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22.1            Introduction 

 Gene therapy is a remarkable approach for the 
treatment of a wide range of diseases and is a 
method to prevent, treat, and modulate genetic 
and acquired diseases by changing the expression 
of genes that are responsible for these diseases. It 
has gained more attention over the past decade. 
However, the major challenge of this kind of 
therapy is the development of safe and effective 
gene carrier systems for delivering DNA to the 
target tissue followed by internalization since 
nucleic acids are sensitive to enzymatic attack of 
nucleases and show poor cellular uptake (Mahato 
et al.  1999 ). 

 At present, there are two classes of gene deliv-
ery systems: viral and non-viral systems. Viral 
gene delivery systems have been largely 
employed in clinical trials, because of their high 
transfection effi ciency. They effi ciently deliver 
exogenes to host cells by taking advantage of 
intracellular traffi cking. However, several serious 
drawbacks, including the lack of specifi city to 
target cells; safety concerns, such as risk of 
potential immunogenicity; and chromosomal 
insertion of viral genome, and other drawbacks 
like restricted plasmid size and complicated 
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 production, limit the practical use of viral vec-
tors. The death of a patient in a gene therapy trial 
using viral vectors has focused research on non- 
viral vectors (Glover et al.  2005 ). Non-viral vec-
tors have attracted much attention as safer 
alternatives to viral vectors and also due to sev-
eral advantages, such as ease of production, 
lower immunogenicity against the repeated 
administration, well-defi ned physicochemical 
properties, unlimited DNA packing capacity, and 
low cost. Non-viral vectors have a high degree of 
molecular diversity for making extensive modifi -
cations to overcome extra- and intracellular 
obstacles of DNA delivery (Jeong et al.  2007 ; 
Leong et al.  1998 ). Cationic lipids, liposomes, 
cationic polymers, and physical methods are used 
for DNA internalization. Although cationic lipids 
are easily transferred into the cell and have high 
transfection effi ciency, they are rapidly cleared 
from the blood, which limits their application 
(Midoux et al.  2009 ). They have also some draw-
backs such as toxicity and instability (Leong 
et al.  1998 ; Borchard  2001 ). A range of natural 
and synthetic cationic polymers have also been 
used, including chitosan, poly(L-lysine) (PLL), 
poly(ethylenimine) (PEI), protamine, spermine, 
modifi ed gelatin, poly (β-amino ester), poly 
(lactide- co-glycolide), and poly (ε-caprolactone), 
to prepare polymer-DNA nanoparticles for gene 
delivery (Bhavsar and Amiji  2007 ). Cationic 
polymers are more stable than cationic lipids, and 
they can be condensed with DNA and deliver it to 
the cells (Hirano and Noishiki  1985 ; De Smedt 
et al.  2000 ). 

 Among cationic polymers, chitosan is an 
attractive gene delivery carrier, since it is biocom-
patible, biodegradable, nontoxic, cheap and has 
low immunogenicity (Hirano and Noishiki  1985 ). 
Chitosan, α-(1–4)2-amino-2-deoxy-β-D-glucan, 
is a linear cationic polysaccharide prepared by 
partial alkaline deacetylation of chitin (Skaugrud 
 1989 ). Chitin is mostly obtained from exoskele-
ton of crustacea (shell of shrimp and other crusta-
ceans). Chitosan is a weak base with pKa value of 
the D-glucosamine residue of about 6.2–7.0 and is 
therefore insoluble at alkaline and neutral pH 
value (Fig.  22.1 ) (Hejazi and Amiji  2003 ).

   The primary amine groups provide special 
properties to chitosan and make it very useful in 
pharmaceutical application and gene therapy. 

 From the technological point, it is very impor-
tant that chitosan is hydrosoluble and positively 
charged as these properties are responsible for its 
interaction with negative charged molecules such 
as DNA, upon their contact in an aqueous 
solution. 

 Chitosan can effectively bind DNA and pro-
tect it from the degradation effect of nucleases. 
Chitosans have different degree of N-acetylation 
(40–98 %) and molecular weight (50–2000 kDa) 
(Hejazi and Amiji  2003 ). 

 Because of these good properties of chitosan, 
chitosan nanoparticles have been appealing as a 
gene delivery carrier in recent years. Chitosan 
has been used for the fi rst time as a delivery sys-
tem for DNA by Mumper et al. ( 1995 ), and since 
then chitosan is successfully used as a non-viral 
gene delivery system both  in vitro  and  in vivo  
(Erbacher et al.  1998 ; MacLaughlin et al.  1998 ; 
Roy et al.  1999 ; Aral et al.  2000 ; Koping-Hoggard 
et al.  2001 ; Ozbas-Turan et al.  2003 ; Chen et al. 
 2004 ). 

 In gene therapy, transfection is hampered by 
several problems, including targeting the gene 
delivery system to the target cell, transport 
through the membrane of the cells, degradation 
in endolysosomes, and intracellular traffi cking of 
DNA to the nucleus (Borchard  2001 ). Chitosan- 
based gene delivery systems appeared to have the 
ability to overcome these major obstacles for 
transfection (Ishii et al.  2001 ). 

 In earlier studies, chitosan-DNA was used in 
many pharmaceutical forms including com-
plexes, self-aggregates, emulsions, microspheres, 
and nanoparticles (Erbacher et al.  1998 ; Ozbas- 
Turan et al.  2003 ; Lee et al.  1998 ,  2005a ,  b ; Mao 
et al.  2001 ) as a promising gene carrier. On the 
other hand, gene therapy is based on two basic 
strategies: (1) gene replacement or correction for 
the purpose of production of a protein  appropriate 
to a cell function and (2) inactivation of a gene 
causing cell dysfunction. 

 In this chapter, transfection effi ciency, factors 
infl uencing transfection and cellular uptake, and 
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administration routes of chitosan-nucleic acid 
nanoparticles are discussed.  

22.2     Factors Affecting 
Transfection Effi ciency 

 Transfection is the process of introducing 
nucleic acids into cells. Different factors may 
affect the transfection properties of chitosan-
based systems. Therefore, optimization of the 
transfection effi ciency of chitosan-DNA 
nanoparticles is needed for clinical trials. Useful 
reviews about this topic are available in litera-
ture (Kim et al.  2007 ; Mao et al.  2010 ) 
(Fig.  22.2 ). Some of the factors mentioned 
below (such as presence of serum and others) 
are mostly related to parenteral administration, 
but will be discussed in the chapter as general 
important data about the gene delivery with 
chitosan.

22.2.1       Molecular Weight of Chitosan 

 Molecular weight of chitosan used in gene deliv-
ery is an important formulation variable. The 
effect of molecular weight of chitosan in chitosan- 
DNA particles has been attributed to chain entan-
glement effect. Longer polymer chains in high 
molecular weight chitosan more easily entangle 
free DNA after initial electrostatic interaction has 
occurred. Low molecular weight chitosans hav-
ing shorter polymer chains may not be energeti-
cally favorable for chitosan-DNA particle 
formation (Kiang et al.  2004b ). Confl icting 
results are found in the literature about the infl u-
ence of chitosan molecular weight on the trans-
fection effi ciency. MacLaughlin et al. ( 1998 ) 

studied the transfection effi ciency of commercial 
and prepared depolymerized chitosan (32 and 
120 kDa)-DNA complexes on  Cercopithecus 
aethiops  SV40-transformed kidney cells (Cos-1) 
and noted that molecular weight of chitosan had 
limited effect on plasmid expression  in vitro . 
Similar observations were reported by several 
other groups (Koping-Hogard et al.  2003 ,  2004 ; 
Romoren et al.  2003 ). 

 However, the group of Sato et al. ( 2001 ) 
investigated factors infl uencing the transfection 
effi ciency as well as cell transfection mecha-
nisms of chitosan-DNA complexes; the results 
indicated that chitosans of 10–50 kDa are 
excellent for gene transfer (Ishii et al.  2001 ; 
Sato et al.  2001 ). According to their suggestion, 
molecular weight of chitosan may affect the 
stability, cellular uptake, and the dissociation of 
DNA from chitosan- DNA complex after endo-
cytosis. A certain combination of deacetylation 
degree and molecular weight of chitosan is sug-
gested to be an important factor in transfection 
effi ciency by affecting particle stability 
(Lavertu et al.  2006 ). Csaba et al. ( 2009 ) encap-
sulated plasmid DNA into chitosan nanoparti-
cles prepared with high and low molecular 
weight polymers and found that nanoparticles 
based on low molecular weight chitosan medi-
ated higher plasmid DNA expression than 
nanoparticles prepared with high molecular 
weight chitosans. 

 A charge ratio as high as 60:1 (+/-) was 
required for the formation of physically stable 
polyplex when using low molecular weight of 
chitosan. The degree of polymerization (DPn) of 
chitosan is also important, chitosan having degree 
of polymerization around 18 complexed with 
DNA and transfected  in vitro  and  in vivo  (for lung 
administration) successfully (Koping-Hoggard 
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et al.  2004 ). These polyplexes more easily disso-
ciated and indicated  in vitro  higher transfection 
than high molecular weight chitosan.  In vitro  
transfection requires relatively more stable poly-
plexes for successful gene transfection than 
 in vivo  transfection. However,  in vivo  transfec-
tion effi ciency of chitosan may be dependent on 
factors other than physical stability and is directly 
related to the ability of chitosan to protect DNA 
against the deoxyribonuclease (DNase) enzy-
matic attack. DNA degradation by DNase is 
shown to be a major barrier to an effi cient  in vivo  
transgene expression (in the lung). Therefore, a 
fi ne balance must be provided between DNA pro-
tection (higher with high molecular weight chito-
sans) and effi cient intracellular unpacking (better 
with low molecular weight of chitosan) for 
obtaining high transfection effi ciency with chito-
sans (Koping-Hoggard et al.  2004 ; Kim et al. 
 2007 ). 

 Akbuga et al. ( 2004 ) evaluated interleukin-2 
encoding plasmid DNA (pDNA)-loaded chitosan 
microparticles using low and medium molecular 
weight chitosan and the effect of molecular 
weight of chitosan on  in vitro  transfection. The 
molecular weight of chitosan used and the 
amount of pDNA infl uenced the  in vitro  IL-2 pro-
duction in the cell.  

22.2.2     Degree of Deacetylation (DD) 

 There have been few papers concerning the infl u-
ence of chitosan properties (other than molecular 

weight) on gene transfection. In general the 
degree of chitosan deacetylation greatly affects 
the characteristics of the chitosan such as charge 
density (the number of available primary amines 
for binding), crystallinity, solubility, and degra-
dation rate (Tomihata and Ikada  1997 ). 

 Highly deacetylated chitosan (above 80 %) 
has been generally used to prepare chitosan-DNA 
complexes (Erbacher et al.  1998 ; Koping- 
Hoggard et al.  2001 ; Mao et al.  2001 ). In another 
study Kiang et al. prepared chitosans with vari-
ous degrees of deacetylation and used in nanopar-
ticle formation. They investigated DNA-binding 
effi cacy, morphology, and gene transfer effi -
ciency of these chitosans (Kiang et al.  2004b ). 
The decreased degree of deacetylation of chito-
san (90, 70, and 62 %) resulted in a decrease in 
luciferase expression levels in human embryonic 
kidney (HEK 293), human epithelial cervix ade-
nocarcinoma (HeLa), and human squamous cell 
carcinoma (SW 756) cells. DNA-binding effi -
cacy decreased with decreasing deacetylation 
degree. 

 In another study, similar results were reported 
by Huang et al. ( 2005 ). Various degrees of 
deacetylation (DD 46–88 %) relating chitosan 
were used in forming chitosan-pEGFP-C2 
(Clontech) nanoparticles and cellular uptake and 
transfection were evaluated in the human lung 
carcinoma (A549) cell model. Cellular uptake of 
nanoparticles was signifi cantly reduced by 
decreasing degree of deacetylation of chitosan. 
Lavertu et al. ( 2006 ) have tried to optimize the 
effective parameters (mol. wt, DD, and N/P ratio) 
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  Fig. 22.2    Factors affecting 
transfection effi ciency of 
chitosan-based gene delivery 
system       
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related to chitosan. They obtained maximum 
expression level by using a certain combination 
of deacetylation degree and molecular weight of 
chitosans. High expression of DNA could be 
achieved by simultaneously lowering molecular 
weight and increasing DD or lowering DD and 
increasing molecular weight. In other words, the 
stability of chitosan-DNA systems may be cen-
tral to describe the effect of parameters (mol. wt, 
DD, N/P ratio, and transfection medium) on the 
transgene expression, as complexes that are not 
suffi ciently stable will dissociate early and will 
show low or no expression. Contrary, the highly 
stable complexes might not release DNA once 
inside the cells resulting in low expression. 
Particle (complex) stability is strongly dependent 
on electrostatic binding (Lavertu et al.  2006 ).  

22.2.3     Charge Ratio 

 Electrostatic interaction between chitosan and 
nucleic acids leads to the spontaneous formation 
of nanoparticles of different sizes and shapes 
(Mao et al.  2010 ). The ability of chitosan 
nanoparticles to transfect cells effi ciently depends 
on several factors such as the N/P charge ratio 
represented by the amine group of chitosan-to- 
phosphate group of DNA or RNA (+/-) ratio used 
to form nanoparticles. Because only ~90 % of the 
amino groups in chitosan were protonated at 
pH 5.5–5.7, an N/P ratio, instead of charge ratio, 
was used. Large aggregates formed at N/P ratio 
around 1 but below 0.75 and above 2 yielded sub-
micron size particles. Higher thermal dynamic 
stability was obtained for nanoparticles prepared 
with an N/P ratio between 3 and 8 (Mao et al. 
 2001 ). 

 Ishii et al. ( 2001 ) noted that the transfection 
effi ciency of the complexes increased at charge 
ratios of 3 and 5 and decreased at higher charge 
ratios, due to the relationship between cell uptake 
of DNA and transfection effi ciency. 

 Similar results were reported by Lavertu et al. 
( 2006 ). They found that an optimal N/P ratio is 
needed, because using a low N/P ratio yields 
physically unstable complexes and poor transfec-
tion, while stable complexes prepared at too high 

N/P ratio can also show decreased transfection as 
reported previously (Koping-Hoggard et al.  2001 , 
 2003 ).  

22.2.4     pH 

 The transfection effi ciency of chitosan nano-
plexes 1  is dependent on the pH of the culture 
medium because the charge density of chitosan 
changes with the pH of the buffer. At pH 5.5–5.7, 
about 90 % of the amino groups of chitosan are 
protonated (Mao et al.  2001 ). Binding capacity of 
chitosan with negative charged DNA increases as 
pH of medium decreases (Sato et al.  2001 ). At 
neutral pH, the degree of protonation decreases; 
this means that actual charge of the chitosan 
polyplex 2  is different from the charge of chitosan- 
DNA complexes of the same charge value made 
at pH 5.5 (Romoren et al.  2003 ). 

 Sato et al. ( 2001 ) compared the transfection 
effi ciency of luciferase reporter vector (pGL3)/
chitosan complexes in tumor cells between 
pH 6.9 and 7.6, and the results showed that trans-
fection effi ciency at pH 6.9 was higher than that 
at pH 7.6 because complexes at pH 6.9 are posi-
tively charged and easily bind with the negatively 
charged cells through electrostatic interaction. 
Similar data were reported by Koping-Hogard 
et al. ( 2003 ), who investigated the infl uences of 
pH (2.5–6.5) on the shape of complexes and 
observed coil-globular-shaped complexes at 
pH 6.5. 

 The fraction of soluble globules (globular- 
shaped complexes) increased as the pH decreased 
from 6.5 to 3.5, and further acidifi cation 
decreased the solubility of globules which even-
tually precipitated at pH 2.5. Different pH values 
of transfection media, in the range of 6.5–7.4, 
were tested by Lavertu et al. ( 2006 ). Comparable 
numbers of transfected cells (HEK 293) were 
found for pH 6.5 and 7.1, while drastically low-

1   Particle-based systems can be defi ned on their main 
groups: involving the combination of DNA with cationic 
polymers (polyplex), submicron colloidal systems (nano-
plex), or lipids (lipoplex). 
2   See Footnote 1. 
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ered transfection was observed at pH 7.4. They 
reported that the decrease of medium pH value 
increases the surface charge of the chitosan- DNA 
nanoparticles and increases chitosan binding 
affi nity to DNA; thus, complexes are more stable 
and more effi cient in slightly acidic medium. 
Similar results were reported by different groups 
(Zhaou et al.  2006 ; Liu et al.  2005 ). Chitosan-
DNA polyplexes are shown to be very stable 
under acidic and low ionic strength conditions; 
however, after changing to physiological condi-
tions, they tend to form aggregates and indicate a 
decreased binding affi nity for DNA with neutral 
surface charge of polyplexes (Strand et al.  2005 ).  

22.2.5     Presence of Serum 

 One of the problems for  in vivo  gene delivery 
mediated by cationic liposomes and lipids is that 
gene expression is inhibited by serum (Goldman 
et al.  1997 ). The development of gene delivery 
systems that are stable in serum is very important 
for the improvement of gene therapy by non-viral 
vector. Sato et al. ( 2001 ) investigated the effect of 
serum on the transfection effi ciency of chitosan 
complexes. The results indicated that the pres-
ence of serum enhanced the gene transfer effi -
ciency about 2–3 times than without serum. This 
effect may be caused by increasing cell function 
(viability, membrane permeability) in the pres-
ence of serum. However, the addition of 50 % 
fetal bovine serum (FBS) to transfection medium 
resulted in the decrease of transfection effi ciency 
of chitosan complexes because of cell damage 
induced by the addition of high amount of serum. 

 Erbacher et al. ( 1998 ) reported that chitosan- 
DNA complexes more effi ciently transfected 
human epithelial cervix adenocarcinoma (HeLa) 
cells in the presence of 10 % serum than in its 
absence.  

22.2.6     Plasmid Concentration 

 The amount of plasmid DNA incorporated within 
the particles (complexes) plays an important role 
in the effi ciency of transfection process. The 

transfection effi ciency increases with plasmid 
DNA concentration up to a critical point; thereaf-
ter, the transfection keeps constant or decreases 
signifi cantly (Mao et al.  2010 ; Romoren et al. 
 2003 ). 

 MacLauglin et al. ( 1998 ) used complexes con-
taining 25–400 μg of plasmid, and a plasmid con-
centration of 100 μg was selected and formed 
adequate complexes. The results indicated that as 
the plasmid concentration increased, the diame-
ter of complexes increased. A higher increase in 
size was observed by increasing DNA concentra-
tion and using a higher molecular weight chito-
san (102 kDa) than a lower molecular weight 
chitosan (32 kDa). Thus, formulating complexes 
of a specifi c diameter is possible by adjusting 
plasmid concentration. 

 Romeron et al. ( 2003 ) reported that the con-
centration of DNA is an important factor for the 
magnitude of expressed luciferase in the epithe-
lioma papulosum cyprini cells (EPC). 

 Increasing the DNA concentration from 0.5 to 
2.5 μg per well leads to an increase in gene 
expression (normal dose-response phenome-
non). Saturation in the expression levels was 
observed by a further increase in plasmid con-
centration to 5 μg per well (Romoren et al.  2003 ). 
Similarly, Zhaou et al. ( 2006 ) showed that trans-
fection level increased as the plasmid dose 
increased (0–8 μg/well) in chondrocytes; how-
ever, at higher plasmid dose (16 and 32 μg/well), 
transfection effi ciency greatly decreased. This 
decrease is attributed to the aggregation of chito-
san nanoparticles, resulting in lower cellular 
uptake. 

 In chitosan-tripolyphosphate nanoparticles, 
the effect of plasmid DNA loading (5, 10, and 
20 %) on the transfection effi ciency of nanopar-
ticles was investigated, and 0.5, 1, and 2 μg 
pDNA doses were used. Based on the results 
obtained, a dose of 1 μg was chosen for  in vitro  
studies (Csaba et al.  2009 ). 

 Plasmid encoding interleukin-4 (pIL-4) gene- 
loaded chitosan-TPP nanoparticles were pre-
pared using 3 different concentrations of plasmid. 
Encapsulation effi ciency, particle size, and trans-
fection effi ciency were infl uenced by the amount 
of DNA. Nanoparticles formulated with high 
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amount of DNA showed the highest IL-4 produc-
tion (Ozdemir et al.  2011 ).  

22.2.7     Chitosan Salt Form 

 Chitosan is only soluble in acidic solutions, but 
its salt forms are water soluble and have improved 
transfection effi ciency. Weecharangsan et al. 
( 2008 ) studied polyplexes formulated with differ-
ent chitosan salts such as hydrochloride, acetate, 
lactate, aspartate, and glutamate and found that 
the transfection effi ciency was dependent on the 
salt form.  

22.2.8     Chitosan Concentration 

 In addition to abovementioned factors, concen-
tration of chitosan was investigated as a parame-
ter infl uencing the transfection effi ciency. Stable 
and uniform nanoparticles were formed with chi-
tosan concentration in the range from 50 to 
400 μg/mL of chitosan. After i.m. injection of 
pDNA-loaded chitosan microspheres in rats, a 
clear effect of chitosan concentration on gene 
expression was not seen (Aral et al.  2000 ). 

 Plasmid IL-4 was successfully encapsulated 
into chitosan-TPP nanoparticles prepared 
with different chitosan concentrations (0.25, 
0.125 %). Size of nanoparticles changed with 
the concentration of chitosan. Transfection lev-
els of pIL-4 nanoparticles were also affected by 
the chitosan concentration, i.e., they were higher 
when lower concentration of chitosan and 
higher concentration of DNA were used 
(Ozdemir et al.  2011 ).  

22.2.9     Cell Type 

 Chitosan-mediated DNA transfection depends on 
the cell type; therefore, it is needed to test a gene 
carrier on different cell lines especially cells that 
resemble those that will be targeted (Leong et al. 
 1998 ; Mao et al.  2001 ; Corsi et al.  2003 ). Mao 
et al. ( 2001 ) reported preparation of chitosan- 
DNA nanoparticles and cell dependency of the 

transfection effi ciency of these particles. Higher 
gene expression levels were found in human 
embryonic kidney (HEK 293) cells and bronchial 
epithelia cells (IB-3-1) compared with that in 
human tracheal epithelial cell line (9HTEo) and 
HeLa cells (Mao et al.  2001 ). Cellular membrane 
composition varies among the cell types and can 
facilitate or hinder the binding of the particles 
and internalization. 

 In another study, Corsi et al. ( 2003 ) evaluated 
the transfection potential of chitosan-DNA 
nanoparticles using three different cell lines such 
as human mesenchymal stem cells (MSCs), HEK 
293, and human osteosarcoma cells (MG63) and 
compared them with Lipofectamine® 2000 
(commercial cationic lipid) (Life Technologies). 
The transfection of HEK 293 cells is superior to 
that seen with MG63 cells and MSCs. Their 
results suggested that transfection effi ciency of 
chitosan nanoparticles is depended on the 
cell type.  

22.2.10     Plasmid-Related Factors 

 Although the role of different factors in transfec-
tion was investigated largely, the effect of 
plasmid- related properties on gene transfection 
was not studied detailed. The group of Akbuga 
et al. ( 2003 ) investigated the effect of different 
sized (small and large) plasmids on transfection, 
and similar transfection data were obtained with 
two different sizes of plasmids after  in vivo  appli-
cation to rats. They injected chitosan micro-
spheres containing different forms of plasmid 
(pMK3) into the muscles of the rats and moni-
tored the transfection profi le over 12 weeks. 
Higher protein production was obtained with 
microspheres containing a mixture of super 
coiled and open circular forms (60:40), while the 
linear form induced lower protein production. 
Transfectivity of relaxed (a topological form of 
DNA) or super coiled forms of this reporter plas-
mid was nearly equal (Akbuga et al.  2003 ). After 
co-encapsulation of two plasmids into the same 
microsphere structure,  in vivo  transfection effi -
ciency was investigated. Plasmid DNAs were 
continuously released from chitosan  microspheres 
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after their i.m injection to rats, and high 
β-galactosidase and luciferase productions were 
determined after a long post-transfectional period 
(Ozbas-Turan et al.  2003 ).   

22.3     Preparation Techniques 
of Chitosan Nanoparticles 

 Chitosan nanoparticles are prepared by coacer-
vation and ionic gelation using sodium tripoly-
phosphate. DNA is encapsulated into the 
chitosan nanoparticles or is adsorbed onto the 
surface of nanoparticles. Another preparation 
method is the direct formation of nanoparticles 
from DNA and chitosan by complexation 
(Fig.  22.3 ).

22.3.1       Coacervation 

 Chitosan-DNA nanoparticles were prepared by 
mixing equal volume of chitosan solution 
(pH 5.5) and sodium sulfate solution containing 
DNA (Mao et al.  2001 ). 

 Preparation of chitosan microspheres by 
this method was fi rst described by Berthold 
et al. ( 1996 ). Interleukin-2 (IL-2) expression 
plasmid (pCXWN-hIL-2)-loaded chitosan 
microspheres were evaluated using a coacerva-
tion preparation method that reported previ-
ously by Akbuga et al. ( 2004 ) and Aral et al. 
( 2000 ). IL-2 gene encapsulation was found 
high (82–92 %). High level of IL-2 expression 
was measured in MAT- LyLu, the rat prostate 
adenocarcinoma cell line (Akbuga et al.  2004 ). 
Kiang et al. ( 2004b ) prepared chitosan- DNA 
nanoparticles using coacervation method and 
reported that degree of chitosan deacetylation 

is an important factor in gene transfection effi -
ciency  in vitro  and  in vivo .  

22.3.2     Ionic Gelation 

 This method relies on the interaction between pos-
itively charged chitosan and negatively charged 
polyanion. Nanoparticle formation occurs sponta-
neously due to the molecular linkages between 
positively and negatively charged agents. First 
time Bodmeier et al. ( 1989 ) reported ionotropic 
gelation of chitosan with tripolyphosphate (TPP) 
for drug encapsulation; however, their approach 
was to design bead rather than nanoparticle. Then 
Calvo et al. ( 1997 ) have developed chitosan parti-
cles based on the same principles. 

 Chitosan particles with different characteris-
tics can be obtained by changing concentrations 
of chitosan, TPP, and relative volumes of phases. 

 Particle size of nanoparticles prepared by this 
method changed between 93 and 336 nm depen-
dent on molecular weight of chitosan. 
Nanoparticles showed high DNA encapsulation 
(almost 100 %) independent of molecular weight 
and a very well-defi ned spherical shape (Csaba 
et al.  2009 ).  

22.3.3     Simple Complexation 

 Nanoplexes were prepared by mixing a solution 
of chitosan with nucleic acid solutions. Particle 
sizes change between 150 and 500 nm. This tech-
nique is simple and mild. Particle size depends on 
molecular weight of chitosan used. The zeta 
potential of nanoparticle is affected by changing 
pH and deacetylation degree of chitosan (Lavertu 
et al.  2006 ; Huang et al.  2004 ).  

Chitosan nanoparticles
(nucleic acid delivery)

Ionic gelationSimple complexation
(polyplexes)

Coacervation

  Fig. 22.3    Schematic 
representation of the 
preparation method of 
chitosan-DNA nanoparticles       
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22.3.4     Nucleic Acid Loading into 
Nanoparticles 

 DNA loading in nanoparticles can be done by 
two techniques, during the preparation of 
nanoparticles (incorporation) or adsorption after 
the formation of particles (incubation). In these 
systems, DNA is physically encapsulated into the 
matrix or adsorbed onto the surface.   

22.4     Modifi ed Chitosans 

 Despite the several advantages of chitosan as a 
gene delivery carrier, the application of chitosan/
nucleic acid systems is restricted by low trans-
fection effi ciency originating from its low solu-
bility and low stability at physiological pH and 
its slow endosomal release (Mao et al.  2010 ; 
Wang et al.  2011 ). For that reason, several strate-
gies are taken to address these challenges, and 
hydrophobic and hydrophilic modifi cations were 
made to obtain proper chitosan derivatives. 
Mentioned below modifi cations of chitosan 
affecting skin delivery also will be discussed as 
general important data about other  in vitro  and 
 in vivo  studies. 

22.4.1     Hydrophilic Modifi cation 

 Positively charged chitosan-DNA complexes can 
form aggregates following interaction with blood 
components such as negatively charged serum 
albumin and other opsonins, resulting in rapid 
clearance and short circulation time (Dash et al. 
 1999 ). In a series of hydrophilic modifi cations, 
such as quaternization (Thanou et al.  2002 ) was 
applied to enhance transfection effi ciency lead-
ing to increased water solubility of chitosan at 
physiological pH, reduced opsonization of the 
chitosan polyplex, and improved intracellular 
plasmid release (Mao et al.  2010 ). 

 As being hydrophilic, fl exible polymer polyeth-
ylene glycol (PEG) has long circulating properties, 
which make it an attractive polymer for modifying 
the carriers to increase their hydrophilicity and 
serum half-life (Veronese and Pasut  2005 ).  

22.4.2     Hydrophobic Modifi cation 

 Hydrophobic modifi cation could enhance cell 
binding, alleviate serum inhibition, protect from 
enzymatic degradation, and facilitate intracellu-
lar plasmid DNA association, which have been 
proven to mediate favorable gene transfection 
(Liu et al.  2010 ). Hydrophobic modifi cations of 
chitosan such as deoxycholic acid (Chae et al. 
 2005 ), N-alkylation (Liu et al.  2003 ), thiolation 
(Lee et al.  2007 ), stearic acid (Hu et al.  2006 ), 
and uronic acid (Kim et al.  2003 ) were studied. 

 N-alkylation is an example of functional group 
modifi cation of chitosan. The fi rst proposed alkyl-
ated chitosan (ACS) was prepared from dodecyl 
bromide and chitosan (Liu et al.  2001 ). 

 Chitosan was hydrophobically modifi ed by 
deoxycholic acid to yield self-aggregates in aque-
ous media. These chitosan-deoxycholic acid self- 
aggregates were used as a delivery carrier for 
plasmid DNA in mammalian cells (COS-1 cell 
line). Self-aggregates have a small size with uni-
modal size distribution (Lee et al.  1998 ). 

 Yoo et al. ( 2005 ) developed self-assembled 
nanoparticles using a hydrophobically modifi ed 
glycol chitosan for gene delivery. 

 The derivation of the primary amino groups of 
chitosan with coupling reagents bearing thiol 
functions leads to the formation of thiolated chi-
tosans. Three types of thiolated chitosans have 
been developed: chitosan-cysteine conjugates, 
chitosan-thioglycolic acid conjugates, and 
chitosan- 4-thio-butyl-amidine conjugates. 
Various properties of chitosan are improved by 
thiolation: (1) permeation through intestinal 
mucosa can be enhanced, (2) display  in situ  gell-
ing property, and (3) a prolonged controlled 
release of embedded molecules (Bernkop- 
Schnurch et al.  2004 ). Lee et al. ( 2007 ) prepared 
a highly effective gene delivery system using a 
33 kDa thiol-modifi ed chitosan.  

22.4.3     Amphiphilic Derivatives 

 To obtain favorable characteristics for gene deliv-
ery, hydrophilic and hydrophobic modifi cations 
have been applied to chitosan (CS). 
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 Amphiphilic linoleic acid (LA) and poly 
(β-malic acid) (PMLA)-double grafted chitosan 
(LMC)/pDNA nanocomplexes were prepared 
and characterized. Hydrophobic LA and hydro-
philic PMLA substitutions suppressed nonspe-
cifi c adsorption and enhanced pDNA dissociation. 
However, enzymatic stability and cellular uptake 
were promoted by hydrophobic LA grafting.  In 
vitro  transfection increased 8.0-fold. Higher i.m. 
gene expression in mice compared to chitosan 
was reported (Wang et al.  2011 ). 

 Transfection activities of N-imidazolys-O- 
carboxymethyl chitosan/pDNA complexes were 
studied in HEK 293 cells. High transfection effi -
ciency which is dependent on the degree of imid-
azoyls substitution was obtained. This result 
may be due to its high solubility, high DNA-
binding capability, and low cytotoxicity (Shi 
et al.  2012 ).  

22.4.4     Specifi c Ligand Modifi cation 
(Active Targeting) 

 Successful therapy cannot be guarantee if the 
active molecule does not reach the target site of 
cell. In spite of the advantages of chitosan as a 
gene delivery vector, the application and trans-
fection effi ciency are limited by low cell speci-
fi city, and cellular uptake of nanoparticles 
mostly occurs via nonspecifi c adsorptive endo-
cytosis depending on surface properties of chi-
tosan nanoparticles (Mao et al.  2010 ; Park et al. 
 2010 ). Therefore, for improving cellular uptake 
effi ciency and specifi city to the target cells, 
chitosan- based systems are modifi ed by conju-
gating a cell-specifi c ligand that specifi cally 
recognizes and binds to membrane-bound pro-
teins of target cells. Particularly, cancer cells 
often overexpress some specifi c antigens or 
receptors on their surfaces, which can be used as 
targets in drug development. The specifi c 
ligand-receptor interaction leads to cellular 
uptake of the chitosan/nucleic acid systems via 
receptor-mediated endocytosis. 

 Several targeting molecules and ligands (such 
as transferrin, folate, galactose, and mannose) 

have been used for receptor-mediated chitosan 
modifi cations.  

22.4.5     Other Modifi cation 
Approaches 

 One of the important causes of low transfection 
effi ciency of chitosan-based system in the intra-
cellular surrounding is the ineffi cient release of 
the nucleic acid of chitosan-DNA complexes 
from endosomes into the cytoplasm. Therefore, 
better transfection strategies are needed. For 
improvement in the endosomal escape capability 
of the chitosan, imidazole moieties – as a pH- 
sensitive group – are introduced into the chitosan 
backbone to mimic the action of PEI (Moreira 
et al.  2009 ). For enhancement of endosomal 
escape, histidine-modifi ed chitosan was reported 
by Chang et al. ( 2010 ). This effect may be due to 
high buffering capacity of histidine even if intro-
ducing very small amount (3–4 %). 

 Various studies were made on grafting low 
MW PEI to chitosan in order to enhance the buff-
ering capacity of chitosan, also lowering the 
cytotoxicity of PEI. PEIs with low molecular 
weight are nontoxic but have poor transfection 
effi ciency. Branched PEIs with high molecular 
weight have better DNA transfer ability but high 
toxicity. 

 Kiang et al. ( 2004a ) added poly (propyl acrylic 
acid) (PPAA) in the chitosan-DNA complexes for 
enhancing the transfection effi ciency, because 
PPAA, a highly pH-sensitive polymer, exhibits 
maximum membrane disruption capability at 
below pH 6.0 and results in the disruption of the 
endosomal membrane to release the vesicle con-
tents into the cytosol. Addition of PPAA to 
chitosan- DNA complexes enhanced gene expres-
sion in both HEK 293 and HeLa cells.  

22.4.6     Use of Cell-Penetrating 
Peptides 

 The cellular plasma membrane constitutes are 
effective barrier for many macromolecules 
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( Bolhassani 2011 ). Cell-penetrating peptides are 
short amphipathic and cationic peptides that are 
rapidly internalized across cell membranes. 
Some peptide sequences known as protein trans-
duction domains (PTD) or membrane translocal-
ization signals (MTS) were used for the delivery 
of plasmid DNA (Tung and Weissleder  2003 ). 

 With the addition of nuclear localization sig-
nal peptide to chitosan-DNA complexes, high 
gene expression was obtained with the negligible 
cytotoxicity (Opanasopit et al.  2009 ).   

22.5     Skin Delivery 

 The skin is an attractive target for the therapeu-
tic and prophylactic gene medicines (contain-
ing nucleic acids such as DNA, siRNA, shRNA, 
and carrier). It is not only the largest human 
organ but also a good biological barrier to the 
absorption of drugs and foreign compounds. 
However, different penetration pathways 
including hair follicles, sweat ducts, sebaceous 
glands, and two stratum corneum penetration 
pathways, the inter cell clusters and the inter-
corneocyte clusters (being better sealed and 
more transport resistant), are known, which 
allow the penetration of exogenous substances 
into the skin (Cevc and Ulrich  2010 ). 
Controllable and reliable molecule delivery 
across the skin barrier can be provided with 
stable and deformable nano-sized carriers. The 
skin has been recently investigated for plasmid 
DNA delivery as an alternative to parenteral 
administration of DNA. However, the medical 
use of gun technology or the needle- free devices 
are very limited (Cui and Mumper  2001 ). For 
achieving local and systemic effects of drugs, 
the skin is a potential route for drug delivery by 
nanoparticles. Cui and Mumper ( 2001 ) devel-
oped chitosan-based nanoparticles (200–
300 nm) for topical immunization. They 
prepared two types of nanoparticles, pDNA- 
condensed chitosan nanoparticles and pDNA 
coated on chitosan- carboxymethylcellulose 
(CMC) nanoparticles, and showed that both 
chitosan and depolymerized chitosan oligomer 

can complex CMC to form stable nanoparticles. 
Plasmid DNA was coated on these pre-formed 
nanoparticles. Several different chitosan-based 
nanoparticles containing pDNA were applied 
topically to the skin of mice. These nanoparti-
cles showed an enhanced luciferase expression 
in the skin 24 h after topical application. Beside 
this, for immune response, signifi cant antigen-
specifi c IgG titer was measured as a determi-
nant for expressed β-galactosidase after 28 days 
of application. Ozbas-Turan and Akbuga ( 2011 ) 
investigated  in vitro  and  in vivo  skin gene trans-
fer of DNA-loaded chitosan/TPP nanoparticles 
using plasmid that has SV 40 promoter encod-
ing β-galactosidase (pSV-β-galactosidase) 
(Promega, Madison, WI) as a reporter gene.  In 
vitro  transfection studies [ Mus musculus  
embryo fi broblast cell line (NIH/3 T3) and 
human dermal fi broblast (HDF)] have revealed 
that chitosan/TPP nanoparticles are suitable 
delivery systems for DNA. Lower 
β-galactosidase level was measured in HDF 
than in 3 T3 cell lines. In animal studies, usabil-
ity of nanoparticles was tested and compared in 
baby and adult rats because of the differences. 
In baby rats, the hair follicles are virtually in 
the anagen phase so that the size of the anagen 
follicles is enlarged and the cells grow in a syn-
chronous manner (Raghavachari and Fahl 
 2002 ). Therefore, nanoparticles were tested in 
both adult and baby rats. Higher gene expres-
sion was measured in baby rats than in adult 
rats. On the other hand, contradictory results 
were obtained concerning the charge of 
nanoparticles applied to the skin (Cui and 
Mumper  2001 ; Shi et al.  1999 ). While Cui and 
Mumper ( 2001 ) reported that negative charged 
nanoparticles achieved higher gene expression, 
Shi et al. ( 1999 ) and Fan et al. ( 1999 ) demon-
strated the feasibility of cationic particles to be 
used for topical gene immunization. The results 
of Ozbas-Turan and Akbuga ( 2011 ) were in 
accordance with the results of Shi et al. ( 1999 ). 
According to histological data of Ozbas-Turan 
and Akbuga ( 2011 ), β-gal expression was 
mainly localized in the dermis and hypodermis 
particularly close to the hair follicles. Badea 
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et al. ( 2007 ) used cationic nanoparticles as a 
topical formulation for the skin delivery of 
interferon gamma.

  Gene guns have been used for the delivery of 
nucleic acid-coated gold particles through the 
stratum corneum to the epidermis by helium. 
Using the gene gun, coated DNA can be inserted 
into the cytoplasm and nuclei of cells enhancing 
expression of the encoded protein. However, 
non-biodegradable gold particles may cause 
adverse side effects when accumulated (Lin et al. 
 2006 ,  2008 ). Instead of gold particles, biodegrad-
able nanoparticles composed of chitosan and 
poly-γ-glutamic acid were prepared by an ionic- 
gelation method for transdermal DNA delivery 
and used with a low-pressure gene gun. Chitosan- 
DNA nanoparticles are compared with nanopar-
ticles containing CS/γ-PGA (poly-γ-glutamic 
acid)/DNA, provided an enhanced penetration 
depth of DNA into the mice skin and increased 
gene expression. Lee et al. suggested that this 
enhancing effect may be due to the fact that 
chitosan-poly-γ-glutamic acid/DNA nanoparti-
cles were more densely arranged (showing very 
close packing) than chitosan nanoparticles, thus 
having a larger mobility for penetration nanopar-
ticles into the skin barrier (Lee et al.  2008 ). 

 Chitosan exhibits outstanding properties, such 
as having a protonable amino group for complex-
ation with nucleic acids, mucoadhesive proper-
ties, and permeation-enhancing ability. These 
remarkable properties of chitosan offered oppor-
tunities for its biomedical application (Croisier 
and Jerome  2013 ). In burn treatment different 
types of skin substitutes, i.e., epidermal equiva-
lents, dermal equivalents, and composite equiva-
lents, have been used (Pereira et al.  2007 ). 
However, the major limitation of dermal equiva-
lents for treatment of deep burn is slow vascular-
ization, which may result in graft necrosis. To 
enhance angiogenesis plasmid DNA encoding 
vascular endothelial growth factor-165 (VEGF- 
165) was complexed with N,N,N-trimethyl chito-
san chloride (TMC) and loaded into bilayer 
porous collagen-chitosan/silicon membrane der-
mal equivalents (BDE). These skin substitutes 
were applied for the treatment of full-thickness 
burn wounds in the skin. Different BDEs were 

then transplanted in porcine full-thickness burn 
wounds. After treatment the TMC/pDNA group 
had a higher number of newly formed mature 
blood vessels and faster regeneration of the der-
mis compared to control groups. After 14 days, a 
further ultrathin skin grafting was observed on 
the regenerated dermis, leading to complete 
regeneration of the skin of the burn wound (Guo 
et al.  2010 ,  2011 ). 

 Skin is a highly immune-reactive organ con-
taining antigen-presenting cells such as 
Langerhans cells (LCs), particularly in the epi-
dermis, and it provides a favorable site for DNA 
vaccines (Lee et al.  2010 ). Multifunctional core- 
shell polymeric nanoparticles composed of 
PLGA-core and glycol chitosan-shell were pre-
pared and applied into the epidermis via a gene 
gun. Nanoparticles transfected DNA directly into 
LCs present in the epidermis. Transfected LCs 
then migrated to lymph nodes and expressed the 
encoded gene products in the skin draining lymph 
nodes (Lee et al.  2010 ). Here, LCs may be acti-
vated by antigens in the periphery and move to 
the lymphoid organs to stimulate an immune 
response. 

 Salva et al. ( 2011 ) evaluated chitosan/pGM- 
CSF (plasmid encoding granulocyte macrophage 
colony-stimulating factor) complexes  in vitro  and 
suggested that this system may be useful for 
wound healing.  

    Conclusions 

 The skin represents a site for the treatment of 
cutaneous diseases as well as systemic dis-
eases. Methods for gene delivery via skin have 
been developed as a therapeutic strategy for 
the treatment of different skin disorders. Both 
viral and non-viral methods have been stud-
ied. However, due to safety concerns, the use 
of viral methods is being questioned and non-
viral alternatives are gaining major interest. 
Chitosan-based gene delivery by topical DNA 
application onto the skin has great potential. 

 Although important development was 
achieved in chitosan-based systems for gene 
delivery, the therapeutic effectiveness still 
requires to be improved for clinical adminis-
tration. Standardization of chitosan for 
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 pharmaceutical use, regarding solubility,  
in vivo  stability, cell uptake, and unpacking, is 
an essential problem that must be solved. Also 
more  in vivo  studies are needed to be carried 
out in order to overcome the hurdles related to 
skin delivery of chitosan particles.     
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