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Abstract. Transportation problem (TP) is a very important area in
operations research and management science. TPs not only involve with
cost minimization, but also involve with many other goals such as profit
maximization, time minimization, minimization of total deterioration of
goods, etc. Also the available data of a transportation system such as
transportation costs, resources, demands, conveyance capacities are not
always crisp or precise but are uncertain. In this dissertation some trans-
portation problems have been formulated and solved in different uncer-
tain environments, e.g., fuzzy, type-2 fuzzy, rough and linguistic.

Section 1 is introductory. Some basic concepts and definitions of
fuzzy set, type-2 fuzzy set, rough set and variable are introduced in
Sect. 2. In Sect. 3, we have formulated and solved two solid transporta-
tion problems (STPs) with fuzzy parameters namely a multi-objective
STP with budget constraints and a multi-objective multi-item STP.
Section 4 presents some theoretical developments related to type-2 fuzzy
variables (T2 FVs) - a defuzzification method of T2 FVs and an inter-
val approximation method of continuous T2 FVs. In this section, three
transportation models with type-2 fuzzy parameters have been formu-
lated and solved. In Sect. 5, we have presented two transportation mode
selection problems with linguistic evaluations represented by fuzzy vari-
ables and interval type-2 fuzzy variables respectively. Here we have devel-
oped two fuzzy multi-criteria group decision making methods and these
methods are applied to solve the respective mode selection problems.
Section 6 presents a practical solid transportation model considering per
trip capacity for each type of conveyances. Also in this problem fluctu-
ating cost parameters are represented by rough variables. Rough chance
constrained programming model, rough expected value model and rough
dependent-chance programming model are used to solve the problem
with rough cost parameters.
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1 Introduction

1.1 Transportation Problem (TP)

Transportation problem is one of the most important and practical application
based area of operations research. The classical transportation problem (TP)
is a distribution problem in which some goods/products are to be transported
from some sources (factories, warehouses, etc.) to some destinations (demand
points). The objective is to determine which routes to be considered for ship-
ment and the amount of the shipment so that total transportation cost become
minimum. Mathematically classical TP can be defined as a special type of linear
programming problem.

Basic Terminologies in TP. The transportation systems depend on several
parameters such as origin or source, destination, availability or resource, demand,
unit transportation cost, conveyance, constraint, etc. Detailed descriptions on
these parameters are available in the literature on transportation problems.

Origin or source: The places where the goods/products originate from, i.e.
the goods are available (e.g., the plant, production center or warehouse etc.) are
called the origins or the sources.

Destination: The places where the goods are to be transported are called
destinations.

Availability or resource: The amount of goods available at some source that
can be transported from the source is refereed as availability or resource of that
source.

Demand: The amount of goods that is required at some destination is refereed
as the demand of that destination.

Unit transportation cost: The cost of transportation of unit product from
some source to some destination is called unit transportation cost of the product
for that source-destination route.

Constraint: The availabilities as well as demands are limited to certain
amount. Limitations on resource availability and fulfilment of demand of each
destination form what are known as constraints.

Conveyance: Modes of transportation (e.g., trucks, goods trains, cargo flights,
ships, etc.) are called conveyances.

Different Types of Transportation Models:

Basic Transportation Problem (TP): The classical transportation problem
(TP) deals with transportation of goods from some sources (supply points) to
some destinations (demand points) so that total transportation cost becomes
minimum. Suppose there are m origins (or sources) Oi, (i = 1, 2, ...,m) and n
destinations (or demand points) Dj , (j = 1, 2, ..., n) and ai be the amount of a
homogeneous product available at i-th origin and bj be the demand at j-th des-
tination. Let cij is the cost for transportation of unit of product from source i to
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destination j and xij be decision variable which represents the unknown quantity
to be transported from i-th origin to j-th destination. Then the mathematical
form of TP is

Min Z =
m∑

i=1

n∑

j=1

cij xij , (1)

s.t.
n∑

j=1

xij (=, ≤ ) ai, i = 1, 2, ...,m, (2)

m∑

i=1

xij (=, ≥ ) bj , j = 1, 2, ..., n, (3)

xij ≥ 0, ∀ i, j,

m∑

i=1

ai (=,≥)
n∑

j=1

bj . (4)

The constraint (2) ensures that total transported amount to the destinations
from some source must be equal or less than the availability of that source. The
constraint (3) indicates that total transported amount from the sources should
at least satisfy the demand of each destination. If the constraints (2) and (3) are
of equality types and total available resources are equal to the total demands,
then the problem is called balanced TP. However in some real systems, the
balance condition does not always holds, i.e., it may happen that total available
resources are greater or equal to the total demands. Then the constraints become
inequality types and the problem is called unbalanced TP.

Fixed Charge Transportation Problem (FCTP): A transportation prob-
lem is often associated with additional costs (termed as fixed costs) besides
transportation cost. This fixed costs may be due to permit fees, property taxes,
toll charges etc. Suppose dij be the fixed cost associated with route (i, j). Math-
ematical formulation of FCTP is

MinZ =
m∑

i=1

n∑

j=1

(cij xij + dij yij), (5)

s.t.
n∑

j=1

xij (=, ≤ ) ai, i = 1, 2, ...,m (6)

m∑

i=1

xij (=, ≥ ) bj , j = 1, 2, ..., n, (7)

m∑

i=1

ai (=,≥)
n∑

j=1

bj , (8)

xij ≥ 0, ; yij =
{

1, ifxij > 0;
0, otherwise. ∀ i, j (9)
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The notations cij , ai, bj and xij have the same meaning as in the above model.
It is obvious that the fixed charge dij will be costed for a route (i, j) only if any
transportation activity is assigned to that route. So yij is defined such that if
xij > 0 then yij = 1, otherwise it will be 0.

Multi-objective Transportation Problem (MOTP): If more than one
objectives is to be optimized in an TP, then the problem is called multi-objective
transportation problem (MOTP). The several objectives may be minimization of
total transportation costs, maximization of profit, minimization of breakability,
total delivery time, etc. If P objectives are to be optimized and cp

ij represents
the unit transportation penalty (transportation cost, profit, breakability rate,
distance, time etc.) for p-th objective (p = 1, 2, ..., P ), then mathematical for-
mulation is

Min/Max Zp =
m∑

i=1

n∑

j=1

cp
ij xij p = 1, 2, ..., P, (10)

s.t.
n∑

j=1

xij (=, ≤) ai, i = 1, 2, ...,m, (11)

m∑

i=1

xij (=, ≥ )bj , j = 1, 2, ..., n, (12)

xij ≥ 0, ∀ i, j,

m∑

i=1

ai (=,≥)
n∑

j=1

bj . (13)

Multi-item Transportation Problem (MITP): In multi-item TP, several
types of items/goods are transported instead of one type of good. If l items are
to be transported and cp

ij be the unit transportation cost from i-th source to j-th
destination for p-th (p = 1, 2, ..., l) item, then the mathematical formulation of
MITP becomes

Min Z =
l∑

p=1

m∑

i=1

n∑

j=1

cp
ij xp

ij (14)

s.t.

n∑

j=1

xp
ij (=, ≤ )ap

i , i = 1, 2, ...,m; p = 1, 2, .., l (15)

m∑

i=1

xp
ij (=, ≥ )bp

j , j = 1, 2, ..., n; p = 1, 2, .., l (16)

xp
ij ≥ 0,∀ i, j, p;

m∑

i=1

ap
i (=,≥)

n∑

j=1

bp
j , p = 1, 2, ..., l, (17)

where, ap
i be the availability of p-th item at i-th origin, bp

j be the demand of p-th
item at j-th destination and xp

ij be the decision variable represents the amount
of p-th item to be transported from i-th origin to j-th destination.
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Solid Transportation Problem (STP): Solid transportation problem (STP)
is an extension of the basic TP. In a transportation system, there may be different
types of mode of transport available, such as trucks, goods trains, cargo flights,
ships, etc. In STP, modes of transportation are considered. STP deals with
three type of constraints instead of two (source and destination) in a TP. This
extra constraint is due to modes of transportation (conveyance). Mathematical
formulation of STP is

Min Z =
m∑

i=1

n∑

j=1

K∑

k=1

cijk xijk (18)

s.t.
n∑

j=1

K∑

k=1

xijk (=, ≤ )ai, i = 1, 2, ...,m (19)

m∑

i=1

K∑

k=1

xijk (=, ≥ )bj , j = 1, 2, ..., n (20)

m∑

i=1

n∑

j=1

xijk (=, ≤ )ek, k = 1, 2, ...,K (21)

xijk ≥ 0,∀ i, j, k, (22)

m∑

i=1

ai (=,≥)
n∑

j=1

bj and

K∑

k=1

ek (=,≥)
n∑

j=1

bj (23)

where, cijk be the unit transportation cost from i-th origin to j-th destination
through k-th conveyance, xijk is the decision variable represents the amount
of goods to be transported from i-th origin to j-th destination through k-th
conveyance and ai, bj have the same meaning as mentioned before. ek be the
transportation capacity of conveyance k, so that the constraint (21) indicates
that the total amount transported by conveyance k is no more than its trans-
portation capacity.

1.2 Uncertain Environment

In many real world problems the available data are not always exact or precise.
Various types of uncertainties appear in those data due to various reason such as
insufficient information, lack of evidence, fluctuating financial market, linguistic
information, imperfect statistical analysis, etc. In order to describe and extract
the useful information hidden in uncertain data and to use this data properly
in practical problems, many researchers have proposed a number of improved
theories such as fuzzy set, type-2 fuzzy set, random set, rough set etc. When
some of or all the system parameters associated with a decision making prob-
lem are not exact or precisely defined, moreover those are represented by fuzzy,
type-2 fuzzy, random or rough sets(/variables), etc., then it is called that the
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problem is defined in those uncertain environment respectively. Methodologies or
Techniques to deal with such imprecision, uncertainty, partial truth, and approx-
imation to achieve practicability, robustness and low solution cost is called Soft
Computing.

1.3 Historical Review of Transportation Problems

Historical Review of Transportation Problem in Crisp Environment:
The basic transportation problem (TP) was originally developed by Hitchcock
[58] and later discussed in detail by Koopmans [69]. There are several methods
introduced by many researchers for solving the basic transportation problems,
such as the Vogel approximation method (VAM), the north-west corner method,
the shortcut method, Russel’s approximation method (Greig, [50]). Dantzig [34]
formulated the transportation problem as a special case of linear programming
problems and then developed a special case form of Simplex technique (Dantzig,
[33]) taking advantage of the special nature of the coefficient matrix. Kirca and
Satir [67] presented a heuristic algorithm for obtaining an initial solution for
TP. Gass [47] described various aspects of TP methodologies and computational
results. Ramakrishnan [128] improved Goyals modified VAM for finding an initial
feasible solution for unbalanced transportation problem.

Balinski [11], Hirch and Dantzig [57] introduced fixed charge transportation
problem (FCTP). Palekar et al. [119] introduced a branch-and-bound method
for solving the FCTP. Adlakha and Kowalski [3] reviewed briefly the FCTP.
Adlakha et al. [4] provided a more-for-less algorithm for solving FCTP. Kowalski
and Lev [70] developed the fixed charge transportation problem as a nonlinear pro-
gramming problem. Lee and Moore [79] studied the optimization of transporta-
tion problems with multiple objectives. To solve multi-objective transportation
problem, Zimmerman [159,160] introduced and developed fuzzy linear program-
ming. The solid transportation problem (STP) was first stated by Schell [130].
Haley [53] described a solution procedure of a solid transportation problem, which
is an extension of the Modi method. Gen et al. [48] solved a bicriteria STP by
genetic algorithm. Pandian and Anuradha [120] introduced a new method using
the principle of zero point method for finding an optimal solution of STPs.

Historical Review of Transportation Problem in Fuzzy Environment:
Several researchers studied various types of TPs with the parameters such as
transportation costs, supplies, demands, conveyance capacities as fuzzy num-
bers(/variables). Chanas et al. [17] presented an FLP model for solving trans-
portation problems with fuzzy supply and demand values. Chanas and Kuchta
[18] studied transportation problem with fuzzy cost coefficients. Jiménez and
Verdegay [60] considered two types of uncertain STP, one with interval numbers
and other with fuzzy numbers. Jiménez and Verdegay [61] applied an evolu-
tionary algorithm based parametric approach to solve fuzzy solid transportation
problem. Bit et al. [13] applied fuzzy programming technique to multi-objective
STP. Li and Lai [80], Waiel [135] applied fuzzy programming approach to multi-
objective transportation problem. Saad and Abass [129] provided parametric
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study on the transportation problems in fuzzy environment. Liu and Kao [98]
solved fuzzy transportation problems based on extension principle. Gao and
Liu [46] developed the two-phase fuzzy algorithms for multi-objective trans-
portation problem. Ammar and Youness [6] studied multi-objective transporta-
tion problem with unit transportation costs, supplies and demands as fuzzy
numbers. Li et al. [81] presented a genetic algorithm for solving the multi-
objective STP with coefficients of the objective function as fuzzy numbers.
Pramanik and Roy [126] introduced a intuitionistic fuzzy goal programming app-
roach for solving multi-objective transportation problems. Yang and Liu [153]
presented expected value model, chance-constrained programming model and
dependent chance programming for fixed charge STP with unit transportation
costs, supplies, demands and conveyance capacities as fuzzy variables. Liu and
Lin [93] solved a fuzzy fixed charge STP with chance constrained programming.
Ojha et al. [118] studied entropy based STP with general fuzzy cost and time.
Chakraborty and Chakraborty [15] considered a transportation problem having
fuzzy parameters with minimization of transportation cost as well as time of
transportation. Fegad et al. [42] found optimal solution of TP using interval and
triangular membership functions. Kaur and Kumar [64] provided a new app-
roach for solving TP with transportation costs as generalized trapezoidal fuzzy
numbers. Kundu et al. [72] modeled a multi-objective multi-item STP with fuzzy
parameters and solved it by using two different methods.

Historical Review of Transportation Problem in Type-2 Fuzzy Envi-
ronment: Though type-2 fuzzy sets/varibles are used in various fields such as
group decision making system (Chen et al. [21]; Chen et al. [26]), Portfolio selec-
tion problem (Hasuike and Ishi [54]), Pattern recognition (Mitchell, [112]), data
envelopment analysis (Qin et al., [127]), neural network (Aliev et al. [5]), Ad
hoc networks (Yuste et al. [155]) etc., Figueroa-Garca and Hernndez [43] first
considered a transportation problem with interval type-2 fuzzy demands and
supplies and we (Kundu et al. [75]) are the first to model and solve transporta-
tion problem with parameters as general type-2 fuzzy variables.

Historical Review of Transportation Problem with Rough Sets/
Variables: Tao and Xu [132] developed rough multi-objective programming
for rough multi-objective solid transportation problem considering a appropri-
ately large feasible region as a universe and equivalent relationship is induced to
generate an approximate space. Kundu et al. [73] first developed some practical
solid transportation models with transportation cost as rough variables.

Historical Review of Transportation Mode Selection Problem:
Kiesmüller et al. [65] discussed transportation mode decision problem taken into
account both distribution of goods and the manufacturing of products. Kumru
and Kumru [71] considered a problem of selecting the most suitable way of
transportation between two given locations for a logistic company and applied
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multi-criteria decision-making method to solve the problem. Tuzkaya and Önüt
[134] applied fuzzy analytic network process to evaluate the most suitable trans-
portation mode between Turkey and Germany. The evaluation ratings and the
weights of the criteria in that problem are expressed in linguistic terms gener-
ated by triangular fuzzy numbers. There are also other several articles available
related to transportation mode selection problem (Monahan and Berger [113];
Eskigun et al. [41]; Wang and Lee [138]).

1.4 Motivation and Objective of the Article

Motivation: Transportation problem (TP) is one of the most important and
practical application based area of operations research. TP has vast economic
importance because price of every commodity includes transportation cost.
Transportation problems not only involve with economic optimization such as
cost minimization, profit maximization but also involve with many other goals
such as minimization of total deterioration of goods during transportation, time
minimization, risk minimization etc.

The available data of a transportation system, such as unit transportation
cost, supplies, demands, conveyance capacities are not always exact or pre-
cise but are uncertain or imprecise due to uncertainty in judgment, insufficient
information, fluctuating financial market, linguistic information, uncertainty of
availability of transportation vehicles etc. This motivated us to consider some
innovative transportation problems (TPs) under uncertain environments like
fuzzy, type-2 fuzzy, rough etc.

Many researchers developed TPs in stochastic and fuzzy (type-1) environ-
ments. However at the beginning of this research work, we observed that no
TP with type-2 fuzzy, rough parameters was available the in literature though
these improved uncertainty theories are applied in many other decision making
fields. This motivated us to develop and solve some TPs with type-2 fuzzy, rough
parameters.

Also appropriate transportation mode selection is a very important issue in a
transportation system and human judgments are generally expressed in linguistic
terms. These linguistic terms are generally of uncertain nature as a word does
not have the same meaning to different people. This motivated us to consider
some transportation mode selection problems with linguistic evaluations.

Objective of the Article: The main objectives of the presented thesis are:

– To formulate different types of transportation models: Some innovative and
useful transportation models could have been formulated to deal with the
rapidly growing financial competition, technological development, real-life sit-
uations, etc. Here we have formulated some different types of transportation
models such as multi-objective multi-item solid transportation model, multi-
item solid transportation model with restriction on conveyances and items,
solid transportation models with limited vehicle capacity, etc.



Some Transportation Problems Under Uncertain Environments 233

– To consider transportation problems with type-1 fuzzy parameters: Though
some research works have been done about transportation problem in fuzzy
environment, however there are some scopes of research work in this field.
This includes new improved methodologies/techniques to solve different types
of TPs with fuzzy parameters. In this thesis, we have formulated and solved
two different solid transportation models with type-1 fuzzy parameters using
improved defuzzification and solution techniques.

– To consider transportation problems with type-2 fuzzy parameters: Decision
making with type-2 fuzzy parameters is an emerging area. Type-2 fuzzy sets
(/variables) give additional degrees of freedom to represent uncertainty. How-
ever computational complexity is very high to deal with type-2 fuzzy sets.
Here we have contributed some theoretical development of type-2 fuzzy vari-
ables, formulated and solved two transportation models with parameters as
type-2 fuzzy variables. To the best of our knowledge, very few TPs with type-2
fuzzy variables were developed.

– To consider transportation problems with rough parameters: Rough set theory
is moderately new and growing field of uncertainty. For the first time we have
formulated and solved a solid transportation model with unit transportation
costs as rough variables.

– To consider transportation mode selection problem with linguistic evaluations:
Linguistic judgments are always uncertain. Many researchers represented lin-
guistic terms using type-1 fuzzy sets (/variables). Recently from literature it
is known that modeling word by interval type-2 fuzzy set is more scientific
and reasonable than by type-1 fuzzy set. Here we have developed two fuzzy
multi-criteria group decision making methods and successfully applied to solve
two transportation mode selection problems with linguistic evaluations repre-
sented by type-1 and interval type-2 fuzzy variables respectively.

1.5 Organization of the Article

This article is based on my Ph.D. thesis [77]. In this article, some transportation
problems have been formulated and solved in different uncertain environments,
e.g., fuzzy, type-2 fuzzy, rough and linguistic. We classified our thesis into the
following sections:-

Section 1 is introductory. It contains brief discussion about different types of
transportation problems, uncertain environments and historical review of trans-
portation problems.

In Sect. 2, some basic concepts and definitions of fuzzy set and variable,
type-2 fuzzy set and variable, rough set and variable and representation of lin-
guistic terms are introduced. Some methodologies to solve single/multi-objective
linear/nonlinear programming problems in crisp and various uncertain environ-
ments have been discussed.

Section 3 presents transportation problems with fuzzy (type-1) parameters.
In this section, we have formulated and solved two solid transportation models
with type-1 fuzzy parameters. The first model is a multi-objective solid trans-
portation problem (MOSTP) with unit transportation penalties/costs, supplies,
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demands and conveyance capacities as fuzzy variables. Also, apart from source,
demand and capacity constraints, an extra constraint on the total budget at each
destination is imposed. The second model is a multi-objective multi-item solid
transportation problem with fuzzy coefficients for the objectives and constraints.
A defuzzifcation method based on fuzzy linear programming is applied for fuzzy
supplies, demands and conveyance capacities, including the condition that both
total supply and conveyance capacity must not fall below the total demand.

In Sect. 4, we have first provided some theoretical developments related to
type-2 fuzzy variables. We have proposed a defuzzification method of type-2
fuzzy variables. An interval approximation method of continuous type-2 fuzzy
variables is also introduced. We have formulated and solved three transporta-
tion problems with type-2 fuzzy parameters namely, fixed charge transportation
problem with type-2 fuzzy cost parameters, fixed charge transportation problem
with type-2 fuzzy costs, supplies and demands and multi-item solid transporta-
tion problem having restriction on conveyances with type-2 fuzzy parameters.

Section 5 contains problems related to transportation mode selection with
respect to several criteria for a particular transportation system. Here we
have developed two fuzzy multi-criteria (/attribute) group decision making
(FMCGDM/FMAGDM) methods, the first one based on ranking fuzzy num-
bers and the second one based on ranking interval type-2 fuzzy variables. These
proposed methods are applied to solve two transportation mode selection prob-
lems with the evaluation ratings of the alternative modes and weights of the
selection criteria are presented in linguistic terms generated by fuzzy numbers
and interval type-2 fuzzy variables respectively.

In Sect. 6 we have represented fluctuating cost parameters by rough variables
and formulated solid transportation model with rough cost parameters. The for-
mulated transportation model is applicable for the system in which full vehicles,
e.g. trucks, rail coaches are to be booked for transportation of products so that
transportation cost is determined on the basis of full conveyances. The presented
model is extended including different constraints with respect to various situa-
tions like restriction on number of vehicles, utilization of vehicles, etc.

In Sect. 7, overall contribution of the article and possible future extensions
of the models and methods are discussed.

2 Basic Concepts and Methods/Techniques

2.1 Classical Set Theory

Classical (crisp) set is defined as a well defined collection of elements or objects
which can be finite, countable or infinite. Here ‘well defined’ means an element
either definitely belongs to or not belongs to the set. In other words, for a given
element, whether it belongs to the set or not should be clear. The word crisp
means dichotomous, that is, yes-or-no type rather than more-or-less type. In set
theory, an element can either belongs to a set or not; and in optimization, a
solution is either feasible or not.
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Subset: If every element of a set A is also an element of a set B, then A is
called a subset of B and this is written as A ⊆ B. If A ⊆ B and B ⊆ A, then we
say that A and B are equal, written as A = B. A is called a proper subset of B,
denoted by A ⊂ B if A is a subset of B with A �= B and A �= ∅, where ∅ denotes
the empty set.

Characteristic function: Let A be a subset of X. The characteristic function
of A is defined by

χ(x) =
{

1, ifx ∈ A;
0, otherwise.

Convex set: A subset S ⊂ 
n is said to be convex, if for any two points x1,
x2 in S, the line segment joining the points x1 and x2 is also contained in
S. In other words, a subset S ⊂ 
n is convex, if and only if x1, x2 ∈ S ⇒
λx1 + (1− λ)x2 ∈ S; 0 ≤ λ ≤ 1.

Interval arithmetic: Here we discussed for given two closed intervals in 
,
how to add, subtract, multiply and divide these intervals. Suppose ∗ be a binary
operation such as +, -, ·, /etc. defined over 
. If A and B are closed intervals,
then A∗B = {a∗b : a ∈ A, b ∈ B} defines a binary operation on the set of closed
intervals (Moore [115]). Let A = [a1, a2] and B = [b1, b2] be two closed intervals
in 
. Then operations on the closed intervals A and B are defined as follows:

Addition: A + B = [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2]

Subtraction: A−B = [a1, a2]− [b1, b2] = [a1 − b1, a2 − b2]

Multiplication:
A ·B = [a1, a2] · [b1, b2] = [min(a1b1, a1b2, a2b1, a2b2),max(a1b1, a1b2, a2b1, a2b2)]

In particular if these intervals are in 
+, the set of positive real numbers,
then the multiplication formula gets simplified to

A ·B = [a1, a2] · [b1, b2] = [a1b1, a2b2]

Division:
A
B = [a1,a2]

[b1,b2]
= [a1, a2] · [ 1

b2
, 1

b1
] = [min(a1

b2
, a1

b1
, a2

b2
, a2

b1
),max(a1

b2
, a1

b1
, a2

b2
, a2

b1
], pro-

vided 0 not belongs to [b1, b2].
In particular if these intervals are in 
+, the set of positive real numbers, then
the division formula gets simplified to

A
B = [a1

b2
, a2

b1
].

Scalar multiplication: For k ∈ 
+ the scalar multiplication k ·A is defined as
k ·A = k · [a1, a2] = [ka1, ka2].

2.2 Fuzzy Set Theory

In the real world, various situations, concepts, value systems, human thinking,
judgments are not always crisp and deterministic and cannot be described or
represented precisely. Very often they are uncertain or vague. In real systems,
there exist collection of objects so that those can not be certainly classified as a
member of certain set. Zadeh [156] introduced the concept of fuzzy set in order to
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represent class of objects for which there is no sharp boundary between objects
that belong to the class and those that do not. For example consider collection
of real numbers close to 5. Then the number 4.5 can be taken as close to 5.
The number 4.4 can also be taken as close to 5. Then how about the number
4.3 that smaller than 4.4 by only 0.1. Continuing in this way, it is difficult to
determine an exact number beyond which a number is not close to 5. In fact
there is no sharp boundary between close and not close to 5. Fuzzy sets describe
such types of sets by assigning a number to every element in the universe, which
indicates the degree (grade) to which the element belongs to the sets. This degree
or grade is called membership degree or grade of the element in the fuzzy set.
Mathematically a fuzzy set is defined as follows.

Definition 2.1 (Fuzzy Set). Let X be a collection of objects and x be an
element of X, then a fuzzy set Ã in X is a set of ordered pairs

Ã = {(x, μÃ(x))| x ∈ X},
where μÃ(x) is called the membership function or grade of membership of x in
Ã which maps X into the membership space M which is a subset of nonnegative
real numbers having finite supremum.
Generally the range of the membership function μÃ(x) is constructed as the close
interval [0, u], 0 < u ≤ 1 and the representation of fuzzy set becomes (Mendel
[101])

Ã = {(x, μÃ(x))|μÃ(x) ∈ [0, 1],∀x ∈ X}.
A classical set A can be described in this way by defining membership function
μA(x) that takes only two values 0 and 1 such that μA(x) = 1 or 0 indicates x
belongs to or does not belongs to A.

Some Basic Definitions Related to Fuzzy Set: The following definitions
and properties are based on Zadeh [156], Klir and Yuan [68], Zimmermann [160],
Kaufmann [62], Bector and Chandra [12] and Wang et al. [144].
Support: The support of a fuzzy set Ã in X is a crisp set S(Ã) defined as
S(Ã) = {x ∈ X| μÃ(x) > 0}.
Core: The core of a fuzzy set Ã is a set of all points having unit membership
degree in Ã denoted by Core(Ã), and defined as Core(Ã) = {x ∈ X| μÃ(x) = 1}
Centroid: The centroid C(Ã) of a fuzzy set Ã is defined by C(Ã) =

∑
x xμÃ(x)
∑

x μÃ(x)

for discrete case (discrete set of points) and C(Ã) =
∫∞

−∞ xμÃ(x)dx
∫∞

−∞ μÃ(x)dx
for continuous

case.
Height: The height of a fuzzy set Ã, denoted by h(Ã) is defined as h(Ã) =
supx∈X μÃ(x).

If h(Ã) = 1 for a fuzzy set Ã then the fuzzy set Ã is called a normal fuzzy
set.
Complement: The complement of a fuzzy set Ã is a fuzzy set denoted by Ãc is
defined by the membership function μÃc(x), where μÃc(x) = h(Ã)−μÃ(x), ∀x ∈
X. If Ã is normal then obviously μÃc(x) = 1− μÃ(x), ∀x ∈ X.
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α-cut: α-cut of a fuzzy set Ã in X where α ∈ (0, 1] is the crisp set Aα given by
Aα = {x ∈ X | μÃ(x) ≥ α}.

Some Properties of Fuzzy Set: Union: The union of two fuzzy sets
Ã and B̃ is a fuzzy set C̃ whose membership function is given by μC̃(x) =
max(μÃ(x), μB̃(x)), ∀ x ∈ X. This is expressed as C̃ = Ã ∪ B̃.
Intersection: The intersection of two fuzzy sets Ã and B̃ is a fuzzy set D̃ whose
membership function is given by μD̃(x) = min(μÃ(x), μB̃(x)), ∀ x ∈ X. This is
expressed as D̃ = Ã ∩ B̃.
Convexity: A fuzzy set Ã in X is said to be convex if and only if for any x1,
x2 ∈ X, μÃ(λx1 + (1− λ)x2) ≥ min(μÃ(x1), μÃ(x2)) for 0 ≤ λ ≤ 1. In terms of
α-cut, a fuzzy set is said to be convex if its α-cuts Aα are convex for all α ∈ (0, 1].
Containment: A fuzzy set Ã is contained in B̃ or a subset of B̃ if μÃ(x) ≤
μB̃(x), ∀ x ∈ X. This is written as Ã ⊆ B̃.
Equality: Two fuzzy sets Ã and B̃ in X is said to be equal if Ã ⊆ B̃ and B̃ ⊆ Ã,
i.e. if μÃ(x) = μB̃(x), ∀ x ∈ X.

Fuzzy Number: Fuzzy number can be taken as a generalization of interval of
real numbers where rather than considering each point of an interval has the
same importance or belongings, a membership grade in [0,1] is imposed to each
element as in fuzzy set. This is done to handle a situation where one has to
deal with approximate numbers or numbers that are close to a real number or
around a interval of real numbers, etc. Let us consider set of numbers that are
close to a real number r and try to represent this set by a fuzzy set, say by Ã.
That is Ã would be defined as an interval around r with each element having a
membership grade that provided according to closeness of that point to r. Since
the real number r is certainly close to r itself, so membership grade of r in Ã
should be defined as μÃ(r) = 1, i.e., Ã should be a normal fuzzy set. Also the
interval must be of finite length, i.e. support of Ã need to be bounded. It is
known that the only convex sets in 
 are intervals. The fuzzy number is defined
as follows:

Definition 2.2 (Fuzzy Number). A fuzzy subset Ã of real number 
 with
membership function μÃ : 
 → [0, 1] is said to be a fuzzy number (Grzegorzewski
[52]) if

(i) Ã is normal, i.e. ∃ an element x0 s.t. μÃ(x0) = 1,
(ii) μÃ(x) is upper semi-continuous membership function,
(iii) Ã is fuzzy convex, i.e. μÃ(λx1 + (1− λ)x2) ≥ μÃ(x1) ∧ μÃ(x2) ∀x1, x2 ∈ 


and λ ∈ [0, 1],
(iv) Support of Ã = {x ∈ 
 : μÃ(x) > 0} is bounded.

Klir and Yuan [68] proved the following theorem which gives characterization
of a fuzzy number.
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Theorem 2.1 Let Ã be a fuzzy set in 
. Then Ã is a fuzzy number if and only
if there exists a closed interval (which may be singleton) [a, b] �= φ such that

μÃ(x) =

⎧
⎨

⎩

l(x), ifx ∈ (−∞, a);
1, ifx ∈ [a, b];
r(x), ifx ∈ (b,∞),

(24)

where (i) l : (−∞, a)→ [0, 1] is increasing, continuous from the right and l(x) = 0
for x ∈ (−∞, u), for some u < a and (ii) r : (b,∞) → [0, 1] is decreasing,
continuous from the left and r(x) = 0 for x ∈ (v,∞), for some v > b.
In most of the practical applications the function l(x) and r(x) are continuous
which give the continuity of the membership function.

α-cut of Fuzzy Number: the α-cut/α - level set of a fuzzy number Ã, i.e.
Aα = {x ∈ 
 | μÃ(x) ≥ α} is a nonempty bounded closed interval (Wu [145])
denoted by [AL

α, AR
α ] or [A−

α , A+
α ], where, AL

α and AR
α are the lower and upper

bounds of the closed interval and

AL
α = inf{x ∈ 
 | μÃ(x) ≥ α}, AR

α = sup{x ∈ 
 | μÃ(x) ≥ α}

Now some particular type of fuzzy numbers with continuous l(x) and r(x) defined
over the set of real numbers are given below.

General Fuzzy Number (GFN): A GFN Ã is specified by four numbers a1,
a2, a3, a4 ∈ 
 and two functions l(x) and r(x) (as defined in Theorem2.1) with
the following membership function

μÃ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, ifx < a1;
l(x), if a1 ≤ x < a2;
1, if a2 ≤ x ≤ a3;
r(x), if a3 < x ≤ a4;
0, ifx > a4.

(25)

Triangular Fuzzy Number (TFN): A TFN Ã is a fuzzy number fully deter-
mined by triplet (a1, a2, a3) of crisp numbers with a1 < a2 < a3, whose mem-
bership function is given by

μÃ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−a1
a2−a1

, if a1 ≤ x ≤ a2;
1, ifx = a2;
a3−x
a3−a2

, if a2 ≤ x ≤ a3;
0, otherwise.

(26)

The TFN Ã is depicted in Fig. 1.
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Fig. 1. TFN Ã

Trapezoidal Fuzzy Number (TrFN): A TrFN Ã is a fuzzy number fully deter-
mined by quadruplet (a1, a2, a3, a4) of crisp numbers with a1 < a2 ≤ a3 < a4,
whose membership function is given by

μÃ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−a1
a2−a1

, if a1 ≤ x ≤ a2;
1, if a2 ≤ x ≤ a3;
a4−x
a4−a3

, if a3 ≤ x ≤ a4;
0, otherwise.

(27)

where x−a1
a2−a1

= μl
Ã
(x) and a4−x

a4−a3
= μr

Ã
(x) are called the left and right hand side

of the membership function μÃ(x). The TrFN Ã is depicted in Fig. 2. Obviously
if a2 = a3 then TrFN becomes a TFN.

Arithmetic of Fuzzy Numbers: Operation Based on the Zadeh’s
Extension Principle: Arithmetical operations of fuzzy numbers can be per-
formed by applying the Zadehs extension principle (Zadeh [158]). If Ã and B̃
be two fuzzy numbers and ∗ be any operation then the fuzzy number Ã ∗ B̃ is
defined as

μÃ∗B̃(z) = sup
z=x∗y

min(μÃ(x), μB̃(y)), ∀z ∈ 
.

So in particular we have

μÃ⊕B̃(z) = sup
z=x+y

min(μÃ(x), μB̃(y)),

μÃ�B̃(z) = sup
z=x−y

min(μÃ(x), μB̃(y)),
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μÃ⊗B̃(z) = sup
z=x×y

min(μÃ(x), μB̃(y)),

μÃ�B̃(z) = sup
z=x/y

min(μÃ(x), μB̃(y)),

where ⊕, �, ⊗ and � denote the addition, substraction, multiplication and
division operations on fuzzy numbers.

Operation Based on the α-cuts: Let Ã and B̃ be two fuzzy numbers and
Aα = [AL

α, AR
α ], Bα = [BL

α , BR
α ] be α-cuts, α ∈ (0, 1], of Ã and B̃ respectively.

Let ∗ denote any of the arithmetic operations ⊕, �, ⊗, � of fuzzy numbers.
Then the ∗ operation on fuzzy numbers Ã and B̃, denoted by Ã ∗ B̃, gives a
fuzzy number in 
 where

(Ã ∗ B̃)α = Aα ∗Bα, α ∈ (0, 1].

For particular operations we have

(Ã⊕ B̃)α = Aα ⊕Bα = [AL
α + BL

α , AR
α + BR

α ],

(Ã� B̃)α = Aα �Bα = [AL
α −BR

α , AR
α −BL

α ],

(Ã⊗ B̃)α = Aα ⊗Bα =

= [min{AL
αBL

α , AL
αBR

α , AR
αBL

α , AR
αBR

α },max{AL
αBL

α , AL
αBR

α , AR
αBL

α , AR
αBR

α }].
If the fuzzy numbers Ã and B̃ in 
+, the set of positive real numbers, then the
multiplication formula becomes

(Ã⊗ B̃)α = Aα ⊗Bα = [AL
αBL

α , AR
αBR

α ].
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Operations Under Function Principle: Hsieh [59] presented Function Prin-
ciple in fuzzy theory for computational model avoiding the complications which
are caused by the operations using Extension Principle. The fuzzy arithmeti-
cal operations under Function Principle of two trapezoidal fuzzy numbers
Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) are

(i) Addition: Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),
(ii) Substraction: −B̃ = (−b4,−b3,−b2,−b1) and Ã�B̃ = (a1−b4, a2−b3, a3−

b2, a4 − b1),
(iii) Multiplication: Ã⊗B̃ = (a1b1, a2b2, a3b3, a4b4), where ai, bi, for i = 1, 2, 3, 4

are positive real numbers.
(iv) Division: Ã� B̃ = (a1/b4, a2/b3, a3/b2, a4/b1), where ai, bi, for i = 1, 2, 3, 4

are positive real numbers.

(v) λ⊗ Ã =
{

(λa1, λa2, λa3, λa4), ifλ ≥ 0;
(λa4, λa3, λa2, λa1), ifλ < 0.

Here it should be mentioned that all the above operations can be defined
using operations based on the α-cuts of the fuzzy numbers that produce the
same result.

Defuzzification of Fuzzy Numbers: Defuzzification methods/techniques of
fuzzy numbers convert a fuzzy number or fuzzy quantity approximately to a crisp
or deterministic value so that this can be used efficiently in practical applications.
Some important defuzzification methods are presented below.

Graded Mean and Modified Graded Mean: Graded Mean (Chen and
Hasieh [22]) Integration Representation method is based on the integral value
of graded mean α-level(cut) of generalized fuzzy number. For a fuzzy number Ã
the graded mean integration representation of Ã is defined as

P (Ã) =
∫ 1

0

α
[AL

α + AR
α

2
]
dα/

∫ 1

0

α dα,

where [AL
α, AR

α ] is the α-cut of Ã.
For example graded mean of a TrFN Ã = (a1, a2, a3, a4) is 1

6 [a1+2a2+2a3+a4].
Here, equal weightage has been given to the lower and upper bounds of the

α-level of the fuzzy number. But the weightage may depends on the decision
maker’s preference or attitude. So, the modified graded mean α-level value of
the fuzzy number Ã is α

[
kAL

α +(1−k)AR
α

]
, where k ∈ [0, 1] is called the decision

makers attitude or optimism parameter. The value of k closer to 0 implies that
the decision maker is more pessimistic while the value of k closer to 1 means
that the decision maker is more optimistic. Therefore, the modified form of the
above graded mean integration representation is

P (Ã) =
∫ 1

0

α
[kAL

α + (1− k)AR
α

2
]
dα/

∫ 1

0

α dα.

For example modified graded mean of a TrFN Ã = (a1, a2, a3, a4) is 1
3 [k(a1 +

2a2) + (1− k)(2a3 + a4)].
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Centroid Method: The centroid C(Ã) of a fuzzy set Ã is defined by

C(Ã) =
∑

x xμÃ(x)∑
x μÃ(x)

for discrete case and

C(Ã) =

∫∞
−∞ xμÃ(x)dx
∫∞

−∞ μÃ(x)dx

for continuous case.
For example if Ã = (a1, a2, a3) is triangular fuzzy number then its centroid

value is C(Ã) = (a1 + a2 + a3)/3.

Nearest Interval Approximation: Grzegorzewski [52], presented a method
to approximate a fuzzy number by a crisp interval. Suppose Ã is a fuzzy num-
ber with α-cut [AL(α), AR(α)]. Let Cd(Ã) = [CL, CR] be the nearest interval
approximation of the fuzzy number Ã with distance metric d, where distance
metric d to measure distance of Ã from Cd(Ã) is given by

d(Ã, Cd(Ã)) =

√∫ 1

0

{AL(α)− CL}2dα +
∫ 1

0

{AR(α)− CR}2dα.

Now Cd(Ã) is optimum when d(Ã, Cd(Ã) is minimum with respect to CL and
CR and in this prospect the value of CL and CR are given by

CL =
∫ 1

0

AL(α)dα and CR =
∫ 1

0

AR(α)dα. (28)

For example, α−cut of a trapezoidal fuzzy number (r1, r2, r3, r4) is [r1 +
α(r2 − r1), r4 − α(r4 − r3)] and its interval approximation is obtained as [(r1 +
r2)/2, (r3 + r4)/2].

Fuzzy Variable: Zadeh [158] introduced the possibility theory to interpret
degree of uncertainty of members of a fuzzy set. The membership μÃ(x) of an
element x in a fuzzy set Ã is then termed as degree of possibility that the element
belongs to the set.

Possibility Measure: Suppose Ã and B̃ be two fuzzy sets (/numbers) with
memberships μÃ and μB̃ respectively. Then possibility (Zadeh [158], Dubois and
Prade [38], Liu and Iwamura [92]) of the fuzzy event Ã � B̃ is defined as

Pos(Ã � B̃) = sup
x�y

min(μÃ(x), μB̃(y)), x, y ∈ 
, (29)

where � is any operations like <, >, =, ≤, ≥, etc. Now for any real number b,

Pos(Ã � b) = sup
x�b
{μÃ(x), x ∈ 
}. (30)
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Definition 2.3 (Possibility Space). A triplet (Θ, p, Pos) is called a possibility
space, where Θ is non-empty set of points, p is power set of Θ and Pos : Θ �→
[0, 1] is a mapping, called possibility measure (Wang [136]) defined as

(i) Pos(∅) = 0 and Pos(Θ) = 1.
(ii) For any {Ai|i ∈ I} ⊂ Θ, Pos(∪Ai) = supi Pos(Ai).

Definition 2.4 (Fuzzy Variable). A fuzzy variable (Nahmias [117]) is defined
as a function from the possibility space (Θ, p, Pos) to the set of real numbers 

to describe fuzzy phenomena, where possibility measure (Pos) of a fuzzy event
{ξ̃ ∈ B}, B ⊂ 
 is defined as Pos{ξ̃ ∈ B} = supx∈B μξ̃(x), μξ̃(x) is referred to
as possibility distribution of ξ̃.

Necessity measure is dual of the possibility measure, the grade of necessity
of an event is the grade of impossibility of the opposite event. Necessity measure
(Nes) of a fuzzy event {ξ̃ ∈ B}, B ⊂ 
 and supx∈
 μξ̃(x) = 1, is defined as
Nec{ξ̃ ∈ B} = 1− Pos{ξ̃ ∈ Bc} = 1− supx∈Bc μξ̃(x).

Credibility Theory: Liu and Liu [94] introduced the concept of credibility
measure. Liu [88] [90] presented credibility theory as a branch of mathematics
for studying the behavior of fuzzy phenomena. Let Θ be a nonempty set, and
p the power set of Θ. Each element in p is called an event. For an event A, a
number Cr{A} which indicates the credibility that A will occur has the following
four axioms (Liu [90]):

1. Normality: Cr{Θ} = 1.
2. Monotonicity: Cr{A} ≤ Cr{B} whenever A ≤ B.
3. Self-Duality: Cr{A}+ Cr{Ac} = 1 for any event A.
4. Maximality: Cr{∪iAi} = supiCr{Ai} for any events {Ai} with supi

Cr{Ai} < 0.5.

Definition 2.5 (Credibility Measure, Liu, [90]). The set function Cr is
called a credibility measure if it satisfies the normality, monotonicity, self-duality,
and maximality axioms.

For example let μ be a nonnegative function on Θ (for example, the set of
real numbers) such that supx∈Θ μ(x) = 1, then the set function defined by

Cr{A} =
1
2
(sup
x∈A

μ(x) + 1− sup
x∈Ac

μ(x)) (31)

is a credibility measure on Θ.
From it is clear that in case of a fuzzy variable ξ̃ with membership function
(possibility distribution) μξ̃ and B ⊂ 
, supx∈
 μξ̃(x) = 1, credibility measure
is actually the average of possibility and necessity measure, i.e.

Cr{ξ̃ ∈ B} =
1
2
(sup
x∈B

μξ̃(x) + 1− sup
x∈Bc

μξ̃(x))

=
1
2
(Pos{ξ̃ ∈ B}+ Nec{ξ̃ ∈ B}). (32)
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Example of Some Important Fuzzy Variables:

Equipossible Fuzzy Variable: An equipossible fuzzy variable on [a, b] is a
fuzzy variable whose membership function (possibility distribution) is given by

μx =
{

1, if a ≤ x ≤ b;
0, otherwise.

Trapezoidal and Triangular Fuzzy Variable: Triangular fuzzy number and
trapezoidal fuzzy number are two kinds of special fuzzy variables. As both trape-
zoidal and triangular fuzzy numbers are normal and defined over the set of real
numbers 
 so possibility, necessity as well as credibility measures are defined on
them. So a trapezoidal fuzzy variable (TrFV) Ã is a fuzzy variable fully deter-
mined by quadruplet (a1, a2, a3, a4) of crisp numbers with a1 < a2 ≤ a3 < a4,
whose membership function is given by

μÃ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−a1
a2−a1

, if a1 ≤ x ≤ a2;
1, if a2 ≤ x ≤ a3;
a4−x
a4−a3

, if a3 ≤ x ≤ a4;
0, otherwise.

When a2 = a3, the trapezoidal fuzzy variable becomes a triangular fuzzy variable
(TFV).

Some Methodologies to Deal with Fuzzy Variables: Expected Value
(Liu and Liu [94]): Let ξ̃ be a fuzzy variable. Then the expected value of ξ is
defined as

E[ξ̃] =
∫ ∞

0

cr{ξ̃ ≥ r}dr −
∫ 0

−∞
cr{ξ̃ ≤ r}dr (33)

provided that at least one of the two integrals is finite.

Example 2.1. Expected value of a triangular fuzzy variable ξ̃ = (r1, r2, r3) is
E[ξ̃] = r1+2r2+r3

4 .

Optimistic and Pessimistic Value (Liu [86,89]): Let ξ̃ be a fuzzy variable
and α ∈ [0, 1]. Then

ξsup(α) = sup{r : cr{ξ̃ ≥ r} ≥ α} (34)

is called α-optimistic value to ξ̃; and

ξinf (α) = inf{r : cr{ξ̃ ≤ r} ≥ α} (35)

is called α-pessimistic value to ξ̃.
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Example 2.2. Let ξ̃ = (r1, r2, r3, r4) be a trapezoidal fuzzy variable. Then its
α-optimistic and α-pessimistic values are

ξ̃sup(α) =
{

2αr3 + (1− 2α)r4, if α ≤ 0.5;
(2α− 1)r1 + 2(1− α)r2, if α > 0.5.

(36)

ξ̃inf (α) =
{

(1− 2α)r1 + 2αr2, ifα ≤ 0.5;
2(1− α)r3 + (2α− 1)r4, ifα > 0.5.

(37)

2.3 Type-2 Fuzzy Set

So far in the Subsect. 2.2, we have discussed fuzzy sets with crisply defined
membership functions, i.e., membership degree (/grade) of each of the points is
an precise real number in [0,1]. However it is not always possible to represents
uncertainty by a fuzzy set with crisp membership function, i.e., points having
crisp membership grades. For instance, in rule-based fuzzy logic systems, the
words that are used in the antecedents and consequents of rules can be uncertain
as human judgements are not always precise and also a word does not have the
same meaning or value to different people. Zadeh [157] introduced an extension
of the concept of usual fuzzy set into a fuzzy set whose membership function itself
is a fuzzy set. Then the usual fuzzy set with crisp membership function is termed
as type-1 fuzzy set and the fuzzy set with fuzzy membership function is termed
type-2 fuzzy set. So membership grade of each element of a type-2 fuzzy set is
no longer a crisp value but a fuzzy set with a support bounded by the interval
[0,1] which provides additional degrees of freedom for handling uncertainties. So
because of fuzzy membership function a type-2 fuzzy set has three-dimensional
nature. This membership function is called type-2 membership function.

Definition 2.6 (Type-2 Fuzzy Set). A type-2 fuzzy set (T2 FS) Ã in X is
defined (Mendel and John [105,106]) as

Ã = {((x, u), μÃ(x, u)) : ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]},
where 0 ≤ μÃ(x, u) ≤ 1 is called the type-2 membership function, Jx is the
primary membership of x ∈ X which is the domain of the secondary membership
function μ̃Ã(x) (defined below). The values u ∈ Jx for x ∈ X are called primary
membership grades of x.

Ã is also be expressed as

Ã =
∫

x∈X

∫

u∈Jx

μÃ(x, u)/(x, u) , Jx ⊆ [0, 1], (38)

where
∫ ∫

denotes union over all admissible x and u. For discrete universes of
discourse

∫
is replaced by

∑
.

Secondary Membership Function: For each values of x, say x = x′, the
secondary membership function (Mendel and John [105]), denoted by μÃ(x =
x′, u), u ∈ Jx′ ⊆ [0, 1] is defined as

μÃ(x′, u) ≡ μ̃Ã(x′) =
∫

u∈Jx′
fx′(u)/u, (39)
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where 0 ≤ fx′(u) ≤ 1. The amplitude of a secondary membership function
is called a secondary grade. So for a particular x = x′ and u = u′ ∈ Jx′ ,
fx′(u′) = μÃ(x′, u′) is the secondary membership grade.

Now using (39), Ã can be written an another way as Ã = {(x, μ̃Ã(x)) : x ∈
X}, i.e.

Ã =
∫

x∈X

μ̃Ã(x)/x =
∫

x∈X

[ ∫

u∈Jx

fx(u)/u

]/
x. (40)

Example 2.3. X = {4, 5, 6} and the primary memberships of the points of X
are J4 = {0.3, 0.4, 0.6}, J5 = {0.6, 0.8, 0.9}, J6 = {0.5, 0.6, 0.7, 0.8} respectively
and the secondary membership functions of the points are
μ̃Ã(4) = μÃ(4, u) = (0.6/0.3) + (1/0.4) + (0.7/0.6)
i.e., μÃ(4, 0.3) = 0.6, μÃ(4, 0.4) = 1 and μÃ(4, 0.6) = 0.7. Here μÃ(4, 0.3) =
0.6 means membership (secondary) grade that the point 4 has the membership
(primary) 0.3 is 0.6.
μ̃Ã(5) = μÃ(5, u) = (0.7/0.6) + (1/0.8) + (0.8/0.9),
μ̃Ã(6) = μÃ(6, u) = (0.3/0.5) + (0.4/0.6) + (1/0.7) + (0.8/0.5).
So discrete type-2 fuzzy set Ã is given by
Ã = (0.6/0.3)/4+(1/0.4)/4+(0.7/0.6)/4+(0.7/0.6)/5+(1/0.8)/5+(0.8/0.9)/5+
(0.3/0.5)/6 + (0.4/0.6)/6 + (1/0.7)/6 + (0.8/0.5)/6.
Ã is also written as

Ã ∼
⎧
⎨

⎩

4, with membership μ̃Ã(4);
5, with membership μ̃Ã(5);
6, with membership μ̃Ã(6).

The T2 FS Ã is depicted in Fig. 3.

Definition 2.7 (Interval Type-2 Fuzzy Set). If all the secondary member-
ship grades are 1 (i.e. fx(u) = μÃ(x, u) = 1, ∀ x, u) then this T2 FS is called
interval type-2 fuzzy set (IT2 FS) (Mendel et al. [107], Wu and Mendel [146]).
The third dimension of the general T2 FS is not needed in this case and the IT2
FS can be expressed as a special case of the general T2 FS:

Ã =
∫

x∈X

∫

u∈Jx

1/(x, u) , Jx ⊆ [0, 1] (41)

or, alternatively it can be represented as

Ã =
∫

x∈X

μ̃Ã(x)/x =
∫

x∈X

[ ∫

u∈Jx

1/u

]/
x. (42)

Footprint of Uncertainty: A IT2 FS is characterized by the footprint of
uncertainty (FOU) which is the union of all of the primary memberships Jx,
i.e. FOU of a IT2 FS Ã is defined as

FOU(Ã) =
⋃

x∈X

Jx.
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Fig. 3. Type-2 fuzzy set Ã
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Fig. 4. Interval type-2 fuzzy set Ã

The FOU is bounded by an upper membership function μ̄Ã(x) (UMF) and a
lower membership function μ

Ã
(x) (LMF), both are type-1 membership functions

so that Jx = [μ
Ã
(x), μ̄Ã(x)], ∀ x ∈ X. So the IT2 FS can be represented by

(ÃU , ÃL), where ÃU and ÃL are TIFSs.
For example consider a IT2 FS Ã whose upper and lower membership func-

tions are type-1 triangular membership functions and it is depicted in Fig. 4.

Type Reduction: We already knows that a type-2 fuzzy set (T2 FS) is a fuzzy
set with fuzzy membership function. Due to fuzzyness in membership function
of T2 FS, the computational complexity is very high to deal with T2 FS. For this
reason to deal with T2 FS, generally a T2 FS is converted to a type-1 fuzzy set
(T1 FS) by some type reduction methods. Type reduction is the procedure by
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which a T2 FS is converted to the corresponding T1 FS, known as type reduced
set (TRS). But till now there are very few reduction methods available in the
literature. Centroid type reduction (Kernik and Mendel [63]) is an example of
such type reduction method.

Geometric Defuzzification for T2 FS (Coupland and John [31]): Coup-
land and John [31] proposed a defuzzification method for T2 FSs with the help of
geometric representation of a T2 FS. A geometric T2 FS from a discrete T2 FS
is constructed (Coupland [30], Coupland and John [31])) by breaking down the
membership function of the T2 FS into five areas and then each of the five areas
is modeled by a collection of 3-D triangles where the edges of these triangles
are connected to form a 3-D polyhedron. The final defuzzified value is found by
calculating the center of area of the polyhedron which approximates the type-2
fuzzy membership function. The center of area of the polyhedron is obtained by
taking weighted average of x-component of the centroid and the area of each
of the triangles those form the polyhedron. In case of T2 FS having continu-
ous domains of primary or secondary membership function, to apply geometric
defuzzification method, first one have to discretize the continuous domains into
finite number of points (preferably equidistant points) within the support of the
corresponding membership functions. The approach of geometric representation
of discrete T2 FS is limited to T2 FSs where all the secondary membership
functions are convex.

Type-2 Fuzzy Variable: Before going to the definition of type-2 fuzzy variable
we present some related definitions those are required to define a type-2 fuzzy
variable.

Definition 2.7 (Fuzzy Possibility Space (FPS)). Let Γ be the universe of
discourse. An ample field (Wang [136]) A on Γ is a class of subsets of Γ that is
closed under arbitrary unions, intersections, and complements in Γ .

Let P̃ os : A �→ 
([0, 1]) be a set function defined onA such that {P̃ os(A)|A �
A atom} is a family of mutually independent RFVs. Then P̃ os is called a fuzzy
possibility measure (Liu and Liu [99]) if it satisfies the following conditions:
(P1) P̃ os(∅) =0̃.
(P2) For any subclass {Ai|i ∈ I} of A (finite, countable or uncountable),

P̃ os
(⋃

i∈I

Ai

)
= supi∈I P̃ os(Ai).

The triplet (Γ,A, P̃ os) is referred to as a fuzzy possibility space (FPS).

Definition 2.8 (Regular Fuzzy Variable (RFV)). For a possibility space
(Θ, p, Pos), a regular fuzzy variable (Liu and Liu [99]) ξ̃ is defined as a mea-
surable map from Θ to [0, 1] in the sense that for every t ∈ [0, 1], one has
{γ ∈ Θ | ξ̃(γ) ≤ t} ∈ p.

A discrete RFV is represented as ξ̃ ∼
(

r1 r2 ... rn

μ1 μ2 ... μn

)
, where ri ∈ [0, 1] and

μi > 0, ∀i and maxi{μi} = 1.
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If ξ̃ = (r1, r2, r3, r4) with 0 ≤ r1 < r2 < r3 < r4 ≤ 1, then ξ̃ is called a
trapezoidal RFV.
If ξ̃ = (r1, r2, r3) with 0 ≤ r1 < r2 < r3 ≤ 1, then ξ̃ is called a triangular RFV.

Definition 2.9 (Type-2 Fuzzy Variable). As a fuzzy variable (type-1) is
defined as a function from the possibility space to the set of real numbers, a
type-2 fuzzy variable (T2 FV) is defined as a function from the fuzzy possibility
space to the set of real numbers. If (Γ,A, P̃ os) is a fuzzy possibility space (Liu
and Liu [99]), then a type-2 fuzzy variable ξ̃ is defined as a map from Γ to 
 such
that for any t ∈ 
 the set {γ ∈ Γ | ξ̃(γ) ≤ t} ∈ A, i.e. a type-2 fuzzy variable
(T2 FV) is a map from a fuzzy possibility space to the set of real numbers.

Then μ̃ξ̃(x), called secondary possibility distribution function of ξ̃, is defined
as a map 
 �→ 
[0, 1] such that μ̃ξ̃(x) = ˜Pos{γ ∈ Θ | ξ̃(γ) = x}, x ∈ 
. μξ̃(x, u),
called type-2 possibility distribution function, is a map 
× Jx �→ [0, 1], defined
as μξ̃(x, u) = Pos{μ̃ξ̃(x) = u}, (x, u) ∈ 
 × Jx, Jx ⊆ [0, 1] is the domain or
support of μ̃ξ̃(x), i.e., Jx = {u ∈ [0, 1] | μξ̃(x, u) > 0}. Here Jx may be called
as primary possibility of the point x and for a particular value of x, say x = x′,
μ̃ξ̃(x

′) ∼ μξ̃(x
′, u), u ∈ Jx′ gives the secondary possibility of x′.

The secondary possibility distribution of a particular value x = x′, i.e. μ̃ξ̃(x
′)

actually represents a regular fuzzy variable (RFV).

Definition 2.10 (Interval Type-2 Fuzzy Variable). If for a type-2 fuzzy
variable ξ̃ we call the μξ̃(x

′, u′) as secondary possibility degree for a point x =
x′ and u′ ∈ Jx′ , then if secondary possibility degrees for all the points with
respective primary possibilities are 1, ξ̃ is said to be interval type-2 fuzzy variable
(IT2 FV).

Example 2.4. Let ξ̃ is a T2 FV defined as

ξ̃ =

⎧
⎨

⎩

5, with possibility (0.2,0.4,0.6);
6, with possibility (0.4,0.6,0.8);
7, with possibility (0.1,0.3,0.5,0.7).

(43)

i.e., the possibilities that ξ̃ has the values 5 and 6 are μ̃ξ̃(5) = (0.2, 0.4, 0.6) and
μ̃ξ̃(6) = (0.4, 0.6, 0.8) respectively, each of which is triangular RFV and possi-
bility that ξ̃ takes the value 7 is μ̃ξ̃(7) = (0.1, 0.3, 0.5, 0.7) which is trapezoidal
RFV. Obviously as μ̃ξ̃(5) = (0.2, 0.4, 0.6) is triangular RFV, we have,

μξ̃(5, u) =

⎧
⎪⎪⎨

⎪⎪⎩

u−0.2
0.2 , if 0.2 ≤ u ≤ 0.4;

1, ifu = 0.4;
0.6−u
0.2 , if 0.4 ≤ u ≤ 0.6.

0, otherwise;

from which we get the secondary possibilities for the point 5 and each values of
u, 0.2 ≤ u ≤ 0.6. ξ̃ is depicted in Fig. 5.
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Fig. 5. Type-2 fuzzy variable ξ̃

Example 2.5 (Type-2 Triangular Fuzzy Variable). A type-2 triangular
fuzzy variable (Qin et al. [127]) ξ̃ is represented by (r1, r2, r3; θl, θr), where r1,
r2, r3 are real numbers and θl, θr ∈ [0, 1] are two parameters characterizing
the degree of uncertainty that ξ̃ takes a value x and the secondary possibility
distribution function μ̃ξ̃(x) of ξ̃ is defined by

μ̃ξ̃(x) =
( x− r1
r2 − r1

− θl min
{ x− r1

r2 − r1
,

r2 − x

r2 − r1

}
,

x− r1
r2 − r1

,
x− r1
r2 − r1

+

+θr min
{ x− r1

r2 − r1
,

r2 − x

r2 − r1

})
(44)

for any x ∈ [r1, r2], and

μ̃ξ̃(x) =
( r3 − x

r3 − r2
− θl min

{ r3 − x

r3 − r2
,

x− r2
r3 − r2

}
,

r3 − x

r3 − r2
,

r3 − x

r3 − r2
+

+θr min
{ r3 − x

r3 − r2
,

x− r2
r3 − r2

})
(45)

for any x ∈ (r2, r3].
A type-2 triangular fuzzy variable can be seen as an extension of a type-1

triangular fuzzy variable or simply a triangular fuzzy variable. In a triangular
fuzzy variable (TFV) (r1, r2, r3), the membership grade (possibility degree) of
each point is a fixed number in [0,1]. However in a type-2 triangular fuzzy variable
ξ̃ = (r1, r2, r3; θl, θr), the primary memberships (possibilities) of the points are
no longer fixed values, instead they have a range between 0 and 1. Here θl and
θr are used to represent the spreads of primary memberships of type-2 TFV.
Obviously if θl = θr = 0, then type-2 TFV ξ̃ becomes a type-1 TFV and the
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Eqs. (44) and (45) together become the membership function of a type-1 TFV.
Now from Eqs. (44) and (45), μ̃ξ̃(x) can be written as

μ̃ξ̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
x−r1
r2−r1

− θl
x−r1
r2−r1

, x−r1
r2−r1

, x−r1
r2−r1

+ θr
x−r1
r2−r1

)
, ifx ∈ [r1, r1+r2

2 ];(
x−r1
r2−r1

− θl
r2−x
r2−r1

, x−r1
r2−r1

, x−r1
r2−r1

+ θr
r2−x
r2−r1

)
, ifx ∈ ( r1+r2

2 , r2];(
r3−x
r3−r2

− θl
x−r2
r3−r2

, r3−x
r3−r2

, r3−x
r3−r2

+ θr
x−r2
r3−r2

)
, ifx ∈ (r2, r2+r3

2 ];(
r3−x
r3−r2

− θl
r3−x
r3−r2

, r3−x
r3−r2

, r3−x
r3−r2

+ θr
r3−x
r3−r2

)
, ifx ∈ ( r2+r3

2 , r3].

(46)

Let us illustrate Example 2.5 numerically. Consider the type-2 triangular fuzzy
variable ξ̃ = (2, 3, 4; 0.5, 0.8).

Then its secondary possibility distribution is given by

μ̃ξ̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(0.5(x− 2), x− 2, 1.8(x− 2)), ifx ∈ [2, 2.5];
((x− 2)− 0.5(3− x), x− 2, (x− 2) + 0.8(3− x)), ifx ∈ (2.5, 3];
((4− x)− 0.5(x− 3), 4− x, (4− x) + 0.8(x− 3)), ifx ∈ (3, 3.5];
(0.5(4− x), 4− x, 1.8(4− x)), if x ∈ (3.5, 4].

Here secondary possibility degree of each value of x is a triangular fuzzy variable
(more precisely a triangular RFV), e.g., μ̃ξ̃(2.5) = (0.25, 0.5, 0.9), μ̃ξ̃(3.2) =
(0.7, 0.8, 0.96), etc. So the domain of secondary possibility μ̃ξ̃(2.5) varies from
0.25 to 0.9 and that of μ̃ξ̃(3.2) varies from 0.7 to 0.96.

The FOU of ξ̃ is depicted in Fig. 6.

2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

x

u

Fig. 6. FOU of ξ̃.
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Example 2.6 (Trapezoidal Interval Type-2 Fuzzy Variable). A trape-
zoidal interval type-2 fuzzy variable Ã in the universe of discourse X can be rep-
resented by Ã = (ÃU , ÃL) = ((aU

1 , aU
2 , aU

3 , aU
4 ;wU ), (aL

1 , aL
2 , aL

3 , aL
4 ;wL)), where

both ÃU and ÃL are trapezoidal fuzzy variables of height wU and wL respec-
tively.

For example consider a trapezoidal IT2 FV Ã = ((2, 4, 6, 8; 1), (3, 4.5,
5.5, 7; 0.8)) which is depicted in Fig. 7.

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Trapezoidal interval type-2 fuzzy variable Ã

The arithmetic operations between trapezoidal interval type-2 fuzzy vari-
ables Ã1 = (ÃU

1 , ÃL
1 ) = ((aU

11, a
U
12, a

U
13, a

U
14;w

U
1 ), (aL

11, a
L
12, a

L
13, a

L
14;w

L
1 )) and

Ã2 = (ÃU
2 , ÃL

2 ) = ((aU
21, a

U
22, a

U
23, a

U
24;w

U
2 ), (aL

21, a
L
22, a

L
23, a

L
24;w

L
2 )) are defined

based on Chen and Lee [23,24] as follows:
Addition operation: Ã1 ⊕ Ã2 = (ÃU

1 , ÃL
1 )⊕ (ÃU

2 , ÃL
2 )

= ((aU
11 + aU

21, a
U
12 + aU

22, a
U
13 + aU

23, a
U
14 + aU

24,min(wU
1 , wU

2 )), (aL
11 + aL

21, a
L
12 +

aL
22, a

L
13 + aL

23, a
L
14 + aL

24,min(wL
1 , wL

2 ))),
Multiplication operation: Ã1 ⊗ Ã2 = (ÃU

1 , ÃL
1 )⊗ (ÃU

2 , ÃL
2 )

= ((aU
11 × aU

21, a
U
12 × aU

22, a
U
13 × aU

23, a
U
14 × aU

24,min(wU
1 , wU

2 )), (aL
11 × aL

21, a
L
12 ×

aL
22, a

L
13 × aL

23, a
L
14 × aL

24,min(wL
1 , wL

2 ))).
The arithmetic operations between trapezoidal interval type-2 fuzzy variable Ã1

and a crisp value k(> 0) are defined as follows:
kÃ1 = ((k×aU

11, k×aU
12, k×aU

13, k×aU
14;w

U
1 ), (k×aL

11, k×aL
12, k×aL

13, k×aL
14;w

L
1 )),

Ã1
k = (( 1

k×aU
11,

1
k×aU

12,
1
k×aU

13,
1
k×aU

14;w
U
1 ), ( 1

k×aL
11,

1
k×aL

12,
1
k×aL

13,
1
k×aL

14;w
L
1 )).
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Critical Value (CV)-Based Reduction Method for Type-2 Fuzzy Vari-
ables (Qin et al. [127]): The CV-based reduction method is developed using
the following definitions.

Critical Values (CVs) for RFVs: Qin et al. [127] introduced three kinds of
critical values (CVs) of a RFV ξ̃. These are:

(i) the optimistic CV of ξ̃, denoted by CV*[ξ̃], is defined as

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos{ξ̃ ≥ α}] (47)

(ii) the pessimistic CV of ξ̃, denoted by CV∗[ξ̃], is defined as

CV∗[ξ̃] = sup
α∈[0,1]

[α ∧Nec{ξ̃ ≥ α}] (48)

(iii) the CV of ξ̃, denoted by CV[ξ̃], is defined as

CV [ξ̃] = sup
α∈[0,1]

[α ∧ Cr{ξ̃ ≥ α}]. (49)

Example 2.7. Let ξ̃ be a discrete RFV defined by

ξ̃ =
(

0.2 0.4 0.5 0.7
0.3 0.7 1.0 0.6

)

Then for α ∈ [0, 1],

Pos{ξ̃ ≥ α} = sup
r≥α

μξ̃(r) =

⎧
⎨

⎩

1, ifα ≤ 0.5;
0.6, if 0.5 < α ≤ 0.7;
0, if 0.7 < α ≤ 1.

Nec{ξ̃ ≥ α} = 1− sup
r<α

μξ̃(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ifα ≤ 0.2;
0.7, if 0.2 < α ≤ 0.4;
0.3, if 0.4 < α ≤ 0.5;
0, if 0.5 < α ≤ 1.

and so,

Cr{ξ̃ ≥ α} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, ifα ≤ 0.2;
0.85, if 0.2 < α ≤ 0.4;
0.65, if 0.4 < α ≤ 0.5;
0.3, if 0.5 < α ≤ 0.7;
0, if 0.7 < α ≤ 1.
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Now from (47), (48) and (49) we have

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos{ξ̃ ≥ α}]

= sup
α∈[0,0.5]

[α ∧ 1] ∨ sup
α∈(0.5,0.7]

[α ∧ 0.6] ∨ sup
α∈(0.7,1]

[α ∧ 0]

= 0.5 ∨ 0.6 ∨ 0 = 0.6
CV∗[ξ̃] = sup

α∈[0,1]

[α ∧Nec{ξ̃ ≥ α}]

= sup
α∈[0,0.2]

[α ∧ 1] ∨ sup
α∈(0.2,0.4]

[α ∧ 0.7] ∨ sup
α∈(0.4,0.5]

[α ∧ 0.3] ∨ sup
α∈(0.5,1]

[α ∧ 0]

= 0.2 ∨ 0.4 ∨ 0.3 ∨ 0 = 0.4

and

CV [ξ̃] = sup
α∈[0,1]

[α ∧ Pos{ξ̃ ≥ α}]

= sup
α∈[0,0.2]

[α ∧ 1] ∨ sup
α∈(0.2,0.4]

[α ∧ 0.85] ∨ sup
α∈(0.4,0.5]

[α ∧ 0.65] ∨

sup
α∈(0.5,0.7]

[α ∧ 0.3] ∨ sup
α∈(0.7,1]

[α ∧ 0]

= 0.2 ∨ 0.4 ∨ 0.5 ∨ 0.3 ∨ 0 = 0.5.

The following theorems introduce the critical values (CVs) of trapezoidal and
triangular RFVs.

Theorem 2.2 (Qin et al. [127]). Let ξ̃ = (r1, r2, r3, r4) be a trapezoidal RFV.
Then we have

(i) the optimistic CV of ξ̃ is

CV ∗[ξ̃] = r4/(1 + r4 − r3), (50)

(ii) the pessimistic CV of ξ̃ is

CV∗[ξ̃] = r2/(1 + r2 − r1), (51)

(iii) the CV of ξ̃ is

CV [ξ̃] =

⎧
⎨

⎩

2r2−r1
1+2(r2−r1)

, if r2 > 1
2 ;

1
2 , if r2 ≤ 1

2 < r3;
r4

1+2(r4−r3)
, if r3 ≤ 1

2 .
(52)

Theorem 2.3 (Qin et al. [127]). Let ξ̃ = (r1, r2, r3) be a triangular RFV. Then
we have

(i) the optimistic CV of ξ̃ is

CV ∗[ξ̃] = r3/(1 + r3 − r2), (53)
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(ii) the pessimistic CV of ξ̃ is

CV∗[ξ̃] = r2/(1 + r2 − r1), (54)

(iii) the CV of ξ̃ is

CV [ξ̃] =

{
2r2−r1

1+2(r2−r1)
, if r2 > 1

2 ;
r3

1+2(r3−r2)
, r2 ≤ 1

2 .
(55)

Now we discussed the CV-based reduction method.

The CV-Based Reduction Method: Because of fuzziness in membership
function of T2 FS, computational complexity is very high to deal with T2 FS.
A general idea to reduce its complexity is to convert a T2 FS into a T1 FS
so that the methodologies to deal with T1 FSs can also be applied to T2 FSs.
Qin et al. [127] proposed a CV-based reduction method which reduces a type-
2 fuzzy variable to a type-1 fuzzy variable (may or may not be normal). Let
ξ̃ be a T2 FV with secondary possibility distribution function μ̃ξ̃(x) (which
represents a RFV). The method is to introduce the critical values (CVs) as
representing values for RFV μ̃ξ̃(x), i.e., CV∗[μ̃ξ̃(x)], CV∗[μ̃ξ̃(x)] or CV[μ̃ξ̃(x)]
and so corresponding type-1 fuzzy variables (T1 FVs) are derived using these
CVs of the secondary possibilities. Then these methods are respectively called
optimistic CV reduction, pessimistic CV reduction and CV reduction method.

Example 2.4 (Continued). The possibilities of each point of the T2 FV ξ̃ in
Example 2.4, are triangular or trapezoidal RFVs. So from Theorems 2.2 and 2.3
we obtain

CV∗[μ̃ξ̃(5)] = 1
2 , CV∗[μ̃ξ̃(6)] = 2

3 , CV∗[μ̃ξ̃(7)] = 7
12 .

CV∗[μ̃ξ̃(5)] = 1
3 , CV∗[μ̃ξ̃(6)] = 1

2 , CV∗[μ̃ξ̃(7)] = 1
4 .

CV[μ̃ξ̃(5)] = 3
7 , CV[μ̃ξ̃(6)] = 4

7 , CV[μ̃ξ̃(7)] = 1
2 .

Then by optimistic CV, pessimistic CV and CV reduction methods, the T2
FV ξ̃ is reduced respectively to the following T1 FVs
(

5 6 7
1
2

2
3

7
12

)
,
(

5 6 7
1
3

1
2

1
4

)
and

(
5 6 7
3
7

4
7

1
2

)
.

In the following theorem the optimistic CV, pessimistic CV and CV reductions
of a type-2 triangular fuzzy variable are obtained. Since the secondary possibility
distribution of a type-2 triangular fuzzy variable is a triangular RFV, so applying
Theorem 2.3, Qin et al. [127] established the following theorem in which a type-2
triangular fuzzy variable is reduced to a type-1 fuzzy variable.

Theorem 2.4 (Qin et al. [127]). Let ξ̃ be a type-2 triangular fuzzy variable
defined as ξ̃ = (r1, r2, r3; θl, θr). Then we have:
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(i) Using the optimistic CV reduction method, the reduction ξ1 of ξ̃ has the
following possibility distribution

μξ1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1+θr)(x−r1)
r2−r1+θr(x−r1)

, ifx ∈ [r1, r1+r2
2 ];

(1−θr)x+θrr2−r1
r2−r1+θr(r2−x) , ifx ∈ ( r1+r2

2 , r2];
(−1+θr)x−θrr2+r3

r3−r2+θr(x−r2)
, ifx ∈ (r2, r2+r3

2 ];
(1+θr)(r3−x)

r3−r2+θr(r3−x) , ifx ∈ ( r2+r3
2 , r3].

(56)

(ii) Using the pessimistic CV reduction method, the reduction ξ2 of ξ̃ has the
following possibility distribution

μξ2(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−r1
r2−r1+θl(x−r1)

, ifx ∈ [r1, r1+r2
2 ];

x−r1
r2−r1+θl(r2−x) , ifx ∈ ( r1+r2

2 , r2];
r3−x

r3−r2+θl(x−r2)
, ifx ∈ (r2, r2+r3

2 ];
r3−x

r3−r2+θl(r3−x) , ifx ∈ ( r2+r3
2 , r3].

(57)

(iii) Using the CV reduction method, the reduction ξ3 of ξ̃ has the following
possibility distribution

μξ3(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1+θr)(x−r1)
r2−r1+2θr(x−r1)

, ifx ∈ [r1, r1+r2
2 ];

(1−θl)x+θlr2−r1
r2−r1+2θl(r2−x) , ifx ∈ ( r1+r2

2 , r2];
(−1+θl)x−θlr2+r3
r3−r2+2θl(x−r2)

, ifx ∈ (r2, r2+r3
2 ];

(1+θr)(r3−x)
r3−r2+2θr(r3−x) , ifx ∈ ( r2+r3

2 , r3].

(58)

Example 2.8. Consider the type-2 triangular fuzzy variable ξ̃=(2, 3, 4; 0.5, 0.8)
whose FOU is depicted in Fig. 6.

Then its optimistic CV, pessimistic CV and CV reductions are shown in the
Fig. 8.

Note 2.1: The reduced type-1 fuzzy variables from T2 FVs as obtained by
CV-based reduction methods are not always normalized, i.e. are general fuzzy
variables. For instance, from Example 2.4 (continued) we observe that the reduc-
tions of T2 FV ξ̃ are not normal. For such cases, generalized credibility measure
C̃r is used instead of the credibility measure.

The generalized credibility measure C̃r of a fuzzy event {ξ̃ ∈ B}, B ⊂ 
 is
defined as

C̃r{ξ̃ ∈ B} =
1
2
(sup
x∈


μξ̃(x) + sup
x∈B

μξ̃(x)− sup
x∈Bc

μξ̃(x)).

It is obvious that if ξ̃ is normalized (i.e. supx∈
 μξ̃(x) = 1), then C̃r coincides
with usual credibility measure Cr.
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Fig. 8. (1) optimistic CV, (2) pessimistic CV, (3) CV reductions of ξ̃.

2.4 Rough Set

Here we introduced some basic idea of approximation of a subset of a certain
universe by means of lower and upper approximation and the rough set theory.
Suppose U is a non-empty finite set of objects called the universe and A is a
non-empty finite set of attributes, then the pair S = (U,A) is called information
system. For any B ⊆ A there is associated an equivalence relation I(B) defined
as I(B) = {(x, y) ∈ U × U | ∀a ∈ B, a(x) = a(y)}, where a(x) denotes the value
of attribute a for element x. I(B) is called the B-indiscernibility relation. The
equivalence classes of the B-indiscernibility relation are denoted by [x]B .
For an information system S = (U,A) and B ⊆ A, X ⊆ U can be approximated
using only the information contained in B by constructing the B-lower and
B-upper approximations (Pawlak [122]) of X, denoted BX and BX respectively,
where

BX = {x | [x]B ⊆ X} and BX = {x | [x]B ∩X �= φ}.
Clearly, lower approximation BX is the definable (exact) set contained in X so
that the objects in BX can be with certainty classified as members of X on
the basis of knowledge in B, while the objects in BX can be only classified as
possible members of X on the basis of knowledge in B. The B-boundary region
of X is defined as

BNB = BX −BX
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and thus consists of those objects that we cannot decisively classify into X on
the basis of knowledge in B. The boundary region of a crisp (exact) set is an
empty set as the lower and upper approximation of crisp set are equal. A set is
said to be rough if the boundary region is non-empty, i.e., if BNB �= φ then X
is referred to as rough with respect to B.
Rough set can be also characterized numerically by the following coefficient

αB(X) =
| BX |
| BX |

called the accuracy of approximation, where |X| denotes the cardinality of X.
Obviously 0 ≤ αB(X) ≤ 1. If αB(X) = 1, X is crisp with respect to B and if
αB(X) < 1, X is rough with respect to B.

Example 2.9. A simple information system (also known as attribute-value
tables or information table) is shown in Table 1. This table contains informa-
tion about patients suffering from a certain disease and objects in this table
are patients, attributes can be, for example, headache, body temperature etc.
Columns of the table are labeled by attributes (symptoms) and rows by objects
(patients), whereas entries of the table are attribute values. Thus each row of
the table can be seen as information about specific patient.

Table 1. An example of information system

Patient Headache Muscle-pain Temperature Flu

p1 no yes high yes

p2 yes no high yes

p3 yes yes very high yes

p4 no yes normal no

p5 yes no high no

p6 no yes very high yes

From the table it is observed that patients p2, p3 and p5 have the same
conditions with respect to the attribute Headache. So patients p2, p3 and p5
are indiscernible with respect to the attribute Headache. Similarly patients p3
and p6 are indiscernible with respect to attributes Muscle-pain and Flu, and
patients p2 and p5 are indiscernible with respect to attributes Headache, Muscle-
pain and Temperature. Hence, the attribute Headache generates two elementary
sets {p2, p3, p5} and {p1, p4, p6}, i.e., I(Headache) = {{p2, p3, p5}, {p1, p4, p6}}.
Similarly the attributes Headache and Muscle-pain form the following elemen-
tary sets: {p1, p4, p6}, {p2, p5} and {p3}.

Now we observe that patient p2 and p5 indiscernible with respect to the
attributes Headache, Muscle-pain and Temperature, but patient p2 has flu,
whereas patient p5 does not, hence flu cannot be characterized in terms of
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attributes Headache, Muscle-pain and Temperature. Hence p2 and p5 are the
boundary-line cases, which cannot be properly classified in view of the available
knowledge. The remaining patients p1, p3 and p6 display symptoms (Muscle-
pain and at least high temperature, which are must in a patient having flu as seen
from the table) which enable us to classify them with certainty as having flu and
patient p4 for sure does not have flu, in view of the displayed symptoms. Thus
the lower approximation of the set of patients having flu is the set {p1, p3, p6}
and the upper approximation of this set is the set {p1, p2, p3, p5, p6}, whereas
the boundary-line cases are patients p2 and p5. Now consider the concept “flu”,
i.e., the set X = {p1, p2, p3, p6} and the set of attributes B = Headache, Muscle-
pain, Temperature. Then BX = {p1, p3, p6} and BX = {p1, p2, p3, p5, p6} and
BNB = BX −BX = {p2, p5} �= φ. So here X can be referred to as rough with
respect to B. Also in this case we get αB(X) = 3/5. It means that the concept
“flu” can be characterized partially employing symptoms Headache, Muscle-pain
and Temperature.

Rough Variable: The concept of rough variable is introduced by Liu [86]. The
following definitions are based on Liu [86,88].

Definition 2.11. Let Λ be a nonempty set, A be a σ-algebra of subsets of Λ, Δ
be an element in A, and π be a nonnegative, real-valued, additive set function
on A. Then (Λ,Δ,A, π) is called a rough space.

Definition 2.12 (Rough Variable). A rough variable ξ on the rough space
(Λ,Δ,A, π) is a measurable function from Λ to the set of real numbers 
 such
that for every Borel set B of 
, we have {λ ∈ Λ | ξ(λ) ∈ B} ∈ A.

Then the lower and upper approximations of the rough variable ξ are defined
as follows:

ξ = {ξ(λ) | λ ∈ Δ} and ξ = {ξ(λ) | λ ∈ Λ}.
Definition 2.13. Let ξ be a rough vector on the rough space (Λ,Δ,A, π), and
fj : 
n → 
 be continuous functions, j = 1, 2, ...,m. Then the upper trust of
the rough event characterized by fj(ξ) ≤ 0; j = 1, 2, ...,m is defined by

T r̄{fj(ξ) ≤ 0,j=1,2,...,m} =
π{λ ∈ Λ|fj(ξ(λ)) ≤ 0, j = 1, 2, ...,m}

π(Λ)
,

and the lower trust of the rough event characterized by fj(ξ) ≤ 0; j = 1, 2, ...,m
is defined by

Tr{fj(ξ) ≤ 0,j=1,2,...,m} =
π{λ ∈ Δ|fj(ξ(λ)) ≤ 0, j = 1, 2, ...,m}

π(Δ)
.

If π(Δ) = 0, then the upper trust and lower trust of the rough event are assumed
to be equivalent, i.e., T r̄{fj(ξ) ≤ 0,j=1,2,...,m} ≡ Tr{fj(ξ) ≤ 0,j=1,2,...,m}.
The trust of the rough event is defined as the average value of the lower and
upper trusts, i.e.,

Tr{fj(ξ) ≤ 0,j=1,2,...,m}=1
2
(T r̄{fj(ξ) ≤ 0,j=1,2,...,m}+Tr{fj(ξ) ≤ 0,j=1,2,...,m}).
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Definition 2.14. Let ξ be a rough variable on the rough space (Λ,Δ,A, π) and
α ∈ (0, 1], then

ξsup(α) = sup{r|Tr{ξ ≥ r} ≥ α}
is called α-optimistic value to ξ; and

ξinf (α) = inf{r|Tr{ξ ≤ r} ≥ α}

is called α-pessimistic value to ξ.

Definition 2.15. Let ξ be a rough variable on the rough space (Λ,Δ,A, π).
The expected value of ξ is defined by

E[ξ] =
∫ ∞

0

Tr{ξ ≥ r}dr −
∫ 0

−∞
Tr{ξ ≤ r}dr.

Theorem 2.5. (Liu [88]). Let ξinf (α) and ξsup(α) be the α-pessimistic and
α-optimistic values of the rough variable ξ, respectively.Then we have

(a) Tr{ξ ≤ ξinf (α) ≥ α} and Tr{ξ ≥ ξsup(α) ≥ α};
(b) ξinf (α) is an increasing and left-continuous function of α;
(c) ξsup(α) is a decreasing and left-continuous function of α;
(d) if 0 < α ≤ 1, then ξinf (α) = ξsup(1− α) and ξsup(α) = ξinf (1− α);
(e) if 0 < α ≤ 0.5, then ξinf (α) ≤ ξsup(α);
(f) if 0.5 < α ≤ 1,then ξinf (α) ≥ ξsup(α).

Example 2.10. Consider that ξ = ([a, b], [c, d]) be a rough variable with c ≤
a < b ≤ d, where [a, b] is the lower approximation and [c, d] is the upper approx-
imation. This means the elements in [a, b] are certainly members of the variable
and that of [c, d] are possible members of the variable. Here Δ = {λ|a ≤ λ ≤ b}
and Λ = {λ|c ≤ λ ≤ d}, ξ(x) = x for all x ∈ Λ, A is the Borel algebra on Λ and
π is the Lebesgue measure.

As an practical example consider the possible transportation cost of unit
product to be transported from a source i to certain destination j through a
conveyance k for a certain time period. But as transportation cost depends upon
fuel price, labor charges, tax charges, etc. and each of which is fluctuate time
to time, so it is not always possible to determine its exact value. Suppose four
experts give the possible unit transportation cost for i− j route via conveyance
k, determined in a certain time period as intervals [3,5], [3.5,6], [4,5] and [4,6]
respectively. Denotes cijk as - ’the possible value of the unit transportation cost
for i− j route through conveyance k according to the all experts’. Then cijk is
not exact and can be approximated by means of lower and upper approximation.
Here [4,5] can be taken as the lower approximation of cijk as it is the greatest
definable (exact) set that cijk contain, i.e., every member of [4,5] is certainly a
value of cijk according to all experts. Here [3,6] is the upper approximation, as
members of [3,6] may or may not be possible transportation cost according to
all experts. So cijk can be represented as the rough variable ([4,5],[3,6]).
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For a given value r and ξ = ([a, b], [c, d]), trust of rough events characterized
by ξ ≤ r and ξ ≥ r (Liu [86,88]) are given by

Tr{ξ ≤ r} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if r ≤ c;
r−c

2(d−c) , if c ≤ r ≤ a;
1
2 ( r−a

b−a + r−c
d−c ), if a ≤ r ≤ b;

1
2 ( r−c

d−c + 1), if b ≤ r ≤ d;
1, if r ≥ d.

(59)

Tr{ξ ≥ r} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if r ≥ d;
d−r

2(d−c) , if b ≤ r ≤ d;
1
2 (d−r

d−c + b−r
b−a ), if a ≤ r ≤ b;

1
2 (d−r

d−c + 1), if c ≤ r ≤ a;
1, if r ≤ c.

(60)

For rough variable ξ = ([4, 5], [2, 7]), Tr{ξ ≤ r} and Tr{ξ ≥ r} are depicted in
Fig. 9.
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Fig. 9. The trust of the rough event characterized by (1) ξ ≤ r and (2) ξ ≥ r.

α-optimistic value to ξ = ([a, b], [c, d]) is

ξsup(α) =

⎧
⎨

⎩

(1− 2α)d + 2αc, ifα ≤ ((d− b)/2(d− c));
2(1− α)d + (2α− 1)c, ifα ≥ ((2d− a− c)/2(d− c));
d(b−a)+b(d−c)−2α(b−a)(d−c)

(b−a)+(d−c) , otherwise.
(61)

α-pessimistic value to ξ is

ξinf (α) =

⎧
⎨

⎩

(1− 2α)c + 2αd, ifα ≤ ((a− c)/2(d− c));
2(1− α)c + (2α− 1)d, ifα ≥ ((b + d− 2c)/2(d− c));
c(b−a)+a(d−c)+2α(b−a)(d−c)

(b−a)+(d−c) , otherwise.
(62)

The expected value of ξ is E(ξ) = 1
4 (a + b + c + d).
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2.5 Single-Objective Optimization

Single-Objective Linear Programming (SOLP)/Non-linear Program-
ming (SONLP) Problem: If an optimization problem consists of only one
objective function, then problem is called a single-objective mathematical pro-
gramming (SOMP) problem. The minimization of a constrained SOMP problem
can be formulated as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find x = (x1, x2, ...., xn)T

which minimizes f(x)
subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(63)

where, objective function f(x) and constraints gj(x), j = 1, 2, ....,m are functions
defined on n-dimensional set.

When both the objective function and the constraints are linear, the above
SOMP problem becomes a single-objective linear programming problem (SOLP).
Otherwise, it is a single-objective non-linear programming problem (SONLP).

Feasible Solution: A decision variable vector x satisfying all the constraints
is called a feasible solution to the problem. The collection of all such solutions
forms the feasible region.

Optimal Solution: If a feasible solution x∗ of (63) be such that for each fea-
sible point x, f(x) ≤ f(x∗) for maximization problem and f(x) ≥ f(x∗) for
minimization problem then x∗ is called an optimal solution of the problem.

Local Optimum: A feasible solution x∗ of (63) is said be local optimum if
there exists an ε > 0 such that f(x) ≥ f(x∗) for minimization problem and
f(x) ≤ f(x∗) for maximization problem, ∀x ∈ X : ‖ x− x∗ ‖< ε.

Global Optimum: A feasible solution x∗ of (63) is said be global optimum
if f(x) ≥ f(x∗) for minimization problem and f(x) ≤ f(x∗) for maximization
problem ∀x ∈ X.

Necessary Condition for Optimality: The necessary condition for a feasible
solution x∗ ∈ X of (63) to be optimal is that all the partial derivatives ∂f(x)

∂xr
are

exist at x = x∗ and ∂f(x)
∂xr

= 0 for r = 1, 2, ..., n.

Example 2.11. As an example of a single-objective problem we consider a
simple transportation problem with 3 sources (i = 1, 2, 3) and 3 destinations
(j = 1, 2, 3) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Minimize Z =
∑3

i=1

∑3
j=1 cij xij ,

subject to
∑3

j=1 xij ≤ ai, i = 1, 2, 3,∑3
i=1 xij ≥ bj , j = 1, 2, 3,

xij ≥ 0, ∀ i, j,
∑3

i=1 ai ≥
∑3

j=1 bj ,

(64)
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where cij is the cost for transportation of unit product from source i to destina-
tion j, xij is decision variable which represents the quantity to be transported
from i-th origin to j-th destination and so that the objective function Z repre-
sents the total transportation cost. The unit transportation costs are given as
follows: c11 = 5, c12 = 6, c13 = 8, c21 = 7, c22 = 9, c23 = 5, c31 = 8, c32 = 9 and
c33 = 7. The availabilities at each sources and demands of each destinations are
as follows: a1 = 36, a2 = 20.8, a3 = 28.6, b1 = 22.8, b2 = 31, b3 = 30.

2.6 Solution Techniques for Single-Objective Linear/Non-linear
Problem

Generalized Reduced Gradient (GRG): The GRG technique is a method
for solving NLP problems with equality as well as inequality constraints. Con-
sider the NLP problem as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find x = (x1, x2, ...., xn)T

which minimizes f(x)
subject to x ∈ X

where X = x :

⎧
⎨

⎩

gj(x) ≤ 0, j = 1, 2, ...,m;
hr(x) = 0, r = 1, 2, ..., p;
xi ≥ 0, i = 1, 2, ..., n.

(65)

By adding a non-negative slack variable sj(≥ 0), j = 1, 2, ...,m to each of the
above inequality constraints, the problem (65) can be stated as,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize f(x)
subject to x = (x1, x2, ...., xn)T ∈ X

where X = x :

⎧
⎪⎪⎨

⎪⎪⎩

gj(x) + sj = 0, j = 1, 2, ...,m;
hr(x) = 0, r = 1, 2, ..., p;
xi ≥ 0, i = 1, 2, ..., n.
sj ≥ 0, j = 1, 2, ...,m

(66)

where the lower and upper bounds on the slack variables, sj , j = 1, 2, ...,m are
taken as a zero and a large number (infinity) respectively.

Denote sj by xn+j , gj(x) + sj by ξj , j = 1, 2, ...,m and hr(x) by ξm+r,
r = 1, 2, ..., p. Then the above problem (66) becomes

⎧
⎪⎪⎨

⎪⎪⎩

Minimize f(x)
subject to x = (x1, x2, ...., xn+m)T ∈ X

where X = x :
{

ξj = 0, j = 1, 2, ...,m + p;
xi ≥ 0, i = 1, 2, ..., n + m.

(67)

This GRG technique is based on the idea of elimination of variables using the
equality constraints. Theoretically, (m + p) variables (dependent variables) can
be expressed in terms of remaining (n − p) variables (independent variables).
Thus one can divide the (n + m) decision variables arbitrarily into two sets as

x = (y, z)T
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where, y is (n − p) design or independent variables and z is (m + p) state or
dependent variables and

y = (y1, y2, ...., yn−p)T , z = (z1, z2, ...., zm+p)T .

Here, the design variables are completely independent and the state variables
are dependent on the design variables used to satisfy the constraints ξj(x) = 0,
(j = 1, 2, ...,m + p). Consider the first variations of the objective and constraint
functions:

df(x) =
n−p∑

i=1

∂f

∂yi
dyi +

m+p∑

i=1

∂f

∂zi
dzi = ∇T

y fdy +∇T
z fdz (68)

dξj(x) =
n−p∑

i=1

∂ξj

∂yi
dyi +

m+p∑

i=1

∂ξj

∂zi
dzi (69)

or dξ = C dy + D dz (70)

where ∇T
y f =

( ∂f

∂y1
,

∂f

∂y2
, ...,

∂f

∂yn−p

)

∇T
z f =

( ∂f

∂z1
,

∂f

∂z2
, ...,

∂f

∂zm+p

)

C =

⎡

⎢⎢⎢⎢⎢⎣

∂ξ1
∂y1

... ... ... ∂ξ1
∂yn−p

∂ξ2
∂y1

... ... ... ∂ξ2
∂yn−p

... ... ... ... ...

... ... ... ... ...
∂ξm+p

∂y1
... ... ...

∂ξm+p

∂yn−p

⎤

⎥⎥⎥⎥⎥⎦
, D =

⎡

⎢⎢⎢⎢⎢⎣

∂ξ1
∂z1

... ... ... ∂ξ1
∂zm+p

∂ξ2
∂z1

... ... ... ∂ξ2
∂zm+p

... ... ... ... ...

... ... ... ... ...
∂ξm+p

∂z1
... ... ...

∂ξm+p

∂zm+p

⎤

⎥⎥⎥⎥⎥⎦

dy = (dy1, dy2, ..., dyn−p)T

and dz = (dz1, dz2, ..., dzm+p)T

Assuming that the constraints are originally satisfied at the vector x (ξ(x) = 0),
any change in the vector dx must correspond to dξ = 0 to maintain feasibility
at x + dx. Thus, Eq. (70) can be solved as

C dy + D dz = 0

or dz = −D−1 Cdy (71)

The change in the objective function due to the change in x is given by the
Eq. (68), which can be expressed, using Eq. (71) as

df(x) = (∇T
y fdy −∇T

z fD−1 C)dy

or
df(x)
dy

= GR (72)

where GR = ∇T
y fdy −∇T

z fD−1 C (73)
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is called the generalized reduced gradient. Geometrically, the reduced gradient
can be described as a projection of the original n-dimensional gradient into the
(n−m) dimensional feasible region described by the design variables.

A necessary condition for the existence of minimum of an unconstrained
function is that the components of the gradient vanish. Similarly, a constrained
function assumes its minimum value when the appropriate components of the
reduced gradient are zero. In fact, the reduced gradient GR can be used to
generate a search direction S to reduce the value of the constrained objective
function. Similarly, to the gradient ∇f that can be used to generate a search
direction S for an unconstrained function. A suitable step length λ is to be
chosen to minimize the value of f(x) along the search direction. For any specific
value of λ, the dependent variable vector z is updated using Eq. (70). Noting
that Eq. (68) is based on using a linear approximation to the original non-linear
problem, so the constraints may not be exactly equal to zero at λ, i.e., dξ �= 0.
Hence, when y is held fixed, in order to have

ξj(x) + dξj(x) = 0, j = 1, 2, ...,m + p (74)

following must be satisfied.

ξ(x) + dξ(x) = 0. (75)

Using Eq. (70) for dξ in Eq. (75), following is obtained

dz = D−1(−ξ(x)− Cdy). (76)

The value dz given by Eq. (76) is used to update the value of z as

zupdate = zcurrent + dz. (77)

The constraints evaluated at the updated vector x, and the procedure of finding
dz using Eq. (76) is repeated until dz is sufficiently small.

2.7 Single-Objective Problem in Fuzzy Environment

When in a single-objective optimization problem, some of the or all the parame-
ters in objective function and constraints are not precisely defined or completely
known, then if such parameters are represented by fuzzy numbers(/variables),
the problem is termed as single-objective optimization problem in fuzzy envi-
ronment. Consider the following fuzzy programming problem,

⎧
⎨

⎩

Min f(x, ξ̃)
subject to gj(x, ξ̃) ≤ b̃j , j = 1, 2, ...,m

xi ≥ 0, i = 1, 2, ..., n

(78)

where, x = (x1, x2, ...., xn)T is a decision vector,ξ̃ is a fuzzy vector, f(x, ξ̃) is
a return function, and gj(x, ξ̃) ≤ b̃j are constraints, j = 1, 2, ...,m. It is not
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possible to minimize directly a fuzzy quantity f(x, ξ̃) and also the constraints
gj(x, ξ̃) ≤ b̃j , j = 1, 2, ...,m do not produce a crisp feasible set. In order to solve
the above fuzzy model several researchers proposed a number of different meth-
ods. Fuzzy expected value model (EVM) (Liu and Liu [94]), chance-constrained
programming model (CCP) (Liu and Iwamura [92]), dependent-chance program-
ming (DCP) (Liu [85]) are some of the such available techniques. We now provide
short description of these techniques.

Expected Value Model: In order to obtain a solution (here a decision with
minimum expected return) of (78), Liu and Liu [94] provided a spectrum of fuzzy
expected value model (EVM) as follows:

⎧
⎨

⎩

Min E[f(x, ξ̃)]
subject to E[gj(x, ξ̃)− b̃j ] ≤ 0, j = 1, 2, ...,m

xi ≥ 0, i = 1, 2, ..., n

(79)

For detail explanation, crisp equivalent form of the fuzzy EVM please see Liu
and Liu [94], Liu [90], Yang and Liu [153].

Chance-Constrained Programming Model: This method is used to solve
the problems with chance-constraints. In this method, the uncertain constraints
are allowed to be violated such that constraints must be satisfied at some chance
(/confidence) level. For example, since the fuzzy constraints gj(x, ξ̃) ≤ b̃j , j =
1, 2, ...,m do not define a deterministic feasible set, a natural idea is to provide
a confidence level α at which it is desired that the fuzzy constraints hold. A
chance constrained programming for the minimization problem (78) with fuzzy
parameters using possibility measure may be constructed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Minx (Minf̄ f̄)
subject to Pos{f(x, ξ̃) ≤ f̄} ≥ α,

Pos{ξ̃ | gj(x, ξ̃) ≤ b̃j} ≥ αj , j = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n

(80)

where, α is a predetermined confidence level so that Min f̄ indicates the minimum
value that the objective function achieves with possibility at least α (0 < α ≤ 1).
In other words we want to minimize the α-optimistic return. αj indicates the
predetermined confidence level of satisfaction of the constraint.

A chance constrained programming for the minimization problem (78) with
fuzzy parameters using credibility measure may be constructed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Minx (Minf̄ f̄)
subject to Cr{f(x, ξ̃) ≤ f̄} ≥ α,

Cr{gj(x, ξ̃) ≤ b̃j} ≥ αj , j = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n

(81)

where, α is a predetermined confidence (credibility) level so that Min f̄ indi-
cates the minimum value that the objective function achieves with credibility
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degree(/level) at least α (0 < α ≤ 1). In other words we want to minimize the
α-optimistic return. αj indicates the predetermined credibility level of satisfac-
tion of the constraint.

For detail explanation regarding the, crisp equivalent forms of the fuzzy CCP
problem please see Liu and Iwamura [92], Mula et al. [116], Liu [84,90], Yang
and Liu [153] and Kundu et al. [74].

Dependent-Chance Programming: The idea of dependent-chance program-
ming (DCP) is to optimize the chance of an uncertain event. Suppose for the
minimization problem like (78), a decision maker will satisfy with a solution
(decision vector x) for which the objective value is not exceed a certain value. So
a decision maker may fixed a satisfying predetermined maximal objective value
and maximize the credibility level that objective value is not exceed the prede-
termined value. Then with respect to a given predetermined maximal objective
value f̄ the dependent chance-constrained programming model for the problem
(78) is formulated as follows:

⎧
⎨

⎩

Max Cr{f(x, ξ̃) ≤ f̄}
subject to gj(x, ξ̃) ≤ b̃j , j = 1, 2, ...,m

xi ≥ 0, i = 1, 2, ..., n

(82)

For detail explanation, crisp equivalent forms of the fuzzy CCP problem please
see Liu [85], Liu [90], Yang and Liu [153].

2.8 Multi-objective Optimization

A general multi-objective programming problem (minimization problem) is of
the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find x = (x1, x2, ...., xn)T

which minimizes F (x) = (f1(x), f2(x), ..., fk(x))T

subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(83)

where, f1(x), f2(x), ..., fk(x) are k ≥ 2) objectives.

Complete Optimal Solution: A feasible solution x∗ is said to be a complete
optimal solution to the multi-objective problem in (83) iff there exists x∗ ∈ X
such that fi(x∗) ≤ fi(x), i = 1, 2, ..., k for all x ∈ X. In general, the objective
functions of the multi-objective problem conflict with each other, a complete
optimal solution does not always exist and so Pareto (or non dominated) opti-
mality concept is introduced.

Pareto Optimal Solution: A feasible solution x∗ is said to be a Pareto opti-
mal solution to the (83) iff there does not exist another x ∈ X such that
fi(x) ≤ fi(x∗) for all i, i = 1, 2, ..., k and fj(x) < fj(x∗) for at least one index
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j, j = 1, 2, ...., k. An objective vector F ∗ is Pareto-optimal if there does not exist
another objective vector F (x) such that fi ≤ f∗

i , for all i, i = 1, 2, ..., k and
fj < f∗

j for at least one index j. Therefore, F ∗ is Pareto optimal if the decision
vector corresponding to it is Pareto optimal. Unless an optimization problem is
convex, only locally optimal solution is guaranteed using standard mathematical
programming techniques. Therefore, the concept of Pareto-optimality needs to
be modified to introduce the notion of a locally Pareto-optimal solution for a
non-convex problem as defined by Geoffrion [49].

Locally Pareto Optimal Solution: A feasible solution x∗ is said to be a locally
Pareto optimal solution to the multi-objective problem (83) if and only if there
exists an r > 0 such that x∗ is Pareto optimal in X ∩N(x∗, r), where N(x∗, r) is
a r-neighborhood of x∗, i.e., there does not exist another x ∈ X ∩N(x∗, r) such
that fi(x) ≤ fi(x∗).

Concept of Domination: Most evolutionary multi-objective optimization
algorithms use the concept of domination. In these algorithms, two solutions
are compared on the basis of whether one dominates the other solution or not.
Let us use the operator � between two solutions i and j as i � j denotes that
solution i is better than solution j on a particular objective. Similarly i � j for a
particular objective implies that solution i is worse than solution j on this objec-
tive. With this assumption a solution x is said to dominate the other solution y,
if both the following conditions hold.

The solution x is not worse than y in all the objectives.
The solution x is strictly better than y in at least one objective, i.e., fj(x) �

fj(y) for at least one j, j = 1, 2, ..., k. Now, let us introduce some linear/non-
linear programming techniques which are used to achieve at least local Pareto
optimal solutions of multi-objective optimization problem.

Example 2.12. In the single-objective problem (64) as presented in Sect. 2.5,
the objective function is minimization of total transportation cost. Now in case of
transportation of highly breakable items (e.g. glass-goods, toys, ceramic goods,
etc.), the breakability issue also should be considered. Breaking of items may be
due to bad condition of road, long distance of a certain route, etc. Then an addi-
tional objective function which represents minimization of total breaking items
is imposed in the problem and the problem becomes multi-objective. Suppose
rij be the rate of breakability (/percentage of breakability) for transportation of
goods from source i to destination j. Also suppose customer at destination com-
promises on receiving less amount than the demanded amount due to breaking
of items. Then the problem becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize Z =
∑3

i=1

∑3
j=1 cij xij ,

Minimize Z′ =
∑3

i=1

∑3
j=1 rij xij ,

subject to
∑3

j=1xij ≤ ai, i = 1, 2, 3,
∑3

i=1xij ≥ bj , j = 1, 2, 3,

xij ≥ 0, ∀ i, j,
∑3

i=1ai ≥∑3
j=1bj ,

(84)
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where values of rij are given by r11 = 2, r12 = 1.5, r13 = 1.2, r21 = 1, r22 = 1.2,
r23 = 1.5, r31 = 2.5, r32 = 2, r33 = 1.5. The values of the other parameters
are same as the problem (64). The solution of such multi-objective problem is
discussed in the next section and also in Sect. 3 with numerical example.

2.9 Solution Techniques for Multi-objective Linear/Non-linear
Problem

Fuzzy Programming Technique: Zimmarmann [159] introduced fuzzy lin-
ear programming approach for solving problem with multiple objectives and
he showed that fuzzy linear programming always gives efficient solutions and
an optimal compromise solution. The steps to solve the multi-objective models
using fuzzy programming technique are as follows:

Step 1: Solve the multi-objective problem (83) as a single objective problem
using, each time, only one objective fp(p = 1, 2, ..., k)(ignore all other objectives)
to obtain the optimal solution Xp∗ = xp

i of k different single objective solid
transportation problem.
Step 2: Calculate the values of all the k objective functions at all these k optimal
solutions Xp∗ (p = 1, 2, ..., k) and find the upper and lower bound for each
objective given by Up = Max{fp(X1∗), fp(X2∗), ..., fp(Xk∗)} and Lp = fp(Xp∗),
p = 1, 2, ..., k respectively.
Step 3: Then an initial fuzzy model is given by

⎧
⎪⎪⎨

⎪⎪⎩

Find x = (x1, x2, ...., xn)T

subject to fp(x) ≤ Lp

x ∈ X, X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(85)

where x = xi, i = 1, 2, ..., n; p = 1, 2, ..., k
Step 4: case(I). Construct linear membership function μp(fp) corresponding to
p-th objective as

μp(fp) =

⎧
⎨

⎩

1, if fp ≤ Lp;
Up−fp

Up−Lp
, if Lp < fp < Up;

0, if fp ≥ Lp, ∀ p.

or,
case(II): Construct hyperbolic membership function μH

p (fp) corresponding to
p-th objective as

μH
p (fp) = 1/2 + 1/2 tanh[(

Up + Lp

2
− fp)αp], αp =

3
(Up − Lp)/2

=
6

Up − Lp
.

Step 5: For case(I), formulate fuzzy linear programming problem using max-min
operator as

⎧
⎪⎪⎨

⎪⎪⎩

Max λ
subject to λ ≤ μp(fp) = (Up − fp)/(Up − Lp), ∀p
x ∈ X, X = x :

{
gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(86)
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λ ≥ 0 and λ = minp{μp(Zp)}.
For case(II), formulate fuzzy programming problem with hyperbolic mem-

bership function as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Max λ

subject to 2λ− 1 ≤ tanh[(Up+Lp

2 − fp)αp], ∀p
x ∈ X, X = x :

{
gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

λ ≥ 0. .

(87)

Let λ′ = tanh−1(2λ− 1), then above problem becomes
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Max λ

subject to λ′ ≤ (Up+Lp

2 − fp)αp, ∀p
x ∈ X, X = x :

{
gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

λ ≥ 0. .

(88)

Then since tanh and tanh−1 are strictly increasing functions, the above problem
equivalently becomes,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Max λ′

subject to λ′ + Zp αp ≤ (Up+Lp

2 ) αp, ∀p
x ∈ X, X = x :

{
gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

λ′ ≥ 0. .

(89)

Step-6: Now the reduced problems under case-(I) and case-(II) are solved by a
linear optimization technique and in each case the optimum compromise solu-
tions are obtained.

In case-(II), maximum overall satisfactory level of compromise is Max
λ = λ∗ = 1/2 + (tanhλ′∗)/2.

Global Criteria Method: Global criteria method gives a compromise solution
for a multi-objective problem. Actually this method is a way of achieving com-
promise in minimizing the sum in deviations of the ideal solutions (minimum
value of the each objectives in case of minimization problem) from the respec-
tive objective functions. The steps of this method to solve the multi-objective
model (83) are as follows:
Step-1: Solve the multi-objective problem as a single objective problem using,
each time, only one objective fp (p = 1, 2, ..., k) ignoring all other objectives.
Step-2: From the results of step-1, determine the ideal objective vector, say
(fmin

1 , fmin
2 , ..., fmin

k ) and corresponding values of (fmax
1 , fmax

2 , ..., fmax
k ).

Step-3: Formulate the following auxiliary problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find x = (x1, x2, ...., xn)T

which minimizes GC
subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(90)
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where

GC = Min

{ k∑

t=1

(
ft(x)− fmin

t

fmin
t

)q} 1
q

, (91)

or, GC = Min

{ k∑

t=1

(
ft(x)− fmin

t

fmax
t − fmin

t

)q} 1
q

, (92)

where 1 ≤ q ≤ ∞. An usual value of q is 2. This method is then called global
criterion method in L2 norm.

Weighted Sum Method: The weighted sum method scalarizes a set of objec-
tives into a single objective by multiplying each objective with users supplied
weights. The weights of an objective are usually chosen in proportion to the
objectives relative importance in the problem. However setting up an appropri-
ate weight vector depends on the scaling of each objective function. It is likely
that different objectives take different orders of magnitude. When such objec-
tives are weighted to form a composite objective function, it would be better to
scale them appropriately so that each objective possesses more or less the same
order of magnitude. This process is called normalization of objectives. After the
objectives are normalized, a composite objective function F (x) can be formed by
summing the weighted normalized objectives and the multi-objective problem
given in Eq. (83) is then converted to a single-objective optimization problem as
follows: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find x = (x1, x2, ...., xn)T

which minimizes
∑k

i=1 wifi(x), wi ∈ [0, 1]
subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(93)

Here, wi is the weight of the i-th objective function. Since the minimum of the
above problem does not change if all the weights are multiplied by a constant, it is
the usual practice to choose weights such that their sum is one, i.e.,

∑k
i=1 wi = 1.

Miettinen [109] proved that the solution of the weighted sum problem (2.71)
is Pareto optimal if the weighting coefficients are positive, that is wi > 0,
i = 1, 2, ..., k.

3 Some Transportation Models with Fuzzy (Type-1)
Parameters

If more than one objective is to be considered and optimized at the same time in
an STP, then the problem is called multi-objective solid transportation problem
(MOSTP). If more than one type of item/product is to be transported through
the conveyances in an STP, then the problem is called multi-item solid trans-
portation problem (MISTP). Also in a solid transportation system it may happen
that several objectives are present and several types of items are to be trans-
ported, then we call this problem multi-objective multi-item solid transporta-
tion problem (MOMISTP). Besides source, destination and conveyance capacity
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constraints in an STP, there may exist several other types of constraints. For
example, budget constraints may arise due to limited budget, space constraints
may arise due to limited space in warehouses, stores, etc.

Due to insufficient information, lack of evidence, fluctuating financial mar-
ket, the available data of a transportation system such as transportation costs,
resources, demands, conveyance capacities are not always crisp or precise.
For example, transportation cost depends upon fuel price, labor charges, tax
charges, etc., each of which are fluctuate time to time. So for a future trans-
portation planning it is not always easy to predict surely the possible unit trans-
portation cost of a route in a certain time period. Similarly supply of a source can
not be always exact, because it depends upon the availability of manpower, raw-
materials, market competition, product demands, etc. Also it may not always
possible to get relevant precise data/random data with a known distribution.
So such a TP becomes more realistic if these parameters are assumed to be
flexible/imprise i.e. fuzzy nature. For example if value of certain parameter of
a decision making problem is given in an interval, then practically each of the
point in the interval may not have the same importance or possibility. So it
will be more realistic if those parameters are expressed by fuzzy numbers like
triangular, trapezoidal, etc.

To solve constrained/unconstrained optimization problem with fuzzy para-
meters, several researchers developed many methodologies. Liu and Iwamura
[92] presented chance-constrained programming with fuzzy parameters. Liu and
Liu [94] presented expected value model for fuzzy programming. Yang and Liu
[153] applied expected value model, chance-constrained programming model and
dependent-chance programming to a fixed charge STP in fuzzy environment.
Liang [82] presented a fuzzy goal programming approach for solving integrated
production/transportation planning decision problems with fuzzy multiple goals.
Mula et al. [116] applied possibilistic programming approach to a material require-
ment planing problem with fuzzy constraints and fuzzy coefficients.

In this chapter, we have investigated two solid transportation models namely, a
multi-objective solid transportation problem with budget constraint and a multi-
objective multi-item solid transportation problem both in fuzzy environment.

3.1 Related Results

Theorem 3.1 (Yang and Liu [153]). Suppose that ξ̃ is a fuzzy number with
continuous membership function μξ̃(x), and r0 = sup{r : μξ̃(r) = 1}, g(x, ξ̃) =
h(x)− ξ̃. Then we have Cr{g(x, ξ̃) ≥ 0} ≥ α if and only if h(x) ≥ Fα, where

Fα =

{
inf{F |F = μ−1

ξ̃
(2α)}, ifα ≤ 0.5;

inf{F |F = μ−1

ξ̃
(2(1− α)), F > r0}, ifα > 0.5.
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Theorem 3.2 (Yang and Liu [153]). Suppose that ξ̃ is a fuzzy number with
continuous membership function μξ̃(x), and r0 = inf{r : μξ̃(r) = 1}, g(x, ξ̃) =
h(x)− ξ̃. Then we have Cr{g(x, ξ̃) ≤ 0} ≥ α if and only if h(x) ≤ Fα, where

Fα =

{
sup{F |F = μ−1

ξ̃
(2α)}, ifα ≤ 0.5;

sup{F |F = μ−1

ξ̃
(2(1− α)), F < r0}, ifα > 0.5.

Theorem 3.3 (Liu [90]). Assume that the function g(x, ξ) can be written as ,

g(x, ξ) = h1(x)ξ̃1 + h1(x)ξ̃2 + ... + ht(x)ξ̃t + h0(x)

where ξ̃k are trapezoidal fuzzy variables (rk1, rk2, rk3, rk4), k = 1, 2, ..., t, respec-
tively. We define two functions h+

k (x) = hk(x)∨ 0 and h−
k (x) = −(hk(x)∧ 0) for

k=1,2,...,t. Then we have
(a) when α ≤ 1/2, Cr{g(x, ξ) ≤ 0} ≥ α if and only if

(1− 2α)
t∑

k=1

[rk1h
+
k (x)− rk4h

−
k (x)] + 2α

t∑

k=1

[rk2h
+
k (x)− rk3h

−
k (x)] + h0(x) ≤ 0;

(b) when α > 1/2, Cr{g(x, ξ) ≤ 0} ≥ α if and only if

(2−2α)
t∑

k=1

[rk3h
+
k (x)−rk2h

−
k (x)]+(2α−1)

t∑

k=1

[rk4h
+
k (x)−rk1h

−
k (x)]+h0(x) ≤ 0;

From the above theorem following corollaries are obtained.

Corollary 1: If ξ̃ = (r1, r2, r3, r4) is a trapezoidal fuzzy variable and h(x) is a
function of x, then Cr{h(x) ≤ ξ̃} ≥ α if and only if h(x) ≤ Fξ, where

Fξ =
{

(1− 2α)r4 + 2αr3, ifα ≤ 1
2 ;

2(1− α)r2 + (2α− 1)r1, ifα > 1
2 .

Proof: Cr{h(x) ≤ ξ̃} ≥ α⇔ Cr{−ξ̃+h(x) ≤ 0} ≥ α⇔ Cr{ξ̃′+h(x) ≤ 0} ≥ α,
where ξ̃′ = −ξ̃ = (−r4,−r3,−r2,−r1).
Then from the above theorem it follows that this inequality holds if and only if

(a)(1− 2α)(−r4) + 2α(−r3) + h(x) ≤ 0, if α ≤ 1
2

(b) 2(1− α)(−r2) + (2α− 1)(−r1) + h(x) ≤ 0, if α >
1
2
.

and hence the corollary follows.

Corollary 2: If ξ̃ = (r1, r2, r3, r4) is a trapezoidal fuzzy variable and h(x) is a
function of x, then Cr{h(x) ≥ ξ̃} ≥ α if and only if h(x) ≥ Fξ, where

Fξ =
{

(1− 2α)r1 + 2αr2, ifα ≤ 1
2 ;

2(1− α)r3 + (2α− 1)r4, ifα > 1
2 .
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Proof: Cr{h(x) ≥ ξ̃} ≥ α⇔ Cr{ξ̃ − h(x) ≤ 0} ≥ α.
Then from the above theorem it follows that this inequality holds if and only if

(a)(1− 2α)r1 + 2αr2 − h(x) ≤ 0, if α ≤ 1
2

(b) 2(1− α)r3 + (2α− 1)r4 − h(x) ≤ 0, if α >
1
2
.

and hence the corollary follows.

Corollary 3: If ξ̃ = (r1, r2, r3, r4) and η̃ = (t1, t2, t3, t4) are trapezoidal fuzzy
variables and h(x) ≥ 0 ∀x, then Cr{h(x)ξ̃ ≤ η̃} ≥ α if and only if

(a)(1− 2α)h(x)r1 + 2αh(x)r2 ≤ (1− 2α)t4 + 2αt3, when α ≤ 1
2

(b) 2(1− α)h(x)r3 + (2α− 1)h(x)r4 ≤ 2(1− α)t2 + (2α− 1)t1, when α >
1
2
.

Proof: Cr{h(x)ξ̃ ≤ η̃} ≥ α ⇔ Cr{(h(x)ξ̃ − η̃) ≤ 0} ≥ α ⇔ Cr{(h(x)ξ̃ + η̃′) ≤
0} ≥ α, where η̃′ = −η̃ = (−t4,−t3,−t2,−t1).

Then from the above theorem it follows that this inequality holds if and only if

(a)(1− 2α)(h(x)r1 − t4) + 2α(h(x)r2 − t3) ≤ 0, whenα ≤ 1
2

(b) 2(1− α)(h(x)r3 − t2) + (2α− 1)(h(x)r4 − t1) + h(x) ≤ 0, if α >
1
2
.

and hence the corollary follows.
This is obvious that these three corollaries help us to determine crisp equivalences
of various inequalities with fuzzy parameters.

3.2 A Defuzzification Method

Kikuchi [66] proposed a defuzzification method to find the most appropriate
set of crisp numbers for a set of fuzzy numbers which satisfy a set of rigid
relationships among them. The main idea of the method is to find the best set of
crisp values satisfying the relationships those maximizes the minimum degree of
membership that one of those values takes. Fuzzy linear programming is applied
in this method. The method is summarized as follows.

Let X̃1, X̃2,...,X̃n are fuzzy numbers with membership functions μX̃1
,

μX̃2
,...,μX̃n

respectively. Suppose we have to find corresponding crisp values x1,
x2,...,xn those satisfy some relationships Rj(x), j ∈ N among them. Then the
following linear programming based on fuzzy linear programming is formulated.

Max λ

s.t. μX̃i
(xi) ≥ λ, i = 1, 2, ..., n
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and the relationships Rj(x), j ∈ N

xi, λ ≥ 0, i = 1, 2, ..., n.

where λ is the minimum degree of membership that one of the values x1, x2,...,xn

takes, i.e. λ∗ = Maxλ = Max Min[μX̃1
(x1), μX̃2

(x2), ..., μX̃n
(xn)].

Kikuchi [66] applied this method to a traffic volume consistency problem taking
all observed values as triangular fuzzy numbers. Dey and Yadav [36] modified
this method with trapezoidal fuzzy numbers.

3.3 Model 3.1: Multi-objective Solid Transportation Problem
Having Budget Constraint with Fuzzy Parameters

Here a multi-objective solid transportation problem (MOSTP) is formulated
with unit transportation penalties/costs, supplies, demands and conveyance
capacities as fuzzy numbers (variables). Here the several objectives may be min-
imization of total transportation costs, minimization of total deterioration of
goods, etc. Also, apart from source, demand and capacity constraints, an extra
constraint on the total transportation budget at each destination is imposed.
Obviously these budget constraints are performed for the objective function
which represents minimization of the total transportation cost. The following
notations are used to formulate the model.

Notations:

(i) ˜cp
ijk: Fuzzy unit transportation penalties from i-th source to j-th destina-

tion via k-th conveyance for the p-th objective.
(ii) xp

ijk: The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination via k-th conveyance for the p-th
objective.

(iii) ãi: The fuzzy amount of the product available at the i-th origin.
(iv) b̃j : The fuzzy demand of the product of j-th destination.
(v) ẽk: Fuzzy transportation capacity of conveyance k.
(vi) Zp: The p-th objective.
(vii) B̃l

j : Available fuzzy budget amount for j-th destination for objective Zl.

Mathematical Model: Mathematically the MOSTP with budget constraints
having P objectives, m origins, n destinations and K conveyances is formulated
as follows.

Min Zp =
m∑

i=1

n∑

j=1

K∑

k=1

˜cp
ijk xijk , p = 1, 2, ..., P (94)

s.t.

n∑

j=1

K∑

k=1

xijk ≤ ãi, i = 1, 2, ...,m, (95)
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m∑

i=1

K∑

k=1

xijk ≥ b̃j , j = 1, 2, ..., n, (96)

m∑

i=1

n∑

j=1

xijk ≤ ẽk, k = 1, 2, ...,K, (97)

m∑

i=1

K∑

k=1

˜cl
ijk xijk ≤ B̃l

j , j = 1, 2, ..., n , l ∈ {1, ..., P}, (98)

xijk ≥ 0,∀ i, j, k.

Here for p = l (say), l ∈ {1, 2, ..., P}, ˜cl
ijk represent unit transportation cost so

that available fuzzy budget amount for j-th destination, i.e. B̃l
j is imposed for

objective Zl.

Solution Methodology: Chance-Constrained Programming: We apply
the chance constrained programming (CCP) technique using credibility measure
to the above model and then it is formulated as

Min[Z̄1, Z̄2, ..., Z̄P ] (99)

s.t. Cr{
m∑

i=1

n∑

j=1

K∑

k=1

˜cp
ijk xijk ≤ Z̄p} ≥ ηp, p = 1, 2, ..., P, (100)

Cr{
n∑

j=1

K∑

k=1

xijk ≤ ãi} ≥ αi, i = 1, 2, ...,m, (101)

Cr{
m∑

i=1

K∑

k=1

xijk ≥ b̃j} ≥ βj , j = 1, 2, ..., n, (102)

Cr{
m∑

i=1

n∑

j=1

xijk ≤ ẽk} ≥ γk, k = 1, 2, ...,K, (103)

Cr{
m∑

i=1

K∑

k=1

˜cl
ijk xijk ≤ B̃l

j} ≥ δl
j , j = 1, 2, ..., n , l ∈ {1, ..., P}, (104)

xijk ≥ 0,∀ i, j, k,

where ηp indicates that we are going to optimize the ηp-critical value of the
objective Zp(p = 1, 2, ..., P ), and αi, βj , γk and δl

j are predetermined credibil-
ity levels of satisfaction of the above constraints (101), (102), (103) and (104)
respectively. In other words, the constraint (101) indicates that total amount
transported from source i must be less than or equal to its supply capacity ãi at
the credibility level at least αi; the constraint (102) indicates that total amount
transported to destination j must satisfy its requirement b̃j at the credibility at
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least βj , the constraint (103) indicates that total amount transported through
conveyance k must not be more than its capacity ẽk at the credibility at least
γk and the constraints (104) indicates that for the specific objective Zl, total
transportation costs for j-th destination must not exceed the available budget
amount B̃l

j at the credibility at least δl
j .

Crisp Equivalences: Let ˜cp
ijk = (cp1

ijk, cp2
ijk, cp3

ijk, cp4
ijk), ãi = (a1

i , a
2
i , a

3
i , a

4
i ), b̃j =

(b1j , b
2
j , b

3
j , b

4
j ), ẽk = (e1k, e2k, e3k, e4k), B̃l

j = (Bl1
j , Bl2

j , Bl3
j , Bl4

j ) are trapezoidal fuzzy
numbers for all p, i, j and k.
Now since ˜cp

ijk are trapezoidal fuzzy numbers and xijk ≥ 0 for all i, j, k, so

Zp(x) =
∑m

i=1

∑n
j=1

∑K
k=1

˜cp
ijk xijk are also trapezoidal fuzzy numbers for any

feasible solution x and given by Zp(x) = (rp
1(x), rp

2(x), rp
3(x), rp

4(x)), where

rp
1(x) =

m∑

i=1

n∑

j=1

K∑

k=1

cp1
ijk xijk , rp

2(x) =
m∑

i=1

n∑

j=1

K∑

k=1

cp2
ijk xijk, (105)

rp
3(x) =

m∑

i=1

n∑

j=1

K∑

k=1

cp3
ijk xijk , rp

4(x) =
m∑

i=1

n∑

j=1

K∑

k=1

cp4
ijk xijk, (106)

p = 1, 2, ..., P.

Then the objective Z̄p in (99), i.e. Min Z̄P , s.t. Cr{Zp(x) ≤ Z̄p} ≥ ηp is equiv-
alently computed as Z̄p = inf{r : Cr{ZP (x) ≤ r} ≥ ηp} which is nothing but ηp

- pessimistic value to Zp (i.e. Zpinf
(ηp)) and so is equal to Z ′

p(x), where

Z ′
p(x) =

{
(1− 2ηp)r

p
1(x) + 2ηp rp

2(x), ifα ≤ 0.5;
2(1− ηp)r

p
3(x) + (2ηp − 1)rp

4(x), ifα > 0.5.

Now from corollaries 1 and 2 of the Theorem 3.3, the constraint (101) and (102)
and from corollary 1, the constraint (103) can be written respectively in equiv-
alent crisp forms as

n∑

j=1

K∑

k=1

xijk ≤ Fαi
, i = 1, 2, ...,m (107)

m∑

i=1

K∑

k=1

xijk ≥ Fβj
, j = 1, 2, ..., n (108)

m∑

i=1

n∑

j=1

xijk ≤ Fγk
, k = 1, 2, ...,K (109)

where, Fαi
=
{

(1− 2αi)a4
i + 2αia

3
i , ifαi ≤ 0.5;

2(1− αi)a2
i + (2αi − 1)a1

i , ifαi > 0.5.

Fβj
=
{

(1− 2βj)b1j + 2βjb
2
j , ifβj ≤ 0.5;

2(1− βj)b3j + (2βj − 1)b4j , ifβj > 0.5.
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Fγk
=
{

(1− 2γk)e4k + 2γke3k, if γk ≤ 0.5;
2(1− γk)e2k + (2γk − 1)e1k, if γk > 0.5.

Now the budget constraint (104) is in the form

Cr{
m∑

i=1

K∑

k=1

xijk (cl1
ijk, cl2

ijk, cl3
ijk, cl4

ijk) + (−1)(Bl1
j , Bl2

j , Bl3
j , Bl4

j ) ≤ 0} ≥ δl
j

Since xijk ≥ 0 for all i, j, k, from Corollary 2 of the Theorem 3.3, it is obvious
that this constraint will be active if and only if gl

j ≤ 0, where

gl
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− 2δl
j)(

m∑

i=1

K∑

k=1

cl1
ijk xijk −Bl4

j )+

+2δl
j(

m∑

i=1

K∑

k=1

cl2
ijk xijk −Bl3

j ),

if δj ≤ 0.5;

2(1− δl
j)(

m∑

i=1

K∑

k=1

cl3
ijk xijk −Bl2

j )+

+(2δl
j − 1)(

m∑

i=1

K∑

k=1

cl4
ijk xijk −Bl1

j ),

if δj > 0.5.

So finally an equivalent crisp form of the above CCP model (99)–(104) formu-
lated for the model (94)–(98) can be written as

Min[Z ′
1(x), Z ′

2(x), ..., Z ′
P (x)]

s.t. gl
j ≤ 0, j = 1, 2, ..., n , (110)

with the constraints (107), (108), (109),

xijk ≥ 0for all i, j, k.

Now the problem (110) is a multi-objective problem and so can be solved by
fuzzy programming technique, Global criteria method (cf. Sect. 2.9), etc.

Numerical Experiment: To illustrate the Model 3.1 ((94)–(98)), we consider
an example where from the past record of a transport company, the possible
values of the parameters such as the unit transportation costs, the supplies,
the demands, the available conveyance capacities can not be precisely deter-
mined. For instance, unit transportation cost for a route is “about 6”, the
supply of a source is “around 28–30”, etc. These linguistic data can be trans-
ferred into triangular or trapezoidal fuzzy numbers. For example if it is seen
from the past record that most possible value of unit transportation cost of a
route is 13 and it vary from 12 to 14 with less possibility, then it is “about
13” and represented by the fuzzy number (12,13,14)∼(12,13,13,14). Similarly
the most possible value of supply of a source ranges between 28 to 30 and
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Table 2. Penalties (costs) ˜c1ijk

i \ j 1 2 1 2

1 (10,11,13,14) (7,10,11,12) (11,13,13.5,14.5) (15,16,18,19)

2 (13,14,16,17) (8,10,10.5,11.5) (16,17,17,18) (12,13,15,17)

k 1 2

Table 3. Penalties ˜c2ijk

i \ j 1 2 1 2

1 (13,14,16,17) (7,8,10,11) (10,11.5,13,13.5) (12,13,15,16)

2 (12,13.5,14.5,16) (13,14,15,16) (12,13,13,14) (9,12,13,14)

k 1 2

is not less than 27 and greater than 32, i.e. it is “around 28-30” and repre-
sented by TrFN (27,28,30,32). For the current model, two sources, two desti-
nations, two conveyances and two objectives are considered, i.e. i, j, k, p = 1, 2.
The fuzzy penalties associated with the two objectives Z1 and Z2 are given in
Tables 2 and 3 respectively. The values of all the parameters associated with
two resources, two destinations, two conveyances and two objectives are given
below. Also budget constraint is imposed on the objective Z1 (i.e. l = 1).
ã1 = (37, 40, 46, 48), ã2 = (28, 32, 35, 37), b̃1 = (28, 29, 30, 31), b̃2 =
(31, 33, 34, 35), ẽ1 = (27, 29, 32, 34), ẽ2 = (39, 41, 44, 47), B̃1

1 =
(480, 485, 491, 497), and B̃1

2 = (501, 505, 510, 515).
Now applying chance-constrained programming technique to solve the prob-

lem, we reconstruct the problem as model (99)–(104) and use corresponding
crisp equivalent form (110). For this purpose, let us consider the credibility
level αi = 0.9 for the source constraints, βj = 0.9 for the demand constraints,
γk = 0.95 for the capacity constraints, δl

j = 0.9 for the budget constraints, where
i, j, k = 1, 2, l = 1 and let ηp = 0.9 (p = 1, 2), which implies that we want to
minimize 0.9-critical value of the objectives. Then using (110), the proposed
problem becomes

Min[Z ′
p(x)] p = 1, 2

Z ′
p(x) = 0.2 rp

3(x) + 0.8 rp
4(x) , p = 1, 2

2∑

j=1

2∑

k=1

xijk ≤ Fαi
, i = 1, 2

2∑

i=1

2∑

k=1

xijk ≥ Fβj
, j = 1, 2 (111)
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2∑

i=1

2∑

j=1

xijk ≤ Fγk
, k = 1, 2

0.2(
2∑

i=1

2∑

k=1

c13ijk xijk) + 0.8(
2∑

i=1

2∑

k=1

c14ijk xijk) ≤ (0.2B12
j + 0.8B11

j ), j = 1, 2

where expression of rp
3(x) and rp

4(x) are same as in (106) for i, j, k = 1, 2.
With the given data, we have Fα1 = 37.6, Fα2 = 28.8, Fβ1 = 30.8, Fβ2 = 34.6,
Fγ1 = 27.4, Fγ1 = 39.4

Solving this problem by fuzzy programming technique (with linear mem-
bership function) (cf. Sect. 2.9), the obtained optimum compromise solution is
presented in Table 4. The solution is obtained by using the standard optimization
solver - LINGO.

Table 4. Optimum results for Model (94)–(98)

x121 = 14.99, x211 = 12.40, x112 = 2.0, x122 = 19.60, x212 = 16.40,

B1
1 = 478.19, B1

2 = 370.80, λ = 0.55, Z′
1 = 901.30, Z′

2 = 895.58.

B1
1 and B1

2 represent the budget values for j=1,2 respectively for objective
Z1 and λ represents maximum overall satisfactory level of compromise.

3.4 Model 3.2: Multi-objective Multi-item Solid Transportation
Problem with Fuzzy Parameters

A multi-objective multi-item solid transportation problem (MOMISTP) with
fuzzy parameters is formulated in which several objectives (e.g., minimization
of transportation costs, minimization of total deterioration of goods, etc.) are
involved and also several types of items/goods are to be transported from sources
to destinations through the conveyances. The following notations are used to
formulate the model.

Notations:

(i) ˜ctp
ijk: for the objective Zt, fuzzy unit transportation penalty from i-th ori-

gin to j-th destination by k-th conveyance for p-th item.
(ii) xp

ijk: the decision variable that represents the amount of p-th item to be
transported from i-th source to j-th destination by k-th conveyance.

(iii) ãp
i : amount of p-th item represented by fuzzy number available at i-th origin

(iv) b̃p
j : fuzzy demand of j-th destination for p-th item

(v) ẽk: total fuzzy capacity of k-th conveyance.
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Mathematical Model: An MOMISTP with R objectives, l different items, m
origins, n destinations and K types of conveyances is formulated as follows:

Min Zt =
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

˜ctp
ijk xp

ijk , t = 1, 2, ..., R

s.t.

n∑

j=1

K∑

k=1

xp
ijk ≤ ãp

i , i = 1, 2, ...,m; p = 1, 2, ...l,

m∑

i=1

K∑

k=1

xp
ijk ≥ b̃p

j , j = 1, 2, ..., n; p = 1, 2, ..., l, (112)

l∑

p=1

m∑

i=1

n∑

j=1

xp
ijk ≤ ẽk, k = 1, 2, ...,K,

xp
ijk ≥ 0, ∀ i, j, k, p.

Defuzzification Process: Consider ãp
i , b̃p

j and ẽk (∀ i, j, k, p) as trapezoidal

fuzzy numbers defined by ãp
i = (ap1

i , ap2
i , ap3

i , ap4
i ), b̃p

j = (bp1
j , bp2

j , bp3
j , bp4

j ) and
ẽk = (e1k, e2k, e3k, e4k) and their membership functions are μ

ãp
i
, μ

b̃pj
and μẽk

respec-
tively. Now to solve the above problem, we first find corresponding defuzzified
(crisp) values, say, ap

ic, bp
jc and ekc (∀ i, j, k, p) so that for each item, total available

resources greater than or equal to the total demands and also total conveyance
capacities greater than or equal to the total demands for all items, i.e.

m∑

i=1

ap
ic ≥

n∑

j=1

bp
jc , p = 1, 2, ..., l and

K∑

k=1

ekc ≥
l∑

p=1

n∑

j=1

bp
jc.

Because defuzzified values of availabilities, demands and conveyance capacities
must have to be satisfy these conditions to have a feasible solution of the above
problem. For this purpose we apply the defuzzification method (cf Sect. 3.2)
based on fuzzy linear programming.

The method is to introduce an auxiliary variable λ and formulate the follow-
ing linear programming.

Max λ

s.t. μ
ãp
i
(ap

ic) ≥ λ, μ
b̃pj

(bp
jc) ≥ λ, μẽk

(ekc) ≥ λ,

m∑

i=1

ap
ic ≥

n∑

j=1

bp
jc,

K∑

k=1

ekc ≥
l∑

p=1

n∑

j=1

bp
jc,

∀ i, j, k, p.

where λ is the minimum degree of membership that one of the values of the
variables ap

ic, bp
jc, ekc takes,
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i.e. Max λ = λ∗ = Max Min [μ
ãp
i
(ap

ic), μ
b̃pj

(bp
jc), μẽk

(ekc)], where

μ
ãp
i
(ap

ic) =

⎧
⎪⎪⎨

⎪⎪⎩

ap
ic−ap1

i

ap2
i −ap1

i

, if ap1
i ≤ ap

ic ≤ ap2
i ;

1, if ap2
i ≤ ap

ic ≤ ap3
ic ;

ap4
i −ap

ic

ap4
i −ap3

i

, if ap3
i ≤ ap

ic ≤ ap4
i .

and similarly for μ
b̃pj

(bp
jc) and μẽk

(ekc).

Now if we denote left and right sides of the membership function μ
ãp
i
(ap

ic) by

μl

ãp
i

(ap
ic) and μr

ãp
i

(ap
ic) respectively and so on for μ

b̃pj
(bp

jc) and μẽk
(ekc), then the

above programming becomes
Max λ

s.t. μl

ãp
i

(ap
ic) ≥ λ, μr

ãp
i

(ap
ic) ≥ λ

μl

b̃pj
(bp

jc) ≥ λ, μr

b̃pj
(bp

jc) ≥ λ

μl
ẽk

(ekc) ≥ λ, μr
ẽk

(ekc) ≥ λ (113)

m∑

i=1

ap
ic ≥

n∑

j=1

bp
jc,

K∑

k=1

ekc ≥
l∑

p=1

n∑

j=1

bp
jc,

∀ i, j, k, p.

Solution Methodology: Consider that ˜ctp
ijk are all independent trapezoidal

fuzzy numbers represented as (ctp1
ijk , ctp2

ijk , ctp3
ijk , ctp4

ijk). Now after obtaining the
defuzzified values ap

ic, bp
jc and ekc (∀ i, j, k, p) by above procedure (i.e. using

(113)), the problem (112) becomes,

Min Zt =
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

˜ctp
ijk xp

ijk , t = 1, 2, ..., R (114)

s.t.
n∑

j=1

K∑

k=1

xp
ijk ≤ ap

ic, i = 1, 2, ...,m; p = 1, 2, ...l (115)

m∑

i=1

K∑

k=1

xp
ijk ≥ bp

jc, j = 1, 2, ..., n; p = 1, 2, ..., l (116)

l∑

p=1

m∑

i=1

n∑

j=1

xp
ijk ≤ ekc, k = 1, 2, ...,K (117)

xp
ijk ≥ 0, ∀ i, j, k, p.

Now, we use following methods to solve this problem.
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Method-1: Using the Concept-Minimum of Fuzzy Number: The objec-
tive functions in (114) are Zt =

∑l
p=1

∑m
i=1

∑n
j=1

∑K
k=1

˜ctp
ijk xp

ijk , t =

1, 2, ..., R. Since ˜ctp
ijk are trapezoidal fuzzy numbers and xp

ijk ≥ 0 for all i, j, k
and p, so each Zt for t = 1, 2, ..., R is also a trapezoidal fuzzy number for any
feasible solution and is given by Zt=(Z1

t , Z2
t , Z3

t , Z4
t ) where

Zr
t =

∑l
p=1

∑m
i=1

∑n
j=1

∑K
k=1

˜ctpr
ijk xp

ijk for r = 1, 2, 3, 4.
As it is not possible to minimize directly a fuzzy number Z̃, here we use a method
proposed by Buckly et al. [14]. They applied this method to a fuzzy inventory
control problem. The method is to convert min Z̃ into a multi-objective problem

MinZ̃ = (Max AL(Z̃),Min C(Z̃),Min AR(Z̃)),

where C(Z̃) is the center of the core of the fuzzy number and AL(Z̃), AR(Z̃)
are the area under graph of the membership function of Z̃ to the left and right
of C(Z) (minimization of a TrFN Z̃ is shown in Fig. 10). If the support of Z̃ be
[u1, u3] and the center of the core of Z̃ be at u2, then

AL(Z̃) =
∫ u2

u1

μZ̃(x) dx and AR(Z̃) =
∫ u3

u2

μZ̃(x) dx .

Then this multi-objective problem is converted to a single objective problem as
follows

MinZ̃ = Min{λ1[M −AL(Z̃)] + λ2C(Z̃) + λ3AR(Z̃)}, (118)

where λl > 0, for l = 1, 2, 3, λ1+λ2+λ3 = 1 and M is a large positive number so
that Max AL(Z̃) is equivalent to Min [M − AL(Z̃)]. The values of λl are taken

)
~

(Z ZA AL )
~

(R

1z 2z C(Z) 4z3z

(  )~ x
Z

μ

x0

1 

Fig. 10. Minimization of TrFN Z̃
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by decision maker or a sensitivity analysis can be done taking different values of
λl to choose appropriate values of λl.

Now for a trapezoidal fuzzy number Z̃ = (z1, z2, z3, z4), the membership
function is

μZ̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−z1

z2−z1 , if z1 ≤ x ≤ z2;
1, if z2 ≤ x ≤ z3;
z4−x
z4−z3 , if z3 ≤ x ≤ z4;
0, otherwise.

So the core of Z̃ is [z2, z3] and C(Z̃) = z2+z3

2 .

AL(Z̃) =
∫ z2+z3

2

z1
μZ̃(x) dx =

∫ z2

z1

x− z1

z2 − z1
dx +

∫ z2+z3
2

z2
1 dx =

1
2
(z3 − z1),

AR(Z̃) =
∫ z3

z2+z3
2

1 dx +
∫ z4

z3

z4 − x

z4 − z3
dx =

1
2
(z4 − z2).

Applying this method to the objective function (114) of the problem (114)–(117),
the corresponding crisp form of the problem becomes

MinZ̄t = λ1[M −AL(Zt)] + λ2C(Zt) + λ3AR(Zt) , t = 1, 2, ...R,

AL(Zt) =
Z3

t − Z1
t

2
, C(Zt) =

Z2
t + Z3

t

2
, AR(Zt) =

Z4
t − Z2

t

2
, (119)

subject to the constraints (115)–(117),

xp
ijk ≥ 0, ∀ i, j, k, p, λ1 + λ2 + λ3 = 1, λl > 0, l = 1, 2, 3.

Though the choice of values of λl depends upon decision maker(s), it should be
kept in mind that, as the above problem is a minimization problem, our aim
should be more in maximizing AL(Zt) (i.e. possibility of getting less values than
C(Zt)) and minimizing C(Zt) rather than in minimizing AR(Zt) (i.e. possibility
of getting more values than C(Zt)).

Method-2: Using Expected Value: Here we minimize the expected value of
the objective functions and then the problem (114)–(117) becomes

Min E[Zt] = E[
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

˜ctp
ijk xp

ijk] , t = 1, 2, ..., R

s.t. the constraints (115)− (117), (120)

xp
ijk ≥ 0, ∀ i, j, k, p

which is equivalently written as

Min E[Zt] = Z̄t =
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

E[ ˜ctp
ijk] xp

ijk , t = 1, 2, ..., R
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s.t. the constraints (115)− (117), (121)

xp
ijk ≥ 0, ∀ i, j, k, p.

Now the deterministic models (119) and (121) are multi-objective problems and
so can be solved by fuzzy programming technique, Global criteria method (cf.
Sect. 2.9), etc.

Note: Deterministic forms obtained using expected value model (EVM), chance-
constrained programming model for an optimization problem with fuzzy para-
meters having interrelated constraints like in STP may not always possesses any
feasible solution. For example if we construct the EVM for the problem (112) by
using expected value to both the objective functions and the constraints then it
becomes:

Min E[Zt] = E
[ l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

˜ctp
ijk xp

ijk

]
, t = 1, 2, ..., R

s.t. E
[ n∑

j=1

K∑

k=1

xp
ijk − ãp

i

] ≤ 0, i = 1, 2, ...,m; p = 1, 2, ...l,

E
[ m∑

i=1

K∑

k=1

xp
ijk − b̃p

j

] ≥ 0, j = 1, 2, ..., n; p = 1, 2, ..., l, (122)

E
[ l∑

p=1

m∑

i=1

n∑

j=1

xp
ijk − ẽk

] ≤ 0, k = 1, 2, ...,K,

xp
ijk ≥ 0, ∀ i, j, k, p.

Then by the linearity property of expected value operator, the crisp equivalence
form of this model becomes

Min E[Zt] = Z̄t =
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

E[ ˜ctp
ijk] xp

ijk , t = 1, 2, ..., R

s.t.

n∑

j=1

K∑

k=1

xp
ijk ≤ E[ãp

i ], i = 1, 2, ...,m; p = 1, 2, ...l,

m∑

i=1

K∑

k=1

xp
ijk ≥ E[b̃p

j ], j = 1, 2, ..., n; p = 1, 2, ..., l, (123)

l∑

p=1

m∑

i=1

n∑

j=1

xp
ijk ≤ E[ẽk], k = 1, 2, ...,K,

xp
ijk ≥ 0, ∀ i, j, k, p.
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Table 5. Penalties/costs ˜c11ijk

i \ j 1 2 3 1 2 3

1 (5,8,9,11) (4,6,9,11) (10,12,14,16) (9,11,13,15) (6,8,10,12) (7,9,12,14)

2 (8,10,13,15) (6,7,8,9) (11,13,15,17) (10,11,13,15) (6,8,10,12) (14,16,18,20)

k 1 2

Table 6. Penalties/costs ˜c12ijk

i \ j 1 2 3 1 2 3

1 (9,10,12,13) (5,8,10,12) (10,11,12,13) (11,13,14,15) (6,7,9,11) (8,10,11,13)

2 (11,13,14,16) (7,9,12,14) (12,14,16,18) (14,16,18,20) (9,11,13,14) (13,14,15,16)

k 1 2

But in the above crisp equivalence form, the deterministic values of supplies,
demands and conveyance capacities, i.e. E[ãp

i ], E[b̃p
j ] and E[ẽk] respectively may

not satisfy the required conditions for feasible solution, i.e. for each item, total
supplies greater than or equal to the total demands and also total conveyance
capacities greater than or equal to the total demands for all items. So this method
gives a feasible solution only when the fuzzy supplies, demands and conveyance
capacities are so that their respective expected values automatically satisfy those
conditions.

Numerical Experiment: To illustrate numerically the Model 3.2 (112), we
consider an example with p = 1, 2 = i, k; j = 1, 2, 3 and the following data.
The unit transportation penalties are given in Tables 5, 6, 7 and 8. ã1

1 =
(21, 24, 26, 28), ã1

2 = (28, 32, 35, 37), b̃11 = (14, 16, 19, 22), b̃12 = (17, 20, 22, 25),
b̃13 = (12, 15, 18, 21), ã2

1 = (32, 34, 37, 39), ã2
2 = (25, 28, 30, 33), b̃21 =

(20, 23, 25, 28), b̃22 = (16, 18, 19, 22), b̃23 = (15, 17, 19, 21), ẽ1 = (46, 49, 51, 53),
ẽ2 = (51, 53, 56, 59).

Now to get the corresponding defuzzified values ap
ic, bp

jc, ekc, i = 1, 2, j =
1, 2, 3, k = 1, 2, p = 1, 2, we apply the fuzzy programming (113) and the
obtained values are
a1
1c = 23.7, a1

2c = 31.6, b11c = 15.8, b12c = 19.7, b13c = 14.7, a2
1c = 33.8, a2

2c = 27.7,
b21c = 22.7, b22c = 17.8, b23c = 16.8, e1c = 51.2, e2c = 56.3, with λ = 0.9.

Results Using Minimum of Fuzzy Number (Method-1): To solve the
above considered problem we convert the problem as in (119) and take λ1 = λ2 =
0.4, λ3 = 0.2 (as we concentrate more in maximizing AL(Zt) and minimizing
C(Zt) than in minimizing AR(Zt)) and M=500.
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Table 7. Penalties/costs ˜c21ijk

i \ j 1 2 3 1 2 3

1 (4,5,7,8) (3,5,6,8) (7,9,10,12) (6,7,8,9) (4,6,7,9) (5,7,9,11)

2 (6,8,9,11) (5,6,7,8) (6,7,9,10) (4,6,8,10) (7,9,11,13) (9,10,11,12)

k 1 2

Table 8. Penalties/costs ˜c22ijk

i \ j 1 2 3 1 2 3

1 (5,7,9,10) (4,6,7,9) (9,11,12,13) (7,8,9,10) (4,5,7,8) (8,10,11,12)

2 (10,11,13,14) (6,7,8,9) (7,9,11,12) (6,8,10,12) (5,7,9,11) (9,10,12,14)

k 1 2

Applying fuzzy linear programming (i.e. fuzzy programming with linear mem-
bership function) (cf. Sect. 2.9) we get the following results
L1 = min Z̄1 = 601.9 (AL(Z1) = 186, C(Z1) = 1095.75, AR(Z1) = 190),
U1 = 656.73 (AL(Z1) = 196.05, C(Z1) = 1231.45, AR(Z1) = 212.85),
L2 = min Z̄2 = 483.2 (AL(Z2) = 190.9, C(Z1) = 811.65, AR(Z1) = 174.5),
U2 = 541.71 (AL(Z2) = 166.15, C(Z2) = 941.55, AR(Z2) = 157.75),
and the optimal compromise solution is
x1
111 = 9, x1

221 = 19.7, x1
132 = 14.7, x1

212 = 6.8, x2
111 = 18.38394, x2

231 = 4.116056,
x2
122 = 2.732113, x2

132 = 12.68394, x2
212 = 4.316056, x2

222 = 15.06789, λ = 0.753.
Z̄1 = 615.4325, in which AL(Z1) = 182.35, C(Z1) = 1133.39, AR(Z1) =
175.0821, so that the core of the optimum value of objective function Z1 is
[1039.232, 1227.548] and 1133.39 is the center of the core.
Z̄2 = 497.6407, in which AL(Z2) = 183.092, C(Z2) = 844.4438, AR(Z2) =
165.5, so that the core of the optimum value of objective function Z2 is
[753.1357, 935.7518] and 844.4438 is the center of the core. The optimum val-
ues of Z1 and Z2 are shown in Figs. 11 and 12 respectively. Applying global
criterion method in L2 norm (cf. Sect. 2.9) the following results are obtained.
x1
111 = 9, x1

221 = 19.7, x1
132 = 14.7, x1

212 = 6.8, x1
111 = 16.4902, x2

231 = 6.0097,
x2
122 = 6.5195, x2

132 = 10.7902, x2
212 = 6.2097, x2

222 = 11.2804.
Z̄1 = 618.0837, in which AL(Z1) = 182.35, C(Z1) = 1138.12, AR(Z1) =
178.8695, so that the core of the optimum value of objective function Z1 is
the interval [1043.019, 1233.229] and 1138.12 is the center of the core.
Z̄2 = 495.3683, in which AL(Z2) = 182.1451, C(Z2) = 837.8158, AR(Z2) =
165.5, so that the core of the optimum value of objective function Z2 is
[745.5609, 930.0706] and 837.8158 is the center of the core.

It is observed from the optimal solutions of the objective functions that the
decision makers have more information in hand about the objective function
values.
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Fig. 11. Optimum values of Z1
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Fig. 12. Optimum values of Z2
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Results Using Expected Value of the Objective Function (Method-2):
To minimize the expected value of the objective functions of the above considered
problem, we reconstruct the problem as (120) and transform it to corresponding
crisp equivalence form as (121).

Then applying fuzzy linear programming (cf. Sect. 2.9) we get the following
result.
L1 = min Z̄1 = 1092.45, U1 = 1248.85, L2 = min Z̄2 = 800.45, U2 = 923.45 and
the optimal compromise solution is
x1
111 = 3.1686, x1

121 = 5.8313, x1
221 = 13.8686, x1

132 = 14.7, x1
212 = 12.6314,

x2
111 = 22.7, x2

221 = 5.6314, x2
122 = 11.1, x2

222 = 1.0686, x2
232 = 16.8, λ =

0.6989, Z̄1 = 1139.536, Z̄2 = 837.4808.
Applying global criterion method in L2 (cf. Sect. 2.9) norm we get the following
result.
Z̄1

min = 1092.45 and Z̄2
min = 800.45 and the compromise optimum solution is

x1
111 = 1.5624, x1

121 = 7.4375, x1
221 = 12.2625, x1

132 = 14.7, x1
212 = 14.2375,

x2
111 = 22.7, x2

221 = 6.7, x2
231 = 0.5375, x2

122 = 11.1, x2
232 = 16.2625, Z̄1 =

1144.894 and Z̄2 = 832.1250.
Using the crisp equivalence form (123) of the expected value model (122) we

can not find any feasible solution for this numerical example. However for any
other example with suitable data set, this method can gives feasible solution.

Overview of the Results by Two Methods: We note that the optimal
expected values of the objective functions Z1(= 1139.536) and Z2(= 837.4808)
as obtained using expected value (method-2) and fuzzy programming technique,
lie within the core [1039.232, 1227.548] and [753.1357, 935.7518] of Z1 and Z2

respectively as obtained using method-1 (method based on minimum of fuzzy
number). Also the optimal expected values Z1 and Z2 that obtained by method-
2 are close to the center of core 1133.39 and 844.4438 of Z1 and Z2 respectively
that are obtained by method-1.

Optimalexpected value of 1Z (Method-2) Core of 1Z (Method-1)

1139.536 ∈ [1039.232, 1227.548]

837.4808     ∈ [753.1357, 935.7518]

Optimalexpected value of Z2 (Method-2) Core of 2Z (Method-1)

Fig. 13. Discussion of results obtained by method-1 and method-2.

This discussion is given pictorially in Fig. 13. This is also true for the results
obtained by using global criterion method.
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3.5 Overall Conclusion

In Model 3.1, a MOSTP with fuzzy penalties, resources, demands, conveyance
capacities and budget constraints has been formulated. Budget constraints with
fuzzy budget amounts are imposed in the problem. The presented problem is
solved using chance-constrained programming with credibility measure.

For the first time, a multi-objective multi-item solid transportation problem
(Model 3.2) with fuzzy penalties, sources, demands and conveyance capacities is
formulated and solved. For defuzzification, two methods (cf. Sects. 3.2 and 3.4
(Method-1), available in the literature and not applied so far in STP have been
successfully applied in MOMISTP. Multi-objective problems are solved by two
methods and results are compared.

The presented models can be extended to include space constraints, price
discount on the basis of amount of transported units, etc. The methods, used for
solution here are quite general in nature and these can be applied to other similar
uncertain/impricise models in other areas such as inventory control, ecology,
sustainable farm management, etc.

4 Some Transportation Models with Type-2 Fuzzy
Parameters

In many real world problems, due to lack of input information, noises in data, lin-
guistic information, multiple sources of the collected data, bad statistical analysis
etc., it is sometimes difficult to determine exact membership grades to represent
an uncertain parameter by ordinary fuzzy set and as a result type-2 fuzzy set
(T2 FS) appear. Due to fuzziness in membership function, the computational
complexity is very high to deal with T2 FS. For the high computational com-
plexity of general T2 FS, till now the most widely used T2 FS is interval T2 FS
(IT2 FS), which is a special case of general T2 FS.

In case of a T2 FS, generally complete defuzzification process consists of
two parts - type reduction and defuzzification proper. Type reduction is a pro-
cedure by which a T2 FS is converted to the corresponding T1 FS, known as
type reduced set (TRS). The TRS is then easily defuzzified to a crisp value.
Karnik and Mendel [63] proposed a centroid type reduction method to reduce
IT2 FS into T1 FS. But it is very difficult to apply this method to a general
T2 FS. Because this method was derived from embedded sets representation
theory in which a T2 FS is represented as the union of its T2 embedded sets,
and this union consists of an astronomical number of T2 embedded sets, which
results a very high computational complexity. Greenfield et al. [51] have pro-
posed an extension of this procedure to discretised generalized type-2 fuzzy sets.
Other researchers (Liu, [91]; Wu and Tan, [147]) have developed type reduction
strategies for continuous generalized T2 FS. Coupland and John [31] proposed a
geometric defuzzification method for T2 FSs by converting a T2 FS into a geo-
metric T2 FS. In terms of possibility theory, Liu and Liu [99] defined a type-2
fuzzy variable as a map from a fuzzy possibility space to the set of real numbers.
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Qin et al. [127] introduced three kinds of reduction methods called optimistic
CV, pessimistic CV and CV reduction methods for type-2 fuzzy variables (T2
FVs) based on CVs (critical values) of regular fuzzy variables.

At present, type-2 fuzzy set theories are being developed and applied in var-
ious fields such as group decision making system (Chen and Lee [23,24], Chen
et al. [21], Chen et al. [26]), neural network (Aliev et al. [5]), Portfolio selec-
tion problem (Hasuike and Ishi [54]), Pattern recognition (Mitchell [112]), data
envelopment analysis (Qin et al. [127]), Ad hoc networks (Yuste et al. [155]), etc.
Figueroa-Garca and Hernndez [43] first considered a transportation problem with
interval type-2 fuzzy demands and supplies. At the best of our knowledge, we are
the first to consider the transportation problems with type-2 fuzzy parameters.
Thus this is an emerging area and is yet to be developed. In this chapter, we
have proposed a defuzzification method of type-2 fuzzy variables. We have also
introduced an interval approximation method of continuous type-2 fuzzy vari-
ables. We have formulated and solved two fixed charge transportation problems
and a multi-item solid transportation problem with type-2 fuzzy parameters.

4.1 Related Theorem

The following theorem approaches to find crisp equivalent forms of constraints
involving type-2 triangular fuzzy variables. This theorem is established using
generalized credibility measure for the reduced fuzzy variable from type-2 trian-
gular fuzzy variable by CV (critical value) reduction method.

Theorem 4.1 (Qin et al. [127]). Let ξi be the reduction of the type-2 triangular
fuzzy variable ξ̃i = (ri

1, r
i
2, r

i
3; θl,i, θr,i) obtained by the CV reduction method for

i = 1, 2, ..., n. Suppose ξ1, ξ2, ..., ξn are mutually independent, and ki ≥ 0 for
i = 1, 2, ..., n.

(i) Given the generalized credibility level α ∈ (0, 0.5], if α ∈ (0, 0.25], then
C̃r{∑n

i=1 kiξi ≤ t} ≥ α is equivalent to

n∑

i=1

(1− 2α + (1− 4α)θr,i)kir
i
1 + 2αkir

i
2

1 + (1− 4α)θr,i
≤ t, (124)

and if α ∈ (0.25, 0.5], then C̃r{∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑

i=1

(1− 2α)kir
i
1 + (2α + (4α− 1)θl,i)kir

i
2

1 + (4α− 1)θl,i
≤ t. (125)

(ii) Given the generalized credibility level α ∈ (0.5, 1], if α ∈ (0.5, 0.75], then
C̃r{∑n

i=1 kiξi ≤ t} ≥ α is equivalent to

n∑

i=1

(2α− 1)kir
i
3 + (2(1− α) + (3− 4α)θl,i)kir

i
2

1 + (3− 4α)θl,i
≤ t, (126)
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and if α ∈ (0.75, 1], then C̃r{∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑

i=1

(2α− 1 + (4α− 3)θr,i)kir
i
3 + 2(1− α)kir

i
2

1 + (4α− 3)θr,i
≤ t. (127)

Corollary 4.1: From the above theorem, equivalent expressions of
C̃r{∑n

i=1 kiξi ≥ t} ≥ α are easily obtained, since

C̃r{
n∑

i=1

kiξi ≥ t} ≥ α⇒ C̃r{
n∑

i=1

− kiξi ≤ −t} ≥ α

⇒ C̃r{
n∑

i=1

kiξ
′
i ≤ t′} ≥ α,

where ξ′
i = −ξi is the reduction of −ξ̃i = (−ri

3,−ri
2,−ri

1; θr,i, θl,i) and t′ = −t.
So from (i) of the above theorem, given the generalized credibility level α ∈

(0, 0.5], if α ∈ (0, 0.25], then C̃r{∑n
i=1 kiξi ≥ t} ≥ α, i.e. C̃r{∑n

i=1 kiξ
′
i ≤ t′} ≥

α is equivalent to

n∑

i=1

(1− 2α + (1− 4α)θl,i)ki(−ri
3) + 2αki(−ri

2)
1 + (1− 4α)θl,i

≤ t′ = −t, (128)

which implies

n∑

i=1

(1− 2α + (1− 4α)θl,i)kir
i
3 + 2αkir

i
2

1 + (1− 4α)θl,i
≥ t, (129)

and if α ∈ (0.25, 0.5], then C̃r{∑n
i=1 kiξi ≥ t} ≥ α is equivalent to

n∑

i=1

(1− 2α)ki(−ri
3) + (2α + (4α− 1)θr,i)ki(−ri

2)
1 + (4α− 1)θr,i

≤ −t (130)

which implies

n∑

i=1

(1− 2α)kir
i
3 + (2α + (4α− 1)θr,i)kir

i
2

1 + (4α− 1)θr,i
≥ t. (131)

The equivalent expressions for other values of α are similarly obtained.

4.2 Theoretical Developments

Defuzzification of Type-2 Fuzzy Variables ([75]): Here we have introduced
a defuzzification process of type-2 fuzzy variables. This method consists of two
parts. First CV-based reduction method (Sect. 2.3) is applied to transform the
type-2 fuzzy variables into corresponding type-1 fuzzy variables. Then, to get
corresponding defuzzified (crisp) values, centroid method described in Sect. 2.2 is
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applied to these reduced type-1 fuzzy variables. For continuous case the formula∫∞
−∞ xμÃ(x)dx/

∫∞
−∞ μÃ(x)dx is used while

∑
x xμÃ(x)/

∑
x μÃ(x) ia applied for

discrete case.
The entire defuzzification process is shown in Fig. 14 and illustrated with the

following two examples.

Type-2 

Fuzzy variable

CV-based 

Reduction 

Type-1 

Fuzzy variable

Centroid  

method

Crisp

Out put

Fig. 14. Defuzzification of a type-2 fuzzy variable

Example 4.1. Let us consider Ã = {(x, μ̃Ã(x)) : x ∈ X} where X = {4, 5, 6}
and the primary memberships (possibilities) of the points of X are, respectively,
J4 = {0.3, 0.4, 0.6}, J5 = {0.6, 0.8, 0.9}, and J6 = {0.5, 0.6, 0.7, 0.8}. The sec-
ondary possibility of the point 4 is

μ̃Ã(4) = μÃ(4, u) = (0.6/0.3) + (1.0/0.4) + (0.7/0.6) ∼
(

0.3 0.4 0.6
0.6 1.0 0.7

)
,

which represents a regular fuzzy variable (RFV). Similarly

μ̃Ã(5) = μÃ(5, u) = (0.7/0.6) + (1.0/0.8) + (0.8/0.9) ∼
(

0.6 0.8 0.9
0.7 1.0 0.8

)
,

μ̃Ã(6) = μÃ(6, u) = (0.3/0.5) + (0.4/0.6) + (1.0/0.7) + (0.5/0.8) ∼(
0.5 0.6 0.7 0.8
0.3 0.4 1.0 0.5

)
.

So discrete type-2 fuzzy variable Ã is given by

Ã =

⎧
⎨

⎩

4, with membership μ̃Ã(4);
5, with membership μ̃Ã(5);
6, with membership μ̃Ã(6).

(132)

For this T2 FV Ã, μ̃Ã(4), μ̃Ã(5) and μ̃Ã(6) are discrete RFVs. So the CVs
of these RFVs can be obtained by using the formula (47), (48) and (49) (cf.
Sect. 2.3) as illustrated in Example 2.7, e.g., from (47), we have CV ∗[μ̃Ã(4)] =
supα∈[0,1][α ∧ Pos{μ̃Ã(4) ≥ α}], where

Pos{μ̃Ã(4) ≥ α} =

⎧
⎨

⎩

1, if α ≤ 0.4;
0.7, if 0.4 < α ≤ 0.6;
0, if 0.6 < α ≤ 1.

(133)

so that

CV ∗[μ̃Ã(4)] = sup
α∈[0,0.4]

[α ∧ 1] ∨ sup
α∈(0.4,0.6]

[α ∧ 0.7] ∨ sup
α∈(0.6,1]

[α ∧ 0]

= 0.4 ∨ 0.6 ∨ 0 = 0.6. (134)
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In this way, from (47), (48) and (49) (cf. Sect. 2.3) we obtain CV∗[μ̃Ã(4)] = 0.6,
CV∗[μ̃Ã(5)] = 0.8, CV∗[μ̃Ã(6)] = 0.6,

CV∗[μ̃Ã(4)] = 0.4, CV∗[μ̃Ã(5)] = 0.6, CV∗[μ̃Ã(6)] = 0.6,

CV[μ̃Ã(4)] = 0.4, CV[μ̃Ã(5)] = 0.65, CV[μ̃Ã(6)] = 0.6.

Then applying optimistic CV, pessimistic CV and CV reduction methods
(Sect. 2.3), the T2 FV Ã is reduced respectively to the following T1 FVs
(

4 5 6
0.6 0.8 0.6

)
,
(

4 5 6
0.4 0.6 0.6

)
and

(
4 5 6

0.4 0.65 0.6

)
.

Then applying centroid method to these T1 FVs we get the corresponding
complete defuzzified (crisp) values 5, 5.125 and 5.121 respectively. For practical
use, which of the defuzzified values should be considered, it is up to the decision
maker. However we recommend to take the defuzzified value (e.g., 5.121 for
this example) obtained by applying the centroid method to the reduced T1
FV as derived using CV reduction method. This is because optimistic CV and
pessimistic CV reduction methods are developed using possibility and necessity
measure respectively, while CV reduction method uses credibility measure which
is the average of possibility and necessity measures.

Example 4.2. Consider the T2 FV ξ̃ presented in Example 2.4 in Sect. 2.3,
Chap. 2. Also in Example 2.4 (continued), applying optimistic CV, pessimistic
CV and CV reduction method to ξ̃ we already obtain the corresponding reduced

type-1 fuzzy variables as
(

5 6 7
1
2

2
3

7
12

)
,
(

5 6 7
1
3

1
2

1
4

)
and

(
5 6 7
3
7

4
7

1
2

)
respectively.

Then applying centroid method to these T1 FVs we get the corresponding
complete defuzzified (crisp) values 6.0476, 5.923 and 6.0476 respectively.
Comparison with geometric defuzzification method (Coupland and John [31]):
Applying the geometric defuzzification method (cf. Sect. 2.3) to Example 4.1 we
find the defuzzified value of the discrete type-2 fuzzy variable Ã as 5.158 as
compared to 5.121, obtained by the above proposed method.

Since the domains of the secondary possibilities (memberships) of all the
points of the type-2 fuzzy variable ξ̃ of Example 4.2 are continuous over [0,1], so
to apply geometric defuzzification method we have to dicretize the continuous
domains. We discretize the continuous domains of the secondary possibilities
of the points of ξ̃ with equidistant 0.05 and applying geometric defuzzification
method we obtain defuzzified value 6.1403 of ξ̃, compared to earlier result 6.0476.

Nearest Interval Approximation of Continuous Type-2 Fuzzy Vari-
ables ([76]). Here we have proposed a method of approximation of continuous
type-2 fuzzy variable by crisp interval. For this purpose we first find the CV-
based reductions of the type-2 fuzzy variable. Then we derive the corresponding
α-cuts of these CV-based reductions. Finally applying interval approximation
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method (Grzegorzewski [52]) to the α-cuts we find approximate crisp intervals.
The entire method is shown in the Fig. 15.

Type-2 

Fuzzy variable

CV-based 

Reduction 

Type-1 

Fuzzy variable

Interval 

approximation

Crisp

Interval

| | 
| | 

| | 

| | 

|

cuts−α

Fig. 15. Nearest interval approximation of continuous T2 fuzzy variable.

Example 4.3. Now we illustrate the above method with type-2 triangular
fuzzy variable. Let ξ̃ be a type-2 triangular fuzzy variable defined as ξ̃ =
(r1, r2, r3; θl, θr). Then from Theorem 2.4 (cf. Sect. 2.3) we have the optimistic
CV reduction, pessimistic CV reduction and CV reduction of ξ̃ as ξ1, ξ2 and ξ3
respectively with the possibility distributions given by (56), (57) and (58) (cf.
Sect. 2.3). Now using the definition of α-cut of a fuzzy number we find α-cuts of
the reductions of ξ̃.

α-cut of the optimistic CV reduction ξ1 of ξ̃: Applying the definition of
α-cut of a fuzzy variable we find the α-cut of the reduction ξ1 as [ξ1L(α), ξ1R(α)],
where,

ξ1L(α) =

{
(1+θr)r1+(r2−r1−θrr1)α

(1+θr)−θrα , 0 ≤ α ≤ 0.5;
(r1−θrr2)+(r2−r1+θrr2)α

(1−θr)+θrα , 0.5 < α ≤ 1.
(135)

ξ1R(α) =

{
(r3−θrr2)−(r3−r2−θrr2)α

(1−θr)+θrα , 0.5 ≤ α ≤ 1;
(1+θr)r3−(r3−r2+θrr3)α

(1+θr)−θrα , 0 ≤ α < 0.5.
(136)

α-cut of the pessimistic CV reduction ξ2 of ξ̃: α-cut of the reduction ξ2 is
obtained as [ξ2L(α), ξ2R(α)], where,

ξ2L(α) =

{
r1+(r2−r1−θlr1)α

1−θlα
, 0 ≤ α ≤ 0.5;

r1+(r2−r1+θlr2)α
1+θlα

, 0.5 < α ≤ 1.
(137)

ξ2R(α) =

{
r3−(r3−r2−θlr2)α

1+θlα
, 0.5 ≤ α < 1;

r3−(r3−r2+θlr3)α
1−θlα

, 0 ≤ α < 0.5.
(138)
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α-cut of the CV reduction ξ3 of ξ̃: α-cut of the reduction ξ3 is obtained as
[ξ3L(α), ξ3R(α)], where,

ξ3L(α) =

{
(1+θr)r1+(r2−r1−2θrr1)α

(1+θr)−2θrα , 0 ≤ α ≤ 0.5;
(r1−θlr2)+(r2−r1+2θlr2)α

(1−θl)+2θlα
, 0.5 < α ≤ 1.

(139)

ξ3R(α) =

{
(r3−θlr2)−(r3−r2−2θlr2)α

(1−θl)+2θlα
, 0.5 ≤ α ≤ 1;

(1+θr)r3−(r3−r2+2θrr3)α
(1+θr)−2θrα , 0 ≤ α < 0.5.

(140)

Now we know that nearest interval approximation of a fuzzy number (Grze-
gorzewski [52]) Ã with α-cut [AL(α), AR(α)] is given by (cf. Sect. 2.2) Cd(Ã) =
[CL, CR], where CL =

∫ 1

0
AL(α)dα and CR =

∫ 1

0
AR(α)dα.

Using this method for the α-cuts of optimistic CV, pessimistic CV or CV
reduction of ξ̃ we can find the nearest interval approximation of ξ̃ as follows.

Nearest interval approximation of ξ̃ using α-cut of the optimistic CV reduc-
tion ξ1 of ξ̃: In this case the nearest interval approximation of ξ̃ is obtained as
[CL, CR] where,

CL =
∫ 1

0

ξ1L(α)dα

=
∫ 0.5

0

(1 + θr)r1 + (r2 − r1 − θrr1)α
(1 + θr)− θrα

dα

+
∫ 1

0.5

(r1 − θrr2) + (r2 − r1 + θrr2)α
(1− θr) + θrα

dα = CL1 + CL2, (141)

CL1 =
(1 + θr)r1

θr
ln
( 1 + θr

1 + 0.5θr

)− r2 − r1 − θrr1
θ2r

[
0.5θr−(1+θr) ln

( 1 + θr

1 + 0.5θr

)]
,

CL2 = −r1 − θrr2
θr

ln(1− 0.5θr) +
r2 − r1 + θrr2

θ2r

[
0.5θr + (1− θr) ln(1− 0.5θr)

]
.

CR =
∫ 1

0

ξ1R(α)dα

=
∫ 0.5

0

(1 + θr)r3 − (r3 − r2 + θrr3)α
(1 + θr)− θrα

dα

+
∫ 1

0.5

(r3 − θrr2)− (r3 − r2 − θrr2)α
(1− θr) + θrα

dα

= CR1 + CR2, (142)

CR1 =
(1 + θr)r3

θr
ln
( 1 + θr

1 + 0.5θr

)
+

r3 − r2 + θrr3
θ2r

[
0.5θr−(1+θr) ln

( 1 + θr

1 + 0.5θr

)]
,

CR2 = −r3 − θrr2
θr

ln(1− 0.5θr)− r3 − r2 − θrr2
θ2r

[
0.5θr + (1− θr) ln(1− 0.5θr)

]
.
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We call this interval as optimistic interval approximation of ξ̃.
Nearest interval approximation of ξ̃ using α-cut of the pessimistic CV reduc-

tion ξ2 of ξ̃: In this case the nearest interval approximation of ξ̃ is obtained as
[CL, CR] where,

CL =
∫ 1

0

ξ2L(α)dα

=
∫ 0.5

0

r1 + (r2 − r1 − θlr1)α
1− θlα

dα +
∫ 1

0.5

r1 + (r2 − r1 + θlr2)α
1 + θlα

dα

= CL1 + CL2, (143)

CL1 = −r1
θl

ln(1− 0.5θl)− r2 − r1 − θlr1
θ2l

[
0.5θl + ln(1− 0.5θl)

]
,

CL2 =
r1
θl

ln
( 1 + θl

1 + 0.5θl

)
+

r2 − r1 + θlr2
θ2l

[
0.5θl − ln

( 1 + θl

1 + 0.5θl

)]
.

CR =
∫ 1

0

ξ2R(α)dα

=
∫ 0.5

0

r3 − (r3 − r2 + θlr3)α
1− θlα

dα +
∫ 1

0.5

r3 − (r3 − r2 − θlr2)α
1 + θlα

dα

= CR1 + CR2, (144)

CR1 = −r3
θl

ln(1− 0.5θl) +
r3 − r2 + θlr3

θ2l

[
0.5θl + ln(1− 0.5θl)

]
,

CR2 =
r3
θl

ln
( 1 + θl

1 + 0.5θl

)− r3 − (r3 − r2 − θlr2
θ2l

[
0.5θl − ln

( 1 + θl

1 + 0.5θl

)]
.

We call this interval as pessimistic interval approximation of ξ̃.
Nearest interval approximation of ξ̃ using α-cut of the CV reduction ξ3 of

ξ̃: In this case the nearest interval approximation of ξ̃ is obtained as [CL, CR]
where,

CL =
∫ 1

0

ξ3L(α)dα

=
∫ 0.5

0

(1 + θr)r1 + (r2 − r1 − 2θrr1)α
(1 + θr)− 2θrα

dα

+
∫ 1

0.5

(r1 − θlr2) + (r2 − r1 + 2θlr2)α
(1− θl) + 2θlα

= CL1 + CL2, (145)

CL1 =
(1 + θr)r1

2θr
ln(1 + θr)− r2 − r1 − 2θrr1

4θ2r

[
θr − (1 + θr) ln(1 + θr)

]
,
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CL2 =
r1 − θlr2

2θl
ln(1 + θl) +

r2 − r1 + 2θlr2
4θ2l

[
θl − (1− θl) ln(1 + θl)

]
.

CR =
∫ 1

0

ξ3R(α)dα

=
∫ 0.5

0

(1 + θr)r3 − (r3 − r2 + 2θrr3)α
(1 + θr)− 2θrα

dα

+
∫ 1

0.5

(r3 − θlr2)− (r3 − r2 − 2θlr2)α
(1− θl) + 2θlα

dα

= CR1 + CR2, (146)

CR1 =
(1 + θr)r3

2θr
ln(1 + θr) +

r3 − r2 + 2θrr3
4θ2r

[
θr − (1 + θr) ln(1 + θr)

]
,

CR2 =
r3 − θlr2

2θl
ln(1 + θl)− r3 − r2 − 2θlr2

4θ2l

[
θl − (1− θl) ln(1 + θl)

]
.

We call this interval as credibilistic interval approximation of ξ̃.
For example consider the type-2 triangular fuzzy variable ξ̃ = (2, 3, 4; 0.5, 0.8)

whose FOU is depicted in Fig. 6 and its optimistic CV, pessimistic CV and CV
reductions are shown in the Fig. 8 (Sect. 2.3). We find nearest interval approxi-
mation of ξ̃. From Eqs. (141), (142), (143), (144), (145) and (146), the optimistic,
pessimistic and credibilistic interval approximations of ξ̃ are obtained as

[2.4086, 3.5913], [2.5567, 3.4432] and [2.4925, 3.5074]

respectively. These results are shown in the Fig. 16.

4.3 Model 4.1: Fixed Charge Transportation Problem with Type-2
Fuzzy Cost Parameters

Here a fixed charge transportation problem (FCTP) with unit transportation
costs and fixed(/additional) costs as type-2 fuzzy variables is formulated.

Notations:

(i) c̃ij : The unit transportation cost from i-th source to j-th destination rep-
resented by type-2 fuzzy variable.

(ii) d̃ij : Fixed(/additional) cost associated with route (i, j) represented by type-
2 fuzzy variable.

(iii) xij : The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination.

(iv) Z: The objective function.
(v) ai: The amount of the product available at the i-th origin.
(vi) bj : The demand of the product at j-th destination.
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Fig. 16. Interval approximation of ξ̃ using (1) optimistic CV, (2) pessimistic CV, (3)
CV reductions.

Mathematical Model: A FCTP with m sources and n destinations and direct
costs and fixed cost parameters as T2 FVs is as follows:

Min Z =
m∑

i=1

n∑

j=1

(c̃ij xij + d̃ijyij), (147)

subject to
n∑

j=1

xij ≤ ai, i = 1, 2, ...,m, (148)

m∑

i=1

xij ≥ bj , j = 1, 2, ..., n, (149)

xij ≥ 0, yij =
{

1, ifxij > 0;
0, otherwise. ∀ i, j, (150)

m∑

i=1

ai ≥
n∑

j=1

bj (151)

It is obvious that the fixed charge d̃ij will be costed for a route (i, j) only if any
transportation activity is assigned to that route. So yij is defined such that if
xij > 0 then yij = 1, otherwise it will be 0.
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4.4 Defuzzifiaction

Since the unit transportation costs c̃ijs and the fixed(/additional) costs d̃ijs
in the above model are T2 FVs, we apply defuzzification method presented in
Sect. 4.2. We first apply CV-based reduction method to transform the T2 FVs
into corresponding T1 FVs and then centroid method to the reduced T1 FVs to
get corresponding defuzzified (crisp) values. Taking these defuzzified (crisp) cost
values, the problem can be then easily solved using any standard optimization
solver.

Numerical Experiment: In this section the presented model and methods are
illustrated numerically. To illustrate the Model 4.1 ((147)–(151)), we consider
an example with three sources and two destinations, i.e., i = 1, 2, 3 and j = 1, 2.

The unit transportation costs c̃ij are the following discrete type-2 fuzzy vari-
ables.

˜c11 =

⎧
⎨

⎩

2, withμ̃ ˜c11(2) = (0.2, 0.4, 0.6, 0.8);
4, withμ̃ ˜c11(4) = (0.5, 0.7, 0.9);
5, withμ̃ ˜c11(5) = (0.3, 0.5, 0.7).

˜c12 =

⎧
⎨

⎩

7, withμ̃ ˜c12(7) = (0.4, 0.6, 0.7);
8, withμ̃ ˜c12(8) = (0.5, 0.7, 0.8);
9, withμ̃ ˜c12(9) = (0.7, 0.9, 1).

˜c21 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4, withμ̃ ˜c21(4) =
(

0.3 0.5 0.7
0.4 1 0.7

)
;

5, withμ̃ ˜c21(5) =
(

0.6 0.8 0.9
0.5 0.9 1

)
;

7, withμ̃ ˜c21(7) =
(

0.5 0.7 0.8
0.4 1 0.7

)
.

˜c22 =

⎧
⎨

⎩

6, withμ̃ ˜c22(6) = (0.4, 0.5, 0.7, 0.8);
7, withμ̃ ˜c22(7) = (0.6, 0.8, 0.9);
9, withμ̃ ˜c22(9) = (0.4, 0.6, 0.7).

˜c31 =

⎧
⎨

⎩

3, withμ̃ ˜c31(3) = (0.3, 0.4, 0.6);
5, withμ̃ ˜c31(5) = (0.7, 0.9, 1);
6, withμ̃ ˜c31(6) = (0.4, 0.6, 0.7).

˜c32 =

⎧
⎨

⎩

8, withμ̃ ˜c32(8) = (0.3, 0.5, 0.6);
9, withμ̃ ˜c32(9) = (0.5, 0.7, 0.8, 0.9);
10, withμ̃ ˜c32(10) = (0.5, 0.6, 0.8).

The supplies ai and demands bj are as follows:
a1 = 20, a2 = 14, a3 = 18, b1 = 28, b2 = 21.
For convenience of computing we suppose that the fixed charge d̃ij = 0.5c̃ij .

Solution Using Proposed Defuzzification Method (cf. Sect. 4.2): To solve
the above problem we first find corresponding defuzzified (crisp) values of the
type-2 fuzzy cost parameters c̃ij . For this purpose we first apply CV reduction
method to reduce type-2 fuzzy variables c̃ij to type-1 fuzzy variables, then apply-
ing centroid method we get the corresponding crisp values. We denote these crisp
values as cc

ij which are obtained as
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cc
11 = 3.6956, cc

12 = 8.1071, cc
21 = 5.4615, cc

22 = 7.36, cc
31 = 4.8523 and

cc
32 = 9.0482.

Now using these crisp costs values, the optimum solution of the problem is
obtained by the standard optimization solver - LINGO and given in Table 9.

Solution Using Geometric Defuzzification (cf. Sect. 2.3): Using geometric
defuzzification method we obtain the defuzzified values of the type-2 fuzzy cost
parameters c̃ij as follows.
cc
11 = 3.6896, cc

12 = 8.219, cc
21 = 5.6355, cc

22 = 7.5651, cc
31 = 4.65 and cc

32 =
9.1932.

Using these defuzzified cost values, the optimum solution of the problem is
obtained and presented in Table 9.

Table 9. Optimum results for model-4.1

Method Defuzzified cost parameters Optimum Optimum

costs Min Z transported amounts

Proposed cc
11 = 3.6956, cc

12 = 8.1071, 283.3245 x11 = 13, x12 = 7

defuzzification cc
21 = 5.4615, cc

22 = 7.36, x22 = 14, x31 = 15

method cc
31 = 4.8523, cc

32 = 9.0482

Geometric cc
11 = 3.6896, cc

12 = 8.219, 293.2211 x11 = 13, x12 = 7

defuzzification cc
21 = 5.6355, cc

22 = 7.5651, x22 = 14, x31 = 15

method cc
31 = 4.65, cc

32 = 9.1932

So from the above two results, we see that the optimum allocations (i.e.,
values of xijs) as obtained by the two approaches are the same. However the
optimum objective value (minimum transportation cost) as obtained using the
geometric defuzzification method is something more than that of using proposed
defuzzification method.

4.5 Model 4.2: Fixed Charge Transportation Problem with Type-2
Fuzzy Costs, Supplies and Demands

Notations:

(i) c̃ij : The unit transportation costs from i-th source to j-th destination rep-
resented by type-2 fuzzy variable.

(ii) d̃ij : Fixed(/additional) cost associated with route (i, j) represented by type-
2 fuzzy variable.

(iii) xij : The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination.

(iv) Z: The objective function.
(v) ãi: The amount of the product available at the i-th origin represented by

type-2 fuzzy variable.
(vi) b̃j : The demand of the product at j-th destination represented by type-2

fuzzy variable.
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Mathematical Model: A FCTP with m sources, n destinations and unit trans-
portation costs, fixed costs, supplies and demands as T2 FVs is formulated as
follows:

Min Z =
m∑

i=1

n∑

j=1

(c̃ij xij + d̃ijyij), (152)

subject to

n∑

j=1

xij ≤ ãi, i = 1, 2, ...,m, (153)

m∑

i=1

xij ≥ b̃j , j = 1, 2, ..., n, (154)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (155)

Solution Methodology: Chance-Constrained Programming Using
Generalized Credibility: Suppose that c̃′

ij , d̃′
ij , ã′

i and b̃′
j are the reduced

T1 FVs (may not be normalized) of the T2 FVs c̃ij , d̃ij , ãi and b̃j respectively
according to CV-based reduction method. Now to solve the above problem we
formulate a chance-constrained programming model with these reduced fuzzy
parameters. Chance-constrained programming with fuzzy (type-1) parameters
was introduced by Liu and Iwamura [92] using possibility measure. Latter it is
developed (Liu [90], Yang and Liu [153], Kundu et al. [74]) by using credibility
measure. But since the reduced fuzzy parameters c̃′

ij , d̃′
ij , ã′

i and b̃′
j may not be

normalized, so usual credibility measure can not be used and hence using gener-
alized credibility (Note 2.1, Sect. 2.3), as the problem is minimization problem,
the following chance-constrained programming model is formulated:

Minx (Minf̄ f̄) (156)

subject to C̃r{
m∑

i=1

n∑

j=1

(c̃′
ij xij + d̃′

ijyij) ≤ f̄} ≥ α (157)

C̃r{
n∑

j=1

xij ≤ ã′
i} ≥ αi, i = 1, 2, ...,m (158)

C̃r{
m∑

i=1

xij ≥ b̃′
j} ≥ βj , j = 1, 2, ..., n (159)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (160)

where Min f̄ indicates the minimum possible value that the objective function
less or equal to it with generalized credibility at least α (0 < α ≤ 1). αi, βj (0 <
αi, βj ≤ 1) are the predetermined generalized credibility levels of satisfaction of
the source and destination constraints respectively for all i, j.
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Crisp Equivalences: Suppose that the c̃ij , d̃ij , ãi and b̃j are all
mutually independent type-2 triangular fuzzy variables defined by c̃ij =
(c1ij , c

2
ij , c

3
ij ; θl,ij , θr,ij), d̃ij = (d1ij , d

2
ij , d

3
ij ; θ

′
l,ij , θ

′
r,ij), ãi = (a1

i , a
2
i , a

3
i ; θl,i, θr,i)

and b̃j = (b1j , b
2
j , b

3
j ; θl,j , θr,j). Also let c̃′

ij , d̃′
ij , ã′

i and b̃′
j are the corresponding

reductions by the CV reduction method.
Then from Theorem 4.1 and its corollary, the chance-constrained model for-

mulation (156)–(160) of Model-4.2 (i.e., (152)–(155)) can be turned into the
following crisp equivalent (for proof see the Appendix) parametric programming
problems:
Case-I: 0 < α ≤ 0.25: Then the equivalent parametric programming problem for
the model representation (156)–(160) is

Min
m∑

i=1

n∑

j=1

[ (1− 2α + (1− 4α)θr,ij)c1ijxij + 2αc2ijxij

1 + (1− 4α)θr,ij
+

(1− 2α + (1− 4α)θ′
r,ij)d

1
ijyij + 2αd2ijyij

1 + (1− 4α)θ′
r,ij

]
(161)

subject to

n∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (162)

m∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (163)

xij ≥ 0, yij =
{

1, ifxij > 0;
0, otherwise. ∀ i, j, (164)

where Fai
and Fbj are given by (177) and (178) respectively.

Case-II: 0.25 < α ≤ 0.5: Then the equivalent parametric programming problem
for the model (156)–(160) is

Min

m∑

i=1

n∑

j=1

[ (1− 2α)c1ijxij + (2α + (4α− 1)θl,ij)c2ijxij

1 + (4α− 1)θl,ij
+

(1− 2α)d1ijyij + (2α + (4α− 1)θ′
l,ij)d

2
ijyij

1 + (4α− 1)θ′
l,ij

]
(165)

subject to

n∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (166)

m∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (167)

xij ≥ 0, yij =
{

1, ifxij > 0;
0, otherwise. ∀ i, j (168)
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Case-III: 0.5 < α ≤ 0.75: Then the equivalent parametric programming problem
for the model (156)–(160) is

Min
m∑

i=1

n∑

j=1

[ (2α− 1)c3ijxij + (2(1− α) + (3− 4α)θl,ij)c2ijxij

1 + (3− 4α)θl,ij
+

(2α− 1)d3ijyij + (2(1− α) + (3− 4α)θ′
l,ij)d

2
ijyij

1 + (3− 4α)θ′
l,ij

]
(169)

subject to

n∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (170)

m∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (171)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (172)

Case-IV: 0.75 < α ≤ 1: Then the equivalent parametric programming problem
for the model (156)–(160) is

Min
m∑

i=1

n∑

j=1

[ (2α− 1 + (4α− 3)θr,ij)c3ijxij + 2(1− α)c2ijxij

1 + (4α− 3)θr,ij
+

(2α− 1 + (4α− 3)θ′
r,ij)d

3
ijyij + 2(1− α)d2ijyij

1 + (4α− 3)θ′
r,ij

]
(173)

subject to

n∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (174)

m∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (175)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j, (176)

where,

Fai
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1−2αi+(1−4αi)θl,i)a
3
i+2αia

2
i

1+(1−4αi)θl,i
, if 0 < αi ≤ 0.25;

(1−2αi)a
3
i+(2αi+(4αi−1)θr,i)a

2
i

1+(4αi−1)θr,i
, if 0.25 < αi ≤ 0.5;

(2αi−1)a1
i+(2(1−αi)+(3−4αi)θr,i)a

2
i

1+(3−4αi)θr,i
, if 0.5 < αi ≤ 0.75;

(2αi−1+(4αi−3)θl,i)a
1
i+2(1−αi)a

2
i

1+(4αi−3)θl,i
, if 0.75 < αi ≤ 1.

(177)
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Fbj =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1−2βj+(1−4βj)θr,j)b
1
j+2βjb2j

1+(1−4βj)βr,j
, if 0 < βj ≤ 0.25;

(1−2βj)b
1
j+(2βj+(4βj−1)θl,j)b

2
j

1+(4βj−1)θl,j
, if 0.25 < βj ≤ 0.5;

(2βj−1)b3j+(2(1−βj)+(3−4βj)θl,j)b
2
j

1+(3−4βj)θl,j
, if 0.5 < βj ≤ 0.75;

(2βj−1+(4βj−3)θr,j)b
3
j+2(1−βj)b

2
j

1+(4βj−3)θr,j
, if 0.75 < βj ≤ 1.

(178)

Numerical Experiment: To illustrate the Model 4.2 ((152)–(155)) numeri-
cally, consider a problem having three sources and two destinations with the
following type-2 fuzzy data.
ã1 = (16, 18, 20; 0.5, 0.8), ã2 = (15, 16, 18; 0.4, 0.6), ã3 = (14, 15, 16; 0.6, 0.9)
b̃1 = (20, 22, 24; 0.5, 0.5), b̃2 = (18, 19, 20; 0.6, 0.8).
The direct and fixed costs for this problem are given in Table 10.

Table 10. Direct costs and fixed costs

i j j

1 2 1 2

1 (2,3,4;0.4,0.7) (3.5,4,4.2;0.5,0.8) (3.5,4,4.5;0.5,0.5) (3,4,5;0.6,0.4)

2 (4,5,6;0.7,0.8) (4,6,7;0.6,0.4) (4.5,5,5.4;0.4,0.7) (4.6,5.2,5.6;0.6,0.8)

3 (4.4,4.6,5;0.5,0.5) (5,5.5,6;0.5,0.7) (5,6,6.4;0.6,0.6) (4,4.2,4.8;0.4,0.6)

cij dij

The predetermined general credibility levels for the chance-constrained pro-
gramming model (156)–(160) as formulated to solve the Model-4.2 are taken as
α = 0.9, αi = 0.9, βj = 0.9, i = 1, 2, 3; j = 1, 2.
Now using (173)–(176), the equivalent parametric programming problem
becomes

Min

3∑

i=1

2∑

j=1

[ (0.8 + 0.6θr,ij)c3ijxij + 0.2c2ijxij

1 + 0.6θr,ij
+

(0.8 + 0.6θ′
r,ij)d

3
ijyij + 0.2d2ijyij

1 + 0.6θ′
r,ij

]
(179)

subject to
2∑

j=1

xij ≤ Fai
, i = 1, 2, 3 (180)

3∑

i=1

xij ≥ Fbj , j = 1, 2 (181)

xij ≥ 0, yij =
{

1, ifxij > 0;
0, otherwise. ∀ i, j (182)
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where Fa1 = 16.30, Fa2 = 15.16, Fa3 = 14.14, Fb1 = 23.69 and Fb2 = 19.86 are
obtained from Eqs. (177) and (178).

Solving this, the optimum results are x12 = 16.3, x21 = 13.11, x31 = 10.58,
x32 = 3.56 and the objective function value (minimum transportation cost)=
239.5014.

4.6 Sensitivity Analysis for the Numerical Experiment Of Model 4.2

A sensitivity analysis for the numerical experiment of Model-4.2 is presented to
show the efficiency and logically correctness of the crisp equivalent form and solu-
tion approaches of the presented problem. For some different generalized cred-
ibility levels for the objective function, source constraints and destination con-
straints of the model representation (156)–(160) formulated to solve the Model
4.2, the changes in the objective function value (minimum transportation cost)
are presented in the Table 11.

It is observed from the Table 11 that for fixed credibility levels of the objective
function and the source constraints, i.e., for fixed α and αi(i = 1, 2, 3), minimum
transportation cost increases with the increased credibility levels (βj , j = 1, 2)
of the destination constraints. The reason of this fact is that as the credibility
levels βj increase, the defuzzified amount of the demands (Fbj , j = 1, 2) are
also increased (e.g., for βj = 0.7, Fb1 = 22.27, Fb2 = 19.35 and for βj = 0.8,
Fb1 = 23.27, Fb2 = 19.65) and as a result total transported amount also increases.

Now for fixed α and βj(j = 1, 2), minimum transportation cost increases
with the increased credibility levels (αi, i = 1, 2, 3) of the source constraints. The
interesting fact is that in this case, though total transported amounts are the
same but still transportation cost increases as the credibility levels αi(i = 1, 2, 3)
increase. The reason is that, as the credibility levels αi(i = 1, 2, 3) increase,
the defuzzified amount of the availabilities (Fai

, i = 1, 2, 3) decrease (e.g., for
αi = 0.7, Fa1 = 17.31, Fa2 = 15.64, Fa3 = 14.66 and for αi = 0.8, Fa1 = 16.72,
Fa2 = 15.37, Fa3 = 14.35) and as a result for the fixed demand, the allocation
options of the product (to the less cost path) decrease.

Also we observe from the Table 11 that for fixed αi(i = 1, 2, 3) and βj(j =
1, 2) minimum transportation cost increases as the credibility level α increases.
This is because in this case defuzzified cost coefficients of the objective function
increase with increased credibility level α.

4.7 Model 4.3: Multi-item Solid Transportation Problem Having
Restriction on Conveyances with Type-2 Fuzzy Parameters

Here, we formulate a multi-item solid transportation problem (MISTP) with
restriction on some items and conveyances in the sense that some specific items
prohibited to be transported through some particular conveyances. In this prob-
lem the transportation parameters, e.g., unit transportation costs, supplies,
demands, conveyance capacities are type-2 triangular fuzzy variables.
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Table 11. Changes in transportation cost for different credibility levels

α αi βj Transported amount Transportation cost

0.7 42.07 230.3159

0.9 0.9 0.8 42.92 235.5984

0.9 43.55 239.5014

0.95 43.78 240.9197

0.7 236.3098

0.9 0.8 0.9 43.55 238.1800

0.9 239.5014

0.95 240.0048

0.7 227.0400

0.8 0.9 0.9 43.55 234.3038

0.9 239.5014

0.95 241.3965

Notations:

(i) ˜cp
ijk: The unit transportation costs from i-th source to j-th destination by

k-th conveyance for p-th item, represented by type-2 fuzzy variable.
(ii) xp

ijk: The decision variable which represents amount of p-th item to be
transported from i-th origin to j-th destination by k-th conveyance.

(iii) Z: The objective function.
(iv) ãp

i : The amount of the p-th item available at the i-th origin, represented
by type-2 fuzzy variable.

(v) b̃p
j : The demand of the p-th item at j-th destination, represented by type-2

fuzzy variable.
(vi) ẽk: Total transportation capacity of conveyance k, represented by type-2

fuzzy variable.

Mathematical Model: Let l items are to be transported from m origins (or
sources) Oi (i = 1, 2, ...,m) to n destinations Dj (j = 1, 2, ..., n) by means of K
different modes of transportation (conveyance). Also there are some restrictions
on some specific items and conveyances such a way that some items can not
be transported through some conveyances. Let us denote Ik as the set of items
which can be transported through conveyance k (k = 1, 2, ...,K). We use notation
p (= 1, 2, ..., l) to denote the items. Then the mathematical formulation of the
problem is as follows:

Min Z =
∑

p∈I1

m∑

i=1

n∑

j=1

˜cp
ij1 xp

ij1 +
∑

p∈I2

m∑

i=1

n∑

j=1

˜cp
ij2 xp

ij2 +...+
∑

p∈IK

m∑

i=1

n∑

j=1

˜cp
ijK xp

ijK ,

where |I1
⋃

I2
⋃

...
⋃

IK | = l
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=
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk.( ˜cp

ijk xp
ijk), (183)

subject to

n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ ãp
i , i = 1, 2, ...,m; p = 1, 2, ...l, (184)

m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ b̃p
j , j = 1, 2, ..., n; p = 1, 2, ..., l, (185)

l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ ẽk, k = 1, 2, ...,K, (186)

xp
ijk ≥ 0, ∀ i, j, k, p (187)

where dp
ijk is defined as dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p.

Solution Methodology 1: Chance-Constrained Programming Using
Generalized Credibility: Suppose that ˜

cp′
ijk, ãp′

i , b̃p′
j and ẽ′

k are the reduced

fuzzy (type-1) variables from type-2 fuzzy variables ˜cp
ijk, ãp

i , b̃p
j and ẽk respec-

tively based on CV-based reduction method. Now to solve the above problem
we formulate a chance-constrained programming model with these reduced fuzzy
parameters. Since the reduced fuzzy parameters ˜

cp′
ijk, ãp′

i , b̃p′
j and ẽ′

k may not be
normalized, so using generalized credibility for the objective function as well
as for the constraints the following chance constrained programming model is
formulated for the above problem (183)–(187).

Minx (Minf̄ f̄) (188)

C̃r{
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk.( ˜

cp′
ijk xp

ijk) ≤ f̄} ≥ α, (189)

s.t. C̃r{
n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ ãp′
i } ≥ αp

i , i = 1, 2, ...,m; p = 1, 2, ...l, (190)

C̃r{
m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ b̃p′
j } ≥ βp

j , j = 1, 2, ..., n; p = 1, 2, ..., l, (191)

C̃r{
l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ ẽ′
k} ≥ γk, k = 1, 2, ...,K, (192)



Some Transportation Problems Under Uncertain Environments 309

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p (193)

where Min f̄ indicates the minimum value that the objective function achieves
with generalized credibility at least α (0 < α ≤ 1). αp

i , βp
j and γk are predeter-

mined generalized credibility levels of satisfaction of the respective constraints
for all i, j, k, p.

Crisp Equivalence: We consider ˜cp
ijk, ãp

i , b̃p
j and ẽk are all mutually indepen-

dent type-2 triangular fuzzy variables as ˜cp
ijk = (cp1

ijk, cp2
ijk, cp3

ijk; θp
l,ijk, θp

r,ijk), ãp
i =

(ap1
i , ap2

i , ap3
i ; θp

l,i, θ
p
r,i), b̃p

j = (bp1
j , bp2

j , bp3
j ; θp

l,j , θ
p
r,j) and ẽk = (e1k, e2k, e3k; θl,k, θr,k).

Then from Theorem-4.1 and its corollary, the chance-constrained model for-
mulation (188)–(193) is turned into the following crisp equivalent parametric
programming problems:
Case-I: 0 < α ≤ 0.25: The equivalent parametric programming problem for
model (188)–(193) is

Min

l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk

[ (1− 2α + (1− 4α)θp
r,ijk)cp1

ijkxp
ijk + 2αcp2

ijkxp
ijk

1 + (1− 4α)θp
r,ijk

]
,

(194)

sub. to
n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (195)

m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (196)

l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (197)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p, (198)

where Fap
i
, Fbpj

and Fek
are given by (214), (215) and (216) respectively.

Case-II: 0.25 < α ≤ 0.5: Then the equivalent parametric programming problem
for model (188)–(193) is

Min

l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk

[ (1− 2α)cp1
ijkxp

ijk + (2α + (4α− 1)θp
l,ijk)cp2

ijkxp
ijk

1 + (4α− 1)θp
l,ijk

]

(199)

sub. to
n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (200)
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m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (201)

l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (202)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p. (203)

Case-III: 0.5 < α ≤ 0.75: Then the equivalent parametric programming problem
for model (188)–(193) is

Min

l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk

[ (2α− 1)cp3
ijkxp

ijk + (2(1− α) + (3− 4α)θp
l,ijk)cp2

ijkxp
ijk

1 + (3− 4α)θp
l,ijk

]

(204)

sub. to

n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (205)

m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (206)

l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (207)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p. (208)

Case-IV: 0.75 < α ≤ 1: Then the equivalent parametric programming problem
for model (188)–(193) is

Min

l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk

[ (2α− 1 + (4α− 3)θp
r,ijk)cp3

ijkxp
ijk + 2(1− α)cp2

ijkxp
ijk

1 + (4α− 3)θp
r,ijk

]

(209)

sub. to

n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (210)

m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (211)

l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (212)
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xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p (213)

where,

Fap
i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1−2αp
i +(1−4αp

i )θ
p
l,i)a

p3
i +2αp

i ap2
i

1+(1−4αp
i )θ

p
l,i

, if 0 < αp
i ≤ 0.25;

(1−2αp
i )a

p3
i +(2αp

i +(4αp
i −1)θp

r,i)a
p2
i

1+(4αp
i −1)θp

r,i
, if 0.25 < αp

i ≤ 0.5;
(2αp

i −1)ap1
i +(2(1−αp

i )+(3−4αp
i )θ

p
r,i)a

p2
i

1+(3−4αp
i )θ

p
r,i

, if 0.5 < αp
i ≤ 0.75;

(2αp
i −1+(4αp

i −3)θp
l,i)a

p1
i +2(1−αp

i )a
p2
i

1+(4αp
i −3)θp

l,i
, if 0.75 < αp

i ≤ 1.

(214)

Fbpj
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1−2βp
j +(1−4βp

j )θ
p
r,j)b

p1
j +2βp

j bp2j
1+(1−4βp

j )β
p
r,j

, if 0 < βp
j ≤ 0.25;

(1−2βp
j )b

p1
j +(2βp

j +(4βp
j −1)θp

l,j)b
p2
j

1+(4βp
j −1)θp

l,j
, if 0.25 < βp

j ≤ 0.5;
(2βjp−1)bp3j +(2(1−βp

j )+(3−4βp
j )θ

p
l,j)b

p2
j

1+(3−4βp
j )θ

p
l,j

, if 0.5 < βp
j ≤ 0.75;

(2βp
j −1+(4βp

j −3)θp
r,j)b

p3
j +2(1−βp

j )b
p2
j

1+(4βp
j −3)θp

r,j
, if 0.75 < βp

j ≤ 1.

(215)

Fek
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1−2γk+(1−4γk)θl,k)e
3
k+2γke2

k

1+(1−4γk)θl,k
, if 0 < γk ≤ 0.25;

(1−2γk)e
3
k+(2γk+(4γk−1)θr,k)e

2
k

1+(4γk−1)θr,k
, if 0.25 < γk ≤ 0.5;

(2γk−1)e1
k+(2(1−γk)+(3−4γk)θr,k)e

2
k

1+(3−4γk)θr,k
, if 0.5 < γk ≤ 0.75;

(2γk−1+(4γk−3)θl,k)e
1
k+2(1−γk)e

2
k

1+(4γk−3)θl,k
, if 0.75 < γk ≤ 1.

(216)

Solution Methodology 2: Using Nearest Interval Approximation: Con-
sider costs ˜cp

ijk, supplies ãp
i , demands b̃p

j and conveyance capacities ẽk are all

mutually independent type-2 triangular fuzzy variables defined by ˜cp
ijk =

(cp1
ijk, cp2

ijk, cp3
ijk; θp

l,ijk, θp
r,ijk), ãp

i = (ap1
i , ap2

i , ap3
i ; θp

l,i, θ
p
r,i), b̃p

j =
(bp1

j , bp2
j , bp3

j ; θp
l,j , θ

p
r,j) and ẽk = (e1k, e2k, e3k; θl,k, θr,k). Then we find nearest inter-

val approximations (credibilistic interval approximation, cf. Sect. 4.2) of ˜cp
ijk, ãp

i ,

b̃p
j and ẽk, suppose these are [cp

ijkL, cp
ijkR], [ap

iL, ap
iR], [bp

jL, bp
jR] and [ekL, ekR]

respectively. Then with these nearest interval approximations, the Model (183)–
(183) becomes

Min Z =
l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk.([cp

ijkL, cp
ijkR] xp

ijk) (217)

subject to
n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ [ap
iL, ap

iR], i = 1, 2, ...,m; p = 1, 2, ...l, (218)

m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ [bp
jL, bp

jR], j = 1, 2, ..., n; p = 1, 2, ..., l,(219)
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l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ [ekL, ekR], k = 1, 2, ...,K, (220)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p. (221)

Deterministic Form: We first obtain deterministic forms of the uncertain con-
straints using the idea of possibility degree of interval number (Zhang et al.
[161]) representing certain degree by which one interval is larger or smaller than
another. Now we denote the left hand side expressions of the source, destina-
tion and conveyance capacity constraints, i.e. (218), (219) and (220) respectively
of the model (217)–(221) by Sp

i , Dp
j and Ek respectively. Here the right hand

sides of these constraints are interval numbers and left sides are crisp, then the
possibility degree of satisfaction of these constraints are defined as

PSp
i ≤[ap

iL,ap
iR] =

⎧
⎪⎨

⎪⎩

1, Sp
i ≤ ap

iL;
ap
iR−Sp

i

ap
iR−ap

iL
, ap

iL < Sp
i ≤ ap

iR;
0, Sp

i > ap
iR.

PDp
j ≥[bpjL,bpjR] =

⎧
⎪⎨

⎪⎩

0, Dp
j < bp

jL;
Dp

j −bpjL
bpjR−bpjL

, bp
jL ≤ Dp

j < bp
jR;

1, Dp
j > bp

jR.

PEk≤[ekL,ekR] =

⎧
⎨

⎩

1, Ek ≤ ekL;
ekR−Ek

ekR−ekL
, ekL < Ek ≤ ekR;

0, Ek > ekR.

Now if the constraints are allowed to be satisfied with some predetermined
possibility degree level αp

i , βp
j and γk (0 ≤ αp

i , β
p
j , γk ≤ 1) respectively, i.e.

PSp
i ≤[ap

iL,ap
iR] ≥ αp

i , PDp
j ≥[bpjL,bpjR] ≥ βp

j and PEk≤[ekL,ekR] ≥ γk ∀ i, j, k, p, then the
equivalent deterministic inequalities of the respective constraints are obtained
as follows:

Sp
i ≤ ap

iR − αp
i (a

p
iR − ap

iL), i = 1, 2, ...,m; p = 1, 2, ..., l, (222)
Dp

j ≥ bp
jL + βp

j (bp
jR − bp

jL), j = 1, 2, ..., n; p = 1, 2, ..., l, (223)
Ek ≤ ekR − γk(ekR − ekL), k = 1, 2, ...,K. (224)

Now to deal with objective function we find minimum possible objective function
value (say Z) and maximum possible objective function value (say Z) for the
interval costs [cp

ijkL, cp
ijkR], by solving the following two problems:

Z = MincpijkL≤cpijk≤cpijkR
[Min

l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk(cp

ijk xp
ijk)] (225)

Z = MaxcpijkL≤cpijk≤cpijkR
[Min

l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk(cp

ijk xp
ijk)] (226)
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subject to the above constraints (4.99)–(4.101) for both cases.
So we get the range of the optimal value of the objective function of the

problem (217)–(221) as [Z,Z]. Assume that the solution of the problem (225) is
x′ = {xp′

ijk} with corresponding costs c′ = {cp′
ijk} and the solution of the problem

(226) is x′′ = {xp′′
ijk} with corresponding costs c′′ = {cp′′

ijk}, ∀ i, j, k, p.
Now we find compromise optimal solution by treating above problems (225)

and (226) together as bi-objective problem and applying fuzzy linear program-
ming (Zimmermann [159]) as follows:

Let us denote
Z1 =

∑l
p=1

∑m
i=1

∑n
j=1

∑K
k=1 dp

ijk(cp′
ijk xp

ijk) and

Z2 =
∑l

p=1

∑m
i=1

∑n
j=1

∑K
k=1 dp

ijk(cp′′
ijk xp

ijk), so that Z1(x
p′
ijk) = Z and

Z2(x
p′′
ijk) = Z.

Now we find lower and upper bound for both the objective as L1 = Z1(x
p′
ijk),

U1 = Z1(x
p′′
ijk) and L2 = Z2(x

p′′
ijk), U2 = Z2(x

p′
ijk) respectively.

Then construct the following two membership function for the objective func-
tions respectively as

μ1(Z1) =

⎧
⎨

⎩

1, ifZ1 ≤ L1;
U1−Z1
U1−L1

, ifL1 < Z1 < U1;
0, ifZ1 ≥ U1.

and μ2(Z2) =

⎧
⎨

⎩

1, if Z2 ≤ L2;
U2−Z2
U2−L2

, if L2 < Z2 < U2;
0, if Z2 ≥ U2.

Finally solve the following problem

Max λ

subject to μ1(Z1) ≥ λ, μ2(Z2) ≥ λ (227)

and the constraints (222)−(224)

0 ≤ λ ≤ 1.

Solving this we get the optimal solution, say xp∗
ijk, ∀ i, j, k, p which minimizes

both the objectives Z1, Z2 with certain degree λ = λ∗ (say) and values of the
objectives Z1, Z2 at xp∗

ijk give the range of the objective value, say [Z∗, Z
∗
].

Numerical Experiment: Consider the Model 4.3 ((183)–(187)) with 3 (p =
1, 2, 3) items, 4 (k = 1, 2, 3, 4) conveyances, sources i = 1, 2 and destinations
j = 1, 2, 3. Also I1 = {1, 2}, I2 = {1, 2, 3}, I3 = {3}, I4 = {1, 2}.

The transportation costs are given in the Tables 12, 13 and 14.
The supplies, demands and conveyance capacities are as follows:

a1
1 = (21, 24, 25; 0.5, 0.5), a1

2 = (26, 28, 30; 0.6, 0.8), b11 = (10, 12, 14; 0.7, 0.9), b12 =
(12, 13, 15; 0.4, 0.7), b13 = (9, 12, 15; 0.4, 0.6),
a2
1 = (26, 28, 31; 0.5, 1), a2

2 = (20, 24, 26; 0.6, 0.8), b21 = (14, 16, 17; 0.4, 0.6), b22 =
(11, 13, 15; 0.8, 0.5), b23 = (10, 11, 12; 0.5, 0.5),
a3
1 = (24, 26, 28; 0.6, 0.9), a3

2 = (32, 35, 37; 0.8, 0.5), b31 = (16, 18, 20; 0.4, 0.6), b32 =
(12, 14, 16; 0.6, 1), b33 = (12, 15, 17; 0.5, 0.5),
e1 = (34, 36, 38; 0.5, 1), e2 = (46, 49, 51; 0.6, 0.8), e3 = (28, 30, 32; 0.7, 0.9), e4 =
(40, 43, 44; 0.5, 0.5).
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Table 12. Costs ˜c1ijk

i\j 1 2 3 k

1 (3,5,6;0.6,0.8) (4,6,7;0.5,0.5) (3,5,8;0.4,0.7) 1

2 (4,5,7;0.7,0.9) (5,7,8;0.7,0.9) (5,7,8;0.6,1)

1 (4,5,7;0.6,0.9) (3,5,6;0.5,0.5) (4,6,8;0.8,1) 2

2 (6,8,9;0.4,0.6) (4,6,8;0.5,0.7) (5,7,8;0.7,0.8)

1 (5,6,8;0.6,0.8) (5,6,7;0.5,0.7) (6,8,9;0.8,0.7) 4

2 (5,6,8;0.5,0.9) (7,8,9;0.8,0.6) (6,8,10;0.4,0.8)

Table 13. Costs ˜c2ijk

i\j 1 2 3 k

1 (5,7,9;0.5,0.6) (4,6,8;0.4,0.8) (6,8,10;0.5,0.5) 1

2 (6,7,8;0.8,0.6) (7,9,10;0.5,0.8) (4,5,7;0.6,0.9)

1 (6,8,10;0.8,0.9) (3,4,6;0.6,0.8) (7,8,9;0.5,0.8) 2

2 (7,9,10;0.5,1) (6,7,9;0.4,0.8) (5,7,8;0.8,0.6)

1 (4,6,8;0.5,0.5) (7,9,10;0.7,0.9) (5,7,8;0.6,0.7) 4

2 (6,8,9;1,0.6) (4,5,7;0.8,0.6) (6,7,9;0.7,0.9)

Table 14. Costs ˜c3ijk

i\j 1 2 3 k

1 (10,11,13;0.7,0.9) (8,10,11;0.5,0.5) (6,8,9;0.4,0.6) 2

2 (9,11,14;0.8,0.6) (12,13,15;0.5,1) (7,9,11;0.6,0.9)

1 (12,14,15;0.4,0.7) (7,9,11;0.5,0.1) (8,10,12;0.8,0.9) 4

2 (6,8,9;0.6,0.8) (13,14,16;0.8,0.5) (7,10,12;0.9,0.6)

Solution Using Chance-Constrained Programming (c.f. Sect. 4.7): The
predetermined general credibility levels for objective function and constraints are
taken as α = 0.9, αp

i = 0.9, βp
j = 0.9, γk = 0.9, p = 1, 2, 3, i = 1, 2, j = 1, 2, 3,

k = 1, 2, 3, 4. Then using (209)–(213) the equivalent deterministic form of the
problem becomes

Min

l∑

p=1

m∑

i=1

n∑

j=1

K∑

k=1

dp
ijk

[ (0.8 + 0.6θp
r,ijk)cp3

ijkxp
ijk + 0.2cp2

ijkxp
ijk

1 + 0.6θp
r,ijk

]

sub.to
n∑

j=1

K∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (228)
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m∑

i=1

K∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l,

l∑

p=1

m∑

i=1

n∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K,

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p,

where, Fa1
1

= 21.46, Fa1
2

= 26.29, Fa2
1

= 26.30, Fa2
2

= 20.58, Fa3
1

= 24.29,
Fa3

2
= 32.40, Fb11

= 13.74, Fb12
= 14.71, Fb13

= 14.55, Fb21
= 16.85, Fb22

= 14.69,
Fb23

= 11.84, Fb31
= 19.70, Fb32

= 15.75, Fb33
= 16.69, Fe1 = 34.30, Fe2 = 46.44,

Fe3 = 28.28, Fe4 = 40.46.
Solving this problem using LINGO solver, based upon Generalized Reduced

Gradient (GRG) algorithm, we get the optimum solution as follows:
x1
111 = 6.75, x1

211 = 6.99, x1
231 = 5.07, x1

232 = 9.48,x1
124 = 14.71, x2

211 = 3.65,
x2
231 =11.84, x2

122 = 13.1,x2
114 = 13.2, x2

224 = 1.59, x3
122 = 7.17, x3

132 = 8.54,
x3
232 = 8.15, x3

123 = 8.58, x3
213 = 19.7 and minimum transportation cost (objec-

tive value)= 1093.482.

Solution Using Nearest Interval Approximation (c.f. Sect. 4.7): The
nearest interval approximations (credibilistic) of the given triangular type-2
fuzzy parameters are calculated using the formula (145) and (146).

Table 15. Costs ˜c1ijk

i\j 1 2 3 k

1 [3.9904,5.5047] [5.0,6.50] [3.9841,6.5238] 1

2 [4.4955,6.0089] [6.0109,7.4945] [4.9820,7.0179]

1 [4.4930,6.0138] [4.0,5.50] [4.9915,7.0084] 2

2 [6.9890,8.5054] [4.9897,7.0102] [5.9953,7.5023]

1 [5.4952,7.0095] [5.4948,6.5051] [7.0095,8.4952] 4

2 [5.4904,7.0191] [7.5047,8.4952] [6.9795,9.0204]

The corresponding unit transportation costs as obtained are presented in
Tables 15, 16 and 17 and supplies, demands, capacities are as follows:
a1
1 = [22.50, 24.50], a1

2 = [26.9904, 29.0095], b11 = [10.9910, 13.0089],
b12 = [12.4920, 14.0158], b13 = [10.4835, 13.5164],
a2
1 = [26.9767, 29.5348], a2

2 = [21.9809, 25.0095], b21 = [14.9890, 16.5054], b22 =
[12.0148, 13.9851], b23 = [10.50, 11.50],
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Table 16. Costs ˜c2ijk

i\j 1 2 3 k

1 [5.9947,8.0052] [4.9795,7.0204] [7.0,9.0] 1

2 [6.5047,7.4952] [7.9851,9.5074] [4.4930,6.0138]

1 [6.9956,9.0043] [3.4952,5.0095] [7.4925,8.5074] 2

2 [7.9767,9.5116] [6.4897,8.0204] [6.0095,7.4952]

1 [5.0,7.0] [7.9910,9.5044] [5.9950,7.5024] 4

2 [7.0179,8.4910] [4.5047,5.9904] [6.4955,8.0089]

Table 17. Costs ˜c3ijk

i\j 1 2 3 k

1 [10.4955,12.0089] [9.0,10.50] [6.9890,8.5054] 2

2 [10.0095,12.4856] [12.4833,14.0232] [7.9861,10.0138]

1 [12.9841,14.5079] [7.9767,10.0232] [8.9956,11.0043] 4

2 [6.9904,8.5047] [13.5074,14.9851] [8.5208,10.9861]

a3
1 = [24.9861, 27.0138], a3

2 = [33.5222, 35.9851], b31 = [16.9890, 19.0109], b32 =
[12.9820, 15.0179], b33 = [13.50, 16.0],
e1 = [34.9767, 37.0232], e2 = [47.4856, 50.0095], e3 = [28.9910, 31.0089], e4 =
[41.50, 43.50].

Consider that the possibility degree of satisfaction of each of the source, des-
tination and conveyance capacity constraints with interval right hand sides is
0.9. Then the equivalent deterministic forms of all the constraints are obtained
using (222)–(224). Now subject to these deterministic constraints we find min-
imum and maximum possible value of the objective function by solving (225)
and (226) and corresponding optimal solutions are obtained as follows:
Z = 725.9498; x1

131 = 13.2131, x1
211 = 10.5682, x1

112 = 2.2388, x1
122 = 7.2480,

x1
222 = 6.6154, x2

231 = 11.4, x2
122 = 10.8787, x2

114 = 16.3537, x2
224 = 2.9093,

x3
122 = 4.4302, x3

132 = 10.3745, x3
232 = 5.3754, x3

123 = 10.3840, x3
213 = 18.8087

and Z = 950.1511; x1
111 = 8.8365, x1

211 = 3.9705, x1
231 = 10.6858, x1

122 = 13.8634,
x1
232 = 2.5272, x2

211 = 0.2883, x2
231 = 11.4, x2

122 = 11.1671, x2
114 = 16.0654,

x2
224 = 2.6209, x3

122 = 4.4302, x3
132 = 10.3745, x3

232 = 5.3754, x3
123 = 10.3840,

x3
111 = 18.8087.

We now apply fuzzy linear programming to obtain an unique optimum allo-
cation. We get L1 = 725.9498, U1 = 741.4106, L2 = 950.1511, U2 = 956.9979
and hence compromise optimal solution as
x1
111 = 0.2095, x1

131 = 8.6270, x1
211 = 12.5975, x1

231 = 2.3472, x1
122 = 13.8634,

x1
232 = 2.2388, x2

231 = 11.4, x2
122 = 10.8787, x2

114 = 16.3537, x2
224 = 2.9093,

x3
122 = 4.4302, x3

132 = 10.3745, x3
232 = 5.3754, x3

123 = 10.3840, x3
213 = 18.8087,

λ = 0.987, Z∗ = 726.1475, Z
∗

= 950.2386.
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4.8 Overall Conclusion

In this section, a defuzzification method of general type-2 fuzzy variable is out-
lined and compared numerically with geometric defuzzification method. A near-
est interval approximation for continuous T2 FV is also introduced. Interval
approximation method has been illustrated with type-2 triangular fuzzy vari-
able. For the first time, two FCTPs and a MISTP with type-2 fuzzy parameters
have been formulated and solved. Chance-constrained programming problems for
a FCTP and MISTP with type-2 triangular fuzzy variables are formulated and
solved. The MISTP with type-2 triangular fuzzy parameters is also solved using
interval approximations of type-2 triangular fuzzy variables. Now-a-days, the vol-
ume and complexity of the collected data in various fields is growing rapidly. In
order to describe and extract the useful information hidden in uncertain data and
to use this data properly in practical problems, many researchers have proposed
a number of improved theories including type-2 fuzzy set. The methodologies
used in this chapter are quite general and these can be applied to the decision
making problems in different areas with type-2 fuzzy parameters. The presented
models can be extended to different types of transportation problems including
price discounts, transportation time constraints, breakable/deteriorating items,
etc.

5 Transportation Mode Selection Problem with
Linguistic Terms

5.1 Introduction

Solid transportation problem (STP) is a problem of transporting goods from
some sources to some destinations through several types of conveyances (modes
of transportation) and the objective may be minimization of cost, time, maxi-
mization of profit, etc. But cost or time may not be the only criteria for select-
ing modes. There may be several other criteria for which all modes may not be
equally preferable in a transportation system. Generally the available modes of
transportation are rail, road, water, air, pipeline etc. Choice of modes depends
upon several parameters (criteria) such as transportation cost, time, distance,
product characteristics (e.g. weight, volume, value, life cycle etc.), flexibility,
safety factor, inventory cost, etc. The main difficulty to select best mode is the
conflicting nature of the modes under different criteria, i.e., under certain crite-
ria, a mode may be superior than another but may not be under another criteria.
Also all the criteria related to a transportation system may not have equal pri-
ority. For example generally faster modes are preferable than slower modes for
time saving, but for product having low value to weight ratio, slower modes are
preferable for transportation cost saving and in this case time has less priority
than transportation cost. The product having short life cycle need rapid trans-
portation modes, because here the main priority is time saving. So the tusk is to
select overall best transportation mode with respect to all the selection criteria in
a transportation system. Obviously multi-criteria (/attribute) decision making
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(MCDM/MADM), which is a procedure to determine best alternative among
some feasible alternatives, can be an efficient method to solve transportation
mode selection problem. In literature there are several articles available related
to transportation mode selection problem (Kiesmüller et al. [65], Kumru and
Kumru [71], Monahan and Berger [113], Tuzkaya and Önüt [134], Eskigun et al.
[41], Wang and Lee [138]).

Multi-criteria (/attribute) decision making (MCDM/MADM) (Anand et al.
[7], Baleentis and Zeng [10], Chen and Lee [23,24], Chen et al. [26], Dalalah et al.
[32], Ding and Liang [37], Fu [45], Wang and Lee [139], Wang and Parkan [32],
Wu and Chen [148]), is a method to select most convenient alternative among
some available alternatives with respect to some evaluation criteria provided by
decision maker(s) for a particular problem. This type of problems are often called
multi-criteria(/attribute) group decision making (MCGDM/MAGDM) problem
in presence of several decision makers. The evaluation ratings of the alternatives
with respect to the criteria and criteria weights as provided by the decision
makers are generally linguistic terms (e.g., very high, medium, fair, good, etc.).
Human judgements are not always precise and also a word does not have the
same meaning to different people and is therefore uncertain. Zadeh [157,158]
first used a fuzzy set (Zadey [156]) to model a word. Many researchers (Anand
et al. [7], Cheng and Lin [28], Dalalah et al. [32], Ding and Liang [37], Dursun
et al. [39], Hatami-Marbini and Tavana [55], Tuzkaya and Önüt [134], Wang
and Lee [139], Wang and Parkan [142]) developed MCDM problems where type-
1 fuzzy sets(/numbers) are used to describe linguistic uncertainties rather than
just single numeric value. Then the problem is called fuzzy multi-criteria decision
making (FMCDM) problem in which evaluation ratings and criteria weights are
fuzzy numbers.

Fuzzy analytical hierarchy process (FAHP) (Anand et al. [7], Chan, N. Kumar
[16], Mikhailov and Tsvetinov [111]), Fuzzy analytical network process (FANP)
(Ertay et al. [40], Mikhailov and Sing [110], Tuzkaya and Önüt [134]), fuzzy
preference relation based decision making (Lee [78], Wang [137]), fuzzy TOPSIS
method (Chen [20], Wang and Elhag [141], Wang et al. [140], Wang and Lee
[139]) are some available methods for solving FMCDM problems. The main
drawback of the FAHP and FANP methods is that these methods consist of
large number of fuzzy pair-wise comparison which makes the methods difficult for
computation. Lee’s (Lee [78]) method using extended fuzzy preference relation is
computationally efficient, but in case of two alternatives, whatever the ratings of
the two alternatives are, this method always gives total performance index of one
alternative as 1 and that of another 0. So it is difficult to compare the alternatives
with each other in the sense how much one is preferable than another and to use
the performance indices in any further requirements. In fuzzy TOPSIS method
of Wang and Elhag [141], for each member of fuzzy decision matrix, different
α-level sets are to be evaluated and for each different α-levels, two NLP models
are to be solved. So to find accurate result, large number of α-levels are to be
set and then corresponding time complexity becomes high. Fuzzy TOPSIS of
Wang et al. [140] is less complex, but the positive and negative ideal solutions
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as derived by Max and Min operations under fuzzy environment may not be
founded on feasible alternatives.

Ranking of fuzzy number is an important issue in group decision making, spe-
cially for decision making with linguistic terms, which are generally represented
by fuzzy numbers. There are several methods of fuzzy ranking (Abbasbandy
and Asady [1], Cheng [27], Chu and Tsao [29], Fortems and Roubens [44], Liu
[90], Lee [78], Liou and Wang [100]) available in the literature, each of which
has some advantages and disadvantages. Also many ranking methods are based
on defuzzification (e.g., expected value (Liu [90]), centroid (Wang et al. [143]),
magnitude (Abbasbandy and Hajjari [2]) of fuzzy number) in which, from fuzzy
numbers corresponding crisp quantities are obtained using some utility func-
tions and fuzzy numbers are ranked according to these crisp values. Drawback
of defuzzification is that it tends to loss some information and thus is unable to
grasp the sense of uncertainty. For example, expected value (Liu and Liu [90]) of
a trapezoidal fuzzy number (r1, r2, r3, r4) is just the average (r1+r2+r3+r4)/4,
though each ri does not have the same membership (/possibility) degree. Some
of the techniques (Abbasbandy and Asady [1], Chen [19]; Liou and Wang [100])
are case dependent and produce different results in different cases for certain
fuzzy numbers. Also some methods are found to be logically incorrect. For exam-
ple, Asady and Zendehnam’s [8] distance minimization method and Chen’s [19]
method are seemed to be logically incorrect as shown by Abbasbandy and Hajjari
[2] and Liou and Wang [100] respectively.

Mendel [102] explained using Popper’s Falsificationism that modeling word
using type-1 fuzzy set is not scientifically correct. Mendel [102,103] also explained
that a sensible way to model a word is to using interval type-2 fuzzy set (IT2 FS).
There are some methodologies, such as the interval approach (Liu and Mendel
[95], the person membership function approach (Mendel [104]) and the interval
end-points approach (Mendel and Wu [108]) available to obtain mathematical
models for IT2 FS for words. Chen and Lee [23,24] developed fuzzy multiple
attributes group decision-making methods (FMAGDM) based on ranking IT2
FSs and interval type-2 TOPSIS method respectively where linguistic weights
are represented by IT2 FSs. Chen et al. [26], Chen and Wang [25] developed
FMAGDM method based on ranking IT2 FSs.

In this section, a new ranking method of fuzzy numbers is developed using a
ranking function which we define using credibility measure. This ranking func-
tion is bounded over [0,1] so that it is easy to compare two fuzzy numbers with
each other. We also provide a method of ranking interval type-2 fuzzy variables
(IT2 FVs) using a ranking function which we define with the help of general-
ized credibility measure. Then we propose two computationally efficient fuzzy
MCGDM (FMCGDM) methods, first one based on proposed ranking method
of fuzzy numbers and the second one based on the proposed ranking method of
IT2 FVs. We discuss how to assign weights of modes if a decision maker wish, to
a STP in addition to the main criteria. The proposed FMCGDM methods are
applied to two transportation mode selection problems where evaluation ratings
and criteria weights are expressed by linguistic terms.
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5.2 Theoretical Developments

In the following Subsects. 5.4 and 5.6 we have developed two fuzzy multi-criteria
group decision making process, first one based on ranking fuzzy numbers and
second one based on ranking interval type-2 fuzzy variables. For the construction
of the methods we need some results which are given below.

Theorem 5.1: For any two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4) and
B̃ = (b1, b2, b3, b4), Cr{Ã ≤ B̃} ≥ α if and only if

(1− 2α)(a1 − b4) + 2α(a2 − b3) ≤ 0 for α ≤ 0.5

2(1− α)(a3 − b2) + (2α− 1)(a4 − b1) ≤ 0 for α > 0.5.

Proof: Cr{Ã ≤ B̃} ≥ α ⇔ Cr{(Ã − B̃) ≤ 0} ≥ α ⇔ Cr{(Ã + B̃′) ≤ 0} ≥ α,
where B̃′ = −B̃ = (−b4,−b3,−b2,−b1).

Then the theorem follows from Theorem 3.3 (Sect. 3).

Corollary 5.1. For any two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4) and
B̃ = (b1, b2, b3, b4), Cr{Ã ≥ B̃} ≥ α if and only if

(1− 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for α ≤ 0.5

2(1− α)(a2 − b3) + (2α− 1)(a1 − b4) ≥ 0 for α > 0.5.

Theorem 5.2: For any two triangular fuzzy numbers Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), Cr{Ã ≤ B̃} ≥ α if and only if

(1− 2α)(a1 − b3) + 2α(a2 − b2) ≤ 0 for α ≤ 0.5

2(1− α)(a2 − b2) + (2α− 1)(a3 − b1) ≤ 0 for α > 0.5.

Corollary 5.2. For any two triangular fuzzy numbers Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), Cr{Ã ≥ B̃} ≥ α if and only if

(1− 2α)(a3 − b1) + 2α(a2 − b2) ≥ 0 for α ≤ 0.5

2(1− α)(a2 − b2) + (2α− 1)(a1 − b3) ≥ 0 for α > 0.5.

5.3 A New Approach for Ranking of Fuzzy Numbers

To rank fuzzy numbers Ã and B̃, we propose to find the possible credibility
degree to which Ã ≥ B̃ or Ã ≤ B̃. For this purpose we find the maximum
satisfied credibility degree that Ã ≥ B̃ or maximum satisfied credibility degree
that Ã ≤ B̃, i.e.

Maxα∈[0,1][Cr{Ã ≥ B̃} = α] (229)

or, Maxα∈[0,1][Cr{Ã ≤ B̃} = α]. (230)

We denote (229) by Mα(Ã ≥ B̃) and (230) by Mα(Ã ≤ B̃).
Suppose for two fuzzy numbers Ã and B̃, Mα(Ã ≥ B̃) = α′, then we say that
Ã ≥ B̃ with credibility α′.
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Example 5.1. Suppose Ã and B̃ be two trapezoidal fuzzy numbers defined by
Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4). Then from Corollary 5.1 it follows
that Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] is obtained by solving

Max α

(1− 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for 0 ≤ α ≤ 0.5 (231)
2(1− α)(a2 − b3) + (2α− 1)(a1 − b4) ≥ 0 for 0.5 < α ≤ 1

0 ≤ α ≤ 1.

As our object is to find maximum possible credibility degree α, an easy way of
solving (231) is that first solve Max α with respect to the second constraint, if
such α (0.5 < α ≤ 1) exist then this is the required solution and if it does not
exist then solve Max α with respect to the first constraint.

If we consider Ã = (4, 6, 7, 9) and B̃ = (2, 3, 5, 7), then
Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] = 0.625.

Example 5.2. Suppose Ã and B̃ be two triangular fuzzy numbers defined by
Ã = (a1, a2, a3) and B̃ = (b1, b2, b3). Then from Corollary 5.2 it follows that
Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] is obtained by solving

Max α

(1− 2α)(a3 − b1) + 2α(a2 − b2) ≥ 0 for 0 ≤ α ≤ 0.5 (232)
2(1− α)(a2 − b2) + (2α− 1)(a1 − b3) ≥ 0 for 0.5 < α ≤ 1

0 ≤ α ≤ 1.

For example if Ã = (2, 4, 6) and B̃ = (3, 5, 6) then
Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] = 0.375.

Ranking Function: We define ranking function R to rank one fuzzy number
Ã upon another fuzzy number B̃ as follows:

R(Ã, B̃) =
{

Mα(Ã ≥ B̃), if it exist;
0, otherwise.

(233)

Obviously

R(B̃, Ã) =
{

Mα(Ã ≤ B̃), if it exist;
0, otherwise.

(234)

It follows from the definition of R(Ã, B̃) and self-duality property of the credibil-
ity measure that R is reciprocal, i.e., R(Ã, B̃) = 1−R(B̃, Ã). Also from (231) and
(232) it is clear that R is transitive for trapezoidal or triangular fuzzy numbers,
i.e. R(Ã, B̃) ≥ 1/2 and R(B̃, C̃) ≥ 1/2 ⇒ R(Ã, C̃) ≥ 1/2 for any trapezoidal
or triangular fuzzy numbers Ã, B̃, C̃. So R is total ordering and satisfies all
the criteria proposed by Yuan [154]. For any two fuzzy numbers Ã and B̃, the
ranking of Ã, B̃ is done as follows:
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Table 18. Comparative results of Example 5.3

Methods Evaluation Set 1 Set 2 Set 3

Proposed method R(Ã, B̃) 0.625 0.545 0.5

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Expected value (Liu [90]) E(Ã) 6.5 3.5 4.25

E(B̃) 4.25 3.4 4.25

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Sign distance for p = 1 dp(Ã, 0) 13 7 8.5

(Abbasbandy and Asady [1]) dp(B̃, 0) 8.5 6.8 8.5

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Sign distance for p = 2 dp(Ã, 0) 9.469 4.9665 6.298

(Abbasbandy and Asady [1]) dp(B̃, 0) 6.531 4.9625 6.531

Order relation Ã � B̃ Ã � B̃ Ã ≺ B̃

Lee [78] μF (Ã, B̃) 4.5 0.2 0

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Liou and Wang [100] (α = 1/2) Iα
T (Ã) 6.5 3.5 4.25

Iα
T (B̃) 4.25 3.4 4.25

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Fortems and Roubens [44] C(Ã ≥ B̃) 2.25 0.1 0

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Cheng distance (Cheng [27]) R(Ã) 6.519 3.535 4.231

R(B̃) 4.314 3.467 4.313

Order relation Ã � B̃ Ã � B̃ Ã ≺ B̃

Chu and Tsao [29] R(Ã) 3.25 1.75 2.141

R(B̃) 2.101 1.699 2.101

Order relation Ã � B̃ Ã � B̃ Ã � B̃

Abbasbandy and Hajjari [2] Mag(Ã) 6.5 3.5 4.416

Mag(B̃) 4.08 2.73 4.083

Order relation Ã � B̃ Ã � B̃ Ã � B̃

(i) Ã ! B̃ iff R(Ã, B̃) > 1/2.
(ii) Ã ≺ B̃ iff R(Ã, B̃) < 1/2.
(iii) But if R(Ã, B̃) = 1/2, then it is difficult to determine which is larger and

which is smaller. In this case we may conclude Ã ∼ B̃.

Example 5.3. Consider the following sets.
Set 1: Ã = (4, 6, 7, 9), B̃ = (2, 3, 5, 7);
Set 2: Ã = (3, 3.5, 4), B̃ = (2, 3.3, 5)
Set 3: Ã = (2, 4, 5, 6), B̃ = (2, 3, 5, 7)
A comparative results of our proposed method and several other methods are
presented in Table 18.
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Remark: From the Table 18 we observe that when value of R(Ã, B̃) (i.e. the
credibility that Ã ≥ B̃) in our proposed method is far from 0.5 (larger or smaller
than 0.5), then all the methods give the same result. For example for Set 1,
R(Ã, B̃) = 0.625 and all methods give the same result that Ã ! B̃. But as
the credibility becomes close to 0.5, all methods do not give the same result.
For example for the Set 3, results of our proposed method, Expected value (Liu
[90]), Sign distance for p = 1 (Abbasbandy and Asady [1]), Lee’s [78], Liou and
Wang’s [100], Fortems and Roubens’s [44] methods are Ã ∼ B̃, but Sign distance
for p = 2 (Abbasbandy and Asady [1]), Cheng distance (Cheng [27]) methods
give Ã ≺ B̃ and Chu and Tsao’s [29], Abbasbandy and Hajjari’s [2] methods
furnish Ã ! B̃.

5.4 The Proposed FMCGDM Method Based on Ranking Fuzzy
Numbers

Suppose A1, A2, ..., Am are m alternatives and these alternatives are evaluated
on basis of the criteria C1, C2, ..., Cn by the decision makers Dl, l = 1, 2, ..., p.
Suppose rating of Ai based on criteria Cj according to the decision maker Dl is
Ãl

ij which is represented by fuzzy number, where i = 1, 2, ...,m, j = 1, 2, ..., n

and l = 1, 2, ..., p. Let w̃l
j be the fuzzy weight of the criteria Cj indicating its

importance given by the decision maker Dl for all j and l. The proposed fuzzy
MCGDM method to rank the alternatives is as follows:

Step-1: Construct the decision matrix D̃ = [Ãij ]m×n where each Ãij is the
average of the ratings of alternative Ai given by the decision makers Dl, l =
1, 2, ..., p based on criteria Cj , i.e.,

C1 C2 .... Cn

D̃ =

A1

A2

...
Am

⎡

⎢⎢⎢⎣

Ã11 Ã12 ... Ã1n

Ã21 Ã22 ... Ã2n

...
...

...
...

Ãm1 Ãm2 ... Ãmn

⎤

⎥⎥⎥⎦ ,

where

Ãij =
Ã1

ij ⊕ Ã2
ij ⊕ ...⊕ Ãp

ij

p
. (235)

Calculate the average weights wj of the each criteria Cj by averaging their
weights given by the decision makers Dl, l = 1, 2, ..., p, i.e.

w̃j = (w̃1
j ⊕ w̃2

j ⊕ ....⊕ w̃p
j )/p. (236)
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Step-2: Normalize the decision matrix D̃. Suppose D̃′ = [Ã′
ij ]m×n be the nor-

malized decision matrix (normalizing process is shown in the end of this method).

Step-3: Derive the relative preference (/performance) matrix P = [rij ]m×n,
where

rij =
∑

k �=i

R(Ã′
ij , Ã

′
kj), (237)

R is the ranking function as defined in (233). rij is called the relative preference
index of the alternative Ai with respective to all the remaining alternatives for
the criteria Cj .
Step-4: Calculate the fuzzy weighted relative preference of the each alternative
by

A∗
i =

n∑

j=1

rij ⊗ w̃j , i = 1, 2, ...,m. (238)

Step-5: Find the total preference index of each alternative by

ri =
∑

k �=i

R(Ã∗
i , Ã

∗
k), i = 1, 2, ...,m. (239)

Step-6: Normalize the preference indices ri to obtain preference weights of the
alternatives that sum to 1 by

wP
i =

ri∑m
j rj

, i = 1, 2, ..,m. (240)

Step-7: Rank alternatives according to their weights wP
i , i = 1, 2, ...,m.

The process of normalization of D̃ = [Ãij ]m×n is shown below in case when Ãij

are triangular fuzzy numbers:
Suppose each Ãij is a triangular fuzzy number defined by Ãij = (aL

ij , a
M
ij , aU

ij),
then

Ã′
ij =

(aL
ij

a∗
j

,
aM

ij

a∗
j

,
aU

ij

a∗
j

)
, where a∗

j = max
i
{aU

ij},

where j is the benefit criteria or the ratings are given in favor of the criteria (i.e.
in positive sense).

But if j is a cost criteria and Ãij is given as amount of cost but not as rating,
then normalization is done as follows:

Ã′
ij =

( a∗
j

aU
ij

,
a∗

j

aM
ij

,
a∗

j

aL
ij

)
, where a∗

j = min
i
{aL

ij}.

The flow-chart of the above method is presented in Fig. 17.
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Step 1
Construct the decision matrix

Step 2
Normalize the decision matrix

Step 3
Derive the relative preference (/performance) matrixusing the ranking function

Step 4
Calculate the fuzzy weighted relative preference of the each alternative

Step 5
Calculate the total preference index of the each alternative

Step 6
Normalize the preference indicesto obtainpreference weights of the alternatives

Step 7
Rank alternatives according to their preference weights

Fig. 17. Flow-chart of the proposed FMCGDM method

5.5 A Method of Ranking Trapezoidal Interval Type-2 Fuzzy
Variables

Some Results on Generalized Trapezoidal Fuzzy Variables: In Sect. 2, we
already mentioned that if a fuzzy variable is not normal, i.e. for generalized fuzzy
variable, generalized credibility measure C̃r has to be used instead of the usual
credibility measure. For a generalized trapezoidal fuzzy variable ξ̃ = (a, b, c, d;w),
C̃r{ξ̃ ≤ x} is obtained as follows:

C̃r{ξ̃ ≤ x} =
1
2
(w + sup

r≤x
μξ̃(x)− sup

r>x
μξ̃(x))

=
1
2
{w + 0− w} = 0, if x ≤ a

=
1
2
{w +

w(x− a)
b− a

− w} =
w(x− a)
2(b− a)

, if a ≤ x ≤ b

=
1
2
{w + w − w} =

w

2
, if b ≤ x ≤ c

=
1
2
{w + w − w(d− x)

d− c
} =

w(x + d− 2c)
2(d− c)

, if c ≤ x ≤ d

=
1
2
{w + w − 0} = w, if x ≥ d,
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i.e.,

C̃r{ξ̃ ≤ x} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, ifx ≤ a;
w(x−a)
2(b−a) , if a ≤ x ≤ b;
w
2 , if b ≤ x ≤ c;
w(x+d−2c)

2(d−c) , if c ≤ x ≤ d;
w, ifx ≥ d.

(241)

Theorem 5.3: If ξ̃ = (a, b, c, d;w) is generalized trapezoidal fuzzy variable and
0 < α ≤ 1, then Cr{ξ̃ ≤ x} ≥ α is equivalent to

(i)
1
w

((w − 2α)a + 2αb) ≤ x, if α ≤ w

2
,

(ii)
1
w

(2(w − α)c + (2α− w)d) ≤ x, if α >
w

2
.

Proof: It is clear from 241 that if α ≤ w
2 , then Cr{ξ̃ ≤ x} ≥ α implies w(x−a)

2(b−a) ≥
α, i.e. 1

w ((w − 2α)a + 2αb) ≤ x and if α > w
2 , then Cr{ξ̃ ≤ x} ≥ α implies

w(x+d−2c)
2(d−c) ≥ α, i.e. 1

w (2(w − α)c + (2α− w)d) ≤ x.

Theorem 5.4: If Ã1 = (a1, a2, a3, a4;w1) and Ã2 = (b1, b2, b3, b4;w2) be two
generalized trapezoidal fuzzy variables and 0 < α ≤ 1, then C̃r{Ã1 ≤ Ã2} ≥ α if

(w − 2α)(a1 − b4) + 2α(a2 − b3) ≤ 0 for α ≤ w/2

2(w − α)(a3 − b2) + (2α− w)(a4 − b1) ≤ 0 for α > w/2,

where w = min(w1, w2).

Proof: −Ã2 = (−b4,−b3,−b2,−b1;w2) and so Ã1− Ã2 = (a1− b4, a2− b3, a3−
b2, a4 − b1;min(w1, w2)). Now Cr{Ã1 ≤ Ã2} ≥ α ⇔ Cr{(Ã1 − Ã2) ≤ 0} ≥ α
and hence the theorem follows from Theorem5.3.

Corollary 5.3: If Ã1 = (a1, a2, a3, a4;w1) and Ã2 = (b1, b2, b3, b4;w2) be two
generalized trapezoidal fuzzy variables and 0 < α ≤ 1, then C̃r{Ã1 ≥ Ã2} ≥ α if

(w − 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for α ≤ w/2

2(w − α)(a2 − b3) + (2α− w)(a1 − b4) ≥ 0 for α > w/2,

where w = min(w1, w2).
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Ranking Function and Relative Preference Index: Here we define a
ranking function which can be used to rank two generalized fuzzy variables,
say Ã1 and Ã2. For this purpose we find the possible credibility (generalized)
degree to which Ã1 ≥ Ã2 or Ã1 ≤ Ã2, i.e. we find the maximum satisfied credibil-
ity degree that Ã1 ≥ Ã2 or maximum satisfied credibility degree that Ã1 ≤ Ã2,
i.e.

Maxα∈[0,w][C̃r{Ã1 ≥ Ã2} = α] (242)

or, Maxα∈[0,w][C̃r{Ã1 ≤ Ã2} = α], (243)

where w is minimum of heights of Ã1 and Ã2, so 0 < w ≤ 1.
We denote (242) by Mα(Ã1 ≥ Ã2) and (242) by Mα(Ã1 ≤ Ã2).

Suppose for two generalized fuzzy numbers Ã1 and Ã2, Mα(Ã1 ≥ Ã2) = α′, then
we say that Ã1 ≥ Ã2 with credibility α′.

Suppose Ã1 = (a1, a2, a3, a4;w1) and Ã2 = (b1, b2, b3, b4;w2) be two gener-
alized trapezoidal fuzzy variables and w = min(w1, w2). Then from Corollary
5.3 it follows that Mα(Ã1 ≥ Ã2)=Maxα∈[0,w][C̃r{Ã1 ≥ Ã2} = α] is obtained by
solving

Max α

s.t. (w − 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for 0 ≤ α ≤ w/2 (244)
2(w − α)(a2 − b3) + (2α− w)(a1 − b4) ≥ 0 for w/2 < α ≤ w

0 ≤ α ≤ w.

As the objective is to find maximum possible credibility degree α, so to solve
244, one may first find Max α with respect to the second constraint, if such α
(w/2 < α ≤ w) exist then this is the required solution and if it does not exist
then find Max α satisfying the first constraint.

Example 5.4: As an example consider Ã1 = (5, 7, 8, 9; 1) and Ã2 =
(4, 5, 6, 9; 0.8), then w = 0.8 and solving (5.16) for this example we have
Mα(Ã1 ≥ Ã2)=Maxα∈[0,w][Cr{Ã1 ≥ Ã2} = α] = 0.48.

Ranking Function: We define a ranking function that can be used to rank two
generalized fuzzy variable Ã1 and Ã2 as follows:

R(Ã1 ≥ Ã2) =
{

Mα(Ã1 ≥ Ã2), if it exist;
0, otherwise.

(245)

Obviously

R(Ã1 ≤ Ã2) =
{

Mα(Ã1 ≤ Ã1), if it exist;
0, otherwise.

(246)

It follows from the definition of R(Ã1, Ã2) and self-duality property of the cred-
ibility measure that R(Ã1 ≥ Ã2) = w−R(Ã1 ≤ Ã2). In particular if Ã1 and Ã2

are normalized, i.e. w = 1, then R is reciprocal. Also from (244) it is clear that
R is transitive for generalized trapezoidal fuzzy variables, i.e. R(Ã1, Ã2) ≥ w/2
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and R(Ã2, Ã3) ≥ w/2 ⇒ R(Ã1, Ã3) ≥ w/2 for any trapezoidal fuzzy variables
Ã1, Ã1, Ã1. So R is total ordering and satisfies all the criteria of fuzzy ranking
proposed by Yuan [154]. For any two generalized fuzzy variables Ã1 and Ã2, the
ranking of Ã1, Ã2 is done as follows:

(i) Ã1 ! Ã2 iff R(Ã1 ≥ Ã2) > w/2.
(ii) Ã1 ≺ Ã2 iff R(Ã1 ≥ Ã2) < w/2.
(iii) But if R(Ã1 ≥ Ã2) = w/2, then rank them including their heights, i.e.,

Ã1 ∼ Ã2 also if w1 = w2, Ã1 < Ã2 also if w1 < w2 and Ã1 > Ã2 also if
w1 > w2.

Now to include the three subcases of the equality case R(Ã1 ≥ Ã2) = w/2 and
for any further use of ranking values, we define relative preference index ri of
each Ãi by adding an additional value based on their heights to the ranking
value R(Ãi ≥ Ãj) as follows:

ri = R(Ãi ≥ Ãj) +
wi − w

2
, i �= j, i, j = 1, 2,

w = min(w1, w2). Then the fuzzy variables Ãi are ranked based on relative
preference indices ri.

The Method of Ranking Trapezoidal Interval Type-2 Fuzzy Variables:
Suppose Ãi, i = 1, 2, ..., n are n trapezoidal interval type-2 fuzzy variables, where
Ãi = (ÃU

i , ÃL
i ) = ((aU

i1, a
U
i2, a

U
i3, a

U
i4;w

U
i ), (aL

i1, a
L
i2, a

L
i3, a

L
i4;w

L
i )). Denote wU

M =
mini{wU

i } and wL
M = mini{wL

i }. The proposed procedure of ranking Ãi, i =
1, 2, ..., n is as follows:
First find upper relative preference index rU

i of each Ãi by

rU
i =

∑

k �=i

R(ÃU
i ≥ ÃU

k ) +
wU

i − wU
M

2
, i = 1, 2, ..., n

and lower relative preference index rL
i of each Ãi by

rL
i =

∑

k �=i

R(ÃL
i ≥ ÃL

k ) +
wL

i − wL
M

2
, i = 1, 2, ..., n.

Then the relative preference index ri of each Ãi is calculated by

ri =
rU
i + rL

i

2
, i = 1, 2, ..., n.

Rank Ãi according to the value of ri, i.e. the larger the value of ri, the better
the ranking order of Ãi.

Example 5.5: Consider trapezoidal interval type-2 fuzzy variables
A1 = ((0.4, 0.7, 0.9, 1.2; 1), (0.5, 0.7, 0.9, 1.1; 0.9)),
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A2 = ((0.3, 0.5, 0.6, 0.9; 1), (0.4, 0.55, 0.65, 0.8; 0.9))
and A3 = ((0.6, 0.8, 1.1, 1.4; 1), (0.7, 0.9, 1, 1.2; 0.9)). Then wU

i = 1, wL
i = 0.9, i =

1, 2, 3 and so wU
M = 1 and wL

M = 0.9. Now,

rU
1 = R(ÃU

1 ≥ ÃU
2 ) + R(ÃU

1 ≥ ÃU
3 ) + wU

1 −wU
M

2 = 0.583 + 0.5 + 0 = 1.083,

rL
1 = R(ÃL

1 ≥ ÃL
2 ) + R(ÃL

1 ≥ ÃL
3 ) + wL

1 −wL
M

2 = 0.514 + 0.45 + 0 = 0.964 and so
r1 = 1.023

Similarly we obtain rU
2 = 0.717, rL

2 = 0.515, r2 = 0.616 and rU
3 = 1.2,

rL
3 = 1.221, r3 = 1.2105. Hence A3 ! A1 ! A2.

A Comparison of the Above Ranking Result: We now compare the above
ranking result of the interval type-2 fuzzy variables A1, A2 and A3 with few
existing methods as given in Table 19.

Table 19. Comparative results of Example 5.5

Methods Evaluation A1 A2 A3 Order relation

Chen and Lee [23] Rank(Ai) 0.385 0.2103 0.437 A3 � A1 � A2

Chen et al. [26] RV (Ãi) 1.4 0.9106 1.876 A3 � A1 � A2

Chen and Wang [25] Score(Ãi)

α = 0 0.3495 0.1788 0.5068 A3 � A1 � A2

α = 0.5 0.4021 0.201 0.5784 A3 � A1 � A2

α = 1 0.4546 0.2232 0.6501 A3 � A1 � A2

Proposed method ri 1.023 0.616 1.2105 A3 � A1 � A2

5.6 Proposed Fuzzy MCGDM Based on Ranking Interval Type-2
Fuzzy Variables

Suppose A1, A2, ..., Am are m alternatives and these alternatives are evaluated
on basis of the criteria C1, C2, ..., Cn by the decision makers Dl, l = 1, 2, ..., p.
Suppose rating of Ai based on criteria Cj according to the decision maker Dl

is Ãl
ij which is represented by trapezoidal interval type-2 fuzzy variable, where

i = 1, 2, ...,m, j = 1, 2, ..., n and l = 1, 2, ..., p. Let w̃l
j be the weight of the

criteria Cj indicating its importance given by the decision maker Dl, where w̃l
j

is represented by interval type-2 fuzzy variable for all j and l. The proposed
fuzzy MCGDM method to rank the alternatives is as follows:

Step 1: Construct the decision matrix D̃ = [Ãij ]m×n where each Ãij is the
average of the ratings of alternative Ai given by the decision makers Dl, l =
1, 2, ..., p based on criteria Cj , i.e.,

C1 C2 .... Cn



330 P. Kundu

D̃ =

A1

A2

...
Am

⎡

⎢⎢⎢⎣

Ã11 Ã12 ... Ã1n

Ã21 Ã22 ... Ã2n

...
...

...
...

Ãm1 Ãm2 ... Ãmn

⎤

⎥⎥⎥⎦ ,

where

Ãij =
Ã1

ij ⊕ Ã2
ij ⊕ ...⊕ Ãp

ij

p
. (247)

Suppose each Ãij is represented by Ãij = (ÃU
ij , Ã

L
ij) with heights of ÃU

ij and ÃL
ij

as wU
ij and wL

ij respectively.
Calculate the average weights wj of the each criteria Cj by averaging their

weights given by the decision makers Dl, l = 1, 2, ..., p, i.e.

w̃j = (w̃1
j ⊕ w̃2

j ⊕ ....⊕ w̃p
j )/p. (248)

Step 2: Derive the upper relative preference matrix RPU = [rU
ij ]m×n, where rU

ij

are the upper relative preference indices of alternatives Ai based on criteria Cj ,
i.e.,

rU
ij =

∑

k �=i

R(ÃU
ij ≥ ÃU

kj) +
wU

ij − wU
Mj

2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n (249)

and similarly the lower relative preference matrix RPL = [rL
ij ]m×n, where

rL
ij =

∑

k �=i

R(ÃL
ij ≥ ÃL

kj) +
wL

ij − wL
Mj

2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (250)

wU
Mj = mini{wU

ij} and wL
Mj = mini{wL

ij}, wU
ij and wL

ij are the heights of the
upper and lower membership of Ãl

ij respectively.
Finally derive the relative preference matrix RP = [rij ]m×n, where rij =

rU
ij+rL

ij

2 , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Step 3: Calculate the fuzzy weighted relative preference of each alternative by
employing the importance weights of the criteria as follows:

Ã∗
i = r11 · w̃1⊕ r12 · w̃2⊕ ...⊕ r1n · w̃n = ( ˜A∗U

i , Ã∗L
i ) (say), i = 1, 2, ..., n. (251)

Step 4: Find the final upper preference index of each alternative by

rU
i =

∑

k �=i

R( ˜A∗U
i ≥ ˜A∗U

k ) +
wU

i − wU
M

2
, i = 1, 2, ...,m. (252)

and the final lower preference index

rL
i =

∑

k �=i

R(Ã∗L
i ≥ Ã∗L

k ) +
wL

i − wL
M

2
, i = 1, 2, ...,m, (253)
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where wU
i , wL

i are the heights of ˜A∗U
i , Ã∗L

i respectively and wU
M = mini{wU

i },
wL

M = mini{wL
i }. Then final preference index ri of each alternative is obtained

by ri = rU
i +rL

i

2 , i = 1, 2, ...,m.
Now the alternatives Ai can be ranked according to their ranking values ri.

However for better comparison we find preference weights of the alternatives
that sum to 1 as in the following step.

Step 5: Obtain preference weights Wi of the alternatives that sum to 1 by
normalizing the preference indices ri as

Wi =
ri∑m

j=1 rj
, i = 1, 2, ...,m, (254)

where 0 ≤Wi ≤ 1 and
∑m

i=1 Wi = 1.
Rank the alternatives Ai according to their preference weights Wi, i = 1, 2, ...,m.

5.7 Problem 5.1: A Transportation Mode Selection Problem with
Linguistic Weights and Ratings Generated by Fuzzy Numbers
and Its Application to STP

Suppose in a solid transportation problem (STP) there are two modes of trans-
portation (conveyances) available - rail and road. Along with the main criteria
(transportation cost), decision makers want to rate the two modes with respect
to some other criteria, which are also very important for a transportation policy.
Three decision makers D1, D2, D3 select five main criteria- cost (C), speed/time
(S), product characteristics (P), flexibility (F) and safety factor (SF). Also there
are subcriteria associated with each main criteria as follows:

(1) Cost (C): This main criterion contains cost factors that are involved in
transportation system.
– C1: Transportation cost for shipment of goods from source to destination.
– C2: Cost of damages to freight incurred at the transportation or trans-

shipment stages.
– C3: Fixed cost (transport equipment, maintenance, terminal facilities,

etc.).
(2) Speed/time (S): This criterion contains time related subcriteria.

– S1: The average speed that the conveyance can provide.
– S2: The time consumed for loading, storing and unloading process.
– S3: The ratio of the distance between supply and demand points to the

transportation time.
– S4: Time reliability, i.e. the past record for delivering in time.

(3) Product characteristics (P): This criteria involved with product related fea-
tures.
– P1: The weight of the freight permissible.
– P2: The volume of the freight permissible.
– P3: Value to weight of the freight.
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(4) Flexibility (F): This criterion contains subcriteria involving capacity, route,
time schedule flexibility.
– F1: The ability to change the transportation route for unexpected cause

during transportation.
– F2: The ability to change the volume and weight capacity of the vehicles.
– F3: The ability to change the predetermined time schedule.

(5) Safety factor (SF): This criterion contains safety problem related features.
– SF1: The accidental rate in a determined time period.
– SF2: The rate of product being damaged during transportation.

The decision makers compare the criteria with each other and gives the impor-
tance weights for each criteria. The linguistic terms and related fuzzy numbers
(Lee [78], Wang and Elhag [141]) for criteria weights and evaluation ratings are
shown in Table 20. The linguistic importance weights of the main and subcriteria
are given in Tables 21 and 23 respectively. The average fuzzy weights of the main
criteria are obtained using Tables 20 and 21 by averaging their weights given by
the three decision makers and presented in Table 22. Similarly using Tables 20
and 23, the average fuzzy weights of the subcriteria are obtained and presented
in Table 24. The average weight of the each subcriterion is then multiplied by the
corresponding main criterion weight and presented in Table 25 and thus effec-
tive weight of the each subcriterion is obtained. Denotes these effective weights
of the subcriteria j by w̃j , j = 1, 2, ..., 15, where j = 1 indicates the criterion
C1, j = 2 indicates the criterion C2 and in this way j = 15 indicates the cri-
terion SF2. The evaluation ratings of the transportation modes - rail and road
as determined by the decision makers based on the selection criteria are given
in Table 26. Based on the Table 26, the group fuzzy decision matrix is derived
by averaging the ratings of the decision makers and is presented in Table 27. So
this decision matrix is denoted by D̃ = [Ãij ]2×15, where i = 1, 2 indicate the
alternatives rail and road respectively, j = 1 indicates the criterion C1, j = 2
indicates the criterion C2 and in this way j = 15 indicates the criterion SF2.
Now we apply our proposed FMCGDM method (cf. Sect.5.4) based on ranking
fuzzy numbers step by step as follows:

Step-1: The fuzzy group decision matrix (Table 27) is normalized and shown in
Table 28.
Step-2: Based on Table 28, the relative preference matrix [rij ]2×15 is derived using
Eq. (237) and shown in Table 29. For example, r11 = R(Ã′

11, Ã
′
21) = Mα(Ã′

11 ≥
Ã′

21) = 0.833, obtained by solving (232) where Ã11 = (0.83, 0.97, 1), Ã21 =
(0.57, 0.77, 0.93) and r21 = R(Ã′

21, Ã
′
11) = 1−R(Ã′

11, Ã
′
21) = 1− r11 = 0.167.

Step-3: Fuzzy weighted relative preferences of the two alternatives are calculated
through Tables 29 and 25 using Eq. (238) and shown in Table 30.
Step-4: From Table 30, using Eq. (239) total preference indices of the two alter-
natives are obtained and shown in Table 31.
Step-5: Normalizing the preference indices according to Eq. (240) the preference
weights of the two alternatives are obtained as wP

1 = 0.586 for rail and wP
2 =

0.414 for road.
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Table 20. Linguistic terms and related fuzzy numbers of criteria weights and evaluation
ratings

Linguistic terms Fuzzy weights Linguistic terms Fuzzy ratings

Very low (VL) (0,0,0.1) Very poor (VP) (0,0,1)

Low (L) (0,0.1,0.3) Poor (P) (0,1,3)

Medium low (ML) (0.1,0.3,0.5) Medium poor (MP) (1,3,5)

Medium (M) (0.3,0.5,0.7) Fair (F) (3,5,7)

Medium high (MH) (0.5,0.7,0.9) Medium good (MG) (5,7,9)

High (H) (0.7,0.9,1.0) Good (G) (7,9,10)

Very high (VH) (0.9,1.0,1.0) Very good (VG) (9,10,10)

Table 21. Linguistic importance weights of the main criteria

Main criteria D1 D2 D3

Cost (C) VH H VH

Speed (S) H MH H

Product characteristics (P) MH MH MH

Flexibility (F) M MH M

Safety factors (SF) MH M MH

Table 22. Average weights of the main criteria

C S P F SF

(0.83,0.97,1) (0.63,0.83,0.97) (0.5,0.7,0.9) (0.37,0.57,0.77) (0.43,0.63,0.83)

Table 23. Linguistic importance weights of the subcriteria

D1 D2 D3 D1 D2 D3 D1 D2 D3

C1 VH H VH S3 H H MH F1 M MH M

C2 H H MH S4 MH M MH F2 M M M

C3 H MH H P1 MH M M F3 MH M M

S1 H MH MH P2 MH M M SF1 M M M

S2 MH MH MH P3 MH MH MH SF2 MH M MH

From the above results we observe that for the current problem rail mode is
preferred than road and weights of rail and road are 0.586 and 0.414 respec-
tively. So sum of the weights is 1 and these weights can be used for any further
requirements.
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Table 24. Average weights of the subcriteria

C1 C2 C3 S1

Weights (0.83,0.97,1) (0.63,0.83,0.97) (0.63,0.83,0.97) (0.57,0.77,0.93)

S2 S3 S4 P1

Weights (0.5,0.7,0.9) (0.63,0.83,0.97) (0.43,0.63,0.83) (0.37,0.57,0.77)

P2 P3 F1 F2

Weights (0.37,0.57,0.77) (0.3,0.5,0.7) (0.37,0.57,0.77) (0.3,0.5,0.7)

F3 SF1 SF2

Weights (0.37,0.57,0.77) (0.3,0.5,0.7) (0.43,0.63,0.83)

Table 25. Average weights of the subcriteria multiplied by the corresponding main
criteria weights

C1 C2 C3 S1

Weights (0.69,0.94,1) (0.52,0.8,0.97) (0.52,0.8,0.97) (0.34,0.64,0.9)

S2 S3 S4 P1

Weights (0.32,0.58,0.87) (0.4,0.69,0.94) (0.27,0.52,0.81) (0.19,0.4,0.7)

P2 P3 F1 F2

Weights (0.19,0.4,0.7) (0.25,0.49,0.81) (0.14,0.32,0.59) (0.11,0.29,0.54)

F3 SF1 SF2

Weights (0.14,0.32,0.59) (0.13,0.32,0.58) (0.18,0.4,0.69)

Table 26. Linguistic ratings of the alternatives with respect to each criteria

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

C1 C2 C3 S1

Rail VG VG G VG G G MG G F VG G VG

Road MG G MG G G MG G G G MG MG G

S2 S3 S4 P1

Rail MG MG G MG MG MG G G MG VG VG G

Road G G VG G G G MG MG G MG G MG

P2 P3 F1 F2

Rail VG VG G MG G MG MP F F VG VG G

Road MG G MG G G G G MG G F MP F

F3 SF1 SF2

Rail F F MG G G VG VG G G

Road G VG G MG MG G MG G G
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Table 27. Fuzzy group decision matrix

C1 C2 C3 S1

Rail (8.3,9.7,10) (7.7,9.3,10) (5,7,8.7) (8.3,9.7,10)

Road (5.7,7.7,9.3) (6.3,8.3,9.7) (7,9,10) (5.7,7.7,9.3)

S2 S3 S4 P1

Rail (5.7,7.7,9.3) (5,7,9) (6.3,8.3,9.7) (8.3,9.7,10)

Road (7.7,9.3,10) (7,9,10) (5.7,7.7,9.3) (5.7,7.7,9.3)

P2 P3 F1 F2

Rail (8.3,9.7,10) (5.7,7.7,9.3) (2.3,4.3,6.3) (8.3,9.7,10)

Road (5.7,7.7,9.3) (7,9,10) (6.3,8.3,9.7) (2.3,4.3,6.3)

F3 SF1 SF2

Rail (3.7,5.7,7.7) (7.7,9.3,10) (7.7,9.3,10)

Road (7.7,9.3,10) (5.7,7.7,9.3) (6.3,8.3,9.7)

Table 28. Normalized group fuzzy decision matrix

C1 C2 C3 S1

Rail (0.83,0.97,1) (0.77,0.93,1) (0.5,0.7,0.87) (0.83,0.97,1)

Road (0.57,0.77,0.93) (0.63,0.83,0.97) (0.7,0.9,1) (0.57,0.77,0.93)

S2 S3 S4 P1

Rail (0.57,0.77,0.93) (0.5,0.7,0.9) (0.65,0.85,1) (0.83,0.97,1)

Road (0.77,0.93,1) (0.7,0.9,1) (0.59,0.79,0.96) (0.57,0.77,0.93)

P2 P3 F1 F2

Rail (0.83,0.97,1) (0.57,0.77,0.93) (0.24,0.44,0.65) (0.83,0.97,1)

Road (0.57,0.77,0.93) (0.7,0.9,1) (0.65,0.85,1) (0.23,0.43,0.63)

F3 SF1 SF2

Rail (0.37,0.57,0.77) (0.77,0.93,1) (0.77,0.93,1)

Road (0.77,0.93,1) (0.57,0.77,0.93) (0.63,0.83,0.97)

Table 29. Relative preference matrix

C1 C2 C3 S1 S2 S3 S4 P1

Rail 0.833 0.667 0.23 0.833 0.25 0.25 0.581 0.833

Road 0.167 0.333 0.77 0.167 0.75 0.75 0.419 0.167

P2 P3 F1 F2 F3 SF1 SF2

Rail 0.833 0.319 0 1 0 0.75 0.667

Road 0.167 0.681 1 0 1 0.25 0.333
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Table 30. Fuzzy weighted relative preferences of the alternatives

Rail (2.385,4.272,6.236)

Road (2.005,3.637,5.424)

Table 31. Total preference indices

Rail Road

0.586 0.414

Table 32. Comparative results of presented problem 5.1.

Methods Evaluation Rail Road Preferable mode

Proposed method Preference weights 0.586 0.414 rail

Lee [78] Performance index 1 0 rail

Wang and Lee [139] Closeness coefficient 1 0 rail

Cheng and Lin [28] defuzzified evaluations 6.854 6.791 rail

Table 33. Penalties (costs) ˜cijk

i \ j 2 3 1 2 3

1 4 6 8 7 8 4

2 7 9 7 5 6 9

3 6 8 6 4 10 5

k 1 2

Comparison with Some Other Methods: We solve the above problem by
three existing methods- Lee’s [78] method based on extended fuzzy preference
relation, fuzzy TOPSIS of Wang and Lee [139] and method of Cheng and Lin [28]
based on fuzzy Delphi method and the results are presented in Table 32. Lee’s
method gives total performance index of rail mode as 1 and that of road 0 so that
rail mode is preferable than road for this problem. Wang and Lee’s method gives
the closeness coefficient of rail as 1 and that of road 0 so that by this method rail
mode is preferable than road. Actually in case of two alternatives, whatever the
ratings of the alternatives and criteria weights are, these two methods always
give total performance index or closeness coefficient of one alternative as 1 and
that of another 0. Cheng and Lin’s method gives the defuzzified values of the
aggregate fuzzy evaluations (here aggregate triangular fuzzy numbers) for rail
and road as 6.854 and 6.791 respectively. Hence both the three methods give
same preference as obtained by our proposed method, i.e. rail mode is preferred
than road for the current problem.
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5.8 Assigning the Preference Weights of the Different Modes into
The STP

How to Assign: Suppose in a STP, K types of modes of transportation (con-
veyances) available for transportation. If objective function of a STP is mini-
mization of transportation cost, then obviously transportation cost be the main
criterion of choosing conveyances for certain route. However, if it is observed
that besides main criterion there are also some other criteria such as speed/time,
flexibility, safety factor of conveyances, etc. those are also vary important for a
particular problem, then the decision maker may seek to find overall importance
weights of the modes with respect all the criteria. Then assign the weights of the
modes to the main objective function of the problem so that optimal transporta-
tion policy is according to the main criterion in addition to the other selected
important criteria. Suppose wP

k is the weights of the conveyance k(= 1, 2, ...,K)
as obtained by the FMCGDM method under some predetermined criteria. These
transportation mode weights are assigned to the STP so that the amounts of
goods transported through conveyances are according to their weights in addi-
tion to the main criterion such as cost or time etc. Actually the main aim is
to transport the goods through the best mode as maximum as possible. The
objective function of the STP is

Max/Min Z =
m∑

i=1

n∑

j=1

K∑

k=1

cijk xijk.

(i) If the problem is a maximization problem, i.e. cijk represents profit, amount
etc., then to find optimum result (values of xijk’s), assign wP

k in the objec-
tive function as follows:

Max Z ′ =
m∑

i=1

n∑

j=1

K∑

k=1

wP
k (cijk xijk).

and then find the actual value of Z (total profit, amount, etc.) using the
values of obtained xijk’s and corresponding cijk’s.

(ii) If the problem is a minimization problem, i.e. cijk represents transportation
cost, etc., then to find optimum result (values of xijk’s), assign wP

k in the
objective function as follows:

Min Z ′ =
m∑

i=1

n∑

j=1

K∑

k=1

1
wP

k

(cijk xijk),

because higher value of wP
k (i.e., lower value of 1/wP

k ) ensures the possibility
of increasing the amount of goods transported through the conveyance k.
Now the actual value of Z (total transportation cost) is derived using the
values of obtained xijk’s and corresponding cijk’s.

Numerical Illustration: Consider a STP with three sources (i = 1, 2, 3), three
destinations (j = 1, 2, 3) and two conveyances (k = 1, 2). Here conveyance k = 1
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indicates rail and k = 2 indicates road. The unit transportation costs (cijk) are
presented in Table 33 and the availabilities (ai), demands (bj) are given below.
a1 = 35, a2 = 30, a3 = 42, b1 = 32, b2 = 36, b3 = 35, e1 = 60, e2 = 52.

So mathematically the problem becomes

Min Z =
3∑

i=1

3∑

j=1

2∑

k=1

(cijk xijk),

s.t.

3∑

j=1

2∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3∑

i=1

2∑

k=1

xijk ≥ bj , j = 1, 2, 3, (255)

3∑

i=1

3∑

j=1

xijk ≤ ek, k = 1, 2,

xijk ≥ 0, ∀ i, j, k.

Now introducing weights of the transportation modes in the objective function,
the problem becomes

Min Z ′ =
3∑

i=1

3∑

j=1

2∑

k=1

1
wP

k

(cijk xijk),

s.t.
3∑

j=1

2∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3∑

i=1

2∑

k=1

xijk ≥ bj , j = 1, 2, 3, (256)

3∑

i=1

3∑

j=1

xijk ≤ ek, k = 1, 2,

xijk ≥ 0, ∀ i, j, k,

where wP
1 = 0.586 (for rail) and wP

2 = 0.414 (for road).
Solving the problem (256) we have
x111 = 20, x121 = 10, x331 = 30, x132 = 5, x222 = 26, x312 = 12 and MinZ =
4 · 20 + 6 · 10 + 6 · 30 + 4 · 5 + 6 · 26 + 4 · 12 = 544.

Now solving the problem without mode weights (problem (255)), we have
x111 = 19.5, x121 = 6, x331 = 25.5, x132 = 9.5, x222 = 30, x312 = 12.5 and
MinZ = 4 · 19.5 + 6 · 6 + 6 · 25.5 + 4 · 9.5 + 6 · 30 + 4 · 12.5 = 535.
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Table 34. Linguistic terms and related fuzzy variables of criteria weights

Linguistic terms Fuzzy weights

Very low (VL) ((0,0,0,0.1;1),(0,0,0,0.05;0.9))

Low (L) ((0,0.1,0.1,0.3;1),(0.05,0.1,0.1,0.2;0.9))

Medium low (ML) ((0.1,0.3,0.3,0.5;1),(0.2,0.3,0.3,0.4;0.9))

Medium (M) ((0.3,0.5,0.5,0.7;1),(0.4,0.5,0.5,0.6;0.9))

Medium high (MH) ((0.5,0.7,0.7,0.9;1),(0.6,0.7,0.7,0.8;0.9))

High (H) ((0.7,0.9,0.9,1;1),(0.8,0.9,0.9,0.95;0.9))

Very high (VH) ((0.9,1,1,1;1),(0.95,1,1,1;0.9))

Table 35. Linguistic terms and related fuzzy variables of evaluation ratings

Linguistic terms Fuzzy ratings

Very poor (VP) ((0,0,0,1;1),(0,0,0,0.5;0.9))

Poor (P) ((0,1,1,3;1),(0.5,1,1,2;0.9))

Medium poor (MP) ((1,3,3,5;1),(2,3,3,4;0.9))

Fair (F) ((3,5,5,7;1),(4,5,5,6;0.9))

Medium good (MG) ((5,7,7,9;1),(6,7,7,8;0.9))

Good (G) ((7,9,9,10;1),(8,9,9,9.5;0.9))

Very good (VG) ((9,10,10,10;1),(9.5,10,10,10;0.9))

Remark: We see that in case of the problem without mode weights, total trans-
ported amount through rail is 51 and through road is 52. Where as for the prob-
lem with mode weights total transported amount through rail is 60 and through
road is 43. This is as per expectation because here rail mode has higher prefer-
ence weight than road. Also we observe that the problem without mode weights
provides less transportation cost. So it is up to the decision makers whether they
decide to determine transportation policy only according to the main criterion
(i.e. cost) or according to all other criteria including the main criterion.

5.9 Problem 5.2: A Transportation Mode Selection Problem with
Linguistic Weights and Ratings Generated by IT2 FVs

Suppose in a transportation system there are two modes of transportation (con-
veyances) available - rail and road. Besides the main criterion (transportation
cost), decision makers want to rate the two modes with respect to some other
criteria, which are also very important for a transportation policy. The selection
criteria are already presented in Sect. 5.3 for the Problem 5.1.

The decision makers compare the criteria with each other and gives the
importance weights for each criteria. The linguistic terms and related fuzzy vari-
ables (Anand et al. [7], Chen and Lee [23,24]) for criteria weights and evaluation
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ratings are shown in Tables 34 and 35 respectively. The linguistic importance
weights of the main and subcriteria as given by the decision makers are same as
presented in Tables 21 and 23 respectively. Average fuzzy weights of the main
criteria and subcriteria are obtained by averaging the related IT2 fuzzy variables
(based on Eq. (248)) of the criteria weights. For example, average weight of the
cost criteria C is found ((0.83,0.97,0.97,1;1),(0.9,0.97,0.97,0.98;0.9)), obtained by
averaging the related fuzzy variables of the linguistic weights VH, H and VH.
Similarly the average weight of the subcriteria C1 is found ((0.83,0.97,0.97,1;1),
(0.9,0.97,0.97,0.98;0.9)). The average weight of the each subcriterion is then mul-
tiplied by the corresponding main criteria weight and thus effective weight of the
each subcriterion is obtained. For example, effective weight of the subcriterion
C1 is obtained ((0.69,0.94,0.94,1;1),(0.81,0.94,0.94,0.96;0.9)) by multiplying the
average weight of the subcriterion C1 with the weight of the corresponding main
criteria C. In this way we find the effective weights of all the subcriteria as
follows.
C1: ((0.69,0.94,0.94,1;1),(0.81,0.94,0.94,0.96;0.9)),
C2: ((0.52,0.8,0.8,0.97;1),(0.53,0.8,0.8,0.88;0.9)),
C3: ((0.52,0.8,0.8,0.97;1),(0.53,0.8,0.8,0.88;0.9)),
S1: ((0.34,0.64,0.64,0.9;1),(0.49,0.64,0.64,0.71;0.9)),
S2: ((0.32,0.58,0.58,0.87;1),(0.44,0.58,0.58,0.72)),
S3: ((0.4,0.69,0.69,0.94),(0.53,0.69,0.69,0.81;0.9)),
S4: ((0.27,0.52,0.52,0.81;1),(0.39,0.52,0.52,0.66;0.9)),
P1: ((0.19,0.4,0.4,0.7;1),(0.28,0.4,0.4,0.54;0.9)),
P2: ((0.19,0.4,0.4,0.7;1),(0.28,0.4,0.4,0.54;0.9)),
P3: ((0.25,0.49,0.49,0.81;1),(0.36,0.49,0.49,0.64;0.9)),
F1: ((0.14,0.32,0.32,0.59;1),(0.22,0.32,0.32,0.45;0.9)),
F2: ((0.11,0.29,0.29,0.54;1),(0.22,0.29,0.29,0.4;0.9)),
F3: ((0.14,0.32,0.32,0.59),(0.22,0.32,0.32,0.45;0.9)),
SF1: ((0.13,0.31,0.31,0.58),(0.21,0.31,0.31,0.44;0.9)),
SF2: ((0.18,0.4,0.4,0.69),(0.28,0.4,0.4,0.53;0.9)).

The evaluation ratings of the transportation modes - rail and road as deter-
mined by the decision makers based on the selection criteria are same as pre-
sented in Table 26.

Now we apply our proposed FMCGDM method based on ranking interval
type-2 fuzzy variables step by step (cf. Sect. 5.6) as follows:

Step-1: Based on the Eq. (247), the group fuzzy decision matrix is derived
by averaging the linguistic ratings of the decision makers and is presented in
Table 36. The average effective weights of all the subcriteria are already obtained
in the above.

Step-2: Upper and lower relative preference indices, i.e., rU
ij and rL

ij of the
alternatives (rail and road) with respect to each subcriteria are obtained from
Table 36 using Eqs. (249) and (250) respectively and presented in Table 37. Then
the relative preference indices rij of the alternatives are obtained by averaging
their upper and lower relative preference indices as presented in Table 37.
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Table 36. Fuzzy group decision matrix

C1 C2

Rail ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9)) ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9))

Road ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9)) ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9))

C3 S1

Rail ((5,7,7,8.7;1),(6,7,7,7.8;0.9)) ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9))

Road ((7,9,9,10;1),(8,9,9,9.5;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

S2 S3

Rail ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9)) ((5,7,7,9;1),(6,7,7,8;0.9))

Road ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9)) ((7,9,9,10;1),(8,9,9,9.5;0.9))

S4 P1

Rail ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9)) ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9))

Road ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

P2 P3

Rail ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

Road ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9)) ((7,9,9,10;1),(8,9,9,9.5;0.9))

F1 F2

Rail ((2.3,4.3,4.3,6.3),(3.3,4.3,4.3,5.3;0.9)) ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9))

Road ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9)) ((4.3,6.3,6.3,8.3;1),(5.3,6.3,6.3,7.3;0.9))

F3 SF1

Rail ((1.7,3.7,3.7,5.7;1),(2.7,3.7,3.7,4.7;0.9)) ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9))

Road ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

SF2

Rail ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9))

Road ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9))

Step-3: Then the fuzzy weighted relative preferences of the alternatives rail
and road are calculated by employing the effective weights of the subcriteria as
Eq. (251) and presented in Table 38.

Step-4: From Table 38, the final upper preference indices rU
i and lower pref-

erence indices rL
i of the alternatives are obtained using Eqs. (252) and (253)

respectively and final preference indices ri are calculated by averaging them.
These results are presented in Table 39.

Step-5: Preference weights (Wi) of the alternatives that sum to 1 are obtained
by normalizing the preference indices ri and shown in Table 39.

From Table 39 we observe that weights of rail and road are 0.63 and 0.37
respectively and so for the current problem rail mode is preferred than road.
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Table 37. Relative preference matrix

rU
ij rL

ij rij rU
ij rL

ij rij rU
ij rL

ij rij

C1 C2 C3

Rail 0.75 0.9 0.825 0.667 0.75 0.708 0.23 0 0.115

Road 0.25 0 0.125 0.333 0.15 0.241 0.77 0.9 0.835

S1 S2 S3

Rail 0.833 0.9 0.866 0.25 0 0.125 0.25 0 0.125

Road 0.167 0 0.083 0.75 0.9 0.825 0.75 0.9 0.825

S4 P1 P2

Rail 0.583 0.6 0.591 0.833 0.9 0.866 0.833 0.9 0.866

Road 0.417 0.3 0.358 0.167 0 0.083 0.167 0 0.083

P3 F1 F2

Rail 0.319 0.125 0.222 0 0 0 1 0.9 0.95

Road 0.681 0.775 0.782 1 0.9 0.95 0 0 0

F3 SF1 SF2

Rail 0 0 0 0.75 0.9 0.825 0.667 0.75 0.708

Road 1 0.9 0.95 0.25 0 0.125 0.333 0.15 0.241

Table 38. Fuzzy weighted relative preferences of the alternatives

Rail ((2.265,4.07,4.07,5.961;1),(3.026,4.07,4.07,4.908;0.9))

Road ((1.917,3.458,3.458,4.879;1),(2.492,3.458,3.458,4.252;0.9))

Table 39. Final preference indices and preference weights

rU
i rL

i ri Wi

Rail 0.5949 0.5998 0.597 0.63

Road 0.4051 0.3002 0.352 0.37

5.10 Overall Conclusion

Selection of suitable transportation modes is a major issue in transportation sys-
tems. There may exist large number of conflicting criteria for selecting convenient
modes. Also human judgments are usually imprecise (i.e., linguistic, interval etc.)
rather than precise numeric values.

In this section, we have proposed a computationally efficient fuzzy multi-
criteria group decision making (FMCGDM) method (cf. Sect. 5.4) based on
ranking fuzzy numbers. For this purpose we have defined a ranking function
(cf. Sect. 5.3) based on credibility measure to rank a fuzzy number over another
fuzzy number. The proposed fuzzy MCGDM method is applied (cf. Sect. 5.7) to
find most convenient transportation mode alternatives in which the evaluation
ratings and criteria weights are expressed in linguistic terms generated by fuzzy
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numbers. Also this method gives the weights of the alternatives which can be
used for further requirements. The mode weights as founded by the method are
assigned to a STP so that best mode can be used as maximum as possible.

In Sect. 5.5, a new method of ranking IT2 FVs based on generalized credibility
measure is proposed. In Sect. 5.6, we have presented a new FMCGDM method
based on the proposed ranking method of IT2 FVs. The proposed FMCGDM
method is applied to a transportation mode selection problem (cf. Sect. 5.9) in
which the evaluation ratings and criteria weights are expressed in linguistic terms
generated by trapezoidal IT2 FVs.

The proposed methods are computationally efficient and we expect that these
methods may have potential applications in many industry based FMCGDM
problems in the future.

6 Solid Transportation Models with Transportation Cost
Parameters as Rough Variables

6.1 Introduction

Traditionally the solid transportation problem (STP) (Haley [53], Gen et al. [48],
Jiménez and Verdegay [60], Li et al. [81]) is modeled taking total supply capacity
of all the conveyances and it is assumed that this total capacity is available for
utilization for all source to destination routs whatever be the amount of prod-
uct allocated in the routs for transportation. But in many practical situations
this may not always happen. Practically most of time full vehicles, e.g., trucks,
rail coaches are to be booked and the availability of each type of conveyance at
each source may not be the same and vehicles available at one source may not
be utilized at another source due to long distance between them or some other
problems. Also fulfillment of capacity of a vehicle effects the optimal transporta-
tion policy. These practical situations motivated us to formulate some useful
solid transportation models.

Rough set theory is one of the most convenient and accepted tool to deal with
uncertainty. Though transportation problems in various types of uncertain envi-
ronments such as fuzzy, random are studied by many researchers, there are very
few research papers about TP in rough uncertain environment. Since rough set
theory is proposed by Pawlak [121], it is developed by many researchers (Pawlak
[122], Pawlak and Skowron [124], Polkowski [125], Liu and Zhu [96]) in theoretical
aspect and applied into many practical fields such as data envelopment analysis
(DEA) (Shafiee and Shams-e-alam [131], Xu et al. [151]), data mining (Lin et
al. [83]), multi-criteria decision analysis (Dembczynski et al. [35], Pawlak and
Slowinski [123]), medical diagnosis (Hirano and Tsumoto [56], Tsumoto [133],
Zhang et al. [163]), neural network (Azadeh et al. [9], Zhang et al. [162]), etc. Liu
[86] proposed the concept rough variable which is a measurable function from
rough space to the set of real numbers. Liu [87] discussed some inequalities of
rough variables and convergence concept of sequence of rough variables. Liu and
Zhu [97] introduced rough variable with values in measurable spaces. Liu [86,88]
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studied some rough programming models with rough variables as parameters.
Xu and Yao [150] studied a two-person zero-sum matrix games with payoffs as
rough variables. Tao and Xu [132] developed a rough multi-objective program-
ming for dealing with multi-objective solid transportation problem assuming that
the feasible region is not fixed but flexible due to imprecise parameters. Xu et al.
[151] proposed a rough DEA model to solve a supply chain performance evalua-
tion problem with rough parameters. Xiao and Lai [149] considered power-aware
VLIW instruction scheduling problem with power consumption parameters as
rough variables. Mondal et al. [114] considered a production-repairing inventory
model with fuzzy rough variables. But at the best of our knowledge none studied
STPs with any of the parameters as rough variables before Kundu et al. [73].

In this section, we formulate solid transportation model with vehicle capacity
and an additional cost which is incurred due to not fulfilling the vehicle capac-
ity. The unit transportation costs and unit additional costs in the models are
taken as rough variables. To solve the said models with transportation costs
as rough variables we have presented rough chance-constrained programming,
rough expected value and rough dependent-chance programming models.

6.2 Model 6.1: New Solid Transportation Model with Vehicle
Capacity

We first describe and formulate the model deterministically and then consider
the model with rough cost parameters.

Notations:

(i) cijk: The unit transportation costs from i-th source to j-th destination via
k-th conveyance according to full utilization of the vehicle capacity.

(ii) xijk: The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination via k-th conveyance.

(iii) Z: The objective function.
(iv) ai: The amount of the product available at the i-th origin.
(v) bj : The demand of the product at j-th destination.
(vi) qk: The capacity of singe vehicle of k-th type conveyance.
(vii) zijk: The frequency (number of required vehicles) of conveyance k for trans-

porting goods from source i to destination j via conveyance k.
(viii) εijk: Total additional (penalty) cost for i− j − k route due to not fulfilling

the vehicle capacity.

Description of the Problem and Model Formulations: In traditional STP,
total transportation capacity of conveyances is taken and the problem is solved
assuming that this total capacity can be utilized for all routes whatever the
allocation of products is in the routes. But in many real transportation systems,
full vehicles (e.g. trucks for road transportation, coaches for rail transportation,
etc.) are to be booked and number of vehicles required are according to amount
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of product to be transported through a particular route. The difficulty in this
case arises when the amount of allocated product is not sufficient to fill up the
capacity of the vehicle, because then extra cost is incurred despite the unit trans-
portation cost due to not fulfilling the vehicle capacity. Here we formulate some
solid transportation models with vehicle capacity to deal with such situations.

Suppose qk be the capacity of singe vehicle of k-th type conveyance. Let zijk

be the frequency (number of required vehicles) of conveyance k for transporting
goods from source i to destination j via conveyance k and xijk (decision variable)
be the corresponding amount of goods. Then zijk is a decision variable which
takes only positive integer or zero. Also we have

xijk ≤ zijk · qk.

Now in such vehicle transportation system obviously calculation of unit trans-
portation cost is according to the full utilization of the capacity of the vehicle.
That is for a particular route i−j−k if the unit transportation cost cijk is accord-
ing to full utilization of the vehicle capacity qk then an extra cost (penalty) will
be added if the capacity qk is not fully utilized. Determination of additional cost
for deficit amount depends upon the relevant transportation authority. Two cases
may arise, either authority do not want to compromise for deficit amount and
so direct cost cijk is also represent the additional cost for unit deficit amount, or
they agree to compromise and fixed an additional cost for unit deficit amount.
For calculating additional cost first deficit amount of goods is to be calculated
for each route. This can be done by two ways - calculating deficit amount for
i−j−k route directly as (zijk ·qk−xijk) or by calculating the empty ratio (Yang
et al. [152]) of each vehicle of k-th type conveyance for transporting goods from
source i to destination j as

dijk =
{

0, if xijk

qk
= [xijk

qk
];

1− (xijk

qk
− [xijk

qk
]), otherwise.

Then the amount of deficit amount for i − j − k route is given by qk · dijk.
Now if uijk represents additional cost for unit amount of deficit from source i to
destination j via conveyance k, then additional cost for this route is given by

εijk = uijk(zijk · qk − xijk) or εijk = uijk · qk · dijk.

The total additional (penalty) cost for the problem is

C(x) =
m∑

i=1

n∑

j=1

K∑

k=1

εijk.

So the STP model becomes

Min Z =
m∑

i=1

n∑

j=1

K∑

k=1

(cijk xijk + εijk)
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s.t.

n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (257)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,

m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

In the above model it is assumed that there are sufficient number of vehicles
of each type of conveyance available to transport the required amount of goods
(i.e., there is no restriction on number of available vehicles of each type of con-
veyances). If number of vehicles of conveyances limited to certain number, sup-
pose Qk for k-th type conveyance then an another constraint

m∑

i=1

n∑

j=1

zijk ≤ Qk, k = 1, 2, ...,K

is added to the model (257), then the above model becomes

Min Z =
m∑

i=1

n∑

j=1

K∑

k=1

(cijk xijk + εijk)

s.t.
n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (258)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,
m∑

i=1

n∑

j=1

zijk ≤ Qk, k = 1, 2, ...,K,

m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

This limitation of number of vehicles can effect the optimal transportation policy.
For example unavailability of sufficient number of vehicles of certain type of
conveyance may force to use another type of conveyance which costs higher than
the previous.

The hierarchical structures of the model (258) is shown in the Fig. 18.
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Fig. 18. The hierarchical structures of the model (258).

In the above two models it is assumed that total available vehicles can be
utilized in each source as they required. But in reality in each source, the avail-
ability of different vehicles may not be the same and the vehicles available at
one source may not be utilized for another source due to long distance between
them. So there may be a situation arises that in a certain source there are more
than sufficient number of particular vehicles available to transport product to
destinations but at the same time in an another source there are less number
of that vehicles available than the requirement. As a result it may happen that
vehicle having less transportation cost leaving from certain source to destination
without being fully loaded, while vehicle having comparably high transporta-
tion cost leaving from another source to destination with fully loaded. So it is
realistic to include a constraint defining source-wise vehicle availability. Suppose
at source i, the number of available vehicles of k-th type conveyance is V k

i and
vehicles at each source can not be shared to other sources.

Then the constraints
n∑

j=1

zijk ≤ V k
i , i = 1, 2, ...,m; k = 1, 2, ...,K

is added to the model (257) and so the model becomes

Min Z =
m∑

i=1

n∑

j=1

K∑

k=1

(cijk xijk + εijk)
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Fig. 19. The hierarchical structures of the model (259).

s.t.

n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (259)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,
n∑

j=1

zijk ≤ V k
i , i = 1, 2, ...,m; k = 1, 2, ...,K,

m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

The hierarchical structures of the model (259) is shown in the Fig. 19.

6.3 The Model with Unit Transportation and Additional Costs
(Penalty) as Rough Variables

Consider the unit transportation costs cijk and as well as unit additional costs
uijk for the model (257) are rough variables represented by cijk = ([c2ijk, c3ijk],
[c1ijk, c4ijk]), c1ijk ≤ c2ijk < c3ijk ≤ c4ijk and uijk = ([u2

ijk, u3
ijk], [u1

ijk, u4
ijk]), u1

ijk ≤
u2

ijk < u3
ijk ≤ u4

ijk. Then, the objective function of the model (257), given by
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Z =
∑m

i=1

∑n
j=1

∑K
k=1 (cijk xijk + εijk), εijk = uijk(zijk · qk − xijk) becomes a

rough variable defined as Z = ([Z2, Z3], [Z1, Z4]), where

Zr =
m∑

i=1

n∑

j=1

K∑

k=1

(cr
ijk xijk + εr

ijk), r = 1, 2, 3, 4, (260)

εr
ijk = ur

ijk(zijk · qk − xijk), r = 1, 2, 3, 4.

Rough Chance-Constrained Programming Model: For the above problem
with rough objective function one can not directly minimize it. The main idea
of chance-constrained method is that a uncertain constraint is allowed to violet
ensuring that it must be hold at some chance/confidence level. We apply the
idea of chance-constrained programming (CCP) to the objective function of the
model (257) with rough costs (i.e. rough objective function) with the help of
trust measure. Since the problem is a minimization problem, we minimize the
smallest objective Z̄ satisfying Tr{Z ≤ Z̄} ≥ α, where α ∈ (0, 1] is a specified
trust (confidence) level, i.e., we minimize the α-pessimistic value Zinf (α) of Z.
This implies that the optimum objective value will below the Z̄ with a trust
level at least α. So the rough CCP becomes

Min (Min Z̄) (261)

s.t. T r{Z ≤ Z̄} ≥ α,
n∑

j=1

K∑

k=1

xijk ≤ ai, i = 1, 2, ...,m, (262)

m∑

i=1

K∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (263)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,(264)
m∑

i=1

ai ≥
n∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k. (265)

Now we also formulate another rough CCP for the model (257) with rough
costs, to minimize the greatest objective Z satisfying Tr{Z ≥ Z} ≥ α, where
α ∈ (0, 1] is a specified trust (confidence) level, i.e., we minimize the α-optimistic
value Zsup(α) of Z. In other words, we minimize maximum Z so that the opti-
mum objective value will greater or equal to the Z with a trust level at least α.
So the rough CCP becomes

Min (Max Z)

s.t. T r{Z ≥ Z} ≥ α, (266)

and the constraints (262)–(265).
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Deterministic Forms: From the definition of α-pessimistic value (Defini-
tion 2.14, Sect. 2.4), the above CCP (261)–(265) equivalently becomes

Min Z ′

s.t. the constraints (262)− (265), (267)
where

Z′ = Zinf (α)

=

⎧
⎪⎨

⎪⎩

(1 − 2α)Z1 + 2αZ4, ifα ≤ ((Z2 − Z1)/2(Z4 − Z1));
2(1 − α)Z1 + (2α − 1)Z4, ifα ≥ ((Z3 + Z4 − 2Z1)/2(Z4 − Z1));
Z1(Z3−Z2)+Z2(Z4−Z1)+2α(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.

From the definition of α-optimistic value, the above CCP (266) equivalently
becomes

Min Z ′′

s.t. the constraints (262)− (265), (268)
where

Z′′ = Zsup(α)

=

⎧
⎪⎨

⎪⎩

(1 − 2α)Z4 + 2αZ1, ifα ≤ ((Z4 − Z3)/2(Z4 − Z1));
2(1 − α)Z4 + (2α − 1)Z1, ifα ≥ ((2Z4 − Z2 − Z1)/2(Z4 − Z1));
Z4(Z3−Z2)+Z3(Z4−Z1)−2α(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.

Since for 0.5 < α ≤ 1, Zinf (α) ≥ Zsup(α), so solving the problems (267) and
(267) with trust level α (0.5 < α ≤ 1) we conclude that optimum objective value
lie within the range [Z ′′, Z ′] with the trust level at least α.

In case of models (258) and (259) with unit transportation and additional
costs as rough variables, rough CCP can be developed same way as above.

Rough Expected Value Model: We find the expected value for the objective
function of the model (257) with rough costs, so the problem becomes

Min E[Z] = E[
m∑

i=1

n∑

j=1

K∑

k=1

cijk xijk + εijk], (269)

s.t. the constraints (262)− (265).

Deterministic Forms: From the expected value of a rough variable (Defini-
tion 2.15, Example 2.9, Sect. 2.4), the deterministic form of the above problem
(269) becomes

Min E[Z] = (Z1 + Z2 + Z3 + Z4)/4, (270)

s.t. the constraints (262)− (265),

where Zr =
m∑

i=1

n∑

j=1

K∑

k=1

(cr
ijk xijk + εr

ijk), r = 1, 2, 3, 4,

.
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Rough Dependent-Chance Programming Model: The idea of dependent-
chance programming is to optimize the chance of an uncertain event. Suppose
in view of previous experiment, a decision maker will satisfy with a transporta-
tion plan for which the total transportation cost is not exceed a certain value.
So a decision maker may fixed a satisfying predetermined maximal objective
value, i.e. total transportation cost and maximize the trust value that total
transportation cost is not exceed the predetermined cost. So to obtain the most
trastable transportation plan with respect to a given predetermined maximal
cost Z̄ the dependent chance-constrained programming model for the model
(257) with rough objective function is formulated as follows:

Max Tr{Z =
m∑

i=1

n∑

j=1

K∑

k=1

(cijk xijk + εijk) ≤ Z̄}, (271)

s.t. the constraints (262)− (265),

Deterministic Forms: The deterministic form of the objective function of
(271) can be obtained by the trust of a rough event as discussed in Exam-
ple 2.9, Sect. 2.4. Tr{Z =

∑m
i=1

∑n
j=1

∑K
k=1 (cijk xijk + εijk) ≤ Z̄}, where

Z = ([Z2, Z3], [Z1, Z4]), Zr is given by (260), can be written as the following
function:

Z ′ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if Z̄ ≤ Z1;
Z̄−Z1

2(Z4−Z1) , if Z1 ≤ Z̄ ≤ Z2;
1
2 ( Z̄−Z2

Z3−Z2 + Z̄−Z1

Z4−Z1 ), if Z2 ≤ Z̄ ≤ Z3;
1
2 ( Z̄−Z1

Z4−Z1 + 1), if Z3 ≤ Z̄ ≤ Z4;
1, if Z̄ ≥ Z4.

(272)

So deterministic form of the above problem (271) becomes Max Z ′ with respect
to the constraints (262)–(265).

6.4 Numerical Experiments

Models with Unit Transportation and Additional Costs as Crisp Num-
bers: Here we demonstrate the models with crisp cost parameters for better
understanding and to show the efficiency of the models. Consider a problem
with three sources (i = 1, 2, 3), three destinations (j = 1, 2, 3), two types of
conveyances (k = 1, 2). The unit transportation costs are given in Table 40. The
availabilities at each sources, demands of each destinations and capacity of single
vehicle of each type of conveyances are given in Table 41.

For convenience suppose additional costs for unit deficit amount is uijk =
0.8 · cijk.

Now if there are sufficient number of vehicles of each type conveyances avail-
able as required (i.e., there is no restriction on number of available vehicles of
each type of conveyances), then for the above problem solving the model (257)
we have the solution given in Table 42.
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So total number of required vehicles of conveyance k = 1 is 10 and that of
conveyance k = 2 is 11.

Now as we say earlier, it may happen that number of vehicles of certain type
of conveyance is so limited that it is not sufficient to fulfill its requirement for a
transportation system.

Suppose in the above example the number of available vehicles of conveyance
k = 1 is 14 and that of conveyance k = 2 is 10, i.e., Q1 = 14 and Q2 = 10. Then
with the same data as given in Tables 40 and 41, solving the model (258) we
have the solution given in Table 43.

It should be mentioned that here in case of model (258), if number of available
vehicles of each type of conveyances at each source are greater or equal to as
required in model (257), i.e., if Q1 ≥ 10 and Q2 ≥ 11 then model (258) gives the
same result as model (257).

Now to demonstrate model (259), consider the same data as given in Tables 40
and 41 and suppose availability of vehicles of each type conveyances at each
sources are V 1

1 = 5, V 2
1 = 3, V 1

2 = 4, V 2
2 = 6, V 1

3 = 4, V 2
3 = 5.

Then solving the model (259) we have the solution as presented in Table 44.

Models with Unit Transportation and Additional Costs as Rough
Variables: Consider the model (257) with three sources (i = 1, 2, 3), three
destinations (j = 1, 2, 3), two types of conveyances (k = 1, 2). The unit trans-
portation costs are rough variables as given in Tables 45 and 46.

The availabilities at each sources, demands of each destinations and capacity
of single vehicle of each type of conveyances are same as in Table 41.

Table 40. Unit transportation costs cijk

i \ j 1 2 3 1 2 3

1 8 11 12 12 9 13

2 8 10 7 11 8 10

3 9 14 9 12 10 9

k 1 2

Table 41. Availabilities, demands and vehicle capacity.

a1 = 25.6, a2 = 16.8, a3 = 32.4, b1 = 14.8, b2 = 26.8, b3 = 23.8,

q1 = 2.48, q2 = 3.78

Table 42. Optimum results for model (257)

x111 = 14.8, x121 = 2.44, x221 = 1.68, x331 = 4.96, x122 = 7.56,

x222 = 15.12, x332 = 18.84, Min Z = 572.936, z111 = 6, z121 = 1, z221 = 1,

z331 = 2, z122 = 2, z222 = 4, z332 = 5
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Table 43. Optimum results for model (258)

x111 = 14.8, x121 = 2.48, x221 = 1.64, x231 = 3.82, x331 = 4.86, x122 = 7.56,

x222 = 11.34, x322 = 3.78, x332 = 15.12, Min Z = 579.536, z111 = 6, z121 = 1,

z221 = 1, z231 = 2, z331 = 2, z122 = 2, z222 = 3, z322 = 1, z332 = 4

Table 44. Optimum results for model (259)

x111 = 9.92, x121 = 1.64, x221 = 2.48, x231 = 2.48, x311 = 4.88, x331 = 2.48,

x122 = 11.34, x222 = 11.34, x332 = 18.9, Min Z = 576.54, z111 = 4, z121 = 1,

z221 = 1, z231 = 1, z311 = 2, z331 = 1, z122 = 3, z222 = 3, z332 = 5

Table 45. Unit transportation costs cij1

i \ j 1 2 3

1 ([7,9],[6,10]) ([10,11],[8,12]) ([11,13],[10,12])

2 ([6,8],[5,9]) ([9,10],[7,11]) ([5,7],[4,8])

3 ([8,10],[7,11]) ([13,15],[12,16]) ([8,10],[7,11])

Table 46. Unit transportation costs cij2

i \ j 1 2 3

1 ([10,12],[9,13]) ([8,10],[7,11]) ([12,14],[11,15])

2 ([11,12],[9,13]) ([6,8],[5,9]) ([9,10],[7,11])

3 ([11,12],[10,13]) ([10,11],[9,12]) ([8,9],[7,11])

For convenience suppose additional costs for unit deficit amount is uijk =
0.8 · cijk.

Solution Using Rough CCP: Now constructing rough CCP as (261)–(265)
with trust level α = 0.9, we have corresponding deterministic form using (267)
as follows:

Min Z ′

s.t.

3∑

j=1

2∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3∑

i=1

2∑

k=1

xijk ≥ bj , j = 1, 2, 3, (273)

xijk ≤ zijk · qk, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2,
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xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

where,

Z′ =

⎧
⎪⎨

⎪⎩

−0.8Z1 + 1.8Z4, if 0.9 ≤ ((Z2 − Z1)/2(Z4 − Z1));
0.2Z1 + 0.8Z4, if 0.9 ≥ ((Z3 + Z4 − 2Z1)/2(Z4 − Z1));
Z1(Z3−Z2)+Z2(Z4−Z1)+1.8(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.

Zr =
3∑

i=1

3∑

j=1

2∑

k=1

(cr
ijk xijk + εr

ijk), r = 1, 2, 3, 4,

εr
ijk = 0.8cr

ijk(zijk · qk − xijk), r = 1, 2, 3, 4.
Solving this problem we get the solution presented in Table 47.

Table 47. Optimum results for model (257) with transportation costs as rough vari-
ables using rough CCP

x111 = 12.4, x121 = 4.87, x231 = 2.43, x311 = 2.4, x331 = 2.46, x122 = 7.56,

x222 = 14.36, x332 = 18.9, Min Z′ = 630.2688, z111 = 5, z121 = 2, z231 = 1,

z311 = 1, z331 = 1, z122 = 2, z222 = 4, z332 = 5

From this solution we conclude that the objective value will less or equal to
630.2688 with trust level at least 0.9.

We now construct rough CCP as (266) with trust level α = 0.9 and then we
have corresponding deterministic form using (268) as follows:

Min Z ′′

s.t.

3∑

j=1

2∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3∑

i=1

2∑

k=1

xijk ≥ bj , j = 1, 2, 3, (274)

xijk ≤ zijk · qk, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2,

xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

where,

Z′′ =

⎧
⎪⎨

⎪⎩

−0.8Z4 + 1.8Z1, if 0.9 ≤ ((Z4 − Z3)/2(Z4 − Z1));
0.2Z4 + 0.8Z1, if 0.9 ≥ ((2Z4 − Z2 − Z1)/2(Z4 − Z1));
Z4(Z3−Z2)+Z3(Z4−Z1)−1.8(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.
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Solving this we get MinZ ′′ = 471.427. So the objective value will greater or
equal to 471.427 with trust level at least 0.9.

As we know for 0.5 < α ≤ 1, Zinf (α) ≥ Zsup(α), here our results (Z ′ > Z ′′)
shows this truth. Finally we can conclude that the optimum objective value lie
within the range [471.427, 630.2688] with trust level at least 0.9.

Table 48. Optimum results using rough expected value

x111 = 12.4, x121 = 4.86, x231 = 2.42, x311 = 2.4, x331 = 2.48, x122 = 7.56,

x222 = 14.38, x332 = 18.9, Min E[Z] = 547.358., z111 = 5, z121 = 2, z231 = 1,

z311 = 1, z331 = 1, z122 = 2, z222 = 4, z332 = 5

Solution Using Rough Expected Value: To solve the current problem using
rough expected value, we use the rough expected value model (269). Then using
its deterministic form (270) and solving it we get the solution presented in
Table 48.

So we see that the expected objective value lie within the range of objective
value as obtained by rough CCP.

Solution Using Rough Dependent CCP: The objective of this model is
that for a predetermined maximal objective value find a solution with maximum
satisfied trust level so that the optimum objective value is not more than that
predetermined value. For the current problem, suppose the decision maker sat-
isfied with a transportation plan for which the objective value is not exceed 600.
So construct the problem as (271) with Z̄ = 600. Then using (272) we find the
maximum trust level Max α = α′ = 0.843 and the corresponding transportation
planing is presented in Table 49.

Table 49. Optimum results using rough dependent CCP

x111 = 12.4, x121 = 4.895, x231 = 2.455, x311 = 2.4, x331 = 2.444, x122 = 7.56,

x222 = 14.344,x332 = 18.9, z111 = 5, z121 = 2, z231 = 1,

z311 = 1, z331 = 1, z122 = 2, z222 = 4, z332 = 5

6.5 Overall Conclusion

This section presents solid transportation model for the transportation system
where full vehicles are used for transportation so that unit transportation costs
are determined according to full utilization of the vehicle capacity. To deal with



356 P. Kundu

different situations like availability of each type of conveyances, whether the
available vehicles at one source can be utilized at another source or not, this
presented model is extended to different models with different constraints. STP
with different types of uncertain variables such as fuzzy, random, fuzzy random
are discussed by many researchers, but STP with rough variables is not discussed
before. In this paper we only assume the unit transportation costs as rough
variables, the STP with all the parameters, i.e., costs, availabilities, demands,
conveyance capacities as rough variables may be taken as a future work.

7 Overall Contribution and Future Extension

In this thesis, we have discussed several useful transportation models in different
uncertain (e.g. fuzzy, type-2 fuzzy, rough, linguistic) environments. The thesis
broadly addresses the following major sub-topics, namely:

– Transportation modeling with fuzzy parameters.
– Transportation modeling with type-2 fuzzy parameters.
– Transportation modeling with rough parameters.
– Transportation mode selection with linguistic information.

In Sect. 3 of this Article, a multi-objective solid transportation problem with
type-1 fuzzy parameters is formulated and solved. In this problem, a fuzzy budget
amount for each destination is imposed so that total transportation cost should
not exceed that budget amount. In the budget constraint, both left and right
sides have fuzzy quantity. To deal with such type of constraints, a deterministic
form is derived by the idea of chance-constraint. Here, we have also formulated a
general model (MOMISTP) to deal with transportation problem with multiple
objectives and several types of goods to be transported. In this problem the
corresponding parameters are taken as fuzzy numbers. A defuzzification process
to find crisp values of corresponding fuzzy resources, demands and conveyance
capacities is introduced so that the conditions that total available resources
and total conveyance capacities are greater than or equal to the total demands
must be satisfied. We have discussed that some well established methods like
expected value model may not yield any feasible solution for the problem having
constraints with such type of conditional relations. The idea of minimum of fuzzy
numbers is also applied to the fuzzy objective function and we obtained fuzzy
solution for the objective function with coefficients as fuzzy numbers.

For high computational complexity, there are very few methods available to
deal with type-2 fuzzy set. In Sect. 4, we have proposed a defuzzification method
of type-2 fuzzy variables. We have also introduced an interval approximation
method of continuous type-2 fuzzy variables. For the first time, different trans-
portation problems with type-2 fuzzy parameters are formulated and solved.
Defuzzification method is applied to solve a FCTP with type-2 fuzzy cost para-
meters. A chance-constrained programming model is formulated using gener-
alized credibility measure to solve a FCTP with type-2 fuzzy parameters. A
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MISTP having restriction on conveyances is formulated with type-2 fuzzy para-
meters. A deterministic form for the problem is obtained by applying interval
analysis using the interval approximations of continuous type-2 fuzzy variables.

In Sect. 5, we have proposed a computationally efficient fuzzy MCGDM
method based on a ranking function which is defined based on credibility measure
to rank a fuzzy number over another fuzzy number. The proposed FMCGDM
method is successfully applied to transportation mode selection problem with
linguistic terms generated by fuzzy numbers. We have also proposed a compu-
tationally efficient fuzzy MCGDM method based on a ranking interval type-2
fuzzy variables. This proposed FMCGDM method is applied to a transportation
mode selection problem where linguistic ratings of the alternatives and criteria
weights are represented by IT2 FVs.

In remaining part of the this Article (Sect. 6), a practical solid transportation
model is formulated considering per trip capacity for each type of conveyances.
This is applicable for the system in which full vehicles, e.g. trucks, rail coaches
are to be booked for transportation of products so that transportation cost is
determined on the basis of full conveyances. We have represented fluctuating cost
parameters by rough variables. To solve the problem with rough cost parameters,
we have used rough chance constrained programming model, rough expected
value model and rough dependent-chance programming model developed on the
basis of trust measure theory.

Future Extension: Improvement/development in existing transportation mod-
els is a major issue in transportation research. To overcome different types of
increased complexities and new challenges model should be adaptively changed
and solution strategies should be developed. The transportation models pre-
sented in the thesis also can be extended to form different types of realistic
models. For example, for transportation of several types of items, optimal distri-
bution of available vehicle capacity among the items is a very important issue. In
such case, space constraints can be implemented considering amount of goods,
preferability of goods to be transported, availability of vehicle capacity, etc. For
transportation of highly breakable items (e.g. glass-goods, toys, ceramic goods,
etc.), the breakability issue should be considered. Also safety of transportation
of goods through a particular route (specially in roadways due to land slide,
insurgency, robbery, bad road, etc.) is also very important in the transportation
system. So consideration of safety factor of the routes may be taken into account
as an additional objective or a constraint.

In Sect. 4, the interval approximation method of continuous type-2 fuzzy vari-
ables is illustrated with type-2 triangular fuzzy variable. This interval approx-
imation method can be applied to other T2 FVs such as type-2 normal fuzzy
variable, type-2 gamma fuzzy variable, etc.

In Sect. 6, the solid transportation model is formulated with only the unit
transportation costs as rough variables, the STP with all the parameters, i.e.,
costs, availabilities, demands, conveyance capacities as rough variables may be
taken as a future work.
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The models formulated in this dissertation can be formulated and solved
in fuzzy random, random fuzzy, fuzzy rough and bifuzzy environments with
unit transportation costs, sources, demands, conveyance capacities, etc. as the
corresponding imprecise parameters/variables.
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