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Abstract. Digital signature schemes are a foundational building block
enabling integrity and non-repudiation. We propose a graph signature
scheme and corresponding proofs that allow a prover (1) to obtain a sig-
nature on a committed graph and (2) to subsequently prove to a verifier
knowledge of such a graph signature. The graph signature scheme and
proofs are a building block for certification systems that need to estab-
lish graph properties in zero-knowledge, as encountered in cloud security
assurance or provenance. We extend the Camenisch-Lysyanskaya (CL)
signature scheme to graphs and enable efficient zero-knowledge proofs of
knowledge on graph signatures, notably supporting complex statements
on graph elements. Our method is based on honest-verifier Σ-proofs and
the strong RSA assumption. In addition, we explore the capabilities of
graph signatures by establishing a proof system on graph 3-colorability
(G3C). As G3C is NP-complete, we conclude that there exist Camenisch-
Lysyanskaya proof systems for statements of NP languages.

1 Introduction

Digital signature schemes are foundational cryptographic primitives; they are
useful in themselves to ensure integrity and non-repudiation and as building
block of other systems. From their first construction by Rivest, Shamir and
Adleman [1], digital signatures have been on bit-strings or group elements, on a
committed sequence of bit-strings [2] or structure-preserved group elements [3].
In this work, we establish a signature scheme and corresponding proof system
for committed graphs.

The basis for this work is the Camenisch-Lysyanskaya proof system: a col-
lection of distributed algorithms that allow an issuer, a prover and a verifier
to prove knowledge of committed values, issue a Camenisch-Lysyanskaya (CL)
signature [2,4] on committed values, and prove knowledge of such a signature in
zero-knowledge. It uses honest-verifier Σ-proofs (Schnorr proofs [5]) and has the
advantage that it keeps all attributes in the exponent. It thereby allows us to
access attributes with known discrete-logarithm-based zero-knowledge proofs of
knowledge [5–10]. The attributes that could be signed are, however, limited by
the message space of the CL-signature scheme: a sequence of small bit-strings.

We study how to extend the Camenisch-Lysyanskaya proof system to estab-
lish signatures on committed graphs and, by extension, on committed statements
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from NP languages. Zero-knowledge proofs of certified or committed graphs and
complex statements thereon have significant applications beyond classical graph
proof techniques [11,12] or the more recent proposal of transitive signatures [13].
The key difference to earlier work is that the graph encoding is universal, enables
direct access to graph elements, and allows a prover to be flexible in the state-
ments proven after the graph is certified. Such graph proofs are instrumental in
foundational techniques, such as the zero-knowledge proof of knowledge of certi-
fied Petri nets as well as in various application scenarios, such as for the certifi-
cation of audited cloud topologies, for which we proposed a dedicated framework
for topology proofs [14].

First, we establish a new encoding of undirected graphs into the message
space of CL-Signatures. The encoding supports vertex- or edge-labeled graphs
and is universal in the sense that it supports efficient proofs over arbitrary graph
elements and their relations.

Second, we extend the Camenisch-Lysyanskaya proof system to graphs by
integrating the graph encoding into integer commitments and the CL-Signature
bootstrapping process. This allows prover and issuer to sign committed graphs
with sub-graphs contributed by both parties and to prove knowledge of graph
signatures in honest-verifier Σ-proofs. The obtained graph proof system in itself
enables efficient zero-knowledge proofs of interesting graph properties, such as
partitions, connectivity and isolation [14]. Graph proofs with a level of indirection
between the authority on the graph (the issuer) and the verifier, established by
a graph signature and with access to a wide range of graph properties, have not
been covered by existing zero-knowledge graph proofs, such as [11,12,15], or tran-
sitive signatures [13]. While the former graph proofs are powerful constructions
allowing for NP statements, e.g., graph 3-colorability or directed Hamiltonian
cycle, their encoding does not cater for proving relations over graph elements in
zero-knowledge. The latter is focused on the transitive closure along graph edges.

Third, we establish a proof system for graph 3-colorability (G3C) that allows
us to obtain CL-Signatures on committed instances of 3-colorable graphs and
to prove knowledge thereof to a verifier in zero-knowledge. Given that graph
3-colorability is NP-complete, we can lift the Camenisch-Lysyanskaya proof sys-
tem to NP statements. Based on the 3-colorability proof system in a special
RSA group and under the Strong RSA assumption, we show that there exists a
Camenisch-Lysyanskaya proof system for any NP language, that is, the proof is
capable of issuing CL-Signatures on committed statements from the NP language
and to prove knowledge of such signatures in honest-verifier Σ-proofs. Whereas
the G3C-reduction does not offer efficient constructions for graph proofs, it shows
the expressiveness of graph signatures.

In effect, this work extends the reach of the Camenisch-Lysyanskaya proof
system to signatures and proofs on structures of entire systems. To our knowl-
edge, it is the first work to enable signatures on committed graphs. Notably, the
graph elements are present in the exponents and, thereby, accessible to known
discrete-logarithm-based zero-knowledge proofs on a wide range graph properties
in honest-verifier proofs.
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1.1 Outline

In Sect. 2, we discuss the preliminaries of our graph proof construction:
Camenisch-Lysyanskaya signatures and Camenisch-Groß encoding. Based on the
Camenisch-Groß encoding, we establish a canonical encoding for vertex- and
edge-labeled graphs in Sect. 3. Section 4 establishes how integer commitments
and CL-Signature are extended with the graph encoding. In Sect. 5 we show how
graph 3-colorability can be expressed in the graph proof system as proof of the
encoding’s theoretical reach. Section 7 considers earlier work on zero-knowledge
proofs and signatures on graphs, while Sect. 8 draws conclusions on this work.

2 Preliminaries

2.1 Assumptions

Special RSA Modulus. A special RSA modulus has the form N = pq, where
p = 2p′ + 1 and q = 2q′ + 1 are safe primes, the corresponding group is called
special RSA group. Strong RSA Assumption [1,7]. Given an RSA modulus N and
a random element g ∈ Z

∗
N , it is hard to compute h ∈ Z

∗
N and integer e > 1 such

that he ≡ g mod N . The modulus N is of a special form pq, where p = 2p′ + 1
and q = 2q′ + 1 are safe primes. Quadratic Residues. The set QRN is the set of
Quadratic Residues of a special RSA group with modulus N .

2.2 Integer Commitments

Damg̊ard and Fujisaki [6] showed for the Pedersen commitment scheme [16]
that if it operates in a special RSA group and the committer is not privy to
the factorization of the modulus, then the commitment scheme can be used to
commit to integers of arbitrary size. The commitment scheme is information-
theoretically hiding and computationally binding. The security parameter is �.
The public parameters are a group G with special RSA modulus N , and gener-
ators (g0, . . . , gm) of the cyclic subgroup QRN . In order to commit to the values
(V1, . . . , Vl) ∈ (Z∗

n)l, pick a random R ∈ {0, 1}� and set C = gR
0

∏l
i=1 gvi

i .

2.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for
proving statements about discrete logarithms, such as (1) proof of knowledge
of a discrete logarithm modulo a prime [5] or a composite [6,7], (2) proof of
knowledge of equality of representation modulo two (possibly different) compos-
ite [8] moduli, (3) proof that a commitment opens to the product of two other
committed values [8,17], (4) proof that a committed value lies in a given inte-
ger interval [8,9], and also (5) proof of the disjunction or conjunction of any
two of the previous [18]. These protocols modulo a composite are secure under
the strong RSA assumption and modulo a prime under the discrete logarithm
assumption.
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Proofs as described above can be expressed in the notation introduced by
Camenisch and Stadler [19]. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such
that y = gαhβ and ỹ = g̃αh̃δ holds, where u ≤ α ≤ v,” where y, g, h, ỹ, g̃,
and h̃ are elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The
convention is that Greek letters denote quantities of which knowledge is being
proven, while all other values are known to the verifier. We apply the Fiat-Shamir
heuristic [20] to turn such proofs of knowledge into signatures on some message
m; denoted as, e.g., SPK{(α) : y = gα}(m). Given a protocol in this notation,
it is straightforward to derive an actual protocol implementing the proof.

2.4 Camenisch-Lysyanskaya Signatures

Let us introduce Camenisch-Lysyanskaya (CL) signatures in a Strong RSA
setting [2]. Let �M, �e, �N , �r and L be system parameters; �r is a security
parameter, �M the message length, �e the length of the Strong RSA problem
instance prime exponent, �N the size of the special RSA modulus. The scheme
operates with a �N -bit special RSA modulus. Choose, uniformly at random,
R0, . . . , RL−1, S, Z ∈ QRN . The public key pk(I) is (N,R0, . . . , RL−1, S, Z), the
private key sk(I) the factorization of the special RSA modulus. The message space
is the set {(m0, . . . ,mL−1) : mi ∈ ±{0, 1}�M}.

Signing hidden messages. On input m0, . . . ,mL−1, choose a random prime num-
ber e of length �e > �M +2, and a random number v of length �v = �N +�M +�r.
To sign hidden messages, user U commits to values V in an integer commitment
C and proves knowledge of the representation of the commitment. The issuer
I verifies the structure of C and signs the commitment:

A =

(
Z

CRml

l . . . R
mL−1
L−1 Sv′

)1/e

mod N.

The user completes the signature as follows: σ = (e,A, v) = (e,A, (v′ + R)).
To verify that the tuple (e,A, v) is a signature on message (m0, . . . ,mL−1),

check that the following statements hold: Z ≡ AeRm0
0 . . . R

mL−1
L−1 Sv (mod N),

mi ∈ ±{0, 1}�M , and 2�e > e > 2�e−1 holds.

Theorem 1. [2] The signature scheme is secure against adaptive chosen mes-
sage attacks under the strong RSA assumption.

Proving Knowledge of a Signature. The prover randomizes A: Given a signature
(A, e, v), the tuple (A′ := AS−r mod N, e, v′ := v + er) is also a valid signature
as well. Now, provided that A ∈ 〈S〉 and that r is chosen uniformly at random
from {0, 1}�N+�∅ , the value A′ is distributed statistically close to uniform over
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Z
∗
N . Thus, the user could compute a fresh A′ each time, reveal it, and then run

the protocol

PK{(ε, ν′, μ0, . . . , μL−1) :

Z ≡ ±Rμ0
0 · · · RμL−1

L−1 A′εSν′
(mod N) ∧

μi ∈ ±{0, 1}�M ∧ ε ∈ [2�e−1 + 1, 2�e − 1]}

2.5 Set Membership from CL-Signatures

Set membership proofs can be constructed from CL-Signatures following a
method proposed by Camenisch, Chaabouni and shelat [21]. For a set S =
{m0, . . . ,mi, . . . ,ml}, the issuer signs all set members mi in CL-Signatures
σi = (A, e, v) and publishes the set of message-signature pairs {(mi, σi)} with
integrity. To prove set membership of a value committed in C, the prover shows
knowledge of the blinded signature σ′

i corresponding to the message mi and
equality of exponents with C. We explain this technique in detail in the extended
version of this paper and denote a set membership proof μ[C] ∈ S, which reads
μ encoded in commitment C is member of set S.

2.6 Camenisch-Groß Encoding

The Camenisch-Groß (CG) Encoding [22] establishes structure on the CL mes-
sage space by encoding multiple binary and finite-set values into a single message,
and we will use a similar paradigm to encode graphs efficiently. We explain the
key principles briefly and give more details in the extended version of this paper.

The core principle of the CG-Encoding is to represent binary and finite-
set attribute values as prime numbers. It uses divisibility and coprimality to
show whether an attribute value is present in or absent from a credential. The
attribute values certified in a credential, say ei, ej , and el, are represented in
a single message of the CL-Signature, by signing the product of their prime
representative E = ei ·ej ·el in an Integer attribute. The association between the
value and the prime number of the encoding is certified by the credential issuer.

Divisibility/AND-Proof. To prove that a disclosed prime representative ei is
present in E, we prove that ei divides the committed product E, we show that
we know a secret μ′ that completes the product:

PK{(μ′, ρ) : D ≡ ±(gei)μ′
hρ (mod N)}.

Coprimality/NOT-Proof. We show that one or multiple prime representatives
are not present in a credential, we show coprimality. To prove that two values
E and F are coprime, i.e., gcd(E,F ) = 1, we prove there exist integers a and
b such that Bézout’s Identity equals 1, where a and b for this equation do not
exist, if gcd(E,F ) > 1.

PK{(μ, ρ, α, β, ρ′) : D ≡ ±gμhρ (mod N) ∧ g ≡ ±Dα(gF )βhρ′
(mod N)}.
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OR-Proof. To show that a credential contains an attribute e that is contained in
an OR-list, we show there exists an integer a such that ae =

∏�
i ei; if e is not in

the list, then there is no such integer a as e does not divide the product. We use
the notation α ⊆ Ξ for an OR-proof that α contains one or more values of Ξ.

3 Graph Encoding

We consider graphs over finite vertex sets, with undirected edges or directed arcs,
and finite sets of vertex and edge labels. Vertices and edges may be associated
with multiple labels. We leave the encoding of directed arcs to the extended
version of this paper.

V Finite set of vertices
E ⊆ (V × V) Finite set of edges
G = (V, E , tV , tE) Graph
LV ,LE Finite sets of vertex and edge labels
fV : V → P(LV) Labels of a given vertex
fE : E → P(LE) Labels of a given edge
n = |V|,m = |E| Number of vertices and edges

For each vertex i in V, we introduce a vertex identifier, a prime ei, which
represents this vertex in credential and proofs. The symbol ⊥, associated with
identifier e⊥ represents that a vertex is not present. All vertex identifiers are
pair-wise different. We call the set of all vertex identifiers ΞV , their product
χV = ΠΞV . For each label k in the label sets LV and in LE , we introduce
a prime representative ek. All label representatives are pair-wise different. We
call the set of all label representatives ΞL, their product χL = ΠΞL. Vertex
identifiers and label representatives are disjoint:

ΞV ∩ ΞL = ∅ ⇔ gcd(χV , χL) = 1.

Random Base Association. We encode vertices and edges into the exponents of
integer commitments and CL-Signatures and make them therefore accessible to
proofs of linear equations over exponents. We randomize the base association to
vertices and edges: For a vertex index set V= 0,. . . ,i,n-1 with vertex identifiers
ei, we choose a uniformly random permutation πV of set V to determine the
base Rπ(i) to encode vertex i. Edge bases Rπ(i,j) are chosen analogously with a
random permutation πE .

Encoding Vertices. To encode a vertex and its associated labels into a graph
commitment or CL-Signature, we encode the product of the vertex identifier
ei ∈ ΞV and the prime representatives ek ∈ ΞL for k ∈ fV(i) of the labels into a
single of the signature message. The product of prime representatives is encoded
as exponent of dedicated vertex bases R ∈ GV .
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Table 1. Interface of the graph signature scheme.

Commit(G; R) A PPT algorithm computing an Integer commitment on
a graph

Keygen(1�, params) A PPT algorithm computing the key setup

HiddenSign(C, VU, VI, pk I) An interactive PPT algorithm signing a committed
graph

Private inputs: User U: GU, commitment randomness R; Issuer I: GI, sk I

Verify(pk I, C, R′, σ) A verification algorithm on graph commitment C and
signature σ.

Encoding Edges. To get a compact encoding and efficient proofs thereon, the
encoding needs to maintain the graph structure and to allow us to access it to
proof higher-level properties, such as connectivity and isolation. The proposal we
make in this paper after evaluating multiple approaches is to use divisibility and
coprimality similar to the CG-Encoding to afford us these efficient operations
over the graph structure, while offering a compact encoding of edges.

Recall that each vertex is certified with an vertex identifier from ΞV , e.g., ei

or ej . For each edge (i, j) ∈ E , we include an edge attribute as exponent of a
random edge base Rπ(i,j) ∈ GE , containing the product of the vertex identifiers
and the associated label representatives ek ∈ ΞL for k ∈ fE(i, j) of the edge:

E(i,j) := ei · ej · Πk∈fE(i,j)ek.

whereas we usually consider simple graphs, specialties such as multigraphs, loops
(i, i) encoded as e2i or half-edges encoded as (ej , e⊥) can be included.

Definition 1 (Well-formed Graph). We call a graph encoding well-formed iff
1. the encoding only contains prime representatives e ∈ ΞV ∪ΞL in the exponents
of designated vertex and edge bases R ∈ GV ∪ GE , 2. each vertex base R ∈ GV
contains exactly one vertex identifier ei ∈ ΞV , pair-wise different from other
vertex identifiers and zero or more label representatives ek ∈ ΞL, and 3. each
edge base R ∈ GE contains exactly two vertex identifiers ei, ei ∈ ΞV and zero or
more label representatives ek ∈ ΞL.

Theorem 2 (Unambiguous Encoding and Decoding). A well-
formed graph encoding on the integers is unambiguous modulo the base
association. [Proof 9.1]

4 Signatures on Committed Graphs

CL-signatures are signatures on committed messages, where messages can be
contributed by issuer and user. This translates to a user committing to a hidden
partial graph GU, which is then completed by the issuer GI, as outline in the
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interface in Table 1. We establish the secrecy notion of the construction first,
explain the proof of representation second, and the issuing third.

As a point of reference, we give the structure of the graph signatures first.
We have bases Rπ(i) ∈ GV , which store attributes encoding vertices, and bases
Rπ(i,j) ∈ GE , which store attributes encoding edges. Observe that which base
stores which vertex or edge is randomized by permutations πV and πE .

Z = · · · ReiΠk∈fV (i)ek

π(i) · · ·
︸ ︷︷ ︸

∀ vertices i

· · · ReiejΠk∈fE (i,j)ek

π(i,j) · · ·
︸ ︷︷ ︸

∀ edges (i,j)

AeSv mod N

4.1 Secrecy Notion

In a known-graph proof, the structure of the graph G = (V, E) is an auxiliary
input to the verifier. Such a proof occurs if the prover needs to prove knowledge
of a (NP-hard) property of the entire graph, e.g., a proper coloring in graph
3-colorability (cf. Sect. 2.4).

A hidden-graph proof keeps the structure of the graph G = (V, E) secret.
For instance, there are graph proofs in which a local property is proven and the
graph structure itself kept secret, e.g., when proving that disclosed vertices of
the graph are connected by a hidden path.

The number of bases from GV and GE in a CL-Signature reveals an upper-
bound on the number of vertices n and edges m of the signed graph. A suitable
padding can be introduced by encoding nil-vertices e⊥ and nil-edges (e⊥, e⊥).

Proving properties over multiple attributes reveals which bases were involved
in the proof. Characteristic patterns over said bases may interfere with the CL-
Signature’s multi-use unlinkability. For instance, if the prover shows that vertices
i and j are connected by an edge (i, j) along with properties on the vertices
themselves, the verifier will learn that the bases for the vertex identifiers ei

and ej are related to the base for the encoding of edge (i, j). To overcome this
linking, the prover can obtain a collection of CL-Signatures on the same graph,
each with a randomized association between bases and vertices/edges, that is,
using different random permutations πV and πE . When proving a property over
the graph the prover chooses a CL-Signature from the collection uniformly at
random and proves possession over that instance.

4.2 Proof of Representation

For a full proof of representation, we need to establish that the encoded graph in
a graph commitment or CL-Signature is indeed well-formed (Definition 1). Given
a graph commitment C the prover and verifier engage in the following proof of
representation (the proof for a CL credential work analogously). We show that
vertex bases contain a bi-partition of one and only one vertex identifier ei ∈ ΞV
and a set of labels el ∈ ΞL. Edge bases contain a bi-partition of a product of
exactly two vertex identifiers (ei · ej) and a set of labels el ∈ ΞL. To prove that
the representation contains exactly one vertex identifier for a vertex base and
two vertex identifiers for an edge base, we establish a set membership proof.
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1. Commitments. The prover computes Integer commitments on the exponents
of all vertex and edge bases. For each vertex i and for each edge (i, j), the prover
computes commitments on vertex attribute and identifier (all modN):

Ci = ReiΠk∈fV (i)ekSr and C̆i = ReiS r̆;
C(i,j) = ReiejΠk∈fE (i,j)ekSr, C̆(i,j) = Reiej S r̆ and Ċi = ReiS ṙ.

2. Proof of knowledge. We build up the proof of possession and well-formedness
step by step, where it is understood the proofs will be done in one compound
proof of knowledge with referential integrity between the secret exponents. Let
us consider a proof fragment for vertices i, j and an edge (i, j) committed in a
graph commitment C (the same proof structure is used for CL-Signatures).

2.1 Proof of representation. We prove that commitment C decomposes into
commitments Ci, Cj , one for each vertex i, j and one commitment C(i,j) for each
edge (i, j):

PK{(μi, μj , μ(i,j), ρ, ρi, ρj , ρ(i,j)) :

C ≡ ± · · · Rμi

π(i) · · · Rμj

π(j) · · · Rμ(i,j)

π(i,j) · · · Sρ (mod N) ∧ (1)

Ci ≡ ±RμiSρi (mod N) ∧ Cj ≡ ±Rμj Sρj (mod N) ∧ (2)
C(i,j) ≡ ±Rμ(i,j)Sρ(i,j) (mod N)}. (3)

2.2 Vertex composition. Second, we need to show properties of the vertex com-
position, that the encoding for each vertex i contains exactly one vertex identifier
ei ∈ ΞV and zero or multiple label representatives ek ∈ ΞL. We show this struc-
ture with help of the commitments C̆i and set membership and prime-encoding
OR proofs. This proof is executed for all vertices.

PK{(εi, ρ̆i, γi, ρ
′
i) :

C̆i ≡ ±RεiSρ̆i (mod N) ∧ Ci ≡ ±C̆γiSρ′
i (mod N)∧ (4)

γi[Ci] ⊆ ΞL ∧ εi[C̆i] ∈ ΞV}. (5)

2.3 Edge composition. Third, we prove the structure of each edge (i, j) over the
commitments C(i,j), showing that each commitment contains exactly two vertex
identifiers ei, ej ∈ ΞV as well as zero or more label representative ek ∈ ΞL:

PK{(εj , ρ(i,j), γ(i,j), ρ
′
(i,j)) :

C̆(i,j) ≡ ±Ċ
εj

i Sρ(i,j) (mod N)∧ (6)

C(i,j) ≡ ±C̆
γ(i,j)

(i,j) Sρ′
(i,j) (mod N)∧ (7)

γi,j ⊆ ΞL}. (8)
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2.4 Pair-wise difference. We prove pair-wise difference of vertices by showing
that the vertex representatives are pair-wise co-prime over the commitments C̆i

and C̆j .

PK{(∀i, j : αi,j , βi,j , ρi,j) : R ≡ ±C̆
αi,j

i C̆
βi,j

j Sρi,j (mod N)}. (9)

Theorem 3 (Proof of Well-formedness). The compound proof of knowl-
edge establishes the well-formedness of an encoded graph according to
Definition 1. [Proof 10]

4.3 Joint Graph Issuing

To jointly issue a graph CL-signature, a user commits to a hidden partial graph
and the issuer adds further elements to the graph (cf. Sect. 2.4)

In the setup, the issuer establishes a user vertex space and issuer vertex space,
i.e., a bi-partition on vertex and edge bases, GV and GE and on vertex identifiers
ΞV . Thus, user and issuer can encode partial graphs without interfering with each
other.

In the joint graph issuing, user and issuer designate and disclose connection
points (vertex identifiers) that allow the user and the issuer to connect their
sub-graphs deliberately. The user constructs a graph representation by choosing
two uniformly random permutation πV and πE for the base association on the
user bases and commits to his sub-graph in a graph commitment. The user
interacts with the issuer in a proof of representation of his committed sub-
graph. The issuer verifies this proof, chooses uniformly random permutations for
his graph elements and encodes them into his base range. The issuer creates the
pre-signature of the CL-Signature scheme on the entire graph, proving that the
added sub-graph is well-formed. The user completes the CL-Signature with his
own randomness.

Theorem 4 (Security of Graph Signatures). The graph signature scheme
maintains confidentiality and integrity of the encoded graphs and offers existen-
tial unforgeability against adaptive chosen message attacks under the strong RSA
assumption. [Proof 9.1]

5 Graph 3-Colorability and NP Statements

5.1 Graph 3-Colorability

We adapt the following definition from Goldreich, Micali and Wigderson [11].

Definition 2 (Graph 3-Colorability). A graph G = (V, E) is said to be 3-
colorable if there exists a vertex label mapping fV : V → {R,G,B} called proper
coloring such that every two adjacent vertices are assigned different color labels.
This means that for each edge (i, j) ∈ EfV(i) �= fV(j). The language graph
3-colorability, denoted G3C, consists of the set of undirected graphs that are 3-
colorable. Graph 3-Colorability is known to be NP-complete. [23]
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We adapt the graph 3-colorability problem to show in honest-verifier zero-
knowledge that the prover knows an CL signature on an instance of a proper
coloring of a given graph G.

Without loss of generality, we assume that graph G is simple and con-
nected. The three color labels L = {R,G,B} are encoded with three primes
ΞL = {eR, eG, eB}. The graph is encoded with vertex identifiers ΞV and these
vertex labels. In addition to the conditions for a well-formed graph (Definition 1),
we require that each vertex base contains exactly one label representative from
ΞL, which we show with a set membership proof on the secret vertex label.

The prover shows knowledge of a proper graph coloring by showing that the
product of vertex identifiers and label representatives for each pair of adjacent
vertices (i, j) are coprime.

Common inputs. Graph G, public-key of the CL-issuer.
Prover input. CL-Signature on proper coloring for G3C.

1. Credential randomization and commitments. The prover computes random-
izations for the graph signature as well as for all occurrences of set membership
proofs. The prover computes Integer commitments on the exponents of all vertex
and edge bases. For each vertex i, the prover computes two commitments on the
vertex attribute and the vertex identifier:

Ci = ReiefV (i)Sr mod N and C̆i = ReiSr mod N.

For each edge (i, j), the prover computes the commitment:

C̆i,j = Reiej Sr mod N.

2. Proof of knowledge. The prover sends the commitments to the verifier. Then,
prover and verifier engage in the following proof of possession over the graph
signature and vertices i and j and all edges (i, j). We build upon the proof
of representation and well-formedness presented in Sect. 4.2 with the following
differences: Instead of proving that a vertex contains zero or multiple labels, we
prove that the vertex contains exactly one label. Further, the proof is simplified
because the edges do not contain labels. While we explain the proofs step by step,
it is understood that the proofs are executed as compound proof of knowledge
with referential integrity between the secret exponents.

2.1 Possession of CL-Signature. First, we prove of possession of the graph sig-
nature and representation of the commitments. Clause 1 proves possession of the
CL-Signature on the graph. The clauses 2 and 3 prove the representation on the
integer commitments on signed attributes for vertices j, j and edges (i, j), and,
thereby, make the attributes accessible for the analysis of the exponents.
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PK{(μi, μj , μ(i,j), ε, ν
′, ρi, ρj , ρ(i,j)) :

Z ≡ ± · · · Rμi

π(i) · · · Rμj

π(j) · · · Rμ(i,j)

π(i,j) · · · (A′)εSν′
(mod N) ∧ (1)

Ci ≡ ±RμiSρi (mod N) ∧ Cj ≡ ±Rμj Sρj (mod N) ∧ (2)
C(i,j) ≡ ±Rμ(i,j)Sρ(i,j) (mod N) ∧ (3)

μi, μj , μ((i,j)) ∈ ±{0, 1}�M ∧ ε ∈ [2�e−1 + 1, 2�e − 1]}

2.2 Well-formedness. Second, we establish that the vertex attributes are well-
formed: Clause 4 establishes the relation between Ci and C̆i and, thereby, shows
that a vertex attribute is bi-partitioned onto a vertex identifier and a label
representative part. Clause 5 establishes that they contain exactly one vertex
identifier and label representative of the certified sets ΞV and ΞL.

PK{(εi, ρi, γi, ρ̆i) :

C̆i ≡ ±RεiSρi (mod N) ∧ Ci ≡ ±C̆γiSρ̆i (mod N) ∧ (4)

γi[Ci] ∈ ΞL ∧ εi[C̆i] ∈ ΞV}. (5)

Clause 5 is different from a proof of well-formedness as introduced in Sect. 4.2,
as it enforces that vertex i contains exactly one label.

2.3 Proper coloring. Third, clauses 7 and 8 complete the statement by establish-
ing that there is a proper coloring for the adjacent vertices i and j: Clause 7
shows that commitment C(i,j) is on an edge (i, j). Finally, Clause 8 establishes
that the attributes for vertex i and j are coprime, by proving that Bézout’s
Identity equals 1. It follows that the labels of both vertices must be different.

PK{(εi, ρ
′
(i,j), α(i,j), β(i,j), ρ(i,j)′′) : (6)

C̆(i,j) ≡ ±C̆εi
j Sρ′

(i,j) (mod N) ∧ (7)

R ≡ ±C
α(i,j)
i C

β(i,j)
j Sρ′′

(i,j) (mod N)}. (8)

3. Verification. The verifier outputs accept if the proof of knowledge checks out;
reject otherwise.

Lemma 1 (Knowledge of a CL-Signature of G3C). The prover convinces
the verifier in zero-knowledge that the prover knows a proper graph 3-coloring
for known graph G. [Proof 10.1]

Lemma 2. The proof has an asymptotic computation complexity of O(n + m)
exponentiations and a communication complexity of O(n + m) group elements
and is thereby a polynomial time proof. [Proof 10.1]

5.2 Proofs Systems for Languages in NP

Having established a proof for certified graph 3-colorability, we can use the fact
that G3C is NP-complete to establish that such Camenisch-Lysyanskaya proof
systems exist for statements from other NP languages.
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Definition 3. We call a Camenisch-Lysyanskaya proof system a set of PPT
machines Prover P, Verifier Vand Issuer Ithat engage in the following protocols:

Proof of Representation P → I : Proof of representation on committed
values V .

Issuing I→ P : Issuing of CL-Signature σ on hidden committed values V .

Proof of Possession P→ V : Proof of possession of CL-Signature σ.
The issuer Ican act in the role of the verifier Vand thereby allow the bootstrap-

ping of further CL-Signatures from the hidden values of existing CL-Signatures.

Compared to a zero-knowledge proof system for an NP language, this construc-
tion offers a level of indirection: The issuer acts as auditor with authority to
decide whether the statement of an NP language is fulfilled in a certain environ-
ment, and its signature binds this statement to that environment. The instance
of the NP language can either be provided by the issuer or provided by the
prover and verified by the issuer.

The proof follows the same strategy as one of the initial results that all
languages in NP have zero-knowledge proof systems, by Goldreich, Micali and
Widgerson [11]: Given a CL proof system for G3C, we use the existing poly-time
NP reductions to transform any NP language statement into an instance of G3C.
This instance is then encoded as a graph in a CL-Signature and knowledge of
the signature proven to a verifier. Lemma 1 shows that this is a zero-knowledge
proof of knowledge of a proper coloring.

Theorem 5. Statements of languages in NP can efficiently be proven
in a Camenisch-Lysyanskaya proof system based in honest-verifier zero-
knowledge. [Proof 10.2]

6 Efficiency Analysis

We display the efficiency analysis for the proof predicates in Table 2, where
vertex and edge composition proofs show the overhead over the basic proof of
possession (cf. topology proofs [14]). We measure computational complexity in
multi-base exponentiations. The communication complexity is dominated by the
transmitted group elements from Z

∗
N , which is equal to the number of multi-base

exponentiations (one for each Integer and Schnorr proof commitment). The most
expensive proof is the complete graph representation established in the issuing,
where the set membership proofs (4 MExps) and the OR-based subset proofs
(6 MExps) constitute significant overhead. The square-complexity is introduced
by the final disjointness proof to establish that the graph is indeed well-formed.
In the down-stream proofs, the verifier trusts the issuer to only certify well-
formed graphs, which allows us to reduce complexity by only the computing the
proof of possession and the statement proven.

The modular exponentiations for message bases Ri are with small exponents
of size of �M � �N , where the parameter �M can be chosen similarly small as
in Direct Anonymous Attestation (DAA) [24].
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Table 2. Efficiency of proofs of predicates in multi-base exponentiations (MultiExps)
dependent on the number of vertices n and of edges m. For a simple graph holds
m ≤ n(n−1)

2
.

Predicate Basis Commitments MultiExps

# # O

Possession n +m 2n + 2m + 1 O(n +m)

Vertex Composition Possession n 3n O(n)

Edge Composition Possession 2m 4m O(m)

Total Well-formed Graph 2n + 3m n2 + 8n + 8m + 1 O(n2)

Graph-3 Colorability (Sect. 5) n +m 6n + 4m + 1 O(n+m)

In addition, the Σ-proofs employed in this work benefit from batch-proof
techniques, such as [25]. The graph proofs are likely to be transformed to signa-
ture proofs of knowledge with the Fiat-Shamir heuristic [20] and can thereby be
computed offline.

We have evaluated the system experimentally in [14], in computations using
components of the Identity Mixer Library [26] with modulus length �n = 2048
bits and default system parameters (�v, etc.). The performance analysis is exe-
cuted on 64-bit Java JDK 1.7.13 on a Windows 7 SP 1 Thinkpad X220 Tablet,
on Intel CPU i5-2520 with 2.5 GHz, 8 GB RAM, where all computations are
performed on a single processor core only, a very conservative setup. Figure 1
contains the results of a prototypical implementation of computations of the
graph signature scheme, on representative computations of commitments and
a proof of knowledge thereof. Based on uniform random bit-strings of the pre-
scribed length and number (as in the actual Schnorr proof witnesses), we com-
pute: C := Rm0

0 · · · Rm�

� Sv mod N ,
The simulation uses random graphs with specified number of vertices n and a

derived number of edges m := 2n as major independent variable (on the x-axis),
the dependent variable is computation time in milliseconds (in log-scale on the
y-axis).

7 Related Work

Establishing zero-knowledge proofs on graphs and their properties is a classic
area of research. Such proofs were instrumental in showing that there exist zero-
knowledge proof systems for all NP languages. We discuss their graph modeling:
Goldreich, Micali and Wigderson [11] offered such a construction with O(m2)
rounds and O(n) messages each. Based on the existence of a non-uniformly secure
encryption function, they explored graph isomorphism and non-isomorphism as
well as graph 3-colorability (G3C). Blum’s proof [12] shows directed Hamiltonian
cycles (DHC) in graphs. Both proofs use a metaphor of locked boxes to formulate
the proof. Goldreich et al.’s G3C proof encodes the colors of adjacent vertices in
boxes. Blum’s proof of Hamiltonian cycles encodes the graph’s adjacency matrix
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Fig. 1. Experimental performance analysis with a secure modulus length of 2048 bits,
in the worst case of a non-parallelized computation on a single processor core (adapted
from [14]). x-axis contains the number of vertices n and the y-axis a log-scale of com-
putation time in milliseconds. Blue colors denote provider computations to prove prop-
erties of a committed graph, where the green line shows a proof of representation of
a graph signature. Red colors denote auditing system/issuer computations to sign the
graph (Color figure online).

randomly in n+
(
n
2

)
such boxes, giving the verifier the choice to either verify the

correct graph representation or the knowledge of the Hamiltonian cycle. Blum
offers an alternative construction for G3C with a similar methodology, encoding
the graph representation and the coloring of each vertex in separate yet related
boxes and operating on an adjacency matrix lifted to the labeling. Goldreich
and Kahan [15] offered a constant-round construction based on the existence of
collections of claw-free functions, also using G3C as NP-problem. We observe
that these constructions are specific to the statement to be proven and do not
cater for a level of indirection through a signature scheme.

A related notion to full graph signatures is transitive signature schemes, e.g.,
as proposed by Micali and Rivest [13]. They are concerned with the transitive
closure of signatures on graph elements, where vertices and edges are signed
individually; however, they do not offer zero-knowledge proofs of knowledge on
graph properties.
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8 Conclusion

We have introduced a practical construction of signatures on committed graphs
and zero-knowledge proofs over their structure. The scheme is special in that
it enables proofs over the entire graph structure, including statements such as
isolation (two vertices are not connected by any sequence of edges). The con-
struction derives its security from the properties of the Camenisch-Lysyanskaya
(CL) signature scheme under the Strong RSA assumption. The interactive proofs
are honest-verifier zero-knowledge if executed with multiple rounds with small
challenges. While we have established a framework for graph topology proofs
separately [14], this work focuses on the foundations of graph encoding in CL-
signatures itself. We show its theoretical expressiveness by proving that the
scheme is capable of signing committed NP statements and proving properties
thereof, via reduction to graph 3-colorability. The presented scheme is efficient
and practical because once the issuer has established graph well-formedness in
O(n2), the prover can resort to proofs over the graph structure in linear time. The
used Σ-proofs can be handled efficiently with batch processing techniques [25].
As future work, we aim at establishing a differential graph signature scheme,
which can be employed for large-scale graph topologies as found in virtualized
infrastructures.
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(http://futureid.eu) under GA no 318424 and the EU Horizon 2020 project Pris-
maCloud (https://prismacloud.eu) under GA no 644962. The author is grateful for
the discussions with Jens Groth and Jan Camenisch as well as for the feedback of the
anonymous reviewers considering this work.

9 Proofs

9.1 Well-Formed Encoding and Security

Proof (Unambiguous encoding and decoding: Theorem 2). We show that there is
a bijection between encoding and graph.

Graph → Encoding: For each graph there exits a unique encoding modulo
base association. For all vertices i ∈ V choose the vertex identifier ei ∈ ΞV , for
the labels k ∈ fV(i) choose the prime representative ek ∈ ΞL and compute their
product. As said factors are prime, it follows from the fundamental theorem of
arithmetic that the eiΠk∈fV(i)ek represents a unique integer. Given that the user
is not privy to the discrete logarithm between one base and another (guaranteed
by the CL-Signature setup), the bases unambiguously separate the exponents.
Thus, apart from the random permutation of the base association, the encoding
is unambiguous.

Encoding → Graph: With knowledge of the elements of ΞV and ΞL, an
encoded product can be decoded efficiently and unambiguously into the ele-
ments of the graph. That the parties are not privy to the discrete logarithm

http://futureid.eu
https://prismacloud.eu
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between base and another guarantees attribute separation. The base designates
unambiguously whether a vertex or an edge is encoded. Given that all repre-
sentatives of the encoding are prime, the product can be decomposed into a
unique factorization by the fundamental theorem of arithmetic. Each represen-
tative unambiguously represents either a vertex identifier in ΞV or a label in ΞL,
as both sets are disjoint. ��
Proof (Security of graph signatures: Theorem 4). The security of the scheme
is directly derived from the unambiguous embedding into Integer commitments
and Camenisch-Lysyanskaya signatures and their security properties. Theorem 2
establishes that the graph encoding encodes graphs unambiguously into the CL-
message space. The graph structure is encoded in the exponents of the Inte-
ger commitment and CL-signature schemes. Confidentiality is derived from the
information-theoretical hiding property of the Integer commitment scheme and
the hiding properties of CL-signatures on committed messages. Under the con-
dition that the adversary is not privy to the group-order of the commitment
and the CL signature scheme, we obtain that integrity for both schemes holds
over the integers and thereby the graph encoding (cf. [6]). We obtain existential
unforgeability against chosen message attacks directly from the CL-signature
scheme in Theorem 1 [2].

10 Well-Formedness Proof

The following proof is representative for the argument structure of the proofs
for different predicates; others use the same tools.

Proof (Wellformedness proofs, Theorem 3). The Schnorr proofs used in the con-
struction are honest-verifier zero-knowledge if executed repeatedly with small
challenges, otherwise witness-indistinguishable. It is standard to extract from a
successful prover knowledge on the secrets ranging over ∀i, j:

μi, μ(i,j), ρ, ρi, ρ(i,j), εi, ρ̆i, γi, ρ
′
i, ε̇i, γ(i,j), ρ

′
(i,j), αi,j , βi,j , ρi,j

such that all equations of the CS-notation hold for some t, where t must be ±1 as
modulus N is a product of two safe primes [6]. As CL-signatures are existentially
unforgeable [2], we obtain that the messages μi and μ(i,j) are indeed signed, and
that the membership proofs for εi establish that εi ∈ ΞV , i.e., are certified vertex
identifiers (the CL multi-show unlinkability ensures that the verifier learns no
other information about εi). The CG-OR proofs [22] yield that γi and γ(i,j)
must encode valid vertex label identifiers (but yield no further information on
the labels). Therefore, we have fixes the roots μi, μ(i,j) and the leaves εi, γi, γ(i,j)
of the proof tree in the CL-notation.

It remains to show what can be derived from the equations that connect
the roots to the leaves in the vertex and edge composition statements and from
the pairwise difference. The technique used is a standard decomposition of cer-
tified messages in Integer commitments to make their components accessible to
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discrete-logarithm based proofs of knowledge; if the same secret is referenced we
have an equality proof, if not there is no further information learned about the
relation of the secrets. For the vertices, the equation Ci ≡ ±C̆γi

i Sρ′
i (4) estab-

lishes that μi = εiγi, given that the prover does not know a multiple of the group
order, C̆i separates out εi connected to the membership proof. For edges, the
equation C(i,j) ≡ ±C̆

γ(i,j)

(i,j) Sρ′
(i,j)(7) establishes that μ(i,j) = μ′

(i,j)γ(i,j), where

C̆(i,j) is shown to contain a product ε̇iε̇j in equation (3), which are in turn
shown to be valid vertex identifiers (8). By that all variables are bound and the
connection between the roots and the leaves established.

Finally, we claim pair-wise difference on vertices from the equation

R ≡ ±C̆
αi,j

i C̆
βi,j

j Sρi,j (9)

Unless the prover knows a multiple of the group order or the discrete logarithm
logR S, the following equation must hold over the integers:

1 = εiαi,j + εjβi,j .

It is well-known that αi,j and βi,j only exist if εi and εj are coprime, which gives
us the pair-wise difference claimed.

10.1 Graph 3-Colorability (G3C)

Proof (Graph 3-Colorability: Lemma 1).
1. Proof of Knowledge. It is standard to show that there exists a knowledge
extractor for all exponents of the proof such that the equality of exponents
equations are fulfilled.

We obtain from Clause 1 that the prover knows the representation of a
CL-Signature of the given structure. From the existential unforgeability of CL-
Signatures, we see that the issuer must have signed the secret attributes μi, μj

and μ(i,j). Proving equality of exponents with corresponding integer commit-
ments is standard, by which the arguments over the commitments, such as Ci,
C̆i and C(i,j) transfer to the structure of the signed messages.

The Clause 4 shows that a message μi consists of two factors known to
the prover: μi = εiγi. The following Clause 5 employs a set membership proof
to show that εi ∈ ΞV and that γi ∈ ΞL. We use that the set membership from
Sect. 2.5 guarantees that εi and γi are exactly one member of the set to conclude
that a message μi contains exactly one vertex identifier and one label identifier.
Thus, μi is well-formed. Similarly, Clause 7 establishes the structure μ(i,j) = εiε
for the edge (i, j), showing it to be well-formed. Because the prover is not privy
to the group order, these statements hold over the integers, by the results of
Damg̊ard and Fujisaki [6]. Therefore, with the proof of representation including
pair-wise difference, we conclude that the signed graph is well-formed.

Clause 8 shows that the labeling fV of the signed graph is a proper coloring.
Again, we employ Damg̊ard and Fujisaki’s [6] result that equations hold over the
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integers. We have that for each edge (i, j), the corresponding signed messages
have the following structure:

μi = εiγi and μj = εjγj .

We show that the secret labels γi and γj are different by showing that μi and
μj are coprime, where we use Bézout’s Identity:

gcd(μi, μj) = 1 ⇔ 1 = α(i,j)μi + β(i,j)μj .

The equality of exponent proof of Clause 8 achieves this as follows

R ≡ ±C
α(i,j)
i C

β(i,j)
j Sρ(i,j) (mod N)

R1 ≡ ±(Rμ
i Sρi)α(i,j)(Rμ

j Sρj )β(i,j)Sρ(i,j) (mod N)

R1 ≡ ±Rα(i,j)μiSα(i,j)ρiRβ(i,j)μj Sβ(i,j)ρj Sρ(i,j) (mod N)

R1 ≡ ±Rα(i,j)μi+β(i,j)μj Sα(i,j)ρi+β(i,j)ρj+ρ(i,j) (mod N)

From this equation we can conclude that gcd(μi, μj) = 1 and that, therefore,
γi �= γj , which implies that fV(i) �= fV(j) and that the CL signature indeed
contains a proper coloring. �
2. Zero-Knowledge. We claim that proof does not disclose anything else than
the statement made that the prover knows a CL-Signature of a proper coloring
on known graph G.

The Σ-proofs here are zero-knowledge in an honest verifier setting if per-
formed with multiple rounds and small challenges. It is standard to construct a
simulator for all Σ-proofs of representation for the CL-Signature and the com-
mitments as well as for their conjunction [18,19], showing that the verifier does
not learn anything else than the relations on exponents shown.

It remains to be shown what the relations disclose. We will argue on the
statements made on the secret messages γi, which contain the color. Clause 4
establishes that γi is part of commitment Ci, but does not disclose further infor-
mation than the equality of exponents.

Clause 5 proves that γi is a member of the set ΞL = {eR, eG, eB}. This
statement itself is part of the known problem definition of G3C. The set mem-
bership proof is a proof of representation for an anonymized CL-Signature and
a standard proof of equality of exponents, and thereby, does not disclose further
information.

Finally, Clause 8 references μi = εiγi to prove that γi and γj of an adja-
cent edge are coprime. As the vertex identifiers are pair-wise different by defin-
ition and as all representatives are primes, this only establishes that γi �= γj as
required by the G3C problem, but nothing else. ��
Proof (Polynomial Proof of G3C: Lemma 2).
Precomputation: The prover computes 2n + 1 signature randomizations with
one exponentiation each and 2n+m integer commitments with 2 exponentiations
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each. The pre-computation phase uses 6n + 2m + 1 exponentiations, transmits
4n+m+1 group elements, and thereby has a computation complexity of O(n+m)
and a communication complexity of O(n + m).

Proof of Knowledge: The Schnorr proofs in the proof of knowledge are zero-
knowledge if executed with small challenges over multiple rounds and can be
connected with techniques from Cramer et al. [18]. The round complexity of the
overall protocol is dependent on the proof mode (cf. Brands [17]).

Clause 1 is executed once yielding a Schnorr proof with n + m + 2 exponen-
tiations for the prover. The clauses 2 are executed once for each vertex, such
as i and j, Therefore we have n Schnorr proofs with 2 exponentiations each
for the prover. The clauses 3 are executed once for each edge (i, j), making m
Schnorr proofs with 2 exponentiations each for the prover. The clauses 4 are
executed once for each vertex, such as i or j. We have 2n Schnorr proofs with 2
exponentiations each for the prover. The set membership proofs of Clauses 5 are
executed once for each vertex and its label. Each set membership proof is a proof
of representation of a designated CL-Signature for the set member, amounting
to 3 exponentiations for the prover. In total, we have 2n such proofs of posses-
sions, all done with a single Schnorr proof proving equality of exponents with the
corresponding commitment. Clause 7 proves the edge structure and is executed
once per edge, yielding m Schnorr proofs with 2 exponentiations each for the
prover. Finally, the proper graph coloring in Clause 8 is shows once for each edge
(i, j) amounting to m Schnorr proofs with 3 exponentiations for the prover.

The proof of knowledge of graph coloring thereby requires 5n + 3m + 1 =
O(n + m) Schnorr proofs with a computational complexity for the prover of
13n +8m +2 = O(n +m) exponentiations. The total computational complexity
is therefore O(n+m), the communication complexity is O(n+m) group elements.
The G3C proof is done in polynomial time. The round complexity depends on the
proof mode, where variants with multiple rounds (number of rounds depending
on the error probability), with four rounds and initial commitments of the verifier
on challenges, and three rounds in a Σ-proof (not zero-knowledge) are possible.��

10.2 CL Proof Systems for NP-Statements

Proof (Sketch NP-Statements: Theorem 5). Let a NP language L be given. Let
τ be a polynomial-time computable and invertible reduction from L to Graph
3-Colorability (G3C): τ can be constructed by composing a polynomial-time
reduction of L to 3SAT by Cook’s proof [27] and a polynomial-time reduction
from 3SAT to G3C. We have that x ∈ L iff τ(x) is 3-colorable.

On common input x, both prover and verifier compute graph G ← τ(x). In
Goldreich, Micali and Widgerson’s work, the proof proceeds to use any inter-
active zero-knowledge proof system to prove that G is 3-colorable and thereby
show that x ∈ L. Our proof continues from this point to show that there exists
a Camenisch-Lysyanskaya proof system.

On obtaining G = τ(x), the prover constructs a graph commitment C on
G as defined in Sect. 3, including a labeling fV of a proper coloring of G. The
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known-graph proof transmits G itself, yet keeps the proper coloring confidential
as default.

Proof of Representation P→ I : The prover interacts with an CL-Signature
issuer, proving representation and well-formedness of the commitment C in a
known-graph proof, disclosing information to satisfy the verification require-
ments of the issuer. As τ(x) is invertible, this proof of representation of G and
the proper coloring serves as proof of representation for x and x ∈ L.

Issuing I → P : Upon acceptance of the proof, the issuer signs the committed
graph G in a CL-Signature σ. Given the invertibility of τ , this signature holds
for x as well. sigma is a CL-Signature on τ(x) and the proper coloring of τ(x)
iff x ∈ L.

Proof of Possession P → V : The prover interacts with the verifier to proof
knowledge of the CL-Signature σ on a proper coloring on G and thereby shows
graph 3-colorability of τ(x), which holds iff x ∈ L. Thereby, the proof of posses-
sion of σ translates to a proof of possession of the statement x ∈ L. The proof
is zero-knowledge if executed with small challenges over multiple rounds. ��
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