
  
© Springer-Verlag Berlin Heidelberg 2016 
J.H. Kim and Z.W. Geem (eds.), Harmony Search Algorithm,  

39 

Advances in Intelligent Systems and Computing 382, 
DOI: 10.1007/978-3-662-47926-1_5  

A Scatter Search Hybrid Algorithm  
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Abstract  This paper discusses the resource availability cost problem (RACP) 
with the objective of minimizing the total cost of the unlimited renewable 
resources by a prespecified project deadline. A tabued scatter search (TSS) 
algorithm is developed to solve the RACP. The deadline constraint is handled in 
coding. A tabu search module is embedded in the framework of scatter search. A 
computational experiment was conducted and the computational results show that 
the proposed TSS hybrid algorithm is effective and advantageous for the RACP. 
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1 Introduction 

The resource-constrained project scheduling problem (RCPSP) is one of the main 
branches of project scheduling, which is known to be NP-hard [1]. It involves 
minimizing the completion time or time cost of the project subject to precedence 
relations and the limited resources. The RCPSP has been studied extensively and 
several effective exact [2] and heuristic [3,4] algorithms have been proposed. 
Among these algorithms, tabu search has been proved to be an efficient algorithm 
to solve the RCPSP [5,6]. 

This paper discusses the resource availability cost problem (RACP), which 
aims to minimize the total cost of the unlimited renewable resources required to 
complete the project by a prespecified project deadline. It was introduced by 
Möhring [7] as an NP-hard problem. The RACP is a variant of the RCPSP [8], but 
it differs from the RCPSP in the sense that the time for completing the project is 
limited and the resources are unlimited at a non-decreasing discrete cost function. 
Because RACP and RCPSP are closely related and the RCPSP has been well 
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studied, it is natural to think of solving the RACP by iteratively solving a serial of 
RCPSPs. We call it the indirect way. The literature on solution methods for the 
RACP is relatively scarce. 

Möhring [7] proposed an exact procedure based on graph theoretical 
algorithms, Demeulemeester [9] proposed an exact cutting plane procedure, and 
Rangaswamy [10] proposed a branch-and-bound for the RACP. Rodrigues and 
Yamashita [11] developed a hybrid method in which an initial feasible solution is 
found heuristically, and proposed new bounds for the branching scheme. Drexl 
and Kimms [12] proposed two lower bounds for the RACP using Lagrangean 
relaxation and column generation techniques. Shadrokh and Kianfar [13] 
presented a genetic algorithm to solve the RACP, where tardiness is permitted 
with defined penalty. Yamashita et al. [14] used scatter search to solve the RACP, 
and computational results show that scatter search is capable of providing high-
quality solutions of the RACP in reasonable computational time. Further, 
Yamashita et al. [15] adopted scatter search to solve the RACP with uncertain 
activity durations and created robust optimization models. 

However, Qi et al. [16] pointed that the process of solving the RACP in indirect 
way is very complicated and inefficient. He presented two methods to improve the 
efficiency of solving the RACP, one of which is directly solving the RACP instead 
of transforming it to the RCPSP. We shall refer to this way as the direct way. In 
the RACP, the completion time and total cost of the project are determined by the 
start time of each activity. Therefore, determining the start time of each activity is 
the key to the direct way to solve the RACP. Qi et al. [16] predigested the process 
of solving the RACP by using the start times to code the schedule. Then he 
proposed a pseudo particle swarm optimization (PPSO) to make the process of 
looking for the best solution efficiently. Ranjbar et al. [17] developed two 
metaheuristics, path relinking and genetic algorithm to tackle the RACP. The 
problem is represented as a precedence feasible priority list and converted to a real 
schedule directly using an available schedule generation scheme. 

The direct way can simplify the process of solving the RACP by avoiding 
transforming the RACP to the RCPSP. In this paper, we study the solution method 
for the RACP based on the direct way. Firstly, we use the start time of each 
activity to code the schedule and handle the deadline constraint by coding. Then, a 
tabued scatter search (TSS) algorithm combined with scatter search and tabu 
search is developed to solve the RACP.  

The remainder of this paper is organized as follows. The RACP is described in 
Section 2. Section 3 describes the proposed TSS algorithm and its components for 
the RACP. Section 4 shows the computational results on the benchmark problem 
instances. The conclusions of this study are given in Section 5. 

2 The Resource Availability Cost Problem 

The RACP can be stated as follows. A project consists of 2n +  activities subject 
to finish-start precedence relations ( , )i j H∈ , where activities 0 and 1n +   

are dummy activities that indicate the start and finish of the project respectively. 
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For each activity i , it is started at time ist  and requires ikr  units of renewable 

resource type ( 1,..., )k k m=  in every time unit of its deterministic and non-

preemptive duration id . Let D  represent the project deadline, which is 

prespecified and the project must be completed before the deadline. Let tA  denote 

the set of activities in progress during the time interval ( 1, ]t t−  and ka  represent 

the availability of resource type k .The RACP can be conceptually modeled as 
follows: 

 
min ( )k k

k

C a                                                          (1) 

s.t.  ( , )i i jst d st i j H+ ≤ ∀ ∈                                            (2) 

0 0st =                                                                (3) 

1 1n nst d D+ ++ ≤                                                        (4) 

1,..., , 1,...,
t

ik k
i A

r a k m t D
∈

≤ = =                                       (5) 

 
The objective function (1) is to minimize the total resource cost of the project, 

wherein ( )k kC a  denotes a discrete non-decreasing cost function associated with 

the availability ka  of resource type k . Constraint (2) takes the precedence 

relations among the activities into account, where activity i  immediately precedes 
activity j . Constraint (3) denotes that the project should be started at time zero 

and constraint (4) indicates that the project must be completed before the deadline. 
Constraint (5) shows that the renewable resource constraints are satisfied.  

From the model, it can be seen that both the resource availability values 
( 1,..., )ka k m=  and the start times ( 1,..., )ist i n=  of the activities are variables, 

and the decision variables of the RACP are ( 1,..., )ka k m= . Indeed, the value of 

ka  depends on the start time of each activity, i.e. 
1,...,

max
t

k ik
t D

i A

a r
= ∈

=  . Different start 

times of activities may result in different values of ka . This is also the main basis 

of the direct way to solve the RACP. The objective of the RACP is to find a 
precedence feasible schedule, such that the project can be completed before the 
deadline and the total resource cost is minimized.

 
 

3 TSS for RACP 

In this section, a tabued scatter search (TSS) algorithm combined with scatter 
search and tabu search is developed to solve the RACP based on the direct way. 
We use the start time of each activity to code the schedule, so that the RACP can 
be solved directly. The specific coding and the proposed TSS algorithm will be 
introduced in the following. 
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3.1 Coding  

To solve the RACP directly, we adopt the direct coding method. The start time of 
each activity is used to code the schedule. Let s  denote a solution of the RACP, 
then 1( ,..., )nst st=s . In 1( ,..., )nst st=s , each component ( 1,..., )ist i n= is the start 

time of activity ( 1,..., )i i n= . For the RACP, if the start time of each activity 

( 1,..., )ist i n=  in s  satisfies the precedence relations and the completion time of 

the project does not exceed the deadline D , then s  is a feasible solution of the 
RACP. 

Fig. 1 Procedure to obtain [ , ]i iest lst  

For a given solution s , the completion time of the project can be determined 
directly. To satisfy the deadline constraint of the project, we handle the deadline 
constraint in coding in this paper. Let iest  and ilst  denote the earliest and latest 

start time of activity i  respectively, then i i iest st lst≤ ≤ . Interval [ , ]i iest lst  is 

called the effective value interval of ist  by us. It contains all possible values of 

ist , and the value of ist  can only be selected from [ , ]i iest lst  when generating 

new solutions. The procedure to obtain [ , ]i iest lst  is shown in Fig. 1. The earliest 

start time iest  of each activity from 1i = to n  is calculated according to the 

critical path method (CPM) [18] in step 1. The latest start time of activity 1n +  is 
initialized with the deadline D , i.e. 1nlst D+ =  in step 2. Finally, the latest start 

time  of each activity from  to 1 is calculated according to CPM in step 3. 

By setting effective value interval [ , ]i iest lst  for ist , the deadline constraint of 

the project is transformed to the restrictions of the start times of the activities. 
However, for 1( ,..., )nst st=s , [ , ]( 1,..., )i i ist est lst i n∈ =  cannot guarantee that s  is 

feasible due to that the precedence relations may not be satisfied. For the solution 
which is infeasible, check up the start time of each activity successively and 
update the start times which do not satisfy the precedence relations. For a solution 
s  which satisfies the precedence relations, a theorem is given as follows. 

Theorem 1. If solution s  satisfies the precedence relations, then the completion 
time makespan of the project must not exceed the deadline D , i.e. makespan D≤ . 

Proof. Because s satisfies the precedence relations, then 1nmakespan st += . As 

1 1n nst lst+ +≤  and 1nlst D+ = , then 1nst D+ ≤ , i.e. makespan D≤ . 

ilst i n=

Step 1. Calculate the earliest start time iest  of each activity 

from 1i =  to n ; 
Step 2. Let 1nlst D+ = ; 

Step 3. Calculate the latest start time ilst  of each activity 

from i n=  to 1; 
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Theorem 1 gives the relationship between the precedence relations and the 
deadline. If s  satisfies the precedence relations, it must satisfy the deadline constraint 
and thus it is a feasible solution of the RACP. The completion time and total cost of 
the project can be determined directly without transforming the RACP to RCPSP. 

3.2 TSS Algorithm 

Scatter search (SS) is an evolutionary method based on heuristic proposed by 
Glover [19]. Glover [20] further identified a template for SS. Martí et al. [21] 
provided the fundamental concepts and principles of SS. According to the 
template [20], SS contains five systematic methods, i.e. diversification generation 
method, improvement method, reference set update method, subset generation 
method and solution combination method. The implementation of SS is based on 
these methods. SS considers both intensification and diversification in search 
process, thus it has strong global search capability. SS has been successfully 
applied to solve the RACP [14,15]. 

Tabu search (TS) was initially proposed by Glover [22] and has been applied to 
many combinatorial optimization problems. It can avoid falling into local 
optimum by introducing tabu list and has proved to have strong search ability. 
However, TS depends on the initial solution strongly and the search process is 
serial. In project scheduling, the application of TS focuses on the RCPSP. 

To solve the RACP more efficiently, we develop a tabued scatter search (TSS) 
algorithm combined with SS with TS in this paper. A tabu search module (denoted 
as M-TS) is embedded in the framework of SS. The framework of TSS algorithm 
is presented in Fig. 2. 

Fig. 2 Framework of TSS algorithm 
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As shown in Fig. 2, TSS starts with generating and repairing initial solutions. 
Then select b  solutions from the initial solutions to build the reference set RefSet , 

including 1b  high-quality solutions and 2b  diverse solutions. If the stopping 

condition is not satisfied, i.e. the number of evaluated solutions k  does not exceed 

the maximum number of solution evaluations MaxSol , select a solution 0s  from 
RefSet  randomly and remove it. To ensure the size of RefSet , generate a new 

solution news  and add it to RefSet . After that, M-TS is carried out with the initial 

solution 0s  and the best solution of this process bests  is got. Then update RefSet  

with bests . If RefSet  is not updated, rebuild it. Finally, output the optimization 

result.  
From Fig. 2, we can see that TSS takes SS as the main framework and replaces 

subset generation and solution combination with M-TS. Compared with SS [14], 
TSS differs in initial solutions, M-TS and reference set update.  

3.2.1 Initial Solutions 

Generate PSize  initial solutions with the diversification generation method [14]. 
For the start time ist  of activity i，divide interval [ , ]i iest lst  in g  sub-intervals. 

Let [ ][ ], 1,..., , 1,...,M i h i n h g= = denote a frequency matrix. Each sub-interval is 

selected with probability inversely proportional to its frequency in M , and then a 
value for ist  is randomly generated in this interval. The procedure to generate 

diverse solutions can refer to [14]. If the new generated solution is infeasible, 
repair it. The quality of a solution is evaluated by objective function (1) and the 
diversity of a solution is evaluated by the minimum distance from the solution to 
the reference set [14].  
 

3.2.2 M-TS 

In TSS, M-TS is introduced to replace the subset generation and solution 
combination of SS. It takes 0s  from RefSet  as initial solution and the best solution 

bests  obtained by M-TS is used to update RefSet . The flowchart of M-TS is shown 

in Fig. 3. 
 
(1) Initial solution of M-TS 
TS depends on the initial solution strongly. To improve the search quality and 

efficiency of M-TS, the initial solution 0s of M-TS is selected randomly from 
RefSet . Because RefSet  contains both high-quality and diverse solutions, taking 

the solution in RefSet  as the initial solution of M-TS can ensure the 

intensification and diversification of TSS algorithm. 
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Fig. 3 Flowchart of M-TS 

To avoid the search process trapping into circulation, remove the selected 
solution 0s  from RefSet . Then generate a new feasible solution news  according to 

diversification generation method. If news  is better than the worst solution in 
RefSet  ether in quality or diversity, add it to RefSet . Otherwise, generate a new 

solution again until a new solution is added to RefSet . 

 
(2) Neighborhood structure 
Neighborhood structure is an important element for TS. In this paper, a kind  
of neighborhood structure is constructed based on the coding. For a current 
solution 1( ,..., )nst st=s , the procedure of constructing neighborhood is presented 

in Fig. 4. 
 

Fig. 4  Procedure of constructing neighborhood 

As shown in Fig. 4, a neighbor solution is got by performing move operation on 
the selected activities of the current solution, and neighborhood ( )N s  includes 

Step 1. Select NSize  activities randomly from the current solution s ;  
Step 2. for each selected activity i , 

perform the move operation on s  and get a new neighbor solution cs ; 
   if cs  is infeasible then  
      repair cs ; 

end if  
add the neighbor solution cs  into the neighborhood ( )N s . 

end for  
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NSize  neighbor solutions. The move operation means that generate a random 
value random from [ , ]i iest lst which is not equal to ( )ist s  and then let 

( )ist random=s . If the neighbor solution is infeasible, repair it and then add it 

into ( )N s . The value of NSize  will be determined experimentally. 

(3) Tabu element and move selection 
Because the neighborhood is constructed based on move operations on activities, 
the tabu elements are the selected activities. When a neighbor solution is selected 
as the new current solution, the corresponding moved activity is put into the tabu 
list. 

The move selection rule is to select the move that is non-tabu that has the 
lowest cost or satisfies the aspiration criterion. When all of the possible moves are 
tabu and none of them can satisfy the aspiration criterion, select any solution 
randomly as the current solution. 

In each iteration of TSS, M-TS stops when the number of continuous search 
steps k  exceeds the maximum number of search steps maxiter . The best solution 

bests  is obtained and further used to update RefSet . The value of maxiter  and the 

tabu list length L will be determined in experiments. 

3.2.3 Reference Set Update 

The reference set plays an important role in SS. The reference set update method is 
used to build and maintain a RefSet . In SS [14], RefSet  is updated by the solutions 

produced by subset generation and solution combination. In each iteration, several 
new solutions are used to update RefSet . In TSS, RefSet  is updated by the bests  

obtained by M-TS. As M-TS is serial, only one solution is obtained to update 
RefSet  in each iteration, which is quite different with that in SS [14]. M-TS takes 

the solution in RefSet  as the initial solution and constructs an effective 

neighborhood for the current solution, and the best solution of the search process is 
saved as bests . Then bests  is further used to update RefSet , which improves the 

quality of the solution used to update RefSet  and reduces the number of updates. 

The performance of TSS will be tested in the following experiment. 

4 Optimization Results and Discussions 

This section tests the effectiveness of the TSS algorithm proposed in this paper. 
The computational experiments consist of two parts. In the first part, we tuned the 
TSS algorithm. In the second part, the effectiveness of TSS for the RACP was 
tested by comparing TSS with SS [14]. All algorithms will be performed for 10 
runs for each instance and the best solution among 10 runs is taken as the result. 
All procedures were coded in C++ language under the Microsoft Visual 
Studio 2012 programming environment. All computational experiments were 
performed on a PC Pentium G630 2.7 GHz CPU and 2.0 GB RAM. 
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4.1 Generation of Problem Instances 

The RACP and RCPSP share common data, thus it is easy to adapt existing 
instances of the RCPSP to the RACP. Progen [23] is an instance generator for 
RCPSP, which was used to generate the project scheduling problem library 
(PSPLIB) involving 30, 60, 90 and 120 activities and four resource types. In this 
paper, the tested instances are directly obtained from the PSPLIB and there are 
three important parameters as follows: 

• Resource factor (RF): reflects the density of the different resource types 
needed by an activity and takes the values 0.25, 0.5, 0.75 and 1.0. 

• Network complexity (NC): reflects the average number of immediate 
successors of an activity and takes the values 1.5, 1.8 and 2.1. 

• Deadline factor (DF): reflects the deadline of the project such that 

1,...,
max i
i n

D DF eft
=

= ⋅ . In this paper, DF is fixed at 1.2 according to [14]. 

Each combination of n , m , RF , NC , DF  gives one instance, resulting in a 
total 4 1 4 3 1 48× × × × =  instances. For TSS, the parameters are set as below: 

The number of initial solutions 50PSize = , the size of the reference set 10b = , 
the number of high-quality solutions 1 7b = , the number of diverse solutions 

2 3b =  and 4g = . Stopping condition 2MaxSol m nβ= ⋅ ⋅ , where β  is a 

coefficient used to adjust the value of MaxSol . When n  and m  are determined, 
the value of MaxSol  is determined by β . β  is a positive integer and its value 

will be tuned in the experiment. For each instance, the costs ( 1,..., 4)kC k =  are 

drawn from a uniform distribution [1,10]U randomly. To make comparison easier, 

( 1,..., 4)kC k =  are fixed at 2,8,5,1 in this paper. For the M-TS of TSS, we set the 

tabu list length L  experimentally for each instance as follows: 

/30[5 1.2 ]nL = ×                                                         (6) 

The coefficient 5 was obtained by tuning and the value of  L  is decided by n . 
The neighborhood size NSize  is set to 3,4,5,6 for 30,60,90,120n =  respectively 
and the maximum number of search steps maxiter  is set to 20 experimentally. 

4.2 Determining the Termination Condition 

This section is designed to determine the termination condition MaxSol  by testing 
the performance of TSS under different MaxSol . For the 12 instances with 30 

activities, 24 30MaxSol β= ⋅ ⋅ . β  is set to 5, 10, 15 and 25, the corresponding 

values of MaxSol  and the obtained best results under different values of MaxSol  
are presented in Table 1. In Table 1, Cost represents the objective value of the 
solution, and CPU represents the CPU time consumed by TSS. The symbol “*” 
marks the best obtained Cost which cannot be improved with the increment of 
MaxSol . 



48 H. Meng et al. 

From Table 1, we can see that TSS performed quite differently in 12 instances. 
Different instances got the obtained best solution under different values of MaxSol . 
For example, Instance 2 and 6 got their best solutions under 25 4 30MaxSol = ⋅ ⋅ , and 

Instance 5 got the best solution under 215 4 30MaxSol = ⋅ ⋅ . However, there are 7 
instances (Instance 1, 3, 4, 9, 10, 11, 12) in 12 instances got their best solutions under  

210 4 30MaxSol = ⋅ ⋅  with small time cost. For instances with 60, 90 and 120 
activities, TSS can also get better solutions in reasonable time under 

210MaxSol m n= ⋅ ⋅ . Therefore, 210MaxSol m n= ⋅ ⋅  can achieve a compromise 
between solution quality and CPU time, and it would be adopted in the TSS and SS in 
the following. 

Table 1 The performance of TSS under different MaxSol  

Instances 
25 4 30⋅ ⋅  210 4 30⋅ ⋅  215 4 30⋅ ⋅  225 4 30⋅ ⋅  

Cost CPU Cost CPU Cost CPU Cost CPU 
1 156 0.9 149* 1.7     
2 227* 1.0       
3 297 1.0 294* 1.9     
4 466 0.7 453* 1.4     
5 194 1.0 194 1.7 189* 2.6   
6 231* 1.1       
7 238 1.1 236 2.1 236 3.1 226* 5.0 
8 321 1.0 308 2.0 308 2.9 303* 4.7 
9 132 1.1 130* 2.2     

10 269 1.0 266* 1.8     
11 294 1.0 283* 2.7     
12 325 1.0 314* 1.8     

4.3 Comparing TSS with SS 

To investigate the effectiveness of TSS, we compared it with SS [14]. For SS, the 
parameters PSize , b , 1b , 2b , MaxSol and g take the same values with that in TSS. 

Fig. 5 and Fig. 6 respectively show the comparisons on solution quality and 
computational efficiency between TSS and SS. 

In Fig. 5, Ave. Cost denotes the average cost of the 12 instances with the same 
activity number . For , the Ave. Cost obtained by TSS is 
smaller than that obtained by SS, demonstrating that TSS outperforms SS on 
solution quality. In Fig. 6, Ave. CPU denotes the average CPU time of the 12 
instances with the same activity number . For , the Ave. CPU 
consumed by TSS is larger than that consumed by SS, which demonstrates that 
TSS is worse than SS on computational efficiency. From the above analysis, it can 
be seen that the proposed TSS algorithm is able to obtain better solutions by 
spending relatively large CPU time. Thus the TSS algorithm proposed in this 
paper is an effective algorithm to solve the RACP. 

n 30,60,90,120n =

n 30,60,90,120n =
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Fig. 5 Comparison on solution quality 

 
Fig. 6 Comparison on computational efficiency 

5 Conclusions 

In this paper, we have presented the TSS algorithm combined with SS and TS for 
solving the RACP. To solve the RACP directly, we use the start times of activities 
to code the schedule. The deadline constraint is handled in coding by setting an 
effective value interval for the start time of each activity. In computational 
experiments, TSS is compared with SS and the results show that TSS can obtain 
better solutions by spending relatively larger CPU time than SS, and it is an 
efficient method for the RACP. 

For further research, TSS is recommended to solve other project scheduling 
problems. The RACP could be extended to the multi-mode RACP and the RACP 
with uncertainty, which is more practical. 
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