main loop wastewater

PS

TS

PR

V
TB

V
TM

TM

CC

FC

LC

LC

TC

LC

cold water

V
CW

Pel

Pel

TB

T1, T2, T4T3

TC

LC
LC

Fig. 9.22 Schematic diagram of the process

9.2 Control Reconfiguration for Actuator or Sensor Failures 429

Heating fault

Nominal system

TB

TS

lTS

TB

λ

Nominal controller

Constant zero

Valve fault

uTM

uTM

uel, TB

uel, TS

uCW

uPS

f
3

f
2

f
1

f
3

f
2f

1

Pump fault

ϑ

ϑ

Fig. 9.23 Schematic diagram of the process

• Change of the concentration in Reactor TS:

ċTS(t)

= ṁTB(t)(cTB − cTS(t)) + ṁTM(t)(cTM − cTS(t)) − ṁCW(t)cTS(t)

ATSρlTS(t)

• Change of the liquid temperature in Reactor TB:

ϑ̇TB(t)

= 1

ATBρlTB

{
Pel,TB(t) − Q̇PL,TB(t)

cp
+ ṁT 124(t)(ϑT 124 − ϑTB(t))

}

• Behaviour of the cold water Valve VCW:

ẋCW(t) = = − 1

TCW
xCW(t) + 1

TCW
uCW(t)

ṁCW(t) = xCW(t) with TCW = 3, 7 s

• Actuator dynamics of the heating of the Reactor TB:

430 9 Fault Accommodation and Reconfiguration Methods

ẋTB(t) = = − 1

Tel,TB
xTB(t) + 1

Tel,TB
uTB(t)

Pel,TB(t) = kTBxTB(t),

with Tel,TB = 27 s, kTB = 18 kW

• Actuator dynamics of the heating of the Reactor TS:

ẋTS(t) = = − 1

Tel,TS
xTS(t) + 1

Tel,TS
uTS(t)

Pel,TS(t) = kTSxTS(t),

with Tel,TS = 65 s, kTS = 4 kW

Besides the state variables ϑTB and lTS, the conductivity is the third variable to be
controlled. This signal is obtained by the following relation:

λTS(t) = 0,4469
mS

cm
+ 2047,7

mS

cm
cTS(t).

All these equations use the following mass and heat flows:
• Mass flow from Rector TB towards Reactor TS:

ṁTB(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
0,019 kg

s
√

m
+ 0,727 kg

s
√

m
(uTB(t) − 0,13)

)√
lTB + 0,3 m,

if uTB ≥ 0,13
0 kg

s ,

else

• Mass flow from Rector TM towards Reactor TS:

ṁTM(t) =

⎧⎪⎨
⎪⎩

(
0,047 kg

s
√

m
+ 0.605 kg

s
√

m
(uTM(t) − 0,04)

)√
lTM + 0.3 m

if uTM ≥ 0.04
0 kg

s else.

• Mass flow out of the Reactor TS:

ṁPS(t) = ṁTW(t) = 0,1679
kg

s
√

m
uPS(t)

√
lTS(t) + 0,36 m

• Heat balance of the Reactor TS:

Q̇PL,TS(ϑTS(t)) =
{

Q̇PL,TS,on(ϑTS(t)), if heating is on
Q̇PL,TS,off(ϑTS(t)), if heating is off

with

9.2 Control Reconfiguration for Actuator or Sensor Failures 431

Q̇PL,TS,on(ϑTS(t)) =
{

46,9403 W◦C (ϑTS(t) − 22,5 ◦C), if ϑTS ≥ 22,5 ◦C
0 W, if ϑTS < 22,5 ◦C

Q̇PL,TS,off(ϑTS(t)) =
{

4,8968 W◦C (ϑTS(t) − 22,5 ◦C), if ϑTS ≥ 22,5 ◦C
0 W, if ϑTS < 22,5 ◦C

• Heat balance of the Reactor TB:

Q̇PL,TB(ϑTB(t)) =
{

Q̇PL,TB,on(ϑTB(t)), if heating is on
Q̇PL,TB,off(ϑTB(t)), if heating is off

Q̇PL,TB,on(ϑTB(t)) =
{

135,468 W◦C (ϑTB(t) − 22,5 ◦C), if ϑTB ≥ 22,5 ◦C
0 W, if ϑTB < 22,5 ◦C

Q̇PL,TB,off(ϑTB(t)) =
{

4,8968 W◦C (ϑTB(t) − 22,5 ◦C), if ϑTB ≥ 22,5 ◦C
0 W, if ϑTB < 22,5 ◦C

The given equations can be lumped together to get a nonlinear state-space model

x(k+1) = g(x(k), u(k)), x(0) = x0

y(k) = h(x(k), u(k))

with the state, input and output vectors

x(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϑTS(t)
lTS(t)
cTS(t)
ϑTB(t)
xCW(t)
xTB(t)
xTS(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, u(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

uTM(t)
uTB(t)
uTB(t)
uTS(t)
uCW(t)
uPS(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

, y(t) =

⎛
⎜⎜⎝

ϑTS(t)
lTS(t)
λTS(t)
ϑTB(t)

⎞
⎟⎟⎠ .

Linearised model. A linearised state-space model

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)

is obtained from the nonlinear model with the following matrices:

432 9 Fault Accommodation and Reconfiguration Methods

A = 10−3 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3, 46 0 0 1, 46 −59, 12 0 39, 36
0 −0, 76 0 0 1, 41 0 0
0 0 −3, 15 0 −0, 0034 0 0
0 0 0 −1, 34 0 157, 46 0
0 0 0 0 −270, 27 0 0
0 0 0 0 0 −37, 03 0
0 0 0 0 0 0 −15, 38

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B = 10−3 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−10, 62 0 0 0 0 0
7, 11 8, 49 0 0 0 −1, 98

0, 0249 0, 0235 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 15, 38 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛
⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 2047, 7 0 0 0 0
0 0 0 1 0 0 0

⎞
⎟⎟⎠

D = O.

The set of eigenvalues of the matrix A

σ = {−0, 2703;−0, 0370;−0, 0154;−0, 0035;−0, 0032;−0, 0013;−0, 0008}

gives an impression of the dynamical properties of the plant.

Models of the faulty system. The three actuator failures cause a change of the
matrix B of the linearised state-space model:
• Failure f1 of the Valve VTB, which gets the input signal uTB:

Bf1 = 10−3 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−10, 62 0 0 0 0 0
7, 11 0 0 0 0 −1, 98

0, 0249 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 15, 38 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Failure f2 of the heating of the Reactor TS, which acts according to the control
input uTS:

9.2 Control Reconfiguration for Actuator or Sensor Failures 433

Bf2 = 10−3 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−10, 62 0 0 0 0 0
7, 11 8, 49 0 0 0 −1, 98

0, 0249 0, 0235 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Failure f3 of the Pump P S, which runs according to the control input uPS:

Bf3 = 10−3 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−10, 62 0 0 0 0 0
7, 11 8, 49 0 0 0 0

0, 0249 0, 0235 0 0 0 0
0 0 0 0 0 0
0 0 0 0 270, 27 0
0 0 37, 03 0 0 0
0 0 0 15, 38 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These matrices differ from the matrix B for the nominal model with respect to one
column each, which is set to zero for the failed actuator.

Control reconfiguration by a virtual actuator. For all three fault cases, the virtual
actuator described in Definition 9.2 is used for the control reconfiguration (Fig. 9.24).
The scheme is the same in all cases, only the matrix B f , which is a parameter of
the virtual actuator, differs. This shows that the control reconfiguration is completely
automatic in the sense that a general reconfiguration algorithm can be applied, which
adapts the effect of the nominal controller to the failure that has occurred.

The first experiment concerns the reconfiguration with the goal to retain the stabil-
ity of the closed-loop system. For this task, a virtual actuator with parameter matrix
N = O is used.

In case of the failure of the Valve VTB, the virtual actuator has been designed to
have the following set of eigenvalues:

σV A
!= 25σ (9.80)

= {−6.7568;−0.9259; 0.3846;−0.0866;−0.0790;−0.0335;−0.0190}

This eigenvalue assignment is accomplished by the feedback matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

−12.31 −16.05 77.63 0.15 5.11 0.40 −3.71
0 0 0 0 0 0 0

13.39 −0.01 5770 90.07 −23.71 178.06 15.41
17.18 −0.06 7332 23.26 −31.85 39.14 25.31
−1.48 −0.01 −642.30 −2.04 2.11 −3.43 −1.81

−130.19 −192.04 239.73 0.75 18.61 2.21 −12.85

⎞
⎟⎟⎟⎟⎟⎟⎠

.

434 9 Fault Accommodation and Reconfiguration Methods

Faulty system

(f
1
, f

2
, f

3
)

Nominal controller

Constant zero

Virtual actuator

u
TM,f

u
TB,f

u
el,TB,f
u

el,TS,f

u
CW,f

u
PS,f

u
PS,c

u
CW,c

u
el,TS,c

u
el,TB,c

u
TB,c

u
TM,c

TS,f

lTS,f

lTS,c

TB,f

λ

TS,cλ

ϑ

TS,cϑ

TB,fϑ

TB,cϑ

Fig. 9.24 Reconfiguration by means of a virtual actuator

It is possible, because the pair (A, Bf1) is completely controllable. The eigenvalues
are chosen with respect to the eigenvalues of the plant. They make the virtual actuator
much quicker than the plant. The zero row of the matrix M ensures that the failed
valve is no longer used for feedback control. Due to the separation property of the
virtual actuator, the overall closed-loop system has the eigenvalues of the nominal
closed-loop system and the eigenvalues given in Eq. (9.80) for the virtual actuator.
Hence, the reconfigured system is stable.

Figure 9.25 approves this result. The two bars placed at time t = 350 s mark
the time instant at which the valve is blocked and the controller reconfigured. The
temperature ϑTS and the level lTS remain at the set-points, whereas the conductivity
cannot follow precisely the set-point change at time t = 300 s marked by the dashed
line. This is due to the proportional controller used.

Figure 9.26 shows the six control inputs. After the valve VTB is blocked, the signal
uTB shown in the top-right corner of the figure does no longer change. The virtual
actuator uses the input signals uTS, uTB and uPS which are also used by the nominal
controller. In addition to this, the virtual actuator exploits the input uCW to the cold
water Valve VCW, whereas the other additional input uTM is not used.

The choice how to distribute the effect of the blocked valve over the remaining
actuators is made implicitly by the virtual actuator. No selection procedure, with
a possible involvement of a human control designer, is necessary. Therefore, the
concept of the virtual actuator can be applied completely automatically.

The second experiment concerns the aim to bring all variables to be controlled
back to their set-points. Here the “complete” virtual actuator with the two parameter

9.2 Control Reconfiguration for Actuator or Sensor Failures 435

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.8
2

2.2
2.4
2.6
2.8

Time [s]

λ
T
S

(t
)

m
S

cm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
22

24

26

28

Time [s]

ϑ
T
S

(t
)[

◦ C
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.3

0.32

0.34

0.36

0.38

Time [s]

l T
S

(t
)[

m
]

Fig. 9.25 Reconfiguration in case of the valve VTB-failure with N = O

matrices M and N is used. Besides the matrix M given above, the direct feedthrough
is chosen as

N =
(

C(A − B f M)−1 B f

)−1 (
C(A − B f M)−1 B

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.291 −0.016 0.053 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −0.588 0.031 −0.037 1 0
0 −4.250 −0.012 −0.004 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which ensures set-point following, because the reconfigured closed-loop system has
the same static reinforcement as the nominal control loop.

The reconfiguration result is depicted in Fig. 9.27. For the same experiment as
before now all three control outputs are moved back to their set-points.

436 9 Fault Accommodation and Reconfiguration Methods

0 500 1000 1500 2000

0

0.5

1

Time [s]

u T
M

,f
1

0 500 1000 1500 2000
0.1

0.15

0.2

Time [s]

u T
B

,f
1

0 500 1000 1500 2000
0

0.5

1

Time [s]

u e
l,T

B
,f

1

0

1

0.8

0.6

0.4

500 1000 1500 2000

0

0.5

1

Time [s]
u e

l,T
S,

f 1

0 500 1000 1500 2000
0.02

0.03

0.04

0.05

0.06

Time [s]

u C
W

,f
1

0 500 1000 1500 2000
Time [s]

u P
S,

f 1

Fig. 9.26 Absolute values of the control inputs after the reconfiguration in case of the valve VTB-
failure

As Fig. 9.28 shows, the virtual actuator uses now the additional inputs uCW and
uTM. The reconfiguration is completely successful including the restoration of the
set-point.

9.3 Fault Recovery by Nominal Trajectory Tracking

Active fault-tolerant control implements control laws that are specific to the diag-
nosed fault and to the system objective to be achieved. Model-matching and the
pseudo-inverse method were first introduced in flight control systems with the objec-
tive to minimise the differences between the dynamics of the healthy and the faulty
systems, so as to allow pilots to keep faulty systems at hand. However, in some situa-
tions, rather than requiring the faulty system dynamics to mimic the nominal system
dynamics, it is sensible to require that the faulty system follows (a best approxima-
tion of) the nominal system trajectory. Nominal trajectory tracking is of interest, for

9.3 Fault Recovery by Nominal Trajectory Tracking 437

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.8
2

2.2
2.4
2.6
2.8

Time [s]

λ
T
S

(t
)

m
S

cm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
22

24

26

28

Time [s]

ϑ
T
S

(t
)[

◦ C
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.3

0.32

0.34

0.36

0.38

Time [s]

l T
S

(t
)[

m
]

Fig. 9.27 Reconfiguration after valve VTB-failure with feedthrough N �= O

example, when unmanned vehicles are used in space missions where a rescheduling
of the whole set of trajectories is impossible. Nominal trajectory tracking is the goal
of the approach presented in this section.

9.3.1 Problem Setting

Nominal system. Let
ẋn(t) = Anxn(t) + Bnun(t) (9.81)

be the LTI model of the nominal system, where

un(t) = K nxn(t) (9.82)

is the nominal state feedback, that results in the closed-loop behaviour

438 9 Fault Accommodation and Reconfiguration Methods

0 500 1000 1500 2000

0

0.05

0.1

Time [s]

u T
M

,f1

0 500 1000 1500 2000
0.1

0.15

0.2

Time [s]

u T
B

,f1
0 500 1000 1500 2000

0

0.5

1

Time [s]

u e
l,T

B
,f1

0 500 1000 1500 2000

0

0.5

1

Time [s]
u e

l,T
S,

f1

0 500 1000 1500 2000
0.02

0.03

0.04

0.05

0.06

Time [s]

u C
W

,f1

0 500 1000 1500 2000

0.3
0.4
0.5
0.6
0.7

Time [s]

u P
S,

f1

Fig. 9.28 Control input after the reconfiguration for valve VTM-failure

ẋn(t) = (An + Bn K n)xn(t) = Mnxn(t), (9.83)

where Mn is chosen so as to satisfy some nominal requirements including stability.
For example, choosing

Mn = A − B R−1 BT P,

where P is the solution of some Riccati equation associated with the linear quadratic
problem setting gives the nominal system an optimal LQ behaviour.

Faulty system. Assume a fault occurs at time tf such that the faulty system can still
be described by a model associated with the pair (Af , Bf) and the control law is
changed to uf(t) = K f xf(t). In fault accommodation, the pair (Af , Bf) is estimated
by the fault estimation module, while in system reconfiguration, it is known from
the new model that results from switching off the faulty components that have been
isolated by the fault isolation module.

Let [tf , t0[be the time interval during which the detection, isolation, fault esti-
mation and accommodation takes place. The post-fault trajectory satisfies:

9.3 Fault Recovery by Nominal Trajectory Tracking 439

t ∈ [tf , t0[: ẋf(t) = (Af + Bf K n)xf(t)

t ≥ t0 : ẋf(t) = (Af + Bf K f)xf(t) = Mf xf(t)

It follows that for t ≥ t0 the trajectory of the accommodated system is given by

xf(t) = Φf(t − t0)xf(t)(t0)

while the trajectory of the nominal system would have been

xn(t) = Φn(t − t0)xn(t0)

with Φ i (t − t0) = eM i (t−t0), (i = f, n). While the model-matching approach is
concerned with the difference Mn − Mf , the nominal trajectory tracking considers
the difference Φn(t−t0)−Φf(t−t0), and requests the trajectory of the accommodated
system to mimic as closely as possible the trajectory of the nominal one in an attempt
to rub out the effect of the fault.

Introducing two symmetric matrices Q ≥ 0, and R > 0 and measuring the
closeness of the trajectories by means of the quadratic cost

J = 1

2

∫ ∞

t0
(xf(t) − xn(t))

T Q (xf(t) − xn(t))

+ (uf(t) − un(t))
T R (uf(t) − un(t)) dt (9.84)

provides a problem setting that allows to achieve a compromise between the discrep-
ancies of the accommodated to nominal trajectory and the accommodated to nominal
control signal.

9.3.2 Solution

Optimality condition. From the classical theory of optimal control, one gets the
following set of necessary conditions

ẋf(t) = Af xf(t) + Bf uf(t) (9.85)

ṗf(t) = Q (xf(t) − xn(t)) − AT
f pf(t) (9.86)

O = R (uf(t) − K nxn(t)) − BT
f pf(t), (9.87)

where pf is the adjoint state vector. From (9.87), the accommodated control is

uf(t) = K nxn(t) + R−1 BT
f pf(t). (9.88)

440 9 Fault Accommodation and Reconfiguration Methods

Following a classical approach, the adjoint state is assumed to have the form

pf(t) = H xf(t) + Gxn(t),

where H and G are two matrices to be determined. Making use of (9.81), (9.85) and
(9.88) one gets

ṗf(t) = H
(

Af + Bf R−1 BT
f H

)
xf(t)

+
(

H Bf K n + Bf R−1 BT
f G + G (An + Bn K n)

)
xn(t)

From (9.86) it follows that

ṗf(t) =
(

Q − AT
f H

)
xf(t) −

(
Q + AT

f G
)

xn(t)

holds and, therefore,

(
Q − AT

f H − H Af − H Bf R−1 BT
f H

)
xf(t) = (+H Bf K n + · · ·

· · · + H Bf R−1 BT
f G + G (An + Bn K n) + AT

f G)xn(t)

so that H and G must satisfy the relations

AT
f H + H Af + H Bf R−1 BT

f H − Q = O (9.89)

Q + H Bf K n + G (An + Bn K n) +
(

H Bf R−1 BT
f + AT

f

)
G = O. (9.90)

Equation (9.89) is a classical algebraic Riccati equation and (9.90) a Lyapunov equa-
tion that is easily solved once H has been found.

Stability. From (9.87) one gets

uf(t) = un(t) + R−1 BT
f (H xf(t) + Gxn(t)) (9.91)

and, therefore, the accommodated control is obtained by adding the compensating
term R−1 BT

f (H xf(t) + Gxn(t)) to the nominal control, leading to the accommo-
dated dynamics:

ẋf =
(

Af + Bf R−1 BT
f H

)
xf(t) + Bf

(
K n + R−1 BT

f G
)

xn(t). (9.92)

Let zT(t) = (
xn(t)T xf(t)T

)
. Then from Eqs. (9.83) and (9.92) one gets ż(t) =

M z(t) with

9.3 Fault Recovery by Nominal Trajectory Tracking 441

M =
(

An + Bn K n O
Bf

(
K n + R−1 BT

f G
)

Af + Bf R−1 BT
f H

)
.

Since K n is chosen such that the nominal closed-loop matrix An+Bn K n is stable, the
stability of the accommodated system follows from the stability of Af +Bf R−1 BT

f H,

which is well known to be achieved by a unique solution H provided that the pair
(Af , Bf) is still controllable and that the pair (C, Af) is observable with Q = CTC.

Admissibility. Let (Af , Bf) be a fault such that (Af , Bf) is controllable and (C, Af)

is observable, then there exists a unique pair (H, G) such that the accommodated
control uf(t) = un(t)+ R−1 BT

f (H xf(t) + Gxn(t)) stabilises the faulty system and
is optimal with respect to the cost (9.84). However, not any such fault is recoverable,
because although minimal, the cost (9.84) might be too high for the accommodated
behaviour to be accepted as close enough to the nominal one.

Let εs(t) = xf(t) − xn(t) and εu(t) = uf(t) − un(t) be the differences between
the faulty and the nominal system behaviour. Using Eq. (9.91) one gets

εT
s (t) Qεs(t) + εT

u (t)Rεu(t) = zT(t)Sz(t)

with

S =
(

Q + GT Bf R−1 BT
f G − Q + GT Bf R−1 BT

f H
− Q + HT Bf R−1 BT

f G Q + HT Bf R−1 BT
f H

)
.

The cost can now be easily computed. Since M is stable, there is a symmetric negative
definite matrix P such that

MT P + P M = S

It follows that

d

dt
zT(t)P z(t) = zT(t)Sz(t)

and

J = 1

2

∫ ∞

t0

d

dt
zT(t)P z(t)dt = −1

2
zT(t0)P z(t0).

As already seen, different admissibility conditions can be stated. For example, one
can define a constant admissibility limit η, resulting in recoverable faults that satisfy
the inequality

− 1

2
zT(t0)P z(t0) ≤ η (9.93)

442 9 Fault Accommodation and Reconfiguration Methods

or a quadratic admissibility limit− 1
2 zT(t0)Pminz (t0) resulting in the recoverable

faults if

P − Pmin ≥ 0 (9.94)

holds.

Remark 9.2 The state discrepancy in the time window [tf , t0[is not taken into
account in the cost (9.84) since it depends on the fault only and the control has
not yet been accommodated.

Remark 9.3 (Recoverability versus accommodation delay) The larger the fault the
larger is the initial state difference εs(t0) = xf(t0)−xn(t0). It follows that, depending
on the admissibility condition that is defined, the recoverability of a fault depends on
the fault itself (for example faults that result in the loss of controllability of unstable
systems are not recoverable), but also partly on the delay introduced by the diagnosis
and accommodation processes, as Eq. (9.93) suggests.

Remark 9.4 The model-matching approach can in no case provide any optimal solu-
tion to the trajectory tracking problem, since it results in the trajectories ẋf(t) =
Mf xf(t) obtained by synthesising a matrix Mf closest to Mn. Whatever way Mf
is computed, the input xn(t) is never taken into account, as (9.91) shows it should
be. �

Example 9.5 Nominal trajectory tracking
Consider, a set of second order systems (A, B (θ)), where θ ∈ [0, 1] is a parameter, such

that θ = 0 characterises the nominal system An =
(−1 0

0 −1

)
, Bn =

(
1
5

)
and θ > 0 is

associated with the faulty system Af =
(−1 0

0 −1

)
, Bf =

(
1 − 2θ
5 − 4θ

)
. Note that for θ = 0.5

the faulty system is not controllable.
Under the state feedback control u = k1x1 + k2x2 the closed-loop matrix is

M (k1, k2, θ) =
(

k1 (1 − 2θ) − 1 k2 (1 − 2θ)
k1 (5 − 4θ) k2 (5 − 4θ) − 1

)
.

Assuming that the control objective is to obtain the behaviour associated with the reference

model Mn =
(−2 0

−5 −1

)
, the pseudo-inverse method results in the feedback gains:

k1 (θ) = 22θ − 26

(1 − 2θ)2 + (5 − 4θ)2

k2 (θ) = 0.

It is easily seen that the Frobenius norm ‖M (k1, k2, θ) − Mn‖F can be zeroed to obtain an
exact model-matching result only in the nominal case θ = 0 and this minimum is associated
with the nominal control un(t) = (−1 0)xn(t). For θ �= 0, the pseudo-inverse method results
in the closed-loop matrix:

9.3 Fault Recovery by Nominal Trajectory Tracking 443

MPIM
f (θ) =

⎛
⎝ −64θ2 + 118θ − 52

20θ2 − 44θ + 26
0

−88θ2 + 214θ − 130
20θ2 − 44θ + 26

−1

⎞
⎠

whose eigenvalues are

λ1 (θ) = −1 λ2 (θ) = −64θ2 + 118θ − 52
20θ2 − 44θ + 26

.

It can be checked that the pseudo-inverse method provides an unstable solution for all faults
wiht θ > 0.728.

Let us now investigate the nominal trajectory tracking approach, using Q = I2 and R = 1.
The post-fault optimal control is obtained as uf (t) = H xf (t)+Gxn(t) provided that θ �= 0.5.
With

W (θ) =
(

(1 − 2θ)2 (1 − 2θ) (5 − 4θ)

(5 − 4θ) (1 − 2θ) (5 − 4θ)2

)

the matrix H is given by
HW (θ) H − 2H − I2 = O

while G is the solution of

I2 + H
(− (1 − 2θ) 0

− (5 − 4θ) 0

)
+ G

(−2 0
−5 −1

)
+ (W (θ) − I2) G = O.

Stable case. Let us first illustrate the case where the pseudo-inverse method (PIM) provides
a stable closed loop by assuming the fault θ = 0.6. The PIM solution is

uf (t)
PIM = −1.88235xPIM

1

which gives the closed-loop matrix

MPIM
f =

(−0.6235 0
−4.8941 −1

)
.

The nominal trajectory tracking optimal control uf (t) is defined by the pair

H =
(−0.4986 −0.0181

−0.0181 −0.2650

)
, G =

(
0.2789 0.0181

−0.1258 −0.2650

)

that satisfies the equations

H
(

0.04 −0.52
−0.52 6.76

)
H − 2H − I2 = O

H
(

0.2 0
−2.6 0

)
+ I2 + G

(−2 0
−5 −1

)
+

(−0.96 −0.52
−0.52 5.76

)
G = O.

444 9 Fault Accommodation and Reconfiguration Methods

Figure 9.29 shows the nominal xn(t), PIM xPIM
f (t) and NTT (nominal trajectory track-

ing) xf (t) state trajectories, assuming that during the first 2 s, the faulty system is still con-
trolled by the nominal control. As a result, the xPIM

f (t) and xf (t) trajectories are identical
for t ∈ [10, 12[, and xf (t) shows a behaviour closer to xn(t) only after t = 12. Figure 9.30
shows the significant improvements in the quadratic costs associated with the discrepan-

cies
(

xn(t) − xPIM
f (t), un(t) − uf (t)

PIM
)

and (xn(t) − xf (t), un(t) − uf (t)) again for a

2 s delay.

Unstable case. Let us now consider the case θ = 1 in which the PIM control uf (t)
PIM = −2x1

gives the closed-loop matrix MPIM
f =

(
1 0

−2 −1

)
, which is unstable. The modified PIM

approach gives the control law uf (t)
MPIM = −0.8x1 which results in the stable matrix

MMPIM
f =

(−0.2 0
−0.8 −1

)
.

The nominal control uf (t) is defined by the pair

H =
(−0.433 −0.067

−0.067 −0.433

)
, G =

(
2.134 0.5

1.8 −0.5

)

that satisfies

H
(

1 −1
−1 1

)
H − 2H − I2 = O

H
(

1 0
−1 0

)
+ G

(−2 0
−5 −1

)
+

(
0 −1

−1 0

)
G + I2 = O.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

0

0.5

1

1.5

2

2.5

x1

x2

X n

X f

X pim

Increasing time

Fault accommodation under 2 seconds delay

Fault occurs

Fig. 9.29 Nominal, PIM and NTT state trajectories

9.3 Fault Recovery by Nominal Trajectory Tracking 445

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
5 10 15

Time (second)

Fault accommodation

Fault occurrence

PIM Control

Proposed Control

C
os

t i
nd

ex

20 25

Fig. 9.30 PIM versus NTT costs

2.5

1.5

0.5

-0.5
0 0.1 0.2

x
1

x 2

0.3 0.4 0.5 0.6

2 seconds
delay

1 second
delay

Fault
occurs

(no delay)

Increasing time
sampling 0.1 s

0.7

0

1

2
Xf

Xmpim

Xn

Fig. 9.31 Nominal, MPIM and NTT state trajectories

Figure 9.31 shows the state xn(t), modified PIM xf (t)
MPIM and nominal trajectory track-

ing xf (t) trajectories, for three different fault detection, isolation, diagnosis and accom-
modation delays, while Fig. 9.32 shows the quadratic costs associated with the discrepan-

cies
(

xn(t) − xf (t)
MPIM, un(t) − uf (t)

MPIM
)

and (xn(t) − xf (t), un(t)− uf (t)) for the

2 s delay case.
In order to illustrate Remark 9.3, Fig. 9.33 shows how the trajectory tracking cost increases

with the diagnosis and accommodation delay. It follows that for small delays the fault may
be recoverable, while it becomes non-recoverable for larger ones, because the cost becomes
inadmissible. �

446 9 Fault Accommodation and Reconfiguration Methods

Fault accommodation

Fault occurrence

M PIM Control

Proposed Control

Time (second)
1510 20 25

0

1

0.8

0.4

0.6

0.2

C
os

t i
nd

ex

5

Fig. 9.32 MPIM versus NTT costs

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (second)

C
os

t i
nd

ex

5 second delay
2 second delay
No delay

Fault occurrence

Fig. 9.33 Trajectory tracking cost versus fault accommodation delay

9.4 Fault-Tolerant H∞ Design

This section introduces fault-tolerant control strategies that can be applied in a general
fault case. It starts with a characterisation of all controllers that stabilise a linear
system and also satisfy H2 or H∞ norm conditions. This characterisation makes it
possible to evaluate the severity of the fault with respect to the control aims and to
find methods for redesign the controller automatically.

The complete description of all stabilising controllers is given by the Youla-
Kucera or Q-parametrisation. The Youla parametrisation was originally defined by

9.4 Fault-Tolerant H∞ Design 447

using coprime factorisation. However, it is simple to give an equivalent description
of the Youla-Kucera parametrisation as a state-space formulation, where the para-
metrisation turns out to be an observer-based controller.

One of the facilities by using this parametrisation is that the closed-loop transfer
function turns out to be affine in the controller parameters. This affine structure is
very useful in connection with design of controllers using optimisation methods.
Therefore, the method also fits well to solve the control problem arising when we
wish to make a redesign for a controller when a system is in a faulty state.

The salient feature offered by the Youla-Kucera parametrisation is that it offers
an elegant and very fast solution to the redesign problem for some classes of faults
that leave the system stable with the existing controller but make it unable to meet
the required performance.

9.4.1 System Description

Consider the plant

ẋ(t) = Ax(t) + B1w(t) + B2u(t)
z(t) = C1x(t) + D11w(t) + D12u(t)
y(t) = C2x(t) + D21w(t) + D22u(t),

(9.95)

where x ∈ |Rn is the state, u ∈ |Rr , is the control input, w ∈ |Rk is the external input
or disturbance, z ∈ |Rl is the controlled output and y ∈ |Rm is the measurement
output. For brevity, it is common to denote this system by the shorter notation

G(s) =
⎛
⎝ A C1 C2

B1 D11 D21
B2 D12 D22

⎞
⎠ ,

It is assumed that (A, B2) is stabilisable and (C2, A) is detectable.
Described in transfer function form

(
x(s)
y(s)

)
=

(
G11(s) G12(s)
G21(s) G22(s)

)(
w(s)
u(s)

)
,

the transfer function matrix G(s) is decomposed as

G(s) =
(

G11(s) G12(s)
G21(s) G22(s)

)
.

Further, in order to later study the design of diagnosis in conjunction with closed-
loop control, let the plant (9.95) be controlled by an output feedback controller

448 9 Fault Accommodation and Reconfiguration Methods

u(t) = K y(t).

We have now the following definition of stabilisation by output feedback.

Definition 9.3 A proper system G(s) is said to be stabilisable by output feedback if
there exists a proper controller K (s) internally stabilising G(s). Moreover, a proper
controller K (s) is said to be admissible if it internally stabilises G(s).

Next, we have the following result for the existence of a stabilising controller
K (s) for the system G(s), where here and in the following

K (s) =
[

M N
P Q

]

is used as abbreviation of

K (s) = P(s I − M)−1 N + Q.

Lemma 9.4 There exists a proper controller K (s) achieving internal stability of the
closed-loop system if and only if (A, B2) is stabilisable and (C2, A) is detectable.
Further, let F and L be two matrices such that A + B2 F and A + LC2 are stable,
then an observer-based stabilising controller is given by

K (s) =
[

A + B2 F + LC2 + L D22 F F
−L O

]
.

It is important to note that the stabilising controller for G(s) depends only on
G22(s). We need, therefore, only to look at G22(s) when we are looking for stabilising
controllers. This is also the case when we are using the Youla-Kucera parametrisation.
In the following the argument s of transfer functions will often be omitted.

9.4.2 Youla-Kucera Parameterisation in Coprime
Factorisation Form

First, let us consider two polynomials m(s) and n(s) with real coefficients. m and n
are said to be coprime, if their greatest common divisor is 1 (they have no common
zeros). It follows from Euclid’s algorithm that f and g are coprime if and only if
there exists polynomials x(s) and y(s) such that

mx + ny = 1. (9.96)

This equation is called a Bezout identity. Similarly, the two stable transfer functions
m and n are said to be coprime if there exists stable x and y such that Eq. (9.96) is
satisfied.

9.4 Fault-Tolerant H∞ Design 449

Generally, two stable matrices M and N are right coprime if they have equal
number of columns and there exists stable matrices X and Y such that

(X Y)

(
M
N

)
= X M + Y N = I .

This is equivalent to saying that the matrix

(
M
N

)
is stable left invertible.

Similarly, two stable matrices M and N are left coprime if they have equal number
of rows and there exists stable X and Y such that

(M N)

(
X
Y

)
= M X + NY = I

holds. Equivalently, (M N) is stable right invertible.
Now, let G22(s) be a proper real-rational matrix. A right coprime factorisation of

G22(s) is a factorisation G22 = N M−1, where N and M are stable right coprime

matrices. Similarly, a left coprime factorisation has the form G22 = M̃
−1

Ñ , where
Ñ and M̃ are left coprime. Note that, in these definitions, it is required that the
matrices M and M̃ are square and non-singular.

Based on the above, there exists the following result.

Lemma 9.5 For each proper real-rational matrix G22(s) there exists eight stable
matrices satisfying the equations

G22 = N M−1 = M̃
−1

Ñ(
X̃ Ỹ

−Ñ M̃

) (
M −Y
N X

)
= I .

This lemma defines a double coprime factorisation of G22(s). It should be noted
that it is always possible to make a coprime factorisation, if the system is stabilisable
and detectable.

Now, let K̃ (s) be a stabilising controller for G22(s) and let K̃ have the following
factorisation

K̃ = U V−1 = Ṽ
−1

Ũ .

A feedback system with positive feedback is stable if and only if

(
I −K̃

−G22 I

)−1

is stable.

Using the coprime factorisation of K̃ we get the following conditions for internal
stability.

450 9 Fault Accommodation and Reconfiguration Methods

Lemma 9.6 Let G22(s) be a proper real-rational matrix and

G22 = N M−1 = M̃
−1

Ñ

be the stable right and left coprime factorisation. Then, there exists a controller

K̃ 0 = U0V−1
0 = Ṽ

−1
0 Ũ0

with U0, V 0, Ũ0 and Ṽ 0 stable such that

(
Ṽ 0 −Ũ0

−Ñ M̃

)(
M U0
N V 0

)
= I .

Based on the above results, it is now possible to give a parametrisation of all
controllers that stabilise G22(s).

Theorem 9.6 Let G22(s) be a proper real-rational matrix and

G22 = N M−1 = M̃
−1

Ñ

be the stable right and left coprime factorisation. Then, the set of all proper con-
trollers achieving internal stability is parameterised either by

K = (U0 + M Qr)(V 0 + N Qr)
−1 (9.97)

det(I + V−1
0 N Qr)(∞) �= 0

for stable Qr or by

K = (Ṽ 0 + Ql Ñ)−1 (Ũ0 + Ql M̃) (9.98)

det(I + Ql Ñ Ṽ
−1
0)(∞) �= 0

for stable Ql , where U0, V 0, Ũ0 and Ṽ 0 stable satisfied the Bezout identities:

Ṽ 0 M − Ũ0 N = I

M̃V 0 − ÑU0 = I .

Moreover, if U0, V 0, Ũ0 and Ṽ 0 are chosen such that

(
Ṽ 0 −Ũ0

−Ñ M̃

)(
M U0
N V 0

)
= I .

Then we have

9.4 Fault-Tolerant H∞ Design 451

K = (
U0 + M Qr

) (
V 0 + N Qr

)−1

=
(

Ṽ 0 + Qr Ñ
)−1 (

Ũ0 + Qr M̃
)

= Fl(J r, Qr),

(9.99)

where

J r =
(

U0V−1
0 Ṽ

−1
0

V−1
0 −V−1

0 N

)

and Qr is stable and satisfies that (I + V−1
0 N Qy)(∞) is invertible.

The Youla-Kucera parametrisation is shown in Fig. 9.34.

Fig. 9.34 Controller
structure for the
Youla-Kucera
parametrisation

G 22

U 0V 0

Q r

MN −

yu

r

r~
~~

~ ~-1

9.4.3 Parametrisation in the State-Space Form

The Youla-Kucera parametrisation derived in the above section was based on coprime
factorisation, which may not be the form in which a particular fault-tolerant control
problem is described. Further, popular toolboxes support a state-space description
(e.g. MATLAB). Therefore, a state-space description will be given in this section
together with a representation of the closed-loop transfer function as function of the
free stable parameter Q.

For the coprime factorisation in a state-space form using state feedback and
observers, the following result is available: Let two coprime factorisations of G22(s)
be given by

452 9 Fault Accommodation and Reconfiguration Methods

(
M U0
N V 0

)
=

⎛
⎝ A + B2 F F C2 + D22 F

B2 I D22
−L O I

⎞
⎠

(
Ṽ 0 −Ũ0

−Ñ M̃

)
=

⎛
⎝ A + LC2 F C2

−(B2 + L D22) I −D22
L O I

⎞
⎠ ,

where F and L are chosen such that A+ B2 F and A+ LC2 are both stable. It is now
quite simple to give a state-space realisation of the Q-parametrisation of all internal
stabilising controllers. From Theorem 9.6 we have the linear fractional transforma-
tion formulation of all stabilising controllers. Using the state-space description of
the coprime factorisation in J y we get the following result.

Theorem 9.7 Let F and L be such that A + B2 F and A + LC2 are stable. Then
all controllers that internally stabilise G(s) can be parameterised as the transfer
matrix from y to u given by Fl(J y, Q), where

J y =
⎛
⎝ A + B2 F + LC2 + L D22 F F −(C2 + D22 F)

−L O I
B2 + L D22 I −D22

⎞
⎠

with any Q ∈ RH∞ and I + D22 Q(∞) is non-singular.

The controller given in the theorem is sometimes called the Q-observer-based
controller. For Q = O the nominal controller turns out to be a standard full-order
observer-based controller. Moreover, it can be shown that the separation between
the design of the state feedback gain F and the observer gain L is still valid as well
as a separation between the nominal controller and the Q parameter. This can be
shown by setting up a state-space description of the controller together with the Q
parameter and use the state vector x̄ = (

x x − x̂ xq
)
, where xq is the state vector

for Q.
Next, let us look at the closed-loop transfer function when we have applied a

Q-parameterised controller as given in Theorem 9.7. The closed-loop transfer func-
tion is given by the following linear fractional transformation:

z = Fl(G, K)w = Fl(G, Fl(Jy, Q))w = Fl(T , Q)w.

We need now just to give a state-space description of T . By using straightforward
and tedious algebra, we get the following result.

Theorem 9.8 Let F and L be such that A + B2 F and A + LC2 are stable. Then,
the set of a closed-loop transfer matrices from w to z achievable by an stabilising
proper controller is equal to

Fl(T , Q) = T 11 + T 12 QT 21, Q ∈ RH∞, I + D22 Q(∞),

9.4 Fault-Tolerant H∞ Design 453

where T is given by

T =
(

T 11 T 12
T 21 T 22

)
=

⎛
⎜⎜⎝

A + B2 F −B2 F B1 B2
O A + LC2 B1 + L D21 O

C1 + D12 F −D12 F D11 D12
O C2 D21 O

⎞
⎟⎟⎠ .

It is important to note that the closed-loop transfer matrix T is an affine function
of the controller parameter matrix Q, since T 22 = O. This is the reason why
the Q-parametrisation is so useful, particularly in connection with optimisation of
controllers by using numerical tools.

9.4.4 Simultaneous Design of the Controller and the Residual
Generator

In the closed loop, there is an interaction between the sensitivity of the residual
generated by a fault detection filter and the natural suppression of any fault within a
closed loop. The design of closed-loop control and residual generator can, therefore,
be considered an integrated design problem. Consider, the simultaneous design of
the feedback controller and the residual generator. The design setup is illustrated in
Fig. 9.35 (left). It uses the standard problem philosophy.

Fig. 9.35 Control system in
standard configuration (left)
and in generalised setup for
fault-tolerant control (right)

(a)

(b)

G (s)

K (s)

e

u y

d

P (s)

K (s)

e

u y

v
d

454 9 Fault Accommodation and Reconfiguration Methods

As stated earlier, the standard design provides a controller K (s) for which the
closed loop is internally stable and a suitable norm of the closed-loop transfer function
from w to z is minimised or made smaller than a pre-specified level.

Instead of using a standard controller as shown in Fig. 9.35 (left), a controller with
two outputs can be employed:

(
u
a

)
=

(
K 1
K 2

)
y.

The additional output signal a is a diagnostic signal, which will be applied to derive
an estimate of faults in the controlled system.

Let the open-loop transfer function be given by:

(
e
y

)
=

(
Ged Gef Geu
Gyd Gyf Gyu

)⎛
⎝ d

f
u

⎞
⎠ (9.100)

To obtain a good estimation of the individual faults, fault models are included in the
generalised system as frequency weightings on the faults signals

f = W f(s)v,

where v is a signal that is anticipated to have a flat power spectrum. The generalised
setup is shown in Fig. 9.35 (right).

Now we need to formulate the design setup in Fig. 9.35 (right) as a standard design
problem as illustrated in Fig. 9.35 (left). For doing this, define an additional output
r as the fault estimation error:

r = f − a. (9.101)

This is the standard way of formulating a filter design problem in the standard setup.
The generalised system P(s) is then given by:

⎛
⎝ d

r
y

⎞
⎠ = P(s)

⎛
⎝ d

v

u

⎞
⎠ (9.102)

with

P(s) =
⎛
⎝ Ged Gef W f Geu O

O W f O −I
Gyd Gyf W f Gyu O

⎞
⎠ .

Using the system setup in (9.102) and the controller

9.4 Fault-Tolerant H∞ Design 455

u = K (s) y

we get the following closed-loop transfer function

(
e
r

)
= T cl(s)

(
d
v

)

with

T cl(s) =
(

Ged Gef W f
O W f

)
+

(
Geu O
O −I

)
K (s)(I − (

Gyu O
)

K (s))−1 (
Gyd Gyf W f

)
.

For simplicity, assume that G(s) is open-loop stable (the unstable case can be
dealt with as well in this methodology, but is computationally more difficult). Then,
the Youla-Kucera parameterisation of all stabilising controllers can be obtained by
making the substitutions

Q(s) = K (s)(I − (
Gyu O

)
K (s))−1

K (s) = Q(s)(I + (
Gyu O

)
Q(s))−1,

(9.103)

where Q(s) is a stable proper transfer function, namely the Youla parameter. Further,
let Q(s) be partitioned as:

Q(s) =
(

Q1(s)
Q2(s)

)
.

Then, the following equation for the closed-loop transfer function T cl is obtained:

T cl(s) =
(

Ged + Geu Q1Gyd Gef W f + Geu Q1Gyf W f
− Q2Gyd W f − Q2Gyf W f

)
. (9.104)

Note that Q1 only appears in the first row of T cl and Q2 only in the second row.
A separation between the design of Q1 and Q2 has, therefore, been obtained, which
is a salient feature of this design approach.

Calculating K (s) directly from (9.103) results in the following equation:

K (s) =
(

Q1(s)(I + Gyu Q1(s))
−1

Q2(s)(I + Gyu Q1(s))
−1

)

=
(

Q1(s)(I + Gyu Q1(s))
−1

Q2(s)(I − Gyu K 1(s))

)
.

(9.105)

456 9 Fault Accommodation and Reconfiguration Methods

Controller 1

u2

u1

uyref y

Controller 2

Plant

Fig. 9.36 Two-controller scheme

The result indicates that also the original controller structure is separated in a
design of the feedback controller K 1(s) and a design of the fault detection filter
K 2(s), which depends upon the controller K 1(s).

This result is essential for proper design of residual generators working in closed
loop. It is also important for the redesign problem since the effect that the redesigned
controller has on the diagnostic filters cannot be ignored.

9.5 Handling the Fault Recovery Transients

9.5.1 Switching Between Controllers

In the previous sections, controller reconfiguration or accommodation often amounts
to switching from the nominal controller to a newly designed controller or from one
to another element of a bank of controllers. When the considered control laws are
of the state feedback or output feedback type, no precaution is required to switch
between controllers with the same reference input. However, the situation is different
for dynamical controllers. Indeed, the state of the controller which is not in the loop
has to be initialised properly before this controller is introduced in the loop, in order
to avoid bumps in the system response. One method to achieve this goal is presented
here. It amounts to feeding back to each controller, be it active in the loop or not, the
manipulated variable actually applied to the process (namely the process input). This
mechanism is similar to an anti-windup strategy, which is normally used to handle
actuator saturation in a control loop.

Without loss of generality, a situation with two controllers is considered here,
so that one controller, say controller 1, is active in the loop, and controller 2 is
the controller towards which switching occurs in the fault case (Fig. 9.36). Both
controllers are supposed to be described by a linear state-space model of the form

ẋci (t) = Aci xci (t) + Bci yref(t) + Eci y(t) xci (0) = x0
ci

ui (t) = Cci xci (t) + Dci yref(t) + Fci y(t) i = 1, 2,
(9.106)

9.5 Handling the Fault Recovery Transients 457

Fig. 9.37 Two-controller
scheme with anti-windup
mechanism

Controller 1

u2

u1

uyref

Controller 2

+

y

y

_

+_

where xci (t), ui (t), y(t) and yref(t) are respectively the controller state, the controller
output, the measured plant output and the reference.

As explained in the previous paragraph, to obtain a smooth switching towards
controller 2, the state of this controller must be properly initialised. This can be
achieved thanks to an observer-based anti-windup mechanism. It amounts to feeding
back the difference u(t)−u2(t) between the plant input and the output of controller 1
towards controller 2:

ẋc2(t) = Ac2xc2(t) + Bc2 yref(t) + Ec2 y(t) + L2(u(t) − u2(t))
u2(t) = Cc2xc2(t) + Dc2 yref(t) + Fc2 y(t).

(9.107)

Substituting the output equation for u2(t) in the state equation of (9.107) yields

ẋc2(t) = (Ac2 − L2Cc2)xc2(t) + (Bc2 − L2 Dc2) yref(t)
+(Ec2 − L2 Fc2) y(t) + L2u(t)

u2(t) = Cc2xc2(t) + Dc2 yref(t) + Fc2 y(t)
(9.108)

and shows that L2 should be chosen in such a way that (Ac2 − L2Cc2) has all its
eigenvalues inside the open left-half plane in order for xc2(t) to reach a steady-state
value when controller 2 is not inserted in the loop, in the absence of change in yref(t),
y(t) and u(t). Possible options consist in choosing L2 so that all eigenvalues lie at
the origin, or to use L2 = Bc2 D−1

c2 , which corresponds to the so-called conditioning
technique. The latter approach requires a square full-rank matrix Dc2, although this
conditions can be weakened. It also requires that the zeros of the controller lie in the
open left-half plane.

Obviously, for reason of symmetry, to allow switching from controller 2 to con-
troller 1, the latter controller must be provided with a similar anti-windup feature.
Its state-space equation is thus written like (9.108), with index 1 substituted for 2.
The resulting block diagram is given in Fig. 9.37.

458 9 Fault Accommodation and Reconfiguration Methods

9.5.2 Progressive Fault Accommodation

In the ideal fault-tolerant linear quadratic problem described in Sect. 7.2 the fault
detection, isolation and estimation process take no time. However, it has been already
noted that in practice, three time periods exist:

Time window System situation System Controller

[0, t f [Nominal operation (A , B) u = −R−1 B P x

[t f , t a [Fault detection, isolation (A , Bf) u = −R−1 BTP x

and estimation process,

fault accommodation

process delay

[ta , ∞) Fault is accommodated (A , Bf) u f = −R−1BT
f Pfx

′

During the time period [tf , ta[the faulty system (A, Bf) is still controlled by the
nominal control u = −R−1 BT P x. This control is optimal for (A, B) and the
closed loop A − B R−1 BT P is stable, but no guarantee can be given when B is
replaced by Bf and the closed loop A − Bf R−1 BT P may be unstable. If ta − tf is
not small enough, although the new control law uf will recover the system stability
and provide the best possible performance when applied, the system state may violate
some physical limits or it may lead to a non-admissible value of the system cost. Note
that physical limits are not formalised in the standard LQ problem setting, but they
are usually taken into account by an appropriate choice of the weighting matrices Q
and R.

Therefore, to solve practical problems the fault detection, isolation and estimation
process delay as well as the fault accommodation process delay have to be made as
small as possible. As far as fault accommodation is concerned, this can be obtained
by two complementary strategies:

• Design an algorithm that computes the accommodated control uf (i.e. that solves
the algebraic Riccati equation) in minimum time,

• Design an algorithm that computes a sequence of controls that will eventually
converge to uf and will stabilise the system as soon as possible. Such an algorithm
belongs to the family of “anytime” algorithms, which means that the result of any
iteration is acceptable, and it will improve as the number of iterations increases.
This is the progressive accommodation strategy.

Newton-Raphson iteration scheme for solving the algebraic Riccati equation.
The Newton-Raphson iteration scheme has been proposed in the literature as an
effective way of solving the algebraic Riccati equation. Let P i be the unique solution
of the Lyapunov equation

P i (A − Bf Fi−1) + (A − Bf Fi−1)
T P i = − Q − FT

i−1 RFi−1, (9.109)

where

http://dx.doi.org/10.1007/978-3-662-47943-8_7

9.5 Handling the Fault Recovery Transients 459

Fi = R−1 Bf P i (9.110)

for all i = 1, 2, . . . and the initial F0 is given. If A− Bf F0 is stable, then all matrices
P i are positive definite, and one has the convergence result

(1) P0 ≥ P1 ≥ · · · ≥ P i ≥ P i+1 ≥ · · · ≥ P f , i = 1, 2, . . .

(2) limi→∞ P i = P f ,
(9.111)

where P f is the solution of the algebraic Riccati equation

P f(A − Bf Ff) + (A − Bf Ff)
T P f = − Q − FT

f RFf .

Progressive Accommodation (PA) scheme. The PA scheme is based on the Newton-
Raphson algorithm. Assume that iteration i takes a timeΔi , and consider the sequence

ti = tinit +
i∑

j=1

Δ j , i = 1, 2, . . . ,

where tinit is the time at which the Newton-Raphson algorithm is initialised after the
fault has been detected, isolated and estimated (note that tf < t f di < tinit). ti is the
time at which the result Fi becomes available (note that the constancy of Δi is not
necessary, the scheme can, therefore, be employed whatever the tasks scheduling
strategy of the FTC computer). The idea of progressive accommodation is to apply
the feedback control law ui = −Fi x on the time interval

[
ti , ti+1

[
. As a result, the

system behaviour after the fault occurrence is

ẋ(t) = (A − Bf R−1 BT P)x(t), t ∈ [tf , tinit[(9.112)

ẋ = (A − Bf F0)x, t ∈ [tinit, t1[(9.113)

ẋ = (A − Bf Fi)x, t ∈ [ti , ti+1[i = 1, 2, . . . , (9.114)

where F0 is the Newton-Raphson initialisation at time tinit. It can be shown from
(9.111) that if the system (A, Bf) is stabilised by F0, then it is stabilised by all Fi ,
and each Fi is better than the previous one with respect to the LQ cost. Moreover, PA
results in a lower cost than the one associated with controlling the system by the nom-
inal control until the Newton-Raphson algorithm has converged (which means the
accommodated solution is computed) and then applying the accommodated control.
Figure 9.38 shows the fault-tolerant system architecture using the PA scheme.

A − Bf F0 being stable is only a sufficient condition for the PA procedure to
converge. Convergence may be obtained in some cases, even when the initial feedback
does not stabilise the system. This happens in the following example.

Example 9.6 Progressive accommodation of a first-order system
Consider the following LQ problem

460 9 Fault Accommodation and Reconfiguration Methods

Actuators Plant

Fault
diagnosis

Progressive
accomodation

Feedback
gains

faults

xu

_

Fig. 9.38 Progressive accommodation scheme

ẋ(t) = −x(t) + u(t), x(0) = 4

J =
∫ ∞

0
[x2(t) + u2(t)]dt.

The nominal Algebraic Riccati Equation is P2 + 2P − 1 = O leading to the optimal control
u(t) = (1 − √

2)x(t), and closed-loop behaviour ẋ = −√
2x. Let the faulty system be

ẋ(t) = −x − 2
√

2u(t) t ≥ 1

Under the nominal control, the faulty system behaviour is ẋ(t) = (3 − 2
√

2)x(t) which is
unstable. The new Algebraic Riccati Equation is 8P2

f + 2P f − 1 = O whose stable solution

gives the optimal control of the faulty system uf =
√

2
2 x and the closed-loop behaviour

ẋ(t) = −3x(t). The Newton-Raphson algorithm results in

P i = 1 + 8P2
i−1

2(1 + 8P i−1)
,

which converges to the solution of the new Algebraic Riccati Equation. The table below
shows the evolution of P i , while Fig. 9.39 shows the evolution of the system state when
fault accommodation is applied after convergence of the Newton-Raphson scheme (which
takes 3 iterations, with Δ = 1s) (classical approach, dashed line), and using the progressive
accommodation scheme (continuous line).

i 0 1 2 3 4 5

k i × 102 41.42 27.5 25.08 25 25 25

Example 9.7 Progressive accommodation in nominal trajectory tracking
Let us consider again the second-order system of the nominal trajectory tracking example,
under the fault

9.5 Handling the Fault Recovery Transients 461

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

time

state

Progressive accommodation

Nominal system nominal control

Faulty system nominal control

Compute accommodated control

Faulty system
accommodated control

Fig. 9.39 Comparison of the classical and the progressive accommodation schemes

Af =
(−1 0

0 −1

)
, Bf =

(−1
1

)

associated with the fault parameter θ = 1. Remember that in this case, the pseudo-inverse
method leads to an unstable system, and the modified pseudo-inverse method (MPIM) has to
be applied. The alternative approach based on optimal nominal trajectory tracking gives the
control

uf (t) =
(

K n + R−1 BT
f G

)
xn(t) + R−1 BT

f H xf (t)

where

H =
(−0.433 −0.067

−0.067 −0.433

)
and G =

(
2.134 0.5
1.800 −0.5

)

satisfy the Riccati equation

H
(

1 −1
−1 1

)
H − 2H − I2 = O (9.115)

and the Lyapunov equation

H
(

1 0
−1 0

)
+ G

(−2 0
−5 −1

)
+

(
0 −1

−1 0

)
G + I2 = O. (9.116)

Figure 9.31 that shows the state xn, MPIM xMPIM
f and nominal trajectory tracking xf

trajectories, for three different fault detection, isolation, diagnosis and accommodation delays
is recalled here as Fig. 9.40.

462 9 Fault Accommodation and Reconfiguration Methods

2.5

1.5

0.5

-0.5

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

1

x 2

Increasing time
sampling 0.1 s

2 seconds
delay

1 second
delay

Fault
occurs

(no delay)Xf

Xmpim

Xn

Fig. 9.40 Nominal, MPIM and NTT state trajectories

Assume a 2 s accommodation delay, which is composed of 1 s for the detection, isolation
and diagnosis procedure, which ends with an estimate of matrix Bf , and 1 s for control accom-
modation that solves Eqs. (9.115) and (9.116) based on this estimate. Let us now illustrate how
much the efficiency of the fault accommodation scheme is improved by using the Progres-
sive Accommodation approach. Solving the Riccati equation takes five Newton-Ralphson
iterations, according to the following sequence:

H1 =
(−1 1

1 −1

)
, H2 =

(−0.7 0.2
0.2 −0.7

)

H3 =
(−0.4839 −0.0161

−0.0161 −0.4839

)
, H4 =

(−0.4357 −0.0643
−0.0643 −0.4357

)

H5 =
(−0.4330 −0.0670

−0.0670 −0.4330

)
.

For this system, using the first iteration value H1 (which is obtained after 0, 2 s) instead of
waiting the Riccati equation solution H5 for 1 s, allows to stabilise the system much sooner,
and hence gives improved results.

Figure 9.41 compares the direct accommodation control and the progressive accommo-
dation one. It is seen that progressive accommodation practically rubs out the effect of the
accommodation delay: the resulting trajectories are quite close to the ones associated with a
1 s delay. �

9.6 Exercises 463

9.6 Exercises

Exercise 9.1 Reconfiguration by model-matching techniques
Consider a stable plant

(
ẋ1(t)
ẋ2(t)

)
=

(
− 1

T1
0

1
T2

− 1
T2

) (
x1(t)
x2(t)

)
+

(
1 2
2 3

)(
u1(t)
u2(t)

)

y(t) = (1 1)

(
x1(t)
x2(t)

)

and the stabilising proportional controller

(
u1(t)
u2(t)

)
=

(−k1
0

)
y(t).

If the actuator 1 fails, the control loop should be closed with the help of the redundant control
input u2(t). Does the model-matching approach yield a stable closed-loop system? Is the
performance of the closed-loop system improved with respect to the nominal loop if the
Markov parameter approach is used? �

Exercise 9.2 Fault-tolerant control of the three-tank system
Consider the three-tank system introduced in Sect. 2.2, where in the first part of the exercise
the redundant hardware is switched off. Use a continuous PI-controller for the level h1(t) of
the left tank and assume that the sensor used in this control loop fails. What is the result of the
model-matching approach to this problem if the level h2(t) of the second tank is continuously
measured and used for the controller of the left tank?

2.5

1.5

0.5

-0.5

0

1

2

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

1

Xf

Xmpim

Xfnr

Xn

Increasing time
sampling 0.1 s

Fault occurs
(no delay)

1 second delay

2 seconds delay

Fig. 9.41 Progressive accommodation in the nominal trajectory tracking state trajectories

http://dx.doi.org/10.1007/978-3-662-47943-8_2

464 9 Fault Accommodation and Reconfiguration Methods

Consider now a continuous level controller for Tank T2 and assume that the actuator V12H
fails. The level h2(t) should be controlled by switching on the Tank T3 and using the set-point
h3ref (t) of the level controller of this tank as the control input to bring the level h2(t) of
Tank T2 towards the setpoint h2ref (t). Apply the existence conditions for model-matching
and the virtual actuator to this problem. How can the failure of the control loop in Tank T2 be
compensated? �

Exercise 9.3 Virtual actuator
For the unstable system

(
ẋ1(t)
ẋ2(t)

)
=

(
0 1
1 −2

)(
x1(t)
x2(t)

)
+

(
2 0
1 1

)(
u1(t)
u2(t)

)

y(t) = (2 1)

(
x1(t)
x2(t)

)

a proportional controller (
u1(t)
u2(t)

)
= −

(
0
k2

)
y(t).

should be found that stabilises the system. In case of the actuator failure a virtual actuator
should be used to stabilise the system with the nominal controller. Find reasonable parameters
of the virtual actuator and prove that the reconfigured closed-loop system is stable. �

Exercise 9.4 Nominal and model-matching control for a single-axis satellite
This exercise is a continuation of Exercises 5.3, 6.3 and 6.4. The objective is to perform attitude
control for a single axis of a satellite. In this exercise, actuator dynamics need be considered
and two states x3 and x4 have been added to describe actuator dynamics.

A state-space model for the nominal plant is given by:

ẋ1(t) = I−1(x3(t) + x4(t) + d(t))
ẋ2(t) = x1(t)

τ1 ẋ3(t) = −x3(t) + b1u1(t)
τ2 ẋ4(t) = −x4(t) + b3u2(t)

y1(t) = x1(t) + w1(t)
y2(t) = x2(t) + w2(t)
y3(t) = x3(t) + w3(t).

The system has actuator 1 (the input to which is u1(t)) as the primary actuator. A second
actuator (with input u2(t)) is intended for secondary actuation should the primary one fail.
The secondary actuator has a time constant that is larger than that of actuator 1.

Parameters. The nominal values of parameters are

τ1 = 0.5 s
τ2 = 2.5 s
b1 = 1.0
b2 = 1.0

http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_6

9.6 Exercises 465

1. Design a nominal controller that use sy1(t) and y2(t) as measurements and u1(t) as actuator
input,

u1(t) = −(l1 y1(t) + l2 y2(t)). (9.117)

The closed-loop system should have two real eigenvalues at s = −0.5 rad
s . Disregard the

actuator that is not in use.

A fault on actuator 1 renders this actuator useless and it is needed to use actuator 2 instead.

2. Investigate whether ideal model matching is possible with this form of controller when
this fault happens.

3. Design a dynamical controller that will provide model matching in the frequency domain.�

9.7 Bibliographical Notes

Fault-tolerant model-matching design. [151] is one of the earliest papers on con-
troller reconfiguration by model-matching. [117] describes an improvement of the
pseudo-inverse method for the ensurance of stability. A survey of the methods are
given in [216]. A proof of Lemma 9.4 can be found in [412].

Further extensions of the pseudo-inverse method that result in the admissible
model-matching approach have been recently given in [322], with extensions to the
linear quadratic problem in [40, 328] and aerospace applications in [39].

Control reconfiguration for actuator or sensor failures. The ideas of the virtual
sensor and virtual actuator have been developed in [220]. A thorough treatment can
be found in the monographs [288, 340]. These concepts have been experimentally
tested at a laboratory process [289], a two-degrees-of-freedom helicopter model
[221] and a fuel cell [282]. The generalised version of the virtual actuator, which
is explained in this chapter, has been proposed in [213]. Design methods for virtual
sensors and virtual actuators can be found in [216, 290, 294, 310, 311] with extensions
to nonlinear systems in [291, 293]. The conceptual similarities and differences of
the virtual actuator and the dual observer are described in [292]. Alternative method
that likewise use the fault-hiding principle are described, for example, in [202].

Fault-tolerant H∞ design. Controller redesign based on the Youla-Kucera para-
metrisation is described in [188, 251, 359]. In [248], the Youla-Kucera parametrisa-
tion has been applied in connection with tuning controllers. The exact, the almost
exact and the optimal design problems for Q have been considered in detail in [296].

The results in Sect. 9.4 are based on [344, 345] which focus on the use of fault esti-
mation within a reliable control framework [375]. The methods for reconfiguration
design are new within the fault-tolerant control domain. A few schemes have come
into real application. Predetermined design for accommodation was demonstrated
for a satellite in [42, 43].

466 9 Fault Accommodation and Reconfiguration Methods

The design methods considered in Sect. 9.5 are based on the same conditions as
the methods described in [317]. Further results on using the Youla-Kucera para-
meterisation for fault-tolerant control in the additive fault, multiplicative fault and
parameter fault cases can be found in [243, 247, 250, 251, 346]. An architecture
for fault-tolerant control, based on joint controller and FDI design was presented in
[241].

Theorem 9.6 has been proved in [412].

Handling of the fault recovery transients. The link between mastering the transient
of controller switching and handling actuator saturation has been recognised for a
long time. Indeed, both problems involve the discrepancy between the controller
output and the process input, which might lead to performance degradation and even
instability of the closed-loop. Anti-windup methods have thus been developed with a
view to handle both problems (see [9] for the observer-based approach, and [140, 141,
276] for the conditioning technique). In [134, 406], they are explicitly introduced in
multi-controller schemes such as found in hybrid or switched-mode systems in order
to avoid undesirable switching transients. The anti-windup mechanisms used in [134]
are high-gain feedback loops around each idle controller, which force the controller
outputs to track the process input, while in [406] each controller is augmented with
dynamics identical to that of the plant in order to allow the controller state to evolve
in an appropriate way when the controller is not connected to the plant input. The
latter scheme is cumbersome when the number of controllers is large.

Dedicated methods have also been studied for handling transients in controller
switching. In [133], the authors recast the problem in an associated tracking prob-
lem, where the standby controller is viewed as a dynamical system of which the
output should track the manipulated signal (plant input) by means of a two-degree-
of-freedom controller. In [397], a simple new realisation of a set of linear SISO
controllers is described that inherently assures bumpless transient upon switching
between controllers.

Reference [396] made a rigorous analysis of controller switching and suggested
an adaptive method to obtain bounded signals with a nominal controller from the
instant a fault is detected until controller reconfiguration is made.

Progressive accommodation was first introduced in [402] to handle aircraft actu-
ator faults, and the general approach was presented in [403]. In [66] “anytime algo-
rithms” are used as an interesting tool to address fault recovery transients, since they
produce solutions that are improving as the number of iterations increases, while any
current solution can be applied before complete convergence is achieved.

In [334] the fault-tolerant linear quadratic problem is extended to the trajectory
tracking problem which arises when a pre-designed system trajectory is to be fol-
lowed as closely as possible (for example in space rendez-vous missions) instead of
recomputing an optimal trajectory associated with the current configuration.

Chapter 10
Distributed Fault Diagnosis
and Fault-Tolerant Control

Abstract Distributed systems are formed by the interconnection of several subsys-
tems or autonomous agents. Each entity is equipped with a local computing device
that runs the whole or a part of the diagnosis and fault-tolerant control algorithms.
This chapter explains the specific features of such systems and provides tools for the
design and the coordination of distributed algorithms that achieve the overall diag-
nosis and control specifications, under given communication structures and local
computing power limitations.

10.1 Introduction

The need for distributed control directly follows from the growing dimensions of
complex, large-scale, multi-agent systems. Star architectures that connect all field
devices (sensors and actuators) to one single computer running all the control laws
are unpractical for large-scale applications. Using several computers and hubs to
implement the control laws and connect the field devices is possible, thanks to local
area networks that transfer the needed measurements to the computing devices and
the generated control signals to the system actuators. The development of multi-
agent systems (teams of robots, fleets of unmanned vehicles) also heavily rests on
data transmissions between the individual entities and on local decision making.

Assuming a distributed control architecture, the implementation of a global diag-
noser may be an unpractical option because of the amount of needed communication
that sometimes makes it technically impossible. The diagnosis algorithms must then
also be distributed, by assigning a part of the global fault detection and isolation task
to each subsystem.

Fault-tolerant distributed systems have been considered for long in the soft-
ware community to cope with hardware, software and communication faults. More
recently, specific problems have been considered in the control community for fault-
tolerant estimation, diagnosis and control of large-scale systems. As far as control is
concerned, distributed systems introduce an information pattern, meaning that dif-
ferent data sets are available to different controllers, as opposed to the conventional
design where all controllers share the same information. The information pattern

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_10

467

468 10 Distributed Fault Diagnosis and Fault-Tolerant Control

plays also a very important role in distributed diagnosis, since the amount of known
data available to each subsystem is a key parameter for its detection and isolation
capabilities.

In this chapter, distributed systems are first presented. Distributed diagnosis is
then addressed in reference with the structural fault detection and isolation capability
of the overall system. According to the locally available model and data, the local
diagnosers provide more or less powerful conclusions that must be coordinated (or
aggregated) into a system-level overall diagnosis. Distribution algorithms are then
considered, based on information patterns that take into account the specificities
of the communication architecture. The constraints associated with possible local
computing power limitations are also considered. The second part of the chapter
addresses fault-tolerant distributed control. Since the solvability of the control design
problem depends on the information pattern that is implemented, it follows that a
fault that is not recoverable under a given information pattern might be recoverable
under another one. The reconfiguration of the information patterns appears therefore
as a powerful tool to achieve fault tolerance.

10.2 Distributed Systems

10.2.1 System Decomposition

Consider a system Σ equipped with a set I of m actuators, and a set J of p sensors.
Its behaviour is described by

ẋ(t) = f (x(t), u(t), d(t), t) (10.1)

y(t) = g (x(t), u(t), d(t), t), (10.2)

where x ∈ |Rn is the state, u ∈ |Rm is the control vector, y ∈ |Rp is themeasurement
vector and d ∈ |Rq is some disturbance vector.

Let {uk, k = 1, . . . , s} ,
{

yk, k = 1, . . . , s
}
and {xk, k = 1, . . . , s} be partitions

of u, y and x into s ≥ 1 subvectors, and let

ẋk(t) = f k(xk(t), xk(t), uk(t), uk(t), d(t), t) (10.3)

yk = gk (x(t), u(t), d(t), t) (10.4)

(k = 1, . . . , s) be the resulting decomposition of Eqs. (10.1) and (10.2), where xk

gathers all the components of x except xk .
Each equation in (10.3), (10.4) can be interpreted as describing the behaviour of

a subsystem Σk with uk ∈ |Rmk the local control vector associated with a subset Ik

of the actuators, yk ∈ |Rpk the local measurement vector associated with a subset
Jk of the sensors and xk ∈ |Rnk the local state. Note that I = {Ik, k = 1, . . . , s} and
J = {Jk, k = 1, . . . , s} are partitions of I and J .

10.2 Distributed Systems 469

The functions f k(xk, xk, uk, uk, d, t) can take different forms. A specific case
occurs when f k(xk, xk, uk, uk, d, t) is decomposable, namely it is the sum of two
functions

f k(xk, xk, uk, uk, d, t) = f selfk (xk, uk, d, t) + f coupledk (xk, uk, d, t),

where

• f selfk (xk, uk, d, t) describes the self-dynamics of subsystem Σk and

• f coupledk (xk, uk, d, t) describes the coupled dynamics with respect to the other
subsystems (meaning the influence of the other subsystems on subsystem Σk).

Note that other decompositions of Σ could be defined, from the system global
model (10.1), (10.2) by changing the value of s and the partitions of u, y and x.
In practice, however, there is usually a natural decomposition into subprocesses
associated with the global process to be controlled (then, each subsystem describes
a given subprocess) or with the control system. Indeed, in large-scale processes, the
control system is composed of several computing devices, each of them running
some part of the real-time control algorithms (diagnosis, supervision, management,
etc.), and the sensors and actuators are connected to the distributed control system
through hubs and communication networks. In order to address distributed systems,
the simple network architecture in which each subsystem Σk performs a part of the
overall control and a part of the overall diagnosis is considered, as illustrated in
Fig. 10.1.

Sub-process Σ k

Sensors S j, j J∈ k Controller Ck

Diagnoser Dk

yk uk

Local measurements Local control

Controller Ck and
diagnoser Dk receive
data via the
communication
network

Influence of other sub-processes (coupled dynamics)

Local diagnosis

Actuators Ai, i Ik∈

Fig. 10.1 Local controller and diagnoser

470 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Example 10.1 System decomposition
Consider the sixth-order linear time invariant system

ẋ(t) = Ax(t) + Bu(t)

with
xT = (x1, x2, x3, x4, x5, x6),

controlled by a set of 5 actuators (I = {1, 2, 3, 4, 5}) whose control signals are components
of the vector

uT = (u1, u2, u3, u4, u5).

There are 26 − 2 different ways to decompose this system into two subsystems. Indeed, each
decomposition is obtained by considering a non-empty subset of the six states as the local
state of the first subsystem and the remaining subset (provided it is non-empty) as the local
state of the second subsystem.

More generally, the number of possible decompositions into s subsystems is the number
of partitions of the state variables into s non-empty classes. If covers are considered instead
of partitions, the result is a decomposition into overlapping subsystems, a case we shall not
consider here. For example, with the matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 2 1 −1 0 1
0 1 2 0 0 0
0.5 −0.5 −2 0 1 1
1 −1 −1 −2 0.4 0
0 0 0 1 −3 1
2 0 −1 −2 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0.5 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 1 0
0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(10.5)

and the decomposition (x1, x2), (x3, x4, x5, x6), the two subsystems are, respectively,

Σ1 :
(

ẋ1
ẋ2

)
=

(−1 2
0 1

)(
x1
x2

)
+

(
1 0
0 0.5

)(
u1
u2

)
+

(
1 −1 0 1
2 0 0 0

)⎛
⎜⎜⎝

x3
x4
x5
x6

⎞
⎟⎟⎠

and

Σ2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2 0 1 1
−1 −2 0.4 0
0 1 −3 1

−1 −2 0 −4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x3
x4
x5
x6

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

1 0 0
0 2 0
0 1 0
0 0 2

⎞
⎟⎟⎠

⎛
⎝ u3

u4
u5

⎞
⎠

+

⎛
⎜⎜⎝

0.5 −0.5
1 −1
0 0
2 0

⎞
⎟⎟⎠

(
x1
x2

)
.

10.2 Distributed Systems 471

Note that for linear systems, the state equations are decomposable whatever the partition of
the state that is considered, provided that the control signals do not simultaneously act on
different subsystems. In this example, actuator 4 directly influences the state variables x4 and
x5 and, therefore, decompositions in which these variables would belong to different subsys-
tems would not enjoy the property that their state equations are decomposable. Associating a
controller with each subsystem results in the determination of the control signals u1, u2 by
Σ1 and the determination of u3, u4, u5 by Σ2. Note that, unlike the control decomposition,
the diagnosis decomposition is not implied by the system decomposition. Indeed, in addition
to the computation of u1, u2, the computing device of subsystem Σ1 could be assigned any
part of some overall diagnosis algorithm (provided it is fed with the appropriate data and has
enough computing power), and the same applies of course to subsystem Σ2.

In the sequel, this example will be continued under the assumption that there is some
physical reason to distinguish four subsystems based on the partition of the state (x1, x2), (x3),
(x4, x5), (x6) and the partition of the actuators I1 = {1, 2} , I2 = {3} , I3 = {4} , I4 = {5}.
The considered system decomposition is

Σ1 :
(

ẋ1
ẋ2

)
=

(−1 2
0 1

) (
x1
x2

)
+

(
1 0
0 0.5

)(
u1
u2

)
+ · · ·

+
(
1 −1 0 1
2 0 0 0

) ⎛
⎜⎜⎝

x3
x4
x5
x6

⎞
⎟⎟⎠

Σ2 : ẋ3 = −2x3 + u3 + (
0.5 −0.5 0 1 1

)
⎛
⎜⎜⎜⎜⎝

x1
x2
x4
x5
x6

⎞
⎟⎟⎟⎟⎠

Σ3 :
(

ẋ4
ẋ5

)
=

(−2 0.4
1 −3

)(
x4
x5

)
+

(
2
1

)
u4 + · · ·

+
(
1 −1 −1 0
0 0 0 1

)
⎛
⎜⎜⎝

x1
x2
x3
x6

⎞
⎟⎟⎠

Σ4 : ẋ6 = −4x6 + 2u5 + (
2 0 −1 −2 0

)
⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5

⎞
⎟⎟⎟⎟⎠ . �

472 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Process

Controller 1 Controller 2 Controller s

Communication system

u1
y1 y2 ys

ysy2y1
y1/z1

y2/z2

u2 us

ys/zs

…

Fig. 10.2 Distributed system architecture

10.2.2 Distributed Control

Local controllers. Assuming that each subsystem Σk to be equipped with its own
controller means that the overall control (i.e. the determination of vector u) is dis-
tributed among the s controllers and each of them is in charge of computing the
subvector uk . The design of efficient control algorithms might need some controllers
to use more measurements than the locally available ones. This is possible, thanks
to the existence of a communication network such that local controllers can use the
measurements zk ∈ |Rπk provided by a subset of sensors Zk . Since the local mea-
surements are always available to subsystem Σk , the relation Jk ⊆ Zk ⊆ J holds and
Zk \ Jk is the set of remote sensors whose measurements are made available to Σk

over the communication network. Since J = {Jk, k = 1, . . . , s} is a partition of J ,
it follows that {Zk, k = 1, . . . , s} is a cover of J, i.e. one has Zk �= ∅, (k = 1, . . . , s)
and ∪k=1,...,sZk = J . Figure10.2 displays the corresponding architecture (dotted
arrows mean that the variables may, or may not, be communicated). In the sequel,
for the sake of conciseness, we use the same notation for the sensors and the signals
they deliver (should they be ordered as vectors or not), for example yk ⊆ zk ⊆ y,
zk \ yk , etc.

Information pattern. Given a system decomposition, the s-tuple

Z = {zk, k = 1, . . . , s}

is an information pattern. The full information pattern is

Zmax = {zk = y, k = 1, . . . , s} ,

meaning that all the measurement signals y are available to each local controller.
Note that this is nothing but the centralised control architecture, when s = 1, and a

10.2 Distributed Systems 473

distributed implementation of the centralised control when s > 1. On the contrary,
under the local information pattern

Zmin = {
zk = yk, k = 1, . . . , s

}
,

only locally produced measurements are used by each local controller, which char-
acterises the decentralised control scheme.

Example 10.2 Local controllers
Assume that the system of Example10.1 is equippedwith 4 sensors J = {1, 2, 3, 4} providing
the measurement signals

y =

⎛
⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞
⎟⎟⎟⎟⎟⎟⎠

and each controller is interfaced with one of them as follows:

J1 = {1} , J2 = {2} , J3 = {3} , J4 = {4} .

Assume that output feedback is investigated, for the sake of simplicity. Consider for example
the information pattern Z = {(y1, y2), y2, (y1, y3), (y2, y4)}. It needs the signal y1 to be
communicated from Σ1 to Σ3 and the signal y2 to be communicated from Σ2 to Σ1 and Σ4,
and it allows to use the controllers

u1(t) = k11y1(t) + k12y2(t)

u2(t) = k22y2(t)

u3(t) = k31y1(t) + k33y3(t)

u4(t) = k42y2(t) + k44y4(t),

where the kij are the real output feedback gains. By comparison, the full information pattern

Zmax = { y, y, y, y} allows the design u(t) = K y(t) with K ∈ |R5×4, but needs all the
measurements to be communicated, while in the local information pattern

Zmin = {y1, y2, y3, y4}

associated with decentralised control, no variable at all is communicated, but the output feed-
back must satisfy the constraints ui (t) = kii yi (t) where the kii are real numbers. �

474 10 Distributed Fault Diagnosis and Fault-Tolerant Control

10.2.3 Distributed Diagnosis

Whatever the way they have been designed (analytical redundancy relations, obser-
vers, identification-based designs), a centralised diagnoser evaluates all the residuals
using the data available to it through its connection with the system sensors and
controllers. In a distributed architecture, each subsystem Σk , (k = 1, . . . , s) runs
its own local diagnoser, defined by a pair (rk, δk) where rk are the residuals it has
been assigned and δk is a decision procedure on the residuals rk . Let za

k ⊆ u and
zs

k ⊆ y be the control and measurement signals whose knowledge is needed to run
the residuals rk that have been assigned to subsystem Σk (za

k and zs
k are determined

by the computation form of the residuals in rk). Then, the information pattern that
allows the local diagnosers to perform their task is

Z = {(
za

k , zs
k

)
, k = 1, . . . , s

}
.

The full information pattern is Zmax = {(u, y), k = 1, . . . , s}, while the local infor-
mation pattern is Zmin = {(

uk, yk

)
, k = 1, . . . , s

}
.

10.2.4 Communication Cost

Given an information pattern Z , the sets zk \ yk , (k = 1, . . . , s) contain those mea-
surement signals that are needed by, but are not locally available to, the controller
of subsystem Σk . Similarly, the sets za

k \ uk and zs
k \ yk contain the control signals

(resp. the measurement signals) that are needed by, but are not locally available to,
the diagnoser of subsystem Σk . Those data are received through the communica-
tion network, that involves some communication cost. Whatever the network and the
communication protocol, the communication cost would clearly depend on the vari-
ables coding, transmission rate, checking procedures, management strategy, etc., and
it would be growing with the number of communicated variables. It is assumed that
the communication cost is expressed by a function com (K)whereK is the set of com-
municated variables, such that com (∅) = 0 and K1 ⊆ K2 ⇒ com (K1) ≤ com (K2).

10.2.5 Communication Schemes

Among many available communication schemes, this chapter builds on the pub-
lisher/subscriber and the bilateral agreements based ones. The publisher/subscriber
scheme is associated with diffusion-based networks and is well suited to factory
communication protocols, like communication between intelligent sensors, actua-
tors and subsystems, while the bilateral agreements scheme is well suited to describe
the communication between autonomous agents.

10.2 Distributed Systems 475

Token is with controller i

Publication
table

Subscription
table

Controller j

Publication
table

Subscription
table

Publish
variable Inactive links

Input published
variable if it belongs to
the subscription table

Field bus

Fig. 10.3 The publisher/subscriber scheme

Diffusion-based networks. In diffusion-based networks,1 a variable that is published
in the communication system is available to all the subsystems that subscribe to it.
The process globally works as follows:

• When a controller gets the token, it takes control of the communication bus and
publishes the identifier and the value of the variables it is in charge of publishing
(they are in its publication table);

• The other controllers recognise the identifier of a variable they have subscribed to
(the list is in their subscription table). If recognised, they input its value; and

• The token passes to the next controller.

Figure10.3 illustrates the publisher/subscriber scheme.

Bilateral agreements. In this scheme, subsystems establish bilateral agreements by
which they share their data. Let a be the binary relation such that a

(
Σi , Σ j

) = 1
if Σi and Σ j share their data, a

(
Σi , Σ j

) = 0 otherwise. Note that a being reflex-
ive, symmetric and transitive, its graph A (which represents the set of agreements)
involves a partition of all subsystems {Σk, k = 1, . . . , s} into equivalence classes
E (A) = {El, l = 1, . . . ,σ}, with σ = s when A is empty and σ < s otherwise. It
follows that the same data z (El) are available to all the subsystems that belong to the
same class El, as illustrated by Fig. 10.4 for a system with five distributed controllers
and two equivalence classes.

Other schemes. Teams of autonomous agents most often use wireless communica-
tions, which restricts the communication possibilities of each agent to a subset of the
other agents in its neighbourhood. In such applications, the network is described by
a graph whose nodesNi are the individual agents, and an arc between agentsNi and
N j indicates that the first can send data to the second. Such communication schemes
are not considered in this chapter.

1Examples of diffusion-based networks are the Factory Instrumentation Protocol defined by the
European Standards EN50170 and the IEC 61158/IEC 61784 Communication Profile Family 5.

476 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Controller 1

Controller 2

Controller 3

Controller 4 Controller 5

Fig. 10.4 Two agreement classes between 5 controllers

10.3 Distributed Diagnosis Design

In order to design a local diagnoser for each subsystem, two problems are to be
solved:

1. characterise the system-level diagnosis that follows from the subsystem-level
diagnosis and

2. design the local diagnosers so as to obtain specified results at the global system
level.

These problems are addressed in this section and in the next one.
A direct means to evaluate the system-level diagnosis achieved by a set of dis-

tributed diagnosers is to compare it with the results that would be obtained with the
overall (centralised) diagnoser. In order to develop this comparison, we first highlight
the parameters that shape the design of a global diagnoser, namely its structural and
its quantitative properties, which were, respectively, presented in Chaps. 5, 6 and 7.

10.3.1 Structural Diagnoser

Remember that from a structural point of view, the dynamical behaviour of a system
Σ is described by a set of variables V and a set of constraints C that are satisfied when
it is healthy. For continuous systems, the constraints C are algebraic and differential
equations, the classical formulation of which is recalled here:

ẋ(t) = f (x(t), u(t), d(t), t) (10.6)

y(t) = g (x(t), u(t), d(t), t), (10.7)

where x ∈ |Rn is the state, u ∈ |Rm and d ∈ |Rq are, respectively, the known and
unknown inputs, and y ∈ |Rp are the knownmeasured outputs. In the sequel, we still
use the same notation for sets and vectors of variables, as well as for sets and vectors
of constraints, because no confusion is possible. Note that algebraic constraints on
the state can easily be introduced via Eq. (10.7) as a subset of sensors whose output
is constant and equal to zero. The variables V are partitioned into known K = u ∪ y
and unknown X = x ∪ d variables.

http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_6
http://dx.doi.org/10.1007/978-3-662-47943-8_7

10.3 Distributed Diagnosis Design 477

In order to characterise the global diagnoser’s properties, we first recall how ana-
lytical redundancy relations (ARR) are exhibited from the system canonical decom-
position and we present a basic result from the logical theory of diagnosis.

Canonical decomposition. The structural analysis of Σ is the analysis of the bipar-
tite graph G = (C, Z, E) introduced in Sect. 5.2, where Z is the set of variables,
C is the set of constraints and E is the set of edges in which each pair (ci , z j) ∈ E
means that the variable z j appears in the constraint ci . The DM decomposition of the
graph G is explained in Sect. 5.4.1 that provides three canonical subsystems of Σ ,
namely an over-constrained, a just-constrained and an under-constrained subsystem.
The over-constrained subsystem exhibits more than one solution to the complete
matching problem of its unknown variables, while in the just-constrained subsys-
tem, the complete matching is unique, and there is no complete matching in the
under-constrained subsystem. Remember that the set Z of variables is decomposed
into the setK of known variables and the setX of unknown variables and that a com-
plete matching of the unknown variables allows to express the unknown variables as
functions of the known variables, which means that it is possible to eliminate them
in any constraint where they appear, simply by replacing them by their expression.

Analytical redundancy relations. The over-constrained subsystem is the moni-
torable part of Σ . Indeed, the existence of more than one complete matching of its
unknown variables implies that a set of compatibility condition must be satisfied by
the variables in K for Eqs. (10.6) and (10.7) to be consistent. These conditions are
the analytical redundancy relations (ARR).

The essence of ARR-based diagnosis is to check whether the ARR are satisfied
or not by the known data. This is done via a set of residuals whose computation
involves only known variables, and whose value should be zero in normal operation.
Let r (C,K) be the set of residuals associated with the set of constraints C and the
known variables K.

The computation of each residual ρ ∈ r (C,K) involves a subset K (ρ) ⊆ K of
known variables and a subset C (ρ) ⊆ C of constraints. K (ρ) is known from its
computation form, and C (ρ) ⊆ C defines its structure.

Remark 10.1 ARR-based residuals generally call for derivatives of the known vari-
ables, which is often argued against them in real-time applications. However, the
derivation order can be limited (at the cost of reducing the number of found ARR)
and moreover, it is in general possible to design observers whose outputs are equiv-
alent and do not suffer the noise sensitivity issues. �

10.3.2 Logical Theory of Diagnosis

The logical theory of diagnosis is a tool that will be used to explain the coordination
of several local diagnoses. It rests on the residuals signatures presented in Chap. 5
that are further analysed here.

http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_5
http://dx.doi.org/10.1007/978-3-662-47943-8_5

478 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Structural detectability. Since a fault changes one (or several) system constraint(s),
it follows that there is a contradiction between the two statements:

1. a residual ρ(t) is falsified by the data (ρ(t) �= 0) and
2. all the constraints in its structure C (ρ) hold true.

The structure of a falsified residual is named as conflict,meaning it contains at least
one faulty (untrue) constraint. It follows that for a faulty constraint to be detectable, it
must belong at least to one residual’s structure. The set of faults structurally detectable
by the residuals r is therefore D = ∪ρ∈rC (ρ), while the non-detectable faults are
D = C \ D. Remark that this explains the term monitorable that applies to the
over-constrained subsystem, because it is the only one that produces residuals.

Remark 10.2 It is important to remark that the system canonical decomposition is
unique. It follows that the set of detectable faults is also unique. In particular, it
cannot be extended by ARR combinations. �

Structural isolability. A constraint c ∈ D partitions the residuals r into r1 (c)
whose structure contains c and r0 (c) whose structure does not contain c. Let us first
consider single faults: when c is faulty, the residuals r0 (c) are satisfied while the
residuals r1 (c) are falsified. The signature of fault c is the vector s (c) whose j th
component gives the status of residual r j (0 when satisfied, 1 when falsified). The
diagnoser is characterised by its distinguishability partition

{Di , i = 0, 1, 2, . . .
}

where D0 = OK ∪ D are the situations that have the same signature as the healthy
system, namely s

(D0
)
such that r0(D0) = r and r1

(D0
) = ∅, and Di , (i �= 0) are

the faulty situations that have the same signature s
(Di

)
.

Assuming that fault cancellations do not occur, a multiple fault

C = {ci , i = 1, 2, . . .}

has the signature s (C) such that

r1 (C) = ∪c∈C r1 (c)

and
r0 (C) = r \ r1 (C).

Note that a special case of multiple faults is addressed in the partition

{
Di , i = 0, 1, 2, . . .

}

because the signature s
(Di

)
characterises any subset of faults that belong to the

same class Di , (i �= 0). The set of fault signatures can be studied by considering
every single and multiple faults. However, it is simpler to rely on the following result
from the logical theory of diagnosis.

10.3 Distributed Diagnosis Design 479

Minimal hitting sets and diagnosis. Let r = rs ∪ r f be a partition of the residuals
r into satisfied residuals rs and falsified residuals r f . A minimal subset of con-
straints Δi whose faults result in this very partition is a possible diagnosis. Since
more than one such subset may exist, the overall diagnosis is the set of possibilities
Δ = {

Δi , i = 1, 2, . . .
}
. Note that this definition automatically includes simple and

multiple faults.

Theorem 10.1 (Minimal hitting set) Let {C (ρ), ρ ∈ rf} be the set of conflicts asso-
ciated with the partition of the residuals into r = rs ∪ r f . A possible diagnosis is a
minimal hitting set of {C (ρ), ρ ∈ r f}.

A subset of constraints H is a hitting set of {C (ρ), ρ ∈ r f} if the two relations
• H ⊆ ∪ρ∈rfC (ρ) and
• H ∩ C (ρ) �= ∅,∀ρ ∈ r f

hold. H is minimal if no proper subset of H satisfies these two conditions. In words,
H is a minimal subset of constraints such that

• each of them belongs to at least one conflict and
• a corresponding multiple fault falsifies every residual in r f .

Example 10.3 Ship with dual measurements
The simplified non-linearmodel of a ship steering systemwith dualmeasurements was consid-
ered in Chap.5. The unknown variables are the heading angle ψ, the turn rate ω and the rudder
angle δ. There are four known variables {y1, y2, y3, y4}. From the state and measurement
equations

c1 :
c2 :

(
ω̇

ψ̇

)
=

(
η1ω + η3ω

3 + δ
ω

)

m1 :
m2 :
m3 :
m4 :

⎛
⎜⎜⎝

y1
y2
y3
y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ψ
ψ

ψ̇
δ

⎞
⎟⎟⎠ ,

one finds three residuals whose computation forms and structures are, respectively, given by
Eq. (10.8) and Table10.1:

ρ1 = y2 − y1
ρ2 = ẏ1 − y3
ρ3 = ẏ3 − η1y3 − η3y33 − y4. (10.8)

A fault in any constraint is detectable since there is at least a “1” in each column of the
signature table. Some faults are not isolable, since they have identical signatures. The resulting
equivalence classes are D1 = {m1}, D2 = {m2}, D3 = {m3} and D4 = {m4, c1, c2}, which
gives the distinguishability Table10.2 (OK has been re-labelled as D0):

http://dx.doi.org/10.1007/978-3-662-47943-8_5

480 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Table 10.1 Structures of the
ship example residuals

OK m1 m2 m3 m4 c1 c2

ρ1

ρ2

ρ3

0

0

0

1

1

0

1

0

0

0

1

1

0

0

1

0

0

1

0

0

1

Table 10.2 Distinguishability
table of the ship example

D0 D1 D2 D3 D4

ρ1

ρ2

ρ3

0

0

0

1

1

0

1

0

0

0

1

1

0

0

1

Assume residual ρ1 is satisfied by the real-timemeasurements, residuals ρ2, ρ3 are falsified
and the signature 011 directly leads to the diagnosis D3. Now, suppose that although there is
no signature 111 in the table, all three residuals are falsified by the real-time measurements.
Using the notation Di × D j for a double fault diagnosis in which the first fault is a constraint
in Di and the second fault a constraint in D j , it is seen that this is indeed possible as the result
of the multiple faultsD1×D3∪D1×D4∪D2×D3, as it can be visually checked on Fig.10.5
where D1 × D3, D1 × D4 and D2 × D3 are minimal hitting sets of {C (ρ1), C (ρ2), C (ρ3)}.

Considering all possible signatures (note that the signature 010 can never be obtained)
gives the diagnosis Table10.3.

D2

C (ρ1)

D1

D3

D4

C (ρ2)
C (ρ3)

Fig. 10.5 The three conflicts associated with the signature 111

10.3 Distributed Diagnosis Design 481

Table 10.3 Diagnosis table of
the ship example ρ1ρ2ρ3 Diagnosis

000 D0

001 D4

010 cannot happen

011 D3

100 D2

101 D2 × D4

110 D1

111 D1 × D3 ∪ D4 ∪ D2 × D3

Remark 10.3 The conclusion obtained via the logical theory of diagnosis may con-
tain many possible diagnosis, as it can be seen from the previous example, where
there are three sets of possible double faults associated with the signature 111. All
conclusions are indeed consistent from a logical point of view. However, in practical
applications, one may have to select only one of them. Under the assumption that
the joint probabilities of faults occurring in different constraints are known, it seems
of course appropriate to select the most probable one. �

10.3.3 Practical Diagnoser and Real-Time Operation

Structural versus actual properties. Structural properties are necessary but not
sufficient for actual properties to be true. A residual whose structure does not contain
a given fault can by no means allow its detection, but a structurally detectable fault
might never be detected in practice because the sensitivity of the residuals is too
small, or because the signal/noise ratio does not allow its detection. Similarly, two
isolable faults might never be isolated from each other if only a common subset of
residuals is sensitive enough to them.

A practical diagnoser is a pair (r, δ)where r is a set of residuals and δ is a decision
procedure that checks the residuals status (satisfied/falsified), using the available
knowledge on modelling errors, unknown inputs and measurement noises, in order
to reduce false alarms, missed detections, detection delays and mis-isolations, as
analysed in Chap.7.

Real-time operation. The real-time operation of a practical diagnoser follows 4
steps (steps 3 and 4 are optional depending on the application):

1. Compute the value of the residuals r from the values of the known variables K;
2. Fault detection: evaluate the residuals using the decision procedure δ and conclude

whether a fault has occurred (r f �= ∅) or if the system can possibly be healthy
(rs = r);

http://dx.doi.org/10.1007/978-3-662-47943-8_7

482 10 Distributed Fault Diagnosis and Fault-Tolerant Control

3. Fault isolation: find the minimal hitting sets consistent with the observed signa-
ture, if a detection has been fired; and

4. Fault estimation: estimate the model of the faulty system.

Whatever the complexity of steps 2, 3 and 4, they apply to the residuals r issued
from the structural analysis. Implementing a centralised or a distributed diagnoser is
therefore based on implementing a centralised or a distributed computation scheme
for the residuals r . This is why only the fault detection and isolation properties of
structural diagnosers are considered in the sequel.

Centralised or distributed implementation. In a centralised system, the diagnoser
is run by a single computing device that is connected with all the sensors and con-
trollers. A centralised diagnosis implementation is based on the assumptions that

• the data involved in the computation form of any residual are available to the
central computing device;

• there is no data transmission delay, or if some delay is unavoidable, all the data
involved in the computation formof a given residual are available under compatible
time stamps.

In a distributed diagnosis scheme, each subsystem Σk , (k = 1, . . . , s) runs its
own diagnosis algorithm, and the above assumptions may be no longer satisfied:

• the data available to each subsystem depend on the information pattern that is
implemented;

• the communication network may introduce transmission errors, data losses and
unacceptable delays; and

• even when not faulty, the communication network may introduce different trans-
mission delays for different variables, due to the network scheduling procedures.

The design of a distributed diagnosis scheme rises two interrelated problems:

• Problem 1. Given a residual vector r and a set of subsystems Σk , (k = 1, . . . , s)
how to design an information pattern and how to distribute the residual computa-
tions between the different subsystems? and

• Problem 2. Given a set of local diagnosers how to achieve an overall decision that
is consistent with the locally achieved ones?

Because it is needed to understand the coordination procedure in order to design
the residuals distribution, we start with the solution of Problem 2.

10.3.4 Local Diagnosers and Their Coordination

As the data available to local diagnosers depend on the information pattern, we will
need tomanipulate these entities in order to understand the subsystem-level diagnosis
capabilities. The system-level coordination of all the subsystem-level diagnosis will
be addressed after.

10.3 Distributed Diagnosis Design 483

Information pattern. We first give a formal definition of the set of all information
patterns and define an order on this set.

Definition 10.1 (Information pattern) An information pattern is a set Z = {zk,

k = 1, . . . , s}, where zk is a pair
(

za
k , zs

k

)
such that uk⊆ za

k ⊆ u and yk ⊆ zs
k ⊆ y.

In other words, an information pattern is a s-tuple whose i th element is the subset of
input/output data available to the i th subsystem. The set of information patterns is
easily provided with a partial order relation defined as

Z1 � Z2 ⇔ ∀k = 1, . . . , s : za
1,k ⊆ za

2,k ∧ zs
1,k ⊆ zs

2,k .

In this case,Z2 is said to be wider thanZ1—orZ1 is narrower thanZ2. The minimal
information pattern

Zmin = {(
uk, yk

)
, k = 1, . . . , s

}

is narrower than any other information pattern, and the maximal information pattern

Zmax = {(u, y), k = 1, . . . , s}

is wider than any other one.
It follows from the definition that any information pattern

Z = {(
za

k , zs
k

)
, k = 1, . . . , s

}

is such that∪k=1,...,s za
k = u and∪k=1,...,s zs

k = y, in other words, the za
k , respectively,

and the zs
k are a cover of u, respectively, of y.

Local diagnosers. The structural analysis of the global system model (10.6), (10.7)

ẋ(t) = f (x(t), u(t), d(t), t)

y(t) = g (x(t), u(t), d(t), t)

results in the set of residuals r (C,K) where C = f ∪ g and K = u ∪ y. Assume
that for some reason, we are interested in the structural analysis of the constraints
C when there are less known variables than K, namely K− ⊆ K. The monotonicity
property

K− ⊆ K ⇒ r
(C,K−) ⊆ r (C,K)

holds true,with the conclusion that ifZ = {(
za

k , zs
k

)
, k = 1, . . . , s

}
is an information

pattern by which the known variables available to subsystem Σk are Kk = (
za

k , zs
k

)
,

the subset of residuals that can be computed by subsystemΣk is r (C,Kk) ⊆ r (C,K).
Similarly, letC− ⊆ C be a subset of constraints, thenwhatever the knownvariables

K one has r
(C−,K) ⊆ r (C,K), with the consequence that another monotonicity

484 10 Distributed Fault Diagnosis and Fault-Tolerant Control

property holds true under the information pattern Z , namely

Ck ⊆ C ⇒ r (Ck,Kk) ⊆ r (C,Kk) ⊆ r (C,K).

Definition 10.2 (Distributed diagnosis scheme) Let C = {Ck, k = 1, . . . , s} be a
collection of constraint subsets and consider an information pattern Z = (zk, k =
1, . . . , s). A distributed diagnosis scheme is a set of local diagnosers (r (Ck, zk), δk)

where δk is the decision procedure associated with the evaluation of the residuals
r (Ck, zk).

The subset of constraints Ck associated with a local diagnoser need not be the con-
straints f k ∪gk that describe the behavioural model of subsystem Σk in Eqs. (10.3),
(10.4).

Before we describe different diagnosis schemes associated with different choices
of C, let us first investigate the relation between local and global diagnosis.

Local versus global detection. From a structural point of view, each local diagnoser
in a distributed diagnosis scheme is characterised by the partition

{
Di

k, i = 0, 1, 2, . . .
}

that defines the system situations and it is able to distinguish from its different
residual signatures. Note that such a local partition is necessarily wider than the
partition

{Di , i = 0, 1, 2, . . .
}
associated with the global diagnoser, since Di

k is the
union of several subsets D j in the global distinguishability table.

In order to be detected, a fault must be detectable by at least one local diagnoser.
The set of detectable faults in a distributed diagnosis scheme is therefore∪k=1,...,sDk

whereDk = ∪i �=0Di
k is the set of faults detectable by the local diagnoser Σk . As the

global scheme can detect the faults inD, the differenceD\∪k=1,...,sDk characterises
the loss of detectability caused by the distributed diagnosis with respect to the global
diagnosis.

Example 10.3 (cont.) Ship with dual measurements
Using the three residuals ρ1, ρ2, ρ3, the distinguishability partition associated with the ship
example was D0 = {OK}, D1 = {m1}, D2 = {m2}, D3 = {m3} and D4 = {m4, c1, c2}.
Assume a distributed diagnosis where the local diagnoser 1 runs only residual ρ1. Considering

only the first row of Table10.2, its local distinguishability partition is
{
D0
1, D1

1

}
, with D0

1 =
D0 ∪ D3 ∪ D4 and D1

1 = D1 ∪ D2. �

Local versus global isolation. In order to evaluate the combined performance of the
local diagnosers, one needs a coordination or aggregation procedure that provides
a global diagnosis from the set of local diagnosis. Without loss of generality, the
coordination procedure can be analysed for the case of two local diagnosers.

Theorem 10.2 Let Δk = {
Δi

k, i ∈ ik
}

be the local diagnosis delivered by two local
diagnosers (k = 1, 2), where Δ0

k = OK ∪ Dk , Dk are the faults non-detectable

10.3 Distributed Diagnosis Design 485

by diagnoser k and each Δi
k , (i �= 0) is a minimal hitting set of the conflicts{C (ρ), ρ ∈ r f (k)

}
. Consistent diagnosis are obtained as

Δ12 =
{
Δ00

12,Δ
0i
12,Δ

j0
12,Δ

ij
12, i, j �= 0

}
, (10.9)

where

Δ00
12 = OK ∪ (D1 × D2

)
(10.10)

i �= 0 :
{

Δ0i
12 = D1 × (Di

2 ∩ D1
)

Δi0
12 = D2 × (Di

1 ∩ D2
) (10.11)

i, j �= 0 : Δ
ij
12 = Di

1 × D j
2 (10.12)

under a simplification and a deletion rule:

1. Simplification rule: a double fault that consists of a pair of identical faults is
simplified into a single fault.

2. Deletion rule: non-minimal hitting sets are deleted.

Understanding the coordination procedure is quite simple: let r (1) and r (2) be
the residuals run by the local diagnosers. Associated with the signatures r (1) =
rs (1)∪ r f (1) and r (2) = rs (2)∪ r f (2) are the conflicts C (1) = {C (ρ), ρ ∈ r f (1)}
and C (2) = {C (ρ), ρ ∈ r f (2)}. Four cases can be distinguished, according to the
fact that C (1) and C (2) are empty or not.

• Case 1: rs (1) = r (1) and rs (2) = r (2). In this case, there is no conflict, and the
two local diagnosis are Δ0

1 = OK ∪D1 and Δ0
2 = OK ∪D2, whereD1 (resp.D2)

are the faults non-detectable by Σ1 (resp. by Σ2). The global diagnosis consistent
with the local ones is OK ∪ (D1 × D2

)
.

• Case 2: rs (1) = r (1) and r f (2) �= ∅. In this case, the first diagnosis is Δ0
1 =

OK ∪ D1, while the second is Δ1
2 = ∪i∈i2Di where Di , i ∈ i2 are the faults that

have the signature rs (2) ∪ r f (2). The global diagnosis consistent with the local
ones isD1 × (D1

2 ∩ D1
)
. Indeed, OK is inconsistent, since the residuals r f (2) are

falsified. Any fault in D1 satisfies r (1) and any fault in D1
2 falsifies r f (2). The

reason why only faults in D1
2 ∩ D1 are considered is that faults that falsify r f (2)

must also satisfy rs (1).
• Case 3: r f (1) �= ∅, rs (2) = r (2) is similar to case 2.
• Case 4: r f (1) �= ∅, r f (2) �= ∅. In this case, the first diagnosis is Δ1

1 = ∪i∈i1Di

and the second is Δ1
2 = ∪i∈i2Di . Any double fault inD1

1 ×D1
2 is indeed possible.

The simplification rule follows from the fact that when the same fault is concluded
to be present by each local diagnoser, the “double fault” is in fact a simple one. Finally,
each Δi

k, i �= 0 being a minimal hitting set of the conflicts {C (ρ), ρ ∈ rf (k)}, a pair
Di

1 × D j
2 , i, j �= 0 is a hitting set of

{C (ρ), ρ ∈ ∪k=1,2r f (k)
}
and it provides a

486 10 Distributed Fault Diagnosis and Fault-Tolerant Control

possible conclusion as seen above. However, this hitting set may be non-minimal,
and in this case it cannot be a possible diagnosis.

Remark 10.4 The coordination unit provides the overall diagnosis consistent with
all the local diagnosers’ conclusions. It may be implemented in the computing device
of any subsystem (we are not discussing here its possible distribution). Technically,
it receives the local subsystems’ decisions and coordinates them according to the
procedure of Theorem10.2. Note that alternatively, the coordination could also be
done by a direct combination of all the locally obtained signatures according to the
global diagnoser’s distinguishability table. �

Example 10.3 (cont.) Ship with dual measurements
Let us exemplify the coordination procedure in the ship with dual measurements assum-
ing there are two computing devices Σ1 and Σ2, which are, respectively, interfaced with
the measurement signals y1, y2 and y3, y4. Under the minimal information pattern, noted
{(y1, y2), (y3, y4)}, they respectively run the residuals ρ1 and ρ3, since the computation form
of ρ2 is available to none of them. The local distinguishability tables are

D0 ∪ D3 ∪ D4 D1 ∪ D2

ρ1 0 1

D0 ∪ D1 ∪ D2 D3 ∪ D4

ρ3 0 1

and the application of Theorem10.2 gives

ρ1ρ3 Local diagnosis Δ1 Local diagnosis Δ2 Coordinated diagnosis Δ12

00 D0 ∪ D3 ∪ D4 D0 ∪ D1 ∪ D2 D0

01 D0 ∪ D3 ∪ D4 D3 ∪ D4 D3 ∪ D4

10 D1 ∪ D2 D0 ∪ D1 ∪ D2 D1 ∪ D2

11 D1 ∪ D2 D3 ∪ D4 D1 ∪ D2 × D3 ∪ D4((((

It can be checked that the coordinated diagnosis is the same as the centralised diagnosis based
on the two residuals ρ1 and ρ3. Indeed, the centralised distinguishability table would be

D0 D1 ∪ D2 D3 ∪ D4

ρ1

ρ3

0
0

1
0

0
1

with the diagnosis

10.3 Distributed Diagnosis Design 487

ρ1ρ3 Global diagnosis

00 D0

01 D3 ∪ D4

10 D1 ∪ D2

11 D1 ∪ D2 × D3 ∪ D4((((
Let us examine other information patterns. The publication of y3 by Σ2 and its subscrip-

tion by Σ1 allows the distributed diagnosis scheme ρ1, ρ2 by Σ1 and ρ3 by Σ2. The local
distinguishability tables and the coordination result are given in Tables10.4, 10.5 and 10.6. �

Table 10.4 Local distinguishibility table of Σ1

D0 ∪ D4 D1 D2 D3

ρ1

ρ2

0

0

1

1

1

0

0

1

Table 10.5 Local distinguishibility table of Σ2

D0 ∪ D1 ∪ D2 D3 ∪ D4

ρ3 0 1

Table 10.6 Coordination table for Σ1 and Σ2

ρ1ρ2ρ3 Δ1 Δ2 Δ12

000 D0 ∪ D4 D0 ∪ D1 ∪ D2 D0

001 D0 ∪ D4 D3 ∪ D4 D4

010 D3 D0 ∪ D1 ∪ D2 cannot happen

011 D3 D3 ∪ D4 D3 ∪ D4

100 D2 D0 ∪ D1 ∪ D2 D2

101 D2 D3 ∪ D4 D2 × D4

110 D1∪ D2 × D3 D0 ∪ D1 ∪ D2 D1 ∪ D2

111 D1∪ D2 × D3 D3 ∪ D4 D1 × D3 ∪ D4 ∪ D2 × D3(
((

(((

488 10 Distributed Fault Diagnosis and Fault-Tolerant Control

10.3.5 Distribution Schemes

We now describe different distributed diagnosis schemes, associated with different
choices of the collection C = {Ck, k = 1, . . . , s}.
Global diagnoser in one subsystem. Let Cmax,k be defined by Ci = ∅, i �= k and
Ck = C, and the information patternZmax,k be such that zk = u∪ y. Then subsystem
Σk runs the global diagnosis algorithm, while the other subsystems do not perform
any diagnosis at all.

Global diagnoser with replicas. Let K be a subset of subsystems, let Cmax,K be
defined by Ci = ∅, (i /∈ K) and Ci = C, (i ∈ K) and let Zmax,K be an information
pattern such that ∀i ∈ K : zi = u ∪ y, then each subsystem in K runs a replica of
the global diagnoser, while the other ones do not perform any diagnosis at all.

Decentralised diagnosers. Under the collection Cmax = {Ck = C, k = 1, . . . , s} and
the local information pattern Zmin = {Kk = uk ∪ yk, k = 1, . . . , s

}
, each subsys-

tem runs the residuals whose computation form uses the local variables uk ∪ yk . This
scheme needs no data transmission for the computation of the local residuals (but
communication is still needed for the coordination task). It may yield weak results,
because only a subset of the global residuals is run (for example, it is easy to see that
a residual whose computation form needs measurements generated by sensors from
different subsystems will not be run at all). It is of course possible to consider an
even more reduced scheme with Ck ⊆ C, k = 1, . . . , s (at least one inclusion being
strict) under the local information pattern.

Distributed diagnosers. The collection C = {Ck = ϕk ∪ γk, k = 1, . . . , s} where
ϕk ⊆ f and γk ⊆ g is the most general one. Associated with the information
pattern Z = {(

za
k , zs

k

)
, k = 1, . . . , s

}
, each subsystem Σk sees the global state x as(

ξk, ξk

)
, the global control u as

(
za

k , za
k

)
and the global measurements y as

(
zs

k, zs
k

)
:

(
ξ̇k

ξ̇k

)
=

⎛
⎝ϕk

(
ξk, ξk, za

k , za
k , d, t

)

ϕk

(
ξk, ξk, za

k , za
k , d, t

)
⎞
⎠ (10.13)

(
zs

k
zs

k

)
=

(
γk

(
x, za

k , za
k , d, t

)
γk

(
x, za

k , za
k , d, t

)
)

(10.14)

which results in the local residuals rk
(
ϕk ∪ γk, za

k ∪ zs
k

)
.

Remark 10.5 The diagnosis decomposition needs by no means be identical to the
control decomposition (10.3) and (10.4). Taking ϕk = f k, k = 1, . . . , s is some-
times justified in the literature by the argument that under the decentralised infor-
mation pattern, the local residuals rk

(
ϕk ∪ gk, uk ∪ yk

)
are sensitive only to faults

in Σk , but this is true only if an over-constrained subsystem exists in the decom-
position of Σk . In general, both the interconnection variables and the consideration

10.3 Distributed Diagnosis Design 489

of wider information patterns introduce constraints from other subsystems whose
elimination (when possible) results in residual structures that do not contain only
local constraints.

Remark 10.6 za
k and zs

k being defined by the given information pattern, the largest set
of local residuals is obtainedwith Ck = f ∪γk, k = 1, . . . , s, whereγk is determined
by zs

k . This is nothing but the subset of global residuals whose computation form is
available to Σk . �
Replicas. Local diagnoser residualsmay have non-empty intersections. For example,
two subsystems that share data both see a common subset of constraints by means of
the same known variables, which results in identical local residuals. The same con-
clusion holds when two subsystems publish their data, and each of them subscribes
to the data published by the other one. It is a design decision to implement several
replicas of the same residuals in several local diagnosers. The decision has a cost
associated with multiple calculations of the same residuals, but it allows to detect
faults that might occur in the computing devices, using a voting scheme. Moreover,
the diagnosis remains available under such faults, if the number of replicas is large
enough. Note that the local to global coordination rules remain unchanged when
replicas are used, as it can be checked from the following example.

Example 10.3 (cont.) Ship with dual measurements
Assume thatΣ1 runs ρ1, ρ2 andΣ2 runs ρ2, ρ3. The local distinguishability partitions become

D0 D1 D2 D3 D4

ρ1

ρ2

0

0

1

1

1

0

0

1

0

0

and

D0 D1 D2 D3 D4

ρ2

ρ3

0

0

1

0

0

0

1

1

0

1

and they still provide the coordinated diagnosis:

ρ1ρ2ρ3 Δ1 Δ2 Δ12

000 D0 ∪ D4 D0 ∪ D2 D0

001 D0 ∪ D4 D4 D4

010 D3 D1 cannot happen

011 D3 D3 ∪ D4 × D1 D3 ∪ D4

100 D2 D0 ∪ D2 D2

101 D2 D4 D2 × D4

110 D1∪D2 × D3 D1 D1 ∪ D2

111 D1∪D2 × D3 D3 ∪ D4 × D1 D1 × D3 ∪ D4 ∪ D2 × D3((

490 10 Distributed Fault Diagnosis and Fault-Tolerant Control

10.4 Design of the Local Diagnosers

10.4.1 Specifications

The design of a distributed diagnosis scheme aims at satisfying functional and fault-
tolerance specifications, under local computing capacity constraints, at a minimal
communication cost.

Functional specifications. The functional specifications encompass the following
points:

• The detectability and isolability performances of the global system (C,K) are
entirely defined by the set of residuals r (C,K). In what follows, it is supposed
that the diagnosis performances of the distributed system are wished to be the
same as those of the centralised system. However, the approach can be applied
whatever the subset of residuals r ⊆ r (C,K) that are wished to be implemented.

• The computing cost of a subsystemΣk which has been assigned the set of residuals
rk is a function h (rk) assumed to be known. The capacity constraint is expressed
as h (rk) ≤ hk, k = 1, . . . , s.

• The communication cost depends on the information pattern that is implemented,
and it is an increasing function of the set of communicated variables. For the sake of
simplicity, information patterns are considered first under the publisher/subscriber
scheme. The extension to the bilateral agreement scheme is considered next.

Fault-tolerance specifications. Fault-tolerance specifications may be added to the
functional specifications. They specify the diagnosis performances that are still to
be achieved should faults occur in

• the sensors or in the communication system (they decrease the set of known inputs
that can be used by each local diagnoser),

• the process components (they decrease the set of healthy constraints upon which
the set of residuals to be used depends), and

• the local computing devices (the local diagnosis from faulty devices cannot be
used in the coordination procedure).

10.4.2 Simple Distribution Problem

Let us start with the following simple problem associated with the functional spec-
ifications: assuming there is no capacity constraint associated with the subsystems
Σk , (k = 1, . . . , s) distribute the residual computations among them so as to obtain
the same diagnosis performances as in the centralised scheme, at a minimal commu-
nication cost.

10.4 Design of the Local Diagnosers 491

Let r (C,K) be the residuals of the global system, and rk (C,Z) be the residuals
whose computation form is available to subsystem Σk under the information pattern
Z . Then, the distributed scheme achieves the same performances as the centralised
scheme if and only if

∪k=1,...,s rk (C,Z) = r (C,K) (10.15)

i.e. the residuals rk (C,Z), k = 1, . . . , s cover the residuals r (C, K).
From the monotonicity property Z+ � Z ⇒ rk

(C,Z+) ⊇ rk (C,Z), it follows
that if Eq. (10.15) is not satisfied under an information pattern Z it may be satisfied
under awider oneZ+. In the publisher/subscriber scheme,wider informationpatterns
are obtained by publishingmore variables. The set of all possible information patterns
is therefore the lattice of all publishable variables, namely L = 2u∪ y, which is
organised into levels Li that contain subsets of i variables. The algorithm that solves
the simple distribution problem is therefore

Algorithm 10.1 Simple distribution

Given: a set r (C,K) of residuals to be covered
a system decomposition into subsystemsΣk with local known
variables Kk = uk ∪ yk

Initialisation: Ei = Li , i = 0, 1, . . . |u ∪ y|.
Loop: While Et �= ∅

1. for each subset of published variables z ∈ Et , identify the
subsets of residuals rk (C,Z) ⊆ r (C,K), (k = 1, . . . , s)
whose computation form is available, and updateEt asEt \{z}

2. If Eq. (10.15) is satisfied, z solves the problem. List z in the
set of solutions Z∗ and update Et+1 as Et+1 \ P (Z∗) where
P (Z∗) = ∪z∈Z∗P (z) and P (z) are the predecessors of z in
the lattice L.

Result: List Z∗ of minimal subsets of variables to be published in
the publisher/subscriber scheme in order for the distributed
diagnosis to achieve the same performance as the centralised
diagnosis.

Comments.

1. Since any solution z ∈ Z∗ results in the running of all the residuals r (C,K), any
predecessor of z also results in running all the residuals. Because there are more
available data to the subsystems, some residuals may be replicated in several
subsystems.

492 10 Distributed Fault Diagnosis and Fault-Tolerant Control

2. The process considers wider and wider information patterns, so it must eventually
terminate, with a non-empty set of solutions. Indeed, the worst case in which all
the publishable variables are published is associated with the information pattern
Zmax that implements the whole set of residuals r (C,K) in each subsystem.

3. The presentation has been aimed at distributing all the residuals in r (C,K) but
the approach can be applied whatever the subset of residuals r ⊆ r (C,K) that
are wished to be implemented.

Example 10.3 (cont.) Ship with dual measurements
Let us illustrate the simple distribution procedure with the ship example whose results have
been presented earlier. Let the two subsystems be Σ1 with local sensors {y1, y2} and Σ2 with
local sensors {y3, y4}. The specification is that the distributed diagnosis should be as powerful
as the centralised diagnosis.

The procedure starts with the minimal information pattern

Zmin = {(y1, y2), (y3, y4)}

associated with the decentralised system.
The first iteration provides the distribution ρ1 assigned to Σ1 and ρ3 assigned to Σ2 as

already seen, which is not admissible because there is a loss of detectability and isolability with
respect to the centralised scheme. In the second iteration, the constraints are considered under
wider information patterns. Under the publisher/subscriber scheme, four wider information
patterns can be obtained by publishing one single variable, namely

Z1 = {(y1, y2), (y1, y3, y4)}
Z2 = {(y1, y2), (y2, y3, y4)}
Z3 = {(y1, y2, y3), (y3, y4)}
Z4 = {(y1, y2, y4), (y3, y4)} .

From the residuals (10.8), the associated decompositions are

Information pattern Σ1 Σ2

Z1 ρ1 ρ2 , ρ3

Z2 ρ1 ρ3

Z3 ρ1 , ρ2 ρ3

Z4 ρ1 ρ3

Only Z1 and Z3 improve the diagnosis capability. The diagnosis performances under Z3 are
given in Tables10.4 and 10.5. They show that there is no loss of detectability/isolability with
respect to the global diagnosis scheme. It can be checked from the local tables

OK m1 m2 m3 m4 c1 c2

ρ1 0 1 1 0 0 0 0

and

10.4 Design of the Local Diagnosers 493

OK m1 m2 m3 m4 c1 c2

ρ2

ρ3

0

0

1

0

0

0

1

1

0

1

0

1

0

1

that the same conclusion holds under Z1, so the two schemes satisfy the diagnosis
specifications.

Finally, the information patterns Z1 and Z3 are the minimal ones for which the diagnosis
specifications can be obtained. Consideringwider information patterns is not necessary (unless
replications arewished), since the diagnosis performanceswould not be increased, but the local
computing costs could only be increased (because more residuals would be computed in each
subsystem). In order to illustrate this point, let us investigate the case where two variables are
published. There are six possible information patterns, which lead to six possible distributed
schemes, according to the table:

Information pattern Σ1 Σ2

Z12 = {(y1 , y2), (y1 , y2 , y3 , y4)} ρ1 ρ1 , ρ2 , ρ3

Z13 = {(y1 , y2 , y3), (y1 , y3 , y4)} ρ1 , ρ2 ρ2 , ρ3

Z14 = {(y1 , y2 , y4), (y1 , y3 , y4)} ρ1 ρ2 , ρ3

Z23 = {(y1 , y2 , y3), (y2 , y3 , y4)} ρ1 , ρ2 ρ3

Z24 = {(y1 , y2 , y4), (y2 , y3 , y4)} ρ1 ρ3

Z34 = {(y1 , y2 , y3 , y4), (y3 , y4)} ρ1 , ρ2 ρ3

All schemes (except Z24) satisfy the diagnosis specifications since they allow to distrib-
ute the computation of all residuals. Note that schemes Z12 and Z13 implement residuals
replications. Note also that any information pattern wider than the two minimal patterns Z1
and Z3 under which the specifications are satisfied also satisfies the specifications, as shown
in Fig. 10.6, where the different information patterns are displayed along with the associated
residual distribution. Information patterns under which the distributed diagnosis specifications
are satisfied are in white, and the minimal ones have a bold contour. �

10.4.3 Distribution Under Computing Cost Constraints

The simple distribution problem does not take into account the possible limitations
in the local computing power of the different subsystems. Assume there is a known
function hk (ρ) associated with each pair (ρ, k), ρ ∈ r (C,K), (k = 1, . . . , s) that
evaluates the computing cost of a residual ρ by the computing device of subsystem
Σk and that subsystem Σk can devote only an amount hk of computing effort to
the distributed diagnosis task. Then, assuming that computing costs are additive, the
previous distribution problemmust take into account the computing cost constraints:

494 10 Distributed Fault Diagnosis and Fault-Tolerant Control

14
ρ1

ρ2ρ3

24
ρ1
ρ3

Z1234
ρ1ρ2ρ3
ρ1ρ2ρ3

234
ρ1ρ2ρ3

ρ3

123
ρ1ρ2

ρ1ρ2ρ3

Z 124
ρ1

ρ1ρ2ρ3

Z 134
ρ1ρ2ρ3
ρ2ρ3

Z Z

12
ρ1

ρ1ρ2ρ3

Z 13
ρ1ρ2
ρ2ρ3

Z 23

ρ1ρ2
ρ3

Z Z Z 34
ρ1ρ2
ρ3

Z

4
ρ1
ρ3

Z3
ρ1ρ2
ρ3

Z2
ρ1
ρ3

Z1
ρ1

ρ2ρ3

Z

min
ρ1
ρ3

Z

Fig. 10.6 Information patterns and diagnosis distribution in the ship example

∑
ρ∈rk

hk (ρ) ≤ hk . (10.16)

Starting with the results of the simple distribution algorithm, it is easily seen
that if the set Z∗ contains at least one solution that satisfies the computing cost
constraints, then the constrained problem is solved, by discarding those solutions
that are inadmissible.

Two situations must be distinguished when all solutions in Z∗ are inadmissible:

• First, an inadmissible solution can be transformed into an admissible one, if there
exists subsets of residuals in the overloaded subsystems whose deletion leads to
an admissible computing cost, but does not degrade the diagnosis performance
because they are replicas of residuals computed in other—non-overloaded—
subsystems.

• If no such possibility exists, non-minimal subsets of publishable data must be con-
sidered, in order to provide non-overloaded subsystem with replicas of residuals
that could be deleted from overloaded subsystems.

In order to implement this procedure, the previous algorithm is modified as
follows.

10.4 Design of the Local Diagnosers 495

Algorithm 10.2 Distribution under cost constraints

Given: A set r (C,K) of residuals to be covered
a system decomposition into subsystemsΣk with local known
variables Kk = uk ∪ yk , known computing costs hk (ρ), ρ ∈
r (C,K), and known computing power limitations hk

Initialisation: Ei = Li , i = 0, 1, . . . |u ∪ y|.
Loop: While Et �= ∅:

1. For each subset of published variables z ∈ Et , identify the
subsets of residuals rk (C,Z) ⊆ r (C,K), (k = 1, . . . , s)
whose computation form is available, and update Et as
Et \ {z},

2. If Eqs. (10.15) and (10.16) are satisfied, or if Eq. (10.15) is
satisfied and Eq. (10.16) is not satisfied but becomes satisfied
by deleting the replicated residuals in the overloaded subsys-
tems, z solves the problem. List z in the set of solutionsZ∗ and
update Et+1 as Et+1 \ P (Z∗) where P (Z∗) = ∪z∈Z∗P (z)
and P (z) are the predecessors of z in the lattice L.

Result: List Z∗ of minimal subsets of variables to be published in
the publisher/subscriber scheme in order for the distributed
diagnosis to achieve the same performance as the centralised
diagnosis while satisfying the computation cost constraints.

Comment. Since it explores wider and wider information patterns, the algorithm
must eventually terminate.However, a solution is not guaranteed to exist. A necessary
and sufficient condition for a solution to exist is that it exists under the maximal
information pattern. In that case, all subsystems are able to run all residuals r (C,K),
and the deletion of replicated residuals problem boils down to finding a partition of
the set r (C,K) into s classes such that the computing cost constraints are satisfied.
Let σk (ρ) be the binary variables such that σk (ρ) = 1 when residual ρ is assigned to
subsystemΣk and σk (ρ) = 0 when residual ρ is not assigned to subsystemΣk . Then
the residual distribution problem under computation cost constraints has a solution
if and only if the constraint satisfaction problem,

∀ρ ∈ r (C,K) :
∑

k=1,...,s

σk (ρ) = 1 (10.17)

k = 1, . . . , s :
∑

ρ∈r(C,K)

σk (ρ) hk (ρ) ≤ hk, (10.18)

has a solution, which can easily be checked since it is a classical task allocation

496 10 Distributed Fault Diagnosis and Fault-Tolerant Control

problem (algorithms to solve a version of this problem—namely finding maximal
matchings in a bipartite graph—were given in Chap. 5).

10.4.4 The Bilateral Agreements Scheme

In the bilateral agreements scheme, the set of all subsystems is partitioned into equiv-
alence classes such that subsystems in the same class share all their data. Denoting
by KK the known data available to all subsystems in a class {Σk, k ∈ K}, these
bilateral agreements result in the residual assignments rk (C,KK) = rK, k ∈ K . It
follows that for each residual possibly run by subsystemΣk , there are |K|−1 replicas
possibly run by the other subsystems Σ j , (j �= k) in the same class.

The following algorithm explores the increasing levels of a hierarchy built on
the atomic decomposition Σk , (k = 1, . . . , s). At each level of the hierarchy, two
subsystems are merged according to some merging policy, for example, the two sub-
systems whose merger implies the smallest communication cost, the two subsystems
whose merger implies the largest set of computable residuals, the two subsystems
with the best efficiency ratio computed from the increase in the communication cost
versus the increase in the number of computable residual, etc. The satisfaction of the
computing cost constraints is achieved by deleting from the overloaded subsystems
those residuals whose replica is present in some underloaded subsystem.

Algorithm 10.3 Bilateral agreements

Given: A set r (C,K) of residuals to be covered
a system decomposition into subsystemsΣk with local known
variables Kk = uk ∪ yk , known computing costs hk (ρ), ρ ∈
r (C,K), and known computing power limitations hk .

Initialisation: E0 = {
E0,k = Σk, k = 1, . . . , s

}
Loop: While Et is not a singleton

1. For each pair of classes Et,i and Et, j , evaluate their possible
merger in terms of the induced communication cost and of the
residuals that become computable, and select the pair whose
merger is preferred according to the selected merging policy.
Update Et+1 by replacing

{
Et,i , Et, j

}
in Et by Et,i ∪ Et, j .

2. If all residuals are covered and the computing cost constraints
are satisfied, or if they become satisfied by deleting the repli-
cated residuals in the overloaded subsystems, the decompo-
sition Et+1 solves the problem.

Result: a decomposition of the system into equivalence classes asso-
ciated with bilateral communication agreements that achieves
the same performance as the centralised diagnosis while sat-
isfying the computation cost constraints.

http://dx.doi.org/10.1007/978-3-662-47943-8_5

10.4 Design of the Local Diagnosers 497

Comments.

1. Since it explores increasing levels of the system hierarchy, the algorithm must
eventually terminate. The necessary and sufficient condition for a solution to exist
(and therefore to be found) is the same as in the publisher/subscriber scheme, that
has been given in Eqs. (10.17) and (10.18).

2. It is well known that hierarchical procedures are by noway optimal, sincemergers
are performed at each level following a greedy approach (the bestmerger at a given
level is not necessarily the best one from a global point of view), and are never
un-merged. However, they are very popular because of their simplicity. They are
in general run several times, under several merging policies, which allows for
comparison between the results and get a good idea of the main features of the
solutions.

Example 10.4 Hierarchical distribution algorithm
In this example, we consider the distribution of a set of nine residuals among four subsystems,
under the bilateral communication scheme. The structures of the residuals computation form
are

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

ρ1 1 1

ρ2 1 1 1

ρ3 1 1

ρ4 1 1

ρ5 1 1 1

ρ6 1 1

ρ7 1 1 1

ρ8 1 1 1

ρ9 1 1 1 1

and the local data are given by

Subsystem Σ1 Σ2 Σ3 Σ4

Local data z1 , z 2 z3 , z 4 , z 5 z6 , z 7 z8 , z 9 , z 10 , z 11

The atomic decomposition associated with the decentralised scheme leads to the computable
residuals

E 0 Σ1 Σ2 Σ3 Σ4

Computable residuals ρ6 ∅ ρ3 ρ5

that do not cover the whole set ρ1, . . . , ρ9, and therefore the information exchange must be
increased. At the first level of the hierarchy, there are six possible bilateral agreements, which
give the following results:

498 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Mergers Σ1 ∪ Σ2 Σ1 ∪ Σ3 Σ1 ∪ Σ4

Computable residuals ρ2ρ4ρ6ρ9 ρ3ρ6 ρ5ρ6

Communication load z1 z2 z3 z4 z5 z1 z2 z6 z7 z1 z2 z8 z9 z10 z11

Mergers Σ2 ∪ Σ3 Σ2 ∪ Σ4 Σ3 ∪ Σ4

Computable residuals ρ3ρ8 ρ5 ρ1ρ3ρ5ρ7ρ8

Communication load z3 z4 z5 z6 z7 z3 z4 z5 z8 z9 z10 z11 z6 z7 z8 z9 z10 z11

Assume that the merging policy that gives the largest number of computable residuals is
chosen. There are two decompositions at level 1 that both allow to compute six residuals,
namely

E 11 Σ1 Σ2 Σ3 ∪ Σ4

Computable residuals ρ6 ∅ ρ1ρ3ρ5ρ7ρ8

and

E 12 Σ1 ∪ Σ2 Σ3 Σ4

Computable residuals ρ2ρ4ρ6ρ9 ρ3 ρ5

Note that E12 needs less communication than E11, but neither E11 nor E12 covers the
whole set of wished residuals, so more communication has to be introduced by considering
the second level of the hierarchy.

From aggregating E11 and E12, one gets

E 21 Σ1 ∪ Σ2 Σ3 ∪ Σ4

Computable residuals ρ2ρ4ρ6ρ9 ρ1ρ3ρ5ρ7ρ8

that covers all the residuals, and from E12 one gets three possibilities, associated with the
mergers Σ3 ∪Σ4, Σ1 ∪Σ2 ∪Σ3 and Σ1 ∪Σ2 ∪Σ4 but none of them covers the whole set of
residuals. Note that in the solution E21, bothΣ1 andΣ2 are able to run the residuals ρ2ρ4ρ6ρ9
and bothΣ3 andΣ4 are able to run the residuals ρ1ρ3ρ5ρ7ρ8. Assuming each subsystem has a
sufficient computing power, the existence of the replicas makes the distributed scheme tolerant
to faults in the individual computing devices: for example, in the presence of a complete failure
of Σ1, the residuals ρ2ρ4ρ6ρ9 could still be run by Σ2 (of course, one should also consider
in this case the effects of such a failure on the control functionalities, but this is not the topic
of this section).

Assuming limited computing powers that do not allow full duplication, the set of residuals
ρ2ρ4ρ6ρ9 should be split into two subsets, respectively, run in Σ1 and Σ2, according to the
classical task allocation problem under constraints, a version of which has been used in the
comment on p. 499 to evaluate the existence of a solution to the distribution problem under
constraints. �

10.4 Design of the Local Diagnosers 499

10.4.5 Fault-Tolerant Distributed Diagnosis

Fault-tolerant distributed diagnosis considers the effect of faults on the diagnosis
capability of a distributed diagnosis system. It will not be developed in detail, since
most of the tools that are useful for the analysis and the design of fault-tolerant
diagnosis have been presented in this chapter and in previous chapters, as it appears
from the following analysis of the different fault consequences.

Faults in the process components. Faults in the process components decrease the
set of constraints that can be used to build the residuals. Less constraints means less
residuals, which means less detectability and distinguishability. The analysis of the
fault tolerance of a given diagnosis system is therefore nothing but the analysis of
the subsets of residuals that still allow to perform the desired detection and isolation
specifications. Considering subsets of residuals (i.e. residual configurations) is quite
similar to considering actuator or sensor configurations as in Chap.8.

Faults in the sensors or in the communication network. Faults in the sensors or in
the communication network decrease the set of known variables that are available to
the local computing devices of the distributed system. Less known variables means
less residuals, which brings back to the above problem.

Faults in the local computing devices. Faults in the local computing devices result in
erroneous local diagnosis. Using replicas of the same residuals in different computing
devices allows to detect inconsistencies bymeans of appropriate voting schemes. The
general problem has been thoroughly studied in the computer science community,
and the reader is referred to the bibliographical notes for an overview of the main
results.

10.5 Fault-Tolerant Control by Information Pattern
Reconfiguration

The previous sections have shown the prominent role of the information pattern in
the design of a distributed diagnosis algorithm. Similarly, the role of the information
pattern is the main feature that distinguishes fault-tolerant control in distributed
systems from fault-tolerant control in embedded systems. Other features are that

• due to the interactions between subsystems, the specifications to be satisfied in
normal and in faulty operations must be considered at the system level, while the
control is designed at the subsystem level; and

• the fault recovery process is desired to be limited to the smallest possible number
of subsystems.

These features are now addressed in the frame of reconfiguration-based fault
tolerance.

http://dx.doi.org/10.1007/978-3-662-47943-8_8

500 10 Distributed Fault Diagnosis and Fault-Tolerant Control

10.5.1 Admissibility and Reconfigurability

Remember that fault tolerance is the property that some specification P satisfied by
the nominal system is also satisfied in the presence of faults (performance degradation
may be allowed by introducing a less-demanding specification when faults occur).
When distributed systems are considered, an important question to decide is whether
each subsystem is responsible for finding an admissible control that achieves the part
of the global specification it has been assigned to fulfil (in this case, the specification
is said to be decomposable), or whether system-level admissibility is to be considered
(this is the non-decomposable specifications case).

Definition 10.3 (Decomposable specification) A specification P is decomposable
if it is equivalent to some set {Pk, k = 1, . . . , s} where Pk is a specification of
subsystem Σk .

Due to the coupling variables xk in Eq. (10.3), it appears that not all specifica-
tions are decomposable. In the sequel of this chapter, we consider non-decomposable
specifications. Indeed, there is no interest, when addressing fault-tolerant distributed
systems, in considering decomposable specifications: should the specification be
decomposable, one could simply address fault tolerancewithin each subsystem, using
the local subsystem model, and treating the interconnection variables as unknown
inputs. This would of course result in a distributed recovery algorithm (each subsys-
tem recovers its own faults, independently of the others), but would not bring much
new insight to the fault-tolerance problem of the distributed system, since each sub-
system would be treated as a system of its own, using the methods presented in the
previous chapters.

Example 10.5 Decomposable specifications

• The controllability of the system in Example10.1 is a structural property that depends on
the pair (A, B) given in Eq. (10.5). It is in general not equivalent to the controllability of
the four subsystems associated with the respective pairs of matrices:

Subsystem Matrix A Matrix B

Σ1

(−1 2
0 1

) (
1 0
0 0.5

)

Σ2 −2 1

Σ3

(−2 0.4
1 −3

) (
2
1

)

Σ4 −4 2

• Given an output feedback u = K y and a positive value of α, the system Σ is α-stable if
there exists a Lyapunov function V = xTQx such that V̇ ≤ −αV along its trajectories, i.e.

Q (A + BKC) + (A + BKC)T Q + αQ ≤ 0.

This is a non-structural property that depends on the control law (via the output feedback
matrix K), and again it is not equivalent to the α-stability of each subsystem Σk , k =

10.5 Fault-Tolerant Control by Information Pattern Reconfiguration 501

1, . . . , 4 because the subsystems are coupled. As a matter of fact, it is well known that the
interconnection of several stable subsystems might well result in an unstable system, as
illustrated by the very simple example

(
ẋ1
ẋ2

)
=

(−1 θ12
θ21 −2

)(
x1
x2

)

which is unstable for any values of the interconnection parameters such that θ12θ21 > 2
although the self-dynamics of the two subsystems, respectively, ẋ1 = −x1 and ẋ2 = −2x2
are stable.

• Examples of degraded specifications would be to accept stabilisability instead of control-
lability, or a smaller decay rate in the α-stability specification. �

Recoverable faults. Let us first consider actuator faults under the reconfiguration
strategy (sensor or system component faults are treated the same way). Let IN ⊆ I be
an actuator configuration, i.e. the actuators that are available to achieve specification
P , if possible, when actuators in IF = I\IN are faulty and have been switched-off.
The set of all possible configurations (including the nominal one) is 2I the power
set of I , i.e. the set of all its subsets. Remember that 2I is a lattice, a mathematical
structure whose properties have already been used in previous chapters to address
implementation issues and evaluation measures. We will now use the lattice tool
for distributed control systems, by considering the set of all possible information
patterns, and analysing specific monotonicity properties of interest for the reconfig-
uration problem.

Remark that although configuration IN is decomposed into
{
IN,k, k = 1, . . . , s

}
where IN,k ⊆ Ik is the subset of actuators available in subsystem Σk , recoverability
must be analysed with respect to the global system, because non-decomposable
specifications are considered.

Let (u, Z) be a pair whereZ is an information pattern and u is a control law under
Z . The notation P (IN, u, Z) means that the pair (u, Z) achieves the specification
P when applied to the subset of actuators IN ⊆ 2I .

Definition 10.4 (Admissibility, admissibility span) A pair (u, Z) is admissible for
configuration IN, if it satisfies the specification P , i.e. if P (IN, u, Z). The admis-
sibility span of a pair (u, Z) is the set R (u, Z) of all configurations IN for which
the control law u is admissible:

R (u, Z) =
{

IN ∈ 2I : P (IN, u, Z)
}

.

Definition 10.5 (Recoverability, recoverability span) The fault IF - equivalently the
configuration IN - is recoverable under the information pattern Z if there exists
a control law u such that the pair (u, Z) is admissible for configuration IN. The
recoverability span of the information patternZ is the setR (Z) of all configurations
IN that are recoverable under Z:

R (Z) =
{

IN ∈ 2I : ∃ (u, Z) : P (IN, u, Z)
}

.

502 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Note that recoverability is a structural property, since it depends only on the pair
(IN, Z).

Example 10.6 Recoverability span
In Example10.1, assume that it is desired toα-stabilise the system by decentralised control via
output feedback. Under the information patternZmin = {y1, y2, y3, y4}, the design problem
is to find the parameters kij such that the control laws

(
u1
u2

)
=

(
k11
k21

)
y1

u3 = k32y2
u4 = k43y3
u5 = k54y4

α-stabilise the system. Remember that a system is α-stable if there exists a Lyapunov function
V = xTQx such that V̇ ≤ −αV along its trajectories, i.e.

Q (A + BKC) + (A + BKC)T Q + αQ ≤ 0.

It is easy to verify that under the nominal actuator configuration I = {1, 2, 3, 4, 5}, the
specification associated with α = 1 is achieved using the control laws:

(
u1
u2

)
=

(
1.2991
5.6882

)
y1

u3 = 4.6939y2
u4 = 0.1190y3
u5 = 3.3712y4.

(10.19)

Using the short notations 123 for configuration {1, 2, 3}, 2345 for configuration {2, 3, 4, 5},
etc., it can be easily checked that in the presence of actuator faults, configurations 2345, 1235,
1234, 1245, 245, 235, 234, 125 and 123 can still be α-stabilised using the local information
pattern, but this is true neither for configurations 1345, 345, 145, 135, 134 and 124 nor for
their subsets. The white nodes in Fig. 10.7 show the recoverability span associated with the
local information pattern Zmin = {y1, y2, y3, y4}. For example, it can be checked that the
α-stabilisation problem has a solution for configuration 245 which is

u2 = 15.6231y1
u4 = 16.0533y3
u5 = 5.4455y4,

while it has no solution for the grey configurations.
Note that the algorithmic complexity of the determination of the set of recoverable configu-

rations is limited by the fact that it is enough to find theminimal ones. Indeed, if a configuration
IN is recoverable under an information pattern Z , then any configuration that includes IN is
also recoverable under Z. In this example, there are two minimal recoverable configurations,
namely 23 and 25, that are shown with a bold contour on the figure. �

10.5 Fault-Tolerant Control by Information Pattern Reconfiguration 503

12

145234

45 35 34 25 24 14

2345

235

4 5

345 245

3 2

15 13 23

135 134 124 125 123

1345 1245 1235 1234

1

12345

∅

Fig. 10.7 Recoverability span under Zmin

10.5.2 Information Pattern Reconfiguration

As the recoverability of a configuration depends on the information pattern that is
used, adapting the information pattern to the system situation is a means to achieve
fault tolerance. Let IC be the current system configuration (either nominal or the
result of previous faults), and ZC be the current information pattern, such that IC ∈
R (ZC), and assume a fault occurs, leading to configuration IN ⊂ IC. Then, either
IN ∈ R (ZC) or IN /∈ R (ZC).

In the first case (Problem 1), one has to find a control law under ZC that is
admissible for IN. Such a control law indeed exists, since IN ∈ R (ZC). In the
second case, no control law under ZC can achieve the specification P . A possibility
is therefore to relax the information pattern constraint by finding, if possible, an
information patternZN such that IN ∈ R (ZN) (Problem 2). OnceZN is determined,
Problem 1 is solved to find a control law that achieves the specification P under ZN.
If an information pattern ZN such that IN ∈ R (ZN) does not exist, the fault is not
recoverable at all and the objective reconfiguration level must be triggered.

In the sequel, we focus on the information pattern reconfiguration problem
(Problem 2), since Problem 1 is nothing but the classical fault-tolerance problem.

Ordering the set of information patterns. Let Z be the set of information patterns
that are considered. Note that while for distributed diagnosis, local diagnosers were
provided with local and possibly remote control and measurement signals, and in

504 10 Distributed Fault Diagnosis and Fault-Tolerant Control

distributed control, each local controller has to be provided only with local and
possibly remote measurement signals. The information patterns considered here are
therefore simpler than in the distributed diagnosis case, being only associated with
covers of J . It follows that Z is associated with the set of covers of J , and that the
partial order relation on Z is also simplified as follows:

Definition 10.6 (Order on the set of information patterns) Let Z+ = {z+
k , k =

1, . . . , s} and Z− = {
z−

k , k = 1, . . . , s
}
be two information patterns in Z. Z+ is

wider than Z− (Z+ � Z−) if

∀k ∈ {1, . . . , s} , z−
k ⊆ z+

k .

Remark 10.7 Similar to the distributed diagnosis case, the full information pattern
Zmax is wider than any other, making Zmax the maximal element of Z. Also, there
exists no information pattern in Z that is narrower than Zmin (meaning that Zmin
would be wider than it); therefore, Zmin is the minimal element of Z (to see this,
consider any Z∗ � Zmin and conclude that Z∗ = Zmin if condition ∪k=1,...,sZk = J
is to be satisfied). �

A monotonicity property. Themain result here is that the information pattern recon-
figuration problem can be solved only for those configurations that are recoverable
under the full information pattern.

Theorem 10.3 Let (IC, ZC) be the current system situation and assume that a fault
occurs such that IN ⊂ IC. A necessary and sufficient condition for the existence of
an information pattern ZN such that IN ∈ R (ZN) is that IN ∈ R (Zmax).

This result is easy to understand from the fact that recoverability spans aremonoto-
nous with respect to the order � on Z, i.e. one has

Z+ � Z− ⇒ R (Z−) ⊆ R (Z+)
. (10.20)

Indeed, under the information patternZ+, each local controller can use a super-set of
the measurement signals available under the patternZ−. Therefore, if there exists an
admissible control under Z−, there is one under Z+. Now, assume IN /∈ R (Zmax),
and then from Eq. (10.20), there is no ZN � Zmax such that IN ∈ R (ZN), and the
fault is therefore non-recoverable.Assume now IN ∈ R (Zmax), and thenZN = Zmax
solves the problem.

Note that the result in Theorem10.3 is true whatever the status IN ∈ R (ZC) or
IN /∈ R (ZC). If IN ∈ R (ZC), one indeed has IN ∈ R (Zmax) but there is no need to
reconfigure the information pattern ZC (note that this does not mean that the control
laws should not be reconfigured, but only that the data they use do not need to be
changed!). If IN /∈ R (ZC) and IN /∈ R (Zmax), the fault is not recoverable, and
objective reconfiguration has to take place. We now consider the case IN /∈ R (ZC)

(the fault is not recoverable under the current information pattern) but IN ∈ R (Zmax)

(the fault is recoverable under the full information pattern).

10.5 Fault-Tolerant Control by Information Pattern Reconfiguration 505

Application to fault-tolerant distributed control. Let (IC, ZC) be the current sys-
tem situation and consider a fault that is not recoverable under the current information
pattern, but is recoverable under the full information pattern. Solving the information
pattern reconfiguration problem is equivalent to determining the set:

Z (IN) = {Z ∈ Z : IN ∈ R (Z)} .

From an algorithmic point of view, testing every Z ∈ Z for the possibility to find
a control u such that (u, Z) is admissible for IN is a huge problem. Indeed, from
Remark10.7, one has

Z ∈ Z ⇒ Zmin � Z � Zmax

and since Zmin = {
yk, k = 1, . . . , s

}
and Zmax = { y, k = 1, . . . , s} , it follows

that for any information pattern Z = {zk, k = 1, . . . , s} one has zk = yk ∪ γk ,
where γk ⊆ y\ yk is the subset of measurements that are “added” to the ones already
available to subsystem Σk in the local information pattern Zmin. It follows that

Z =
∏

k=1,...,s

2 y\ yk .

Example 10.7 The number of candidate information patterns
Assume that four subsystems have the local measurement vectors y1 ∈ |R, y2 ∈ |R2,
y3 ∈ |R and y4 ∈ |R2. Then, in addition to y1, Σ1 could receive any subset of the other five
measurements, Σ2 could receive any subset of the other four in addition to y2, etc. This gives
a total of 25 × 24 × 25 × 24 information patterns that are wider than Zmin. �

Reducing the set of candidate information patterns. In this section, we consider
simple arguments that allow to reduce the number of information patterns to be
explored in order to determine Z (IN).

Theorem 10.4 Let (IC, ZC) be the current system situation and assume that a fault
occurs such that IN /∈ R (ZC) but IN ∈ R (Zmax). Then, it holds that

Z (IN) ⊆ Z\N (ZC),

where N (ZC) = {Z−
C : Z−

C � ZC
}

is the set of information patterns that are nar-
rower than ZC with respect to the order relation �. �

Indeed, noting that IN /∈ R (ZC) ⇒ ZC /∈ Z (IN), the result follows from
Eq. (10.20) which implies

Z−
C � ZC ⇐⇒ Z−

C /∈ Z (IN).

Furthermore, in order to determine all the elements of Z (IN), it is enough to find
its minimal ones. Remember that a minimal information pattern Zmin in Z (IN) is
such that

506 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Zmin ∈ Z (IN)

Z � Zmin ⇒ Z /∈ Z (IN).

Theorem 10.5 Let ZM (IN) be the set of minimal elements of Z (IN). Then one has

Z (IN) =
⋃

Z∈ZM(IN)

W (Z),

where W (Z) = {Z+ : Z � Z+}
is the set of information patterns that are wider

than Z with respect to the order relation �.

Indeed, it is clear that Zmin ∈ ZM (IN) ⇒ Zmin ∈ Z (IN). Then, the implication

Z ∈ Z (IN) \ZM (IN) ⇒ ∃Zmin ∈ ZM (IN) : Z ∈ W (Zmin)

is true, becauseZ being not minimal, and there exists an information patternZ1 such
that Z1 ∈ Z (IN) and Z ∈ W (Z1). If Z1 ∈ ZM (IN), the conclusion of the theorem
is obtained. If not, which means Z1 is not minimal, there exists an information
pattern Z2 such that Z2 ∈ Z (IN) and Z1 ∈ W (Z2), which implies Z ∈ W (Z2) by
transitivity. If Z2 ∈ ZM (IN), the conclusion is obtained; otherwise, the process is
repeated until the conclusion holds, which must eventually occur becauseZ contains
a finite number of information patterns. Finally, the monotonicity property (10.20)
implies that

Z ∈
⋃

Z∈ZM(IN)

W (Z) ⇒ Z ∈ Z (IN).

Remark 10.8 A subset of Z (IN) is found by exploring only a subset of Z\N (ZC),
provided it contains at least one admissible information pattern. This obviously hap-
pens withW (ZC) since one has IN ∈ R (Zmax). In the sequel, we look for solutions
within W (ZC) because information patterns that are wider than ZC are easy to
construct, especially if technological constraints associated with the communication
system are taken into account. The next sections, respectively, consider the pub-
lisher/subscriber and the bilateral agreements schemes. �

10.5.3 Publisher/Subscriber Scheme

Optimal subscriptions. Before we address the construction of wider information
patterns in the publisher/subscriber scheme, let us first remark that since the commu-
nication cost is associated with the published variables, the best use of the published
variables is achieved when the local controllers subscribe to all of them. Indeed,
let ZC = {

zC,k, k = 1, . . . , s
}
be the current information pattern, and let γC and

γC,k be, respectively, the current set of published variables, and the current set of

10.5 Fault-Tolerant Control by Information Pattern Reconfiguration 507

variables subscribed by subsystem Σk (meaning that zC,k = yk ∪ γC,k). One has
γC,k ⊆ γC, k = 1, . . . , s but from Eq. (10.20) it follows that for the cost of pub-
lishing the variables γC, the largest sets of recoverable configurations are obtained
with the subscriptions γC,k = γC, k = 1, . . . , s. However, it is worth to remark that
in order to recover a given configuration, there is no obligation for all subsystems to
subscribe to all the published variables γC.

The set of wider information patterns. As opposed to distributed diagnosis, only
subsets of measurements are published for distributed fault-tolerant control. There-
fore, in the publisher/subscriber scheme, any information pattern wider than ZC
is associated with the publication of a subset of variables in y\γC. It follows that
W (ZC) is the lattice 2 y\γC . Note that the minimal elements inW (ZC) are the first
ones found when exploring 2 y\γC by increasing levels (indeed they are associated
with the minimal sets of measurements to be published in addition to those already
present in ZC).

Example 10.8 Information pattern reconfiguration in the publisher/subscriber
scheme
Let y1, y2, y3, y4 be the local measurements associated with a system composed of four sub-
systems. In the information pattern ZC = {(y1, y2), y2, (y1, y3),
(y2, y4)}, the published variables are {y1, y2}. However, Z = {(y1, y2), (y1, y2), (y1,
y2, y3), (y1, y2, y4)} is wider and has the same communication cost. Assume ZC is the cur-
rent information pattern and a fault that is not recoverable under ZC, but is recoverable under
Zmax occurs. Then, a subset of solutions to the information pattern reconfiguration problem
is generated by considering

W (ZC) = {Z (γ) : k = 1, . . . , 4, zk = zC,k ∪ γ, γ ⊆ y3 ∪ y4
}
.

Note that any information pattern in W (ZC) is obtained by publishing one subset of {y3, y4}
in addition to the variables already published in ZC. Note also that W (ZC) is a subset of
W (Zmin) because any ZC ∈ Z is wider than Zmin. Finally, note that W (Zmin) can be
determined off-line, since the set of publishable data is nothing but the lattice of the sensors
subsets. This lattice is displayed in Fig. 10.8, where ∅ corresponds to Zmin (no data are
published), while 1234, which stands for {y1, y2, y3, y4}, is associated withZmax (all sensor
outputs are published). Since {y1, y2} are currently published in ZC (so ZC is represented by
node 12), W (ZC) is the sub-lattice with grey nodes. �

10.5.4 Bilateral Communication Scheme

The set of wider information patterns. LetAC characterise the current set of agree-
ments, leading to the equivalence classes E (AC) = {

EC,l, l = 1, . . . ,σ
}
, and the

current information patternZC = {
ZC,k, k = 1, . . . , s

}
. Awider information pattern

can only be obtained by establishing a set of agreements whose graphAW is such that
AC ⊂ AW. This results in the equivalence classes E (AW) = {

EW,k, k = 1, . . . , ρ
}

where ρ < σ such that each class of E (AW) is equal to one class of E (AC), or is the

508 10 Distributed Fault Diagnosis and Fault-Tolerant Control

12 13 14 23 24 34

1234

134

1 2

123 124 234

3 4

Φ

Fig. 10.8 Publishable sets of data

union of several classes of E (AC). The set W (ZC) of information patterns wider
than ZC is then

W (ZC) ={ZW = {
zW,i, i = 1, . . . , s : Σi ∈ EW,k −→ zW,i = z

(
EW,k

)
,∀AW ⊃ AC

}}
.

Hierarchical decomposition. In order to construct W (ZC), remark that sets of
agreements and system decompositions are related. Indeed, given a set of agreements
A and the equivalence classesE (A) = {El, l = 1, . . . ,σ}, all the subsystems in class
El share the same information, and therefore they constitute one (high-level) subsys-
temΣ (El), l = 1, . . . ,σ whose state x (El) and control u (El) are the concatenation
of the local states {xi , Σi ∈ El} and controls {ui , Σi ∈ El}. Since E (A) is a partition
of Σ into σ ≤ s classes, the decomposition of Σ defined by {Σ (El), l = 1, . . . ,σ}
is coarser than {Σi , i = 1, . . . , s}, meaning that every subsystem Σi is included in
one and only one Σ (El).

It follows that there is a one to one correspondence between the set of all bilateral
agreements and a hierarchy H of decompositions of Σ .

Definition 10.7 (Hierarchy of decompositions) A hierarchyH is a set of decompo-
sitions ofΣ organised into levelsHσ that contain decompositions into σ subsystems.
LevelH1 is the overall system,while levelHs is {Σi , i = 1, . . . , s}, called the atomic
decomposition. Two decompositions E0 and E1 that belong to two adjacent levelsHσ

10.5 Fault-Tolerant Control by Information Pattern Reconfiguration 509

and Hσ−1 contain the same subsystems, except for one subsystem in E1 that is the
union of two subsystems in E0.

Figure10.9 illustrates two possible hierarchies for the decomposition of a system
with four subsystems. Each subsystem is represented by its index, for example, 1
stands forΣ1 while 34 represents the union of the two subsystemsΣ3∪Σ4 and 1234
stands for the overall system ∪i=1,...,4Σi .

Based on the correspondence between bilateral agreements and decomposition
hierarchies, it follows that the minimal elements of W (ZC) are associated with
the first decompositions found when exploring the hierarchy by decreasing levels
(indeed, they concern the minimum sets of variables shared between subsystems in
addition to the variables already shared in the previous step).

Example 10.9 Information pattern reconfiguration in the bilateral agreements
scheme
Figure10.10 displays the hierarchy associated with all possible information patterns under
bilateral agreements, for the four subsystems’ example.The atomicdecomposition {Σ1,Σ2,Σ3,

Σ4} is abbreviated as 1, 2, 3, 4, while 1234 stands for the overall system ∪i=1,...,4Σi , and
14, 23 represent the decomposition into two subsystems Σ1 ∪ Σ4 and Σ2 ∪ Σ3. Assum-
ing the current information pattern is ZC = {(y1, y3), y2, (y1, y3), y4} (represented by the
nodes 13, 2, 4 with a bold contour in Fig. 10.10), the white sub-lattice shows the set W (ZC)

under the bilateral agreements communication scheme. The minimal elements are (123, 4),
(134, 2) and (13, 24). The figure also shows the three hierarchies associated with the three
paths between the node (13, 2, 4) associated with the current information pattern and the node
(1234) associated with the maximal information pattern. �

Example 10.10 Information pattern reconfiguration
Figure10.7 displays the non-recoverable configurations under the local information pattern
associated with the decentralised control of the system in Example10.1. Applying Theo-
rem10.3, it can be checked that some configurations that are non-recoverable under the local
information pattern become recoverable by an information pattern extension.

12 3

1234

12 3 4

1 32

12 34

1234

32

Levels of the hierarcy

1
(whole system)

2

3

4
(atomic decomposition)

4

4

123 4

4 1

Fig. 10.9 Two possible decomposition hierarchies

510 10 Distributed Fault Diagnosis and Fault-Tolerant Control

134, 2

12, 3, 4 13, 2, 4 14, 2, 3 1, 23, 4 1, 24, 3 1, 2, 34

1234

12, 34

1, 2, 3, 4

123, 4 124, 3 13, 24 14, 23 1, 234

1 3 4 2 1 3 2 41 3 2 4

Fig. 10.10 Information patterns under bilateral agreements for four subsystems

Let us focus, for example, on configuration 1345 which is recoverable under a reconfig-
ured information pattern. The publication of y2 leads to the reconfigured information pattern
Z1345 = {(y1, y2), y2, (y2, y3), (y2, y4)} under which there exists a reconfigured distributed
control of the form:

u1 = k11y1 + k12y2
u3 = k32y2

u4 = k42y2 + k43y3
u5 = k52y2 + k54y4.

(10.21)

It can indeed be checked that the reconfigured control laws,

u1 = 9.6660y1 + 8.3264y2
u3 = 0.6995y2
u4 = 2.9872y2 + 13.8406y3
u5 = 1.7713y2 + 2.0056y4,

allows the system to be recovered after the fault. However, it is interesting to remark that the
solution ofEq. (10.21) is not unique. Indeed, Eq. (10.22) exhibits another solution, such that k42
and k52 are both equal to zero, meaning that Σ2, Σ3 and Σ4 still work in a decentralised way.
This illustrates the fact that while Z1345 is the most efficient information pattern associated
with the publication of y2 as noted in the presentation of the publisher/subscriber scheme
(Optimal subscriptions), solutions based on narrower information patterns might also exist.
Clearly, the publication of y2 is necessary for configuration 1345 to become recoverable, but
that does not mean that all subsystems have to subscribe to the newly published variable y2:

10.5 Fault-Tolerant Control by Information Pattern Reconfiguration 511

u1 = 9.8167y1 + 8.800y2
u3 = 0.7470y2
u4 = 9.2974y3
u5 = 9.1418y4.

(10.22)

On another hand, should the bilateral communication scheme be of interest, the hierarchy of
Fig. 10.10 suggests the reconfigured information pattern Z1345 = {(y1, y2), (y1, y2), y3, y4}
which results in an admissible controller:

u1 = 9.5717y1 + 8.0028y2
u3 = 4.8538y1 + 1.4189y2

u4 = 8.4352y3
u5 = 18.3147y4. �

(10.23)

10.5.5 Extensions

Several extensions of the information pattern reconfiguration frame can be consid-
ered. The simplest one addresses sensor (or general system component) faults, since
only actuator faults (hence actuator configurations) have been considered up to now.
Other extensions address optimality issues in the information pattern reconfigura-
tion process, namely the selection of an optimal information pattern reconfiguration
from the point of view of the communication cost and the more complex issue of
minimising the reconfiguration effort.

Sensor faults. Only actuator faults have been considered up to now, for the sake of
simplicity. It is easy to see that sensor faults (more generally system components
faults) can easily be dealt with in the reconfiguration strategy. Indeed, assume there
is a set JF of faulty sensors, then the available sensors are JN = J\JF (note that faults
in the communication system that prevent the measurements of some sensors to be
transmitted to the controllers that need them are also represented by this model).
The pre-fault information pattern Z = {zk, k = 1, . . . , s} becomes the post-fault
information pattern ZN = {

zk ∩ yN , k = 1, . . . , s
}
, and Zmax = {y, k = 1, . . . , s}

becomes ZNmax = {
yN, k = 1, . . . , s

}
. The fault is recoverable if and only if the

current actuator configuration IN and the current sensor configuration JN are such
that IN ∈ R (ZNmax).

Minimal communication cost. Since each Z ∈ Z (IN) is associated with the com-
munication cost com (Z,J), selecting the information pattern Z∗ such that

Z∗ = arg min
Z∈Z(IN)

com (Z,J) (10.24)

provides an optimally reconfigured information pattern with respect to the communi-
cation cost. It is easily proved, from themonotonicity of the cost function com (Z,J),
that the solutions of Eq. (10.24) belong to the set ZM (IN) of the minimal elements
of Z (IN). Following Remark10.8, sub-optimal solutions are easily obtained from

512 10 Distributed Fault Diagnosis and Fault-Tolerant Control

Z∗
sub = arg min

Z∈W(ZC)
com (Z,J) (10.25)

once the setW (ZC) has been determined.

10.5.6 Minimal Reconfiguration Effort

Let us consider again the case where the system is operating with the current subset
of actuators IC ⊆ I and the current information pattern ZC, and a fault occurs such
that the post-fault configuration IN ⊂ IC no longer belongs toR (ZC). Theorem10.3
gives a necessary and sufficient condition for the existence of a solution to the infor-
mation pattern reconfiguration problem, namely “Is there an information pattern
ZN such that IN ∈ R (ZN)?” When solutions exist, Theorem10.5 and Remark10.8
provide some practical tools to find such information patterns, whose communica-
tion cost can be minimised by solving the problem (10.24) (or (10.25)). However,
these results do not provide any characterisation of the number of subsystems whose
data or control laws have to be reconfigured, a number that clearly characterises the
reconfiguration effort. In order to address this point, wewill now consider constraints
on the possible reconfigured information patterns or the possible reconfigured control
laws.

ΣK-recoverability. We first start with the notion of ΣK-recoverability, which
addresses the number of subsystems whose available data have to be reconfigured
after the occurrence of a fault.

Definition 10.8 (ΣK-recoverability) Let ΣK = {Σk, k ∈ K ⊆ {1, . . . , s}} be a sub-
set of subsystems. A configuration IN isΣK-recoverable if it is recoverable by recon-
figuring only the data available to the subsystems in ΣK.

Theorem 10.6 Let (IC,ZC) be the current system configuration, and assume a fault
occurs such that the resulting configuration is IN ⊂ IC. A necessary and sufficient
condition for configuration IN to be ΣK-recoverable is that IN ∈ R (ZK,max

)
where

ZK,max = ZC except for zk = y, k ∈ K.

The idea of this theorem is quite similar to the idea of Theorem10.3.

Comments.

1. Taking K = {1, . . . , s}, i.e. accepting the possibility for the data of all the sub-
systems to be reconfigured, is just the problem addressed by Theorem10.3.

2. The set of all possible subsets ΣK is the lattice 2{1,...,s}, which implies the
monotonicity property that if IN is ΣL-recoverable, and L ⊆ K , then IN is ΣK-
recoverable. It follows that theminimal subsetsΣL such that IN isΣL-recoverable,
defined by

10.5 Fault-Tolerant Control by Information Pattern Reconfiguration 513

IN ∈ R (ZL,max
)

∀K ⊂ L, IN /∈ R (ZK,max
)

can be found using a classical bottom-up algorithm on the lattice 2{1,...,s}.

Example 10.11 ΣK-recoverability
It has been seen that configuration 1345 is not recoverable under the decentralised information
pattern Zmin = {y1, y2, y3, y4} but becomes recoverable when it is reconfigured as Z1345 =
{(y1, y2), y2, y3, y4}.

Figure10.11 shows all the subsets ΣK such that configuration 1345 is ΣK recoverable.

12 13 14 23 24 34

1234

134

1 2

123 124 234

3 4

Fig. 10.11 ΣK-recoverability of configuration 1345

Remark 10.9 The ΣK-recoverability of a configuration IN means that IN becomes
recoverable if the system information pattern is reconfigured so that only the data
available to the subsystems in ΣK are reconfigured (and so are the corresponding
control laws). Although their available data remain unchanged, note that the control
parameters of the subsystems that do not belong to ΣK are allowed to change. A
stronger version of the minimal reconfiguration effort problem is set by constraining
the controls of those subsystems that do not belong to ΣK to remain unchanged. In
order to solve this problem, strong ΣK-recoverability is now defined. �

Strong ΣK-recoverability. The following notion is defined for a more detailed
analysis:

Definition 10.9 (Strong ΣK-recoverability) Let ΣK = {Σk, k ∈ K ⊆ {1, . . . , s}}
be a subset of subsystems and let u be decomposed into (uK, uK) where uK gathers
the controls of those subsystems that belong to ΣK while uK gathers the controls of

514 10 Distributed Fault Diagnosis and Fault-Tolerant Control

the other ones. A configuration IN is strongly ΣK-recoverable if it is recoverable by
reconfiguring only the data available to the subsystems in ΣK and the control laws
in uK.

Theorem 10.7 Let ΣK = {Σk, k ∈ K ⊆ {1, . . . , s}} be a subset of subsystems and
let u be decomposed into (uK, uK). Let (IC,ZC) be the current system situation,
and assume a fault occurs which results in configuration IN ⊂ IC. A necessary
and sufficient condition for configuration IN to be strongly ΣK-recoverable is that
there exists a control law vK such that (vK, uK) is admissible under ZK,max where
ZK,max = ZC except for Zk = J,∀k ∈ K.

Example 10.12 Strong ΣK-recoverability
Let us consider again configuration 1345, which is not recoverable under the decentralised
information pattern Zmin = {y1, y2, y3, y4} but becomes recoverable when it is reconfigured
as Z1345 = {(y1, y2), y2, y3, y4}. By comparing Eqs. (10.19) and (10.22), it is seen that
although the data they use were unchanged, subsystems Σ2, Σ3 and Σ4 did reconfigure the
parameters of their control laws from u3 = 4.6939y2, u4 = 0.1190y3, u5 = 3.3712y4 to
u3 = 0.7470y2, u4 = 9.2974y3, u5 = 9.1418y4. Unfortunately, there exists no solution to
the strong Σ1-recoverability problem: it is indeed impossible to recover configuration 1345
by changing only the data and the control law of subsystem Σ1. Figure10.12 displays the
result obtained when applying Theorem10.7: the white nodes are those subsets of subsystems
with respect to which actuator configuration 1345 is strongly recoverable. In other words, it
is possible to recover configuration 1345 by reconfiguring only the data sets and control laws
of those subsystems. Note that if a configuration is strongly ΣK-recoverable, then it is also
strongly ΣL-recoverable for any subset of subsystems ΣL that includes ΣK. In the figure,
the minimal subsets of subsystems such that 1345 is strongly recoverable are shown with
a bold contour. These subsystems are associated with the minimal reconfiguration effort to
recover the configuration of interest, namely the minimal number of data and control laws to
be reconfigured for its recovery to be possible. In this example, it is seen that configuration
1345 is strongly Σ2-recoverable. It can indeed be checked that the control laws,

u1 = 1.2991y1
u3 = 9.3399y1 + 6.7874y2 + 7.5774y3 + 8.4913y4

u4 = 0.1190y3
u5 = 3.3712y4

where u1, u4 and u5 are unchanged from the nominal decentralised case, satisfy theα-stability
specification.

10.6 Exercises

Exercise 10.1 Diagnosis of the two-tank system
In this exercise, we develop the complete diagnosis scheme of the two-tank system in Chap. 2,
where two level sensors h1m and h2m were implemented in addition to the flow sensor qm .
The set of constraints and unknown variables are the following:

http://dx.doi.org/10.1007/978-3-662-47943-8_2

10.6 Exercises 515

12 13 14 23 24 34

1234

134

1 2

123 124 234

3 4

Fig. 10.12 Strong ΣK-recoverability of configuration 1345

f ∪ g = {c1, c2, c3, d4, c5, c6, d7, c8, cm, ch1, ch2}
X = {

qL, qP, h1, ḣ1, h2, ḣ2, q2, q12
}
.

The correspondence with the model in Chap.2 is as follows: c1 is Eq. (2.7), c2 is Eq. (2.6),
c3 is Eq. (2.1), c5 is Eq. (2.4), c6 is Eq. (2.2) and c8 is Eq. (2.5). The measurement equations
are cm which is Eq. (2.3) and ch1, ch2 which are, respectively, the added measurements of the
two levels h1 and h2. The constraints d4 and d7, respectively, express that ḣ1 and ḣ2 are the
time derivatives of h1 and h2. The incidence matrix with respect to X is:

Σ1 qL qP ḣ1 h1 q12 h2 ḣ2 q2

c1 1 1

c2 1 1

c3 1 1 1 1

d4 1 1

c5 1 1 1

ch1 1

c6 1 1 1

d7 1 1

c8 1 1

cm 1

ch2 1

Based on the complete matching shown by the entries ①, the over-constrained subsystem
produces three residuals whose structures are

http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2
http://dx.doi.org/10.1007/978-3-662-47943-8_2

516 10 Distributed Fault Diagnosis and Fault-Tolerant Control

C (ρ1) = {c1, c2, c3, c5, ch1, ch2}
C (ρ2) = {c1, c2, c3, c6, d7, cm, ch1, ch2}
C (ρ3) = {c8, cm, ch2} .

1. What is the residuals’ signature table.
2. Themathematical constraints d4 and d7 specify that ḣ1 and ḣ2 are the derivatives of h1 and

h2.Discarding them (since they cannot be faulty), determine the system’s distinguishability
classes and draw the distinguishability table.

3. For each of the eight possible residual configurations, find the minimal hitting sets and
draw the diagnosis table. �

Exercise 10.2 Two-tank system decomposition
This exercise illustrates Remark 10.5 still with the two-tank system. Assume each tank is a
subsystem with the structures:

f 1 ∪ g1 = {c1, c2, c3, d4, c5, ch1}
x1 = {

qL, qP, h1, ḣ1, q12
}

x1 = {h2}
f 2 ∪ g2 = {c6, d7, c8, cm, ch2}

x2 = {
h2, ḣ2, q2

}
x2 = {q12} .

The global incidence matrix is decomposed as follows,

Σ1 qL qP ḣ1 h1 q12 h2

c1 1 1

c2 1 1

c3 1 1 1 1

d4 1 1

c5 1 1 1

ch1 1

Σ2 ḣ2 h2 q2 q12

c6 1 1 1

d7 1 1

c8 1 1

cm 1

ch2 1

and two complete matchings with respect to the unknown variables are shown by ①:

10.6 Exercises 517

1. How many local residuals are, respectively, provided by Σ1 and Σ2 and what are their
structures?

2. Can you explain why there are less local residuals than when considering the global
structure? �

Exercise 10.3 Coordination of local diagnosis
Consider a system inwhich there are three different estimation versions of an unknownvariable
x from the known variables u′ ∪ y′ (remember that the notation u′, y′ means u, y and a number
of their time derivatives):

x = f1
(
u′, y′) using the subset of constraints C1 = {a, b, c, d}

x = f2
(
u′, y′) using the subset of constraints C2 = {e, f }

x = f3
(
u′, y′) using the subset of constraints C3 = {b, f, g, h} .

Three residuals are obtained:

ρ1 = f1
(
u′, y′) − f2

(
u′, y′)

ρ2 = f1
(
u′, y′) − f3

(
u′, y′)

ρ3 = f2
(
u′, y′) − f3

(
u′, y′) .

1. What are the structures of the residuals?
2. What is the distinguishability table?
3. Assuming there are three subsystems that run one residual each,what are the local diagnosis

tables?
4. What is the coordinated diagnosis table? �

10.7 Bibliographical Notes

Fault-tolerant computing. Due to the increasing complexity of software applica-
tions and the increasing size of data bases, distributed computing and related reliabil-
ity issues have been an important research area in the Computer Science community.
A conceptual taxonomy of the basic concepts in the dependability of computer sys-
tems (reliability, availability, safety, confidentiality, integrity, maintainability, etc.)
is presented in [10]. Many solutions have been proposed, ranging from node-level
to system-level approaches: redundant execution of critical programmes on several
nodes, providing each node with a fail-aware ability, with the capacity of testing its
neighbours, of estimating the state of all nodes, of entering a fail-silent state [2, 101].

New problems in networked and multi-agent systems. A huge research activity
has also been triggered in the control community on large-scale control systems
distributed over networks and multi-agent systems. New theoretical problems range
from the role of the information pattern in the problem solvability [137] to the
controllability and observability analysis of networked dynamical systems [413].
Technological problems are not only connected with the controlled process (sensors,
actuators, process components faults) but also with channel limitations (packet rates,

518 10 Distributed Fault Diagnosis and Fault-Tolerant Control

sampling, delays) or channel failures (packet dropouts). The impact of such faults
on the system stability and performance is analysed in [144, 369], and a survey
of recent results on estimation, analysis and controller synthesis can be found in
[60, 146, 307]. Estimation by means of geographically distributed sensors has been
thoroughly studied using linear estimation [53, 81, 315] and Kalman filtering [1].

Analytical redundancy-based diagnosers. Although it involves signal derivatives,
the applicability of the Analytical Redundancy-based approach is well established by
observers or specific integration schemes, examples of which can be found in [350].
The logical theory of model-based FDI was developed in the artificial intelligence
community [77], and its connections with the structural analysis approach were
further analysed in [70].

Distributed diagnosis schemes. When the implementation of a global diagnoser
is not technically possible, distributed diagnosis schemes rest on assigning a part
of the global task to each subsystem/agent [74, 229]. Under specific assumptions
about the locally available models and data, the investigated problems range from
distributed estimation [53, 81, 83] and the design of a coordination process [312,
315] to robustness with respect to network uncertainties [144, 262, 360, 378], or
model uncertainties and non-linearities. Global system models are often assumed to
be available [100, 411], or local models are used along with a real-time estimator of
the interconnections [314], based on global or only locally sensed information [295].

Distributed control and fault-tolerant control. The main features underlying the
control or fault-tolerant control of distributed dynamical systems or networks of
dynamical agents are the (often unknown) interactions between subsystems/agents
and the limited amount of information available to make their local decisions. Net-
works of dynamical agents are a wide application area: [137] addresses the synthesis
of control laws via a sub-optimal algorithm, the agents coordination problem is stud-
ied in [404] and the problem of achieving a consensus under partial information is
the subject of [312]. For control systems distributed over a network, a generic fault-
tolerance strategy is proposed in [267]. Reference [260] analyses the fault accom-
modation problem under partially available information, while the reconfiguration
of the information pattern was recently shown to allow fault tolerance under some
conditions [338].

Operations research and mathematical tools. The basic tools of operations
research (task allocation problem) and lattices that are used in this chapter can be
found in [73, 382].

Part III
Discrete-Event Systems

Chapter 11
Fault Diagnosis of Discrete-Event Systems

Abstract This chapter presents diagnostic methods for discrete-event systems that
are described by deterministic, nondeterministic or stochastic automata. Based on
the solution to the state observation problem for discrete systems, the fault diagnostic
problem is solved for all model classes by observing the unknown state of the model
of the faulty systems and, hence, by deciding which model is currently consistent
with the system behaviour.

11.1 Overview of Part III

This and the next chapters are devoted to discrete-event dynamical systems whose
behaviour is described by sequences of discrete inputs and outputs. In contrast to
the preceding chapters where the continuous changes of the signals occurring in the
system have been investigated, the class of discrete-event systems is characterised
by sequences of abrupt signal changes, because the signals have a finite value set.

Discrete-event systems occur naturally in the engineering practice. If the actuators
like switches or valves can only jump between discrete positions, the input signal
is binary and the signal values 0 and 1 are associated with the closed and the open
position. Sensors may indicate that a physical quantity like the liquid level in a tank
or a voltage exceeds a prescribed bound. Alarm sensors are typical examples for such
sensors. Also the internal state of the system is often a discrete variable. For example,
a robot gripper is empty or has grasped some part, a production step prescribed by a
recipe has been carried out or not.

Whether or not a given dynamical system is considered as a discrete-event system
depends upon the purpose of the investigations. It is typical for process supervision
problems that a rather broad view on the system behaviour can be adopted which is
based on a qualitative assessment of the signal values. If the supervisor should make
a robot carry out a given sequence of movements or apply a certain recipe, then its
decisions depend on discrete signal values like those mentioned in the examples and,
hence, a discrete-event view-point is adequate. However, if signals have to remain in
a narrow tolerance band, the continuous changes of these signals have to be consid-
ered and, thus, the continuous-systems point of view used in the preceding chapters

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_11

521

522 11 Fault Diagnosis of Discrete-Event Systems

is appropriate. The alternative considerations of the tank system as a continuous-
system for level control or as a discrete system for carrying out a batch process
demonstrates the dependence of the representation level of a dynamical system upon
the task to be performed. Note that the terms “continuous” and “discrete” refer to
the signal spaces and, hence, to the different description levels. If a distinction has to
be made concerning the temporal behaviour, the notions of continuous-time systems
and discrete-time systems will be used.

As the dynamical behaviour of discrete systems is described by the changes of the
discrete signal values that are called events, such systems are said to be discrete-event
systems. However, the behaviour of such systems can be equivalently represented by
the sequence of discrete values that the input, the state and the output assume in the
considered time interval. This notation will be used here, where the kth value of the
input is denoted by v(k) and the input sequence in the time horizon k = 0 . . . ke by

V (0 . . . ke) = (v(0), v(1), . . . , v(ke)). (11.1)

Similarly, the kth value of the output is denoted by w(k) and the output sequence by

W (0 . . . ke) = (w(0), w(1), . . . , w(ke)). (11.2)

Based on this information, the diagnostic system should identify which fault f ∈ F
has occurred (Fig. 11.1). The result is, in general, a set F(ke) ⊆ F of faults rather
than a unique element of the fault set F . Note that for discrete systems also the faults
are usually considered to be discrete phenomena with the symbol f denoting a single
fault that may or may not occur in the system.

Discrete-event
system

Diagnostic algorithm

Automaton

V (0... k)

(k)

f

W (0... k)

z0

∈ F

F

Fig. 11.1 Diagnostic problem

11.1 Overview of Part III 523

Consistency-based diagnosis of discrete-event systems. The main idea for solving
the diagnostic problem is to test the consistency of the measured I/O pair with a set
{A f | f ∈ F} of models that describe the system for all fault situations f ∈ F
considered. This model will have the form of a deterministic, nondeterministic or
stochastic automaton in this chapter. As in case of continuous-variable systems, the
consistency of a pair (V (0 . . . ke), W (0 . . . ke)) of input and output sequences (11.1),
(11.2) with finite time horizon ke (in short: an I/O pair) is defined with respect to the
behaviour B f that the system subject to fault f possesses (cf. Sect. 1.3). To show the
conceptual similarity of discrete-event and continuous-variable system diagnosis,
assume that the model A f of a discrete-event system is represented by a map φ f

that associates with each initial state z0 and with every input sequence V (0 . . . ke)

the output sequence W (0 . . . ke) of the system:

W (0 . . . ke) = φ f (z0, V (0 . . . ke)). (11.3)

The behaviour is the set of all I/O pairs (V, W) of arbitrary length ke ≥ 0 that are
consistent with the model A f :

B f = {(V (0 . . . ke), W (0 . . . ke)) | W (0 . . . ke) = φ f (z0, V (0 . . . ke)); ke ≥ 0}.

Diagnosis is based on the investigation to which behaviour B f , (f ∈ F) the measured
I/O pair belongs. An I/O pair is said to be consistent with the model A f if it belongs
to the behaviour B f :

(V (0 . . . ke), W (0 . . . ke)) ∈ B f . (11.4)

In this relation, the left-hand side represents the measurement data and the right-hand
side the behaviour of the system subject to fault f as it is represented by the model
φ f . If this relation holds, the fault f is called a fault candidate. The set of all fault
candidates, which is denoted by F∗, is the best possible diagnostic result:

F∗(V (0 . . . ke), W (0 . . . ke)) = { f ∈ F | (V (0 . . . ke), W (0 . . . ke)) ∈ B f }. (11.5)

It depends upon the time horizon ke and usually shrinks with increasing horizon
because the more information about the system behaviour is obtained by measure-
ments, the more faults can be excluded from the set of fault candidates.

The main problem of fault diagnosis of discrete-event systems is, hence, the elab-
oration of methods to test the consistency of I/O pairs with a model. This chapter
develops consistency tests for systems that are described by deterministic, nondeter-
ministic and stochastic automata.

Chapter overview. The theory of discrete-event systems has been developed rather
separately with respect to the theory of continuous-variable systems. Therefore, the
state of the art is different from what is known about continuous systems. The main
theoretical results concern the modelling, analysis and supervisory control of discrete
systems, but only a few results are available for diagnosis and fault-tolerant control.

http://dx.doi.org/10.1007/978-3-662-47943-8_1

524 11 Fault Diagnosis of Discrete-Event Systems

This is the reason why Part III of this book concerns mainly the fault diagnostic
problem and presents merely preliminary results on fault control reconfiguration.

In Sect. 11.2 models of discrete-event systems are introduced. Section 11.3 gives
a survey of the solutions to the diagnostic problems, which will be dealt with in
more detail in Sects. 11.4–11.7 for deterministic, nondeterministic and stochastic
automata. The common aspect is given by the fact that all diagnostic methods are
based on state observation methods for the corresponding automata, which will be
explained first and later extended to fault detection and to fault identification.

11.2 Models of Discrete-Event Systems

11.2.1 Deterministic and Nondeterministic Systems

This section explains the basic dynamical properties of discrete-event systems and
shows how such systems can be described. It extends the brief introduction to discrete-
event modelling given in Sect. 3.6.

Discrete-valued signals. The discrete input, state and output of the system are
denoted by the symbols v, z and w (Fig. 11.2) and the elements of their discrete
value sets are enumerated as follows:

v ∈ V = {1, 2, . . . , M}
z ∈ Z = {1, 2, . . . , N }
w ∈ W = {1, 2, . . . , R}.

It is assumed that the numbers M , N or R are finite.
In order to use scalar signals, in many applications the physical variables have

to be encoded. For example, if a tank system with 4 on/off valves is considered, the
input can be represented by a 4-vector v = (v1 v2 v3 v4)

T whose i th component
describes the position of the i th valve. As each component can assume either the
value 0 or 1 in correspondence with the closed or the open position, v has one of 16
different values. These 16 values are represented in the following by a scalar input
symbol v with the value set V = {1, 2, . . . , 16}. To do so, a mapping from the set of
the 16 values of v onto the set V of the scalar input v has to be defined.

Fig. 11.2 Discrete-event
system

Discrete-event
system

wv

z

http://dx.doi.org/10.1007/978-3-662-47943-8_3

11.2 Models of Discrete-Event Systems 525

Every change of the symbolic value of v, z or w is called an event. For example,
if the state z jumps from the value j to the value i , a state event denoted by eij occurs
(Fig. 11.3). However, the models introduced in this section use the sequences (11.1)
and (11.2) of symbolic values rather then the sequences of events to characterise the
behaviour of the discrete-event system under consideration.

Logical behaviour. The events occur at the time instants tk which are enumerated
as k = 0, 1, 2, . . . (Fig. 11.3). In the following, only the number k of the event is
considered but not the actual time tk . Therefore, the models used are called untimed
or logical. They describe in which order the events occur but they say nothing about
the temporal distance of these events. Besides the sequences (11.1) and (11.2) of
inputs and outputs, the sequence of states

Z(0 . . . ke) = (z(0), z(1), z(2), . . . , z(ke))

is used to represent the logical behaviour of the system.
The motivation for using untimed models is twofold. First, the basic ideas of

diagnosis and fault-tolerant control of discrete-event systems can be explained using
untimed models, which are much simpler than timed models. Extensions of the
methods to timed models are mentioned in the bibliographical notes. Second, in
many practical circumstances, the untimed model yields the wanted results. For
example, for many discrete-event systems faults can be detected due to the change
of the order in which the events occur and no temporal information is necessary.

A further simplification is made in this chapter like in literature with respect to
the synchronisation of the input, the state and the output. It is assumed that these
events occur synchronously. That is, the state can only change if the input changes,
which, at the same time, results in a change of the output. Repetitions of the symbols
indicate that no real event occurs but a signal remains constant (Fig. 11.4). To shift
the input, state and output events to the same time point is an abstraction that is
reasonable for many applications.

Fig. 11.3 Sequences of
symbolic states and event
sequences

(t2)

z

z (t0

t0

e e32 e31 e13 e23e32 e13

t1 t2 t3 t4 t5 t6
t

k

z z

z

3

2

1

0 1 2 3 4 5 6

)

(t1) (t3)

526 11 Fault Diagnosis of Discrete-Event Systems

v

3

2

1

z

3

2

1

z

3

2

1

v

3

2

1

w

k k

3

2

1

w

3

2

1

0 0 1 2 3 45 61 2 3 456 78 9...

Fig. 11.4 Asynchronous (left) and synchronous (right) input, state and output sequences

Deterministic and nondeterministic systems. The assumed synchronous occur-
rence of the input, state and output events lead to the following “working principle”
of discrete-event systems: At time k = 0, the system is in state z(0) = z0 and obtains
the input v(0) (Fig. 11.2). The system generates the output w(0) and its state jumps
to the next value z(1). Under the next input v(1) the system changes its state from
z(1) to z(2) and so on. In this way, for given initial state z0 and input sequence
V (0 . . . ke) the discrete system follows a state sequence Z(0 . . . ke) and generates an
output sequence W (0 . . . ke).

For deterministic systems, the generated state and output sequences Z and W are
uniquely defined by z0 and V . A standard form for describing deterministic systems
is the automaton, which will be introduced in this section. It is a formalisation of the
function φ, which has been used in Eq. (11.3) to represent a model of a deterministic
discrete-event system.

For nondeterministic systems the state and output sequences are not unique but the
system may generate any sequences of the sets Z(z0, V) and W(z0, V). This non-
determinism has to be understood in the following way. The technological system
under consideration has a unique performance, because it cannot assume different
states at the same time. Hence, for a fixed initial state and a fixed input sequence, an
unambiguous state sequence Z and an unambiguous output sequence W occur. Non-
deterministic behaviour occurs if the information about the system is not sufficient to
predict these sequences unambiguously. If the system is brought into a particular ini-
tial state z0 for several times and gets the same input sequence V , then the generated
state and output sequences may differ. Hence, the model used to diagnose or control

11.2 Models of Discrete-Event Systems 527

this system has to describe some sets Z(z0, V) and W(z0, V) of possible sequences
Z and W from which the real system “selects” one sequence. Such models have the
form of nondeterministic automata, stochastic automata or Petri nets.

11.2.2 Deterministic Automata

This and the next section introduce models which can be used to describe the relation
between the initial state z(0) and the input sequence V (0 . . . ke) on the one hand
and the state sequence Z(0 . . . ke) and output sequence W (0 . . . ke) that the discrete
system generates on the other hand.

The deterministic input–output automaton (I/O automaton) is defined by a 6-tuple

A = (Z,V,W, G, H, z0)

with

• Z - set of states,
• V - set of input values (also called the input alphabet),
• W - set of output values (also called the output alphabet),
• G : Z × V → Z - state transition function,
• H : Z × V → W - output function,
• z0 - initial state.

The dynamics of the automaton are described by the functions G and H in the
following recursive way:

z(k + 1) = G(z(k), v(k)), z(0) = z0 (11.6)

w(k) = H(z(k), v(k)). (11.7)

For the initial state z0 and the input sequence V (0 . . . ke), these functions yield
the state sequence Z(0 . . . ke +1) and output sequence W (0 . . . ke). If in the later
investigations the functions G and H should be analysed, the time counter k does
not matter and the equations above are written shorter as

z′ = G(z, v) (11.8)

w = H(z, v), (11.9)

where z′ denotes the “next state” following the state z.
The diagnostic problem may be considered for situations where the initial state

z0 is known or unknown. The initial state is known, for example, if the system to
be diagnosed performs a cyclic function and the diagnostic system can be invoked
whenever the system moves through its intial state. Also in the start-up phase of a
system, the initial state is usually known and one says that the automaton is initialised.

528 11 Fault Diagnosis of Discrete-Event Systems

Knowing the initial state z0 considerably simplifies the diagnosis. If z0 is unknown, a
state observation problem is included in the diagnostic problem, which makes the
overall problem much more involved. Then it is assumed that a set Z0 of possible
initial states is known (with Z0 = Z as the trivial assumption). Both situations will
be considered in this chapter.

Automaton graph. A nice graphical interpretation of an automaton is the automaton
graph, whose vertices depict the states z ∈ Z and whose edges show how the
state of the automaton can change (Fig. 11.5). Every directed edge represents a state
transition described by Eq. (11.8) together with the output that is generated according
to Eq. (11.9). In part (b) of the figure, the state transitions belonging to the input
v = 2 are drawn by dashed arrows to illustrate the influence of the input upon the
state transitions. The initial state is marked by an arrow not emerging from any other
vertex. For a given initial state z0 and input sequence V , the dynamical behaviour of
the automaton is represented by the path through the automaton graph that starts in
the vertex z0 and whose edges are associated with the input prescribed by V .

The automaton is deterministic because the state and the input unambiguously
determine the edge to follow in the automaton graph and, hence, the successor state
and output. For example, if the automaton in Fig. 11.5 is in state 3, depending on
the input v ∈ {1, 2} the automaton goes either towards state 4 or towards 5. In this
example, in both cases it generates the output 2.

Automaton map and behaviour. The automaton map

φ : Z × V∗ → W∗

associates with each initial state z0 ∈ Z and input sequence V (0 . . . ke) ∈ V∗ the
output sequence W (0 . . . ke) ∈ W∗ of the automaton, which is obtained by applying
Eqs. (11.46), (11.47) for z(0) = z0:

W (0 . . . ke) = φ(z0, V (0 . . . ke)). (11.10)

z z
1

1/1

1/2

1/2

1/2

1/1
2/1

2/1

2/1

2/2

2/2

2

3

45

v/ w

(a) (b)

′

Fig. 11.5 Automaton graph of a deterministic automaton

11.2 Models of Discrete-Event Systems 529

V∗ and W∗ denote the sets of arbitrary sequences V (0 . . . ke) or W (0 . . . ke) of any
length ke that can be built using the input or output symbols of V or W , respectively.
The automaton map shows that an I/O pair (V, W) is consistent with an automaton
if and only if the relation (11.10) holds.

The behaviour of an initialised automaton (A, z0) is the set of all I/O pairs (V, W)

that can be generated by the automaton map φ:

B = {(V (0 . . . ke), W (0 . . . ke)) | W (0 . . . ke) = φ(z0, V (0 . . . ke)); ke ≥ 0}.

In applications, usually not the automaton map φ, but the functions G and H are
used to carry out the consistency test included in the diagnostic problem. Therefore,
it is important to represent the behaviour B in terms of G and H . Obviously, the
relation (11.10) holds if there exists a state sequence

Z(0 . . . ke) = (z(0), z(1), . . . , z(ke))

that satisfies for the given input sequence V (0 . . . ke) the relation (11.6) and for which
the outputs generated by Eq. (11.7) coincides with the output sequence W (0 . . . ke):

B = {(V (0 . . . ke), W (0 . . . ke)) | ∃Z(0 . . . ke) : z(k + 1) = G(z(k), v(k)),

w(k) = H(z(k), v(k))}. (11.11)

11.2.3 Nondeterministic Automata

In the nondeterministic automaton

N = (Z,V,W, Ln,Z0)

the functions G and H occurring in the deterministic automaton are replaced by the
function

Ln : Z × W × Z × V → {0, 1}

that describes for every state z and input v which successor state z′ can be assumed
while generating the output w. This function represents the behaviour of the automa-
ton in terms of all 4-tuples (z′, w, z, v) that are consistent with the automaton and
form the set

R(Ln) = {(z′, w, z, v) : Ln(z
′, w, z, v) = 1} ⊆ Z×W×Z×V. (11.12)

As the set (11.12) is, mathematically, a relation, the function Ln is called behavioural
relation of the nondeterministic automaton.

530 11 Fault Diagnosis of Discrete-Event Systems

For nondeterministic automata, the initial state is usually assumed to belong to
a set Z0 of possible initial states. However, in some particular situations, the initial
state z0 may be unambiguously known.

The description of the dynamical behaviour of a nondeterministic automaton
differs from that of a deterministic automaton given by Eqs. (11.6) and (11.7). Instead
of a unique successor state z′ and output w, the behavioural relation Ln yields, for
the current state z(k) and input v(k), the following sets of possible successor states
and output values:

Z ′(z(k), v(k)) = {z′ : ∃w ∈ W such that Ln(z
′, w, z(k), v(k)) = 1} (11.13)

W(z(k), v(k)) = {w : ∃z′ ∈ Z such that Ln(z
′, w, z(k), v(k)) = 1}. (11.14)

Figure 11.6 depicts a part of the automaton graph of a nondeterministic automaton.
It shows that for the input v = 1, the state may change from 1 towards 2 or towards
10, whereas for v = 2 only the state transition 1 → 2 can occur. The state change
from 1 to 10 may either cause the output w = 1 or the output w = 2. Examples for
the sets defined in Eqs. (11.13) and (11.14) are the following:

Z ′(1, 1) = {2, 10}
W(1, 2) = {2}.

If the behavioural relation Ln associates with each pair z, v a unique successor
state z′ and output w it can be represented by a state transition function G and an
output function H and the nondeterministic automaton becomes deterministic.

The behaviour B of the nondeterministic automaton can be represented in terms
of the behavioural relation ln as follows. An I/O pair belongs to B if there exists a
state sequence

Z(0 . . . ke + 1) = (z(0), z(1), . . . , z(ke + 1))

that satisfies for the input sequence V (0 . . . ke) and the output sequence W (0 . . . ke)

the function Ln:

Ln(z(k + 1), w(k), z(k), v(k)) = 1, k = 0, 1, . . . , ke.

Fig. 11.6 Part of the
automaton graph of a
nondeterministic automaton

v=1, w=1
v=2, w=2

v=1, w=1
v=2, w=2

1

2

10

9

3

11.2 Models of Discrete-Event Systems 531

Hence, B can be represented as

B = {(V (0 . . . ke), W (0 . . . ke)) | (11.15)

∃Z(0 . . . ke + 1) : Ln(z(k + 1), w(k), z(k), v(k)) = 1, k = 0, . . . , ke}.

Markov property. Both the deterministic and the nondeterministic automaton pos-
sess an important property, which is referred to as the Markov property of these
models. This property means that the successor state z(k + 1) depends only upon
the current state z(k) and the current input v(k) but it does not depend on the whole
state sequence Z(0 . . . k) or the whole input sequence V (0 . . . k) that the automaton
has generated or obtained until time k. The Markov property makes it possible to
find the recursive relations (11.6) and (11.13) both of which are a relation between
the next state z(k + 1) and the current state z(k) and input v(k) only. In case of the
nondeterministic automaton, this relation does not determine the future state unam-
biguously, but it fixes the set of future states. Note that the set Z ′(z(k), v(k)) given
in Eq. (11.13) depends merely upon z(k) and v(k).

In applications, the question whether or not the system under investigation pos-
sesses the Markov property depends upon the definition of the state z. Roughly
speaking, if the state z includes all the information about the signals up to time k
which is necessary to determine the future behaviour of the system, then the future
state can be represented only in terms of the current state z(k) and there is no need
to refer to earlier states or input values occurring in the sequences Z(0 . . . k − 1) or
V (0 . . . k − 1). To define the state appropriately is an important modelling step.

11.2.4 Stochastic Automata

The stochastic automata introduced in this section extend the description of nonde-
terministic discrete-event systems in such a way that the frequency of the occurrence
of the different events can be assessed. They provide very useful additional infor-
mation, because nondeterministic systems often produce a large set of different state
and output sequences, but in practice these sets do by no means occur with the same
frequency. In particular, fault diagnosis has to deal with nominal state sequences that
occur (hopefully) with a very large frequency but the models have to include faulty
sequences that a system follows seldom. The model should provide information about
the frequency of occurrence.

The following explains how nondeterministic automata can be associated with
the probabilities with which the different sequences occur. First, the notion of a
stochastic process has to be introduced.

Stochastic processes. A stochastic process is a nondeterministic system for which
the state and output sequences are generated with a certain probability. Its nondeter-
minism is not only considered in terms of the sets Z ′(z0, V) and W(z0, V) defined

532 11 Fault Diagnosis of Discrete-Event Systems

in Eqs. (11.13) and (11.14) but also in terms of the frequency with which the different
elements of these sets are generated. Some of them may occur very often whereas
others occur rarely.

Capital letters V , Z and W are used to denote the random variables of the input,
state and output of the stochastic process. They are stochastic variables, that is, vari-
ables whose values are determined by chance. In every experiment, these variables
assume values from the sets V , Z or W , respectively (Fig. 11.7). As the ranges of
these variables and the time k are discrete, the process is called more precisely a
discrete stochastic process.

The stochastic automaton should describe the probability with which the system
assumes at time k the state z ∈ Z and generates the output w ∈ W

Prob(Z(k) = z), Prob(W (k) = w)

or with which the system follows a state trajectory Z(0 . . . ke). To do so, it has to
represent the generation law underlying the stochastic process, which is given by the
transition probability

Prob(Z(k + 1)= z(k + 1), W (k)=w(k) | Z(k)= z(k), V (k) = v(k)).

Representation of stochastic processes by stochastic automata. Stochastic proce-
sses with finite sets of input values, output values and states are represented by finite-
state stochastic automata

S = (Z,V,W, L , p0) (11.16)

with Z , V and W defined as before and

• L : Z × W × Z × V −→ [0, 1] - state transition probability (behavioural
relation)

• p0 - initial state probability distribution.

p0 is the set of the N probability values Prob(Z(0) = z0) for the N possible initial
states z0 ∈ Z . Hence, the automaton may start its behaviour in any state of the set

Z0 = {z0 ∈ Z : p0(z0) > 0}.

For each state z ∈ Z0 it is known with which probability Prob(Z(0) = z) = p0 this
state occurs as initial state of the system under investigation.

Fig. 11.7 Stochastic process

Stochastic
process

WV

Z

11.2 Models of Discrete-Event Systems 533

The function L represents the transition probability

L(z′, w, z, v) = Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v). (11.17)

In extension of the terminology used for the nondeterministic automaton, the function
L is called behavioural relation of the stochastic automaton. In order to indicate
that the behavioural relation is a conditional probability distribution, the symbol
L(z′, w | z, v) is used instead of L(z′, w, z, v).

The probability distribution has the properties

0 ≤ L(z′, w | z, v) ≤ 1, ∀z′, z ∈ Z, v ∈ V, w ∈ W∑
z′∈Z

∑
w∈W

L(z′, w | z, v) = 1, ∀z ∈ Z, v ∈ V (11.18)

and it leads to the two boundary distributions

G(z′ | z, v) =
∑

w∈W
L(z′, w | z, v) (11.19)

H(w | z, v) =
∑
z′∈Z

L(z′, w | z, v). (11.20)

G(z′|z, v) is called the state transition relation and H(w|z, v) the output relation of
the stochastic automaton. Due to Eq. (11.17) these relations represent the conditional
probability distributions

G(z′ | z, v) = Prob(Z(1)= z′ | Z(0)= z, V (0) = v) (11.21)

H(w | z, v) = Prob(W (0)=w | Z(0)= z, V (0) = v) (11.22)

and possess the properties

∑
z′∈Z

G(z′ | z, v) = 1 (11.23)

∑
w∈W

H(w | z, v) = 1 (11.24)

for all z ∈ Z and all v ∈ V . Note that the functions G and H defined in Eqs. (11.21)
and (11.22) include less information than the behavioural relation L because L also
reflects the stochastic dependence between z′ and w. Therefore, the following inves-
tigations refer to L rather than G and H . G is useful for problems in which only the
state sequence is considered and the output sequence ignored.

Stochastic automata for which the behavioural relation L can be reconstructed
from G and H are called stochastic Mealy automata. For them the relation

534 11 Fault Diagnosis of Discrete-Event Systems

L(z′, w | z, v) = G(z′ | z, v) · H(w | z, v)

holds for all z, z′ ∈ Z , v ∈ V and w ∈ W . For these automata, the conditional
probability distributions G and H defined in Eqs. (11.21) and (11.22) replace the
state transition function G and the output function H of the deterministic automaton
used in Eqs. (11.8) and (11.9).

The behaviour B of the stochastic automaton is the set of all I/O pairs for which
a state sequence

Z(0 . . . ke + 1) = (z(0), z(1), . . . , z(ke + 1))

exists with positive probability such that the behavioural relation L is satisfied for
all k in the time horizon considered:

L(z(k + 1), w(k) | z(k), v(k)) > 0, k = 0, 1, . . . , ke.

Hence, B can be represented as follows:

B = {(V (0 . . . ke), W (0 . . . ke)) | (11.25)

∃Z(0 . . . ke + 1) : L(z(k + 1), w(k), z(k), v(k)) > 0, k = 0, . . . , ke}.

Autonomous stochastic automaton. If the automaton has no input, it is called
an autonomous automaton. If, furthermore, the output coincides with the state, this
automaton is given by the triple

Sa = (Z, G, p0),

where G denotes the state transition relation given by Eq. (11.21) after neglecting
the input v:

G(z′ | z) = Prob(Z(1)= z′ | Z(0)= z).

Graph of stochastic automata. The automaton graph is a directed graph, whose
vertices denote the states and whose edges denote the possible state transitions.
Figure 11.8 gives an example. The edges are associated with the state transition
probability given by the value of the behavioural relation L for the pair of states
connected by the edges and for the input v obtained and the output w generated for
this state transition. The edge from state 4 towards state 5 shows the abbreviated
labels, where 1/2/1 means that the state transition occurs for the input v = 1 while
generating the output w = 2 with probability 1.

11.2 Models of Discrete-Event Systems 535

3

4

5

2 / 2 / 1
1 / 2 / 1

L(z ′= 4, w = 1 | z = 3, v = 1) = 0,5
L(z ′= 4, w = 2 | z = 3, v = 2) = 1,0

L(z ′= 5, w = 1 | z = 3, v = 1) = 0,2
L(z ′= 5, w = 2 | z = 3, v = 1) = 0,3

Fig. 11.8 Autonomous stochastic automaton

Beginning in any state z0 with Prob(Z(0) = z0) > 0, the automaton moves along
the directed edges according to the corresponding probabilities. If more than one
edge starts in a state, then all these edges can be followed which results in alternative
state and output sequences. The frequencies with which the automaton follows these
edges are described by the transition probabilities.

Example 11.1 Properties of stochastic automata
In the example shown in Fig. 11.9, the automaton may step from state 1 towards state 2 or state
10 if it obtains input v=1, but it is known to step towards state 2 if the input v=2 is applied.
Moreover, the automaton may produce either output w=1 or w=2. The behavioural relation
says that the probability to step from state 1 towards state 10 when getting the input v =1 is
0.2 if this step is associated with the output w=1 and 0.3 if w=2 occurs. The sum of 0.5 of
both values is the probability that the automaton steps from 1 to 10 under the input v=1 while
producing some output. Hence, G(10 | 1, 1) = 0.5 holds. Alternatively, the automaton may
step from 1 towards 2. It definitely does this step if it obtains input v = 2 and it is known to
produce output w=2 during this step. If the automaton gets input v=1, then the probability
to move to state 2 while generating output w=1 is 0.5.

The property (11.18) of the behavioural relation is satisfied, because for z = 1 and v = 1
the example yields

L(z ′= 2, w= 1 | z= 1, v= 1)= 0.5

L(z ′= 10, w= 1 | z= 1, v= 1)= 0.2

L(z ′= 10, w= 2 | z= 1, v= 1)= 0.3

L(z ′= 2, w= 2 | z= 1, v= 2)= 1.01

2

3

10

9

Fig. 11.9 Part of the automaton graph of a stochastic automaton with input and output

536 11 Fault Diagnosis of Discrete-Event Systems

∑
z′

∑
w

L(z′, w | z = 1, v = 1) =

= L(z′ =10, w=1 | z =1, v=1) + L(z′ =10, w=2 | z =1, v=1) +
+ L(z′ =2, w=1 | z =1, v=1)

= 0.2 + 0.3 + 0.5=1

and for z = 1 and v = 2

∑
z′∈Z

∑
w∈W

L(z′, w | z = 1, v = 2) = L(z′ =2, w=2 | z = 1, v = 2) = 1.

The state transition relation G defined in Eq. (11.19) ignores the output and considers merely
the transition between the states in dependence upon the input. For the example, the following
relations hold

G(z′ =10 | z =1, v=1) = 0.2 + 0.3 = 0.5

G(z′ =2 | z =1, v=1) = 0.5

G(z′ =2 | z =1, v=2) = 1.

They say that for the input v=1 the automaton goes from state 1 to state 2 or to state 10 with
probability 0.5, but if it obtains input v=2 the automaton is known to go towards state 2.

The output relation H defined in Eq. (11.20) says which output is produced independently
of the next state that is assumed by the automaton. For the example, the output relation has
the values

H(w=1 | z =1, v=1) = 0.7

H(w=2 | z =1, v=1) = 0.3

H(w=2 | z =1, v=2) = 1,

which means that the automaton is known to produce the output w = 2 if it obtains the input
v = 2 in state 1, but for the input v = 1 it may generate the output w = 1 with probability
0.7 and w = 2 with probability 0.3. Note that there is in general no way to reconstruct L from
given G and H as mentioned above. �

Prediction. Stochastic automata can be used to predict the behaviour of a discrete-
event system when starting from some state

z(0) = Z0 = {z ∈ Z : p0(z) > 0}

and getting the input sequence

V (0 . . . ke) = (v0, v1, . . . , vke).

For the initial state, the probability distribution is given by p0(z):

Prob(Z(0) = z) = p0(z).

11.2 Models of Discrete-Event Systems 537

If the first input symbol v0 has been obtained, the stochastic automaton carries out a

state transition z0
v0−→ z1 with z0 ∈ Z0 according to the state transition probability

G(z1 | z0):

Prob(Z(1) = z1 | v(0)) =
∑

z0∈Z0

G(z1 | z0) · Prob(Z(0) = z0).

More generally, after the input symbols up to time ke have been received, the automa-
ton is in the state zke+1 with the probability

Prob(Z(ke + 1) = zke+1 | V (0 . . . ke))

=
∑

zke ∈Z
G(zke+1 | zke) · Prob(Z(ke) = zke | V (0 . . . ke − 1)). (11.26)

Markov property. Stochastic automata describe discrete-event systems only if
several assumptions are satisfied, which are summarised now.

A discrete stochastic process is defined by the probability with which a certain
state change appears and an output symbol occurs at time k for a given sequence of
input symbols. In general, for the state z(k + 1) and the output w(k) this probability
depends on the sequence of states and the sequence of input symbols up to time k
and is thus described by the conditional probability

Prob

(
Z(k + 1)= z(k + 1),

W (k)=w(k)

∣∣∣∣∣
Z(0)= z(0), . . . , Z(k)= z(k),

V (0)=v(0), . . . , V (k)=v(k)

)
.

In the following, only those stochastic processes are considered that possess the
Markov property. For such processes, the relation

Prob(Z(k + 1)= z(k + 1), W (k)=w(k) | Z(k)= z(k), V (k) = v(k)) (11.27)

= Prob

(
Z(k + 1)= z(k + 1),

W (k)=w(k)

∣∣∣∣∣
Z(0)= z(0), . . . , Z(k)= z(k),

V (0)=v(0), . . . , V (k)=v(k)

)

holds for all k, z(k + 1), z(k), . . . , z(0), w(k), w(k − 1), . . . , w(0) and v(k), v(k −
1), . . . , v(0). It is common to say that z(k+1) and w(k) are conditionally independent
of the past variables for given z(k) and v(k). The consequence of this assumption is
the fact that the model of the system has only to include information of all single-
state transitions, which in the stochastic automaton is represented by the behavioural
relation L .

If the Markov property were not valid for a system, the model has to represent
relations over a longer time interval; for example, the information about the next
state if the system came into the current state 1 from the precessor state 5 or from
predecessor state 4.

538 11 Fault Diagnosis of Discrete-Event Systems

Furthermore, it is assumed that the process is homogeneous which means that the
transition probability does not explicitly depend on the time variable k. Whenever
the 4-tuple of successor state z′, output w, current state z and input v is considered,
the transition probability is the same. Hence, the relation

Prob(Z(k + 1)= z′, W (k)=w | Z(k)= z, V (k) = v)

= Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v) (11.28)

holds for all k. A discrete stochastic process whose generation law is described by
the state transition probability (11.28) is called homogenous Markov process with
input and output.

For describing the stochastic process by a stochastic automaton, it is assumed
furthermore that the appearance of a certain input symbol at time k is independent of
the states and of the input values that have occurred up to that time, and independent
of the time k. Therefore, the relation

Prob

(
V (k) = v

∣∣∣∣∣
Z(0) = z(0), . . . , Z(k) = z(k),

V (0) = v(0), . . . , V (k − 1) = v(k − 1)

)

= Prob(V = v) (11.29)

holds, where Prob(V = v) describes the probability with which the input symbol v

occurs. This assumption is not satisfied, for example, if the input v(k) is prescribed
by a supervisor that acts in dependence upon the measured output w(k). Then this
“feedback” needs to be included into the stochastic description of the process in order
to satisfy the assumption (11.29) which will be used in the following.

11.2.5 Model of the Faulty System

This section explains how the system representation by automata can be extended
to include information about the occurrence of a fault and the effect that the fault
has on the future behaviour of the system. In literature, two main ideas have been
followed in the past, both of which will be compared now.

Both ideas start from the interpretation of a fault as an unobservable event f .
The attribute “unobservable” means that the fault event does not directly generate a
measurement event that indicates this fault. The diagnostic method to be elaborated
should find the fault from the changes that this fault causes in the future state or
output sequences.

The first idea, which will be used later in this book, emphasises the fact that in many
technological applications a fault changes the dynamics of the system under consid-
eration. That means that the behaviour before the occurrence and after the occur-
rence of a fault f distinguishes from one another and, hence, has to be described by

11.2 Models of Discrete-Event Systems 539

different models. For example, if in a batch process a valve is blocked, the behaviour
of the process changes qualitatively because the effect of the fault may influence the
behaviour of the process at any future time.

This situation is depicted in Fig. 11.10. Part (a) of the figure shows two models,
which describe the system for the fault cases f0 and f1, where as usual f0 indicates
the faultfree situation. For shortage of notation, the I/O pairs that are represented by
the labels of the edges of the automaton graph are abbreviated here by the symbols a,
b, c and d. As long as the system is faultless, it generates I/O pairs that are repetitions
of (a, b, c, d). Hence, the left model, which is denoted by A0, is valid. After the fault
has occurred, the system behaviour is decribed by the right model, which is denoted
by A f and shows that the future I/O pairs are represented by repetitions of (b, a).

For this kind of faults, the diagnostic problem concerns the question which of
the two models represents the current behaviour of the system. Stated again in the
sense of consistency-based diagnosis, the diagnostic problem leads to the consistency
check for the measured I/O pair with respect to a set of models that is denoted by
{A f , f ∈ F}. The appearance of a fault is represented by the unobservable event,
which changes the valid model from A0 to A f .

The alternative approach is depicted in Fig. 11.11. The fault is again considered
as an unobservable event, but now such events occur as additional state transitions in
the model of the faultless system. Consequently, after the occurrence of the fault the
system behaves as before the fault. This situation is typical, for example, for computer
or control systems, where a fault event represents an erroneous modification of a data
set. The application of algorithms denoted by the labels a, b, c and d in the automaton
graph does not change, but their sequence is modified by the fault. Before and after
the fault f , the same algorithms are applied, possibly in a temporarily changed order.

(a) (b)

2
f
0

1
f
0

3
f
0

4
f
0

4
f
1

3
f
1

f
0

f
1

f

d
c

b a
a

Validity
of A

0
of A

f

Validity

ba c d a f b a d a t

tb

Fig. 11.10 Faults change the system properties

540 11 Fault Diagnosis of Discrete-Event Systems

(a) (b)
2

4

1 3

c d

a c d a b f

f

a b c d tb

Fig. 11.11 Fault interpreted as an unobservable event

In this situation, the fault has again to be found by comparing the measured I/O pair
with the model of the system, but the methods to do so differ from the methods to be
developed here because of the different assumptions on the faulty system behaviour.

Both approaches to include faulty events into the model of a system are similar, but
have been followed by different groups in literature. The similarity becomes obvious
if the fault event shown by the arrow in Fig. 11.11a between the state 1 and state 3
is introduced as a state transition between a state of the model A0 in Fig. 11.10a and
a state of the model A f . The difference of both approaches lies in the fact that in
the first approach the fault brings the state into another “region” of the state set of
the automaton that usually has a completely different structure than the state set of
the faultless behaviour.

Diagnosis as a model-selection problem. This and the next chapters follow the first
approach of fault modelling, in which the fault changes the dynamics and, hence, the
structure of the automaton graph of a system. Accordingly, the system is described
by a set of models, which is denoted by {A f , f ∈ F}, where F is the set of faults
considered. Every model has its own behavioural relation L f , where the index f
indicates the fault case. For this modelling approach, the diagnostic problem can be
stated as the problem to select the model of the current hehavior out of the model set,
(Fig. 11.12). If this model is valid for the fault f , then f is considered as a solution
to the diagnostic problem.

As the fault f changes, the dynamics of the system, the state transition function or
the behavioural relation of the model used depends upon f . If deterministic automata
are used to represent the system, the model set {A f , f ∈ F} consists of deterministic
automata

A f = (Z,V,W, G f , H f , z0),

where the state transition function G f and the output function H f depend upon the
fault f . The other components Z , V , W and z0 may also depend upon f , but to
simplify notation, it is assumed that these elements are the same for all models.

11.2 Models of Discrete-Event Systems 541

Fig. 11.12 Fault
identification as model
identification problem A0

V (0... k) W (0... k)A1

Aq

If nondeterministic automata

N f = (Z,V,W, Ln f , z0)

are used to represent the system, the behavioural relation Ln depends upon f and
these relations of different models are distinguished by the additional index f . For
stochastic automata

S f = (Z,V,W, L f , p0(z))

the state transition relation L changes with the occurrence of the fault f . The fault
appears as an additional element in the conditional probability distribution:

L f = Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v, F = f),

where F denotes the stochastic variable for the fault. In all three cases, the indices
f indicate that the corresponding functions depend upon the fault f considered.

All the given models can be used if the fault f does not change over time. This
assumption will be adopted in most parts of this chapter to elaborate the main ideas.
It does not mean that the system must be faulty from the beginning, but that the
models are set-up for the situation that the fault does not change during the online
application of the diagnostic algorithm. Of course, the algorithms developed in this
chapter can be used for changing faults, but then not all properties that are proved
for them are still valid.

Changing faults. If the diagnostic problem should be considered for changing
faults, the fault has to be interpreted as an external signal f (k) that is described by
the sequence

F(0 . . . ke) = (f (0), f (1), . . . , f (ke)). (11.30)

The models have to be extended to cope with the additional input (Fig. 11.13). In
the deterministic case, the functions G and H have now two input arguments such
that Eqs. (11.6) and (11.7) have to be replaced by

542 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.13 Fault interpreted
as an additional input

Discrete-event
system

wv

z

f

z(k + 1) = G(z(k), v(k), f (k)), z(0) = z0 (11.31)

w(k) = H(z(k), v(k), f (k)). (11.32)

For the nondeterministic automaton, the behavioural relation now describes the
behaviour of the system with the additional argument f (k) as follows:

Ln(z(k + 1), w(k), z(k), v(k), f (k)) = 1.

For stochastic automata, in the state transition probability distribution

L = Prob(Z(1)= z′, W (0)=w | Z(0)= z, V (0) = v, F(k) = f)

the fault is now a time-dependent variable.

Fault model. It is usually too general to assume that the fault may follow an arbitrary
sequence (11.30), because this would mean that the fault may change with every event
occurring. If the fault is considered as an external signal, then the kind of signals to
be considered has to be restricted by a fault model. Its usefulness should be explained
here for the stochastic automaton, but the same idea is applicable for other forms of
discrete-event models too.

The fault model
Sf = (F , Gf , p f 0) (11.33)

Fig. 11.14 Representation
of a faulty system including
a fault model

Plant model
wv

z

f

Fault model
zf

11.2 Models of Discrete-Event Systems 543

says how the fault f (k) can behave. Hence, it describes a generator of the additional
input to the plant model as depicted in Fig. 11.14. Its state set corresponds to the fault
set F and the function Gf : F ×F −→ [0, 1] describes the conditional probability
that the fault changes from f towards f ′ within one time step:

Gf(f ′ | f) = Prob(F(1)= f ′ | F(0)= f). (11.34)

If the time steps are equidistant (like in discrete-time systems), these probabilities are
closely related to the well-known measure of mean time before failure. p f 0 denotes
the probability distribution over the initial fault set.

The combination of the plant model with the fault model depicted in Fig. 11.14
results in a stochastic automaton

S̃ = (Z̃,V,W, L̃, p̃0) (11.35)

whose state set is given by
Z̃ = Z × F (11.36)

and whose behavioural relation L̃ is obtained from L and Gf according to

L̃(z′, f ′, w | z, f, v) = L(z′, w | z, f, v) · Gf(f ′ | f) (11.37)

with z, z′ ∈ Z , v ∈ V , w ∈ W and f, f ′ ∈ F . If the elements z̃ ∈ Z̃ are written as
the vector

z̃ =
(

z

f

)
, (11.38)

the behavioural relation L̃ in Eq. (11.37) can be rewritten as

L̃(z̃′, w | z̃, v) = Prob(Z̃(1)= z̃′, W (0)=w | Z̃(0)= z̃, V (0)=v)

= Prob

((
Z(1)

F(1)

)
=

(
z′

f ′

)
, W (0)=w

∣∣∣
(

Z(0)

F(0)

)
=

(
z

f

)
, V (0)=v

)

which gives L̃ the standard form of the behavioural relation of stochastic automaton.

11.3 Diagnostic Problems and Ways of Solution

This sections gives a survey of the diagnostic problems for discrete-event systems
and ways of solutions that will be explained in more detail in the remaining part of
this chapter.

The diagnostic problem can be stated in a general form as follows (Fig. 11.1):

544 11 Fault Diagnosis of Discrete-Event Systems

Diagnostic problem for discrete-event systems

Given: Model set Af , (f ∈ F)

Input sequence V (0 ... ke)

Output sequence W (0 ... ke)

Find: Set of fault candidates.

As the set of fault candidates has been defined with respect to the behaviour B f

of the model set A f , (f ∈ F) and for the three models introduced in Sect. 11.2, the
behaviour has been defined in a uniform way by Eqs. (11.11), (11.15) or (11.25),
respectively, the solution of the diagnostic problem can be found by checking the
consistency of the measured I/O pair with the model set used.

As the diagnostic problem should be solved usually online with increasing time
horizon ke = 0, 1, . . . , an important aspect of all methods developed in this and the
following chapter lies in the fact that these methods are formulated in a recursive
way in which they use the diagnostic result up to the time horizon ke to find the
result for the extended time horizon ke + 1. As the intermediate result, the last state
z(ke) or a set Z(ke) of possible states has to be stored. These intermediate results
include all information about the input sequence V (0 . . . ke) and the output sequence
W (0 . . . ke) processed so far that is relevant for the future diagnostic result. Upon
arrival of the next measured values (v(ke +1), w(ke +1)) the diagnostic unit checks
which models of the set {A f , f ∈ F} are still consistent with the extended sequences
V (0 . . . ke +1) and W (0 . . . ke +1) and updates the set of fault candidates F∗(ke +1)

accordingly.
The main ideas of the diagnostic methods will be explained for constant faults

f , but the bibliographical notes include references, in which the extension for time-
varying faults are given.

The difficulty of solving the diagnostic problem depends upon the kind of models
used and the online information included in the I/O pair. The following classifica-
tion starts with the simplest problem and shows the increase in complexity of the
diagnostic problem if the model becomes more involved.

Diagnosis of deterministic automata with state measurements. In the simplest
case, the models A f , (f ∈ F) are deterministic automata and the current state z(k)

is measurable, which means that the output w(k) coincides with the model-state z(k).
Under this strong assumptions, the consistency test of the I/O pair with a model A f

reduces to check whether the last measured state transition z(ke) → z(ke + 1) can
occur in the model A f :

z(ke + 1) = G f (z(ke), v(ke)). (11.39)

In this relation, the three signal values z(ke), v(ke) and z(ke + 1) are known and
it is checked whether these symbols satisfy the state transition function G f of the
automaton A f .

11.3 Diagnostic Problems and Ways of Solution 545

To formulate the diagnostic method for all classes of systems considered in
this chapter in a uniform way, the result of the consistency test is described
by the binary variable p f (ke), where p f (ke) = 1 indicates that the I/O pair
(V (0 . . . ke), W (0 . . . ke)) is consistent with the model A f describing the system
subject to the fault f , whereas p f (ke) = 0 shows that the I/O pair is not consistent
with this model. Consequently, the set of fault candidates is given by

F∗(ke) = { f ∈ F : p f (ke) = 1}. (11.40)

Diagnosis of deterministic automata with output measurements. The diagnostic
problem becomes more involved if the initial state z0 of the system is unknown and
if instead of the state z some output w is measured. Then the diagnostic problem
includes a state observation problem.

The diagnostic method starts with the assumption that the initial state z0 belongs
to a given set Z0. After the first I/O pair (v(0), w(0)) is known, it is tested for which

initial states z0 ∈ Z0 there exists a state transition z0
v(0)/w(0)−→ z(1) to some state

z(1) that is consistent with the state transition function G f and the output function
H f of the automaton A f . What “consistent” means can be seen in the automaton
graph, in which an edge from z0 towards z(1) with the label v(0)/w(0) has to exist.
Formulated as equations, “consistency” means that the relations

z(1) = G f (z0, v(0))

w(0) = H f (z0, v(0))

are valid.
To represent this method in a recursive way, two sets of states are introduced:

Z f (0 | − 1) = Z0

Z f (0 | 0) = {z0 ∈ Z0 : w(0) = H f (z0, v(0))}.

The set Z f (0 | − 1) represents the a-priori information about the initial state, which
has to be given as input Z0 to the diagnostic algorithm. After the I/O pair v(0), w(0))

is known, the set Z f (0 | 0) is determined, which includes all elements of Z0 for which
the output H f (z0, v(0)) generated by the automaton coincides with the measured
output w(0). Furthermore the set

Z f (1 | 0) = {z(1) = G f (z0, v(0)) : z0 ∈ Z f (0 | 0)}

can be determined, which includes all states to which the model A f can move under
the input v(0).

The set Z f (1 | 0) is used as the starting point of the second recursion step. After
the I/O pair (v(1), w(1)) has been measured, the two sets

546 11 Fault Diagnosis of Discrete-Event Systems

Z f (1 | 1) = {z(1) ∈ Z f (1 | 0) : w(1) = H f (z(1), v(1))}
Z f (1 | 0) = {z(2) = G f (z(1), v(1)) : z(1) ∈ Z f (1 | 1)}

are determined in a similar way as the sets Z f (0 | 0) and Z f (1 | 0). In general, for
each time horizon ke the following two sets are generated alternately after the I/O
pair (v(ke), w(ke)) has been measured:

Z f (ke | ke) = {z(ke) ∈ Z f (ke | ke − 1) : (11.41)

w(ke) = H f (z(ke), v(ke))}
Z f (ke + 1 | ke) = {z(ke + 1) = G f (z(ke), v(ke)) : (11.42)

z(ke) ∈ Z f (ke | ke)}.

As long as both sets are not empty, there exists a state sequence for the automaton
A f such that the automaton generates for the measured input sequence the measured
output sequence and, consequently, the I/O pair is consistent with the model A f .
Hence, the indicator p f (ke) has now to be determined as

p f (ke) =
{

1 if Z f (ke + 1 | ke) �= ∅
0 else.

(11.43)

After this indicator is known for the current time horizon ke for all models of the set
{A f , f ∈ F}, the set of fault candidates is obtained by Eq. (11.40).

Diagnosis of nondeterministic automata. For systems described by nondeterminis-
tic automata N f , (f ∈ F) the diagnostic problem includes always a state observation
problem, because even if the initial state z0 is unambiguously known, the nondeter-
minism of the automaton can produce ambiguity with respect to the current state in
each state transition. The complexity of the diagnostic problem increases due to the
nondeterminism that allows the model to associate with each state z and input v a
set of successor states z′ rather than a unique state.

For the known I/O pair (v(ke), w(ke)), the sets Z f (ke | ke) and Z f (ke + 1 | ke)

have to be determined using the behavioural relation Ln f of the nondeterministic
automaton N f according to the relations

Z f (ke | ke) = {z(ke) ∈ Z f (ke | ke − 1) :
∃z(ke + 1) : Ln f (z(ke + 1), w(ke), z(ke), v(ke)) = 1}

Z f (ke + 1 | ke) = {z(ke + 1) :
∃z(ke) ∈ Z f (ke | ke) : Ln f (z(ke + 1), w(ke), z(ke), v(ke)) = 1}.

11.3 Diagnostic Problems and Ways of Solution 547

Then the indicator p f (ke) can be found by Eq. (11.43) and the set of fault candidates
by Eq. (11.40).

Diagnosis of stochastic automata. If the system is described by stochastic automata
S f , (f ∈ F), the ambiguities of the diagnostic result can be reduced by associating
with each element of the set of fault candidates the probability

p f (ke) = Prob(f | V (0 . . . ke), W (0 . . . ke)),

which replaces the binary indicator p f (ke) of consistency used for the deterministic
or nondeterministic automaton. For the set of fault candidates the relation (11.40) is
extended to become

F∗(ke) = { f ∈ F : p f (ke) > 0}, (11.44)

but besides this set the value of p f (ke) remains important for the interpretation of the
diagnostic result. This indicator shows with which certainty each fault f ∈ F∗(ke)

is present.
The basis for determining the probability p f (ke) is again the solution of the state

observation problem, which now means to calculate the probability

Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke), f)

that the system subject to fault f can be in state z after it has obtained the input
sequence V (0 . . . ke) and generated the output sequence W (0 . . . ke). This probability
is abbreviated as p f (z, ke):

p f (z, ke) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke), f).

Similarly, the probability to be in the state z′ at time ke + 1 after having received
the input sequence V (0 . . . ke) and generated the output sequence W (0 . . . ke) is
denoted by

p′
f (z

′, ke) = Prob(Z(ke + 1) = z′ | V (0 . . . ke), W (0 . . . ke), f).

In Sect. 11.6 a recursive representation of these two probabilities will be given to
complete the consistency test and to make it possible to determine the set of fault
candidates together with the mentioned probabilities.

Outline of the diagnostic methods. The diagnostic problem will be solved for the
three classes of automata in the next sections in a uniform way. This survey has
shown that the diagnostic problem includes a state observation problem unless the
state is measurable. Therefore, the state observation problem is solved first and later
extended to fault detection and fault identification.

548 11 Fault Diagnosis of Discrete-Event Systems

11.4 Diagnosis of Deterministic Automata

11.4.1 Diagnostic Algorithm

As the diagnostic problem is very simple if the state z is measurable (cf. Eq. (11.39)),
this section is devoted to deterministic automata with outputs w. A pair (V (0 . . . ke),
W (0 . . . ke)) of input and output sequences with finite time horizon ke is called
consistent with the deterministic automaton A f if there exists a state sequence

Z(0 . . . ke + 1) = (z(0), z(1), . . . , z(ke + 1)) (11.45)

for which the relations

z(k + 1) = G(z(k), v(k)), z(0) = z0 (11.46)

w(k) = H(z(k), v(k)) (11.47)

are satisfied for k = 0, 1, . . . , ke. If the initial state z0 is known, the consistency
can be tested by simply applying Eq. (11.46) for k = 0, 1, . . . , ke to generate for the
measured input sequence (11.1) the state sequence (11.45). Then Eq. (11.47) is used
to test whether the outputs w(k) obtained by the model are identical to the elements
of the measured output sequence (11.2). If the initial state is only known to belong to
a set Z0, then the sequences of state sets described in Eqs. (11.42) and (11.43) have
to be generated and consistency means that none of them is empty.

The following algorithm summarises the diagnostic steps to be performed for
deterministic automata. The algorithm starts for ke = 0 and considers an increasing
time horizon. The newest measured I/O pair (v(ke), w(ke)) is denoted by (v̄, w̄)

in the algorithm and the state sets Z f (ke | ke) and Z f (ke + 1 | ke) by Z f or Z ′
f ,

respectively, for f ∈ F .

Algorithm 11.1 Diagnosis of deterministic automata

Given: Deterministic automata A f , (f ∈ F)

Set of initial states Z0

Initialisation: Z ′
f = Z0 for all f ∈ F

ke = 0

Loop: 1. Measure the next I/O pair (v̄, w̄).

2. Determine Z f = {z ∈ Z ′
f : w̄ = H f (z, v̄)} for all f ∈ F .

3. Determine Z ′
f = {z′ = G f (z, v̄) : z ∈ Z f } for all f ∈ F .

4. Set p f (ke) = 1 if Z ′
f �= ∅ and p f (ke) = 0 otherwise for all

f ∈ F .

11.4 Diagnosis of Deterministic Automata 549

5. Determine F∗(ke) = { f ∈ F : p f (ke) = 1}.
6. ke := ke + 1

Continue with Step 1.

Result: Set of fault candidates F∗(ke) for increasing time horizon ke

This algorithm can be applied to a large number of different models A f and to I/O
sequences of arbitrary length ke because its complexity is only linear with respect to
the number of models and the length of the sequences. The algorithm gives the best
possible result, because it determines the set of fault candidates. For every element
of the set F∗(ke), the I/O pair is consistent with the corresponding model A f up to
time ke and there is no fault in the remaining set F\F∗(ke) for which the I/O pair is
consistent with the model A f .

The diagnostic result has the following consequences. If f0 does not belong to
F∗(ke), a fault is detected with certainty. For every time horizon ke, the system may
be subject to any fault f ∈ F∗(ke).

Diagnosability of deterministic automata. An important question asks under what
conditions the diagnostic method developed so far is able to detect a fault (fault
detectability) or to unambiguously identify the fault (fault identifiability). These two
properties will be investigated in the following paragraphs. As a basis for these
investigations, the next section reviews known results on the equivalence of states of
deterministic I/O automata from [211].

11.4.2 Results on Deterministic Automata
with Equivalent States

Equivalence of states. This section considers automata with arbitrary initial states
z0. It compares the behaviour of a single automaton if this automaton starts its move-
ment in two different initial states or the behaviour of two automata with different
initial states.

Definition 11.1 (Equivalent states) Two states z and z̃ of the automaton A =
(Z,V,W, G, H) are said to be equivalent if the relation

φ(z, V) = φ(z̃, V) (11.48)

holds for all V ∈ V∗. Otherwise they are called distinguishable.

550 11 Fault Diagnosis of Discrete-Event Systems

Equivalence of the states z and z̃ is indicated by z ∼ z̃. An automaton that has no
equivalent states is called minimal.

State equivalence of two automata. Definition 11.1 can be applied to states of two
distinct automata

Ai = (Zi ,V,W, Gi , Hi) and A j = (Z j ,V,W, G j , Hj).

Analogously to Eq. (11.48), the states z ∈ Zi and z̃ ∈ Z j are said to be equivalent if
the relation

φi (z, V) = φ j (z̃, V) (11.49)

is satisfied for all V ∈ V∗. Equation (11.49) can be written in the form (11.48), in
which the same automaton map φ occurs on both sides, if the automata Ai and A j

are lumped together to get the automaton

Ā = (Z̄,V,W, Ḡ, H̄)

with

Z̄ = Zi ∪ Z j

Ḡ(z, v) =
{

Gi (z, v) if z ∈ Zi

G j (z, v) if z ∈ Z j
H̄(z, v) =

{
Hi (z, v) if z ∈ Zi

H j (z, v) if z ∈ Z j .

Denote the automaton map of Ā by φ̄. Then the states z ∈ Zi and z̃ ∈ Z j of the two
automata Ai and A j are equivalent if the relation

φ̄(z, V) = φ̄(z̃, V) (11.50)

holds. Consequently, the equivalence test described in the next paragraph for a single
automaton can also be applied for testing the equivalence of states of two automata.

Equivalence test. The equivalence test uses the following recursive equivalence
definition:

• Two states z and z̃ are said to be 0-equivalent (z
0∼ z̃), if Eq. (11.48) holds for a

single input symbol V = v. This is true if and only if the relation

H(z, v) = H(z̃, v) for all v ∈ V

is satisfied. Accordingly, the state set Z is partitioned into sets Z0
i , (i =

1, 2, . . . , q0) such that a state pair (z, z̃) belongs to the same set Z0
i if and only if

the automaton produces for every input symbol the same output for both states:

11.4 Diagnosis of Deterministic Automata 551

z, z̃ ∈ Z0
i ⇐⇒ H(z, v) = H(z̃, v) for all v ∈ V. (11.51)

The function
H∗ : Z0 × V → W

with
Z0 = {Z0

i | i = 1, 2, . . . , q0}

is introduced to associate with each state set Z0
i and input v ∈ V the output

w = H(z, v) such that Eq. (11.51) holds:

H∗(Z0
i , v) = H(z, v) for all z ∈ Z0

i , v ∈ V. (11.52)

States belonging to two different sets Z0
i and Z0

j , (i �= j) are 0-distinguishable.

• For k ≥ 0 two states z and z̃ are said to be (k + 1)-equivalent (z
k+1∼ z̃), if

Eq. (11.48) holds for all input sequences V (0 . . . l) with time horizon l ≤ k + 1.
This is true if and only if the successor states z′ = G(z, v) and z̃′ = G(z̃, v) of z
or z̃, respectively, are k-equivalent:

G(z, v)
k∼ G(z̃, v) for all v ∈ V.

Hence, the kth partition of Z into the sets Zk
i , i = 1, 2, . . . , qk is refined to get

the (k + 1)st partition of Z into the sets Zk+1
i , (i = 1, 2, . . . , qk+1) such that the

relation

z, z̃ ∈ Zk+1
i ⇐⇒ ∀v ∈ V ∃ j : G(z, v), G(z̃, v) ∈ Zk

j (11.53)

holds. The function
G∗

k : Zk+1 × V → Zk

with

Zk = {Zk
i | i = 1, 2, . . . , qk}

Zk+1 = {Zk+1
i | i = 1, 2, . . . , qk+1}

associates with each state set Zk+1
i and each input v ∈ V the set Zk

j such that
Eq. (11.53) holds. Hence, the relation

G(z, v) ∈ G∗
k(Zk+1

i , v) for all z ∈ Zk+1
i , v ∈ V (11.54)

is valid.

If states are (N − 1)-equivalent with N = |Z|, they are equivalent according to
Definition 11.1. Then the final result of the recursive state partitioning is obtained

552 11 Fault Diagnosis of Discrete-Event Systems

and denoted by symbols Zi without superscript:

Z = ∪q
i=1Zi . (11.55)

The mapping G∗
N−2 is also denoted by G∗. Usually, the refinement of the state

partitioning finishes before the (N − 1)st refinement step.
If the states z and z̃ are not k-equivalent, they are called k-distinguishable.

Lemma 11.1 (Uniqueness of the state set partition) [211] The state set parti-
tion (11.55) is unique. Two states z, z̃ belong to the same set Zi if and only if they
are equivalent.

The lemma implies that the states z, z̃ are k-equivalent if and only if they belong
to the same set Zk

i of the kth state partition. Otherwise, they are k-distinguishable.
This test is summarised in the following algorithm:

Algorithm 11.2 Partitioning of the state set into sets of equivalent states

Given: Deterministic automaton A
1. Determine the partition Z0 such that Eq. (11.51) is satisfied.

2. For k = 0, 1, . . . , N − 2, determine the partition Zk+1 such that
Eq. (11.53) holds

If Zk+1 = Zk holds, finish this step.

3. Denote the final partition obtained by Zi , (i = 1, 2, . . . , q).

Result: Partition (11.55) of the state set into sets Zi of equivalent states.

This algorithm has the complexity O(N 2), where N is the cardinality of Z .

Properties of automata with equivalent states. Consider the state sequences that an
automaton can generate starting in a pair (z, z̃) of equivalent states. An important fact

Equivalent state pairs

z z

zz

v(0)/w(0)

v(0)/w(0)

v(1)/w(1) v(k)/w(k)

v(k)/w(k)v(1)/w(1)

v(k−1)/w(k−1)

v(k−1)/w(k−1)

Fig. 11.15 State trajectories over equivalent state pairs

11.4 Diagnosis of Deterministic Automata 553

is that for all input sequences V (0 . . . ke) with arbitrary time horizon ke these two state
sequences only go over equivalent state pairs (z, z̃), (z′, z̃′) etc. (Fig. 11.15, cf. [128],
Theorem 3.3). All state transitions involved have the same I/O pair (v(k), w(k)),
(k = 0, 1, . . . , ke).

For k-distinguishable state pairs (z, z̃), there exists an input sequence V (0 . . . k)

for which the output sequences that are generated by the automaton starting in the
initial state z or z̃, respectively, are not equal:

φ(z, V (0 . . . k)) �= φ(z̃, V (0 . . . k)). (11.56)

The input sequence V (0 . . . k) for which the relation (11.56) holds is called a distin-
guishing input sequence of the state pair (z, z̃).

If the states z and z̃ are distinguishable, distinguishing input sequences have
at most N − 1 symbols. Hence, for distinguishable states the output sequences are
identical for at most N −2 symbols and the fact that the states are distinguishable can
be identified, for a reasonably chosen input sequence, in finite time. Consequently,
all further investigations can be restricted to finite input sequences V (0 . . . ke) with
ke < N − 1.

If z and z̃ are (k − 1)-equivalent but k-distinguishable, then the output sequences
W are identical up to the element w(k − 1) and there exists a distinguishing input
sequence V̄ (0 . . . k) such that the output sequences are not completely identical:

φ(z, V) = φ(z̃, V) for all V ∈ V l , l = 0, 1, . . . , k

∃ V̄ ∈ Vk+1 : φ(z, V̄) �= φ(z̃, V̄). (11.57)

An important fact is that the output sequences

W (0 . . . k) = φ(z, V̄ (0 . . . k)) = (w(0), w(1), . . . , w(k))

W̃ (0 . . . k) = φ(z̃, V̄ (0 . . . k)) = (w̃(0), w̃(1), . . . , w̃(k))

differ only in in the last element w(k):

w(0) = w̃(0)

w(1) = w̃(1)

...

w(k − 1) = w̃(k − 1)

w(k) �= w̃(k).

Therefore, the state trajectories starting in the states z and z̃ go over state pairs with
decreasing equivalence properties (Fig. 11.16).

This fact has a direct interpretation. When starting in the two initial states z or z̃
the first k elements v(0), . . . , v(k − 1) of the input sequence V̄ (0 . . . k) are used to

554 11 Fault Diagnosis of Discrete-Event Systems

(k−1) - equivalent
k - distinguishable

(k−2) - equivalent
(k−1) - distinguishable

(k−3) - equivalent
(k−2) - distinguishable

0 - equivalent
1 - distinguishable

0 - distinguishable

˜

˜

˜
z z̃

z z0

0

v(0)/w(0)

v(0)/w(0)

v(1)/w(1)

v(1)/w(1)

v(k)/w(k)

w(k) / w(k)

v(k)/w(k)

v(k−2)/
w(k−2)

v(k−2)/
w(k−2)

v(k−1)/
w(k−1)

v(k−1)/
w(k−1)

=

Fig. 11.16 State trajectories generated by a distinguishing input sequence V̄ (0 . . . k) that start in a
k-distinguishable, (k − 1)-equivalent state pair

A
i
: A

j
:

1

1
1

5 6 7 84
2 3 1

2

2

2

3

3

Fig. 11.17 Two automata

bring the system into two states z(k) or z̃(k), respectively, that are 0-distinguishable.
Hence, for these states an input symbol v(k) exists for which the outputs w(k) and
w̃(k) generated in both states are different:

w(k) = H(z(k), v(k)) �= H(z̃(k), V (k)) = w̃(k).

If the states to be tested belong to different automata with Ni of N j states, respec-
tively, the maximum length necessary to distinguish these states depends on the car-
dinality of both state sets. At most maxi, j (Ni , N j) + 1 input symbols are necessary.
Figure 11.17 illustrates this fact for two automata with 3 or 5 states. To distinguish
the states 1 and 4, an input sequence of length 6 is necessary.

11.4 Diagnosis of Deterministic Automata 555

11.4.3 Fault Detectability

Fault detection concerns the question whether or not a fault has occurred in the
system. This section deals with the question under what conditions a fault f can be
detected.

The notion of fault detectability describes the property of a system to change
its behaviour in case of a fault f in such a way that a diagnostic system, knowing
the I/O pair and the model A0 of the faultless system, can detect the fault f . The
fault is detectable only if the I/O pair (V, W) generated by the faulty system is not
consistent with the behaviour B0 of the faultless system. Since for the system subject
to fault f , the output sequence is given by W = φ f (z f 0, V), this condition can be
represented as

(V, φ f (z f 0, V)) /∈ B0. (11.58)

Note that whether or not the relation (11.58) is satisfied depends upon the input
sequence V . There may exist input sequences V such that the I/O pair generated by
the faulty system coincides with some I/O pair of the faultless system and, hence,
do not give any indication for the diagnostic system to detect the fault, whereas for
other input sequences Eq. (11.58) holds.

Hence, fault detectability has to be defined as the chance to find out the presence
of the fault. This “chance” exists if there is some input sequence such that the rela-
tion (11.58) is satisfied. This fact is the motivation for the following definition, in
which, as before, it is assumed that the faultless system is described by the initialised
automaton (A0, z00) with the automaton map φ0 and the system subject to fault f
by the initialised automaton (A f , z f 0) with the automaton map φ f .

Definition 11.2 (Fault detectability) The fault f is said to be detectable if there
exists a finite input sequence V such that the relation

(V, φ f (z f 0, V)) /∈ B0 (11.59)

holds, where B0 denotes the behaviour of the faultless system A0.

Note that the detectability of a fault f is a property of the system to change its
dynamical behaviour with respect to the faultless system A0. For a system, there
may exist detectable and undetectable faults.

Detectability test. A direct consequence of the detectability definition is described
in the following lemma:

Lemma 11.2 A fault f is detectable if and only if the behaviour B f of the system
subject to fault f is different from the behaviour B0 of the faultless system

B f �= B0. (11.60)

Condition (11.60) claims that there exists at least one I/O pair occurring for the
faulty system that does not occur for the faultless system. In Fig. 11.18 the I/O pair

556 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.18 Illustration of the
detectability
condition (11.60)

(V 1,W 1)
(V 2,W 2)

(V 3,W 3)

B0
Bf

(V1, W1) satisfies the relation (11.59). It shows that if the input sequence V1 is applied
to the faulty system, the output sequence W1 occurs and the fault can be detected
because the I/O pair (V1, W1) is not consistent with the behaviour B0 of the faultless
system. The figure also shows that the fault can only be detected for specific input
sequences. If instead of V1 the input sequence V2 is applied, the faulty system results
in the I/O pair (V2, W2) that belongs not only to B f but also to B0 and the diagnostic
system does not get any indication for the presence of the fault.

The property of fault detectability can be tested as follows:

Theorem 11.1 (Detectability criterion) The fault f is detectable if and only if the
initial states z00 and z f 0 of the deterministic automata A0 or A f , respectively, are
distinguishable.

Proof (Sufficiency:) If the initial states are equivalent, then Eq. (11.49) holds, which for the
automata considered here reads as

φ f (z f 0, V) = φ0(z00, V) for all V ∈ V∗.

Hence, the behaviours B0 and B f of the automata A0 and A f are identical, which is in
contradiction to Eq. (11.60).

(Necessity:) If the initial states are distinguishable, then there exists an input sequence V
such that the inequality

W0 = φ0(z00, V) �= W f = φ f (z f 0, V)

holds. Hence, the I/O pair (V, W f) belongs to the behaviour B f of the faulty system
but not to the behaviour B0 of the faultless system and, due to Eq. (11.59), the fault
is detectable. �

Fault detectability test. According to Theorem 11.1, the detectability of a fault f
can be tested by applying the equivalence test described in Sect. 11.4.2 to the initial
states z00 and z f 0 of the automata A0 and A f . The complexity of this test is O(N 2).

Remarks. The degree of distinguishability of the initial states z0 and z f 0 is a measure
of the length of the input sequence V for which the fault f can be detected. If both
states are k-distinguishable, a distinguishing input sequence V (0 . . . k) of length k+1
exists. A method for finding distinguishing input sequences with minimum length
will be developed in Sect. 11.4.5.

11.4 Diagnosis of Deterministic Automata 557

To solve the fault detection task necessitates only the availability of the model A0
of the faultless system. However, the information included in this model is neither
sufficient for the test of the detectability of the faults f ∈ F nor for the determination
of a distinguishing input sequence V for which Eq. (11.59) holds. For both steps it has
to be known how the behaviour of the faulty system distinguishes from the behaviour
of the faultless system. This information is included in the model set {A f | f ∈ F}.

11.4.4 Fault Identifiability

Fault identification is the task to find the fault f ∈ F that the system is subject to.
This task requires to know the whole model set {A f | f ∈ F}.

This section deals with the important question under what conditions it is possible
to identify a fault f . Fault identifiability is a system property that depends upon the
automaton maps φ f or, equivalently, upon the state transition functions G f and
output functions H f of the system for all f ∈ F , but not on the diagnostic method.

The notion of fault identifiability should describe the situation that a diagnostic
unit can be able to identify a fault after a finite number of input symbols. That is, for
the I/O pairs generated for a specific input sequence V the relations

(V, W f̃) ∈ B f̃ (11.61)

(V, W f) /∈ B f for all f �= f̃ (11.62)

should hold for some fault f̃ . Like fault detectability, the possibility to find the fault
depends upon a reasonable choice of the input sequence V .

Figure 11.19 illustrates this situation for a system with the fault set F = {0, 1, 2}.
For every fault case f ∈ F , there exists an input sequence denoted by V f , (f ∈ F)
such that the output sequence

W f = φ(z f 0, V f)

Fig. 11.19 Illustration of
fault identification

(V 1,W 1)

(V 2,W 2)

(V 3,W 3)

B0
B1

B2

558 11 Fault Diagnosis of Discrete-Event Systems

generated by the system subject to fault f results in an I/O pair (V f , W f) that only
belongs to the behaviour B f relevant to this fault and not to the behaviour of the other
fault cases. If the system gets this input sequence, the fault f can be unumbiguously
identified.

Definition 11.3 (Fault identifiability) Consider a system that is described by a set
{A f | f ∈ F} of deterministic automata. The fault f̃ is called identifiable, if there
exists an input sequence V such that Eqs. (11.61) and (11.62) hold with W f =
φ f (z f 0, V) and, hence, the set of fault candidates is a singleton: F∗(V, W) = { f̃ }.
Identifiability test. Before stating the identifiability criterion, the fault identification
task is reformulated. Fault identification can be considered as the task to decide for a
given I/O pair (V, W) which component A f of the model set {A f | f ∈ F} generates
for the input sequence V the output sequence W . The overall model

Ā = (Z̄,V,W, Ḡ, H̄),

which includes the behaviour of all models A f , (f ∈ F) is obtained as follows:

Z̄ = ∪ f ∈FZ f (11.63)

Ḡ(z, v) = G f (z, v) if z ∈ Z f (11.64)

H̄(z, v) = H f (z, v) if z ∈ Z f . (11.65)

It is initialised with one of the initial states z f 0:

z̄ ∈ Z̄0 = {z f 0 | f ∈ F}. (11.66)

For such an initial state and an input sequence V , the automaton Ā generates one of
the output sequences that the models of the set {A f | f ∈ F} can generate. Hence,
its behaviour B̄ includes the behaviour of all models A f :

B̄ = ∪ f ∈FB f .

Theorem 11.2 (Identifiability criterion) [215] Assume that all automata A f , (f ∈
F) are minimal. Then all faults f ∈ F are identifiable if the automaton Ā is minimal.

Example 11.2 System with identifiable faults
As an example, consider the model A f , (f = 0, 1, 2) shown in Fig. 11.20. The absence of
equivalent states is proved by means of the state transition function Ḡ and the output function
H̄ of the automaton Ā obtained by Eqs. (11.64), (11.65):

Ḡ =
v

z
1 2 3 4 5

1 2 1 4 3 5

2 2 1 4 3 5

, H̄ =
v

z
1 2 3 4 5

1 1 2 1 1 1

2 1 2 1 2 1

11.4 Diagnosis of Deterministic Automata 559

Fig. 11.20 Models of three
fault cases

1/1, 2/1

1 2

3 4

5

1/1, 2/1

1/1, 2/2

1/1, 2/1

1/2, 2/2

A
0

:

A
1

:

A
2

:

The analysis of the output function H̄ results in the function H∗

H ∗
v

z Z0
1 Z0

2 Z0
3

1 3 5 2 4

1 1 1 1 2 1

2 1 1 1 2 2

=

and the sets
Z0

1 = {1, 3, 5}, Z0
2 = {2}, Z0

3 = {4}.

Note that in the table representing the function H∗, the columns belonging to all states of the
same set Z0

i are identical. For a given input v, the entry in the corresponding row represents

the value H∗(Z0
i , v). Furthermore, the function G∗ is obtained

G∗ =

v
z Z1

1 Z1
2 Z1

3 Z1
4 Z1

5

1 3 5 2 4

1 Z0
2 Z0

3 Z0
1 Z0

1 Z0
1

2 Z0
2 Z0

3 Z0
1 Z0

1 Z0
1

which proves that the automaton Ā is minimal.
To select input sequences for which the faults are identifiable, note that the automata A0

and A1 are in the initial states z00 = 1 or z01 = 3, respectively, as shown in the figure. With
the input sequence

Vdet = (1, 1)

a fault can be detected, because the output sequences

560 11 Fault Diagnosis of Discrete-Event Systems

W0det = (1, 2), W1det = (1, 1), W2det = (1, 1)

are different for the faultless case (W0det) and for the faulty cases (W1det, W2det). With the
input sequence

Vid = (1, 2)

the output sequences of the models A1 and A2 are different

W1id = (1, 2), W2id = (1, 1)

and the fault can be identified. In summary, the concatenated input sequence

V = Vdet · Vid = (1, 1, 1, 2)

yields the output sequences

W0 = W0det · W0id = (1, 2, 1, 2)

W1 = W1det · W1id = (1, 1, 1, 2)

W2 = W2det · W2id = (1, 1, 1, 1),

which unambiguously identify the fault. �

The example also shows that the length 4 = N1+N2+N3−1 of the distinguishing
input sequence V depends on the cardinality N1 + N2 + N3 of the overall model
Ā rather than on the separate cardinalities Ni of the state sets of the models Ai ,
(i = 0, 1, 2). However, the length 2 of the inputs Vdet and Vid are due to the cardinality
of pairs of submodels (2 = maxi �= j (Ni + N j) − 1).

11.4.5 Method for Determining Distinguishing
Input Sequences

The important result of the investigations of the preceding section is the fact that
for identifiable faults there exist distinguishing input sequences V with finite length
such that the pair (V, W) belongs to precisely one set B f , (f ∈ F). The question
considered in this section is how to find this input sequence:

Determination of distinguishing input sequences

Given: Deterministic automaton A with automaton map φ

State pair (z, z̃)

Find: Input sequence V such that φ(z, V) = φ(z̃, V)/

The main problem to be solved concerns the determination of the shortest input
sequence with which identifiable faults can be unambiguously identified. It should

11.4 Diagnosis of Deterministic Automata 561

Fig. 11.21 Automaton

21

4 5

3

1/0

1/0

1/0

2/1

2/1 2/1

1/1

1/1

2/12/1

become clear after a minimum number of input symbols to which behaviour B f ,
(f ∈ F) the I/O pair belongs.

The preceding section also has shown that the identification of a fault f can
be reduced to the problem of identifying the state of the automaton Ā. If the result
belongs to the state set Z f , then the fault f has been identified. As a consequence, this
section deals with the problem of finding the shortest distinguishing input sequence
for identifying the state of the automaton Ā.

Explanation of the method by an example. The solution to the problem stated
above will be explained first by considering the example automaton shown in
Fig. 11.21.

Example 11.3 Determination of distinguishing inputs
The automaton is described by the following state transition function G and output function
H :

G =
v

z
1 2 3 4 5

1 1 1 5 3 2

2 4 5 1 4 5

, H =
v

z
1 2 3 4 5

1 0 0 0 1 1

2 1 1 1 1 1

To determine 0-equivalent states the output function is analysed with the following result:

H ∗ =

Z0
1 Z0

2

1 2 3 4 5

v = 1 0 0 0 1 1

v = 2 1 1 1 1 1

562 11 Fault Diagnosis of Discrete-Event Systems

The further decomposition of the state set Z is obtained by means of the state transition
function G:

G∗
0

Z1
1 Z1

2 Z1
3

1 2 3 4 5

v = 1 Z0
1 Z0

1 Z0
2 Z0

1 Z0
1

v = 2 Z0
2 Z0

2 Z0
1 Z0

2 Z0
2

↓

G∗
1 =

Z2
1 Z2

2 Z2
3 Z2

4

1 2 3 4 5

v = 1 Z1
1 Z1

1 Z1
3 Z1

2 Z1
1

v = 2 Z1
3 Z1

3 Z1
1 Z1

3 Z1
3

↓

G∗
2 =

Z3
1 Z3

2 Z3
3 Z3

4 Z3
5

1 2 3 4 5

v = 1 Z2
1 Z2

1 Z2
4 Z2

2 Z2
1

v = 2 Z2
3 Z2

4 Z2
1 Z2

3 Z2
4

=

The result shows that the automaton does not possess equivalent states, because all state sets
obtained are singletons.

In the following, it will be shown that the sequence of results obtained when testing
the existence of equivalent states by means of Algorithm 11.2 can be used to determine
distinguishing input sequences. First consider the function H∗ defined in Eq. (11.52). The
decomposition shows that for the input v = 1 the state pairs (1, 4), (1, 5), (2, 4), (2, 5),
(3, 4), (3, 5) can be distinguished by the output that the system generates. For all six pairs,
the automaton A gives the output w = 0 if it is in the first state and the output w = 1 for the
second state. The listed state pairs are the elements of the set

Z0
1 × Z0

2 = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

These state pairs are 0-distinguishable and the distinguishing input is v = 1.
The function G∗

0 is obtained when partioning the state set Z0
1 into the sets Z1

1
and Z1

2 :
Z0

1 = Z1
1 ∪ Z1

2 .

It shows how to distinguish between the state pairs

Z1
1 × Z1

2 = {(1, 3), (2, 3)}.

11.4 Diagnosis of Deterministic Automata 563

Fig. 11.22 Determination of
the distinguishing input
sequence of 1-distinguishing
state pairs

w(1) = 0 w(1) = 1

v (1) = 1

v (0) = 1

0
1Z 0

2Z
1 2 3 4 5

0 0 0 1 1

11111

z =
v = 1
v = 2

H* =

G* =0

Z 1
1 Z 1

2 Z 1
3

1 2 3 4 5

Z 0
1 Z 0

1

Z 0
2 Z 0

2

Z 0
2 Z 0

1 Z 0
1

Z 0
1Z 0

2Z 0
2

v = 1
v = 2

z =

These state pairs are 1-distinguishable and 0-equivalent, because they belong to the same set
Z0

1 of the first decomposition and, thus, are not distinguishable without any state transition.
However, if an input sequence of length 2 is used and, hence, one state transition is caused,
these state pairs can be distinguished.

The distinguishing input sequence can be read off the decomposition by looking for a row in
the G∗

0 table with different entries for the state setsZ1
1 andZ1

2 . The entriesZ0
1 andZ0

2 in the first
row say that using the input symbol v(0) = 1 state transitions occur where the states z = 1 and
z = 2 are moved to one of the states z′ ∈ Z0

1 whereas from the state z̃ = 3 the automaton moves

towards one of the states z̃′ ∈ Z0
2 (Fig. 11.22). As the successor states belong to different sets of

0-distinguishable states, using the second input symbol v(1) = 1 the automaton gives the
output w(1) = 0 if it has started in the initial state z = 1 or z = 2; whereas it generates the
output w(1) = 1 if it has started in the state z̃ = 3. Consequently, the state pairs

(z, z̃) ∈ {(1, 3), (2, 3)}

are 1-distinguishable and a distinguishing input sequence is

V (0 . . . 1) = (1, 1).

As the final example, consider the last decomposition step of the state transition function
G, where the set Z2

1 is partitioned

Z2
1 = Z3

1 ∪ Z3
2 .

Hence, the states 1 and 2, which are the only elements of the sets Z3
1 and Z3

2 are distinguishable
after this decomposition step, which is the third one. Hence, these states are 3-distinguishable
and 4 input symbols for a distinguishing input sequence V (0 . . . 3) have to be found by re-
tracing the decomposition.

564 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.23 Determination of
the distinguishing input
sequence of 3-distinguishing
state pairs

w(3) = 0

z = 1 2

0
1

0
2

3 4 5

0 0 0 1 1
11111

v = 1
v = 2

v = 1
v = 2

H* =

G* =

G* =

w(3) = 1

v(3) = 1

v(2) = 1

v(1) = 1

v(0) = 2

Z Z

Z Z Z

Z Z Z Z

Z Z Z Z Z

v = 1
v = 2

v = 1
v = 2

0

Z Z Z
ZZZ Z

Z Z
Z

Z Z Z Z Z
ZZZZZ

Z Z Z Z Z
ZZZZZ

1
1

1
2

1
3

0
1

0
1

0
2

0
1
0
2

0
1
0
2

0
2

0
2

0
1

1
1

1
1

1
3

1
3

1
3

1
3

1
3

1
2

1
1

1
1

1 2 3 4 5

1 2 3 4 5

3
1

3
2

3
3

3
4

3
5

2
4

2
1

2
2
2
3

2
3
2
1

1 2 3 4 5
2
1

2
1
2
4

2
3

z =

z =

z =

1

G* =2

2
1

2
2

2
3

2
4

As Fig. 11.23 shows the input sequence

V (0 . . . 3) = (2, 1, 1, 1)

yields state transitions among the following state sets:

1
v(0)=2−→ Z2

3
v(1)=1−→ Z1

2
v(2)=1−→ Z0

2

2
v(0)=2−→ Z2

4
v(1)=1−→ Z1

1
v(2)=1−→ Z0

1 .

11.4 Diagnosis of Deterministic Automata 565

3
2/1

4 5
1/1 1/0 1/1

25 1
2/1 1/1 1/0 1/0

1

2

Fig. 11.24 State trajectories for determining whether the automaton is in the initial state 1 or 2

Obviously, the first three input symbols bring the automaton in a pair of 0-distinguishable
states. The last input symbol v(3) = 1 is used to get two different output symbols w(3) = 1
or w(3) = 0, where the first symbol indicates that the automaton has started its movement
in the state z(0) = 1; whereas the second symbol occurs if the automaton has had the initial
state z(0) = 2.

What the automaton really does for the distinguishing input sequence, can be determined
by means of the state transition function G and the output function H . The result is shown in
Fig. 11.24. For the first three input symbols, the output symbols generated by the automaton
are the same for both initial states. Only the last output symbol can be used as an indicator for
determining the initial state in which the automaton has started its movement. This figure has
the same structure as Fig. 11.16.

The analysis result can be summarised in the following table, which gives for all state pairs
the distinguishing input sequence and shows which last output symbol occurs for both initial
states:

z z̃ V (0 ... k) w(k) for z (0) = z w(k) for z (0) = z̃

1 2 (2, 1, 1, 1) 1 0

1 3 (1, 1) 0 1

1 4 1 0 1

1 5 1 0 1

2 3 (1, 1) 0 1

2 4 1 0 1

2 5 1 0 1

3 4 1 0 1

3 5 1 0 1

4 5 (1, 1, 1) 1 0

Note that there may be several distinguishing input sequences, but the sequences shown
here have minimum length. �

Algorithm. The method explained in the preceding section, for example automaton,
is now formalised to get an algorithm, which proceeds in two main steps:

1. The state set Z is partitioned into sets of equivalent states:

Z = ∪q
i=1Zi .

566 11 Fault Diagnosis of Discrete-Event Systems

As intermediate results, the partitions

Z = ∪qk
i=1Zk

i , k = 1, 2, . . . , N − 1

are obtained together with the functions H∗ and G∗
k , (k = 0, 1, . . . , N − 3) such

that Eq. (11.51) or (11.53) and

Zi = ZN−2
i , i = 1, 2, . . . , q

hold. If z and z̃ are not equivalent, they belong to different sets Zi and Z j (i �= j).
Otherwise, no distinguishing input sequence exists.

2. The result of the first step is evaluated backwards in the following way. First, find
the number ke for which the states z and z̃ are elements of a common set Zke−1

l

and of disjoint sets Zke
i and Zke

j , (i �= j):

ke : z, z̃ ∈ Zke−1
l and z ∈ Zke

i , z̃ ∈ Zke
j for some i �= j. (11.67)

Hence, z and z̃ are ke-distinguishable. Introduce the new symbols

Zke = Zke
i and Z̃ke = Zke

j .

Second, to find the distinguishing input sequence V (0 . . . ke) determine the input
v(ke − k) = vk for k = ke, ke − 1, . . . , 1 such that

G∗
k−1(Zk, vk) = Zk−1 �= G∗

k−1(Z̃k, vk) = Z̃k−1. (11.68)

Finally, choose the input v(ke) = v0 such that

H∗(Z0, v0) = w �= H∗(Z̃0, v) = w̃. (11.69)

The result is the distinguishing input sequence

V (0 . . . ke) = (v(0), v(1), . . . , v(ke)) = (vke , vke−1, . . . , v1, v0). (11.70)

These steps can be formally described as the following algorithm:

11.4 Diagnosis of Deterministic Automata 567

Algorithm 11.3 Determination of a distinguishing input sequence

Given: Deterministic automaton A and state pair (z, z̃)

1. Determine the sets Z0
i , (i = 1, . . . , q0) and the function H∗ accord-

ing to Eq. (11.52).

2. Determine the sets Zk
i , (k = 1, 2, . . . , N − 1, i = 1, . . . , qk) and

the functions G∗
k , (k = 1, 2, . . . , N − 2) according to Eq. (11.54).

If z and z̃ belong to the same set ZN−1
i , stop (they are not

distinguishable).

3. Determine the length ke of the distinguishing input sequence accord-
ing to Eq. (11.67).

4. For k = ke, ke − 1, . . . , 1 determine vk such that Eq. (11.68) holds.

5. Determine v0 by means of Eq. (11.69).

Result: Distinguhishing input sequence (11.70).

Theorem 11.3 (Minimum distinguishing input sequences) Algorithm 11.3 results
in a minimum distinguishing input sequence whenever the states z and z̃ are distin-
guishable.

Proof According to Lemma 11.1, the state set partition obtained by Steps 1 and 2 of the
algorithm is unique. The states z and z̃ belong to the same set Zk

i if and only if they are
k-equivalent. Hence, Eq. (11.67) ensures that the length ke of the input sequence is minimal.
Furthermore, the choice of the input symbols according to Eq. (11.68) ensures that the state
sequence ends in 0-distinguishing state sets and, finally, the output sequences generated by the
automaton A for the two different initial states z and z̃ distinguish in the last symbol w(ke).
Hence, the input sequence obtained by the algorithm is distinguishing. �

11.5 Diagnosis of Nondeterministic Automata

11.5.1 Method for Testing the Consistency of an I/O Pair
with a Nondeterministic Automaton

This section extends the diagnostic method explained in Sect. 11.4 for deterministic
automata towards nondeterministic automata

N = (Z,V,W, Ln,Z0).

568 11 Fault Diagnosis of Discrete-Event Systems

The main problems to be solved concern the new description of the system dynamics
by the behavioural relation Ln, which replaces the functions G and H of the deter-
ministic automaton, and the fact that the nondeterminism of the model brings about
ambiguities into the diagnostic result with any state transition.

The main idea is again the test of the consistency of the measured I/O pair
(V (0 . . . ke), W (0 . . . ke)) with the model N f of the system subject to fault f . As
this test is independent of the fault case, the index f is left out in the following
development of the test method. Z0 is a given set of states, in which the automaton
starts its movement.

According to the definition (11.4), an I/O pair (V, W) is consistent with a model
N if the relation

(V (0 . . . ke), W (0 . . . ke)) ∈ B

holds, where B is the behaviour (11.15) of the model N . In order to show clearly
how to carry out this test, the elements of the measured sequences are marked by a
bar:

V (0 . . . ke) = (v̄0, v̄2, . . . , v̄ke) (11.71)

W (0 . . . ke) = (w̄0, w̄2, . . . , w̄ke). (11.72)

For these representations, consistency with the model N claims that there exists a
state sequence

Z(0 . . . ke + 1) = (z0, z1, . . . , zke+1)

such that the relation
Ln(zk+1, w̄k, zk, v̄k) = 1

holds for k = 0, 1, . . . , ke and z0 ∈ Z0. Equivalently, the relation

∃Z(0 . . . ke + 1) :
ke∏

k=0

Ln(zk+1, w̄k, zk, v̄k) = 1 (11.73)

has to be valid, which can be represented by summing over all possible state
sequences:

∑
zke+1∈Z

∑
zke ∈Z

· · ·
∑

z0∈Z0

ke∏
k=0

Ln(zk+1, w̄k, zk, v̄k) ≥ 1. (11.74)

This fact is stated by the following lemma:

Lemma 11.3 The I/O pair (11.71), (11.72) is consistent with the nondeterministic
automaton N if and only if the condition (11.74) is satisfied.

11.5 Diagnosis of Nondeterministic Automata 569

Recursive test. The following presents a recursive test of the condition (11.74). The
function p(z′, ke + 1) is used as an indicator whether (p(z′, ke + 1) = 1) or not
(p(z′, ke + 1) = 0) a state sequence Z(0 . . . ke + 1) with the last element zke+1 = z′
exists for which the condition (11.73) is satisfied. This function can be determined
recursively as follows:

p′(z, 0) =
{

1 if z ∈ Z0

0 else
(11.75)

p′(z′, k + 1) =
⎢⎢⎢⎣∑

z∈Z
Ln(z

′, w̄k, z, v̄k) · p′(z, k)

⎥⎥⎥⎦ , k = 0, . . . , ke, (11.76)

where the symbol �.� signifies the replacement of any positive integer by 1:

�p� =
{

0 if p = 0

1 if p ≥ 1.

The I/O pair (11.71), (11.72) is consistent with the model N if and only if the
inequality

p̄ =
⎢⎢⎢⎣∑

z′∈Z
p′(z′, ke + 1)

⎥⎥⎥⎦ > 0 (11.77)

holds.
As a remark, it should be mentioned that the operation �.� reduces the value

of the argument to 1 in order to avoid increasing values in the sequence p(z, k),
(k = 0, 1, . . . , ke). The consistency test only distinguishes between vanishing and
non-vanishing values.

Lemma 11.4 The I/O pair (11.71), (11.72) is consistent with the model N if and only
if the condition (11.77) is satisfied, where p(z, ke + 1) is obtained by the recursion
relation (11.75), (11.76).

Proof The lemma is proved by showing that the condition (11.77) is satisfied if and only if
the condition (11.74) is satisfied, which is necessary and sufficient for the consistency. To do
so, define the function p̃(z, k) as follows:

p̃(z, 0) =
{

1 if z ∈ Z0

0 else
(11.78)

p̃(z′, k + 1) =
∑
z∈Z

Ln(z′, w̄k , z, v̄k) · p̃(z, k) k = 0, 1, . . . , ke. (11.79)

Obviously, p′(z, k) > 0 holds if and only if p̃(z, k) > 0 is valid. It will be proved now that
the equation

570 11 Fault Diagnosis of Discrete-Event Systems

p̃(zke+1, ke + 1) =
∑

zke ∈Z
· · ·

∑
z0∈Z0

ke∏
k=0

Ln(zk+1, w̄k , zk , v̄k) (11.80)

holds which proves the lemma.
The proof is done by induction. For ke = 0, Eqs. (11.78) and (11.79) yield

p̃(z1, 1) =
∑

z0∈Z
Ln(z1, w̄0, z0, v̄0) · p̃(z0, 0)

=
∑

z0∈Z0

Ln(z1, w̄0, z0, v̄0),

which is identical to Eq. (11.80) for ke = 0.
Now assume that Eq. (11.80) holds for some ke = ke

p̃(zke+1, ke + 1) =
∑

zke ∈Z
· · ·

∑
z0∈Z0

ke∏
k=0

Ln(zk+1, w̄k , zk , v̄k)

and prove that this relation is satisfied for ke = ke + 1:

p̃(zke+2, ke + 2) =
∑

zke+1∈Z
· · ·

∑
z0∈Z0

ke+1∏
k=0

Ln(zk+1, w̄k , zk , v̄k). (11.81)

A reformulation of the right-hand side of this equation results in

∑
zke+1∈Z

∑
zke ∈Z

· · ·
∑

z0∈Z0

ke+1∏
k=0

Ln(zk+1, w̄k , zk , v̄k)

=
∑

zke+1∈Z
Ln(zke+2, w̄ke+1, zke+1, v̄ke+1)

·
⎛
⎝ ∑

zke ∈Z
· · ·

∑
z0∈Z0

ke∏
k=0

Ln(zk+1, w̄k , zk , v̄k)

⎞
⎠

=
∑

zke+1∈Z
Ln(zke+2, w̄ke+1, zke+1), v̄ke+1) · p̃(zke+1, ke + 1)

= p̃(zke+2, ke + 2)

which proves Eq. (11.81). �

Test algorithm. The recursive test leads to the following algorithm:

11.5 Diagnosis of Nondeterministic Automata 571

Algorithm 11.4 Consistency test for nondeterministic automata

Given: Nondeterministic automaton N
I/O pair (11.71), (11.72)

1. Determine p′(z, 0) by Eq. (11.75)

2. Apply Eq. (11.76) for k = 0, 1, . . . , ke to determine p′(z′, ke + 1)

3. Test the condition (11.77).

Result: If and only if the condition (11.77) is satisfied, the I/O pair is consis-
tent with the model N

State observation result. As a byproduct of the consistency test, the set Z(ke + 1)

of states is obtained in which the automaton N can recide after it has accepted the
input sequence V (0 . . . ke) and generated the output sequence W (0 . . . ke). This set
is given by

Z(k + 1) = {z′ ∈ Z | p′(z′, k + 1) > 0}, k = 0, 1, . . . , ke. (11.82)

Hence, all state sequences Z(0 . . . ke) considered in the consistency tests end in a
state

z(ke + 1) ∈ Z(ke + 1). (11.83)

Corollary 11.1 The I/O pair (V (0 . . . ke), W (0 . . . ke)) is consistent with the model
N if and only if Z(ke + 1) �= ∅ holds.

To present the result of the consistency test in a similar way as for deterministic
automata, the indicator p(k) is introduced as follows:

p(ke) =
{

1 if Z(ke + 1) �= ∅
0 else.

11.5.2 Diagnostic Algorithm

The consistency test developed so far has to be applied to a set {N f | f ∈ F} of
nondeterministic automata to get a fault identification algorithm. This algorithm
works online, where the next measured I/O pair (v̄, w̄) is processed to get the sets Z
and Z ′ of possible current states z or possible future states z′, respectively, to decide
about the fault candidates. Instead of Z and Z ′, indicators p(z) and p′(z′) for the
states z, z′ ∈ Z to be elements of Z or Z ′, respectively, are determined. A model
N f is consistent with the I/O pair up to the current time horizon ke if these sets are

572 11 Fault Diagnosis of Discrete-Event Systems

non-empty, which is again represented by the indicator

p f (ke) =
{

1 if Z f (ke + 1) �= ∅
0 else.

With this information, the diagnostic algorithm for nondeterministic automata can
be formulated similarly to Algorithm 11.1 as follows:

Algorithm 11.5 Diagnosis of nondeterministic automata
Given: Nondeterministic automata N f , (f ∈ F)

Set of initial states Z0

Initialisation: p′
f (z) =

{
1 if z ∈ Z0

0 else
for all f ∈ F

ke = 0

Loop: 1. Measure the next I/O pair (v̄, w̄).

2. Determine p f (z) =
⌊∑

z′∈Z Ln(z′, w̄, z, v̄) · p′
f (z)

⌋
for all

f ∈ F .

3. Determine p′
f (z

′) = ⌊∑
z∈Z Ln(z′, w̄, z, v̄) · p f (z)

⌋
for all

f ∈ F .

4. Set p f (ke) =
⌊∑

z′∈Z p′
f (z

′)
⌋

for all f ∈ F .

5. Determine F∗(ke) = { f ∈ F : p f (ke) = 1}.
6. ke := ke + 1

Continue with Step 1.

Result: Set of fault candidates F∗(ke) for increasing time horizon ke

The sets Z f and Z ′
f of current states or future states that are necessary to decide

about the consistency can be obtained by

Z f = {z ∈ Z : p f (z) = 1}
Z ′

f = {z′ ∈ Z : p′
f (z

′) = 1}.

Algorithm 11.5 can be used to solve the following fault diagnostic tasks:

• Fault detection: If the algorithm is applied to the single model N0 describing the
faultless system, a fault is detected, if after Step 4 the relation p0(ke) = 0 holds.

11.5 Diagnosis of Nondeterministic Automata 573

• Fault identification: For a set of models N f , (f ∈ F), the algorithm yields the
set of fault candidates F∗(ke), which is the best possible diagnostic result.

Example 11.4 Fault detection of a nondeterministic automaton
Consider the nondeterministc automata N0 and N1 whose automaton graphs are depicted in
Fig. 11.25. They describe a system in the faultless case or subject to fault f = 1, respectively.

The initial state is assumed to belong to the set

Z0(0 | − 1) = {1, 2, 3, 4} and Z1(0 | − 1) = {5, 6, 7, 8},

which yields the initial value of Z ′
0 and Z ′

1 in the initialisation step of the algorithm. After
the first measurement

v(0) = 1 and w(0) = 1

has been obtained, Step 2 yields p0(z) and p1(z) for all z ∈ Z and, hence, the following sets

Z0(0 | 0) = {1, 2, 3} = Z0 and Z1(0 | 0) = {5, 6, 7} = Z1,

which represent all initial states z0 for which a state transition exists such that the nondeter-
ministic automaton generates the output w(0) = 1 for the input v(0) = 1. In the automaton
graphs this sets can be found by looking for all states z ∈ Z(0 | − 1) in which an edge starts
that is labelled with v = 1 and w = 1. Step 3 the algorithm determines the sets Z0(1 | 0) and
Z1(1 | 0) which in the notation used above coincide with the sets

Z ′
0 = {1, 2, 3, 4} and Z ′

1 = {5, 6, 7, 8}.

These are the sets of states in which the automata can be after they have generated the output
w(0) = 1 for the input v(0) = 1. As both automata are consistent with the measurement
obtained so far (p0(0)) = 1, p1(0) = 1), the set of fault candidates includes both faults:

F∗(0) = {0, 1}.

For the next measurement

1 2 3

5

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=1

6 7

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=2

4

8

v=1,
w=2

v=1,
w=3

v=1,
w=1

v=1,
w=1

N0

N1

Fig. 11.25 Automaton graph of the example

574 11 Fault Diagnosis of Discrete-Event Systems

v(1) = 1 and w(1) = 1

the Steps 2 and 3 of the algorithm yield again

Z0 = {1, 2, 3} and Z1 = {5, 6, 7}

and
Z ′

0 = {1, 2, 3, 4} and Z ′
1 = {5, 6, 7, 8}.

and for
v(2) = 1 and w(2) = 1

the same sets. An improvement of the diagnostic result is obtained after the measurement

v(3) = 1 and w(3) = 3

has been obtained, because then the results

Z0 = ∅ and Z1 = {8}

show that the measurement sequence is inconsistent with the faultless case and, thus, the set
of fault candidates only includes the single fault f = 1:

F∗(3) = {1}.

Hence, the I/O pair (1, 1, 1, 1), (1, 1, 1, 3) yields the diagnostic result that a fault has occurred
(the faultless case is inconsistent with the measurements) and that the set of fault candidates
only includes, as a single fault, the fault case f = 1. �

11.6 State Observation of Stochastic Automata

This and the next section extend the methods developed so far towards stochastic
automata

S = (Z,V,W, L , p0(z)).

The investigations are cut into two parts. In the first part described in this section, the
state observation problem is solved, which does not only yield a test for the consis-
tency of the measured I/O pair with a stochastic automaton, but also the probability
for each state to be the current state of the automaton after the I/O pair has appeared.
In the second part presented in the next section, this method is extended to determine
the probability distribution over the set F of all faults considered to get a diagnostic
result.

11.6 State Observation of Stochastic Automata 575

11.6.1 Method for Testing the Consistency of an I/O Pair
with a Stochastic Automaton

The basis for finding fault candidates is the check whether the measured I/O
pair belongs to the behaviour B, which is defined for the stochastic automaton in
Eq. (11.25). The consistency test should not only answer the question whether the
I/O pair (V, W) belongs to the behaviour B, but also with which probability this I/O
pair occurs for the automaton S. The probability information included in the behav-
ioural relation L should be used to distinguish between I/O pairs that may occur
often and those pairs that appear seldom. If this method is applied to the models
of the faulty system, it should be possible to distinguish between faults with higher
probability and rarely occurring faults.

This section extends the consistency test from nondeterministic towards stochastic
automata. As this test is independent of the fault case, the dependency of the model
upon the fault f ∈ F is omitted in this section.

The consistency test uses the representation (11.71), (11.72) of the I/O pair, where
the bar over the symbols indicate that these symbols are measured and, hence, known
in the test. The I/O pair defines the values for the stochastic variables V (k) and W (k),
(k = 0, 1, . . . , ke) that represent the current value of the input and the output signals.

An I/O pair is consistent with the model S if a state sequence

Z(0 . . . ke + 1) = (z0, z1, . . . , zke+1) (11.84)

with positive probability exists, which satisfies the relation

∃Z(0 . . . ke + 1) :
ke∏

k=0

L(zk+1, w̄k | zk, v̄k) · p0(z0) > 0. (11.85)

This inequality replaces Eq. (11.73) for the nondeterministic automaton. The last
term represents the a-priori probability of the initial state:

p0(z) = Prob(Z(0) = z).

Accordingly, Z0 = {z ∈ Z : p0(z) > 0} holds.
Analogously to Eq. (11.74) the condition (11.85) can be formulated as

∑
zke+1∈Z

∑
zke ∈Z

. . .
∑

z0∈Z

ke∏
k=0

L(zk+1, w̄k | zk, v̄k) · p0(z0) ≥ 0. (11.86)

Lemma 11.5 The I/O pair (11.71), (11.72) is consistent with the stochastic automa-
ton S if and only if the condition (11.86) is satisfied.

576 11 Fault Diagnosis of Discrete-Event Systems

Recursive solution of the state observation problem. If the condition (11.86) is
satisfied, there exists a state sequence that appears for the I/O pair (V, W) with pos-
itive probability. Hence, there is a non-empty set of states in which the automaton
S resides after this I/O pair has appeared. For the solution of the fault diagnostic
problem, it is not only necessary to know whether this set is non-empty, but also with
which probability the elements of this set appear as the possible state of the automa-
ton. The following recursive solution of the state observation problem produces this
probability distribution.

The probability of the state sequence (11.84) for the I/O pair (11.71), (11.72) is
denoted by

Prob(Z(ke) = zke , . . . , Z(0) = z0 |
V (ke) = v̄ke , . . . , V (0) = v̄0, W (ke) = w̄ke , . . . , W (0) = w̄0).

As this notation is rather complex, this probability will be abbreviated as

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke))

in the future with similar notations for other probabilities. The following lemma
shows how this probability can be determined.

Lemma 11.6 (Probability distribution of the state sequence) Consider a stochastic
automaton with initial state probability distribution p0(z) and a consistent I/O pair
(V, W). Then

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke))

=

∑
zke+1

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

∑
Z(0...ke+1)

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

(11.87)

describes the probability that the stochastic automaton has generated the state
sequence Z(0 . . . ke).

Note that the denominator in Eq. (11.87) does not vanish because the I/O pair
is assumed to be consistent and, hence, Eq. (11.86) holds. In the application of
Lemma 11.6 first the inequality (11.86) can be checked to find out whether the
I/O pair is consistent with the automaton and if this test is successful Eq. (11.87) is
applied to determine the probability distribution

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke))

for all state sequences Z(0 . . . ke) ∈ Z∗.

Proof According to Bayes’ formula, the relation

11.6 State Observation of Stochastic Automata 577

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke)) (11.88)

= Prob(Z(0 . . . ke), V (0 . . . ke), W (0 . . . ke))

Prob(V (0 . . . ke), W (0 . . . ke))

holds, where the inequality Prob(V (0 . . . ke), W (0 . . . ke)) > 0 holds because the pair (V, W)

is assumed to be consistent with the stochastic automaton. Equation (11.88) can be reformu-
lated as

Prob(Z(0 . . . ke) | V (0 . . . ke), W (0 . . . ke)) (11.89)

=

∑
zke+1

Prob(z0, . . . , zke+1, v̄0, . . . , v̄ke , w̄0, . . . , w̄ke)

∑
Z(0...ke+1)

Prob(z0, . . . , zke+1, v̄0, . . . , v̄ke , w̄0, . . . , w̄ke)
.

The probability distribution that appears in the numerator and denominator of (11.89) can be
simplified as follows:

Prob(z0, . . . , zke+1, v̄0, . . . , v̄ke , w̄0, . . . , w̄ke) = (11.90)

Prob(zke+1, w̄ke | zke , v̄ke , Z(0 . . . ke − 1), V (0 . . . ke − 1), W (0 . . . ke − 1)) ·
· Prob(zke , v̄ke , Z(0 . . . ke − 1), V (0 . . . ke − 1), W (0 . . . ke − 1)) = (11.91)

Prob(zke+1, w̄ke | zke , v̄ke) ·
· Prob(z0, . . . , zke , v̄0, . . . , v̄ke , w̄0, . . . , w̄ke−1) (11.92)

= · · · =
Prob(zke+1, w̄ke | zke , v̄ke) · (11.93)

· Prob(zke , w̄ke−1 | zke−1, v̄ke−1) ·
· . . . · Prob(z1, w̄0 | z0, v̄0) · Prob(z0, v̄0, . . . , v̄ke) = (11.94)
ke∏

k=0

L(zk+1, w̄k | zk , v̄k) · p0(z0) · Prob(v̄0, . . . , v̄ke). (11.95)

To obtain Eq. (11.91), Bayes’ formula was used. The first probability in (11.91) can be refor-
mulated as (11.92) due to the Markov property (11.27). The second probability distribution
in (11.91) and (11.92) has a similar form as (11.90). Only the state z and output w with the
highest time index have disappeared in the list of arguments. Hence, the same simplification
steps can be carried out several times until Eq. (11.94) is obtained. As z0 is independent of
v̄0, . . . , v̄ke and

Prob(Z(k + 1) = z(k + 1), W (k) = w̄k | Z(k) = zk , V (k) = v̄k) = L(zk+1, w̄k | zk , v̄k)

represents the behavioural relation of the stochastic automaton, Eq. (11.95) is obtained.
Finally, (11.87) results from inserting (11.95) into (11.89) and simplifying the resulting
expression. �

578 11 Fault Diagnosis of Discrete-Event Systems

From Lemma 11.6, the solution to the observation problem is obtained by deter-
mining the conditional probability distributions

p(z, ke) = Prob(Z(ke) = z|V (0) = v0, V (1) = v1, . . . , V (ke) = vke ,

W (0) = w0, W (1) = w1, . . . , W (ke) = wke)

p′(z′, ke) = Prob(Z(ke + 1) = z′|V (0) = v0, V (1) = v1, . . . , V (ke) = vke ,

W (0) = w0, W (1) = w1, . . . , W (ke) = wke).

They replace the binary indicators p(z, ke) and p′(z′, ke) defined in Eq. (11.76),
which have been used to show whether or not the state z, z′ ∈ Z can be assumed by
the automaton N at time ke or ke + 1 if the automaton received the input sequence
V (0 . . . ke) and generated the output sequence W (0 . . . ke).

The results are summarised in the following theorem, which is a direct conse-
quence of Lemma 11.6:

Theorem 11.4 (Solution to the observation problem) Consider a stochastic automa-
ton with the initial state probability distribution p0(z). If the I/O pair (V, W) is
consistent with the automaton, the current state probability distribution is given by

p(zke , ke) =

∑
Z(0...ke−1)

∑
zke+1

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

∑
Z(0...ke+1)

∏ke
k=0 L(zk+1, w̄k | zk, v̄k) · p0(z0)

(11.96)

and the set of current automaton states by

Z(ke | ke) = {zke : p(zke , ke) > 0}. (11.97)

Note that for time ke =0 Eq. (11.96) yields the a-posteriori probability distribution
p(z, 0), (z ∈ Z) that the automaton is in the initial state z and has generated the output

1 2 3

5

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=1, 0.2

6 7

v=1,
w=1

v=1,
w=1

v=1,
w=1

v=1, w=2, 0.5

4

8

v=1,
w=2

v=1,
w=3

v=1,
w=1

v=1,
w=1

0.3
0.5

0.5 0.5
0.5

Fig. 11.26 Automaton graph of the example

11.6 State Observation of Stochastic Automata 579

w̄0 for the input v̄0. This probability is, in general, different from p0(z), which
represents the a-priori probability distribution of the initial state. Hence, the set

Z(0 | 0) = {z ∈ Z : p(z, 0) > 0}

is different from the a-priori information about the initial state represented by

Z(0 | − 1) = {z ∈ Z : p0(z) > 0} (11.98)

and satisfies the relation
Z(0 | 0) ⊆ Z(0 | − 1).

Example 11.5 State observation of a stochastic automaton
Consider the stochastic automaton whose automaton graph is shown in Fig. 11.26 and whose
initial state is uniformly distributed:

p0(z) = 1

8
z = 1, . . . , 8.

The value of the behavioural relation L is indicated at the corresponding edges of the
automaton graph unless its value is 1 for deterministic state transitions. The automaton graph

Table 11.1 Probability distribution Prob(Z | V, W) of the example automaton

ke = 0 ke = 1 ke = 2
V (0...0) = (1) V (0...1) = (1,1) V(0...2) = (1,1,1)
W(0...0) = (1) W(0...1) = (1,1) W(0...2) = (1,1,1)

Z(0...0) Prob(Z|V,W) Z(0...1) Prob(Z|V,W) Z(0...2) Prob(Z|V,W)

(1) 0.1818 (1,1) 0.0923 (1,1,1) 0.0632
(2) 0.1818 (1,2) 0.1538 (1,1,2) 0.1053
(3) 0.1818 (1,3) 0.0615 (1,1,3) 0.0421
(5) 0.1818 (2,3) 0.3077 (1,2,3) 0.3509
(6) 0.0909 (5,5) 0.1538 (5,5,5) 0.1754
(7) 0.1818 (5,6) 0.0769 (5,5,6) 0.0877

(6,7) 0.1538 (5,6,7) 0.1754

#1 #2 #3 #4 #5 #6

ke = 3 ke = 4
V (0...3) = (1,1,1,1) V (0...4) = (1,1,1,1,1)
W(0...3) = (1,1,1,3) W(0...4) = (1,1,1,3,3)

Z(0...3) Prob(Z |V,W) Z(0...4) Prob(Z |V,W)

(5,6,7,8) 1 (5,6,7,8,8) 1

#7 #8 #9 #10

580 11 Fault Diagnosis of Discrete-Event Systems

Fig. 11.27 Observation
result

0 1 2 3 4

1

2

3

4

5

6

7

8

steps k

st
at

es

a−posteriori current state distributions

consists of two separate parts and it is interesting to see how the probability p(z, ke) distributes
over these two parts for increasing ke.

All state sequences that occur with non-vanishing probability for the input sequence

V (0 . . . 4) = (1, 1, 1, 1, 1)

and yield the output sequence

W (0 . . . 4) = (1, 1, 1, 3, 3)

are shown in Table 11.1 together with the probabilities

Prob(z0 | v̄0, w̄0), Prob (Z(0 . . . 1) | V (0 . . . 1), W (0 . . . 1)),

. . . , Prob(Z(0 . . . 4) | V (0 . . . 4), W (0 . . . 4)),

which are obtained by means of Eq. (11.87). Note that the value of

Prob(Z(0 . . . 0) | V (0 . . . 0), W (0 . . . 0)) = Prob(z0 | v̄0, w̄0)

which is shown in column #2 differs from the a-priori probability distribution p0(z) = 1
8

because this a-posteriori probability includes the information provided by the I/O pair (v̄0, w̄0).
This is the reason why the states Z(0) = 4 and Z(0) = 8, both of which are assumed by the
automaton with the a-priori probability p0(z) = 1

8 do not appear in column #1.
The state probability distribution obtained by means of Eq. (11.96) is shown in Fig. 11.27.

The probabilities are depicted in greyscale. Black rectangles symbolise a probability of one,
white rectangles a probability of zero. The set Z(ke | ke) includes all states zke with non-zero
probability (grey and black boxes):

11.6 State Observation of Stochastic Automata 581

Z(0 | 0) = {1, 2, 3, 5, 6, 7}
Z(1 | 1) = {1, 2, 3, 5, 6, 7}

...

Z(4 | 4) = {8}. �

Recursive form of the solution. For the application, the elements of the sequen-
ces V (0 . . . ke) and W (0 . . . ke) appear one after the other for ke = 0, 1, 2, . . . and
should be processed in this way. Therefore, the following recursive form of the
solution to the state observation problem is important (for a proof cf. [218]). In the
representation given, the indicator p(z, ke) denotes the probability

p(z, ke) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke))

that z is the state at time ke and p′(z′, ke) the probability

p′(z′, ke) = Prob(Z(ke + 1) = z′ | V (0 . . . ke), W (0 . . . ke))

for z′ to be the next state.

Theorem 11.5 (Recursive solution to the state observation problem) Consider a
stochastic automaton with the initial state distribution p0(z). If the I/O pair (V, W)

is consistent with the stochastic automaton, the a-posteriori state probability distri-
bution is given by the recursive relations

p(z, ke) =
∑
z′

L(z′, w̄ke | z, v̄ke) · p′(z′, ke − 1)

∑
z′,z̃

L(z′, w̄ke | z̃, v̄ke) · p′(z′, ke − 1)
, (ke ≥ 0) (11.99)

with

p′(z′, ke)=
∑
z

L(z′, w̄ke | z, v̄ke) · p′(z, ke − 1)

∑
z,z̃

L(z̃, w̄ke | z, v̄ke) · p′(z, ke − 1)
, (ke > 0) (11.100)

p′(z′,−1) = p0(z
′), (ke = 0). (11.101)

Equation (11.100) is used after the pair (V (ke) = v̄ke , W (ke) = w̄ke) has been
measured. It describes the probability distribution of the future state Z(ke + 1) = z′
by using the information about the movement of the stochastic automaton until
time ke that is included in the I/O pair (V (0 . . . ke), W (0 . . . ke)). It is a recursive
relation with the initialisation given by Eq. (11.101). Equation (11.100) makes it
possible to determine p′(z′, ke), (z′ ∈ Z) for given p′(z, ke − 1), (z ∈ Z) and the
new measurements (v̄ke , w̄ke). Hence, only the probability distribution p′(z, ke −1),
(z ∈ Z) has to be stored in the computer memory, which consists of N values.

582 11 Fault Diagnosis of Discrete-Event Systems

Equation (11.99) describes how the prediction from the previous time point has
to be corrected after the new measurements v̄ke and w̄ke became available. This step
can be interpreted as a projection onto the set of those states Z(ke) = z from which
the automaton can have moved when generating the new measurement information
W (ke) = w̄ke . The result of the recursion is the a-posteriori probability distribution
p(z, ke) over all current states Z(ke) = z ∈ Z for the given measurements until
time ke. With this structure, the recursive solution to the state observation problem
shows a remarkable similarity to the Kalman filter, which likewise can be decomposed
into a prediction and a projection step.

A-priori knowledge about the initial state. In the solution to the state observation
problem, the initial state probability distribution p0(z) is assumed to be known. Since
in applications this a-priori knowledge is often not available, p0(z) is measured or
“guessed”. The question arises what happens if the a-priori knowledge about z0 is in
conflict with the actual initial state of the stochastic process.

To answer this question, assume that p̂0(z) denotes the approximate initial state
probability distribution and consider the sets

Z0 = {z : p0(z) > 0} ⊆ Z (11.102)

Ẑ0 = {z : p̂0(z) > 0} ⊆ Z. (11.103)

The stochastic process starts from an initial state z0 ∈ Z0, whereas the observation
algorithm assumes that the automaton starts from some state z0 ∈ Ẑ0. The a-priori
knowledge about the initial state is not in conflict with the real system, if the relation

Ẑ0 ⊇ Z0 (11.104)

holds true. Then, the solution to the observation problem ensures that the relation

Z(ke) ∈ Z(ke | ke)

is valid for all ke ≥ 0, i.e. the set of current states determined by the observation
algorithm includes the true state of the stochastic process. If the probability distrib-
ution p̂0(z) used in the observation algorithm is different from the real distribution
p0(z), the probability distribution p(z, ke) obtained by the algorithm is wrong, but
it is accepted in practice as solution to the observation problem due to the lack of a
better a-priori knowledge.

If, however, condition (11.104) is violated, then it is possible that the probability
Prob(W (0 . . . ke) | V (0 . . . ke), z0) is zero for all initial states z0 ∈ Ẑ0. Consequently,
like in the case of an inconsistent I/O pair, the violation of the condition (11.104)
makes the denominators in Eqs. (11.99) and (11.100) vanish, which can be used as
an indicator to stop the observation algorithm.

This and the preceding remark show that the observation algorithm cannot dis-
tinguish between an inconsistent I/O pair and a wrong initial state probability dis-
tribution. As a consequence, in an application the set Ẑ0 has to be chosen “large

11.6 State Observation of Stochastic Automata 583

enough”. A secure way is to choose p̂0(z) so that Ẑ0 = Z holds, for example, using
the uniform initial state distribution

p̂(z) = Prob(Z(0) = z) = 1

N
for all z ∈ Z. (11.105)

Besides the lack of knowledge of p0(z) another fact makes it reasonable to use the
a-priori probability distribution (11.105). For many stochastic automata, the solution
p(z, ke) of the observation problem is (nearly) independent of p0(z) for ke ≥ k̄ with
very small k̄. This is particularly true if the set Z(ke | ke) has only a few elements
compared to the cardinality N of the state set Z .

11.6.2 Observation Algorithm

To show how the observation method developed in this section can be applied online,
this section presents an observation algorithm, which is based on the recursive solu-
tion given in Theorem 11.5. The following symbols are used in the algorithm:

h(z) =
∑

z′
L(z′, w̄ke | z, v̄ke) · p′(z′, ke − 1)

p(z) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke))

p′(z′) = Prob(Z(ke + 1) = z′ | V (0 . . . ke), W (0 . . . ke))

Algorithm 11.6 Observation of stochastic automata
Given: Stochastic automaton S

Initial state probability distribution p0(z).

Initialisation: p′(z) = p0(z) for all z ∈ Z
ke = 0.

Loop:
1. Measure the current input v̄ and output w̄.

2. Determine h(z) = ∑
z′ L(z′, w̄ | z, v̄) · p′(z′) for all z ∈ Z

3. If
∑

z h(z) = 0 holds, stop the algorithm (inconsistent I/O
pair or wrong initial state distribution).

4. Determine p(z) : = h(z)∑
z

h(z)
for all z ∈ Z .

584 11 Fault Diagnosis of Discrete-Event Systems

5. Determine p′(z′) : =

∑
z

L(z′, w̄ | z, v̄) p′(z)
∑

z

h(z)
for all z ∈ Z .

6. Determine Z(ke | ke) according to Eq. (11.97).

7. ke := ke + 1

Continue with Step 1.

Result: p(z) = Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke)) and
Z(ke | ke) for increasing time horizon ke.

In Step 3, the consistency of the I/O pair and of the a-priori probability distribution
is tested. Steps 4 and 5 use Eq. (11.99) or (11.100), respectively. The test in Step 3
ensures that the denominators of both equations do not vanish.

Note that in each step of the algorithm very easy calculations have to be carried out,
which makes the algorithm applicable under relatively strong real-time constraints.
Since the algorithm is based on the recursive solution to the state observation problem,
its complexity does not increase with the length of the measurement sequences V and
W . Only the N values of the functions h(z) and p′(z) have to be stored in the memory.

11.6.3 Observability of Stochastic Automata

In this section, a notion of observability is introduced, which takes into account that
for stochastic automata the state generally cannot be determined unambiguously.
Even if the initial state is known, the automaton may produce an I/O pair that does
not allow to track the state trajectory with certainty.

System
V(0...ke)

Simulator

W (0...ke)

sim(V (0...ke))

System
V(0...ke)

Observer

W (0...ke)

(ke|ke)= (V (0...ke),W (0...ke))Z Z Z

Fig. 11.28 Comparison of simulation and observation

11.6 State Observation of Stochastic Automata 585

The observability definition is based on a comparison of the results that are
obtained by means of simulation and of observation (Fig. 11.28). Roughly speak-
ing, the stochastic automaton is called observable if it is possible to determine the
state more precisely by state observation than by simulation. Before defining the
observability in this way, simulation and observation have to be compared in more
detail.

For both simulation and observation, the initial state distribution p0(z) and the
input sequence V have to be known.

• In simulation, the initial state probability distribution is propagated according
to the state transition relation G of the stochastic automaton and yields the state
probability distribution Prob(Z(ke) = z | V (0 . . . ke − 1)), (z ∈ Z) of the state
at the end of the time interval considered. Accordingly, the set of states in which
the stochastic automaton recides at time ke with non-vanishing probability for the
given the input sequence V (0 . . . ke) is

Zsim(V (0 . . . ke)) = {z : Prob(Z(ke) = z | V (0 . . . ke)) > 0}. (11.106)

• In state observation described by Theorem 11.5 the additional information
included in the output sequence W is used to determine the probability

Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke)), z ∈ Z

according to Eq. (11.96). The set of states Z(ke | ke) is obtained by Eq. (11.97).

As the state observation uses the generated output sequence as additional constraint
when determining the set of possible states Z(ke), the relation

Zsim(V (0 . . . ke)) ⊇ Z(ke | ke)

holds.

Stochastic unobservability. An automaton is called unobservable if for all input
sequences V the I/O pair (V, W) does not include more information than the input
V alone. This definition can be stated more formally as follows:

Definition 11.4 (Stochastic unobservability) A stochastic automaton is called sto-
chastically unobservable if the behavioural relation L can be represented as the
product of two functions

G : Z × Z × V → [0, 1]
H : W × V → [0, 1]

such that
L(z′, w | z, v) = G(z′ | z, v) · H(w | v) (11.107)

holds for all z′, z ∈ Z , v ∈ V and w ∈ W .

586 11 Fault Diagnosis of Discrete-Event Systems

As before, the functions G(z′, z, v) and H(w, v) are denoted by G(z′ | z, v) or
H(w | v), respectively, because they turn out to be conditional probabilities.

Definition 11.4 has an obvious interpretation. Equation (11.107) says that the
output w does not depend on z and, hence, does not provide any information about
the current automaton state. Furthermore Eq. (11.107) implies that w does not depend
on z′ and, hence, the output does not provide any information about the successor
state either.

Observability test. Before the consequences of Eq. (11.107) will be discussed it
should be mentioned how this definition can be used to test whether a stochastic
automaton is stochastically unobservable. It is easy to see that the functions G and
H used in Eq. (11.107) are the conditional probabilities defined by Eqs. (11.19) and
(11.20). From this fact, it is clear that the decomposition of L in the form (11.107)
is found (if it exists) by determining G and H according to Eqs. (11.19) and (11.20)
and by testing whether Eq. (11.107) holds. Note that the function H obtained from
Eq. (11.20) is not allowed to depend upon z, but H(w | zi , v) = H(w | z j , v) has to
hold for all zi , z j ∈ Z , v ∈ V and w ∈ W .

Property of unobservable automata. The following lemma says that the definition
of unobservability satisfies the aim to call an automaton observable if the current
state can be determined more precisely by state observation than by simulation.

Lemma 11.7 [306] If the stochastic automaton is stochastically unobservable, then
for all consistent I/O pairs (V, W) the results of the state observation problem and
of the simulation are identical for all ke = 0, 1, 2, . . .:

Prob(Z(ke) = z | V (0 . . . ke), W (0 . . . ke)) = Prob(Z(ke) = z | V (0 . . . ke))

Z(ke | ke) = Zsim(V (0 . . . ke)).

Hence, the output sequence W does not include any information about the state trajec-
tory of the automaton that cannot be obtained from the initial state probability p0(z)
and the input sequence V . In this case, the observers described by Theorems 11.4
and 11.5 work as simulators.

Stochastic unobservability of a state set. The stochastic automaton may not satisfy
the condition (11.107) for all z ∈ Z , but only for a subset Gz ⊆ Z , where Gz

should have at least two elements (|Gz | ≥ 2). Then a stochastic automaton is called
stochastically unobservable within a set Gz if the relation

LGz (z
′, w | z, v) = GGz (z

′ | z, v) · HGz (w | v) (11.108)

holds for all z, z′ ∈ Gz , v ∈ V , and w ∈ W , with

11.6 State Observation of Stochastic Automata 587

Fig. 11.29 Stochastic
automaton with
stochastically unobservable
set {1, 2}

3 4

1 2

0.56

w=2

0.14

0.24 0.06

0.27
0.63

0.07

0.8

0.2

0.9
0.1 0.03

w=1w=1 w=2

w=1

w
=3

w
=3

w=2

w
=

3

w
=

2

w=2

w
=2

LGz (z
′, w | z, v) = L(z′, w | z, v)∑

z′∈Gz

∑
w

L(z′, w | z, v)
(11.109)

GGz (z
′ | z, v) =

∑
w

LGz (z
′, w | z, v) (11.110)

HGz (w | v) =
∑

z′∈Gz

LGz (z
′, w | z, v). (11.111)

In this definition, the functions L , G and H appearing in Definition 11.4 are replaced
by LGz , GGz or HGz , respectively. These functions are normalised as shown in
Eqs. (11.109)–(11.111) so as to define conditional probability distributions. For these
new functions, Eq. (11.108) is, in principle, the same as Eq. (11.107), but it has only
to be satisfied for the states z, z′ that belong to the set Gz . Lemma 11.7 holds as long
as the automaton remains within the set Gz :

z(k) ∈ Gz for k = 0, 1, . . . , ke.

If the automaton is stochastically unobservable within the set Gz then the state
observer acts as a simulator as long as the state remains in the set Gz .

Example 11.6 Observability of stochastic automata
Consider the stochastic automaton shown in Fig. 11.29, which has the only input v = 1. The
automaton is not stochastically unobservable according to Definition 11.4. However, the state
set Gz = {1, 2} is stochastically unobservable. This can be verified by means of Eq. (11.107)
as shown in Table 11.2. Note that GGz · HGz is identical to LGz for all z, z′, w and v. �

Stochastic observability. The stochastic observability can now be defined as the
property of an automaton not to possess sets of unobservable states:

Definition 11.5 (Stochastic observability) A stochastic automaton is called stochas-
tically observable if it does not possess any set Gz of stochastically unobservable
states.

588 11 Fault Diagnosis of Discrete-Event Systems

Table 11.2 Test for stochastic unobservability of the state set Gz = {1, 2}
LGz GGz HGz GGz ·HGz

z= 1 z= 2 z= 1 z= 2 z= 1 z= 2 z= 1 z= 2

w= 1 0.9 0.63 0.9 0.9 0.9 0.63
z = 1 w= 2 0.1 0.07 1.0 0.7 0.1 0.1 0.1 0.07

w= 3 0 0 0 0 0 0

w= 1 0 0.27 0.9 0.9 0 0.27
z = 2 w= 2 0 0.03 0 0.3 0.1 0.1 0 0.03

w= 3 0 0 0 0 0 0

Consequently, the stochastic automaton is called observable if it is possible to deter-
mine every state more precisely by state observation than by simulation. This fact
is represented by the following corollary, which follows directly from Lemma 11.7
and Definition 11.5.

Corollary 11.2 If the stochastic automaton is stochastically observable, the follow-
ing relation holds:

Z(ke | ke) ⊆ Zsim(V (0 . . . ke)), (ke ≥ 0). (11.112)

Note that the equality sign may hold for some input sequence even if the automaton
is observable. The reason for this is given in Sect. 11.6.4.

Remark 11.1 (Observability test) The following remarks concern the test of a given
stochastic automaton concerning observability. The definition of unobservable state
sets implies that if the set Gz is stochastically unobservable then any subset G̃z ⊂ Gz

is stochastically unobservable as well, because Eq. (11.108) holds not only for all
z, z′ ∈ Gz but also for all z, z′ ∈ G̃z and the normalisation carried out in Eqs. (11.109)–
(11.111) does not influence this result. Hence, the test of a stochastic automaton starts
with testing all pairs z, z̄ whether or not they are unobservable sets. If no such pair
is found, the stochastic automaton does not possess any unobservable set and is,
therefore, stochastically observable. If such pairs exist, larger unobservable state
sets can be obtained (if they exist) from combinations of such unobservable pairs
according to the following corollary. �

Corollary 11.3 A stochastic automaton is stochastically unobservable within a set
Gz of at least three states (|Gz | ≥ 3) if and only if the stochastic automaton is
stochastically unobservable within all subsets Gi

z ⊂ Gz of two states (|Gi
z | = 2).

Therefore, the search for stochastically unobservable sets of states can be reduced
to the test of all pairs of states. The stochastic automaton is stochastically observable
if no unobservable pair of states is found.

11.6 State Observation of Stochastic Automata 589

11.6.4 Distinguishing Inputs

In this section, it is investigated under what conditions the observer improves its result
by processing the keth I/O pair (v̄ke , w̄ke) in comparison with the result obtained
for the I/O pair of length ke − 1. This analysis uses the recursive formulation of
the observer given in Theorem 11.5 and compares the observation result with the
simulation results obtained by the recursion (11.26). It will be shown that even if the
automaton is observable there exist input values v for which the next recursion step of
the observer yields the same result as the next recursion step of the simulator. Hence,
the movement of the automaton under this input cannot contribute to an improvement
of the knowledge about the current state.

To start the analysis, it is assumed that both simulation and observation have
obtained the same state probability distribution at time ke

Prob(Z(ke)= z | V (0 . . . ke − 1), W (0 . . . ke − 1)) =
= Prob(Z(ke)= z | V (0 . . . ke − 1))

= p′(z | ke − 1),

where both observation and simulation have used the information available until time
ke − 1. Consequently, both methods yield the same state set at time ke:

Z(ke − 1 | ke − 1)) = Zsim(V (0 . . . ke − 1))

= {z : p′(z, ke − 1) > 0}.

The set of successor states that the automaton can reach at time ke + 1 for the input
v̄ke = v̄ is given as follows:

Zsim(V (0 . . . ke)) = {z | G(z | z̃, v̄) > 0 for some z̃ ∈ Zsim(V (0 . . . ke − 1))}.

In the following, the question should be answered under what condition the keth
observation step yields a set Z(ke | ke) which is a proper subset of Zsim(V (0 . . . ke)).
The answer can be obtained from the considerations made in Sect. 11.6.3. Lemma 11.7
has shown that state observation yields the same result as simulation if the automaton
is unobservable; and hence, the behavioural relation can be decomposed according
to Eq. (11.107). This result is applied here for the fixed input v̄. If the decomposition
(11.107) is possible for the input v̄ke = v̄, simulation and observation lead to the
same set of states zke+1. This result is summarised in the following corollary. It shows
that the equality sign can hold in Eq. (11.112).

Corollary 11.4 Assume that the state probability distribution p′(z, ke −1) is known
and the stochastic automaton generates the output w̄ke = w̄ for the input v̄ke = v̄.
Then simulation and state observation yield the same state probability distribution

590 11 Fault Diagnosis of Discrete-Event Systems

p′(z, ke) = Prob(Z(ke + 1)= z | V (0 . . . ke), W (0 . . . ke))

= Prob(Z(ke + 1)= z | V (0 . . . ke))

for all z ∈ Z if and only if the relation

L(z′, w̄ | z, v̄) = G(z′ | z, v̄) · H(w̄ | v̄) (11.113)

holds with some constant H(w̄ | v̄) for all z ∈ Z(ke − 1 | ke − 1) and z′ ∈
Zsim(V (0 . . . ke)).

The condition (11.113) can be tested in each recursion step of the observation
algorithm in order to indicate whether the observer works really as an observer or
merely as a simulator. If the condition is satisfied, the observer yields the same
state probability distribution Prob(Z(ke + 1)= z | V (0 . . . ke)) as a simulation step
described by Eq. (11.26) (with ke replacing ke − 1).

This result has interesting consequences concerning the choice of the input. Even
if the stochastic automaton is observable according to Definition 11.5, not all indi-
vidual I/O pairs (v̄, w̄) lead to an improvement of the observation result compared
to the corresponding simulation step. The reason for this is given by the fact that
the observability definition claims that the decomposition of the behavioural relation
L according to Eq. (11.107) is impossible for all states z, z′ ∈ Z , all input values
v ∈ V and all output values w ∈ W . However, such a decomposition may be pos-
sible for the set Ṽ ⊂ V of input values even if it is impossible for all v ∈ V . If the
stochastic automaton gets, for some reason, only input values from Ṽ the solution
of the observation problem is not better than the simulation result (cf. Lemma 11.7),
although the stochastic automaton is observable. Therefore, it is important to know,
which input should be used in order to get an improved observation result. These
input values are called distinguishing. For such input values v̄ the decomposition
(11.107) is impossible for v = v̄ and all z′, z and w.

As a consequence, for every given state set Gz it is possible to partition the input
set V into two sets Ṽ(Gz) and V̄(Gz) such that the decomposition of L is possible for
all v ∈ Ṽ(Gz):

LGz (z
′, w | z, v) = GGz (z

′ | z, v) · HGz (w | v) (11.114)

for all z′, z ∈ Gz, v ∈ Ṽ(z), w ∈ W,

whereas such a decomposition of L is impossible for all v ∈ V̄(Gz). From
Lemma 11.7, it is obvious that the state observer cannot improve its result at time ke
for states zke , z(ke+1) ∈ Gz if the stochastic automaton obtains the input v̄ke ∈ Ṽ(Gz).
Hence, V̄(Gz) is the set of distinguishing inputs. Only if an input v ∈ V̄(Gz) is applied,
the state observer gets enough information for determining the state probability dis-
tribution better than it is determined by simulation.

In an application where the state of the system should be found as quickly as
possible, the input has to be chosen at every time instant from the current set of
distinguishing inputs. This set has to be determined at time ke as follows. Select

11.6 State Observation of Stochastic Automata 591

1 2
1/1 0.1
1/2 0.1
2/1 0.3

1/1 0.1
1/2 0.1
2/2 0.2

1/
1

0.
4

1/
2

0.
4

2/
2

0.
8

1/
1

0.
4

1/
2

0.
4

2/
1

0.
7

Fig. 11.30 Automaton graph of the example

the set Gz to include all possible current states zke ∈ Z(ke|ke − 1) and all possible
successor states zke+1, for which L(zke+1, w|zke , v) holds for some v and w. Then
V̄(Gz), which is obtained as described above, is the set of distinguishing inputs form
which the current input V (ke) should be selected. Note that the set V̄(Gz) changes
from one time step to the next because the set of current state changes. It depends
on the practical circumstances whether the input can really be chosen with the aim
of state observation or whether the selection of the input has to satisfy other control
aims. In any case, the set of distinguishing inputs is the set of preferred input signals
as far as state observation is concerned.

If the stochastic automaton is stochastically observable, for every state z there
exists at least one distinguishing input v. If, in particular, the decomposition (11.107)
is impossible for all v ∈ V , the stochastic automaton is called uniformly stochastically
observable. Then, every input is distinguishing and the observation result improves
in every recursion step.

Example 11.7 Distinguishing input values
Figure 11.30 shows the automaton graph of a stochastic automaton with two input symbols
v ∈ {1, 2} and two output symbols w ∈ {1, 2}. Only one output symbol is distinguishing.
The edges in Fig. 11.30 are labelled by the I/O pair v/w for which they occur and by the
corresponding probability. It can be seen that for v̄ = 1 the relation (11.113) holds with

H(w̄=1 | v̄=1) = 0.5 and H(w̄=2 | v̄=1) = 0.5

and

G(z′ =1 | z =1, v̄=1) = 0.8, G(z′ =1 | z =2, v̄=1) = 0.2

G(z′ =2 | z =1, v̄=1) = 0.2, G(z′ =2 | z =2, v̄=1) = 0.8.

Figures 11.31 and 11.32 show the effect of the non-distinguishing input on the observation
result. Starting with a uniform initial state distribution over the whole state set the observation
result is shown in Fig. 11.32. It is identical to the simulation result as long as the input is
v = 1 (time steps k = 0, 1, . . . , 7). Because of the symmetry of G(z′ | z, v̄), the simulation
yields uniform distributions for these times steps. Between time steps k = 8 and k = 13, the
distinguishing input v=2 is applied and, hence, the observation result improves immediately.
Instead of a uniform probability distribution, Fig. 11.32 shows that the observation results in
high probability for the state z = 2 at k = 8, 9 and for the state z = 1 at k = 10 . . . 13.

592 11 Fault Diagnosis of Discrete-Event Systems

0 3 6 13 16 19

1

2

in
pu

t v

steps
0 3 6 13 16 19

1

2

ou
tp

ut
 w

steps

(a) (b)

Fig. 11.31 Sequences of input (left) and output symbols (right)

Fig. 11.32 Observation
result

0 3 6 13 16 19

1

2
st

at
e

z

steps

When the input returns to the non-distinguishing input symbol v = 1 at time step k = 14 the
observation falls back into a simulation, quickly loosing all state information. �

11.7 Diagnosis of Stochastic Automata

11.7.1 Principle of Consistency-Based Diagnosis Applied
to Stochastic Automata

This section shows how the diagnostic problem can be solved for discrete-event
systems described by a set {S f , f ∈ F} of stochastic automata. The behaviour of
these automata is denoted by B f , f ∈ F .

The idea of consistency-based diagnosis is to ask whether the measured I/O pair
is consistent with the automaton S f . If the answer is in the affirmative

(V (0 . . . ke), W (0 . . . ke)) ∈ B f , (11.115)

11.7 Diagnosis of Stochastic Automata 593

the fault f may have occurred and is, thus, a fault candidate. In case of a negative
answer

(V (0 . . . ke), W (0 . . . ke)) /∈ B f , (11.116)

the conclusion is that the system is not subjected to the fault f . For stochastic
automata, for all fault candidates additional information can be obtained, which
is expressed as the probability

Prob(F = f | V (0 . . . ke), W (0 . . . ke))

that the fault f has occurred if the system has generated the I/O pair V (0 . . . ke),

W (0 . . . ke). Hence, diagnosing the stochastic automaton means to answer the
question:

With which probability has a fault f occurred if the system has generated the I/O pair
(V (0 . . . ke), W (0 . . . ke))?

The result is a set F∗(ke) of fault candidates, which are those faults f ∈ F for
which the I/O pair with time horizon ke is consistent with the model S f :

F∗(ke) = { f ∈ F : Prob(F = f | V (0 . . . ke), W (0 . . . ke)) > 0}.

11.7.2 Diagnosis of Stochastic Automata with Constant Faults

The diagnostic problem can be solved by observing the internal state for all models
S f and by selecting all those faults f for which the I/O pair is consistent with
the model. Further, the probability of the fault for the measured I/O pair has to be
determined. This idea will be explained in this section for constant faults F = F(k)

and extended to time-varying faults in the next section.
The idea is first to determine the common probability for the state z to occur at

time ke and the fault f to be present in the system

Prob(Z(ke) = z, F = f | V (0) = v̄0, V (1) = v̄1, . . . , V (ke) = v̄k,

W (0) = w̄0, W (1) = w̄1, . . . , W (ke) = w̄k),

where again the measured values of the input and the output are marked by a bar.
This probability is abbreviated as p f (z, ke). It is used to determine the marginal
probability of the fault:

Prob(F = f | V (0 . . . ke), W (0 . . . ke))

=
∑
z∈Z

Prob(Z(ke) = z, F = f | V (0 . . . ke), W (0 . . . ke)),

594 11 Fault Diagnosis of Discrete-Event Systems

which will be denoted later by p f (ke). To extend the state observation algorithm
for stochastic automata developed in Sect. 8.6 three probability distributions are
necessary:

p f (z, ke) = Prob(Z(ke) = z, F = f | V (0 . . . ke), W (0 . . . ke))

p′
f (z

′, ke) = Prob(Z(ke) = z′, F = f | V (0 . . . ke − 1), W (0 . . . ke − 1)).

The fault probability is abbreaviated as

p f (ke) = Prob(F = f | V (0 . . . ke), W (0 . . . ke))

and obtained as marginal probability of p f (z, ke). If p f (ke) = 0, the I/O pair with
time horizon ke is inconsistent with the stochastic automaton S f . Otherwise, f is a
fault candidate and p f (ke) is the probability with which this fault has occurred.

The extension of Eq. (11.99) towards faulty systems yields the diagnostic method,
which is summarised in the following theorem:

Theorem 11.6 (Recursive solution to the diagnostic problem) Consider a set
{S f , f ∈ F} of stochastic automata. The a-posteriori probabilities of the fault
f together with a state z can be recursively determined as follows:

p f (z, ke)=
∑
z′

L f (z′, w̄ke | z, v̄ke) · p′
f (z, ke − 1)

∑
z,z′, f

L f (z′, w̄ke | z, v̄ke) · p′
f (z, ke − 1)

(11.117)

and

p′
f (z

′, ke)=
∑
z

L f (z
′, w̄ke | z, v̄ke) · p′

f (z, ke − 1)

∑
z,z′, f

L f (z′, w̄ke | z, v̄ke) · p′
f (z, ke − 1)

(ke > 0) (11.118)

p′
f (z

′, −1) = p0(z′) · Prob(F = f), (ke = 0). (11.119)

where Prob(F = f) denotes the a-priori fault probability. The diagnostic result is

p f (ke) =
∑
z∈Z

p f (f, ke). (11.120)

This result is used now to extend Algorithm 11.6 for the state observation towards
the following algorithm for fault diagnosis:

http://dx.doi.org/10.1007/978-3-662-47943-8_8

11.7 Diagnosis of Stochastic Automata 595

Algorithm 11.7 Diagnosis of stochastic automata
Given: Set of stochastic automata {S f , f ∈ F}.

Initial state probability distribution p0(z)

Initial fault probability distribution Prob(F = f).

Initialisation: p′
f (z) = p0(z) · Prob(F = f) for all z ∈ Z and f ∈ F

ke = 0.

Loop:
1. Measure the current input v̄ and output w̄.

2. Determine h f (z) = ∑
z′ L f (z′, w̄ | z, v̄)· p′

f (z
′) for all z ∈ Z

and f ∈ F
3. If

∑
z h f (z) = 0 holds, the fault f is not a fault candidate:

p f (ke) = 0.

If
∑

z, f h f (z) = 0, the I/O pair is inconsistent with all models
of the set {S f , f ∈ F}. Stop the algorithm (an unknown fault
has occurred).

4. Determine p f (z) = h f (z)∑
z, f

h f (z)
for all z ∈ Z and f ∈ F .

5. Determine p′
f (z

′) =

∑
z

L(z′, w̄ | z, v̄) p′(z)
∑
z, f

h f (z)
for all z ∈ Z

and f ∈ F .

6. Determine p f (ke) = ∑
z∈Z p f (f, ke) and

F∗(ke) = { f ∈ F : p f (ke) > 0}.
7. ke := ke + 1

Continue with Step 1.

Result: Set of fault candidates F∗(ke) together with fault probability
p f (ke) for increasing time horizon ke.

The algorithm needs to get the a-priori fault probability distribution Prob(F(0) =
f), (f ∈ F) as an input. If nothing is known about the faults, a uniform distribution

Prob(F(0) = f) = 1

q
, f ∈ F

596 11 Fault Diagnosis of Discrete-Event Systems

1
1/1/0,5

2
1/1

3
1/1

4

1
1/1/0,5

2
1/1/0,5

3
1/1

4

1/1/0,2

1/2/0,5

1/1/0,3

1/1/0,5

1/2

1/3

S 0:

S 1:

Fig. 11.33 Model of the faultless and the faulty system

may be reasonable, where q is the number of faults considered.
The diagnostic result can be summarised as follows:

• Fault detection: If f0 /∈ F∗(ke) holds with f0 denoting the faultless case, then a
fault is detected in the system.

• Fault identification: The fault f that is present in the system belongs to the set
of fault candidates

f ∈ F∗(ke)

unless it is not considered in the set of faults F . If the set F∗(ke) is a singleton,
the fault is unambiguously identified. If this set includes more than one element,
the probability p f (ke), f ∈ F∗(ke) describes with which frequency these faults
appear.

Example 11.8 Diagnosis of a stochastic automaton
The automaton in Fig. 11.33 has the state Z̃ = (z, f)T for the two fault cases f = 0 und
f = 1. Assume that the initial state z0 = 1 is unambiguously known:

p0(z) = Prob(Z(0) = z) =
{

1 for z = 1

0 else.

For the fault, the a-priori probability distribution is assumed to be uniform:

Prob(F = f) = 0.5 for f = 0, 1,

which means that the diagnostic algorithm starts with the initial probabilities

p′
f (z) =

{
0.5 for z = 1, f = 0, 1

0 else.

Table 11.3 shows the diagnostic result for the I/O pair

11.7 Diagnosis of Stochastic Automata 597

Table 11.3 Probability distribution of the fault p f (ke)

ke = 0 ke = 1 ke = 2
V (0...0) = (1) V (0...1) = (1, 1) V (0...2) = (1, 1, 1)
W (0...0) = (1) W (0...1) = (1, 1) W (0...2) = (1, 1, 1)

f pf (0) pf (1) pf (2)
0 0.5 0.5714 0.5614
1 0.5 0.4286 0.4386

ke = 3 ke = 4
V (0...3) = (1, 1, 1, 1) V (0...3) = (1, 1, 1, 1, 1)
W (0...3) = (1, 1, 1, 3) W (0...3) = (1, 1, 1, 3, 3)

f pf (3) pf (4)
0 0 0
1 1 1

V (0 . . . 3) = (1, 1, 1, 1, 1)

W (0 . . . 3) = (1, 1, 1, 3, 3).

For the initial state z0 = 1, the first I/O pair (V (0) = 1, W (0) = 1) does not give any
information about the fault, because both models generate the same output. At time ke = 1,
the system can be in one of the following states:

Z0(1 | 0) = {1, 2, 3}
Z1(1 | 0) = {1, 2}

The I/O pair (V (1) = 1, W (1) = 1) excludes the state transition 2 → 4 and, hence, the
fault f = 1 is less probable than the fault f = 0 after the second measurement. After the
measurement W (3) = 3, the fault f = 1 is unambiguously identified. �

11.7.3 Extension to Time-Varying Faults

The diagnostic method developed in the last section for constant faults can be
extended to time-varying faults using the model

S̃ = (Z̃,V,W, L̃, Prob(z̃(0)))

given in Eq. (11.35), which includes the information about all fault cases and about
the dynamics of the fault F(k), (k = 0, 1, . . . , ke). The main idea is to replace the
behavioural relation L f , (f ∈ F) by the behavioural relation L̃ of the model S̃.

598 11 Fault Diagnosis of Discrete-Event Systems

Then, Eqs. (11.117)–(11.120) have to be replaced by the following relations:

p f (z, ke)=

∑
z′, f ′

L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′
f (z, ke − 1)

∑
z,z′, f, f ′

L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′
f (z, ke − 1)

(11.121)

p′
f (z

′, ke)=

∑
z, f

L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′
f (z, ke − 1)

∑
z,z′, f, f ′

L̃(z′, f ′, w̄ke | z, v̄ke , f) · p′
f (z, ke − 1)

, ke > 0 (11.122)

p′
f (z

′,−1) = p0(z′) · Prob(F = f), ke = 0 (11.123)

p f (ke) =
∑
z∈Z

p f (f, ke). (11.124)

Discussion of the diagnostic results. The diagnostic algorithm yields the set F∗(ke)

of fault candidates for time ke. Each of the fault separately “explains” why the
measured I/O pair occurs. In addition to this set, the probability distribution p f (ke)

evaluates with which probability each fault candidate represents the real fault.
Under practical circumstances, several heuristic extensions can be made. For

example, a threshold s can be fixed and only those faults that occur with a probability
higher than s are announced to the human operator in the control room. Then the
threshold can be used to adapt the result of the diagnostic algorithm to the certainty
with which the behavioural relation of the automaton is known and to the degree of
danger that the different faults may have on the system performance. This adaptation
of the diagnostic results is analogous to the use of thresholds in the residual evaluation
of diagnostic methods for continuous-variable systems described in Chap. 6.

11.7.4 Diagnosability of Stochastic Automata

When solving practical problems, the diagnostic algorithm should provide a set
F∗(ke) which is a singleton for a possibly small time horizon ke. Whether or not
this is possible, depends on the diagnosability of the stochastic automaton, which is
investigated in this section. Note that the diagnosablity is a system property, which
depends upon the system dynamics described by the behavioural relation of the
automaton and by the measured signals v and w, but does not refer to the diag-
nostic method applied. Diagnosability claims that the fault f has to be found by
appropriately using all the information available.

It is not easy to find conditions under which the system is diagnosable, because
the question whether a fault can be detected does not only depend on the sys-
tem dynamics but also on the initial state and on the input sequence. However,
the frequent discussions among theoreticans and people from different application
fields on “hidden faults” that do not influence the measurement sequence and, thus,

http://dx.doi.org/10.1007/978-3-662-47943-8_6

11.7 Diagnosis of Stochastic Automata 599

cannot be found by any diagnostic algorithm, and discussions on the fact that differ-
ent faults have to bring about different effects on the system behaviour if they should
be discriminated, show that diagnosability is an important practical issue.

In this section, the results on the observability of stochastic automata presented
in Sect. 11.6.3 will be used to define and analyse the diagnosability of automata.
Like in Sect. 11.6.3, the starting point is the investigation under what conditions the
automaton is not diagnosable.

Definition 11.6 (Stochastic undiagnosability) A stochastic automaton S̃ with
behavioural relation

L̃(z′, f ′, w | z, v, f) = L(z′, w | z, v, f) · Gf(f ′ | f)

is called stochastically undiagnosable if it satisfies the property

L(z′, f ′, w | z, v, f) = L(z′, w | z, v) (11.125)

for all z′, z ∈ Z , w ∈ W , v ∈ V and f ∈ F .

Clearly, under the condition (11.125) the state and output sequences of the stochastic
automaton are independent of the fault f , because the fault does no longer appear in
L and, hence, the fault cannot be “seen” from the measured I/O pair. In analogy to
Lemma 11.7, it can be proved that for undiagnosable automata the diagnostic result
coincides with the result obtained by simulation of the faulty behaviour:

Lemma 11.8 If the stochastic automaton is stochastically undiagnosable, then for
all input sequences V and for all output sequences W the diagnostic result is identical
to the simulation result:

Prob(f (ke) | V (0 . . . ke), W (0 . . . ke)) = Prob(f (ke) | V (0 . . . ke)). (11.126)

The left-hand side of Eq. (11.126) is the result obtained from the diagnostic algorithm.
As the fault f does not depend on the input v, the right-hand side of Eq. (11.126) is
given by the relation

Prob(F(ke) = f | V (0 . . . ke))

=
∑

F(0...ke−1)

Gf(f | f (ke − 1)) · Gf(f (ke − 1) | f (ke − 2)) · . . .

· Gf(f (1) | f (0)) · Prob(F(0) = f (0)),

which predicts the state of the fault model S f . The fault changes with increasing
time horizon ke and so does the probability distribution

Prob(F(ke) = f | V (0 . . . ke)).

600 11 Fault Diagnosis of Discrete-Event Systems

However, the only information used for simulation is the state transition relation Gf
of the fault model. As the diagnostic algorithm uses further information given by the
output sequence W it is reasonable to expect that the diagnostic result is better than
the simulation result. The lemma says that for stochastically undiagnosable automata
this expectation is not met. The diagnostic algorithm cannot improve the simulation
result.

A given stochastic automaton is generally not completely stochastically undiag-
nosable according to Eq. (11.125), but there may exist one or more state sets Gz ⊂ Z
and one or more fault sets G f ⊂ F such that the behaviour within the set Gz does
not depend on the faults f ∈ G f . Then Eq. (11.125) does not hold for all z, z′ and f ,
but for all z, z′ ∈ Gz and all f ∈ G f . If a non-empty fault set F can be found such
that Eq. (11.125) is satisfied for all z, z′ ∈ Gz , the set Gz is called a stochastically
undiagnosable state set. If the stochastic automaton does not possess such a state
set, it is called diagnosable.

Definition 11.7 (Stochastic diagnosability) A stochastic automaton is called sto-
chastically diagnosable if it does not possess any stochastically undiagnosable state
set.

It is obvious from the investigations above that for stochastically diagnosable sys-
tems the diagnostic algorithm yield better results than a simulation of the behaviour
of the fault model.

Example 11.9 Diagnosability of stochastic automata
The stochastic automaton depicted in Fig. 11.33 is not stochastically undiagnosable. Neverthe-
less, the set of faults F is stochastically undiagnosable within the set of states Gz = {1, 2, 3}.
Hence, as long as the system is not in state z = 4 nor has the possibility to go to this state
within one time step, no information about the fault can be obtained. This result can be seen
from Example 11.8. The fault f = 1 is proved not to exist at time ke = 3 when the output
w = 3 occurs, which proves that the automaton is in the state z̃ = (4, 2)T. �

Example 11.10 Diagnosis of a stochastic automata
As an example, consider the task system to diagnose a fault by means of the automata
shown in Figs. 11.34 and 11.35. Both automata together describe the behavioural relation
L f (z

′, w | z, v). The fault is assumed to be constant.
A diagnosability check for v = 1 yields the result that the stochastic automaton is not

diagnoseable with respect to the set of faults F = {1, 2} within all states Gz = Z . For v = 2
the automaton is diagnosable.

Three experiments are considered. First, the input is fixed at v = 2 and the fault is f = 1.
An experiment with the initial state z = 6 yields the output sequence shown in the left part
of Fig. 11.36. A second experiment with the same initial state is made for v = 2 and f = 2
resulting in the output sequence shown in the middle part of Fig. 11.36, and a third experiment
with v=1 and f =1 leads to the right part of Fig. 11.36.

The diagnostic results corresponding to the three experiments are shown in Fig. 11.37. It
can be seen that the fault is isolated for v = 2, but for v = 1 the diagnostic result is merely
a simulation of the initially known fault distribution, which results for the given automa-
ton in a sequence of uniform distributions. The result is obtained because the automaton is
undiagnosable for v = 1 in the whole state set Z . �

11.7 Diagnosis of Stochastic Automata 601

4 5 6

1

2/11 w=3
1/11 w=2

1/11 w=3

2 3

1/5 w=1

1/2 w=2
1/2 w=3

3/11 w=3
4/11 w=2

1/ 3
w=

2
2/ 3

w=
12/ 5

w=
3

2/ 5
w=

2

1/2 w=2
1/2 w=3

3/5 w=1
3/10 w=2

1/2 w=1
1/5 w=2

7/10 w=1
3/10 w=2

1/10 w=2

1/
10

w
=

2
1/

10
w

=
3 3/11

w
=

3
4/11

w
=

2

2/ 5
w=

2

2/ 5
w=

3

1/
10

w
=

3
1/

10
w

=
2 1/5

w
=

1
7/10

w
=

2

3/10 w=1

1/10 w=1

2/11 w=2
2/11 w=3

7/10 w=1
3/10 w=2

input v=1
input v=2

Fig. 11.34 Automaton graph for fault f = 1

4 5 6

1 2 3

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

1/
2

w
=

2
1/

2
w

=
3

1/2
w

=
3

1/2
w

=
2

7/10 w=1
3/10 w=2

7/10 w=1
3/10 w=2

1/2 w=2
1/2 w=3

1/2 w=2
1/2 w=3

1/2 w=2
1/2 w=3 1/2 w=2

1/2 w=3

input v=1
input v=2

Fig. 11.35 Automaton graph for fault f = 2

602 11 Fault Diagnosis of Discrete-Event Systems

0 1 2 3 4 5

1

2

3
pr

oc
es

s
ou

tp
ut

steps
0 1 2 3 4 5

1

2

3

pr
oc

es
s

ou
tp

ut

steps
0 1 2 3 4 5

1

2

3

pr
oc

es
s

ou
tp

ut

steps

Fig. 11.36 Output sequences for v = 2, f = 1 (left), v = 2, f = 2 (middle) and v = 1, f = 1
(right)

0 1 2 3 4 5

1

2

di
ag

no
se

d
fa

ul
ts

steps
0 1 2 3 4 5

1

2

di
ag

no
se

d
fa

ul
ts

steps
0 1 2 3 4 5

1

2

di
ag

no
se

d
fa

ul
ts

steps

Fig. 11.37 Diagnostic results for the three experiments shown in Fig. 11.36 in the same order

11.8 Exercises

Exercise 11.1 Observability of stochastic automata
Assume that the current state probability distribution is given for time ke and denoted by
Prob(z(ke)). Prove the following fact: If at time ke + 1 an input v(ke + 1) and an output
w(ke + 1) occur for which a decomposition (11.107) is possible for the state set

Z(ke | ke) = {z : Prob(Z(ke)= z) > 0}

then in Steps 4 and 5 of the observation algorithm the same results are obtained as by simulating
the automaton behaviour according to Eq. (11.26). �

Exercise 11.2 Diagnosis of fixed faults
How can the Algorithm 11.7 be simplified if the fault is known not to change over time? �

Exercise 11.3 Diagnosis of a batch reactor
The reactor shown in Fig. 11.38 is used within a larger batch process, where it is filled and
emptied in order to bring a certain amount of liquid into another reactor. For the behaviour of
the reactor only the empty and the full state is distinguished, where the liquid level is above
the higher or below the lower border shown in the figure. These states are denoted by z1 and
z2.

To fill the reactor, the pump is switched on (input v1), to empty the reactor, the input v2
opens the valve. A security check ensures that the pump is not switched on if the valve is open.

1. Describe the reactor by a deterministic automaton

11.8 Exercises 603

Fig. 11.38 Batch reactor v
1

z
1

z
2

v
2

2. The fault f1 breaks the pump. Extend you model in order to describe the reactor for the
faultless and the faulty operation mode.

3. The faultless reactor remains faultless with the probability of 99 % in all state transitions
that are caused by switching the pump or opening and closing the valve. Extend you model
to get a stochastic automaton, which reflects this information. �

Exercise 11.4 Diagnosis of nondeterministic automata
How can the diagnostic method developed in this chapter be simplified if instead of a stochastic
automaton a nondeterministic automaton is used to describe the system under consideration?
Do the sets of fault candidates obtained by both methods distinguish? �

11.9 Bibliographical Notes

The first results concerning state observation of discrete-event systems occurred in
connection with the supervisory control theory developed in [284] where the supervi-
sor has to reconstruct the current state of the system from partially measurable states
or events. Reference [198] defined the notion of the observable language and devel-
oped results on the existence of the combined supervisory control and the observation
problem given. Reference [55] showed that for supervisory control the problem of
state observation can be reformulated as an event observation problem.

Observability of discrete-event-systems. The classical observability definition has
been given in [56] and was used also, for example, in the textbooks [51, 320]. Accord-
ing to this definition a stochastic automaton is called semi-deterministic or observable
if for all states z the successor state z′ = ϕ(z, v, w) can be unambiguously deter-
mined if the current state z, the current input v and current output w are known. This
definition is useful only if it can be assumed that the automaton state z at some time
k is precisely known. Then, the future sequence of states starting in z can be unam-
biguously determined. However, as long as this assumption is not satisfied, the notion

604 11 Fault Diagnosis of Discrete-Event Systems

of observability does not say anything about the solvability of the observation prob-
lem. Similar remarks hold true for other observability definitions like the one given
in [259] which likewise claim that the automaton state should be unambiguously
determined.

Several papers have been published about the connection of state observation
and fault diagnosis for discrete-event systems. Some of the aspects discussed are
summarised in [95].

Diagnosability and diagnostic methods. The diagnosis of discrete-event systems
was the subject of a steadily increasing number of papers in the past with the refer-
ences [12, 194, 277, 319] as early papers on the diagnostic problem for Petri nets, and
[179, 197, 216, 218, 297, 306] for nondeterministic or stochastic automata. Condi-
tions on the automaton under which the fault can be uniquely determined have been
derived in [197, 297]. If the input to the automaton should satisfy certain requirements
to avoid the situation where the system reaches forbidden states, the diagnosability
conditions appear to be stronger as shown in [268, 269]. A combination of Petri net
and automata theoretic approaches is described in [52].

In the stochastic setting, there are different definitions of diagnosability. In [366],
a stochastic automaton is said to be diagnosable if on all state trajectories the fault
can be detected and, hence, the fault is eventually unambiguously identified. In [218],
diagnosability means that the fault changes the I/O behaviour and leads to an increase
in its probability. Reference [179] describes detectability of a fault as the ability to
estimate the current state of a system with increasing certainty. Reference [277]
outlined the connections between discrete-event models and logical descriptions,
which opens the way to apply diagnostic methods elaborated in the field of artificial
intelligence to discrete-event systems (for survey cf. [139] or [212]). However, most
of the diagnostic methods developed in artificial intelligence can only be used for
static system descriptions, whereas the methods that have been developed here allow
to diagnose dynamical systems far from their equilibrium state.

Based on Algorithm 11.7 for the diagnosis of stochastic automata, a specific sensor
and actuator supervision system has been developed in [219].

The results on the diagnosability of deterministic automata developed in Sect. 11.4
have been published in [215]. The method for finding distinguishing inputs developed
in Sect. 11.4.5 is similar to the one described in [128] but uses an alternative notation
and, thus, directly extends a method for determining equivalent states of deterministic
automata. Details can be found in [303, 304].

Extensions. The issue of complexity reduction of the diagnosis of automata has
been considered in [210]. The basic idea was to lump unobservable states of the
model together because during the movement in such sets of states the observation
or diagnostic algorithm does not gain any additional information about the system.
It has been shown that this method of complexity reduction can be applied for non-
deterministic automata. However, for stochastic automata the complexity reduction
brings about biased diagnostic results.

The results reported in Sect. 11.5 have been developed in [218]. All proofs of the
results given here can be found in this reference.

11.9 Bibliographical Notes 605

The extension of the diagnostic method to remote diagnosis, where data loss in
the network has to be tolerated, is described in [114, 302].

The methods explained in this chapter can be extended to timed automata as shown
in [351].

The introduction to automata theory and the Exercise 11.3 follow the textbook
[209].

Chapter 12
Diagnosis of I/O Automata Networks

Abstract This chapter is devoted to complex discrete-event systems that are repre-
sented by input–output automata networks. A method for decentralised diagnosis is
developed where the diagnostic units have only access to the model and the measure-
ment sequences of a subsystem. It guarantees that the diagnostic result is complete
in spite of the lack of information about the subsystem interactions. Completeness
means that the set of faults found by the diagnostic units include all fault candidates.
Sufficient conditions for the autonomy of subsystems and for the kind of asynchro-
nous state transitions are derived for which the result of decentralised diagnosis
coincides with the result of centralised diagnosis.

12.1 Centralised Versus Decentralised Diagnosis
of Discrete-Event Systems

Fault diagnosis is the task to decide, on the basis of measurement sequences and a
model, whether a dynamical system is subject to some fault and, if so, to identify the
fault. This task leads to highly complex diagnostic algorithms if the system under
consideration has to be described by a discrete-event model, because such models
generally have an exponential complexity with respect to the number of states, input
symbols and output symbols.

To overcome this complexity, several structured diagnostic schemes have been
elaborated. In distributed diagnosis the system is represented by a set of interacting
components. Accordingly, the diagnostic unit consists of a set of local units which
have access to different event streams. As the system components interact due to their
physical couplings, the diagnostic units are allowed to exchangemessages about their
observations or their diagnostic results with the aim to merge the local result and
to get the best possible result for the overall system. This scheme necessitates an
extensive information exchange which should compensate the lack of information
that is locally measurable.

Decentralised diagnosis. In contrast to this, in decentralised diagnosis separate
diagnostic units are used that cannot communicate and have only access to the model

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8_12

607

608 12 Diagnosis of I/O Automata Networks

Fig. 12.1 Decentralised
diagnosis of interconnected
discrete-event systems K

A2 ANA1

r1 s1 s2 sNr2 rN

v1 v2 vNw2 wNw1

D2 DND1

Fd Fd FdN21

of a subsystem and the measurement sequences made for this subsystem (Fig. 12.1).
Hence, the overall complexity of the diagnostic method is much lower than that of
centralised or distributed diagnosis. However, due to the lack of information about
the influence of the component interactions, the diagnostic results are, in general,
weaker than the results of centralised or of fully coordinated distributed diagnosis.

In decentralised diagnosis, N local diagnostic units Di are used, each of which
has only access to the I/O pair of the i th subsystem:

Vi (0 . . . ke) = (vi (0), vi (1), . . . , vi (ke))

Wi (0 . . . ke) = (wi (0), wi (1), . . . , wi (ke)).

Furthermore, the i th diagnostic unit knows only the model Ai of the associated
subsystem. It solves the following problem:

Diagnostic problem for the i-th subsystem

Given: AutomatonAi describing the subsystem

I/O pair (Vi (0 ... k e), Wi (0 ... k e))

Find: Local diagnostic result Fd i

This problem is solved by the i th local diagnostic unit Di . The results Fdi ⊆ Fi

(i = 1, 2, . . . , N) of all units are lumped together to obtain the overall diagnostic
result denoted by Fd ⊆ F . An important issue is to ensure the diagnostic result to
be complete, which means that the relation

Fc ⊆ Fd (12.1)

12.1 Centralised Versus Decentralised Diagnosis of Discrete-Event Systems 609

between the centralised and the decentralised diagnostic results has to be valid.
The main aim of this chapter is to elaborate a decentralised diagnostic method for

networks of deterministic I/O automata. The model used distinguishes considerably
from those used in the literature (cf. bibliographical notes at the end of the chapter).
First, the fault is represented here as an additional argument of the state transition
function andnot by anunobservable event. Second, networks of I/Oautomata are used
in the generalised version, where the automata are coupled through interconnection
signals.

The aim is to develop a decentralised diagnostic method such that the diagnostic
result is complete. The property of completeness that will be defined more clearly in
Definition12.2 means, in principle, that all faults that can be found by the centralised
diagnostic unit by evaluating the I/O sequences in the best possible way are also
found by the decentralised diagnostic scheme.

To reach this aim, the following two problems have to be solved:

1. Develop a diagnostic method for the decentralised diagnostic units that uses only
the I/O pair and the model of a subsystem.

2. Develop a method to merge the diagnostic results obtained by the local diagnostic
units to obtain a diagnostic result for the overall system.

Centralised diagnosis. In order to characterise the validity of the diagnostic result
obtained by the decentralised scheme, the centralised diagnosis of the automaton
network will be considered as the alternative way of solution. The overall system has
the vector inputs and outputs

v(k) =

⎛
⎜⎜⎜⎜⎝

v1(k)

v2(k)
...

vN (k)

⎞
⎟⎟⎟⎟⎠ and w(k) =

⎛
⎜⎜⎜⎜⎝

w1(k)

w2(k)
...

wN (k)

⎞
⎟⎟⎟⎟⎠

(Fig. 12.2). The component faults are summarised in the vector

Fig. 12.2 Centralised
diagnosis A

D

F

v w

c

610 12 Diagnosis of I/O Automata Networks

f =

⎛
⎜⎜⎜⎜⎝

f1
f2
...

fN

⎞
⎟⎟⎟⎟⎠

that belongs to the set
F = F1 × F2 × · · · × FN .

In centralised diagnosis a single diagnostic unit D obtains the I/O pair of the
overall system

V (0 . . . ke) = (v(0), v(1), . . . , v(ke))

W(0 . . . ke) = (w(0),w(1), . . . ,w(ke))

for the time horizon 0 . . . ke and the task is to find the fault f ∈ F .

Diagnostic problem for the overall system

Given: AutomatonA describing the overall system

I/O pair (V(0 ... k e), W(0 ... k e))

Find: Diagnostic result Fc

The result is a set Fc ⊆ F of fault vectors f .

12.2 Representation of Complex Systems
by I/O Automata Networks

12.2.1 Composite Systems to Be Diagnosed

Consider discrete-event systems composed of N subsystems that interact through
the signals ri and si (Fig. 12.1). Every subsystemmay be faulty, what is described by
the fault symbols fi ∈ Fi associated with the i th subsystem. It is assumed that the
fault does not change while the diagnostic method is applied. Consequently, faults
can be dealt with as constant subsystem parameters. The faultless case is represented
by the fault symbol fi = 0.

The subsystems are described by deterministic I/O automata (Fig. 12.3)

Ai = (Zi ,Vi ,Wi ,Si ,Ri ,Fi , Fi , Li ,Zi0)

12.2 Representation of Complex Systems by I/O Automata Networks 611

Fig. 12.3 Subsystem model

Fi(zi,vi, fi) L i(z i,wi, z i,vi, si, fi)

siri

zi

'

wivi

zi

'

that have the following components:

• Zi - state set
• Vi - input alphabet
• Wi - output alphabet
• Si - coupling input alphabet
• Ri - coupling output alphabet
• Fi - set of faults
• Fi : Zi × Vi × Fi → Ri - coupling function
• Li : Zi × Wi × Zi × Vi × Si × Fi → {0, 1} - state transition function
• Zi0 - set of possible initial states (Zi0 �= ∅).
The function Fi determines the interconnection output ri (k) in dependence upon the
input symbol vi (k), the state zi (k) of the i th subsystem, and the fault fi :

ri (k) = Fi (zi (k), vi (k), fi). (12.2)

The state transition function represents all 6-tuples (z′
i , wi , zi , vi , si , fi) that can

occur for the subsystem. The relation

Li (z
′
i , wi , zi , vi , si , fi) = 1

means that the i th subsystem subject to fault fi changes its state from zi towards z′
i

while generating the output wi if it gets the input symbol vi and the interconnection
input si .

The interconnection outputs ri and inputs si of all components form the vector
signals

r(k) =

⎛
⎜⎜⎜⎜⎝

r1(k)

r2(k)
...

rN (k)

⎞
⎟⎟⎟⎟⎠ and s(k) =

⎛
⎜⎜⎜⎜⎝

s1(k)

s2(k)
...

sN (k)

⎞
⎟⎟⎟⎟⎠ .

612 12 Diagnosis of I/O Automata Networks

The interactions of the components are described by the function K :

s(k) = K (r(k)).

The overall system is denoted by A = K (A1,A2, . . . ,AN), which symbolises
the fact that the component automata are coupled via the interaction relation K . It is
represented by the deterministic automaton

A = (Z,V,W,F, L ,Z0)

that has the following components:

• Z = Z1 × · · · × ZN - state set
• V = V1 × · · · × VN - input alphabet
• W = W1 × · · · × WN - output alphabet
• F = F1 × · · · × FN - set of faults
• L : Z × W × Z × V × F → {0, 1} - state transition function
• Z0 = Z10 × · · · × ZN0 - set of possible initial states (Z0 �= ∅).

12.2.2 Model of the Overall System

This section shows how the component models Ai and the interconnection relation
K can be combined to get a deterministic automaton

A = (Z,V,W, L ,Z0)

that describes the overall system in an equivalent way. Like in Sect. 11.6.1 the system
is considered without reference to a fault f .

The interconnection outputs of all subsystems yield the vector

r(k) =

⎛
⎜⎜⎜⎜⎝

r1(k)

r2(k)
...

rN (k)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

F1(z1(k), v1(k))

F2(z2(k), v2(k))
...

FN (zN (k), vN (k))

⎞
⎟⎟⎟⎟⎠ (12.3)

(cf. Eq. (12.2) with deleted symbol fi). The interconnection relation

s(k) = K (r(k))

is decomposed into N relations

si (k) = Ki (r(k)) k = 1, 2, . . . , N ,

http://dx.doi.org/10.1007/978-3-662-47943-8_11

12.2 Representation of Complex Systems by I/O Automata Networks 613

which determine the interconnection input si of the subsystems.
The dynamics of the i th subsystem are described by the relation

Li (zi (k + 1), wi (k), zi (k), vi (k), Ki (r(k))) = 1.

Note that the function Li depends through the vector r(k) upon all states zi and
inputs vi , (i = 1, 2, . . . , N). A state transition

⎛
⎜⎜⎜⎜⎝

z1(k)

z2(k)
...

zN (k)

⎞
⎟⎟⎟⎟⎠

v(k)/w(k)−→

⎛
⎜⎜⎜⎜⎝

z1(k + 1)

z2(k + 1)
...

zN (k + 1)

⎞
⎟⎟⎟⎟⎠

occurs in the overall system if all state transition functions Li , (i = 1, 2, . . . , N) of
the subsystems are satisfied, which is true if the condition

N∏
i=1

Li (zi (k + 1), wi (k), zi (k), vi (k), Ki (r(k))) = 1

is met. In the usual notation where the successor state is indicated by the prime, the
composition rule is written in the following concise form:

L

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

z′
1

z′
2
...

z′
N

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

w1

w2
...

wN

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

z1
z2
...

zN

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

v1

v2
...

vN

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ =

N∏
i=1

Li (z
′
i , wi , zi , vi , Ki (r)). (12.4)

ByusingEq. (12.3), the interconnection signal r can be eliminated from this equation.

System with two components. If the system has only two components, the interac-
tion relation may have the simple form

(
s1(k)

s2(k)

)
= K (r(k)) =

(
r2(k)

r1(k)

)

(Fig. 12.4). The overall system has the state transition function L , which is obtained
from Eq. (12.4) as follows:

614 12 Diagnosis of I/O Automata Networks

A1 A2

r1(k) = s2(k)

s1(k) = r2(k)

w1(k) w2(k)

v1(k) v2(k)

A

w1(k)
w2(k)

v1(k)
v2(k)

=

Fig. 12.4 Network with two I/O automata

1 2

1,1/0,0

1,1/1,1

1,0/0,0 1,0/0,1

3

4

2,1/0,12,1/1,1

2,0/0,1

2,0/0,1

A1

A2

v1

v2

w1

w2

Fig. 12.5 Automata network

L

((
z′
1

z′
2

)
,

(
w1

w2

)
,

(
z1
z2

)
,

(
v1

v2

))
=

L1(z
′
1, w1, z1, v1, F2(z2, v2)) · L2(z

′
2, w2, z2, v2, F1(z1, v1)).

Example 12.1 Automata network with two components
In the automata network shown in Fig. 12.5 the components are defined for the sets

Z1 = {1, 2}, Z2 = {2, 4}
Z10 = {1, 2}, Z20 = {4} (12.5)

V1 = {1}, V2 = {2}
W1 = {0, 1}, W2 = {0, 1}

S1 = S2 = R1 = R2 = {0, 1}.

12.2 Representation of Complex Systems by I/O Automata Networks 615

Fig. 12.6 Equivalent
deterministic automaton

w

1
2

1
1

1
2

0
0

1
2

1
0

v

2
3

1
3

1
4

2
4

1
2

0
0

The state transition functions L1 and L2 are given by automaton graphs in Fig. 12.5 whose
edges have the labels vi , si/wi , ri .

The subsystemmodels are set up in such a way that the interconnection input si = 1 allows
a state transition whereas the input si = 0 blocks a state transition in subsystem i

Li (zi , 0, zi , vi , 0) = 1

(cf. the loops at all states in the automaton graphs).
The interconnection of the two subsystems leads to the automaton shown in Fig. 12.6.

The application of the composition rule is demonstrated for determining the state transition
function L for the states z1 = 1, z2 = 3 and the inputs v1 = 1, v2 = 2:

L

((
z′
1

z′
2

)
,

(
w1

w2

)
,

(
1

3

)
,

(
1

2

))

= L1(z
′
1, w1, 1, 1, F2(3, 2)) · L2(z

′
2, w2, 3, 2, F1(1, 1))

= L1(z
′
1, w1, 1, 1, 1) · L2(z

′
2, w2, 3, 2, 0).

The first factor is non-zero for z′
1 = 2 and w1 = 0 as shown by the edge 1

1,1,/0,0−→ 2 of the
automaton graph ofA1 in Fig. 12.5. The second factor is non-zero for z′

2 = 3,w2 = 0. Hence,

L

((
2

3

)
,

(
0

0

)
,

(
1

3

)
,

(
1

2

))
= 1

616 12 Diagnosis of I/O Automata Networks

holds, which corresponds to the edge

(
1

3

)
⎛
⎝ 1

2

⎞
⎠/

⎛
⎝ 0

0

⎞
⎠

−→
(

2

3

)

in the automaton graph in Fig. 12.6. The other state transitions of the overall system are
determined in the same way. �

12.3 Decentralised Consistency Test

This section develops a method for the decentralised consistency test. The problem is
to determine whether or not the I/O pair (11.71), (11.72) is consistent with the model
A of the overall system. In the decentralised scheme, N units are used to carry out
the test, each of which has only access to the I/O pair and the model of a subsystem.
The test is first explained for a centralised scheme.

12.3.1 Consistency Test for the Overall System

If the full information (overallmodel and overall I/Opair) is available, the consistency
can be checked as described by Lemma 11.4. Accordingly, the test result is positive
if and only if Eq. (11.77) is satisfied

pc =
∑
z∈Z

p′(z′, ke + 1) > 0, (12.6)

where p′(z′, ke+1) is determined recursively by Eqs. (11.75), (11.76). The test result
is called pc with the index “c” indicating that a centralised test scheme is used. The
test can be accomplished by means of Algorithm 11.4.

As a by-product, the set of all states, in which the overall system can be after
accepting the given input sequence and producing the given output sequence is
obtained as follows:

Zc(ke + 1) = {z′ ∈ Z | p′(z′, ke + 1) > 0}.

Again, the index “c” indicates that this set is the result of a centralised consistency test.

http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11

12.3 Decentralised Consistency Test 617

12.3.2 Consistency Test for the Subsystems

In a decentralised test scheme, the i th test unit has access only to the model Ai of
the i th subsystem and to the I/O pair

Vi (0 . . . ke) = (v̄0i , v̄1i , . . . , v̄kei) (12.7)

Wi (0 . . . ke) = (w̄0i , w̄1i , . . . , w̄kei). (12.8)

Like in the I/O pair of the overall system, the measured values are marked by a bar.

Completeness of the consistency test. For the subsystem test, Algorithm 11.4 has to
be extended because the subsystem performance depends upon the interconnection
input si which is unknown for the decentralised test unit (cf. Fig. 12.1). This extension
has to be done in such away that the overall test result is complete in the sense defined
as follows.

Denote the result of the consistency test accomplished by the i th unit by pdi ,
where pdi > 0 indicates consistency of the I/O pair (Vi , Wi) of the i th subsystem
with the subsystem model Ai and pdi = 0 inconsistency. All such results together
will be merged to get the test result pd for the overall system, where again pd > 0
indicates that all I/O pairs of all subsystems together are consistent with the automata
network and pd = 0 holds otherwise.

Definition 12.1 (Completeness of the consistency test) The consistency test whose
result is denoted by pd is said to be complete if the relation

pc > 0 ⇒ pd > 0

holds.

This definition allows a deviation of the result pd from the true result pc obtained
by the centralised scheme. However, for all I/O pairs (V , W) that are consistent with
the overall model A the decentralised scheme has to give a positive test result. On
the other hand, the definition allows that the decentralised scheme delivers a positive
result for inconsistent I/O pairs.

The attribute “complete” is used here in coincidence with the same attribute for
the diagnostic result that is obtained by using complete consistency tests.

Description of a complete consistency test. As an extension of Eqs. (11.75) and
(11.76) the following indicator functions pi , (i = 1, 2, . . . , N) are defined:

p′
i (zi , 0) =

{
1 if zi ∈ Zi0

0 else
(12.9)

p′
i (z

′
i , k + 1)=

⎢⎢⎢⎣ ∑
zi ∈Zi

∑
si ∈Si

Li (z
′
i , w̄ki , zi , v̄ki , si) p′

i (zi , k)

⎥⎥⎥⎦ , (12.10)

http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11

618 12 Diagnosis of I/O Automata Networks

(k = 0, 1, . . . , ke). The consistency result for the i th subsystem is

pdi =
⎢⎢⎢⎣ ∑

z′
i ∈Zi

p′
i (z

′
i , ke + 1)

⎥⎥⎥⎦ . (12.11)

All indicator functions together yield

pd =
N∏

i=1

pdi . (12.12)

Theorem 12.1 If the I/O pair is consistent with the overall system A, the indicator
function pd is positive:

pd > 0. (12.13)

Proof The theorem is proved by showing that the relation

pc ≤ pd (12.14)

holds. Then the inequality (12.13) is satisfied whenever the I/O pair is consistent with the
overall system, which is indicated by a positive left-hand side of Eq. (12.14).

The proof is done by induction over the length ke of the I/Opairs. For ke = 0,Eqs. (11.75)
and (11.76) yield

pc =
⎢⎢⎢⎣∑

z′∈Z
p′(z′, 1)

⎥⎥⎥⎦

=
⎢⎢⎢⎣∑

z′∈Z

∑
z∈Z0

L(z′, w̄0, z, v̄0)

⎥⎥⎥⎦ .

Equations (12.9) and (12.10) lead to the expression

pd =
N∏

i=1

pdi

=
N∏

i=1

⎢⎢⎢⎣ ∑
z′

i ∈Zi

p′
i (z

′
i , 1)

⎥⎥⎥⎦

=
N∏

i=1

⎢⎢⎢⎣ ∑
z′

i ∈Zi

⎢⎢⎢⎣ ∑
zi ∈Z0i

∑
si ∈Si

L(z′
i , w̄0i , zi , v̄0i , si)

⎥⎥⎥⎦
⎥⎥⎥⎦

http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11

12.3 Decentralised Consistency Test 619

=
⎢⎢⎢⎣ N∏

i=1

∑
z′

i ∈Zi

∑
zi ∈Z0i

∑
si ∈Si

L(z′
i , w̄0i , zi , v̄0i , si)

⎥⎥⎥⎦ .

As all factors are non-negative, the following inequality holds

⎢⎢⎢⎣ N∏
i=1

∑
z′

i ∈Zi

∑
zi ∈Z0i

∑
si ∈Si

L(z′
i , w̄0i , zi , v̄0i , si)

⎥⎥⎥⎦

≥
⎢⎢⎢⎣ ∑

z′
i ∈Zi

∑
zi ∈Z0i

N∏
i=1

L(z′
i , w̄0i , zi , v̄0i , Ki (r))

⎥⎥⎥⎦ (12.15)

=
⎢⎢⎢⎣∑

z′∈Z

∑
z∈Z0

L(z′, w̄0, z, v̄0)

⎥⎥⎥⎦
= pc

since Ki (r) is a specific element of the set Si .
For the induction step, assume that Eq. (12.14) holds for some ke = ke and prove that

it is also valid for ke = ke + 1. This proof can be done in a similar way, where again the
inequality (12.15) is the crucial step that deletes the summation over all interconnection
input symbols si . �

Remark 12.1 The decentralised test result pd is the best possible result that is com-
plete and can be determined if the test units have only access to a subsystem model
and the I/Opair of the subsystem.Then the inequality (12.15) has to be used to remove
the dependence of pd upon the interconnection inputs si ∈ Si that are unknown. �

Decentralised consistency test. For the decentralised consistency test, the following
algorithm has to be carried out by all local test units. The results pdi obtained by
these units have to be lumped together to the overall test result given by Eq. (12.12).

Algorithm 12.1 Consistency test of the i th subsystem

Given: Automaton Ai

I/O pair (12.7), (12.8)

1. Determine p′
i (zi , 0) by Eq. (12.9)

2. Apply Eq. (12.10) for k = 0, 1, . . . , ke to determine p′
i (z

′
i , ke + 1)

3. Determine pdi by Eq. (12.11).

Result: Test result pdi for the i th subsystem

620 12 Diagnosis of I/O Automata Networks

The result for the overall system obtained by the N decentralised consistency test
units is obtained by Eq. (12.12).

12.3.3 State Observation Result

The results pdi , (i = 1, . . . , N) generated by all the decentralised test units also
provide a set of states in which the subsystems can be at time ke + 1:

Zdi (ke + 1) = {z′
i ∈ Zi | p′

i (z
′
i , ke + 1) > 0}.

Hence, the state of the overall system is known to be in the set

Zd(ke + 1) = Zd1(ke + 1) × Zd2(ke + 1) × · · · × ZdN (ke + 1)

which satisfies the relation

Zd(ke + 1) ⊇ Zc(ke + 1). (12.16)

Accordingly, the decentralised units yield a superset of the set of states z(ke + 1) in
which the overall system can reside at time ke + 1.

12.4 Centralised Versus Decentralised Diagnosis

12.4.1 Completeness of the Diagnostic Result

The consistency test is now applied for solving the diagnostic problem stated in
Sect. 12.1. The model of the subsystems and of the overall system have now to be
dependent upon the system fault f or the subsystem fault fi , respectively. Conse-
quently, the state transition functions considered now have the fault as additional
argument.

The aim is to determine a set of faults Fd that is equal or a superset of the set F∗
of fault candidates.

Definition 12.2 (Completeness of the diagnostic result) The diagnostic result Fd is
said to be complete if the relation

Fd ⊇ F∗ (12.17)

holds.

12.4 Centralised Versus Decentralised Diagnosis 621

Hence, a complete diagnostic result is given by a set of faults in which all faults
occur for which the I/O pair is consistent with the model of the overall system.

12.4.2 Centralised Diagnosis

The diagnostic problem of the overall system is solved by using Algorithm 11.4 for
the model A(f) successively for all faults f ∈ F . The notation A(f) differs from
the symbol A f used in Chap.11 for a model that describes a system subject to fault
f , because here the index is used to identify the subsystem concerned. If the I/O pair
is found to be consistent with the model for some fault f , then f is an element of
the solution set Fc.

As, according toLemma11.4, the consistency test developed for the overall system
gives the best possible result, the set Fc coincides with the set of fault candidates
F∗. That is, the diagnostic method yields the best possible diagnostic result.

Algorithm 12.2 Centralised fault diagnosis of the overall system

Given: Automaton A(f) describing the system for all faults f ∈ F
I/O pair (11.71), (11.72)

1. For all f ∈ F test the consistency of the I/O pair with the model
A(f) by Algorithm 11.4.

2. If the I/O pair is consistent with the model for some fault f ∈ F ,
include f as new element into the set Fc

Result: Set of faults Fc

Theorem 12.2 (Completeness of the overall diagnostic result) The diagnostic result
obtained by Algorithm 12.2 is complete. Moreover, the relation

Fc = F∗ (12.18)

holds.

Equation (12.18) shows that the diagnostic result is not only complete but also precise
in the sense that it does not include any fault that is not a fault candidate.

http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11
http://dx.doi.org/10.1007/978-3-662-47943-8_11

622 12 Diagnosis of I/O Automata Networks

12.4.3 Decentralised Diagnosis

Decentralised diagnosis solves the diagnostic problem for the components separately
and merges the results to get the diagnostic result for the overall system.

The decentralised diagnostic unit of the i th subsystem tests the consistency of
the I/O pair (Vi , Wi) of the subsystem with the subsystem model Ai (f) set up for
all subsystems faults f ∈ Fi . If the consistency condition is satisfied, the fault f is
inserted into the diagnostic result Fdi .

As the decentralised diagnostic algorithm has no information about the intercon-
nection input si , the condition pdi > 0 for the indicator pdi obtained fromEq. (12.11)
is sufficient but not necessary for the consistency of the overall I/O pair with the
overall model. Hence, a complete but not precise diagnostic result is obtained by the
decentralised diagnostic unit.

Algorithm 12.3 Decentralised fault diagnosis of the i th subsystem

Given: AutomatonAi (f) describing the i th subsystem for all faults f ∈ Fi

I/O pair (12.7), (12.8)

1. For all f ∈ Fi test the consistency of the I/O pair with the model
Ai (f) by Algorithm 12.1.

2. If the I/O pair is consistent with the model Ai (f) for some fault
f ∈ Fi , include f as new element into the set Fdi

Result: Set of faults Fdi

The diagnostic result Fd for the overall system is obtained from the diagnostic
results Fdi of the subsystems as follows:

Fd = Fd1 × Fd2 × · · · × FdN . (12.19)

Theorem12.1 yields the following statement about the completeness of this diag-
nostic result.

Theorem 12.3 (Completeness of decentralised diagnosis) The result Fd obtained
by the decentralised diagnostic units is complete:

Fd ⊇ F∗. (12.20)

The diagostic result includes, in general, faults that are no fault candidates.

12.5 System Properties and Simplification of Diagnosis 623

12.5 System Properties and Simplification of Diagnosis

12.5.1 Aim of Analysis

This section deals with properties of the automata network that allow to use a decen-
tralised diagnostic scheme without a deterioration of the diagnostic result due to
the lack of information about the interconnections of the subsystems. If the system
possesses—at least temporarily—these properties, then the decentralised diagnostic
units can test the consistency of the local I/O pairs with the model of the subsystems
and get the same result as the centralised unit, which uses the overall I/O pair and
the model of the overall system.

The main idea of the further considerations is to look for situations in which a
subsystemmakes state transitions independently of other subsystems. Two situations
are investigated in more detail:

• Subsystem autonomy: A subsystem has an (temporal) autonomy if its state tran-
sitions are not influenced by the interconnection input. Then the consistency of
the I/O pair of the subsystem does not depend on the unknown interconnection
signals.

• Asynchronous state transitions: If a subsystem is caused tomake a state transition
by its local inputwhereas the other subsystems do not get any input and, thus, do not
make state transitions, then the consistency of the local I/O pair is not influenced
by subsystem interactions.

As the consistency test is the basis for any diagnostic method, the rest of this
section is concerned with the consistency test for a model that has no reference to
any fault.

12.5.2 Autonomy of Subsystems

Autonomy is the property that a subsystem behaves independently of the state or
state transitions of the other subsystems although it is coupled with these subsystems
within the automata network.

Definition 12.3 (Subsystem autonomy) A subsystem Ai in state zi ∈ Zi is said to
behave autonomously from other subsystems if there exists a function L̃ i such that
the equation

Li (z
′
i , wi , zi , vi , si) = L̃ i (z

′
i , wi , zi , vi) (12.21)

holds for this state zi , all vi ∈ Vi and all si ∈ Si .

That is, the state transition zi
vi /wi−→ z′

i does not depend on the interconnection input
si . Denote the set of states zi for which the autonomy condition (12.21) is satisfied
by Zaut

i :

624 12 Diagnosis of I/O Automata Networks

Zaut
i = {zi ∈ Zi | ∃L̃i : Li (z

′
i , wi , zi , vi , si) = L̃i (z

′
i , wi , zi , vi)

for all vi ∈ Vi , si ∈ Si }.

If Eq. (12.21) holds for all zi ∈ Zi , the i th subsystem acts completely indepen-
dently of the other subsystems and can be analysed completely separately from the
remainder of the composite system. This is the trivial case where the decentralised
diagnostic unitDi gets the best possible diagnostic result. The more interesting case
concerns subsystems where the autonomy condition (12.21) is satisfied for some but
not all states zi . In this case the decentralised unit Di gets the best possible result as
long as the subsystem state remains in the set Zaut

i .

Two autonomous subsystems. The simplification that results fromautonomous state
transitions is considered now for an automata network with two subsystems. Assume
that at time k the decentralised test units together have obtained the same consistency
result as the centralised test unit, which means that the relation

p′
1(z1, k) · p′

2(z2, k) = p′
((

z1
z2

)
, k

)
(12.22)

holds. That is, the subsystems are in states that occur in the sets

Z1(k) = {z1 ∈ Z1 | p′
1(z1, k) > 0}

Z2(k) = {z2 ∈ Z2 | p′
2(z2, k) > 0}

and the automata network in one of the states of the set

Z(k) = {z ∈ Z | p′(z, k) > 0} = Z1(k) × Z2(k).

Assume furthermore that both subsystems satisfy the autonomy conditions (12.21)
for all zi ∈ Zi (k):

L1(z
′
1, w1, z1, v1, s1) = L̃1(z

′
1, w1, z1, v1) for all z1 ∈ Z1(k), v1 ∈ V1, s1 ∈ S1

L2(z
′
2, w2, z2, v2, s2) = L̃2(z

′
2, w2, z2, v2) for all z2 ∈ Z2(k), v2 ∈ V2, s2 ∈ S2.

Then the consistency tests carried out by the centralised unit applying Eq. (11.76)
and the decentralised units using Eq. (12.10) lead to the same result as the following
equations show:

p1(z
′
1, k + 1) · p2(z

′
2, k + 1)

=
⎢⎢⎢⎣ ∑

z1∈Z1

∑
s1∈S1

L1(z
′
1, w̄k1, z1, v̄k1, s1) · p1(z1, k)

⎥⎥⎥⎦

http://dx.doi.org/10.1007/978-3-662-47943-8_11

12.5 System Properties and Simplification of Diagnosis 625

·
⎢⎢⎢⎣ ∑

z2∈Z2

∑
s2∈S2

L2(z
′
2, w̄k2, z2, v̄k2, s2) · p2(z2, k)

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

z1∈Z1(k)

∑
s1∈S1

L1(z
′
1, w̄k1, z1, v̄k1, s1)

⎥⎥⎥⎦

·
⎢⎢⎢⎣ ∑

z2∈Z2(k)

∑
s2∈S2

L2(z
′
2, w̄k2, z2, v̄k2, s2)

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

z1∈Z1(k)

L̃1(z
′
1, w̄k1, z1, v̄k1) ·

∑
z2∈Z2(k)

L̃2(z
′
2, w̄k2, z2, v̄k2)

⎥⎥⎥⎦

p(z′, k + 1)

=
⎢⎢⎢⎣∑

z∈Z
L(z′, w̄k1, z, v̄k1) · p(z, k)

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

z∈Z(k)

L(z′, w̄k1, z, v̄k1)

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

z1∈Z1(k)

L1(z
′
1, w̄k1, z1, v̄k1, K1(r)) ·

∑
z2∈Z2(k)

L2(z
′
2, w̄k2, z2, v̄k2, K2(r))

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

z1∈Z1(k)

L̃1(z
′
1, w̄k1, z1, v̄k1) ·

∑
z2∈Z2(k)

L̃2(z
′
2, w̄k2, z2, v̄k2)

⎥⎥⎥⎦ .

Hence the lack of information under which the decentralised units have to test the
consistency of the I/O pairs of the subsystems does not deteriorate the result in
comparison to the centralised test.

Series connection of two subsystems. The situation changes if only one of the
two subsystems acts autonomously. Assume, as an example, that Subsystem 1 sat-
isfies the autonomy condition (12.21) whereas the state transition of Subsystem 2
depends upon the interconnection signal s2. Then the automata network consists of
a series connection of the two subsystems. Consider again the situation described by
Eq. (12.22). Then the decentralised scheme yields the following result:

p′
1(z

′
1, k + 1) =

⎢⎢⎢⎣ ∑
z1∈Z1(k)

∑
s1∈S1

L1(z
′
1, w̄k1, z1, v̄k1, s1)

⎥⎥⎥⎦

626 12 Diagnosis of I/O Automata Networks

=
⎢⎢⎢⎣ ∑

z1∈Z1(k)

L̃1(z
′
1, w̄k1, z1, v̄k1)

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

z1∈Z1(k)

L1(z
′
1, w̄k1, z1, v̄k1, K1(r))

⎥⎥⎥⎦

p′
2(z

′
2, k + 1) =

⎢⎢⎢⎣ ∑
z2∈Z2(k)

∑
s2∈S2

L2(z
′
2, w̄k2, z2, v̄k2, s2)

⎥⎥⎥⎦

≥
⎢⎢⎢⎣ ∑

z2∈Z2(k)

L2(z
′
2, w̄k2, z2, v̄k2, K2(r))

⎥⎥⎥⎦ .

The comparison with the result produced by the centralised test unit gives the fol-
lowing inequality:

p′(z′, k + 1) =
⎢⎢⎢⎣ ∑

z1∈Z1(k)

L1(z
′
1, w̄k1, z1, v̄k1, K1(r))

·
∑

z2∈Z2(k)

L2(z
′
2, w̄k2, z2, v̄k2, K2(r))

⎥⎥⎥⎦
≤ p′

1(z
′
1, k + 1) · p′

2(z
′
2, k + 2).

Note that the deterioration of the test result only concerns Subsystem 2. This becomes
obvious if the sets of states are compared in which the system can be at time k + 1.
The decentralised scheme delivers the sets

Z1(k + 1) = {z1 ∈ Z1 | p′
1(z1, k + 1) > 0}

Z2(k + 1) = {z2 ∈ Z2 | p′
2(z2, k + 1) > 0},

whereas the centralised test results in the set

Z(k + 1) = {z ∈ Z | p′(z, k + 1) > 0}.

The projection of the set Z(k + 1) onto the first component coincides with the set
Z1(k + 1) obtained by the decentralised unit of Subsystem 1:

PZ1(Z(k + 1)) =
{

z1 ∈ Z1

∣∣∣∣∣ ∃
(

z1
z2

)
∈ Z(k + 1)

}
= Z1(k + 1).

12.5 System Properties and Simplification of Diagnosis 627

However, the projection onto the state set Z2 shows the deterioration of the consis-
tency test result due to the lack of coupling information:

PZ2(Z(k + 1)) ⊆ Z2(k + 1).

12.5.3 Asynchronous State Transitions

When considering an I/O pair (V , W) it had been assumed until now that the com-
ponents of the vectors v(k) and w(k) represent input symbols that occur at all sub-
systems simultaneously. The input v(k) causes synchronous state transitions of the
subsystems, which in turn generate simultaneously the output symbols that occur in
the vector w(k).

This section shows that the methods described so far are also applicable for
automata networks that perform asynchronous state transitions. To represent such
state transitions, the empty symbol ε is introduced as additional elements of the input
and output alphabets of all subsystems including the alphabets of the interconnection
signals and of the overall systems. This symbol indicates that “no information” is
transmitted by the corresponding signal:

V1 = {ε, 1}, V2 = {ε, 2}
W1 = {ε, 0, 1}, W2 = {ε, 0, 1}

S1 = S2 = R1 = R2 = {ε, 0, 0}.

Several situations can be taken into accountwhen extending the subsystemmodels
to accept empty input symbols:

• No state transition: If for the state transition function the relation

Li (zi , ε, zi , ε, si) = 1 for all zi ∈ Zi , si ∈ Si (12.23)

holds, a subsystem that gets the empty input symbol does not change its state,
(z′

i = zi) and does not generate any output symbol.
• State transition caused by other subsystems: If the state transition function has
the property

∃z′
i , wi : Li (z

′
i , wi , zi , ε, si) = 1 for some zi ∈ Zi , si ∈ Si , (12.24)

the state transition zi → z′
i of the i th subsystem is caused by the input symbol si .

The state transition is initiated by the subsystem that generates the interconnection
input si .

• Blocked state transitions: If the state transition function satisfies the condition

Li (zi , ε, zi , vi , ε) = 1 for all zi ∈ Zi , vi ∈ Vi , (12.25)

628 12 Diagnosis of I/O Automata Networks

then the state transition of the i th subsystem can be blocked by other subsystems
that make the interconnection input si to the i th subsystem equal to the empty
symbol. This blockage can be caused by the j th subsystem that gets the empty
input signal v j = ε and transfers this blockage via its interconnection output

r j = Fj (z j , ε) = ε

towards the interconnection input si = ε of the i th subsystem.

The properties (12.23) and (12.25) may be satisfied for some instead of all sub-
system states or subsystem inputs. Then the phenomena described above hold only
in specific situations.

Example 12.2 Fault detection of two asynchronous subsystems
Consider again the two coupled automata of Example12.1. The state transition functions L1
and L2 are given by automaton graphs in Fig. 12.5 whose edges have the labels vi , si/wi , ri .

In addition to the properties investigated in Example12.1 the following behaviour of the
automata network in case of empty inputs is introduced now. If Subsystem 1 gets a nonempty
input signal it carries out a state transition, which is an asynchronous transition if Subsystem 2
does not get any nonempty input. In case of an empty input, Subsystem 1 blocks any state
transition of Subsystem 2. This situation is described by the following relations that hold in
addition to the state transitions shown in the figure:

F1(z1, ε) = ε (12.26)

F2(z2, ε) = ε

L1(z1, ε, z1, ε, s1) = 1 (12.27)

L1(z
′
1, wi , z1, v1, ε) = L1(z

′
1, wi , z1, v1, 1) (12.28)

L2(z2, ε, z2, ε, s2) = 1 (12.29)

L2(z2, ε, z2, v2, ε) = 1. (12.30)

These formulas hold true for all free variables occurring in the functions considered. Both the
blockage of a state transition and a state transition where the successor state coincides with
its predecessor are symbolised by a state transition zi → z′

i . However, in the former case the
output wi = ε is generated whereas in the latter case some output wi �= ε is issued.

Centralised diagnosis. The consistency of the I/O pair

V =
((

1

2

)
,

(
ε

2

)
,

(
1

2

)
,

(
1

ε

))

W =
((

0

0

)
,

(
ε

ε

)
,

(
1

1

)
,

(
0

ε

))

12.5 System Properties and Simplification of Diagnosis 629

is tested first by the centralised unit by means of Algorithm 11.4. The model of the overall
system, which has the state set

Z =
{(

1

3

)
,

(
1

4

)
,

(
2

3

)
,

(
2

4

)}

is built by Eq. (12.4) for the arguments that occur during the test. The test result p′(z, k) is
written down only for those states z for which it has a positive value.

1. Due to Eq. (12.5), the initialisation yields

p′
((

1

4

)
, 0

)
= 1

p′
((

2

4

)
, 0

)
= 1.

2. For the inputs v1(0) = 1, v2(0) = 2 and outputs w(0) = 0, w2(0) = 0 the following
results are obtained:

p′(z′, 1)

=
⎢⎢⎢⎣∑

z∈Z
L

(
z′,

(
0

0

)
, z,

(
1

2

))⎥⎥⎥⎦ · p′(z, 0)

=
⌊

L

(
z′,

(
0

0

)
,

(
1

4

)
,

(
1

2

))
+ L

(
z′,

(
0

0

)
,

(
2

4

)
,

(
1

2

))⌋

= �L1(z
′
1, 0, 1, 1, F2(4, 2)) · L2(z

′
2, 0, 4, 2, F1(1, 1))

+L1(z
′
1, 0, 2, 1, F2(4, 2)) · L2(z

′
2, 0, 4, 2, F1(2, 1))�

= �L1(z
′
1, 0, 1, 1, 1) · L2(z

′
2, 0, 4, 2, 0) + L1(z

′
1, 0, 2, 1, 1) · L2(z

′
2, 0, 4, 2, 1)�.

In the last line, L1(z
′
1, 0, 2, 1, 1)) = 0 holds, because Subsystem 1 generates the output

w(0) = 1 if it gets in state z1 = 2 the inputs v1 = 1, s1 = 1. The preceding line is equal
to one for z′

1 = 2 and z′
2 = 4:

p′
((

2

4

)
, 1

)
= 1.

3. For the inputs v1(1) = ε, v2(1) = 2 only Subsystem 2 is forced from outside to make
a state transition. The following calculations show that in accordance with the earlier
description of the network properties for empty inputs both subsystems are blocked by the
empty input signal to Subsystem 1:

630 12 Diagnosis of I/O Automata Networks

p′(z′, 2) =
⎢⎢⎢⎣∑

z∈Z
L

(
z′,

(
ε

ε

)
, z,

(
ε

2

))⎥⎥⎥⎦ · p(z, 1)

=
⌊

L

(
z′,

(
ε

ε

)
,

(
2

4

)
,

(
ε

2

))⌋

= �L1(z
′
1, ε, 2, ε, 1) · L2(z

′
2, ε, 4, 2, ε)�

(cf. Eq. (12.26)). The state transition functions (12.27), (12.30) of the subsystems yield
z′
1 = z1 = 2 and z′

2 = z2 = 4 as the only successor states for which the product is
non-zero:

p′
((

2

4

)
, 2

)
= 1.

The blockage of both subsystems by the empty input to Subsystem 1 can be seen in the
empty outputs of both components, which indicate that no transitions have occurred.

4. For v1(2) = 1, v2(2) = 2 both subsystems may change their states. The evaluation of the
I/O pair leads to

p′(z′, 3) =
⎢⎢⎢⎣∑

z∈Z
L

(
z′,

(
1

1

)
, z,

(
1

2

))
· p′(z, 2)

⎥⎥⎥⎦

=
⌊

L

(
z′,

(
1

1

)
,

(
2

4

)
,

(
1

2

))⌋

= �L1(z
′
1, 1, 2, 1, 1) · L2(z

′
2, 1, 4, 2, 1)�

and

p′
((

1

3

)
, 3

)
= 1.

5. For the input v1(3) = 1, v2(3) = ε Subsystem 1 makes an asynchronous state transition.
With the outputs w1(3) = 0 and w2(3) = ε one gets

p′(z′, 4) =
⎢⎢⎢⎣∑

z∈Z
L

(
z′,

(
0

ε

)
, z,

(
1

ε

))
· p′(z, 3)

⎥⎥⎥⎦

=
⌊

L

(
z′,

(
0

ε

)
,

(
1

3

)
,

(
1

ε

))⌋

= �L1(z
′
1, 0, 1, 1, ε) · L2(z

′
2, ε, 3, ε, 0)�

= �L1(z
′
1, 0, 1, 1, 1) · L2(z

′
2, ε, 3, ε, 0)�

12.5 System Properties and Simplification of Diagnosis 631

Fig. 12.7 Overall system
with asynchronous state
transitions

w

1
2

1
1

1
2

0
0

1
2

1
0

v

2
3

1
3

1
4

2
4

1
2

0
0

1
ε

0
ε

1
ε

0
ε

1
ε

1
ε

1
ε

0
ε

ε
*

ε
ε

ε
*

ε
ε

ε
*

ε
ε

ε
*

ε
ε

(cf. Eq. (12.28)). Equation (12.29) leads to

p′
((

2

3

)
, 4

)
= 1.

The same results are obtained if first, the overall system model is built (Fig. 12.7) and
second, the I/O pair of the overall system is tested with respect to this model. Then, however,
the determination of the interconnection signals does not become obvious as intermediate
result, which is important for the comparison of the two schemes later on.

The figure shows which state transitions may occur in the network due to the asynchronous
movement of Subsystem 1. The asterisk denotes any input v2.

Decentralised diagnosis. Now consider the decentralised units. Algorithm 12.1 yields for
Subsystem 1 the following results:

1. The initialisation gives

p′
1(1, 0) = 1

p′
1(2, 0) = 1.

2. For v1(0) = 1 and w1(0) = 0 the algorithm delivers the result

632 12 Diagnosis of I/O Automata Networks

p′
1(z

′
1, 1) =

⎢⎢⎢⎣ ∑
z1∈Z1

∑
s1∈S1

L1(z
′
1, 0, z1, 1, s1) · p′

1(z1, 0)

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

s1∈S1

(
L1(z

′
1, 0, 1, 1, s1) + L1(z

′
1, 0, 2, 1, s1)

)
⎥⎥⎥⎦ . (12.31)

The first addend is non-zero for z′
1 = 1 and z′

1 = 2 whereas the second is non-zero for
z′
1 = 2. Hence, the result of this step is

p′
1(1, 1) = 1

p′
1(2, 1) = 1.

3. For v1(1) = ε and w1(1) = ε the algorithm yields

p′
1(z

′
1, 2) =

⎢⎢⎢⎣ ∑
s1∈S1

(
L1(z

′
1, ε, 1, ε, s1) + L1(z

′
1, ε, 2, ε, s1)

)
⎥⎥⎥⎦ ,

which according to Eq. (12.27) is non-zero for z′
1 = z1 and leads to

p′
1(1, 2) = 1

p′
1(2, 2) = 1.

No state transition has occurred.
4. For the I/O pair v1(2) = 1, w1(2) = 1 the sum

p′
1(z

′
1, 3) =

⎢⎢⎢⎣ ∑
s1∈S1

(
L1(z

′
1, 1, 1, 1, s1) + L1(z

′
1, 1, 2, 1, s1)

)
⎥⎥⎥⎦

is non-zero only for z′
1 = 1:

p′
1(1, 3) = 1.

Hence, the state z1(3) = 1 is unambiguously determined.
5. For the I/O pair v1(3) = 1, w1(3) = 0 the relation

p′
1(z

′
1, 4) =

⎢⎢⎢⎣ ∑
s1∈S1

L1(z
′
1, 0, 1, 1, s1)

⎥⎥⎥⎦

leads to two possible successor states z′
1:

12.5 System Properties and Simplification of Diagnosis 633

1 2

1/0

1/1

1/0 1/0

v1 w1

3

4

2/02/1

2/0

2/0

A2

v 2 w 2

A1

Fig. 12.8 Model of the isolated subsystems

p′
1(1, 4) = 1

p′
1(2, 4) = 1.

Due to the summation over the interconnection input s1, the test algorithm deals with Subsys-
tem 1 in such a way that it allows all state transitions that are possible for some interconnection
input. Further, the interconnection output r1 does not play any role in the test. This means
that instead of the modelA1 shown in the left part of Fig. 12.7 the simplified model depicted
in the left part of Fig. 12.8 is used. This model results from the former one after deleting
the information about the interconnection input s1 and the interconnection output r1, both of
which are written as part of the labels of the state transitions. The result is a nondeterministic
automaton.

For Subsystem 2 the decentralised test unit uses Algorithm 12.1 to get the following results:

1. The initialisation gives

p′
2(4, 0) = 1.

2. For v2(0) = 2 and w2(0) = 0 the result is

p′
2(z

′
2, 1) =

⎢⎢⎢⎣ ∑
z2∈Z2

∑
s2∈S2

L2(z
′
1, 0, z2, 1, s2) · p′

2(z2, 0)

⎥⎥⎥⎦

=
⎢⎢⎢⎣ ∑

s2∈S2

L2(z
′
2, 0, 4, 2, s2)

⎥⎥⎥⎦

634 12 Diagnosis of I/O Automata Networks

which leads to

p′
2(4, 1) = 1.

3. For v2(1) = 2 and w2(1) = ε the relation

p′
2(z

′
2, 2) =

⎢⎢⎢⎣ ∑
s2∈S2

L2(z
′
2, ε, 4, 2, s2)

⎥⎥⎥⎦

and Eq. (12.30) yield a positive result for s2 = ε, for which z′
2 = z2 = 4 holds and, thus,

p′
2(4, 2) = 1.

The fact that no state transition occurred can be recognised by the decentralised unit due
to the empty output.

4. The I/O pair v2(2) = 2, w2(2) = 1 leads to

p′
2(z

′
2, 3) =

⎢⎢⎢⎣ ∑
s2∈S2

L2(z
′
2, 1, 4, 2, s2)

⎥⎥⎥⎦

which is non-zero only for z′
2 = 3.

p′
2(3, 3) = 1.

5. Finally, the I/O pair v2(3) = ε, w2(3) = ε leads to

p′
2(z

′
2, 4) =

⎢⎢⎢⎣ ∑
s2∈S2

L2(z
′
2, ε, 3, ε, s2)

⎥⎥⎥⎦

and together with Eq. (12.29)

p′
2(3, 4) = 1.

The calculations described above show that asynchronous state transitions can be consid-
ered by the consistency test.

Comparison of the results. The deviations of the results obtained by the decentralised units
from the outcome of the centralised unit can be seen by comparing the state sets in which the
system is known to be after the evaluation of the I/O pair for the time horizon 0 . . . k with
k = 0, 1, . . . , 4:

12.5 System Properties and Simplification of Diagnosis 635

k Z(k) Z1(k) × Z2(k)

0

{(
1

4

)
,

(
2

4

)}
=

{(
1

4

)
,

(
2

4

)}

1

{(
2

4

)}
⊂

{(
1

4

)
,

(
2

4

)}

2

{(
2

4

)}
⊂

{(
1

4

)
,

(
2

4

)}

3

{(
1

3

)}
=

{(
1

3

)}

4

{(
2

3

)}
⊂

{(
1

3

)
,

(
2

3

)}

The deterioration of the observation result for the time k = 1 is brought about by the lack of
information about the interconnection signals for the decentralised test units. The set Z(k) is
determined by the centralised unit by processing the I/O pair

(v(0),w(0)) =
((

1

2

)
,

(
0

0

))
.

The result is that the system can have been at time k = 0 only in the state

z(0) =
(

1

4

)

and jumped to the state

z(1) =
(

2

4

)

(cf. Fig. 12.6). The decentralised test by means of the model of Subsystem 1 and the I/O pair
(v1(0), w1(0)) = (1, 0) leads to Eq. (12.31), which is non-zero for z′

1 = 1 and z′
1 = 2. These

states can be reached by choosing the interconnection input s1 = 0 or s1 = 1, respectively.
Only if the model and the I/O pair of Subsystem 2 were known it could be recognised that
the interconnection input is fixed to s1 = 1, and, hence Subsystem 1 cannot jump to the state
z′
1 = 1. Similar considerations explainwhy for k = 2 and k = 4 the results of the decentralised
test are worse than the centralised result. �

636 12 Diagnosis of I/O Automata Networks

12.5.4 Extensions

Nondeterministic systems. The comparison of the centralised and decentralised test
schemes can be extended to non-deterministic discrete-event systems without any
problems. For non-deterministic systems, for a given state z and input v more than
one successor state z′ may occur. With respect to the i th subsystem this means that
for a given triple (zi , vi , si) the relation

Li (z
′
i , wi , zi , vi , si) = 1

may hold for several states z′
i ∈ Zi and output symbols wi ∈ Wi . The definition

of the system behaviour as well as of the consistency of an I/O pair with the model
remains the same.

In the most general form, the subsystemmodels are represented by a function that
includes the coupling function Fi and the state transition function Li . This function

Li : Z × W × R × Z × V × S → {0, 1} (12.32)

associates with any tupel
(z′

i , wi , ri , zi , vi , si)

the value 1 if the subsystemmay jump from the current state zi towards the state z′
i if

it gets the input vi and the interconnection input si and generates the output wi and
the interconnection output ri . Then the representation of the composition rule (12.4)
changes towards

L

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

z′
1

z′
2
...

z′
N

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

w1

w2
...

wN

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

z1
z2
...

zN

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎝

v1

v2
...

vN

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

=
⎢⎢⎢⎣ ∑

r1∈R1

∑
r2∈R2

. . .
∑

rN ∈RN

N∏
i=1

Li (z
′
i , wi , ri , zi , vi , Ki (r))

⎥⎥⎥⎦ .

General subsystem models. In the subsystem models considered in this chapter the
interconnection output ri of the i th subsystem depends upon the current state zi and
the input vi , but not on the interconnection input si . In the non-deterministic case, the
interconnection output can also depend on the successor state z′

i and on the output
wi that is generated during the state transition. The latter case is already included in
the definition of the function Li by Eq. (12.32).

In all these cases, the automaton network need not be well-defined. An automata
network is called well-defined if the overall network belongs to the same class of

12.5 System Properties and Simplification of Diagnosis 637

automata as the componentmodels [211]. This is particularly important for determin-
istic automata, which are the main concern of this chapter. For this class of automata,
the network has to be tested to see whether it is well-defined. An “algebraic loop”
may destroy the deterministic behaviour if for an overall state z and input v of the
network the interconnection signals turn out not to be unambiguously defined. Then,
no or more than one state transitions are possible which violates the property of the
overall system to have a unambiguously defined successor state for all current states
and inputs.

This problem has been mentioned in [84] and dealt with in more detail in [211]
for deterministic systems. The references show that additional tests within the con-
sistency test elaborated here are necessary to decide about the well posedness of the
overall system. This test can only be made with the information about the overall
system. Therefore, it can only be included in the centralised consistency test whereas
the decentralised tests get wrong results if the system turns out not to be well-defined
because this situation cannot be recognised by any decentralised test scheme due to
the lack of information about the overall system.

12.6 Exercises

Exercise 12.1 Modelling of a mountain railway
Figure12.9 shows a bird’s eye view on a mountain railway together with the discrete-event
models of the two cabins. For the input 1 a cabin can move downward (from right to left in
the figure) and for the input 2 upward. The rails between both stations are partitioned into five

1 2 3 4 5

1

2

1

2

1

2

1

2

1 2 6 4 5

1

2

1

2

1

2

1

2

A1:

A2:

Fig. 12.9 Sketch and subsystem models of a mountain railway

638 12 Diagnosis of I/O Automata Networks

1 2

2,1/2,0

2,*/1,1
1,0/1,12,0/1,1

1,*/1,1

1,0/2,0 3

4

2,*/4,02,*/3,1

1,*/3,1
2,0/3,1

1,*/4,0

A1

A2

v1

v2

w1

w2

r1=s2

s1=r2

Fig. 12.10 Composite system model

zones each of which corresponds to a state of the automata. For the passing place, the cabin 2
goes over the rail corresponding to state 6 whereas cabin 1 uses the rail for state 3.

As usual, the cabins cannot move independently, but are coupled through a rope. This
coupling should be represented by using the coupling inputs si and coupling output ri of the
cabin models together with an interconnection model. Extend the given subsystem models
to get a model of the railway as an I/O automata network. Build a deterministic automaton
showing the overall system and show that the cabins cannot simultaneously assume the same
state (rail zone). �

Exercise 12.2 Diagnosis of an interconnected discrete-event system
Consider the system modelled by the I/O automata network shown in Fig. 12.10. The system
is designed so that the two subsystems represented by the automata A1 and A2 cannot reach
the states 2 and 4 simultaneously.

1. Combine the models shown in the figure to get a deterministic automaton of the overall
system. Show that the specification mentioned above is satisfied.

2. The fault f2 appearing in the automaton A2 makes the coupling output r2 identical to
1 (r2(k) = 1) independently of the automaton state. Change the model A2 accordingly.
What happens in the model of the overall system?

3. Use decentralised diagnosers to detect the fault f2. Is it possible to select an input sequence
for both subsystems such that the fault is detected before the subsystems reach simultane-
ously the states 2 and 4?

4. Consider now a sensor fault, which makes the output of the automaton A1 constant:
w1(k) = 1. Can decentralised diagnosers detect this fault? Select, if possible, distinguish-
ing input sequences for both subsystems. �

12.7 Bibliographical Notes 639

12.7 Bibliographical Notes

There are different lines of research for the diagnosis of composite systems. Ref-
erences [75, 236, 237, 348, 349] propose distributed diagnostic schemes where the
local units send their results to some global diagnostic unit (coordinator) that merges
the local results to get the best possible result for the overall system. Similarly, the
method described in [123] for systems described by Petri nets relies on an exchange
of information about the occurrence of observable events, particularly about events
over which the components interact. In [41] a distributed diagnostic method is pro-
posed with two diagnostic units where one of the units communicates information
about its event sequence to the other one. According to the communication protocol,
information is exchanged only if the message transferred can be expected to improve
the diagnostic result. All these schemes aim at recovering the best possible result,
which would be obtained by a centralised diagnostic unit with access to the over-
all model and all measurement information. Reference [61] describes an approach
where several diagnostic units work in parallel and combine their local decisions to
get the global diagnostic result.

On the other hand, decentralised diagnosis deals with the situation that there
are no information links among the diagnostic units of the subsystems. References
[235, 381] propose decentralised diagnostic methods and investigate the relation
of the results obtained by decentralised or centralised diagnostic approaches. Only
in special cases, both results coincide. Reference [281] introduces the notion of co-
diagnosability as the property that every fault is detected by at least one decentralised
diagnostic unit after a finite event sequence. This notion has been extended in [283]
to safe co-diagnosability, which describes the property that if a system is faulty, there
exists at least on decentralised diagnoser that detects the fault within a bounded delay
and before safety specifications are violated. The conditions derived show that these
properties exist only in very restrictive classes of systems.

References [269, 270] developed a hierarchical structure to answer the question,
which faults can be detected by the higher level diagnostic unit.

The majority of papers deal with automata networks where the couplings among
the components are described by the simultaneous appearance of some events in
all components. The model used in this chapter consists of I/O automata for all
subsystems, that are coupled in the generalised version introduced in [84, 214],
where the automata are coupled through interconnection signals. Hence, the class of
systems considered here is similar to active systems investigated in [13], although
the subsystem interactions are instantaneous here. Asynchronous state transitions
are possible in the modelling approach used here, whereas [235, 236, 237] refer to
networks, in which the components carry out synchronous state transitions.

The extension towards interconnected stochastic discrete-event systems has been
made in, for example, [200], where a decentralised scheme of diagnosers is consid-
ered and the notion of co-diagnosability is extended to the stochastic setting.

Appendix A
Some Prerequisites on Vectors and Matrices

Homogeneous system. Let A be an m × n matrix, A ∈ |Rm×n and x an n vector
x ∈ |Rn . The system

Ax = O

is called a homogeneous system.

• Every homogeneous system has the solution x = 0. This solution is called the
trivial solution.

• If the homogeneous system has fewer equations than unknowns, it has an infinite
number of solutions; in particular, it has a nontrivial solution.

Vector space. A collectionV ofn-vectors is a vector space ifV satisfies the following
properties:

1. (Closure under vector addition) The sum of two vectors u and v in V is a vector
u + v that belongs to V.

2. (Closure under scalar multiplication) The product of a vector v in V with any
scalar c is a vector cv that belongs to V.

If V satisfies these properties, it is said to be closed under vector addition and scalar
multiplication.

Rank of a matrix. Let A be an m × n matrix and let Ã be its Gauss-reduced form.
The rank of A is the number of non-zero rows of Ã. It is equal to the number of
linearly independent rows or columns in matrix A.

Subspace. A vector space V is a subspace of a vector space W if every vector in V
also belongs to W.

Let A ∈ |Rm×n be an m × n matrix.

Definition.The subspace of |Rn consisting of all solutions to the homogeneous linear
system Ax = 0 is called the null space of the matrix A, and is denoted by N (A).

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8

641

642 Appendix A: Some Prerequisites on Vectors and Matrices

Definition. The subspace of |Rm consisting of all vectors b for which the system
Ax = b is consistent is called the column space of the matrix A, and is denoted by
C (A).

Example Column space
Let

A =
(
1 2 3
3 6 9

)
.

The null space of A is the subspace of |R3 consisting of all vectors of the form

x = t

⎛
⎝ 2

−1
0

⎞
⎠

T

+ u

⎛
⎝ 3

0
−1

⎞
⎠

′

for real numbers t and u. The column space of A is the subspace of |R2 consisting of all
vectors of the form

b = v

(
1
3

)T

for real numbers v. �

Four fundamental subspaces. Let A be an m × n matrix. The four fundamental
subspaces of A are

• the column space of A, denoted by C(A).
• the nullspace of A, denoted by N (A).
• the row space of A, which is the column space of AT and denoted by R (A).
• the left nullspace of A, which is the nullspace of AT. It contains all vectors y such
that AT y = 0, and is denoted by N (A′).

Fundamental theorem of linear algebra. Let A be an m ×n matrix of rank r. Then

• The column space of A has dimension r.
• The nullspace of A has dimension n − r.
• The rowspace of A has dimension r.
• The left nullspace of A has dimension m − r.

Example Four fundamental subspaces
Let

A =
[
1 2 3
3 6 9

]
.

Appendix A: Some Prerequisites on Vectors and Matrices 643

• The (right) null space of A has a basis

⎧⎪⎨
⎪⎩

⎛
⎝ 2

−1
0

⎞
⎠

T

,

⎛
⎝ 3

0
−1

⎞
⎠

′⎫⎪⎬
⎪⎭. It is a subspace of |R3 of

dimension 2.

• The column space of A has a basis

{(
1
3

)T
}
. It is a subspace of |R2 of dimension 1.

• The row space of A has a basis

⎧⎪⎨
⎪⎩

⎛
⎝1
2
3

⎞
⎠

T
⎫⎪⎬
⎪⎭. It is a subspace of |R3 of dimension 1.

• The (left) null space of A is the set of solutions to the matrix equation xT A = 0′. It has a

basis

{(−3
1

)′}
and is a subspace of |R2 of dimension 1. �

Orthogonal subspaces. Two subspaces V and W of the vector space |Rn are
orthogonal if every vector v ∈ V is orthogonal to every vector w ∈ W ; that is,
vTw = 0 for all v and w.

Orthogonal complement. Given a subspace V of |Rn , the space of all vectors
orthogonal to V is called the orthogonal complement of V , and is denoted V ⊥.

Jacobian and other derivatives. Derivatives of functions with respect to vec-
tors are employed when nonlinear systems are linearised. In the dynamical vector
equation

ẋ = g(x, u), x ∈ |Rn, u ∈ |Rm (A.1)

we introduce x̃ = x − x̄ and ũ = u − ū where the overbar indicates the value (func-
tional) about which the system is to be to linearised. Taylor expansion of Eq. (A.1)
yields

dx
dt

= dx̄
dt

+ dx̃
dt

= g(x̄, ū) + ∂g(x̄, ū)
∂x

x̃ + ∂g(x̄, ū)
∂u

ũ + · · ·

and the first-order expansion defines the linearised system,

dx̃
dt

= ∂g(x̄, ū)
∂x

x̃ + ∂g(x̄, ū)
∂u

ũ = Ax̃ + Bũ.

644 Appendix A: Some Prerequisites on Vectors and Matrices

The Jacobian ∂g(x̄,ū)
∂u is the n × m matrix

∂g(x̄, ū)
∂u

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂g1
∂u1

∂g1
∂u2

· · · ∂g1
∂um

∂g2
∂u1

∂g2
∂u2

· · · ∂g2
∂um

...
...

. . .
...

∂gn
∂u1

∂gn
∂u2

· · · ∂gn
∂um

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.2)

of partial derivatives of the entries of g.
Other useful derivatives with respect to a vector v are

d

dv
(Av) = A

d

dv

(
vT A

)
= AT

d

dv

(
vT Av

)
= vT

(
A + AT

)
.

Appendix B
Notions of Probability Theory

Introduction. In this appendix, different notions of probability theory that are used
or mentioned in Chap. 6 are briefly reviewed. Gaussian and χ2-distributed random
variables are first presented. Next a simple hypothesis testing problem is stated and
solved by the so-called χ2 test. The statistics of the empirical mean is analysed in the
subsequent section. Finally, the last part of the appendix, which is also the main one,
is presenting a review of notions on continuous- and discrete-time random processes.

Gaussian distributed random variables. A normally distributed random variable
x with mean μ and variance σ2 is characterised by its probability density function,
p(x) which has the form

p(x) = 1

σ
√
2π

exp

(
− (x − μ)2

2σ2

)
. (B.1)

To indicate that the probability law of x , L(x), is the Gaussian law with mean μ and
variance σ2, one uses the notation L(x) = N (μ,σ2).

The probability density function of a n-dimensional Gaussian random vector x
with mean µ and variance Q has the form

p(x) = 1√
(2π)n det Q

exp

(
− (x − µ)T Q−1(x − µ)

2

)
(B.2)

Remark (Notations) The symbol x (x) has two different meanings above. It denotes
either a random variable (vector) or the argument of the probability density function

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8

645

http://dx.doi.org/10.1007/978-3-662-47943-8_6

646 Appendix B: Notions of Probability Theory

associated to the considered random variable (vector). The distinction should be clear
from the context. �

χ2 test. Weoften encounter that a sumof squares ofGaussian variables are calculated
and used as a test statistics. This is the case for the GLR test for a Gaussian sequence,
see Remark 7.2.4. This generic test is formulated as follows.

Problem (χ hypothesis testing) Given xm, a realisation of a normally distributed
random vector x of dimension n, with variance Q, determine whether xm is a realisa-
tion of a random vector x with zero mean or non-zero mean, namely choose between
the following two hypotheses:

• H0: L(x) = N (0, Q)

• H1: L(x) = N (µ, Q) where µ is an unknown non-zero vector

The index “m” used above stands for “measured”.
To solve the problem, it suffices to realise that the random variable ξ = xT Q−1x

has a χ2 distribution under hypothesis H0. Since Q is positive definite, it can be

factorised as Q = Q̃ Q̃
T
by Choleski factorisation. Set x̃ = Q̃

−1
x, and consider

the variance of x̃ under hypothesis H0:

E (x̃ x̃T) = Q̃
−1

E (xx′) Q̃
−T = Q̃

−1
Q̃ Q̃

T
Q̃

−T = In,

where the superscript −T stands for inverse transpose. As the variance of x̃ is the
identity matrix, its components, x̃i , i = 1, . . . , n are independent and L(x̃i) =
N (0, 1) under hypothesis H0. Finally, noticing that

ξ = xT Q−1x = x̃T x̃ =
nz∑

i=1

x̃2i ,

one deduces that ξ has a χ2(n) distribution under hypothesis H0.

Thus a standard χ2-test can be used to check whether ξm = xT
m Q−1xm is a

realisation of a χ2(n) random variable. This test relies on the χ2 statistical table
that provides, for a given probability of false alarm, α (namely the probability of
choosing H1 while H0 is true), a threshold h such that:

Prob(ξ ≤ h) = 1 − α, (B.3)

where Prob(ξ ≤ h) denotes the probability of the event ξ ≤ h.

http://dx.doi.org/10.1007/978-3-662-47943-8_7

Appendix B: Notions of Probability Theory 647

The χ2-test then simply amounts to the following operations:

Algorithm B.4 χ2-Test

Given: xm, a realisation of the n-dimensional normally distributed ran-
dom vector x with variance Q,

α, a probability of false alarm.

Determine:
1. The threshold h that fulfils (B.3) from the χ2 statistical table.

2. ξm = xT
m Q−1xm.

Output: Accept H0 if ξm ≤ h.
Accept H1 otherwise.

Statistics of the empirical mean. Consider a data sample {xm,1, . . . , xm,n} where
the xm,i , (i = 1, . . . , n) are realisations of the random variables xi . The latter are
assumed to be independent and identically distributed (IID). Let m = E (xi) and
σ2 = E ((xi − m)2) be respectively the mean and the variance of xi (E (.) denotes
the expectation of the considered random variable). The empirical mean of the data
sample is defined as

x̄ = 1

n

n∑
i=1

xi .

The mean and the variance of x̄ are given by

E (x̄) = m

E ((x̄ − m)2) = σ2

n
.

In the sequel, the particular case where the distribution of the xi is Gaussian is
considered, namely L(xi) = N (m,σ2). This implies L(x̄) = N (m, σ2

n).

To be able to characterise the quality of the estimate of the mean provided by
the empirical mean one resorts to the following result. Define Tn−1 = x̄−m

q

√
n − 1,

where q2 = 1
n

∑n
i=1(xi − x̄)2 is the empirical variance of the sample. Then it can be

proven that Tn−1 is a Student random variable with n − 1 degrees of freedom. From
this fact, the confidence region for the mean can be characterised by

x̄m − tα/2
qm√
n − 1

< m < x̄m + tα/2
qm√
n − 1

, (B.4)

648 Appendix B: Notions of Probability Theory

where

• x̄m and qm are realisations of the random variables x̄ and q respectively, namely
x̄m = 1

n

∑n
i=1 xm,i and q2

m = 1
n

∑n
i=1(xm,i − x̄m)2

• tα/2 is such that
∫ tα/2
−tα/2 fT (x)dx = α with

– fT (x): the probability density function associated to a Student random variable
with n − 1 degrees of freedom

– α: the probability that m lies in the considered interval (B.4)

Remark (Notation conventions) A different notation has been used above to denote
a random variable or vector and a specific realisation of this variable or vector. In
most of the other sections, this distinction is not indicated explicitly; the considered
object should be clear from the context. �

Stochastic processes. A stochastic (or random) process is defined as a mapping
that associates with each time instant t in a set T a random variable x(t) (or a
random vector in the case of a vector random process). A random process thus
appears as an infinite set of random variables. One can distinguish continuous- and
discrete-time stochastic processes according as the variable t belongs to a continuum
of values or the set T is made of the sampling instants. In the latter case, T =
{. . . ,−T, 0, T, 2T, . . .} or T = {. . . ,−1, 0, 1, 2, . . .} when the sampling period T
is chosen as the time unit. Discrete-time stochastic processes are also called random
on stochastic sequences.

The notion of random process is used to model quantities for which there is no
way to predict an exact value at a future instant of time. This is typically the case for
measurement noise for instance. The outcome of an experiment generates a specific
outcome or realisation of a random process, which is a function of time.

Distribution function and probability density function. A randomprocess is com-
pletely characterised by its nth-order distribution function (also called cumulative
distribution function), for an arbitrary n, defined as

F(x1, t1; . . . ; xn, tn) = Prob(x(t1) ≤ x1, . . . , x(tn) ≤ xn),

ti �= t j , x1, . . . , xn ∈ IR, t1, . . . , tn ∈ IR or Z ,

where
Prob(x(t1) ≤ x1, . . . , x(tn) ≤ xn)

is the probability that the events (x(t1) ≤ x1), . . . , (x(tn) ≤ xn) are observed in a
realisation of x(t).

In particular, the first-order (cumulative) distribution function is defined as
F(x, t) = Prob(x(t) ≤ x). It is thus the probability of the event (x(t) ≤ x).

The probability density function of the random process x(t) is defined as the
derivative of the first-order cumulative distribution function with respect to x :
p(x, t) = ∂F(x,t)

∂x and the nth order probability density function is:

Appendix B: Notions of Probability Theory 649

p(x1, t1; · · · ; xn, tn) = ∂n F(x1, t1; · · · ; xn, tn)

∂x1 · · · ∂xn

Moments of stochastic processes. The properties of a random process x(t) can be
fully characterised by its moments defined, for the nth-order moment as

Mn
x (t) =

∫ ∞

−∞
xn p(x, t)dx .

The first-order moment of a random process x(t) is called its mean or its expected
value,

μx (t) =
∫ ∞

−∞
xp(x, t)dx .

This operation is often denotedμx (t) = E (x(t))where “E” stands for the expectation
operator. In the vector case, µx (t) is a vector with the same dimension as x(t) of
which the i th entry is obtained by computing the above integral for the i th component
of x(t). In that case, p(x, t) is a scalar function of vector x and time t (see for instance
the probability density function of a Gaussian random process in (B.6) below).

Similarly, the mean square is defined as the second-order moment

msx (t) =
∫ ∞

−∞
x2 p(x, t)dx = E (x2(t)).

The variance of the stochastic process x(t) is the centred second order moment of
x(t) (“centred” indicates that the mean is subtracted from x(t)),

σ2
x (t) =

∫ ∞

−∞
(x − μx (t))

2 p(x, t)dx = E ((x(t) − μx (t))
2).

For a vector stochastic process, this expression takes the form

Qx (t) =
∫ ∞

−∞
(x(t) − µx (t))(x − µx (t))

T p(x, t) dx

= E ((x(t) − µx (t))(x(t) − µx (t))
T).

Qx (t) is thus a matrix of which entry (i, j) is given by

∫ ∞

−∞
(xi − μx,i)(x j − μx, j)p(x, t) dx.

The integral is actually a multiple integral; integration is performed over each
component of x.

The autocorrelation function of a random process x(t) is the joint moment of the
random vectors x(t1) and x(t2),

650 Appendix B: Notions of Probability Theory

Rxx (t1, t2) = E (x(t1)x(t2)T) =
∫ ∞

−∞
x1xT

2 p(x1, t1; x2, t2) dx1 dx2

and the (auto)covariance of x(t) is given as

Cxx (t1, t2) = E ((x(t1) − µ(t1))(x(t2) − µ(t2))
T).

This generalises to the cross-covariance of two random processes x(t) and y(t)
defined as

Cxy(t1, t2) = E ((x(t1) − µx (t1))(y(t2) − µy(t2))).

Most often in engineering applications, one resorts to the first- and second-order
moments of the stochastic processes; however, these are not sufficient to fully char-
acterise a random process, except if this process is normally distributed. In the latter
case, p(x, t) corresponds to the well-known Gaussian distribution with mean μx and
variance σ2

x (or Qx in the vector case),

p(x, t) = 1

σx (t)
√
2π

exp

(
− (x − μx (t))2

2σ2
x (t)

)
, (B.5)

and for an n-dimensional Gaussian random process

p(x, t) = 1√
(2π)n det Qx (t)

exp

(
− (x − µx (t))

T Qx (t)
−1(x − µx (t))

2

)
(B.6)

Remark (Discrete-time random process) The above definitions are valid for both
continuous-time anddiscrete-time stochastic processes.Below,when specific expres-
sionsmust be considered for discrete-time processes, the superscript “d” will be used
to indicate explicitly that moments or other quantities are associated to discrete-time
random processes. �

Stationary random process. A stochastic process is said to be stationary (in the
strict sense) if its probability density functions of any order are not affected by a shift
in the time origin, namely

p(x1, t1; x2, t2; . . . ; xn, tn) = p(x1, t1 + ε; . . . ; xn, tn + ε)

for any real ε and any integer n.
On the other hand, a weakly stationary random process has the following

properties:

• its mean does not change with time.
• its covariance C(t1, t2) depends on t1 and t2 only through the difference t2 − t1.
Thus C(t1, t2) = C(t2 − t1) = E ((x(t + t2 − t1) − μx)(x(t) − μx)).

Appendix B: Notions of Probability Theory 651

A random process with the above two properties is also sometimes said to be sta-
tionary in the wide sense.

Stationarity in the strict sense implies weak stationarity, but the converse is not
true, except if x(t) has a Gaussian distribution.

Clearly, the probability density function of a Gaussian weakly stationary random
process is given by (B.5) or (B.6) in which the argument t is cancelled.

Empirical mean, variance and covariance of a stochastic process. Often in prac-
tice, only one or a few outcomes of an experiment are available, and one has to
infer from such data a model of the observed phenomenon. In particular, one has
to deduce the properties of measurement noise from a realisation of this noise. A
classical approach to do this is to estimate the moments of the corresponding random
process by time averages. This amounts to assuming that time averages are equal
to ensemble averages (i.e. expected values); it is the ergodic hypothesis. Roughly
speaking, this hypothesis holds true for a stochastic process x(t) if, as τ increases,
the random variables (or vectors) x(t) and x(t + τ) become uncorrelated. This situ-
ation is quite general in practice.

For a weakly stationary ergodic continuous-time stochastic process, the following
equalities hold

µx = E (x(t)) = lim
T →∞

1

2T

∫ T

−T
x(t)dt

Rxx (τ) = E (x(t + τ)xT(t)) = lim
T →∞

1

2T

∫ T

−T
x(t + τ)xT(t)dt

Cxx (τ) = E ((x(t + τ) − µx)(x(t) − µx)
T)

= lim
T →∞

1

2T

∫ T

−T
(x(t + τ) − µx)(x(t) − µx)

Tdt.

In practice, only a finite number, say N , of samples of a realisation of a stochastic
process is available. The integral in the above expressions can be estimated from the
data set {x(1), . . . , x(N)} as

µ̂ = 1

N

N∑
i=1

x(i)

Q̂ = Ĉ(0) = 1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)T.

Spectral density or power spectrum. In classical control engineering, transfer
functions are extremely useful computational and analysis tools. To exploit them
in stochastic control theory, the notion of power spectrum (or spectral density) is
introduced. By definition, the power spectrum of the continuous-time (discrete-time)

652 Appendix B: Notions of Probability Theory

stochastic process x(t) is the Fourier transform (discrete Fourier transform) of its
autocovariance function,

Sxx (ω) =
∫ ∞

−∞
Cxx (τ) exp(−jωτ)dτ (B.7)

(Sd
xx (ω) = ∑∞

n=−∞ Cd
xx (n) exp(−jωn)). For a random vector, Sxx (ω) is a matrix of

which each entry is the Fourier transform of the corresponding entry in Cxx .
The name “spectral density” used for Sxx (ω) is due to the fact that the variance

of the stochastic process can be recovered through

σ2
x = 1

2π

∫ ∞

−∞
Sxx (ω) dω (B.8)

(σd2
x = 1

2π

∫ π
−π Sd

xx (ω) dω). Equation (B.8) is obtained by taking the inverse Fourier
transform of (B.7) and setting the time shift equal to zero in the result.

Example Computation of the spectral density function
The autocovariance function of a random process v(t) is given by

Cvv(τ) = σ2e−β|τ |,

where σ2 and β are known variables. The spectral density function for the v(t) process is

Svv(ω) = 2σ2β

ω2 + β2 .

Evaluation of (B.8) yields

1

2π

∫ ∞
−∞

2σ2β

ω2 + β2 dω = σ2β

π

(
1

β
tan−1(

ω

β
)

)∞

−∞
= σ2 (B.9)

as expected since Cvv(0) = σ2. �

Example Band-limited noise through low-pass filter
Given a stable low-pass filter with the transfer function

H(s) = α

s + α
(B.10)

with input w(t), which is a band-limited random signal with autocorrelation function

Rww(τ) = σ2we
−β|τ |.

The output of the filter is y(t) whose covariance σ2y should be determined. Stability implies
α > 0 and β > 0

Appendix B: Notions of Probability Theory 653

Applying Eq. (B.8)

σ2y = 1

2π

∞∫
−∞

σ2w
2β

ω2 + β2
α2

ω2 + α2 dω ⇔

σ2y = σ2w2α
2(

β2 − α2
) 1

2π

⎛
⎝

∞∫
−∞

β(
ω2 + α2

) dω −
∞∫

−∞

β(
ω2 + β2

) dω

⎞
⎠ ⇔

σ2y = 2

π
α2 σ2w

β2 − α2

(
1

2
π

β

α
− 1

2
π

)
⇔

σ2y = σ2w
(β − α)α

β2 − α2 ⇒ σ2y = α

α + β
σ2w. � (B.11)

Continuous and discrete-time white noise processes. A scalar continuous-time
white noise process x(t) is a weakly stationary continuous-time random process with
autocovariance function

Cxx (τ) = E ((x(t + τ) − μ)(x(t) − μ)) = sδ(τ), (B.12)

where s is a real constant called intensity and δ(τ) is the Dirac impulse. For a vector
white noise process, (B.12) takes the form

Cxx (τ) = E ((x(t + τ) − µ)(x(t) − µ)T) = Sδ(τ), (B.13)

where the intensity S is a semi-positive definite matrix.
For a white noise process, the spectral density function is constant:

Sxx (ω) = s or Sxx (ω) = S.

A white noise process is clearly an abstraction, as it corresponds to a process with
infinite variance. It can be seen as the limiting case when β tends to infinity in
the given example, which means that no correlation exists between successive time
instants. The term “white noise” comes from the analogy with the spectral properties
of white light; all frequencies are present with the same intensity in the signal.

A white noise sequence is defined in a similar way as its continuous-time coun-
terpart. It is a weakly stationary discrete-time process with autocovariance given by

Cd
xx (τ) =

{
σ2 τ = 0
0 τ = ±1,±2, . . .

(B.14)

in the scalar case. The associated spectral density writes Sd
xx (ω) = σ2.

A band-limited white noise process is a random process whose spectral density
is constant over a finite range of frequencies, and zero outside this range. A noise
source that has a constant spectral density down to zero frequency, and a bandwidth

654 Appendix B: Notions of Probability Theory

of B [rad/s] is defined by

Svv(ω) =
{

α |ω| ≤ B
0 |ω| > B.

(B.15)

Such a stochastic process can be approximated as the output of a linear dynamical
system with a white noise input and with cut-off frequency B/2π [s−1]. This is the
subject of the next section.

Filtered weakly stationary process and filtered white noise process. Consider a
linear time-invariant system described by

ẋ(t) = Ax(t) + Bw(t) (B.16)

y(t) = Cx(t) + v(t), (B.17)

where w(t) and v(t) are mutually uncorrelated weakly stationary random processes
with mean and power spectral density mw, Sw(ω) and mv, Sv(ω) respectively.

Our aim is first to compute the power spectral density of x(t) and y(t). To this
end, let us introduce the following transfer functions: H yw(s) = C(s I − A)−1B and
H xw(s) = (s I − A)−1B. When system (B.16), (B.17) is asymptotically stable, x(t)
and y(t) are stationary stochastic processes and their spectral density is, respectively,

Sx (ω) = H xw(jω)Sw(ω)H xw(−jω)T

Sy(ω) = H yw(jω)Sw(ω)H yw(−jω)T + Sv(ω). (B.18)

The mean of y(t), my is computed from my = H yw(0)mw + mv.

Whenw(t) and v(t) are zero-mean white noise processes with intensities Sw and
Sv , one can compute the mean and variance of x(t) (mx (t) and Qx (t)) directly from
the state-space model. Let m0 and Q0 denote the mean and variance of the initial
state, then mx (t) and Qx (t) are governed by the following differential equations:

dmx (t)

dt
= Amx (t), mx (0) = m0 (B.19)

dQx (t)

dt
= A Qx (t) + Qx (t)AT + BSw BT, Qx (0) = Q0 (B.20)

The variance of y(t) is deduced from (B.17), namely

Qy(t) = C Qx (t)C
T + Sv. (B.21)

If moreover the linear time-invariant system (B.16), (B.17) is asymptotically sta-
ble, x(t) tends to a weakly stationary stochastic process with zero mean and variance
Q̄x given as the solution of the following algebraic Lyapunov equation

A Q̄x + Q̄x AT + BSw BT = O. (B.22)

Appendix B: Notions of Probability Theory 655

Example Covariance calculation - continuous-time case
A stationary random signal w(t) has the autocovariance function

Rww(τ) = σ2we−β|τ |.

We wish to calculate the variance σ2w .
The signal w(t) is generated by a dynamical (low pass) filter,

ẇ(t) = −βw(t) + √
2βσwv(t),

where v(t) is awhite noisewith intensity 1. The variance ofw(t) is obtained from theLyapunov
equation,

0 = −βQ − Qβ + √
2βσwσw

√
2β

⇒ −2βQ + 2βσ2w = 0

⇒ Q = σ2w

which is the same result as was obtained by the frequency domain calculation (B.9). �

Example Covariance calculation - low-pass filter
A stationary random signal w(t) with the autocorrelation function

Rww(τ) = σ2we−β|τ |

is passed through a stable high-pass filter

H(s) = α

s + α

with the equivalent state-space representation

ẋ(t) = −αx(t) + αw(t)

y(t) = x(t).

Hence, the filter acting on v(t) is

d

dt

(
w(t)
x(t)

)
=

(−β 0
α −α

)(
w(t)
x(t)

)
+

(
σw

√
2β

0

)
v(t)

y(t) = (
0 1

) (
w(t)
x(t)

)

The covariance is symmetric,

Q =
(

σ2w σ2wx

σ2xw σ2x

)
=

(
a c
c b

)

656 Appendix B: Notions of Probability Theory

and with Sv = 1, the Lyapunov equation gives

(−β 0
α −α

)(
a c
c b

)
+

(
a c
c b

) (−β α
0 −α

)
+

+
(

σw
√
2β

0

) (√
βσw

√
2 0

) =
(
0 0
0 0

)

equivalent to the three conditions

−2aβ + 2σ2wβ = 0

−2bα + 2cα = 0

aα − c(α + β) = 0

which gives

−2aβ + 2σ2wβ = 0 ⇒ a = σ2w

aα − c(α + β) = 0 ⇒ c = a
α

α + β

−2bα + 2cα = 0 ⇒ b = c.

Hence

Q =
(

1 α
α+β

α
α+β

α
α+β

)
σ2w

and

σ2y = C QCT = α

α + β
σ2w (B.23)

which is the desired result. �

Similar results can be obtained for the analysis of a discrete-time system subject
to a white noise input sequence. More specifically, consider a discrete-time random
process defined as the output of the following discrete-time linear time-invariant
system

x(k + 1) = Ax(k) + Bw(k) (B.24)

y(k) = Cx(k) + v(k), (B.25)

wherew(k) and v(k) are mutually uncorrelated white noise sequences with variance
Qw and Qv .

Let the mean and variance of the initial state of system (B.24), (B.25) be m0 and
Q0 respectively. The mean value function of the random sequence x(k) is then given
by

md
x (k + 1) = Amd

x (k), md
x (0) = m0

Appendix B: Notions of Probability Theory 657

and its variance is the solution of the following discrete Lyapunov equation:

Qd
x (k + 1) = A Qd

x (k)AT + B Qw BT, Qd
x (0) = Q0

If the linear time-invariant system is asymptotically stable, the random sequence

x(k) tends to a stationary process with zero mean and with variance Q̄
d
x given as the

solutionof the followingdiscrete algebraicLyapunovequation Q̄
d
x = A Q̄

d
x AT+ Qw.

The variance of the corresponding output is computed from

Q̄
d
y = C Q̄

d
x CT + Qv.

Generation of coloured noise. In the previous section, one was given a system with
white noise inputs, and one had to compute the spectral density of its output. Quite
often, the reverse problem is encountered; one has to generate a coloured noise with
a given rational spectral density. For the sake of simplicity, only the case of a scalar
stochastic process is considered. Such a coloured noise can be obtained by entering
a white noise process into an appropriate stable filter as indicated in Fig. B.1.

The computation of the filter is based on relation (B.18) with Sv(ω) = 0 and
Sw(ω) = 1,

Sy(ω) = Hyw(jω)Hyw(−jω). (B.26)

Introducing s = jω, the right hand side of (B.26) can be written:

Fyw(s) = Hyw(s)Hyw(−s) (B.27)

When zi (pi) is a zero (pole) of Hyw(s), −zi (−pi) is a zero (pole) of Hyw(−s).
Besides, every complex pole appears with its complex conjugate in Fyw(s). The
poles and zeros of Fyw(s) are thus symmetric with respect to the imaginary axis.
Letting z−

i , i = 1, . . . ,m and p−
i , i = 1, . . . , n denote the zeros and poles of Fyw(s)

with negative real part, one can obtain the filter transfer function H(s) as

H(s) = k

m∏
i=1

(s − z−
i)

n∏
i=1

(s − p−
i)

,

Fig. B.1 Coloured noise
generated by a filtered white
noise

658 Appendix B: Notions of Probability Theory

where k is a gain chosen so that Sy(0) has the desired value.

Sampling a continuous-time system–discrete-time noise covariance. Consider a
continuous process described by the linear differential equation

ẋ(t) = Acx(t) + Bcv(t), (B.28)

where v(t) is a zero mean white noise process with intensity Svv and autocorrelation
E{v(t)v(t − τ)T} = Svvδ(τ). For a scalar process, E{v(t)v(t − τ)T } = σ2

vδ(τ).
Integration of (B.28) over a sampling period Ts , from time tk to tk+1, gives the

state at time tk+1,

x(tk+1) = e AcTs x(tk) +
∫ (tk+1)

tk
eAc(tk+1−τ)Bcw(τ)dτ . (B.29)

We would like to obtain a discrete-time representation of Eq. (B.28), for constant Ts,
in the form

x(k + 1) = Adx(k) + w(k). (B.30)

The sampled noise term w(k) is hence determined from the continuous v(t) as,

w(k) =
∫ tk+1

tk
e Ac(tk+1−τ)Bcv(τ)dτ . (B.31)

The covariance Qww of the discrete-time noise w(k) is then,

Qww = E {wwT} = (B.32)

E

{(∫ tk+1

tk
e Ac(tk+1−τ1)Bcv(τ1)dτ1

)(∫ tk+1

tk
e Ac(tk+1−τ2)Bcv(τ2)dτ2

)T
}

=
∫ tk+1

tk

∫ tk+1

tk
e Ac(tk+1−τ1)BcE {v(τ1)v(τ2)T}Bc

Te Ac(tk+1−τ2)Tdτ1dτ2

With the approximation of the matrix exponential

e Aτ = I + Aτ + 1

2! A2τ2 + 1

3! A3τ3... (B.33)

a first-order approximation to Eq. (B.32) includes only one term in the series expan-
sion. We then get the approximation

Qww � BSBTTs (B.34)

The approximate result in Eq. (B.34) is widely used. If more exact results are needed,
numerical discretisation is preferred over analytical solution of Eq. (B.32).

Appendix C
Nomenclature

The symbols are used according to the following conventions. Scalars are represented
by italics like i, j, a, s, vectors by bold lower case letters like x, u and matrices by
bold upper case letters like A, K . Sets are denoted by calligraphic letters like Y .

Abbreviation Meaning Introduced on p.
ARR Analytical redundancy relation 173
CUSUM CUmulative SUM 281
FMEA Failure modes and effects analysis 83
GLR Generalised likelihood ratio 281
LFT Linear fractional transformation 455
LQ Linear quadratic (regulator) 358
LTI Linear time-invariant 265
MSO Minimal structurally overdetermined 171
UM Use-mode 80

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8

659

Appendix D
Terminology

The terminology used in diagnosis and fault-tolerant control literature has only during
the recent years approached a coherency in the published material. The Safeprocess
Technical Committee of IFAC, the International Federation of Automatic Control,
has compiled a list of suggested definitions [155], which is generally in accordance
with the terminology used throughout this book.

An exception is the use of the word estimation where the Safeprocess terminology
is identification. The word identification is widely used as a synonym for system
identification or system parameter identification. Estimation is commonly usedwhen
the magnitude of a signal is reconstructed, which is what is done in this book.

Active fault-tolerant control system A fault-tolerant system where faults are
explicitly detected and accommodated.
Opposite of a passive fault-tolerant sys-
tem.

Admissibility Admissibility refers to a control law, a
diagnosis algorithm, a communication
scheme, etc. It is the property that a spec-
ified objective is achieved while a speci-
fied set of constraints are satisfied.

Analytical redundancy Use of two or more, but not necessar-
ily identical ways to determine a vari-
able where one way uses a mathematical
process model in analytical form.

Availability Likelihood that a system or equipment
will operate satisfactorily and effectively
at any given point in time.

Constraint The limitation imposed by nature (physi-
cal laws) or man. It permits the variables
to take only certain values in the variable
space.

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8

661

662 Appendix D: Terminology

Coordination In distributed systems, local estimation
or diagnosis results may be only par-
tial or even contradictory. A coordination
level is needed to obtain global consistent
results from the local results.

Decision logic The functionality that determines which
remedial action(s) to execute in case of
a reported fault and which alarm(s) shall
be generated.

Decomposable specification In a distributed system, an overall sys-
tem specification is decomposable if it is
equivalent to a set of specifications that
apply to each subsystem. Decomposable
specifications are easier to handle, since
each subsystem is to be (fault-tolerant)
controlled with respect to its own speci-
fication. In most cases, specifications are
not decomposable because of the cou-
pling between the subsystems.

Discrepancy An abnormal behaviour of a physical
value or inconsistency between more
physical values and the relationship
between them.

Distributed system Adistributed system is composed of a set
of interacting and communicating sub-
systems that cooperate in order to achieve
a global objective. In distributed con-
trol each subsystem computes a subset
of the control signals, in distributed esti-
mation, each subsystem estimates a sub-
set of the states, in distributed diagnosis
each subsystem elaborates a partial diag-
nosis decision, etc. In all cases, the data
available to a subsystem depend on the
information pattern that is implemented.

Error Deviation between a measured or com-
puted value (of an output variable) and
the true, specified or theoretically correct
value.

Fail-safe The ability to sustain a failure and retain
the capability tomake a safe close-down.
A system where the occurrence of a sin-
gle fault can be determined but not iso-
lated andwhere the fault cannot be accom-
modated to continue operation.

Appendix D: Terminology 663

Fail-operational The ability to sustain any single point
failure.

Failure Permanent interruption of a systems abil-
ity to perform a required function under
specified operating conditions.

Failure effect The consequence of a failuremode on the
operation, function, or status of an item.

Failure mode Particular way in which a failure can
occur.

Fault Unpermitted deviation of at least one
characteristic property or parameter of a
system from its acceptable/usual/standard
condition. A fault is the occurrence of a
failure mode.

Fault accommodation The action of changing the control law in
response to fault, without switching off
any system component. In fault accom-
modation, faulty components are stillkept
in operation thanks to an adapted control
law.

Fault detection Determination of faults present in a sys-
tem and time of detection.

Fault detector An algorithm that performs fault detec-
tion and isolation.

Fault diagnosis Determinationof kind, size, location, and
time of occurrence of a fault. Fault diag-
nosis includes fault detection, isolation
and estimation.

Fault estimation Determination of a model of the faulty
system.

Fault identification Determination of the sihze and
time-varying behaviour of a fault. Fol-
lows fault isolation. Used as a synonym
for fault estimation.

Fault isolation Determination of the location of a fault.
Follows fault detection.

Fault modelling Determination of a mathematical model
to describe a specific fault effect.

Fault propagation analysis Analysis to determine how certain fault
effects propagate through the considered
system.

Fault recovery The result of a successful fault accom-
modation or system reconfiguration.

Fault-tolerant system A system where a fault is recovered with
or without performance degradation, but

664 Appendix D: Terminology

a single fault does not develop into a fail-
ure on subsystem or system level.

Hardware redundancy Use ofmore than one independent instru-
ment to accomplish a given function.

Incipient fault A fault where the effect develops slowly
e.g. clogging of a valve. In opposite to an
abrupt fault.

Information pattern In a distributed system, the data avail-
able to each subsystem may be produced
by the subsystem itself, or received from
other subsystems through the communi-
cation network. The information pattern
defines which data are available to each
subsystem through the communication
network (and therefore it influences the
communication cost).

Objective The control specification, the aim of the
control system.

Objective reconfiguration The action of changing the objective of
the control system. Objective reconfigu-
ration is mandatory when unrecoverable
faults for the current objective occur.

Passive fault-tolerant control system A fault-tolerant system where faults are
not explicitly detected and accommo-
dated, but the controller is designed to
be insensitive to a certain restricted set of
faults. Contrary to an active fault-tolerant
system.

Qualitative model A system model describing the behav-
iour with relations among system vari-
ables and parameters in heuristic terms
such as causalities or if-then rules.

Quantitative model A system model describing the behav-
iour with relations among system vari-
ables and parameters in analytical terms
such as differential or difference equa-
tions.

Reconfigurability The possibility to recover a fault by using
the reconfiguration strategy: switching
off the faulty components, and changing
the control law so as to achieve the spec-
ified objective by using only the healthy
components.

Reconfiguration effort A measure of the changes that are intro-
duced in the information pattern and in

Appendix D: Terminology 665

the control system in order to recover a
fault. In distributed systems changes in
the information pattern impact the com-
munication network load, while changes
in the local controls impact the number of
subsystems that have to be reconfigured.

Recoverability Possibility ot accommodate the fault or
to reconfigure the system if fault occurs.

Reliability Probability of a system to perform a
required function under normal condi-
tions and during a given period of time.

Reliability overcost The cost that has to be paid, in terms of
the system performance, for using a reli-
able control law instead of an optimal
control law.

Remedial action A correcting action (reconfiguration or a
change in the operation of a system) that
prevents a certain fault to propagate into
an undesired end effect.

Residual Fault information carrying signals, based
on deviation between measurements and
model-based computations.

Safety system Electronic system that protects local sub-
systems frompermanent damageor dam-
age to environment when potential dan-
gerous events occur.

Sensor fusion Integration of information from different
sensors taking into account the quality of
the measurements provided by each of
them.

Severity A measure on the seriousness of fault
effects using verbal characterisation.
Severity considers the worst-case dam-
age to equipment, damage to environ-
ment, or degradation of a system’s oper-
ation.

Structural analysis Analysis of the structural properties of
the models, i. e. properties that are inde-
pendent on the actual values of the para-
meter.

System reconfiguration The action of switching off the faulty
components and accordingly changing
the control law, in response to a fault.
In system reconfiguration, faulty compo-
nents are no longer employed.

666 Appendix D: Terminology

Supervision Monitoring of a physical system and tak-
ing appropriate actions to maintain the
operation in the case of faults.

Supervisor A function that performs supervision
using results of fault diagnosis, deter-
mines remedial actions when needed,
and execute corrective actions to handle
faults.

Threshold Limit value of a residual’s deviation from
zero, so if exceeded, a fault is declared as
detected.

Appendix E
Dictionary

This appendix shows the main notions in English and the native languages of the
four authors.

English German French Danish
Basic notions in systems and control theory
Actuator Aktor, Stellglied Actionneur Aktuator
Analysis Analyse Analyse Analyse
Architecture Aufbau, Architektur Architecture Arkitektur
Automaton Automat Automate Automat
Block diagram Blockschaltbild Schéma fonction nel Blokdiagram
Behaviour Verhalten Comportement Opførsel
Closed-loop system Regelkreis Système en boucle fermée Lukketsløjfe system
Continuous-variable
system

Wertkontinuierliches
System

Système à variables continues Kontinuert system

Control Steuerung, Regelung Commande, régulation Styring, regulering
Controllability Steuerbarkeit Gouvernabilité,

commandabilité
Styrbarhed

Controller Regler Régulateur, contrôleur Regulator
Control design Reglerentwurf Conception de régulateur Regulator design
Control input Stellgröße Commande Styresignal

(procespåvirkning)
Control loop Regelkreis Boucle de régulation Reguleringssløjfe
Control objective Regelungsziel Consigne, objectif à réaliser Regulerings formål
Control output Regelgröße Signal de commande Styret variabel
Discrete-event
system

Ereignisdiskretes
System

Système à événements
discrets

Diskret-hændelses
system

Disturbance Störung Perturbation Forstyrrelse
Event Ereignis Événement Hændelse
Feedback Rückführung Boucle de retour Modkobling
Feedback control Regelung Régulation par rétroaction Lukketsløjfe styring

eller—regulering
(continued)

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8

667

668 Appendix E: Dictionary

(continued)
English German French Danish
Feedforward control Steuerung (in der

offenen
Wirkungskette)

Régulation avec action
Anticipative

Fremkobling

Input Eingang Entrée Indgang
Measurement Messung, Messwert Signal de mesure Måling
Model Modell Modèle Model
Modelling Modellbildung Modélisation Modellering
Model uncertainties Modellunbestimmt-

heiten
Erreur de modélisation Model usikkerhed

Objective function Gütefunktion Fonction de coût Kostfunktion
Observability Beobachtbarkeit Observabilité Observerbarhed
Observation Beobachtung Observation Observation
Observer Beobachter Observateur Observer
Open-loop system Offene Kette Système en boucle ouverte Åbensløjfe system
Optimal control Optimale Steuerung Régulation optimale,

commande optimale
Optimal regulering

Output Ausgang Sortie Udgang
Petri net Petrinetz Réseau de Petri Petri net
Performance Regelgüte Performance Performance
Prediction Vorhersage,

Prädiktion
Prédiction Prediktion

Qualitative model Qualitatives Modell Modèle qualitatif Qualitativ model
Quantised system Quantisiertes System Système quantifié Kvantiseret system
Requirement Forderung Cahier des charges Krav
Specification Güteforderung Spécification Specifikation
Sensor Sensor Capteur Giver, sensor
Set point Sollwert Point de fonctionnement,

grandeur de référence
Setpunkt

Signal Signal Signal Signal
Stability Stabilität Stabilité Stabilitet
State Zustand État Tilstand
State space Zustandsraum Espace d’état Tilstandsrum
Structure Struktur Structure Struktur
Structure graph Strukturgraph Graphe structurel Struktur graf
System System Système System
System identification Systemidentifikation Identification des systèmes System

identifikation
Notions describing the system subject to faults
Actuator fault Fehler im Stellglied Défaut d’actionneur Aktuator fejl
Abrupt fault Plötzlich

eintretender Fehler
Défaut instantané Pludselig fejl

Availability Verfügbarkeit Disponibilité Tilgængelighed
Consistency Widerspruchsfrei-

heit,
Konsistenz

Cohérence, compatibilité Konsistens

Consistency-based
diagnosis

Konsistenzbasierte
Diagnose

Diagnostic par invalidation
(réfutation)

Konsistensbaseret
diagnose

Decision logic Entscheidungslogik Logique de décision Beslutningslogik
Dependability Verfügbarkeit Sûreté de foncionnement Pålidelighed

(continued)

Appendix E: Dictionary 669

(continued)
English German French Danish
Deviation Abweichung Déviation Afvigelse
Diagnosis Diagnose Diagnostic Diagnose
Diagnostic algorithm Diagnosealgorith-

mus
Algorithme de diagnostic Diagnose algorithme

Evaluation Bewertung Évaluation Evaluering
Failure Versagen Panne Nedbrud
Fault Fehler Défault, défaillance Fejl
Faultless system Fehlerfreies System Système sain Fejlfrit system
Faulty system Fehlerbehaftetes

System
Système en défaut Fejlbehæftet system

Fault-tolerant
control

Fehlertolerante
Steuerung

Commande tolérante aux
fautes

Fejltolerant
regulering

Fault detection Fehlerdetektion Détection de défaillances Fejldetektion
Fault diagnosis Fehlerdiagnose Diagnostic de défaillances Fejldiganose
Fault effects Fehlerwirkung Effets d’une défaillance Fejleffekt
Fault estimation Schätzung der

Fehlergröße
Estimation de défaillance Fejlestimation

Fault identification Fehleridentifikation Identification de défaillance Fejlidentifikation
Fault isolation Fehlerisolation Localisation des défaillances Fejlisolation
Fault probability Fehlerwahrschein-

lichkeit
Probabilité d’une défaillance Fejlsandsynlighed

Fault propagation Fehlerfortpflanzung Propagation d’une défaillance Fejlpropagering
Incipient fault Fehler, der sich

langsam entwickelt
Défaillance naissante Fejl der udvikles

langsomt
Maintenance Wartung Entretien, maintenance Vedligehold
Model-based
diagnosis

Modellbasierte
Diagnose

Diagnostic fondé sur un
modéle

Modelbaseret
diagnose

Reconfiguration Rekonfiguration Reconfiguration Rekonfiguration
Redundancy Redundanz Redondance Redundans
Reliability Zuverlässigkeit Fiabilité Pålidelighed
Remedial action Korrektur Action corrective Handling der skal

genoprette normal
funktion

Repair Reparatur Réparation Reparation
Residual Residuum Résidu Residual
Robustness Robustheit Robustesse Robusthed
Safety Sicherheit Sécurité, sûreté Sikkerhed
Sensor fault Sensorfehler Défaut de capteur Sensor fejl
Sensor fusion Sensorfusion Fusion multicapteurs Sensorfusion
Shut off Abschaltung Arrêt Nedlukning
Symptom Symptom Symptôme Symptom
Supervision Überwachung Supervision Overvågning
Threshold Schranke Seuil Grænseværdi
Tolerance Toleranz Tolérance Tolerance

References

1. A. Ahmad, M. Gani, F. Yang, Decentralized robust Kalman filtering for uncertain stochastic
systems over heterogeneous sensor networks. Signal Process. 88(8), 1919–1928 (2008)

2. J. Aidemark, P. Folkesson, J. Karlsson, A framework for node-level fault tolerance in dis-
tributed real time systems, in Proceedings of the International Conference on Dependable
Systems and Networks (2005)

3. A.Aitouche,A.L.Gehin,N. Flix,G.Dumortier, Generic control/command distributed system.
Application to the supervision of moving stage sets in theaters. Eur. J. Control 8, 64–75 (2002)

4. J.S. Albus, F.G. Proctor, A referencemodel architecture for intelligent hybrid control systems,
in IFAC 13th World Congress, San Francisco (1996), pp. 473–488

5. H. Alwi, C. Edwards, C.P. Tan, Fault Detection and Fault-Tolerant Control Using Sliding
Modes (Springer, Berlin, 2011)

6. J. Armengol, A. Bregon, E. Escobet, R. Gelso, M. Krysander, M. Nyberg, X. Olive, B. Pulido,
L. Trave-Massuyes, Minimal structurally overdetermined sets for residual generation: a com-
parison of alternative approaches, in IFAC Symposium on Fault Detection, Supervision and
Safety of Technical Processes, Barcelona (2009)

7. A.S. Asratian, T.M.J. Denley, R. Häggkvist, Bipartite Graphs and Their Applications (Cam-
bridge University Press, Cambridge, 2008)

8. K.J. Aström, P. Albertos, M. Blanke, A. Isidori, R. Sanz, W. Schaufelberger, Control of
Complex Systems (Springer, London, 2001)

9. K.J. Aström, B. Wittenmark, Computer Controlled Systems: Theory and Design (Prentice-
Hall, Englewood Cliffs, 1984)

10. A. Avi Ienis, J.-C. Laprie, B. Randell, Dependability and its threats: a taxonomy, in Building
the Information Society, ed. byR. Jacquart. IFIPAdvances in Information andCommunication
Technology, vol. 156 (Springer, 2004), pp. 91–120

11. M. Basseville, I.V. Nikiforov, Detection of Abrupt Changes: Theory and Application. Infor-
mation and System Science (Prentice Hall, New York, 1993)

12. A. Benveniste, A. Aghasaryan, E. Fabre, R. Boubour, C. Jard, Fault detection and diagnosis in
distributed systems: an approach by partially stochastic petri nets. Discret. Event Dyn. Syst.:
Theory Appl. 8, 203–231 (1998)

13. P. Baroni, G. Lamperti, P. Pogliano, M. Zanella, Diagnosis of a class of distributed discrete-
event systems. IEEE Trans. SMC-30, 731–752 (2000)

14. M. Bayart, A.L. Gehin, M. Staroswiecki, Fault detection and isolation and mode management
in smart actuators, in IFAC SICICA’92, Malaga (1992)

15. M. Bayart, E. Lemaire, M.A. Péraldi, C. André, External model and synccharts description
of an automobile cruise control system. Control Eng. Pract. 7, 1259–1267 (1999)

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8

671

672 References

16. D. Berdjag, M. Staroswiecki, K. Zhang,M. Abbas-Turki, Reducing the reliability over-cost in
reconfiguration-based fault tolerant control under actuator faults. IEEETrans. Autom. Control
57(12), 3181–3186 (2012)

17. C. Berge, Two theorems graph theory. Proc. Natl. Acad. Sci. USA 43, 842–844 (1957)
18. G. Biswas, M.-O. Cordier, J. Lunze, L. Travé-Massuyès, M. Staroswiecki, Diagnosis of com-

plex systems: bridging the methodologies of the FDI and DX communities, Editorial. IEEE
Trans. SMC-34, 2159–2162 (2004)

19. J. Biteus, M. Nyberg, E. Frisk, An algorithm for computing the diagnoses with minimal
cardinality in a distributed system. Eng. Appl. Artif. Intell. 21(2), 269–276 (2008)

20. J. Biteus, E. Frisk, M. Nyberg, Distributed diagnosis using a condensed representation of
diagnoses with application to an automotive vehicle. IEEE Trans. Syst. Man Cybern. Part A:
Syst. Hum. 41(6), 1262–1267 (2011)

21. M. Blanke, Ship propulsion losses related to automatic steering and prime mover control.
Ph.D. thesis, Technical University of Denmark (1981)

22. M. Blanke, Consistent design of dependable control systems. Control Eng. Pract. 4, 1305–
1312 (1996)

23. M. Blanke, Fault-tolerant sensor fusion with an application to ship navigation, in IEEE Joint
2005 International Symposium on Intelligent Control and 13th Mediterranean Conference on
Control and Automation (2005), pp. 1385–1390

24. M. Blanke, O. Borch, F. Bagnoli, G. Allasia, Development of an automated technique for
failure modes and effect analysis, in Proceedings of the European Safety and Reliability
Conference, Munich (1999), pp. 839–844

25. M. Blanke, J.S. Andersen, On dynamics of large two stroke diesel engines: new results from
identification, in Proceedings 9th IFAC World Conference, Budapest (1984)

26. M. Blanke,M.R. Blas, S. Hansen, J.C. Andersen, F. Caponetti, Autonomous robot supervision
using fault diagnosis and outdoor semantic mapping, in Chapter 1 in Fault Diagnosis in
Robotic and Industrial Systems, ed. by G. Rigatos (iConceptPress, USA, 2012), pp. 1–22

27. M. Blanke, S. Hansen, M.R. Blas, Diagnosis for control and decision support in autonomous
systems, inChapter 1.1 in Control of Complex Systems, ed. by G. Dimirovski (Springer, 2015)
to appear

28. M. Blanke, R. Izadi-Zamanabadi, T.F. Lootsma, Fault monitoring and re-configurable control
for a ship propulsion plant. J. Adapt. Control Signal Process. 12, 671–688 (1998)

29. M. Blanke, T. Frederiksen, J. Kristensen, J. Sandberg Thomsen, Electrical steering system.
U.S. Patent 6,693,405 b2

30. M. Blanke, R. Izadi-Zamanabadi, S.A. Bøgh, C.P. Lunau, Fault-tolerant control systems—a
holistic view. Control Eng. Pract. 5, 693–702 (1997)

31. M. Blanke, T. Lorentzen, Satool—a software tool for structural analysis of complex automa-
tion systems, in 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical
Processes SAFEPROCESS, Beijing (2006)

32. M. Blanke, M. Staroswiecki, N.E. Wu, Concepts and methods in fault-tolerant control, in
Proceedings of the American Control Conference, Washington (2001)

33. M.Blanke,M.Staroswiecki, Fault-tolerant controlwith safe behaviour undermultiple actuator
or sensor faults—theory and application, in 14th IFAC Safeprocess Symposium, Beijing (2006)

34. M. Blanke, M. Staroswiecki, Structural design of systems with safe behavior under single
and multiple faults, in 6th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes SAFEPROCESS, Beijing (2006), pp. 511–516

35. M. Blanke, J.S. Thomsen, Electrical steering of vehicles—fault-tolerant analysis and design.
Microelectron. Reliab. 46, 1415–1420 (2006)

36. M.R. Blas, M. Blanke, Natural environment modeling and fault-diagnosis for automated
agricultural vehicle, in Proceedings 17th IFAC World Congress, Seoul, Korea (2008), pp.
1590–1595

37. M.R. Blas, M. Blanke, Stereovision with texture learning for fault-tolerant automatic baling.
Comput. Electron. Agric. 75, 159–168 (2011)

References 673

38. J. Blesa, V. Puig, J. Saludes, Robust fault detection using polytope-based set-membership
consistency test. IET Control Theory Appl. 6(12), 1767–1777 (2012)

39. M. Staroswiecki, B. Ciubotaru, C. Christophe, Fault tolerant control of the boeing 747 short-
periodmodeusing the admissiblemodelmatching technique, in IFAC Symposium Safeprocess,
Beijing (2006), pp. 871–876

40. M. Staroswiecki, B.D. Ciubotaru, N.D. Christov, Modified pseudo-inverse method with gen-
eralized linear quadratic regulator for fault tolerant model matching with prescribed stability
degree, in CDC, ECC, 2011, Orlando (2011)

41. R.K. Boel, J.H. van Schuppen, Decentralized failure diagnosis for discrete-event sysetems
with costly communication between diagnosers, in Workshop on Discrete Event System,
Zaragoza (2002), pp. 175–181

42. S.A. Bøgh, Fault tolerant control systems—a development method and real-life case study.
Ph.D. thesis, Department of Control Engineering, Aalborg University, Denmark (1997)

43. S.A. Bøgh, R. Izadi-Zamanabadi, M. Blanke, Onboard supervisor for the & ørsted satellite
attitude control system, in Artificial Intelligence and Knowledge Based Systems for Space,
5th Workshop, Noordwijk (1995), pp. 137–152

44. B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory. Multidi-
mensional Systems Theory (Reidel, Dordrecht, 1985), pp. 184–232

45. C. Bonivento, A. Paoli, L. Marconi, Fault-tolerant control for the ship propulsion system.
Control Eng. Pract. 11, 483–492 (2003)

46. O. Boumaman, G. Dauphin-Tanguy, Bond graph model of a steam generator process and its
environment, in 10-th European Simulation Multiconference, Budapest (1996), pp. 238–242

47. B. Ould, G. Bouamama, R. Biswas, R. Loureiro, Merzouki: graphical methods for diagnosis
of dynamic systems: review. Annu. Rev. Control 38, 199–219 (2014)

48. A. Bouras, M. Bayart, M. Staroswiecki, Specification of smart instruments for distributed
intelligent control, in IEEE International Conference on Systems, Vancouver (1995)

49. A. Bouras, M. Staroswiecki, Building distributed architectures by the interconnection of
intelligent instruments, in IFAC INCOM’98, Nancy (1998)

50. A. Bouras, M. Staroswiecki, How can intelligent instruments interoperate in an application
framework? A mechanism for taking into account operating constraints, in IFAC SICICA’97,
Annecy (1997)

51. R. Bukharaev, Theorie der stochastischen Automaten (B. G. Teubner, Stuttgart, 1995)
52. F.G. Cabral, M.V. Moreira, O. Diene, J.C. Basilio, A petri net diagnoser for discrete event

systems modeled by finite state machines. IEEE Trans. Autom. Control 60, 59–71 (2015)
53. G.C. Calafiore, F. Abrate, Distributed linear estimation over sensor networks. Int. J. Control

82(5), 868–882 (2009)
54. S.L. Campbell, R. Nikoukhah, Auxiliary Signal Design for Failure Detection (Princeton Uni-

versity Press, Princeton, 2004)
55. C. Cao, F. Lin, Z. Lin, Why event observation: observability revisited. Discret. Event Dyn.

Syst. Theory Appl. 7, 127–149 (1997)
56. J. Carlyle, State-calculable stochastic sequential machines, equivalences and events. Switch-

ing circuit theory and logic, in IEEE Conference Record on Switching Circuit Theory and
Logic Design (1965), pp. 865–870

57. T.Carpentier, R. Litwak, J.-Ph.Cassar, Criteria for the evaluation of FDI systems—application
to sensors location, in IFAC Symposium on Fault Detection Supervision and Safety for Tech-
nical Processes, Hull (1997), pp. 1083–1088

58. M.A. Cash, T.G. Habetler, G.B. Kliman, Insulation failure prediction in induction machines
using line-neutral voltages. IEEE Trans. Ind. Appl. 54, 1234–1239 (1998)

59. C. Cassandras, S. Lafortune, Introduction to Discrete Event Systems (Kluwer Academic Pub-
lishers, Boston, 1999)

60. A. Çela, M. Ben Gaid, X.-G. Li, S.-I. Niculescu, Optimal Design of Distributed Control
and Embedded Systems. Series: Communications and Control Engineering (Springer, Berlin,
2014), p. XXIV

674 References

61. H. Chakib, A. Khoumsi, Multi-decision diagnosis: decentralized architectures cooperating
for diagnosing the presence of faults in discrete event systems. Discret. Event Dyn. Syst. 22,
333–380 (2012)

62. G. Chartrand, O.R. Oellermann, Applied and Algorithmic Graph Theory. Pure and Applied
Mathematics (McGraw-Hill Inc., New York, 1993)

63. C.T. Chen, Linear System Theory and Design (Holt, Rinehart and Winston, New York, 1984)
64. J. Chen, R.J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems (Springer,

Berlin, 2012)
65. E.Y. Chow, A.S. Willsky, Analytical redundancy and the design of robust failure detection

filters. IEEE Trans. AC-29, 603–614 (1984)
66. B.D. Ciubotaru, M. Staroswiecki, Anytime algorithm for parametric faults accommodation

under handling quality constraints, in 7th IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, Barcelona, Spain (2009), pp. 887–892

67. C. Commault, M. Staroswiecki, J.-M. Dion, Component usefulness measures for fault toler-
ance evaluation, in IFAC Safeprocess 2012, Mexico (2012)

68. C. Commault, M. Staroswiecki, J.-M. Dion, Fault tolerance evaluation based on the lattice of
system configurations. Int. J. Adapt. Control Signal Process 26(1), 54–72 (2012)

69. M.-O. Cordier, P. Dague, F. Lévy, M. Dumas, J. Montmain, M. Staroswiecki, L. Travé-
Massuyès, AI and automatic control approaches of model-based diagnosis: links and underly-
ing hypothesis, in IFAC Symposium on Fault Detection Supervision and Safety for Technical
Processes, Budapest (2000), pp. 274–279

70. M.-O. Cordier, Ph. Dague, F. Lévy, J. Montmain, M. Staroswiecki, L. Travé-Massuyès, Con-
flicts versus analytical redundancy relations: a comparative analysis of the model based diag-
nosis approach from the artificial intelligence and automatic control perspectives. IEEETrans.
Syst. Man Cybern. Part B: Cybern. 34(5), 2163–2177 (2004) (Special Issue on Diagnosis of
Complex Systems: Bridging the methodologies of the FDI and DX Communities)

71. D. Cox, J. Little, J.D. O’Shea, Varieties and Algorithms (Springer, New York 1992)
72. M.J. Daigle, I. Roychoudhury, G. Biswas, X.D. Koutsoukos, A. Patterson-Hine, S. Poll, A

comprehensive diagnosismethodology for complex hybrid systems: a case study on spacecraft
power distribution systems IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 40, 917–931
(2010)

73. B.A. Davey, H.A. Priestley, Introduction to Lattices and Order (Cambridge University Press,
Cambridge, 2002)

74. M.R. Davoodi, K. Khorasani, H.A. Talebi, H.R. Momeni, Distributed fault detection and
isolation filter design for a network of heterogeneousmultiagent systems. IEEETrans. Control
Syst. Technol. 22(3), 1061–1069 (2014)

75. R. Debouk, S. Lafortune, D. Teneketzis, Coordinated decentralized protocols for failure diag-
nosis of discrete event systems. Discret. Event Dyn. Syst. 10, 33–79 (2000)

76. P. Declerck, M. Staroswiecki, Characterisation of the canonical components of a structural
graph for fault detection in large scale industrial plants, in European Control Conference,
Grenoble (1991), pp. 298–303

77. J. De Kleer, A. Mackworth, R. Reiter, Characterizing diagnoses and systems. Artif. Intell.
56(2–3), 197–222 (1992)

78. S.X. Ding, Model-Based Fault Diagnosis Techniques—Design Schemes, Algorithms and
Tools, 2nd edn. (Springer, London, 2013)

79. S.X. Ding, Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems
(Springer, Heidelberg, 2014)

80. X. Ding, P.M. Frank, Frequency domain approach and threshold selector for robust model-
based fault detection and isolation, in IFAC Symposium Safeprocess, vol. 1. Baden-Baden
(1991), pp. 307–312

81. D. Ding, Z. Wang, H. Dong, H. Shu, Distributed H∞ state estimation with stochastic para-
meters and nonlinearities through sensor networks: the finite-horizon case. Automatica 48,
1575–1585 (2012)

82. S. Diop, Elimination in control theory. Math. Control Signals Syst. 4, 17–32 (1991)

References 675

83. F. Dörfler, F. Pasqualetti, F. Bullo, Continuous-time distributed observers with discrete com-
munication. IEEE J. Sel. Top. Signal Process. 7(2), 296–304 (2013)

84. S. Drüppel, J. Lunze, M. Fritz, Modeling of asynchronous discrete-event systems as networks
of input-output automata, in 17th IFAC Congress, Seoul (2008), pp. 544–549

85. G.J.J. Ducard, Fault-tolerant Flight Control and Guidance Systems (Springer, Berlin, 2009)
86. A.L. Dulmage, N.S. Mendelsohn, Covering of bi-partite graphs. Can. J. Math. 10, 517–534

(1958)
87. A.L. Dulmage, N.S. Mendelsohn, A structure theory of bi-partite graphs of finite exterior

dimension. Trans. R. Soc. Can. Sect. III 53, 1–13 (1959)
88. D. Düştegör, E. Frisk, V. Cocquempot, M. Krysander, M. Staroswiecki, Structural analysis of

fault isolability in the DAMADICS benchmark. Control Eng. Pract. 14(6), 597–608 (2006)
89. J. Edmonds, Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)
90. C. Edwards, S.K. Spurgeon, A sliding mode observer based FDI scheme for the ship bench-

mark. Eur. J. Control 6(4), 341–356 (2000)
91. C. Edwards, T. Lombaerts, H. Smaili, Fault Tolerant Flight Control: A Benchmark Challenge

(Springer, Berlin, 2010)
92. A. Emami-Naeini, M.M. Akhter, S.M. Rock, Effect of model uncertainty on failure

detection—the threshold selector. IEEE Trans. AC-33, 1106–1115 (1988)
93. D. Eriksson, E. Frisk, M. Krysander, A method for quantitative fault diagnosability analysis

of stochastic linear descriptor model. Automatica 49, 1591–1600 (2013)
94. N.Ertugrul,W. Soong,G.Dostal,D. Saxon, Fault tolerantmotor drive systemwith redundancy

for critical applications, inProceedings of the IEEE 33rd Annual Power Electronics Specialists
Conference (2002), pp. 1457–1462

95. E. Fabre, Diagnosis and automata, in Control of Discrete-Event Systems, ed. by C. Seatzu, M.
Silva, J.H. van Schuppen (Springer, Heidelberg, 2013)

96. S. Fang, M. Blanke, Fault monitoring and fault recovery control for position-moored vessels.
Int. J. Appl. Comput. Sci. Control AMCS 21(3), 467–478 (2011)

97. S. Fang, B.J. Leira, M. Blanke, Position mooring control based on a structural reliability
criterion. Struct. Saf. 41, 97–106 (2013)

98. S. Fang, M. Blanke, B.J. Leira, Mooring system diagnosis and structural reliability based
control for position-moored vessels. Control Eng. Pract. 36, 12–26 (2015)

99. M.E. Feki, A. Jardin, W.Marquis-Favre, L. Krähenbühl, D. Thomasset, Structural analysis by
bond graph approach: duality between causal and bicausal procedures. J. Syst. Control Eng.
226, 82–100 (2012)

100. R. Ferrari, T. Parisini, M. Polycarpou, Distributed fault diagnosis with overlapping decom-
positions: an adaptive approximation approach. IEEE Trans. Autom. Control 54(4), 794–799
(2009)

101. C. Fetzer, F. Cristian, Fail-awareness: an approach to construct fail-safe systems. Real-Time
Syst. 24(2), 203–238 (2003)

102. B. Fong, N. Ansari, A. Fong, Prognostics and health management for wireless telemedicine
networks. IEEE Wirel. Commun. 19(5), art. no. 6339476, 83–89 (2012)

103. P.M. Frank, Analytical and qualitative model-based fault diagnosis—a survey and some new
results. Eur. J. Control 2, 6–28 (1996)

104. M. Fouladirad, L. Freitag, I. Nikiforov, Optimal fault detection with nuisance parameters and
a general covariance matrix. Int. J. Adapt. Control Signal Process. 22(5), 431–439 (2008)

105. P.M. Frank, X. Ding, Frequency domain approach to optimally robust residual generation and
evaluation using model-based fault diagnosis. Automatica 30, 789–804 (1994)

106. M.L. Fravolini, V. Brunori, G. Campa, M.R. Napolitano, M. La Cava, Structured analysis
approach for the generation of structured residuals for aircraft FDI. IEEE Trans. Aerosp.
Electron. Syst. 45(4), 1466–1482 (2009)

107. E. Frisk, M. Krysander, M. Nyberg, J. Åslund, A toolbox for design of diagnosis systems, in
Proceedings of the IFAC Safeprocess’2006 (2006)

108. E. Frisk, M. Krysander, J. Åslund, Sensor placement for fault isolation in linear differential-
algebraic systems. Automatica 45(2), 364–371 (2009)

676 References

109. E. Frisk, A. Brgon, J. Åslund, M. Krysander, B. Pulido, G. Biswas, Diagnosability analysis
considering causal interpretations for differential constraints. IEEE Trans. Syst. Man Cybern.
42, 1216–1229 (2012)

110. L.R. Ford, D.R. Fulkerson,Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)
111. L.R. Ford, D.R. Fulkerson, A simple algorithm for finding maximal network flows and an

application to the hitchcock problem. Can. J. Math. 9, 210–218 (1957)
112. C.W. Frei, Fault-rolerant methods in anesthesia. Ph.D. thesis, EHT Zürich (2000)
113. C.W. Frei, F.J. Kraus, M. Blanke, Recoverability viewed as a system property, in Proceedings

of the European Control Conference, Karlsruhe (1999)
114. C. Fritsch, J. Lunze,M. Schwaiger, V. Krebs, Remote diagnosis of discrete-event systemswith

on-board and off-board components, in IFAC Symposium on Fault Detection, Supervision and
Safety for Technical Processes (SAFEPROCESS), Beijing (2006)

115. R. Galeazzi, M. Blanke, N.K. Poulsen, Early detection of parametric roll resonance on con-
tainer ships. IEEE Trans. Control Syst. Technol. 21(2), 489–503 (2013)

116. M. Gálvez-Carrillo, M. Kinnaert, Sensor fault detection and isolation in doubly-fed induction
generators accounting for parameter variations. Renew. Energy 36, 1447–1457 (2011)

117. Z. Gao, P.J. Antsaklis, Stability of the pseudo-inverse method for reconfigurable control
systems. Int. J. Control 53, 717–729 (1991)

118. P. Garg, S. Essakiappan, H.S. Krishnamoorthy, P.N. Enjeti, A fault-tolerant three-phase
adjustable speed drive topology with active common-mode voltage suppression. IEEE Trans.
Power Electron. 30(5), art. no. 6922554, 2828–2839 (2014)

119. J.P. Gauthier, H. Hammouri, S. Othman, A simple observer for nonlinear systems applications
to bioreactors. IEEE Trans. AC-37, 875–880 (1992)

120. A.L.Gehin,M.Bayart,M.Staroswiecki, Faulty resourcesmanagement in automation systems,
in IEEE SMC’97, Orlando (1997)

121. A.L. Gehin, M. Staroswiecki, A formal approach to reconfigurability analysis. Application
to the three tank benchmark, in Proceedings of the European Control Conference, Karlsruhe
(1999)

122. A.-L. Gehin, M. Staroswiecki, From control to supervision. Annu. Rev. Control 25, 1–11
(2001)

123. S. Genc, S. Lafortune, Distributed diagnosis of discrete-event systems using Petri nets, in
ICATPN (2003), pp. 316–336

124. J. Gertler, Fault Detection and Diagnosis in Engineering Systems (Marcel Dekker, NewYork,
1998)

125. J. Gertler, Analytical redundancy methods in failure detection and isolation. Control Theory
Adv. Technol. 1(9), 259–285 (1993)

126. J. Gertler, D. Singer, A new structural framework for parity space equation based failure
detection and isolation. Automatica 26, 381–388 (1990)

127. A. Gheorghe, A. Zolghadri, J. Cieslak, P. Goupil, R. Dayre, H.L. Berre, Model-based
approaches for fast and robust fault detection in an aircraft control surface servo loop: from
theory to flight tests. IEEE Control Syst. Mag. 33(3), 20–30 (2013)

128. A. Gill, Introduction to the Theory of Finite-State Machines (McGraw-Hill, New York, 1962)
129. S.T. Glad, Non-linear state space and input-output descriptions using differential polynomials.

New Trends in Nonlinear Control Theory. Control and InformationScience, vol. 122 (Springer,
Berlin, 1989), pp. 182–189

130. K. Glover, L.M. Silverman, Characterisation of structural controllability. IEEE Trans. AC-
21(4), 534–537 (1976)

131. M. Gondran, M. Minoux, Graphes et algorithmes. Collection Direction des Etudes et
Recherches EDF, 3rd edn. (Eyrolles, Paris, 1995)

132. R. Gould, Graph Theory (Dover Publications Inc., Mineola, 2012)
133. S.F. Graebe, A.L.B. Ahlén, Dynamic transfer among alternative controllers and its relation to

anti-windup controller design. IEEE Trans. Control Syst. Technol. 4, 92–99 (1996)
134. M. Green, D.J.N. Limebeer, Linear Robust Control (Prentice-Hall, Englewood Cliffs, 1995)

References 677

135. L. Grunske, K. Winter, N. Yatapanage, S. Zafar, P.A. Lindsay, Experience with fault injection
experiments for FMEA. Softw. Pract. Exp. 41(11), 1233–1258 (2011)

136. L. Guo, J. Gao, J. Yang, J. Kang, Criticality evaluation of petrochemical equipment based on
fuzzy comprehensive evaluation and a BP neural network. J. Loss Prev. Process Ind. 22(4),
469–476 (2009)

137. V. Gupta, B. Hassibi, R.M. Murray, A sub-optimal algorithm to synthesize control laws for a
network of dynamic agents. Int. J. Control 78(16), 1302–1313 (2005)

138. F. Gustafsson, Adaptive Filtering and Change Detection, 2nd edn. (Wiley, New York, 2000)
(2001)

139. W. Hamscher, L. Console, J. de Kleer, Readings in Model-Based Diagnosis (Morgan Kauf-
mann, San Mateo, 1992)

140. T. Hanus, M. Kinnaert, J.L. Henrotte, Conditioning technique, a general anti-windup and
bumpless transfer method. Automatica 3, 729–739 (1987)

141. R. Hanus, Y. Peng, Conditioning technique for controllers with time delays. IEEE Trans.
Autom. Control 37, 689–692 (1992)

142. F. Harary, A graph theoretic approach to matrix inversion by partitioning. Numer. Math. 4,
128–135 (1962)

143. D. Harel, Statecharts, a visual formalism for complex systems. Sci. Comput. Program. 89,
231–274 (1987)

144. X.He,Z.Wang,D.H.Zhou,Robust fault detection for networked systemswith communication
delay and data missing. Automatica 45, 2634–2639 (2009)

145. G. Heredia, A. Ollero, M. Bejar, R. Mahtani, Sensor and actuator fault detection in small
autonomous helicopters. Mechatronics 18, 90–99 (2008)

146. J.P. Hespanha, P. Naghshtabrizi, Y. Xu, Survey of recent results in networked control systems.
Proc. IEEE 95(1), 138–162 (2007)

147. S.A. Herrin, Maintainability applications using the matrix FMEA technique. IEEE Trans.
R-30, 212–217 (1981)

148. D.M. Himmelblau, Fault Detection and Diagnosis in Chemical and Petrochemical Processes
(Elsevier, Amsterdam, 1978)

149. G. Hoblos, M. Staroswiecki, A. Aitouche, Sensor network design for fault tolerant estimation.
Int. J. Adapt. Control Signal Process. 18, 55–72 (2004)

150. J.E. Hopcroft, R.M. Karp, An algorithm for maximum matchings in bipartite graphs. SIAM
J. Comput. 2, 225–231 (1973)

151. R.F. Huang, C.Y. Stangel, Restructurable control using proportional-integral implicit model
following. J. Guid. Control Dyn. 13, 303–309 (1990)

152. A. Ingimundarson, J.M. Bravo, V. Puig, T. Alamo, P. Guerra, Robust fault detection using
zonotope-based set-membership consistency test. Int. J. Adapt. Control Signal Process. 23(4),
311–330 (2009)

153. R. Isermann, Process fault detection based on modelling and estimation methods: a survey.
Automatica 20(4), 387–404 (1984)

154. R. Isermann, Fault diagnosis ofmachines via parameter estimation and knowledge processing.
Automatica 29(4), 815–836 (1993)

155. R. Isermann, P. Ballé, Trends in the application of model-based fault detection and diagnosis
of technical processes. Control Eng. Pract. 5(5), 709–719 (1997)

156. R. Isermann, Fault-Diagnosis Systems (Springer, Berlin, 2006)
157. R. Isermann, Fault-Diagnosis Applications (Springer, Berlin, 2011)
158. Y. Iwasaki, H.A. Simon, Causality in device behaviour. Artif. Intell. 29, 3–32 (1986)
159. R. Izadi-Zamanabadi, P. Amann, M. Blanke, V. Cocquempot, G.L. Gissinger, E.C. Kerrigan,

T.F. Lootsma, J.M. Perronne, G. Schreier, Ship Propulsion Control and Reconfiguration. in
[8], pp. 285–315

160. R. Izadi-Zamanabadi, M. Blanke, S. Katebi, Cheap diagnosis using structural modelling and
fuzzy-logic based detection. Control Eng. Pract. 11(4), 415–421 (2003)

161. J. Isaksson, An on-line threshold selector for for failure detection, in Proceedings of the
International Conference on Fault Diagnosis: TOOLDIAG, Toulouse (1993), pp. 628–634

678 References

162. R. Izadi-Zamanabadi, M. Blanke, Ship propulsion system as a benchmark for fault-tolerant
control. Technical report, Control Engineering Department, Aalborg University, Denmark
(1998)

163. R. Izadi-Zamanabadi, M. Blanke, A ship propulsion system as a benchmark for fault-tolerant
control. Control Eng. Pract. 7, 227–239 (1999)

164. R. Izadi-Zamanabadi, Fault-tolerant supervisory control—system analysis and logic design.
Ph.D. thesis, Department of Control Engineering, Aalborg University, Denmark (1999)

165. P. Jalote, Fault Tolerance in Distributed Systems (Prentice-Hall, Englewood Cliffs, 1994)
166. A.H. Jazwinski,Stochastic Processes and Filtering Theory (AcademicPress,NewYork, 1970)
167. N.R. Jennings, J.A. Pople, E.H. Mamdani, Designing a reusable coordination module for

cooperative industrial control application, in IEE Proceedings on Control Theory and Appli-
cations (1996), pp. 91–102

168. S. Jiang, Z. Huang, V. Chandra, R. Kumar, A polynomial algorithm for testing diagnosability
of discrete-event systems. IEEE Trans. AC-46(8), 1318–1321 (2001)

169. B. Jiang, H. Yang, M. Staroswiecki, Supervisory fault tolerant control for a class of uncertain
nonlinear systems. Automatica 10, 2319–2324 (2009)

170. B. Jiang, H. Yang, M. Staroswiecki, Fault recoverability analysis of switched systems. Int. J.
Syst. Sci. 43(3), 535–542 (2012)

171. B. Jiang, H. Yang, M. Staroswiecki, Observer based fault tolerant control for a class of
switched nonlinear systems. IEE Control Theory Appl. 1(5), 1523–1532 (2007)

172. B. Jiang, K. Zhang, M. Staroswiecki, Static output feedback based fault accommodation
design for continuous-time dynamic systems. Int. J. Control 84(2), 412–423 (2011)

173. D. Jung, L. Eriksson, E. Frisk, M. Krysander, Development of misfire detection algorithm
using quantitative FDI performance analysis. Control Eng. Pract. 34, 49–60 (2015)

174. K.S. Kallesøe, Fault detection and isolation in centrifugal pumps. Ph.D. thesis, Department
of Control Engineering and Grundfos A/S (2005)

175. D. Karnopp, R.C. Rosenberg, Systems Dynamics. A Unified Approach (Wiley Intersciences,
New York, 1975)

176. S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice-Hall
PTR, Upper Saddle River, 1998)

177. M.Kinnaert, Y. Peng, Residual generation for sensor and actuator fault detection and isolation,
a frequency domain approach. Int. J. Control 61, 1423–1435 (1995)

178. M. Kinnaert, D. Vrancic, E. Denolin, D. Juricic, J. Petrovcic, Model-based fault detection and
isolation for agas-liquid separation unit. Control Eng. Pract. 8, 1273–1283 (2000)

179. C. Keroglou, C.N. Hadjicostis, Detectability in stochastic discrete event systems, inWorkshop
on Discrete Event Systems, Cachan (2014), pp. 27–32

180. T. Knüppel, M. Blanke, J. Østergaard, Fault diagnosis for electrical distribution systems using
structural analysis. Int. J. Nonlinear Robust Control 24, 1446–1465 (2014)

181. M. Kokar, On consistent symbolic representations of general dynamic systems. IEEE Trans.
AC-40, 1231–1242 (1995)

182. J. Korbicz, J. Koscielny, Z. Kowalczuk,W. Cholewa, Fault Diagnosis (Springer, Berlin, 2004)
183. S. Kowalewski, S. Engell, J. Preißig, O. Stursberg, Verification of logic controllers for con-

tinuous plants using timed condition/event-system models. Automatica 35, 505–518 (1999)
184. M. Krysander, Design and analysis of diagnosis systems using structural methods. Ph.D.

thesis, Linköping University (June 2006)
185. M. Krysander, E. Frisk, Leakage detection in a fuel evaporative system. Control Eng. Pract.

17(11), 1273–1279 (2009)
186. M. Krysander, E. Frisk, Sensor placement for fault diagnosis. IEEE Trans. Syst. Man Cybern.

Part A: Syst. Hum. 38(6), 1398–1410 (2008)
187. M. Krysander, J. Åslund, M. Nyberg, An efficient algorithm for finding minimal overcon-

strained subsystems for model-based diagnosis. IEEE Trans. Syst. Man Cybern. Part A: Syst.
Hum. 38, 197–206 (2008)

188. V. Kucera, Analysis and Design of Discrete Linear Control Systems (Prentice-Hall, London,
1991)

References 679

189. H.W.Kuhn, TheHungarianmethod for the assignment problem. Nav. Res. Logist. Q. 2, 83–97
(1956)

190. G. Lamperti, M. Zanella, Diagnosis of Active Systems (Kluwer Academic Publishers, Dor-
drecht, 2003)

191. M. Laursen, M. Blanke, D. Düştegör, Fault diagnosis in a water for injection system using
enhanced structural isolation. Int. J. Appl. Math. Comput. Sci. 18(4), 593–603 (2008)

192. J.M. Legg, Computerized approach for matrix-form FMEA. IEEE Trans. R-27, 254–257
(1978)

193. A. Leitold, K.M. Hangos, Structural solvability analysis of dynamic process models. Comput.
Chem. Eng. 25, 1633–1646 (2001)

194. K. Lemmer, Diagnose diskret modellierter systeme mit petrinetzen. Ph.D. thesis, Technische
Universität Braunschweig (1995)

195. C.T. Lin, Structural controllability. IEEE Trans. AC-19, 201–208 (1974)
196. C.T. Lin, System structure andminimal structure controllability. IEEETrans.AC-22, 855–862

(1977)
197. F. Lin, Diagnosability of discrete event systems and its applications. Discret. Event Dyn. Syst.

Theory Appl. 4, 197–212 (1994)
198. F. Lin, W. Wonham, On observability of discrete-event systems. Inf. Sci. 44, 173–198 (1988)
199. M. Lind, Modeling goals and functions of complex industrial plants. Appl. Artif. Intell. 8,

259–283 (1994)
200. F. Liu, D. Qiu, H. Xing, Z. Fan, Decentralized diagnosis of stochastic discrete event systems.

IEEE Trans. Autom. Control 53, 535–546 (2008)
201. L. Ljung, System Identification: Theory for the User (Prentice-Hall, Englewood Cliffs, 1999)
202. A. Locatelli, N. Schiavoni, Fault hiding and reliable regulation in control systems subject to

polynomial exogenous signals. Eur. J. Control 4, 389–400 (2010)
203. T.F. Lootsma,Observer-based fault detection and isolation for nonlinear systems. Ph.D. thesis,

Department of Control Engineering, Aalborg University, Denmark (2001)
204. T. Lorentzen, M. Blanke, Industrial use of structural analysis—a rapid prototyping tool in the

public domain, in Proceedings of the ACD Workshop, Karlsruhe (2004), pp. 166–171
205. X.C. Lou, A.S. Willsky, G.C. Verghese, Optimally robust redundancy relations for failure

detection in uncertain systems. Automatica 22, 333–344 (1986)
206. L. Lovász, M.D. Plummer, Matching Theory (AMS Chelsea Publishing, Providence, 2009)
207. C. Luh, B. Zeigler, Abstracting event-based control models for high autonomy systems. IEEE

Trans. SMC-23, 42–54 (1993)
208. C.P. Lunau, A reflective architecture for process control applications, in ECOP’97 Object

Oriented Programming, ed. by M. Aksit, S. Matsuoka (Springer, Berlin, 1997), pp. 170–189
209. J. Lunze, Automatisierungstechnik, 3. Aufl. (Oldenbourg-Verlag, München 2012)
210. J. Lunze, Complexity reduction in state observation of stochastic automata, in Workshop on

Discrete Event Systems, Reims (2004), pp. 349–354
211. J. Lunze, Ereignisdiskrete Systeme, 2. Aufl. (Oldenbourg-Verlag, München 2012)
212. J. Lunze, Künstliche Intelligent für Ingenieure (Oldenbourg-Verlag, München, 2011)
213. J. Lunze, Control reconfiguration after actuator failures: the generalised virtual actuator, in

IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFE-
PROCESS), Beijing, 2006

214. J. Lunze, Relations between networks of standard automata and networks of I/O automata
Göteborg, in Workshop on Discrete-Event Systems (2008), pp. 425–430

215. J. Lunze, Determination of distinguishing input sequences for the diagnosis of discrete-event
systems, in Workshop on Dependable Control of Discrete Systems, Bari (2008)

216. J. Lunze, Fault diagnosis of discretely controlled continuous systems by means of discrete-
event models. Discret. Event Dyn. Syst. Theory Appl. 18(2), 181–210 (2008)

217. J. Lunze, J. Richter, Reconfigurable fault-tolerant control: a tutorial introduction. Eur. J.
Control 5, 359–386 (2008)

218. J. Lunze, J. Schröder, State observation and diagnosis of discrete-event systems described by
stochastic automata. Discret. Event Dyn. Syst. Theory Appl. 11, 319–369 (2001)

680 References

219. J. Lunze, J. Schröder, Sensor and actuator fault diagnosis of systems with discrete inputs and
outputs. IEEE Trans. SMC-34, 1096–1107 (2004)

220. J. Lunze, T. Steffen, Control reconfiguration by means of a virtual actuator, in IFAC Sympo-
sium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS),
Washington (2003)

221. J. Lunze, T. Steffen, Control reconfiguration demonstrated at a two-degrees-of-freedom heli-
copter model, in European Control Conference, Cambridge (2003)

222. J. Lunze, T. Steffen, Control reconfiguration after actuator failures using disturbance decou-
pling methods. IEEE Trans. AC-51(9), 1590–1601 (2006)

223. J.M. Maciejowski, Predictive Control with Constraints (Prentice-Hall, Harlow, 2002)
224. C. Maffezzoni, L. Ferrarini, E. Carpenzano, Object oriented models for advanced automation

engineering, in 9th Symposium on Information Control in Manufacturing (1998), pp. 21–31
225. J.F.Magni, P.Mouyon, On residual generation by observer and parity space approaches. IEEE

Trans. AC-39, 441–447 (1994)
226. M. Mahmoud, J. Jiang, Y. Zhang, Active Fault Tolerant Control Systems, Stochastic Analysis

and Synthesis (Springer, London, 2003)
227. M.S. Mahmoud, Y. Xia, Analysis and Synthesis of Fault-Tolerant Control Systems (Wiley,

New York, 2014)
228. R.S. Mangoubi, Robust Estimation and Failure Detection (Springer, Berlin, 1998)
229. N. Meskin, K. Khorasani, Actuator fault detection and isolation for a network of unmanned

vehicles. IEEE Trans. Autom. Control 54(4), 835–840 (2009)
230. M. Meyer, J.-M. Le Lann, B. Koehret, M. Enjalbert, Optimal selection of sensor location on

a complex plant using a graph oriented approach. Comput. Chem. Eng. 18, 535–540 (1994)
231. B.C.Moore, Principal component analysis in linear systems: controllability, observability and

model reduction. IEEE Trans. AC-26, 17–32 (1981)
232. K. Murota, Systems Analysis by Graphs and Matroïds. Structural Solvability and Controlla-

bility (Springer, Berlin, 1987)
233. J.M. Nahman, Dependability of Engineering Systems (Springer, Berlin, 2002)
234. Y. Nakamura, K. Kogiso, K. Sugimoto, Design of a gain switching observer for networked

control systems under random delay, in International Symposium on Mathematical Theory of
Networks and Systems, Kyoto (2006), pp. 213–220

235. J. Neidig, J. Lunze, Decentralised diagnosis of automata networks, in Proceedings of the 16th
IFAC World Congress, paper Th-A05-TO/4, Prague (2005)

236. J. Neidig, J. Lunze, Unidirectional coordinated diagnosis of automata networks, in Proceed-
ings of the 17th International Symposium MTNS, Kyoto (2006)

237. J. Neidig, J. Lunze, Coordinated diagnosis of nondeterministic automata networks, in Pro-
ceedings of the 6th IFAC Safeprocess, Beijing (2006), pp. 175–180

238. D.T. Nguyen, M. Blanke, Fault-tolerant positioning control for offshore vessels with thruster
and mooring actuation. Technical Report, Centre for Autonomous Marine Systems and
Operations (AMOS), Norwegian University of Science and Technology (Trondheim, 2014),
p. 27

239. R. Nikoukhah, S.L. Campbell, A multi-model approach to failure detection in uncertain
sampled-data systems. Eur. J. Control 11, 1–11 (2005)

240. H.Niemann,A setup for active fault diagnosis. IEEETrans.Autom.Control 51(9), 1572–1578
(2006)

241. H. Niemann, J. Stoustrup, An architecture for fault tolerant controllers. Int. J. Control 78,
1091–1110 (2005)

242. H. Niemann, N.K. Poulsen, Active fault diagnosis in closed-loop systems, in IFAC World
Congress, Prague (2005)

243. H. Niemann, Dual Youla parameterization. IEE Proc. Control Theory Appl. 150, 493–497
(2003)

244. I. Nikiforov, A simple recursive algorithm for diagnosis of abrupt changes in signals and
systems, in American Control Conference (1998), pp. 1938–1942

References 681

245. I. Nikiforov, A simple recursive algorithm for diagnosis of abrupt changes in random signals.
IEEE Trans. Inf. Theory 46, 2740–2746 (2000)

246. R. Nikoukhah, Innovation generation in the presence of unknown inputs: application to robust
failure detection. Automatica 30, 1851–1868 (1994)

247. H.H. Niemann, Robust Control, Fault Diagnosis and Fault-Tolerant Control—A Standard
Setup Approach. Lecture Notes. Automation at Ørsted·DTU (2002)

248. H.H. Niemann, J. Stoustrup, Gain scheduling using the Youla parameterization, in IEEE
Conference on Decision and Control, Phoenix (1999), pp. 2306–2311

249. H.H. Niemann, J. Stoustrup, Design of fault detectors usingH∞ optimisation, in Proceedings
of the 39th IEEE Conference on Decision and Control (2000), pp. 4237–4238

250. H.H. Niemann, J. Stoustrup, Reliable control using the primary and dual Youla parameteri-
zation, in 41st IEEE Conference Decision and Control, Las Vegas (2002), pp. 4353–4358

251. H. Niemann, J. Stoustrup, An architecture for fault tolerant controllers. Int. J. Control 78,
1091–1110 (2005)

252. Y. Nke, J. Lunze, A fault modeling approach for input, output automata, in 18th IFAC World
Congress, Milano (2011), pp. 8657–8662

253. Y. Nke, J. Lunze, Control reconfiguration based on unfolding of input/output automata, in
8th Symnposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico
(2012), pp. 866–873

254. H.Noura,D.Theilliol, J.-C. Ponsart,A.Chamseddine,Fault-Tolerant Control Systems. Design
and Practical Applications (Springer, Berlin, 2009)

255. M.Nyberg,Model based fault diagnosis: methods, theory and automotive engine applications.
Ph.D. thesis, Linköping University, Department of Electrical Engineering (1999)

256. M. Nyberg, Criterions for detectability and strong detectability of faults in linear systems. Int.
J. Control 7, 490–501 (2002)

257. H. Ohlsson, F. Gustafsson, L. Ljung, S. Boyd, Smoothed state estimate under abrupt changes
using sum-of-norms regularization. Automatica 48, 595–605 (2012)

258. B. Ould Bouamama, A.L. Gehin, M. Staroswiecki, Alarm filtering by component modelling
and bond graph approach, in 4th IFAC Workshop on On-line Fault Detection and Supervision
in the Chemical Process Industries (CHEMFAS-4), Seoul (2001)

259. A.S. Özveren, A. Willsky, Observability of discrete event dynamic systems. IEEE Trans.
AC-35, 797–806 (1990)

260. P. Panagi, M.M. Polycarpou, Distributed fault accommodation for a class of interconnected
nonlinear systems with partial communication. IEEE Trans. Autom. Control 56(12), 2962–
2967 (2011)

261. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New
York, 1965)

262. F. Pasqualetti, A. Bicchi, F. Bullo, Computation in unreliable networks: a system theoretic
approach. IEEE Trans. Autom. Control 57(1), 90–104 (2012)

263. K. Patan,M.Witczak, J. Korbicz, Towards robustness in neural network based fault diagnosis.
Int. J. Appl. Math. Comput. Sci. 18(4), 443–454 (2008)

264. R.J. Patton, Fault-tolerant control: the 1997 situation, in IFAC Symposium on Fault Detection
Supervision and Safety for Technical Processes, Hull (1997), pp. 1033–1055

265. R.J. Patton, P.M. Frank, R.N. Clark (eds.), Fault Diagnosis in Dynamic Systems Theory and
Application (Prentice Hall, New York, 1989)

266. R.J. Patton, P.M. Frank, R. Clark (eds.), Issues of Fault Diagnosis for Dynamical Systems
(Springer, London, 1999)

267. R.J. Patton, C. Kambhampati, A. Casavola, P. Zhang, S. Ding, D. Sauter, A generic strategy
for fault-tolerance in control systems distributed over a network. Eur. J. Control 13, 280–296
(2007)

268. A. Paoli, S. Lafortune, Safe diagnosability for fault-tolerant supervision of discrete-event
systems. Automatica 41, 1335–1347 (2005)

269. A. Paoli, S. Lafortune, On the diagnosability of a class of hierarchical state machines, in IFAC
Symposium SAFEPROCESS, Beijing (2006), pp. 1357–1362

682 References

270. A. Paoli, S. Lafortune, Diagnosability analysis of a class of hierarchical state machines.
Discret. Event Dyn. Syst. 18, 385–413 (2008)

271. Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann, A. Uhlig, U. Grätz, R. Lien,
Engineering failure analysis and design optimisation with HiP-HOPS. Eng. Fail. Anal. 18(2),
590–608 (2011)

272. R.J. Patton, C. Kambhampati, A. Casavola, P. Zhang, S.X. Ding, D. Sauter, Generic strategy
for fault-tolerance in control systems distributed over a network. Eur. J. Control 13, 280–296
(2007)

273. L. Pau, Failure Diagnosis and Performance Monitoring (Marcel Dekker, New York, 1981)
274. X. Paynter, Analysis and Design of Engineering Systems (MIT Press, Cambridge, 1961)
275. Y. Peng, A. Youssouf, Ph. Arte, M. Kinnaert, A complete procedure for residual generation

and evaluation with application to heat exchanger. IEEE Trans. CST-5, 542–555 (1997)
276. Y. Peng, D. Vrancic, R. Hanus, Anti-windup, bumpless, and conditioned transfer techniques

for PID controllers. IEEE Control Syst. Mag. 10, 48–57 (1996)
277. L. Portinale, Behavioural petri nets: a model for diagnostic knowledge representation and

reasoning. IEEE Trans. SMC-27, 184–195 (1997)
278. K.R. Popper, Conjectures, Refutations (Routledge and Kegan Paul, London, 1963)
279. M.-I. Brudny, Karl Popper: Un Philosophe Heureux (Grasset, Paris, 2002)
280. N.K. Poulsen, H. Niemann, Active fault diagnosis based on stochastic tests. Int. J. Appl.Math.

Comput. Sci. 18(4), 487–496 (2008)
281. W. Qiu, R. Kumar, Decentralized failure diagnosis of discrete event systems. IEEE Trans.

SMC-36, 384–395 (2006)
282. J. Quevedo, V. Puig, M. Serra, Polynomial approach to design a virtual actuator for a fault

tolerant control: application to a PEM fuel cell, in 5-th Workshop on Advanced Control and
Diagnosis, Grenoble (2007)

283. W.Qiu,Q.Wen,R.Kumar,Decentralized diagnosis of event-driven systems for safely reacting
to failures. IEEE Trans. Autom. Sci. Eng. 6, 362–366 (2009)

284. P. Ramadge, W. Wonham, Supervisory control of a class of discrete event processes. SIAM
J. Control Optim. 25, 206–230 (1987)

285. H.E. Rauch, Autonomous control reconfiguration. IEEE Control Syst. Mag. 15, 37–48 (1995)
286. K.J. Reinschke, Multivariable Control: A Graph Theoretic Approach (Springer, Berlin, 1988)
287. R.L.A. Ribeiro, C.B. Jacobinna, E.R.C. da Silva, A.M.N. Lima, Fault-tolerant voltagefed

PWM inverter AC motor drive systems. IEEE Trans. Ind. Electron. 51, 439–446 (2004)
288. J.H. Richter, Reconfigurable Control of Nonlinear Dynamical Systems: A Fault-Hiding

Approach (Springer, Heidelberg, 2011)
289. J. Richter, T. Schlage, J. Lunze, Control reconfiguration of a thermofluid process by means

of a virtual actuator. IET Control Theory Appl. 1(6), 1606–1620 (2007)
290. J.H. Richter, J. Lunze, T. Schlage, Control reconfiguration after actuator failures by Markov

parameter matching. Int. J. Control 81, 1382–1398 (2008)
291. J.H. Richter, J. Lunze, Reconfigurable control of Hammerstein systems after actuator failures:

stability, tracking, and performance. Int. J. Control 83(8), 1612–1630 (2010)
292. J.H. Richter, J. Lunze, T. Steffen, The relation between the virtual actuator and the dual

observer. Eur. J. Control 16(5), 525–531 (2010)
293. J.H. Richter, W.P.M.H. Heemels, N. van deWouw, J. Lunze, Reconfigurable control of piece-

wise affinie systems with actuator and sensor faults: stability and tracking. Automatica 47,
678–691 (2011)

294. J.H. Richter, M.M. Seron, J.A. De Dona, Virtual actuator for Lure systems with Lipschitz-
continuous nonlinearity, in IFAC Congress, Milan (2011)

295. I. Roychoudhury, G. Biswas, X. Koutsoukos, Designing distributed diagnosers for complex
continuous systems. IEEE Trans. Autom. Sci. Eng. 6(2), 277–290 (2009)

296. A. Saberi, A.A. Stoorvogel, P. Sannuti, Exact, almost and optimal input decoupled (delayed)
observers. Int. J. Control 73, 552–582 (2000)

297. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of
discrete event systems. IEEE Trans. AC-40, 1555–1575 (1995)

References 683

298. M. Sampath, R. Sengupta, S. Lafurtune, K. Sinnamohideen, D. Teneketzis, Failure diagnosis
using discrete event models. IEEE Trans. CST-4(2), 105–124 (1996)

299. D. Sauter, T. Boukhobza, Robustness against unknown networked induced delays of observer
based FDI, in IFAC Symposium on Fault Detection, Supervision and Safety of Technical
Processes, Beijing (2006), pp. 331–336

300. F. Schiller, J. Schröder, Combining qualitative model-based diagnosis and observation with
fault-tolerant systems. AI Commun. 12, 79–98 (1999)

301. C. Schizas, F.J. Evans, A graph theoretic approach to multivariables control system design.
Automatica 17, 371–377 (1981)

302. T. Schlage, J. Lunze, Modelling of networked systems for remote diagnosis, in Conference
on Control and Fault-Tolerant Systems, Nizza (2010), pp. 795–800

303. M. Schmidt, J. Lunze, Active diagnosis of deterministic I/O automata, in Dependable Control
of Discrete Event Systems, Hull (2013)

304. M. Schmidt, J. Lunze, Active fault diagnosis of discrete event systems subject to safety
constraints, in Conference on Control and Fault-Tolerant Systems (SysTol), Nice (2013), pp.
706–713

305. M. Schmidt, J. Lunze, A framework for active fault-tolerant control of deterministic I/O
automata, in Workshop on Discrete Event Systems, Paris (2014), pp. 446–452

306. J. Schröder, Modelling, State Observation and Diagnosis of Quantised Systems (Springer,
Berlin, 2003)

307. J.H. van Schuppen, T. Villa (eds.), Coordination Control of Distributed Systems. Series:
Lecture Notes in Control and Information Sciences, vol. 456 (Springer, Berlin, 2015)

308. J.K. Scott, R. Findeisen, R.D. Braatz, D.M. Raimondo, Input design for guaranteed fault
diagnosis using zonotopes. Automatica 50, 1580–1589 (2014)

309. A. Seidenberg, An Elimination Theory for Differential Algebra. University of California Pub-
lications in Mathematics, vol. 3 (University of California Press, Oakland, 1956), pp. 31–65

310. M.M. Seron, J.A. De Dona, Fault tolerant control using virtual actuators and invariant-set
based fault detection and identification, in IEEE Conference on Decision and Control, Shang-
hai (2009), pp. 7801–7808

311. M.M. Seron, J.A. De Dona, J.H. Richter, Bank of virtual actuators for fault tolerant control,
in IFAC World Congress, Milano (2011), pp. 5436–5441

312. E. Semsar-Kazerooni, K. Khorasani, Optimal consensus algorithms for cooperative team of
agents subject to partial information. Automatica 44(11), 2766–2777 (2008)

313. R. Seydou, T. Raissi, A. Zolghadri, D. Efimov, Actuator fault diagnosis for flat systems: a
constraint satisfaction approachr. Int. J. Appl. Math. Comput. Sci. 23(1), 171–181 (2013)

314. I. Shames, A.H. Teixeira, H. Sandberg, K.H. Johansson, Distributed fault detection for inter-
connected systems. Automatica 47, 2757–2764 (2011)

315. B. Shen, Z. Wang, Y.S. Hung, Distributed H∞-consensus filtering in sensor networks with
multiple missing measurements: the finite-horizon case. Automatica 46(10), 1682–1688
(2010)

316. S. Simani, C. Fantuzzi, R.R. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using
Identification Techniques (Springer, Berlin, 2002)

317. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 3rd
edn. (Wiley, New York, 2005)

318. T. Söderström, P. Stoica, System Identification (Prentice-Hall, Upper Saddle River, 1989)
319. V. Srinivasan,M. Jafari, Fault detection/monitoring using timed petri nets. IEEE Trans. SMC-

23(4), 1155–1162 (1993)
320. H. Starke, Abstrakte Automaten (Deutscher Verlag der Wissenschaften, Berlin, 1969)
321. M. Staroswiecki, On reconfigurability with respect to actuator failures, in IFAC World

Congress, Barcelona (2002)
322. M. Staroswiecki, Fault tolerant control: the pseudo-inverse method revisited, in 16-th IFAC

World Congress, paper Th-E05-TO/2, Prague (2005)
323. M. Staroswiecki, M. Bayart, Les Actionneurs Intelligents (Hermès, Paris, 1994)

684 References

324. M. Staroswiecki, M. Bayart, Models and languages for the interoperability of smart instru-
ments. Automatica 32, 859–873 (1996)

325. M. Staroswiecki, J.P. Cassar, P. Declerck, A structural framework for the design of FDI in
large scale industrial plants. In [266]

326. M. Staroswiecki, G. Comtet, Varga: analytical redundancy relations for fault detection and
isolation in algebraic dynamical systems. Automatica 37, 687–699 (2001)

327. M. Staroswiecki B. Jiang, V. Cocquempot, Fault accommodation for nonlinear dynamic sys-
tems. IEEE Trans. Autom. Control 51(9), 1578–1583 (2006)

328. M. Staroswiecki, Robust fault tolerant linear quadratic control based on admissible model
matching, in 45th IEEE Conference on Decision and Control, San Diego (CA), USA (2006),
pp. 3506–3511

329. M. Staroswiecki, On fault handling in control systems. Int. J. Control Autom. Syst. Spec.
Issue FDI FTC 6(3), 1–10 (2008)

330. M. Staroswiecki, On reconfiguration-based fault tolerance, in IEEE MED, Plenary Lecture,
Marrakech, Morocco (2010)

331. M. Staroswiecki A.-L. Gehin, Reconfiguration analysis using generic models. IEEE Trans.
Syst. Man Cybern. Part A 38(3), 575–583 (2008)

332. M. Staroswiecki, D. Berdjag, Evaluation and optimal selection of reliable control design
specifications, in 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical
Processes, Barcelona, Spain (2009), pp. 870–875

333. M. Staroswiecki, D. Berdjag, A general fault tolerant linear quadratic control strategy under
actuator outages. Int. J. Syst. Sci. 41(8), 971–985 (2010)

334. M. Staroswiecki, F. Cazaurang, Fault recovery by nominal trajectory tracking, in American
Control Conference, Seattle (2008)

335. M. Staroswiecki K. Zhang, B. Jiang, Reduced-order observer based fault estimation design
for multiple-input multiple-output discrete-time systems. Proc. Inst. Mech. Eng. Part I J. Syst.
Control Eng. 226(1), 101–110 (2012)

336. M. Staroswiecki, K. Zhang, B. Jiang, Analysis and design of robust estimation filter for a
class of continuous-time nonlinear systems. Int. J. Syst. Sci. 43(19), 1958–1968 (2012)

337. A. Rosich, E. Frisk, J. Åslund, R. Sarrate, F. Nejjari, Fault, diagnosis based on causal com-
putations. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 42(2), 371–381 (2012)

338. M. Staroswiecki, A. Moradi Amani, Fault tolerant control of distributed systems by informa-
tion pattern reconfiguration. Int. J. Adapt. Control Signal Process. (2014). doi:10.1002/ACS.
2497

339. G.K. Singh, V. Pant, Analysis of a multiphase induction machine under fault condition in a
phase-redundant A.C. drive system. Electr. Mach. Power Syst. 28, 577–590 (2000)

340. T. Steffen, Control Reconfiguration of Dynamical System: Linear Approaches and Structural
Tests (Springer, Heidelberg, 2005)

341. D.V. Steward, On an approach to techniques for the analysis of the structure of large systems
of equations. SIAM Rev. 4, 321–342 (1962)

342. F. Stoican, S. Olaru, Set-Theoretic Fault-Tolerant Control in Multisensor Systems (Wiley,
New York, 2013)

343. A.A. Stoorvogel, H.H. Niemann, A. Saberi, P. Sannuti, Optimal fault signal estimation. Int.
J. Robust Nonlinear Control 12, 697–727 (2002)

344. J. Stoustrup,M.J. Grimble, Integrating control and fault diagnosis: a separation result, in IFAC
Symposium on Fault Detection, Supervision and Safety for Technical Processes, Hull (1997),
pp. 323–328

345. J. Stoustrup, M.J. Grimble, H.H. Niemann, Design of integrated systems for control and
detection of actuator/sensor faults. Sens. Rev. 17, 157–168 (1997)

346. J. Stoustrup, H.H. Niemann, Fault tolerant feedback control using the Youla parameterization,
in European Control Conference, Porto (2001)

347. O. Stursberg, S. Kowalewski, S. Engell, Generating timed discrete models of continuous
systems, in Proceedings of the 2nd MATHMOD Conference, Vienna (1997), pp. 203–209

http://dx.doi.org/10.1002/ACS.2497
http://dx.doi.org/10.1002/ACS.2497

References 685

348. R. Su, Distributed diagnosis for discrete-event systems. Ph.D. thesis, University of Toronto
(2004)

349. R. Su,W.M.Wonham,Global and local consistencies in distributed fault diagnosis for discrete-
event systems. IEEE Trans. AC-50, 1923–1935 (2005)

350. C. Sundstr, E. Frisk, L. Nielsen, Selecting and utilizing sequential residual generators in FDI
applied to hybrid vehicles. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 44(2), 172–185
(2014)

351. P. Supavatanakul, J. Lunze, V. Puig, J. Quevedo, Diagnosis of timed automata: theory and
application to theDAMADICS actuator benchmark problem. Control Eng. Pract. 14, 609–619
(2006)

352. C. Svärd, M. Nyberg, Residual generators for fault diagnosis using computation sequences
with mixed causality applied to automotive systems. IEEE Trans. Syst. Man Cybern. Part A:
Syst. Hum. 40(6), 1310–1328 (2010)

353. C. Svärd, M. Nyberg, E. Frisk, M. Krysander, Data-driven and adaptive statistical residual
evaluation for fault detection with an automotive application. Mech. Syst. Signal Process.
45(1), 170–192 (2014)

354. C. Svärd, M. Nyberg, E. Frisk, Realizability constrained selection of residual generators for
fault diagnosis with an automotive engine application. IEEE Trans. Syst. Man Cybern. Syst.
43(6), 1354–1369 (2013)

355. S.M. Tabatabaeipour, Active fault detection and isolation of discrete-time linear time-varying
systems: a set-membership approach. Int. J. Syst. Sci. 46(11), 1917–1933 (2014)

356. R.M. Tallam, T.G. Habetler, R.G. Harley, Transient model for induction machines with stator
winding turn faults. IEEE Trans. Ind. Appl. 38, 632–637 (2003)

357. R.M. Tallam, T.G. Habetler, R.G. Harley, Stator winding turn-fault detection for closed-loop
induction motor drives. IEEE Trans. Ind. Appl. 39, 720–724 (2003)

358. A. Tantawy, X. Koutsoukos, G. Biswas, Aircraft power generators: hybrid modeling and
simulation for fault detection. IEEE Trans. Aerosp. Electron. Syst. 48, 552–571 (2012)

359. T.T. Tay, I.M.Y. Mareels, J.B. Moore, High Performance Control (Birkhäuser, Basel, 1997)
360. A.H. Teixeira, I. Shames, H. Sandberg, K.H. Johansson, Distributed fault detection and isola-

tion resilient to network model uncertainties. IEEE Trans. Cybern. 44(11), 2024–2037 (2014)
361. J. Thoma, B. Ould Bouamama, Modelling and Simulation in Thermal and Chemical Engi-

neering: A Bond Graph Approach (Springer, Berlin, 2000)
362. J.U. Thoma, Modern Oilhydraulic Engineering (Trade and Technical Press Ltd, Morden,

1971)
363. L. Thomas, L. Lambolais, R. Lesiour, C. André, M. Bayart, C. Choukair, Architectural tech-

niques for the description and validation of distributed real-time systems, in 2nd IEEE Interna-
tional Symposium on Object oriented Real-Time Distributed Computing (ISORC’99) (1999),
pp. 323–331

364. J.S. Thomsen, A fault tolerant electronic steering system for a fork lift truck. Internal report,
Aalborg University and Danfoss A/S (2000)

365. J.S. Thomsen, M. Blanke, Fault-tolerant electrical steering for warehouse trucks, in IEEE
IECON’06: 32nd Annual Conference of the IEEE Industrial Electronics Society, November
2006 (submitted)

366. D. Thorsley, D. Teneketzis, Diagnosability of stochastic automata. IEEE Trans. Autom. Con-
trol 50, 476–492 (2005)

367. C. Thybo, Fault-Tolerant Control of Inverter Controlled Induction Motors. Ph.D. thesis, Aal-
borg University, 2000

368. C. Thybo, M. Blanke, Industrial cost-benefit assessment for fault-tolerant control systems, in
Proceedings of the IEE Conference Control, Swansea (1998), pp. 1151–1156

369. Y. Tipsuwan,M.-Y. Chow, Control methodologies in networked control systems. Control Eng.
Pract. 11, 1099–1111 (2003)

370. L. Trave-Massuyes, T. Escobet, X. Olive, Diagnosability analysis based on component-
supported analytical redundancy relations. IEEE Trans. Syst. Man Cybern. 36, 1146–1160
(2006)

686 References

371. J. Unger, A. Kröner, W. Marquardt, Structural analysis of differential-algebraic equation
systems—theory and applications. Comput. Chem. Eng. 19, 867–882 (1995)

372. M. Ungermann, J. Lunze, D. Schwarzmann, Model-based test signal generation for service
diagnosis of automotive systems, in IFAC Symposium on Advances in Automotive Control,
München (2010), paper MA3.1

373. M. Ungermann, J. Lunze, D. Schwarzmann, Test signal generation for service diagnosis based
on local structural properties. Int. J. Appl. Math. Comput. Sci. 22(1), 55–65 (2012)

374. Varga, A., A numerically reliable approach for the synthesis of periodic fdi filters, in Pro-
ceedings of the IFAC SAFEPROCESS 2012 (2012)

375. R.J. Veillette, J.V. Medani, W.R. Perkins, Design of reliable control systems. IEEE Trans.
AC-37, 290–304 (1992)

376. N. Viswanadham, J.H. Taylor, E.C. Luce, A frequency-domain approach to failure detection
and isolation with application to GE-21 turbine engine control system. Control-Theory Adv.
Technol. 3, 45–72 (1987)

377. E.Walter, L. Pronzato, Identification of Parametric Models from Experimental Data (Springer,
Berlin, 1997)

378. Y. Wang, H. Ye, S.X. Ding, G. Wanga, D. Zhou, Residual generation and evaluation of
networked control systems subject to random packet dropout. Automatica 45, 2427–2434
(2009)

379. Y.Q. Wang, S.X. Ding, P. Zhang, W. Li, H. Ye, G.Z. Wang, Fault detection of networked
control systems with packet dropout IFAC World Congress, Seoul (2008), pp. 8884–8889

380. Y.Wang, H. Ye, S.X. Ding, Y. Cheng, P. Zhang, G.Wang, Fault detection of networked control
systems with limited communication. Int. J. Control 82, 1344–1356 (2009)

381. Y. Wang, T.-S. Yoo, S. Lafortune, Diagnosis of discrete event systems using decentralized
architectures. Discret. Event Dyn. Syst. 17(2), 233–263 (2007)

382. W. Winston, Operations Research: Applications and Algorithms, 4th edn. (Duxbury Press,
Boston, 2003)

383. M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems,
Analytical and Soft Computing Approaches (Springer, Berlin, 2013)

384. J. Willems, Paradigms and puzzles in the theory of dynamic systems. IEEE Trans. AC-36,
259–294 (1991)

385. A. Willersrud, M. Blanke, L. Imsland, A. Pavlov, Fault diagnosis of downhole drilling inci-
dents using adaptive observers and statistical change detection. J. Process Control 30, 90–103
(2015)

386. A. Willersrud, M. Blanke, L. Imsland, A. Pavlov, Drillstring washout diagnosis using friction
estimation and statistical change detection. IEEETrans. Control Syst. Technol. (2015). doi:10.
1109/TCST.2015.2394243

387. A. Willersrud, M. Blanke, L. Imsland, Incident detection and isolation in drilling using ana-
lytical redundancy relations. Control Eng. Pract. 41, 1–12 (2015)

388. W.M.Wonham, A control theory for discrete-event system, inAdvanced Computing Concepts
and Techniques in Control Engineering, ed. by M.J. Denham, A.J. Laub (Springer, Berlin,
1988), pp. 129–169

389. N.E. Wu, Coverage in fault-tolerant control. Automatica 40, 537–548 (2004)
390. N.E. Wu, T.J. Chen, Reliability prediction for self-repairing flight control systems, in Pro-

ceedings of the 35th IEEE Conference on Desicion and Control, Kobe (1996)
391. N.E.Wu, G.J. Klir, Optimal redundancymanagement in reconfigurable control systems based

on normalised nonspecificity. Int. J. Syst. Sci. 31, 797–808 (2000)
392. N.E. Wu, K. Zhou, G. Salomon, Reconfigurability in linear time-invariant systems. Automat-

ica 36, 1767–1771 (2000)
393. N.E.Wu, Z. Zhou, Detection, estimation and accommodation on loss of control effectiveness.

Int. J. Adapt. Control Signal Process. 14, 175–195 (2000)
394. N.E. Wu, S. Thavamani, Y.M. Zhang, M. Blanke, Sensor fault masking of a ship propulsion

system. Control Eng. Pract. 14, 1337–1345 (2006)

http://dx.doi.org/10.1109/TCST.2015.2394243
http://dx.doi.org/10.1109/TCST.2015.2394243

References 687

395. A. Zolghadri, D. Henry, J. Cieslak, D. Efimov, P. Goupil, Fault Diagnosis and Fault-Tolerant
Control and Guidance for Aerospace Vehicles: From Theory to Application (Springer, Berlin,
2013)

396. X. Zhang, T. Parisini,M.M. Polycarpou, Adaptive fault-tolerant control of nonlinear uncertain
systems: an information-based diagnostic approach. IEEE Trans. Autom. Control AC-49,
1259–1274 (2004)

397. J. Yamé, M. Kinnaert, Parameterization of linear controllers for bumpless switching in multi-
controller schemes, in Proceedings of the AIAA Guidance, Navigation and Control Confer-
ence, Providence, Rhode Island (2004)

398. Z. Yang, M. Blanke, M. Verhagen, Robust control mixer method for reconfigurable control
design using model matching. Proc. IET Control Theory Appl. 1, 349–357 (2007)

399. Z. Yang, J. Stoustrup, Design of robust reconfigurable control for parametric and additive
faults, in 39th IEEE Conference on Decision and Control, Sydney (2000), pp. 4132–4137

400. Z. Yang, M. Blanke, The robust control mixer module method for control reconfiguration, in
American Control Conference (2000)

401. Z. Yang, R. Izadi-Zamanabadi, M. Blanke, On-line Multiple-model Based Adaptive Control
Reconfiguration for a Class of Non-linear Control Systems (Safeprocess, Budapest, 2000)

402. H. Yang, M. Staroswiecki, B. Jiang, Progressive accommodation of aircraft actuator faults,
in IFAC Symposium Safeprocess, Beijing (2006)

403. H. Yang, M. Staroswiecki, B. Jiang, Active fault tolerant control based on progressive accom-
modation. Automatica 43(12), 2070–2076 (2007)

404. H. Yang, M. Staroswiecki, B. Jiang, J. Liu, Fault tolerant cooperative control for a class of
nonlinear multiagent systems. Syst. Control Lett. 60(4), 271–277 (2011)

405. T.-S. Yoo, S. Lafortune, Polynomial-time verification of diagnosability of partially observed
discrete-event systems. IEEE Trans. AC-47(9), 1491–1498 (2002)

406. L. Zaccarian,A.R. Teel,A common framework for anti-windup, bumpless transfer and reliable
designs. Automatica 38, 1735–1744 (2002)

407. P. Zhang, S.X. Ding, Fault detection of networked control systems with limitedcommunica-
tion, in IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes,
Beijing (2006), pp. 1135–1140

408. Q. Zhang, M. Basseville, A. Benveniste, Early warning of slight changes in systems. Auto-
matica 30, 95–113 (1994)

409. Q. Zhang, M. Basseville, A. Benveniste, Fault detection and isolation in nonlineardynamic
systems: a combined input-output and local approach.Automatica 34, 1359–1373 (Benveniste
1998)

410. Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems.
Annu. Rev. Control 32, 229–252 (2008)

411. X. Zhang, Q. Zhang, Distributed fault diagnosis in a class of interconnected nonlinear uncer-
tain systems. Int. J. Control 37(1), 170–179 (2013)

412. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice Hall, Upper Saddle
River, 1995)

413. T. Zhou, On the controllability and observability of networked dynamic systems. Automatica
52, 63–75 (2015)

414. A. Zolghadri, Advanced model-based FDIR techniques for aerospace systems: today chal-
lenges and opportunities. Prog. Aerosp. Sci. 53, 18–29 (2012)

Index

A
ABS test bed, 210
Abstraction, 65, 73, 121
Active fault-tolerant control, 2, 12, 18
Active fault-tolerant control system, 348,

661
Active isolation, 192
Actuator, 55

virtual a., 403
Actuator fault, 7, 389, 402
Adaptive control, 12
Admissibility, 661
Alarm time, 279
Algebraic constraint, 141
Alternated chain, 140
Alternating path, 165
Alternating tree, 165
Analytical redundancy, seeRedundancy, 661
Analytical redundancy relation, 173, 174,

216, 219, 223, 231
linear a.r.r., 226

Anti-windup, 456
Architecture, 79
ARL function, 302
ARR, 174, see also Analytical redundancy

relation
Augmenting path, 165
Autocorrelation function, 649
Automata network, 607
Automaton

a. of faulty system, 538
autonomous stochastic a., 534
deterministic a., 68, 527
initialised a., 528
nondeterministic a., 68, 529
observable a., 603
semi-deterministic a., 603

stochastic a, 531
stochastic Mealy a., 533

Automaton behaviour, 529
Automaton graph, 528, 534
Automaton map, 528
Availability, 8, 661

B
Behaviour, 4, 59

discrete state b. of actuation system, 365
Behavioural relation

b.r. of nondeterministic automaton, 69,
529

b.r. of stochastic automaton, 69, 533
Bezout identity, 448
Bipartite graph, 119
Bumpless switching, 456

C
Canonical decomposition, 149
Canonical subsystem, 149
Causal graph, 141
Causal subsystem, 160
Causality, 141

derivative c., 143, 144
integral c., 143

Change detection
CUSUM, 281
unknown magnitude, 288

Change in the mean, 279, 283, 295, 296
Chi-square, non-central, 292
χ2-distribution, 646
Column space, 642
Communication schemes

bilateral agreements, 474, 506

© Springer-Verlag Berlin Heidelberg 2016
M. Blanke et al., Diagnosis and Fault-Tolerant Control,
DOI 10.1007/978-3-662-47943-8

689

690 Index

publisher/subscriber, 474, 506
Complement

orthogonal c., 643
Component, 57, 79

high-level c., 59
low-level c., 59

Condensation, 148
Conductivity control, 427
Configuration, 362

actuator configuration, 363
recoverable configuration, 363

Consistency, 523
Consistency-based diagnosis, 14
Consistent input/output pair, 523
Constraint, 6, 53, 121, 661

algebraic c., 141
differential c., 142
exonerated c., 186
matched c., 138
non-invertible c., 146
non-matched c., 138

Constraint propagation, 162
Control

adaptive c., 12
c. reconfiguration, 350
fault accommodation, 349
robust c., 11

Control bank, 367
minimal control bank, 372
trade-off c.b., 374

Control device, 55
Control reconfiguration, see Reconfigura-

tion
c.r. of a chemical process, 421

Control redesign, 2, 391, 465
Controllability

structural c., 196
Controller, 2
Coordinated diagnosis, 25
Coordination, 662
COSY, 35
COSY reconfiguration benchmark problem,

37
Covariance, 650, 651
Critical component subsets, 366
CUSUM, 281, 659

delay for detection, 284
detection properties, 283
mean and variance of log-likelihood
increments, 280

parameters, 283, 284
recursive implementation, 282
time between false alarms, 284

CUSUM algorithm, 278, 297, 299, 328
recursive form of C.a., 282
two-sided C.a., 283

Cyberphysical system, 27
Cyclic structure, 145

D
Decentralised diagnosis, 24, 607, 639
Decision logic, 662
Decision system, 215
Deduced redundancy, 176
Dependability, 8
Dependability matrix, 182
Dependable system, 8
Derivative causality, 143
Detectability, 14
Detection

delay, 284
time between false alarms, 284

Deterministic automaton, 68, 527
Deterministic system, 526
Diagnosability, 15

co-diagnosability, 639
d. of stochastic automaton, 600
safe co-diagnosability, 639
structural d., 173

Diagnosis, see Fault diagnosis
centralised d., 607
consistency-based d., 14, 592
coordinated d, 25
d. of Deterministic automata, 548
d. of nondeterministic automata, 567
d. of stochastic automaton, 592
decentralised d., 24, 607
distributed d., 24

Diagnosis vs. simulation, 599
Diagnostic problem, 13
Differential constraint, 142
Direct redundancy, 175
Directed graph, 126
Discrepancy, 662
Discrete-event system, 67, 521, 524
Disjoint edges, 135
Distinguishing inputs, 589
Distributed control, 472
Distributed diagnosis, 24, 468, 474, 482,

484, 499, 607, 639
Distributed system, 662
Disturbance, 6, 64
Disturbance behaviour, 409
Disturbance suppression, 255
DM decomposition, 150

Index 691

Duality, 421
Dynamical profile of change, 299, 329

E
Embedded system, 24
Error, 662
Event, 67, 522, 525
Exact decoupling, 222
Example

ABS test bed, 210
arithmetic circuit, 209
COSY reconfiguration benchmark prob-
lem, 37

industrial actuator, 207
mountainrailway, 637
reconfiguration of temperature control,
421

running e., 37
ship heading control, 182
single-axis satellite, 208
single-tank system, 124
tail lamp, 158
two-tank system, 163, 186
VERA, 427

Exoneration, 186
Expected value, 649

F
Fail-graceful system, 8
Fail-operational, 8, 663
Fail-safe, 8, 662
Failure, 7, 663
Failure effect, 663
Failure mode, 82, 663
Failure modes and effect analysis (FMEA),

82, 659
Fault, 1, 3, 56, 67, 175, 663

actuator f., 56
additive f., 6, 64
external f., 56
incipient f., 664
internal f., 56
multiplicative f., 6, 64
process f., 56
recoverable f., 10

Fault accommodation, 19, 349, 389, 392, 663
Fault candidate, 14, 15, 523, 593
Fault detectability, 239, 325
Fault detection, 14, 312, 663

analytical redundancy-Based f.d., 174
Fault detector, 663
Fault diagnosis, 2, 14, 215, 663

recursive solution, 594
Fault estimation, 14, 331, 663
Fault identification, 14, 663
Fault isolation, 14, 241, 663

active f.i., 192
Fault model, 64, 542, 663
Fault propagation analysis, 83, 663
Fault propagation matrix, 84
Fault recovery, 663
Fault recovery transients, 456
Fault sensitivity, 255
Fault tolerance, 2
Fault tolerance analysis, 59
Fault-Tolerance evaluation, 377
Fault-tolerant control, 2, 390, 661

active f.t.c., 2
architecture of f.t.c., 10
f.t.c. of continuous systems, 343, 389
passive f.t.c., 3

Fault-tolerant system, 2, 663
Function, 53

G
Generalised likelihood ratio algorithm, 287,

288
Generic component model, 57
GLR, 659
GLR algorithm, 297, 301
Graph

bipartite g., 119
causal g., 141
directed g., 126
just-constrained g., 149
oriented g., 138
over-constrained g., 149
structure g., 123
under-constrained g., 149

H
Hardware redundancy, 664
Hungarian method, 169
Hybrid system, 70

structure of h.s., 71
Hypothesis testing, 646

χ2-test, 646

I
I/O pair, see Input/output pair
Implicit function theorem, 141
Incidence matrix, 123
Information pattern, 467, 472, 499, 664

692 Index

information pattern reconfiguration, 503
order on the set of information patterns,
503

wider information pattern, 506
Initial state

a-posteriori i.s., 579
a-priori i.s., 582

Initial state probability distribution, 532
Initialised automaton, 528
Injector, 71
Innovation, 314
Innovation filter, 313, 321
Input

distinguishing i., 590
i. of discrete-event system, 524

Input alphabet, 68, 527
Input sequence, 67, 525
Input/output pair, 4

consistent i/o p., 523
Integral causality, 143

J
Just-constrained subsystem, 157

K
Kalman filter, 315

L
Lattice, 362
LFT, 659
Likelihood ratio, 277
Linear analytical redundancy relation, 226
Log-likelihood ratio, 277, 297
Loop

differential l., 147
non-causal l., 147

LQ, 659
LTI, 659
Luenberger observer, 402
Lyapunov equation, 654, 657

M
Markov process

homogeneous M.p., 538
Markov property, 531, 537
Matching, 134

complete m., 136
m. algorithm, 161, 169
maximum m., 136
MSO algorithm, 172

ranking algorithm, 162
Matching number, 136
Maximum flow algorithm, 168
Mealy automaton, 533
Mean, 649

empirical m., 651
Mean time before failure, 543
Minimal structurally over-determined set,

171
Minimal subsystem, 151
Model, 53

behavioural m., 121
component m., 57
continuous-time m., 62
discrete-event m., 524
structural m., 65, 121
untimed m., 525

Model matching, 389
Model-predictive control, 386
Moment, 650
Monitorability, 173
MSO, 171, 659

N
Networked diagnosis, 28
Networked system, 28
Noise, 64, 653
Nondeterministic automaton, 68, 529
Nondeterministic system, 526
Nullspace, 642

left n., 642

O
Objective, 664
Objective reconfiguration, 664
Observability, 196

o. of linear system, 199
o. of stochastic automaton, 584
stochastic o., 587
structural o., 197
uniform stochastic o., 591

Observation vs. simulation, 585
Observer, 402
Observer-based controller, 448, 452
Observer-based diagnosis, 143, 273
Oriented graph, 138
Output

o. of discrete-event system, 524
Output alphabet, 68, 527
Output function, 68, 527
Output relation, 533
Output sequence, 67, 525

Index 693

Over-constrained subsystem, 156

P
Parameterised controller, 450
Parity relation, 182, 229
Parity space, 229
Parity space approach, 231
Passive fault tolerance, 348
Passive fault-tolerant control, 3, 12
Passive fault-tolerant control system, 664
Passive–Active approach, 367
Path

alternating p., 165
augmenting p., 165

Physical redundancy, see Redundancy
Plant, 2

reconfigured p., 407
Plant fault, 7
Power spectrum, 651
Probability, 645
Probability density function, 648
Probability distribution, 648
Process, 53, 648

stationary p., 654
white noise p., 654

Process diagnosis, see Fault diagnosis
Property

structural p., 66, 129
Pseudo-inverse method, 392
PSO, 151

Q
Qualitative model, 664
Quantiser, 71
Quantitative model, 664

R
Random process, 648

stationary r.p., 650
Random variable

chi-square r.v., 646
Gaussian r.v., 645

Ranking algorithm, 161
Reachability, 140
Reconfigurability, 21, 664
Reconfiguration, 20, 350, 389, 392, 402, 664
Reconfiguration goal

strong r.g., 405
weak r.g., 406

Reconfiguration of conductivity control
loop, 427

Reconfiguration problem, 404
COSY reconfiguration benchmark prob-
lem, 44

Reconfigured plant, 407, 412
Recoverability, 386, 665
Reduced structure graph, 133
Redundancy, 3, 156

analytical r., 3, 17, 661
deduced r., 176
direct r., 175
hardware r., 664
physical r., 3
sensor r., 178

Reliability, 8, 665
Reliability over-cost, 373
Reliable Control, 367
Remedial action, 665
Residual, 16, 174, 176, 215, 665

robust r., 184
structured r., 184

Residual evaluation, 215, 326
Residual generation, 143, 215

general case, 261
Residual generator, 312
Residual generator design, 232
Residuals

structured r., 182
Robust control, 11
Robust residual, 184
Row space, 642

S
Safety, 8
Safety system, 8, 665
Safety-critical system, 3
Sampled data

s. noise covariance, 658
Sensitivity to faults, 325
Sensor, 55

virtual s., 403
Sensor fault, 7, 389, 393, 402
Sensor fusion, 665
Sensor redundancy, 178
Separation principle, 409
Service, 57

high-level s., 110
versions of s., 58

Severity, 665
Ship propulsion system, 45, 322
Ship steering, 182

nonlinear parity relations, 182
Signal

694 Index

discrete-valued s., 67, 524
Signature, 186, 478
Signature matrix, 182
Specification, 662
Spectral density, 651
Stabilising controller, 448
Stability, 409
Standard estimation setup, 252
State

s. of discrete-event system, 524
State observation

recursive solution, 581
s. o. of stochastic automata, 574

State sequence, 67, 525
probability of s.s., 576

State transition function, 68, 527
State transition relation, 533, 534
State variable filter, 228
Steady state Kalman filter, 314
Stochastic, 648
Stochastic automaton, 531

diagnosability of s.a, 598
diagnosis of s.a., 592
observability of s.a., 584
stochastic diagnosability of s.a., 600
stochastically undiagnosable s.a., 599

Stochastic differential equation, 658
Stochastic process, 531

discrete-time s.p., 648
Stopping time, 279
Strong detectability, 232
Strongly connected component, 154
Strongly connected subgraphs, 145
Structural analysis, 119, 665

procedure, 206
s. a. of a tail lamp, 158
s.a. of a single-tank system, 124
s.a. of two-tank system, 163, 186

Structural controllability, 196
Structural decomposition, 149
Structural detectability, 181
Structural diagnosability, 173
Structural equivalence, 129
Structural isolability, 173, 181, 182
Structural model, 121
Structural monitorability, 177
Structural observability, 196, 197
Structural property, 129
Structural rank, 131, 158
Structural redundancy, s.r. measure153
Structurally equivalent, 129
Structure, 65, 123
Structure graph, 66, 123

loop, 145
reduced s.g., 133
strongly connected subgraphs, 145

Structured residual, 185, 224
Subsystem, 127

canonical s., 149
just-constrained s., 151, 157
minimal s., 151
over-constrained s., 151, 156
over-determined s., 151
proper structurally over-constrained s.,
151

under-constrained s., 151, 157
under-determined s., 151

Supervision, 666
Supervisor, 666
Supervisory control, 70
Switching between controllers, 456
System

continuous-variable s., 61
controlled s., 54
dependable s., 8
deterministic s., 525, 526
discrete-event s., 67, 521
dynamical s., 53
fail-graceful s., 8
fail-operational s., 8, 663
fail-safe s., 8, 662
fault-tolerant s., 2, 663
homogeneous s., 641
hybrid s., 70
minimal s., 151
nondeterministic s., 525, 526
safety s., 8
safety-critical s., 3

System reconfiguration, 665
System structure, 65

T
Three-tank system, 41
Threshold, 666
Time, 60
Time between false alarms, 303
Time for detection, 303
Tracking behaviour, 409
Transition probability, 532
Two-tank system, 37, 70, 163, 186

U
UM, see Use-mode
Under-constrained subsystem, 157
Unknown input, 222, 226, 317

Index 695

Use-mode, 59, 99, 659

V
Variable, 121

known v., 66, 132
unknown v., 66, 132

Variance, 649, 651
VERA, 427
Virtual actuator, 403

v.a. for a chemical process, 424
Virtual sensor, 403, 406

W
Weak detectability, 232
White noise, 653
Wiener process

sampled W.p., 658

Y
Youla-Kucera parametrisation, 465

	Preface
	Contents
	About the Authors
	1 Introduction to Diagnosis and Fault-Tolerant Control
	1.1 Technological Processes Subject to Faults
	1.2 Faults and Fault Tolerance
	1.2.1 Faults
	1.2.2 Requirements and Properties of Systems Subject to Faults

	1.3 Elements of Fault-Tolerant Control
	1.3.1 Structure of Fault-Tolerant Control Systems
	1.3.2 Main Ideas of Fault Diagnosis
	1.3.3 Main Ideas of Controller Redesign
	1.3.4 A Practical View on Fault-Tolerant Control

	1.4 Architecture of Fault-Tolerant Control
	1.4.1 Architectural Options
	1.4.2 Distributed Systems
	1.4.3 Remote Control and Diagnosis

	1.5 Survey of the Book
	1.6 Bibliographical Notes

	2 Examples
	2.1 Two-Tank System
	2.2 Three-Tank System
	2.3 Ship Steering and Track Control

	Part IAnalysis Based on Components and SystemStructure
	3 Models of Dynamical Systems
	3.1 Fundamental Notions
	3.2 Modelling the System Architecture
	3.3 System Behaviour - Basic Modelling Features
	3.4 Continuous-Variable Systems
	3.5 System Structure
	3.6 Discrete-Event Systems
	3.7 Hybrid Systems
	3.8 Links Between the Different Models
	3.9 Exercises
	3.10 Bibliographical Notes

	4 Analysis Based on Components and Architecture
	4.1 Introduction
	4.2 Faults in Components and Their Consequences
	4.3 Fault Propagation Analysis
	4.4 Graph Representation of Component Architecture
	4.5 Fault Propagation with a Closed Loop
	4.5.1 Cutting the Closed Fault Propagation Loop
	4.5.2 Assessment of the Severity of the Fault Effects
	4.5.3 Decision About Fault Handling

	4.6 Generic Component Models
	4.6.1 Services
	4.6.2 Introduction of the Generic Component Model
	4.6.3 Simple Components
	4.6.4 Complex Components
	4.6.5 Building Systems from Components

	4.7 Fault-Tolerance Analysis
	4.7.1 Relation Between Services and Objectives
	4.7.2 Management of Service Versions
	4.7.3 Management of Operation Modes

	4.8 Exercises
	4.9 Bibliographical Notes

	5 Structural Analysis
	5.1 Introduction
	5.2 Structural Model
	5.2.1 Structure as a Bipartite Graph
	5.2.2 Subsystems
	5.2.3 Structural Properties
	5.2.4 Known and Unknown Variables

	5.3 Matching in Bipartite Graphs
	5.3.1 Definitions
	5.3.2 Oriented Graph Associated with a Matching
	5.3.3 Causal Interpretation of Oriented Structure Graphs

	5.4 Structural Decomposition of Systems
	5.4.1 Canonical Subsystems
	5.4.2 Interpretation of the Canonical Decomposition

	5.5 Matching Algorithms
	5.5.1 Ranking Algorithm
	5.5.2 General Matching Algorithm
	5.5.3 Maximum Flow Algorithm
	5.5.4 Minimal Over-Determined Subsystems Approach

	5.6 Structural Diagnosability and Isolability
	5.6.1 Analytical Redundancy-Based Fault Detection and Isolation
	5.6.2 Structurally Monitorable Subsystems
	5.6.3 Finding Analytic Redundancy Relations
	5.6.4 Structural Detectability and Isolability
	5.6.5 Design of Robust and Structured Residuals
	5.6.6 Active Fault Isolation

	5.7 Structural Controllability and Structural Observability
	5.7.1 Observability and Computability
	5.7.2 Structural Observability Conditions
	5.7.3 Observability and Structural Observability of Linear Systems
	5.7.4 Graph-Based Interpretation and Formal Computation
	5.7.5 Structural Controllability

	5.8 Structural Analysis in Summary
	5.9 Exercises
	5.10 Bibliographical Notes

	Part IIContinuous-Variable Systems
	6 Fault Diagnosis of Deterministic Systems
	6.1 Introduction
	6.2 Analytical Redundancy in Nonlinear Deterministic Systems
	6.2.1 Logical Background
	6.2.2 Analytical Redundancy Relations with No Unknown Inputs
	6.2.3 Unknown Inputs, Exact Decoupling
	6.2.4 How to Find Analytical Redundancy Relations
	6.2.5 ARR-based Diagnosis

	6.3 Analytical Redundancy Relations for Linear Deterministic Systems - Time Domain
	6.4 Analytical Redundancy Relations for Linear Deterministic Systems - Frequency Domain
	6.4.1 Fault Detection
	6.4.2 Solution by the Parity Space Approach
	6.4.3 Fault Isolation
	6.4.4 Fault Estimation

	6.5 Optimisation-Based Approach to Diagnosis
	6.5.1 Problem Statement
	6.5.2 Solution Using the Standard Setup Formulation
	6.5.3 Residual Generation

	6.6 Residual Evaluation
	6.6.1 Residual - General Case
	6.6.2 Evaluation Against a Threshold

	6.7 Exercises
	6.8 Bibliographical Notes

	7 Fault Diagnosis of Stochastic Systems
	7.1 Introduction
	7.2 Change Detection Algorithms
	7.2.1 Sequential Change Detection: The Scalar Case
	7.2.2 Detection of a Known Change - The CUSUM Algorithm
	7.2.3 Detection Properties for the CUSUM Algorithm
	7.2.4 Detection of an Unknown Change - The Generalised Likelihood Ratio Algorithm
	7.2.5 Sequential Change Detection: The Vector Case
	7.2.6 Sequential Change Detection and Isolation: The Vector Case

	7.3 Kalman Filter Approach to Diagnosis
	7.3.1 Model
	7.3.2 Fault Detection
	7.3.3 Fault Estimation
	7.3.4 Fault Isolation

	7.4 Exercises
	7.5 Bibliographical Notes

	8 Reconfigurability Analysis
	8.1 The Fault-Tolerant Control Problem
	8.1.1 Standard Control Problem
	8.1.2 Impacts of Faults on the Control Problem
	8.1.3 Passive Versus Active Fault-Tolerant Control
	8.1.4 Available Knowledge
	8.1.5 Active Fault-Tolerant Control Strategies
	8.1.6 Supervision

	8.2 Fault-Tolerant Control Architecture
	8.3 Fault-Tolerant Linear Quadratic Design
	8.3.1 Control Problem
	8.3.2 Control of the Nominal Plant
	8.3.3 Fault Tolerance with Respect to Actuator Faults
	8.3.4 Fault Accommodation
	8.3.5 Control Reconfiguration

	8.4 The Lattice of Actuator Subsets
	8.4.1 Actuator Configurations
	8.4.2 Critical Actuator Subsets and Minimal Recoverable Configurations

	8.5 Implementational Issues of Fault-Tolerant Control
	8.5.1 On-Line Re-design Versus Bank of Control Laws
	8.5.2 The Passive--Active Approach
	8.5.3 Reducing the Reliability Over-Cost

	8.6 Fault-Tolerance Evaluation
	8.6.1 Deterministic Measures
	8.6.2 Probabilistic Measures
	8.6.3 Sensitivity

	8.7 Exercises
	8.8 Bibliographical Notes

	9 Fault Accommodation and Reconfiguration Methods
	9.1 Fault-Tolerant Model-Matching Design
	9.1.1 Reconfiguration Problem
	9.1.2 Pseudo-Inverse Method
	9.1.3 Model-Matching Control for Sensor Failures
	9.1.4 Model-Matching Control for Actuator Failures
	9.1.5 Markov Parameter Approach to Control Reconfiguration for Actuator Failures

	9.2 Control Reconfiguration for Actuator or Sensor Failures
	9.2.1 The Idea of Virtual Sensors and Virtual Actuators
	9.2.2 Reconfiguration Problem
	9.2.3 Virtual Sensor
	9.2.4 Virtual Actuator
	9.2.5 Duality Between Virtual Sensors and Virtual Actuators
	9.2.6 Experimental Evaluation: Level and Temperature Control
	9.2.7 Experimental Evaluation: Conductivity Control Loop

	9.3 Fault Recovery by Nominal Trajectory Tracking
	9.3.1 Problem Setting
	9.3.2 Solution

	9.4 Fault-Tolerant calHinfty Design
	9.4.1 System Description
	9.4.2 Youla-Kucera Parameterisation in Coprime Factorisation Form
	9.4.3 Parametrisation in the State-Space Form
	9.4.4 Simultaneous Design of the Controller and the Residual Generator

	9.5 Handling the Fault Recovery Transients
	9.5.1 Switching Between Controllers
	9.5.2 Progressive Fault Accommodation

	9.6 Exercises
	9.7 Bibliographical Notes

	10 Distributed Fault Diagnosis and Fault-Tolerant Control
	10.1 Introduction
	10.2 Distributed Systems
	10.2.1 System Decomposition
	10.2.2 Distributed Control
	10.2.3 Distributed Diagnosis
	10.2.4 Communication Cost
	10.2.5 Communication Schemes

	10.3 Distributed Diagnosis Design
	10.3.1 Structural Diagnoser
	10.3.2 Logical Theory of Diagnosis
	10.3.3 Practical Diagnoser and Real-Time Operation
	10.3.4 Local Diagnosers and Their Coordination
	10.3.5 Distribution Schemes

	10.4 Design of the Local Diagnosers
	10.4.1 Specifications
	10.4.2 Simple Distribution Problem
	10.4.3 Distribution Under Computing Cost Constraints
	10.4.4 The Bilateral Agreements Scheme
	10.4.5 Fault-Tolerant Distributed Diagnosis

	10.5 Fault-Tolerant Control by Information Pattern Reconfiguration
	10.5.1 Admissibility and Reconfigurability
	10.5.2 Information Pattern Reconfiguration
	10.5.3 Publisher/Subscriber Scheme
	10.5.4 Bilateral Communication Scheme
	10.5.5 Extensions
	10.5.6 Minimal Reconfiguration Effort

	10.6 Exercises
	10.7 Bibliographical Notes

	Part IIIDiscrete-Event Systems
	11 Fault Diagnosis of Discrete-Event Systems
	11.1 Overview of Part III
	11.2 Models of Discrete-Event Systems
	11.2.1 Deterministic and Nondeterministic Systems
	11.2.2 Deterministic Automata
	11.2.3 Nondeterministic Automata
	11.2.4 Stochastic Automata
	11.2.5 Model of the Faulty System

	11.3 Diagnostic Problems and Ways of Solution
	11.4 Diagnosis of Deterministic Automata
	11.4.1 Diagnostic Algorithm
	11.4.2 Results on Deterministic Automata with Equivalent States
	11.4.3 Fault Detectability
	11.4.4 Fault Identifiability
	11.4.5 Method for Determining Distinguishing Input Sequences

	11.5 Diagnosis of Nondeterministic Automata
	11.5.1 Method for Testing the Consistency of an I/O Pair with a Nondeterministic Automaton
	11.5.2 Diagnostic Algorithm

	11.6 State Observation of Stochastic Automata
	11.6.1 Method for Testing the Consistency of an I/O Pair with a Stochastic Automaton
	11.6.2 Observation Algorithm
	11.6.3 Observability of Stochastic Automata
	11.6.4 Distinguishing Inputs

	11.7 Diagnosis of Stochastic Automata
	11.7.1 Principle of Consistency-Based Diagnosis Applied to Stochastic Automata
	11.7.2 Diagnosis of Stochastic Automata with Constant Faults
	11.7.3 Extension to Time-Varying Faults
	11.7.4 Diagnosability of Stochastic Automata

	11.8 Exercises
	11.9 Bibliographical Notes

	12 Diagnosis of I/O Automata Networks
	12.1 Centralised Versus Decentralised Diagnosis of Discrete-Event Systems
	12.2 Representation of Complex Systems by I/O Automata Networks
	12.2.1 Composite Systems to Be Diagnosed
	12.2.2 Model of the Overall System

	12.3 Decentralised Consistency Test
	12.3.1 Consistency Test for the Overall System
	12.3.2 Consistency Test for the Subsystems
	12.3.3 State Observation Result

	12.4 Centralised Versus Decentralised Diagnosis
	12.4.1 Completeness of the Diagnostic Result
	12.4.2 Centralised Diagnosis
	12.4.3 Decentralised Diagnosis

	12.5 System Properties and Simplification of Diagnosis
	12.5.1 Aim of Analysis
	12.5.2 Autonomy of Subsystems
	12.5.3 Asynchronous State Transitions
	12.5.4 Extensions

	12.6 Exercises
	12.7 Bibliographical Notes

	Appendix ASome Prerequisites on Vectors and Matrices
	Appendix BNotions of Probability Theory
	Appendix CNomenclature
	Appendix DTerminology
	Appendix EDictionary
	References
	Index

