
Chapter 8
Context-Aware and Process-Centric
Knowledge Provisioning: An Example
from the Software Development Domain

Gregor Grambow, Roy Oberhauser and Manfred Reichert

Abstract With the increasing availability of information and knowledge, effective
knowledge utilization is becoming a growing and key competency within organi-
zations in various knowledge-intensive fields. One current challenge in
process-oriented work, such as that exhibited in new product development projects,
is the provisioning of contextually-relevant knowledge to the knowledge workers at
the appropriate point in their process. This chapter provides background on technical
challenges, referring to the software engineering domain to exemplify these.
Thereafter, a practical solution approach based on the Context-aware Software
Engineering Environment Event-driven framework (CoSEEEK) is presented.
Subsequently, it is shown how automated knowledge provisioning within processes,
contextual adaptation of processes, and collaborative process support can be realized.

Keywords Context awareness � Process awareness � Automatic knowledge
provisioning � Knowledge management � Semantic processing

8.1 Introduction

In various domains, process-orientation and explicit process management are
beneficial [1–3], fostering both project efficiency [4] and product quality [5–7].
However, the quality of process-oriented work in various knowledge-intensive

G. Grambow (&) � M. Reichert
Institute for Databases and Information Systems, Ulm University, Ulm, Germany
e-mail: gregor.grambow@uni-ulm.de

M. Reichert
e-mail: manfred.reichert@uni-ulm.de

R. Oberhauser
Computer Science Department, Aalen University, Aalen, Germany
e-mail: roy.oberhauser@htw-aalen.de

© Springer-Verlag Berlin Heidelberg 2016
L. Razmerita et al. (eds.), Innovations in Knowledge Management,
Intelligent Systems Reference Library 95, DOI 10.1007/978-3-662-47827-1_8

179



domains depends on the proper utilization of available knowledge1 by knowledge
workers [8–10]. Respective domains include healthcare, software, and automotive;
especially new product development is a knowledge-intensive task [11, 12]. From a
knowledge perspective, organizations develop their own local organization-specific
knowledge systems [13]. In turn, these may overlap with other knowledge systems
(e.g., discipline-specific, product-specific, market-specific, etc.). To a limited
degree, such human-based knowledge systems may be represented within IT-based
knowledge management systems (KMS) [14].

Drucker [15] has argued that knowledge-worker productivity will be the biggest
managerial challenge of the 21st century. When considering current IT-based KMS
solutions, knowledge utilization and effectiveness remains an issue [16]. While a
KMS can store and retrieve knowledge, it does not really solve the real problem:
providing the required knowledge to the right person at the right time for dealing
with the right situation. For instance, retrieval and dissemination of the stored
knowledge can become problematic when knowledge is highly dependent on the
process and context of the participating persons. Typically, knowledge workers are
responsible and tasked to retrieve and utilize knowledge on their own (active,
free-access retrieval). However, this can be problematic and inefficient in cer-
tain situations. For example, not all workers may be aware of the knowledge they
should attempt to retrieve (e.g., new knowledge or changes to the knowledge store)
at different points in time or while working with new processes. Additionally,
humans are prone to forgetfulness, especially in stressful situations, and therefore,
even manual retrieval can become problematic.

Thus, the automatic contextual filtering and provisioning of structured knowl-
edge, as well as the automated realignment of processes to changing knowledge,
will become increasingly important KMS capabilities, especially in light of the
increasing proliferation of information and knowledge. In order to cope with these
issues, systems must be aware of context, processes, and knowledge to have the
following capabilities:

• Provision knowledge to workers that is aligned with the task at hand.
Knowledge is typically relevant only to specific situations. Knowledge redun-
dancy (e.g., providing knowledge the human is already well aware of) or
overload (e.g., too much knowledge at once) may be detrimental, in that the
KMS may be ignored or rejected.

• Adapt users’ processes to knowledge and context changes.
Processes in knowledge-intensive fields may need to adapt the sequencing of
activities to align themselves to the knowledge or contextual situation.

• Use knowledge to support collaborative processes.
This includes automatically inferring impacts of any process activity and noti-
fying or including appropriate collaborators in the processes.

1Since knowledge can be transformed into information when articulated, and information can be
turned by a mind into knowledge, this chapter uses these terms interchangeably.

180 G. Grambow et al.



This chapter provides insights into how an automated information system can
support the above capabilities. In particular, it addresses the following questions:

• How should information be stored to enable automatic information processing
and dissemination?

• How can information be automatically distributed to those need it?
• How can the relevant information be injected at the right point into the users’

operational process?
• How can a process be automatically realigned based on changes to knowledge?
• How can collaborative work be supported with knowledge?

Our knowledge management approach is illustrated with examples from the
software development domain. Within the field of software engineering (SE),
software development projects are collaborative, knowledge-intensive, and
process-centric [17]. They exhibit the aforementioned issues and represent a
knowledge management (KM) environment in which the three capabilities enu-
merated above can be exemplified. Developers and testers may participate collab-
oratively in multiple projects dealing with different products simultaneously and on
teams that may be globally distributed. Due to resource and schedule constraints,
developers should be able to enter and leave projects quickly and efficiently, which
can be daunting considering that complex tasks require specific knowledge.
Processes that should govern such tasks are usually manually implemented without
automated guidance—presenting a further challenge for process-awareness, and
these knowledge-intensive processes need to adapt to the dynamic knowledge sit-
uation. With regard to context, since the involved artifacts, tool chain, and actors
are solution-oriented, the environment can be heterogeneous with dynamic contexts
playing a significant role. Effective KM remains a crucial factor for successful
software projects [17]. This chapter gives a comprehensive overview about the
different knowledge management capabilities of our approach and system. Further
reading to the discussed features can be found in our prior publications and the
upcoming doctoral thesis of Grambow [18–25].

This chapter is organized as follows: the next section provides an overview of
current approaches. Section 8.3 describes issues in knowledge-intensive projects,
including problems and general requirements. Section 8.4 presents a solution
approach, including a concept and an implementation framework for the SE
domain. Then, Sect. 8.5 illustrates automated knowledge provisioning within pro-
cesses, while Sect. 8.6 focuses on the knowledge-based contextual adaptation of
processes, and Sect. 8.7 shows how knowledge-based collaborative processes are
supported. Finally, Sect. 8.8 summarizes the chapter and designates future chal-
lenges. A glossary and references are provided at the end followed by a section with
additional resources for the reader.

8 Context-Aware and Process-Centric Knowledge Provisioning … 181



8.2 Overview of Approaches in the Software
Engineering Domain

This section discusses various approaches, focusing on the example domain of SE.
KM in complex and knowledge-intensive projects requires more than only storing
and retrieving knowledge. A tool or system that aims to comprehensively support
knowledge workers must provide holistic support for the entire project and for the
collaborating knowledge workers. Therefore, approaches beyond the classical KM
category are discussed that provide project and collaboration support for SE
knowledge workers. Another factor especially important in SE is knowledge about
the produced product and its quality. Therefore, approaches supporting software
quality management (QM) are mentioned.

SE Knowledge Management Bjørnson and Dingsøyr [26] provides a systematic
review of studies on the application of KM in SE, categorizing the studies
according to the various KM schools: systems, cartographic, engineering, com-
mercial, organizational, spatial, and strategic. Kurniawati and Jeffery [27] presents a
study about the usage of a process-oriented KM tool in a small-to-medium-sized
software development company. In particular, this tool allows for web-based
documentation and support for the SE process model. The study showed good
acceptance of the tool and that it really does support the developers. The approach
presented in [28] focuses on KM, considering various risks in SE projects. The
approach incorporates the modeling of risk archetypes and scenarios to model risk
impact and resolution strategies as well as to provide reusable project management
knowledge. Basili et al. [29] presents the knowledge dust and pearls approach,
which aims to facilitate the application of an experience base containing informa-
tion that has been analyzed and organized into experience packages. Looking
beyond the SE domain, [30] presents a study of various KMS classified in different
areas: knowledge-based systems, data mining systems, information and commu-
nication technology, database technology, modeling, and expert systems providing
decision support. The presented approaches narrowly focus on management, stor-
age and retrieval of information.

SE Quality Management Support The quality of the produced product and
related knowledge involved are crucial success factors for a project. In order to be
able to provide automated support for QM, continuous awareness about the quality
state is crucial. Source code metrics are one means in SE of assessing quality. In
[31], a report is provided about the application of such a metric program at
Motorola. It describes a set of different views on metrics to support their successful
application and reports success in several areas by using software metrics. Offen
and Jeffery [32] describes a formal meta-model enabling measurement in SE. It puts
strong focus on storing, interpreting and analyzing gathered data. Further, a prac-
tical framework is also developed supporting the creation of models for software
measurement, connection of these to measurement tools, and storage of the results.

182 G. Grambow et al.



A comprehensive industry survey about the success of metric programs is presented
in [33].

However, these approaches only deal only with the use of metrics, but not with
tool-supported automated QM quality management. In the following, therefore, a
selection of approaches concerning automated measurement tools is discussed.
PR-Miner [34] enables automated analysis of source code and efficient and auto-
mated extraction of implicit, undocumented programming rules from it. Further, it
automatically detects violations to these rules. Another tool is the Empirical Project
Monitor (EPM) [35], which aims to support effective software process management
by providing quantitative data. It collects and measures data from different repos-
itories within software development support systems and presents that data
graphically to the users in order to generate an awareness of the project progress.
The collection and aggregation of data about users’ programming behavior is
offered by the modular framework ElectroCodeoGram (ECG) [36]. It comprises a
set of sensors as well as modules for integrating the data gathered by the sensors.
ElectroCodeoGram provides micro-process data to support researchers in under-
standing how programming is carried out on a fine-grained level. A similar
approach shown in [37] is called SUMS (Standard User Monitoring Suite). SUMS
features acquisition facilities for different programming languages, applying neural
networks and Bayesian analysis to achieve automated learning features. While the
mentioned tools offer advanced data acquisition, aggregation, and interpretation
facilities for different kinds of data in SE projects, they address a relatively narrow
quality area.

SE Collaboration Support Knowledge-intensive projects typically require com-
munication and collaboration among knowledge workers in order to work on
complex tasks. Existing approaches support such collaboration with related
knowledge. For example, CASDE [38] and CoolDev [39] make use of activity
theory. CASDE supports mutual awareness between different actors and their
activities via a role-based awareness module. In turn, CoolDev manages activities
performed by a single person in the context of global cooperative activities. It is
realized as an integrated development environment (IDE) plugin capable of mon-
itoring activities carried out with other plugins. Another approach is taken by
CAISE [40], a framework that enables the integration of other SE tools and sup-
ports the development of new SE tools based on collaboration patterns. Other
frameworks like Syde [41], SPACE [42], and ADAMS [43], take an artifact-centric
approach. Syde is based on an extended view on source control management. It can
automatically inform every developer about any changes another developer makes,
even if the changes have not yet been synchronized to the common code repository.
It enables synchronous development. SPACE (Semantic Process- and
Artifact-oriented Collaboration Environment) takes another approach by managing
two types of interconnected models for processes and artifacts. That way it enables
a set of supportive features, e.g., personalized user views or comprehensive artifact
traceability. ADAMS (ADvanced Artefact Management System) is even more

8 Context-Aware and Process-Centric Knowledge Provisioning … 183



artifact-centric: it models the whole project in terms of its artifacts. Thus it features
sophisticated versioning and locking approaches, fine-grained traceability of the
artifacts, and an event module capable of informing users about any relevant event.
The above mentioned tools focus on the collaboration perspective of humans and
activities and neglect other aspects of comprehensive KM.

SE Project Support Numerous approaches exist that aim at providing some kind
of SE project support based on knowledge. Respective approaches mostly target a
distinct area. For example, [44] describes knowledge support approaches during
process execution, consisting of the domain-oriented software development envi-
ronments (DOSDE) as well as the enterprise-oriented software development envi-
ronments (EOSDE). Another category of approaches for SE project support puts it
focus on a model-driven approach. Representatives of this category include the
Transforms Environment [45] and the model-driven approach described in [46].
Being situated on the M2 level of the OMG model layers, the Transforms
Environment uses parts of the SPEM process meta-model and tailors it for MDA
processes. The model-driven approach suggested in [46] also applies a
model-driven procedure, in this case in order to support deployment and variability
of software processes. While all these approaches provide a certain amount of
project and knowledge assistance, they lack a comprehensive approach to optimally
support project participants in their context, knowledge, and with their workflows.

8.3 Current Issues

This section describes problem areas and requirements that a solution must address
for knowledge provisioning in process-oriented and knowledge-intensive projects.

8.3.1 Problem Areas

Concerning holistic knowledge support for contemporary projects in various
domains, the problem areas can be classified in two categories: direct
knowledge-related problems about processed artifacts, human collaboration, or used
tools; and process-oriented problems. Because these areas are intertwined, if these
two problem areas are not addressed properly, effective IT-based KM is impeded.
Figure 8.1 illustrates these problems in the context of the SE domain. The project is
separated into three process domains illustrating the relation of concrete KM
problems and related process problems. Domains such as these have been mentioned
several times in the literature (e.g., [47] or [48]). Both of these are conceptually
analogous, and we herewith use Dowson’s. It distinguishes three domains.

• Process modeling: processes are modeled and process models, including actors,
tools, or artifacts, are situated.

184 G. Grambow et al.



• Process enactment: the modeled processes are implemented by means of
workflow management technology [49].

• Process performance: the real-world-process takes place, including humans, the
concrete artifacts, or concrete software tools used by the humans.

Knowledge Management (Fig. 8.1 (1)). The first problem area concerns classical
KM. This comprises, for example, knowledge about the correct use of tools and
technologies in an organization, its organizational structure, or other concrete
approaches like how to apply source control management for the artifacts produced.

Quality Management (Fig. 8.1 (2)). The second area deals with the assets pro-
duced in the organization: artifacts in the SE domain. In particular, knowledge about
the quality of these artifacts, occurring problems, reported bugs, or approaches to
bug fixing are of primary importance. Organizations are often not aware about the
state of their products’ artifacts. Problems often remain undiscovered and reveal
themselves either near the end of a project or later during use by the customer.
Proactive QM is often not implemented. When software quality measures are applied
under high time pressure, they often disrupt the development process or do not match
the applying person’s situation or abilities, and are thus less effective and efficient.

Information Coordination (Fig. 8.1 (3)). Knowledge workers collaborate, and
thus efficient and effective coordination is crucial. For knowledge workers, infor-
mation about the tasks and artifacts processed by co-workers is vital.

As mentioned, these problem areas directly relate to various kinds of knowledge
and are not the only ones for contemporary projects. The problem areas are all
situated in the process performance domain, where users interact with real tools and
with each other. Because such projects are often complex, their processes have to be
planned, modeled, and explicitly managed. In particular, their implementation and
use is crucial for effective KM. Therefore, in the following, three more generic
problem areas relating to processes are discussed (as also illustrated in Fig. 8.1).

Process Automation (Fig. 8.1 (A)). Processes are modeled in the process mod-
eling domain using specific process modeling tools and notations. In many orga-
nizations, explicit support for processes remains at that modeling domain level.
Process implementation is considered as the activity of releasing a process model
document to all process participants. When no PAIS are in place to govern or
support the actual process enactment, the real-world process can often and easily
deviate from the modeled process as it is executed in the process performance
domain.

Context Integration (Fig. 8.1 (B)). While Process-Aware Information Systems
(PAIS) can provide organizations with IT-based process support and help govern
process execution, only a limited amount of the work actually done in
knowledge-intensive projects is even captured in process models. The PAIS are
often unaware about the tools used, the variety of (partly unexpected) events that
happen in everyday work, or the great number of potentially interrelated artifacts.

8 Context-Aware and Process-Centric Knowledge Provisioning … 185



Thus the process, as it is really executed, differs from the one executed in a PAIS,
and the latter becomes (at least partly) irrelevant.

Process Dynamicity (Fig. 8.1 (C)). Another problem with process implementation
relates to the dynamicity of the executed process. If an organization has a system in
place that governs and supports the process, the support provided by that tool can
be beneficial in keeping the real world process aligned. But this mostly only applies
as long as nothing requires a change in the operationally running process [50]. For
example in SE, this can be a received bug report from an important customer that
requires one or more developers to deviate from their standard development
schedule.

Fig. 8.1 Problem areas mapped to process domains

186 G. Grambow et al.



8.3.2 Basic Requirements

For a system to cope with the above problem areas, it must fulfill certain
requirements. These requirements are organized around the basic problem areas
(RA relates to a requirement concerning problem area A from Fig. 8.1). The more
advanced problems will be covered in dedicated sections: KM will be covered in
Sect. 8.5, QM in Sect. 8.6, and information coordination in Sect. 8.7. Please note
that fundamental system abilities such as distributing tasks to its users or correct-
ness of process execution are presumed. Although the requirements are tailored
toward the SE example domain to make them concrete, they can easily be adapted
for other domains.

A system aiming for holistic process and knowledge support should incorporate
the following features:

• Additional Process Information (RA.1): incorporate various types of supple-
mentary information contained in process models (e.g., artifact hierarchies or
supportive information like checklists). These should be integrated into the
execution semantics of the executing PAIS to facilitate consistency between
modeled and enacted processes;

• Abstract and Operational Processes (RA.2): model abstract processes (like the
lifecycle of a whole project) and also operational concrete processes (like
concrete development tasks). Both types of process areas (abstract and concrete)
should be seamlessly integrated;

• Seamless Integration (RA.3): integrate seamlessly into everyday work. Usage
should not be cumbersome and specific process or knowledge support should
not distract users from their work;

• Context-data Acquisition (RB.1): automatically acquire context data from its
environment, classifying the current situation;

• Context-data Processing (RB.2): automatically process acquired context data to
react to changing contextual conditions;

• Context /Process Integration (RB.3): integrate acquired context data with its
process model and the associated data to be able to align the enacted process
with the actually performed process;

• Dynamic Workflow Changes (RC.1): enable changes to running process
instances; and

• Automated Workflow Changes (RC.2): automate instance changes of running
workflows to be able to autonomically react to changing situations.

8 Context-Aware and Process-Centric Knowledge Provisioning … 187



8.4 Automated Knowledge Provisioning Approach

This section gives details on the basic solution approach comprising the abstract
concepts as well as the implementation architecture of a system that enables
comprehensive and holistic knowledge support for contemporary projects.

8.4.1 Abstract Knowledge Provisioning Concept

This section gives insights on the basic principles of the system we have developed
that amalgamates a knowledge-based system (KBS) with an adaptable
process-aware information system (PAIS) and a contextually-aware system.
Figure 8.2 shows the major components in this concept.

Contemporary PAIS only offer a limited number of concepts like activities,
workflows, data elements, users, and roles. To be able to execute processes in line
with the actual project work, a system should have additional modeling capabilities.
Our concept enables the integration of various interconnected entities that enable the
explicit modeling of complex artifact hierarchies with diverse properties for each
artifact (Context Management and Knowledge Management in Fig. 8.2). Further, it
enables the relation of such artifacts to a similarly complex and flexible hierarchy of
interconnected activities of different types (Adaptable Process Management in
Fig. 8.2). Besides these, various other concepts are also implemented to enable a
comprehensive modeling of complete process models for execution [20, 25].

Another limitation of contemporary PAIS is the fact that they mostly apply rigid
and pre-defined workflows. In our opinion, rigid workflows applied in automated
systems are an important cause for their dissonance in practice. Therefore, our
concept not only comprises facilities to provide dynamic adaptation of running
workflows for users (Adaptable Process Management in Fig. 8.2), but also to let the
system perform automated process adaptations in alignment with context data
representing the current project situation (Context Management in Fig. 8.2).

Context data is also crucial for a system that seeks to provide holistic project and
process support. Therefore, our system integrates facilities to automatically gather
context data from various sources (Environment Sensors and Event Extraction in
Fig. 8.2). Further, aggregation and processing of the data is automated (Event
Processing in Fig. 8.2), i.e., data can be delivered to the components that use it in a
reasonable granularity and with more semantic value.

Providing automation in knowledge-intensive projects is challenging. A system
aiming at comprehensive project support must be able to automate a large number
of different types of tasks while still being flexible and transparent to the user. To
enable this, our system combines different technologies for supporting different
tasks: semantic web technology enables automatic classification capabilities, rule
engine technology automates simple recurring tasks (Rule Processing in Fig. 8.2),
and an agent system adds more autonomic capabilities (Agent System in Fig. 8.2).

188 G. Grambow et al.



In order to enable a system to provide knowledge assistance in a holistic and
automated way for entire projects, a more comprehensive approach to KM must be
taken into account. Our system comprises an active KM component managing the
user relevant knowledge in alignment with context data (Knowledge Management
in Fig. 8.2). Furthermore, it not only stores and manages that knowledge, but also
explicitly manages internal knowledge that enables the system to react to various
situations in a project in an appropriate way (Data Storage in Fig. 8.2).

Finally, system providing comprehensive project support and tackling different
areas necessarily implies a certain amount of complexity. Such a system involves a
fair number of different components and modules and has to process various kinds
of dynamic data. Enabling efficient communication of the different components
with various kinds of data while preserving extensibility can be a serious issue.
Therefore, all framework communication is event-based and loosely-coupled in
order to be able to easily integrate new components as well as new kinds of data.

8.4.2 Knowledge Provisioning Framework

The concept above was then implemented for the SE domain and named CoSEEEK
(Context-aware Software Engineering Environment Event-driven frameworK). It
unites adaptive process management with semantic web technology and a sensor
framework to provide holistic support for SE projects. Users can store and annotate
knowledge in a semantic wiki and thus make it machine-accessible and -readable.
To be able to not only transfer this knowledge automatically back to the users, but
also to maximize the suitability and effect of that knowledge, CoSEEEK tailors it to
the current situation of each and every individual participating in the project. This
becomes possible on one hand by guiding the users with dynamic workflows; on
the other by having a multitude of active sensors in various SE tools connected to
the framework. These sensors provide accurate information on the various artifacts
users manipulate in a project and also on tasks they execute even if they are external

Fig. 8.2 Automated
knowledge provisioning
conceptual architecture
(domain independent)

8 Context-Aware and Process-Centric Knowledge Provisioning … 189



to their planned workflows. This enables CoSEEEK to match meta information in
the knowledge base to various properties of the situations the users are in, and
automatically inject the knowledge into the users workflows. That way, users can be
provided automatically tailored knowledge that matches their current needs.
Figure 8.3 details the technical architecture of CoSEEEK followed by an expla-
nation of the different components and their interaction.

The different parts of the concept previously discussed are realized by the dif-
ferent components shown in Fig. 8.3. To enable communication between the dif-
ferent components that facilitates extensibility and exchangeability, all
communication is event-based using a Data Storage component for event storage.
The integration of CoSEEEK with its environment is realized via an Event
Extraction and an Event Processing component that enable the automatic acqui-
sition and processing of events from other SE tools using sensors. Context data is
then centrally managed by a Context Management component. To integrate the data
with process execution and extend this with additional knowledge, the Context
Management component is tightly integrated with a Process Management com-
ponent that is in charge of workflow execution. The latter component also manages
dynamic adaptations to workflows to conform to changing situations. To enable
comprehensive knowledge support for entire projects, a separate component cen-
trally manages knowledge. That Knowledge Management component is also tightly
integrated with the Context Management component to facilitate context-based
knowledge provisioning. Finally, an agent system and a rule engine offer tight
integration of configurable automatisms into the framework to support users in their
complex tasks.

In the following, the technical realization of the different components is briefly
discussed. The event-based communication and storage within the framework is
implemented via a specialized tuple space [51] that uses the XML database eXist
[52]. Each module and the applied sensors can write in that tuple space and register
to be automatically notified about events relating to a specific topic. The sensors are
realized via the Hackystat framework [53], which offers a rich set of sensors that
can be integrated into various applications like source control management systems
or IDEs [cf. requirement RB.1 (Context-data Acquisition)]. The sensors automat-
ically create events for various real events like the change of an artifact. Such events
can be of rather atomic nature and with low semantic value. Therefore, to produce
events with more semantic value and not burden the event system with numerous
micro events, the complex event processing (CEP) [54] tool Esper [55] is applied to
create higher-level events out of various low-level events [cf. requirement RB.2
(Context-data Processing)].

To enable CoSEEEK to apply various kinds of automatisms and act autono-
mously in various situations, the multi-agent system JADE [56] and the rule engine
JBoss Drools [57] are integrated. An example for such automatisms is automatically
determining an appropriate software quality measure to apply to counteract a
detected quality problem in the source code, and then automatically assigning the
measure to the appropriate user based on various factors. This will be further
described in Sect. 8.6.

190 G. Grambow et al.



For management of the workflows in CoSEEEK, the AristaFlow [58, 59] PAIS
is integrated. It offers numerous advantages for the correct and dynamic enactment
of workflows, featuring a correctness-by-construction principle that only allows the
user to create correct workflows. This correctness is continuously enforced during
the entire execution lifecycle. In addition, it enables dynamic changes even to
running workflow instances [cf. requirement RC.1 (Dynamic Workflow Changes)]
and guarantees the correctness of the workflows before and after the adaptations.

Fig. 8.3 CoSEEEK framework

8 Context-Aware and Process-Centric Knowledge Provisioning … 191



The Context Management as well as Knowledge Management components rely
on semantic web technology. For user-related knowledge, the Knowledge
Management component integrates the Semantic MediaWiki [60]. That way, the
users can enter knowledge like in a common wiki, but can also semantically tag
their entries, enabling automated usage of that knowledge by CoSEEEK. This will
be further detailed in Sect. 8.5. Internal knowledge that the system utilizes with both
components is stored within an OWL-DL ontology [61]. To exploit the full
potential of the semantic web technology, the reasoner Pellet [62] is used together
with the Jena framework [63] for programmatic access to the concepts. In addition
to that, rules can be applied via SWRL [64] within the ontology, and queries can be
posed via SPARQL [65].

The ontology is not only used to model contextual data, it is also tightly coupled
with the Process Management component in order to realize useful extensions to
the workflows and model complete process models [cf. requirement RA.1
(Additional Process Information)]. That way, it is also possible to enrich operational
workflows with various granularities of activities and additional user-related
information. It abstracts from the internal workflow logic (cf. [18]) to make
workflow use less cumbersome for humans [cf. requirement RA.3 (Seamless
Integration)], while still being able to automatically govern the abstract processes to
which the operational workflows belong [cf. requirement RA.2 (Abstract and
Operational Processes)]. Furthermore, by the close integration of process-related
information in the ontology with the contextual data, a seamless integration of both
can be applied [cf. requirement RB.3 (Context/Process Integration)]. This tight
integration of the Context Management and Process Management components
makes it possible to automatically utilize context data to apply automated adapta-
tions for aligning the process with reality [cf. requirement RC.2 (Automated
Workflow Changes)].

The environment of CoSEEEK, which primarily consists of artifacts, humans,
and tools within a project, is integrated in two ways: the entities are modeled in the
Context Management component and, via sensors, their state can be kept up to date
with the real world entities. For providing the supporting and governing func-
tionalities, CoSEEEK offers a set of simple web-based GUIs. To enable seamless
integration into everyday work [cf. requirement RA.3 (Seamless Integration)] and
not disturb the software developers, the main GUI was also realized as a plugin for
common software IDEs like Microsoft Visual Studio and Eclipse.

8.5 Automated Knowledge Provisioning in Processes

As stated, knowledge worker projects as well as the knowledge management can be
challenging. In particular, this applies to SE as it involves new product develop-
ment, which is a knowledge-intensive task [11]. Further, software processes can be
mostly considered as knowledge processes [66]. It has been shown that an auto-
mated system supporting KM can be beneficial [67]. In SE projects, nowadays,

192 G. Grambow et al.



wikis are often used for such tasks as they enable distributed access to knowledge.
However, the retrieval of respective knowledge is often problematic as the
knowledge organization in a wiki used by dozens or even hundreds of people can
be challenging [68]. For example, if one developer encounters a best practice for a
recurring situation, e.g., the application of a design, he might enter it in such a wiki.
The retrieval of that information is problematic. On the one hand, the information is
only passively stored and another developer might not even be aware of its exis-
tence when encountering a problem. On the other, even when using the wiki, the
information might not be found because one might search quite differently than
the one who stored the information had in mind. This section gives insights on the
knowledge provisioning concept we have created. For further reading on that topic
see [21, 22]. Section 8.5.1 discusses specific requirements, while Sect. 8.5.2 shows
the different components involved. Section 8.5.3 discusses the specific concepts,
and the last sub-section gives a concrete example for automatic knowledge
provisioning.

8.5.1 Knowledge Provisioning Requirements

To overcome the aforementioned problems, a system aiming for holistic process
and knowledge provisioning should incorporate the following features:

• Knowledge storage (R1.1): store user-relevant knowledge in an appropriate
way;

• External knowledge integration (R1.2): integrate knowledge from external
sources;

• Automatic knowledge access (R1.3): automatically access, use, and distribute
knowledge stored in the system;

• Context-data utilization (R1.4): utilize contextual information to select appro-
priate knowledge for different situations and persons;

• Knowledge injection (R1.5): automatically inject knowledge into process
enactment and performance; and

• Knowledge provisioning configuration (R1.6): enable users to configure
knowledge provision.

8.5.2 Knowledge Provisioning Components

To meet the above requirements, we developed a system that comprises tightly
integrated active components relating to process, context, event, and knowledge
management. These components and their interaction are illustrated in Fig. 8.4.

Recalling the requirements, effective knowledge management and provisioning
necessitates that information suitable to the user’s situation be seamlessly integrated

8 Context-Aware and Process-Centric Knowledge Provisioning … 193



into his or her current process. This is achieved by the integration of multiple
components as described in the following. The Context Management component,
a central component of the system, stores information about users, artifacts, tools,
and various other project entities. The Event Management component, in
turn, automatically collects information from the environment by the aforemen-
tioned sensors (1) and delivers it to the Context Management component
(2) [cf. requirement R1.4 (Context-data utilization)]. The Process and Context
Management components are tightly integrated and together realize the enactment
of entire process models. The Knowledge Provider that is in charge of managing the
provision of knowledge to users directly communicates with the Context
Management component (5), and thus has direct access to context information
[cf. requirement R1.4 (Context-data utilization)] and to process information
[cf. requirement R1.5 (Knowledge injection)].

As also mentioned in the requirements, automatic knowledge provisioning relies
on effective acquisition and storage of the knowledge and the ability of the
provisioning system to access and utilize that knowledge. The storage is realized
by a separate component called the Knowledge Store [cf. requirement R1.1
(Knowledge Storage)]. The latter allows the Knowledge Provider semantic access
(4) [cf. requirement R1.3 (Automatic knowledge access)] to the stored knowledge
that is obtained from a special Knowledge Collection GUI (8) that allows users to
enter and tag their knowledge (7).

User

External Information
- Web Pages
- Process Documentation
- ...

Context Information
- User Information
- Artifact Information
- ...

(2)

CoSEEEK Knowledge Provisioning System

(1)

(3)(4)
(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Knowledge Provider

Knowledge Management GUI

Knowledge Store Context Management Event Management

Process Management

User Interface

Data

Controller

Knowledge Collection GUI Process Support GUI

Fig. 8.4 Knowledge management components (using symbols from robustness diagrams)

194 G. Grambow et al.



However, even if a system contains useful knowledge for users, it would still be
marginalized by users if it is unable to deliver it in a way fitting to their current tasks
and workflows. Therefore, the knowledge chosen by the system is passed from the
Knowledge Provider to the Context Management component (5). That component,
in turn, utilizes its tight connection to the Process Management component (3) to
determine the time point to inject the knowledge in the process [cf. requirement
R1.5 (Knowledge Injection)] and then deliver that knowledge to the Process
Support GUI (12) that makes it visible to the user (11).

Finally, even if a knowledge provisioning system is effective, it will never
comprise all possible matching knowledge. Therefore, the integration of external
knowledge sources is managed by the Knowledge Provider (6), so that these can be
easily provided to users [cf. requirement R1.2 (External knowledge integration)].
The configuration of external knowledge and the entire knowledge provisioning
process can be managed by users by utilizing the Knowledge Management GUI
(9) [cf. requirement R1.6 (Knowledge provision configuration)], which communi-
cates with the Knowledge Provider (10).

8.5.3 Knowledge Provisioning Process

This section discusses how knowledge is managed within the system. To be able to
explicitly reference and provide each unit of information, a separate concept has
been introduced in the ontology that is called a Guidance Item (GI). It is used by the
Knowledge Provider to access and classify the knowledge integrated into the sys-
tem. The GI has a set of properties enabling information management. The relevant
ones are shown in Table 8.1.

The properties of the GI comprise information about the knowledge represented
by the GI as well as information relevant to contextual knowledge provisioning.
However, the knowledge must be injected into the user’s process in a defined way
to make it effective. This is governed by four distinct properties, managing when

Table 8.1 GI properties

Type Knowledge can occur in various types that are distinguished by this property,
like checklist, information, best practice, notice, or tutorial

Origin This property denotes if the GI is stored within the system or coming from an
external source

Compilation This property denotes if the GI is static or if the system dynamically compiles
it. In the latter case, the system matches entered tags users add to the
knowledge in the Knowledge Store to process and context information and thus
creates specifically tailored knowledge support for the users’ situation

Tags This property contains tags used to dynamically compile knowledge for users
with dynamic GIs

Link This property stores a direct link to the knowledge represented by this GI if the
GI is static

8 Context-Aware and Process-Centric Knowledge Provisioning … 195



and how to apply knowledge support to different kinds of activities as shown in
Table 8.2.

Not all combinations of these properties are allowed, for more information
see [22].

8.5.4 Knowledge Provisioning Example

Recalling the introductory example from this section, this subsection gives a brief
concrete example for our knowledge provisioning concept that is illustrated by the
following figure and explained afterwards.

During the course of a project, different steps are performed to enable automated
knowledge provisioning as illustrated in Fig. 8.5.

1. Utilizing the Knowledge Collection GUI, users can collect knowledge while
working in a project. They can tag this knowledge to support later discovery by
humans or any automated system. Examples of tags on that information include

Table 8.2 Knowledge injection properties

GI alignment This property governs how the knowledge is shown to the user in relation to
the activity it relates to. ‘Pre’ means that the GI is shown at the beginning of
an activity and ‘Post’ means it will be shown at the end of an activity

GI alignment This property indicates if the lifecycle of the GI is tied to the lifecycle of the
relating activity. If so, the GI will only be available as long as the activity is
active

GI usage This property distinguishes between the values ‘Required’ and ‘Optional’.
Required GIs must be reviewed by the user and can even block activity
termination if they are tied to an activity

Item
Compilation

This property relates to the GI’s ‘Compilation’ property and manages how the
system uses runtime context information to dynamically compile GIs
matching the current situation. One example would be a database
development checklist for junior engineers

Situational Information

User Information

Project Information

(1) Enter
Information

(2) Process
WorkflowUser (e.g.

Developer)

Process
Engineer

(3) Use
Information
For Process

Process
Management

(4)

Knowledge Base

Context
Management

Knowledge ProviderKnowledge
Collection

GUI

Process
Support GUI

Fig. 8.5 Knowledge provisioning example

196 G. Grambow et al.



‘junior’ to indicate applicability for junior engineers, or ‘backend’ or ‘frontend’
to relate them to a specific implementation area. As a concrete example for this,
Fig. 8.6 shows such a knowledge collection GUI concretely depicting different
items of knowledge (guidance) a user has created.

2. The process of the project is managed and governed automatically by the sys-
tem, including various operational workflows belonging to the process.
Activities to be processed by humans are automatically delivered to them.
Examples of activities governed that way include ‘Implement Solution’, where
new source code is developed, or ‘Run Developer Test’, where source code is
tested by the developer.

3. The governed workflows can be annotated by process engineers to make use of
GIs and thus automatically deliver knowledge to the other users. Examples for
such GIs include implementation or testing checklists, or specific notes as, e.g.,
hints about a relevant design pattern.

4. Applying a multitude of sensors in various applications, the system continuously
detects new facts about the current situation. This makes it possible to tailor the
knowledge provision to the user’s current situation. For example, a junior
engineer working at the frontend of an application could be provided a pre-GI
containing the aforementioned item concerning a GUI-related design pattern
when starting his ‘Implement Solution’ activity.

8.6 Knowledge-Based Contextual Adaptation of Processes

For manufacturers, the state and quality of their produced product is of primary
importance. Therefore, knowledge about the product, its quality, relating problems,
and quality measures to overcome the problems are crucial. Quality and quality

Fig. 8.6 Knowledge collection GUI screenshot

8 Context-Aware and Process-Centric Knowledge Provisioning … 197



issues should typically be viewed holistically. For SE, software is intangible, and
acquiring and relating quality issues to source code artifacts can be problematic.
Furthermore, the effective and efficient application of software quality measures to
proactively improve the product’s quality as well as reactively correct discovered
quality issues is even more challenging. One way to address quality issues sys-
tematically is to utilize knowledge to adapt processes in alignment with the users’
context. For further reading on that topic see [19, 20]. This section is organized as
follows: Sect. 8.6.1 introduces the knowledge-based adaptation concept, Sect. 8.6.2
elicits advanced requirements for such an approach, and Sect. 8.6.3 extends the
presented approach to satisfy these requirements.

8.6.1 Concept for Knowledge-Based Contextual Adaptation
of Processes

As a concrete scenario to illustrate this concept in the SE domain, we will use the
automated integration of quality measures into processes. To support this critical
area, we have integrated facilities into CoSEEEK that enable the automated inte-
gration of software quality measures into the development process via dynamic
workflow adaptations. This section will introduce the basics regarding this facility by
a simple example. It deals with proactive quality measures that users have identified
as being useful, and have been entered into the knowledge base to be easily reused.
Figure 8.7 illustrates how our system can facilitate such knowledge reuse actively.

As aforementioned, the user (e.g., a developer) enters a proactive software
quality measure (an advice to analyze the modularity of the source code to pro-
actively aid maintainability) into the Knowledge Store via the Knowledge
Collection GUI and tags it in a way such that the system can identify it as such. It is
thus available for other users when they are processing tasks relating to software
development. In Fig. 8.7, such a workflow is shown: it is the ‘Develop Solution
Increment Workflow’ that deals with the development of new software from the
OpenUP [69] process. CoSEEEK governs that workflow within its Process
Management component and manages related additional information and entities,
like the processed artifacts or checklists in the Context Management component.
That way, CoSEEEK’s Knowledge Provider is aware of the activities and artifacts
of the user’s process and can thus provide matching information. In this example,
CoSEEEK can automatically integrate a new activity relating to the proactive
software quality measure right after the ‘Implement Solution’ activity, since it was
detected that this quality measure would match the artifacts processed by that
activity. With this approach, a seamless integration of QM with normal process
execution is achieved.

198 G. Grambow et al.



8.6.2 Requirements for Knowledge-Based Contextual
Adaptation of Processes

In reality, a multitude of different factors influence quality measure provisioning. If
they are not considered, the latter cannot be executed in an effective and efficient
way. Section 8.6.3 will introduce a more complex extended approach to quality
measure provisioning. A system aiming for holistic knowledge-based contextual
adaptation of processes should incorporate the following features:

• Problem awareness (R2.1): be aware of problems in the assets produced within
the organization (e.g., source code for SE);

• Opportunity awareness (R2.2): be aware of opportunities when users could
apply actions (e.g., quality measures) to improve the situation (e.g., the quality
of an artifact) without significantly delaying the process;

• Strategic action alignment (R2.3): strategically align possible actions (e.g.,
software quality measures) with goals of the current project (e.g., quality goals);

• Proactive actions (R2.4): Include not only reactive actions (e.g., reactive quality
measures) dealing with existing problems, but also proactive actions (e.g.,
proactive quality measures) to prevent problems;

• Context-sensitive actions (R2.5): Enable context-sensitive tailoring of the actions
(e.g., quality measures) so that they fit to the current situation and person;

• Context monitoring (R2.6): continuously monitor the context (e.g., quality of
artifacts) and also identify the impact of actions (e.g., quality measures) on artifacts;

• Seamless integration (R2.7): enable seamless integration of the provided actions
(e.g., quality measures) with the standard process to not delay the latter or
disturb the participants.

Fig. 8.7 Knowledge integration example

8 Context-Aware and Process-Centric Knowledge Provisioning … 199



8.6.3 Extended Concept for Knowledge-Based Contextual
Adaptation of Processes

Recalling the problems and requirements we already elicited, there are many factors
that play a role for successful automated quality support. On one hand, the system
must be aware of the problems in artifacts [cf. requirement R2.1 (Problem
awareness)]. On the other, it must be aware of the users’ activities and the process
to not hamper the process with inappropriate actions such as quality measures
[cf. requirement R2.2 (Opportunity awareness)]. Furthermore, the measures must be
in line with the goals of the project [cf. requirement R2.3 (Strategic action align-
ment)] and the current situation of the person applying them [cf. requirement R2.5
(Context-sensitive actions)]. In order to be able to exploit the usefulness of such
measures, the system should manage proactive as well as reactive measures
[cf. requirement R2.4 (Proactive actions)] and the applied measures should be
assessed for their impact and utility [cf. requirement R2.6 (Context monitoring)].
Finally, the system should enable seamless integration of the measures into the
standard development process to not disturb the users [cf. requirement R2.7
(Seamless integration)]. To be able to conform to this set of different and complex
factors, we have defined a multi-step approach to automated QM that uses a second
internal knowledge system within the Context Management component. This
approach is illustrated in Fig. 8.8 and explained in the following.

The approach presented in Fig. 8.8 is separated into three phases. The detection
phase is applied to generate an awareness of the systems environment. This
includes source code artifacts [cf. requirement R2.1 (Problem awareness)] and user
activities [cf. requirement R2.2 (Opportunity awareness)]. In the processing phase,
a quality trend analysis of the source code takes place and, based on that, a quality
measure prioritization including proactive and reactive software quality measures
[cf. requirement R2.4 (Proactive actions)] in line with projects goals [cf. require-
ment R2.3 (Strategic action alignment)]. The proposed measures are then tailored to
the users’ situations [cf. requirement R2.5 (Context-sensitive actions)] and seam-
lessly integrated into their running workflows [cf. requirement R2.7 (Seamless

Fig. 8.8 Quality management approach

200 G. Grambow et al.



integration)]. To evolve the knowledge system, in the post-processing phase there is
also a measure utility assessment [cf. requirement R2.6 (Context monitoring)] that
reveals what measures were effective and ineffective.

The different steps of this approach are briefly explained in the following. They
can be separated into three procedures: problem processing, opportunity processing,
and measure assessment. The first one, problem processing, comprises the following
steps. During the course of the project, the quality of the artifacts is continuously
monitored, e.g., by static code analysis tools [Code Analysis (4)]. In turn, via the
Event Management component, these tools are also monitored and the creation of a
code analysis report is recognized by the system. These reports are then automati-
cally transformed into a unified format. On such unified reports, pre-defined rules are
executed that assess if any metric exceeds a given threshold, categorizes these cases
as problems, and then automatically assigns an appropriate software quality measure
to each problem [Rules processing (5)]. To obtain more meaningful values repre-
senting the global state of the artifacts, the metrics from the unified reports are
aggregated to KPIs afterwards [KPI Calculation (6)]. As the number of assigned
measures usually exceeds the capacities of a project, the assigned measures are later
prioritized by an agent-based automated goal-question-metric [70] to align them to
the quality goals of the project [AGQM (7)].

The second procedure deals with the quality opportunities in the users’ work-
flows. This relates to users’ tasks that are part of the process and opportunities to
apply actions (i.e., quality measures) without delaying such tasks. Therefore, the
different user tasks have to be estimated concerning time consumption by humans at
the beginning [Workflow Estimation (1)]. These tasks are then automatically
imported into the system and, for each of them, a dedicated workflow is started.
After that, the workflows are executed within the system by the users [Workflow
Execution (2)]. The system can, based on the estimated times and the actual times,
carry out a so-called Q-Slot detection (3). This means that the system determines if
a person has time left for the application of an action (i.e., software quality measure)
without delaying the planned tasks. When the system has recognized a person with
time left for a quality measure, the concrete point in one of his workflows where the
measure application shall be integrated is determined [Extension Point
Determination (8)]. This is done via semantic enhancements to the workflows in the
Context Management component (cf. [20]). To make the applied measures as
effective as possible, context-based measure selection is carried out by the system
incorporating multiple properties of the situation and the intended user [Measure
Selection (9)]. When the appropriate person, measure and extension point have
been determined, the system automatically and seamlessly integrates the measure
into the potentially running workflow of the person via the dynamic adaptation
capabilities of AristaFlow [Workflow Adaptation (10)].

The third procedure deals with the assessment of measures that have been
applied by the users. Therefore, the calculation of the KPIs representing the state of
the source code is continuously executed [KPI Calculation (6)]. Therefore, it can
serve as an indicator for the effectiveness of applied quality measures by comparing
values before and after their application. At user-configured points in the process,

8 Context-Aware and Process-Centric Knowledge Provisioning … 201



the effectiveness and usefulness of the applied measures (measure utility) will be
automatically calculated by the system utilizing the KPIs [Measure Utility
Calculation (11)]. The values obtained by this calculation will then be used in future
measure proposals to improve the effectiveness of the applied measures.

Via the described approach, it becomes possible to effectively and systematically
manage and provision knowledge regarding the quality of the artifacts an organi-
zation produces. Furthermore, that knowledge is actively used by the system to
support and improve the situation (e.g., quality) by automatically distributing
appropriate actions (i.e., matching quality measures) that fit a user’s context and
will adapt their process accordingly.

8.7 Knowledge-Based Collaborative Process Support

In knowledge-intensive projects, the essential collaboration between the knowledge
workers involves concurrent or cooperative work on various complex artifacts. In
some cases, one might depend on the work of others on a certain artifact, in other
cases changes might interfere with each other or might entail additional work for
someone. In particular, artifacts often relate to and can impact each other, e.g., the
requirements specification may change, entailing changes to source code artifacts,
while the implementation is already operational. For further reading on that topic
see [23, 24]. Section 8.7.1 introduces specific requirements and Sect. 8.7.2 presents
the collaboration concept.

8.7.1 Advanced Collaboration Requirements

To provide effective support for such projects, an automated aiming for holistic
process and knowledge support should incorporate the following features:

• Notification delivery (R3.1): deliver notifications of interest to applicable users
in case an artifact or the state of a task of a colleague changes;

• Impact identification (R3.2): identify the impact of the execution of a certain
activity on certain artifacts;

• Automatic activity initiation (R3.3): automatically initiate certain follow-up
activities to enable users to react to changes certain activities have caused. For
example, if one of two associated artifacts is changed in an incompatible way,
another activity could be initiated to also change the associated artifact;

• Applicable actor identification (R3.4): Be able to automatically identify the
responsible person for a follow-up activity;

• Configurability (R3.5): Enable users to flexibly configure the way follow-up
activities are initiated.

202 G. Grambow et al.



8.7.2 Collaboration Support Concept

The first requirement deals with passive coordination, where the system delivers
information but does not actively affect the process. To enable such information
distribution, the system relies on its event management and sensor infrastructure.
When activities are executed by humans and artifacts are manipulated, both are
usually done using some designated tool and can thus be detected by CoSEEEK. To
exploit this for configurable notifications, an explicit notification concept is intro-
duced. The properties of this concept are shown in Table 8.3. Utilizing this noti-
fication concept, both generic and personal notifications become possible that will
be automatically delivered to the target person by CoSEEEK.

Requirements R3.2–R3.5 deal with active coordination, where the system affects
the executed activities. This is a far more complex collaboration situation, in par-
ticular when it concerns associated artifacts that are part of different areas of a
project, such as requirements management, implementation, or test management.
Therefore, a set of prerequisites have to be satisfied to enable automated support:
First, the project is split into hierarchically different components, such as areas or
modules. These modules are then connected to each other, for example, to model
the fact that a specific part of a requirements specification relates to a specific source
code package or project (similar to traceability). Second, information is provided to
indicate under which circumstances one area affects the other. Finally, different
components are classified, for example if one source code package realizes the
interface of a component.

With these facts modeled in CoSEEEK’s Context Management component, a
five-step procedure supports the configurable issuing of follow-up activities based
on the occurrence of certain events. The first step of this procedure is applied to
determine areas that might be affected by an activity. This step is configurable by
the users and can take various contextual factors into account. Applied to the
aforementioned example, for a requirements change such a configuration could be
‘Search for affected areas in case of technical issues if an activity implies a change
to a requirement’. Such a configuration would require the system to have access to
the requirements. This can be established if the requirements are managed within a
requirement management tool for which a sensor can be applied. After that, in a
second step, the concrete target for a follow-up activity can be determined. For this

Table 8.3 Notification properties

Source This denotes the entity to be monitored. Possible sources include various types of
artifacts or different granularities of activities

Trigger This denotes the event happening in context of the source entity that will be the
trigger for the notification to be delivered. This can be the completion of an activity
or the state change of an artifact

Target This denotes the target, to which the notification will be delivered. This can be
concrete persons or, to enable generic pre-configured notifications, also roles in a
project

8 Context-Aware and Process-Centric Knowledge Provisioning … 203



example, this would be a source code package that relates to the changed
requirement. In a third step, a matching responsible person is identified for the
follow-up activity. For this example this would be the developer responsible for the
identified source code package. If none is defined, the system searches
super-components of the package in the hierarchy and if no responsible can be
found, the activity would be issued for the development team leader, who could
then distribute it to the most appropriate developer. After that, the concrete activity
to be issued has to be determined. It can take into account various contextual
properties regarding involved artifacts, areas, sections and the activity that was the
trigger. In the final step of the procedure, the follow-up activity must be integrated
into the running process. This can be done either by starting a separate workflow for
it or, if it matches properties of a running workflow, by integrating it into one of
these. The adaptation of running workflow is applied in the same manner as
described in Sect. 8.6.

By integrating contextual data and the combination of active and passive
coordination capabilities, our concept can overcome various problems and support
collaboration in knowledge-intensive projects. Active information distribution can
be used to proactively counteract emerging problems, while passive information
distribution can keep project participants updated and aware without obstructing the
current process.

8.8 Summary and Conclusion

To summarize, with the growing volume of knowledge and the need for knowledge
workers to efficiently utilize knowledge collaboratively, it is important that orga-
nizations have options that go beyond passive knowledge management techniques
and that they also pursue the systematic active provisioning of knowledge. For such
provisioning not to disrupt ongoing knowledge work, the system must possess
contextual awareness and adapt to changes in both context and knowledge, inte-
grating the provisioning of knowledge in such a way that is aligned to their current
process (i.e., worker-goal awareness), and utilize knowledge to actively support
worker collaboration.

The software development domain was used to exhibit these knowledge chal-
lenges, beginning with an overview of related current approaches in the software
engineering (SE) domain. This was followed by a discussion of the problems and
issues and the resulting requirements. We then described our holistic knowledge
provisioning approach, first in an abstracted conceptual form followed then by a
technical implementation for the SE domain called the CoSEEEK framework. To
exemplify how it addresses the challenges using concrete scenarios, the chapter then
illustrated automated knowledge provisioning within processes, knowledge-based
contextual adaptation of processes, and support for knowledge-based collaborative
processes.

204 G. Grambow et al.



Future challenges include the integration and utilization of distributed
extra-organizational knowledge bases, cross-granular process and contextual
dependencies, and automated semantic annotation techniques.

Glossary

The terms below are defined practically for the purpose of understanding this
chapter, and not intended to be definitive or comprehensive.

Context-awareness. Perception of a system’s surroundings via information that
can be used to characterize the situation. This information can consist of various
things like other systems, humans, actions, events, or related artifacts.

Information. Facts and data organized to describe a particular situation or condi-
tion. Knowledge communicated or received concerning a particular fact or
circumstance.

Knowledge. Familiarity, acquaintance, experience with, understanding, or per-
ception of some subject, involving facts, truths, principles, beliefs, perspectives,
concepts, judgments, expectations, methodologies, or know-how. Within
organizations, it frequently becomes embedded in documents or repositories, as
well as in organizational routines, processes, practices, and norms [71]. It is a
“justified belief that increases an entity’s capacity for taking effective action”
[72]. Information can be converted into knowledge once cognitively processed,
and knowledge can be transformed into information if codified or articulated in
symbolic forms.

Knowledge base (KB). A repository of knowledge, typically utilizing some form
of storage.

Knowledge management (KM). A systematic and organizational process for
retaining, organizing, sharing, and updating (collective) knowledge critical to
individual performance and organizational competitiveness [73].

Knowledge systems. Organizations as social collectives can be viewed as
knowledge systems, representing the cognitive and social nature of organiza-
tional knowledge and its embodiment in the individuals’ mind and practices as
well as the practices and culture of the organization [72].

Knowledge management systems (KMS). To support human knowledge systems,
IT-based knowledge management systems support the codification and sharing
of knowledge, the creation and maintenance of knowledge repositories, and
knowledge networking [72] or collaboration.

Knowledge-based system (KBS). A system that uses knowledge, either in an open
or closed form, to adjust its own behavior.

Process-aware information systems (PAIS). Information systems that enable the
automated implementation of processes comprising their whole lifecycle,
including modeling, enactment, and monitoring.

8 Context-Aware and Process-Centric Knowledge Provisioning … 205



References

1. Lenz, R., Reichert, M.: IT support for healthcare processes-premises, challenges, perspectives.
Data Knowl. Eng. 61(1), 39–58 (2007)

2. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management
processes in the automotive industry. In: Proceedings of 4th International Conference on
Business Process Management, pp. 368–377 (2006)

3. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the effectiveness of process-oriented
information systems: Problem analysis, critical success factors, and implications. Syst. Man
Cybern. Part C Appl. Rev. IEEE Trans. 38(3), 280–291 (2008)

4. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance results of CMMI-based process
improvement. Technical Report, Software Engineering Institute, Carnegie-Mellon University,
Pittsburgh (2006)

5. Heravizadeh, M.: Quality-aware business process management. PhD Thesis, Queensland
University of Technology (2009)

6. Lohrmann, M., Reichert, M.: Efficacy-aware business process modeling. In: Proceedings of
20th International Conference on Cooperative Information Systems, pp. 38–55 (2012)

7. Lohrmann, M., Reichert, M.: Understanding business process quality. In: Business Process
Management, pp. 41–73. Springer, Berlin (2013)

8. Gloet, M., Terziovski, M.: Exploring the relationship between knowledge management
practices and innovation performance. J. Manuf. Technol. Manage. 15(5), 402–409 (2004)

9. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamental
requirements and their support in existing approaches. Int. J. Inf. Syst. Model. Des.
(IJISMD) 2(2), 19–46 (2011)

10. Mundbrod, N., Kolb, J., Reichert, M.: Towards a system support of collaborative knowledge
work. In: Proceedings of Business Process Management Workshops, pp. 31–42 (2013)

11. Ramesh, B., Tiwana, A.: Supporting collaborative process knowledge management in new
product development teams. Decis. Support Syst. 27, 213–235 (1999)

12. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and dynamic
adaptation of data-driven process structures. In: Proceedings 20th International Conference on
Advanced Information Systems Engineering, pp. 48–63 (2008)

13. Bonifacio, M., Bouquet, P., Cuel, R.: Knowledge nodes: the building blocks of a distributed
approach to knowledge management. J. Univ. Comput. Sci. 8(6), 652–661 (2002)

14. Maier, R.: Knowledge Management Systems: Information and Communication Technologies
for Knowledge Management. Springer, New York (2002)

15. Drucker, P. F.: Knowledge-worker productivity: the biggest challenge. Knowl. Manage.
Yearbook 2000–2001 (1999)

16. Davenport, T. H.: Rethinking knowledge work: a strategic approach. McKinsey Q. 1(11),
88–99 (2011)

17. Lindvall, M., Rus, I.: Knowledge management in software engineering. IEEE Softw. 19(3),
26–38 (2002)

18. Grambow, G., Oberhauser, R., Reichert, M.: User-centric abstraction of workflow logic
applied to software engineering processes. In: Proceedings of 1st Workshop on
Human-Centric Process-Aware Information Systems, LNBIP112, pp. 307–321 (2012)

19. Grambow, G., Oberhauser, R.: Towards automated context-aware selection of software quality
measures. In: Proceedings of 5th International Conference on Software Engineering Advances,
pp. 347–352 (2010)

20. Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into
software engineering processes. Int. J. Adv. Softw. 4(1–2), 76–99 (2011)

21. Grambow, G., Oberhauser, R., Reichert, M.: Towards dynamic knowledge support in software
engineering processes In: Proceedings of 6th International Workshop on Applications of
Semantic Technologies (AST’11), held in conjunction with INFORMATIK’11, LNI 192,
p. 149 (2011)

206 G. Grambow et al.



22. Grambow, G., Oberhauser, R., Reichert, M.: Knowledge provisioning: a context-sensitive
process-oriented approach applied to software engineering environments. In: Proceedings of
7th International Conference on Software and Data Technologies, pp. 506–515 (2012)

23. Grambow, G., Oberhauser, R., Reichert, M.: Towards automatic process-aware coordination
in collaborative software engineering. In: Proceedings of 6th International Conference on
Software and Data Technologies, pp. 5–14 (2011)

24. Grambow, G., Oberhauser, R., Reichert, M.: Enabling automatic process-aware collaboration
support in software engineering projects. In: Selected Papers of the ICSOFT’11 Conference.
Communications in Computer and Information Science (CCIS) 303, pp. 73–89 (2012)

25. Grambow, G.: Context-aware Process Management for the Software Engineering Domain.
Doctoral Thesis, Ulm University (2015). (to appear)

26. Bjørnson, F.O., Dingsøyr, T.: Knowledge management in software engineering: a systematic
review of studied concepts, findings and research methods used. Inf. Softw. Technol. 50(11),
1055–1068 (2008)

27. Kurniawati, F., Jeffery, R.: The long-term effects of an EPG/ER in a small software
organisation. In: Proceedings of Australian Software Engineering Conference, pp. 128–136
(2004)

28. Barros, M.O., Werner, C.M.L., Travassos, G.H.: Supporting risks in software project
management. J. Syst. Softw. 70(1–2), 21–35 (2004)

29. Basili, V., Costa, P., Lindvall, M., Mendonca, M., Seaman, C., Tesoriero, R., Zelkowitz, M.:
An experience management system for a software engineering research organization. In:
Proceedings of 26th Annual NASA Software Engineering Workshop, pp. 29–35 (2001)

30. Liao, S.: Knowledge management technologies and applications—literature review from 1995
to 2002. Expert Syst. Appl. 25(2), 155–164 (2003)

31. Daskalantonakis, M.K.: A practical view of software measurement and implementation
experiences within Motorola. Softw. Eng. IEEE Trans. 18(11), 998–1010 (1992)

32. Offen, R.J., Jeffery, R.: Establishing software measurement programs. Softw. IEEE 14(2),
45–53 (1997)

33. Gopal, A., Krishnan, M.S., Mukhopadhyay, T., Goldenson, D.R.: Measurement programs in
software development: determinants of success. Softw. Eng. IEEE Trans. 28(9), 863–875
(2002)

34. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules and detecting
violations in large software code. In: ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 306–315 (2005)

35. Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K., Inoue, K., Torii, K.: Empirical project
monitor: a tool for mining multiple project data. In: Proceedings of International Workshop on
Mining Software Repositories (2004)

36. Schlesinger, F., Jekutsch, S.: ElectroCodeoGram: an environment for studying programming.
TeamEthno-online, vol. 2, pp. 30–31 (2006)

37. Nystrom, N.A., Urbanic, J., Savinell, C.: Understanding productivity through non-intrusive
instrumentation and statistical learning. . In: Proceedings of 2nd Workshop on Productivity
and Performance in High-End Computing (2005)

38. Jiang, T., Ying, J., Wu, M.: CASDE: An environment for collaborative software development.
In: Computer Supported Cooperative Work in Design III, LNCS, 4402, pp. 367–376 (2007)

39. Lewandowski, A., Bourguin, G.: Enhancing support for collaboration in software development
environments. In: Computer Supported Cooperative Work in Design III, LNCS, 4402,
pp. 160–169 (2007)

40. Cook, C., Churcher, N., Irwin, W.: Towards synchronous collaborative software engineering.
In: Proceedings of 11th Asia-Pacific Software Engineering Conference, pp. 230–239 (2004)

41. Hattori, L., Lanza, M.: Syde: a tool for collaborative software development. In: Proceedings of
32nd International Conference on Software Engineering, pp. 235–238 (2010)

42. Weber, S., Emrich, A., Broschart, J., Ras, E., Ünalan, Ö.: Supporting software development
teams with a semantic process-and artifactoriented collaboration environment. In: Proceedings
of Software Engineering (Workshops), pp. 243–254 (2009)

8 Context-Aware and Process-Centric Knowledge Provisioning … 207



43. de Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Fine‐grained management of software
artefacts: the ADAMS system. Softw. Pract. Experience 40(11), 1007–1034 (2010)

44. de Oliveira, K.M., Zlot, F., Rocha, A.R., Travassos, G.H., Galotta, C., de Menezes, C.S.:
Domain-oriented software development environment. J. Syst. Softw. 72(2), 145–161 (2004)

45. Maciel, R.S.P., da Silva, B.C., Magalhães, P.F., Rosa, N.S.: An integrated approach for model
driven process modeling and enactment. In: Proceedings of Software Engineering, 2009.
SBES’09. XXIII Brazilian Symposium on, pp. 104–114 (2009)

46. Aleixo, F.A., Freire, M.A., dos Santos, W.C., Kulesza, U.: Automating the variability
management, customization and deployment of software processes: a model-driven approach.
In: Enterprise Information Systems, pp. 372–387. Springer, Berlin (2011)

47. Dowson, M.: Consistency maintenance in process sensitive environments. In: Proceedings of
Process Sensitive Software Engineering Environments Architectures Workshop (1992)

48. Conradi, R., Fernström, C., Fuggetta, A., Snowdon, R.: Towards a reference framework for
process concepts. In: Software Process Technology, pp. 1–17. Springer, Berlin (1992)

49. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Systems—
Challenges, Methods, Technologies. Springer, Berlin (2012)

50. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
In: Transactions on Petri Nets and Other Models of Concurrency II, pp. 115–135 (2009)

51. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst.
(TOPLAS) 7(1), 80–112 (1985)

52. Meier, W.: eXist: an open source native XML database. In: Web, Web-Services, and Database
Systems, LNCS, 2593, pp. 169–183 (2009)

53. Johnson, P.M.: Requirement and design trade-offs in Hackystat: an in-process software
engineering measurement and analysis system. In: Proceedings of 1st International
Symposium on Empirical Software Engineering and Measurement, pp. 81–90 (2007)

54. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston
(2001)

55. Esper. Website: http://esper.codehaus.org. Visited: September (2013)
56. Bellifemine, F., Poggi, A., Rimassa, G.: JADE–A FIPA-compliant agent framework. In:

Proceedings of 4th International Conference and Exhibition on the Practical Application of
Intelligent Agents and Multi-Agents, pp. 97–108 (1999)

57. Browne, P.: JBoss Drools Business Rules. Packt Publishing, Birmingham (2009)
58. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for

robust and flexible process support. Comput. Sci. Res. Develop. 23(2), 81–97 (2009)
59. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the AristaFlow BPM

Suite. In: Proceedings of CAiSE’10 Forum, Information Systems Evolution, pp. 174–189
(2011)

60. Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic mediawiki. In: Proceedings of
International Semantic Web Conference, pp. 935–942 (2006)

61. World Wide Web Consortium: OWLWeb Ontology Language Semantics and Abstract Syntax
(2004)

62. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl reasoner.
Web Semant. Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)

63. McBride, B.: Jena: a semantic web toolkit. Internet Comput. IEEE 6(6), 55–59 (2002)
64. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a

semantic web rule language combining OWL and RuleML. W3C Member Submission 21, 79
(2004)

65. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C WD 4 (2006)
66. Kess, P., Haapasalo, H.: Knowledge creation through a project review process in software

production. Int. J. Prod. Econ. 80(1), 49–55 (2002)
67. Teigland, R., Fey, C.F., Birkinshaw, J.: Knowledge dissemination in global R&D operations:

an empirical study of multinationals in the high technology electronics industry. In: MIR:
Management International Review, pp. 49–77 (2000)

208 G. Grambow et al.

http://esper.codehaus.org


68. Schaffert, S., Bry, F., Baumeister, J., Kiesel, M.: Semantic wikis. IEEE Softw. 25(4), 8–11
(2008)

69. Kroll, P., MacIsaac, B.: Agility and Discipline Made Easy: Practices from OpenUP and RUP.
Pearson Education, New York (2006)

70. Basili, V.R., Caldiera, V.R.B.G., Rombach, H.D.: The goal question metric approach. Encycl.
Softw. Eng. 2, 528–532 (1994)

71. Davenport, T. H., Pruzak, L.: Working Knowledge: How Organizations Manage What They
Know. Harvard Business Press, Boston (2000)

72. Alavi, M., Leidner, D. E.: Review: knowledge management and knowledge management
systems: conceptual foundations and research issues. MIS Q. 107–136 (2001)

73. Davenport, T.H., David, W., Beers, M.C.: Successful knowledge management projects. Sloan
Manage. Rev. 39(2), 43–57 (1998)

Additional Resources on Related Topics: Books

74. Tiwana, A.: The Knowledge Management Toolkit: Practical Techniques for Building a
Knowledge Management System. Prentice Hall PTR, New Jersey (2000)

75. Davenport, T.H., Probst, G.J.: Knowledge Management Case Book: Siemens Best Practices.
Wiley, New York (2002)

76. Liebowitz, J.: Knowledge Management: Handbook. CRC Press, Boca Raton (1999)
77. Dalkir, K.: Knowledge Management in Theory and Practice. Routledge, London (2013)
78. Ruggles, R.: Knowledge Management Tools. Routledge, London (2012)

Articles

79. Davenport, T.H., David, W., Beers, M.C.: Successful knowledge management projects. Sloan
Manage. Rev. 39(2), 43–57 (1998)

80. Alavi, M., Leidner, D.E.: Review: knowledge management and knowledge management
systems: conceptual foundations and research issues. MIS Q. 107–136 (2001)

81. IEEE Transactions on Knowledge and Data Engineering

Conferences and Workshops

82. IEEE International Conference on Information Reuse and Integration (IRI)
83. International Joint Conference on Knowledge Discovery, Knowledge Engineering and

Knowledge Management (IC3K)
84. International Conference on Intelligent Systems and Knowledge Engineering (ISKE)
85. International Workshop on Knowledge Acquisition, Reuse and Evaluation (KARE)
86. Workshop on Knowledge Engineering and Software Engineering (KESE)

8 Context-Aware and Process-Centric Knowledge Provisioning … 209


	8 Context-Aware and Process-Centric Knowledge Provisioning: An Example from the Software Development Domain
	Abstract
	8.1 Introduction
	8.2 Overview of Approaches in the Software Engineering Domain
	8.3 Current Issues
	8.3.1 Problem Areas
	8.3.2 Basic Requirements

	8.4 Automated Knowledge Provisioning Approach
	8.4.1 Abstract Knowledge Provisioning Concept
	8.4.2 Knowledge Provisioning Framework

	8.5 Automated Knowledge Provisioning in Processes
	8.5.1 Knowledge Provisioning Requirements
	8.5.2 Knowledge Provisioning Components
	8.5.3 Knowledge Provisioning Process
	8.5.4 Knowledge Provisioning Example

	8.6 Knowledge-Based Contextual Adaptation of Processes
	8.6.1 Concept for Knowledge-Based Contextual Adaptation of Processes
	8.6.2 Requirements for Knowledge-Based Contextual Adaptation of Processes
	8.6.3 Extended Concept for Knowledge-Based Contextual Adaptation of Processes

	8.7 Knowledge-Based Collaborative Process Support
	8.7.1 Advanced Collaboration Requirements
	8.7.2 Collaboration Support Concept

	8.8 Summary and Conclusion
	Glossary
	References
	Additional Resources on Related Topics: Books
	Articles
	Conferences and Workshops


