
  
© Springer-Verlag Berlin Heidelberg 2016 
J.H. Kim and Z.W. Geem (eds.), Harmony Search Algorithm, 

97 

Advances in Intelligent Systems and Computing 382, 
DOI: 10.1007/978-3-662-47926-1_11  

An Improved Harmony Search Algorithm  
for the Distributed Two Machine Flow-Shop 
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Abstract In this paper, an improved harmony search (IHS) algorithm is proposed 
to solve the distributed two machine flow-shop scheduling problem (DTMFSP) 
with makespan criterion. First, a two-stage decoding rule is developed for the 
decimal vector based representation. At the first stage, a job-to-factory assignment 
method is designed to transform a continuous harmony vector to a factory assign-
ment. At the second stage, the Johnson’s method is applied to provide a job se-
quence in each factory. Second, a new pitch adjustment rule is developed to adjust 
factory assignment effectively. The influence of parameter setting on the IHS is 
investigated based on the Taguchi method of design of experiments, and numeri-
cal experiments are carried out. The comparisons with the global-best harmony 
search and the original harmony search demonstrate the effectiveness of the IHS 
in solving the DTMFSP. 

Keywords Harmony search · Distributed flow-shop scheduling · Decoding 
rule · Pitch adjustment 

1 Introduction 

The two machine flow-shop scheduling problem has been widely studied during 
the past few decades [1-10]. Recently, the distributed shop scheduling has at-
tracted more and more attention [11-18], which is considered under the globaliza-
tion environment to improve the production efficiency and economic benefits in 
the multi-plant companies. However, to the best of our knowledge, there is no  
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published work that directly addresses the distributed two machine flow-shop 
scheduling problem (DTMFSP). The DTMFSP is to allocate jobs to suitable facto-
ries and to determine a reasonable processing sequence in each factory so as to 
optimize certain objectives, such as the makespan criterion. 

The classical two machine flow-shop scheduling problem with makespan crite-
rion can be solved by Johnson's algorithm [1] in polynomial time. Nevertheless, the 
DTMFSP is more complex than the distributed single machine scheduling problem 
(DSMSP) that is a special version of the parallel machine scheduling problem 
(PMSP). The DTMFSP is NP-hard, as the PMSP is NP-hard [19]. Therefore, it is 
significant to develop effective and efficient approaches for solving the DTMFSP. 

Inspired by the search procedure for better harmonies in the musical perfor-
mance, the harmony search (HS) algorithm [20] is one of the population-based 
meta-heuristics. Different from the genetic algorithm (GA) that utilizes only two 
parents for generating the offspring, the HS generates a new harmony vector by 
considering all of the vectors in the harmony memory. Due to its simplicity and 
easy implementation, the HS algorithm has been applied to many optimization 
problems, such as engineering optimization [21], vehicle routing [22], truss struc-
tures design [23], water network design [24], electrical distribution network recon-
figuration [25], and shop scheduling [26]. Numerical comparisons showed that the 
HS algorithm was faster than the GA [27, 28]. In this paper, an improved HS 
(IHS) algorithm will be proposed to solve the DTMFSP. To be specific, a harmo-
ny is represented as a real vector, and a two-stage decoding rule is developed to 
convert the continuous vector to a feasible schedule, and a new pitch adjustment 
rule is designed to adjust factory assignment effectively. The influence of parame-
ter setting is investigated and numerical results are provided. The comparative 
results demonstrate the effectiveness of the IHS. 

The remainder of the paper is organized as follows. The DTMFSP is described 
in Section 2. The IHS algorithm for the DTMFSP is introduced in Section 3. In 
Section 4, the influence of parameter setting is investigated, and numerical results 
and comparisons are provided. Finally, we end the paper with some conclusions 
and future work in Section 5. 

2 Problem Description 

Notions: 

n: the total number of jobs. 
f: the total number of factories. 
nk: the number of jobs in the factory k. 
Oi,j: the j-th operation of job i. 
pi,j: the processing time of Oi,j. 
Ci,j: the completion time of Oi,j. 
πk: the processing sequence in factory k. 
π = {π1, π2, …, πf}: a certain schedule. 
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The DTMFSP can be described as follows. There are n jobs to be processed in f 
identical factories, where each factory has two machines. Job i has two operations 
{Oi,1, Oi,2} to be processed one after another. Operation Oi,j is executed on machine 
j with processing time pi,j. Once a job is assigned to a factory, it cannot be trans-
ferred to other factories. 

For the DTMFSP, the makespan  of a certain schedule  can be calcu-

lated in the following way: 

  (1) 

   (2) 

     (3) 

   (4) 

      (5) 

3 IHS for DTMFSP 

3.1 Original HS 

In the original HS algorithm, each harmony denotes a solution, represented by a 
D-dimension real vector Xi = {xi(1), xi(2), ..., xi(D)}. The HS algorithm contains 
four parameters: the harmony memory size (MS), the harmony memory 
consideration rate (PCR), the pitch adjusting rate (PAR) and the distance bandwidth 
(dB). The harmony vectors are stored in the harmony memory (HM) as {X1, X2, ..., 
XMS} to generate new harmony vectors. According to [22], PCR and PAR help the 
algorithm find globally and locally improved solutions, respectively. PAR and dB 
are important in fine-tuning the solution vectors and in adjusting convergence rate. 

The procedure of the HS algorithm can be simplely described as follows: 

Step 1. Set parameters MS, PCR, PAR, dB and the stopping criterion. 
Step 2. Initialize the HM and calculate the objective function value F(Xi) for 

each harmony Xi. 
Step 3. Improvise a new harmony Xnew from the HM as Fig. 1. When 

improvising a new harmony, three rules are applied: a memory consideration, a 
pitch adjustment and a random selection. 

Step 4. Update the HM as Xw = Xnew if Xnew is better, where Xw represents the 
worst harmony in the HM. 

Step 5. If stopping criteron is not satisfied, go to Step 3. 
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Fig. 1 Improvising a new harmony in HS 

3.2 Encoding and Decoding 

To solve the DTMFSP, a harmony in the IHS is represented by an n-dimension 
decimal vector. To determine the factory assignment for each job and the 
processing sequence in each factory, a two-stage decoding rule is developed. 

At the first stage, a job-to-factory assignment method is designed to map a conti-
nuous harmony vector to a factory assignment. To be specific, the search range (0, 
1] is partitioned into f intervals (0, 1/f], (1/f, 2/f] … ((f–1)/f, 1]. If the value of the j-th 
dimension belongs to ((k–1)/f, k/f], job j is assigned to factory k. For an example 
with 2 factories and 5 jobs, suppose the harmony vector is {0.54, 0.22, 0.78, 0.16, 
0.93}. Job 1 is assigned to factory 2 because 0.54 belongs to (1/2, 1]. Similarly, job 
2 and job 4 are assigned to factory 1, while job 3 and job 5 are assigned to factory 2. 

Since the two machine flow-shop scheduling problem with makespan criterion 
can be solved by the Johnson’s algorithm [1], the Johnson’s algorithm is applied at 
the second stage to provide a job sequence for each factory. 

With such a decoding rule, a real harmony vector can be converted to a feasible 
schedule, and then its objective value can be calculated. 

3.3 Initial Harmony Memory 

To generate a harmony memory with enough diversity, all MS initial harmony 
vectors are randomly generated. 

For each harmony vector, the value of each dimension is a random number that 
is uniformly generated between 0 and 1. 

3.4 Improvise New Harmony 

To adjust the factory assignment effectively, a new pitch adjustment is developed 
as follows. 

 
For j = 1 : D 
  If (rand1 < PCR) /* memory consideration */ 

xnew(j) = xa(j), a = {1, 2, …, MS} 
If (rand2 < PAR) /* pitch adjustment */ 
  xnew(j) = xnew(j) + sgn(rand3 – 0.5) × dB 
End if 

  Else /* random selection */ 
xnew(j) = xmin(j) + (xmax(j) – xmin(j)) × rand4 

  End if 
End for 
Note:  
1. rand1–rand4 are random numbers generated uniformly between 0 and 1; 
2. sgn(.) is a sign function that returns -1, 0 or 1. 
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When adjusting the value of xnew(j), it first allocates job j to the position that is 
determined by the Johnson’s algorithm in every factory. Then, it chooses factory k 
with the earliest completion time. The value of xnew(j) is calculated as follows: 

 xnew(j) =  (k – rand) / f  (6) 

For an example with 2 factories and 5 jobs, suppose that xnew(3) is undergoing 
the pitch adjustment with the precondition of xnew(1) = 0.54 and xnew(2) = 0.22. 
First, suppose that job 3 is allocated to factory 1 and factory 2, respectively. As-
sume that the processing sequences obtained by Johnson’s algorithm of the two 
factories are π1 = {2, 3} and π2 = {3, 1}. Then, job 3 will be assigned to factory 1 
if the completion time of π1 is smaller than that of π2; otherwise, job 3 will be 
assigned to factory 2. Finally, the value of xnew(3) is calculated by formula (6). 

The pseudo-code of improvising a new harmony in the IHS is illustrated in Fig. 2. 

 

Fig. 2 Improvising a new harmony in HIS for DTMFSP 

3.5 Update Harmony Memory 

After a new harmony vector Xnew is generated, it will be compared with the worst 
harmony vector Xw in the HM, and then a greedy selection is employed. 

That is, if Xnew is better than Xw, then Xnew will replace Xw and become a new 
member of the HM. 

4 Numerical Results and Comparisons 

4.1 Experimental Setup 

To evaluate the performance of the IHS, 100 random instances are generated. 
Table 1 lists the ranges of parameters for generating the instances. The IHS is 
coded in C language, and all the tests are run on a PC with an Intel(R) core(TM) 
i5-3470 CPU @ 3.2GHz / 8GB RAM under Microsoft Windows 7. The stopping 
criterion is set as 0.1×n seconds CPU time. 

 
For j = 1 : D 
  If (rand1 < PCR) /* memory consideration */ 

xnew(j) = xa(j), a = {1, 2, …, MS} 
If (rand2 < PAR) /*new pitch adjustment */ 

     Find the factory k that can process job j with the earliest completion time; 
     xnew(j) = (k – rand3) / f 

End if 
  Else /* random selection */ 

xnew(j) = xmin(j) + (xmax(j) – xmin(j)) × rand4 
  End if 
End for 
Note: rand1–rand4 are uniform random number between 0 and 1. 
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Table 1 Ranges of Parameters for Instances 

Parameter Range 
f {2, 3, 4, 5, 6} 

n {20, 50, 100, 200} 

pi,j U(1, 100) 

4.2 Parameter Setting 

The IHS contains three parameters: MS, PCR and PAR. To investigate their influ-
ence on the performance of the IHS, the Taguchi method of design of experiments 
(DOE) is carried out with a moderate-sized instance F4_11 (i.e. f = 4, n = 100). 
Four levels are considered for each parameter as in Table 2. 

For each parameter combination, the IHS is run 10 times independently. With 
the orthogonal array L16(4

3), Table 3 lists the resulted average makespan value as 
response value (RV). Then, the response value and the rank of each parameter are 
calculated and listed in Table 4, and the main effect plots are shown in Fig. 3. 

Table 2 Factor Levels 

Factor 
Factor levels 

1 2 3 4 
MS 5 10 15 20 
PCR 0.7 0.75 0.8 0.85 
PAR 0.7 0.75 0.8 0.85 

Table 3 Orthogonal Array and RV Values 

Experiment 
number 

Factor levels 
RV 

MS PCR PAR 
1 1 1 1 1200.0 
2 1 2 2 1200.0 
3 1 3 3 1200.0 
4 1 4 4 1200.3 
5 2 1 2 1200.0 
6 2 2 1 1200.1 
7 2 3 4 1200.0 
8 2 4 3 1199.9 
9 3 1 3 1200.0 
10 3 2 4 1200.2 
11 3 3 1 1200.1 
12 3 4 2 1200.3 
13 4 1 4 1200.4 
14 4 2 3 1200.3 
15 4 3 2 1200.0 
16 4 4 1 1200.1 
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Table 4 Response Value and Rank of Each Parameter 

Level MS PCR PAR 
1 1200.075 1200.100 1200.075 
2 1200.000 1200.150 1200.075 
3 1200.150 1200.025 1200.050 
4 1200.200 1200.150 1200.225 

Delta 0.200 0.125 0.175 
Rank 1 3 2 

 

 

Fig. 3 Main Effect Plot 

From Table 4, it can be seen that MS is the most significant to the IHS. A too 
small value of MS is harmful to the diversity of the harmony memory, while a too 
large value may slow down the convergence. The influence of PAR ranks the 
second. Although a large value of PAR is beneficial to find a proper factory for a 
job, it costs more computational time due to the greedy way of the pitch adjust-
ment rule. Besides, a large value of PCR is helpful to use the information of the 
explored solutions, but it may lead to a premature convergence. According to the 
above analysis, a good choice of parameter combination is recommended as MS = 
10, PCR = 0.8 and PAR = 0.8, which will be used in the following tests. 
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4.3 Comparative Results 

To the best of our knowledge, there is no published work addressing the 
DTMFSP. Therefore, we compare the IHS with the original HS and the global-
best HS (GHS) [30]. For the HS, we set MS = 5, PCR = 0.9, PAR = 0.3 and dB = 1/f. 
For the GHS, we set MS = 5, PCR = 0.9, PAR

min = 0.01 and PAR
max = 0.99 as sug-

gested in [30]. 
For each instance, the above algorithms are run 10 times independently. The 

Best, average (Ave) and standard deviation (SD) values obtained by the algo-
rithms are listed in Tables 5-9 in solving the problems with different number of 
factories. 

From Tables 5-9, it can be seen that the IHS outperforms the HS and the GHS, 
especially when f > 3. As f increases, the factory assignment becomes more com-
plex and it is more difficult to find proper factories for jobs. Since the IHS can 
obtain better Best and Ave results, it can be concluded that the proposed new pitch 
adjustment rule is effective to adjust the factory assignment in solving the 
DTMFSP. 

Besides, the SD values of the IHS are also better than those of the HS and the 
GHS, which implies that the IHS is more robust than the HS and GHS. 

Table 5 Results of the Algorithms (f = 2) 

Instance IHS HS GHS 
No. n Best Ave SD Best Ave SD Best Ave SD 
1 20 582 582 0.00 582 582 0.00 582 582 0.00 
2 20 564 564 0.00 564 564 0.00 564 564 0.00 
3 20 529 529 0.00 529 529 0.00 529 529 0.00 
4 20 529 529 0.00 529 529 0.00 529 529 0.00 
5 20 497 497 0.00 497 497 0.00 497 497 0.00 
6 50 979 979 0.00 979 979 0.00 979 979 0.00 
7 50 1319 1319 0.00 1319 1319 0.00 1319 1319 0.00 
8 50 1356 1356 0.00 1356 1356 0.00 1356 1356 0.00 
9 50 1267 1267 0.00 1267 1267 0.00 1267 1267 0.00 
10 50 1238 1238 0.00 1238 1238 0.00 1238 1238 0.00 
11 100 1519 1519 0.00 1519 1519 0.00 1519 1519 0.00 
12 100 2389 2389 0.00 2389 2389 0.00 2389 2389 0.00 
13 100 2721 2721 0.00 2721 2721 0.00 2721 2721 0.00 
14 100 2616 2616 0.00 2616 2616 0.00 2616 2616 0.00 
15 100 2614 2614 0.00 2614 2614 0.00 2614 2614 0.00 
16 200 2688 2688 0.00 2688 2688 0.00 2688 2688 0.00 
17 200 5312 5312 0.00 5312 5312 0.00 5312 5312 0.00 
18 200 5257 5257 0.00 5257 5257 0.00 5257 5257 0.00 
19 200 5023 5023 0.00 5023 5023 0.00 5023 5023 0.00 
20 200 5296 5296 0.00 5296 5296 0.00 5296 5296 0.00 
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Table 6 Results of the Algorithms (f = 3) 

Instance IHS HS GHS 
No n Best Ave SD Best Ave SD Best Ave SD 
1 20 393 393 0.00 393 393.5 0.50 393 393.5 0.50 
2 20 360 360 0.00 360 360 0.00 360 360 0.00 
3 20 362 362 0.00 362 362.1 0.30 362 362.1 0.30 
4 20 401 401 0.00 401 401 0.00 401 401 0.00 
5 20 342 342 0.00 342 342.8 0.75 342 342.9 1.14 
6 50 854 854 0.00 854 854.4 0.49 854 854.3 0.64 
7 50 817 817 0.00 817 817.9 0.30 817 817.7 0.46 
8 50 924 924 0.00 924 925.1 0.54 924 925.1 0.70 
9 50 908 908 0.00 908 908 0.00 908 908 0.00 
10 50 775 775 0.00 775 775.8 0.60 775 775.4 0.49 
11 100 1700 1700 0.00 1700 1700 0.00 1700 1700 0.00 
12 100 1873 1873 0.00 1873 1873. 0.49 1873 1873.8 0.60 
13 100 1664 1664 0.00 1664 1664. 0.40 1664 1664.2 0.40 
14 100 1678 1678 0.00 1678 1680. 1.36 1678 1679.4 1.02 
15 100 1682 1682 0.00 1682 1682. 0.46 1682 1682.4 0.49 
16 200 3575 3575 0.00 3575 3575 0.00 3575 3575 0.00 
17 200 3614 3614 0.00 3614 3614. 0.40 3614 3614.2 0.40 
18 200 3468 3468 0.00 3469 3469. 0.83 3468 3469 0.63 
19 200 3559 3559 0.00 3559 3560. 0.54 3559 3559.8 0.40 
20 200 3449 3449 0.00 3449 3450 0.63 3449 3450.1 0.54 

Table 7 Results of the Algorithms (f = 4) 

Instance IHS HS GHS 
No n Best Ave SD Best Ave SD Best Ave SD 
1 20 238 238.2 0.40 239 242.2 2.23 240 242.1 1.37 
2 20 259 259.8 0.40 260 263.5 3.07 263 264.9 1.04 
3 20 303 303 0.00 303 304.8 1.40 304 305.8 1.40 
4 20 313 313.3 0.46 313 313.4 0.66 313 313.4 0.49 
5 20 291 291 0.00 291 292.3 0.90 291 293.3 2.61 
6 50 735 735 0.00 737 738.4 0.80 737 737.6 0.80 
7 50 630 630 0.00 634 638.5 2.33 633 636.7 2.53 
8 50 583 583 0.00 585 589.1 2.26 585 588.2 1.78 
9 50 610 610 0.00 612 613 0.77 611 612.9 1.04 
10 50 666 666 0.00 669 671.8 1.54 670 671.5 1.28 
11 100 1200 1200. 0.40 1201 1202. 1.17 1200 1202.8 1.66 
12 100 1293 1293 0.00 1295 1296. 1.30 1295 1296.9 1.14 
13 100 1304 1304. 0.50 1305 1307. 1.42 1305 1307.5 1.28 
14 100 1305 1305 0.00 1309 1310. 1.00 1306 1309.4 2.15 
15 100 1277 1277 0.00 1281 1281. 0.75 1279 1281 0.89 
16 200 2439 2439 0.00 2443 2449. 3.45 2443 2449.4 4.20 
17 200 2456 2456. 0.49 2460 2465. 3.64 2458 2465.3 4.71 
18 200 2529 2529. 0.54 2532 2536. 2.79 2533 2535.9 2.12 
19 200 2448 2448 0.00 2449 2451. 1.19 2450 2452.3 1.49 
20 200 2542 2542. 0.40 2544 2547. 2.06 2544 2547.5 1.50 
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Table 8 Results of the Algorithms (f = 5) 

Instance IHS HS GHS 
No n Best Ave SD Best Ave SD Best Ave SD 
1 20 227 227.3 0.46 229 232 2.14 231 233.4 2.24 
2 20 234 235 0.45 236 239.3 1.55 235 240.7 4.12 
3 20 244 244 0.00 244 246.6 2.62 244 247.2 2.71 
4 20 272 22.2 0.40 275 277.9 2.47 275 277.8 2.32 
5 20 234 234.9 0.30 236 240.4 2.65 238 239.9 1.22 
6 50 545 545.8 0.60 547 552.4 2.33 546 551.4 2.06 
7 50 537 537.8 0.40 547 553.8 3.19 544 548.6 3.67 
8 50 519 519.9 0.54 525 525.5 0.67 522 524.2 1.94 
9 50 534 534.6 0.49 542 548.7 3.85 542 548.5 3.64 
10 50 465 465 0.00 473 478.9 3.11 469 477 4.27 
11 100 1007 1007 0.00 1024 1030. 4.40 1029 1031.4 2.11 
12 100 1044 1044 0.00 1057 1064. 4.17 1060 1063.3 2.37 
13 100 982 982 0.00 988 989.9 1.30 985 990.1 3.18 
14 100 988 988.8 0.75 1004 1009. 2.97 1005 1011 3.85 
15 100 1092 1092. 0.66 1096 1100. 2.47 1097 1100.3 2.37 
16 200 2079 2079 0.00 2086 2090. 2.99 2089 2093.4 3.47 
17 200 2131 2132 0.45 2140 2151. 5.63 2143 2153.1 5.91 
18 200 2087 2087 0.00 2094 2098. 3.99 2095 2098.4 2.69 
19 200 2050 2050 0.00 2073 2083. 5.16 2069 2082.7 6.94 
20 200 2017 2017 0.00 2029 2037 4.15 2029 2039.2 5.53 

Table 9 Results of the Algorithms (f = 6) 

Instance IHS HS GHS 
No n Best Ave SD Best Ave SD Best Ave SD 
1 20 173 173 0.00 173 177.5 3.29 174 177.8 3.22 
2 20 235 236.4 0.66 235 238.2 3.49 235 239.4 2.73 
3 20 194 194 0.00 194 197.5 3.91 194 197.6 2.65 
4 20 218 220.5 1.20 219 224.5 3.04 219 223.4 2.58 
5 20 232 232.1 0.30 234 237.3 2.15 236 237.9 1.76 
6 50 438 439 0.77 449 453.1 2.62 443 449.6 2.84 
7 50 426 427.6 1.02 433 439.3 3.00 428 435.5 4.84 
8 50 391 391.7 0.64 406 414 3.49 405 410.1 4.01 
9 50 442 442 0.00 462 465 1.61 459 461.8 1.94 
10 50 459 461.5 1.28 474 477.9 3.27 465 472.3 4.05 
11 100 904 904.6 0.49 925 936.1 4.89 926 934.9 4.93 
12 100 787 787 0.00 798 806.9 5.59 796 807.7 5.59 
13 100 867 867 0.00 880 884.9 3.42 882 886.9 2.51 
14 100 874 874.1 0.30 901 911 5.78 900 910.1 4.68 
15 100 878 879.1 0.70 915 916.7 1.19 904 916.9 5.80 
16 200 1786 1786. 0.49 1801 1805. 5.17 1799 1805.8 4.19 
17 200 1724 1724 0.00 1740 1744. 3.11 1739 1745.3 4.05 
18 200 1662 1662 0.00 1698 1703. 3.46 1689 1700.2 6.65 
19 200 1707 1709. 1.02 1724 1737. 8.75 1731 1739.7 5.51 
20 200 1677 1677. 0.50 1717 1728 5.23 1715 1728 6.84 
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5 Conclusions 

This paper proposed an improved harmony search algorithm for solving the  
distributed two machine flow-shop scheduling problem. According to the charac-
teristics of the problem, a two-stage decoding rule for the decimal vector based 
representation and a new pitch adjustment rule for the HS were designed. The 
influence of parameter setting was investigated, and the effectiveness of the IHS 
was demonstrated by numerical comparisons. Future work could focus on genera-
lizing the harmony search algorithm for other types of the distributed shop sche-
duling problems and developing multi-objective HS algorithms for the problems 
with multiple scheduling criteria. 
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