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Two Frameworks for Cross-Domain Heuristic  
and Parameter Selection Using Harmony Search 

Paul Dempster and John H. Drake 

Abstract  Harmony Search is a metaheuristic technique for optimizing problems 
involving sets of continuous or discrete variables, inspired by musicians searching 
for harmony between instruments in a performance. Here we investigate two 
frameworks, using Harmony Search to select a mixture of continuous and discrete 
variables forming the components of a Memetic Algorithm for cross-domain heu-
ristic search. The first is a single-point based framework which maintains a single 
solution, updating the harmony memory based on performance from a fixed start-
ing position. The second is a population-based method which co-evolves a set of 
solutions to a problem alongside a set of harmony vectors. This work examines the 
behaviour of each framework over thirty problem instances taken from six differ-
ent, real-world problem domains. The results suggest that population co-evolution 
performs better in a time-constrained scenario, however both approaches are ulti-
mately constrained by the underlying metaphors. 

Keywords Harmony search · Hyper-heuristics · Combinatorial optimisation ·  
Metaheuristics · Memetic algorithms 

1 Introduction 

Harmony Search (HS) is a population-based metaheuristic technique introduced 
by Geem et al [1], inspired by the improvisation process of musicians. HS is an 
Evolutionary Algorithm (EA) which seeks to optimise a given set of parameters, 
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analogous to musicians searching for a ‘harmonious’ combination of musical 
notes. Using a short-term memory, a population of vectors representing a set of 
decision variables is maintained and updated over time. At each step, a new vector 
is generated and compared to the existing vectors within the memory based on a 
given quality measure, and if the new vector is deemed to be of better quality than 
one of the existing vectors it replaces that vector within the memory. 

Over recent years, many variants of HS have been proposed and applied to combi-
natorial optimisation problems including educational timetabling [2], flow shop sche-
duling [3] and the travelling salesman problem [1]. For the interested reader, a survey 
of the applications HS has been applied to is provided by Manjarres et al. [4]. 

Cowling et al. [5] introduced the term ‘hyper-heuristic’ to the field of combina-
torial optimisation, defining hyper-heuristics as ‘heuristics to choose heuristics’. 
Unlike traditional search and optimisation techniques, hyper-heuristics operate 
over a space of low-level heuristics or heuristic components, rather than directly 
over a search space of solutions. More recently, changes in research trends have 
led to a variety of hyper-heuristic approaches being developed for which this orig-
inal definition does not provide the scope to cover. Burke et al. [6,7] offered a 
more general definition covering the two main classes of hyper-heuristics, selec-
tion hyper-heuristics (e.g. [8,9]) and generation hyper-heuristics (e.g. [10,11]): 

‘A hyper-heuristic is a search method or learning mechanism for selecting or 
generating heuristics to solve computational search problems.’ 

Hyper-heuristics have been applied successfully to a variety of problems such 
as bin packing [12], dynamic environments [13], examination timetabling [14,15], 
multidimensional knapsack problem [9,16], nurse scheduling [14], production 
scheduling [17], sports scheduling [18] and vehicle routing [19]. 

In this paper we investigate two frameworks for using Harmony Search to 
choose the components and parameter settings of a selection hyper-heuristic  
applied to multiple problem domains. 

2 Selection Hyper-Heuristics and Cross-Domain  
Heuristic Search 

Many optimisation problems create a search space which is too large to enumerate 
exhaustively to check every possible solution. A variety of heuristic and metaheu-
ristic methods have been used previously to solve such problems. A disadvantage 
of these methods is the lack of flexibility to solve different types of problem in-
stances or problem class. Typically this will result in the need to tune the proposed 
method each time a new type of problem is encountered. The goal of cross-domain 
heuristic search is to develop methods which are able to find high quality solutions 
consistently over multiple problem domains, operating over a search space of  
low-level heuristics. Hyper-heuristics, as introduced previously, are high-level 
search methodologies that operate at a higher level of abstraction than traditional 
search and optimisation techniques [20], searching a space of heuristics rather than 
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solutions. Single-point based selection hyper-heuristics typically rely on two com-
ponents, a heuristic selection method and a move acceptance criteria [21]. Hyper-
heuristics using this framework iteratively select and apply low-level heuristics to 
a single solution with a decision made at each step as to whether to accept the 
move. This process continues until some termination criteria is met.  

The experiments in this paper will use the HyFlex framework [22] as a benchmark 
for comparison. Originally developed to support the first cross-domain heuristic 
search challenge (CHeSC2011) [23], HyFlex provides a common software interface 
with which high-level search methodologies can be implemented and compared. In 
addition, due to the nature of the framework, a direct comparison can be made to a 
large number of existing methods from the literature. The core HyFlex framework 
provides support for six widely studied real-world problems: MAX-SAT, one-
dimensional bin packing, personnel scheduling, permutation flow shop, the travel-
ling salesman problem and the vehicle routing problem. For each of these problem 
domains, a set of low-level heuristics is implemented, defining the search space 
within which a selection hyper-heuristic can operate. Each of these low-level heuris-
tics belongs to one of four categories: mutation, hill-climbing, ruin-recreate or cros-
sover. All low-level heuristics take a single solution as input and give a single solu-
tion as output, with the exception of crossover where two solutions are required for 
input. The number of low-level heuristics of each type varies, depending on the 
problem domain being considered. For the sake of our experimentation in this paper, 
we consider ruin-recreate heuristics within the set of mutation operators as both take 
a solution as input, perform some perturbation and return a new solution with no 
guarantee of quality. In addition to this, two continuous variables  [0, 1] are used 
to modify the behaviour of certain low-level heuristics. The intensity of mutation 
parameter defines the extent to which a mutation or ruin-recreate low-level heuristic 
modifies a given solution, with a value closer to 1 indicating a greater amount of 
change. The depth of search parameter relates to computational effort afforded to the 
hill-climbing heuristic, with a value closer to 1 indicating that the search will contin-
ue to a particular depth limit. 

2.1 Memetic Algorithms within the HyFlex Framework 

In addition to the single-point framework described above, it is also possible to 
implement population-based methods within the HyFlex framework. A Genetic 
Algorithm (GA) evolves a population of solutions to a problem, using crossover 
and mutation operators to recombine and modify solutions, inspired by the natural 
process of evolution and the concepts of selection and inheritance. A Memetic 
Algorithm (MA) [24] is an extension of a general GA which introduces memes [25] 
into the evolutionary process, where a meme is a ‘unit of cultural transmission’. A 
basic MA simply introduces a hill-climbing phase into a GA after crossover and 
mutation have been applied. MAs are not the only approach to include an explicit 
hill-climbing phase into a search method. Özcan et al. [21] tested a number of 
frameworks for selection hyper-heuristics. Their work found that improved  
performance could be achieved on a set of benchmark functions by applying a 
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Table 1 Median and minimum objective value obtained by Harmony Search MA variants 

Single-point Population-based 

Instance Median Min Median Min 

SAT0 29 20 29 19 

SAT1 57 46 57 40 

SAT2 42 18 42 19 

SAT3 30 22 32 15 

SAT4 17 13 20 14 

BP0 0.076754703 0.063377656 0.063257737 0.055634589 

BP1 0.011526797 0.007252416 0.008133224 0.006673 

BP2 0.027774455 0.013815935 0.014645751 0.012569296 

BP3 0.111261704 0.109816678 0.10926376 0.108950592 

BP4 0.045656986 0.037023311 0.029869874 0.023851741 

PS0 33 21 27 20 

PS1 10688 10243 9850 9556 

PS2 3327 3200 3232 3130 

PS3 1830 1485 1685 1443 

PS4 355 320 350 320 

FS0 6287 6252 6267 6237 

FS1 26847 26755 26813 26754 

FS2 6367 6323 6345 6303 

FS3 11436 11382 11409 11336 

FS4 26658 26579 26639 26534 

TSP0 48286.76001 48194.9201 48194.9201 48194.9201 

TSP1 21308223.69 21076767.44 20794298.01 20729164.65 

TSP2 6853.294645 6823.87626 6822.783065 6798.088796 

TSP3 67692.9665 66570.50774 67050.91033 66423.61825 

TSP4 53699.5647 52272.74022 54049.52449 52561.08631 

VRP0 91485.99596 86722.503 62722.29739 60850.09874 

VRP1 14395.55092 13317.12627 13383.59972 13334.93593 

VRP2 201800.2381 147303.8795 148281.8064 144058.3475 

VRP3 21672.79408 20658.96394 21658.21568 20658.96815 

VRP4 178263.89 166947.0722 147932.5119 146313.0592 
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shows the median and minimum values observed over 31 runs for each of the 30 
problem instances tested. The best values for each instance are marked in bold. 
From this table we can quickly see that the population-based version is performing 
better in the majority of cases in terms of both median and minimum objective 
value observed. Overall the population method achieves a better median value for 
24 of the 30 instances tested and a better minimum value in 23 of the 30 instances. 
Whilst both methods show similar performance in the SAT instances, the objec-
tive values obtained are poor when compared to the literature standard. This will 
be discussed further in the following section. 

4.2 Comparison to CHeSC2011 Entrants 

Following the competition, the results were provided for the competition entries 
over a subset of the problems of all six problem domains. Methods are ranked using 
a scoring system inspired by the one used in Formula One motor racing (2003-2009). 
 
Table 2 Rankings obtained by Harmony Search MA variants compared to CHeSC2011 entrants 

Hyper-heuristic Total Hyper-heuristic Total 

AdapHH 181 AdapHH 173.5 

VNS-TW 133 VNS-TW 130.5 

ML 131.5 ML 129.5 

PHUNTER 93.25 PHUNTER 87.75 

EPH 89.75 EPH 83.75 

NAHH 75 HAHA 71.083 

HAHA 73.75 NAHH 71 

ISEA 69 POP-MA 65.5 

KSATS-HH 66.5 KSATS-HH 64.5 

HAEA 53.5 ISEA 63 

ACO-HH 39 HAEA 47.833 

GenHive 36.5 ACO-HH 36.33 

DynILS 26 GenHive 32.5 

SA-ILS 24.25 SA-ILS 23.25 

XCJ 22.5 XCJ 21.5 

AVEG-Nep 21 AVEG-Nep 21 

GISS 16.75 DynILS 21 

SelfSearch 7 GISS 16.75 

SP-MA 6 SelfSearch 5 

MCHH-S 4.75 MCHH-S 4.75 

Ant-Q 0 Ant-Q 0 
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For each of the 30 problem instances, the best performing hyper-heuristic of those 
currently being compared is awarded 10 points, the second best 8 points with each 
further method allocated 6, 5, 4, 3, 2, 1 and 0 points respectively. In the case there 
are more than 8 methods being compared, all methods ranked > 8th are awarded 0 
points. The two HS hyper-heuristic variants can be compared directly against the 
CHeSC2011 entrants using this scoring system. Table 2 shows the relative ranking 
of each variant against the 20 entrants to CHeSC2011, where SP-MA is the single-
point framework and POP-MA is the population-based variant. 

When compared to the CHeSC2011 entrants, the population-based framework 
scores 65.5 points finishing 8th overall, with the single point approach scoring 6 
points and finishing 19th out of 21. As this is a relative ranking system, it shows 
that not only is POP-MA outperforming SP-MA, in at least some problem domains 
or instances it is outperforming some of the leading entrants to the competition, 
taking 7.5 points away from the winning hyper-heuristic AdapHH. A breakdown of 
the points per problem domain scored by each method is given in Table 3.  

Table 3 Formula One points obtained by each method in each problem domain 

Domain SP-MA POP-MA 

SAT 0 0 

Bin Packing 0 0 

Personnel Scheduling 0 4.5 

Flow Shop 3 16 

TSP 3 30 

VRP 0 15 
 

As can be seen, neither framework performed well in SAT or Bin Packing. The 
population-based framework performed particularly well in TSP, coming 3rd in 
this domain and beating all other hyper-heuristics in one particular instance. Given 
that the best results of the single-point framework also came in TSP, it suggests 
that the heuristics supplied for that domain produce good solutions when com-
bined via MA. Figure 3 plots the number of points scored by each of the twenty 
competition entrants to CHeSC2011 and POP-MA for the TSP. An interesting 
observation when using this framework is that the number of heuristics that could 
be applied per run within the time limit varied dramatically. This is due to both the 
nature of the heuristics in a particular domain, and the evolved values of the heu-
ristic parameters (e.g., between 415000 and 450 heuristic applications were ob-
served for the first two TSP instances). Since HS requires a new harmony to be 
improvised each iteration and MA requires all three of cross-over, mutation, and 
hill-climbing, the high-level of retention of solutions by the population-based 
approach (keeping the best HMS − 1 solutions rather than throwing away the 
HMS − 1 worst as with single-point) may be the reason for the comparatively good 
Personnel Scheduling score, as this domain typically had low heuristic application 
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We intend to improve on this work in future by extending the framework in a 
number of ways. Currently the representation of each harmony is very rigid, due 
to the decision of conforming to the structure of an MA. More flexible representa-
tions are possible, allowing for a greater combination of low-level heuristics and 
more freedom with the order in which they are applied. Another constraining fac-
tor in the population-based framework is the decision to limit the Solution Memo-
ry Size and Harmony Memory Size to the same value. Future work will look at 
dynamic strategies for managing the length of these two components. 
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