

© Springer-Verlag Berlin Heidelberg 2016
J.H. Kim and Z.W. Geem (eds.), Harmony Search Algorithm,

39

Advances in Intelligent Systems and Computing 382,
DOI: 10.1007/978-3-662-47926-1_5

A Scatter Search Hybrid Algorithm
for Resource Availability Cost Problem

Hexia Meng, Bing Wang, Yabing Nie, Xuedong Xia and Xianxia Zhang

Abstract This paper discusses the resource availability cost problem (RACP)
with the objective of minimizing the total cost of the unlimited renewable
resources by a prespecified project deadline. A tabued scatter search (TSS)
algorithm is developed to solve the RACP. The deadline constraint is handled in
coding. A tabu search module is embedded in the framework of scatter search. A
computational experiment was conducted and the computational results show that
the proposed TSS hybrid algorithm is effective and advantageous for the RACP.

Keywords RACP · Scatter search · Tabu search

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the main
branches of project scheduling, which is known to be NP-hard [1]. It involves
minimizing the completion time or time cost of the project subject to precedence
relations and the limited resources. The RCPSP has been studied extensively and
several effective exact [2] and heuristic [3,4] algorithms have been proposed.
Among these algorithms, tabu search has been proved to be an efficient algorithm
to solve the RCPSP [5,6].

This paper discusses the resource availability cost problem (RACP), which
aims to minimize the total cost of the unlimited renewable resources required to
complete the project by a prespecified project deadline. It was introduced by
Möhring [7] as an NP-hard problem. The RACP is a variant of the RCPSP [8], but
it differs from the RCPSP in the sense that the time for completing the project is
limited and the resources are unlimited at a non-decreasing discrete cost function.
Because RACP and RCPSP are closely related and the RCPSP has been well

H. Meng · B. Wang( ) · Y. Nie · X. Xia · X. Zhang
School of Mechatronic Engineering and Automation, Shanghai University,
Shanghai 200072, China
e-mail: susanbwang@shu.edu.cn

40 H. Meng et al.

studied, it is natural to think of solving the RACP by iteratively solving a serial of
RCPSPs. We call it the indirect way. The literature on solution methods for the
RACP is relatively scarce.

Möhring [7] proposed an exact procedure based on graph theoretical
algorithms, Demeulemeester [9] proposed an exact cutting plane procedure, and
Rangaswamy [10] proposed a branch-and-bound for the RACP. Rodrigues and
Yamashita [11] developed a hybrid method in which an initial feasible solution is
found heuristically, and proposed new bounds for the branching scheme. Drexl
and Kimms [12] proposed two lower bounds for the RACP using Lagrangean
relaxation and column generation techniques. Shadrokh and Kianfar [13]
presented a genetic algorithm to solve the RACP, where tardiness is permitted
with defined penalty. Yamashita et al. [14] used scatter search to solve the RACP,
and computational results show that scatter search is capable of providing high-
quality solutions of the RACP in reasonable computational time. Further,
Yamashita et al. [15] adopted scatter search to solve the RACP with uncertain
activity durations and created robust optimization models.

However, Qi et al. [16] pointed that the process of solving the RACP in indirect
way is very complicated and inefficient. He presented two methods to improve the
efficiency of solving the RACP, one of which is directly solving the RACP instead
of transforming it to the RCPSP. We shall refer to this way as the direct way. In
the RACP, the completion time and total cost of the project are determined by the
start time of each activity. Therefore, determining the start time of each activity is
the key to the direct way to solve the RACP. Qi et al. [16] predigested the process
of solving the RACP by using the start times to code the schedule. Then he
proposed a pseudo particle swarm optimization (PPSO) to make the process of
looking for the best solution efficiently. Ranjbar et al. [17] developed two
metaheuristics, path relinking and genetic algorithm to tackle the RACP. The
problem is represented as a precedence feasible priority list and converted to a real
schedule directly using an available schedule generation scheme.

The direct way can simplify the process of solving the RACP by avoiding
transforming the RACP to the RCPSP. In this paper, we study the solution method
for the RACP based on the direct way. Firstly, we use the start time of each
activity to code the schedule and handle the deadline constraint by coding. Then, a
tabued scatter search (TSS) algorithm combined with scatter search and tabu
search is developed to solve the RACP.

The remainder of this paper is organized as follows. The RACP is described in
Section 2. Section 3 describes the proposed TSS algorithm and its components for
the RACP. Section 4 shows the computational results on the benchmark problem
instances. The conclusions of this study are given in Section 5.

2 The Resource Availability Cost Problem

The RACP can be stated as follows. A project consists of 2n + activities subject
to finish-start precedence relations (,)i j H∈ , where activities 0 and 1n +

are dummy activities that indicate the start and finish of the project respectively.

A Scatter Search Hybrid Algorithm for Resource Availability Cost Problem 41

For each activity i , it is started at time ist and requires ikr units of renewable

resource type (1,...,)k k m= in every time unit of its deterministic and non-

preemptive duration id . Let D represent the project deadline, which is

prespecified and the project must be completed before the deadline. Let tA denote

the set of activities in progress during the time interval (1,]t t− and ka represent

the availability of resource type k .The RACP can be conceptually modeled as
follows:

min ()k k

k

C a (1)

s.t. (,)i i jst d st i j H+ ≤ ∀ ∈ (2)

0 0st = (3)

1 1n nst d D+ ++ ≤ (4)

1,..., , 1,...,
t

ik k
i A

r a k m t D
∈

≤ = = (5)

The objective function (1) is to minimize the total resource cost of the project,

wherein ()k kC a denotes a discrete non-decreasing cost function associated with

the availability ka of resource type k . Constraint (2) takes the precedence

relations among the activities into account, where activity i immediately precedes
activity j . Constraint (3) denotes that the project should be started at time zero

and constraint (4) indicates that the project must be completed before the deadline.
Constraint (5) shows that the renewable resource constraints are satisfied.

From the model, it can be seen that both the resource availability values
(1,...,)ka k m= and the start times (1,...,)ist i n= of the activities are variables,

and the decision variables of the RACP are (1,...,)ka k m= . Indeed, the value of

ka depends on the start time of each activity, i.e.
1,...,

max
t

k ik
t D

i A

a r
= ∈

=  . Different start

times of activities may result in different values of ka . This is also the main basis

of the direct way to solve the RACP. The objective of the RACP is to find a
precedence feasible schedule, such that the project can be completed before the
deadline and the total resource cost is minimized.

3 TSS for RACP

In this section, a tabued scatter search (TSS) algorithm combined with scatter
search and tabu search is developed to solve the RACP based on the direct way.
We use the start time of each activity to code the schedule, so that the RACP can
be solved directly. The specific coding and the proposed TSS algorithm will be
introduced in the following.

42 H. Meng et al.

3.1 Coding

To solve the RACP directly, we adopt the direct coding method. The start time of
each activity is used to code the schedule. Let s denote a solution of the RACP,
then 1(,...,)nst st=s . In 1(,...,)nst st=s , each component (1,...,)ist i n= is the start

time of activity (1,...,)i i n= . For the RACP, if the start time of each activity

(1,...,)ist i n= in s satisfies the precedence relations and the completion time of

the project does not exceed the deadline D , then s is a feasible solution of the
RACP.

Fig. 1 Procedure to obtain [,]i iest lst

For a given solution s , the completion time of the project can be determined
directly. To satisfy the deadline constraint of the project, we handle the deadline
constraint in coding in this paper. Let iest and ilst denote the earliest and latest

start time of activity i respectively, then i i iest st lst≤ ≤ . Interval [,]i iest lst is

called the effective value interval of ist by us. It contains all possible values of

ist , and the value of ist can only be selected from [,]i iest lst when generating

new solutions. The procedure to obtain [,]i iest lst is shown in Fig. 1. The earliest

start time iest of each activity from 1i = to n is calculated according to the

critical path method (CPM) [18] in step 1. The latest start time of activity 1n + is
initialized with the deadline D , i.e. 1nlst D+ = in step 2. Finally, the latest start

time of each activity from to 1 is calculated according to CPM in step 3.

By setting effective value interval [,]i iest lst for ist , the deadline constraint of

the project is transformed to the restrictions of the start times of the activities.
However, for 1(,...,)nst st=s , [,](1,...,)i i ist est lst i n∈ = cannot guarantee that s is

feasible due to that the precedence relations may not be satisfied. For the solution
which is infeasible, check up the start time of each activity successively and
update the start times which do not satisfy the precedence relations. For a solution
s which satisfies the precedence relations, a theorem is given as follows.

Theorem 1. If solution s satisfies the precedence relations, then the completion
time makespan of the project must not exceed the deadline D , i.e. makespan D≤ .

Proof. Because s satisfies the precedence relations, then 1nmakespan st += . As

1 1n nst lst+ +≤ and 1nlst D+ = , then 1nst D+ ≤ , i.e. makespan D≤ .

ilst i n=

Step 1. Calculate the earliest start time iest of each activity

from 1i = to n ;
Step 2. Let 1nlst D+ = ;

Step 3. Calculate the latest start time ilst of each activity

from i n= to 1;

A Scatter Search Hybrid Algorithm for Resource Availability Cost Problem 43

Theorem 1 gives the relationship between the precedence relations and the
deadline. If s satisfies the precedence relations, it must satisfy the deadline constraint
and thus it is a feasible solution of the RACP. The completion time and total cost of
the project can be determined directly without transforming the RACP to RCPSP.

3.2 TSS Algorithm

Scatter search (SS) is an evolutionary method based on heuristic proposed by
Glover [19]. Glover [20] further identified a template for SS. Martí et al. [21]
provided the fundamental concepts and principles of SS. According to the
template [20], SS contains five systematic methods, i.e. diversification generation
method, improvement method, reference set update method, subset generation
method and solution combination method. The implementation of SS is based on
these methods. SS considers both intensification and diversification in search
process, thus it has strong global search capability. SS has been successfully
applied to solve the RACP [14,15].

Tabu search (TS) was initially proposed by Glover [22] and has been applied to
many combinatorial optimization problems. It can avoid falling into local
optimum by introducing tabu list and has proved to have strong search ability.
However, TS depends on the initial solution strongly and the search process is
serial. In project scheduling, the application of TS focuses on the RCPSP.

To solve the RACP more efficiently, we develop a tabued scatter search (TSS)
algorithm combined with SS with TS in this paper. A tabu search module (denoted
as M-TS) is embedded in the framework of SS. The framework of TSS algorithm
is presented in Fig. 2.

Fig. 2 Framework of TSS algorithm

Output result
Y

N

RefSet is updated ?

k MaxSol≥ ?

N

Y

Generate and repair initial solutions

Build the reference set RefSet

Select a solution 0s from RefSet randomly

and remove it, generate a new solution news
and add it to RefSet

Take 0s as the initial solution of M-TS,
perform tabu search operation to get the best
solution bests of this process

Update RefSet with bests

Rebuild RefSet

44 H. Meng et al.

As shown in Fig. 2, TSS starts with generating and repairing initial solutions.
Then select b solutions from the initial solutions to build the reference set RefSet ,

including 1b high-quality solutions and 2b diverse solutions. If the stopping

condition is not satisfied, i.e. the number of evaluated solutions k does not exceed

the maximum number of solution evaluations MaxSol , select a solution 0s from
RefSet randomly and remove it. To ensure the size of RefSet , generate a new

solution news and add it to RefSet . After that, M-TS is carried out with the initial

solution 0s and the best solution of this process bests is got. Then update RefSet

with bests . If RefSet is not updated, rebuild it. Finally, output the optimization

result.
From Fig. 2, we can see that TSS takes SS as the main framework and replaces

subset generation and solution combination with M-TS. Compared with SS [14],
TSS differs in initial solutions, M-TS and reference set update.

3.2.1 Initial Solutions

Generate PSize initial solutions with the diversification generation method [14].
For the start time ist of activity i，divide interval [,]i iest lst in g sub-intervals.

Let [][], 1,..., , 1,...,M i h i n h g= = denote a frequency matrix. Each sub-interval is

selected with probability inversely proportional to its frequency in M , and then a
value for ist is randomly generated in this interval. The procedure to generate

diverse solutions can refer to [14]. If the new generated solution is infeasible,
repair it. The quality of a solution is evaluated by objective function (1) and the
diversity of a solution is evaluated by the minimum distance from the solution to
the reference set [14].

3.2.2 M-TS

In TSS, M-TS is introduced to replace the subset generation and solution
combination of SS. It takes 0s from RefSet as initial solution and the best solution

bests obtained by M-TS is used to update RefSet . The flowchart of M-TS is shown

in Fig. 3.

(1) Initial solution of M-TS
TS depends on the initial solution strongly. To improve the search quality and

efficiency of M-TS, the initial solution 0s of M-TS is selected randomly from
RefSet . Because RefSet contains both high-quality and diverse solutions, taking

the solution in RefSet as the initial solution of M-TS can ensure the

intensification and diversification of TSS algorithm.

A Scatter Search Hybrid Algorithm for Resource Availability Cost Problem 45

Fig. 3 Flowchart of M-TS

To avoid the search process trapping into circulation, remove the selected
solution 0s from RefSet . Then generate a new feasible solution news according to

diversification generation method. If news is better than the worst solution in
RefSet ether in quality or diversity, add it to RefSet . Otherwise, generate a new

solution again until a new solution is added to RefSet .

(2) Neighborhood structure
Neighborhood structure is an important element for TS. In this paper, a kind
of neighborhood structure is constructed based on the coding. For a current
solution 1(,...,)nst st=s , the procedure of constructing neighborhood is presented

in Fig. 4.

Fig. 4 Procedure of constructing neighborhood

As shown in Fig. 4, a neighbor solution is got by performing move operation on
the selected activities of the current solution, and neighborhood ()N s includes

Step 1. Select NSize activities randomly from the current solution s ;
Step 2. for each selected activity i ,

perform the move operation on s and get a new neighbor solution cs ;
 if cs is infeasible then
 repair cs ;

end if
add the neighbor solution cs into the neighborhood ()N s .

end for

N

Y

Output bests

Let the current solution 0=s s and the current best solution
0best =s s , set parameters and clear the tabu list.

Y

N

Aspiration criterion?

iter maxiter≥ ?

Select the “best” neighbor which is not tabu as s

Update s

and bests

Generate the neighborhood of s

Update the tabu list

46 H. Meng et al.

NSize neighbor solutions. The move operation means that generate a random
value random from [,]i iest lst which is not equal to ()ist s and then let

()ist random=s . If the neighbor solution is infeasible, repair it and then add it

into ()N s . The value of NSize will be determined experimentally.

(3) Tabu element and move selection
Because the neighborhood is constructed based on move operations on activities,
the tabu elements are the selected activities. When a neighbor solution is selected
as the new current solution, the corresponding moved activity is put into the tabu
list.

The move selection rule is to select the move that is non-tabu that has the
lowest cost or satisfies the aspiration criterion. When all of the possible moves are
tabu and none of them can satisfy the aspiration criterion, select any solution
randomly as the current solution.

In each iteration of TSS, M-TS stops when the number of continuous search
steps k exceeds the maximum number of search steps maxiter . The best solution

bests is obtained and further used to update RefSet . The value of maxiter and the

tabu list length L will be determined in experiments.

3.2.3 Reference Set Update

The reference set plays an important role in SS. The reference set update method is
used to build and maintain a RefSet . In SS [14], RefSet is updated by the solutions

produced by subset generation and solution combination. In each iteration, several
new solutions are used to update RefSet . In TSS, RefSet is updated by the bests

obtained by M-TS. As M-TS is serial, only one solution is obtained to update
RefSet in each iteration, which is quite different with that in SS [14]. M-TS takes

the solution in RefSet as the initial solution and constructs an effective

neighborhood for the current solution, and the best solution of the search process is
saved as bests . Then bests is further used to update RefSet , which improves the

quality of the solution used to update RefSet and reduces the number of updates.

The performance of TSS will be tested in the following experiment.

4 Optimization Results and Discussions

This section tests the effectiveness of the TSS algorithm proposed in this paper.
The computational experiments consist of two parts. In the first part, we tuned the
TSS algorithm. In the second part, the effectiveness of TSS for the RACP was
tested by comparing TSS with SS [14]. All algorithms will be performed for 10
runs for each instance and the best solution among 10 runs is taken as the result.
All procedures were coded in C++ language under the Microsoft Visual
Studio 2012 programming environment. All computational experiments were
performed on a PC Pentium G630 2.7 GHz CPU and 2.0 GB RAM.

A Scatter Search Hybrid Algorithm for Resource Availability Cost Problem 47

4.1 Generation of Problem Instances

The RACP and RCPSP share common data, thus it is easy to adapt existing
instances of the RCPSP to the RACP. Progen [23] is an instance generator for
RCPSP, which was used to generate the project scheduling problem library
(PSPLIB) involving 30, 60, 90 and 120 activities and four resource types. In this
paper, the tested instances are directly obtained from the PSPLIB and there are
three important parameters as follows:

• Resource factor (RF): reflects the density of the different resource types
needed by an activity and takes the values 0.25, 0.5, 0.75 and 1.0.

• Network complexity (NC): reflects the average number of immediate
successors of an activity and takes the values 1.5, 1.8 and 2.1.

• Deadline factor (DF): reflects the deadline of the project such that

1,...,
max i
i n

D DF eft
=

= ⋅ . In this paper, DF is fixed at 1.2 according to [14].

Each combination of n , m , RF , NC , DF gives one instance, resulting in a
total 4 1 4 3 1 48× × × × = instances. For TSS, the parameters are set as below:

The number of initial solutions 50PSize = , the size of the reference set 10b = ,
the number of high-quality solutions 1 7b = , the number of diverse solutions

2 3b = and 4g = . Stopping condition 2MaxSol m nβ= ⋅ ⋅ , where β is a

coefficient used to adjust the value of MaxSol . When n and m are determined,
the value of MaxSol is determined by β . β is a positive integer and its value

will be tuned in the experiment. For each instance, the costs (1,..., 4)kC k = are

drawn from a uniform distribution [1,10]U randomly. To make comparison easier,

(1,..., 4)kC k = are fixed at 2,8,5,1 in this paper. For the M-TS of TSS, we set the

tabu list length L experimentally for each instance as follows:

/30[5 1.2]nL = × (6)

The coefficient 5 was obtained by tuning and the value of L is decided by n .
The neighborhood size NSize is set to 3,4,5,6 for 30,60,90,120n = respectively
and the maximum number of search steps maxiter is set to 20 experimentally.

4.2 Determining the Termination Condition

This section is designed to determine the termination condition MaxSol by testing
the performance of TSS under different MaxSol . For the 12 instances with 30

activities, 24 30MaxSol β= ⋅ ⋅ . β is set to 5, 10, 15 and 25, the corresponding

values of MaxSol and the obtained best results under different values of MaxSol
are presented in Table 1. In Table 1, Cost represents the objective value of the
solution, and CPU represents the CPU time consumed by TSS. The symbol “*”
marks the best obtained Cost which cannot be improved with the increment of
MaxSol .

48 H. Meng et al.

From Table 1, we can see that TSS performed quite differently in 12 instances.
Different instances got the obtained best solution under different values of MaxSol .
For example, Instance 2 and 6 got their best solutions under 25 4 30MaxSol = ⋅ ⋅ , and

Instance 5 got the best solution under 215 4 30MaxSol = ⋅ ⋅ . However, there are 7
instances (Instance 1, 3, 4, 9, 10, 11, 12) in 12 instances got their best solutions under

210 4 30MaxSol = ⋅ ⋅ with small time cost. For instances with 60, 90 and 120
activities, TSS can also get better solutions in reasonable time under

210MaxSol m n= ⋅ ⋅ . Therefore, 210MaxSol m n= ⋅ ⋅ can achieve a compromise
between solution quality and CPU time, and it would be adopted in the TSS and SS in
the following.

Table 1 The performance of TSS under different MaxSol

Instances
25 4 30⋅ ⋅ 210 4 30⋅ ⋅ 215 4 30⋅ ⋅ 225 4 30⋅ ⋅

Cost CPU Cost CPU Cost CPU Cost CPU
1 156 0.9 149* 1.7
2 227* 1.0
3 297 1.0 294* 1.9
4 466 0.7 453* 1.4
5 194 1.0 194 1.7 189* 2.6
6 231* 1.1
7 238 1.1 236 2.1 236 3.1 226* 5.0
8 321 1.0 308 2.0 308 2.9 303* 4.7
9 132 1.1 130* 2.2

10 269 1.0 266* 1.8
11 294 1.0 283* 2.7
12 325 1.0 314* 1.8

4.3 Comparing TSS with SS

To investigate the effectiveness of TSS, we compared it with SS [14]. For SS, the
parameters PSize , b , 1b , 2b , MaxSol and g take the same values with that in TSS.

Fig. 5 and Fig. 6 respectively show the comparisons on solution quality and
computational efficiency between TSS and SS.

In Fig. 5, Ave. Cost denotes the average cost of the 12 instances with the same
activity number . For , the Ave. Cost obtained by TSS is
smaller than that obtained by SS, demonstrating that TSS outperforms SS on
solution quality. In Fig. 6, Ave. CPU denotes the average CPU time of the 12
instances with the same activity number . For , the Ave. CPU
consumed by TSS is larger than that consumed by SS, which demonstrates that
TSS is worse than SS on computational efficiency. From the above analysis, it can
be seen that the proposed TSS algorithm is able to obtain better solutions by
spending relatively large CPU time. Thus the TSS algorithm proposed in this
paper is an effective algorithm to solve the RACP.

n 30,60,90,120n =

n 30,60,90,120n =

A Scatter Search Hybrid Algorithm for Resource Availability Cost Problem 49

Fig. 5 Comparison on solution quality

Fig. 6 Comparison on computational efficiency

5 Conclusions

In this paper, we have presented the TSS algorithm combined with SS and TS for
solving the RACP. To solve the RACP directly, we use the start times of activities
to code the schedule. The deadline constraint is handled in coding by setting an
effective value interval for the start time of each activity. In computational
experiments, TSS is compared with SS and the results show that TSS can obtain
better solutions by spending relatively larger CPU time than SS, and it is an
efficient method for the RACP.

For further research, TSS is recommended to solve other project scheduling
problems. The RACP could be extended to the multi-mode RACP and the RACP
with uncertainty, which is more practical.

0

100

200

300

400

500

600

700

30 60 90 120

A
ve

. C
os

t

n

TSS
SS

0

20

40

60

80

100

120

140

160

30 60 90 120

A
ve

. C
P

U

n

TSS
SS

50 H. Meng et al.

Acknowledgement This work is partly supported by National Natural Science Foundation
of China # 61273182.

References

1. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource
constraints: Classification and complexity. Discrete Appl. Math. 5, 13–24 (1983)

2. Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project
scheduling: A survey of recent developments. Comput. Oper. Res. 25, 279–302 (1998)

3. Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained project
scheduling problem: classification and computational analysis. In: Weglarz, J. (ed.)
Project Scheduling: Recent Models, Algorithms, and Applications, pp. 147–178.
Kluwer Academic Publishers (1998)

4. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: An update. Eur. J. Oper. Res 174, 23–37 (2006)

5. Al-Fawzan, M.A., Haouari, M.: A bi-objective model for robust resource-constrained
project scheduling. Int. J. Prod. Econ. 96, 175–187 (2005)

6. Lambrechts, O., Demeulemeester, E., Herroelen, W.: A tabu search procedure for
developing robust predictive project schedules. Int. J. Prod. Econ. 111, 493–508 (2008)

7. Möhring, R.H.: Minimizing costs of resource requirements in project networks subject
to a fix completion time. Oper. Res. 32, 89–120 (1984)

8. Van Peteghem, V., Vanhoucke, M.: An artificial immune system algorithm for the
resource availability cost problem. Flexible Int. J. Flexible Manuf. Syst. 25, 122–144
(2013)

9. Demeulemeester, E.: Minimizing resource availability costs in time-limited project
networks. Manage. Sci. 41, 1590–1598 (1995)

10. Rangaswamy, B.: Multiple Resource Planning and Allocation in Resource-Constrained
Project Networks. University of Colorado, Colorado (1998)

11. Rodrigues, S.B., Yamashita, D.S.: An exact algorithm for minimizing resource
availability costs in project scheduling. Eur. J. Oper. Res. 206, 562–568 (2010)

12. Drexl, A., Kimms, A.: Optimization guided lower and upper bounds for the resource
investment problem. J. Oper. Res. Soc. 52, 340–351 (2001)

13. Shadrokh, S., Kianfar, F.: A genetic algorithm for resource investment project
scheduling problem, tardiness permitted with penalty. Eur. J. Oper. Res. 181, 86–101
(2007)

14. Yamashita, D.S., Armentano, V.A., Laguna, M.: Scatter search for project scheduling
with resource availability cost. Eur. J. Oper. Res. 169, 623–637 (2006)

15. Yamashita, D.S., Armentano, V.A., Laguna, M.: Robust optimization models for
project scheduling with resource availability cost. J. Sched. 12, 67–76 (2007)

16. Qi, J.J., Guo, B., Lei, H.T., Zhang, T.: Solving resource availability cost problem in
project scheduling by pseudo particle swarm optimization. J. Syst. Eng. Electron. 25,
69–76 (2014)

17. Ranjbar, M., Kianfar, F., Shadrokh, S.: Solving the resource availability cost problem
in project scheduling by path relinking and genetic algorithm. Appl. Math. Comput.
196, 879–888 (2008)

18. Shaffer, L.R., Ritter, J.B., Meyer, W.L.: The critical-path method. McGraw-Hill, New
York (1965)

A Scatter Search Hybrid Algorithm for Resource Availability Cost Problem 51

19. Glover, F.: Heuristics for integer programming using surrogate constraints. Decision
Sci. 8, 156–166 (1977)

20. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E.,
Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 1–51.
Springer, Heidelberg (1998)

21. Martí, R., Laguna, M., Glover, F.: Principles of Scatter Search. Eur. J. Oper. Res. 169,
359–372 (2006)

22. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13, 533–549 (1986)

23. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class
of resource-constrained project scheduling problems. Manage. Sci. 41, 1693–1703
(1995)

	A Scatter Search Hybrid Algorithm for Resource Availability Cost Problem
	1 Introduction
	2 The Resource Availability Cost Problem
	3 TSS for RACP
	3.1 Coding
	3.2 TSS Algorithm

	4 Optimization Results and Discussions
	4.1 Generation of Problem Instances
	4.2 Determining the Termination Condition
	4.3 Comparing TSS with SS

	5 Conclusions
	References

