
4De Novo Genome Assembly
of Next-Generation Sequencing Data

Min Liu, Dongyuan Liu and Hongkun Zheng

Abstract
With rapid development of next-generation sequencing (NGS) technolo-
gies, de novo genome assembly appears increasingly common. However,
inherent features of NGS data pose great challenges for de novo genome
assembly. Many genomes, such as Brassica rapa, having undergone three
paleo-polyploidy events, contain high content repeats, makes genome
assembly of NGS data tougher. In past several years, numerous algorithms
have been developed to address the challenges in de novo genome
assembly from NGS reads. Here we summarize the main approaches for
genome assembly. We also describe several algorithms for each approach.
In addition, we compare the performance of existing assemblers in the
accuracy and contiguity of assemblies. The comparative analysis shows
that there is not any assembler that performs best in all the observed
measures, which are also dependent on the dataset used.

4.1 Introduction

Rapid development of next-generation sequenc-
ing (NGS) technologies has greatly reduced
DNA sequencing costs and made genome
assembly increasingly common. However,
inherent features of NGS data also pose new

challenges for de novo genome assembly. In the
past several years, numerous algorithms have
been developed to cope with the challenges in de
novo genome assembly from NGS reads. Most
adopt the de Bruijn graph approach (Li et al.
2012), where a vertex represents a unique length-
k substring called k-mer, and an edge connects
two vertices if they appear consecutively in a
read (Compeau et al. 2011). A few use the
overlap–layout–consensus (OLC) approach, such
as Edena (Hernandez et al. 2008) and string
graph assembler (SGA) (Simpson and Durbin
2012). There are also some extension-based
algorithms available for NGS reads, which do
extension from 5′ or 3′ terminal of read by k-mer
or read, such as SSAKE (Warren et al. 2007) and
JR-Assembler (Chu et al. 2013).

M. Liu � D. Liu � H. Zheng (&)
Biomarker Technologies Corporation, Beijing
101300, China
e-mail: zhenghk@biomarker.com.cn

M. Liu
e-mail: lium@biomarker.com.cn

D. Liu
e-mail: liudy@biomarker.com.cn

© Springer-Verlag Berlin Heidelberg 2015
X. Wang and C. Kole (eds.), The Brassica rapa Genome, Compendium of Plant Genomes,
DOI 10.1007/978-3-662-47901-8_4

41



NGS reads are very short and error-prone,
compared with traditional Sanger sequencing.
To assemble this new kind of sequencing data,
several assemblers, represented by MaSuRCA
(Zimin et al. 2013), firstly construct longer reads
(super-read), then assembly super-reads into
contigs (Butler et al. 2008; Gnerre et al. 2011;
Zimin et al. 2013). The basic construction process
of super-reads is to extend each original read
forwards and backwards, base by base, as long as
the extension is unique. All reads that extend to
the same super-read are replaced by that
super-read. This allows subsequent computation
quick and thus reduces memory requirements.
Different from MaSuRCA, allpaths-lg uses an
overlapping paired-end library with a suitable
insert size to generate super-reads for contig
assembly (Butler et al. 2008; Gnerre et al. 2011).
These types of super-reads allow assembler to use
OLC strategies with a few representative reads or
de Bruijn graph approach with big k-mer.

Despite considerable progress made in the
past years, genome assembly remains challeng-
ing. For example, recent completion of Brassica
rapa genome sequencing has revealed that there
are high content of repeats in B. rapa accession
chiifu-401-42, which make many mate-pair
library can’t span the two side of unique
region. Hence, the assembly had to use 199,452
BAC-end Sanger sequences, which have very
long insert size to construct the super scaffold.
Despite these efforts, the N50 of the assembled
genome only reaches 1.9 Mb, with 283.8 Mb of
the total size (Wang et al. 2011), much smaller
than the real genome size (2n = 2x = 529 Mb).
Therefore, there is a great need to provide novel
algorithms and assemblers for de novo genome
assembly of NGS data.

4.2 The Challenge of Genome
Assembly

The primary difficulty in genome assembly is to
merge overlapping reads along continuous
sequences. First, contigs that the assembly algo-
rithms produce are not complete and do not cover

the entire chromosomes, due to sequencing errors
and the existence of unsequenced parts. Even
with high coverage, there is still a nonzero
probability for the existence of unsequenced
parts and sequencing errors. Second, repeats and
heterozygous sequences will further complicate
the assembly.

In order to assemble a genome, we first need
to sequence random DNA fragments from the
whole genome. The rapidly decreasing costs of
NGS allow us to rapidly obtain vast amounts of
DNA sequence data at a low cost. Unfortunately,
the sequence length of NGS data is much shorter
than that of the genomes or genomic features
being studied, which commonly spans tens of
thousands to billions of base pairs. Hence, many
analyses starting with the computational process
of sequence assembly that joins together the
many sequence fragments the NGS generates.
The workflow of a typical assembly algorithm is
shown in Fig. 4.1.

Second, assembly algorithm will merge
sequence fragments into contigs. A sequence
contig is a contiguous, overlapping sequence
read, which is assembled with the small DNA
fragments generated by bottom-up sequencing
strategies. Contig assembly is difficult in the

Fig. 4.1 The workflow of a typical assembly algorithm

42 M. Liu et al.



process of genome assembly. Assemblers use the
overlapping information of fragment to search
contiguous paths. The sequence will be broken
when faced with the branch, which may come
from the sequencing error or repeats in the gen-
ome. Heterozygous sequences also can produce
branches. For diploid species, there may be two
paths for one single nucleotide polymprphism
(SNP). For polyploidy, there may be many paths
for different regions. Because of these enormous
difficulties, contig assembly is important.

Third, contigs will be ordered to construct
scaffold. Paired-end read libraries are useful in
genome assembly. These data can help to extend
contigs and resolve repeat areas. If one end of a
paired-read is assembled in a contig and the other
end in a second contig, it can be inferred that
these contigs are adjacent in the final assembly.
Because there may are erroneous links, assem-
blers need to filter out low weight links. For
example, many assemblers only keep the links,
which contain at least three or five paired-reads.
There also exists the strategy, which firstly uses
high weight links, and then makes use of
low-weight links to form scaffolds. Recently,
optical mapping is increasingly being used to
order contigs or scaffolds.

Finally, gap closing will be used to fill the gaps
in the scaffolds. After scaffolding, many assem-
blers will remap pair-end reads onto contigs and
get linking information between them. The local
un-assembly reads will be retrieved. Unaligned
reads of the single aligned pair-end always can
align multiple regions of genome. In small local
regions, read overlapping informationwill be used
to form sequences with much lenient standard.

4.3 De Novo Assembly Algorithm

4.3.1 Classification of De Novo
Assembly Algorithm

Most of existing de novo assembly tools for NGS
platforms utilize the de Bruijn graph approach
(Li et al. 2012). In the de Bruijn graph, a vertex
represents a unique length-k substring called

k-mer, and an edge connects two vertices if
they appear consecutively in a read (Compeau
et al. 2011). There also exist some assemblers,
which apply the overlap–layout–consensus
(OLC) approach for handling NGS reads, such
as Edena (Hernandez et al. 2008) and SGA
(Simpson and Durbin 2012). Additionally, some
extension-based assemblers also appeared to
assemble NGS reads, which do extension from
5′ or 3′ terminal of read by k-mer or read, such as
SSAKE (Warren et al. 2007) and JR-Assembler
(Chu et al. 2013).

4.3.2 The Overlap Layout Consensus
Approach

The sequence assembly problem can be taken as
a graph problem by making an overlap graph of
reads. In the overlap graph, reads are presented
as nodes, and the existing overlap between two
reads is presented as an edge between corre-
sponding nodes. A modified version of the
Smith-Waterman dynamic programming algo-
rithm is usually used to find overlapping reads in
almost all assemblers (Gnerre et al. 2011; Zimin
et al. 2013).

In an overlap graph, assembling the reads into
the genome is equivalent to finding a Hamilto-
nian path, a path that contains each node exactly
once. Unfortunately, finding a Hamiltonian path
is an NP-complete problem, which cannot be
done in polynomial time.

Overlap layout consensus methods are based
on graph theory. In these methods, an overlap
graph is built from reads and the assembly
problem is simplified to find a Hamiltonian path
in the graph. ARACHNE (Metzker 2010), Celera
(Li et al. 2012) and its revised version for
short-reads (Peng et al. 2012), CAP3 (Jaillon
et al. 2007), and Newbler (Zhang et al. 2012) use
this method as their core idea.

An OLC algorithm starts by searching over-
laps between reads (or graph nodes) (Fig. 4.2). In
fact, it must check possible overlaps between any
two reads in the input read set. The layout step
will simplify the overlap graph by removing
redundant information and will put these reads
together using identified overlaps. The final step

4 De Novo Genome Assembly of Next-Generation … 43



is to find a consensus for the existing layout. The
overlap step is computationally intensive.
Therefore, this approach is more suitable for
whole genome shotgun sequencing reads that
Sanger sequencing technology produces. Simi-
larly, the Hamiltonian path problem is an
NP-complete problem in itself. It needs heuristic
solutions.

4.3.3 De Bruijn Graph Approach

In 2001, Pevzner and Tang introduced a method
based on the Eulerian path approach for assem-
bling NGS reads (Pevzner and Tang 2001). In the
new approach, reads are cut into smaller but
regular pieces, called k-mers, which are then used
to create a de Bruijn graph. By reducing the
fragment assembly to a de Bruijn graph, the
NP-complete Hamiltonian path is transformed to
seek a Eulerian path in a de Bruijn graph. This
approach avoids the complicated step of search-
ing all overlaps between reads, which are
required to form an overlap graph in the case of
overlap layout consensus approach. There are
polynomial time algorithms for finding Eulerian
path problems. However, in practice, there may
be several Eulerian paths in de Bruijn graphs.
Finding the shortest Eulerian super path is still
NP-hard (Zerbino and Birney 2008). Existing
algorithms use heuristic methods to compute this
super path by modifying the Eulerian graph. In
addition, De Bruijn graph approach also simpli-
fies the sequence repeat issue.

A k-dimensional de Bruijn graph is a directed
graph whose nodes are all possible length-
k sequences of m symbols. Obviously, each
k-dimensional de Bruijn graph of m symbols has
mk vertices. A de Bruijn graph is a representation
based on all k-mers (length k words), which
makes it suitable for high-coverage, very
short-read data.

An edge in de Bruijn graphs connects two
vertices (k-mers), if one vertices postfix of length
k − 1 is equal to the prefix of the other one with
the same length. The edge is directed, and the
direction is from the k-mer, including the postfix
to the k-mer including the prefix.

Given a sequence (GGATCGTTTCGTAAT),
one can make a de Bruijn graph of it. To create a
de Bruijn graph, it is enough to put the directed
edges in the graph according to the sequence. The
de Bruijn graph for this set is shown in Fig. 4.3.

In de Bruijn graph approach assembly algo-
rithms, the graphs of input reads are created and
then paths in graphs are used to detect contigs.
Finding Eularian paths is the key to finding
contigs in this step. Optionally, the algorithm
may use other data, such as paired-end data, in
order to make longer contigs and complete the
assembly process. The need for predefined
k-value, and also errors in reads that lead to a
complex graph structure, are of issues in de
Bruijn graph-based assembly algorithms.

The Euler assembler (Kent 2002) is the first
algorithm that uses the de Bruijn approach
for handling sequence assembly problems.

Fig. 4.2 An OLC assembly graph. Nodes are complete
reads, and edges connect reads that overlap. Note that in
an actual OLC assembly graph, reads and overlaps would

be much larger. Here, theoretical reads and overlaps are
shortened for clarity

44 M. Liu et al.



Velvet (Zerbino and Birney 2008), Euler-USR
(Chaisson et al. 2009), AllPaths (Butler et al.
2008; Maccallum et al. 2009), Abyss (Simpson
et al. 2009), and IDBA (Peng et al. 2012) are
some other assembly algorithms that use this
approach.

4.3.4 Extension-Based Approach

The shotgun sequence assembly problem was
first formalized by finding the shortest common
superstring of the set of all reads (Delcher et al.
2002). Since this algorithm is computationally
NP-complete, greedy approaches were intro-
duced to solve the problem. The greedy approach
uses a greedy idea, that is, to merge two reads
with maximum overlap score at the time
(Fig. 4.4). Reads and overlaps are considered to
be nodes of graph and edges between nodes in a
graph, respectively. Now the problem is simpli-
fied to find a Hamiltonian path in the graph.

Greedy algorithms for read assembly can be
written in the following steps:

1. Calculate pairwise alignments of all fragments.
2. Choose two fragments with the largest overlap.
3. Merge chosen fragments.
4. Repeat steps 1, 2 and 3 until only one frag-

ment is left.

The main problem of this approach is getting
stuck in local maxima, as in the cases of all
greedy algorithms. A local maxima can occur if
the current contig takes on reads that would help
further contigs grow even larger. Examples

of algorithms using a greedy approach are
PE-Assembler (Ariyaratne and Sung 2011),
SSAKE (Warren et al. 2007), SHARCGS (Dohm
et al. 2007), and VCAKE (Miller et al. 2010).

4.4 Comparison of Algorithms

4.4.1 Datasets and Assemblers

SPAdes 3.0 (Bankevich et al. 2012), MaSuRCA
2.2.1 (Zimin et al. 2013), SOAPdenovo2 (Li et al.
2010; Luo et al. 2012), and ALLPATHS-LG
44683 (Butler et al. 2008; Gnerre et al. 2011)
were compared with nine bacterial data sets.
ABySS 1.2.6 (Simpson et al. 2009), Edena 2.1.1
(Hernandez et al. 2008), SOAPdenovo 1.0.5,

Fig. 4.3 The de Bruijn graph of an input set (GGATCGTTTCGTAAT)

Fig. 4.4 The main steps in greedy algorithms for genome
assembly

4 De Novo Genome Assembly of Next-Generation … 45



SOAPdenovo2 (Li et al. 2010; Luo et al. 2012),
JR-Assembler 1.0 (Chu et al. 2013), and Velvet
1.0.19 (Zerbino and Birney 2008) were compared
with median data sets.

The NGS datasets of Streptomyces roseospo-
rus, Neurospora crassa, Plasmodium falcipa-
rum, and Saprolegnia parasitica genomes were
downloaded from the National Center for
Biotechnology Information (NCBI) Short Read
Archive (SRA) (www.ncbi.nlm.nih.gov/sra)
under accession numbers: SRX016044,
SRX026747, SRX030834, SRX022535,
SRX016057, and SRX016059. Another dataset
covering nine bacterial genomes (Staphylococcus
aureus and Rhodobacter sphaeroides) was also
downloaded from NCBI SRA; the accession

numbers are listed in Table 4.1. The Escherichia
coli reference genome was retrieved from
GenBank under accession no. NC_000913.

4.4.2 Performance Comparison Using
Medium-Sized Genomes

The performance comparison of these assemblers
was evaluated using four medium-sized dataset,
including a bacterial genome (S. roseosporus,
genome size 7.7 Mb) and three fungal genomes
(N. crassa, P. falciparum, and S. parasitica,
genome sizes 37.1, 22.9, and 53.1 Mb, respec-
tively). The rank method was used to evaluate
the assembler (Chu et al. 2013). No assembler
outperformed other assemblers in total contig

Table 4.1 The basic information of the nine bacterial data sets of next generation sequence used for the assembly
comparison

Species Genome size
(bp)

GC
(%)

Library Coverage
(Gb)

SRA

No. Size Type

Acinetobacter baumannii
NIPH24

3,893,975 39.16 1 180 PE 1.1 SRX236318

2 5k MP 1.1 SRX221053

Acinetobacter indicus
CIP110367

3,211,639 45.34 1 180 PE 0.52 SRX342013

2 180 PE 0.51 SRX342012

3 5k MP 0.71 SRX342014

4 5k MP 0.66 SRX342011

Enterobacter cloacae
UCICRE12

5,210,535 55.59 1 180 PE 1.2 SRX342585

2 5k MP 1.5 SRX286723

Enterococcus faecium
BM4538

3,133,897 38.07 1 180 PE 1.2 SRX341265

2 5k MP 1.8 SRX341264

Escherichia coli BIDMC 39 4,882,922 51.01 1 180 PE 0.33 SRX277757

2 180 PE 0.57 SRX277758

3 5k MP 1.03 SRX277759

Klebsiella pneumoniae
BIDMC41

5,702,446 26.95 1 180 PE 0.69 SRX277856

2 180 PE 0.39 SRX277855

3 5k MP 1.18 SRX277857

Mucispirillum schaedleri
ASF457

2,332,248 57.08 1 180 PE 1.2 SRX332194

2 5k MP 1.5 SRX332193

Pseudomonas aeruginosa
CF614

6,797,445 31.01 1 180 PE 0.99 SRX366180

2 5k MP 0.81 SRX366181

3 5k MP 0.82 SRX366179

Streptococcus intermedius
ATCC 27335

1,951,449 66.08 1 180 PE 1.1 SRX297066

2 5k MP 1.47 SRX297065

46 M. Liu et al.

http://www.ncbi.nlm.nih.gov/sra


number, total contig size, the maximal contig
length, the mean contig length, or N50 length
(Table 4.2). With S. parasitica and P. falciparum,
the N50 lengths and mean contig length were
longer than other assemblers. With S. roseosporus
and N. crassa, ABySS and velvet exhibit a rela-
tively good performance, respectively.

4.4.3 Performance Comparison Using
Nine Bacterial Genomes

The performance of four commonly-used
assemblers was evaluated using nine genome
datasets with high coverage. The raw sequence
data were derived from a strain for which the
assembly level is either scaffolds or contigs.

Every raw datum contains at least two libraries:
one paired ends library and one mate-pair library
(Table 4.1).

The N50 contig sizes are summarized for all
nine of these datasets in Table 4.3. For all
assemblers, good or nearly-good assembly can
be obtained. All data sets except the Mucispiril-
lum schaedleri dataset were able to produce a
high-contig N50 from 200 to 500 kb. These
results are better than those produced by datasets,
which produced only one-paired ends library
(Salzberg et al. 2012; Magoc et al. 2013).
Because of the mate-pair library, better scaffold
N50s were also produced by most datasets. The
best scaffold N50s ranged from 1.4 to 5.7 Mb
in size, which span more than the half of the

Table 4.2 Assembly statistics of four median genomes

Species Assembler No. of
contigsa

Total size
(Mb)b

Max
(bp)c

Mean
(bp)

N50
(bp)d

Streptomyces
roseosporus

JR-Assembler 1189 7.68 40,501 6461 11,374

ABySS 1127 7.73 55,078 6859 12,499

Velvet 1192 7.49 61,423 6286 11,075

SOAPdenovo 2453 7.65 24,303 3120 4691

Neurospora crassa JR-Assembler 12,244 38.61 58,672 3153 6074

ABySS 13,420 38.05 45,381 2835 6350

Velvet 10,187 36.11 45,599 3544 6781

SOAPdenovo 16,261 40.25 31,423 2475 5029

Edena 17,083 39.95 42,952 2338 4534

Saprolegnia
parasitica

JR-Assembler 40,587 46.09 119,543 1135 1510

ABySS 52,087 38.26 94,931 734 740

Velvet 53,736 47.38 91,073 881 1021

SOAPdenovo 66,456 45.59 30,400 686 712

Edena 62,357 44.13 41,473 707 746

Plasmodium
falciparum

JR-Assembler 13,352 11.02 7939 825 975

ABySS 16,658 11.80 7934 708 826

Velvet 16,423 11.91 7940 725 848

SOAPdenovo 17,424 11.93 7939 684 786

Edena 16,531 11.76 7936 711 831

The top two best values of each assembly metrics are marked in bold
aContigs of length <300 bp were not counted
b“Total” refers to the total number of bases in the contigs
c“Max” and “Mean” refer to the length of the longest contig and the mean length of contigs, respectively
dN50 is the size of the smallest contig such that 50 % of the assembled bases are in the contigs of size equal to or larger
than the N50 value
A contig is misassembled if it cannot be aligned in full-length to the reference genome

4 De Novo Genome Assembly of Next-Generation … 47



Table 4.3 Assembly statistics of nine bacterial genomes

Species Assembler Total
length

No. scaffolds Scaffold
N50

No. contigs Contig
N50

Acinetobacter
baumannii NIPH 24

allpaths-lg 3,899,709 18 2,378,052 35 343,910

Soapdenovo2 3,881,660 20 2,379,771 30 586,913

SPAdes 4,420,053 68 538,328 68 538,328

MaSuRCA 4,051,564 46 2,414,221 60 438,417

Acinetobacter indicus
CIP 110367

allpaths-lg 3,188,830 8 2,659,306 46 130,481

Soapdenovo2 3,192,750 68 1,741,014 129 133,591

SPAdes 3,178,658 38 266,989 38 266,989

MaSuRCA 3,061,054 28 914,711 65 133,907

Enterobacter cloacae
UCICRE 12

allpaths-lg 5,167,463 24 2,910,535 83 152,889

Soapdenovo2 5,167,151 55 2,892,397 132 154,254

SPAdes 5,663,090 70 247,654 70 247,654

MaSuRCA 5,141,681 48 4,489,688 102 227,675

Enterococcus faecium
BM4538

allpaths-lg 3,131,274 7 954,529 49 126,411

Soapdenovo2 3,068,531 66 767,650 156 87,971

SPAdes 3,431,198 58 266,407 58 266,407

MaSuRCA 3,165,896 102 2,119,662 168 85,115

Escherichia coli
BIDMC 39

allpaths-lg 4,905,456 25 2,678,791 110 121,904

Soapdenovo2 4,903,160 94 2,497,784 203 216,794

SPAdes 4,902,401 65 284,858 65 284,858

MaSuRCA 4,842,876 36 3,718,131 78 262,190

Klebsiella pneumoniae
BIDMC 41

allpaths-lg 5,661,146 9 4,151,878 59 187,007

Soapdenovo2 5,702,239 46 1,971,292 105 240,104

SPAdes 5,751,074 34 813,379 35 813,379

MaSuRCA 5,714,443 37 4,562,366 84 299,706

Mucispirillum
schaedleri ASF457

allpaths-lg 2,311,286 20 741,189 82 60,693

Soapdenovo2 2,337,314 62 594,782 136 68,178

SPAdes 2,348,799 71 149,716 72 149,716

MaSuRCA 2,335,222 62 1,891,207 106 84,260

Pseudomonas
aeruginosa CF614

allpaths-lg 6,807,352 9 1,431,211 25 429,413

Soapdenovo2 6,818,856 51 5,774,020 112 378,571

SPAdes 6,751,614 31 965,679 31 965,679

MaSuRCA 6,797,296 21 1,933,268 39 689,346

Streptococcus
intermedius ATCC
27335

allpaths-lg 1,892,452 10 634,497 16 284,930

Soapdenovo2 1,929,122 12 910,762 19 260,557

SPAdes 1,918,222 11 277,339 11 277,339

MaSuRCA 2,017,461 60 548,293 65 239,440

*The top two best values of each assembly metrics are marked in bold

48 M. Liu et al.



genome. Results produced by all of the assem-
blers for M. schaedleri are far more fragmented
than those of other datasets, with contig N50
sizes ranging from 60 to 149 kb. For this gen-
ome, the choice of assembler seems to have a
large impact on the quality of the resulting
assembly.

No assembler ranked highest among all met-
rics (Table 4.3). For this reason, a ranking
approach was used to evaluate the overall per-
formance of each assembler. For each assembly
metric and dataset, the top two values are marked
in bold (Table 4.3). The number of marked val-
ues was determined and used as the voting score
for each assembler. For N50 length of scaffold,
the scores for allpaths-lg (Gnerre et al. 2011),
SOAPdenovo2 (Luo et al. 2012), SPAdes
(Bankevich et al. 2012), and MaSuRCA (Zimin
et al. 2013) were 26, 24, 9, and 31, respectively.
In this way, MaSuRCA were found to have the
best overall performance. For N50 length of
contig, the scores were 15, 19, 34, and 22,
respectively. In this way, SPAdes were found to
have the best overall performance.

The accuracy of assembly was evaluated by
REAPR (Table 4.4). REAPR uses the per-base
error of the fragment coverage distribution
(FCD) to detect assembly errors without the need
for a reference sequence and provides corrected
assembly statistics allowing the quantitative
comparison of multiple assemblies (Hunt et al.

2013). For each data set, no assembler produced
the lowest number of FCD gaps, and MaSuRCA
was also found to produce highly accurate results
in some datasets (Acinetobacter indicus CIP
110367, E. coli BIDMC 39, and Streptococcus
intermedius ATCC 27335). Hence, a ranking
approach was used to evaluate the overall per-
formance in assembly accuracy: the higher the
score, the more accurate the assembly (Chu et al.
2013). Because SPAdes only produced the contig
assembly, it does not participate in the compar-
ative analysis. Allpaths-lg produced the highest
ranking score (24), which is much higher than
the scores that MaSuRCA (16) and SOAPde-
novo2 (16) produced.

4.5 Discussion

In this section, the main approaches for genome
assembly are presented. For each approach,
several algorithms are explained. There are three
main categories for assembly algorithms:
extension-based algorithms, overlap-layout con-
sensus algorithms and de Bruijn graph algo-
rithms. Overlap-layout consensus algorithms are
based on overlap graphs and Hamiltonian
path-finding. de Bruijn graph algorithms are
based on de Bruijn graphs and Eulerian
path-finding in assembly graphs. de Bruijn graph

Table 4.4 Assembly
accuracy of assemblers
evaluated by using REAPR

Species Rank (FCD gap)

Allpaths-lg MaSuRCA SOAPdenovo2

Acinetobacter baumannii NIPH 24 3(4) 1(12) 3(4)

Acinetobacter indicus CIP 110367 1(9) 3(7) 2(8)

Enterobacter cloacae UCICRE 12 3(4) 1(27) 2(5)

Enterococcus faecium BM4538 3(4) 1(22) 2(20)

Escherichia coli BIDMC 39 2(16) 3(3) 1(25)

Klebsiella pneumoniae BIDMC 41 3(4) 1(17) 2(16)

Mucispirillum schaedleri ASF457 3(1) 1(22) 2(16)

Pseudomonas aeruginosa CF614 3(0) 2(1) 1(7)

Streptococcus intermedius ATCC
27335

3(1) 3(1) 1(2)

24 16 16

4 De Novo Genome Assembly of Next-Generation … 49



methods show more strength for short-reads and
in resolving repeats. Overlap graph methods are
more suitable for Sanger shotgun data. While
extension-based methods seemed applicable just
on long sequences, some tricks used in new
algorithms, which use paired-end reads, such as
the PE-Assembler, could apply the greedy idea
efficiently for short reads. The evaluation of
performances of an assembly algorithm is bases
on both the accuracy and contiguity of assem-
blies, and there is always a trade-off between
different measures of assembly performances. It
is not a trivial task to compare assembly
algorithms.

In fact, the assembly results also depend on
the dataset used, besides assembly algorithm. An
algorithm may do well with a dataset but not with
other datasets. For a new dataset, we cannot
exactly predict which algorithm would produce a
better assembly just based on previous assembly
results, due to the difference in dataset used for
assembly. In addition, some algorithms, such as
parameter k in de Bruijn graph-based methods,
require users to predefine assembly parameter.
The use of parameters makes it more difficult to
compare assembly algorithms, for the final
assembly result is definitely dependent on the
parameter chosen for the assembly task. There
are some metrics available for comparing
assembly algorithms, but the availability of a
good metric that is not dependent on the refer-
ence genome is still missing from the literature.

References

Ariyaratne PN, Sung WK (2011) PE-assembler: de novo
assembler using short paired-end reads. Bioinformatics
27:167–174

Bankevich A, Nurk S, Antipov D, Gurevich AA,
Dvorkin M et al (2012) SPAdes: a new genome
assembly algorithm and its applications to single-cell
sequencing. J Comput Biol 19:455–477

Butler J, MacCallum I, Kleber M, Shlyakhter IA,
Belmonte MK et al (2008) ALLPATHS: de novo
assembly of whole-genome shotgun microreads.
Genome Res 18:810–820

Chaisson MJ, Brinza D, Pevzner PA (2009) De novo
fragment assembly with short mate-paired reads: does
the read length matter? Genome Res 19:336–346

Chu TC, Lu CH, Liu T, Lee GC, Li WH, Shih AC (2013)
Assembler for de novo assembly of large genomes.
Proc Natl Acad Sci USA 110:E3417–E3424

Compeau PE, Pevzner PA, Tesler G (2011) How to apply
de Bruijn graphs to genome assembly. Nat Biotechnol
29:987–991

Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002)
Fast algorithms for large-scale genome alignment and
comparison. Nucleic Acids Res 30:2478–2483

Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2007)
SHARCGS, a fast and highly accurate short-read
assembly algorithm for de novo genomic sequencing.
Genome Res 17:1697–1706

Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ,
Burton JN et al (2011) High-quality draft assemblies
of mammalian genomes from massively parallel
sequence data. Proc Natl Acad Sci USA
108:1513–1518

Hernandez D, Francois P, Farinelli L, Osteras M,
Schrenzel J (2008) De novo bacterial genome
sequencing: millions of very short reads assembled
on a desktop computer. Genome Res 18:802–809

Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M,
Otto TD (2013) REAPR: a universal tool for genome
assembly evaluation. Genome Biol 14:R47

Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al
(2007) The grapevine genome sequence suggests
ancestral hexaploidization in major angiosperm phyla.
Nature 449:463–467

Kent WJ (2002) BLAT–the BLAST-like alignment tool.
Genome Res 12:656–664

Li R, Zhu H, Ruan J, Qian W, Fang X et al (2010) De novo
assembly of human genomes with massively parallel
short read sequencing. Genome Res 20:265–272

Li Z, Chen Y, Mu D, Yuan J, Shi Y et al (2012)
Comparison of the two major classes of assembly
algorithms: overlap-layout-consensus and
de-bruijn-graph. Brief Funct Genomics 11:25–37

Luo R, Liu B, Xie Y, Li Z, Huang W et al (2012)
SOAPdenovo2: an empirically improved
memory-efficient short-read de novo assembler. Giga-
science 1:18

Maccallum I, PrzybylskiD,Gnerre S,Burton J, Shlyakhter I
et al (2009) ALLPATHS 2: small genomes assembled
accurately and with high continuity from short paired
reads. Genome Biol 10:R103

Magoc T, Pabinger S, Canzar S, Liu X, Su Q et al (2013)
GAGE-B: an evaluation of genome assemblers for
bacterial organisms. Bioinformatics 29:1718–1725

Metzker ML (2010) Sequencing technologies—the next
generation. Nat Rev Genet 11:31–46

Miller JR, Koren S, Sutton G (2010) Assembly algorithms
for next-generation sequencing data. Genomics
95:315–327

Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD:
a de novo assembler for single-cell and metagenomic
sequencing data with highly uneven depth. Bioinfor-
matics 28:1420–1428

Pevzner PA, Tang H (2001) Fragment assembly with
double-barreled data. Bioinformatics 17:S225–S233

50 M. Liu et al.



Salzberg SL, PhillippyAM, Zimin A, Puiu D,Magoc T et al
(2012) GAGE: a critical evaluation of genome assem-
blies and assembly algorithms.GenomeRes22:557–567

Simpson JT, Durbin R (2012) Efficient de novo assembly
of large genomes using compressed data structures.
Genome Res 22:549–556

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ,
Birol I (2009) ABySS: a parallel assembler for short
read sequence data. Genome Res 19:1117–1123

Wang X, Wang H, Wang J, Sun R, Wu J et al (2011) The
genome of the mesopolyploid crop species Brassica
rapa. Nat Genet 43:1035–1039

Warren RL, Sutton GG, Jones SJ, Holt RA (2007)
Assembling millions of short DNA sequences using
SSAKE. Bioinformatics 23:500–501

Zerbino DR, Birney E (2008) Velvet: algorithms for de
novo short read assembly using de Bruijn graphs.
Genome Res 18:821–829

Zhang T, Luo Y, Chen Y, Li X, Yu J (2012) BIGrat: a
repeat resolver for pyrosequencing-based
re-sequencing with Newbler. BMC Res Notes 5:567

Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL,
Yorke JA (2013) The MaSuRCA genome assembler.
Bioinformatics 29:2669–2677

4 De Novo Genome Assembly of Next-Generation … 51


	4 De Novo Genome Assembly of Next-Generation Sequencing Data
	Abstract
	4.1 Introduction
	4.2 The Challenge of Genome Assembly
	4.3 De Novo Assembly Algorithm
	4.3.1 Classification of De Novo Assembly Algorithm
	4.3.2 The Overlap Layout Consensus Approach
	4.3.3 De Bruijn Graph Approach
	4.3.4 Extension-Based Approach

	4.4 Comparison of Algorithms
	4.4.1 Datasets and Assemblers
	4.4.2 Performance Comparison Using Medium-Sized Genomes
	4.4.3 Performance Comparison Using Nine Bacterial Genomes

	4.5 Discussion
	References


