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Preface

Volume XIX of the Transactions on Rough Sets was inspired by the 2012 Workshop
on Rough Set Applications (RSA 2012) organized within the 7th International Sym-
posium on Advances in Artificial Intelligence and Applications (AAIA 2012), held as a
part of the 2012 Federated Conference on Computer Science and Information Systems
(FedCSIS 2012) in Wrocław, Poland, during September 9–12, 2012. The volume
consists of two parts. The first part gathers seven regular contributions, which are
extended and re-reviewed versions of the papers originally presented at the afore
mentioned symposium. The second part contains three contributions in the category of
short surveys and monographs. We believe that this way we achieved a well-balanced
content reflecting the current trends and advances in both the foundations and practical
applications of rough sets.

The paper co-authored by Tuan-Fang Fan, Churn-Jung Liau, and Duen-Ren Liu
introduces a new uniform theoretical framework for rough approximations based on
generalized quantifiers. The paper co-authored by Ivo Düntsch and Günther Gediga
proposes a parameter-free and monotonic alternative to the parametric variable precision
model developed within the theory of rough sets. The paper co-authored by Mohammad
Azad, Igor Chikalov, Mikhail Moshkov, and Beata Zielosko compares three approaches
to define and search for superreducts in inconsistent decision tables. The paper
co-authored by Long Giang Nguyen and Hung Son Nguyen outlines an alternative
method of eliminating the attributes that do not occur in any reducts of a given decision
table. The paper by Beata Zielosko utilizes the tools of dynamic programming to extract
inexact decision rules optimized with respect to their length, coverage, and confidence.
The paper by Krzysztof Pancerz discusses how to incorporate information about
semantic relations between decision classes to better model the accuracy of rough
approximations. The paper co-authored by Jan G. Bazan, Sylwia Buregwa-Czuma,
Przemysław W. Pardel, Stanisława Bazan-Socha, Barbara Sokołowska, and Sylwia
Dziedzina describes the rough-set-based classification method for predicting coronary
stenosis demanding revascularization for patients diagnosed with stable coronary heart
disease. The survey co-authored by Pulak Samanta and Mihir K. Chakraborty sum-
marizes correspondences between different extensions of the theory of rough sets and
modal logic systems. The monograph co-authored by Gloria Virginia and Hung Son
Nguyen illustrates how to use the tolerance rough set model to conduct semantic text
retrieval for the Indonesian language. The monograph authored by Pradip Kundu shows
how to formulate and solve transportation problems in uncertain environments modeled
by means of fuzzy sets and rough sets.

The editors would like to acknowledge the authors of all submitted papers and
anonymous reviewers for their excellent work and insightful comments. The guest
editors are grateful to James F. Peters and Andrzej Skowron for agreeing to include
extended post-conference materials in the series of the Transactions on Rough Sets.
The editors and the authors extend their gratitude to Alfred Hofmann and the whole



LNCS team at Springer for their support in making this volume possible. Special
thanks go to Sheela Ramanna and Marcin Szczuka for their help in the process of
collecting, tracking, and editing the articles.

The Editors-in-Chief were supported by the Polish National Science Centre
(NCN) grants DEC-2012/05/B/ST6/03215 and DEC-2013/09/B/ST6/01568, the Polish
National Centre for Research and Development (NCBiR) grants O ROB/0010/03/001
and PBS2/B9/20/2013, as well as the Natural Sciences and Engineering Research
Council of Canada (NSERC) discovery grant 185986.

April 2015 Dominik Ślȩzak
Jan G. Bazan

Hung Son Nguyen
James F. Peters

Andrzej Skowron
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Abstract. The rough set theory provides an effective tool for decision
analysis in the way of extracting decision rules from information sys-
tems. The rule induction process is based on the definitions of lower and
upper approximations of the decision class. The condition attributes of
the information system constitute an indiscernibility relation on the uni-
verse of objects. An object is in the lower approximation of the decision
class if all objects indiscernible with it are in the decision class and it is
in the upper approximation of the decision class if some objects indis-
cernible with it are in the decision class. Various generalizations of rough
set theory have been proposed to enhance the capability of the theory.
For example, variable precision rough set theory is used to improve the
robustness of rough set analysis and fuzzy rough set approach is proposed
to deal with vague information. In this paper, we present a uniform
framework for different variants of rough set theory by using general-
ized quantifiers. In the framework, the lower and upper approximations
of classical rough set theory are defined with universal and existential
quantifiers respectively, whereas variable precision rough approximations
correspond to probability quantifiers. Moreover, fuzzy rough set approx-
imations can be defined by using different fuzzy quantifiers. We show
that the framework can enhance the expressive power of the decision
rules induced by rough set-based decision analysis.

Keywords: Fuzzy set · Rough set · Variable precision rough set · Fuzzy
cardinality

1 Introduction

The rough set theory proposed by [2] provides an effective tool for extracting
knowledge from information systems. The rule induction process is based on the

A preliminary version of this paper was published in [1].

c© Springer-Verlag Berlin Heidelberg 2015
J. Peters et al. (Eds.): TRS XIX, LNCS 8988, pp. 1–16, 2015.
DOI: 10.1007/978-3-662-47815-8 1



2 T.-F. Fan et al.

definitions of lower and upper approximations of the decision class. The condition
attributes of the information system constitute an indiscernibility relation on the
universe of objects. An object is in the lower approximation of the decision class
if all objects indiscernible with it are in the decision class and it is in the upper
approximation of the decision class if some objects indiscernible with it are in
the decision class.

A strong assumption about information systems is that each object takes
exactly one value with respect to an attribute. However, in practice, we may only
have incomplete information about the values of an object’s attributes. Thus,
more general information systems have been introduced to represent incomplete
information ([3–7]), whereas fuzzy rough set theory proposed in [8] has been
considered as an important mathematical tool to deal with such information
systems.

Another limitation of rough set analysis is its sensitivity to noisy information,
because a mistakenly labeled sample may deteriorate the quality of approxima-
tions significantly. The variable precision rough set (VPRS) theory introduced
in [9,10] is a main approach to improve the robustness of rough set analysis.
In VPRS, classification rules can be induced even though not satisfied by all
objects. It is only required that the proportion of objects satisfying the rules
must be above a threshold called a precision level. The idea of error-tolerance
by variable precision has been also applied to fuzzy rough set theory [11–17].
In particular, Zadeh’s fuzzy quantifiers [18] is used to define lower and upper
approximations in the vaguely quantified rough set (VQRS) theory proposed
in [11].

In this paper, we extend VQRS to a uniform framework for rough approxi-
mations based on generalized quantifiers. The theory of generalized quantifiers
(TGQ) has been extensively studied in linguistics and logic [19–24] and different
kinds of fuzzy quantifiers have been also formalized by using TGQ [18,25,26].
In addition to the well-known results on the correspondence between classical
quantifiers and rough approximations, we also propose new models of variable
precision fuzzy rough set (VPFRS) as instances of the uniform framework. The
new models are developed by using the notion of fuzzy cardinality introduced in
[27]. The proportion of objects satisfying a rule is modeled as a relative fuzzy
cardinality in our approach. Because a fuzzy cardinality may be a scalar, a fuzzy
number, or a random variable, we can induce three types of models depending
on what kinds of fuzzy cardinalities are taken as the precision levels.

The remainder of the paper is organized as follows. In Sect. 2, we review
several variants of rough set theory and present a uniform framework for rough
approximations based on generalized quantifiers. In Sect. 3, we review the notion
of fuzzy cardinality. In Sect. 4, we show that the framework can accommodate
different existing variants of rough approximations and introduce three types of
VPFRS models based on the relative cardinalities of fuzzy sets as instances of
our uniform framework. Section 5 contains some concluding remarks.
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2 A Uniform Framework for Rough Set Theory

2.1 Classical Rough Set

The basic construct of rough set theory is an approximationspace, which is
defined as a pair (U,R), where U is a finite universe and R ⊆ U × U is an
equivalence relation on U . We write an equivalence class of R as [x]R if it contains
the element x. For any subset X of the universe, the lower approximation and
upper approximation of X are defined as follows:

RX = {x ∈ U | ∀y((x, y) ∈ R → y ∈ X)}, (1)

RX = {x ∈ U | ∃y((x, y) ∈ R ∧ y ∈ X)}. (2)

This definition of rough set is called the logic-based definition [11].
An alternative way to define rough sets is to use the rough membership func-

tion [28]. Given an approximation space (U,R) and a subset X ⊆ U , the rough
membership function νR

X : U → [0, 1] is defined as

νR
X(x) =

|[x]R ∩ X|
|[x]R| . (3)

The value νR
X(x) is interpreted as the degree that x belongs to X in view of

knowledge about x expressed by the indiscernibility relation R or the degree to
which the R-equivalence class [x]R is included in the set X. Then, the lower
approximation and upper approximation of X are defined as follows:

RX = {x ∈ U | νR
X(x) = 1}, (4)

RX = {x ∈ U | νR
X(x) > 0}. (5)

This definition of rough set is called the frequency-based definition [11].
Although an approximation space is an abstract structure used to represent

classification knowledge, it can easily be derived from a concrete information
system. Pawlak ([29]) defined an information system1 as a tuple T = (U, A, {Vi |
i ∈ A}, {fi | i ∈ A}), where U is a nonempty finite set, called the universe; A is
a nonempty finite set of primitive attributes; for each i ∈ A, Vi is the domain of
values of i; and for each i ∈ A, fi : U → Vi is a total function. In decision analysis,
we assume the set of attributes is partitioned into {d}∪(A−{d}), where d is called
the decision attribute, and the remaining attributes in C = A − {d} are called
condition attributes. Given a subset of attributes B, the indiscernibility relation
with respect to B is defined as ind(B) = {(x, y) | x, y ∈ U, fi(x) = fi(y)∀i ∈ B}.
Obviously, for each B ⊆ A, (U, ind(B)) is an approximation space.

1 Also called knowledge representation systems, data tables, or attribute-value sys-
tems.
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2.2 Fuzzy Rough Set

In [8], it is shown that fuzzy sets and rough sets are essentially different but
complementary for the modeling of uncertainty. Despite the essential difference
between fuzzy sets and rough sets, there are approaches to incorporate the notion
of fuzzy sets into rough set models [8]. One approach is to consider the lower
and upper approximations of a fuzzy concept in an approximation space, which
results in the rough fuzzy set . The other approach is to consider the approxima-
tions of a crisp or fuzzy concept in a fuzzy approximation space, which is defined
as a pair (U,R), where R is a fuzzy binary relation on U , i.e., R : U ×U → [0, 1].
This leads to the fuzzy rough set . Let (U,R) be a fuzzy approximation space and
let X be a fuzzy subset of U with membership function μX : U → [0, 1]. Then,
RX, RX : U → [0, 1] are defined by

RX(x) = inf
y∈U

R(x, y) →⊗ μX(y), (6)

RX(x) = sup
y∈U

R(x, y) ⊗ μX(y), (7)

where ⊗ : [0, 1] × [0, 1] → [0, 1] is a t-norm and →⊗: [0, 1] × [0, 1] → [0, 1]
is an implication with respect to ⊗. There are several different definitions of
implication functions →⊗ for a given t-norm, including the S-implication defined
by a →⊗ b = 1−(a⊗(1−b)) and the R-implication defined by a →⊗ b = sup{c |
a ⊗ c ≤ b}.

2.3 Variable Precision Rough Set

By using the frequency-based definition of the rough set, an object x belongs
to the lower approximation of a set X if its rough membership value is 1, i.e.,
x ∈ RX iff νR

X(x) = 1. However, the requirement seems overly strict since
in the noisy environment, it may be difficult to require an R-equivalence class
[x]R is totally included in a set X. The purpose of variable precision rough set
(VPRS) theory is to address the issue by relaxing the strict requirement of total
inclusion to partial inclusion. Technically, this is achieved by two parameters
called precision levels. Let l and u be real numbers such that 0 ≤ l < u ≤ 1.
Then, the u-lower approximation and the l-upper approximation of X are defined
as follows:

RuX = {x ∈ U | νR
X(x) ≥ u}, (8)

RlX = {x ∈ U | νR
X(x) > l}. (9)

2.4 Bayesian Rough Set

Although VPRS can alleviate the effect of noisy data, it is not clear how to
choose the parameter u and l appropriately. In [30,31], the Bayesian rough set
(BRS) model is proposed to overcome the difficulty. Instead of using a fixed but
arbitrarily given parameter, BRS sets the precision level as the prior probability
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of the occurrence of the decision class in the general population. Specifically, the
positive, negative and boundary regions of X in BRS are defined as follows:

POS∗
R(X) = {x ∈ U | νR

X(x) >
|X|
|U | }, (10)

NEG∗
R(X) = {x ∈ U | νR

X(x) <
|X|
|U | }, (11)

BND∗
R(X) = {x ∈ U | νR

X(x) =
|X|
|U | }, (12)

where |X|
|U | can be seen as the prior probability of an arbitrarily chosen object

in the universe belonging to X, whereas the rough membership value νR
X(x) is

used to denote the conditional probabilities of an object indiscernible with x
belonging to X. Thus, the BRS positive region defines an area of the universe
where the probability of X is higher than the prior probability. It is an area
of certainty improvement or gain with respect to predicting the occurrence of
X. On the other hand, the BRS negative region defines an area of the universe
where the probability of X is lower than the prior probability. It is an area
of certainty loss with respect to predicting the occurrence of X. As usual, the
lower approximation R∗X is identified with the positive region and the upper
approximation R

∗
X is defined as the complement of the negative region (or the

union of the positive and the boundary regions).

2.5 Vaguely Quantified Rough Set

The VPRS definitions for upper and lower approximation can be softened by
introducing vague quantifiers, to express that x belongs to the upper approxi-
mation of X to the extent that some elements of [x]R are in X, and x belongs to
the lower approximation of X to the extent that most elements of [x]R are in X.
The resultant model is called the vaguely quantified rough set (VQRS) [11]. In
VQRS, the lower and upper approximations of a subset X are defined as fuzzy
subsets with the following membership functions:

Rqu
X(x) = qu(νR

X(x)), (13)

Rql
X(x) = ql(νR

X(x)), (14)

where ql and qu are two vague quantifiers which are defined as mappings from
[0, 1] to [0, 1] according to Zadeh’s concept [18].

2.6 Generalized Quantifier-Based Rough Set

The notion of VQRS can be further extended to a uniform framework for rough
approximations if we consider the vague quantifiers as simply instances of gen-
eralized quantifiers. The theory of generalized quantifiers (TGQ) were originally
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introduced as generalizations of the standard quantifiers of modern logic, ∀ and
∃ [19–24]. Since the invention of logic by Aristotle, the study of quantification
has been the main part of the discipline. The syllogistics can be seen as a formal
study of the meaning of the four basic quantifier expressions “all”, “no”, “some”,
“not all”, and of their properties. In 1870s, Frege introduced the language of
predicate logic, with sentential connectives, identity, and the variable-binding
operators ∀ and ∃, which then become the standard quantifiers of modern logic.
His formulation of a quantifier as a second-order relation, or, as he called it,
a second level concept (Begriff zweiter Stufe) constitutes the foundation of the
TGQ except that Frege did not have the idea of an interpretation or model,
which we now see as a universe that the quantifiers range over [24].

The modern TGQ was first formulated by Mostowski [21] and then fur-
ther generalized by Lindström [20]. Formally, a generalized quantifier Q of the
type 〈n1, n2, · · · , nk〉 assigns to each non-empty universe U a k-ary relation QU

between subsets of Un1 , . . . , Unk . For a fixed universe U , we usually abuse the
notation Q to denote the relation QU . The generalized quantifier Q is monadic
if all ni = 1 and polyadic otherwise. For our purpose, we need to consider only
quantifiers of type 〈1, 1〉. Thus, hereafter, we will not specify the types of the gen-
eralized quantifiers and assume that their types are all 〈1, 1〉. However, to take
fuzzy sets into consideration, we have to further generalize the notion of general-
ized quantifiers. Therefore, in our context of applications, we define a (fuzzy) gen-
eralized quantifier Q on the universe U as a mapping Q : ˜P(U) × ˜P(U) → [0, 1],
where ˜P(U) denote the class of fuzzy subsets of U .

Based on the notion of generalized quantifier, we can now define a uniform
framework for rough set theory. We call the framework generalized quantifier-
based rough set theory(GQRS). By considering the Pawlak’s approximation space
as a special case of the fuzzy approximation space, our framework is defined
simply for the general case of a fuzzy approximation space. Let (U,R) be a fuzzy
approximation space and Q be a generalized quantifier on U . Then, in GQRS,
the Q-approximation of a fuzzy subset X ∈ ˜P(U) is a fuzzy subset RQX with
the following membership function:

RQX(x) = Q(Rx,X) (15)

for x ∈ U , where Rx is a fuzzy subset with membership function μRx
(u) =

R(x, u) for u ∈ U . In GQRS, we do not have to distinguish lower and upper
approximations any more because they are simply different instances of the Q-
approximations.

Both the original theories of Mostowski and Lindström impose the condition
of isomorphism closure on generalized quantifiers, which means that a generalized
quantifier should not distinguish isomorphic models. Although not all natural
language quantifiers satisfy the condition, logic is supposed to be topic-neutral,
so the condition is almost always imposed for quantifiers in logical languages.
An interesting implication of the condition for a monadic quantifier Q is that the
value Q(X1, · · · ,Xk) depends only on the cardinalities of the arguments Xi and
their Boolean combinations. Monadic quantifiers satisfying isomorphism closure
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are called quantitative quantifiers and play an important role in the evaluation of
quantified statements in [25]. Since most variants of rough set theory can be seen
as instances of GQRS with quantitative quantifiers, we will restrict our attention
to this class of quantifiers. However, because our quantifiers are applied to fuzzy
sets, we have to review the notions of fuzzy cardinalities before we can consider
real instances of GQRS.

3 Fuzzy Cardinality

The notion of fuzzy cardinality is closely related with generalized quantifiers
because it is normally used to evaluate quantified sentences in fuzzy logic. For
example, to evaluate the truth degree of the sentence “Most students are young,”
we have to determine if the cardinality of the set of young students satisfies
the interpretation of the fuzzy quantifier “most.” In applications, two kinds
of cardinality are considered: absolute cardinality , which measures the num-
ber of elements in a set; and relative cardinality , which measures the percent-
age of elements of one set (called the referential set) that are also present in
another set ([27]).

Several approaches for measuring the cardinality of a fuzzy set have been
proposed in the literature. The approaches, which extend the classic approach in
different ways, can be classified into two categories: scalar cardinality approaches
and fuzzy cardinality approaches. The former measure the cardinality of a fuzzy
set by means of a scalar value, either an integer or a real value; whereas the
latter assume that the cardinality of a fuzzy set is just another fuzzy set over
the non-negative numbers ([27]). The most simple scalar cardinality of a fuzzy
set is its power (also called the Σ-count), which is defined as the summation of
the membership degrees of all elements ([32]). Formally, for a given fuzzy subset
F on the universe U , the Σ-count of F is defined as

Σ�(F ) =
∑

x∈U

μF (x). (16)

The relative cardinality of a fuzzy set G with respect to another fuzzy set F is
then defined as ([33]):

Σ�(G/F ) =
Σ�(F ∩ G)

Σ�(F )
. (17)

Subsequently, [34] proposed a fuzzy subset Z(F ) of N as the measure of the
absolute cardinality of a fuzzy set F such that the membership degree of a
natural number k ∈ N in Z(F ) is defined as

Z(F, k) = sup{α | |Fα| = k}, (18)

where Fα = {x ∈ U | μF (x) ≥ α} is the α-cut of F . In addition, a fuzzy
multiset Z(G/F ) over [0, 1] is introduced in ([18]) to measure the fuzzy relative
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cardinality of G with respect to F . The membership function of Z(G/F ), written
in the standard integral notation, is defined as

Z(G/F ) =
∑

α∈Λ(F )∪Λ(G)

α/
|Fα ∩ Gα|

|Fα| , (19)

where Λ(F ) and Λ(G) are the level sets of F and G respectively, i.e., Λ(F ) =
{μF (x) | x ∈ U}. Delgado et al. ([27]) proposed a more compact representation
of Z(G/F ) by transforming the fuzzy multiset into a fuzzy subset of rational
numbers in [0, 1]. The representation is formulated as follows:

ES(G/F, q) = sup{α ∈ Λ(G/F ) | |(F ∩ G)α|
|Fα| = q} (20)

for any q ∈ Q ∩ [0, 1], where Λ(G/F ) = Λ(F ∩ G) ∪ Λ(F ).
In the context of a finite universe U , Delgado et al. ([27]) proposed a family of

fuzzy measures E for absolute cardinalities based on the evaluation of fuzzy logic
sentences. To define the measures, the possibility of a fuzzy set F containing
at least k elements is identified with the truth degree of the fuzzy sentence
∃X ⊆ U(|X| = k ∧ X ⊆ F ), which can be formally defined as

L(F, k) =

⎧

⎨

⎩

1, if k = 0,
0, if k > |U |,
⊕

X⊆kU

⊗

x∈X μF (x), if 1 ≤ k ≤ |U |,
(21)

where X ⊆k U denotes that X is any k-element subset of U and ⊕ is the
corresponding s-norm of the t-norm ⊗. Then, the possibility that F contains
exactly k elements is formulated as follows:

E(F, k) = L(F, k) ⊗ ¬L(F, k + 1), (22)

where ⊗ is any t-norm (not necessarily the same as that used in the definition
of L(F, k)), and ¬ stands for a fuzzy negation. Each member of the family E
is determined by the choice of s-norm, t-norms and negation in (21) and (22).
Using max and min in (21) and standard negation as well as Lukasiewicz’s t-
norm max(0, a + b − 1) in (22), a probabilistic measure of absolute cardinality
ED defined as

ED(F, k) = αk − αk+1 (23)

is shown to be a member of the family E , where αk is the kth largest value of
the multiset {μF (x) | x ∈ U} for 1 ≤ k ≤ |U |, α0 = 1, and αk = 0 when k > |U |.
The relative version of ED is also defined as

ER(G/F, q) =
∑

i:
|(F ∩G)αi

|
|Fαi

| =q

(αi − αi+1) (24)

for any q ∈ Q ∩ [0, 1], where αi is the ith largest value of Λ(G/F ).
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4 Instances of the Uniform Framework

In this section, we consider several instances of GQRS by instantiating Q to
particular quantifiers. We show that the variants of rough set theory reviewed
above are all instances of GQRS and present three variable precision fuzzy rough
set models as new instances of GQRS.

4.1 Existing Instances: Variants of Rough Set Theory

A straightforward instance of Q-approximation is the instantiation of Q as the
universal and existential quantifiers in the classical predicate logic. When applied
to fuzzy sets, these quantifiers correspond to the degree of inclusion and the
degree of intersection between sets. Formally, the universal and the existential
quantifiers ∀ and ∃ : ˜P(U) × ˜P(U) → [0, 1] are defined by

∀(F, G) = inf
x∈U

μF (x) →⊗ μG(x) (25)

and
∃(F, G) = sup

x∈U
μF (x) ⊗ μG(x) (26)

respectively. Obviously, the lower and upper approximations in fuzzy rough set
theories are instances of Q-approximation for Q = ∀ and ∃ respectively.

Proposition 1. Let (U,R) be a fuzzy approximation space and X be a fuzzy
subset of U . Then,

1. R∀X = RX
2. R∃X = RX

As a corollary of the proposition, the result holds in the special case when (U,R)
is a Pawlak’s approximation space and X is a crisp subset of U .

It is also quite obvious that instantiating GQRS with proportional quanti-
fiers can lead to VPRS. The proportional quantifiers include “most”, “at least”,
“more than”, “many”, “almost all”, etc. and constitute an important subclass
of quantitative quantifiers [25]. Formally, a quantifier Q : ˜P(U) × ˜P(U) → [0, 1]
is called proportional if there exists a function f : [0, 1] → [0, 1] and c ∈ [0, 1]
such that

Q(F, G) =
{

f(Σ�(G/F )), if Σ�(F ) �= 0,
c, otherwise (27)

Let us define the proportional quantifiers (≥ u) (at least u ∗ 100%) and (> l)
(more than l ∗ 100%) with f in ([27]) being the two-valued functions

f≥u(r) =
{

1, if r ≥ u,
0, otherwise

and

f>l(r) =
{

1, if r > l,
0, otherwise

respectively. Then, we have the following proposition.
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Proposition 2. Let (U,R) be an approximation space and X be a subset of U .
Then,

1. R(≥u)X = RuX

2. R(>l)X = RlX

In an analogous way, the VQRS approximations are reformulated as instances
of Q-approximations. Specifically, we have the following proposition.

Proposition 3. Let qu and ql be two vague quantifiers in VQRS and let us
define proportional quantifiers Qu and Ql with f = qu and ql respectively. Then,

1. RQu
X = Rqu

X

2. RQl
X = Rql

X

To formulate BRS as an instance of GQRS, we have to introduce cardinal com-
paratives , which are quantifiers of type 〈1, 1, 1〉 that express a comparison of
two cardinalities sampled from two restriction arguments F, G and a common
scope argument H [25]. A typical example is “more than” in “More students
than teachers went to the ballgame” where F = “students”, G = “teachers”,
and H =“persons who went to the ballgame” [23]. The formal definition of the
quantifier Qmt : ˜P(U)3 → {0, 1} is as follows:

Qmt(F, G, H) = (Σ�(F ∩ H) > Σ�(G ∩ H)).

More generally, a quantifier Q : ˜P(U)3 → [0, 1] is called cardinal comparative if
there exists q : [0, |U |]2 → [0, 1] such that

Q(F, G, H) = q(Σ�(F ∩ H),Σ�(G ∩ H)).

Although a cardinal comparative is of type 〈1, 1, 1〉, it is definable in terms of type
〈1, 1〉 quantifiers [23]. In fact, most monadic quantifiers are definable in terms of
〈1, 1〉 quantifiers except the one like “proportionately more than”, which typically
occurs in sentence like “Proportionately more students than teachers went to the
ballgame” [23]. Formally, we can define the quantifier Qpmt : ˜P(U)3 → {0, 1} as
follows:

Qpmt(F, G, H) = ((Σ�(F ) > 0) ∧ (Σ�(G) > 0) ∧ (Σ�(H/F ) > Σ�(H/G)).

Analogously, we can define Qplt (“proportionately less than”) and Qpama (“pro-
portionately as many as”) by replacing Σ�(H/F ) > Σ�(H/G) in the definition of
Qpmt with Σ�(H/F ) < Σ�(H/G) and Σ�(H/F ) = Σ�(H/G) respectively. While
Qpmt, Qplt, and Qpama are not definable in terms of type 〈1, 1〉 quantifiers, they
can be reduced to type 〈1, 1〉 quantifiers if one argument of these quantifiers is
fixed. In particular, we can define a type 〈1, 1〉 quantifiers Q∗ from a type 〈1, 1, 1〉
quantifier Q by Q∗(F, G) = Q(F, U, G), where U is the universe. Then, we have
the following proposition.
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Proposition 4. Let (U,R) be an approximation space and X be a subset of U .
Then,

1. RQ∗
pmt

X = POS∗
R(X),

2. RQ∗
plt

X = NEG∗
R(X),

3. RQ∗
pama

X = BND∗
R(X)

4.2 New Instances: Variable Precision Fuzzy Rough Set

The main feature of VPRS is to allow objects that partially violate the indis-
cernibility principle. For example, if an object belongs to the lower approxi-
mation of a set, it is not necessary that all objects that are indiscernible with
the object belong to the target set. Instead, the only requirement for an object
to be included in the lower approximation of a target set is that a sufficiently
large portion of the object’s indiscernibility class belongs to the target set. From
the viewpoint of the logic-based definition, this amounts to relax the universal
quantifier in (1) and strengthen the existential quantifier in (2) to a propor-
tional quantifier determined by u and l respectively. On the other hand, in the
frequency-based definition, the lower approximation and the upper approxima-
tion of X correspond to the 1-cut and strict 0-cut of the rough membership
function respectively2. Therefore, from the viewpoint of the frequency-based
definition, VPRS simply decreases the cutting point from 1 to u for the lower
approximation and increases the cutting point from 0 to l for the upper approx-
imation.

Since the logic-based definition and frequency-based definition are equiva-
lent for classical rough set, the changes of quantifiers or cutting points lead to
the same VPRS model. However, for the fuzzy rough set, the situation is quite
different. The definition of fuzzy rough approximations in (6) and (7) is essen-
tially a generalization of the logic-based definition of the classical rough set. By
using the notion of relative cardinality, we can now present the frequency-based
definition of fuzzy rough set.

There have been several VPFRS models that are derived from modifying the
logic-based definition of the fuzzy rough set [12–17]. However, the frequency-
based approach to VPFRS remains largely unexplored except the vaguely quan-
tified fuzzy rough set (VQFRS) approach [11]. As in the case of VQRS, the main
idea of VQFRS is that the membership degree of an object in the lower and upper
approximations of a target set is determined by applying fuzzy quantifiers, such
as “most” and “some”, to the object’s fuzzy-rough membership degree in the
target set. Nevertheless, the fuzzy-rough membership function used in VQFRS
is simply denoted by the Σ� relative cardinality. Therefore, the purpose of this
paper is to investigate frequency-based VPFRS models by using different rela-
tive cardinalities. In this regard, we can consider three kinds of generalizations
of VPRS to VPFRS.
2 Recall that the α-cut and the strict α-cut of a membership function ν : U → [0, 1]

are defined as {x ∈ U | ν(x) ≥ α} and {x ∈ U | ν(x) > α} respectively.
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First, if the scalar precision levels l ∈ [0, 0.5] and u ∈ (0.5, 1] are given, then
we use the relative Σ-count to measure if an object satisfies the partial precision
requirement. Thus, the u-lower approximation and the l-upper approximation
of X are defined as crisp subsets of U as follows:

RuX = {x ∈ U | Σ�(X/Rx) ≥ u}, (28)

RlX = {x ∈ U | Σ�(X/Rx) > l}. (29)

Note that we only apply the quantifiers (≥ u) and (> l) to crisp sets in Propo-
sition 2. Hence, the relative Σ-count Σ�(X/Rx) is reduced to the rough mem-
bership value νR

X(x). However, Proposition 2 still holds for fuzzy approximation
space according to the definition of VPFRS given here. In other words, it is
straightforward to view the new definition as an instance of the GQRS. In par-
ticular, this is a special case of VQFRS, which is also an instance of the GQRS.

Second, if the precision levels are fuzzy numbers, then we use the relative
cardinality ES to measure an object’s fuzzy-rough membership degree. Let l̃ :
[0, 0.5] ∩ Q → [0, 1] and ũ : (0.5, 1] ∩ Q → [0, 1] be two fuzzy numbers. Then, ũ-
lower approximation and the l̃-upper approximation of X are defined as follows:

RũX(x) = π(ES(X/Rx) ≥ ũ), (30)

Rl̃X(x) = π(ES(X/Rx) > l̃), (31)

In the above definition, by slightly abusing the notation defined in (20), the
relative cardinality ES is regarded as a fuzzy subset of Q ∩ [0, 1] (i.e., a
fuzzy number) with membership function μES(G/F )(q) = ES(G/F, q), and
π(·) returns the possibility of the comparison statement between two fuzzy
numbers based on the extension principle. For example, the possibility of a
fuzzy number l̃1 being greater than another fuzzy number l̃2 is defined as
π(l̃1 > l̃2) = supx1>x2

min(μl̃1
(x1), μl̃2

(x2)).
To formulate ũ-lower approximation and the l̃-upper approximation as

instance of Q-approximation, we can define two quantifiers (≥ ũ) and (> l̃)
as follows:

(≥ ũ)(F, G) = π(ES(G/F ) ≥ ũ), (32)

(> l̃)(F, G) = π(ES(G/F ) > l̃). (33)

sNote that these two quantifiers are no longer proportional quantifiers since they
do not depend on the relative Σ-count between F and G. Then, straightforwardly,
we have the following proposition.

Proposition 5. Let (U,R) be a fuzzy approximation space and X be a fuzzy
subset of U . Then,

1. R(≥ũ)X = RũX

2. R(>l̃)X = Rl̃X
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Third, if the precision levels are random variables, we can use the relative car-
dinality ER to represent an object’s fuzzy-rough membership degree. Let us
overload the notation ER(G/F ) to denote a [0, 1] ∩ Q-valued random variable
whose probability mass function is defined as Pr(ER(G/F ) = q) = ER(G/F, q)
for any fuzzy sets F and G, and let l̂ and û be [0, 0.5]∩Q-valued and (0.5, 1]∩Q-
valued random variables respectively. Then, the û-lower approximation and the
l̂-upper approximation of X are defined as follows:

RûX(x) = Pr(ER(X/Rx) ≥ û), (34)

Rl̂X(x) = Pr(ER(X/Rx) > l̂). (35)

As above, we can define two quantifiers (≥ û) and (> l̂) as follows:

(≥ û)(F, G) = Pr(ER(G/F ) ≥ û), (36)

(> l̂)(F, G) = Pr(ER(G/F ) > l̂), (37)

and derive the following proposition.

Proposition 6. Let (U,R) be a fuzzy approximation space and X be a fuzzy
subset of U . Then,

1. R(≥û)X = RûX

2. R(>l̂)X = Rl̂X

Note that the precision levels û and l̂ are independent of the data under consid-
eration. In fact, they play the same role as linguistic terms do in (30) and (31).
For example, if we set the precision level ũ in (30) as a linguistic term “about
0.8”, then the fuzzy number corresponding to ũ depends only on the interpre-
tation of the linguistic term and does not have any dependence on ER(X/Rx).
Analogously, because the precision levels û and l̂ are specified externally, they are
completely independent of the approximation space (U,R) and the approximated
fuzzy set X. Therefore, in calculating the probabilities Pr(ER(X/Rx) ≥ û) and
Pr(ER(X/Rx) > l̂), we can simply assume that the random variable ER(X/Rx)
is independent of û and l̂.

The three types of VPFRS models discussed above are called VPFRS1,
VPFRS2, and VPFRS3 respectively. As a scalar can be regarded as a degen-
erate (possibility or probability) distribution concentrated on a single point, all
three types of models can be applied when the precision level is a scalar. How-
ever, a typical application of VPFRS2 is in the case of using linguistic terms
as precision levels. For example, it may be required that the precision level is
moderately high. On the other hand, VPFRS3 can be applied when the preci-
sion level is set as a sub-interval of (0.5, 1]∩Q. In this case, the precision level is
regarded as a uniform distribution on the sub-interval, so it is actually a random
variable.
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5 Concluding Remarks

In this paper, we present a uniform framework for rough set theory from the per-
spective of generalized quantifiers. The advantages of the framework are twofold.

First, the framework can accommodate existing variants of rough set theory
as well as motivate new versions of rough set theory. To show this advantage, we
instantiate the framework to classical rough set, fuzzy rough set, VPRS, VQRS,
and BRS. We also propose three VPFRS models as instances of the framework.
These VPFRS models can improve the robustness of the fuzzy rough set. As
rough set analysis is sensitive to noisy samples, VPRS can avoid the problem
by tolerating partially inconsistency data. The transition from classical rough
set theory to VPRS can be achieved by generalizing the quantifiers in the logic-
based definition or by changing the cutting points of the rough membership
function. Although these two approaches result in the same VPRS model due to
the equivalence between logic-based and frequency-based definitions of classical
rough set, the situation become radically different in the case of fuzzy rough set.
Since the logic-based definition of fuzzy rough set can not be derived from the
fuzzy-rough membership function, the VPFRS models obtained from modifying
the former should be significantly different from those based on the latter. While
most existing VPFRS models adopt the modification of the logic-based defini-
tion, the VQRS based on the fuzzy-rough membership function is also shown to
outperform the original fuzzy rough set in a benchmark data set [11]. However,
since VQRS only consider proportional quantifiers based on the relative Σ-count,
it does not utilize the full potential of generalized quantifiers. It has been also
suggested that fuzzy numbers are more appropriate than scalars as cardinalities
of fuzzy sets [27]. Thus, our work extends the VQRS model by using different
types of relative cardinalities to define the fuzzy-rough membership function.
This approach provides a greater flexibility to specify the precision levels when
the parameters of the VPFRS models can not be determined precisely, since we
allow the precision levels to be scalars, linguistic terms, or random variables.

Second, an advantage of using the uniform framework is to enhance the
expressive power of the decision rules induced by rough set analysis. It is well-
known that the certain rules and possible rules induced from the lower and upper
approximations in classical rough set correspond to universally and existentially
quantified statements. By allowing a lot of generalized quantifiers in the rough
approximations, we can discover different kinds of rules that contain natural
language quantifiers or logical quantifiers. For example, we can induce rules like
“Many A’s are B’s”, “Most A’s are B’s”, and “Almost all A’s are B’s” by using
appropriate interpretations of the quantifiers “Many”, “Most”, and “Almost all”.
Although we do not explore the impact of this aspect in much detail, it is quite
reasonable to expect a very expressive and flexible extension of the Pawlak’s
decision logic [29] by including generalized quantifiers in the language.

Furthermore, as the main objective of the paper is to develop a theoretical
framework that can unify different kinds of rough approximations, the compu-
tational aspect is largely ignored. However, there exist efficient procedures to
compute (fuzzy) generalized quantifiers. For example, practical implementations
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of efficient methods for computing a broad class of generalized quantifiers are
presented by using the determiner fuzzification scheme in [25]. The complex-
ity analysis demonstrates the computational feasibility of that approach. Our
framework can benefit from these existing techniques straightforwardly because
the Q-approximation of any fuzzy subset X under a fuzzy approximation space
(U,R) can be computed simply by evaluating Q(Rx,X) for any x ∈ U .
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Abstract. We present a parameter free and monotonic alternative to
the parametric variable precision model of rough set data analysis. The
proposed model is based on the well known PRE index λ of Goodman
and Kruskal. Using a weighted λ model it is possible to define a two
dimensional space based on (Rough) sensitivity and (Rough) specificity,
for which the monotonicity of sensitivity in a chain of sets is a nice fea-
ture of the model. As specificity is often monotone as well, the results of a
rough set analysis can be displayed like a receiver operation curve (ROC)
in statistics. Another aspect deals with the precision of the prediction of
categories – normally measured by an index α in classical rough set data
analysis. We offer a statistical theory for α and a modification of α which
fits the needs of our proposed model. Furthermore, we show how expert
knowledge can be integrated without losing the monotonic property of
the index. Based on a weighted λ, we present a polynomial algorithm to
determine an approximately optimal set of predicting attributes. Finally,
we exhibit a connection to Bayesian analysis. We present several simula-
tion studies for the presented concepts. The current paper is an extended
version of [1].

1 Introduction

Rough sets were introduced by Z. Pawlak in the early 1980s [2] and have since
become an established tool in information analysis and decision making. Given
a finite set U and an equivalence relation θ on U the idea behind rough sets is
that we know the world only up to the equivalence classes of θ. This leads to the
following definition: Suppose that X ⊆ U . Then, the lower approximation of X
is the set Low(X) = {x ∈ U : θ(x) ⊆ U}, and the upper approximation of X is
the set Upp(X) = {x ∈ U : θ(x) ∩ X �= ∅}. Here, θ(x) is the equivalence class of
x, i.e. θ(x) = {y ∈ U : xθy}. A rough set now is a pair 〈Low(X), Upp(X)〉 for
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each X ⊆ U . A subset X of U is called definable, if Low(X) = Upp(X). In this
case, X is a union of classes of θ.

Rough set data analysis (RSDA) is an important tool in reasoning with
uncertain information. Its basic data type is as follows: A decision system in the
sense of rough sets is a tuple 〈U,Ω, (Da)a∈Ω , (fa)a∈Ω , d,Dd, fd〉, where

– U,Ω,Da,Dd are nonempty finite sets. U is the set of objects, Ω is the set of
(independent) attributes, and Da is the domain of attribute a. The decision
attribute is d, and Dd is its domain.

– For each a ∈ Ω, fa : U → Da is a mapping; furthermore fd : U → Dd is a
mapping, called the decision function.

Since all sets under consideration are finite, an information system can be
visualized as a matrix where the columns are labeled by the attributes and the
rows correspond to feature vectors. An example from [3] is shown in Table 1.

Table 1. A decision system from [3]

U A b c d U a b c d

1 1 0 0 1 12 0 1 1 1

2 1 0 0 1 13 0 1 1 2

3 1 1 1 1 14 1 1 0 2

4 0 1 1 1 15 1 1 0 2

5 0 1 1 1 16 1 1 0 2

6 0 1 1 1 17 1 1 0 2

7 0 1 1 1 18 1 1 0 3

8 0 1 1 1 19 1 0 0 3

9 0 1 1 1 20 1 0 0 3

10 0 1 1 1 21 1 0 0 3

11 0 1 1 1

There, U = {1, . . . , 21} and Ω = {a, b, c}. Each nonempty set Q of attributes
leads to an equivalence relation ≡Q on U in the following way: For all x, y ∈ U ,

x ≡Q y ⇐⇒ (∀a ∈ Q)[fa(x) = fa(y)]. (1.1)

According to the philosophy of rough sets, given a set Q of attributes, the ele-
ments of the universe U can only be distinguished up to the classes of ≡Q.
A similar assumption holds for the decision classes of θd.

To continue the example of Table 1, the classes of θΩ are

X1 = {1, 2, 19, 20, 21}, X2 = {3}, (1.2)
X3 = {4, . . . , 13}, X4 = {14, . . . , 18},
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and the decision classes are

Y1 = {1, . . . , 12}, Y2 = {13, . . . , 17}, Y3 = {18, . . . , 21}.

A class X of θQ is called deterministic (with respect to d) if there is a class Y
of θd such that X ⊆ Y . In this case, all members of X have the same decision
value. The set of all deterministic classes is denoted by Pos(Q, d).

The basic statistic used in RSDA is as follows:

γ(Q, d) =
|⋃ Pos(Q, d)|

|U | . (1.3)

γ(Q, d) is called the approximation quality of Q with respect to d. If γ(Q, d) = 1,
then each element of U can be correctly classified with the granularity given by
Q. In the example, the only deterministic class is {3}, and thus, γ(Ω, d) = 1

21 .
An important property of γ is monotony: If Q ⊆ Q′ then, γ(Q, d) ≤ γ(Q′, d).

In other words, increasing the granularity does not reduce the quality of classi-
fication.

In the sequel we exclude trivial cases and suppose that θQ and θd have more
than one class.

2 The Variable Precision Model

One problem of decision making using γ is the assumption of error free mea-
surements, i.e. that the attribute functions fa are exact, and even one error
may reduce the approximation quality dramatically [4]. Therefore, it would be
advantageous to have a procedure which allows some errors in order to result in
a more stable prediction success.

A well established model which is less strict in terms of classification errors is
the variable precision rough set model (VP – model) [3] with the following basic
constructions: Let U be a finite universe, X,Y ⊆ U , and first define

c(X,Y ) =

{

1 − |X∩Y |
|X| , if |X| �= 0,

0, if |X| = 0.

Clearly, c(X,Y ) = 0 if and only if X = 0 or X ⊆ Y , and c(X,Y ) = 1 if and
only if X �= ∅ and X ∩Y = ∅. The majority requirement of the VP – model says
that more than 50 % of the elements in X should be in Y ; this can be specified
by an additional parameter β which is interpreted as an admissible classification

error, where 0 ≤ β < 0.5. The majority inclusion relation
β

⊆ (with respect to β)
is now defined as

X
β

⊆ Y ⇐⇒ c(X,Y ) ≤ β. (2.1)

Given a family of nonempty subsets X = {X1, ...,Xk} of U and Y ⊆ U , the
lower approximation Y β of Y given X and β is defined as the union of all those
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Xi, which are in relation Xi

β

⊆ Y , in other words,

Y β =
⋃

{X ∈ X : c(X,Y ) ≤ β} (2.2)

The classical approximation quality γ(Q, d) is now replaced by a three-
parametric version which includes the external parameter β, namely,

γ(Q, d, β) =
|Pos(Q, d, β)|

|U | , (2.3)

where Pos(Q, d, β) is the union of those equivalence classes X of θQ for which

X
β

⊆ Y for some decision class Y . Note that γ(Q, d, 0) = γ(Q, d). Continuing the
example from the original paper ([3], p. 55), we obtain

γ(Ω, d, 0) =
|X2|
|U | = 1/21

γ(Ω, d, 0.1) =
|X2 ∪ X3|

|U | = 11/21

γ(Ω, d, 0.2) =
|X2 ∪ X3 ∪ X4|

|U | = 16/21

γ(Ω, d, 0.4) =
|X2 ∪ X3 ∪ X4 ∪ X1|

|U | = 21/21

Although the approach shows some nice properties, we think that care must be
taken in at least three situations:

1. If we have a closer look at γ(Ω, d, 0.1), we observe that, according to the table,
object 13 is classified as being in class in Y2, but with β = 0.1 it is assigned
to the lower bound of Y1. Intuitively, this assignment can be supported when
the classification of the dependent attribute is assumed to be erroneous, and
therefore, the observation is “moved” to a more plausible equivalence class
due to approximation of the predicting variables. However, this may be prob-
lematic: Assume the decision classes arise from a medical diagnosis - why
should an automatic device overrule the given diagnosis? Furthermore, the
class changes are dependent on the actual predicting attributes in use, which
may be problematic as well. This is evident if we assume for a moment that
we want to predict d with only one class X = U . If we set β = 9

21 < 0.5, we

observe that U

9
21⊆ Y1, resulting in γ({U}, d, 9

21 ) = 1.
2. Classical reduct search is based on the monotone relation

P ⊆ Q implies γ(P, d) ≤ γ(Q, d).

Unfortunately, the generalized γ(Q, d, β) is not necessarily monotone [5]. As
a counterexample, consider the information system shown in Table 2 which
adds an additional independent attribute e to the system of Table 1.
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Table 2. An enhanced decision system

U a b c e d U a b c e d

1 1 0 0 0 1 12 0 1 1 1 1

2 1 0 0 0 1 13 0 1 1 1 2

3 1 1 1 0 1 14 1 1 0 0 2

4 0 1 1 0 1 15 1 1 0 0 2

5 0 1 1 0 1 16 1 1 0 0 2

6 0 1 1 0 1 17 1 1 0 0 2

7 0 1 1 0 1 18 1 1 0 0 3

8 0 1 1 0 1 19 1 0 0 0 3

9 0 1 1 1 1 20 1 0 0 0 3

10 0 1 1 1 1 21 1 0 0 0 3

11 0 1 1 1 1

Setting P = {a, b, c} and Q = {a, b, c, e}, we observe that Q generates five
classes for prediction. The three classes X1, X2, and X4 are identical to those
of the first example – given in (1.2) –, here given by P , but Q splits the class
X3 into the new classes X3,0 = {4...8} and X3,1 = {9...13}. We now have

γ(Q, d, 0.1) =
|X2 ∪ X3,0|

|U | =
6
21

< γ(P, d, 0.1) =
11
21

.

The reason for this behavior is that c(X3,1, Y ) > 0.1.
3. A third – perhaps minor – problem is the choice of |U | as the denominator in

γ(Q, d, β). Using |U | makes sense, when a no-knowledge-model cannot predict
anything of d, and therefore any prediction success of Ω can be attributed to
the predicting variables in Ω. But, as we have shown in the current section,
there are situations in which a simple guessing model serves as a “perfect”
model in terms of approximation quality.

Simulation 1. We conducted a simulation study based on an information system
I with binary attributes A1, A2, A3, and a decision attribute d with classes
C1, C2, C3 whose relative frequency is 0.6, 0.35, 0.05, respectively; there are 300
objects. Initially, for each x ∈ U and 1 ≤ i ≤ 3 we set

fAi
(x) =

{

1, if fd(x) ∈ Ci,

0, otherwise.

The information system I is assumed to be error free, i.e. its reliability is 100 %.
For each simulation, a certain percentage p of attribute values is changed to
their opposite value, i.e. f ′

Ai
(x) = 1 − fAi

to obtain a different reliability 1 − p.
The expectation values of the prediction success for various values of β and
reliabilities are shown in Table 3, based on 1000 simulations each. We observe
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Table 3. Simulation for the variable precision model

Reliability

β .95 .90 0.85

0.00 0.5740 0.1553 0.0341

0.05 0.7315 0.4945 0.3754

0.10 0.7284 0.5045 0.3774

0.15 0.7356 0.4821 0.3734

0.20 0.7349 0.5146 0.3838

0.25 0.7349 0.4855 0.3731

that the prediction values are quite low for β = 0 (no error) and are maximal
already for small values of β. �

3 Contingency Tables and Information Systems

In this and the following sections we describe a formal connection of statistical
and rough set data analysis. First of all, we need data structures which can
be used for both types of analysis. It is helpful to observe that rough set data
analysis is concept free because of its nominal scale assumption; in other words,
only cardinalities of classes and intersection of classes are recorded. As Q ⊆ Ω
and d induce partitions on U , say, X with classes Xj , 1 ≤ j ≤ J , respectively, Y
with classes Yi, 1 ≤ i ≤ I, it is straightforward to cross–classify the classes and
list the cardinalities of the intersections Yi ∩ Xj in a contingency table (see also
[6]). As an example, the information system of Table 1 is shown as a contingency
array in Table 4.

Table 4. Contingency table of the decision system of Table 1

X1 X2 X3 X4 ni•

Y1 2 1 9 0 12

Y2 0 0 1 4 5

Y3 3 0 0 1 4

n•j 5 1 10 5 21

The actual frequency of the occurrence, i.e. the cardinality of Yi ∩ Xj , is
denoted by nij and the row and column sums by ni• and n•j respectively. The
maximum of each column is shown in bold.

If a column Xj consists of only one non-zero entry, the corresponding set Xj

is a deterministic class, i.e. it is totally contained in a decision class. In terms
of classical rough set analysis, any column Xj which has at least two non-zero
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entries is not deterministic. The approximation quality γ(Q, d) can now easily
be derived by adding the frequencies nij in the columns with exactly one non-
zero entry and dividing the sum by |U |. In the example we see that X2 is the
only column with exactly one nonzero entry, and γ = 1

21 . To be consistent with
statistical notation, we will frequently speak of the classes of θQ as categories of
the variable X and of the classes of θd as categories of the variable Y .

4 PRE Measures and the Goodman-Kruskal λ

Statistical measures of prediction success – such as R2 in multiple regression
or η2 in the analysis of variance – are often based on the comparison of the
prediction success of a chosen model with the success of a simple zero model. In
categorical data analysis the idea behind the Proportional Reduction of Errors
(PRE) approach is to count the number of errors, i.e. events which should not
be observed in terms of an assumed theory, and to compare the result with
an “expected number of errors”, given a zero (“baseline”) model [4,7,8]. If the
number of expected errors is not zero, then

PRE = 1 − number of observed errors
number of expected errors

More formally, starting with a measure of error ε0, the relative success of
the model is defined by its proportional reduction of error in comparison to the
baseline model,

PRE = 1 − ε1
ε0

.

A very simple strategy in the analysis of categorical data is betting on the
highest frequency; this strategy is normally used as the zero model benchmark
(“baseline accuracy”) in machine learning.

A simple modification which fits the contingency table was proposed by
Goodman and Kruskal in the 1950s [9]. When no other information is given,
it is reasonable to choose a decision category with highest frequency (such as
Y1 in Table 4). If the categories of X and the distribution of Y in each Xj are
known, it makes sense to guess within each Xj some Yi which shows the high-
est frequency, see also [10]. The PRE of knowing X instead of (uninformed)
guessing is given by

λ = 1 − n − ∑J
j=1 maxI

i=1 nij

n − maxI
i=1 ni•

. (4.1)

Here, n = |U |. Note that n − maxI
i=1 ni• �= 0, since we have assumed that θd

has at least two classes. For our example we obtain

λ = 1 − 21 − (3 + 1 + 9 + 4)
21 − 12

= 1 − 5
9

= 0.444

We conclude that knowing X reduces the error of the pure guessing procedure
by 44.4% in comparison to the baseline accuracy.
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The λ-index is one of the most effective methods in ID3 [11], and a slightly
modified approach in [10] – known as the 1R learning procedure – was shown to
be a quite effective tool as well [12].

5 Weighted λ

If we compare the set of classes C(β) of θQ used to determine Pos(Q, d, β) in the
VP-model, and the set of classes C used in the computation of λ, we observe
that C(β) ⊆ C for any value of 0 ≤ β < 0.5. The proof is simple: For every j
more than 50 % of the observations must be collected in one nij , and so these
frequencies are the maximal frequency in column j.

The connection of λ and the approximation quality γ is straightforward:
Whereas λ counts the maximum of each column j, γ counts this maximum only
in the deterministic case if nij = n•j , i.e. if exactly one entry in column j is
nonzero.

Assume that we want to predict the decision attribute by one class only.
In case that there is one attribute value of the decision attribute for which
ni• = |U | = n holds, we result in a situation in which the expected error is 0.
Since this situation is of no interest for prediction, we should exclude it – the
decision attribute is deterministic itself.

In all other cases, the decision attribute is indeterministic in the sense that
there is no deterministic rule for prediction given no attributes; hence, in this case,
the expected error is n. We observe that |U | = n is a suitable denominator for γ.

As γ is a special case by filtering maximal categories by an additional con-
dition, we define a weighted λ by

λ(w) = 1 − n − ∑J
j=1(maxI

i=1 nij) · w(j)

n − (maxI
i=1 ni•) · w(U)

. (5.1)

where w : {1, . . . , J} ∪ {U} → [0, 1] is a function weighting the maxima of the
columns of the contingency table. In the cases we consider, w will be an indicator
function taking its values from {0, 1}.

Now we set

Xj ⊆w Yi ⇐⇒ nij = maxI
k=1 nkj and w(j) > 0,

and define the lower approximation of Yi by X with respect to w by

Loww(X , Yi) = Yi ∩
⋃

{Xj : Xj ⊆w Yi}.

Observe that Loww(Yi) ⊆ Yi, unlike in the lower approximation of the VP –
model. For the upper approximation we choose the “classical” definition

Upp(X , Yi) =
⋃

{Xj : Xj ∩ Yi �= ∅}.
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The w-boundary now is the set

Bndw(X , Yi) = Upp(X , Yi) \ Loww(X , Yi).

Unlike in the VP – model, elements of non–deterministic classes are not re–
classified with respect to the decision attribute but are left in the boundary
region.

We can now specify the error of the lower bound classification by

Errw(X , Yi) =
⋃

{Xj \ Yi : Xj ⊆w Yi}.

If we assume that errors are proportional to the number of entries in the
contingency table – but independent of the joint distribution – it makes sense to
count the absolute error cj = n•j − maxI

i=1 nij for every column j and compare
it to some cutpoint C. This leads to the following definition:

wC
eq(j) =

{

1, if n•j − maxI
i=1nij ≤ C,

0, otherwise

and

wC
eq(U) =

{

1, if n − maxI
i=1 ni• ≤ C,

0, otherwise.

respectively.
It is easy to see that λeq = γ if C = 0, and λeq = λ if C = ∞, i.e. if λeq ≡ 1.

Furthermore, if C ≤ maxJ
j=1(n•j − maxI

i=1 nij), then the denominator of λ(weq)
is |U |.

In classical rough set theory, adding an independent attribute while keeping
the same decision attribute will not decrease the approximation quality γ. The
same holds for γweq :

Proposition 1. Let Qa = Q ∪ {a} and Xa be its associated partition. Then,
γC

weq
(X ,Y) ≤ γC

weq
(Xa,Y).

Proof. We assume w.l.o.g. that a takes only the two values 0, 1 (see e.g. [13] for
the binarization of attributes). Let Z0, Z1 be the classes of θa. The classes of θQa

are the non–empty elements of {Xi ∩ Z0 : 1 ≤ 1 ≤ I} ∪ {Xi ∩ Z1 : 1 ≤ 1 ≤ I}.
Each nij is split into n0

ij = |Xi ∩Yj ∩Z0| and n1
ij = |Xi ∩Yj ∩Z1| with respective

columns j0 and j1, and sums n0
•j and n1

•j . Then, n0
ij +n1

ij = nij , n0
•j +n1

•j = n•j ,
and maxI

i=1 n0
ij + maxI

i=1 n1
ij ≥ maxI

i=1 nij by the triangle inequality. Thus, if
n•j − maxI

i=1 nij ≤ C, then

n0
•j − maxI

i=1 n0
ij ≤ n0

•j − maxI
i=1 n0

ij + n1
•j − maxI

i=1 n1
ij

= n0
•j + n1

•j − (maxI
i=1 n0

ij + maxI
i=1 n1

ij)

= n•j − (maxI
i=1 n0

ij + maxI
i=1 n1

ij)

≤ n•j − maxI
i=1 nij

≤ C.
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Table 5. Simulation for the λ model

Reliability

C 0.95 0.90 0.85

0 0.5740 0.1553 0.0341

1 0.7985 0.4798 0.1339

2 0.8508 0.5916 0.2813

3 0.8615 0.6707 0.4603

Similarly,

n1
•j − maxI

i=1 n1
ij ≤ C.

Therefore, if weq(j) = 1, then weq(j0) = weq(j1) = 1.
Again by the triangle inequality, the sum of errors in the two j0 and j1

columns is no more than the error in the original column j. As the overall error
is simply the sum of the errors per column, the proof is complete. �

Simulation 2. In order to compare the new model with the variable precision
model, we assume the same setup as in Simulation 1, but use the equal weights
λ PRE model instead. The results can be seen in Table 5.

We note that the prediction quality increases with the cutpoint C, and from a
certain C is larger than the asymptotic value of the variable precision model. The
value depends on the chosen reliability. As a rule, the percentage of successful
predictions is higher than that of the variable precision model. However, choosing
C = 1 will not increase the prediction quality compared to the variable precision
model when the reliability is low.

We may consider the λ PRE model as a “variable precision model” when
we assume that the β-boundaries vary in dependence of the group sizes. Table 6
shows the dependencies. �

Table 6. Variable β-values to mimic the λ model in the example given a sample size
of n = 300

Group sizes C

0 1 2 3

0.60 0.000 0.006 0.011 0.017

0.35 0.000 0.010 0.019 0.029

0.05 0.000 0.067 0.133 0.200

6 Rough–sensitivity and Rough–specificity

Various other indices may be defined: Let X be the partition associated with
θQ and Yi be a decision class. In a slightly different meaning than in machine
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learning, we will use the terms Rough-sensitivity and Rough-specificity for the
results of our analysis: If Y is the partition induced by the decision attribute,
we consider

1. The Rough-sensitivity of the partition X with respect to the partition Y

γw(X ,Y ) =

∑

Yi∈Y |Loww(X , Yi)|
|U |

2. The Rough-specificity of the partition X with respect to the partition Y is
based on ζw(X ,Y ), which is defined by

ζw(X ,Y ) =

⎧

⎨

⎩

∑
Yi∈Y |Errw(X ,Yi)|

∑
Yi∈Y |Bndw(X ,Yi)| , if

∑

Yi∈Y | Bndw(X , Yi)| > 0

1, otherwise.

The Rough-specificity is defined by 1 − ζw(X ,Y ).

If X and Y are understood, we will just write γw and ζw or just ζ. The
Rough-sensitivity tells us about the approximation of the set or partition,
whereas ζ is an index which expresses the relative error of the classification
procedure. Both indices are bounded by 0 and 1, and in most cases monotoni-
cally related (a counter example is discussed below). Rough-sensitivity reflects
the relative precision of deterministic rules, which are true up to some specified
error. It captures the rough set approximation quality γ in case w is defined as

w(j) =

{

1, if n•j = maxI
i=1 nij

0, otherwise,

and w(U) = 0.
Rough-specificity is a new concept: Whereas errors are addressed to the lower

bound in the classic variable precision model, in our model an error is an instance
of the boundary – it addresses those elements which are errors of the prediction
rules in contrast to indeterministic elements, which cannot be predicted by pre-
diction rules. The value of ζ tells us the relative magnitude of the “hard bound-
ary” within the boundary. In other words, 1 − ζ (the Rough-specificity) is the
relative number of elements of the boundary which may become deterministic,
if we consider more attributes.

Using the data of Table 1 and the chain ({}, {a}, {a, b}, {a, b, c}, {a, b, c, d})
of attributes and C = 1 we obtain the results shown in Table 7.

A diagram of our results – which we may call a rough receiver operation curve
(Rough–ROC) is depicted in Fig. 1.

Apart from the boundary values 0 and 1, we find that the sensitivity γw is
much higher than ζw. We call the difference γw − ζw the Rough-Youden-index
(RY). In ROC analysis – the statistical counterpart to analyse sensitivity and
specificity – the Youden index is a good heuristic to capture a good cut–point
for prediction [14,15]. In rough set data analysis, the largest RY within a chain
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Table 7. Rough–Sensitivity and Rough–Specificity given the data of Table 1

Attribute Sets {} {a} {a,b} {a,b,c} {a,b,c,d}
Lower Bound {} {4–12} {4–12} {3–12,14–17} U

Error {} {13} {13} {13,18} {}
Upper Bound U {1,2,3,13–21} {1,2,3,13–21} {1,2,13,18–21} {}
Sensitivity 0.000 0.429 0.429 0.714 1.000

ζ = 1 − Specificity 0.000 0.083 0.083 0.286 1.000

Difference 0.000 0.345 0.345 0.429 1.000

Fig. 1. A Rough–sensitivity/ζ = 1-Rough–specificity diagram

of attributes tells us a promising set for prediction – in case of the example the
set {a, b, c} seems to be good choice for prediction.

Note that if the decision attribute contains more than 2 classes, ζ – unlike
γ – need not be monotonically increasing in case an error class changes to a
deterministic class when adding a new independent attribute. As long as we do
not split a deterministic class by adopting a further attribute, any new granule
will not decrease the lower bound, and will not increase the number of elements
in the boundary; therefore, the error will not decrease. Hence, ζ will not decrease,
when we add a further attribute for prediction, and the deterministic classes are
unchanged.

Table 8. A non–monotonic ζ

X X0 X1

Y0 0 0 0

Y1 3 3 0

Y2 2 0 2
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As an example of a non monotonic ζ, consider an information system with
a granule G = 〈〈X,Y0, 0〉, 〈X,Y1, 3〉, 〈X,Y2, 2〉〉, see Table 8. G is deterministic,
if we choose C = 2. Let ne be the number of errors outside this granule, and
nb > 0 be the number of elements of the boundary outside this granule; then,
ne < nb and ζ = ne+2

nb+2 .
Suppose that a new attribute splits exactly G into G0 and G1 according to

Table 8. Then, we obtain ζ = ne

nb
as two elements are moved from the boundary

to the lower bound. Since nb > 0 and ne < nb, it follows that ne

nb
< ne+2

nb+2 .
There are various ways how to deal with the non-monotonicity of ζ:

1. Use a rule in the algorithm that prevent the split of deterministic classes.
2. Require that any deterministic class has to consist of more than C elements.

Hence, using

w̃C
eq(j) =

{

1, if n•j − maxI
i=1 nij ≤ C and maxI

i=1 nij > C,

0, otherwise

is a weighting function for which ζ is monotone when classes are split. It
is straightforward to show that γ is monotone as well when using w̃ as the
weight function.

3. We leave everything unchanged. If ζ decreases when adding an attribute, we
assume that this behaviour is due to spurious deterministic rules, and consider
this as another stopping rule for adopting more attributes.

7 Precision and Its Confidence Bounds

In order to avoid technical problems, we assume that Low(Yi) > 0 for each class
Yi of the decision attribute, so that there is at least one rule which predicts
membership in Yi.

In classical rough set data analysis the accuracy of approximation α of Yi is
defined as

α(Yi) =
|Low(Yi)|
|Upp(Yi)| =

|Low(Yi)|
|Low(Yi)| + |Bnd(Yi)| =

1
1 + |Bnd(Yi)|/|Low(Yi)| .

To approximate the standard error of the accuracy we use the Delta method.
Broadly speaking, in a first step we linearize the fractions by taking the loga-
rithms, secondly, we approximate the logarithm by the first order Taylor expan-
sion, see e.g. [16] for details.

Letting π1 = |Low(Yi)|/|U | and π = |Bnd(Yi)|/|U |, we obtain

V ar(ln(α(Yi))) = π1/|U | ·
(

π

π2
1 + π1π

)2

+ π/|U | ·
(

1
π1 + π

)2
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Example 1. Suppose that in a company with 500 employees there are 80 employ-
ees who are involved in accidents per year (Y1). Of these, 70 can be predicted
correctly, while of the other 420 cases (Y0) 300 can be predicted correctly. As
the decision attribute consists of two categories only, the number of subjects in
the boundary is determined by 500 − 70 − 300 = 130.

For the category Y1 (“had accidents”) we obtain the precision

α(Y1) =
70

70 + 130
= 0.35

The standard error of ln(α(Y1)) is given by SE(ln α(Y1))) = 0.120 resulting in a
95 % confidence interval [0.277, 0.442] for α(Y1).

For the category Y0 (“no accidents”) the precision is given by

α(Y0) =
300

300 + 130
= 0.698

The standard error of ln(α(Y0)) is SE(ln α(Y0))) = 0.103 resulting in a 95 %
confidence interval [0.570, 0.854] for α(Y0). As both confidence intervals do not
intersect, we conclude, that the precision of Y0 is higher than the precision
of Y1. �
Assume now that there are some errors in the prediction. It makes no sense to
count the errors for the prediction of the other categories as possible indetermin-
istic rules for the category under study. Therefore we eliminate the errors from
the other categories from the boundary by

|Bndcorrected;Yi
| = |Bnd(Yi)| −

∑

k �=i

| Err(Yk)|

and use the corrected boundary instead in the computation of αc (a corrected α).

Example 2. We use the data from the preceding example, but assume addition-
ally, that there were 30 errors to predict Y1 and 100 errors to predict Y0 due to
application of our PRE model.

αc(Y1) =
70

70 + (130 − 100)
= 0.7 (95% CI = [0.485, 1.000])

αc(Y0) =
300

300 + (130 − 30)
= 0.75 (95% CI = [0.601, 0.936]).

Obviously, the estimated precision of Y1 is enhanced dramatically. Note that
αc(Y1) and αc(Y0) cannot be improved, as the boundary consists of error ele-
ments only. αc(Y1) = 0.7 means in this case that 70 % of the rules are determin-
istic and lead to the correct result Y1, but 30 % of the rules for Y1 cannot be
described in this way. �

In the variable precision model the error is moved to the lower bound. It is
interesting to see how αc looks like in this case. We select β large enough that
the same errors occur as in our example using the PRE model. In this case we
observe.
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Example 3.

αc(Y1; VPRM) =
70 + 30

70 + 30 + (130 − 100 − 30)
= 1

and
αc(Y0; VPRM) =

300 + 100
300 + 100 + (130 − 100 − 30)

= 1

In case of the VPRM, the αc values signal a “perfect” precision of the model. �

8 Using Additional Expert Knowledge

Weights given by experts or a priori probabilities of the outcomes Yi (1 ≤ i ≤ I)
are one of the simplest assumptions of additional knowledge which can be applied
to a given situation: We let πi (1 ≤ i ≤ I) be weights of the outcomes and
w.l.o.g. we assume that

∑

i πi = 1. Now, we obtain a weighted contingency table
simply by defining n∗

ij = nij · πi and use n∗
ij instead of nij of the original table.

Table 9. Weighted contingency table of the decision system of Table 1 using π =
〈0.5, 0.3, 0.2〉

X1 X2 X3 X4 n∗
i•

Y1 1 0.5 4.5 0 6

Y2 0 0 0.3 1.2 1.5

Y3 0.6 0 0 0.2 0.8

n∗
•j 1.6 .5 4.8 1.4 8.3

Using Table 9 and applying the bounds E = 0, 0.2, 0.3, 0.6 to compute wE
eq(j),

we observe the approximation qualities shown in Table 10.

Table 10. λ given various bounds

E Formula (4.1) Weighted λ

0.0 1 − 8.3−0.5
8.3

0.060

0.2 1 − 8.3−0.5−1.2
8.3

0.250

0.3 1 − 8.3−0.5−1.2−4.5
8.3

0.747

0.6 1 − 8.3−0.5−1.2−4.5−1
8.3

0.867

We see that λ increases here as well as in case of the unweighted λ, but if
we consider the weighted λ, the approximation qualities differ from those in the
unweighted case. Furthermore, even the (approximate) deterministic class may
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change, if the weights differ largely: Note, that in case E = 0.6 we choose class
X1 as the (approximate) deterministic class, whereas X3 would be chosen, if we
use equal (or no) weights.

The algorithm given below and the monotonicity of λ given a split (or using
an additional attribute) stay valid in case of introducing weights for the decision
category as in the unweighted case. This holds because we have changed the
entries of the table only – the structure of the table remains unchanged.

9 A Simple Decision Tree Algorithm Based on Rough
Sets

In order to find an algorithm for optimization, not only the Rough-sensitivity
but also the Rough-specificity must be taken into account, and we have to find a
function which reflects the status of the partitions in a suitable way. Numerical
experiments show that neither the difference γw − ζw (the RY-index) nor the
odds γw

ζw
are appropriate for the evaluation of the partitions. The reason for this

seems to be that the amount of deterministic classification, which is a function
of |U | · γw, as well as the amount of the probabilistic part of ζw are not taken
into account.

Therefore we define an objective function based on entropy measures, which
computes the fitness of the partition X on the basis of the difference of the
coding complexity of the approximate deterministic and indeterministic classes,
which is an instance of a mutual entropy [17]:

O(Y |X ) = −γw ln(|U | · γw) + ζw ln(
∑

Yi∈Y

| Bndw(X , Yi)| · ζw)

The algorithm proceeds as follows:

1. Set a cutpoint C for the algorithm.
2. Start with Q = ∅.
3. Add any attribute from Ω \ Q to Q. Compute O for the chosen cutpoint C
4. Choose a new attribute which shows the maximum in O.
5. If the new maximum is less than or equal to the maximum of the preceding

step, then stop. Otherwise add the new attribute to Q and proceed with
step 2.

The time complexity of the algorithm is bounded by O(J2) and it will find a
partition X which shows a good approximation of Y with an error less than C.

Applying the algorithm to the decision system given in Table 1 and using
C = 1 (we allow 1 error per column), results in the following steps:

Step 1 C = 1
Step 2.0 Q = ∅
Step 3.0.a Test attribute a
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X1 (a=0) X2(a = 1)
Y1 9 3
Y2 1 4
Y3 0 4
n•j 10 11
O 0.942

Step 3.0.b Test attribute b

X1 (b=0) X2(b = 1)
Y1 2 10
Y2 0 5
Y3 3 1
n•j 6 16
O 0.000

Step 3.0.c Test attribute c

X1 (b=0) X2(b = 1)
Y1 2 10
Y2 4 1
Y3 4 0
n•j 10 11
O 1.096

Step 4.0 Choose attribute c, because it is maximal
in terms of O

Step 5.0 Iterate step 2.1
Step 2.1 Q = {c}
Step 3.1.a Test attribute a.

X1 X2 X3

(c = 0, a = 1) (c = 1, a = 0) (c = 1, a = 1)
Y1 2 9 1
Y2 4 1 0
Y3 4 0 0
n•j 10 10 1
O 1.096

Step 3.1.b Test attribute b

X1 X2 X3

(c = 0, b = 0) (c = 0, b = 1) (c = 1, b = 1)
Y1 2 0 10
Y2 0 4 1
Y3 3 1 0
n•j 5 5 11
O 1.561
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Step 4.1 Choose attribute b, because it is maximal
in terms of O

Step 5.2 Iterate step 2.2
Step 2.2 Q = {b, c}
Step 3.2.a Test attribute a.

X1 X2 X3 X4

Y1 2 1 9 0
Y2 0 0 1 4
Y3 3 0 0 1
n•j 5 1 10 5
O 1.561

Step 4.2 Stop, because O does not increase.
The attributes.Q = {b, c} show the best behaviour in terms of O.

10 Bayesian Considerations

As we introduced weights for the decision attribute, and since the weights may
be interpreted as prior probabilities, it is worthwhile to find a connection to
Bayesian posterior probabilities1. Choose some cutpoint C; we shall define a two
dimensional strength function sC(i, j) (1 ≤ i ≤ I, 1 ≤ j ≤ J), which reflects the
knowledge given in column Xi to predict the category Yj . As we use approx-
imate deterministic classes as basis of our knowledge, the strength function is
dependent on C as well.

First consider the case that the column Xj satisfies the condition

n•j − maxI
i=1 nij ≤ C. (10.1)

In that case there is one class with frequency maxI
i=1 nij which is interpreted

as the approximate deterministic class; all other frequencies are assumed as error.
In this case we define sC(i, j) := n(i,j)

n . This is simply the joint relative frequency
p(i, j) of the occurrence of Y = Yi and X = Xj . If the column Xj does not fulfill
condition (10.1), we conclude that Xj cannot be used for approximation.

In this case no entry of column Xj contains (approximate) rough information
about the decision attribute. Therefore we define sC(i, j) := 0 for 1 ≤ i ≤ I.

Now we define a conditional strength sC(X = Xj |Y = Yi): If there is a
least one 1 ≤ j ≤ J with sC(i, j) > 0, then there is at least one (approximate)
deterministic class Xj , which predicts Yi. In this case we set

sC(X = Xj |Y = Yi) =
sC(i, j)

∑I
k=1 sC(k, j)

. (10.2)

1 For other views of Bayes’ Theorem and its connection to rough sets see e.g. [18–20].
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Obviously, sC(X = Xj |Y = Yi) reflects the relative strength of a rule predicting
Y = Yi.

If there is no (approximate) deterministic attribute X = Xj , which predicts
Y = Yi, the fraction sC(X = Xj |Y = Yi) of (10.2) is undefined, since its
denominator is 0. In this case – as we do not know the result –, we use sC(X =
Xj |Y = Yi) = 0 as the lower bound, and sC(X = j|Y = Yi) = 1 as the upper
bound.

Now we are able to define lower and upper posterior strength values by setting

sC(Y = Yi|X = Xj) =
sC(X = Xj |Y = Yi)πi

∑

r sC(X = Xj |Y = Yr)πr

and

sC(Y = Yi|X = Xj) =
sC(X = Xj |Y = Yi)πi

∑

r sC(X = Xj |Y = Yr)πr

If C ≥ n, i.e. if the cutpoint is not less than the number of objects, then (10.1)
is true for every Xj , and we observe that sC(Y = Yi|X = Xj) = n(i,j)

n = p(i, j)
for any i, j. Hence,

sn(Y = Yi|X = Xj) = sn(Y = Yi|X = Xj) = p(Y = Yi|X = Xj)

and we result in the ordinary posterior probability of Y = Yi given X = Xj . Note,
that although sC ≥ sC holds, the probability estimators p(Y = Yi|X = Xj) may
be greater than sC or smaller than sC . This is due the fact that the strength
tables for different cutpoints C may looks quite different.

11 Summary and Outlook

Whereas the variable precision model uses a parameter β to relax the strict
inclusion requirement of the classical rough set model and to compute an approx-
imation quality, a parameter free λ model based on proportional reduction of
errors can be adapted to the rough set approach to data analysis. This index
has the additional property that it is monotone in terms of attributes, i.e. if our
knowledge of the world increases, so does the approximation quality. Weighted
λ measures can be used to include expert or other context knowledge into the
model, and an algorithm was given which approximates optimal sets of indepen-
dent attributes and that is polynomial in the number of attributes. In the final
section we showed how to explain Bayesian reasoning into this model. In future
work we shall compare our algorithm with other machine learning procedures
and extend our approach to unsupervised learning.

Furthermore, we would like to point out that the approach can be character-
ized as a task to “generate deterministic structures which allow C errors within
a substructure”, and that this approach can be generalized for other structures
as well. For example, finding deterministic orders of objects may be quite unsat-
isfactory, because given a linear order and adding one error could result in a
much larger deterministic structure.

As an example note that the data table
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Object Attr 1 Attr 2 Attr 3 Attr 4 Attr 5
Obj 1 1 0 0 0 0
Obj 2 1 1 0 0 0
Obj 3 1 1 1 0 0
Obj 4 1 1 1 1 0
Obj 5 1 1 1 1 1

Produces a linear order as a concept lattice [21]. Now consider the following
table with one erroneous observation:

Object Attr 1 Attr 2 Attr 3 Attr 4 Attr 5
Obj 1 1 0 0 0 0
Obj 2 1 1 0 0 0
Obj 3 1 1 1 0 0
Obj 4 1 1 1 1 0
Obj 5 0 1 1 1 1

This system results in a concept lattice consisting of |U |−2 more nodes than
the simple order structure, see Fig. 2.

Fig. 2. Concept lattice resulting from one error

Hence, leaving out some erroneous observation may lead to a smaller, stronger
and mutually more stable structure. We will investigate this in future work.
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Abstract. We present three approaches to deal with tests (super-
reducts) for inconsistent decision tables. In such tables, we have groups
of rows with equal values of conditional attributes and different decisions
(values of the decision attribute). Instead of a group of equal rows, we
consider one row given by values of conditional attributes and we attach
to this row: (i) the set of all decisions for rows from the group (many-
valued decisions approach); (ii) the most common decision for rows from
the group (the most common decision approach); and (iii) unique code
of the set of all decisions for rows from the group (generalized decision
approach). For many-valued decisions approach, we consider the prob-
lem of finding an arbitrary decision from the set of decisions. For the
most common decision approach, we consider the problem of finding the
most common decision from the set of decisions. For generalized decision
approach, we consider the problem of finding all decisions from the set of
decisions. We present experimental results connected with the cardinality
of tests and comparative study for the considered approaches.

1 Introduction

Tests (super-reducts) has been used for single valued decision tables extensively
in literature. But in this paper, we are interested to construct tests for incon-
sistent decision tables. Here, we have multiple rows (objects) with equal val-
ues of conditional attributes but with different decisions (values of the decision
attribute). We present three approaches to deal with tests for inconsistent deci-
sion tables.

For approach called many-valued decisions – MVD , we transform inconsis-
tent decision table into a decision table with many-valued decisions. Instead of a
group of equal rows with different decisions we consider one row given by values
of conditional attributes and we attach to this row the set of all decisions for
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rows from the group [7]. The second approach is called the most common deci-
sion – MCD . We transform inconsistent decision table into consistent decision
table with one-valued decision. Instead of a group of equal rows with different
decisions, we consider one row given by values of conditional attributes and we
attach to this row the most common decision for rows from the group. The third
approach is well known in the rough set theory [10,14] and is called generalized
decision – GD . In this case, we transform inconsistent decision table into the
table with many-valued decisions and after that encode each set of decisions
by a number (decision) such that equal sets are encoded by equal numbers and
different sets by different numbers.

In MVD approach, we consider the problem of finding arbitrary decision from
the set of decisions. In MCD approach, our aim is to find the most common
decision from the set of decisions. In GD approach, we should find the whole set
of decisions attached to rows from a group of equal rows.

In the rough set theory, reducts usually are considered as minimal subsets of
attributes (with respect to inclusion) which discern all pairs of objects with dif-
ferent decisions that are discernible by the whole set of attributes. However, there
exist different modifications of the notion of reduct and different approaches for
reduct construction [4–6,9,11–13,15–19]. Exact and approximate reducts and
tests (super-reducts) are used for feature selection, knowledge representation and
for construction of classifiers. Problems of minimization of exact and approxi-
mate tests are NP-hard [6,9,17].

We define the notions of reduct and test for decision tables with many-valued
decisions. For the case when each set of decisions attached to the rows of table
has only one decision, the considered notion of reduct coincides with the usual
one. In [2,8] we studied a greedy algorithm for construction of tests for decision
tables with many-valued decisions. This algorithm can be used also in the cases
of MCD and GD approaches: we can consider decision tables with one-valued
decision as decision tables with many-valued decisions where sets of decisions
attached to rows have one element.

This paper is an extension of the conference publication [3]. It is devoted to
the comparison of the cardinality of tests constructed by the greedy algorithm for
MVD , MCD and GD approaches. In this paper, we present experimental results
for data sets from UCI Machine Learning Repository [1] that were converted
to inconsistent decision tables by removal of some conditional attributes. These
results show that the use of MCD and, especially, MVD approaches can reduce
the number of attributes in tests in comparison with GD approach. It means that
MVD and MCD approaches can be useful from the point of view of knowledge
representation.

This paper consists of six sections. Section 2 contains main notions. In Sect. 3,
we consider decision tables which have at most t decisions in each set of decisions
attached to rows. In Sect. 4, we present the greedy algorithm for construction
of approximate tests. Section 5 contains results of experiments and Sect. 6 –
conclusions.
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2 Main Notions

A decision table with one-valued decision is a rectangular table T filled by non-
negative integers. Columns of this table are labeled with conditional attributes
f1, . . . , fn. Each row is labeled with a natural number (decision) which is inter-
preted as a value of the decision attribute. It is possible that T is inconsistent,
i.e., contains equal rows with different decisions.

A Decision table with many-valued decisions, T is a rectangular table filled
by nonnegative integers. Columns of this table are labeled with conditional
attributes f1, . . . , fn. If we have strings as values of attributes, we have to encode
the values as nonnegative integers. We do not have any duplicate rows, and each
row is labeled with a nonempty finite set of natural numbers (set of decisions).
We have N(T ) number of rows. We denote row i by ri where i = 1, . . . , N(T ).
For example, r1 means the first row, r2 means the second rows and so on. Note
that each consistent decision table with one-valued decision can be interpreted
also as a decision table with many-valued decisions. In such table, each row is
labeled with a set of decision which has one element.

The most frequent decision attached to rows from a group of rows in a deci-
sion table T is called the most common decision for this group of rows. If we
have more than one such decision we choose the minimum one.

To work with inconsistent decision tables we consider three approaches:

1. many-valued decisions – MVD ,
2. the most common decision – MCD ,
3. generalized decision – GD .

For approach called many-valued decisions – MVD , we transform an inconsistent
decision table T into a decision table TMVD with many-valued decisions. Instead
of a group of equal rows with different decisions, we consider one row from the
group and we attach to this row the set of all decisions for rows from the group [7].
Figure 1 presents transformation of an inconsistent decision table T 0 for MVD
approach.

T 0 =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 1
r3 0 1 0 3
r4 1 1 0 2
r5 0 0 1 2
r6 0 0 1 3
r7 1 0 0 1
r8 1 0 0 2

=⇒ T 0
MV D =

f1 f2 f3
r1 1 1 1 {1}
r2 0 1 0 {1, 3}
r3 1 1 0 {2}
r4 0 0 1 {2, 3}
r5 1 0 0 {1, 2}

Fig. 1. Transformation of inconsistent decision table T 0 into decision table T 0
MVD
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T 0 =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 1
r3 0 1 0 3
r4 1 1 0 2
r5 0 0 1 2
r6 0 0 1 3
r7 1 0 0 1
r8 1 0 0 2

=⇒ T 0
MCD =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 1
r3 1 1 0 2
r4 0 0 1 2
r5 1 0 0 1

Fig. 2. Transformation of inconsistent decision table T 0 into decision table T 0
MCD

T 0 =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 1
r3 0 1 0 3
r4 1 1 0 2
r5 0 0 1 2
r6 0 0 1 3
r7 1 0 0 1
r8 1 0 0 2

=⇒ T 0
GD =

f1 f2 f3
r1 1 1 1 1
r2 0 1 0 2
r3 1 1 0 3
r4 0 0 1 4
r5 1 0 0 5

Fig. 3. Transformation of inconsistent decision table T 0 into decision table T 0
GD

For approach called the most common decision – MCD, we transform incon-
sistent decision table T into consistent decision table TMCD with one-valued
decision. Instead of a group of equal rows with different decisions, we consider
one row from the group and we attach to this row the most common decision for
the considered group of rows. Figure 2 presents transformation of the inconsistent
decision table T 0 for MCD approach.

For approach called generalized decision – GD, we transform inconsistent
decision table T into consistent decision table TGD with one-valued decision.
Instead of a group of equal rows with different decisions, we consider one row
from the group and we attach to this row the set of all decisions for rows from
the group. Then instead of a set of decisions we attach to each row a code of this
set – a natural number such that the codes of equal sets are equal and the codes
of different sets are different. Figure 3 presents transformation of the inconsistent
decision table T 0 for GD approach.

To unify some notions for decision tables with one-valued and many-valued
decisions, we will interpret decision table with one-valued decision as a decision
table with many-valued decisions where each row is labeled with a set of decision
that has one element.

We will say that T is a degenerate table if either T is empty (has no rows),
or the intersection of sets of decisions attached to rows of T is nonempty.

A table obtained from T by removal of some rows is called a subtable of T .
A subtable T ′ of T is called boundary subtable if T ′ is not degenerate but each
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T1 =

f1 f2 f3
r2 0 1 0 {1, 3}
r4 0 0 1 {2, 3}
r5 1 0 0 {1, 2}

T2 =

f1 f2 f3
r1 1 1 1 {1}
r4 0 0 1 {2, 3}

T3 =

f1 f2 f3
r2 0 1 0 {1, 3}
r3 1 1 0 {2}

T4 =

f1 f2 f3
r1 1 1 1 {1}
r3 1 1 0 {2}

Fig. 4. All boundary subtables of the decision table T 0
MVD (see Fig. 1)

proper subtable of T ′ is degenerate. We denote by B(T ) the number of boundary
subtables of the table T . It is clear that T is a degenerate table if and only if
B(T ) = 0. The value B(T ) will be interpreted as uncertainty of T .

Figure 4 presents all four boundary subtables of the decision table T 0
MVD

depicted in Fig. 1. The number of boundary subtables of the decision table T 0
MCD

depicted in Fig. 2 is equal to six. The number of boundary subtables of the
decision table T 0

GD depicted in Fig. 3 is equal to 10. Each boundary subtable of
tables T 0

MCD and T 0
GD has two rows (see Corollary 1).

We will say that an attribute fi divides a boundary subtable Θ of the table
T if and only if this attribute is not constant on the rows of Θ (for example, for
a binary decision table at the intersection with the column fi we can find some
rows which contain 1 and some rows which contain 0).

Let us define the notion of an α-test for the table T . Let α be a real number
such that 0 ≤ α < 1.

An α-test for the table T is a subset of attributes {fi1 , . . . , fim} such that
these attributes divide at least (1−α)B(T ) boundary subtables of T . Empty set
is an α-test for T if and only if T is a degenerate table. An α-reduct for the table
T is an α-test for T for which each proper subset is not an α-test. We denote by
Rmin(α, T ) the minimum cardinality of an α-test for the table T . It is clear that
each α-test has an α-reduct as a subset. Therefore Rmin(α, T ) is the minimum
cardinality of an α-reduct for the table T .

3 Set Tab(t) of Decision Tables

We denote by Tab(t), where t is a natural number, the set of decision tables with
many-valued decisions such that each row in the table has at most t decisions
(is labeled with a set of decisions which cardinality is at most t).

The next statement was proved in [7]. For the completeness, we will give it
with the proof.

Lemma 1. Let T ′ be a boundary subtable with m rows. Then each row of T ′ is
labeled with a set of decisions whose cardinality is at least m − 1.

Proof. Let rows of T ′ be labeled with sets of decisions D1, . . . , Dm respectively.
Then D1 ∩ . . . ∩ Dm = ∅ and, for any i ∈ {1, . . . , m}, the set D1 ∩ . . . ∩ Di−1 ∩



Three Approaches to Dealing with Tests for Inconsistent Decision Tables 43

Di+1 ∩ . . . ∩ Dm contains a number di. Assume that i �= j and di = dj . Then
D1∩. . .∩Dm �= ∅ which is impossible. Therefore d1, . . . , dm are pairwise different
numbers. It is clear that, for i = 1, . . . , m, the set {d1, . . . , dm} \ {di} is a subset
of the set Di.

Corollary 1. Each boundary subtable of a table T ∈ Tab(t) has at most t + 1
rows.

Therefore, for tables from Tab(t), there exists a polynomial time algorithm for
the finding of all boundary subtables and the computation of parameter B(T ).
For example, for any decision table T with one-valued decision (in fact, for any
table from Tab(1)), the equality B(T ) = P (T ) holds, where P (T ) is the number
of unordered pairs of rows of T with different decisions.

4 Greedy Algorithm for α-Test Construction

Note one more time that each consistent decision table with one-valued decision
can be interpreted as a decision table with many-valued decisions.

Now we present a greedy algorithm for α-test construction (if α = 0 we are
working with exact tests). Let T be a table with many-valued decisions contain-
ing n columns labeled with attributes f1, . . . , fn. Let α be a real number such
that 0 ≤ α < 1, and B(T ) be the number of boundary subtables of the table
T . Greedy algorithm at each iteration chooses an attribute which divides the
maximum number of not divided boundary subtables. This algorithm stops if
attributes from the constructed set divide at least (1−α)B(T ) boundary subta-
bles (see Algorithm 1). For example, if α = 0.1 then attributes from α-test divide
at least 90 % of boundary subtables. By Rgreedy(α, T ) we denote the cardinality
of α-test constructed by the greedy algorithm. Remind that Rmin(α, T ) is the
minimum cardinality of α-test.

Algorithm 1. Greedy algorithm for α-test construction
Require: decision table T with attributes f1, . . . , fn, α ∈ R, 0 ≤ α < 1,
Ensure: an α-test for T

Q ← ∅;
while attributes from Q divide less than (1 − α)B(T ) boundary subtables of T do

select fi ∈ {f1, . . . , fn} with the minimum index i such that fi divides the maxi-
mum number of boundary subtables not divided by attributes from Q
Q ← Q ∪ {fi};

end while

If, for a fixed natural t, we apply the considered algorithm to decision tables
from Tab(t) then the time complexity of this algorithm (including construction of
all boundary subtables) will be bounded from above by a polynomial depending
on the length of decision table description.
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Results presented in [2] show that the problem of minimization of α-test
cardinality, 0 ≤ α < 1, is NP-hard. We know (see [8]) that under the assumption
NP � DTIME(nO(log log n)) the greedy algorithm is close to the best (from the
point of view of precision) approximate polynomial algorithms for minimization
of α-test cardinality.

Theorem 1. Reference [8] Let T be a nondegenerate decision table with many-
valued decisions and α be a real number such that 0 < α < 1. Then

Rgreedy(α, T ) ≤ Rmin(0, T ) ln(1/α) + 1.

5 Experimental Results

We consider a number of decision tables from UCI Machine Learning Repository
[1]. In some tables there were missing values. Each such value was replaced with
the most common value of the corresponding attribute. Some decision tables con-
tain conditional attributes that take unique value for each row. Such attributes
were removed.

Table 1. Characteristics of decision tables TMVD ,TMCD and TGD

Decision table T Rows Attr Spectrum

#1 #2 #3 #4 #5 #6

balance-scale-1 125 3 45 50 30

breast-cancer-1 193 8 169 24

breast-cancer-5 98 4 58 40

cars-1 432 5 258 161 13

flags-5 171 21 159 12

hayes-roth-data-1 39 3 22 13 4

kr-vs-kp-5 1987 31 1564 423

kr-vs-kp-4 2061 32 1652 409

lymphography-5 122 13 113 9

mushroom-5 4078 17 4048 30

nursery-1 4320 7 2858 1460 2

nursery-4 240 4 97 96 47

spect-test-1 164 21 161 3

teeth-1 22 7 12 10

teeth-5 14 3 6 3 0 5 0 2

tic-tac-toe-4 231 5 102 129

tic-tac-toe-3 449 6 300 149

zoo-data-5 42 11 36 6
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Table 2. Number of boundary subtables and cardinality of α-tests for tables TMVD

Decision table T Number of boundary
subtables B(TMVD)

cardinality of α-tests for α =

0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 3699 2 2 2 1 1 1

breast-cancer-1 6328 8 6 4 2 2 1

breast-cancer-5 480 4 4 3 1 1 1

cars-1 18576 5 4 3 2 2 1

flags-5 11424 13 9 4 2 1 1

hayes-roth-data-1 297 2 2 2 2 1 1

kr-vs-kp-5 609843 26 12 7 4 3 2

kr-vs-kp-4 681120 27 12 7 4 3 2

lymphography-5 3434 11 9 5 2 2 1

mushroom-5 3068380 8 4 3 2 1 1

nursery-1 4797564 7 3 2 1 1 1

nursery-4 12860 2 2 1 1 1 1

spect-test-1 930 10 10 6 3 3 2

teeth-1 231 5 5 4 2 2 1

teeth-5 91 3 3 3 2 2 1

tic-tac-toe-4 1976 5 5 4 2 2 1

tic-tac-toe-3 18404 6 5 4 2 2 2

zoo-data-5 686 9 9 7 3 2 2

Average 513129.06 8.50 5.89 3.94 2.11 1.78 1.28

We removed from these tables some conditional attributes. As a result, we
obtain inconsistent decision tables. After that we transform each such table T
into tables TMVD , TMCD and TGD as it was described in Sect. 2. The infor-
mation about these decision tables can be found in Table 1. This table contains
name of inconsistent table T in the form “name of initial table from [1]”-“number
of removed conditional attributes”, number of rows in TMVD ,TMCD ,TGD (col-
umn “Rows”), number of attributes in TMVD ,TMCD ,TGD (column “Attr”), and
spectrum of the table TMVD (column “Spectrum”). Spectrum of a decision table
with many-valued decisions is a sequence #1, #2,. . . , where #i, i = 1, 2, . . ., is
the number of rows labeled with sets of decision with the cardinality equal to i.

For decision tables described in Table 1 and α ∈ {0.0, 0.001, 0.01, 0.1, 0.2, 0.3},
we constructed α-tests by the greedy algorithm. Table 2 presents the number
of boundary subtables (column “B(TMVD)”) and the cardinality of α-tests
for tables TMVD . Table 3 presents the number of boundary subtables (column
“B(TMCD)”) and the cardinality of α-tests for tables TMCD . Table 4 presents
the number of boundary subtables (column “B(TGD)”) and the cardinality of
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Table 3. Number of boundary subtables and cardinality of α-tests for tables TMCD

Decision table T Number of boundary
subtables B(TMCD)

cardinality of α-tests for α =

0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 3906 3 3 3 2 1 1

breast-cancer-1 7752 8 6 4 2 2 1

breast-cancer-5 1377 4 4 3 2 1 1

cars-1 34992 5 4 3 2 2 1

flags-5 11747 13 9 4 2 1 1

hayes-roth-data-1 494 3 3 3 2 1 1

kr-vs-kp-5 956242 27 12 7 4 3 2

kr-vs-kp-4 1030424 28 13 7 4 3 2

lymphography-5 4019 11 9 5 2 2 1

mushroom-5 3110992 9 4 3 2 1 1

nursery-1 6385972 7 4 3 2 1 1

nursery-4 19079 4 3 2 2 1 1

spect-test-1 1099 12 11 7 3 2 2

teeth-1 231 5 5 4 2 2 1

teeth-5 91 3 3 3 2 2 1

tic-tac-toe-4 9800 5 5 4 2 2 2

tic-tac-toe-3 39688 6 6 4 3 2 2

zoo-data-5 704 9 9 7 3 2 2

Average 645478.28 9.00 6.28 4.22 2.39 1.72 1.33

α-tests for tables TGD . The last row in Tables 2, 3 and 4 contains the average
number of boundary subtables and the average cardinality of α-tests.

Based on results presented in Table 2 we can see that the cardinality of α-test
is decreasing or nonincreasing when the value of α is increasing. For example,
for data sets “kr-vs-kp-5” and “kr-vs-kp-4”, the exact tests contain 26 and 27
attributes respectively but 0.01-tests contain only 7 attributes. Similar situation
can be observed in Tables 3 and 4. We can also notice that the average number
of boundary subtables is the smallest for MVD approach and the biggest for GD
approach.

Table 5, based on results from Tables 2 and 3, presents comparison of the
number of boundary subtables and α-test cardinality for MVD and MCD
approaches. Each input of this table is equal to the value from Table 3 divided
by the corresponding value from Table 2. Presented results show that, greedy
algorithm sometimes constructs two times shorter tests for MVD approach
than MCD approach: “balance-scale-1” (α = 0.1), “breast-cancer-5” (α = 0.1),
“nursery-1” (α = 0.1), “nursery-4” (α = 0.0, α = 0.01, and α = 0.1), and “tic-
tac-toe-4” (α = 0.3). Only for “spect-test-1” the cardinality of 0.2-test is smaller
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Table 4. Number of boundary subtables and cardinality of α-tests for tables TGD

Decision table T Number of boundary
subtables B(TGD)

cardinality of α-tests for α =

0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 6255 3 3 3 2 1 1

breast-cancer-1 10384 8 6 4 2 2 1

breast-cancer-5 2800 4 4 3 1 1 1

cars-1 54589 5 5 3 2 2 1

flags-5 12105 14 9 4 2 1 1

hayes-roth-data-1 571 3 3 3 2 1 1

kr-vs-kp-5 1271415 27 13 8 4 3 2

kr-vs-kp-4 1356788 28 13 8 4 3 2

lymphography-5 4397 11 10 6 2 2 1

mushroom-5 3189820 9 4 3 2 1 1

nursery-1 6971260 7 5 3 2 1 1

nursery-4 19914 4 3 2 2 1 1

spect-test-1 1413 11 10 7 3 3 2

teeth-1 231 5 5 4 2 2 1

teeth-5 91 3 3 3 2 2 1

tic-tac-toe-4 15134 5 5 4 2 2 2

tic-tac-toe-3 63104 6 6 4 3 2 2

zoo-data-5 750 9 9 7 3 2 2

Average 721167.83 9.00 6.44 4.39 2.33 1.78 1.33

for MCD approach. The number of boundary subtables is usually greater for
MCD approach than for MVD approach, for “tic-tac-toe-4” – almost five times.

Table 6, based on results from Tables 2 and 4, presents comparison of
the number of boundary subtables and α-test cardinality for MVD and GD
approaches. Each input of this table is equal to the value from Table 4 divided
by the corresponding value from Table 2. Presented results show that, the car-
dinality of α-tests is sometimes two times smaller for MVD approach than for
GD approach: “balance-scale-1” (α = 0.1), “nursery-1” (α = 0.1), “nursery-4”
(α = 0.0, α = 0.01, and α = 0.1), and “tic-tac-toe-4” (α = 0.3). The number of
boundary subtables is usually greater for GD approach than for MVD approach,
for “breast-cancer-5” – almost six times, for “tic-tac-toe-4” – more than seven
times.

Table 7, based on results from Tables 3 and 4, presents comparison of
the number of boundary subtables and α-test cardinality for MCD and GD
approaches. Each input of this table is equal to the value from Table 4 divided
by the corresponding value from Table 3. Presented results show that the cardi-
nality of α-tests is comparable for MCD and GD approaches. Only for “breast-
cancer-5” (α = 0.1) the greedy algorithm for GD approach constructs 50%
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Table 5. Comparison of number of boundary subtables and α-test cardinality for tables
TMVD and TMCD (TMCD

TMVD
)

Decision Ratio of number of Ratio of cardinality of α-tests for α =
table T boundary subtables 0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 1.06 1.50 1.50 1.50 2.00 1.00 1.00
breast-cancer-1 1.23 1.00 1.00 1.00 1.00 1.00 1.00
breast-cancer-5 2.87 1.00 1.00 1.00 2.00 1.00 1.00

cars-1 1.88 1.00 1.00 1.00 1.00 1.00 1.00
flags-5 1.03 1.00 1.00 1.00 1.00 1.00 1.00

hayes-roth-data-1 1.66 1.50 1.50 1.50 1.00 1.00 1.00
kr-vs-kp-5 1.57 1.04 1.00 1.00 1.00 1.00 1.00
kr-vs-kp-4 1.51 1.04 1.08 1.00 1.00 1.00 1.00

lymphography-5 1.17 1.00 1.00 1.00 1.00 1.00 1.00
mushroom-5 1.01 1.13 1.00 1.00 1.00 1.00 1.00
nursery-1 1.33 1.00 1.33 1.50 2.00 1.00 1.00
nursery-4 1.48 2.00 1.50 2.00 2.00 1.00 1.00

spect-test-1 1.18 1.20 1.10 1.17 1.00 0.67 1.00
teeth-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
teeth-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tic-tac-toe-4 4.96 1.00 1.00 1.00 1.00 1.00 2.00
tic-tac-toe-3 2.16 1.00 1.20 1.00 1.50 1.00 1.00
zoo-data-5 1.03 1.00 1.00 1.00 1.00 1.00 1.00

shorter test than for MCD approach. The number of boundary subtables is usu-
ally greater for GD approach than for MCD approach, however the difference is
not significant, only for “breast-cancer-5” – two times.

Table 6. Comparison of number of boundary subtables and α-test cardinality for tables
TMVD and TGD ( TGD

TMVD
)

Decision Ratio of number of Ratio of cardinality of α-tests for α =
table T boundary subtables 0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 1.69 1.50 1.50 1.50 2.00 1.00 1.00
breast-cancer-1 1.64 1.00 1.00 1.00 1.00 1.00 1.00
breast-cancer-5 5.83 1.00 1.00 1.00 1.00 1.00 1.00

cars-1 2.94 1.00 1.25 1.00 1.00 1.00 1.00
flags-5 1.06 1.08 1.00 1.00 1.00 1.00 1.00

hayes-roth-data-1 1.92 1.50 1.50 1.50 1.00 1.00 1.00
kr-vs-kp-5 2.08 1.04 1.08 1.14 1.00 1.00 1.00
kr-vs-kp-4 1.99 1.04 1.08 1.14 1.00 1.00 1.00

lymphography-5 1.28 1.00 1.11 1.20 1.00 1.00 1.00
mushroom-5 1.04 1.13 1.00 1.00 1.00 1.00 1.00
nursery-1 1.45 1.00 1.67 1.50 2.00 1.00 1.00
nursery-4 1.55 2.00 1.50 2.00 2.00 1.00 1.00

spect-test-1 1.52 1.10 1.00 1.17 1.00 1.00 1.00
teeth-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
teeth-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tic-tac-toe-4 7.66 1.00 1.00 1.00 1.00 1.00 2.00
tic-tac-toe-3 3.43 1.00 1.20 1.00 1.50 1.00 1.00
zoo-data-5 1.09 1.00 1.00 1.00 1.00 1.00 1.00
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Table 7. Comparison of number of boundary subtables and α-test cardinality for tables
TMCD and TGD ( TGD

TMCD
)

Decision Ratio of number of Ratio of cardinality of α-tests for α =
table T boundary subtables 0.0 0.001 0.01 0.1 0.2 0.3

balance-scale-1 1.60 1.00 1.00 1.00 1.00 1.00 1.00
breast-cancer-1 1.34 1.00 1.00 1.00 1.00 1.00 1.00
breast-cancer-5 2.03 1.00 1.00 1.00 0.50 1.00 1.00

cars-1 1.56 1.00 1.25 1.00 1.00 1.00 1.00
flags-5 1.03 1.08 1.00 1.00 1.00 1.00 1.00

hayes-roth-data-1 1.16 1.00 1.00 1.00 1.00 1.00 1.00
kr-vs-kp-5 1.33 1.00 1.08 1.14 1.00 1.00 1.00
kr-vs-kp-4 1.32 1.00 1.00 1.14 1.00 1.00 1.00

lymphography-5 1.09 1.00 1.11 1.20 1.00 1.00 1.00
mushroom-5 1.03 1.00 1.00 1.00 1.00 1.00 1.00
nursery-1 1.09 1.00 1.25 1.00 1.00 1.00 1.00
nursery-4 1.04 1.00 1.00 1.00 1.00 1.00 1.00

spect-test-1 1.29 0.92 0.91 1.00 1.00 1.50 1.00
teeth-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
teeth-5 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tic-tac-toe-4 1.54 1.00 1.00 1.00 1.00 1.00 1.00
tic-tac-toe-3 1.59 1.00 1.00 1.00 1.00 1.00 1.00
zoo-data-5 1.07 1.00 1.00 1.00 1.00 1.00 1.00

6 Conclusions

We studied the greedy algorithm for construction of α-tests. This algorithm
requires the construction of all boundary subtables of the initial decision table.
We proved that for an arbitrary natural t, the considered algorithm has poly-
nomial time complexity on tables which have at most t decisions in each set of
decisions attached to rows.

We considered the cardinality of α-tests and the number of boundary sub-
tables for MVD , MCD and GD approaches. We removed some conditional
attributes from a number of data sets from UCI ML Repository to obtain incon-
sistent decision tables. Experimental results show that, the greedy algorithm
constructs relatively short α-tests for all considered approaches. We can observe
also that the cardinality of α-tests for MVD approach is sometimes two times
smaller than for MCD and GD approaches. Differences in the cardinality of α-
tests for MCD and GD approaches are not significant. We can also notice that
the average number of boundary subtables is the smallest for MVD approach
and the biggest for GD approach.

References

1. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (http://www.ics.
uci.edu/mlearn/)

2. Azad, M., Chikalov, I., Moshkov, M., Zielosko, B.: Greedy algorithms for construc-
tion of approximate tests. Fundam. Inform. 120(3–4), 231–242 (2012)

3. Azad, M., Chikalov, I., Moshkov, M., Zielosko, B.: Tests for decision tables with
many-valued decisions - comparative study. In: Ganzha, M., Maciaszek, L.A.,
Paprzycki, M. (eds.) FedCSIS, pp. 271–277 (2012)

http://www.ics.uci.edu/ mlearn/
http://www.ics.uci.edu/ mlearn/


50 M. Azad et al.

4. Chikalov, I., Lozin, V., Lozina, I., Moshkov, M., Nguyen, H.S., Skowron, A.,
Zielosko, B.: Three Approaches to Data Analysis. ISRL, vol. 41. Springer, Hei-
delberg (2013)

5. Kryszkiewicz, M.: Comparative study of alternative types of knowledge reduction
in inconsistent systems. Int. J. Intell. Syst. 16(1), 105–120 (2001)

6. Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision
Rules in Rough Sets - Theory and Applications. Studies in Computational Intelli-
gence. Springer, Heidelberg (2008)

7. Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set App-
roach. Studies in Computational Intelligence. Springer, Heidelberg (2011)

8. Moshkov, M., Zielosko, B.: Construction of tests for tables with many-valued deci-
sions. In: Szczuka, M., Czaja, L., Skowron, A., Kacprzak, M. (eds.) CS and P, pp.
376–384, Bia�lystok University of Technology (2011)
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Abstract. Most decision support systems based on rough set theory
are related to the minimal reduct calculation problem, which is NP-
hard. This paper investigates the problem of searching for the set of
useful attributes that occur in at least one reduct. By complement, this
problem is equivalent to searching for the set of redundant attributes,
i.e. the attributes that do not occur in any reducts of the given decision
table. We show that the considered problem is equivalent to a Sperner
system for relational data base system and prove that it can be solved
in polynomial time. On the base of these theoretical results, we also
propose two different algorithms for elimination of redundant attributes
in decision tables.

Keywords: Rough sets · Reducts · Relational database · Minimal keys ·
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1 Introduction

Feature selection is one of the crucial problems in machine learning and data
mining. The accuracy of many classification algorithms depends on the quality
of selected attributes. Rough set approach to feature selection problem is based
on reducts, which are in fact the minimal (with respect to inclusion) sets of
attributes that preserve some necessary amount of information. Unfortunately,
the number of all reducts for a given decision table can be exponential with
respect to the number of attributes. Therefore we are forced to search either for
minimal length reducts or for core attributes, i.e. the attributes that occur in all
reducts. The minimal reduct problem is NP-hard whilst the searching for core
attribute problem can be solved in polynomial time.
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This paper investigates the problem of identifying the set of attributes,
that are present in at least one reduct. Such attributes are called the reductive
attributes. The non reductive attributes are called redundant attributes because
they do not play any role in object classification. For a given decision table, the
problem of searching for all reductive attributes becomes the problem of deter-
mining the union of all reducts of the given decision table, or determining the
set of all redundant attributes [1] of a decision table.

In this paper we present two approaches to the investigated problem. Firstly,
we present the fundamental analysis of the problem of searching for reductive
attributes. Using Boolean reasoning approach we prove that the problem can be
solved completely in polynomial time. Moreover, we can consider the decision
table as the relation over the set of attributes and apply some results in relational
database theory to solve the mentioned problems. We propose an algorithm to
determine the set of all reductive attributes of consistent decision tables based
on the methods of searching for keys, antikeys and prime attributes in decision
table (see [2,3]).

This paper is the extended version of [4].
The structure of this paper is as follows. Sections 2 and 3 presents some

basic concepts in rough set theory as well as the computational complexity of the
reduct calculation problems. Section 4 presents the concept of reducts in decision
table from the view point of relational database theory. We also propose an
algorithm to determine the set of all reductive attributes of a consistent decision
table. In Sect. 5, we perform some experiments of the proposed algorithm. The
conclusions and future remarks are presented in the last section.

2 Basic Concepts

An information system is a pair A = (U,A), where the set U denotes the universe
of objects and A is the set of attributes, i.e. the mappings of the form: a : U → Va.
The set Va is called the domain or the value set of attribute a.

A decision system is an information system D = (U,A ∪ {dec}) where dec
is a distinguished attribute called the decision attribute or briefly decision. The
remaining attributes are called conditional attributes or briefly conditions. For
convenience, we assume that the domain of decision attribute consists of two or
very few values. For any k ∈ Vdec the set

CLASSk = {u ∈ U : dec(u) = k}

is called the decision class of D.
As an example, let us consider the decision system below (Table 1). Attributes

Diploma, Experience, French and Reference are the condition attributes, whereas
Decision is the decision attribute. We will refer to decision attribute Decision as
dec, and to conditional attributes Diploma, Experience, French and Reference as
to a1, . . . , a4 in this order. In this example there are two decision classes related
to the values Accept and Reject of the decision attribute domain. These decision
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classes are as follow:

CLASSAccept = {x1, x4, x6, x7}
CLASSReject = {x2, x3, x5, x8}

Table 1. An example decision system represented as a table.

a1 a2 a3 a4 dec

Diploma Experience French Reference Decision

x1 MBA Medium Yes Excellent Accept

x2 MBA Low Yes Neutral Reject

x3 MCE Low Yes Good Reject

x4 MSc High Yes Neutral Accept

x5 MSc Medium Yes Neutral Reject

x6 MSc High Yes Excellent Accept

x7 MBA High No Good Accept

x8 MCE Low No Excellent Reject

Rough set theory has been introduced by Professor Z. Pawlak [5] as a tool
for concept approximation under uncertainty. The idea is to approximate an
unknown concept by two descriptive sets called the lower and upper approxi-
mations. One of the assumptions in rough set theory that differs it from other
methods in soft computing and concept approximation is that the lower and
upper approximations must be extracted from the information that is available
in training data.

One of the simplest ways to define the lower and upper approximations has
been proposed by Prof. Z. Pawlak in [1]. This approach to concept approximation
is based on the indiscernibility relation.

For a subset of attributes B ⊆ A we define B-indiscernibility relation
IND(B) and decision-relative indiscernibility relation INDdec(B) (both defined
on U × U) as following:

(x, y) ∈ IND(B) ⇐⇒ ∀a∈Aa(x) = a(y)
(x, y) ∈ INDdec(B) ⇐⇒ dec(x) = dec(y) ∨ ∀a∈Aa(x) = a(y)

The relation IND(B) is an equivalence relation and it defines a partitioning
of U into equivalence classes which we denote by [x]B (x ∈ U). The complement
of IND(B) in U ×U is called discernibility relation, denoted by DISC(B). The
lower and upper approximations of a concept X (using attributes from B) are
defined by:

LB(X) =
{

x ∈ U : [x]IND(B) ⊆ X
}

and

UB(X) =
{

x ∈ U : [x]IND(B) ∩ X �= ∅
}

.
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The main philosophy of rough set approach to concept approximation prob-
lem is based on minimizing the difference between upper and lower approxima-
tions (also called the boundary region). This simple, but brilliant idea, leads to
many efficient applications of rough sets in machine learning and data mining
like feature extraction and selection, rule induction, discretization or classifier
construction [6].

It has been shown that all of the problems mentioned above are related to
one of the crucial concepts in rough set theory, called reducts or decision reducts
(see [1,7]). In general, reducts are minimal subsets (with respect to the set inclu-
sion relation) of attributes which contain a necessary portion of information
about the set of all attributes [6,8].

There are several ways to define reducts in Rough set theory. We will further
focus on the following one.

A decision-relative reduct is a minimal set of attributes R ⊆ A such that

INDdec(R) = INDdec(A).

This condition guarantees that R contains all information necessary to discern
objects belonging to different classes. The set of all decision reducts of a given
decision table D = (U,A ∪ {dec}) is denoted by

RED(D) = {R ⊆ A : R is a reduct of D}
The attribute a ∈ A called core attribute iff a presents in all reducts of A.

The set of all core attributes is denoted by

CORE(D) =
⋂

R∈RED(D)

R

The attribute a ∈ A is called reductive attribute if and only if a belongs to
at least one reduct of A. The set of all reductive attributes is denoted by

REAT (D) =
⋃

R∈RED(D)

R

It is obvious that
CORE(D) ⊆ R ⊆ REAT (D)

for any reduct R ∈ RED(D).
The attribute is called redundant attribute if it is not a reductive attribute.

In other words, redundant attribute is not presented in any reduct of A.
For example, the set of all reducts of the decision table in Table 1 is

RED(D) = {{a1, a2}, {a2, a4}}.

Thus
CORE(D) = {a2}; REAT (D) = {a1, a2, a4}

In this example, a3 is the redundant attribute.
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From historical point of view, the classification of attributes into three groups:
core, reductive and redundant attributes was introduced by Professor Pawlak in
[1]. This topic has been also studied by some other authors using different names,
e.g., in the paper [9] the authors used the three types of attributes: absolutely
necessary attributes relatively necessary attributes, and absolutely unnecessary
attributes, while in the paper [10] the author used the names useful attributes
and useless attributes to label the different types of attributes.

For any fixed natural k, there exists a polynomial in time algorithm which,
for a given decision table T and given k conditional attributes, recognizes if there
exists a decision reduct of T containing these k attributes

3 Complexity Results

The concept of decision reducts using discernibility matrix has been explained in
[8]. This simple and nice idea is also a tool for showing that the reduct calculation
problem is equivalent to the problem of searching for prime implicants of boolean
functions.

In fact, discernibility matrix for a given decision table D = (U,A ∪ {dec}),
denoted by MD(A) = [cij ], is a n×n table, where n is the number of object, and
the entry cij is referring to the pair of objects (xi, xj) that belong to different
decision classes. The entry cij is the set of all conditional attributes which discern
the objects xi and xj , i.e.

cij = {a ∈ A : a(xi) �= a(xj)}
In Table 2 we present a compact form of decision-relative discernibility matrix

corresponding to the decision system from Table 1, where the objects correspond-
ing to class Accept are listed as columns and the objects corresponding to class
Reject are listed as rows.

Table 2. The compact form of decision-relative discernibility matrix corresponding to
decision system in Table 1.

x1 x4 x6 x7

x2 a2, a4 a1, a2 a1, a2, a4 a2, a3, a4

x3 a1, a2, a4 a1, a2, a4 a1, a2, a4 a1, a2, a3

x5 a1, a4 a2 a2, a4 a1, a2, a3, a4

x8 a1, a2, a3 a1, a2, a3, a4 a1, a2, a3 a1, a2, a4

The Boolean reasoning approach to reduct calculation problem is based on
encoding it by the boolean discernibility function defined as follows:

ΔD(a1, . . . , ak) =
∏

i,j:d(xi)�=d(xj)

∑

a∈Cij

a
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where a1, . . . , ak are the boolean variables related to attributes from A, and
∏

,
∑

denote the Boolean conjunction and Boolean disjunction operators. Thus,
for the discernibility matrix in Table 2, the discernibility function can be written
as follows:

ΔD(a1, . . . , a4) =(a2 + a4)(a1 + a2)(a1 + a2 + a4)
(a2 + a3 + a4)(a1 + a2 + a4)(a1 + a2 + a4)
(a1 + a2 + a4)(a1 + a2 + a3)(a1 + a4)(a2)(a2 + a4)
(a1 + a2 + a3 + a4)(a1 + a2 + a3)(a1 + a2 + a3 + a4)
(a1 + a2 + a3)(a1 + a2 + a4) (1)

It has been shown in [6,8] that the set of attributes R = {ai1 , . . . , aij} is a
reduct in D if and only if the monomial

mR = ai1 · . . . · aij

is a prime implicant of ΔD(a1, . . . , ak). As a consequence of this fact, both the
problem of searching for minimal length reducts as well as the problem of search-
ing for all reducts of a given decision table are NP-hard.

In terms of decision-relative discernibility matrix, a decision reduct R is a
minimal subset of attributes so that for each non-empty entry Cij of M(A),
Cij ∩ R �= ∅.

Discernibility matrix and discernibility function are very important tools for
calculation and analysis of reducts. Let us recall the following well known fact
(see [6,8]).

Theorem 1. For any attribute a ∈ A, a is a core attribute if and only if a
occurs in discernibility matrix as a singleton. As a consequence, the problem of
searching for core attributes can be solved in polynomial time.

For the example from Table 1, according to the Theorem 1, attribute a2 (Expe-
rience) is the core attribute, because this is the only attribute that discerns x4

and x5 (see also Table 2). And we can determine it without calculation of all
reducts of this table.

The question is related to computational complexity of the problems of reduc-
tive attributes. We will use the discernibility matrix and discernibility function to
prove that this problem can be solved in polynomial time. Therefore, once again,
the Boolean reasoning approach shows to be a useful tool for reduct calculation
problem.

The main idea is based on application of the absorption law in Boolean alge-
bra, which states that

x + (x · y) = x x · (x + y) = x

where x, y are the arbitrary Boolean functions. In other words, in Boolean alge-
bra, the longer expressions are absorbed by the shorter ones. For the Boolean
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function in Eq. 1, (a1 + a2) absorbs (a1 + a2 + a4) but, at the same time, it is
absorbed by (a2).

The Boolean expression is called the irreducible CNF if it is in CNF (con-
junctive normal form) and it is not possible to apply the absorption law on its
clauses.

As an example, the irreducible CNF of the discernibility function in Eq. 1 is
as follows:

ΔD(a1, . . . , a4) = a2 · (a1 + a4)

We have the following theorem

Theorem 2. For any decision table D = (U,A ∪ {dec}), if

ΔD(a1, . . . , ak) =

(

∑

a∈C1

a

)

·
(

∑

a∈C2

a

)

. . .

(

∑

a∈Cm

a

)

(2)

is the irreducible CNF of discernibility function ΔD(a1, . . . , ak), then

REAT (D) =
m
⋃

i=1

Ci (3)

Proof (Proof of Theorem 2). As (2) is the irreducible CNF of discernibility func-
tion, the family {C1, . . . , Cm} should satisfy the following properties:

– It is an antichain, i.e. Ci � Cj and Cj � Ci for any i, j ∈ {1, . . . , m}
– If R is a reduct, i.e. R ∈ RED(D), then R ∩ Ci �= ∅ for any i ∈ {1, . . . , m}.

We will prove that the inclusions in both directions of the Eq. (3) hold:

1. The proof of REAT (D) ⊆
m
⋃

i=1

Ci:

Let a ∈ REAT (D). From the definition, there exists a reduct R ∈ RED(D)
such that a ∈ R. This means that R ∩ Ci �= ∅ for i = 1, . . . , m.
If a /∈ ⋃m

i=1 Ci then for any i ∈ {1, . . . , m} we have a /∈ Ci, which implies that

(R − {a}) ∩ Ci = R ∩ Ci �= ∅.

Thus there exists a subset of R − {a} which is also a reduct of D, and this is
a contradiction.
Hence we have a ∈ ⋃m

i=1 Ci.

2. The proof of
m
⋃

i=1

Ci ⊆ REAT (D):

We can use the fact that the irreducible CNF of monotone Boolean function
is unique to prove this inverse inclusion.
Indeed, if a ∈ ⋃m

i=1 Ci and a is a redundant attribute, then R ∩ Ci − {a} �= ∅
for each reduct R ∈ RED(D). Thus

Δ
(1)
D

(a1, . . . , ak) =
m
∏

i=1

⎛

⎝

∑

aj∈Ci

aj

⎞

⎠
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and

Δ
(2)
D

(a1, . . . , ak) =
m
∏

i=1

⎛

⎝

∑

aj∈Ci−{a}
aj

⎞

⎠

are the two different irreducible CNF form of the discernibility function
ΔD(a1, . . . , ak), what is the contradiction.

The following algorithm is the straightforward application of the presented above
theorem:

Algorithm 1. Determining the set of all reductive attributes of a given
decision table.
Data: a consistent decision table D = (U,A ∪ {dec});
Result: REAT (A) – the set of all reductive attributes of D;

1 Calculate the discernibility matrix MD(A);
2 Reduce MD(A) using absorption law;
3 Let {C1, . . . , Cm} be the set of nonempty entries of MD(A) after reduction;
4 Return REAT (A) =

⋃m
i=1 Ci as the set of all reductive attributes of D.

If |A| = k and |U | = n then the time complexity of construction of dis-
cernibility matrix (step 1) is O(n2k). Since there are O(n2) subsets of A in the
discernibility matrix, the reducing phase using absorbtion law requires O(n4)
set comparison operations, thus the time complexity of Step 2 in Algorithm 1 is
O(n4k). Therefore the time complexity of reductive attributes calculation prob-
lem is at most O(n4k).

The polynomial time complexity of reductive attribute calculation problem
can be also derived from another fact presented in [11]. In this paper, it has been
shown that for any fixed natural k, there exists a polynomial time algorithm
which, for a given decision table D and given k conditional attributes, recognizes
if there exists a decision reduct of D containing these k attributes. If we chose
k = 1 and for each attribute a ∈ A, we apply the mentioned algorithm to check
the existence of reduct that contains a, we can also construct the set of all
reductive attributes of D.

4 Decision Tables in Terms of Relational Databases

Let us give some necessary definitions and results of the theory of relation data-
base that can be found in [2,3,12].

4.1 Relational Database Theory

Let A = {a1, . . . , ak} be a finite set of attributes and let D(ai) ⊆ Vai
be the set

of all possible values of attribute ai, for i = 1, . . . , k. Any subset of the Cartesian
product

R ⊆ D(a1) × D(a2) × . . . × D(ak)
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is called the relation over A. In other words, relation over A is the set of tuples
{h1, . . . , hn} where

hj : A →
⋃

ai∈A

D(ai),

is a function that hj(ai) ∈ D(ai)) for 1 ≤ j ≤ n.
Let R = {h1, . . . , hn} be a given relation over the set of attributes A =

{a1, . . . , ak}. Any pair of attribute sets B,C ⊆ A is called the functional depen-
dency (FD for short) over A, and denoted by B → C, if and only if for any pair
of tuples hi, hj ∈ R:

∀a∈B(hi(a) = hj(a)) =⇒ ∀a∈C(hi(a) = hj(a))

The set FR = {(B,C) : B,C ⊂ A;B → C} is called the full family of functional
dependencies in R.

Let P(A) be the power set of attribute set A. A family R ⊂ P(A) × P(A) is
called an f-family over A if and only if for all subsets of attributes P,Q, S, T ⊆ A
the following properties hold:

R1. (P,P ) ∈ R (4)
R2. (P,Q) ∈ R, (Q,S) ∈ R =⇒ (P, S) ∈ R (5)
R3. (P,Q) ∈ R, P ⊆ S, T ⊆ Q =⇒ (S, T ) ∈ R (6)
R4. (P,Q) ∈ R, (R,S) ∈ R =⇒ (P ∪ R,Q ∪ T ) ∈ R (7)

Clearly FR is an f -family over A. It is also known that if F is an f -family
over A then there is a relation R such that FR = F .

A pair S = (A,F), where A is a set of attributes and F is a set of functional
dependency on A, is called the relation scheme. Let us denote by F+ the set
of all functional dependecies, which can be derived from F by using the rules
R1 − R4.

For any subset of attributes B ⊆ A, the set

B+ = {a ∈ A : B → a ∈ F+}
is called the closure of B on S. It is clear that B → C ∈ F+ if and only if
C ⊆ B+.

A set of attributes B ⊂ A is called the key of S = (A,F) iff B → A ∈ F+.
The set B is the minimal key of S = (A,F) if B is a key of S and any proper
subset of B is not a key of S. Let us denote by K(S) the set of all minimal keys
of the given relation scheme S.

Recall that a family K ⊆ P(A) is a Sperner system if for any K1,K2 ∈ K
implies K1 � K2. Clearly K(S) is a Sperner system.

Let K = KS be a Sperner system over A containing all minimal keys of S.
We defined the set of antikeys of K, denoted by K−1, as follows:

K−1 = {B ⊆ A :∀C⊂A(C ∈ K =⇒ C � B)∧
∀D⊂A(B ⊆ D =⇒ ∃C∈KC ⊆ D)}
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It is easy to see that K−1 is the set of subsets of A, which does not contain the
elements of K and which is maximal for this property. They are the maximal
non-keys. Clearly, K−1 is also a Sperner system.

Let us now define the concept of equality system for a given relation. For
R = {h1, . . . , hn} over A = {a1, . . . , ak}, we define

E(R) = {Eij : 1 ≤ i < j ≤ n},

where Eij = {a ∈ A : hi(a) = hj(a)} (8)

The family E(R) is called the equality system of the relation R. It is easy to
notice that in the worse case, E(R) contains O(n2) subsets of attributes, where
n is the number of records in the relation R.

It is known (see [2]) that for each subset of attributes B ⊆ A, the following
property holds:

B+ =

{

Eij if B ⊆ Eij for some Eij ∈ E(R)
A otherwise

Let S = (A,F) be a relation scheme over attribute set A. For any attribute
a ∈ A, the set

KS(a) = {B ⊆ A : B → a ∧ �C⊂BC → a} (9)

is called the family of minimal sets of the attribute a over S. It is known that
{a} ∈ KS(a), A /∈ KS(a) and KS(a) is a Sperner system over A.

4.2 Relational Database Theory and Reducts

In rough set theory the minimal sets from KS(a) are strongly related to the
concept of decision reducts. Any decision table D = (U,A ∪ {dec}) can be
treated as a relation U = {u1, . . . , un} over the set of all attributes A ∪ {dec} =
{a1, . . . , ak, dec}.

Moreover, the following facts state that in some cases the concept of deci-
sion reduct in rough set theory and the concept of functional dependency are
equivalent.

Theorem 3. For any decision table D = (U,A ∪ {dec}), the following equation
holds

KS(dec) = RED(D) ∪ {dec}
where S is the relation scheme induced from the decision table D as it was defined
in Eq. (9).

In relational database theory, the following important facts has been proven (see
e.g. in [3]).

Lemma 1. The following equality holds for any Sperner system K over the set
of attribute A:

⋃

K∈K
K = A −

⋂

K∈K−1

K
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As the consequence we have the following theorem

Theorem 4. Let D = (U,A ∪ {dec}) be a consistent decision table, the set of
reductive attributes can be determined by:

REAT (A) =
⋃

K∈KS(dec)

(K − {dec})

= A −
⋂

K∈(KS(dec))−1

K (10)

Therefore, the main problem is to calculate the family (KS(dec))−1. According
to the theory of relational database in previous Section we have

(KS(dec))−1 = {B ⊆ A :(B → dec /∈ F+)∧
(B � C ⇒ C → dec ∈ F+)}

It is clear that for any set of attributes B ⊆ A we have B ∈ (KS(dec))−1 if and
only if

B ∈ E(R) ∧ �C∈E(R)(dec ∈ C and (B � C − {dec})

The method of determining the set of reductive attributes using the equality
set E(R) is presented in Algorithm 2. Similar to Algorithm 1, the size of Eij is
O(n2k), where k and n are the number of attributes and number of objects. Thus,
in the worse case, the construction of M(dec) requires at most O(n4k) steps.
Therefore the problem of calculation of all reductive attributes can be solved by
a straightforward algorithm, which runs in O(n4k) time and uses O(n2k) space.

Algorithm 2. Determining the set of all reductive attributes of a given
decision table.
Data: a consistent decision table D = (U,A ∪ {dec});
Result: REAT (A) – the set of all reductive attributes of D;

1 Calculate the equality system

E(R) = {Eij : 1 ≤ i < j ≤ n}
where Eij is the set of attributes that have the same values for ui and uj ;

2 Let

Ed = {B ∈ E(R) : dec ∈ B}
E0 = {B ∈ E(R) : dec /∈ B}

3 Construct the family of subsets of A:

M(dec) = {B ∈ E0 : ∀C∈E0(B ∩ C �= B)}
4 Construct the set V =

⋂
K∈M(dec) K

5 Return REAT (A) = A − V as the set of all reductive attributes of D.
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4.3 Example

Let us consider the exemplary decision table in Table 1. The equality set E(R)
of this table is presented in Table 3.

In fact, E(R) consists of different subsets of the attribute set

A ∪ {dec} = {a1, a2, a3, a4, dec}.

However, for the clear representation, we divided E(R) into two parts, i.e., E0 –
the family of subsets that do not contain the decision dec, and Ed – the family of
subsets that contain the decision dec. The family E0 is placed in the left column,
while the family Ed is placed in the right column of Table 3.

Table 3. The equality set of the decision table from Table 1

E(R): E0 Ed

without dec with dec

{a1, a3} {a3, dec}
{a3, a4} {a3, a4, dec}
{a3} {a1, dec}
{a1} {a1, a2, a3, dec}
{a4} {a2, dec}
{a2, a3} {a2, a3, dec}
{a1, a3, a4} {a1, a2, dec}

{dec}

One can see that the left column can be calculated by taking the complements
of all entries of the discernibility matrix in Table 2.

The next step is to calculate M(dec), which is the family maximal subsets
among the subsets of E(R) that do not contain dec. In this example

M(dec) = {{a2, a3}, {a1, a3, a4}}
Thus V = {a3} and REAT (A) = {a1, a2, a4}.

5 Experiments

The experiments are performed on 4 data sets obtained from UCI Machine
Learning Repository1. Due to the high time and space complexity, we demon-
strate the presented algorithms on the data sets containing a small number of
objects and relatively large number of attributes. The selected data sets are: a
part of Adult, a small data set of Soybean, Sponge.data and Zoo.data.
1 The UCI machine learning repository, http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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We present the results of calculation the set of all reductive attributes and the
set of all redundant attributes in Table 4. In this Table |U |, |A| are the numbers
of objects and condition attributes, and t is the time of operation (calculated by
second) calculated on PC (Pentium Dual Core 2.13 GHz, 1 GB RAM, WINXP).
The conditional attributes are denoted by 1, 2, . . . |A|.

Table 4. The results of experiment on some benchmark data sets using the proposed
algorithm

Data sets |U | |A| t The reductive
attributes

The redundant
attributes

Adult stretch 20 4 0.93 3, 4 1, 2

Soybean small data 47 35 2.74 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 20, 21, 22,
23, 24, 25, 26, 27,
28, 35

11, 13, 14, 15, 16, 17,
18, 19, 29, 30, 31,
32, 33, 34

Sponge.data 76 45 2.1 1, . . . , 11, 13, . . . , 34,
36, . . . , 45

12, 35

Zoo.data 101 17 3.19 1, 2, 4, 5, 7, 8, 9, 10,
11, 12, 13, 14, 15, 17

3, 6, 16

6 Conclusions

In this paper, we presented two alternative approaches to the problem of deter-
mining the set of all reductive attributes for a decision table. The first approach
is based on discernibility matrix and Boolean reasoning methodology.

The second approach is based on Sperner system using the equality set. We
defined the family of all minimal sets of an attribute over a relation based on the
definition of the family of minimal sets of an attribute over a relation scheme
[3], so the concept of reduct in decision tables is equivalent to that of minimal
set of an attribute in a relation. As a result, an algorithm for determining all
reduced attributes of a consistent decision table was proposed based on some
results proposed in [2]. We also proved that the time complexity of proposed
algorithm is polynomial in the number of rows and columns of the decision
table. This results play an important role in rejecting redundant attributes in
decision tables before attribute reduction and rule extraction.

The positive result is related to the fact that the set of reductive attributes
can be calculated in polynomial time. However both proposed methods seem
to have quite a high complexity. In the worst case, the proposed solutions may
need O(n4k) steps, where n in the number of objects and k is the number of
attributes in the decision table.

We are planing to work on the more efficient methods to reduce the time
complexity of the proposed solutions. The idea may be based on the attempt to
realize the same algorithms without implementation of discernibility matrix.
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Abstract. The paper is devoted to the study of an extension of dynamic
programming approach which allows sequential optimization of approxi-
mate decision rules relative to length, coverage and number of misclassi-
fications. Presented algorithm constructs a directed acyclic graph Δγ(T )
which nodes are subtables of the decision table T . Based on the graph
Δγ(T ) we can describe all irredundant γ-decision rules with the min-
imum length, after that among these rules describe all rules with the
maximum coverage, and among such rules describe all rules with the
minimum number of misclassifications. We can also change the set of
cost functions and order of optimization. Sequential optimization can be
considered as a tool that helps to construct simpler rules for understand-
ing and interpreting by experts.

1 Introduction

Decision rules are one of popular ways for data representation used in machine
learning and knowledge discovery. Exact decision rules can be overfitted, i.e.,
dependent essentially on the noise or adjusted too much to the existing examples.
If decision rules are considered as a way of knowledge representation then instead
of exact decision rules with many attributes, it is more appropriate to work with
approximate decision rules which contain smaller number of attributes and have
relatively good accuracy. Moreover, classifiers based on approximate decision
rules have often better accuracy than the classifiers based on exact decision
rules. Therefore, approximate decision rules and also closely connected with
them approximate reducts are studied intensively last years [8,9,12,19,20,22,
23,25,28,30].

There are many approaches to the construction of decision rules: brute-force
approach which is applicable to tables with relatively small number of attributes,
Boolean reasoning [21,24,29], separate-and-conquer approach (algorithms based
on a sequential covering procedure) [6,10–12,14–16], algorithms based on deci-
sion tree construction [13,17,20,26], different kinds of greedy algorithms [19,21].
Each method has different modifications, e.g., in the case of decision trees, we
can use greedy algorithms based on different uncertainty measures (Gini index,
entropy, etc.) for construction of decision rules.
c© Springer-Verlag Berlin Heidelberg 2015
J. Peters et al. (Eds.): TRS XIX, LNCS 8988, pp. 65–82, 2015.
DOI: 10.1007/978-3-662-47815-8 5
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The paper, extending a conference publication [31], presents, based on
dynamic programming algorithm, one more approach that allows sequential opti-
mization of approximate decision rules. We introduce an uncertainty measure
that is the difference between number of rows in a given decision table and
number of rows labeled with the most common decision for this table. We fix a
nonnegative threshold γ, and study so-called γ-decision rules that localize rows
in subtables which uncertainty is at most γ. For each of such rules the number
of misclassifications is at most γ.

We consider three cost functions: length, coverage and number of misclas-
sifications. The choice of length is connected with the Minimum Description
Length principle [27]. The rule coverage is important to discover major patterns
in the data. Number of misclassifications is important from the viewpoint of
accuracy of classification. Considered approach allows sequential optimization
of γ-decision rules relative to the mentioned cost functions.

Sequential optimization can be considered as a tool that helps to construct
rules which are simpler for understanding and interpreting by experts, e.g., among
rules with the maximum coverage we can find rules with the minimum length. Such
rules can be considered as part of knowledge and experts can easier analyze them.
Moreover, sequential optimization allows to find optimal rules relative to the
considered cost functions, e.g., rules with the minimum length and the maximum
coverage. In this case, results of sequential optimization do not depend on the
order of optimization. Besides, sequential optimization of system of decision rules
also can help to discover some regularities or anomalies in the data.

First results for decision rules based on dynamic programming approach were
obtained in [32]. The aim of this study was to find one decision rule with the
minimum length for each row. In [4] we studied dynamic programming app-
roach for exact decision rule optimization. In [5] we studied dynamic program-
ming approach for approximate decision rule optimization and we used another
uncertainty measure that is the number of unordered pairs of rows with different
decisions in decision table T . In [2] we presented procedures of optimization of
γ-decision rules relative to the length and coverage, and in [3] – relative to the
number of misclassifications.

In this paper, we concentrate on sequential optimization of γ-decision rules
relative to the length, coverage and number of misclassifications, and totally
optimal rules relative to these cost functions.

We present results of experiments with some decision tables from UCI
Machine Learning Repository [7] based on Dagger software system [1] created
in King Abdullah University of Science and Technology (KAUST).

This paper consists of seven sections. Section 2 contains definitions of main
notions. In Sect. 3, we study a directed acyclic graph which allows to describe
the whole set of irredundant γ-decision rules. In Sect. 4, we describe procedures
of optimization of irredundant γ-decision rules relative to the length, coverage
and number of misclassifications. In Sect. 5, we discuss possibilities of sequential
optimization of rules relative to a number of cost functions. Section 6 contains
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results of experiments with decision tables from UCI Machine Learning Reposi-
tory. Section 7 contains conclusions.

2 Main Notions

In this section, we consider definitions of notions corresponding to decision table
and decision rules.

A decision table T is a rectangular table with n columns labeled with condi-
tional attributes f1, . . . , fn. Rows of this table are filled by nonnegative integers
which are interpreted as values of conditional attributes. Rows of T are pairwise
different and each row is labeled with a nonnegative integer which is interpreted
as a value of the decision attribute. It is possible that T is empty, i.e., has no
rows.

A minimum decision value which is attached to the maximum number of
rows in T will be called the most common decision for T . The most common
decision for empty table is equal to 0.

We denote by N(T ) the number of rows in the table T and by Nmcd(T ) we
denote the number of rows in the table T labeled with the most common decision
for T . We will interpret the value J(T ) = N(T )−Nmcd(T ) as uncertainty of the
table T .

The table T is called degenerate if T is empty or all rows of T are labeled
with the same decision. It is clear that J(T ) = 0 if and only if T is a degenerate
table.

A table obtained from T by the removal of some rows is called a subtable
of the table T . Let T be a nonempty, fi1 , . . . , fik

∈ {f1, . . . , fn} and a1, . . . , ak

be nonnegative integers. We denote by T (fi1 , a1) . . . (fik
, ak) the subtable of the

table T which contains only rows that have numbers a1, . . . , ak at the intersection
with columns fi1 , . . . , fik

. Such nonempty subtables (including the table T ) are
called separable subtables of T .

We denote by E(T ) the set of attributes from {f1, . . . , fn} which are not
constant on T . For any fi ∈ E(T ), we denote by E(T, fi) the set of values of the
attribute fi in T .

The expression
fi1 = a1 ∧ . . . ∧ fik

= ak → d (1)

is called a decision rule over T if fi1 , . . . , fik
∈ {f1, . . . , fn}, and a1, . . . ak, d are

nonnegative integers. It is possible that k = 0. In this case (1) is equal to the rule

→ d. (2)

Let r = (b1, . . . , bn) be a row of T . We will say that the rule (1) is realizable
for r, if a1 = bi1 , . . . , ak = bik

. If k = 0 then the rule (2) is realizable for any
row from T .

Let γ be a nonnegative integer. We will say that the rule (1) is a γ-true for T
if d is the most common decision for T ′ = T (fi1 , a1) . . . (fik

, ak) and J(T ′) ≤ γ.
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If k = 0 then the rule (2) is a γ-true for T if d is the most common decision for
T and J(T ) ≤ γ.

If the rule (1) is a γ-true for T and realizable for r, we will say that (1) is a
γ-decision rule for T and r. Note that if γ = 0 we have an exact decision rule
for T and r.

We will say that the rule (1) with k > 0 is an irredundant γ-decision rule for
T and r if (1) is a γ-decision rule for T and r and the following conditions hold:

(i) fi1 ∈E(T ), and if k>1 then fij
∈E(T (fi1 , a1) . . . (fij−1 , aj−1)) for j =2,. . . ,k;

(ii) J(T )>γ, and if k>1 then J(T (fi1 , a1) . . . (fij
, aj))>γ for j = 1, . . . , k − 1.

If k = 0 then the rule (2) is an irredundant γ-decision rule for T and r if (2)
is a γ-decision rule for T and r, i.e., if d is the most common decision for T and
J(T ) ≤ γ.

Let τ be a decision rule over T and τ be equal to (1).
The number k of descriptors (pairs “attribute=value”) on the left-hand side

of τ is called the length of this rule and is denoted by l(τ). The length of decision
rule (2) is equal to 0.

The coverage of τ is the number of rows in T for which τ is realizable and
which are labeled with the decision d. We denote it by c(τ). The coverage of
decision rule (2) is equal to the number of rows in T which are labeled with the
decision d.

The number of misclassifications of τ is the number of rows in T for which
τ is realizable and which are labeled with decisions different from d. We denote
it by μ(τ). The number of misclassifications of the decision rule (2) is equal to
the number of rows in T which are labeled with decisions different from d.

Proposition 1. [2] Let T be a nonempty decision table, r be a row of T and τ
be a γ-decision rule for T and r which is not irredundant. Then by removal of
some descriptors from the left-hand side of τ and by changing the decision on
the right-hand side of τ we can obtain an irredundant γ-decision rule irr(τ) for
T and r such that l(irr(τ)) ≤ l(τ) and c(irr(τ)) ≥ c(τ).

Unfortunately, it is impossible to prove similar result for the number of misclas-
sifications.

3 Directed Acyclic Graph Δγ(T )

In this section, we present an algorithm that constructs a directed acyclic graph
Δγ(T ). Based on this graph we can describe the set of irredundant γ-decision
rules for T and for each row r of T . Nodes of the graph are separable subtables
of the table T . During each step, the algorithm processes one node and marks it
with the symbol *. At the first step, the algorithm constructs a graph containing
a single node T which is not marked with the symbol *.

Let the algorithm have already performed p steps. Let us describe the step
(p + 1). If all nodes are marked with the symbol * as processed, the algorithm
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finishes its work and presents the resulting graph as Δγ(T ). Otherwise, choose
a node (table) Θ, which has not been processed yet. Let d be the most common
decision for Θ. If J(Θ) ≤ γ label the considered node with the decision d,
mark it with symbol * and proceed to the step (p + 2). If J(Θ) > γ, for each
fi ∈ E(Θ), draw a bundle of edges from the node Θ. Let E(Θ, fi) = {b1, . . . , bt}.
Then draw t edges from Θ and label these edges with pairs (fi, b1), . . . , (fi, bt)
respectively. These edges enter to nodes Θ(fi, b1), . . . , Θ(fi, bt). If some of nodes
Θ(fi, b1), . . . , Θ(fi, bt) are absent in the graph then add these nodes to the graph.
We label each row r of Θ with the set of attributes EΔγ(T )(Θ, r) = E(Θ). Mark
the node Θ with the symbol * and proceed to the step (p+2). The graph Δγ(T )
is a directed acyclic graph. A node of such graph will be called terminal if there
are no edges leaving this node. Note that a node Θ of Δγ(T ) is terminal if and
only if J(Θ) ≤ γ.

Later, we will describe the procedures of optimization of the graph Δγ(T ).
As a result we will obtain a graph G with the same sets of nodes and edges as
in Δγ(T ). The only difference is that any row r of each nonterminal node Θ of
G is labeled with a nonempty set of attributes EG(Θ, r) ⊆ E(Θ). It is possible
also that G = Δγ(T ).

Now, for each node Θ of G and for each row r of Θ, we describe the set
of γ-decision rules RulG(Θ, r). We will move from terminal nodes of G to the
node T .

Let Θ be a terminal node of G labeled with the most common decision d for
Θ. Then

RulG(Θ, r) = {→ d}.

Let now Θ be a nonterminal node of G such that for each child Θ′ of Θ
and for each row r′ of Θ′, the set of rules RulG(Θ′, r′) is already defined. Let
r = (b1, . . . , bn) be a row of Θ. For any fi ∈ EG(Θ, r), we define the set of
rules RulG(Θ, r, fi) as follows: RulG(Θ, r, fi) = {fi = bi ∧ σ → s : σ → s ∈
RulG(Θ(fi, bi), r)}. Then

RulG(Θ, r) =
⋃

fi∈EG(Θ,r)

RulG(Θ, r, fi)

Theorem 1. [2] For any node Θ of Δγ(T ) and for any row r of Θ, the set
RulΔγ(T )(Θ, r) is equal to the set of all irredundant γ-decision rules for Θ and r.

Example 1. To illustrate the work of the presented algorithm we consider an
example based on decision table T0 (see Table 1).

In example, we set γ = 1, so during the construction of the graph Δ1(T0) we
stop the partitioning of a subtable Θ of T0 when J(Θ) ≤ 1. Figure 1 presents
the obtained directed acyclic graph for T0. We denote G = Δ1(T0).

For each node Θ of the graph G and for each row r of Θ we describe the set
RulG(Θ, r). We will move from terminal nodes of G to the node T0. Terminal
nodes of the graph G are Θ1, Θ2, Θ3, Θ4, Θ6, Θ7, Θ8. For these nodes,
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Table 1. Decision table T0

f1 f2 f3

r1 1 1 1 2

r2 1 0 0 2

r3 1 1 0 3

r4 0 1 0 3

r5 0 0 0 1

Fig. 1. Directed acyclic graph G = Δ1(T0)

RulG(Θ1, r4) = RulG(Θ1, r5) = {→ 1};
RulG(Θ2, r1) = RulG(Θ2, r2) = RulG(Θ2, r3) = {→ 2};
RulG(Θ3, r2) = RulG(Θ3, r5) = {→ 1};
RulG(Θ4, r1) = RulG(Θ4, r3) = RulG(Θ4, r4) = {→ 3};
RulG(Θ6, r1) = {→ 2};
RulG(Θ7, r2) = RulG(Θ7, r3) = {→ 2};
RulG(Θ8, r3) = RulG(Θ8, r4) = {→ 3}.

Now, we can describe the sets of rules attached to rows of Θ5. This is a nonter-
minal node of G for which all children Θ1, Θ3, Θ7, and Θ8 are already treated.
We have:

RulG(Θ5, r2) = {f2 = 0 → 1, f1 = 1 → 2};
RulG(Θ5, r3) = {f1 = 1 → 2, f2 = 1 → 3};
RulG(Θ5, r4) = {f1 = 0 → 1, f2 = 1 → 3};
RulG(Θ5, r5) = {f1 = 0 → 1, f2 = 0 → 1}.
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Finally, we can describe the sets of rules attached to rows of T0:

RulG(T0, r1) = {f1 = 1 → 2, f2 = 1 → 3, f3 = 1 → 2};
RulG(T0, r2) = {f1 = 1 → 2, f2 = 0 → 1, f3 = 0 ∧ f2 = 0 → 1,
f3 = 0 ∧ f1 = 1 → 2};
RulG(T0, r3) = {f1 = 1 → 2, f2 = 1 → 3, f3 = 0 ∧ f1 = 1 → 2
f3 = 0 ∧ f2 = 1 → 3};
RulG(T0, r4) = {f1 = 0 → 1, f2 = 1 → 3, f3 = 0 ∧ f1 = 0 → 1,
f3 = 0 ∧ f2 = 1 → 3};
RulG(T0, r5) = {f1 = 0 → 1, f2 = 0 → 1, f3 = 0 ∧ f1 = 0 → 1,
f3 = 0 ∧ f2 = 0 → 1};

4 Procedures of Optimization Relative to Length,
Coverage and Number of Misclassifications

In this section, we describe procedures of optimization of the graph G relative
to the length, coverage and number of misclassifications.

First, we describe the procedure of optimization of the graph G relative to
the length l. For each node Θ in the graph G, this procedure assigns to each
row r of Θ the set RullG(Θ, r) of γ-decision rules with the minimum length from
RulG(Θ, r) and the number OptlG(Θ, r) – the minimum length of a γ-decision
rule from RulG(Θ, r).

We will move from the terminal nodes of the graph G to the node T . We will
assign to each row r of each table Θ the number OptlG(Θ, r) and we will change
the set EG(Θ, r) attached to the row r in Θ if Θ is a nonterminal node of G. We
denote the obtained graph by Gl.

Let Θ be a terminal node of G and d be the most common decision for Θ.
Then we assign the number

OptlG(Θ, r) = 0

to each row r of Θ.
Let Θ be a nonterminal node of G and all children of Θ have already been

treated. Let r = (b1, . . . , bn) be a row of Θ. We assign the number

OptlG(Θ, r) = min{OptlG(Θ(fi, bi), r) + 1 : fi ∈ EG(Θ, r)}
to the row r in the table Θ and we set

EGl(Θ, r) = {fi : fi ∈ EG(Θ, r), OptlG(Θ(fi, bi), r) + 1 = OptlG(Θ, r)}.

Theorem 2. [2] For each node Θ of the graph Gl and for each row r of Θ, the
set RulGl(Θ, r) is equal to the set RullG(Θ, r) of all γ-decision rules with the
minimum length from the set RulG(Θ, r).
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Now, we describe the procedure of optimization of the graph G relative to the
coverage c. For each node Θ in the graph G, this procedure assigns to each row
r of Θ the set RulcG(Θ, r) of γ-decision rules with the maximum coverage from
RulG(Θ, r) and the number OptcG(Θ, r) – the maximum coverage of a γ-decision
rule from RulG(Θ, r).

We will move from the terminal nodes of the graph G to the node T . We will
assign to each row r of each table Θ the number OptcG(Θ, r) and we will change
the set EG(Θ, r) attached to the row r in Θ if Θ is a nonterminal node of G. We
denote the obtained graph by Gc.

Let Θ be a terminal node of G and d be the most common decision for Θ.
Then we assign to each row r of Θ the number OptcG(Θ, r) that is equal to the
number of rows in Θ which are labeled with the decision d.

Let Θ be a nonterminal node of G and all children of Θ have already been
treated. Let r = (b1, . . . , bn) be a row of Θ. We assign the number

OptcG(Θ, r) = max{OptcG(Θ(fi, bi), r) : fi ∈ EG(Θ, r)}
to the row r in the table Θ and we set

EGc(Θ, r) = {fi : fi ∈ EG(Θ, r), OptcG(Θ(fi, bi), r) = OptcG(Θ, r)}.

Theorem 3. [2] For each node Θ of the graph Gc and for each row r of Θ,
the set RulGc(Θ, r) is equal to the set RulcG(Θ, r) of all γ-decision rules with the
maximum coverage from the set RulG(Θ, r).

Detailed descriptions of the procedures of optimization of irredundant γ-decision
rules relative to the length and the coverage with examples, can be found in [2].

Now, we describe the procedure of optimization of the graph G relative to the
number of misclassifications μ. For each node Θ in the graph G, this procedure
assigns to each row r of Θ the set RulμG(Θ, r) of γ-decision rules with the mini-
mum number of misclassifications from RulG(Θ, r) and the number OptμG(Θ, r) –
the minimum number of misclassifications of a γ-decision rule from RulG(Θ, r).

We will move from the terminal nodes of the graph G to the node T . We will
assign to each row r of each table Θ the number OptμG(Θ, r) and we will change
the set EG(Θ, r) attached to the row r in Θ if Θ is a nonterminal node of G. We
denote the obtained graph by Gμ.

Let Θ be a terminal node of G and d be the most common decision for Θ.
Then we assign to each row r of Θ the number OptμG(Θ, r) which is equal to the
number of rows in Θ which are labeled with decisions different from d.

Let Θ be a nonterminal node of G and all children of Θ have already been
treated. Let r = (b1, . . . , bn) be a row of Θ. We assign the number

OptμG(Θ, r) = min{OptμG(Θ(fi, bi), r) : fi ∈ EG(Θ, r)}
to the row r in the table Θ and we set

EGμ(Θ, r) = {fi : fi ∈ EG(Θ, r), OptμG(Θ(fi, bi), r) = OptμG(Θ, r)}.
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Theorem 4. [3] For each node Θ of the graph Gμ and for each row r of Θ,
the set RulGμ(Θ, r) is equal to the set RulμG(Θ, r) of all γ-decision rules with the
minimum number of misclassifications from the set RulG(Θ, r).

Detailed description of the procedure of optimization of irredundant γ-decision
rules relative to the number of misclassifications with example can be found in [3].

5 Sequential Optimization

Theorems 2, 3 and 4 show that for a given decision table T and row r of T , we
can make sequential optimization of rules relative to the length, coverage and
number of misclassifications. We can find all irredundant γ-decision rules for T
and r with the minimum length, after that among these rules find all rules with
the maximum coverage, and finally among the obtained rules find all rules with
the minimum number of misclassifications. We can use an arbitrary set of cost
functions and an arbitrary order of optimization.

We have three cost functions: length l, coverage c, and number of misclassifi-
cations μ. Let F be one of sets {l, c, μ}, {l, c, }, {l, μ}, and {c, μ}. An irredundant
γ-decision rule τ for T and r is called totally optimal relative to the cost functions
from F if, for each cost function f ∈ F , the value f(τ) is minimum if f ∈ {l, μ}
or maximum if f = c among all irredundant γ-decision rules for T and r. In
particular, we will say that an irredundant γ-decision rule for T and r is totally
optimal relative to the length and coverage if it has the minimum length and the
maximum coverage among all irredundant γ-decision rules for T and r. We can
describe all totally optimal rules relative to the cost functions from F using the
procedures of optimization relative to these cost functions.

To describe process of sequential optimization we set G = Δγ(T ) and first,
we consider the case when F contains two cost functions. Without the loss of
generality we can assume that F = {l, c}.

We apply the procedure of optimization relative to the coverage to the graph
G. As a result we obtain the graph Gc and, for each row r of T , the value
OptcG(T, r) which is equal to the maximum coverage of an irredundant γ-decision
rule for T and r.

After that, we apply the procedure of optimization relative to the length to
the graph G. As a result we obtain the graph Gl. Finally, we apply the procedure
of optimization relative to the coverage to the graph Gl. As a result we obtain
the graph Glc and, for each row r of T , the value OptcGl(T, r) which is equal to
the maximum coverage of an irredundant γ-decision rule for T and r among all
irredundant γ-decision rules for T and r with the minimum length.

One can show that a totally optimal relative to the length and coverage irre-
dundant γ-decision rule for T and r exists if and only if OptcG(T, r) = OptcGl(T, r).
If the last equality holds then the set RulGlc(T, r) is equal to the set of all
totally optimal relative to the length and coverage irredundant γ-decision rules
for T and r.

It is clear that the results of sequential optimization of irredundant decision
rules for T and r relative to the length and coverage does not depend on the
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Fig. 2. Graph Glc

order of optimization (length+coverage or coverage+length) if and only if there
exists a totally optimal relative to the length and coverage irredundant γ-decision
rule for T and r. We can find all irredundant γ-decision rules for T and r with
the minimum length and after that among these rules find all rules with the
maximum coverage. We can use an arbitrary order of optimization, e.g., coverage
and length.

Example 2. Figure 2 presents the directed acyclic graph Glc obtained from the
graph G, depicted in Fig. 1, after sequential optimization relative to the length
and coverage. Using the graph Glc we can describe for each row ri, i = 1, . . . , 5, of
the table T0 the set RulGlc(T0, ri) of all irredundant 1-decision rules for T0 and ri

which have the maximum coverage among all irredundant 1-decision rules for T0

and ri with the minimum length. We will give also the value OptcGl(T0, ri) which
is equal to the maximum coverage of a 1-decision rule for T0 and ri among all
irredundant 1-decision rules for T0 and ri with the minimum length. This value
was obtained during the procedure of optimization of the graph Gl relative to
the coverage. We have:

RullcG(T0, r1) = {f1 = 1 → 2, f2 = 1 → 3}, OptcGl(T0, r1) = 2;
RullcG(T0, r2) = {f1 = 1 → 2}, OptcGl(T0, r2) = 2;
RullcG(T0, r3) = {f1 = 1 → 2, f2 = 1 → 3}, OptcGl(T0, r3) = 2;
RullcG(T0, r4) = {f2 = 1 → 3}, OptcGl(T0, r4) = 2;
RullcG(T0, r5) = {f1 = 0 → 1, f2 = 0 → 1}, OptcGl(T0, r5) = 1.

Values OptcG(T0, ri), obtained by the procedure of optimization the graph G
relative to the coverage, are the same as OptcGl(T0, ri), for i = 1, . . . , 5. Therefore,
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for i = 1, . . . , 5, RulGlc(T0, ri) is the set of all totally optimal relative to the
length and coverage irredundant 1-decision rules for T0 and ri.

Now we consider the case when F = {l, c, μ}. At the beginning, we will make
the same steps as in the case F = {l, c}. As a result we obtain the graph Glc

and values OptcG(T, r), OptcGl(T, r) for any row r of T .
After that, we apply the procedure of optimization relative to the number of

misclassifications to the graph G. As a result we obtain the graph Gμ and, for
each row r of T , the value OptμG(T, r) which is equal to the minimum number of
misclassifications of an irredundant γ-decision rule for T and r.

Finally, we apply the procedure of optimization relative to the number of
misclassifications to the graph Glc. As a result we obtain the graph Glcμ and,
for each row r of T , the value Optμ

Glc(T, r) which is equal to the minimum
number of misclassifications of an irredundant γ-decision rule for T and r among
all irredundant γ-decision rules for T and r with the maximum coverage, and
among all irredundant γ-decision rules for T and r with the minimum length.

One can show that a totally optimal relative to l, c and μ irredundant γ-
decision rule for T and r exists if and only if OptcG(T, r) = OptcGl(T, r) and
OptμG(T, r) = Optμ

Glc(T, r). If these equalities hold then the set RulGlcμ(T, r) is
equal to the set of all totally optimal relative to l, c and μ irredundant γ-decision
rules for T and r.

It is clear that the results of sequential optimization of irredundant decision
rules for T and r relative to the length, coverage and number of misclassifications
do not depend on the order of optimization (l+c+μ, l+μ+c, c+l+μ, c+μ+l,
μ+l+c, or μ+c+l) if and only if there exists a totally optimal relative to l, c and
μ irredundant γ-decision rule for T and r.

For decision table T0 (see Table 1), the graph Glcμ is the same as the graph
Glc presented in Fig. 2: EGlc(Θ5, ri) = EGlcμ(Θ5, ri) for i = 2, . . . , 5, and
EGlc(T0, ri) = EGlcμ(T0, ri) for i = 1, . . . , 5. However, totally optimal relative
to l, c and μ irredundant 1-decision rules exist only for rows r2 and r5 of the
table T0.

Considering complexities of the presented algorithms, it is possible to show
(see analysis of similar algorithms in [20], page 64) that the time complexities of
algorithms which construct the graph Δγ(T ) and make sequential optimization of
γ-decision rules relative to the length, coverage and number of misclassifications,
are bounded from above by polynomials on the number of separable subtables
of T , and the number of attributes in T . In [18] it was shown that the number of
separable subtables for decision tables with attributes from a restricted infinite
information systems is bounded from above by a polynomial on the number of
attributes in the table. Examples of restricted infinite information system were
considered, in particular, in [20].

6 Experimental Results

We studied a number of decision tables from UCI Machine Learning Reposi-
tory [7]. Some decision tables contain conditional attributes that take unique
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Table 2. Parameters of decision tables and values of γ ∈ Γ (T )

Name of decision table Alias Rows Attr J(T ) γ ∈ Γ (T )

�J(T ) × 0.01� �J(T ) × 0.2� �J(T ) × 0.3�
Adult-stretch Ad 16 4 4 0 0 1

Agaricus-lepiota Ag 8124 22 3916 39 783 1174

Balance-scale Ba 625 4 337 3 67 101

Breast-cancer Br 266 9 76 0 15 22

Cars Ca 1728 6 518 5 103 155

Hayes-roth-data Ha 69 4 39 0 7 11

Lymphography Ly 148 18 67 0 13 20

Nursery Nu 12960 8 8640 86 1728 2592

Shuttle-landing-control Sh 15 6 6 0 1 1

Soybean-small So 47 35 30 0 6 9

Teeth Te 32 8 22 0 4 6

Zoo Zo 59 16 40 0 8 12

value for each row. Such attributes were removed. In some tables there were
equal rows with, possibly, different decisions. In this case each group of identical
rows was replaced with a single row from the group with the most common deci-
sion for this group. In some tables there were missing values. Each such value
was replaced with the most common value of the corresponding attribute.

Let T be one of these decision tables. We consider for this table the value of
J(T ) and values of γ from the set Γ (T ) = {�J(T )× 0.01	, �J(T )× 0.2	, �J(T )×
0.3	}. These parameters can be found in Table 2, where column “Alias” denotes
a shortcut of the name of decision table, column “Rows” contains number of
rows, column “Attr” contains number of conditional attributes, column “J(T )”
contains difference between number of rows in decision table and number of
rows with the most common decision for this decision table, column “γ ∈ Γ (T )”
contains values from Γ (T ).

Table 3 presents some results about totally optimal rules relative to the
length, coverage, and number of misclassifications, i.e., irredundant γ-decision
rules with the minimum length, the maximum coverage, and the minimum num-
ber of misclassifications among all irredundant γ-decision rules for T and r.
Column “Dt” denotes decision table and contains names of decision tables, col-
umn “Rows” contains number of rows in T . For the values γ from the set Γ (T ),
for each of the considered decision tables T , we count the number of rows r
such that there exists a totally optimal irredundant γ-decision rule for T and
r (column “ Rows with t-opt rules”). We also find for rows of T , the minimum
(column “min”), the average (column “avg”) and the maximum (column “max”)
number of totally optimal irredundant γ-decision rules for T and r among all
rows r of T . Note that two irredundant rules with different order of the same
descriptors are considered as two different rules.

Values in bold denotes that the number of rows with totally optimal rules
relative to l, c, μ in table T is equal to the number of rows in this table, so each
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Table 3. Totally optimal rules relative to length, coverage and number of misclassifi-
cations

Dt Rows γ = �J(T ) × 0.01� γ = �J(T ) × 0.2� γ = �J(T ) × 0.3�
Rows with t-opt rules Rows with t-opt rules Rows with t-opt rules

t-opt rules t-opt rules t-opt rulesmin avg max min avg max min avg max

Ad 16 16 1 1.5 2 16 1 1.5 2 16 1 1.5 2

Ag 8124 288 0 0.0 1 0 0 0.0 0 0 0 0.0 0

Ba 625 217 0 3.0 24 625 1 1.4 4 625 1 1.4 4

Br 266 92 0 3.3 96 0 0 0.0 0 0 0 0.0 0

Ca 1728 1188 0 1.2 24 1002 0 0.7 2 960 0 0.7 2

Ha 69 69 1 4.5 24 30 0 0.5 2 30 0 0.5 2

Ly 148 49 0 1.0 24 0 0 0.0 0 0 0 0.0 0

Nu 12960 5184 0 0.7 6 4320 0 0.3 1 4320 0 0.3 1

Sh 15 13 0 2.6 24 7 0 0.6 2 4 0 0.4 2

So 47 37 0 1.9 5 24 0 1.0 5 20 0 0.7 5

Te 23 23 2 13.5 72 4 0 0.3 2 2 0 0.1 2

Zo 59 44 0 8.4 408 24 0 0.4 1 21 0 0.4 1

row has at least one totally optimal rule relative to l, c, μ (see column “min”).
Presented results show that data sets for which exists, for each row, at least one
totally optimal relative to l, c, μ irredundant γ-decision rule are different (with
the exception “Adult-stretch”) for γ = �J(T ) × 0.01	 and γ = �J(T ) × 0.2	.

Tables 4, 5 and 6 present results of sequential optimization of irredundant
γ-decision rules relative to the length, coverage and number of misclassifications
for corresponding values of γ. Columns “l”, “c”, “μ” contain respectively the
average length, the average coverage and the average number of misclassifications
after three steps of corresponding order of optimization: c+l+μ, c+μ+l, l+μ+c,
l+c+μ, μ+c+l, and μ+l+c. For example, for the order c+l+μ we make three
steps of optimization: relative to the the coverage, then relative to the length, and
then relative to the number of misclassifications. After that, we find the average
length, the average coverage and the average number of misclassifications of rules
after three steps of optimization.

For data sets which are in bold (Tables 4, 5 and 6), for all combinations of
order of optimization relative to l, c, μ, we can see the same values of the average
length, the average coverage and the average number of misclassifications after
three steps of optimization. It confirms some results from Table 3 that for such
data sets each row has at least one totally optimal rule relative to the length,
coverage and number of misclassifications.

Sequential optimization can be considered as a problem of multi-criteria opti-
mization with hierarchically dependent criteria. For example, if the length of
rules is the most important criterium and we would like to construct short rules,
length should be considered as the first cost function in order of optimization.

Based on results presented in Tables 4, 5 and 6 we can find, for considered
γ, the minimum values of the average length (column “l” in order “l+c+μ” and
“l+μ+c”), the maximum values of the average coverage (column “c” in order
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Table 4. Sequential optimization for γ = �J(T ) × 0.01�

Dt γ = �J(T ) × 0.01�
c + l + μ c + μ + l l + c + μ l + μ + c μ + c + l μ + l + c

l c μ l c μ l c μ l c μ l c μ l c μ

Ad 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0

Ag 3.4 2278.9 9.8 3.4 2278.9 9.8 1.2 1380.6 0.7 1.2 1366.5 0.1 2.5 2135.5 0.0 1.2 1370.1 0.0

Bae 2.3 17.8 1.4 2.3 17.8 1.4 2.3 17.8 1.4 2.3 17.8 1.4 2.9 5.9 0.3 2.9 5.9 0.3

Br 3.3 9.9 0.2 3.4 9.9 0.2 2.5 7.3 0.2 2.5 7.0 0.1 3.4 9.5 0.0 2.7 7.0 0.0

Ca 2.0 336.9 2.4 2.0 336.9 2.4 2.0 336.9 2.4 2.0 336.5 2.2 2.3 333.1 0.1 2.3 333.1 0.1

Ha 2.1 6.5 0.0 2.1 6.5 0.0 2.1 6.5 0.0 2.1 6.5 0.0 2.1 6.5 0.0 2.1 6.5 0.0

Ly 3.0 21.6 0.0 3.0 21.6 0.0 2.0 15.2 0.0 2.0 15.1 0.0 2.9 21.5 0.0 2.0 15.2 0.0

Nu 2.3 1695.1 34.0 2.3 1695.1 34.0 2.3 1694.9 34.1 2.3 1642.2 18.2 3.0 1537.7 1.2 3.0 1537.7 1.2

Sh 1.7 2.1 0.0 1.7 2.1 0.0 1.4 1.9 0.0 1.4 1.9 0.0 1.7 2.1 0.0 1.4 1.9 0.0

So 1.2 12.5 0.0 1.2 12.5 0.0 1.0 12.2 0.0 1.0 12.2 0.0 1.2 12.5 0.0 1.0 12.2 0.0

Te 2.3 1.0 0.0 2.3 1.0 0.0 2.3 1.0 0.0 2.3 1.0 0.0 2.3 1.0 0.0 2.3 1.0 0.0

Zo 1.9 11.1 0.0 1.9 11.1 0.0 1.6 10.5 0.0 1.6 10.5 0.0 1.9 11.1 0.0 1.6 10.5 0.0

Table 5. Sequential optimization for γ = �J(T ) × 0.2�

Dt γ = �J(T ) × 0.2�
table c + l + μ c + μ + l l + c + μ l + μ + c μ + c + l μ + l + c

l c μ l c μ l c μ l c μ l c μ l c μ

Ad 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0

Ag 1.6 3316.4 344.8 2.4 3316.4 147.6 1.0 2826.6 231.7 1.0 1229.8 16.6 2.4 2116.1 0.0 1.2 1367.0 0.0

Ba 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7

Br 2.3 70.4 14.5 2.3 70.4 14.5 1.1 35.3 12.9 1.1 20.7 7.1 2.6 10.7 0.7 2.5 9.9 0.7

Ca 1.3 419.4 28.4 1.3 419.4 28.4 1.3 419.4 28.4 1.3 412.8 21.8 1.6 355.6 8.8 1.6 355.6 8.8

Ha 1.3 8.0 3.6 1.4 8.0 2.9 1.3 8.0 3.6 1.3 7.8 2.7 1.6 7.2 0.7 1.6 7.2 0.7

Ly 1.7 55.1 12.6 1.7 55.1 12.6 1.0 46.7 10.0 1.0 18.7 5.0 2.6 16.9 0.0 2.1 14.1 0.0

Nu 1.2 2334.2 753.8 1.2 2334.2 753.8 1.0 2289.9 878.1 1.0 2289.9 878.1 1.7 1877.9 137.5 1.7 1877.9 137.5

Sh 2.4 3.0 0.6 2.5 3.0 0.5 1.1 2.0 0.3 1.1 2.0 0.3 1.7 2.2 0.1 1.3 1.9 0.1

So 1.6 14.6 2.3 1.7 14.6 1.9 1.0 12.7 1.2 1.0 12.2 0.0 1.2 12.5 0.0 1.0 12.2 0.0

Te 1.2 1.0 2.0 2.0 1.0 0.3 1.2 1.0 2.0 1.2 1.0 2.0 2.0 1.0 0.3 2.0 1.0 0.3

Zo 1.8 16.1 3.9 2.2 16.1 3.1 1.0 13.3 2.7 1.0 11.7 1.7 1.8 11.0 0.0 1.6 10.6 0.0

“c+l+μ” and “c+μ+l”), and the minimum values of the average number of
misclassifications (column “μ” in order “μ+c+l” and “μ+l+c”).

For Tables 4, 5 and 6 we can observe also that the average length is of irre-
dundant γ-decision rules is nonincreasing when γ in increasing (column “l” in
order “l+c+μ” and “l+μ+c”), the average coverage is nondecreasing when γ in
increasing (column “c” in order “c+l+μ” and “c+μ+l”), and the average num-
ber of misclassifications of irredundant γ-decision rules is nondecreasing when
the γ is increasing (column “μ” in order “μ+c+l” and “μ+l+c”).

We can consider γ as an upper bound on the number of misclassifications
of irredundant γ-decision rules (see column γ ∈ Γ (T ) in Table 2). Results in
Tables 4, 5 and 6 show that average values of the minimum number of misclas-
sifications are often less than upper bound on the number of misclassifications
given by γ.
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Table 6. Sequential optimization for γ = �J(T ) × 0.3�

Dt γ = �J(T ) × 0.3�
c + l + μ c + μ + l l + c + μ l + μ + c μ + c + l μ + l + c

l c μ l c μ l c μ l c μ l c μ l c μ

Ad 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0 1.3 7.0 0.0

Ag 1.5 3328.2 576.8 1.9 3328.2 499.9 1.0 3096.5 567.1 1.0 1229.8 16.6 2.4 2096.0 0.0 1.2 1365.0 0.0

Ba 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7 1.0 92.3 32.7

Br 2.0 79.7 19.7 2.0 79.7 19.7 1.0 48.7 20.9 1.0 22.2 7.8 2.3 11.3 1.3 2.2 10.8 1.3

Ca 1.0 485.5 47.8 1.0 485.5 47.8 1.0 485.5 47.8 1.0 472.6 43.4 1.4 364.2 15.2 1.4 364.2 15.2

Ha 1.0 11.3 6.3 1.0 11.3 6.3 1.0 11.3 6.3 1.0 9.6 5.3 1.6 7.1 1.5 1.6 7.1 1.5

Ly 1.3 57.9 15.3 1.4 57.9 14.4 1.0 56.8 15.8 1.0 18.8 5.1 2.7 11.5 0.3 2.3 9.5 0.3

Nu 1.0 3066.1 1254 1.0 3066.1 1254 1.0 3066.1 1254 1.0 2289.9 878.1 1.7 1757.6 271.2 1.7 1757.6 271.2

Sh 2.7 3.6 1.2 2.9 3.6 1.1 1.1 2.1 0.3 1.1 2.0 0.3 1.7 2.2 0.1 1.3 1.9 0.1

So 1.7 15.7 3.7 1.9 15.7 3.3 1.0 13.8 2.1 1.0 12.2 0.0 1.2 12.5 0.0 1.0 12.2 0.0

Te 1.0 1.0 2.7 1.9 1.0 0.5 1.0 1.0 2.7 1.0 1.0 2.7 1.9 1.0 0.5 1.9 1.0 0.5

Zo 1.9 17.4 6.2 2.3 17.4 5.4 1.0 13.7 4.0 1.0 11.7 1.7 1.8 11.2 0.0 1.6 10.8 0.0

Table 7. Size of the directed acyclic graph for γ ∈ Γ (T )

Dt γ = �J(T ) × 0.01� γ = �J(T ) × 0.2� γ = �J(T ) × 0.3�
nodes edges nodes edges nodes edges

Ad 72 108 72 108 52 76

Ag 83959 947650 6483 26469 2894 10438

Ba 647 1460 21 20 21 20

Br 6001 60387 1132 1786 633 883

Ca 4669 11379 270 392 158 197

Ha 236 572 97 150 73 84

Ly 40928 814815 9029 34787 4223 13397

Nu 16952 42001 339 525 217 245

Sh 85 513 82 458 82 458

So 3592 103520 2438 11386 1473 4789

Te 135 1075 122 512 99 288

Zo 4568 83043 3702 23619 2533 10760

Table 7 presents a size of the directed acyclic graph, i.e., number of nonter-
minal nodes (column “nodes”) and number of edges (column “edges”) in the
graph constructed by the dynamic programming algorithm, for γ ∈ Γ (T ).

The obtained results show that the number of nodes and the number of edges
for Δγ(T ) decrease with the growth of γ. It means that the parameter γ can
help to control algorithm complexity. They show also that the structure of graph
Δγ(T ) is usually far from a tree: the number of edges is larger than the number
of nodes.

Experiments were done using software system Dagger [1]. It is implemented in
C++ and uses Pthreads and MPI libraries for managing threads and processes
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respectively. It runs on a single-processor computer or multiprocessor system
with shared memory. Parameters of computer which was used for experiments
are following: desktop with 2 Xeon x5550 processors running at 2.66 GHz (each
with 4 cores and 8 threads) all sharing 16 GB of RAM. Time of the preformed
experiments (for γ ∈ Γ (T )) for the biggest data sets was 36 min. for “Agaricus-
lepiota”, and 3 min. for “Nursery”.

7 Conclusions

We studied an extension of dynamic programming approach for the sequential
optimization of γ-decision rules relative to the length, coverage and number of
misclassifications. The considered approach allows to describe the whole set of
irredundant γ-decision rules and optimize these rules sequentially relative to
arbitrary subset and order of cost functions.

Results of sequential optimization of irredundant γ-decision rules for T and
r depend on the order of optimization if there are no

totally optimal relative to l, c, μ irredundant γ-decision rules for T and r.
Sequential optimization of irredundant γ-decision rules can be considered

as a tool that supports design of classifiers. To predict a value of the decision
attribute for a new object we can use in a classifier sequentially optimized rules,
e.g., among all irredundant γ decision rules choose rules with the maximum
coverage, and among them – rules with the minimum length. Short rules which
cover many objects can be useful also from the point of view of knowledge
representation. In this case, rules with smaller number of descriptors are more
understandable.

Acknowledgment. The author would like to thank you Prof. Mikhail Moshkov, Dr.
Igor Chikalov and Talha Amin for possibility to use Dagger software system.
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Abstract. Approximation of sets is a fundamental notion of rough set
theory (RST) proposed by Z. Pawlak. Each rough set can be character-
ized numerically by the coefficient called the accuracy of approximation.
This coefficient determines quantitatively a degree of roughness. Such
an approach does not take into consideration semantics of data. In the
paper, we show that adding information on semantic relations between
decision attribute values in the form of ontological graphs enables us to
determine qualitatively the accuracy of approximation. The qualitative
assessment of approximation should be treated as some additional char-
acteristic of rough sets. The proposed approach enriches application of
rough sets if decision attribute values classifying objects are symbolical
(e.g., words, terms, linguistic concepts, etc.). The presented approach
refers to a general trend in computations proposed by L. Zadeh and
called “computing with words”.

Keywords: Approximations of sets · Accuracy of approximation ·
Ontological graphs · Rough sets · Semantic relations

1 Introduction

In [16], information (decision) systems were proposed as the knowledge repre-
sentation systems. In simple case, they consist of vectors of numbers or sym-
bols (attribute values) describing objects from a given universe of discourse.
In [14] and [15], ontologies were incorporated into information (decision) sys-
tems, i.e., attribute values were considered in the ontological (semantic) spaces.
Similar approaches have been considered in the literature, e.g., DAG-Decision
Systems [10], Dominance-Based Rough Set Approach (DRSA) [5], Rough Ontol-
ogy [7], Attribute Value Ontology (AVO) [9], etc. In our approach, we replace,
in a classic definition of information (decision) systems, simple sets of attribute
values with ontological graphs, which deliver us some new knowledge about
meanings of attribute values. This knowledge enables us to assess qualitatively
c© Springer-Verlag Berlin Heidelberg 2015
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the accuracy of approximation used in rough set theory. In the paper, we con-
sider one of the possible cases, where the accuracy is assessed in terms of decision
attribute values. The second case worth considering in the future covers the prob-
lem of the assessment of the accuracy of approximation in terms of condition
attribute values placed in semantic spaces of ontological graphs. Some remarks
related to that problem were given in [15], where we showed how ontological
graphs, associated both with condition attributes and with decision attributes,
change a look at approximations of sets. Now, we extend those investigations to
the qualitative assessment of the accuracy of approximation in case of adding
information on semantic relations between decision attribute values.

For the qualitative assessment, we propose to use a simple taxonomy distin-
guishing pseudo rough sets, marginally rough sets, restrainedly rough sets, and
considerable rough sets. It is worth noting that the taxonomy can be extended
to a more sophisticated one. In the classic approach, the accuracy of approxi-
mation is characterized quantitatively (numerically) [16]. In Sect. 3, we show an
example in which the classic approach, omitting information about semantic rela-
tions between decision attribute values, leads to determining the same accuracy
of approximations for all considered cases, whereas the qualitative assessment
on the basis of semantic relations enables us additionally to differentiate those
cases. Therefore, the qualitative assessment is a new look at approximations
delivering some additional characteristic of rough sets. Moreover, one can see
that the proposed taxonomy for the qualitative assessment may be considered
in terms of a linguistic variable (a variable whose values are words or sentences
in a natural or artificial language) what can lead to combining the presented
approach with fuzzy logic (cf. [20]). Fuzzy logic plays a pivotal role in the “com-
puting with words” methodology proposed by Zadeh [21]. There is a number of
papers showing that approaches relying on the use of linguistic variables have
a lot of applications, e.g. analysis of complex systems and decision processes
[23], approximate reasoning [20], artificial intelligence [22], cognitive computing
[6], etc.

The presented approach is based on the definitions of ontology given by
Neches et al. [12] and Köhler et al. [8]. That is, ontology is constructed on the
basis of a controlled vocabulary and the relationships of the concepts in the
controlled vocabulary. Formally, the ontology can be represented by means of
graph structures. The graph representing the ontology is called the ontological
graph. In such a graph, each node represents one concept from the ontology,
whereas each edge represents a semantic relation between two concepts. Rela-
tions are very important components in ontology modeling as they describe the
relationships that can be established between concepts.

The rest of the paper is organized as follows. Section 2 recalls a series of
definitions concerning rough set theory. Section 3 describes a new approach to
the qualitative assessment of the accuracy of approximation used in rough set
theory including a proper example. Finally, Sect. 4 provides conclusions and some
directions for future work.
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2 Basic Notions of Rough Set Theory

A series of definitions concerning rough set theory is recalled in this section
(cf. [16,17]).

2.1 Binary Relations

Let U be a non-empty set of objects. Any subset R ⊆ U × U is called a binary
relation in U . By R(u), where u ∈ U , we will denote the set of all v ∈ U such
that (u, v) ∈ R. The statement (u, v) ∈ R is read“u is R-related to v”. In the
paper, we consider relations which may be:

– reflexive, i.e., (u, u) ∈ R for each u ∈ U ,
– symmetric, i.e., whenever (u, v) ∈ R then (v, u) ∈ R,
– transitive, i.e., whenever (u, v) ∈ R and (v, w) ∈ R then (u,w) ∈ R.

2.2 Information and Decision Systems

An information system IS is a quadruple IS = (U, A, V, f), where U is a
nonempty, finite set of objects, A is a nonempty, finite set of attributes,
V =

⋃

a∈A Va, where Va is a set of values of the attribute a, and f : A × U → V
is an information function such that f(a, u) ∈ Va for each a ∈ A and u ∈ U .

A decision system DS is a tuple DS = (U,C,D, Vcon, Vdec, finf , fdec), where
U is a nonempty, finite set of objects, C is a nonempty, finite set of condition
attributes, D is a nonempty, finite set of decision attributes, Vcon =

⋃

c∈C Vc,
where Vc is a set of values of the condition attribute c, Vdec =

⋃

d∈D Vd, where Vd

is a set of values of the decision attribute d, finf : C×U → Vcon is an information
function such that finf (c, u) ∈ Vc for each c ∈ C and u ∈ U , fdec : D×U → Vdec

is a decision function such that fdec(d, u) ∈ Vd for each d ∈ D and u ∈ U .

2.3 Approximation of Sets

Let IS = (U, A, V, f) be an information system. Each subset B ⊆ A of attributes
determines an equivalence relation on U , called an indiscernibility relation IRB,
defined as IRB = {(u, v) ∈ U × U : ∀a∈B f(a, u) = f(a, v)}. The equiva-
lence class containing u ∈ U will be denoted by IRB(u). Any set of all indis-
cernible objects is called an elementary set, and forms a basic granule of knowl-
edge about the universe. Equivalence classes of an indiscernibility relation IRB

are referred to as B-elementary granules in IS. Analogously, we can define an
indiscernibility relation IRB and B-elementary granules for a decision system
DS = (U,C,D, Vcon, Vdec, finf , fdec), where B ⊆ C ∪ D.

Let X ⊆ U and B ⊆ A. We may characterize X with respect to B using the
basic notions of rough set theory given below.



86 K. Pancerz

– The B-lower approximation, B(X), of a set X with respect to B:

B(X) = {u ∈ U : IRB(u) ⊆ X}.

The B-lower approximation is a set of objects from U which can be certainly
classified into X with respect to B.

– The B-upper approximation, B(X), of a set X with respect to B:

B(X) = {u ∈ U : IRB(u) ∩ X �= ∅}.

The B-upper approximation is a set of objects from U which can be possibly
classified into X with respect to B.

– The B-boundary region, BNB(X), of a set X with respect to B:

BNB(X) = B(X) − B(X).

The B-boundary region is a set of objects from U which can be exactly clas-
sified neither as X nor as not X with respect to B.

The accuracy of B-approximation of X can be expressed as a coefficient:

αB(X) =
card(B(X))
card(B(X))

,

where card denotes the cardinality of a set. Obviously, 0 ≤ αB(X) ≤ 1. If
αB(X) = 1, then X is exact with respect to B, otherwise, X is rough with
respect to B.

3 Qualitative Assessment of Rough Sets

In [14], we proposed to consider attribute values in the ontological (semantic)
spaces. That approach is based on the definitions of ontology given by Neches
et al. [12] and Köhler et al. [8]. Formally, the ontology can be represented by
means of graph structures. In our approach, the graph representing the ontology
O is called the ontological graph. In such a graph, each node represents one
concept from O, whereas each edge represents a semantic relation between two
concepts from O.

Let O be a given ontology. An ontological graph is a quadruple OG =
(C, E,R, ρ), where C is a nonempty, finite set of nodes representing concepts
in the ontology O, E ⊆ C × C is a finite set of edges representing semantic
relations between concepts from C, R is a family of semantic descriptions (in a
natural language) of types of relations (represented by edges) between concepts,
and ρ : E → R is a function assigning a semantic description of the relation to
each edge.

Relations are very important components in ontology modeling as they
describe the relationships that can be established between concepts. In the litera-
ture, a variety of taxonomies of different types of semantic relations has been pro-
posed, e.g. [2,3,11,18,19]. In our approach, we will be interested in the following
taxonomy of types of semantic relations (which is modeled on the project called
Wikisaurus [1] aiming at creating a thesaurus of semantically related terms):
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– synonymy,
– antonymy,
– hyponymy/hyperonymy.

Synonymy concerns concepts with a meaning that is the same as, or very similar
to, the other concepts. Antonymy concerns concepts which have the opposite
meaning to the other ones. Hyponymy concerns more specific concepts than the
other ones. Hyperonymy concerns more general concepts than the other ones.

For simplicity, we will use the following labels and reading of semantic rela-
tions:

– R∼ - synonymy, (u, v) ∈ R∼ is read “u is a synonym of v”,
– R↔ - antonymy, (u, v) ∈ R↔ is read “u is an antonym of v”,
– R� - hyponymy, (u, v) ∈ R� is read “u is a hyponym of v”,
– R� - hyperonymy, (u, v) ∈ R� is read “u is a hyperonym of v”.

The labels above will be used instead of semantic descriptions (in a natural
language) of types of relations assigned to edges in ontological graphs.

In the graphical representation of the ontological graph, for readability, we
will omit reflexivity of relations. However, some of the above relations are reflex-
ive, i.e., a given concept is a synonym of itself, a given concept is a hyponym of
itself, a given concept is a hyperonym of itself.

We can create decision systems over ontological graphs. In this paper, we
will use a definition given in [13]. In this approach, both, condition and decision
attribute values of a given decision system are concepts from ontological graphs
assigned to attributes. A similar approach, with respect to decision attributes,
was considered in [10]. Decision attribute values were placed in directed acyclic
graph spaces determined by subclass/superclass relations.

Definition 1. A simple decision system SDSOG over ontological graphs is a
tuple SDSOG = (U,C,D, {OGa}a∈C∪D, finf , fdec), where:

– U is a nonempty, finite set of objects,
– C is a nonempty, finite set of condition attributes,
– D is a nonempty, finite set of decision attributes,
– {OGa}a∈C∪D is a family of ontological graphs associated with condition and

decision attributes,
– finf : C × U → CC , CC =

⋃

c∈C Cc, is an information function such that
finf (c, u) ∈ Cc for each c ∈ C and u ∈ U , Cc is a set of concepts from the
graph OGc

– fdec : D×U → CD, CD =
⋃

d∈D Cd, is a decision function such that fdec(d, u) ∈
Cd for each d ∈ D and u ∈ U , Cd is a set of concepts from the graph OGd.

It is not necessary for condition and decision functions to be onto functions, i.e.,
finf : C × U → C∗

C ⊆ CC and fdec : D × U → C∗
D ⊆ CD.

In our approach, we propose to consider some relations defined over sets of
attribute values in simple decision systems over ontological graphs (cf. [14,15]).
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In defined relations, we use some additional knowledge about semantic relations
between attribute values which is included in ontological graphs.

Let OGa = (Ca, Ea,R, ρa), where R = {R∼, R↔, R�, R�}, be an ontological
graph associated with the attribute a in a simple decision system over ontological
graphs. Later on, we will use the following notation: [vi, vj ] is a simple path in
OGa between vi ∈ C and vj ∈ C, E([vi, vj ]) is a set of all edges from E belonging
to the simple path [vi, vj ], and P(OGa) - is a set of all simple paths in OGa.
In the literature, there are different definitions for a simple path in the graph.
In this paper, we follow the definition in which a path is simple if no node or
edge is repeated, with the possible exception that the first node is the same as
the last. Therefore, the path [vi, vj ], where vi, vj ∈ C and vi = vj , can also be a
simple path in OGa.

We are interested in the following relations defined over sets of attribute
values in simple decision systems over ontological graphs:

– An exact meaning relation between v1, v2 ∈ Ca is defined as EMRa =
{(v1, v2) ∈ Ca × Ca : v1 = v2}.

– A synonymous meaning relation between v1, v2 ∈ Ca is defined as SMRa =
{(v1, v2) ∈ Ca × Ca : (v1, v2) ∈ Ea ∧ ρa((v1, v2)) = R∼}.

– An antonymous meaning relation between v1, v2 ∈ Ca is defined as AMRa =
{(v1, v2) ∈ Ca × Ca : (v1, v2) ∈ Ea ∧ ρa((v1, v2)) = R↔}.

– A hyperonymous meaning relation HprMRk
a of at most k-th order is a set

of all pairs (v1, v2) ∈ Ca × Ca satisfying the following condition. There exists
v3 ∈ Ca such that the following holds:

∃[v1,v3]∈P(OGa)

[(

∀e∈E([v1,v3]) ρa(e) ∈ {R∼, R�})

∧
card({e′ ∈ E([v1, v3]) : ρa(e′) = R�}) ≤ k] ,

and

∃[v2,v3]∈P(OGa)

[(

∀e∈E([v2,v3]) ρa(e) ∈ {R∼, R�})

∧
card({e′ ∈ E([v2, v3]) : ρa(e′) = R�}) ≤ k] ,

where card denotes the cardinality of a set. If v1 is HprMRk
a-related to v2, then

there exists v3 ∈ Ca such that v3 is a hyperonym (direct or indirect) of v1 and
v3 is a hyperonym (direct or indirect) of v2, both through at most k concepts.
In the hyperonymous path, we also take into consideration synonyms, but they
do not affect the order of the relation.

In case of a hyperonymous meaning relation, we are interested in how far the
hyperonym is. A kind of distance can be expressed by the order k of the relation.
In simple case used in this paper, we will distinguish far, middle-far, and close
hyperonymous meaning relations.

Definition 2. Let OGa = (Ca, Ea,R, ρa) be an ontological graph associated with
the attribute a, HprMRk

a be a hyperonymous meaning relation of at most k-th
order defined over sets of values of the attribute a, and τ1, τ2 be two fixed positive
integer values, where τ1 < τ2. HprMRk

a is called:
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– a far hyperonymous meaning relation FHprMRa if k > τ2,
– a middle-far hyperonymous meaning relation MHprMRa if τ1 < k ≤ τ2,
– a close hyperonymous meaning relation CHprMRa otherwise.

We assume that the qualitative assessment of rough sets in simple decision sys-
tems over ontological graphs is made on the basis of semantic relations between
values of a given decision attribute. It is worth noting that, in the standard app-
roach in rough set theory, the approximations of a given set and the boundary
region are calculated on the basis of the indiscernibility relation defined over sets
of values of condition attributes (cf. Sect. 2.3). However, we can replace the indis-
cernibility relation with semantic relations delivered by ontological graphs asso-
ciated with condition attributes. Such replacement influences lower and upper
approximations of a given set and its boundary region (cf. [15]). Therefore,
the qualitative assessment of the accuracy of approximation can also be made
in terms of condition attribute values placed in semantic spaces of ontological
graphs. That problem is worth considering in the future investigations.

To assess qualitatively rough sets in terms of decision attribute values, we
propose to use a simple taxonomy distinguishing pseudo rough sets, marginally
rough sets, restrainedly rough sets, and considerable rough sets.

Let SDSOG = (U,C,D, {OGa}a∈C∪D, finf , fdec) be a simple decision system
over ontological graphs, X ⊆ U , B ⊆ C, and D = {d}. Later on, we will use the
following notation:

– Decd(X) = {fdec(d, u) : u ∈ X},
– Decd(X∗) = {fdec(d, u) : u ∈ BNB(X) − X}.

Definition 3. Let SDSOG = (U,C,D, {OGa}a∈C∪D, finf , fdec) be a simple
decision system over ontological graphs, B ⊆ C, D = {d}, Xv = {u ∈ U :
fdec(d, u) = v}. Xv is:

– a pseudo rough set if and only if

∀v′∈Decd(X∗
v )

[(v, v′) ∈ EMRd ∨ (v, v′) ∈ SMRd ∨ (v, v′) ∈ CHprMRd] ,

– a marginally rough set if and only if

∀v′∈Decd(X∗
v )

[(v, v′) /∈ AMRd ∧ (v, v′) /∈ FHprMRd]

and

∃v′∈Decd(X∗
v )

(v, v′) ∈ MHprMRd,

– a restrainedly rough set if and only if

∀v′∈Decd(X∗
v )

(v, v′) /∈ AMRd

and

∃v′∈Decd(X∗
v )

(v, v′) ∈ FHprMRd,
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– a considerable rough set if and only if

∃v′∈Decd(X∗
v )

(v, v′) ∈ AMRd.

It is easy to see that the assessment depends on semantic meanings of deci-
sion attribute values (concepts) of the remaining objects (i.e., other than those
belonging to the approximated set) from the boundary region.

Example 1. Let us consider a decision system, concerning the employment
of persons, shown in Table 1. In this system, U = {u1, u2, ..., u12} is a
set of twelve persons described with respect to their employment, C =
{gender, education, abode} is a set of condition attributes describing selected
persons, D = {employment} is a set of decision attributes. Both an information
function finf and a decision function fdec can be obtained from the table.

Table 1. A decision system concerning the employment of persons

U/A gender education abode employment

u1 male primary village unemployed

u2 male primary village jobless

u3 male higher town employed under a contract

u4 male higher town freelance

u5 female higher city freelance

u6 female higher city full − time employed

u7 female primary village jobless

u8 female primary village working

u9 female primary town unemployed

u10 male higher city working

u11 male secondary town employed under a contract

u12 male secondary city full − time employed

We are interested in the following sets:

1. Xunemployed = {u ∈ U : fdec(employment, u) = unemployed}.
2. Xworking = {u ∈ U : fdec(employment, u) = working}.
3. Xcontract = {u ∈ U : fdec(employment, u) = employed under a contract}.
4. Xfull−time = {u ∈ U : fdec(employment, u) = full − time employed}.

Moreover, we assume that B = A.
If we consider a classic approach to rough sets, then:

1. BXunemployed = {u9}, BXunemployed = {u1, u2, u9}, therefore

αB(Xunemployed) =
1
3
.
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2. BXworking = {u10}, BXworking = {u7, u8, u10}, therefore

αB(Xworking) =
1
3
.

3. BXcontract = {u11}, BXcontract = {u3, u4, u11}, therefore

αB(Xcontract) =
1
3
.

4. BXfull−time = {u12}, BXfull−time = {u5, u6, u12}, therefore

αB(Xfull−time) =
1
3
.

It is easy to see that the accuracy of B-approximation of all the sets above is
the same. From the point of view of the quantitative assessment of the accuracy
of approximation, all situations are indiscernible.

Fig. 1. An ontological graph OGemployment, representing semantic relations between
concepts, associated with the attribute employment.

If we add information about semantics of values of the decision attribute (see
the ontological graph OGemployment in Fig. 1), then:

1. Xunemployed is a pseudo rough set, because

Decemployment(X∗
unemployed) = {jobless}

and
(unemployed, jobless) ∈ SMRemployment.

2. Xworking is a considerable rough set, because

Decemployment(X∗
working) = {jobless}

and
(working, jobless) ∈ AMRemployment.
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3. Xcontract is a marginally rough set, because

Decemployment(X∗
contract) = {freelance}

and

(employed under a contract, freelance) ∈ MHprMRemployment.

4. Xfull−time is a restrainedly rough set, because

Decemployment(X∗
full−time) = {freelance}

and
(full − time employed, freelance) ∈ FHprMRemployment.

It is necessary to note that the indiscernibility relation has been used for condi-
tion attributes to determine approximations of sets. Moreover τ1 = 0 and τ2 = 1.
One can see that the qualitative assessment of the accuracy of approximation
gives us significantly different situations in terms of roughness than the quanti-
tative assessment.

It is worth noting that the qualitative assessment is not intended to replace
the quantitative assessment. First of all, they are based on different assumptions
and therefore they are not directly comparable. The accuracy of approximation
recalled in Sect. 2.3 is based on lower and upper approximations of a given set.
The qualitative assessment of accuracy takes into consideration only the bound-
ary region of a given set. The qualitative assessment of approximation should be
rather treated as some additional characteristic of rough sets enriching our look
at approximations.

4 Conclusions

In the paper, we have shown that dealing with semantic relations enriches our
look at approximations of sets defined in decision systems. The presented app-
roach enables us to determine qualitatively the accuracy of approximation using
a proper taxonomy. The proposed approach may be combined in fuzzy logic
and soft computing methods based on linguistic variables. The main task in fur-
ther work is to consider more sophisticated semantic relations (cf. [3,4]) between
attribute values (concepts), to take into consideration ontological graphs associ-
ated with condition attributes, and to propose a wider taxonomy of assessment.
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Abstract. The purpose of this study was to evaluate the usefulness of
classification methods in recognizing a cardiovascular pathology. Based
on clinical and electrocardiographic (ECG) Holter data we propose a
method for predicting a coronary stenosis demanding revascularization
in patients with a diagnosis of a stable coronary heart disease. A possible
solution of this problem has been set in a context of rough set theory and
methods. The rough set theory introduced by Zdzis�law Pawlak during the
early 1980s provides a foundation for the construction of classifiers. From
the rough set perspective, classifiers presented in the paper are based on
a decision tree calculated on a basis of a local discretization method,
related to the problem of reducts computation. We present a new modi-
fication of a tree building method which emphasizes the discernibility of
objects belonging to decision classes indicated by human experts. The
presented method may be used to assess the need for the coronary revas-
cularization. The paper includes results of experiments that have been
performed on medical data obtained from Second Department of Internal
Medicine, Collegium Medicum, Jagiellonian University, Kraków, Poland.

Keywords: Rough sets · Discretization · Classifiers · Stable angina pec-
toris · Morbus ischaemicus cordis · ECG Holter

1 Introduction

Coronary heart disease (CHD) is a major health problem worldwide and is one
of the leading causes of high mortality rates in industrialized countries (see [15]).
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It is called angina, due to one of its main symptoms - chest pain, arising from
ischemia of the heart muscle. The term angina pectoris derives from the Greek
word ankhonẽ (“strangling”) and the Latin pectus (“chest”), and can be trans-
lated as “a strangling feeling in the chest”. Acute angina, called unstable refers
to acute coronary syndrome (ACS), and when its course is chronic, it is called
stable. The consequences depend largely on the number, degree and localiza-
tion of artery stenosis. The current diagnostic standard of anatomic coronary
vessel evaluation is an invasive angiography which permits the determination of
the therapeutic plan and prognosis. In the case of unaltered coronary flow the
pharmacological treatment is applied, otherwise revascularization is also needed.
However the coronary angiography (coronarography) is a very sensitive method,
it has its limitations. As an invasive investigation, it is relatively expensive, and
it carries risks including a mortality rate of approximately 1 in 2000 (see [9]).

It would not be appropriate or practical to perform invasive investigations on
all patients with a coronary heart disease diagnosis. Given the high incidence and
prevalence of CHD, a non invasive test to reliably assess the coronary arteries
would be clinically desirable.

We propose applying clinical data together with electrocardiographic (ECG)
Holter recordings as prospective candidate data for coronary artery stenosis pre-
diction. The proposed method helps to determine the management of patients
with stable angina, including those needing coronary intervention, without per-
forming invasive diagnostic procedure like angiography. It could also work as a
screening tool for all patients with CHD.

The presented subject employs classifier building for temporal data sets,
where a classifier is an algorithm which enables us to forecast repeatedly on
the basis of accumulated knowledge in new situations (see [2] for more details).
There are many suitable methods for classification: e.g. classical and modern sta-
tistical techniques, neural networks, decision trees, decision rules and inductive
logic programming (see [2] for more details). Classifiers were constructed also for
temporal data (see [2,11] for more details). In this paper, an approach for solving
problems has been found in the context of rough set theory and its methods.
Rough set theory introduced by Zdzis�law Pawlak during the early 1980s pro-
vides the foundation for solving real life problems including medical decision
making (see [23]), as well for the construction of temporal data set classifiers
(see [2,4,5,19]).

We present a method of classifier construction that is based on features which
aggregate time points (see [2]). The patients are characterized by parameters
(sensors), measured in time points for a period, called a time window. In the
ECG recording context, the exemplary parameters are the number of QRS com-
plexes, ST interval elevations and depressions or the total power of the heart
rate variability (HRV) spectrum. The aggregation of time points is performed
by special functions called temporal patterns (see [2,20,25]), that are tools for
numerical characterization of values from a selected sensor during the whole
time window. Temporal patterns are constructed on the basis of the domain
knowledge by human experts. Next, a collection of attributes is constructed on
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the basis of temporal patterns. Having such attributes, a classifier is constructed
approximating a temporal concept. In studied subjects, the temporal concept
means the presence of coronary stenosis. The classification is performed using a
decision tree that is calculated on the basis of the local discretization (see [4,18]).

To illustrate the method and to verify the effectiveness of presented classifiers,
we have performed several experiments with the data sets obtained from Second
Department of Internal Medicine, Collegium Medicum, Jagiellonian University,
Kraków, Poland (see Sect. 5).

2 Medical Background

CHD refers to the narrowing (stenosis) or occlusion of the artery supplying blood
to the heart, caused by plaque composed predominantly of cholesterol and fatty
deposits within the vessel wall. The accumulation of a plaque is a process known
as atherosclerosis developing slowly over many years. The presence of atheroscle-
rotic plaque within the vessel wall, decreases the luminal cross-sectional area of
the artery, reduces coronary flow and leads to imbalance between myocardial
oxygen supply and consumption. Patients with stable angina are at risk of devel-
oping an acute coronary syndrome, including unstable angina and myocardial
infarction (MI): non-ST-elevation MI or ST-elevation MI. Because of advancing
age of populace and dissemination of risk factors, like: obesity, diabetes mellitus,
hypertension and hypercholesterolemia, the incidence of angina pectoris is still
increasing.

Patients suffering from stable coronary heart disease require the determina-
tion of appropriate treatment, soon after the diagnosis is made, in order to avoid
irreversible heart damages. The therapy depends on several conditions, such as:
coronary perfusion changes, heart valves failure and the heart’s pumping function.

The diagnosis and assessment of angina involves a patient’s medical his-
tory, physical examination, laboratory tests and specific cardiac investigations.
Non-invasive investigations include a resting 12-lead ECG, ECG stress testing,
resting two-dimensional and doppler echocardiography, and ECG Holter moni-
toring. Invasive techniques used in coronary anatomy assessment are: coronary
arteriography and intravascular ultrasound. Using coronary arteriography the
disease can be classified into one vessel, two vessel, three vessel, or left main
coronary artery disease (LM CAD).

An electrocardiogram is a measurement of the electrical activity of the heart
on the body’s surface. Holter ECG monitoring is a continuous recording of the
ECG, done over a period of 24 h or more. Several electrodes are placed on the
patient’s chest and connected by wires to the recorder. The patient goes about
his or her usual daily activities.

Modern Holter devices record data onto digital flash memory devices. When
the recording of the ECG signal is completed, the data is uploaded into a com-
puter system which then automatically analyzes the input. Commercial Holter
software carries out an integrated automatic analysis process which counts i.a.
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ECG complexes, calculates summary statistics such as average, minimum and
maximum heart rate and determines different kinds of heart beats and rhythms.
It provides information about heart beat morphology, interval measurements,
HRV and rhythm overview.

For many years, ECG analysis was adjusted and succeeded in methods for
determining plentiful signal features in the background for the establishment
of a diagnosis. The physicians had to gain experience in using these properties
in diagnosing. Difficulties arise when there is a need to predict the necessity
of revascularization. No distinct expert knowledge is available in this field, and
the predictions based on non-invasive tests are conjectural. Due to the invasive
character of revascularization which can exposure the patient to danger and is a
costly procedure, it would be beneficial to know whether it’s required in advance.

There are numerous systems analyzing ECG recordings. In our study the
data was acquired using Aspel’s HolCARD 24W application. Computer systems
enable the processing and aggregation of data by means of existing signal ana-
lyzing methods. Based on the raw signal (voltage levels) the parameters are
automatically calculated in a given period of time, i.e. maximum heart rate, or
the number of ventricular tachycardia (low-level aggregation). Any such period
of time corresponds to one timepoint in our analysis. Assuming a 24-h Holter
recording and hourly period of time, there are 24 time points for which the para-
meter values are calculated (e.g. 24 maximum heart rate values). The parameter
value of all windows is aggregated to one value with temporal patterns (e.g. the
average of the maximum heart rate values). We took advantage of aggregated
data to predict coronary angiography outcomes in regard to the necessity of
revascularization. The data still remain temporal regardless data aggregation
to points representing, e.g. an hour of ECG recording. The study answers the
question whether the application of such inputs will be utilizable.

2.1 Coronary Arteriography

Coronary arteriography is a diagnostic invasive procedure that requires the per-
cutaneous insertion of a catheter into the vessels and heart. The catheter is intro-
duced into the body through a vein or an artery, and its progress is monitored
by x-ray. Injected dye (contrast medium, CM or IV dye) enables the evaluation
of heart valves functioning, coronary blood flow and allows for the identification
of the presence, localization and degree of stenosis in the coronary arteries.

Coronary arteriography is considered a relatively safe procedure, but in some
patients complications arise. Most of them are minor, resulting in no long-term
consequences and include nausea, vomiting, allergic skin rashes and mild arrhyth-
mias. In patients with kidney dysfunction, the supply of an excessive quantity of
CM may worsen kidney functioning. There may be bleeding at the catheter inser-
tion site, which might develop into swelling. Less frequently, angiography may be
associated with more serious complications. These include blood vessel damages,
formation of blood clots, infections, arrhythmias, MI (myocardial infarction) or
a stroke. The risk of major complications associated with coronary angiography
is determined to be up to 2 % (see [1]). Fatalities are extremely rare and may
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be caused by a perforation of the heart or surrounding vessels, arrhythmias, a
heart attack or a severe allergic reaction to CM (see [14]).

Application of contrast medium during angiography additionally exposes
patients to the adverse effects of supervention. Reactions to IV dye are relatively
common, occurring in 1 to 12 % of patients (see [8]). Most of these reactions are
mild, and include a feeling of warmth, nausea and vomiting. Generally, these
symptoms last for only a short period of time and do not require treatment. Mod-
erate reactions, including severe vomiting, urticaria and swelling, occur in 1 % of
people receiving CM and frequently require treatment. Severe, life-threatening
reactions, including anaphylaxis, are reported in 0,03 to 0,16 % of patients, with
an expected death rate of one to three per 100 000 contrast administrations
(see [10]).

Diagnostic cardiac angiography plays an important role in the evaluation of
patients with coronary heart disease. It is used to assess the presence and degree
of coronary artery stenosis, heart valve and muscle dysfunction. In some cases
the catheterization cannot be carried out. These cases involve health centers
with limited access to diagnostic procedures or tight budget and patients with
allergy to CM and other contraindications to angiography.

There are no routine noninvasive diagnostic procedures to assess coronary
flow disturbances and when there is no opportunity to perform coronary angiog-
raphy, alternative solutions to the problem are needed. The application of the
proposed methods could select potential candidates for myocardial revascular-
ization. We suggest using clinical data, derived from a patient’s history, and
laboratory test outcomes together with ECG Holter recordings as prospective
candidate data for coronary artery stenosis prediction.

2.2 Management of Angina

Once the diagnosis of CHD is made, it is important to define the treatment and
the need for revascularization. The aim of CHD treatment is to prevent myocar-
dial infarction and death by reducing the incidence of acute thrombotic events
and the development of ventricular dysfunction. Main therapeutic methods are:
lifestyle changes, pharmacotherapy and revascularization. Particular attention
should be paid to the lifestyle (physical activity, smoking, dietary habits) which
may influence prognosis. Pharmacological treatment should reduce plaque pro-
gression, stabilize plaque by reducing inflammation and by preventing throm-
bosis when endothelial failure or plaque rupture occurs. These all reduce the
severity and frequency of symptoms and improve the prognosis leading to qual-
ity of life improvement. With appropriate management, the symptoms usually
can be controlled and the prognosis improved.

Coronary arteriography in conjunction with a cardiovascular examination
can appropriately select patients for coronary revascularization which means the
restoration of the blood supply to ischemic myocardium. Modes of revasculariza-
tion include thrombolysis with drugs, percutaneous coronary intervention (PCI)
mainly by way of angioplasty, and coronary artery bypass grafting (CABG). PCI
restores blood flow, usually with a balloon, inserted by a catheter through the
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peripheral artery, with or without stent placement. CABG refers to an “open
heart” surgery where a peripheral vein is used to bypass the occlusion in the
coronary artery.

Myocardial revascularization procedures require diagnosis which should indi-
cate the localization, extent and severity of the disease, the presence and sig-
nificance of the collateral circulation and the status of the left ventricular
myocardium. For many years, the evaluation of the extent and severity of coronary
artery disease has been mainly anatomical, carried out by a coronary angiogra-
phy. However, this technique has methodological limitations and the interobserver
variability is considerable. Intravascular ultrasounds (IVUS) have an indisputable
advantage in determining lesion characteristics. But the only noninvasive tech-
nique that allows for quantitative assessment is a positron-emission tomography
(PET), but it is highly complex and expensive, so its use is strictly limited.

3 Prediction of Coronary Atherosclerosis Presence

Forecasting coronary stenosis in patients without performing an angiography
requires classifier construction, which on the basis of available knowledge assigns
objects (patients) to defined decision classes. Considered decision classes are:
patients with unaltered arteries who do not need invasive treatment (decision
class: NO) and patients with coronary stenosis who may need revascularization
(decision class: YES). Classification thus permits decision making about coro-
nary stenosis and therapy management.

3.1 Temporal Concepts

The problem of forecasting coronary stenosis presence can be treated as an
example of a concept approximation problem, where the term concept means
mental picture of a group of objects. Such problems can often be modeled by
systems of complex objects and their parts changing and interacting over time.
The objects are usually linked by some dependencies, sometimes they can coop-
erate between themselves and are able to perform flexible complex autonomous
actions (operations, changes). Such systems are identified as complex dynamical
systems or autonomous multiagent systems (see [2] for more details). For exam-
ple, in the problem of coronary stenosis prediction, a given patient can be treated
as an investigated complex dynamical system, whilst diseases of this patient are
treated as complex objects changing and interacting over time.

The concepts and methods of their approximation are usually useful tools
for an efficient monitoring of a complex dynamic system (see [2]). Any concept
can be understood as a way to represent some features of complex objects. An
approximation of such concepts can be made using parameters (sensor values)
registered for a given set of complex objects. However, a perception of composite
features of complex objects requires observation of objects over a period called a
time window. For construction of the features temporal patterns are used. In this



Predicting Coronary Artery Disease Based on 24 Hour Holter Monitoring 101

paper, we consider temporal patterns as a numerical characterization of values
of selected sensors from a time window (e.g., the minimal, maximal or mean
value of a selected sensor, the initial and final values of a selected sensor, the
deviation of selected sensor values).

One can see that any temporal pattern is determined directly by the values
of some sensors. For example, in the case of coronary disease one can consider
temporal patters such as minimal heart rate and estimated QT dispersion within
a time window. We assume that any temporal pattern should to be defined by
a human expert using domain knowledge accumulated for the given complex
dynamical system.

The temporal patterns can be apply for defining new features that can be
used to approximate more complex concepts, that we call temporal concepts. We
assume that temporal concepts are specified by a human expert. Temporal con-
cepts are usually used in queries about the status of some objects in a particular
temporal window. Answers to such queries can be of the form of Y es, No or
Does not concern. For example, in the case of the main problem in this paper
we define a complex concept by using the following query: “Was the stenosis of
a coronary artery detected for a given patient?”.

3.2 Temporal Pattern Table

The approximation of temporal concepts can be defined by classifiers, which are
usually constructed on the basis of decision tables. Hence, if we want to apply
classifiers for the approximation of temporal concepts, we have to construct
a suitable decision table called a temporal pattern table (PT) (see Fig. 1).

Fig. 1. The scheme of the temporal pattern table (PT)

A temporal pattern table is constructed from a table T consisting of registered
information about objects (patients) occurring in a complex dynamical system.
Any row of table T represents information about the parameters of a single
object registered in a time window (see Fig. 2).
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Fig. 2. The scheme of the table T

Such a table can be treated as a data set accumulated from the observations
of the behavior of a complex dynamical system. Assume, for example, that we
want to approximate temporal concept C using table (data set) T. Initially, we
construct a temporal pattern table PT as follows.

– Construct table PT with the same objects that are contained in table T.
– Any condition attribute of table PT is computed using temporal patterns

defined by a human expert for the approximation of concept C.
– Values of the decision attribute (the characteristic function of concept C) are

proposed by the human expert.

We assume that any temporal pattern is given by a formula defined by an
expert. In a more advanced approach, the classifiers for condition attributes
related to temporal patterns should be constructed.

3.3 Classifier Construction

Next, we can construct a classifier for table PT that can approximate temporal
concept C. The most popular method for classifiers construction is based on
learning rules from examples (see, e.g., [2,4,5,19]). Unfortunately, the decision
rules constructed in this way can often be inappropriate to classify unseen cases.
For instance, if we have a decision table where the number of values is high
for some attributes, then there is a very low chance that a new object will be
recognized by the rules generated directly from this table, because the attribute
value vector of a new object will not match any of these rules. Therefore, some
discretization strategies are built for decision tables with such numeric attributes
to obtain a higher quality classifiers. This problem is intensively studied and we
consider discretization methods developed by Hung S. Nguyen (see [4,18] for
more details). These methods are based on rough set techniques and boolean
reasoning.

In this paper we use the local strategy of discretization (see [4]). One of the
most important notion of this strategy is the notion of a cut. Formally, the cut
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is a pair (a, c) defined for a given decision table A = (U,A ∪ {d}) in Pawlak’s
sense (see [19]), where a ∈ A (A is a set of attributes or columns in the data set)
and c, defines a partition of Va into left-hand-side and right-hand-side interval
(Va is a set of values of the attribute a) (see Fig. 3).

Fig. 3. The discretization of attribute a ∈ A defined by the cut (a, c)

In other words, any cut (a, c) is associated with a new binary attribute (fea-
ture) f(a,c) : U → {0, 1} such that for any u ∈ U :

f(a,c)(u) =
{

0 if a(u) < c
1 otherwise (1)

Moreover, any cut (a, c) defines two templates, where a template is under-
stood as a description of some set of objects. The first template defined by a cut
(a, c) is a formula T = (a(u) < c), while the second pattern defined by a cut
(a, c) is a formula ¬T = (a(u) ≥ c).

By means of the chosen attribute and its value the data set is divided into
two groups of objects (e.g. patients), matching to both templates mentioned
above for a given cut. For instance, for a numerical attribute a (with plentiful
organized values), the partition of the patients may be performed using the value
v of a given attribute, in a manner that patients with values of the attribute a
greater or equal to v belong to one group, and the another group consists of
patients whose values of the attribute are less then v. Let’s notice that the
partition of the object set may also take place using a symbolic attribute (non
numerical, with a modest amount of values). For example, for the attribute b
with symbolic values the split may be performed using some value v in that way,
that patients whose value of the attribute b is equal to v belong to one group, and
the patients with the value of the attribute b different from v to the another one.
The way of the selection of an attribute and its value applying for the partition,
is a key element of the discussed method for local discretization tree building
and should be related to the analysis of the decision attribute values for training
objects. The best cut in the sense of some measure is searched for.

The quality of a given cut can be computed as a number of object pairs
discerned by this cut and belonging to different decision classes. For instance,
when a given cut c divides the objects into two groups of M and N size and
the number of objects with C0 and C1 class equals M0 and M1 in one group,
and the other group contains N0 and N1 objects of C0 and C1 class respectively,
then the number of object pairs discriminated by the cut c amounts to:

M0N1 + M1N0 (2)
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If we compute the value of this measure for all potential pairs (attribute,
value), then we can greedily choose one of pairs and divide the whole data set
into two parts based on it. The partition of A can be done by n operations, if
the values are sorted. Due to the sorting operation, the algorithm runs in time
O(n · log n), where n is the number of objects.

Such an approach was used in [3] and the classifier constructed through
use of this method, will be called here as the RSH-classic classifier. However,
in this paper a new method of a cut quality computation is introduced. It is
based on special weights obtained for pairs of patient on the basic of domain
knowledge (see Sect. 4). This method allowed to significantly improve the results
of our experiments relatively to the results from [3] (see Sect. 5).

The quality of cuts may be computed for any subset of a given set of objects.
Accordingly, a root of a tree contains the entire set of objects. In the local
strategy of discretization, after finding the best cut and dividing the object
set into two subsets of objects, this procedure is repeated for each object set
separately until some stop condition holds. Using repeated divisions of a given
data set the binary tree is constructed. The stopping criterion for a division is
constructed in a manner that a given part is not split (becomes a leaf) when
it contains the objects with single decision class (alternatively the objects of
a given class constitute specified percent which is treated as a parameter of the
method) or further partitions do not yield any results (all potential cuts do not
discern the pairs of the objects with distinct classes any more).

In this paper, we assume that the division stops when all objects from the
current set of objects belong to the same decision class. Hence, the local strategy
can be realized by using a decision tree (see Fig. 4).

a, c

a(u) < ca(u) ≥ c

u

Left Right

Fig. 4. The decision tree used in local discretization

The decision tree computed during local discretization can be treated as a
classifier for the concept C represented by a decision attribute from a given
decision table A. Let u be a new object and A(T ) be a subtable containing all
objects matching the template T defined by the cut from the current node of a
given decision tree (at the beginning of algorithm work T is the template defined
by the cut from the root). We classify object u starting from the root of the tree
as follows:
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Algorithm 1. Classification by decision tree (see [4])
Input: Table A, template T, object u
Output: A decision value for u

Step 1:
if u matches template T found for A
then

go to subtree related to A(T )
else

go to subtree related to A(¬T )
end
Step 2:
if u is at the leaf of the tree
then

go to 3
else

repeat 1-2 substituting A(T )
end
Step 3:
Classify u using decision value attached to the leaf.

Fig. 5. The decision tree in CHD

Figure 5 presents a decision tree computed for the problem of forecasting the
presence of coronary stenosis on the basis of a medical data set (see Sect. 5).
The tree was generated based on all of the objects for illustrative purpose.



106 J.G. Bazan et al.

A sample application of the tree would be the classification of real life objects.
For example, for a patient with the average of QTc interval in first time window
(FIRST QTC1 AV G) equal to 380 ms and QT standard deviation in first time
window (FIRSTQT1STD) equal 5.8, we flow from the root of the tree, down to
the right subtree, as the patient suits a template FIRST QTC1 AV G < 451.
Then, in the next step we tread again along the right tree, which consists of one
node, called a leaf, where we stop. The fitting path indicates that the coronary
arteries of that patient are narrowed by atherosclerosis.

Our findings have clinical relevance. Generated cuts concern the QT inter-
val which represents the duration of ventricular depolarization and subsequent
repolarization. Prolongation of the QT interval reflects a delay in cardiac repo-
larization and is associated with the increased risk of potentially fatal ventricular
arrhythmias. Because of the QT inverse relationship to heart rate, it is routinely
corrected by means of various formulae to a less heart rate dependent value
known as the QTc interval. The duration of QTc interval should normally be
up to 450 ms for women, and 430 ms for men (see [22]).

The proposed method can predict coronary stenosis using the multi-step app-
roach. In the first step, the ECG Holter data are preprocessed and consolidated
with clinical data. The second step generates temporal patterns chosen by an
expert. Using a decision tree with the local strategy of discretization, the third
step approximates the studied concept. This step employs the transition weight-
ing approach to locally estimate the biggest number of differentiated pairs of
objects belonging to opposite classes. This ensures that received cuts produce
more stable results. In the fourth step the performance of classification is tested.

4 Weights of Cuts Relevant to Number of Vessels
Involved in CHD

The concept we learn is defined as the presence of coronary stenosis indicating
a need for revascularization. We based the concept membership on angiographic
data which divides patients into groups having single-vessel, double-vessel or
triple-vessel disease depending on the number of coronary arteries involved. The
anatomic stratification of CHD to one, two and three vessels provides useful
prognostic information and is used in the selection of patients for revasculariza-
tion. Triple-vessel disease carries worse prospects than a double-vessel, which is
usually worse than single-vessel disease. Generally, patients with single or double-
vessel disease can benefit from PCI. For patients with triple-vessel disease, or
the presence of poor heart function, a CABG can often be a good alternative or
a better treatment option.

We acknowledge patients with unaltered coronary flow as not belonging to the
concept, while patients with one, two or three vessel disease as concept positive
examples. However, this criterion is too simple and not limitless. Dissociation
often exists between the coronarography and clinical manifestations. The group
with one, two and three vessel disease is inhomogeneous. It distinguishes patients
based only on the number of vessels, and treats a multidimensional problem as



Predicting Coronary Artery Disease Based on 24 Hour Holter Monitoring 107

a one-dimensional. Some physiological facts are fundamental for correct interpre-
tation of the study results. On the one hand in patients with angiographically
confirmed stenosis, the collateral circulation and coronary self-regulation may
compensate for the blood pressure decrease caused by stenosis in order to main-
tain constant coronary flow. In coronarography, the role of collateral circulation
can be underestimated.

Some previous studies revealed that the ECG’s may appear inconsistent with
stenosis disclosed by arteriography. Sometimes the angiographic picture appears
much more alarming than what is anticipated from the ECG. In patients with
complete occlusion the resting ECG may be completely normal [12]. It was espe-
cially evident in the case of right coronary artery when severe luminal reduc-
tion, or even complete occlusions, was often accompanied by normal or only
slightly abnormal ECG. In certain rare cases it may be difficult to demonstrate
and evaluate the presence of coronary stenosis, despite a technically satisfactory
arteriogam (e.g. [7]). On the other hand, some cases of myocardial infarction
with normal coronary arteries are reported (e.g. [6]). Many theories have been
proposed explaining these inconsistencies, such as syndrome X, microvascular
angina, and non-atherosclerotic myocardial ischemia. The presence of muscu-
lar bridges may also bring some uncertainty although in these cases during the
diastolic phases, the artery appears normal.

Several studies reported that ECG changes were not good indicators of coro-
nary artery involvement with 51.5 % sensitivity in correctly detecting signifi-
cant stenosis [16]. All things considered, the ECG data is still attractive as a
prospective candidate for predicting CAD because it is noninvasive, easy to use,
a relatively inexpensive tool offering safety and patient convenience.

Given the limited ability of ECG to distinguish patients correctly, we made
an attempt to emphasize the differences between groups using weights for cuts
discerning pairs of objects. It is a way to make the border between positive and
negative examples more exposed. We are interested in distinguishing patients
with normal and narrowed (one, two or three) vessels, that‘s why we put the
biggest weights between negative examples of the concept and the remainder.
Class differences are the most subtle between patients with normal arteries and
with only one vessel changed, compared with the divergence between normal
and tree-vessel disease. The cut discriminating patients with normal and one
vessel disease is assigned the biggest weight. Thereupon we propose weights as
presented in Table 1, where the first row and the first column signify the number
of affected arteries. Increasing the values of weights, while maintaining assigned
relations between weights, no longer improves the quality of classification.

A classifier constructed by using the method based on the weights from
Table 1 will be refered to from here as the RSH-weights classifier. It is easy to see,
that the method of cuts weights computation used in the RSH-classic classifier
(see Sect. 3.3) can be treated as a special case of the RSH-weights method, that
is, a case when there are only two values in the Table 1 (values: 0 or 1).

In the RSH-classic approach, the quality of a cut is a sum of the pairs
of objects belonging to opposite decision classes, whereas in the RSH-weights
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Table 1. Diversifying weights relevant to number of vessels involved in CHD

0 1 2 3

0 0 3 2 1

1 3 0 1 1

2 2 1 0 1

3 1 1 1 0

method it is a summation of the weights of each pair of objects belonging to
different decision classes, with 1, 2 or 3 vessel disease distinction. For example,
when a given cut c divides the set of objects into two subsets of M and N size
and the number of objects with normal arteries (class NO) and with one, two
and three vessel disease (class YES) equals respectively M0, M1, M2 and M3

in one group, and the other group contains N0, N1, N2 and N3 objects of class
NO and class YES with one, two and three vessel disease respectively, then the
quality of the cut is equal to:

3
∑

i=0

3
∑

j=0

wijMiNj (3)

where wij for i = 0, 1, 2, 3, j = 0, 1, 2, 3 means the weight of a pair of objects
belonging to different decision classes with 0, 1, 2 or 3 changed vessels.

5 Experiments and Results

To verify the effectiveness of classifiers based on temporal patterns, we have
implemented the algorithms from the library RSH-lib, which is an extension of
the RSES-lib library forming the kernel of the RSES system [5].

The experiments have been performed using the medical data set obtained
from Second Department of Internal Medicine, Collegium Medicum, Jagiellonian
University, Kraków, Poland. The data was collected between 2006 and 2009. Two
part 48-h Holter ECG recordings were performed using Aspel’s HolCARD 24W
system. There was a coronary angiography after the first part of the Holter
ECG (after first 24-h recording). In the paper, we reported the results of the
experiments performed for the first part of Holter ECG recordings. The data
set includes a detailed description of clinical status (age, sex, diagnosis), coexis-
tent diseases, pharmacological management, the laboratory tests outcomes (level
of cholesterol, troponin I, LDL - low density lipoproteins) and various Holter-
based indices such as: ST interval deviations, HRV, arrythmias or QT dispersion.
Moreover, for Holter-based indices a data aggregation was performed resulting
in points describing one hour of recording. Our group of 33 patients with normal
rhythm, underwent coronary angiography and 24.2 % of them required additional
angioplasty, whereas 24.2 % were qualified for CAGB.
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The acquired data of patients was recorded as binary files. In the first step
we verified the completeness of patient data (dates of tests, results, etc.) and a
database of patients and medical data was created in the Infobright Community
Edition (ICE) environment (see [13]). ICE is an open source software solution
designed to deliver a scalable data warehouse, optimized for analytic queries
(data volumes up to 50 TB, market-leading data compression, from 10:1 to
over 40:1).

Data files for each test were imported into the database using an importer
created in Java environment. In this process the text data was converted to
the corresponding data formats (reviewing the various parameters we defined
formats allowing its efficient storage in the database) to allow for storage of
patient data without loss of information (such as float, integer, long). After
internal preprocessing in the ICE environment (e.g., a data aggregation of Holter-
based indices as was mentioned above) for further processing data have been
imported into Java environment.

In the data analyzed, there was no inconsistency in the knowledge (a large
number of values for continuous attributes), but in the case of its occurrence,
the table should be brought to the consistency, using for example, generalized
decision attribute.

The aim of the conducted experiments was to check the effectiveness of the
algorithm described in this paper in order to predict the stenosis in coronary
arteries. Here we present the experimental results of presented method. For test-
ing quality of classifiers we applied the leave-one-out (LOO) technique, that is
usually employed when the size of a given data set is small. The LOO technique
involves a single object from the original data set as the validation data, and
the remaining observations as the training data. This is repeated such that each
observation in the sample is used once as the validation data. The LOO provides
a repeatable objects selection and uses the knowledge of all remaining objects
in a learning process, and thus is comparable with other classification methods.
Knowing however it is not free from disadvantages, we plan to use a bootstrap
method, which allows to assess the statistical significance of the results.

As a measure of classification success (or failure) we used the following para-
meters which are well known from the literature: the accuracy, the coverage,
the accuracy for positive examples (Sensitivity, SN), the coverage for positive
examples, the precision for positive examples (Positive Predictive Value, PPV),
the accuracy for negative examples (Specificity, SP), the coverage for negative
examples and the precision for negative examples, also called Negative Predictive
Value, NPV (see, e.g., [2]).

The number of objects correctly and incorrectly classified is contained in
Table 2. Table 3 shows the results of applying the considered algorithm (RSH-
weights classifier) for the concept related to the presence of coronary artery
stenosis in patients with stable angina.

The method correctly identifies 94.4 % of all patients with stenosis (SN) and
80 % of those who did not have stenosis (SP). With PPV value equal 85 %,
a positive screen test is good at confirming coronary stenosis, however a negative
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Table 2. The confusion matrix

Predicted

No Yes

No 12 3

Actual Yes 1 17

Table 3. Results of experiments for coronary stenosis in CHD

Decision class Accuracy Precision

Yes 0.944 0.85

No 0.8 0.923

All classes (Yes + No) 0.879 -

result is also good as a screening tool at affirming that a patient does not have
stenosis (NPV equal 92.3 %).

During LOO procedure, the most of generated trees revealed the same topol-
ogy as final decision tree preserving siblings and ancestors order. The topology
of the rest of trees was similar, that is, there were some differences in case of
attribute values in the tree nodes and sometimes in attributes at the lower levels
of generated trees.

In Table 4 we gave the results of the experiments in applying other classifi-
cation methods to our data (the same set of input data was used in all cases).
Those methods were developed in the following systems well known from the
literature: WEKA [24], RSES [5], ROSE2 [21] (we used an early implementation
of ModLEM algorithm [17] that is available in ROSE2), and our previous app-
roach called RSH-classic classifier (see [3]). The coverage of all tested methods
was equal 1.0 (every object was classified).

It should be mentioned that the results for WEKA and ROSE2 were gener-
ated using a set of standard parameters.

Experimental results showed that the presented method of stenosis prediction
in coronary arteries gives good results and the results are comparable with results
of other systems. Interestingly, the tests classified 94.4 % of patients with nar-
rowed vessels as stenosis presence, which is an expected property of the method,
meaning that the number of false negatives should be the lowest.

5.1 Limitations of the Study

The main limitation of the study was the size of the study population. However,
our results can be applicable for a similar patient population. Another limitation
of our study was using only the number of affected vessels as a determinant of
CHD severity, as used in most of the studies in the literature. It is known that
resting ECG has a limited value in determining coronary artery lesion charac-
teristics. Despite the low computational complexity, the current implementation
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Table 4. Comparison results of alternative classification systems

Method Accuracy Precision

All classes Yes No Yes No

C4.5 (WEKA) 0.545 0.611 0.467 0.579 0.500

NaiveBayes (WEKA) 0.394 0.611 0.133 0.458 0.222

SVM (WEKA) 0.545 0.611 0.467 0.579 0.500

k-NN (WEKA) 0.667 0.833 0.467 0.652 0.700

RandomForest (WEKA) 0.515 0.722 0.267 0.542 0.444

Multilayer Perceptron (WEKA) 0.548 0.611 0.467 0.579 0.500

Global discretization + all rules (RSES) 0.667 0.611 0.733 0.733 0.611

Local discretization + all rules (RSES) 0.758 0.778 0.733 0.778 0.733

ModLEM (ROSE2) 0.576 0.556 0.600 0.625 0.529

RSH-classic 0.758 0.778 0.733 0.778 0.733

RSH-weights 0.879 0.944 0.8 0.85 0.923

of presented methods may need to improve scalability. For very large input
data we propose a distributed computing using the apportionment of objects
or attributes.

6 Conclusion

In the present work, clinical and ECG data were used to build a predictive
model for the diagnosis of CHD. We believe that the method can be very useful
to clinicians in managing patients with CHD. Patients with positive tests may
be strongly considered for revascularization, even if other tests results indicate
a moderate or weak risk range. For negative tests, the clinician may observe the
patient continuing pharmacotherapy.

The most attractive aspect of the method is that it can be employed with easy
to obtain clinical, laboratory, and electrocardiographic parameters. Estimating
the coronary anatomy before angiography could be useful when deciding on
diagnostic and therapeutic interventions.

The number of studies dealing with the relationship between electrocardio-
gram and the severity of CHD are limited. To the best of our knowledge, no study
investigating the relationship between the presence of coronary artery stenosis
and ECG Holter monitoring has been demonstrated until now. The proposed
work is very important for medical practitioners who treat patients with CHD
in every day practice. The prediction of coronary arteries stenosis may help in
better and tailored CHD management and treatment.

Further investigation is needed to assess whether proposed method leads to
a meaningful change in clinical outcomes and may be used as a more routine,
screening test for stenosis prediction. To that end we submitted an application to
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The National Science Centre in Poland for the research grant, which could enable
the investigations on more numerous study population. Moreover, it would be
of great benefit for patients, to develop a method predicting the precise number
of narrowed arteries.
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Abstract. In this paper the relationship between rough set theory and
modal logic has been discussed. Pawlakian rough set theory has obvious
connection with modal logic system S5. With the introduction of various
other lower and upper approximation operators, other modal systems
come into picture. Besides, the possibility of new modal systems also
crop up. Some of these issues are focused here.
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1 Introduction

The relationship between the theory of Rough Sets and Modal Logic had been
apparent from the very inception of the theory by Pawlak in 1982 [19]. Literature
studying the interconnection has been abundant [3,4,16–18,20,27–29]. Pawlak’s
Rough Sets are developed on approximation space, which is a set X endowed with
an equivalence relation R. The relation R emerges usually from an information
system consisting of a list of attributes and values for objects belonging to the
set X. But to develop the mathematics of Rough Sets, the source of the relation
is not essential. This pair < X,R > is precisely the Kripke frame for the modal
system S5 [12]. The standard normal modal systems are K, D, T, S4, B, S5. These
are classical propositional logics enhanced by modal operators L (necessity) and
M (possibility). Along with the axioms of propositional logic, modal axioms are
added to define the systems in a hierarchical manner as given below:

System K: Propositional logic axioms + L(α → β) → (Lα → Lβ) (axiom K)
System D: System K + (Lα → Mα) (axiom D) where M ≡ ∼ L ∼
System T : System K + (Lα → α) (axiom T )
System S4: System T + (Lα → LLα) (axiom S4)
System B: System T + (α → LMα) (axiom B)
System S5: System T + (MLα → Lα) (axiom S5)

c© Springer-Verlag Berlin Heidelberg 2015
J. Peters et al. (Eds.): TRS XIX, LNCS 8988, pp. 114–137, 2015.
DOI: 10.1007/978-3-662-47815-8 8
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In all the above mentioned modal systems α, β are wffs and the rules of
inference are:

α, α → β

β
(ModusPonens) and

α

Lα
(Necessitation)

Semantics for modal systems is usually given in terms of a Kripke frame
< X,R > where X is a non-empty set and R is a binary relation in X called
the accessibility relation. For the system S5, to be sound and complete, R has
to be an equivalence relation, that is < X,R > becomes an approximation
space of Pawlak. Any subset A of X, in other words, a triple < X,R,A >
may be considered as an interpretation of a wff of S5. In this paper, symbols
∼, ∧, ∨, → are taken as the Boolean propositional connectives and L, M are
the modal operators as mentioned before. For well formed formulae α and β
interpreted as < X,R,A > and < X,R,B >, wffs ∼ α, Lα, Mα, α ∧ β, α ∨ β,
are interpreted as < X,R,Ac >, < X,R,A >, < X,R, A >, < X,R,A ∩ B >
and < X,R,A ∪ B > respectively. Here Ac, A, A denote the complement of A
(in X), lower approximation of A in < X, R > and upper approximation of A
in < X,R > respectively.

The motivation of this paper is to explore into the interplay between the
modal logic systems and rough set systems taking into consideration the latter’s
recent developments. Especially, some features of modal logic systems hitherto
unknown or at least unheeded, that have surfaced from the studies in rough set
theory would be focused on.

In Sect. 2 some new theorems, non-theorems and derived rules in S5 which
are related with rough sets are demonstrated. Section 3 deals with the outcome of
relation based rough sets. In Sect. 4 covering based rough sets and their relation-
ship with modal systems are discussed. This section contains a whole category
of open issues. Section 5 focused on non-dual rough set systems and in Sect. 6
rough consequence logics as extensions of modal systems are revisited.

2 Theorems and Rules in S5

With respect to the semantics given in the introduction, S5 is sound and complete
[12]. This means that all the queries about theoremhood or otherwise of the wffs
of S5 can be answered by looking at the properties of the triples < X,R,A >. It is
interesting to observe that in the text books of modal logics the undermentioned
wffs seldom appear within the listed theorems. Only after the advent of rough set
theory some theorems and non-theorems have come to fore. A few such examples
are given below.

(i) 	S5
Lα ∧ Lβ ↔ L(α � β) and 	S5

Mα ∧ Mβ ↔ M(α � β) where α � β
stands for (α ∧ β) ∨ (α ∧ Mβ∧ ∼ M(α ∧ β)).

(ii) 	S5
Lα ∨ Lβ ↔ L(α � β) and 	S5

Mα ∨ Mβ ↔ M(α � β) where α � β
stands for (α ∨ β) ∧ (α ∨ Lβ∨ ∼ L(α ∧ β)).
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(iii) 	S5
L(α � β) ↔ L(β � α)

	S5
L(α � β) ↔ L(β � α)

	S5
M(α � β) ↔ M(β � α)

	S5
M(α � β) ↔ M(β � α)

(iv) 	S5
(α � β) ↔ (β � α)

	S5
(α � β) ↔ (β � α)

(v) 	S5
L(α � β) ↔ Lα � Lβ

	S5
L(α � β) ↔ Lα � Lβ

	S5
M(α � β) ↔ Mα � Mβ

	S5
M(α � β) ↔ Mα � Mβ

(vi) 	S5
α � ¬α

	S5
Lα � ¬Lα

	S5
Mα � ¬Mα

(vii) 	S5
α � (β � γ) ↔ (α � β) � γ

	S5
α � (β � γ) ↔ (α � β) � γ

(viii) 	S5
(α ∧ β) → (α � β)

	S5
(α � β) → (α ∧ β)

	S5
(α ∨ β) → (α � β)

	S5
(α � β) → (α ∨ β)

The interpretation of the wff α�β gives a subset P of X of the approximation
space < X,R > such that P = A ∩ B and P = A ∩ B where A, B are subsets
of X assigned to wffs α, β under the same interpretation.

Similarly, α � β corresponds to a subset Q of X such that Q = A ∩ B and
Q = A ∩ B.

In modal logic literature, there is an implication called the ‘strict implication’
which is denoted by the symbol �, α � β being equivalent to L(α → β) and
read as ‘necessarily α implies β’. The significance of strict implication may be
obtained in various books e.g. [12]. From the studies on rough sets another kind
of implication has emerged which may be called the ‘rough implication’. This is
denoted by the symbol ⇒ and defined as

α ⇒ β ≡ (Lα → Lβ) ∧ (Mα → Mβ).

This may be read as ‘necessarily α implies necessarily β and possibly α
implies possibly β’. In rough set theoretic terms this formula stands for ‘rough
inclusion’ [19]. If α ⇔ β denotes (α ⇒ β) ∧ (β ⇒ α) (which stands for rough
equality [19]) then some syntactic properties of the operators ⇒ and ⇔ are given
by the following list. It should be noted that these properties constitute some
fundamental results of rough set theory and rough logics [3,19].

(ix) 	S5
(α � β) ⇒ (α ∧ β)

	S5
(α ∨ β) ⇒ (α � β)

(x) 	S5
L(α � β) ⇔ Lα � Lβ

	S5
L(α � β) ⇔ Lα � Lβ

	S5
M(α � β) ⇔ Mα � Mβ

	S5
M(α � β) ⇔ Mα � Mβ
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(xi) 	S5
α � (β � γ) ⇔ (α � β) � γ

	S5
α � (β � γ) ⇔ (α � β) � γ

(xii) 	S5
((α ⇒ β) � (β ⇒ α)) ↔ ((α ⇒ β) ∧ (β ⇒ α))

Rules of inference:

With respect to this new implication the following valid rules are obtained.

1.
�S5

α,�S5
α⇒β

�S5
β

2.
�S5

α⇒β,�S5
β⇒γ

�S5
α⇒γ

3.
�S5

α

�S5
β⇒α

4.
�S5

α⇒β

�S5
¬β⇒¬α

5.
�S5

α⇒β,�S5
α⇒γ

�S5
α⇒β�γ

6.
�S5

α⇒β,�S5
β⇒α,�S5

γ⇒δ,�S5
δ⇒γ

�S5
(α⇒γ)⇒(β⇒δ)

7.
�S5

α⇒β

�S5
Lα⇒Lβ

8.
�S5

Lα⇒Lβ,�S5
Mα⇒Mβ

�S5
α⇒β

9.
�S5

α→β

�S5
α⇒β

10.
�S5

α∧β

�S5
α�β

11.
�S5

α�β

�S5
α∧β

12.
�S5

α�β

�S5
α∨β

We will see in Sect. 6 that various other implications are developed quite ‘natu-
rally’ from the study of rough sets by using other wffs e.g. Lα → Lβ, Lα → β,
Lα → Mβ etc.

Rough meet (�), rough join (�) and rough implication (⇒) operators emerged
during the study of rough sets in [2,3]. Most of the results mentioned above are
available in the same papers but not necessarily in the present form.

In this sense Rough Set Theory has been contributing to the development of
Modal Logic Systems.

3 Relation Based Rough Sets and Modality

With the emergence of research on generalized Rough Sets, particularly, because
of the development of lower and upper approximations of a set based not
essentially on equivalence relation (or equivalently a partition of the universe),
the modal logical counterpart has extended into a new, wider and colourful
dimension. One kind of generalization is achieved by taking in the universe X
any binary relation R which is not necessarily an equivalence relation (as in
Pawlakian Rough Set). The scheme is as follows :
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Let for x ∈ X, Rx = {y | xRy}. Let A ⊆ X.
Then the lower approximation A = {x | Rx ⊆ A} and
the upper approximation A = {x | Rx ∩ A = φ}.
x belongs to Rx only if R is reflexive.
A and A generated thus shall also be denoted by LR(A) and MR(A) respec-

tively.
With these definitions one can proceed towards their properties and depend-

ing on various properties (e.g. reflexivity, symmetry, transitivity, seriality and
their various combinations) of the relation R various properties of the lower and
upper approximations are obtained. The following table may be noted where the
suffixes of R namely r, s and t or their combinations indicate that the relation
is reflexive, symmetric and transitive respectively or their combinations. Rser

denotes a serial relation.

Table 1. Properties of relation based approximations

R Rr Rs Rt Rrs Rrt Rst Rrst Rser

Duality of A , A Y Y Y Y Y Y Y Y Y

φ = φ N N N N Y Y N Y Y

φ = φ Y Y Y Y Y Y Y Y Y

X = X Y Y Y Y Y Y Y Y Y

X = X N N N N Y Y N Y Y

A ∩ B ⊆ A ∩ B Y Y Y Y Y Y Y Y Y

A ∩ B ⊆ A ∩ B Y Y Y Y Y Y Y Y Y

A ∪ B ⊆ A ∪ B Y Y Y Y Y Y Y Y Y

A ∪ B ⊆ A ∪ B Y Y Y Y Y Y Y Y Y

A ⊆ B implies A ⊆ B Y Y Y Y Y Y Y Y Y

A ⊆ B implies A ⊆ B Y Y Y Y Y Y Y Y Y

A ⊆ A N Y N N Y Y N Y N

A ⊆ A N Y N N Y Y N Y N

A ⊆ A N Y N N Y Y N Y Y

A ⊆ (A) N N Y N Y N Y Y N

(A) ⊆ A N N Y N Y N Y Y N

A ⊆ (A) N N N Y N Y Y Y N

(A) ⊆ A N N N Y N Y Y Y N

A ⊆ (A) N N N N N N N Y N

(A) ⊆ A N N N N N N N Y N

The depiction in the above table is nothing novel. These correspond to the
results on modalities of modal systems based on various conditions on the acces-
sibility relation in the Kripke frames of modal systems. What is interesting is
their re-appearance in the context of Rough Set theory [29]. Besides, what is
revealing is a bunch of the uniqueness results of accessibility relation on the
Kripke frame derived from the theorems by Zhu and Wang [38].
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It is known that besides the interpretation of modal operators in terms
of accessibility relation, there are other kinds of semantics too. The opera-
tor based semantics for a modal system S is given in the algebraic structure
(P (X),c ,LS,MS,∩,∪, φ,X) where LS, MS are mappings from P (X) to P (X)
which are interpretations of the modalities LS and MS satisfying the axioms and
rules of the system S. Operators for c,∩,∪ are fixed viz. the complementation,
intersection and union of sets. But operators of LS and MS may vary. There can
be more than one functions LS and MS that satisfy the stipulated conditions.
Recent results in rough set theory throw some light on the sufficient conditions
for the appearance of accessibility relation in semantics. We paraphrase below
the results by Zhu and Wang [38] in the modal logic framework. It is important
to note that the duality between LS and MS is not generally assumed.

Proposition 1. Let S be a modal logic system with modality LS such that

(i) �Sα
�SL

S
α and

(ii) 	S L
S
(α ∧ β) ↔ (L

S
α ∧ L

S
β).

Then for each model (P (X),c ,LS,∩,∪, φ,X), there exists a unique accessi-
bility relation R ⊆ X × X such that LR = LS.

Proof outline: In any model because of (i) and (ii), LS satisfies the conditions
LS(X) = X and LS(A ∩ B) = LS(A) ∩ LS(B), A,B ⊆ X.

Then there exists an accessibility relation R in X such that LR(A) = LS(A)
for all A ⊆ X [30].

In [38], the uniqueness of R is proved thus.
Let there be two relations R1 and R2 such that LR1(A) = LS(A) = LR2(A)

for all A ⊆ X.
Let xR2y. Then x ∈ LR2({y}c). So, x ∈ LR1({y}c), so, xR1y and hence

R2 ⊆ R1.
Similarly R1 ⊆ R2.

Proposition 2. Let S be a modal logic system with modality MS such that

(i) �S ∼α
�S ∼M

S
α and

(ii) 	S M
S
(α ∨ β) ↔ (M

S
α ∨ M

S
β).

Then for each model (P (X),c ,MS,∩,∪, φ,X), there exists a unique accessi-
bility relation R′ ⊆ X × X such that MR′ = MS.

Note: When LS and MS are dual operators, conditions in Propositions 1 and 2
become dual and one gets R = R′.

Proposition 3. Let S be a modal logic system with modality LS such that it
satisfies (i) and (ii) of Proposition 1 and (iii) 	S L

S
α → L

S
(∼ L

S
(∼ α)).

Then for each model (P (X),c ,LS,∩,∪, φ,X), there is a unique symmetric
accessibility relation R ⊆ X × X such that LR = LS.
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Proposition 4. Let S be a modal logic system with modality MS such that it
satisfies (i) and (ii) of Proposition 2 and (iii) 	S M

S
(∼ M

S
α) → M

S
(∼ α).

Then for each model (P (X),c ,MS,∩,∪, φ,X), there is a unique symmetric
accessibility relation R′ ⊆ X × X such that MR′ = MS.

Proposition 5. Let S be a modal logic system with modality LS such that it
satisfies (i) and (ii) of Proposition 1 and (iii) 	S L

S
α → L

S
L

S
α.

Then for each model (P (X),c ,LS,∩,∪, φ,X), there is a unique transitive
accessibility relation R ⊆ X × X such that LR = LS.

Proposition 6. Let S be a modal logic system with modality MS such that it
satisfies (i) and (ii) of Proposition 2 and (iii) 	S M

S
M

S
α → M

S
α.

Then for each model (P (X),C ,MS,∩,∪, φ,X), there is a unique transitive
accessibility relation R′ ⊆ X × X such that MR′ = MS.

The note above applies in these cases also.

4 Covering Based Rough Sets and Modality

The scenario turns out to be more interesting in the context of covering based
Rough Sets. A covering C of the universe X is a collection C of subsets such
that ∪C = X. The partition of X generated by the equivalence relation R in the
case of Pawlakian Rough Sets is a special covering. The collection {Rx|x ∈ X}
may or may not form a covering but is so if R is reflexive. The first work on
covering based RST is perhaps due to Pomykala [21]. Later years saw a great
spurt of activity in this area. Emergence of research on covering based Rough
Sets has taken place not only from the theoretical stand point of generalization
but also because of its practical import. Basic granules of objects which form
the building blocks of concepts overlap in most cases of practical life. Coverings
rather than well defined partitions reflect the real life situations in a better
way. An excellent work is done by Yao [32] in which he has suggested some
methodology of categorization of various approaches that have emerged in the
area. Prior to this, Samanta and Chakraborty [24,25] carried out a survey. In
the present work we shall focus on modal properties, that is the properties of
lower and upper approximation operators and categorize the rough set models
accordingly. The properties we shall concentrate upon are already present in
Table 1. It is necessary to restate the methods of construction [24,25] of various
approximation operators by taking a covering instead of a partition only.

Let C = {Ci} be a covering of X and let us consider the following sets.
NC

x = ∪{Ci : x ∈ Ci} = Friends(x) [15,22]
P C

x = {y ∈ X : ∀Ci(x ∈ Ci ⇔ y ∈ Ci)} (Partition generated by a covering)
[19,22,36]

N(x) = ∩{Ci : x ∈ Ci} = Neighbour(x) [14,33,36]
e.f(x) = X − Friends(x) [15]
Md(x) = {Ci : x ∈ Ci ∧ (∀S ∈ C ∧ x ∈ S ⊆ Ci ⇒ Ci = S)} [8,23].

Various pairs of lower and upper approximations of a set A are available in rough
set literature.
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P 1(A) = {x : NC
x ⊆ A}

P
1
(A) = ∪{Ci : Ci ∩ A = φ} [22,31]

P 2(A) = ∪{NC
x : NC

x ⊆ A}
P

2
(A) = {z : ∀y(z ∈ NC

y ⇒ NC
y ∩ A = φ)} [22]

P 3(A) = ∪{Ci : Ci ⊆ A}
P

3
(A) = {y : ∀Ci(y ∈ Ci ⇒ Ci ∩ A = φ)} [14,22,26,31,36]

P 4(A) = ∪{P C
x : P C

x ⊆ A}
P

4
(A) = ∪{P C

x : P C
x ∩ A = φ} [7,14,19,22,23,26,30,33,36]

C1(A) = ∪{Ci : Ci ⊆ A}
C

1
(A) =∼ C1(∼ A) = ∩{∼ Ci : Ci ∩ A = φ} [23]

C2(A) = {x ∈ X : N(x) ⊆ A}
C

2
(A) = {x ∈ X : N(x) ∩ A = φ} [14,23]

C3(A) = {x ∈ X : ∃u(u ∈ N(x) ∧ N(u) ⊆ A)}
C

3
(A) = {x ∈ X : ∀u(u ∈ N(x) → N(u) ∩ A = φ)} [23]

C4(A) = {x ∈ X : ∀u(x ∈ N(u) → N(u) ⊆ A)}
C

4
(A) = ∪{N(x) : N(x) ∩ A = φ} [23]

C5(A) = {x ∈ X : ∀u(x ∈ N(u) → u ∈ A)}
C

5
(A) = ∪{N(x) : x ∈ A} [23]

With the same lower approximation there are a few different upper approxima-
tions.
C∗(A) = C−(A) = C#(A) = C@(A) = C+(A) = C%(A)

= ∪{Ci : Ci ⊆ A} ≡ P 3(A) [15]

C
∗
(A) = C∗(A) ∪ {Md(x) : x ∈ A \ A∗} [8,15,36,37]

C
−
(A) = ∪{Ci : Ci ∩ A = φ} [15,35]

C
#

(A) = ∪{Md(x) : x ∈ A} [15,36]

C
@
(A) = C@(A) ∪ {Ci : Ci ∩ (A \ C@(A)) = φ} [15]

C
+
(A) = C+(A) ∪ {Neighbour(x) : x ∈ A \ C+(A)} [15,33]

C
%

(A) = C%(A) ∪ {∼ ∪{Friends(y) : x ∈ A \ C%(A), y ∈ e.f(x)}} [15]
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Two other types of lower and upper approximations are defined with the help
of covering.

(1) Let, Gr∗(A) = ∪{Ci : Ci ⊆ A} ≡ P 3(A).
This is taken as lower approximation of A and is denoted by CGr(A).
Gr∗(A) = ∪{Ci : Ci ∩ A = φ} ≡ P

1
(A).

The upper approximation is defined by C
Gr

(A) = Gr∗(A) \ NEGGr(A), where,
NEGGr(A) = CGr(∼ A), ∼ A being the complement of A [26].

(2) A set D is said to be definable iff there exists a set A (⊆ X) such that
D =

⋃

x∈A
N(x). Let D = {D ⊆ X : D is definable}. Ct, Ct : P (X) → P (X) are

such that Ct(A) =
⋃{D ∈ D : D ⊆ A} and Ct(A) =

⋂{D ∈ D : A ⊆ D}. [13].
It may be observed that

⋃{D ∈ D : D ⊆ A} =
⋃{N(x) : N(x) ⊆ A} = {x ∈

X : N(x) ⊆ A} = Ct(A) and
⋂{D ∈ D : A ⊆ D} =

⋃{N(x) : x ∈ A} = Ct(A).
The following chart summarizes the properties.

Table 2. Properties of covering based approximations

P1 P2 P3 P4 C1 C2 C3 C4 C5 CGr C∗ C− C# C@ C+ C% Ct

Duality of A, A Y Y Y Y Y Y Y Y Y Y N N N N N N N

φ = φ = φ Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

X = X = X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

A ∩ B ⊆ A ∩ B Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

A ∩ B ⊆ A ∩ B Y N N Y N Y N Y Y N N N N N N N Y

A ∪ B ⊆ A ∪ B Y N N Y N Y N Y Y N N Y N Y Y N Y

A ∪ B ⊆ A ∪ B Y Y Y Y Y Y N Y Y Y Y Y Y Y Y N Y

A ⊆ B implies A ⊆ B Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

A ⊆ B implies A ⊆ B Y Y Y Y Y Y Y Y Y Y N Y Y N Y Y Y

A ⊆ A Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y

A ⊆ A Y Y Y Y Y Y N Y Y Y Y Y Y Y Y N Y

A ⊆ A Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y

A ⊆ (A) Y N N Y N N N Y N N Y Y Y Y N N Y

(A) ⊆ A Y N N Y N N N Y N N N N Y Y Y N Y

A ⊆ (A) N Y Y Y Y Y N N Y Y Y Y Y Y Y Y Y

(A) ⊆ A N Y Y Y Y Y N N Y Y Y N N Y Y Y Y

A ⊆ (A) N N N Y N N N N N N Y Y Y Y N N Y

(A) ⊆ A N N N Y N N N N N N N N Y Y Y N Y

(AC ∪ B) ⊆ (A)C ∪ B Y N N Y N Y N Y Y N N N N N N N Y

Two points should be noted. First that the properties taken are not independent.
But we have preferred to retain all in order to place them before our eyes.
Second, and which is not properly noticed, is that some of the approximations,
though defined differently, are in fact the same. Such a case has been presented
in Proposition 7.
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Proposition 7. P3(A) = C1(A) = CGr(A)

All these being duals to P3(A) = C1(A) = CGr(A) =
⋃{Ci : Ci ⊆ A} they

should be equal. Yet we give below a direct proof of the equality of the three
upper approximations.

Proof. P
3
(A) = {y : ∀Ci(y ∈ Ci ⇒ Ci ∩ A = φ)}

C
1
(A) = ∩{CC

i : Ci ∩ A = φ}
C

Gr
(A) = Gr∗(A) \ NEGGr(A)

=
⋃{Ci : Ci ∩ A = φ} \ ⋃{Cj : Cj ⊆ AC}

Let, x ∈ C1(A) = ∩{CC
i : Ci ∩ A = φ}

Let, x ∈ Ci for any Ci.
Two cases : (i) Ci ∩ A = φ, (ii) Ci ∩ A = φ.
In case (i), by assumption x ∈ CC

i which contradicts x ∈ Ci for any i.
So, x ∈ Ci ⇒ Ci ∩ A = φ, for any Ci. So, x ∈ P3(A).
As a result, C1(A) ⊆ P3(A) . . . (i)
Conversely, ∀Ci(x ∈ Ci ⇒ Ci ∩ A = φ)
iff ∀Ci(Ci ∩ A = φ ⇒ x ∈ Ci)
iff ∀Ci(Ci ∩ A = φ ⇒ x ∈ CC

i ).
This implies x ∈ ⋂{CC

i : Ci ∩ A = φ}.
So, P3(A) ⊆ C1(A) . . . (ii).
So, P3(A) = C1(A) follows from (i) and (ii) . . . (1).

Now, C
Gr

(A) = Gr∗(A) \ NEGGr(A)
=

⋃{Ci : Ci ∩ A = φ} \ ⋃{Cj : Cj ⊆ AC}
=

⋃{Ci : Ci ∩ A = φ} \ ⋃{Cj : Cj ∩ A = φ}.
So, x ∈ C

Gr
(A) iff x ∈ Ci : Ci ∩ A = φ, for some Ci and

x ∈ Cj for all Cj s.t. Cj ∩ A = φ(≡ Cj ⊆ AC).
Let x ∈ ⋂{CC

i : Ci ∩ A = φ}(= C
1
(A))

iff x ∈ [
⋃{Cj : Cj ∩ A = φ}]C

iff x ∈ ⋃{Cj : Cj ∩ A = φ}.
Now ∃Ci s.t. x ∈ Ci. So, Ci ∩ A = φ.
So, x ∈ ⋃{Ci : Ci ∩ A = φ} \ ⋃{Cj : Cj ∩ A = φ} = C

Gr
(A).

So, C
1
(A) = C

Gr
(A) . . . (2).

From (1) and (2) the proposition follows. ��
Remark 1. If the basic formation of approximations of two covering-systems are
the same, columns below them should be obviously identical such as systems P3,
C1 and CGr above. But the converse may not be true as would be clear from the
following observations:

Observation 1: In Table 2, P1 and C4 have identical columns. Nonetheless P1

and C4 are different operators, as is shown by the following example.
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Example 1. sLet X = {1, 2, 3, 4, 5, 6} and C = {C1, C2 , C3, C4} where
C1 = {1, 2}, C2 = {2, 3, 4}, C3 = {4, 5}, C4 = {6}.
Then, NC

1 = {1, 2}, NC
2 = {2}, NC

3 = {2, 3, 4}, NC
4 = {1, 2, 3, 4, 5},

NC
5 = {4, 5}, NC

6 = {6}, and
N(1) = {1, 2}, N(2) = {2}, N(3) = {2, 3, 4}, N(4) = {4},
N(5) = {4, 5}, N(6) = {6}.
Let, A = {4, 5}. Then P 1(A) = {5} and C4(A) = φ.
So, P 1 and C4 are different.

Observation 2: In Table 2, C2 and C5 have identical columns. Nonetheless
they are different operators. For example:

Example 2. Let X = {1, 2, 3} and C = {C1, C2} where C1 = {1, 2}, C2 = {2, 3}.
Then N(1) = {1, 2}, N(2) = {2} and N(3) = {2, 3}.
Let A = {1, 2}. Then C2(A) = {1, 2} and C5(A) = {1}.
So, C2 and C5 are different.

An Analysis of the Table

It is immediately observed that there are two broad groups: systems in which the
approximation operators are dual to each others and in which they are non-dual.

Yao and Yao in [32] present some twenty pairs of approximation operators
some of which are not present in our study here. This is because we are interested
mostly in modal logical aspects of these operators.

In case of the dual operators, the dual property will automatically be available
if either one is present. So for systems P1, ...CGr, we would like to take a reduced
list of properties.

Rough set theoretic properties Corresponding modal properties

X = X Rule N

(i) . . A ∩ B ⊆ A ∩ B L(α ∧ β) → (Lα ∧ Lβ)

(ii) . . A ∩ B ⊆ A ∩ B (Lα ∧ Lβ) → L(α ∧ β)

(iii) . . A ⊆ B implies A ⊆ B �α→β
�Lα→Lβ

A ⊆ A Lα → α (T )

A ⊆ A Lα → Mα (D)

A ⊆ (A) α → LMα (B)

A ⊆ (A) Lα → LLα (S4)

(A) ⊆ A MLα → Lα (S5)

AC ∪ B ⊆ (A)C ∪ B L(α → β) → (Lα → Lβ) (K)

One can recognize that the above list consists of set theoretic counterparts of
modal axioms, theorems and rules. For example, the first is the necessitation rule.
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(i) and (ii) are theorems 	S (Lα∧Lβ) → L(α∧β) and 	S L(α∧β) → (Lα∧Lβ)
respectively. (iii) is the derived rule �α→β

�Lα→Lβ . The last one is axiom K.
First thing to observe is that all the systems (dual or non dual) satisfy the

necessitation rule (N), (i) and (iii). It is also to be noted that the rule MP i.e.
A ∩ (AC ∪ B) ⊆ B naturally holds in the power set algebra. Now, rule N , MP
and axiom K imply (i), (ii) and (iii). And MP , (ii) and (iii) imply K. So, in the
present context, i.e. for the systems in the table, (ii) and K are equivalent. This
is visible also in the table : the respective rows are identical.

Below we give another sufficient condition for K to hold. This condition
depends exactly on the nature of construction of the lower approximation of a set.

Proposition 8. If the lower approximation of a covering system is defined in
terms of a set S(x), x ∈ X by A = {x : S(x) ⊆ A} then Ac ∪ B ⊆ (A)c ∪ B,
which is axiom K.

Proof. x ∈ (Ac ∪ B) iff S(x) ⊆ Ac ∪ B. . . . (1)
Also x ∈ (A)c ∪ B iff x ∈ (A)c or x ∈ B

iff x ∈ A or x ∈ B
iff S(x) ⊆ A or S(x) ⊆ B.

So, (K) does not hold iff there exists some x such that x ∈ (Ac ∪ B) and not
(S(x) ⊆ A or S(x) ⊆ B) i.e. S(x) ⊆ A and S(x) ⊆ B.

But this is impossible since,
S(x) ⊆ A implies S(x) ∩ Ac = φ. So S(x) ⊆ B by (1).
But we also require S(x) ⊆ B. ��

Remark 2. One can verify from the construction of lower approximations that
this is in fact the case for all the rough-set systems discussed here.

We give below a table of dual systems, covering based as well as relation based,
to make the picture clear with respect to the standard modal axioms.

Table 3. Table of dual systems

P1 P2 P3 P4 C1 C2 C3 C4 C5 CGr R Rr Rs Rt Rrs Rrt Rst Rrst

K Y N N Y N Y N Y Y N Y Y Y Y Y Y Y Y

T Y Y Y Y Y Y N Y Y Y N Y N N Y Y N Y

D Y Y Y Y Y Y N Y Y Y N Y N N Y Y N Y

S4 N Y Y Y Y Y N N Y Y N N N Y N Y Y Y

B Y N N Y N N N Y N N N N Y N Y N Y Y

S5 N N N Y N N N N N N N N N N N N N Y
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Let us now focus only on the systems which possess K. Then depending on
the identity of the columns below, the systems are clustered in the following
groups: {P1, C4, Rrs}, {P4, Rrst} and {C2, C5, Rrt}.

Identity of P4 and Rrst was evident right from the beginning of Rough Set
theory. From the other two groups we can say that P1 and C4 are at least modal
system B (because of the presence of Rrs in the group) and not S5. Similarly,
systems C2 and C5 are at least S4 and not S5. The following natural question
may be asked now (Table 3).

(a) Are the lower approximations formed by the above systems the same?
(b) Can the systems be differentiated by some modal axioms?

From the Remark 1, we see that the answer to the first question is negative. As
for the second question, it will be shown below that with respect to the follow-
ing axioms intermediate of S4 and S5 as present in Hughes and Cresswell [12],
systems C2 and C5 cannot be differentiated. But the question still remains open.

The axioms that are considered here are N1, J1,H1, G1,M and R1. It will be
shown below that none of the axioms hold either in C2 or in C5.
The proof is through the following examples.
N1 = L(L(α → Lα) → α) → (MLα → α) i.e. (((Ac ∪ A))c ∪ A) ⊆ ((A))c ∪ A

J1 = L(L(α → Lα) → α) → α i.e. (((Ac ∪ A))c ∪ A) ⊆ A

Example 3. Let, X = {1, 2, 3, 4, 5, 6, 7, 8} and C1 = {1, 2, 3}, C2 = {3, 4},
C3 = {5, 6}, C4 = {5, 7}, C5 = {4, 5}, C6 = {8}
Then, N(1) = {1, 2, 3} = N(2), N(3) = {3}, N(4) = {4}, N(5) = {5},
N(6) = {5, 6}, N(7) = {5, 7}, N(8) = {8}

Case C2.
Let, A = {2, 3, 6, 7, 8} . . . (i). Then A = {3, 8}, Ac = {1, 4, 5}.
(Ac ∪ A) = {1, 3, 4, 5, 8}, (Ac ∪ A) = {3, 4, 5, 8}, ((Ac ∪ A))c = {1, 2, 6, 7},
((Ac ∪ A))c ∪ A = {1, 2, 3, 6, 7, 8}, (((Ac ∪ A))c ∪ A) = {1, 2, 3, 8} . . . (ii)

(A) = {1, 2, 3, 8}, ((A))c = {4, 5, 6, 7}
((A))c ∪ A = {2, 3, 4, 5, 6, 7, 8} . . . (iii)

From (ii) and (iii), N1 and from (i) and (iii), J1 does not hold for C2.
Case C5

A = {2, 3, 5, 7, 8} . . . (iv). Then A = {7, 8}, Ac = {1, 4, 6}.
(Ac ∪ A) = {1, 4, 6, 7, 8}, (Ac ∪ A) = {4, 8}, ((Ac ∪ A))c = {1, 2, 3, 5, 6, 7},
((Ac ∪ A))c ∪ A = {1, 2, 3, 5, 6, 7, 8}, (((Ac ∪ A))c ∪ A) = {1, 2, 3, 8} . . . (v)
From (iv) and (v), J1 does not hold for C5.

H1 = α → L(Mα → α) i.e. A ⊆ ((A)c ∪ A)

Example 4. Let X = {1, 2, 3, 4, 5} and C1 = {1, 2}, C2 = {2, 3}, C3 = {4, 5}.
Then, N(1) = {1, 2}, N(2) = {2}, N(3) = {2, 3}, N(4) = {4, 5} = N(5).

Case C2
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A = {1, 4} . . . (i). Then, A = {1, 4, 5}, (A)c = {2, 3},
(A)c ∪ A = {1, 2, 3, 4}, (A)c ∪ A = {1, 2, 3} . . . (ii)
From (i) and (ii), H1 does not hold for C2.

Example 5. Let, X = {1, 2, 3} and C1 = {1, 2}, C2 = {2, 3}.
Then, N(1) = {1, 2}, N(2) = {2}, N(3) = {2, 3}.

Case C5

Let, A = {1, 2} . . . (i). Then, A = {1} and A = {1, 2, 3}.
(A)c = φ, (A)c ∪ A = φ ∪ A = A, ((A)c ∪ A) = A = {1} . . . (ii).
(i) and (ii) implies H1 does not hold for C5.

G1 = MLα → LMα i.e. (A) ⊆ (A).

Example 6. X = {1, 2, 3, 4, 5, 6} and C1 = {1, 2, 3}, C2 = {2, 3, 4}, C3 =
{5, 6}, C4 = {3, 5}, C5 = {2, 5}.

Then N(1) = {1, 2, 3}, N(2) = {2}, N(3) = {3}, N(4) = {2, 3, 4}, N(5) =
{5}, N(6) = {5, 6}.
Case C2

Let A = {2, 5}. Then, A = {2, 5}, (A) = {1, 2, 4, 5, 6} . . . (i).
A = {1, 2, 4, 5, 6}, (A) = {2, 5, 6} . . . (ii)
From (i) and (ii) G1 does not hold for C2.

Example 7. Let X = {1, 2, 3, 4, 5} and C1 = {1, 2}, C2 = {2, 3}, C3 = {4, 5}.
Then, N(1) = {1, 2}, N(2) = {2}, N(3) = {2, 3}, N(4) = {4, 5} = N(5).

Case C5

Let, A = {5}. Then, A = φ, A = {4, 5}
(A) = (φ) = φ . . . (i) and (A) = {4, 5} . . . (ii).
(i) and (ii) implies G1 does not hold for C5.

M = LMα → MLα i.e. (A) ⊆ (A).

Example 8. Let X = {1, 2, 3, 4, 5} and C1 = {1, 2}, C2 = {2, 3}, C3 = {4, 5}.
Then, N(1) = {1, 2}, N(2) = {2}, N(3) = {2, 3}, N(4) = {4, 5} = N(5).

Case C2

Let, A = {1, 4}. Then, A = {1, 4, 5}, A = φ.
(A) = (φ) = φ . . . (i) and (A) = {4, 5} . . . (ii).
(i) and (ii) implies M does not hold for C2.

Example 9. Let, A = {1, 2, 3} and C1 = {1, 2}, C2 = {2, 3}.
Then,N(1) = {1, 2}, N(2) = {2}, N(3) = {2, 3}.

Case C5

Let, A = {1, 2}. Then, A = {1} and (A) = {1, 2} . . . (i).
A = {1, 2, 3} and (A) = {1, 2, 3} . . . (ii).
(i) and (ii) implies M does not hold for C5.

R1 = MLα → (α → Lα) i.e. (A) ⊆ (Ac ∪ A).
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Example 10. Let, X = {1, 2, 3, 4, 5, 6, 7, 8} and C1 = {1, 2, 3}, C2 = {3, 4}, C3 =
{5, 6}, C4 = {5, 7}, C5 = {4, 5}, C6 = {8}

Then, N(1) = {1, 2, 3} = N(2), N(3) = {3}, N(4) = {4}, N(5) =
{5}, N(6) = {5, 6}, N(7) = {5, 7}, N(8) = {8}.
Case C2.

Let, A = {2, 3, 6, 7, 8}. Then A = {3, 8}, Ac = {1, 4, 5}.
(Ac ∪ A) = {1, 3, 4, 5, 8} . . . (i).
(A) = {1, 2, 3, 8} . . . (ii).
(i) and (ii) implies R1 does not hold for C2.

Example 11. Let, X = {1, 2, 3} and C1 = {1, 2}, C2 = {2, 3}.
Then, N(1) = {1, 2}, N(2) = {2}, N(3) = {2, 3}.

Case C5

Let, A = {1, 2}. Then, Ac = {3}, A = {1} and (A) = {1, 2} . . . (i).
(Ac ∪ A) = {1, 3} . . . (ii).
(i) and (ii) implies R1 does not hold for C5.

Remark 3. Similar questions in the case of P1 and C4 may be asked, but not
investigated.

However, we make the following conjecture.

Conjecture 1.
(a) P1 and C4 give rise to the same modal systems.
(b) C2 and C5 give rise to the same modal systems.

From a covering {Ci} a relation R can be defined in the following three natural
ways (cf. Propositions 9, 10 and 11). The question is: what kind of covering
system is generated back by R by defining the approximations in the standard
way in terms of granules Rx as mentioned in Sect. 3? The following propositions
give the answer.

Proposition 9. Let the relation R be defined by xRy iff ∀Ci, x ∈ Ci implies
y ∈ Ci. Then the system generated by R is P1.

Proof. y ∈ A
iff Ry ⊆ A
iff {x : yRx} ⊆ A
iff {x : y ∈ Ci ⇒ x ∈ Ci} ⊆ A
iff

⋃{Ci : y ∈ Ci} ⊆ A.
So, y ∈ P 1(A) ⇔ Ny ⊆ A ⇔ ⋃{Ci : y ∈ Ci} ⊆ A.

Proposition 10. Let the relation R be defined by xRy iff ∃Ci s.t. x ∈ Ci and
y ∈ Ci. Then the system generated by R is C2.

Proof. y ∈ A
iff Ry ⊆ A
iff {x : yRx} ⊆ A
iff {x : ∃Ci s.t. y ∈ Ci and x ∈ Ci} ⊆ A
iff

⋂{Ci : y ∈ Ci} ⊆ A.
So, y ∈ C2(A) ⇔ N(y) ⊆ A ⇔ ⋂{Ci : y ∈ Ci} ⊆ A.
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Proposition 11. Let us consider a relation R s.t. xRy iff ∀Ci, x ∈ Ci iff y ∈ Ci.
Then the system generated by R is P4.

The proof is immediate.

Interesting R-S Systems (i.e. rough set systems with lower and upper approxi-
mations defined as in Section 4) are P2(≡ P3) and C3 in which the approximation
operators are dual but Axiom K fails. More precisely, in P2, Axioms T, D, S4

hold, K, B, S5 do not hold. In C3, the rule RN, �α→β
�Lα→Lβ , �α→β

�Mα→Mβ and Axiom
L(α∧β) → (Lα∧Lβ) hold. Considering all aspects P2 turns out to be the most
interesting case.

Now, the question is, does there exist a non-normal modal system (non-
normal, since K fails) whose model could be P2? Since T implies D, we in fact
need a modal system which is a subsystem of the modal system S4, P2 being
one of its models.

5 Non-Dual RS-Systems

As shown in Table 2, there are quite a number of non-dual approximation oper-
ators within the extant rough set literature. From the angle of modal logic these
may be considered as models of bi-modal systems. The common features of all
the RS-systems in terms of modal logic formulae are the following

• �α
�Lα , N -rule

• L(α ∧ β) → (Lα ∧ Lβ)
• �α→β

�Lα→Lβ• Lα → α
• Lα → Mα
• Lα → LLα

where, L,M are not duals.
Of all these RS-Systems Ct is the closest to Pawlakian system P4(≡ S5):

while in case of P4 all the entries below are ‘Y ′, in case of Ct there is only one
‘N ′ and that is regarding duality. This is an important feature, additionally the
approximation operators seem to be quite natural.

Interestingly Ct satisfies the modal logic axiom K which is not satisfied by
any other non-dual systems. This places the RS-System Ct at a special position.

The next covering RS-System with minimal deviations from Ct is C@ having 3
deviations. So, it seems that modal systems corresponding to Ct and C@ deserve
some investigation.

Another direction of growth may be located in the (proposal for) genera-
tion of so called Rough Consequence Logics. These constitute a cluster of logics
extending Modal Logic System S5. They arose naturally out of the issues con-
nected with Rough Sets as well as Approximate Reasoning.
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6 Rough Consequence Logics Revisited

In this section an overview of what has been termed as ‘rough consequence
logics’ [10] based on rough modus ponens rule (RMP) will be presented. First
appearance of the idea may be traced back in [11]. Further steps were taken in
[9]. A full presentation, appeared in [10]. We shall, however, present the idea in
its full generality and thus, the earlier concepts and results will be generalized.
The idea is to graft a logic on top of a modal system S with the help of a new
rule of inference.

Rough Logics

Let S be a modal system with consequence relation 	S
. Based on S two other

systems Lr and L+
r are defined axiomatically by using Rough consequence rela-

tion |∼ as follows:

Lr:

(i) 	S α implies Γ |∼ α
(ii) {α} |∼ α
(iii) Γ |∼ α implies Γ ∪ Δ |∼ α
(iv) RMP may be applied.

L+
r :

(i), (ii), (iii) as in Lr and
(iv)+ : rule RMP+ may be applied.

It is therefore necessary to present rules RMP and RMP+.
There is a bunch of rules within the category RMP viz.

Γ |∼ β → γ, 	S ℵ(α, β)
Γ |∼ γ

where ℵ(α, β) is any one of the following list of wffs.

List of wffs

(i) Lα → Lβ (iv) α → Lβ (vii) Mα → Lβ (x) M(α → β)

(ii) Lα → β (v) α → β (viii) Mα → β (xi) L(α → β)

(iii) Lα → Mβ (vi) α → Mβ (ix) Mα → Mβ (xii) α ⇒ β

(xiii) α ⇔ β

The rules under the bunch RMP+ have only a change in the third component
viz. Γ 	S ℵ(α, β) instead of 	S ℵ(α, β).

For the definitions of ⇒ and ⇔ we refer to Sect. 2.
The following observations 3 – 7, are true for all the logics Lr and L+

r .
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Observation 3: Conditions (ii) and (iii) to define |∼ are together equivalent to
the condition overlap viz.

α ∈ Γ implies Γ |∼ α(overlap).

Observation 4: Γ |∼ α implies δ1, δ2, ...δn |∼ α for some δ1, δ2, ...δn ∈ Γ .
(Compactness).

Observation 5: Γ, α |∼ β and Δ |∼ α imply Γ ∪ Δ |∼ β (Cut).
Observations 3 and 4 follow by induction on the length of derivation of Γ |∼ α

and observation 5 follows by induction on the derivation of Γ, α |∼ β.

Observation 6:
(i) Γ |∼α, �Sℵ(α,β)

Γ |∼β

(ii) Γ,β|∼γ, �Sℵ(α,β)
Γ,α|∼γ

Observation 7: Ordinary MP rule for |∼ viz.

Γ |∼ α, Γ |∼ α → γ

Γ |∼ γ

may be derived as a special case of all the RMP rules for which 	S ℵ(α, α) holds.

Now, depending on the base modal system the above set of thirteen formulae
will be clustered into equivalence classes by the equivalence relation defined by:
	S ϕ iff 	S ψ.

For example if S is the modal system S5 we get the following classes:
{(i), (ii)}, {(iii), (x)}, {(iv), (vii), (viii)}, {(v), (xi) {(vi), (ix)}, {(xii)}, {(xiii)}.
So, in this case seven RMP rules would be available viz.

RMP1
Γ |∼α, Γ |∼β→γ, �Lα→Lβ

Γ |∼γ

RMP2
Γ |∼α, Γ |∼β→γ, �Lα→Mβ

Γ |∼γ

RMP3
Γ |∼α, Γ |∼β→γ, �Mα→β

Γ |∼γ

RMP4
Γ |∼α, Γ |∼β→γ, �α→β

Γ |∼γ

RMP5
Γ |∼α, Γ |∼β→γ, �Mα→Mβ

Γ |∼γ

RMP6
Γ |∼α, Γ |∼β→γ, �α⇒β

Γ |∼γ

RMP7
Γ |∼α, Γ |∼β→γ, �α⇔β

Γ |∼γ

Besides these, two more rules, also called rough MP, had been proposed in [1]
which are defined as
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R1
Γ |∼α, Γ�S5Mα→Mγ

Γ |∼γ

and

R2
Γ |∼Mα, Γ |∼Mγ

Γ |∼γ

The RMP rules are related by the following hierarchical relations:

RMP1 =� RMP4 =� RMP3,
RMP2 =� RMP5 and
RMP1 =� RMP6 =� RMP7

where RMPi =� RMPj means that the ith rule implies the jth one. The relation
between the corresponding logics Lri

and Lrj
will be reverse inclusion, Lrj

� Lri
.

A detailed study of the systems Lri
and L+

ri
when S is S5 with rules RMPi

and RMP+
i is done in [10]. We present below a diagram (Fig. 1) depicting the

relevant portion of that study after making few modifications.
In the following diagram (Fig. 1) ∼ means equivalence, connection by a line

means the lower logical system is proper subsystem of the upper one and connec-
tion by dotted line means the corresponding systems are mutually independent.

LR1

LR2

Lr2
∼ L+

r2
∼ Lr5

∼ L+
r5

Lr3

Lr1
∼ L+

r1
∼ Lr6

∼ L+
r6

∼ Lr7 ∼ L+
r7

Lr4
∼ L+

r4
∼ L+

r3

Fig. 1. Hierarchy of rough logics

In this Section we present some parallel results with base logics S4 and B.
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Base logic S4:

In this case the clusters of implications are:
{(i), (ii)}, {(iii), (x)}, {(iv)}, {(v), (xi)}, {(vi), (ix)}, {(vii)}, {(viii)}, {(xii)},
{(xiii)}.
The nine RMP rules are:

RMP1
Γ |∼α, Γ |∼β→γ, �Lα→Lβ

Γ |∼γ

RMP2
Γ |∼α, Γ |∼β→γ, �Lα→Mβ

Γ |∼γ

RMP3
Γ |∼α, Γ |∼β→γ, �α→Lβ

Γ |∼γ

RMP4
Γ |∼α, Γ |∼β→γ, �α→β

Γ |∼γ

RMP5
Γ |∼α, Γ |∼β→γ, �Mα→Mβ

Γ |∼γ

RMP6
Γ |∼α, Γ |∼β→γ, �Mα→Lβ

Γ |∼γ

RMP7
Γ |∼α, Γ |∼β→γ, �Mα→β

Γ |∼γ

RMP8
Γ |∼α, Γ |∼β→γ, �α⇒β

Γ |∼γ

RMP9
Γ |∼α, Γ |∼β→γ, �α⇔β

Γ |∼γ

The hierarchy of RMP rules are given by:

RMP7 =� RMP4 =� RMP3 =� RMP1 =� RMP5,
RMP7 =� RMP6 =� RMP3 =� RMP2 =� RMP5,
RMP4 =� RMP8 and
RMP9 =� RMP8.

So, the hierarchy of corresponding rough logics are:

Lr5 � Lr1 � Lr3 � Lr4 � Lr7,
Lr5 � Lr2 � Lr3 � Lr6 � Lr7,
Lr8 � Lr4 and
Lr8 � Lr9.

Base logic B:

In this case the clusters of implications are:
{(i)}, {(ii)}, {(iii), (x)}, {(iv), (viii)}, {(v),(xi)}, {(vi)}, {(vii)}, {(ix)}, {(xii)},
{(xiii)}.
Ten RMP rules are:

RMP1
Γ |∼α, Γ |∼β→γ, �Lα→Lβ

Γ |∼γ

RMP2
Γ |∼α, Γ |∼β→γ, �Lα→β

Γ |∼γ

RMP3
Γ |∼α, Γ |∼β→γ, �Lα→Mβ

Γ |∼γ

RMP4
Γ |∼α, Γ |∼β→γ, �α→Lβ

Γ |∼γ

RMP5
Γ |∼α, Γ |∼β→γ, �α→β

Γ |∼γ
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RMP6
Γ |∼α, Γ |∼β→γ, �α→Mβ

Γ |∼γ

RMP7
Γ |∼α, Γ |∼β→γ, �Mα→Lβ

Γ |∼γ

RMP8
Γ |∼α, Γ |∼β→γ, �Mα→Mβ

Γ |∼γ

RMP9
Γ |∼α, Γ |∼β→γ, �α⇒β

Γ |∼γ

RMP10
Γ |∼α, Γ |∼β→γ, �α⇔β

Γ |∼γ

The hierarchy of RMP rules are:

RMP7 =� RMP4 =� RMP3 =� RMP1 =� RMP6 =� RMP5 =� RMP9 ,
RMP3 =� RMP2 =� RMP8 =� RMP5 and
RMP10 =� RMP9.

The hierarchy of Logics are:

Lr9 � Lr5 � Lr6 � Lr1 � Lr3 � Lr4 � Lr7 ,
Lr5 � Lr8 � Lr2 � Lr3 and
Lr9 � Lr10.

Here the study of logics with RMP rules with modal systems S4 and B as
basis is too incomplete : firstly, unlike the case with S5 as base it has not been
investigated whether one logic is strictly stronger than the other. Neither the
corresponding L+

ri
logics have been investigated.The semantic investigation is

totally untouched. However, we wanted to focus on the point that RMP and
RMP+ rules open up a new direction of study in the area of modal logic. The
section of the base modal systems B and S4 is only because they are standard
modal systems other than S5 and more complex than T . This gives a general
method applicable to any modal system. Besides, these rules may have wide
application in approximate reasoning which is left for future work.

7 Concluding Remarks

In this paper we have endeavoured to highlight some interrelations between
modal logics on one hand and rough set theory on the other. The interrelation
of the two areas was evident from the beginning of the theory. In this review
work the focus is primary on some new relations and on identification of some
consequences of rough set studies in modal logic. We have presented some wffs
which are theorems of S5 and certain rules; these are not available in stan-
dard text books, even an exercise. A few propositions showing the uniqueness of
accessibility relation in a certain respect have been established. An analysis of
various covering based rough sets has been carried out focusing on the nature
of modalities they give rise to. Possibility of modal systems with covering based
semantics has been indicated and a few conjectures have been made. Finally a
general method for extending modal systems with rough modus ponens (RMP)
rules is presented. Several unanswered questions have been raised that may seem
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interesting for future research. Very recently, we have received from Martin Bun-
der a copy of his paper Rough consequence and other modal logics, Australisian
Journal of Logic (12:1) 2015, that contains further addition to the research on
rough consequence. This paper might have some overlap with the current work.

Acknowledgement. We would like to thank Prof. Mohua Banerjee, IIT Kanpur for
her valuable comments and suggestions.
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Abstract. The research of Tolerance Rough Sets Model (TRSM) ever
conducted acted in accordance with the rational approach of AI per-
spective. This article presented studies who complied with the contrary
path, i.e. a cognitive approach, for an objective of a modular frame-
work of semantic text retrieval system based on TRSM specifically for
Indonesian. In addition to the proposed framework, this article proposes
three methods based on TRSM, which are the automatic tolerance value
generator, thesaurus optimization, and lexicon-based document repre-
sentation. All methods were developed by the use of our own corpus,
namely ICL-corpus, and evaluated by employing an available Indonesian
corpus, called Kompas-corpus. The endeavor of a semantic information
retrieval system is the effort to retrieve information and not merely terms
with similar meaning. This article is a baby step toward the objective.
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1 Introduction

1.1 Information Retrieval

The percentage of individuals using the Internet continues to grow worldwide and
in developing countries the numbers doubled between 2007 and 20111. Accessing
information by utilizing search systems becomes one habitual activity of million
of people in facilitating their business, education, and entertainment in their
daily life. The applications, such as web search engines which providing access
to information over the Internet, are the most usual applications heavily use
information retrieval (IR) service.

Information retrieval is concerned with representing, searching, and manipu-
lating large collections of electronic text and other human-language data [1, p. 2].
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Clustering systems, categorization systems, summarization systems, informa-
tion extraction systems, topic detection systems, question answering systems,
and multimedia information retrieval systems are other applications utilize IR
service.

The main task of information retrieval is to retrieve relevant documents in
response to a query [2, p. 85]. In a common search application, an ad hoc retrieval
mode is applied in which a query is submitted (by a user) and then evaluated
against a relatively static document collection. A set of query identifying the
possible interest to the user may also be supplied in advanced and then evaluated
against newly created or discovered documents. This operational mode where the
queries remain relatively static is called filtering.

Documents (i.e. electronic texts and other human-language data) are nor-
mally modeled based on the positive occurrence of words while the query is
modeled based on the positive words of interest clearly specified. Both models
then are examined in similarity basis using a devoted ranking algorithm and the
output of information retrieval system (IRS) will be an ordered list of documents
considered pertinent to the query at hand.

In the keyword search technique commonly used, the similarity between doc-
uments and query is measured based on the occurrence of query words in the
documents. Thus, if the query is given by a user, then the relevant documents
are those who contain literally one or more words expressed by him/her. The fact
is, text documents (and query) highly probable come up in the form of natural
language. While human seems effortless to understand and construct sentences,
which may consist of ambiguous or colloquial words, it becomes a big challenge
for an IRS. The keyword search technique is lack of capability to capture the
meaning of words, wherefore the meaning of sentences, semantically on docu-
ments and query because it represents the information content as a syntactical
structure which is lack of semantical relationship. For example, a document con-
tains words choir, performance, and ticket may talk about a choir concert, in
spite of the fact that the word concert is never mentioned on that particular
document. When a user inputs the word concert to define his/her information
need, the IRS which approximate the documents and query in a set of occurrence
words may deliver lots of irrelevant results instead of corresponding documents.

We may expect better effectiveness to IRS by mimicking the human capability
of language understanding. We should move from keyword to semantic search
technique, hence the semantic IRS.

1.2 Philosophical Background

Semantic is the study of linguistic meaning [3, p. 1]. Sentence and word meaning
can be analyzed in terms of what speakers (or utterers) mean of his/her utter-
ances2 [4]. With regard to the intended IRS, we devoted our study to written

2 Utterances may include sound, marks, gesture, grunts, and groans (anything that
can signal an intention).
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document, which might be seen as an extension of speech. Hence, a text seman-
tic retrieval system should know to some extent the meaning of words of texts
being processed, so to speak.

Intentionality

Among others, Searl [5] and Grice [6] have been on a debate, namely the role
of intentionality in the theory of meaning. Intentionality (in Latin: intendere;
meaning aiming in a certain direction, directing thoughts to something, on the
analogy to drawing a bow at a target) has been used to name the property
of minds of having content, aboutness, being about something [7, p. 89]. Thus,
mental states such as beliefs, fears, hopes, and desires are intentional because
they are directed at an object. For example, if I have a belief, it must be a
belief of something, or if I have a fear, it must be a fear of something. How-
ever, mental states such as undirected anxiety, depression and elation are not
intentional because they are undirected at an object (e.g. I may anxious without
being anxious about anything), but the directed cases (e.g. I am anxious about
something) are intentional.

In addition that intentional is directed, another important characteristic of
intentional was proposed by Searl [5] that every intentional state consists of
an intentional content in a psychological mode. The intentional content is a
whole proposition which determines a set of condition of satisfaction and the
psychological mode (e.g. belief, desire, promise) determines a direction of fit
(i.e. mind-to-world or world-to-mind) of its propositional content. An example
should make this clear: If I make an assertive utterance that ‘it is raining’, then
the content of my belief is ‘it is raining’. So, the conditions of satisfaction are ‘it
is raining’, and not, for example, that the ground is wet or the water is falling
out of the sky3. And, in my assertive utterance, the psychological mode is a
‘belief’ of the state in question, so the direction of fit is ‘mind-to-world’4.

Further, Searl claimed [5, pp. 19–21] that intentional contents do not deter-
mine their condition of satisfaction in isolation, rather they are internally related
in a holistic way to: (a) other intentional contents in the Network of intentional
states; and (b) a Background of nonrepresentational mental capacities. The fol-
lowing is Searl’s example to describe the role of Network: Suppose there is a
man who forms the intention to run for the Presidency of the United States. In
order that his desire be a desire to run for the Presidency he must have a whole
lot of beliefs such as: the belief that the United States is a republic, that it has
3 The reason is, in the context of speech act, we do not concern about whether the

belief of a speaker is true or not, rather we concern about the intention of speaker
what he/she wants to represent by his/her utterance. Thus, it might be the case
that a speaker represents his/her false belief as a true belief to the audience, e.g. a
speaker utters ‘it is raining’, while in fact ‘it is a sunny day’.

4 In other words, ‘the mind to fit the world’. It is because a belief is like a statement,
can be true or false; if the statement is false then it is the fault of the statement, not
the world. The world-to-mind direction of fit is applied for the psychological mode
such as desire or promise; if the promise is broken, it is the fault of the promiser.
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a presidential system of government, that it has periodic elections, and so on.
And he would normally desire that he receives the nomination of his party, that
people work for his candidacy, that voters cast votes for him, and so on. So, in
short, we can see that his intention ‘refers’ to these other intentional states.

The Background is the set of practice, skills, habits, and stance that enable
intentional contents to work in various ways. Consider these sentences: ‘Berto
opened his book to page 37’ and ‘The chairman opened the meeting’. The seman-
tic content contributed by the word ‘open’ is the same in each sentence, but we
understand the sentences quite differently. It is because the differences in the
Background of practice (and in the Network) produce different understanding
of the same verb.

Meaning

Language is one of the vehicles of mental states, hence linguistic meaning is a
form of derived intentionality.

According to Searle, meaning is a notion that literally applies to sentences
and speech acts. He mentioned that the problem of meaning in its most general
form is the problem of how do we get from the physics to the semantics. For
this purpose, there are two aspects to meaning intentions: (a) the intention to
represent; and (b) the intention to communicate. Here, representing intention
is prior to communication intention and the converse is not the case. Hence,
we can intend to represent something without intending to communicate it, but
we cannot intend to communicate something without intending to represent
it before. So to speak, in order to inform anyone that ‘it is raining’ we need
to represent it in our mind that ‘it is raining’ then utter it. Conversely, we
cannot inform anyone anything, i.e. that ‘it is raining’, when we do not make
any representation of the state of affairs of the weather in our mind.

For Grice, when a speaker mean something by an utterance, he/she intends to
produce certain effects on his/her audience and intends the audience to recognize
the intention behind the utterance. By this definition, it seems that Grice has
overlooked the intention to represent and overemphasized the intention to com-
municate. However, a careful analyses showed that Grice’s account goes along
with Searl’s account [8], i.e. representing intention is prior to communication
intention. Moreover, Grice definition makes a point that a successful speech act
is both meaningful and communicative, i.e. the audience understands nothing
when the audience does not recognize the intention behind the utterance, which
can be happen when the speaker makes an utterance without intending to mean
anything or fails to communicate it.

The Importance of Knowledge

Based on Searl’s and Grice’s accounts, it should be clear that there is distinction
between intentional content and the form of its externalization. To ask for the
meaning is to ask for an intentional content that goes with the form of external-
ization [5]. It is maintained that for a successful speech act, a speaker normally
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chooses an expression which is conventionally fixed, i.e. by the community at
large, to convey a certain meaning. Thus, before the selection process of appro-
priate expressions, it is fundamental for a speaker to know about the expression
in order to produce an utterance, and consequently the audience is required
to be familiar with those conventional expressions in order to understand the
utterance.

We may infer now that Searl’s and Grice’s accounts pertaining the meaning
suggest knowledge for language production and understanding. This knowledge
should consists of concepts who are interrelated and commonly agreed by the
community. The communication is satisfied when both sides are active partici-
pants and the audience experiences effects at some degree.

1.3 Challenges in Indonesian

Indonesian Studies

Knowledge specifically for Indonesian is fundamental for a semantic retrieval sys-
tem which processing Indonesian texts. The implication of this claim is far reach-
ing, in particular because each language is unique. There are numerous aspects
of monolingual text retrieval should be investigated for Indonesian, those includ-
ing indexing and relevance assessment process, i.e. tasks such as tokenization,
stopping, stemming, parsing, and similarity functions, are few to mention.

Considerable effort with regard to information retrieval for Indonesian is
showed by a research community in University of Indonesia (UI) since mid of
1990s. They reported [9] that their studies range in area of computational lexicog-
raphy (i.e. creating dictionary and spell-checking), morphological analysis (i.e.
creating stemming algorithms and parser), semantic and discourse analysis (i.e.
based on lexical semantics and text semantic analysis), document summariza-
tion, question-answering, information extraction, cross language retrieval, and
geographic information retrieval. Other significant studies conducted by Asian
which proposed an effective techniques for Indonesian text retrieval [10] and
published the first Indonesian testbed [11]. It is worth to mention that despite
the long list of works ever mentioned, only limited number of the results is avail-
able publicly and among those Indonesian studies, it is hardly to find a work
pertaining to automatic ontology constructor specifically.

Indonesian Speakers

The latest data released by Statistics Board of Indonesia (BPS-Statistics Indone-
sia)5 pertaining the population of Indonesia, showed that the number reached
237.6 million for the 2010 census. With the population growth rate 1.49 % per
year, the estimation of Indonesia population in 2012 is 245 million. This number
ranked Indonesia on the forth most populous country in the world after China,
India, and United States6.
5 BPS-Statistics Indonesia. URL: http://www.bps.go.id/. Accessed on 25 October

2012.
6 July 2012 estimation of The World Factbook. URL: https://www.cia.gov. Accessed

on 25 October 2012.

http://www.bps.go.id/
https://www.cia.gov
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The incredible number is not only related to the population. Indonesia, which
is an archipelago country, has around 6,000 inhibited island over 17,5087. Admin-
istratively, Indonesia consists of 33 provinces in which there are number of ethnics
groups comes from each province which has its own regional language; according
to Sneddon [12, p. 196], Indonesia has about 550 languages which is roughly one-
tenth of all the languages in the world today. However, chosen as the national
language, Bahasa Indonesia or Indonesian language is taught at all level of edu-
cation and officially used in domains of formal activity, e.g. mass media, all
government business, education, and law. Nowadays, most Indonesians are pro-
ficient in using the language; the number of speaker of Indonesian is approaching
100 % [12, p. 201]. Therefore, it is not overstated to consider Indonesian language
as one of the large number of speakers in the world.

Indonesian Internet Users

Another significant challenge pertains to the growth of Internet users. As the
global trend, the percentage of individuals using the Internet continues to grow
worldwide and in developing countries the numbers doubled between 2007 and
20118. For Indonesia, the Internet World Stats9 recorded that there are about
55 million internet users (with 22.4 % penetration rate) and 43 million Facebook
users (with 17.7 % penetration rate) as of Dec. 31, 2011. Figure 1 shows the rapid
growth of internet users in Indonesia during some previous years10. These facts
are some indicators of the digital media usage proliferation in Indonesia which
is considered to keep on growing.

1.4 Tolerance Rough Sets Model at Glance

Basically, an information retrieval system consists of three main tasks: (1) mod-
eling the document; (2) modeling the query; and (3) measure the degree of
correlation between document and query models. Thus, the endeavor of improv-
ing an IRS revolves around those three tasks. One of the effort is a method
called tolerance rough set model (TRSM) which has performed positive results
on some studies pertaining to information retrieval. In spite of the fact that
TRSM does not require complex linguistic process, it has not been investigated
at large extent.

Since it was formulated, tolerance rough sets model (TRSM) is accepted as
a tool to model a document in a richer way than the base representation which
is represented by a vector of TF*IDF-weight terms11 (let us call it TFIDF-
7 Portal Nasional Indonesia (National Portal of Indonesia). URL: http://www.

indonesia.go.id. Accessed on 25 October 2012.
8 Key statistical highlights: International Telecommunication Union (ITU) data

release June 2012. URL: http://www.itu.int. Accessed on 25 October 2012.
9 URL: http://www.internetworldstats.com. Accessed on 25 October 2012.

10 The graph was taken from the International Telecommunication Union (ITU).
URL: http://www.itu.int/ITU-D/ict/statistics/explorer/index.html. Accessed on
25 October 2012.

11 Appendix A provides an explanation about the TF*IDF weighting scheme.

http://www.indonesia.go.id
http://www.indonesia.go.id
http://www.itu.int
http://www.internetworldstats.com
http://www.itu.int/ITU-D/ict/statistics/explorer/index.html


144 G. Virginia and H.S. Nguyen

Fig. 1. The growth of internet users in Indonesia. The figure shows the growth of
internet users in Indonesia since 1990 to 2011. On 2011, the penetration rate was close
to 18 %.

representation). The richness of the document representation produced by apply-
ing the TRSM (let us call it TRSM-representation) is indicated by the number
of index terms put into the model. That is to say, there are more terms belong
to TRSM-representation than its base representation.

The power of TRSM is grounded on the knowledge, i.e. thesaurus, which is
comprised by index terms and the relationships between them. In TRSM, each
set of terms considered as semantically related with a single term tj is called the
tolerance class of a term Iθ(tj), hence the thesaurus contains tolerance classes of
all index terms. The semantic relatedness is signified by the terms co-occurrence
in a corpus in which a tolerance value θ is set to define the threshold of co-
occurrence frequency.

1.5 Research Objective and Approach

The research aims to investigate the tolerance rough sets model in order to
propose a framework for a semantic text retrieval system. The proposed frame-
work is intended for Indonesian language specifically hence we are working with
Indonesian corpora and applying tools for Indonesian, e.g. Indonesian stemmer,
in all of the studies.

The researches of TRSM ever conducted pertaining to information retrieval
have focused on the system performance and involved a combination of math-
ematics and engineering in their studies [13–17]. In this article, we are trying
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to look at TRSM from a quite different viewpoint. We are going to do empir-
ical studies involving observations and hypotheses of human behavior as well
as experimental confirmation. According to the Artificial Intelligence (AI) view,
our studies follow a human-centered approach, particularly the cognitive model-
ing12, instead of the rationalist approach [19, pp. 1–2]. Analogous to two faces in
a coin, both approaches would result in a comprehensive perspective of TRSM.

In implementing the cognitive approach, we start our analysis from the per-
formance of an ad hoc retrieval system. It is not our intention to compare TRSM
with other methods and determine the best solution. Rather, we will take the
benefit of the experimental data to learn and understand more about the process
and characteristic of TRSM. The results of this process function as the guidance
for computational modeling of some TRSM’s tasks and finally the framework of
a semantic IRS with TRSM as its heart.

1.6 Structure of the Article

Our research falls under the information retrieval umbrella. The following
chapter provides an explanation about the main tasks of information retrieval
and the semantic indexing in order to establish a general understanding of seman-
tic IRS.

Several questions are generated in order to assist us to scrutinize the TRSM.
The issues behind the questions should be apparent when we proceed into the
nature of TRSM that would be exposed on theoretical basis in Sect. 3. We have
selected four subjects of question and will discuss them in the following order:

1. Is TRSM a viable alternative for a semantic IRS? The simplicity
of characteristic and positive result of studies makes TRSM an intriguing
method. However, before moving any further, we need to ensure that TRSM
is reasonable to be the ground floor of the intended system. This issue will
be the content of Sect. 4.

2. How to generate the system knowledge automatically? The richer
representation of document yielded by TRSM is achieved fundamentally by
means of a knowledge, which is a thesaurus. The thesaurus is manually cre-
ated, in the sense that a parameter, namely tolerance value θ, is required to
be determined by hand. In Sect. 5 we would propose an algorithm to resolve
the matter in question, i.e. to select a value for θ automatically.

3. How to improve the quality of the thesaurus? The thesaurus of TRSM
is generated based on a collection of text documents functions as a data
source. In other words, the quality of document representation should depend
on the quality of data source at some degree. Speaking of which, the TRSM
basically works based on the co-occurrence data, i.e. the raw frequency of
terms co-occurrence, and it arises an assumption that other co-occurrence

12 The cognitive modeling is an approach employed in the Cognitive Science (CS).
Cognitive science is an interdisciplinary study of mental representations and com-
putations and of the physical systems that support those processes [18, p. xv].
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data might bring a benefit for the effort to optimize the thesaurus. These
presumptions would be reviewed and discussed in Sect. 6.

4. How to improve the efficiency of the intended system? The TRSM-
representation is claimed to be richer in the sense that it consists of more
terms than the base representation. Despite the fact that the terms of TRSM-
representation are semantically related, more terms on document vector
results in more cost of computation. In other words, system efficiency becomes
the trade-off. We came into an idea of a compact document representation
that would be explained in Sect. 7.

This article proposes three methods based on TRSM for the mentioned prob-
lems. All methods, which are discussed in Sects. 5 to 7, were developed by the
use of our own corpus, namely ICL-corpus, and evaluated by employing an avail-
able Indonesian corpus, called Kompas-corpus13; Sect. 8 describes the evaluation
process. The evaluation on the methods achieved satisfactory results, except for
the compact document representation method; this last method seems to work
only in limited domain.

The final chapter provides our conclusion of the research as well as discussion
of some challenges that lead to advance studies in the future.

1.7 Contribution

The main contribution of this article is the modular framework of text retrieval
system based on TRSM for Indonesian. Pertaining to the framework, we intro-
duced novel strategies, which are the automatic tolerance value generator,
thesaurus optimization, and lexicon-based document representation. An other
contribution is a new Indonesian corpus (ICL-corpus), accompanied by a corpus
consists of keywords defined by human experts (WORDS-corpus), in which both
follow the format of Text REtrieval Conference (TREC)14 [20] and ready to be
used for an ad hoc evaluation of IRS. These contributions should open wider
research directions pertinent to information retrieval.

2 Semantic Information Retrieval

2.1 Information Retrieval Models

The main problem of information retrieval system is the issue of determining
the relevancy of a document with regard to the information need. The decision
whether documents are relevant or not relies on the ranking algorithm being used
which plays the role of calculating the degree of association between documents
and the query as well as defining the order of documents by its degree of asso-
ciation, in which the top documents are considered as the most relevant ones.
13 Explanation about all corpora used in this article is available in Appendix C.
14 TREC is a forum for IR community which provides an infrastructure necessary to

evaluate an IR system on a broad range of problems. URL: http://trec.nist.gov/.

http://trec.nist.gov/


A Semantic Text Retrieval for Indonesian Using TRSM 147

In order to work, a ranking algorithm considers fundamental premises which
are a set of representations of documents in given collection D, a set of rep-
resentations for user information needs (user queries) Q, and a framework for
modeling document/query representation F . These basic premises, together with
the ranking function R, determines the IR model as a quadruple [D,Q,F , R] [21,
p. 23].

Baeza-Yates and Ribeiro-Neto [21] structured 15 IR models covered in their
book into a taxonomy as well as discussed them theoretically and bibliograph-
ically. Figure 2 presents the summary of the taxonomy. A clear distinction is
made on the way a user pursues information: by searching or by browsing. While
browsing, a user might explore a document space which is constructed in a flat,
hierarchical, or navigational organization. Another user might prefer to submit
a query to the system and put the burden of searching process to the system.
In order to accomplish the task, the system could analyze each document by
reference to the document’s content only or combination between the content
and the structure of document. The structured model considers the latter while
the classic model focusses on the former. The classic model is differentiated into
three models with regard to the document representation: boolean, vector, and
probabilistic. Respectively, in Boolean and probabilistic models, a document is
represented based on set theory and probability theory, while vector model will
represent a document as a vector in a high-dimensional space.

Fig. 2. A taxonomy of IR models. A summary of the IR models taxonomy structured
by Baeza-Yates and Ribeiro-Neto.

In this article, we apply the classic vector model where document and query
are represented as vectors in a high-dimensional space and each vector corre-
sponds to a term in the vocabulary of the collection. The framework then is
composed of a high-dimensional vectorial space and the standard linear algebra
operations on vectors. The association degree of documents with regard to the
query is quantified by the cosine of the angle between these two vectors15.
15 Appendix B provides explanation about Cosine similarity measure as a document

ranking algorithm.
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2.2 The Main Tasks of Information Retrieval

Suppose each text document conveys meaning expressed in the form of written
words chosen specifically and subjectively by the writer. When text documents
are fed into an IRS who employs vector space model, the text documents would
be transformed into vectors of a space whose dimension is consistent with the
number of index terms in the corpus. A query which conveys information need
of a user could be considered as a pseudo-document, thereby analogous scenario
and activities occur at user side. In the searching process, a ranking algorithm
works over these two representations by measuring the degree of correlation
between them.

By reference to its process, IR consists of three main tasks which are figured
in Fig. 3 as filled rectangles: document modeling, query modeling, and matching
process. The figure reflects that a successful matching process has two require-
ments: (1) models common to both query and document; and (2) system capa-
bility to construct a model which represent the information need of the user as
well as the content of text document.

Fig. 3. The main tasks of information retrieval. Information retrieval consists of three
tasks: (1)-document modeling; (2) query modeling; and (3) matching process.

Explained in the previous chapter, Searl’s and Grice’s accounts on meaning
suggest knowledge shared by the speaker and its audience (i.e. the user and
the system) for a successful communication. Suppose the IRS has knowledge
corresponding at some degree to human, still the distinction between intentional
content and the form of its externalization rises some complexity for IRS in
order to construct representations of user’s information need (in the query) and
of author’s idea (in the document). Language production and understanding are
capabilities of most human, achieved through learning activities during his/her
life and supported by the biologically mechanism genetically endowed [22], while
none of those capabilities and support possessed by a computer system naturally.
Reduced meaning retained by the representations of user’s information need and
of document’s content become the consequence. It is highly probable that user’s
satisfaction of proper information with regard to his/her need then is sacrificed.
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2.3 Semantic Indexing

Indexing is a process to construct a data structure over the text to speed up
searching [21, p. 191]. The major data structure in IRS is inverted index (or
inverted file) which provides a mapping between terms and their locations of
occurrence in a text collection [1, p. 33].

The first paragraph of this chapter explained that in order to construct a
model of IR, the representation of document (i.e. document indexing) as well
as query should be first resolved before specifying the framework; and with
these basis, an appropriate ranking function is determined. For a semantic IRS,
shifting from traditional indexing into the semantic indexing hence becomes the
first consideration. In case that the conventional retrieval strategies employ the
bag-of-words representation of document and match directly on keywords, then
the semantic indexing requires an enrichment of representation such that the
IRS works with bag-of-concepts representation of documents and computes the
concept similarity.

Several techniques function for enrichment of document representation are
latent semantic indexing (LSI), explicit semantic analysis (ESA), and extended
tolerance rough sets model (extended TRSM). These three techniques apply the
classic vector space model (VSM) and thus it is possible to use conventional
metrics (e.g. Cosine) in matching task. Further, they do not rely on any human-
organized knowledge.

LSI, ESA, and extended TRSM naturally use statistical co-occurrence data
in order to enrich the document representation, however LSI works by apply-
ing singular value decomposition (SVD), ESA relies on knowledge repository
(e.g. Wikipedia), and the extended TRSM is based on rough sets theory. As a
technique to dimensionality reduction, LSI identifies a number of most promi-
nent dimensions in the data, perceived as the latent concepts since these concepts
cannot be mapped into the natural concepts manipulated by humans or the con-
cepts generated by system. An opposite condition happens for ESA and extended
TRSM, thus the entries of their vectors are explicit concepts.

The following sections will describe LSI, ESA, and extended TRSM in the
order given. For convenience of the explanation, a matrix is used as data struc-
ture where each entry defines the association strength between document and
term. The most common measure used to calculate the strength value is the
TF*IDF weighting scheme defined in Eq. (A.1).

2.4 Latent Semantic Indexing

Latent semantic indexing introduced by Furnas et al. [23] employs singular value
decomposition (SVD) in 1988. By running SVD, it approximates the term-
document matrix into a lower dimensional space hence removes some of the
noise found in the document and locates two documents with similar semantic
(whether or not they have matching terms) close to one another in a multi-
dimensional space [24].
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Running the SVD means that a term-document matrix A is decomposed into
the product of three other matrices such that

Am×n = Um×sDs×sV
T
s×n. (1)

Matrix U is the left singular vectors matrix whose columns are eigenvectors
of the AAT and holds the coordinates of term vectors. Matrix V is the right
singular vectors matrix whose columns are eigenvectors of the AT A and holds
the coordinates of document vectors. Matrix D refers to a diagonal matrix whose
elements are the singular values of A, sorted by magnitude. m is the total number
of terms, n is the total number of documents, and s = min(m, n).

The latent semantic representation of A is developed by keeping the top
k singular values of D along with their corresponding columns in U and V T

matrices. The result is a k-rank matrix A′ which is closest in the least squares
sense to matrix A; it contains less noisy dimensions and captures the major
associational structure of the data [23]. Figure 4 presents the schematic of SVD
for matrix A and its reduced model.

Fig. 4. The illustration of SVD. SVD illustration of a terms-by-documents matrix A
of rank k.

With regard to a query, its vector q is treated similar to matrix A by following
this rule

q1×k = qT
1×mUm×kS−1

k×k. (2)

After all, the matching process between query and documents is conducted
by computing the similarity coefficient between k-rank query vector qk and cor-
responding columns of k-rank matrix Vk.
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2.5 Explicit Semantic Analysis

In 2007, Gabrilovich and Markovitch introduced the notion of explicit seman-
tic analysis (ESA) [25]. Later, Gottron et al. [26] showed that ESA is a varia-
tion of the generalized vector space model (GVSM)16 [27] who considers term
correlation.

ESA represents documents and query as vectors in a high dimensional of con-
cept space, instead of term space, thus each dimension corresponds to a concept.
Each coordinate of concept vector expresses the degree of association between the
document and the corresponding concept. Suppose D = {d1, . . . , di, . . . , dN} is
a set of documents and T = {t1, . . . , tj , . . . , tM} is the vocabulary of terms, then
the association value uik between document di and concept ck, k ∈ {1, . . . , K}
is defined as

uik =
∑

tj∈T

wij × cjk (3)

where wij denotes the weight of term tj in document di and cjk signifies the
correlation between term tj and concept ck.

Equation (3) describes the association value as the product of weight of term
in document (wij) and weight of concept in knowledge base concept (cjk), hence
there are two computations need to be done in advance. Basically, both compu-
tations could be done using the TF*IDF weighting scheme, however the former
is calculated over a corpus functioned as the system data, while the latter is
calculated over a corpus functioned as the knowledge base; thus there are two
corpora functioned differently. The merge of system data’s and knowledge base’s
weights yields a new representation for the system data, i.e. bag-of-concepts
representation.

Gabrilovich and Markovitch [25] suggests Wikipedia articles for the corpus
functioned as the knowledge base considering that it is a vast amount of highly
organized human knowledge and undergoes constant development. However, the
main reason is Wikipedia treats each description as a separate article, thus each
description is perceived as a single concept. By this definition, any collection of
documents is possible to be used as the external knowledge base.

Figure 5 shows the computation process of ESA in order to convert the bag-
of-words representation of system data into the bag-of-concepts representation
by utilizing natural language definition of concepts from the knowledge base.

2.6 Extended Tolerance Rough Sets Model

As its name, the extended TRSM is an extension of TRSM proposed by Nguyen
et al. [28] in 2012. Detail explanation about TRSM is available in the following
chapter, hence in this section we focus only on the extension part of TRSM.

The study of Nguyen et al. [28,29] aimed to enrich the document representa-
tion worked in clustering task by incorporating other information than the index
16 Consistent with VSM, GVSM interprets index term vectors as linearly independent,

however they are not orthogonal.
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Fig. 5. The ESA. Visualization of the semantic indexing process in ESA.

terms of document corpus, namely citation and semantic concept. The citation
referred to the bibliography of a given scientific article while the semantic con-
cept was constructed based on an additional knowledge source, i.e. DBpedia.
Thereby, the extended TRSM was defined as a tuple

RFinal = (RT ,RB ,RC , αn) (4)

where RT , RB, and RC denote the tolerance spaces which are determined respec-
tively over the set of terms T , the set of bibliography items cited by a doc-
ument B, and the set of concepts in the knowledge domain C. The function
αn : P (T ) −→ P (C) is called the semantic association for terms, thus αn(Ti) is
the set of n concepts most associated with Ti for any Ti ⊂ T [30].

In this model, each document di ∈ D associated with a pair (Ti, Bi) is rep-
resented by a triple

UR(di) = {URT
(di),URB

(di), αn(Ti)} (5)

where Ti is the set of terms occurring in document di and Bi is the set of
bibliography items cited by document di. The study of extended TRSM which
presented with positive results indicated that the method would be effective to
be realized in a real application.

It is obvious from Eqs. (4) and (5) that the extended TRSM accommodates
different factors at once for a semantic indexing, instead of one factor such as
in original TRSM as well as LSI and ESA. Further, the model is more nature
considering the real life situation of information retrieval process.



A Semantic Text Retrieval for Indonesian Using TRSM 153

3 Tolerance Rough Sets Model

3.1 Rough Sets Theory

In 1982, Pawlak introduced a method called rough sets theory [31] as a tool
for data analysis and classification. During the years, this method has been
studied and implemented successfully in numerous areas of real-life applications
[32]. Basically, rough sets theory is a mathematical approach to vagueness which
expresses the vagueness of a concept by means of the boundary region of a set;
when the boundary region is empty, it is a crisp set. Otherwise, it is a rough
set [33]. The central point of rough sets theory is an idea that any concept can
be approximated by its lower and upper approximations, and the vagueness of
concept is defined by the region between its upper and lower approximations.
Consider Fig. 6 for illustration.

Fig. 6. Rough sets. Basic idea of rough sets theory as it is explained in [33]

Let us think of a concept as a subset X of a universe U , X ⊆ U , then in a
given approximation space A = (U,R) we can denote the lower approximation
of concept X as LA (X) and the upper approximations of concept X as UA (X).
The boundary region, BNA (X), is the difference between the upper and lower
approximations, hence

BNA (X) = UA (X) − LA (X) (6)

Let R ⊆ U × U be an equivalence relation that will partition the universe
into equivalence classes, or granules of knowledge, thus formal definition of lower
and upper approximations are

LA (X) =
⋃

x∈U

{R (x) : R (x) ⊆ X} (7)

UA (X) =
⋃

x∈U

{R (x) : R (x) ∩ X �= ∅} (8)



154 G. Virginia and H.S. Nguyen

3.2 Tolerance Rough Sets Model

The equivalence relation R ⊆ U × U of classical rough sets theory required
three properties [32]: reflexive (xRx), symmetric (xRy → yRx), and transitive
(xRy ∧ yRz → xRz); for ∀x, y, z ∈ U , thus the universe of an object would
be divided into disjoint classes. These requirements have been showed to be
not suitable for some practical applications (viz. working on text data), because
the association between terms was better viewed as overlapping classes (see
Fig. 7), particularly when term co-occurrence was used to identify the semantic
relatedness between terms [14].

Fig. 7. Overlapping classes. Overlapping classes between terms root, basis, and
cause [14]

The overlapping classes can be generated by a relation called tolerance rela-
tion which was introduced by Skowron and Stepaniuk [34] as a relation in gener-
alized approximation space. The generalized approximation space is denoted as a
quadruple A = (U, I, ν, P ), where U is a non-empty universe of objects, I is the
uncertainty function, ν is the vague inclusion function, and P is the structurality
function.

Tolerance Rough Sets Model (TRSM) was introduced by Kawasaki, Nguyen,
and Ho in 2000 [13] as a document representation model based on generalized
approximation space. In the information retrieval context, we can assume a doc-
ument as a concept. Thus, implementing TRSM means that we approximate
concepts determined over the set of terms T on a tolerance approximation space
R = (T, I, ν, P ) by employing the tolerance relation.

In order to generate the document representation, which is claimed to
be richer in terms of semantic relatedness, the TRSM needs to create toler-
ance classes of terms and approximations of subsets of documents. If D =
{d1, d2, ..., dN} is a set of text documents and T = {t1, t2, ..., tM} is a set of
index terms from D, then the tolerance classes of terms in T is created based on
the co-occurrence of index terms in all documents D. A document representation
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is represented as a vector of weight di = {wi,1, wi,2, ..., wi,M}, where wi,j denotes
the weight of term tj in document di and calculated by considering the upper
approximation of document di.

Tolerance Approximation Space

The definitions of tolerance approximation space R = (T, I, ν, P ) are as follows

Universe: The universe U is the set of index terms T

U = {t1, t2, ..., tM} = T (9)

Tolerance class: Skowron and Stepaniuk [34] maintain that an uncertainty
function I : U → P(U), where P(U) is a power set of U , is any function
from U into P(U) satisfying the conditions x ∈ I(x) for x ∈ U and y ∈
I(x) ⇔ x ∈ I(y) for any x, y ∈ U . This means that we assume the relation
xIy ⇔ y ∈ I(x) is a tolerance relation and I(x) is a tolerance class of x.
The parameterized tolerance class Iθ is then defined as

Iθ(ti) = {tj | fD(ti, tj) ≥ θ} ∪ {ti} (10)

where θ is a positive parameter and fD(ti, tj) denotes the number of doc-
uments in D that contain both terms ti and tj . From Eq. (10), it is clear
that it satisfies the condition of being reflexive (ti ∈ Iθ(ti)) and symmetric
(tj ∈ Iθ(ti)) required by a tolerance relation; the tolerance relation R ⊆ T×T
can be defined by means of function Iθ as tiRtj ⇔ tj ∈ Iθ(ti).
Assuming that a term is a concept, then the tolerance class Iθ(ti) consists
of terms related to a concept ti and the precision of the concept determined
might be tuned by varying the threshold θ.

Vague inclusion function: the vague inclusion function ν : P(U) × P(U) →
[0, 1] measures the degree of inclusion between two sets and is defined as

ν (X,Y ) =
|X ∩ Y |

|X| (11)

where the function ν must be monotone w.r.t the second argument, i.e. if
Y ⊆ Z then ν(X,Y ) ≤ ν(X,Z) for X,Y,Z ⊆ U . Hence, the vague inclusion
function can determine the matter whether the tolerance class I (x) of an
object x ∈ U is included in a set X.
Together with the uncertainty function I, the vague inclusion function ν
defines the rough membership function for x ∈ U,X ⊆ U as μI,ν(x,X) =
ν(I(x),X). Therefore, the membership function μ for ti ∈ T, X ⊆ T is
defined as

μ (ti,X) = ν (Iθ (ti) ,X) =
|Iθ (ti) ∩ X|

|Iθ (ti)| (12)
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Structurality function: with structurality function P : I(U) → {0, 1},
where I(U) = {I (x) : x ∈ U}, one can construct two subsets based on
value of P (I (x)), named structural subset and nonstructural subset, when
P (I (x)) = 1 and P (I (x)) = 0 respectively. In TRSM, all tolerance classes
of index terms are considered as structural subsets, hence for all ti ∈ T

P (Iθ(ti)) = 1 (13)

Approximations

With the foregoing definitions, we can define the lower approximation LR(X),
upper approximation UR(X), and boundary region BNR(X) of any subset X ⊆
T in a tolerance space R = (T, Iθ, ν, P ) as follows

LR(X) = {ti ∈ T | ν(Iθ(ti),X) = 1} (14)
UR(X) = {ti ∈ T | ν(Iθ(ti),X) > 0} (15)

BNR(X) = UR(X) − LR(X) (16)

Refers to the basic idea of rough sets theory [33], for any set of X, intuitively
we may assume the upper approximation as the set of concepts that share some
semantic meanings with X, the lower approximation as the core concepts of X,
while the boundary region consists of concepts that cannot be classified uniquely
to the set or its complement, by employing available knowledge.

TRSM Document Representation

After all, the richer representation of document di ∈ D is achieved by simply
representing the document with its upper approximation, i.e.

UR(di) = {ti ∈ T | ν(Iθ(ti), di) > 0} (17)

followed by calculating the weight vector using the extended weighting
scheme, i.e.

w∗
ij =

1
S

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 + log fdi
(tj)) log N

fD(tj)
if tj ∈ di

0 if tj /∈ UR(di)

mintk∈di
wik

log N
fD(tj)

1+log N
fD(tj)

otherwise
(18)

where S is a normalisation factor applied to all document vectors. The extended
weighting scheme is defined from the standard TF*IDF weighting scheme
and is necessary in order to ensures that each term occurring in the upper
approximation of di but not in the di itself has a weight smaller that the weight
of any terms in di.

By employing TRSM, the final document representation has less zero-valued
similarities. This leads to a higher possibility of two documents having non-zero
similarities although they do not share any terms. This is the main advantage
the TRSM-based algorithm claims to have over traditional approaches.
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3.3 The Challenges of TRSM

We identified that there are three fundamental components of TRSM to work
which are dependent in sequence: (1) the tolerance classes of all index terms;
(2) the upper document representation; and (3) the TRSM weighting scheme.
Figure 8 displays the basic process of tolerance rough sets model which contains
those three components.

Fig. 8. Tolerance rough sets model. The process of tolerance rough sets model.

A document representation based on TRSM (TRSM-representation) can be
seen as the revised version of a base representation which is recalculated using the
TRSM weighting scheme. The base representation is modeled by calculating the
term frequency (TF) and the inverse document frequency (IDF) of a term, i.e.
commonly called TF*IDF weighting scheme; hence we dub this representation
the TFIDF-representation. Suppose the representation of document produced by
TRSM and TF*IDF are structured as matrices, thus Fig. 9 shows the relationship
between them, where tfidf and trsm denote the weight of term computed by
TF*IDF and TRSM weighting scheme respectively.

Fig. 9. Relationship between TFIDF-representation and TRSM-representation. The
TRSM-representation is possible to be constructed by taking TFIDF-representation as
the input of TRSM.

During term weight computation, TRSM consults the upper document rep-
resentation, whereas the upper representation of a document is only possible to
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be generated when the tolerance classes of all index terms are available. Refer
to Eq. (10), a tolerance class of a term ti consists of all index terms consider as
semantically related with the term ti and the precision of relatedness between a
pair of terms is defined by the tolerance value θ. In other words, the importance
of relationship between terms is determined by θ value.

Based on the nature of TRSM, tolerance classes can be categorized as a
thesaurus; a lightweight ontology who reflects the relationship between terms
[35]. As the heart of TRSM, thesaurus becomes the knowledge of the system
who implements it.

It should be clear that in TRSM the quality of document modeling would
rely on the thesaurus, and the quality of the thesaurus might depend on the
tolerance value θ. Despite the fact that tolerance value is a critical element in
TRSM, there is no formal mechanism available for its determination and it is a
common practice that the selection is performed manually by the practitioners
with regard to their data. This particular issue will be further discussed in Sect. 5.

Fig. 10. Relationship between TFIDF-representation and TRSM-representation. The
TRSM-representation is possible to be constructed by taking TFIDF-representation as
the input of TRSM.

The thesaurus might be constructed based on an algorithm explained by
Nguyen and Ho [15]. The algorithm takes a document-by-term matrix (i.e. the
TFIDF matrix) as the input and yields the tolerance matrix, which is struc-
tured as a binary term-by-term matrix. Figure 10 shows the steps of the algo-
rithm. Subsequently, the occurrence binary matrix OC matrix, the co-occurrence



A Semantic Text Retrieval for Indonesian Using TRSM 159

matrix COC matrix, and the tolerance matrix TOL matrix were generated in
sequence manner by employing Eqs. (19), (20), and (21). Note that tfidfi,j

denotes the weight of term j computed by TF*IDF scheme in document i,
card(OCx AND OCy) denotes the cardinality of two terms, tx and ty, being
occurred together in a collection, and θ is the co-occurrence threshold of terms.

oci,j = 1 ⇔ tfidfi,j > 0 . (19)
cocx,y = card(OCx AND OCy) . (20)
tolx,y = 1 ⇔ cocx,y ≥ θ . (21)

In addition to tolerance value, the algorithm demonstrated that a data source
might have an impact on the thesaurus quality since it manipulates a set of
documents functions as the only input. The effects might be as a consequence
of the type of data source or the size of the collection.

Another important subjects relevant to the thesaurus of TRSM is pertaining
to the fact that the thesaurus is created based on the quantity of two terms
occur together, thereby employs tolerance value θ as the threshold of semantic
relatedness. In fact, refer to the term weighting scheme, there are other alterna-
tives of co-occurrence data who takes more factors into consideration, e.g. the
TF*IDF weighting scheme. By that means, other similarity measures, i.e. cosine,
might be applied. The presumptions pertaining to thesaurus optimization will
be examined in Sect. 6.

Refer to the path of TRSM, its computation complexity is the aggregation of
each task, i.e. thesaurus construction, upper representation generation, and re-
weighting task. The first task requires O(NM) [15], where N defines the number
of documents and M defines the number of index terms, while the second and
third tasks both require O(M2). Thus totally, the upper bound of TRSM imple-
mentation would be O(NM2). With regard to the system efficiency, minimizing
the dimensionality of document vectors would be a practical alternative for the
complexity. Using this as the starting point, in Sect. 7 we are going to introduce
a novel model of document namely the lexicon-based representation.

4 The Potential of TRSM

4.1 Introduction

We may find studies showing the positive results of TRSM implementation for
document clustering task [13–16], query expansion [17], and document retrieval
task [36]. Those studies claimed that TRSM-representation was richer than the
baseline representation (TFIDF-representation), however none has shown and
explained empirically the richness.

It has been known that the richness of TRSM-representation is understood
as having less zero-value similarities and having higher possibility that two doc-
uments holding non-zero similarities although they do not share any terms. The
result of our study presented in this chapter confirmed those affirmations and
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add another fact. We found that the TRSM-representation consists of terms con-
sidered as important by human experts. Further, the study revealed that rough
sets theory seems to work in accordance with the natural way of human thinking.
Finally, the study showed that TRSM is a viable option for a semantic IRS.

4.2 Experiment Process

We used two corpora, ICL-corpus and WORDS-corpus17, with 127 topics. We
took an assumption that each topic given by human experts in annotation
process was a concept, therefore we considered the keywords determined by
the human experts18 as the term variants that highly related with particular
concept. These keywords are the content of text body in WORDS-corpus, hence
each document of WORDS-corpus contains important terms of particular con-
cept(s) selected by human experts. With regard to the automatic process of the
system, we considered these keywords as the relevant terms for each document
(which bear one or more topics) that should be selected by the system. Therefore,
WORDS-corpus was treated as the ground truth of this study.

Figure 11 shows the general process of the study and the dashed rectangle
identifies the focus of the experiment, which were performed twice, i.e. with
stemming task and without stemming task.

Fig. 11. Main phases of the study. There were 3 main phases: extraction, rough sets,
and analysis. A rectangle represents a process while a circle represent a result.

Extraction Phase. The main objective of extraction phase was preprocessing
both corpora. Confix-Stripping stemmer (CS stemmer), a version of Indonesian

17 ICL-corpus consists of 1,000 documents taken from an Indonesian choral mailing
list, while WORDS-corpus consists of 1,000 documents created from ICL-corpus in
an annotation process conducted by human experts. Further explanation of these
corpora is available in Appendix C.1.

18 We collaborated with 3 choral experts during annotation process. Their backgrounds
could be reviewed in Appendix C.3.
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stemmer, was employed in the stemming task while Vega’s stopword [37] was
applied in the stopword task19. CS stemmer was introduced as a new confix-
stripping approach for automatic Indonesian stemming and was showed as
the most accurate stemmer among other automated Indonesian stemmers [38].
Vega’s stopword has shown to produce the highest precision@10, R-precision,
and recall values (although the differences without stopping words are not sig-
nificant (p < 0.05), except for the recall value (0.038)), among other available
Indonesian stopword lists [10].

Documents were tokenized based on character other than alphabetic. The
resulted tokens were stemmed by the CS stemmer and then compared to the
Vega’s stopword. It yielded lists of unique terms and its frequency. There were
9,458 unique terms extracted from ICL-corpus and 3,390 unique terms extracted
from WORDS-corpus; called ICL list and WORDS list respectively. When it was
run without stemming process, we identified 12,363 unique terms in ICL list and
4,281 unique terms in WORDS list.

Both corpora were classified based on 127 topics yielded in preliminary
process, i.e. annotation process20. Recall that we took an assumption that each
topic was a concept and keywords determined by human experts were impor-
tant variants of a concept hence aggregation of terms appeared in each class
were taken as the terms for representative vector of each class. The set of
classes resulted from ICL-corpus was called IL while the set of classes resulted
from WORDS-corpus was called WL; each set of class, IL and WL, consists of
127 classes. So, technically speaking, instead of document-term matrix, we
worked with topic-by-term matrix.

Rough Set Phase. This phase was conducted in order to generate the lower
set, upper set, and boundary set of each class in IL. These sets were possible
to be created using Eqs. (14), (15), and (16) when tolerance classes of all index
terms were ready.

The tolerance classes was constructed by following the steps described in
Fig. 10 of previous chapter, with an exception that in this experiment the algo-
rithm took the topic-by-term frequency matrix as its input. Thereby, Fig. 12
displays the steps applied for the thesaurus generation of this particular study.

Analysis Phase. In analysis phase, we examined the mean recall and precision
of upper set (US), lower set (LS), and boundary set (BS) of IL by taking the WL
as the ground truth. The computations were run for co-occurrence threshold θ
between 1 to 75.

Recall and precision are the most frequent and basic measures for information
retrieval effectiveness [39]. Recall R is the fraction of relevant documents that
are retrieved while precision P is the fraction of retrieved documents that are
19 We used CS stemmer and Vega’s stopword in all of our studies presented in this

article.
20 Please see Appendix C.1 for explanation of annotation process.
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Fig. 12. Tolerance classes construction. The construction of tolerance classes in this
study took topic-term matrix as the input and produced a term-by-term matrix as the
output. Here, M denotes the number of index term and N denotes the number of topic.
relevant. Suppose Rel denotes relevant documents and Ret denotes retrieved
documents, then recall R and precision P are defined as follows

R =
�(relevant items retrieved)

�(relevant items)
=

|Rel ∩ Ret|
|Rel| (22)

P =
�(relevant items retrieved)

�(retrieved items)
=

|Rel ∩ Ret|
|Ret| (23)

In this study, both measures were used for the terms rather than documents.
That is to say, by considering WORDS list as the ground truth, then recall
R is the fraction of relevant terms that are retrieved while precision P is the
fraction of retrieved terms that are relevant. The formulas applied for recall
and precision are displayed in the first and second rows of Table 1, where USIL,
LSIL, and BSIL respectively denote the upper set, lower set, and boundary
region of IL. The RecallIL of the third row is an additional calculation used for
evaluating the recall of IL terms in each set. Based on the definition, better recall
is preferred than better precision for the reason that better recall would ensure
the availability of relevant terms in the set.

Table 1. Formulas for recall and precision calculations.

US LS BS

RecallWL
|WL ∩ USIL|

|WL|
|WL ∩ LSIL|

|WL|
|WL ∩ BSIL|

|WL|
PrecisionWL

|WL ∩ USIL|
|USIL|

|WL ∩ LSIL|
|LSIL|

|WL ∩ BSIL|
|BSIL|

RecallIL
|IL ∩ USIL|

|IL|
|IL ∩ LSIL|

|IL|
|IL ∩ BSIL|

|IL|
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4.3 Discussion

With regard to the process of developing WORDS-corpus, the fact that ICL list
could cover almost all WORDS list terms was not surprising. It was interesting
though that there were some terms of WORDS list did not appear in ICL list;
17 terms produced by the process without stemming task and 11 terms produced
by the process with stemming task. By examining those terms, we found that the
CS stemmer could only handle the formal terms (6 terms) and left the informal
terms (5 terms) as well as the foreign term (1 term); the other terms caused by
typographical error (5 terms) in ICL corpus.

Despite the fact that CS stemmer succeeded in reducing the size of ICL list
for 23.50 % as well as of WORDS list for 20.81 %, it reduced the mean recall of IL
about 0.64 % for each class from 97.39 %. We noticed that the mean precision of
IL was increased about 0.25 % for each class, however the values themselves were
very small (14.56 % for process without stemming task and 14.81 % for process
with stemming task). From these, we could say that the ICL list was too noisy
of containing numerous unimportant terms for particular topic.

Table 2 shows the mean values of recall and precision for the sets of IL (i.e. the
upper set (US), lower set (LS), and boundary set (BS)) when they were run with
and without stemming by considering WORDS list (WL) as the ground truth.
Exceptional is for the third row which is the recall of IL sets over the ICL list
(IL). All of these calculations performed by applying the formulas displayed in
Table 1.

Table 2. Average recall and precision of ICL list (IL) and WORDS list (WL).

With stemming Without stemming

US (%) LS (%) BS (%) US (%) LS (%) BS (%)

(1) (2) (3) (4) (5) (6) (7)

RecallWL 97.64 5.55 92.08 97.55 4.64 92.91

PrecisionWL 13.77 27.49 13.50 14.13 26.30 13.75

RecallIL 100.00 5.00 95.00 100.00 4.43 95.57

Recall

It was explained in Sect. 3.2, that for any set of X, the upper set might consist
of terms that share some semantic meanings with X. Further, notice that in
this study we used a specific domain of corpus, which is a choral corpus. Based
on these, the values of RecallIL-US in Table 2 for process with and without
stemming task, which are 100 %, made us confident that the TRSM model has
been employed correctly. The upper sets consist of all ICL list terms due to the
fact that generally all index terms are semantically related with choral domain.
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One task of annotation process conducted by human experts was keyword
determination21. It was a fact that during that task our human experts seemed
to encounter difficulty in defining keywords for a topic many times. When they
were in this position, they preferred to choose sentences on the text or even make
their own sentences to describe the topic rather than listing the highly related
keywords specifically. The consequence was they introduced numerous number
of terms for particular topic. It explains why the value of RecallWL-US for both
with and without stemming in Table 2 are very high. It is important to be noted
that we reckoned all the terms used by the human experts as relevant terms for
the reason that those terms however selected to be used to describe a topic.

This human behavior is reflected by the rough sets theory. We may see on
Table 2, that the mean recalls of WORDS list (WL) in lower sets (LS) are very
low while the mean recalls of WL in boundary regions (BS) are very high. Refer
to Sect. 3.2, intuitively the lower set might consist of the core terms while the
boundary region might consist of the uncertain terms. We can see similar results
from the table for ICL-corpus, i.e. the mean recalls of ICL list (IL) in lower sets
(LS) are very low while the mean recalls of IL in boundary regions (BS) are very
high. We might infer now that the rough sets theory mimics the natural way of
human thinking.

With regard to stemming, we can see that all values in column 3 of Table 2
are higher than all values in column 6 while all values in column 4 are lower than
all values in column 7. It seems that employing stemming task increases system’s
capability to retrieve the core terms of a concept and to avoid the uncertain terms
at the same time. Further, the table also shows us that RecallWL-US value of
process with stemming is higher than the one without stemming, which leads
us to an assumption that the stemming task is able to retrieve more relevant
terms in general. It supports our confidence so far that stemming task with CS
stemmer would bring more benefit in this framework of study.

Precision

Despite the fact that better recall is preferred than better precision, as we
mentioned in Sect. 4.2, we notice that the values of PrecisionWL-US are small
(13.77 % and 14.13 %). With regard to Table 1, they were calculated using equa-
tion P = |WL ∩ USIL|

|USIL| . Based on the formula, we may expect to improve the
precision value by doing one, or both, of these:

1. increase the co-occurrence terms between WL and USIL; or
2. decrease the total number of USIL.

Refer to Eq. (21), make the θ value higher will reduce the size of upper
sets22, and refer to Eq. (23) it will increase the mean precision of upper sets
in WL list. So, technically the total number of terms in an upper set is easily
21 Please see Appendix C.1.
22 If the size of tolerance classes are smaller then the size of upper sets will be smaller,

and vice versa.
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modified by altering the tolerance value θ. However, it raises a typical question,
i.e. what is the best θ value and how to set it up? As we have briefly explained
the importance and the problem pertaining to θ value in Sect. 3.3 of previous
chapter, this issue seems to support our argumentation that an algorithm to set
the θ value automatically is significant.

The index term of WORDS-corpus is clearly constant for we took it as the
ground truth, hence there is nothing we can do about WL. Suppose we have a
constant number of US (after setting up the θ at a certain value), then the possi-
bility to improve the precision lies on the cardinality of terms in WL∩USIL set,
or in other words on maximizing the availability of relevant terms in upper sets.
Based on the nature of TRSM method, this could be happened when we have an
optimized thesaurus which defines the relationship between terms appropriately.
Knowing that a thesaurus is constructed by a set of documents functioned as
data source then we might expect better thesaurus if we know the characteristic
of data source we should have. Moreover, based on Eq. (10), another alterna-
tive could be related with the semantic relatedness measure applied in thesaurus
construction process.

Tolerance Value

Figure 13 shows the mean recall of WORDS list in upper sets of ICL list for a
process with stemming task when θ value is altered from 1 to 75. It is clear from
the figure that the number of relevant terms of WORDS list drastically filtered
out from the upper set of ICL list at low θ values. However, at some points
the changes starts to be stable; Taking one value, e.g. θ = 21. The average
number of terms in upper sets when θ =21 (733.79 terms) is interesting for it
was reduced up to 92.24 % of the average number of terms in upper sets when
θ =0 (9,458 terms). Whereas from Fig. 13, we can see that the mean recall at
θ = 21 is maintained to be high (97.58 %). By this manual inspection, we are
confident to propose θ ≥ 21 to be used in similar framework of study.

Fig. 13. The RecallWL-US graph. This graph shows the average recall of the sets of
WORDS list in upper sets of ICL list) for θ value 1 to 75.
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We urge that the upper sets of ICL list (USIL) enrich the sets of ICL list
(IL). This assertion is based on two empirical data23:

1. the mean recall of WL in IL over 127 topics is 96.75 %; while
2. the mean recall of WL in USIL over 127 topics when θ is altered between

1 to 75 is 97.64 %

Thus, we might infer now that the upper sets of ICL list contain more rel-
evant terms then the sets of ICL list. In order to construct a document repre-
sentation, TRSM considers the upper set of a document, hence we might expect
that the resulted TRSM-representation consists of more terms and those terms
are semantically related. This is a stronger assertion for the claim that tolerance
rough sets model enriches the traditional representation of a document and this
is a good indicator of TRSM as a feasible method for a semantic IRS.

ICL list vs. Lexicon

Lexicon is a vocabulary of terms [39]. The lexicon utilized by CS stemmer con-
sists of 29,337 Indonesian base words. Comparison between ICL list and Lexicon
showed that there were 3,321 co-occurrence terms. In other words, 64.89 % of
ICL list (which is 6,137 terms in total) was different from Lexicon.

We analyzed all of the 6,137 terms with respect to the document frequency
and identified that the biggest problem (36.47 %) was caused by foreign lan-
guage24. Next two problems were the colloquial terms (27.03 %) and proper
nouns (21.74 %). Combination of foreign and Indonesian terms, e.g. workshop-
nya25, was considered as colloquial terms. We also found that the CS stemmer
should be improved as there were 48 formal terms left unstemmed in ICL list.

4.4 Summary

We did a study in order to understand the meaning of richness claimed for
the representation of document produced by TRSM. The WORDS-corpus who
was created by human experts, and contains keywords of each ICL-corpus docu-
ment, played significant role in the study, for it became the ground truth of the
analysis. First of all, the result of the study confirmed that rough sets theory
intuitively works as the natural way of human thinking. Being concerned with
the meaning of richness, we came into conclusion that the TRSM-representation
contains more terms than its base representation and those additional terms are
semantically related with the topic of the document. After all, with regard to
the IRS framework, we infer that TRSM is reasonable for a semantic IRS.
23 These values are for the process with stemming task.
24 Most of the foreign terms was English.
25 It comes from an English term workshop and an Indonesian suffix -nya.
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5 An Automatic Tolerance Value Generator

5.1 Introduction

Despite the fact, that the value of tolerance value θ is crucial for TRSM imple-
mentation, there is no consensus about how we can set a certain number as a θ
value. It is usually chosen by the researcher or human expert based on manual
inspection through the training data or his/her consideration about the data.
It is not deniable that each datum is distinctive hence requires different treat-
ment, however determining the θ value by hand is an exhaustive task before even
starting the TRSM paths.

We did a study for an algorithm to generate a tolerance value θ automatically
from a set of documents. The idea was based on the fundamental objective of
tolerance rough sets model for having a richer representation than the base
representation. We took an advantage from the singular value decomposition
(SVD) method in order to project all document representations (i.e. TFIDF-
representation and TRSM-representation) on a lower dimensional space and then
computed the distance between them. The result, together with the analysis of
system performance, helped us to understand the pattern of our data and to
learn about the principle for a tolerance value determination. In the end, we
came up with an intuitive algorithm.

5.2 Experiment Process

The experiment was conducted by following the four phases depicted in Fig. 14.
Thus, basically we preprocessed the data, constructed the document representa-
tion based on TRSM, computed the SVD of TFIDF-representation and TRSM-
representation, and finally analyzed them. In the figure, the dashed rectangle
identifies the main parts of the experiment that would be run for θ = 1 to 100.
In implementation level, we applied the inverted index as the data structure of
all document representations26.

Preprocessing Phase. We used ICL-corpus and WORDS-corpus as the sys-
tem data and came up with the TFIDF-representations for each corpus. We
applied an information retrieval library freely available called Lucene27 with
some modifications in order to embed the Vega’s stopword and the CS stemmer.

TRSM Phase. The tolerance rough sets model was implemented in this phase,
which means we converted the TFIDF-representation into TRSM-representation
by following these steps:
26 Inverted index was applied for document representations in all experiments in this

article.
27 It is an open source project implemented in Java licensed under the liberal Apache

Software License [40]. We used Lucene 3.1.0 in our study. URL for download:
http://lucene.apache.org/core/downloads.html.

http://lucene.apache.org/core/downloads.html
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Fig. 14. Main phases of the study. This study consists of 4 main phases: preprocessing
phase, TRSM phase, SVD phase, and analysis phase.

1. Construct the thesaurus based on Eq. (10).
2. Create the upper approximation of documents using Eq. (17).
3. Generate

the TRSM-representation by recalculating the TFIDF-representation using
Eq. (18) and considering the upper approximation of documents.

SVD Phase. The objective of this phase was to compress the high dimensional
vector of document so it could be analyzed and plotted on a 2-dimensional
graph. We implemented a Java package called JAMA28 and calculated the SVD,
where rank= 2, each for the base representation (TFIDF-representation) and the
TRSM-representation; The resulted representation hence called SVD-TFIDF-
representation and SVD-TRSM-representation respectively.

Analysis Phase. In analysis phase, we did two tasks. First of all, we calculated
the mean distance and the largest distance between pairs of SVD-representations
(i.e. SVD-TFIDF-representation and SVD-TRSM-representation). In order to
calculate the distance, we applied the Euclidean function

d(V,U) =

√

√

√

√

M
∑

i=0

(vi − ui)2

28 JAMA has been developed by the MathWorks and NIST. It provides user-level
classes for constructing and manipulating real, dense matrices. We used JAMA 1.0.2

in this study. URL: http://math.nist.gov/javanumerics/jama/.

http://math.nist.gov/javanumerics/jama/
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where [vi]Mi=0 and [ui]Mi=0 denote weight vectors of documents V and U . Those
distances then were plotted on graphs. We also drew a scatter graph of mean
distance for several tolerance values.

Secondly, we generated the recall and precision of retrieval system by employ-
ing the 28 topics listed in TableC.3 as the information needs. The recall was
computed based on Eq. (22), while for the precision we were interested in sev-
eral measurements. First of all, it was the mean average precision (MAP) which
is the arithmetic mean of average precision values for individual information
needs, thus provides a single-figure measure of quality across recall levels [39].
The MAP is defined as follows

MAP (Q) =
1

|Q|
|Q|
∑

j=1

1
|Rel|j

|Rel|j
∑

k=1

Precision(Rjk) (24)

where qj ∈ Q is the jth information need, |Rel|j is the total number of relevant
documents for qj , and Rjk is the set of ranked retrieval results from the top
result until document dk.

The other measurements of precision we used were Precision@10, Preci-
sion@20, and Precision@30, in which all of them are the measures at fixed low
level of retrieved result and hence are referred as precision at k [39], where k
defines the amount of top documents would be examined that retrieved by the
system. The last precision measure we concerned was R-Precision which is basi-
cally similar with the precision at k measures, except that the k is the amount
of relevant documents for each query.

In order to guarantee consistency with published results, we applied the
trec eval29 program created and maintained by Chris Buckley to compute the
recall and MAP of the retrieved documents.

5.3 Discussion

Learning from WORDS-Corpus

We kept the assumption that each document of WORDS-corpus consists of essen-
tial keywords, which should appear in corresponding document representation
of ICL-corpus. The distance between document representations of both corpora
measures how far an ICL-corpus document from a WORDS-corpus document
is. Thus, the assumption brings us to a preference of smaller value of distance;
When we had a smaller value of distance, we might expect more keywords appear
in an ICL-corpus document.

Figure 15 depicts the distances between TRSM-representations of ICL-corpus
and WORDS-corpus after they were reduced into 2 dimensions for tolerance
value 0 to 50. Figure 15(a) shows the result of mean distance (let us call it
mean distance) which was calculated by taking the mean average of the dis-
tances of all TRSM documents at certain tolerance value. The largest distance
29 We used the trec eval.9.0 which is publicly available on http://trec.nist.gov/

trec eval/.

http://trec.nist.gov/trec_eval/
http://trec.nist.gov/trec_eval/
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(let us call it largest distance) displayed in Fig. 15(b) reveals the largest
value of distance, hence it gives us a clue about the size of document cluster
at each particular tolerance value. The mean distance graph simply tells us
that the higher tolerance value, the farther the distance, and thus the less rele-
vant terms should appear in TRSM-representation of ICL-corpus. It seems that
large largest distance might lead to large mean distance.

Fig. 15. Distances between document of ICL-corpus and WORDS-corpus. The dis-
tances between TRSM-representations of ICL-corpus and of WORDS-corpus where
1 ≤ θ ≤ 50. Graph (a) is the mean distance, while (b) is the largest distance.

Analyzing scatter graph of distance between each document of ICL-corpus
and WORDS-corpus after the TRSM method should give us more understanding
about the relationship between those corpora and the alteration of tolerance
value. Figure 16 depicts the clusters of TRSM-documents of ICL-corpus which
at certain distance with TRSM-documents of WORDS-corpus when tolerance
values are set to 0, 10, 15, and 41.

Concerning that the graphs reflect the distances between ICL-corpus and
WORDS-corpus, the ideal graph in Fig. 16 would be a single line on X-axis.
In this situation, when the documents of ICL-corpus have zero distance with of
WORDS-corpus, we might be certain that terms considered relevant in WORDS-
corpus are successfully retrieved by TRSM method and put into the TRSM-
representation of ICL documents while the other irrelevant ones are filtered out.
Suppose we take the WORDS-corpus as the ground truth, then we might expect
high recall in low tolerance value.

We know that the corpora we used in this study lie on a single domain
specific30, i.e. choral, hence all index terms from both corpora are generally
semantically related, even though in a very remote relationship. Therefore, in
Fig. 16, if the resulted cluster is a line-formed on X-axis, then we would have
common documents which contain common terms. Similar circumstances should
be happened at any line-formed clusters parallel to X-axis for the reason that
30 WORDS-corpus is generated based on ICL-corpus hence they dwell in a single

domain.
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Fig. 16. Scatter graph of distance. The scatter graph of distance between TRSM doc-
uments of ICL-corpus and of WORDS-corpus when θ = 0, θ = 10, θ = 15, and θ = 41.

similar distance comes from similar document. In other words, we have the least
discrimination power of document at this state. Based on these, a cluster with
scattered documents inside should be preferred, and in order to have such cluster,
its size should big enough.

The largest size of cluster in Fig. 16 occurs when θ = 0, in which the docu-
ments are much less scattered and even tends to be a line-formed. Consider that
θ value is a threshold to filter the index term out from document representation,
θ = 0 means that all index terms are determined to be semantically related to
each other even though any pair of terms never occurs together. Consequently,
the TRSM-representation yielded would have most of index terms within. As the
result, we are standing in similar position of foregoing paragraph and it confirms
that a parallel line with X-axis signify the commonality of documents in the
cluster. Further, comparison between the cluster of θ = 0 and the other clusters
in Fig. 16 indicates that the tolerance value has a significant role in removing
irrelevant terms as well as relevant terms, for the other clusters are smaller in
size and the documents within are more disseminated.

Nevertheless, refer to the context of richness in TRSM method, merely having
all index terms in the document representation is out of the intention. Therefore,
θ = 0 should be out of our consideration when determining a good tolerance value
for any set of documents.

Pertaining to the relationship between mean distance and largest
distance, the four tolerance values, i.e. θ = 0, 10, 15, and 41, were
assumed to reflect four conditions. Those are the condition when we have,
respectively: (a) small mean distance and large largest distance; (b)
small mean distance and small largest distance; (c) large mean distance
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and small largest distance; and (d) large mean distance and large
largest distance. To be more clear, Fig. 17 depicts these four conditions in
extreme way which will be useful for the discussion in further sections.

Fig. 17. Extreme conditions of mean distance and largest distance. The four extreme
conditions of the mean distance and largest distance: (1) small mean distance and
large largest distance; (2) large mean distance and large largest distance; (3)
small mean distance and small largest distance; and (4) large mean distance and
small largest distance.

Learning from ICL-Corpus

In this section, we present and discuss results based on two grounds: (1) distance
calculation; and (2) retrieval system performance

Distance Calculation. We computed the distances between TFIDF-
representation and TRSM-representation of single corpus, i.e. ICL-corpus, after
the dimensionality of those representations were reduced into 2 dimensions using
the SVD method. Refer to the capability of TRSM which is to enrich a docu-
ment representation, larger distance is preferred since it gives an indication that
TRSM-representation is richer than the base representation. So, taking the char-
acteristic of document representation into account, we should treat the distance
value differently; When we are learning from WORD-corpus (as in previous
section), we prefer smaller distance value, whereas when we are analysing ICL-
corpus (as in this section) we prefer larger distance value.

In similar fashion with Figs. 15 and 18 displays the mean distance and
Fig. 19 shows the largest value of distances between TFIDF-representation and
TRSM representation for each tolerance value ranging from 1 to 100. The
green horizontal line in each figure reflect the average of mean distance and
of largest distance, thus let us call this green lines as average distance.
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Fig. 18. Mean distance. The mean distance between TFIDF-representation and
TRSM-representation of ICL-corpus for SVD 2-rank where 1 ≤ θ ≤ 100. The hori-
zontal line is the average of the mean distance values.

Fig. 19. Largest distance. The largest distance between TFIDF-representation and
TRSM-representation of ICL-corpus for SVD 2-rank where 1 ≤ θ ≤ 100. The horizontal
line is the average of the largest distance values.
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Based on the nature of TRSM we prefer large value of mean distance, and
as learning from WORDS-corpus in Sect. 5.3, we were suggested to take large
value of largest distance. Further, our study in Sect. 4 proposed θ ≥ 21,
owing to the fact that at θ = 21 the average size of upper documents has been
reduced sufficiently up to 92.24 % while the average recall (of WORDS-corpus’
index terms in ICL-corpus documents) was kept high (97.58 %); The average
sizes of upper documents were smaller afterward but the changes were observed
not significant. Suppose we consider the large value for both mean distance and
largest distance as having value more than or equal to its average distance,
thus Figs. 18 and 19 recommend us to focus on 31 ≤ θ ≤ 61.

Retrieval System Performance. We put the ICL-corpus into a framework of
information retrieval system and generated several results based on the perfor-
mance measures. Figures 20, 21, 22, 23 and 24 exhibit the results in the form of
graphs which goes from the general level to the specific low level, all for tolerance
value 1 to 100.

Fig. 20. Recall and MAP. The system performances while implementing TRSM
method and base method in terms of (a) recall and (b) mean average precision (MAP).

Fig. 21. R-Precision. The precision of ICL-corpus at top |R| documents, where |R| is
the total of relevant documents for each topic.

The recall and MAP calculations shown by Fig. 20(a) and (b) clearly
define that we can rely on TRSM method whose effectiveness is better then
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Fig. 22. Precision@30. The precision of ICL-corpus at top 30 documents.

Fig. 23. Precision@20. The precision of ICL-corpus at top 20 documents.

Fig. 24. Precision@10. The precision of ICL-corpus at top 10 documents.
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the base method31, nonetheless the performance of TRSM has a progressive
decline at higher tolerance value. Correlated with the mean distance and
largest distance Fig. 20 say no more, despite the recall graph confirms that
we might have high value of document recall on lower θ.

For analysis, we went further and came with the results of precision at k
computations which are displayed in Figs. 21, 22, 23, and 24, for R-Precision,
Precision@30, Precision@20, and Precision@10 sequentially. We applied our find-
ing of distance calculation (i.e. that we should adjust our attention on tolerance
values between 31 to 61) on those graphs by intersecting the tolerance values
of each graph whose precision values (of TRSM method) are higher or equal to
the base method (TFIDF method) with the tolerance values between 31 to 61.
In conclusion, we have tolerance values between 40 to 43. Table 3 lists the tol-
erance values we manually observed whose values are high for several precision
measurements.

Table 3. The tolerance values with high precision based on several measurements.

Measures Tolerance values

R-Precision 31–53

Precision@30 31–61, but 53

Precision@20 34–61

Precision@10 31–32, 40–43

With regard to the mean distance and largest distance graphs, at
40 ≤ θ ≤ 43 the distances are adjacent to their average distance. Suppose
we apply this into Fig. 17, instead of those extreme conditions, we would have
considerable large of cluster in which the documents are scattered. In other
words, at those tolerance values, the TRSM method might yield fairly richer
documents representation and at the same time sill maintain the distinction
between documents. Figure 25(a) and (b) are the scatter graph of distance when
θ = 41 and, for comparison purpose, θ = 0. Despite the slight difference between
the distances, it is still possible to see that the document cluster of θ = 0 is more
solid than of θ = 41.

Examination on the scatter graph of distance for tolerance values 40 to 43
produced identical results with θ = 41, hence we might infer that those tolerance
values would bring us equivalent benefit. However, it is reflected by Figs. 18 and
19 that the graphs have tendency to be close to their average distance, thus
we prefer θ with the closest mean distance and largest distance, as for this
case θ = 41.
31 Base method means that we employed the TF*IDF weighting scheme only without

TRSM implementation.
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Fig. 25. Scatter graph of distance. The distance of TRSM-representation from TFIDF-
representation when (a) θ = 41 and (b) θ = 0.

5.4 Tolerance Value Generator

We had already introduced the first version of the algorithm to generate a tol-
erance value θ automatically from a set of documents [41] in which we took the
mean distance as a single parameter for consideration. In this chapter, through
a more careful analysis, we came into an understanding that both mean distance
and largest distance have significant contribution in determining a single tol-
erance value from a set of documents.

Based on our analysis, a good tolerance value belongs to a fair size of
document cluster in which its documents are scattered. Associated with the
distances of TRSM-representation from TFIDF-representation, the preferred tol-
erance value is characterized by the mean distance and the largest distance
whose distances are larger or equal to its average distance, in which the closer
the distances to its average distance, the better.

Unfortunately, when this rules were applied on Figs. 18 and 19, we came with
θ = 61, whose mean distance is the closest to its average distance but the
largest distance is very large. On that account, the R-Precision and Preci-
sion@10 of TRSM are beneath the TFIDF. So we learned, when the size of document
cluster is very large, it is an indication that the TRSM method a little bit out
of line in discriminating the document.

For that reason, further restriction needs to be added for the acceptable limit
of the largest distance in order to ensure that the largest distance will not
have very large value. By observing Fig. 19, setting the maximum limit to half
of the length between maximum distance and the average distance seems to
be appropriate.

Algorithm 1 presents the core idea of our algorithm. Line 1 up to 16 of Algo-
rithm 1 are the initialization and the rest is the main process. The main process
says that we choose the tolerance value (namely finalTheta) based on values
of mean distance (mean dist) and of largest distance (largest dist) for certain
range of θ whose distances to its average (md toAverage for mean distance and
ld toAverage for largest distance) are the smallest. When searching the tolerance
value, we only consider those whose value of mean dist is larger than its average
(md avg) and of largest dist exists between its average (ld avg) and its limit
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Algorithm 1. Main Idea of Tolerance Value Generator
Require: A set of documents as data source
Ensure: A tolerance value

1: tfidf ← construct TFIDF-representation
2: svd tfidf ← construct SVD 2-rank of tfidf
3: theta ← lowerBound
4: while theta ≤ upperBound do
5: trsm ← construct TRSM-representation
6: svd trsm ← construct SVD 2-rank of trsm
7: mean dist ← mean distance between svd tfidf and svd trsm
8: largest dist ← the largest distance between svd tfidf and svd trsm
9: theta + +

10: end while
11: md avg ← average of mean dist
12: md toAverage min ← Integer.MAX VALUE
13: ld max ← maximum of largest dist
14: ld avg ← average of largest dist
15: ld limit ← ld avg + (ld max − ld avg)/2
16: ld toAverage min ← Double.MAX VALUE
17: for i ← 0, (|mean dist| − 1) do
18: md toAverage ← mean dist[i] − md avg
19: ld toAverage ← largest dist[i] − ld avg
20: if md avg ≤ mean dist[i] and ld avg ≤ largest dist[i] ≤ ld limit then
21: if md toAverage == md toAverage min and ld toAverage ≤

ld toAverage min then
22: finalTheta ← theta of mean dist[i]
23: ld toAverage min ← ld toAverage
24: else if md toAverage < md toAverage min then
25: finalTheta ← theta of mean dist[i]
26: md toAverage min ← md toAverage
27: ld toAverage min ← ld toAverage
28: end if
29: end if
30: end for
31: return finalTheta

(ld limit). The limit is computed as the average plus half of the length between
maximum value of distance and the average (ld avg + (ld max − ld avg)/2).

Suppose we apply the Golub-Kahan SVD algorithm [42, p. 455] for dimen-
sionality reduction of TFIDF-representation and TRSM-representation, then in
order to compute singular values matrix and V matrix it needs 4MN2 + 8N3

floating-point operations (flops) [42, p. 254], where M is the number of index
terms and N is the number of documents. Whereas, for TRSM implementation,
the complexity is O(NM2). Combining these together, the computation of Algo-
rithm 1 does not grow faster than O(N3M2K), where K defines the number of
tolerance values being examined.
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Training Documents

Naturally the number of input data for the algorithm should be all documents
in the corpus, so the resulted thesaurus consists of all index terms occurs in
the corpus and the chosen tolerance value might suggest the best relationship
between those index terms. Our study in Sect. 6 showed that the number of doc-
uments used as the data source for thesaurus does not guarantee the thesaurus
to be more qualified, but the total number of unique terms and the type of input
documents should. Further study related to this issue is necessary in the future,
particularly concerning the efficiency issue.

Upper and Lower Bound

Recall that tolerance value is required in thesaurus construction in order to filter
the index terms out based on the co-occurrence frequency between terms in the
corpus. Consequently, the fair scenario is to evaluate all possibilities of tolerance
value, i.e. by setting the lowerBound to 1 and the upperBound to the maximum
number of co-occurrence between terms (namely maxCOC). The upperBound thus
is subject to change with regard to the size of data source used.

We have no objection about setting the lowerBound to 1. Nevertheless, the
upperBound needs to be determined prudently. Here are the details of three idea
specifically for the upperBound.

We urge not to use the idea above (using the maximum number of co-
occurrence frequency) alone for the upperBound, because it will give us an exten-
sive search range. Take an example, for the ICL-corpus which consists of 1,000
documents and 9,742 index terms, the maximum number of co-occurrence fre-
quency is 329. Thus, if we applied the idea, the upperBound is set to 329. For
another reason, by manually observing the co-occurrence data, we identified that
there were limited number of terms having the co-occurrence frequency bigger
than 164 (about half of 329), and much less index terms to be preserved when we
increased the tolerance value. This behavior might decrease the ability of TRSM
to enrich the base document representation.

We took an advantage of the knowledge, that TRSM is able to enrich
the base representation in terms of having more semantic terms, for the sec-
ond alternative of upperBound. Technically speaking, enriching the base rep-
resentation means that the TRSM-representation contains more terms than
the TFIDF-representation. So, the comparison between the average length of
TRSM-representation (in the algorithm it is the avgLengthTRSM) and TFIDF-
representation (namely avgLengthTFIDF) would be good for the search termina-
tion process. This idea seems to be more affirmative than the use of co-occurrence
frequency. However, it gives us an uncertainty state of the real search scope at
some extent.

We came into the third idea for the upperBound based on our real experience
when conducting the experiment. Initially, we set the upperBound in a low value
and had the first result. Based on the analysis of the results, we decided whether
to have another run with higher upperBound. This particular process might be
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happened for several times and we stopped the procedure when we were confident
that there would be no other significant changes as if we had another run. In order
to be confident, we tried to grasp the pattern of the mean distance manually
and decided to stop the procedure if we identified that the best mean distance
was located in about 2/3 of the range (namely certainty range), which meant
that the resulted tolerance value (namely finalTheta) was lower than a cer-
tain threshold (namely threshold theta). If the resulted tolerance value was
higher than the threshold, we set a new value to the upperBound as well as
the threshold theta and went for another run. Our experience is implemented
mainly as described in Algorithm 2.

Algorithm 2. Set Up the upperBound
1: finalTheta ← 0
2: lowerBound ← 1
3: range ← r
4: certainty range = (2/3) ∗ range
5: upperBound = lowerBound + range
6: threshold theta = lowerBound + certainty range
7: theta ← lowerBound
8: while theta ≤ upperBound do
9: finalTheta ← compute the final tolerance value

10: if finalTheta > threshold theta then
11: threshold theta = upperBound + certainty range
12: upperBound+ = range
13: end if
14: theta + +
15: end while

We put all those three alternatives of upperBound into our algorithm as it
is shown in Algorithm 3 for reason. The experiment results suggest us to have
a high tolerance value, however it is possible to have a low tolerance value in
implementation, e.g. when we have a small number of index term in a set of
documents for the data source. The third alternative of upperBound should be
effective for this particular circumstance since it ensures us to have reasonable
search range of tolerance value. The second alternative which make use of the
comparison between the average length of TFIDF-representation and of TRSM-
representation should guarantee that we would have a tolerance value whose
TRSM-representation is richer than the base representation. At last, the maxi-
mum co-occurrence frequency might be useful as the final termination process.

Another advantage of knowing the maximum co-occurrence frequency is to
set the range, for example, by setting it to about 1/3 of the maximum number.
Suppose, for the ICL-corpus whose maximum co-occurrence frequency is 329, we
set range = 111, then we will have maximum 3 times runs.

Eventually, putting all together, we came with Algorithm 3 which is the final
version of our algorithm.
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Algorithm 3. Tolerance Value Generator
Require: A set of documents as data source
Ensure: A tolerance value

1: tfidf ← construct TFIDF-representation
2: svd tfidf ← construct SVD 2-rank of tfidf
3: finalTheta ← 0
4: lowerBound ← 1
5: range ← r
6: certainty range = (2/3) ∗ range
7: upperBound = lowerBound + range
8: threshold theta = lowerBound + certainty range
9: avgLengthTRSM ← Integer.MAX VALUE

10: avgLengthTFIDF ← the average length of tfidf
11: maxCOC ← the maximum co-occurrence frequency between terms
12: theta ← lowerBound
13: while theta ≤ upperBound and avgLengthTFIDF < avgLengthTRSM and

theta ≤ maxCOC do
14: while theta ≤ upperBound do
15: trsm ← construct TRSM-representation
16: svd trsm ← construct SVD 2-rank of trsm
17: mean dist ← the mean distance between svd tfidf and svd trsm
18: largest dist ← the largest distance between svd tfidf and svd trsm
19: theta + +
20: end while
21: md avg ← average of mean dist
22: md toAverage min ← Integer.MAX VALUE
23: ld max ← maximum of largest dist
24: ld avg ← average of largest dist
25: ld limit ← ld avg + (ld max − ld avg)/2
26: ld toAverage min ← Double.MAX VALUE

5.5 Summary

In this chapter we put forward a revised version of algorithm for defining a tol-
erance value automatically from a set of documents. The heart of the algorithm
is measuring the distances between document representations of data source,
i.e. one computed using base method while the other using TRSM method, in
their 2-dimensional space which are constructed by utilizing the singular value
decomposition (SVD) method over a range of θ values.

We learned from two corpora, ICL-corpus and WORDS-corpus, in order
to generate some principles that served as the foundation for the algorithm.
We found that we should consider both, the mean distance as well as the
largest distance, for realizing a fairly big document cluster in which the doc-
uments are adequately scattered. Further, we discussed the parameters used in
the algorithm.



182 G. Virginia and H.S. Nguyen

Algorithm 4. Tolerance Value Generator (continued)
27: for i ← 0, (|mean dist| − 1) do
28: md toAverage ← mean dist[i] − md avg
29: ld toAverage ← largest dist[i] − ld avg
30: if md avg ≤ mean dist[i] and ld avg ≤ largest dist[i] ≤ ld limit then
31: if md toAverage == md toAverage min and ld toAverage ≤

ld toAverage min then
32: finalTheta ← theta of mean dist[i]
33: ld toAverage min ← ld toAverage
34: else if md toAverage < md toAverage min then
35: finalTheta ← theta of mean dist[i]
36: md toAverage min ← md toAverage
37: ld toAverage min ← ld toAverage
38: end if
39: end if
40: end for
41: avgLengthTRSM ← the average length of trsm at theta
42: if finalTheta > threshold theta then
43: threshold theta = upperBound + certainty range
44: upperBound+ = range
45: end if
46: end while

6 Optimizing the Thesaurus

6.1 Introduction

Based on the process of modeling a document in TRSM, thesaurus is the heart
of TRSM, in which the relationship between terms in the thesaurus is deter-
mined by a tolerance value θ. Thus, choosing the right θ value is essential in
TRSM implementation. In the previous chapter, we have seen that it is possible
to determine a value for θ by considering the mean and the largest distances
between TRSM-representation and TFIDF-representation. We also proposed a
new version of algorithm to generate the tolerance value automatically. In this
chapter, we move the focus on the important issues relevant to the quality of
the thesaurus.

We might find most of the graphs presented in the last chapter support the
fact that the values of distances between TRSM-representation and TFIDF-
representation vary with regard to the tolerance value, and so is the quality of
the TRSM-representation. Therefore, it seems that the thesaurus, which stores
information about terms relationship exploited to enrich a document represen-
tation, is influenced by the tolerance value. Moreover, the thesaurus of TRSM
is created from a collection of text documents as a data source and relied on the
co-occurrence of terms as the semantic relatedness measure. These facts imply
that the data source and the semantic measure have capacity to produce effect
on the quality of the thesaurus.
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Tolerance rough sets model uses the frequency of co-occurrence in order to
define the semantic relatedness between terms. Despite the raw frequency, there
are several ways to calculate the degree of association between pairs of terms
from co-occurrence data, i.e. Cosine, Dice, and Tanimoto measure. Further, with
regard to the term-weighting scheme, the term frequency (TF) is the simplest
approach to assign the weight for a term but it suffers from a critical problem that
it considers all terms as equally important no matter how often it occurs in the
set of documents. The inverse document frequency (IDF) is well known to be used
in order to enhance the discriminating power of a term in determining relevance
by considering the document frequency of the term in the corpus. Combination
of term frequency and inverse document frequency produces a composite weight
commonly assigned to a term, which is known as TF*IDF weighting scheme.
After all, in spite of the raw frequency of co-occurrence, we might get different
results from the same co-occurrence data with different formula.

We conducted a study to investigate the quality of the thesaurus of TRSM
with regard to these three factors (i.e. tolerance value, data source of thesaurus,
and semantic measure) in the framework of an information retrieval system
(IRS). We used different corpus as data sources of the thesaurus, implemented
different semantic relatedness measure, and altered the tolerance value. In order
to analyze the results, we calculated the performance measure of an information
retrieval system, i.e. recall and precision, and compared the results with the base
representation (TFIDF-representation).

6.2 Experiment Process

We did two experiments. The first experiment focused on the data source of
thesaurus, while the second experiment focused on the semantic measure of
thesaurus.

For the first experiment, we maintained the frequency of co-occurrence as the
measure of semantic relatedness in the thesaurus construction and we used our
primary corpus, i.e. ICL-corpus, as the main data which was processed by the
IRS. Specifically for the data source of thesaurus, we employed several corpora as
listed in Table 4; Total document column defines the total number of documents
in each set of documents which served as the data source, Total unique term
column defines the total number of index terms, and Total term column is the
total number of terms appear in the set.

ICL 1000 is actually the ICL-corpus which is a set of the first 1,000 emails
of Indonesian Choral Lovers (ICL) Yahoo! Groups, while the ICL 2000 and
ICL 3000 are the extension of ICL 1000, which contain the first 2,000 emails and
the first 3,000 emails respectively. WORDS 1000 is the WORDS-corpus, hence it
is a set of 1,000 documents which are the keywords defined by our choral experts
with regard to each corresponding document in ICL-corpus. Finally, WIKI 1800
is a set of 1,800 short abstracts of Indonesian Wikipedia articles32

32 Please see Appendix C.2.
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Table 4. List of data source for thesaurus. This table presents the list of data source
used specifically for thesaurus construction.

No Data source Total document Total unique term Total term

1. ICL 1000 1,000 9,742 129,566

2. ICL 2000 2,000 14,727 245,529

3. ICL 3000 3,000 21,101 407,805

4. ICL 1000 + WORDS 1000 2,000 9,754 146,980

5 ICL 1000 + WIKI 1800 2,800 17,319 191,784

In the second experiment, we only used single corpus, which was the ICL-
corpus that acted as the main data processed by the IRS as well as the data
source. For the semantic measure in thesaurus construction, we considered the
Cosine measure which is probably the similarity measure that has been most
extensively used in information retrieval research. The Cosine was calculated
over the TF*IDF weight of term.

For both experiments conducted in this study, we followed three phases dis-
played in Fig. 26 which are preprocessing phase, TRSM phase, and analysis
phase; The main differences between experiments were on the TRSM phase.
The dashed rectangle shows the central activities of the study, i.e. the TRSM
phase and analysis phase, which were iterated for a range of tolerance value (i.e.
for θ = 1 to 100). Below are the description of each phase.

Fig. 26. Main phases of the study. This figure shows the three main phases of the study
in the IRS framework, which are preprocessing phase, TRSM phase, and analysis phase.

Preprocessing Phase. There were no special treatment in this phase. What we
did in this phase was similar with the preprocessing phase of the preceding study
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explained in Sect. 5, in the sense that the Lucene library was implemented and
both the Vega’s stopword and the CS stemmer were embedded in Lucene. In this
study, we separated the data for IRS system from the data source for thesaurus
construction, in which both operations yielded the TFIDF-representations.

TRSM Phase. Basically, we followed the three steps of tolerance rough sets
model, which were constructing the thesaurus, creating the upper document
representation, and re-weighting the TFIDF-representation using the TRSM-
weighting scheme. However, we applied the first step only for the data source in
order to generate the thesaurus, while the other two steps were applied to the
system data, that is the ICL-corpus.

In the first experiment, the thesaurus were constructed from each data source
listed in Table 4 based on the frequency of co-occurrence terms, while in the
second experiment the thesaurus were constructed only using the ICL corpus and
calculated based on Cosine semantic measure. Then, for both experiments, the
TRSM-representation was re-weighted by considering the TFIDF-representation
and the upper document representation of ICL-corpus, in which the thesaurus
became the bottom layer of the upper representation generation.

Analysis Phase. We applied the Cosine similarity33 in order to retrieve docu-
ments from the corpus relevant to the 28 information needs. The queries, which
were the 28 topics determined by our choral experts, were modeled into TRSM-
query-representations based on the following rule

wj =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1 + log fq(tj)) log N
fD(tj)

if tj ∈ q

1 if tj /∈ LR(q)
|Iθ(tj)∩q|

|Iθ(tj)| if tj /∈ UR(q)

0 otherwise

(25)

where wj defines the weight of term tj in a query, fq(tj) is the occurrence fre-
quency of term tj in the query, fD(tj) is the document frequency of term tj in a
corpus, N is the total document in the corpus, and |Iθ(tj)∩q|

|Iθ(tj)| is the rough mem-
bership function between tolerance class of term tj and the query. We considered
a query as a new document in a corpus, thus we add 1 to the total document N
and the document frequency fD(tj), if term tj occurs in the query.

Our primary data to analyze the thesaurus were the calculation results of
recall and precision of the TRSM-representations created. As the experiment in
previous chapter, we calculated the recall and mean average precision (MAP)
based on Eqs. (22) and (24) sequentially. We compared them to the computation
result of the base representation, i.e. the TFIDF-representation.
33 Explanation about Cosine as a document ranking is available in Appendix B.
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6.3 Discussion

Result of First Experiment: Data Source of Thesaurus

Figure 27 shows the recall values of ICL-corpus by implementing TRSM in which
the thesaurus was generated based on the co-occurrence frequency between terms
of data sources listed in Table 4 and the tolerance value was altered between 0
to 100. The TFIDF in the graph is the recall values of TFIDF-representation.

Fig. 27. Recall. Recall values based on several data sources of thesaurus.

Generally, all data sources perform similar pattern. When θ = 1 they have
very high recall values (0.9967 for ICL 1000 and ICL 1000 + WORDS 1000 data
sources, and 0.9968 for ICL 2000, ICL 3000, and ICL 1000 + WIKI 1800 data
sources) and the values are gradually decreased when the tolerance value is
increased. It is also clear from the graph that all the recall values of TRSM-
representations outperform the TFIDF-representation’s recall value (0.4125).

Refer to the nature of tolerance rough sets model, the general result of recall
values shown in Fig. 27 is predictable. When we set θ = 0, we put all the index
terms into all TRSM-representations that leads to the retrieval of all documents
in the corpus, including the relevant ones, for all the queries. When θ is set to 1,
a number of index terms which co-occur with no other index terms are removed.
It reduces a number of index term appear in document vector at some degree
and decreases the retrieval of relevant documents. If we set the θ even higher,
more index terms are filtered out and lesser recall values are obtained.

A careful analysis to Fig. 27 gave us several interesting points. First, we can-
not expect anything from adding the WORDS 1000 as the data source; It has the
same result with the ICL 1000. The fact that it consists of keywords defined
by human experts seems to be not significant for thesaurus optimization. Sec-
ondly, it is interesting that adding WIKI 1800 as data source unpredictably came
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with similar result to ICL 1000 up to θ = 85. Thirdly, some improvement were
achieved by adding the ICL 1000 with similar documents as the data source, as
it is shown by the ICL 2000 and ICL 3000.

Considering Table 4, we learned that the number of unique terms and total
terms in the set contribute more to the quality of thesaurus than the num-
ber of documents. Put our focus on adding the ICL 1000 with WORDS 1000 and
WIKI 1800, it seems that the kind of unique terms in a set are also count. From
Table 4, we can see that adding WORDS 1000 (which have 3,477 unique terms) for
the data source gives us 12 new unique terms. It means that most of index terms
contained in WORDS 1000 are also the index terms of ICL 1000 and we may infer
by Fig. 27 that the condition brings no improvement to the thesaurus. On the
contrary, the index terms of WIKI 1800 are different from the ICL 1000 to a con-
siderable extent; From Table 4, we can see that the ICL 1000 has 9,742 unique
terms and aggregation of ICL 1000 + WIKI 1800 has 17,319 unique terms, while
there are 10,549 unique terms in WIKI 1800 solely. Refer to Fig. 27, this fact also
gives no significant improvement.

The results are a little bit different by implementing the ICL 2000 and
ICL 3000 as the data source for thesaurus. Compared to the ICL 1000, both
of them have more unique terms as well as total terms in their sets, and we
could be certain that most documents inside them are corresponding in topic,
i.e. choral, with ICL 1000. As in Fig. 27, these conditions lead to some improve-
ment in recall values. Thus, we may conclude that merely introducing new unique
terms does not guarantee any improvement for thesaurus. It should be provided
by terms in documents of related domain.

In similar fashion with Figs. 27 and 28 presents the mean average precision
(MAP). One obvious note from Fig. 28 is all results of TRSM-representations
outperform the result of TFIDF-representation. Specifically, ICL 1000 shows to
have the highest MAP value in a very low tolerance value (θ = 2) and its graph
tends to decrease as the tolerance value is increased. With regard to the nature of
TRSM, this fact is predictable with similar reason we explained in a paragraph
above. However, we can see that there are some points where the graph looks
to be stable for several tolerance values; After drastic changes in the beginning,
the graph tends to be stable at θ = 18, θ = 54, and θ = 84.

As the recall values, the MAP values of combining ICL 1000 with WORDS 1000
are the same with utilizing ICL 1000 separately34. It seems to confirm that a
set of keywords defined by human experts does not serve as a contributor to the
quality improvement of thesaurus.

The ICL 1000 + WIKI 1800 shows to be comparable with the others in high
tolerance values (θ ≥ 32), even though in low tolerance values, its performance
is the worst. The other data sources, ICL 2000 and ICL 3000, perform simi-
lar pattern where they both have tendency to decrease as the tolerance value
is increased. However, their performances are more stable than the ICL 1000.
34 In fact, we found the same result between ICL 1000 and ICL 1000 + WORDS 1000 in

all calculations we made, such as in R-Precision, Precision@10, Precision@20, and
Precision@30.
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Fig. 28. Mean average precision. Mean average precision (MAP) values based on sev-
eral data sources of thesaurus.

Based on these facts, Fig. 28 also indicates that documents in a corresponding
domain with the system data (such as ICL 2000 and ICL 3000) may give some
contribution to thesaurus improvement.

Result of Second Experiment: Similarity Measure of Thesaurus

Instead of raw frequency of co-occurrence between terms, in the second exper-
iment we considered the Cosine value based on TF*IDF weight of each term
in order to define the semantic relatedness between terms of ICL-corpus. With
regard to the nature of Cosine measure, the value of relatedness are between
0 to 1, hence in this experiment each θ value was divided by 100. Thus, for θ
value 1 to 100, it was read by the thesaurus construction module as 0.01 to 1.
Figures 29 and 30 display the recall and MAP values of ICL-corpus based on
Cosine measure in thesaurus construction.

Fig. 29. Recall. Recall values where the co-occurrence (COC) and Cosine (COSINE)
measures were applied to define the semantic relatedness between terms in thesaurus
construction.
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Fig. 30. Mean average precision. Mean average precision (MAP) values where the co-
occurrence (COC) and Cosine (COSINE) measures were applied to define the semantic
relatedness between terms in thesaurus construction.

Table 5. Total number of distinct vector length. This table presents the total number
of distinct length of TRSM-representation based on Cosine measure for tolerance value
1 to 100.

Tolerance Total Tolerance Total Tolerance Total

value distinction value distinction value distinction

1–64 425 80 426 92 419

65–69 423 81–82 425 93 425

70–72 424 83 423 94 427

73 426 84 427 95 430

74–75 427 85 423 96 429

76–77 426 86 422 97 425

78 423 87–89 421 98 430

79 425 90–91 417 99 442

100 237

At first glance, both figures show perfect performances, where most of the
results outperform the TFIDF-representation and TRSM-representation based
on co-occurrence measure (COC) at tolerance values 1 to 99. Those performances
obtained because most of the index terms occurred in almost all of TRSM-
representation. In fact, there were more than 9,000 index terms out of 9,742
occurred in almost all of TRSM-representation, and the changes of amount of
index terms occurred in TRSM-representation between tolerance value 1 to 99
were very small; Table 5 lists the total number of distinct length of document
vector yielded by TRSM when the Cosine measure was implemented for tolerance
value 1 to 100. It is not an ideal condition we are looking for. The condition
signify that the TRSM has successfully enrich the base representation but it
lessen the uniqueness of document at large extent.

Both figures also shows that the graphs are suddenly drop at θ = 100 to
the TFIDF level. In the thesaurus construction, when θ = 100, the system
filtered out index terms whose Cosine values less than 1. It made the tolerance
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class of each index terms consisted of the term itself and thus the final TRSM-
representation was exactly the same with the TFIDF-representation. So, it is
reasonable that the recall and MAP values of COSINE and TFIDF displayed in
the Figs. 29 and 30 are the same.

In this particular experiment, we calculated the Cosine value based on
TF*IDF weight of index terms. We applied the TF*IDF weighting scheme in
order to refine the discriminating power of each index term. Refer to Eq. (B.2),
the denominator of Cosine measure functions as the length-normalization of each
vector being calculated in order to counterbalance the effect of various document
length.

So, philosophically, the Cosine measure seems to be an ideal measure. Fur-
ther, we found that implementing the Cosine measure in thesaurus construction
has lessened the discrepancy of document in the corpus at large extent when
Cosine value was less than 1. The fact that ICL-corpus is a set of documents
in a specific domain (hence the index terms are generally related) might be the
reason why most of the index terms occurred in the TRSM-representation. If
this is the reason, it contradicts the result of our first experiment explained in
Sect. 6.3 which indicated that we might expect having better contribution in
order to improve the quality of thesaurus from a set of documents which was in
the same domain with the system data.

Mathematically, the Cosine behavior might be explained by the nature of its
equation, in which the association between pairs of terms is basically computed
based on the co-occurrence data (even though in this particular experiment we
have refined the raw frequency into the TF*IDF weight). Empirically, there
were numerous pairs of terms occurred together in documents which leads to
high values of Cosine and little changes in the values. Notice that conventionally
a document is written using the common words of a subject. Thus, the fact
that ICL-corpus came from a mailing lis of a specific domain confirms that its
documents should contain general words of particular domain. Based on this,
we urge that the characteristic of ICL-corpus is the primary cause of the Cosine
behavior in this experiment.

After all, we might infer that Cosine measure is not appropriate to define
the semantic relatedness between terms in thesaurus construction of tolerance
rough sets model.

6.4 Summary

The result of the study confirmed that tolerance value, data source of thesaurus,
and semantic measure influence the quality of the thesaurus. Even though we
could not say affirmatively what kind of data source for an effective thesaurus,
but empirically the result of study indicated that a set of documents in a corre-
sponding domain with the system data might give better contribution to improve
the quality of thesaurus. We also learned that the number of unique terms and
total terms in the set contribute more to the quality of thesaurus than the total
number of documents. Related to the semantic measure, we suggested to main-
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tain the raw frequency of co-occurrence between terms rather than implementing
the other measures, i.e. Cosine.

7 Lexicon-Based Document Representation

7.1 Introduction

TRSM employs a vector space model hence it represents the document as a vector
of term weight in a high dimensional space. The richer representation claimed
as the benefit of TRSM means that there is less zero-valued in document vector.
Despite the fact that it can increase the possibility of two documents having
non-zero similarity although they do not share any terms in original document,
this fact leads us to a presumption that higher computational cost may become
a significant trade-off in TRSM.

In Sect. 4, we showed that TRSM was able to fetch the important terms which
should be retrieved by the automated process of the system. Nevertheless, based
on comparison between the lexicon35 and of the indexed terms, we identified
64.89 % did not occur in lexicon; the contributors were foreign terms (mostly in
English), colloquial terms, and proper nouns. The following are the example of
colloquial terms: yoi (it has the same meaning with word iya (in Indonesian) and
yes (in English)), terus (it has the same meaning with word lalu (in Indonesian)
and and then (in English)), rekans (it has the same meaning with word teman-
teman (in Indonesian) and friends (in English)).

In this chapter, we propose a novel method, called a lexicon-based docu-
ment representation, for a compact document representation. The heart of our
method is the mapping process of terms occurring in TRSM-representation to
terms occurring in lexicon, which gives us a new document representation con-
sisting only of terms occurring in lexicon (we refer to this representation as
LEX-representation) as an output. Consider Fig. 31 for depiction of the idea.

Hence this method represents a document as a vector in a lower dimen-
sional space and eliminates all informal terms previously occurring in TRSM-
representation. By this fact, we can expect less computational cost. For analysis,
we take advantage of recall and precision commonly used in information retrieval
research to measure the effectiveness of LEX-representation. We also did manual
investigation into the list of terms considered as highly related with a particular
concept in order to assess the quality of the representations.

7.2 Experiment Process

Experiment in this chapter used two corpora, i.e. ICL-corpus and WORDS-
corpus, and employed two types of topic, i.e. 127 topics and 28 topics. The
35 It is an Indonesian lexicon created by the University of Indonesia described in a

study of Nazief and Adriani in 1996 [43] which consists of 29,337 Indonesian root
words. The lexicon has been used in other studies [10,38].
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Fig. 31. The idea of mapping process. Picture (a) shows relation between lexicon and
a TFIDF-representation (d1), picture (b) shows relation between lexicon and a TRSM-
representation (depicted by area inside dashed line), while picture (c) shows relation
between lexicon and a LEX-representation (depicted by the darkest area).

Fig. 32. Main phases of the study. The process consisted of 4 phases: preprocessing
phase, TRSM phase, mapping phase, and analysis phase.

experiment was conducted by following four main phases which were preprocess-
ing phase, TRSM phase, mapping phase and analysis phase as depicted in
Fig. 32. Generally we did the first three phases over both corpora individually
and analysed them in the analysis process.

Preprocessing Phase. The goal of this phase is to generate document repre-
sentation based on the TF*IDF weighting scheme. So, the activities in this study
basically the same with the preprocessing phase of experiments in Sects. 4 and 6.
This is a phase when we did tokenisation, stopword elimination, stemming, and
finally generated TFIDF-representation. This phase was powered by Lucene in
which Vega’s stopword list and CS stemmer were embedded in it.

In order to work, the CS stemmer requires a dictionary called DICT-UI which
showed to produce more accurate results than the use of the other dictionary,
i.e. Kamus Besar Bahasa Indonesia (KBBI)36 [38]. The DICT-UI is actually the
lexicon of this study.

36 KBBI is a dictionary copyrighted by Pusat Bahasa (in English: Language Center),
Indonesian Ministry of Education, which consists of 27,828 root words.
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TRSM Phase. In this phase we acted in accordance with the consecutive
steps of tolerance rough sets model and came up with TRSM-representation
for both corpora. Let us call the TRSM-representation for ICL-corpus
and WORDS-corpus as ICL-TRSM-representation and WORDS-TRSM-
representation respectively. In thesaurus construction, we maintained the use
of raw frequency of co-occurrence between terms and altered the tolerance value
from 1 to 100.

Mapping Phase. Our intention in this phase is to map the index terms of
TRSM-representation into the terms of the lexicon.

We noticed that the total number of terms in the lexicon (29,337 terms) was
much bigger than the total number of index terms in ICL-corpus (9,742 terms)
and WORDS-corpus (3,477 terms). We also noted that relationship between
terms of tolerance classes were constructed based on term co-occurrence in a
set of documents, hence there would be no relationship to other terms outside
the corresponding set. However, there must be an intersection between lexicon
and each document in a corpus because all documents must have some formal
terms in order to be understood. Consequently, there would be no benefit in
considering all terms in the lexicon during the mapping process.

In order to make the process faster, we intersected the lexicon with each
corpus and called the result as known-terms K. Let D = {d1, d2, ..., dN} is a
set of text documents, T = {t1, t2, ..., tM} is a set of index terms from D, and
B = {b1, b2, ..., bP } is a set of terms in the lexicon, then K = {ti ∈ T | ti ∩ bj} =
{k1, k2, ..., kC}, for all bj ∈ B. The terms appeared in known-terms then became
the index terms of LEX-representation. The total number of known-terms for
ICL-corpus and WORDS-corpus were 3,444 and 1,566 respectively. The mapping
process was conducted as follows

Input:
Matrix of TRSM-representation TRSMmatrix = [trsmi,j ]NxM for all tj ∈ T
and di ∈ D, where trsmi,j denotes weight of term tj in document di.

Output:
Matrix of LEX-representation LEXmatrix = [lexi,l]NxC for all kl ∈ K and
di ∈ D, where lexi,l denotes weight of term kl in document di.

Process:
Generate LEXmatrix based on Eq. (26) for all tj ∈ T , kl ∈ K, and di ∈ D

lexi,l =

{

trsmi,j if kl = tj

0 otherwise
(26)

Even though we describe the document representations in terms of matrix,
in implementation level of experiment we applied the inverted index as the data
structure.

We should mention that, during the annotation process, we found that our
human experts seemed to encounter difficulty in determining keywords. Thus,
rather than listing the keywords, our experts chose sentence(s) from the text or
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made their own sentence(s). This action made the WORDS-corpus contain both
formal and informal terms. Based on this fact, we decided to run the mapping
process not only on ICL-corpus but also on WORDS-corpus, in order to remove
the informal terms occurring in both corpora. Let us call the resulting representa-
tion ICL-LEX-representation for ICL-corpus and WORDS-LEX-representation
for WORDS-corpus.

Analysis Phase. There were two tasks committed in the analysis phase. We
named them categorisation and calculation. Categorisation was the task when
we clustered documents of the same topics together. The motivation behind this
task was based on the annotation process conducted by our human experts,
i.e. keywords determination for each document. Thus, we perceived each topic
as a concept and considered the keywords in WORDS-corpus as variants of
terms semantically related with a particular concept. For this task, we used
the 127-topics defined by our human experts, therefore we got 127 classes. Let
us call the output of this process ICL-topic-representation and WORDS-topic-
representation for each corpus. Technically, those representations were topic-
term matrices.

In the calculation task, we used the notions of recall and precision, which are
defined as Eqs. (22) and (23) respectively, in terms of calculating the documents
as well as the terms. The first calculation computed the terms while the second
calculation computed the documents. Thus, for the terms-calculation, the recall
R is the fraction of relevant terms that are retrieved while precision P is the
fraction of retrieved terms that are relevant. Notice that our WORDS-corpus
consists of keywords defined by human experts, hence we considered WORDS-
corpus as the ground truth, i.e. WORDS-corpus consists of relevant terms which
should be retrieved by automated system.

Briefly, in the terms-calculation, we categorised LEX-representation of each
corpus and then computed the recall and precision of topic-representations
generated with and without a mapping process. Whereas, in the documents-
calculation, we computed the standard recall and mean average precision (MAP)
of all representations.

7.3 Discussion

Calculating the Terms

Based on the terms-calculation, our findings are summarised by Fig. 33. Those
graphs show that the mean of recall and precision values across 127 topics vary
by the alternation of tolerance values θ and tend to be smaller as the tolerance
value becomes higher.

We have mentioned in Sect. 7.2 that in the terms-calculation we focused on
terms rather than documents when calculating recall and precision. Instead of
document representation, the recall and precision values were computed over the
terms of topic-representation. We measured the quality of topic-representation
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Fig. 33. Mean of Recall and Precision. Graph (a) shows the mean of recall values,
while graph (b) shows the mean of precision values. The mean values were calculated
over 127 topics.

of ICL-corpus based on the occurrence of relevant terms in it; the relevant terms
were the index terms of topic-representation of WORDS-corpus.

Pertaining to the mapping process, we perceive the recall as a value which
expresses the ability of the mapping process to keep the relevant terms out of the
irrelevant ones. Thus, from Fig. 33(a) we can say that the mapping process out-
performs the original TRSM method in terms of preserving the relevant terms.
A gradual reduction of the ability is shown as the tolerance value θ gets higher,
yet the mapping process seems to work better.

From another point of view, by the nature of TRSM method, a greater tol-
erance value should increase the number of index terms discarded from being
introduced into the document representation. Considering Fig. 33(b), the behav-
ior seems to shield not only the irrelevant index terms but also the relevant
ones to be chosen to extend the base representation, even though at some point
the change is not significant anymore, which happens at θ > 17. However, the
mapping process performs better once again in this figure.

Calculating the Documents

In this task, the standard recall and precision were computed using the
trec eval program based on TFIDF-representation, TRSM-representation and
LEX-representation of ICL-corpus over 28 topics for θ = 1 to 100. Figure 34 is
the graph of recall while Fig. 35 is the graph of mean average precision (MAP).
In the figures, LEX is the LEX-representation, TRSM is the TRSM-representation,
and TFIDF is the TFIDF-representation.

Figure 34 displays that LEX-representation works better than TFIDF-
representation, even has slightly higher recall values than TRSM-representation
at almost all level of θ = 1 to 100. The trade-off to the recall values can be seen
in Fig. 35. Here, the performance of LEX-representation is shown to be similar
with TRSM-representation on low tolerance values (θ < 22) and has slightly
better precision at θ = 5 to 15. Compared with TFIDF-representation, it per-
forms better at θ < 85.
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Fig. 34. Recall. This graph shows the recall values based on TFID-representation,
TRSM-representation, and LEX-representation.

Fig. 35. Mean average precision. This graph shows the mean average precision (MAP)
values based on TFID-representation, TRSM-representation, and LEX-representation.
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The result depicted by Figs. 34 and 35 looks consistent with the result pre-
sented by Fig. 33. Those figures say that the increment of tolerance value leads
to the less relevant terms in topic-representation and the more incapable the sys-
tem to retrieve relevant documents. Even though the mapping process proved
to be more capable to maintain the relevant terms and the recall value of LEX-
representation have proportional result with of TRSM-representation, the mean
average precision (MAP) value shows that TRSM-representation performs better
in general. Figure 36, which presents the mean length of TRSM-representation
and LEX-representation for tolerance values between 1 and 100, seems to explain
that the vector length has contribution at some degree.

Fig. 36. Length of vector. Graph (a) shows the mean length of TRSM-representation
and LEX-representation for θ = 1 to 100 while graph (b) is the inset of graph (a) for
θ = 20 to 100.

Figure 36 tells us that document representation of TRSM tends to be longer
than document representation yielded by mapping process. In fact, our obser-
vation through all document vectors for θ = 1 to 100 yielded −→x ≥ −→y , where−→x is document vector of TRSM and −→y is document vector of mapping process.
It is not a surprising result due to the fact that mapping process conducted
based on TRSM, in which the index terms of LEX-representation are those of
TRSM-representation which appear in the lexicon.

The document ranking method we used in this study is the Cosine similar-
ity method (B.2), which implies that the largest value of similarity(Q,D) are
obtained when the query Q and the document D are the same. Refer to this
method, longer vector should have more benefit than the shorter one. There-
fore, it is predictable that TRSM-representation outperforms the others when
document vector of TRSM is the longest.

It is interesting though that at some levels between tolerance values 1 to 100
the LEX-representation has better performance than of TRSM. So, instead of the
vector length, there must be another factor which give significant contribution to
similarity computation based on Cosine method. The investigation went further
to the tolerance classes which constructed the thesaurus.
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Tolerance Class

We picked 3 topics out of 28 which were the most frequent topics in ICL-corpus as
it appears in TableC.3. These were kompetisi (in English: competition), konser
(in English: concert), and karya musik (in English: musical work), and made
an assumption that those topics were concepts which could be represented by a
single term for each, namely kompetisi, konser, and partitur (in English: musical
score)37.

We generated the tolerance classes of those terms at several particular toler-
ance values, i.e. θ = 2, θ = 8, θ = 41, and θ = 8838. Specifically, we generated all
terms considered semantically related with terms kompetisi, konser, and partitur
(based on its occurrence in thesaurus) which appeared on the most relevant docu-
ment retrieved by the system for each particular topic (i.e. kompetisi, konser, and
karya musik respectively). Let us call this term sets as TolClass in document.

Tables 6 and 7 summarise the results; column 1 lists the terms being
investigated, while TFIDF, TRSM, and LEX columns present the number of
related terms appeared in TFIDF-representation, TRSM-representation, and
LEX-representation sequentially (i.e. the cardinality of TolClass in document).
When θ = 2 we considered those representations with regard to the top-retrieved
document calculated based on TRSM model. In similar fashion, for θ = 8, θ = 41,
and θ = 88, we considered ones with regard to the top retrieved document based
on mapping process, TRSM method, and base model39. The Total column is the
cardinality of particular tolerance class in thesaurus. In other words, it specifies
the total terms defined semantically related with term kompetisi, konser, and
partitur at θ = 8, θ = 41, and θ = 88.

In a glance we should notice that document vector of TRSM consists of
most related terms defined in thesaurus, even at high tolerance value (θ = 88)
it includes all of them. It is also clear in both tables that the cardinal-
ity of TolClass in document in TFIDF-representation (showed by the TFIDF
columns) are mostly the least.

In order to assess the quality of document vector in terms of the relevant
terms, we manually made a short list of terms we considered as semantically
related with terms kompetisi, konser, and partitur. Table 8 displays the lists. By
cross referencing our manual list with the TolClass in document, we found that
TolClass in document consists of at least one term of our manual list. And as
predicted, the TolClass in document of TRSM includes our terms the most.
37 The index terms of thesaurus are in the form of single term, hence we choose term

partitur as the representative of the karya musik concept.
38 Figure 35 serves as a basis for the choice of θ values in which the

TRSM-representation, LEX-representation, TRSM-representation, and TFIDF-
representation outperform the other representations at θ = 2, θ = 8, θ = 41, and θ
= 88 in respective order. However, particularly at θ = 88, the TFIDF-representation
only performs better than the LEX-representation.

39 The base model means that we employed the TF*IDF weighting scheme without
TRSM implementation nor the mapping process.
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Table 6. Total number of terms considered as highly related with terms kompetisi,
konser, and partitur at tolerance values 2 and 8 in a top-retrieved document repre-
sentation generated based on TF*IDF weighting scheme (TFIDF), TRSM model (TRSM)
and mapping process (LEX). The Total column is the total terms of respective tolerance
class in thesaurus.

θ = 2 θ = 8

Term TFIDF TRSM LEX Total TFIDF TRSM LEX Total

Kompetisi 54 1,587 883 1,589 31 315 203 320

Konser 37 3,508 1,664 3,513 23 902 513 909

Partitur 141 2,023 1,037 2,030 30 590 325 597

Table 7. The number of terms considered as highly related with terms kompetisi,
konser, and partitur at tolerance values 41 and 88 in a top-retrieved document repre-
sentation generated based on TF*IDF weighting scheme (TFIDF), TRSM model (TRSM)
and mapping process (LEX). The Total column is the total terms of respective tolerance
class in thesaurus.

θ = 41 θ = 88

Term TFIDF TRSM LEX Total TFIDF TRSM LEX Total

Kompetisi 4 7 4 7 1 1 1 1

Konser 4 92 46 96 3 21 7 21

Partitur 18 54 23 56 1 4 2 4

Let us focus on Table 6 when tolerance value is 8. At θ = 8, refers to Fig. 35,
the LEX-representation performs better than the others, whereas refers to Fig. 36
the mean length of its vectors is shorter than of TRSM. Note that the cardinal-
ity of TolClass in document of mapping process (showed by the LEX column in
Tables 6 and 7) for those three terms are smaller than of TRSM. A close obser-
vation to the vectors as well as the TolClass in document turned out that the
length difference of both vectors were not too big and most of our manual terms
(listed in Table 8) were found to sit on top ranks.

Indeed, based on the nature of mapping process, all of relevant terms we
confronted occurred in TolClass in document of mapping process were always
at higher rank than of TRSM. It happened because the index terms of LEX-
representation were actually those of TRSM-representation which were not drop-
ped out by the lexicon’s.

Further, manual inspection yielded that numerous terms in TolClass in
document of TRSM were remotely related to the terms kompetisi, konser, and
partitur. With regard to the problem we mentioned in the beginning of this
chapter (i.e. the existence of informal terms such as foreign terms, colloquial
terms, and proper nouns), the LEX-representation had the most satisfactory
result, i.e. it contained only the formal terms, which were index terms of lexicon.
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Table 8. The list of index terms considered manually as highly related with terms
kompetisi, konser, and partitur. The last column is the comparable English translation
for each related index term mentioned in the middle column.

Term Related index terms Comparable english translation (in

respective order)

Kompetisi kompetisi, festival, lomba, kategori,
seleksi, juri, menang, juara,
hasil, atur, nilai, jadwal, serta

competition, festival, contest,
category, selection, jury, win,
champion, result, regulate,
grade, schedule, participate

Konser konser, tiket, tonton, tampil,
informasi, kontak, tempat,
publikasi, poster, kritik, acara,
panitia

concert, ticket, watch, perform,
information, contact, place,
publication, poster, criticism,
event, committee

Partitur partitur, lagu, karya, musik,
koleksi, aransemen, interpretasi,
komposisi, komposer

musical score, song, creation,
music, collection, arrangement,
interpretation, composition,
composer

We may infer now, when the total terms in LEX-representation is not in
big difference with the total terms in TRSM-representation, we might expect
better performance from LEX-representation, which has shorter length but the
same relevant terms whose ranks are higher, or in other words, which is more
compact. It is practically feasible to improve the quality of LEX-representation
by processing the terms more carefully in the preprocessing phase which have
never been done by any of our experiments in this article.

Time and Space Complexity

The computation cost of constructing the tolerance classes is O(NM2) [15].
In order to generate the LEX-representation, we need to construct the upper
document representation and the TRSM-representation which are both O(NM).
Going from TRSM-representation to LEX-representation the computation cost
is also O(NM). After all, the total cost of mapping process is O(NM2).

We have mentioned before that the total number of index terms in ICL-
corpus was 9,742 and WORDS-corpus was 3,477. As a result, the total numbers
of index terms of TRSM-representations for ICL-corpus and WORDS-corpus
were the same, 9,742 and 3,477 respectively. After the mapping process, we
found that the total number of index terms in both corpora were reduced signif-
icantly, 64.65 % for ICL-corpus and 54.93 % for WORDS-corpus. The mapping
process reduces the dimensionality of document vector quantitatively, thus we
might expect more efficient computation when we further process the LEX-
representation, e.g. for retrieval, categorization, or clustering process. The use
of LEX-representation should give much benefit in applications when efficiency
is put on the high priority.
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7.4 Summary

We have presented a novel approach for an alternative to a document repre-
sentation by employing the TRSM method and then run the mapping process,
and finally come up with a compact representation of document. The mapping
process is the process of mapping the index terms in TRSM-representation to
terms in the lexicon.

We analyzed the LEX-representation based on the terms of topic-
representation as well as of document representation. By a comparison between
topic-representation with and without mapping we have seen that the mapping
process should yield a better representation of document, concerning its nature
ability to preserve the relevant terms. We have explained that the use of LEX-
representation should lead to an effective process of retrieval due to the fact that
the mean of recall and precision calculation gave comparable results with TRSM-
representation. We might also expect a more efficient process of retrieval based
on the finding that LEX-representation has much lower dimensional space than
TRSM-representation. We conclude that the result of this study is promising.

8 Evaluation

8.1 Introduction

With regard to the intended retrieval system, we proposed some strategies per-
taining to the implementation of tolerance rough sets model as we described
in Sects. 5 to 7. All of the strategies were formulated by exploiting our domain
specific testbed, namely ICL-corpus.

In this chapter, we are going to present our evaluation on those strategies
when they were applied on a retrieval system with different corpus. The aim of
evaluation is to validate all of our proposed strategies. Consecutively in following
sections, we will discuss the effectiveness of tolerance value generator algorithm,
the contributive factors of thesaurus optimization, and the lexicon-based docu-
ment representation by means of employing another Indonesian corpus, called
Kompas-corpus40 [11], into the retrieval system.

Due to the fact that Kompas-corpus is the only Indonesian testbed available,
we generated several corpora from Kompas-corpus as listed in Table 9. We named
the variations using term Kompas X, where X is a number specifies the amount of
documents inside it, hence Kompas 3000 is the original Kompas-corpus who con-
sists of 3,000 documents. In Kompas-corpus, not all documents are relevant with
any topic defined in the topic file (i.e. information needs file) of Kompas-corpus.
In fact, there are only 433 documents who have relevancy with at least one
topic, and those 433 documents were assembled together into the Kompas 433.
Respectively, Kompas 1000 and Kompas 2000 are composed of 1,000 and 2,000
documents in which all documents of Kompas 433 becomes part of them.
40 Kompas-corpus is a TREC-like Indonesian testbed which is composed of 3,000

newswire articles and is accompanied by 20 topics. Please see Appendix C.4 for
more explanation.
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Table 9. The variation of Kompas-corpus.

No Variation Total document Total unique term Total term

1. Kompas 433 433 8,245 85,063

2. Kompas 1000 1,000 13,288 183,812

3. Kompas 2000 2,000 19,766 370,472

4 Kompas 3000 3,000 24,689 554,689

The evaluation data were acquired from experiments following a process
depicted in Fig. 37 which is a schema for a retrieval system based on TRSM
followed by calculating the LEX-representation. We employed all variations
of Kompas-corpus listed in Table 9 for data source of the thesaurus and used
only single corpus, Kompas 433, as the main data of the retrieval system for all
runs. In the retrieval phase, the information needs and relevance judgments files
were loaded in order to produce sets of ranked documents based on TFIDF-
representation, TRSM-representation, and LEX-representation.

8.2 Evaluation on Tolerance Value Generator

In addition to retrieval system displayed in Fig. 37, we ran our tolerance value
generator (let us call it TolValGen for short) for all variants of Kompas-corpus
that served as the data source of thesaurus. Table 10 records the tolerance values
provided by the TolValGen for each run of different variant.

Figure 38 shows the compilation of recall and MAP values of retrieval system
for all data sources. From these graphs, we can see that the tolerance values
yielded by TolValGen are appropriate since at each resulted θ value the associ-
ated corpus performs better then the TFIDF.

Fig. 37. IRS based on TRSM. The evaluation was conducted as a retrieval system in
which tolerance rough sets model and the mapping process were implemented.
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Table 10. Tolerance values generated by the TolValGen for each variant of Kompas-
corpus functioned as the data source of thesaurus.

No Data system Data source Tolerance value

1. Kompas 433 Kompas 433 37

2. Kompas 433 Kompas 1000 43

3. Kompas 433 Kompas 2000 46

4 Kompas 433 Kompas 3000 47

Fig. 38. Compilation values for TFIDF-representation and TRSM-representation.
Graph (a) presents the recall values and graph (b) presents the MAP values of Kompas-
corpus variants at 1 ≤ θ ≤ 100.

8.3 Evaluation on Thesaurus Optimization

In Sect. 6 we argued that tolerance value, data source, and semantic measure
influence the quality of thesaurus in TRSM. Figure 38 that shows the compilation
results of recall and MAP of the retrieval system for all variants of Kompas-
corpus seems to agree with our argumentation. First of all, those graphs clearly
confirm that we might have different quality of thesaurus that leads to different
system performance by altering the tolerance value. This claim is supported
by Obadi, et. al. [44] who did a study by implementing TRSM in a journal
recommendation system based on topic search. They concluded that TRSM is
very sensitive to parameter setting.

It is obvious from Table 9 that all corpora, Kompas 433, Kompas 1000,
Kompas 2000, and Kompas 3000 have an increasing number of total term and
distinct term respectively from one to another. Notice that all variants came
from single corpus, hence those corpora are in the same domain with the data
system. Considering the amount of terms in each corpus, Fig. 38 indicates that
it agrees with our strategy in maximizing thesaurus quality by applying a set
of corresponding documents whose total term and unique terms are larger in
number.

With regard to the semantic measure in thesaurus construction, working with
Kompas 433 as the main data as well as data source of the retrieval system while
applying two different measures (i.e. raw frequency of co-occurrence and Cosine)
produced recall and MAP graphs as they are depicted in Fig. 39. Put our concern
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Fig. 39. Recall and MAP of different measures in thesaurus construction. Graph (a)
presents the recall values and graph (b) presents the MAP values of Kompas 433 corpus
at 1 ≤ θ ≤ 100 in which the co-occurrence (COC) and Cosine (COSINE) measures were
applied to define the semantic relatedness between terms in thesaurus construction.

on the Cosine measure (denoted by COSINE in the graphs), Fig. 39 is similar with
Figs. 29 and 30 in Sect. 6. Based on this, we acknowledge that Cosine behavior
occurs not only for a domain specific corpus such as ICL-corpus, but also for
Kompas-corpus whose documents are more differ in topic. However, this finding
affirms our assertion that the raw frequency of co-occurrence between terms is
more suitable for thesaurus construction in TRSM.

8.4 Evaluation on Lexicon-Based Document Representation

The idea of document representation based on lexicon was confronted by the
experimental results shown in Fig. 40 in which Kompas 433 served as the data
system and Kompas-corpus variants functioned as the data sources. It should
come to our notice that the results are not as promising as ones of ICL-corpus.

Fig. 40. Compilation of recall and MAP for LEX-representation. Graph (a) presents
the recall values and graph (b) presents the MAP values of LEX-representation of
Kompas-corpus variants at 1 ≤ θ ≤ 100.

We did the observation into tolerance classes of Kompas 433 for terms ban-
jir (in English: flood) and sidang (in English: trial) at several tolerance values,
i.e. 1, 16, 17, and 37. The terms were chosen in order to represent topic situasi
banjir Jakarta (in English: the flood situation in Jakarta) and topic persidangan
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Tommy Soeharto (in English: the Tommy Soeharto’s trial) which have document
frequency 40 and 45 respectively. From the study, we found identical character-
istic with of ICL-corpus in similar observation, that (1) TRSM-representation
had most of related terms defined in thesaurus; and (2) the cardinality of
TolClass in document in TFIDF-representation were mostly the least.

However, comparison between tolerance classes of TRSM-representation and
of LEX-representation made us realize that the lexicon has removed some terms
with high relevancy with the topic, which mostly were proper noun. For example,
the topics situasi banjir Jakarta and persidangan Tommy Soeharto include signif-
icant proper nouns Jakarta (which is the name of Indonesian’s capital city) and
Tommy Soeharto (which is the name of Indonesian second president’s youngest
son) respectively, and none of those proper nouns are part of the lexicon.

Table C.6 lists the 20 topics of Kompas-corpus and is comprised of 75 unique
terms. First of all, it is obvious that almost all topics have proper nouns. Further,
we identified that 26.6 % of the topic unique terms would be useless in retrieval
phase because those terms have been removed from LEX-representation by the
lexicon during mapping process, whereas most of the removed terms are proper
nouns which are significant in defining the topics. The situation was quite dif-
ferent with the ICL-corpus due to the fact that the topics of ICL-corpus which
is comprised of 41 unique terms only have 1 proper noun, i.e. ICL, and thus
yielded a compact LEX-representation.

For generalization, we acknowledge that this is a serious problem for LEX-
representation for it might be corrupted and thus become much less reliable.
Considering the fact that a lexicon consists of base words, we may infer that
lexicon-based representation is not suitable for general use.

9 Conclusion

9.1 The TRSM-based Text Retrieval System

The research of extended TRSM, along with other researches of TRSM ever con-
ducted, acted in accordance with the rational approach of AI perspective. This
article presented studies who complied with the contrary path, i.e. a cognitive
approach, for an objective of a modular framework of semantic text retrieval
system based on TRSM specifically for Indonesian.

Figure 41 exhibits the schema of the intended framework which consists of
three principal phases, namely preprocessing phase, TRSM phase, and retrieval
phase. The framework supports a distinction between corpora functioned as data
source and data system. In the framework, the query is converted into TRSM-
representation by putting the thesaurus and the Eq. (25) to use while generating
the upper approximation and re-weighting the query representation respectively.
The mapping phase is included for an alternative and subject to change.

The proposed framework is in Java and takes a benefit of using Lucene 3.1
while indexing. Indonesian stemmer (i.e. CS stemmer), lexicon (i.e. created by
University of Indonesia), and stopword (i.e. Vega’s stopword) which are embed-
ded make the framework works specifically for Indonesian language; altering
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Fig. 41. The schema of the IRS. The schema of text retrieval system based on TRSM.
The dashed line shapes are optional.

them specific to one language would make the framework dependent to that
particular language.

It consists of 9 primary classes, in which one of it is the main class (i.e.
IRS TRSM), plus single class for the optional mapping phase. Three classes are
included in preprocessing phase, two classes work for TRSM phase, and three
classes are needed in retrieval phase. Figure 42 shows the classification of those
classes based on the phases of the resulted IRS.

Fig. 42. Primary classes of the IRS. In total there are 10 primary classes in the proposed
IRS, including the MappingTwoIndex for the optional mapping phase. The classes are
classified based on the three phases of the IRS. The IRS TRSM is the main class.

9.2 Novel Strategies for the TRSM-based Text Retrieval System

With regard to the framework of retrieval system, we delved into four issues
based on the nature of TRSM. The very first issue questioned about the capacity
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of TRSM for the intended system, while the other three touched the system
effectiveness.

In order to answer the first question, we did a feasibility study whose aim
was to explain the meaning of richness of the TRSM-representation, rather than
listing the strengths and weaknesses of TRSM. By working in close cooperation
with human experts, we were able to reveal that the representation of document
produced by TRSM does not merely contain more terms than the base repre-
sentation, it rather contains more semantically related terms. Concerning our
approach, we deem this as a stronger affirmation for the meaning of richness of
the TRSM-representation as well as a satisfactory indicator in an endeavor to
have a semantic retrieval system. Moreover, our analysis confirmed that rough
sets theory intuitively works as the natural process of human thought.

Since the TRSM was introduced, no one has ever discussed or examined
TRSM’s parameter (i.e. tolerance value θ) pertaining to its determination, whe-
reas we consider it as fundamental for TRSM implementation. Obadi et. al. [44]
seemed to realize this particular issue by stating that TRSM is very sensitive to
parameter setting in their conclusion, however they did not explain or suggest
anything about how to initiate it. In Sect. 5 we proposed a novel algorithm to
define a tolerance value automatically by learning from a set of documents; and
later we named it TolValGen. The algorithm was a result from careful observa-
tion and analysis performed through our corpora (i.e. ICL-corpus and WORDS-
corpus) in which we learned some principles for a tolerance value resolution. The
TolValGen was evaluated using another Indonesian corpus (i.e. Kompas-corpus)
and yielded positive result. It was capable to produce an appropriate tolerance
value for each variants of Kompas-corpus. Figure 43 displays the flowchart of
TolValGen which works based on SVD.

We recognized that the thesaurus dominates TRSM in its work, hence opti-
mizing the quality of thesaurus became another important issue we discussed.
We admit that our idea to enhance the quality of thesaurus by adding more docu-
ments specifically for data source of thesaurus did not come up with a promising
result as of Nguyen et al. [28,29] which performed much more clever idea by
extending the TRSM such that it accommodates more than one factors for a
composite weight value of document vector. However, from the analysis carried
out through several corpora (the variants of ICL-corpus and the Wiki 1800), we
learned that tolerance value, data source of thesaurus, and semantic measure
determine the quality of thesaurus. Specifically, a data source which is in a cor-
responding domain with the system data and is larger in number might bring
more benefit. We also found that the total number of terms and index terms
contribute more to the quality of thesaurus, despite the size of corpus. Finally,
we suggested to keep the raw frequency of co-occurrence to define the seman-
tic relatedness between terms for it gave better results in experiment rather
than other measure, i.e. Cosine. All of these findings were validated by means of
evaluation using Kompas-corpus.

The last issue discussed in this article associated with both the effectiveness
and efficiency of system. It was motivated by a fact that the richer represen-
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Fig. 43. Flowchart. The flowchart of TolValGen.
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tation of TRSM is indicated by the larger number of index terms put into the
model. Concerning the size of vector dimension, we came into an idea of a com-
pact model of document based on the mapping process between index terms
and lexicon after the document enriched by TRSM. The experimental data over
ICL-corpus expressed a promising result, however the evaluation through
Kompas-corpus remarked differently. Even though numerous irrelevant terms
successfully removed from LEX-representation by the lexicon, we learned that
our model cannot be applied for general use. The LEX-representation might be
easily corrupted and thus become much less reliable when a query comprised of
many terms which are not part of the lexicon and those terms are considered sig-
nificant. Whereas, this particular situation is highly probable to occur in natural
language.

9.3 Future Directions

The proposed framework is lack of comparison result. The studies presented in
this article focused only on the use of TRSM which were compared to the result
of TF*IDF. Comparison studies of methods, such those explained in Sect. 2
for semantic indexing, would put TRSM on certain position and bring some
suggestion for further development.

The high complexity of our framework is the consequence of TRSM imple-
mentation. The application of Lucene module supports the indexing task in
preprocessing phase of the framework, however we failed in the attempt to alter
the index directly after TRSM phase which forced us to store the revised-index
in different space. We found that it reduced the efficiency of IRS significantly,
even though index file was applied. Studies focus on indexing in TRSM imple-
mentation is thus essential.

The proposed framework was developed for laboratory environment which
is effective for restricted format and type of documents, i.e. follow the TREC-
format and written in a .txt file. For a real application, our proposed framework
should be extended to have the ability to deal with various format and type
of documents. Much further, we should consider the recent phenomena of big
data41.

The TolValGen has showed to work on our corpora and their variations.
However, it suffers from the expensive time and space to operate. In order to
have cheaper complexity for tolerance value generator, further study on this
theme with different methods is needed. We might expect some advantage by
the use of machine learning method that accommodates the dynamic change of
data source.

The lexicon-based document representation is an attempt on system effi-
ciency. Despite the result of evaluation in Sect. 7 which signifies that it is lack
of scalability, the fact that we did not implement any other linguistic methods
arose our confident that those computations (such as tagging, feature selection,

41 Big data is a term to describe the enormity of data, both structured and unstruc-
tured, in volume, velocity, and variety [45].
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n-gram) might give us benefit in the effort of refining the thesaurus that serves
as the basis of tolerance rough sets model, and thus the knowledge of our IRS.

In accordance with Searl’s and Grice’s accounts on meaning, Ingwersen [46,
p. 33] defined that the concept of information, from a perspective of information
science, has to satisfy dual requirements: (1) being the result of a transformation
of generator’s knowledge structures (by intentionality, model of recipients’ states
of knowledge, and in the form of signs); and (2) being something which when
perceived, affects and transforms the recipients’s state of knowledge. Thus, the
endeavor of a semantic IRS is the effort to retrieve information and not merely
terms with similar meaning. This article is a step toward the objective.
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Appendix

A Weighting Scheme: The TF*IDF

Salton and Buckley summarised clearly in their paper [47] the insights gained
in automatic term weighting and provided baseline single-term-indexing models
with which other more elaborate content analysis procedures can be compared.
The main function of a term-weighting system is the enhancement of retrieval
effectiveness where this result depends crucially on the choice of effective term-
weighting systems. Recall and Precision are two measures normally used to
assess the ability of a system to retrieve the relevant and reject the non-relevant
items of a collection. Considering the trade-off between recall and precision, in
practice compromises are normally made by using terms that are broad enough
to achieve a reasonable recall level without at the same time producing unrea-
sonably low precision.

Salton and Buckley further explained that, with regard to the differing recall
and precision requirements, three main considerations appear important:

1. Term frequency (tf). The frequent terms in individual documents appear to
be useful as recall-enhancing devices.

2. Inverse document frequency (idf). The idf factor varies inversely with the
number of documents dft to which a term t is assigned in a collection of N
documents. It favors terms concentrated in a few documents of a collection
and avoids the effect of high frequency terms which are widespread in the
entirety of documents.
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3. Normalisation. Normally, all relevant documents should be treated as equally
important for retrieval purposes. The normalisation factor is suggested to
equalise the length of the document vectors.

Table A.1. Term-weighting components with SMART notation [39]. Here, tft,d is the
term frequency of term t in document d, N is the size of document collection, dft is
document frequency of term t, wi is the weight of term t in document i, u is the
number of unique terms in document d, and CharLength is the number of characters
in the document.

Term frequency component

n (natural) tft,d

l (logarithm) 1 + log(tft,d)

a (augmented) 0.5 +
0.5×tft,d

maxt(tft,d)

b (boolean)

{
1 if tft,d > 0

0 otherwise

L (log ave)
1+log(tft,d)

1+log(avet∈d(tft,d))

Collection frequency component

n (no) 1

t (idf) log N
dft

p (prob idf) max{0, log N−dft
dft

}
Normalisation component

n (none) 1

c (cosine) 1√∑
i(wi)2

u (pivoted unique) 1
u

b (byte size) 1
CharLengthα , α < 1

Table A.1 summarises some of the term weighting schemes together with the
mne-monic which is sometimes called SMART notation. One example of the
mnemonic is lnc.ltc. The first triplet (i.e. lnc) represents the weighting com-
bination for the document vector, while the second triplet (i.e. ltc) represents
the weighting combination for the query vector. For each triplet, it describes the
form of tf component, idf component, and normalization component being used.
Thus, mnemonic lnc.ltc means that the document vector employs log-weighted
term frequency, no idf for collection component, and cosine normalisation, while
the query vector employs log-weighted term frequency, idf weighting for collec-
tion component, and cosine normalisation. Equation A.1 is the common weight-
ing scheme used for a term in a document, i.e. mnemonic ntn, which is called
TF*IDF weighting scheme.

wt,d = tf · idf = tft,d · log
N

dft
(A.1)
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B Document Ranking Method: The Cosine Measure

Manning et al. [39] stated that cosine similarity is fundamental to IR systems
that use any form of vector space scoring. Given a query vector and a set of
document vectors in a high dimensional space, we may rank the documents by
comparing the angle between the query vector and each document vector; the
smaller the angle, the more similar the vectors. In linear algebra, the angle θ
between two vectors, −→x and −→y , can be measured as follows:

−→x · −→y = |−→x | ∗ |−→y | ∗ cos(θ) (B.1)

where −→x ·−→y represents the dot product while |−→x | and |−→y | represent the lenght of
the vectors. The dot product −→x ·−→y of two vectors is defined as

∑M
j=1 xj ∗yj and

the Euclidean length of a vector |−→x | is defined as
√

∑M
j=1(xj)2. Thus, formula

(B.2) can be used to measure the similarity between a query vector Q and a
document vector D:

similarity(Q,D) =

∑M
j=1 wqj ∗ wdj

√

∑M
j=1(wqj)2 ∗ ∑M

j=1(wdj)2
(B.2)

C The Corpora

C.1 ICL-Corpus and WORDS-Corpus

Our original corpus, called ICL-corpus, consists of 1,000 first emails of Indonesian
Choral Lovers (ICL) Yahoo! Groups and are formatted as of the Text REtrieval
Conference (TREC) format [20]. Therefore our test collections consist of three
parts (a set of documents, a set of information needs, and relevance judgments)
and all documents are marked up in a TREC-like format, i.e. each document is
marked up by <DOC> and </DOC> tags, the document number is marked
up by <DOCNO> and </DOCNO> tags, the subject of email is marked up
by <SUBJECT> and </SUBJECT> tags, the date of email is marked up by
<DATE> and </DATE> tags, the sender is marked up by <FROM> and
</FROM> tags, and the text body is marked up by <TEXT> and </TEXT>
tags.

We worked with two choral experts intensively in the annotation process in
order to construct the information needs and relevance judgments for our test-
bed. The annotation process consisted of two tasks which were a) topic assign-
ment, where the human experts assigned topic(s) for each document within the
original corpus; and b) keywords determination, where they determined terms
considered as highly related with the topic(s) given. The annotation process
aimed to grasp how the topic(s) could be assigned to a particular document
which was mainly described by the keywords determined. We take benefit from
these keywords as the list of terms closely related with the topic of document,
as well as the document itself, and assume that the other terms not listed are
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Fig. C.1. The content of corpora. Picture on the left is an example of ICL-corpus doc-
ument which consists of original document, while picture on the right is an example
of WORDS-corpus document which consists of keywords given by human expert man-
ually for particular ICL-corpus document, i.e. in this case, the ICL-corpus document
with number “DR-480” which is shown on the left.

Fig. C.2. Corpus relationship. The WORDS-corpus was yielded by human expert in
annotation process over ICL-corpus.

less important terms. The first step of topic assignment yielded 127 topics and
the keywords determination yielded a new corpus, called WORDS-corpus.

Consult Fig. C.1 to see the content of both corpora. Notice that the main
difference between documents in ICL-corpus and WORDS-corpus lies in the text
body, i.e. the document of ICL-corpus consists of a body of emails while the
document of WORDS-corpus consists of keywords defined by human experts.
FigureC.2 shows the relationship between both corpora.

As we mentioned above, the topic assignment yielded 127 topics of which
many have low document frequency; 81.10 % of them have document frequency
< 10 and 32.28 % of them have document frequency 1. We further processed the
127-topics, as it is shown by Tables C.1 and C.2, and came up with 28 topics as
listed in Table C.3. Thus, we have two version of relevance judgments a) relevance
judgment which consists of 127 topics; and b) relevance judgment which consists
of 28 topics.

For the 127-topics, distribution of topics is showed by TableC.4 while list
of topics with document frequency ≥ 10 is showed by Table C.5. For all the
tables here, ID column defines the topic identifier, Topic column is the topic
in Indonesian, and DF column is the document frequency or total number of
relevant documents with regard to the topic.

Refer to the TREC format, Fig. C.3 is an example of relevance judgment
file while Fig. C.4 is an example of the information needs file. For the relevance
judgment file, the first column defines the topic identifier, the third column
defines the document identifier, and the fourth column defines the relevancy, i.e.
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Table C.1. List of topics. This is a list of 127 topics of ICL-corpus and the total
number (document frequency) of relevant documents for each topic with ID 0 to 35.

ID Topic DF ID Topic DF

0 Konser 134 18 Kompetisi PS 15

1 Partitur 125 19 Garpu tala 14

2 ICL 80 20 Lokakarya 13

3 ICL baru 75 21 Seminar 12

4 Lomba 73 22 Lagu sacred 11

5 Tanggapan konser 46 23 Publikasi 10

6 KPS Unpar 39 24 Hasil lomba 9

7 Pertemuan 37 25 Konser bersama 9

8 Dokumentasi 35 26 Koor gereja 9

9 Tanggapan lomba 34 27 Penilaian lomba 9

10 Media PS 33 28 PS sekolah 9

11 Manajemen dana 32 29 Spam 9

12 Aplikasi 30 30 Aturan spam 8

13 Buku vokal 26 31 Istilah musik 8

14 Teknikal milis 25 32 Manajemen PS 8

15 Festival 17 33 Peraturan lomba 8

16 Interpretasi 17 34 Manajemen penyanyi 7

17 Warna tangga nada 17 35 Organisasi PS 7

1 if the document is relevant to the topic, and 0 otherwise. The second column is
an arbitrary string and in this case brings no information. The information needs
file consists of topics (string between <TITLE> and </TITLE> tags) with
its description (string between <DESC> and </DESC> tags) and narrative
(string between <NARR> and </NARR> tags). It follows the TREC format,
thereby marked up by some tags in which each topic is enclosed by <TOP> and
</TOP> tags.

Annotation Process

We have mentioned above that the annotation process consisted of two tasks,
namely topic assignment and keywords determination, and yielded WORDS-
corpus and two lists of topics (127-topics and 28-topics). This was a collaborative
work with three choral experts in which four phases were carried out as it is
presented in Fig. C.5.

First of all, the first expert did the topic assignment and keyword deter-
mination for 1,000 documents of ICL-corpus. Considering his work (namely
Result 1), we did the same thing and came with a different result (namely
Result 2). Based on Result 1 and Result 2, the first expert did the revision
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Table C.2. List of topics. This is a list of 127 topics of ICL-corpus and the total
number (document frequency) of relevant documents for each topic with ID 36 to 126.

ID Topic DF ID Topic DF

36 Perkenalan 7 83 Usul 2

37 Analisa lagu 6 84 Website PS 2

38 Kualitas penyanyi 6 85 Workshop PS 2

39 Melatih PS 6 86 Agenda 1

40 UCV 6 87 Artikel konser 1

41 Bel Canto 5 88 Blocking 1

42 CKO 5 89 BMS 1

43 Impromptu 5 90 Children Choir Network 1

44 LPSAPTI 5 91 Choir building 1

45 Pakar PS anak 5 92 Database PS 1

46 Pembayaran 5 93 File 1

47 Penampilan 5 94 File konser 1

48 Piano 5 95 Forum 1

49 Ad Maiorem 4 96 FPS ITB 1

50 Choral sound 4 97 FPS Unpar 1

51 File uploaded 4 98 Harga lagu 1

52 ICL file 4 99 Hari haki 1

53 KCI 4 100 Himpunan seniman remaja bandung 1

54 Pembicara choir building 4

55 Poling 4 101 ICL poling 1

56 PS anak 4 102 Informasi 1

57 Alamat 3 103 Interpretasi lagu 1

58 Arti konser 3 104 Jepang 1

59 Demam panggung 3 105 Kategori lomba 1

60 Folklore 3 106 Kategori PS 1

61 FX. Soetopo 3 107 Ketua PSM 1

62 Hak cipta 3 108 Lagu 1

63 ICL perkenalan 3 109 Lokakarya musik 1

64 Teknik pernafasan 3 110 Maria Luciana Dharmadi 1

65 Teknik vokal 3 111 Pemanasan 1

66 Tempat konser 3 112 Pesan foto 1

67 Tempat latihan 3 113 Poster 1

68 Tommy Prabowo 3 114 Poster konser 1

69 Acara 2 115 PS Perbanas 1

(Continued)
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Table C.2. (Continued)

ID Topic DF ID Topic DF

70 Aransemen 2 116 PS Petra 1

71 Berita 2 117 PSM Petra 1

72 Chamber choir 2 118 PSM UGM 1

74 Juri lomba 2 119 PSM Unpad 1

75 Memasyarakatkan PS 2 120 Respon ICL baru 1

76 Pembicara 2 121 Salam 1

77 Pertanyaan 2 122 Sponsor 1

78 Pitch 2 123 Tangga nada 1

79 PS GSS 2 124 Tiket 1

80 PS SD 2 125 VCD 1

81 Teknik pengucapan 2 126 VCD FPS ITB 1

82 Tiket konser 2

Table C.3. List of topics. This is a list of 28 topics of ICL-corpus and the total number
(document frequency) of relevant documents for each topic.

ID Topic DF ID Topic DF

0 Komenter kegiatan 80 14 Orang 16

1 Internal milis ICL 100 15 Referensi 27

2 Kompetisi 181 16 Media paduan suara 33

3 Konser 158 17 Latihan 12

4 Karya musik 125 18 Pertemuan anggota milis ICL 37

5 Perkenalan anggota milis ICL 87

19 Spam 14

6 Manajemen 46 20 Instrumen 19

7 Kelompok musik 52 21 Genre 14

8 Aplikasi 38 22 Tangga nada 18

9 Hal teknis milis 33 23 Seminar atau pelatihan 28

10 Teknik vokal 13 24 Hak cipta 11

11 Performa 14 25 Terminologi 11

12 Dokumentasi 38 26 Forum 15

13 Interpretasi karya musik 24 27 Publikasi 14

Table C.4. Topic distribution. This table shows the total number of topic which has
document frequency < 10 out of 127 topics.

Document frequency 9 8 7 6 5 4 3 2 1

Number of topic 6 4 3 4 8 8 12 17 41
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Table C.5. List of topics. This table presents topics of ICL-corpus with document
frequency ≥ 10 out of 127 topics.

DF Topic DF Topic DF Topic

134 Konser 35 Dokumentasi 17 Interpretasi

125 Partitur 34 Tanggapan lomba 17 Warna tangga nada

80 ICL 33 Media PS 15 Kompetisi PS

75 ICL baru 32 Manajemen dana 14 Garpu tala

73 Lomba 30 Aplikasi 13 Lokakarya

46 Tanggapan konser 26 Buku vokal 12 Seminar

39 KPS Unpar 25 Teknikal milis 11 Lagu sacred

37 Pertemuan 17 Festival 10 Publikasi

Fig. C.3. The relevance judgment file. This picture is an inset of the relevance judgment
file. Respectively, column 1 to 4 are the topic identifier, random string, document
identifier, and document relevancy with topic.

Fig. C.4. The information needs file. This picture is an inset of the information needs
file.
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Fig. C.5. Annotation process. The annotation process had four phases: determination,
revision, decision, and categorization.

of his previous result and produced the new result (namely Result 3). The sec-
ond expert made a decision (Result 4) by analyzing Result 1, Result 2, and
Result 3.

On this stage, we had 127 topics and decided to make the list smaller by
categorizing it. Thus, we analyzed those topics and agreed on 28 topics. Refer
to the 28-topics, the third expert reassigned each documents of ICL-corpus.

In addition to the construction process, this is another main difference of our
corpus with an Indonesian corpus made by Jelita Asian from Kompas newswire
articles (Kompas-corpus)42. In ICL-corpus, each document must be assigned
by at least one topic while in Kompas-corpus it is not the case, i.e. there are
documents that are not designated to any topics.

C.2 WIKI 1800

WIKI-1800 is a corpus consists of 1,800 text documents in music domain which
are the short abstract of Indonesian Wikipedia articles43. The full version of the
corpus consists of 85,601 short abstracts in variety of topics and was downloaded
from DBpedia44. The WIKI 1800 employed in this study was obtained by fil-
tering out the 85,610 abstracts specifically based on music domain which was
conducted by our third expert.

FigureC.6 shows a small chunk of WIKI-1800 document. Each docu-
ment is represented as an RDF triple notation which contains three compo-
nents (i.e. subject, predicate, and object), plus the URL of the Web page.
In Fig. C.6, the <http://dbpedia.org/resource/Indonesia Raya>, which acts as
the subject, is an URI reference to the resource of Indonesia Raya. The
42 Please see Appendix C.4 for more explanation about Kompas-corpus.
43 Indonesian Wikipedia: http://id.wikipedia.org/wiki/Halaman Utama.
44 DBpedia is a community project which was started and is administered by research

group from Universität Leipzig, Freie Universität Berlin, and OpenLink Software.
The project is an effort to extract information from Wikipedia, make this information
available on the Web under an open license, and interlink the DBpedia dataset with
other open datasets on the Web. The Indonesian short abstracts of DBpedia was
downloaded from http://downloads.dbpedia.org/3.7/id/.

http://dbpedia.org/resource/Indonesia_Raya
http://id.wikipedia.org/wiki/Halaman_Utama
http://downloads.dbpedia.org/3.7/id/
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<http://www.w3.org/2000/01/rdf-schema#comment> (or rdfs:comment for
short), which acts as the predicate, is an URI reference that refers to the property
used to provide a human-readable description of a resource; R rdfs:comment L
states that L is a human-readable description of R [48]. Therefore, the string
inside the quotes next to the rdfs:comment is the human-readable description of
Indonesia Raya, which is actually the short abstract of the Indonesia Raya arti-
cle. Finally, the <http://id.wikipedia.org/wiki/Indonesia Raya#> is the URL
that will go to the Web page of Indonesia Raya.

Fig. C.6. WIKI-1800. An example of WIKI-1800 document.

C.3 The Choral Experts

In data preparation of our study, we worked in collaboration with three peo-
ple who have experiences in choral for years. They were Agastya Rama Listya,
Kristoforus Kuntarahadi, and Inke Kusumastuti; in AppendixC.1, we called
them the first expert, second expert, and third expert respectively. Figure C.7
displays the pictures of them.

Agastya Rama Listya was born in Yogyakarta on February 18, 1968, and now
is living in Salatiga, Central Java, Indonesia. He obtained his Bachelor of Arts in
Theory and Music Composition from the Indonesian Arts Institute, Yogyakarta,
Indonesia, in 1992. In 2001, he received his Master of Sacred Music in Choral
Conducting from Luther Seminary and St. Olaf College, Minnesota, USA. He
was the Dean of the Faculty of Performing Arts, Satya Wacana Christian Univer-
sity at Salatiga for two periods (2009–2011) and was affiliated as the committee
member of Badan Kerjasama Gereja-Gereja se-Salatiga (2007–2010), Lembaga
Pengembangan Pesparawi Daerah Jawa Tengah (2007–2010), and Badan Pem-
bina Seni Mahasiswa Indonesia Jawa Tengah (2008–2010). Agastya has published
7 books, 6 articles in journals, and 16 essays. He is a productive music composer

http://www.w3.org/2000/01/rdf-schemacomment
http://id.wikipedia.org/wiki/Indonesia_Raya
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Fig. C.7. The choral experts. The choral experts involved in annotation process
of our study: (1) Agastya Rama Listya, (2) Kristoforus Kuntarahadi, and (3) Inke
Kusumastuti.

and arranger in which many of his choral works were performed by numerous
choirs in Indonesia. He is also an active choral coach of a number of choirs where
under his direction have made some prominent achievements regionally, nation-
ally, and internationally. Individually, he was the winner of 4 different national
choral composition contests during 1998–2009 and the winner of Yazeed Djamin
Award for Piano Composition Contest in 2006. Agastya Rama Listya’s name was
included in the 30th Pearl Anniversary of Marquis Who’s Who in The World
(November 2012).

Kristoforus Kuntarahadi was born in Yogyakarta on January 14, 1979. He is
now a staff in the office of Bishop’s Conference of Indonesia, in Jakarta. He was
the student of several well-known Indonesian vocalists and chorister, i.e. Avip
Priatna, Lucia Kusumawardhani, Yoseph Chang, and Tommy Prabowo. He has
been an active singers in some choirs since 1990, including the famous Indonesian
choir, Batavia Madrigal Singers in Jakarta, and the tenor solo performer in some
concerts. He obtained several achievements on regional singing festival during
1993–1997. Nationally, as a classical singer, he was the runner-up of Bintang
Radio dan Televisi (a national radio and television singing competition) in 1995
and the third prize winner of PEKSIMINAS V (a national singing competition
for student) in 1999. He received an award from Governor of Yogyakarta as an
outstanding vocal artist in 1997.

Inke Kusumastuti is a medical doctor and currently continuing her education
in Psychiatry in Udayana University, Denpasar, Bali. She was born in Blitar on
April 17, 1986. She did not receive any formal education in music specifically,
but she is practically a motivated self-learner when it comes to singing. She
got numerous prizes in individual regional singing contests since she was in
elementary school (1992–2001). In 2001–2004 she was involved in a band as the
vocalist and the band won several regional competitions. In 2003, she experienced
to be a cafe singer for a year. After that, while pursuing her medical education,
she had been an active sopranos in some choirs, including the Eternal Choir,
a well-known semi-professional small choir in Yogyakarta. As a chorister, she
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Table C.6. List of topics. This is a list of 20 topics of Kompas-corpus and the document
frequency, DF , of relevant documents for each topic.

ID Topic DF

0 Hubungan Indonesia Australia setelah Timor Timur 11

1 Dampak terorisme terhadap penurunan jumlah turis 2

2 Kecelakaan pesawat udara Indonesia 22

3 Pemberantasan narkoba 18

4 Pemilu presiden Prancis 1

5 Ulang tahun Megawati Sukarnoputri 1

6 Situasi banjir Jakarta 40

7 Duta besar Indonesia 41

8 Nama suami Megawati 40

9 Gejala dan penyebab asma 1

10 Pemenang pertandingan piala Thomas jenis apapun asal Indonesia 8

11 Nama bos Manchester United 27

12 Laporan piala dunia 60

13 Nilai tukar rupiah terhadap dolar AS 74

14 Aktor aktris calon atau pemenang Oscar 3

15 Akibat kenaikan harga BBM 19

16 Susunan kabinet Timor Leste 1

17 Persidangan Tommy Soeharto 45

18 Kunjungan luar negeri Megawati 36

19 Masa jabatan Gus Dur sebagai presiden 3

was involved in numerous concerts and choral competitions and received some
achievements. In 2007, she followed a conducting workshop given by Andrew
deQuadros in the First Asian Choir Games and, in 2010, she joined a choral
clinic given by Marc Anthony Carpio, a choirmaster of Phillippine Madrigal
Singers. Recently, in 2012, she got the third prize winner in Bintang Radio RRI
Jember (a singing contest conducted by national radio of Indonesia at Jember).
Her favorite artist is The Real Group, a world-acclaimed Swedish-based a capella
group, which has significantly shaped her current music interest, and her dream
is to able to employ music as part of therapy for people with mental disorders.

C.4 Kompas-Corpus

Kompas-corpus [11] is a set of newswire articles collected from a known Indone-
sian newspaper Kompas45 published between January and June 2002. It consists
of 3,000 documents constructed by following the TREC format, thereby accom-
panied by a file of information needs and a file of relevance judgments. There
are 20 topics chosen by a native speaker after reading each documents in order
45 Kompas. URL: http://www.kompas.com.

http://www.kompas.com
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to represent the user information needs. Those topics are listed in TableC.6 as
well as the total number of relevant documents for each topic. Out of 3,000, only
433 documents are assigned topic(s).
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1. Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing
and Evaluating Search Engine. MIT Press, Cambridge (2010)

2. Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.J.: Text Mining - Predictive
Methods for Analyzing Unstructured Information. Springer, New York (2005)

3. Eifring, H., Theil, R.: Linguistics for Students of Asian and African Languages
(2005)

4. Grandy, R.E., Warner, R.: Paul grice. http://plato.stanford.edu/entries/grice/,
May 2006. Accessed 02 Oct 2012

5. Searle, J.R.: Intentionality: An Essay in the Philosophy of Mind. Cambridge Uni-
versity Press, Cambridge (1983)

6. Grice, H.P.: Studies in the Way of Words. Harvard University Press, Cambridge
(1989)

7. Haugh, M., Jaszczolt, K.M.: Speaker intentions and intentionality. In: Allan, K.,
Jaszczolt, K.M. (eds.) The Cambridge Handbook of Pragmatics, pp. 87–112.
Cambridge University Press, Cambridge (2012)

8. Akand, M.: Grice and searle on meaning. Copula - J. Philos. Dept XXVIII, 51–58
(2011)

9. Adriani, M., Manurung, R.: A survey of bahasa Indonesia NLP research conducted
at the University of Indonesia. In: Proceedings of the 2nd International MALINDO
Workshop (2008)

10. Asian, J.: Effective techniques for Indonesian text retrieval. Ph.D. thesis, School
of Computer Science and Information Technology, RMIT University, Doctor of
Philosophy Thesis (March 2007)

11. Asian, J., Williams, H.E., Tahaghoghi, S.M.M.: A testbed for Indonesian text
retrieval. In: Bruza, P., Moffat, A., Turpin, A. (eds.) ADCS, pp. 55–58. University
of Melbourne, Department of Computer Science (2004)

12. Sneddon, J.: The Indonesian Language: It’s History and Role in Modern Society.
UNSW Press, Sydney (2003)

13. Kawasaki, S., Nguyen, N.B., Ho, T.-B.: Hierarchical document clustering based on
tolerance rough set model. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.)
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Abstract. Transportation problem (TP) is a very important area in
operations research and management science. TPs not only involve with
cost minimization, but also involve with many other goals such as profit
maximization, time minimization, minimization of total deterioration of
goods, etc. Also the available data of a transportation system such as
transportation costs, resources, demands, conveyance capacities are not
always crisp or precise but are uncertain. In this dissertation some trans-
portation problems have been formulated and solved in different uncer-
tain environments, e.g., fuzzy, type-2 fuzzy, rough and linguistic.

Section 1 is introductory. Some basic concepts and definitions of
fuzzy set, type-2 fuzzy set, rough set and variable are introduced in
Sect. 2. In Sect. 3, we have formulated and solved two solid transporta-
tion problems (STPs) with fuzzy parameters namely a multi-objective
STP with budget constraints and a multi-objective multi-item STP.
Section 4 presents some theoretical developments related to type-2 fuzzy
variables (T2 FVs) - a defuzzification method of T2 FVs and an inter-
val approximation method of continuous T2 FVs. In this section, three
transportation models with type-2 fuzzy parameters have been formu-
lated and solved. In Sect. 5, we have presented two transportation mode
selection problems with linguistic evaluations represented by fuzzy vari-
ables and interval type-2 fuzzy variables respectively. Here we have devel-
oped two fuzzy multi-criteria group decision making methods and these
methods are applied to solve the respective mode selection problems.
Section 6 presents a practical solid transportation model considering per
trip capacity for each type of conveyances. Also in this problem fluctu-
ating cost parameters are represented by rough variables. Rough chance
constrained programming model, rough expected value model and rough
dependent-chance programming model are used to solve the problem
with rough cost parameters.
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1 Introduction

1.1 Transportation Problem (TP)

Transportation problem is one of the most important and practical application
based area of operations research. The classical transportation problem (TP)
is a distribution problem in which some goods/products are to be transported
from some sources (factories, warehouses, etc.) to some destinations (demand
points). The objective is to determine which routes to be considered for ship-
ment and the amount of the shipment so that total transportation cost become
minimum. Mathematically classical TP can be defined as a special type of linear
programming problem.

Basic Terminologies in TP. The transportation systems depend on several
parameters such as origin or source, destination, availability or resource, demand,
unit transportation cost, conveyance, constraint, etc. Detailed descriptions on
these parameters are available in the literature on transportation problems.

Origin or source: The places where the goods/products originate from, i.e.
the goods are available (e.g., the plant, production center or warehouse etc.) are
called the origins or the sources.

Destination: The places where the goods are to be transported are called
destinations.

Availability or resource: The amount of goods available at some source that
can be transported from the source is refereed as availability or resource of that
source.

Demand: The amount of goods that is required at some destination is refereed
as the demand of that destination.

Unit transportation cost: The cost of transportation of unit product from
some source to some destination is called unit transportation cost of the product
for that source-destination route.

Constraint: The availabilities as well as demands are limited to certain
amount. Limitations on resource availability and fulfilment of demand of each
destination form what are known as constraints.

Conveyance: Modes of transportation (e.g., trucks, goods trains, cargo flights,
ships, etc.) are called conveyances.

Different Types of Transportation Models:

Basic Transportation Problem (TP): The classical transportation problem
(TP) deals with transportation of goods from some sources (supply points) to
some destinations (demand points) so that total transportation cost becomes
minimum. Suppose there are m origins (or sources) Oi, (i = 1, 2, ...,m) and n
destinations (or demand points) Dj , (j = 1, 2, ..., n) and ai be the amount of a
homogeneous product available at i-th origin and bj be the demand at j-th des-
tination. Let cij is the cost for transportation of unit of product from source i to
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destination j and xij be decision variable which represents the unknown quantity
to be transported from i-th origin to j-th destination. Then the mathematical
form of TP is

Min Z =
m
∑

i=1

n
∑

j=1

cij xij , (1)

s.t.
n
∑

j=1

xij (=, ≤ ) ai, i = 1, 2, ...,m, (2)

m
∑

i=1

xij (=, ≥ ) bj , j = 1, 2, ..., n, (3)

xij ≥ 0, ∀ i, j,

m
∑

i=1

ai (=,≥)
n
∑

j=1

bj . (4)

The constraint (2) ensures that total transported amount to the destinations
from some source must be equal or less than the availability of that source. The
constraint (3) indicates that total transported amount from the sources should
at least satisfy the demand of each destination. If the constraints (2) and (3) are
of equality types and total available resources are equal to the total demands,
then the problem is called balanced TP. However in some real systems, the
balance condition does not always holds, i.e., it may happen that total available
resources are greater or equal to the total demands. Then the constraints become
inequality types and the problem is called unbalanced TP.

Fixed Charge Transportation Problem (FCTP): A transportation prob-
lem is often associated with additional costs (termed as fixed costs) besides
transportation cost. This fixed costs may be due to permit fees, property taxes,
toll charges etc. Suppose dij be the fixed cost associated with route (i, j). Math-
ematical formulation of FCTP is

MinZ =
m
∑

i=1

n
∑

j=1

(cij xij + dij yij), (5)

s.t.
n
∑

j=1

xij (=, ≤ ) ai, i = 1, 2, ...,m (6)

m
∑

i=1

xij (=, ≥ ) bj , j = 1, 2, ..., n, (7)

m
∑

i=1

ai (=,≥)
n
∑

j=1

bj , (8)

xij ≥ 0, ; yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (9)
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The notations cij , ai, bj and xij have the same meaning as in the above model.
It is obvious that the fixed charge dij will be costed for a route (i, j) only if any
transportation activity is assigned to that route. So yij is defined such that if
xij > 0 then yij = 1, otherwise it will be 0.

Multi-objective Transportation Problem (MOTP): If more than one
objectives is to be optimized in an TP, then the problem is called multi-objective
transportation problem (MOTP). The several objectives may be minimization of
total transportation costs, maximization of profit, minimization of breakability,
total delivery time, etc. If P objectives are to be optimized and cp

ij represents
the unit transportation penalty (transportation cost, profit, breakability rate,
distance, time etc.) for p-th objective (p = 1, 2, ..., P ), then mathematical for-
mulation is

Min/Max Zp =
m
∑

i=1

n
∑

j=1

cp
ij xij p = 1, 2, ..., P, (10)

s.t.
n
∑

j=1

xij (=, ≤) ai, i = 1, 2, ...,m, (11)

m
∑

i=1

xij (=, ≥ )bj , j = 1, 2, ..., n, (12)

xij ≥ 0, ∀ i, j,

m
∑

i=1

ai (=,≥)
n
∑

j=1

bj . (13)

Multi-item Transportation Problem (MITP): In multi-item TP, several
types of items/goods are transported instead of one type of good. If l items are
to be transported and cp

ij be the unit transportation cost from i-th source to j-th
destination for p-th (p = 1, 2, ..., l) item, then the mathematical formulation of
MITP becomes

Min Z =
l
∑

p=1

m
∑

i=1

n
∑

j=1

cp
ij xp

ij (14)

s.t.

n
∑

j=1

xp
ij (=, ≤ )ap

i , i = 1, 2, ...,m; p = 1, 2, .., l (15)

m
∑

i=1

xp
ij (=, ≥ )bp

j , j = 1, 2, ..., n; p = 1, 2, .., l (16)

xp
ij ≥ 0,∀ i, j, p;

m
∑

i=1

ap
i (=,≥)

n
∑

j=1

bp
j , p = 1, 2, ..., l, (17)

where, ap
i be the availability of p-th item at i-th origin, bp

j be the demand of p-th
item at j-th destination and xp

ij be the decision variable represents the amount
of p-th item to be transported from i-th origin to j-th destination.
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Solid Transportation Problem (STP): Solid transportation problem (STP)
is an extension of the basic TP. In a transportation system, there may be different
types of mode of transport available, such as trucks, goods trains, cargo flights,
ships, etc. In STP, modes of transportation are considered. STP deals with
three type of constraints instead of two (source and destination) in a TP. This
extra constraint is due to modes of transportation (conveyance). Mathematical
formulation of STP is

Min Z =
m
∑

i=1

n
∑

j=1

K
∑

k=1

cijk xijk (18)

s.t.
n
∑

j=1

K
∑

k=1

xijk (=, ≤ )ai, i = 1, 2, ...,m (19)

m
∑

i=1

K
∑

k=1

xijk (=, ≥ )bj , j = 1, 2, ..., n (20)

m
∑

i=1

n
∑

j=1

xijk (=, ≤ )ek, k = 1, 2, ...,K (21)

xijk ≥ 0,∀ i, j, k, (22)

m
∑

i=1

ai (=,≥)
n
∑

j=1

bj and

K
∑

k=1

ek (=,≥)
n
∑

j=1

bj (23)

where, cijk be the unit transportation cost from i-th origin to j-th destination
through k-th conveyance, xijk is the decision variable represents the amount
of goods to be transported from i-th origin to j-th destination through k-th
conveyance and ai, bj have the same meaning as mentioned before. ek be the
transportation capacity of conveyance k, so that the constraint (21) indicates
that the total amount transported by conveyance k is no more than its trans-
portation capacity.

1.2 Uncertain Environment

In many real world problems the available data are not always exact or precise.
Various types of uncertainties appear in those data due to various reason such as
insufficient information, lack of evidence, fluctuating financial market, linguistic
information, imperfect statistical analysis, etc. In order to describe and extract
the useful information hidden in uncertain data and to use this data properly
in practical problems, many researchers have proposed a number of improved
theories such as fuzzy set, type-2 fuzzy set, random set, rough set etc. When
some of or all the system parameters associated with a decision making prob-
lem are not exact or precisely defined, moreover those are represented by fuzzy,
type-2 fuzzy, random or rough sets(/variables), etc., then it is called that the
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problem is defined in those uncertain environment respectively. Methodologies or
Techniques to deal with such imprecision, uncertainty, partial truth, and approx-
imation to achieve practicability, robustness and low solution cost is called Soft
Computing.

1.3 Historical Review of Transportation Problems

Historical Review of Transportation Problem in Crisp Environment:
The basic transportation problem (TP) was originally developed by Hitchcock
[58] and later discussed in detail by Koopmans [69]. There are several methods
introduced by many researchers for solving the basic transportation problems,
such as the Vogel approximation method (VAM), the north-west corner method,
the shortcut method, Russel’s approximation method (Greig, [50]). Dantzig [34]
formulated the transportation problem as a special case of linear programming
problems and then developed a special case form of Simplex technique (Dantzig,
[33]) taking advantage of the special nature of the coefficient matrix. Kirca and
Satir [67] presented a heuristic algorithm for obtaining an initial solution for
TP. Gass [47] described various aspects of TP methodologies and computational
results. Ramakrishnan [128] improved Goyals modified VAM for finding an initial
feasible solution for unbalanced transportation problem.

Balinski [11], Hirch and Dantzig [57] introduced fixed charge transportation
problem (FCTP). Palekar et al. [119] introduced a branch-and-bound method
for solving the FCTP. Adlakha and Kowalski [3] reviewed briefly the FCTP.
Adlakha et al. [4] provided a more-for-less algorithm for solving FCTP. Kowalski
and Lev [70] developed the fixed charge transportation problem as a nonlinear pro-
gramming problem. Lee and Moore [79] studied the optimization of transporta-
tion problems with multiple objectives. To solve multi-objective transportation
problem, Zimmerman [159,160] introduced and developed fuzzy linear program-
ming. The solid transportation problem (STP) was first stated by Schell [130].
Haley [53] described a solution procedure of a solid transportation problem, which
is an extension of the Modi method. Gen et al. [48] solved a bicriteria STP by
genetic algorithm. Pandian and Anuradha [120] introduced a new method using
the principle of zero point method for finding an optimal solution of STPs.

Historical Review of Transportation Problem in Fuzzy Environment:
Several researchers studied various types of TPs with the parameters such as
transportation costs, supplies, demands, conveyance capacities as fuzzy num-
bers(/variables). Chanas et al. [17] presented an FLP model for solving trans-
portation problems with fuzzy supply and demand values. Chanas and Kuchta
[18] studied transportation problem with fuzzy cost coefficients. Jiménez and
Verdegay [60] considered two types of uncertain STP, one with interval numbers
and other with fuzzy numbers. Jiménez and Verdegay [61] applied an evolu-
tionary algorithm based parametric approach to solve fuzzy solid transportation
problem. Bit et al. [13] applied fuzzy programming technique to multi-objective
STP. Li and Lai [80], Waiel [135] applied fuzzy programming approach to multi-
objective transportation problem. Saad and Abass [129] provided parametric



Some Transportation Problems Under Uncertain Environments 231

study on the transportation problems in fuzzy environment. Liu and Kao [98]
solved fuzzy transportation problems based on extension principle. Gao and
Liu [46] developed the two-phase fuzzy algorithms for multi-objective trans-
portation problem. Ammar and Youness [6] studied multi-objective transporta-
tion problem with unit transportation costs, supplies and demands as fuzzy
numbers. Li et al. [81] presented a genetic algorithm for solving the multi-
objective STP with coefficients of the objective function as fuzzy numbers.
Pramanik and Roy [126] introduced a intuitionistic fuzzy goal programming app-
roach for solving multi-objective transportation problems. Yang and Liu [153]
presented expected value model, chance-constrained programming model and
dependent chance programming for fixed charge STP with unit transportation
costs, supplies, demands and conveyance capacities as fuzzy variables. Liu and
Lin [93] solved a fuzzy fixed charge STP with chance constrained programming.
Ojha et al. [118] studied entropy based STP with general fuzzy cost and time.
Chakraborty and Chakraborty [15] considered a transportation problem having
fuzzy parameters with minimization of transportation cost as well as time of
transportation. Fegad et al. [42] found optimal solution of TP using interval and
triangular membership functions. Kaur and Kumar [64] provided a new app-
roach for solving TP with transportation costs as generalized trapezoidal fuzzy
numbers. Kundu et al. [72] modeled a multi-objective multi-item STP with fuzzy
parameters and solved it by using two different methods.

Historical Review of Transportation Problem in Type-2 Fuzzy Envi-
ronment: Though type-2 fuzzy sets/varibles are used in various fields such as
group decision making system (Chen et al. [21]; Chen et al. [26]), Portfolio selec-
tion problem (Hasuike and Ishi [54]), Pattern recognition (Mitchell, [112]), data
envelopment analysis (Qin et al., [127]), neural network (Aliev et al. [5]), Ad
hoc networks (Yuste et al. [155]) etc., Figueroa-Garca and Hernndez [43] first
considered a transportation problem with interval type-2 fuzzy demands and
supplies and we (Kundu et al. [75]) are the first to model and solve transporta-
tion problem with parameters as general type-2 fuzzy variables.

Historical Review of Transportation Problem with Rough Sets/
Variables: Tao and Xu [132] developed rough multi-objective programming
for rough multi-objective solid transportation problem considering a appropri-
ately large feasible region as a universe and equivalent relationship is induced to
generate an approximate space. Kundu et al. [73] first developed some practical
solid transportation models with transportation cost as rough variables.

Historical Review of Transportation Mode Selection Problem:
Kiesmüller et al. [65] discussed transportation mode decision problem taken into
account both distribution of goods and the manufacturing of products. Kumru
and Kumru [71] considered a problem of selecting the most suitable way of
transportation between two given locations for a logistic company and applied
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multi-criteria decision-making method to solve the problem. Tuzkaya and Önüt
[134] applied fuzzy analytic network process to evaluate the most suitable trans-
portation mode between Turkey and Germany. The evaluation ratings and the
weights of the criteria in that problem are expressed in linguistic terms gener-
ated by triangular fuzzy numbers. There are also other several articles available
related to transportation mode selection problem (Monahan and Berger [113];
Eskigun et al. [41]; Wang and Lee [138]).

1.4 Motivation and Objective of the Article

Motivation: Transportation problem (TP) is one of the most important and
practical application based area of operations research. TP has vast economic
importance because price of every commodity includes transportation cost.
Transportation problems not only involve with economic optimization such as
cost minimization, profit maximization but also involve with many other goals
such as minimization of total deterioration of goods during transportation, time
minimization, risk minimization etc.

The available data of a transportation system, such as unit transportation
cost, supplies, demands, conveyance capacities are not always exact or pre-
cise but are uncertain or imprecise due to uncertainty in judgment, insufficient
information, fluctuating financial market, linguistic information, uncertainty of
availability of transportation vehicles etc. This motivated us to consider some
innovative transportation problems (TPs) under uncertain environments like
fuzzy, type-2 fuzzy, rough etc.

Many researchers developed TPs in stochastic and fuzzy (type-1) environ-
ments. However at the beginning of this research work, we observed that no
TP with type-2 fuzzy, rough parameters was available the in literature though
these improved uncertainty theories are applied in many other decision making
fields. This motivated us to develop and solve some TPs with type-2 fuzzy, rough
parameters.

Also appropriate transportation mode selection is a very important issue in a
transportation system and human judgments are generally expressed in linguistic
terms. These linguistic terms are generally of uncertain nature as a word does
not have the same meaning to different people. This motivated us to consider
some transportation mode selection problems with linguistic evaluations.

Objective of the Article: The main objectives of the presented thesis are:

– To formulate different types of transportation models: Some innovative and
useful transportation models could have been formulated to deal with the
rapidly growing financial competition, technological development, real-life sit-
uations, etc. Here we have formulated some different types of transportation
models such as multi-objective multi-item solid transportation model, multi-
item solid transportation model with restriction on conveyances and items,
solid transportation models with limited vehicle capacity, etc.
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– To consider transportation problems with type-1 fuzzy parameters: Though
some research works have been done about transportation problem in fuzzy
environment, however there are some scopes of research work in this field.
This includes new improved methodologies/techniques to solve different types
of TPs with fuzzy parameters. In this thesis, we have formulated and solved
two different solid transportation models with type-1 fuzzy parameters using
improved defuzzification and solution techniques.

– To consider transportation problems with type-2 fuzzy parameters: Decision
making with type-2 fuzzy parameters is an emerging area. Type-2 fuzzy sets
(/variables) give additional degrees of freedom to represent uncertainty. How-
ever computational complexity is very high to deal with type-2 fuzzy sets.
Here we have contributed some theoretical development of type-2 fuzzy vari-
ables, formulated and solved two transportation models with parameters as
type-2 fuzzy variables. To the best of our knowledge, very few TPs with type-2
fuzzy variables were developed.

– To consider transportation problems with rough parameters: Rough set theory
is moderately new and growing field of uncertainty. For the first time we have
formulated and solved a solid transportation model with unit transportation
costs as rough variables.

– To consider transportation mode selection problem with linguistic evaluations:
Linguistic judgments are always uncertain. Many researchers represented lin-
guistic terms using type-1 fuzzy sets (/variables). Recently from literature it
is known that modeling word by interval type-2 fuzzy set is more scientific
and reasonable than by type-1 fuzzy set. Here we have developed two fuzzy
multi-criteria group decision making methods and successfully applied to solve
two transportation mode selection problems with linguistic evaluations repre-
sented by type-1 and interval type-2 fuzzy variables respectively.

1.5 Organization of the Article

This article is based on my Ph.D. thesis [77]. In this article, some transportation
problems have been formulated and solved in different uncertain environments,
e.g., fuzzy, type-2 fuzzy, rough and linguistic. We classified our thesis into the
following sections:-

Section 1 is introductory. It contains brief discussion about different types of
transportation problems, uncertain environments and historical review of trans-
portation problems.

In Sect. 2, some basic concepts and definitions of fuzzy set and variable,
type-2 fuzzy set and variable, rough set and variable and representation of lin-
guistic terms are introduced. Some methodologies to solve single/multi-objective
linear/nonlinear programming problems in crisp and various uncertain environ-
ments have been discussed.

Section 3 presents transportation problems with fuzzy (type-1) parameters.
In this section, we have formulated and solved two solid transportation models
with type-1 fuzzy parameters. The first model is a multi-objective solid trans-
portation problem (MOSTP) with unit transportation penalties/costs, supplies,



234 P. Kundu

demands and conveyance capacities as fuzzy variables. Also, apart from source,
demand and capacity constraints, an extra constraint on the total budget at each
destination is imposed. The second model is a multi-objective multi-item solid
transportation problem with fuzzy coefficients for the objectives and constraints.
A defuzzifcation method based on fuzzy linear programming is applied for fuzzy
supplies, demands and conveyance capacities, including the condition that both
total supply and conveyance capacity must not fall below the total demand.

In Sect. 4, we have first provided some theoretical developments related to
type-2 fuzzy variables. We have proposed a defuzzification method of type-2
fuzzy variables. An interval approximation method of continuous type-2 fuzzy
variables is also introduced. We have formulated and solved three transporta-
tion problems with type-2 fuzzy parameters namely, fixed charge transportation
problem with type-2 fuzzy cost parameters, fixed charge transportation problem
with type-2 fuzzy costs, supplies and demands and multi-item solid transporta-
tion problem having restriction on conveyances with type-2 fuzzy parameters.

Section 5 contains problems related to transportation mode selection with
respect to several criteria for a particular transportation system. Here we
have developed two fuzzy multi-criteria (/attribute) group decision making
(FMCGDM/FMAGDM) methods, the first one based on ranking fuzzy num-
bers and the second one based on ranking interval type-2 fuzzy variables. These
proposed methods are applied to solve two transportation mode selection prob-
lems with the evaluation ratings of the alternative modes and weights of the
selection criteria are presented in linguistic terms generated by fuzzy numbers
and interval type-2 fuzzy variables respectively.

In Sect. 6 we have represented fluctuating cost parameters by rough variables
and formulated solid transportation model with rough cost parameters. The for-
mulated transportation model is applicable for the system in which full vehicles,
e.g. trucks, rail coaches are to be booked for transportation of products so that
transportation cost is determined on the basis of full conveyances. The presented
model is extended including different constraints with respect to various situa-
tions like restriction on number of vehicles, utilization of vehicles, etc.

In Sect. 7, overall contribution of the article and possible future extensions
of the models and methods are discussed.

2 Basic Concepts and Methods/Techniques

2.1 Classical Set Theory

Classical (crisp) set is defined as a well defined collection of elements or objects
which can be finite, countable or infinite. Here ‘well defined’ means an element
either definitely belongs to or not belongs to the set. In other words, for a given
element, whether it belongs to the set or not should be clear. The word crisp
means dichotomous, that is, yes-or-no type rather than more-or-less type. In set
theory, an element can either belongs to a set or not; and in optimization, a
solution is either feasible or not.
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Subset: If every element of a set A is also an element of a set B, then A is
called a subset of B and this is written as A ⊆ B. If A ⊆ B and B ⊆ A, then we
say that A and B are equal, written as A = B. A is called a proper subset of B,
denoted by A ⊂ B if A is a subset of B with A �= B and A �= ∅, where ∅ denotes
the empty set.

Characteristic function: Let A be a subset of X. The characteristic function
of A is defined by

χ(x) =
{

1, if x ∈ A;
0, otherwise.

Convex set: A subset S ⊂ 
n is said to be convex, if for any two points x1,
x2 in S, the line segment joining the points x1 and x2 is also contained in
S. In other words, a subset S ⊂ 
n is convex, if and only if x1, x2 ∈ S ⇒
λx1 + (1− λ)x2 ∈ S; 0 ≤ λ ≤ 1.

Interval arithmetic: Here we discussed for given two closed intervals in 
,
how to add, subtract, multiply and divide these intervals. Suppose ∗ be a binary
operation such as +, -, ·, /etc. defined over 
. If A and B are closed intervals,
then A∗B = {a∗b : a ∈ A, b ∈ B} defines a binary operation on the set of closed
intervals (Moore [115]). Let A = [a1, a2] and B = [b1, b2] be two closed intervals
in 
. Then operations on the closed intervals A and B are defined as follows:

Addition: A + B = [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2]

Subtraction: A−B = [a1, a2]− [b1, b2] = [a1 − b1, a2 − b2]

Multiplication:
A ·B = [a1, a2] · [b1, b2] = [min(a1b1, a1b2, a2b1, a2b2), max(a1b1, a1b2, a2b1, a2b2)]

In particular if these intervals are in 
+, the set of positive real numbers,
then the multiplication formula gets simplified to

A ·B = [a1, a2] · [b1, b2] = [a1b1, a2b2]

Division:
A
B = [a1,a2]

[b1,b2]
= [a1, a2] · [ 1

b2
, 1

b1
] = [min(a1

b2
, a1

b1
, a2

b2
, a2

b1
), max(a1

b2
, a1

b1
, a2

b2
, a2

b1
], pro-

vided 0 not belongs to [b1, b2].
In particular if these intervals are in 
+, the set of positive real numbers, then
the division formula gets simplified to

A
B = [a1

b2
, a2

b1
].

Scalar multiplication: For k ∈ 
+ the scalar multiplication k ·A is defined as
k ·A = k · [a1, a2] = [ka1, ka2].

2.2 Fuzzy Set Theory

In the real world, various situations, concepts, value systems, human thinking,
judgments are not always crisp and deterministic and cannot be described or
represented precisely. Very often they are uncertain or vague. In real systems,
there exist collection of objects so that those can not be certainly classified as a
member of certain set. Zadeh [156] introduced the concept of fuzzy set in order to
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represent class of objects for which there is no sharp boundary between objects
that belong to the class and those that do not. For example consider collection
of real numbers close to 5. Then the number 4.5 can be taken as close to 5.
The number 4.4 can also be taken as close to 5. Then how about the number
4.3 that smaller than 4.4 by only 0.1. Continuing in this way, it is difficult to
determine an exact number beyond which a number is not close to 5. In fact
there is no sharp boundary between close and not close to 5. Fuzzy sets describe
such types of sets by assigning a number to every element in the universe, which
indicates the degree (grade) to which the element belongs to the sets. This degree
or grade is called membership degree or grade of the element in the fuzzy set.
Mathematically a fuzzy set is defined as follows.

Definition 2.1 (Fuzzy Set). Let X be a collection of objects and x be an
element of X, then a fuzzy set Ã in X is a set of ordered pairs

Ã = {(x, μÃ(x))| x ∈ X},
where μÃ(x) is called the membership function or grade of membership of x in
Ã which maps X into the membership space M which is a subset of nonnegative
real numbers having finite supremum.
Generally the range of the membership function μÃ(x) is constructed as the close
interval [0, u], 0 < u ≤ 1 and the representation of fuzzy set becomes (Mendel
[101])

Ã = {(x, μÃ(x))|μÃ(x) ∈ [0, 1],∀x ∈ X}.
A classical set A can be described in this way by defining membership function
μA(x) that takes only two values 0 and 1 such that μA(x) = 1 or 0 indicates x
belongs to or does not belongs to A.

Some Basic Definitions Related to Fuzzy Set: The following definitions
and properties are based on Zadeh [156], Klir and Yuan [68], Zimmermann [160],
Kaufmann [62], Bector and Chandra [12] and Wang et al. [144].
Support: The support of a fuzzy set Ã in X is a crisp set S(Ã) defined as
S(Ã) = {x ∈ X| μÃ(x) > 0}.
Core: The core of a fuzzy set Ã is a set of all points having unit membership
degree in Ã denoted by Core(Ã), and defined as Core(Ã) = {x ∈ X| μÃ(x) = 1}
Centroid: The centroid C(Ã) of a fuzzy set Ã is defined by C(Ã) =

∑
x xμÃ(x)
∑

x μÃ(x)

for discrete case (discrete set of points) and C(Ã) =
∫∞

−∞ xμÃ(x)dx
∫∞

−∞ μÃ(x)dx
for continuous

case.
Height: The height of a fuzzy set Ã, denoted by h(Ã) is defined as h(Ã) =
supx∈X μÃ(x).

If h(Ã) = 1 for a fuzzy set Ã then the fuzzy set Ã is called a normal fuzzy
set.
Complement: The complement of a fuzzy set Ã is a fuzzy set denoted by Ãc is
defined by the membership function μÃc(x), where μÃc(x) = h(Ã)−μÃ(x), ∀x ∈
X. If Ã is normal then obviously μÃc(x) = 1− μÃ(x), ∀x ∈ X.
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α-cut: α-cut of a fuzzy set Ã in X where α ∈ (0, 1] is the crisp set Aα given by
Aα = {x ∈ X | μÃ(x) ≥ α}.

Some Properties of Fuzzy Set: Union: The union of two fuzzy sets
Ã and B̃ is a fuzzy set C̃ whose membership function is given by μC̃(x) =
max(μÃ(x), μB̃(x)), ∀ x ∈ X. This is expressed as C̃ = Ã ∪ B̃.
Intersection: The intersection of two fuzzy sets Ã and B̃ is a fuzzy set D̃ whose
membership function is given by μD̃(x) = min(μÃ(x), μB̃(x)), ∀ x ∈ X. This is
expressed as D̃ = Ã ∩ B̃.
Convexity: A fuzzy set Ã in X is said to be convex if and only if for any x1,
x2 ∈ X, μÃ(λx1 + (1− λ)x2) ≥ min(μÃ(x1), μÃ(x2)) for 0 ≤ λ ≤ 1. In terms of
α-cut, a fuzzy set is said to be convex if its α-cuts Aα are convex for all α ∈ (0, 1].
Containment: A fuzzy set Ã is contained in B̃ or a subset of B̃ if μÃ(x) ≤
μB̃(x), ∀ x ∈ X. This is written as Ã ⊆ B̃.
Equality: Two fuzzy sets Ã and B̃ in X is said to be equal if Ã ⊆ B̃ and B̃ ⊆ Ã,
i.e. if μÃ(x) = μB̃(x), ∀ x ∈ X.

Fuzzy Number: Fuzzy number can be taken as a generalization of interval of
real numbers where rather than considering each point of an interval has the
same importance or belongings, a membership grade in [0,1] is imposed to each
element as in fuzzy set. This is done to handle a situation where one has to
deal with approximate numbers or numbers that are close to a real number or
around a interval of real numbers, etc. Let us consider set of numbers that are
close to a real number r and try to represent this set by a fuzzy set, say by Ã.
That is Ã would be defined as an interval around r with each element having a
membership grade that provided according to closeness of that point to r. Since
the real number r is certainly close to r itself, so membership grade of r in Ã
should be defined as μÃ(r) = 1, i.e., Ã should be a normal fuzzy set. Also the
interval must be of finite length, i.e. support of Ã need to be bounded. It is
known that the only convex sets in 
 are intervals. The fuzzy number is defined
as follows:

Definition 2.2 (Fuzzy Number). A fuzzy subset Ã of real number 
 with
membership function μÃ : 
 → [0, 1] is said to be a fuzzy number (Grzegorzewski
[52]) if

(i) Ã is normal, i.e. ∃ an element x0 s.t. μÃ(x0) = 1,
(ii) μÃ(x) is upper semi-continuous membership function,
(iii) Ã is fuzzy convex, i.e. μÃ(λx1 + (1− λ)x2) ≥ μÃ(x1) ∧ μÃ(x2) ∀x1, x2 ∈ 


and λ ∈ [0, 1],
(iv) Support of Ã = {x ∈ 
 : μÃ(x) > 0} is bounded.

Klir and Yuan [68] proved the following theorem which gives characterization
of a fuzzy number.
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Theorem 2.1 Let Ã be a fuzzy set in 
. Then Ã is a fuzzy number if and only
if there exists a closed interval (which may be singleton) [a, b] �= φ such that

μÃ(x) =

⎧

⎨

⎩

l(x), if x ∈ (−∞, a);
1, if x ∈ [a, b];
r(x), if x ∈ (b,∞),

(24)

where (i) l : (−∞, a)→ [0, 1] is increasing, continuous from the right and l(x) = 0
for x ∈ (−∞, u), for some u < a and (ii) r : (b,∞) → [0, 1] is decreasing,
continuous from the left and r(x) = 0 for x ∈ (v,∞), for some v > b.
In most of the practical applications the function l(x) and r(x) are continuous
which give the continuity of the membership function.

α-cut of Fuzzy Number: the α-cut/α - level set of a fuzzy number Ã, i.e.
Aα = {x ∈ 
 | μÃ(x) ≥ α} is a nonempty bounded closed interval (Wu [145])
denoted by [AL

α, AR
α ] or [A−

α , A+
α ], where, AL

α and AR
α are the lower and upper

bounds of the closed interval and

AL
α = inf{x ∈ 
 | μÃ(x) ≥ α}, AR

α = sup{x ∈ 
 | μÃ(x) ≥ α}

Now some particular type of fuzzy numbers with continuous l(x) and r(x) defined
over the set of real numbers are given below.

General Fuzzy Number (GFN): A GFN Ã is specified by four numbers a1,
a2, a3, a4 ∈ 
 and two functions l(x) and r(x) (as defined in Theorem2.1) with
the following membership function

μÃ(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if x < a1;
l(x), if a1 ≤ x < a2;
1, if a2 ≤ x ≤ a3;
r(x), if a3 < x ≤ a4;
0, if x > a4.

(25)

Triangular Fuzzy Number (TFN): A TFN Ã is a fuzzy number fully deter-
mined by triplet (a1, a2, a3) of crisp numbers with a1 < a2 < a3, whose mem-
bership function is given by

μÃ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−a1
a2−a1

, if a1 ≤ x ≤ a2;
1, if x = a2;
a3−x
a3−a2

, if a2 ≤ x ≤ a3;
0, otherwise.

(26)

The TFN Ã is depicted in Fig. 1.
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Fig. 1. TFN Ã

Trapezoidal Fuzzy Number (TrFN): A TrFN Ã is a fuzzy number fully deter-
mined by quadruplet (a1, a2, a3, a4) of crisp numbers with a1 < a2 ≤ a3 < a4,
whose membership function is given by

μÃ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−a1
a2−a1

, if a1 ≤ x ≤ a2;
1, if a2 ≤ x ≤ a3;
a4−x
a4−a3

, if a3 ≤ x ≤ a4;
0, otherwise.

(27)

where x−a1
a2−a1

= μl
Ã
(x) and a4−x

a4−a3
= μr

Ã
(x) are called the left and right hand side

of the membership function μÃ(x). The TrFN Ã is depicted in Fig. 2. Obviously
if a2 = a3 then TrFN becomes a TFN.

Arithmetic of Fuzzy Numbers: Operation Based on the Zadeh’s
Extension Principle: Arithmetical operations of fuzzy numbers can be per-
formed by applying the Zadehs extension principle (Zadeh [158]). If Ã and B̃
be two fuzzy numbers and ∗ be any operation then the fuzzy number Ã ∗ B̃ is
defined as

μÃ∗B̃(z) = sup
z=x∗y

min(μÃ(x), μB̃(y)), ∀z ∈ 
.

So in particular we have

μÃ⊕B̃(z) = sup
z=x+y

min(μÃ(x), μB̃(y)),

μÃ�B̃(z) = sup
z=x−y

min(μÃ(x), μB̃(y)),
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Fig. 2. TrFN Ã

μÃ⊗B̃(z) = sup
z=x×y

min(μÃ(x), μB̃(y)),

μÃ�B̃(z) = sup
z=x/y

min(μÃ(x), μB̃(y)),

where ⊕, �, ⊗ and � denote the addition, substraction, multiplication and
division operations on fuzzy numbers.

Operation Based on the α-cuts: Let Ã and B̃ be two fuzzy numbers and
Aα = [AL

α, AR
α ], Bα = [BL

α , BR
α ] be α-cuts, α ∈ (0, 1], of Ã and B̃ respectively.

Let ∗ denote any of the arithmetic operations ⊕, �, ⊗, � of fuzzy numbers.
Then the ∗ operation on fuzzy numbers Ã and B̃, denoted by Ã ∗ B̃, gives a
fuzzy number in 
 where

(Ã ∗ B̃)α = Aα ∗Bα, α ∈ (0, 1].

For particular operations we have

(Ã⊕ B̃)α = Aα ⊕Bα = [AL
α + BL

α , AR
α + BR

α ],

(Ã� B̃)α = Aα �Bα = [AL
α −BR

α , AR
α −BL

α ],

(Ã⊗ B̃)α = Aα ⊗Bα =

= [min{AL
αBL

α , AL
αBR

α , AR
αBL

α , AR
αBR

α },max{AL
αBL

α , AL
αBR

α , AR
αBL

α , AR
αBR

α }].
If the fuzzy numbers Ã and B̃ in 
+, the set of positive real numbers, then the
multiplication formula becomes

(Ã⊗ B̃)α = Aα ⊗Bα = [AL
αBL

α , AR
αBR

α ].
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Operations Under Function Principle: Hsieh [59] presented Function Prin-
ciple in fuzzy theory for computational model avoiding the complications which
are caused by the operations using Extension Principle. The fuzzy arithmeti-
cal operations under Function Principle of two trapezoidal fuzzy numbers
Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) are

(i) Addition: Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),
(ii) Substraction: −B̃ = (−b4,−b3,−b2,−b1) and Ã�B̃ = (a1−b4, a2−b3, a3−

b2, a4 − b1),
(iii) Multiplication: Ã⊗B̃ = (a1b1, a2b2, a3b3, a4b4), where ai, bi, for i = 1, 2, 3, 4

are positive real numbers.
(iv) Division: Ã� B̃ = (a1/b4, a2/b3, a3/b2, a4/b1), where ai, bi, for i = 1, 2, 3, 4

are positive real numbers.

(v) λ⊗ Ã =
{

(λa1, λa2, λa3, λa4), if λ ≥ 0;
(λa4, λa3, λa2, λa1), if λ < 0.

Here it should be mentioned that all the above operations can be defined
using operations based on the α-cuts of the fuzzy numbers that produce the
same result.

Defuzzification of Fuzzy Numbers: Defuzzification methods/techniques of
fuzzy numbers convert a fuzzy number or fuzzy quantity approximately to a crisp
or deterministic value so that this can be used efficiently in practical applications.
Some important defuzzification methods are presented below.

Graded Mean and Modified Graded Mean: Graded Mean (Chen and
Hasieh [22]) Integration Representation method is based on the integral value
of graded mean α-level(cut) of generalized fuzzy number. For a fuzzy number Ã
the graded mean integration representation of Ã is defined as

P (Ã) =
∫ 1

0

α
[AL

α + AR
α

2
]

dα/

∫ 1

0

α dα,

where [AL
α, AR

α ] is the α-cut of Ã.
For example graded mean of a TrFN Ã = (a1, a2, a3, a4) is 1

6 [a1+2a2+2a3+a4].
Here, equal weightage has been given to the lower and upper bounds of the

α-level of the fuzzy number. But the weightage may depends on the decision
maker’s preference or attitude. So, the modified graded mean α-level value of
the fuzzy number Ã is α

[

kAL
α +(1−k)AR

α

]

, where k ∈ [0, 1] is called the decision
makers attitude or optimism parameter. The value of k closer to 0 implies that
the decision maker is more pessimistic while the value of k closer to 1 means
that the decision maker is more optimistic. Therefore, the modified form of the
above graded mean integration representation is

P (Ã) =
∫ 1

0

α
[kAL

α + (1− k)AR
α

2
]

dα/

∫ 1

0

α dα.

For example modified graded mean of a TrFN Ã = (a1, a2, a3, a4) is 1
3 [k(a1 +

2a2) + (1− k)(2a3 + a4)].
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Centroid Method: The centroid C(Ã) of a fuzzy set Ã is defined by

C(Ã) =
∑

x xμÃ(x)
∑

x μÃ(x)

for discrete case and

C(Ã) =

∫∞
−∞ xμÃ(x)dx
∫∞

−∞ μÃ(x)dx

for continuous case.
For example if Ã = (a1, a2, a3) is triangular fuzzy number then its centroid

value is C(Ã) = (a1 + a2 + a3)/3.

Nearest Interval Approximation: Grzegorzewski [52], presented a method
to approximate a fuzzy number by a crisp interval. Suppose Ã is a fuzzy num-
ber with α-cut [AL(α), AR(α)]. Let Cd(Ã) = [CL, CR] be the nearest interval
approximation of the fuzzy number Ã with distance metric d, where distance
metric d to measure distance of Ã from Cd(Ã) is given by

d(Ã, Cd(Ã)) =

√

∫ 1

0

{AL(α)− CL}2dα +
∫ 1

0

{AR(α)− CR}2dα.

Now Cd(Ã) is optimum when d(Ã, Cd(Ã) is minimum with respect to CL and
CR and in this prospect the value of CL and CR are given by

CL =
∫ 1

0

AL(α)dα and CR =
∫ 1

0

AR(α)dα. (28)

For example, α−cut of a trapezoidal fuzzy number (r1, r2, r3, r4) is [r1 +
α(r2 − r1), r4 − α(r4 − r3)] and its interval approximation is obtained as [(r1 +
r2)/2, (r3 + r4)/2].

Fuzzy Variable: Zadeh [158] introduced the possibility theory to interpret
degree of uncertainty of members of a fuzzy set. The membership μÃ(x) of an
element x in a fuzzy set Ã is then termed as degree of possibility that the element
belongs to the set.

Possibility Measure: Suppose Ã and B̃ be two fuzzy sets (/numbers) with
memberships μÃ and μB̃ respectively. Then possibility (Zadeh [158], Dubois and
Prade [38], Liu and Iwamura [92]) of the fuzzy event Ã � B̃ is defined as

Pos(Ã � B̃) = sup
x�y

min(μÃ(x), μB̃(y)), x, y ∈ 
, (29)

where � is any operations like <, >, =, ≤, ≥, etc. Now for any real number b,

Pos(Ã � b) = sup
x�b
{μÃ(x), x ∈ 
}. (30)
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Definition 2.3 (Possibility Space). A triplet (Θ, p, Pos) is called a possibility
space, where Θ is non-empty set of points, p is power set of Θ and Pos : Θ �→
[0, 1] is a mapping, called possibility measure (Wang [136]) defined as

(i) Pos(∅) = 0 and Pos(Θ) = 1.
(ii) For any {Ai|i ∈ I} ⊂ Θ, Pos(∪Ai) = supi Pos(Ai).

Definition 2.4 (Fuzzy Variable). A fuzzy variable (Nahmias [117]) is defined
as a function from the possibility space (Θ, p, Pos) to the set of real numbers 

to describe fuzzy phenomena, where possibility measure (Pos) of a fuzzy event
{ξ̃ ∈ B}, B ⊂ 
 is defined as Pos{ξ̃ ∈ B} = supx∈B μξ̃(x), μξ̃(x) is referred to
as possibility distribution of ξ̃.

Necessity measure is dual of the possibility measure, the grade of necessity
of an event is the grade of impossibility of the opposite event. Necessity measure
(Nes) of a fuzzy event {ξ̃ ∈ B}, B ⊂ 
 and supx∈
 μξ̃(x) = 1, is defined as
Nec{ξ̃ ∈ B} = 1− Pos{ξ̃ ∈ Bc} = 1− supx∈Bc μξ̃(x).

Credibility Theory: Liu and Liu [94] introduced the concept of credibility
measure. Liu [88] [90] presented credibility theory as a branch of mathematics
for studying the behavior of fuzzy phenomena. Let Θ be a nonempty set, and
p the power set of Θ. Each element in p is called an event. For an event A, a
number Cr{A} which indicates the credibility that A will occur has the following
four axioms (Liu [90]):

1. Normality: Cr{Θ} = 1.
2. Monotonicity: Cr{A} ≤ Cr{B} whenever A ≤ B.
3. Self-Duality: Cr{A}+ Cr{Ac} = 1 for any event A.
4. Maximality: Cr{∪iAi} = supiCr{Ai} for any events {Ai} with supi

Cr{Ai} < 0.5.

Definition 2.5 (Credibility Measure, Liu, [90]). The set function Cr is
called a credibility measure if it satisfies the normality, monotonicity, self-duality,
and maximality axioms.

For example let μ be a nonnegative function on Θ (for example, the set of
real numbers) such that supx∈Θ μ(x) = 1, then the set function defined by

Cr{A} =
1
2
(sup
x∈A

μ(x) + 1− sup
x∈Ac

μ(x)) (31)

is a credibility measure on Θ.
From it is clear that in case of a fuzzy variable ξ̃ with membership function
(possibility distribution) μξ̃ and B ⊂ 
, supx∈
 μξ̃(x) = 1, credibility measure
is actually the average of possibility and necessity measure, i.e.

Cr{ξ̃ ∈ B} =
1
2
(sup
x∈B

μξ̃(x) + 1− sup
x∈Bc

μξ̃(x))

=
1
2
(Pos{ξ̃ ∈ B}+ Nec{ξ̃ ∈ B}). (32)
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Example of Some Important Fuzzy Variables:

Equipossible Fuzzy Variable: An equipossible fuzzy variable on [a, b] is a
fuzzy variable whose membership function (possibility distribution) is given by

μx =
{

1, if a ≤ x ≤ b;
0, otherwise.

Trapezoidal and Triangular Fuzzy Variable: Triangular fuzzy number and
trapezoidal fuzzy number are two kinds of special fuzzy variables. As both trape-
zoidal and triangular fuzzy numbers are normal and defined over the set of real
numbers 
 so possibility, necessity as well as credibility measures are defined on
them. So a trapezoidal fuzzy variable (TrFV) Ã is a fuzzy variable fully deter-
mined by quadruplet (a1, a2, a3, a4) of crisp numbers with a1 < a2 ≤ a3 < a4,
whose membership function is given by

μÃ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−a1
a2−a1

, if a1 ≤ x ≤ a2;
1, if a2 ≤ x ≤ a3;
a4−x
a4−a3

, if a3 ≤ x ≤ a4;
0, otherwise.

When a2 = a3, the trapezoidal fuzzy variable becomes a triangular fuzzy variable
(TFV).

Some Methodologies to Deal with Fuzzy Variables: Expected Value
(Liu and Liu [94]): Let ξ̃ be a fuzzy variable. Then the expected value of ξ is
defined as

E[ξ̃] =
∫ ∞

0

cr{ξ̃ ≥ r}dr −
∫ 0

−∞
cr{ξ̃ ≤ r}dr (33)

provided that at least one of the two integrals is finite.

Example 2.1. Expected value of a triangular fuzzy variable ξ̃ = (r1, r2, r3) is
E[ξ̃] = r1+2r2+r3

4 .

Optimistic and Pessimistic Value (Liu [86,89]): Let ξ̃ be a fuzzy variable
and α ∈ [0, 1]. Then

ξsup(α) = sup{r : cr{ξ̃ ≥ r} ≥ α} (34)

is called α-optimistic value to ξ̃; and

ξinf (α) = inf{r : cr{ξ̃ ≤ r} ≥ α} (35)

is called α-pessimistic value to ξ̃.
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Example 2.2. Let ξ̃ = (r1, r2, r3, r4) be a trapezoidal fuzzy variable. Then its
α-optimistic and α-pessimistic values are

ξ̃sup(α) =
{

2αr3 + (1− 2α)r4, if α ≤ 0.5;
(2α− 1)r1 + 2(1− α)r2, if α > 0.5.

(36)

ξ̃inf (α) =
{

(1− 2α)r1 + 2αr2, if α ≤ 0.5;
2(1− α)r3 + (2α− 1)r4, if α > 0.5.

(37)

2.3 Type-2 Fuzzy Set

So far in the Subsect. 2.2, we have discussed fuzzy sets with crisply defined
membership functions, i.e., membership degree (/grade) of each of the points is
an precise real number in [0,1]. However it is not always possible to represents
uncertainty by a fuzzy set with crisp membership function, i.e., points having
crisp membership grades. For instance, in rule-based fuzzy logic systems, the
words that are used in the antecedents and consequents of rules can be uncertain
as human judgements are not always precise and also a word does not have the
same meaning or value to different people. Zadeh [157] introduced an extension
of the concept of usual fuzzy set into a fuzzy set whose membership function itself
is a fuzzy set. Then the usual fuzzy set with crisp membership function is termed
as type-1 fuzzy set and the fuzzy set with fuzzy membership function is termed
type-2 fuzzy set. So membership grade of each element of a type-2 fuzzy set is
no longer a crisp value but a fuzzy set with a support bounded by the interval
[0,1] which provides additional degrees of freedom for handling uncertainties. So
because of fuzzy membership function a type-2 fuzzy set has three-dimensional
nature. This membership function is called type-2 membership function.

Definition 2.6 (Type-2 Fuzzy Set). A type-2 fuzzy set (T2 FS) Ã in X is
defined (Mendel and John [105,106]) as

Ã = {((x, u), μÃ(x, u)) : ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]},
where 0 ≤ μÃ(x, u) ≤ 1 is called the type-2 membership function, Jx is the
primary membership of x ∈ X which is the domain of the secondary membership
function μ̃Ã(x) (defined below). The values u ∈ Jx for x ∈ X are called primary
membership grades of x.

Ã is also be expressed as

Ã =
∫

x∈X

∫

u∈Jx

μÃ(x, u)/(x, u) , Jx ⊆ [0, 1], (38)

where
∫ ∫

denotes union over all admissible x and u. For discrete universes of
discourse

∫

is replaced by
∑

.

Secondary Membership Function: For each values of x, say x = x′, the
secondary membership function (Mendel and John [105]), denoted by μÃ(x =
x′, u), u ∈ Jx′ ⊆ [0, 1] is defined as

μÃ(x′, u) ≡ μ̃Ã(x′) =
∫

u∈Jx′
fx′(u)/u, (39)
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where 0 ≤ fx′(u) ≤ 1. The amplitude of a secondary membership function
is called a secondary grade. So for a particular x = x′ and u = u′ ∈ Jx′ ,
fx′(u′) = μÃ(x′, u′) is the secondary membership grade.

Now using (39), Ã can be written an another way as Ã = {(x, μ̃Ã(x)) : x ∈
X}, i.e.

Ã =
∫

x∈X

μ̃Ã(x)/x =
∫

x∈X

[ ∫

u∈Jx

fx(u)/u

]/

x. (40)

Example 2.3. X = {4, 5, 6} and the primary memberships of the points of X
are J4 = {0.3, 0.4, 0.6}, J5 = {0.6, 0.8, 0.9}, J6 = {0.5, 0.6, 0.7, 0.8} respectively
and the secondary membership functions of the points are
μ̃Ã(4) = μÃ(4, u) = (0.6/0.3) + (1/0.4) + (0.7/0.6)
i.e., μÃ(4, 0.3) = 0.6, μÃ(4, 0.4) = 1 and μÃ(4, 0.6) = 0.7. Here μÃ(4, 0.3) =
0.6 means membership (secondary) grade that the point 4 has the membership
(primary) 0.3 is 0.6.
μ̃Ã(5) = μÃ(5, u) = (0.7/0.6) + (1/0.8) + (0.8/0.9),
μ̃Ã(6) = μÃ(6, u) = (0.3/0.5) + (0.4/0.6) + (1/0.7) + (0.8/0.5).
So discrete type-2 fuzzy set Ã is given by
Ã = (0.6/0.3)/4+(1/0.4)/4+(0.7/0.6)/4+(0.7/0.6)/5+(1/0.8)/5+(0.8/0.9)/5+
(0.3/0.5)/6 + (0.4/0.6)/6 + (1/0.7)/6 + (0.8/0.5)/6.
Ã is also written as

Ã ∼
⎧

⎨

⎩

4, with membership μ̃Ã(4);
5, with membership μ̃Ã(5);
6, with membership μ̃Ã(6).

The T2 FS Ã is depicted in Fig. 3.

Definition 2.7 (Interval Type-2 Fuzzy Set). If all the secondary member-
ship grades are 1 (i.e. fx(u) = μÃ(x, u) = 1, ∀ x, u) then this T2 FS is called
interval type-2 fuzzy set (IT2 FS) (Mendel et al. [107], Wu and Mendel [146]).
The third dimension of the general T2 FS is not needed in this case and the IT2
FS can be expressed as a special case of the general T2 FS:

Ã =
∫

x∈X

∫

u∈Jx

1/(x, u) , Jx ⊆ [0, 1] (41)

or, alternatively it can be represented as

Ã =
∫

x∈X

μ̃Ã(x)/x =
∫

x∈X

[ ∫

u∈Jx

1/u

]/

x. (42)

Footprint of Uncertainty: A IT2 FS is characterized by the footprint of
uncertainty (FOU) which is the union of all of the primary memberships Jx,
i.e. FOU of a IT2 FS Ã is defined as

FOU(Ã) =
⋃

x∈X

Jx.
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Fig. 3. Type-2 fuzzy set Ã
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Fig. 4. Interval type-2 fuzzy set Ã

The FOU is bounded by an upper membership function μ̄Ã(x) (UMF) and a
lower membership function μ

Ã
(x) (LMF), both are type-1 membership functions

so that Jx = [μ
Ã
(x), μ̄Ã(x)], ∀ x ∈ X. So the IT2 FS can be represented by

(ÃU , ÃL), where ÃU and ÃL are TIFSs.
For example consider a IT2 FS Ã whose upper and lower membership func-

tions are type-1 triangular membership functions and it is depicted in Fig. 4.

Type Reduction: We already knows that a type-2 fuzzy set (T2 FS) is a fuzzy
set with fuzzy membership function. Due to fuzzyness in membership function
of T2 FS, the computational complexity is very high to deal with T2 FS. For this
reason to deal with T2 FS, generally a T2 FS is converted to a type-1 fuzzy set
(T1 FS) by some type reduction methods. Type reduction is the procedure by
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which a T2 FS is converted to the corresponding T1 FS, known as type reduced
set (TRS). But till now there are very few reduction methods available in the
literature. Centroid type reduction (Kernik and Mendel [63]) is an example of
such type reduction method.

Geometric Defuzzification for T2 FS (Coupland and John [31]): Coup-
land and John [31] proposed a defuzzification method for T2 FSs with the help of
geometric representation of a T2 FS. A geometric T2 FS from a discrete T2 FS
is constructed (Coupland [30], Coupland and John [31])) by breaking down the
membership function of the T2 FS into five areas and then each of the five areas
is modeled by a collection of 3-D triangles where the edges of these triangles
are connected to form a 3-D polyhedron. The final defuzzified value is found by
calculating the center of area of the polyhedron which approximates the type-2
fuzzy membership function. The center of area of the polyhedron is obtained by
taking weighted average of x-component of the centroid and the area of each
of the triangles those form the polyhedron. In case of T2 FS having continu-
ous domains of primary or secondary membership function, to apply geometric
defuzzification method, first one have to discretize the continuous domains into
finite number of points (preferably equidistant points) within the support of the
corresponding membership functions. The approach of geometric representation
of discrete T2 FS is limited to T2 FSs where all the secondary membership
functions are convex.

Type-2 Fuzzy Variable: Before going to the definition of type-2 fuzzy variable
we present some related definitions those are required to define a type-2 fuzzy
variable.

Definition 2.7 (Fuzzy Possibility Space (FPS)). Let Γ be the universe of
discourse. An ample field (Wang [136]) A on Γ is a class of subsets of Γ that is
closed under arbitrary unions, intersections, and complements in Γ .

Let P̃ os : A �→ 
([0, 1]) be a set function defined onA such that {P̃ os(A)|A �
A atom} is a family of mutually independent RFVs. Then P̃ os is called a fuzzy
possibility measure (Liu and Liu [99]) if it satisfies the following conditions:
(P1) P̃ os(∅) =0̃.
(P2) For any subclass {Ai|i ∈ I} of A (finite, countable or uncountable),

P̃ os
(
⋃

i∈I

Ai

)

= supi∈I P̃ os(Ai).

The triplet (Γ,A, P̃ os) is referred to as a fuzzy possibility space (FPS).

Definition 2.8 (Regular Fuzzy Variable (RFV)). For a possibility space
(Θ, p, Pos), a regular fuzzy variable (Liu and Liu [99]) ξ̃ is defined as a mea-
surable map from Θ to [0, 1] in the sense that for every t ∈ [0, 1], one has
{γ ∈ Θ | ξ̃(γ) ≤ t} ∈ p.

A discrete RFV is represented as ξ̃ ∼
(

r1 r2 ... rn

μ1 μ2 ... μn

)

, where ri ∈ [0, 1] and

μi > 0, ∀i and maxi{μi} = 1.
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If ξ̃ = (r1, r2, r3, r4) with 0 ≤ r1 < r2 < r3 < r4 ≤ 1, then ξ̃ is called a
trapezoidal RFV.
If ξ̃ = (r1, r2, r3) with 0 ≤ r1 < r2 < r3 ≤ 1, then ξ̃ is called a triangular RFV.

Definition 2.9 (Type-2 Fuzzy Variable). As a fuzzy variable (type-1) is
defined as a function from the possibility space to the set of real numbers, a
type-2 fuzzy variable (T2 FV) is defined as a function from the fuzzy possibility
space to the set of real numbers. If (Γ,A, P̃ os) is a fuzzy possibility space (Liu
and Liu [99]), then a type-2 fuzzy variable ξ̃ is defined as a map from Γ to 
 such
that for any t ∈ 
 the set {γ ∈ Γ | ξ̃(γ) ≤ t} ∈ A, i.e. a type-2 fuzzy variable
(T2 FV) is a map from a fuzzy possibility space to the set of real numbers.

Then μ̃ξ̃(x), called secondary possibility distribution function of ξ̃, is defined
as a map 
 �→ 
[0, 1] such that μ̃ξ̃(x) = ˜Pos{γ ∈ Θ | ξ̃(γ) = x}, x ∈ 
. μξ̃(x, u),
called type-2 possibility distribution function, is a map 
× Jx �→ [0, 1], defined
as μξ̃(x, u) = Pos{μ̃ξ̃(x) = u}, (x, u) ∈ 
 × Jx, Jx ⊆ [0, 1] is the domain or
support of μ̃ξ̃(x), i.e., Jx = {u ∈ [0, 1] | μξ̃(x, u) > 0}. Here Jx may be called
as primary possibility of the point x and for a particular value of x, say x = x′,
μ̃ξ̃(x

′) ∼ μξ̃(x
′, u), u ∈ Jx′ gives the secondary possibility of x′.

The secondary possibility distribution of a particular value x = x′, i.e. μ̃ξ̃(x
′)

actually represents a regular fuzzy variable (RFV).

Definition 2.10 (Interval Type-2 Fuzzy Variable). If for a type-2 fuzzy
variable ξ̃ we call the μξ̃(x

′, u′) as secondary possibility degree for a point x =
x′ and u′ ∈ Jx′ , then if secondary possibility degrees for all the points with
respective primary possibilities are 1, ξ̃ is said to be interval type-2 fuzzy variable
(IT2 FV).

Example 2.4. Let ξ̃ is a T2 FV defined as

ξ̃ =

⎧

⎨

⎩

5, with possibility (0.2,0.4,0.6);
6, with possibility (0.4,0.6,0.8);
7, with possibility (0.1,0.3,0.5,0.7).

(43)

i.e., the possibilities that ξ̃ has the values 5 and 6 are μ̃ξ̃(5) = (0.2, 0.4, 0.6) and
μ̃ξ̃(6) = (0.4, 0.6, 0.8) respectively, each of which is triangular RFV and possi-
bility that ξ̃ takes the value 7 is μ̃ξ̃(7) = (0.1, 0.3, 0.5, 0.7) which is trapezoidal
RFV. Obviously as μ̃ξ̃(5) = (0.2, 0.4, 0.6) is triangular RFV, we have,

μξ̃(5, u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u−0.2
0.2 , if 0.2 ≤ u ≤ 0.4;

1, if u = 0.4;
0.6−u
0.2 , if 0.4 ≤ u ≤ 0.6.

0, otherwise;

from which we get the secondary possibilities for the point 5 and each values of
u, 0.2 ≤ u ≤ 0.6. ξ̃ is depicted in Fig. 5.
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Fig. 5. Type-2 fuzzy variable ξ̃

Example 2.5 (Type-2 Triangular Fuzzy Variable). A type-2 triangular
fuzzy variable (Qin et al. [127]) ξ̃ is represented by (r1, r2, r3; θl, θr), where r1,
r2, r3 are real numbers and θl, θr ∈ [0, 1] are two parameters characterizing
the degree of uncertainty that ξ̃ takes a value x and the secondary possibility
distribution function μ̃ξ̃(x) of ξ̃ is defined by

μ̃ξ̃(x) =
( x− r1
r2 − r1

− θl min
{ x− r1

r2 − r1
,

r2 − x

r2 − r1

}

,
x− r1
r2 − r1

,
x− r1
r2 − r1

+

+θr min
{ x− r1

r2 − r1
,

r2 − x

r2 − r1

})

(44)

for any x ∈ [r1, r2], and

μ̃ξ̃(x) =
( r3 − x

r3 − r2
− θl min

{ r3 − x

r3 − r2
,

x− r2
r3 − r2

}

,
r3 − x

r3 − r2
,

r3 − x

r3 − r2
+

+θr min
{ r3 − x

r3 − r2
,

x− r2
r3 − r2

})

(45)

for any x ∈ (r2, r3].
A type-2 triangular fuzzy variable can be seen as an extension of a type-1

triangular fuzzy variable or simply a triangular fuzzy variable. In a triangular
fuzzy variable (TFV) (r1, r2, r3), the membership grade (possibility degree) of
each point is a fixed number in [0,1]. However in a type-2 triangular fuzzy variable
ξ̃ = (r1, r2, r3; θl, θr), the primary memberships (possibilities) of the points are
no longer fixed values, instead they have a range between 0 and 1. Here θl and
θr are used to represent the spreads of primary memberships of type-2 TFV.
Obviously if θl = θr = 0, then type-2 TFV ξ̃ becomes a type-1 TFV and the
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Eqs. (44) and (45) together become the membership function of a type-1 TFV.
Now from Eqs. (44) and (45), μ̃ξ̃(x) can be written as

μ̃ξ̃(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

x−r1
r2−r1

− θl
x−r1
r2−r1

, x−r1
r2−r1

, x−r1
r2−r1

+ θr
x−r1
r2−r1

)

, if x ∈ [r1, r1+r2
2 ];

(

x−r1
r2−r1

− θl
r2−x
r2−r1

, x−r1
r2−r1

, x−r1
r2−r1

+ θr
r2−x
r2−r1

)

, if x ∈ ( r1+r2
2 , r2];

(

r3−x
r3−r2

− θl
x−r2
r3−r2

, r3−x
r3−r2

, r3−x
r3−r2

+ θr
x−r2
r3−r2

)

, if x ∈ (r2, r2+r3
2 ];

(

r3−x
r3−r2

− θl
r3−x
r3−r2

, r3−x
r3−r2

, r3−x
r3−r2

+ θr
r3−x
r3−r2

)

, if x ∈ ( r2+r3
2 , r3].

(46)

Let us illustrate Example 2.5 numerically. Consider the type-2 triangular fuzzy
variable ξ̃ = (2, 3, 4; 0.5, 0.8).

Then its secondary possibility distribution is given by

μ̃ξ̃(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(0.5(x− 2), x− 2, 1.8(x− 2)), if x ∈ [2, 2.5];
((x− 2)− 0.5(3− x), x− 2, (x− 2) + 0.8(3− x)), if x ∈ (2.5, 3];
((4− x)− 0.5(x− 3), 4− x, (4− x) + 0.8(x− 3)), if x ∈ (3, 3.5];
(0.5(4− x), 4− x, 1.8(4− x)), if x ∈ (3.5, 4].

Here secondary possibility degree of each value of x is a triangular fuzzy variable
(more precisely a triangular RFV), e.g., μ̃ξ̃(2.5) = (0.25, 0.5, 0.9), μ̃ξ̃(3.2) =
(0.7, 0.8, 0.96), etc. So the domain of secondary possibility μ̃ξ̃(2.5) varies from
0.25 to 0.9 and that of μ̃ξ̃(3.2) varies from 0.7 to 0.96.

The FOU of ξ̃ is depicted in Fig. 6.

2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

x

u

Fig. 6. FOU of ξ̃.
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Example 2.6 (Trapezoidal Interval Type-2 Fuzzy Variable). A trape-
zoidal interval type-2 fuzzy variable Ã in the universe of discourse X can be rep-
resented by Ã = (ÃU , ÃL) = ((aU

1 , aU
2 , aU

3 , aU
4 ;wU ), (aL

1 , aL
2 , aL

3 , aL
4 ; wL)), where

both ÃU and ÃL are trapezoidal fuzzy variables of height wU and wL respec-
tively.

For example consider a trapezoidal IT2 FV Ã = ((2, 4, 6, 8; 1), (3, 4.5,
5.5, 7; 0.8)) which is depicted in Fig. 7.

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Trapezoidal interval type-2 fuzzy variable Ã

The arithmetic operations between trapezoidal interval type-2 fuzzy vari-
ables Ã1 = (ÃU

1 , ÃL
1 ) = ((aU

11, a
U
12, a

U
13, a

U
14;w

U
1 ), (aL

11, a
L
12, a

L
13, a

L
14; w

L
1 )) and

Ã2 = (ÃU
2 , ÃL

2 ) = ((aU
21, a

U
22, a

U
23, a

U
24;w

U
2 ), (aL

21, a
L
22, a

L
23, a

L
24; w

L
2 )) are defined

based on Chen and Lee [23,24] as follows:
Addition operation: Ã1 ⊕ Ã2 = (ÃU

1 , ÃL
1 )⊕ (ÃU

2 , ÃL
2 )

= ((aU
11 + aU

21, a
U
12 + aU

22, a
U
13 + aU

23, a
U
14 + aU

24,min(wU
1 , wU

2 )), (aL
11 + aL

21, a
L
12 +

aL
22, a

L
13 + aL

23, a
L
14 + aL

24,min(wL
1 , wL

2 ))),
Multiplication operation: Ã1 ⊗ Ã2 = (ÃU

1 , ÃL
1 )⊗ (ÃU

2 , ÃL
2 )

= ((aU
11 × aU

21, a
U
12 × aU

22, a
U
13 × aU

23, a
U
14 × aU

24,min(wU
1 , wU

2 )), (aL
11 × aL

21, a
L
12 ×

aL
22, a

L
13 × aL

23, a
L
14 × aL

24,min(wL
1 , wL

2 ))).
The arithmetic operations between trapezoidal interval type-2 fuzzy variable Ã1

and a crisp value k(> 0) are defined as follows:
kÃ1 = ((k×aU

11, k×aU
12, k×aU

13, k×aU
14;w

U
1 ), (k×aL

11, k×aL
12, k×aL

13, k×aL
14; w

L
1 )),

Ã1
k = (( 1

k×aU
11,

1
k×aU

12,
1
k×aU

13,
1
k×aU

14;w
U
1 ), ( 1

k×aL
11,

1
k×aL

12,
1
k×aL

13,
1
k×aL

14; w
L
1 )).
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Critical Value (CV)-Based Reduction Method for Type-2 Fuzzy Vari-
ables (Qin et al. [127]): The CV-based reduction method is developed using
the following definitions.

Critical Values (CVs) for RFVs: Qin et al. [127] introduced three kinds of
critical values (CVs) of a RFV ξ̃. These are:

(i) the optimistic CV of ξ̃, denoted by CV*[ξ̃], is defined as

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos{ξ̃ ≥ α}] (47)

(ii) the pessimistic CV of ξ̃, denoted by CV∗[ξ̃], is defined as

CV∗[ξ̃] = sup
α∈[0,1]

[α ∧Nec{ξ̃ ≥ α}] (48)

(iii) the CV of ξ̃, denoted by CV[ξ̃], is defined as

CV [ξ̃] = sup
α∈[0,1]

[α ∧ Cr{ξ̃ ≥ α}]. (49)

Example 2.7. Let ξ̃ be a discrete RFV defined by

ξ̃ =
(

0.2 0.4 0.5 0.7
0.3 0.7 1.0 0.6

)

Then for α ∈ [0, 1],

Pos{ξ̃ ≥ α} = sup
r≥α

μξ̃(r) =

⎧

⎨

⎩

1, if α ≤ 0.5;
0.6, if 0.5 < α ≤ 0.7;
0, if 0.7 < α ≤ 1.

Nec{ξ̃ ≥ α} = 1− sup
r<α

μξ̃(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if α ≤ 0.2;
0.7, if 0.2 < α ≤ 0.4;
0.3, if 0.4 < α ≤ 0.5;
0, if 0.5 < α ≤ 1.

and so,

Cr{ξ̃ ≥ α} =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, if α ≤ 0.2;
0.85, if 0.2 < α ≤ 0.4;
0.65, if 0.4 < α ≤ 0.5;
0.3, if 0.5 < α ≤ 0.7;
0, if 0.7 < α ≤ 1.
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Now from (47), (48) and (49) we have

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos{ξ̃ ≥ α}]

= sup
α∈[0,0.5]

[α ∧ 1] ∨ sup
α∈(0.5,0.7]

[α ∧ 0.6] ∨ sup
α∈(0.7,1]

[α ∧ 0]

= 0.5 ∨ 0.6 ∨ 0 = 0.6
CV∗[ξ̃] = sup

α∈[0,1]

[α ∧Nec{ξ̃ ≥ α}]

= sup
α∈[0,0.2]

[α ∧ 1] ∨ sup
α∈(0.2,0.4]

[α ∧ 0.7] ∨ sup
α∈(0.4,0.5]

[α ∧ 0.3] ∨ sup
α∈(0.5,1]

[α ∧ 0]

= 0.2 ∨ 0.4 ∨ 0.3 ∨ 0 = 0.4

and

CV [ξ̃] = sup
α∈[0,1]

[α ∧ Pos{ξ̃ ≥ α}]

= sup
α∈[0,0.2]

[α ∧ 1] ∨ sup
α∈(0.2,0.4]

[α ∧ 0.85] ∨ sup
α∈(0.4,0.5]

[α ∧ 0.65] ∨

sup
α∈(0.5,0.7]

[α ∧ 0.3] ∨ sup
α∈(0.7,1]

[α ∧ 0]

= 0.2 ∨ 0.4 ∨ 0.5 ∨ 0.3 ∨ 0 = 0.5.

The following theorems introduce the critical values (CVs) of trapezoidal and
triangular RFVs.

Theorem 2.2 (Qin et al. [127]). Let ξ̃ = (r1, r2, r3, r4) be a trapezoidal RFV.
Then we have

(i) the optimistic CV of ξ̃ is

CV ∗[ξ̃] = r4/(1 + r4 − r3), (50)

(ii) the pessimistic CV of ξ̃ is

CV∗[ξ̃] = r2/(1 + r2 − r1), (51)

(iii) the CV of ξ̃ is

CV [ξ̃] =

⎧

⎨

⎩

2r2−r1
1+2(r2−r1)

, if r2 > 1
2 ;

1
2 , if r2 ≤ 1

2 < r3;
r4

1+2(r4−r3)
, if r3 ≤ 1

2 .
(52)

Theorem 2.3 (Qin et al. [127]). Let ξ̃ = (r1, r2, r3) be a triangular RFV. Then
we have

(i) the optimistic CV of ξ̃ is

CV ∗[ξ̃] = r3/(1 + r3 − r2), (53)
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(ii) the pessimistic CV of ξ̃ is

CV∗[ξ̃] = r2/(1 + r2 − r1), (54)

(iii) the CV of ξ̃ is

CV [ξ̃] =

{

2r2−r1
1+2(r2−r1)

, if r2 > 1
2 ;

r3
1+2(r3−r2)

, r2 ≤ 1
2 .

(55)

Now we discussed the CV-based reduction method.

The CV-Based Reduction Method: Because of fuzziness in membership
function of T2 FS, computational complexity is very high to deal with T2 FS.
A general idea to reduce its complexity is to convert a T2 FS into a T1 FS
so that the methodologies to deal with T1 FSs can also be applied to T2 FSs.
Qin et al. [127] proposed a CV-based reduction method which reduces a type-
2 fuzzy variable to a type-1 fuzzy variable (may or may not be normal). Let
ξ̃ be a T2 FV with secondary possibility distribution function μ̃ξ̃(x) (which
represents a RFV). The method is to introduce the critical values (CVs) as
representing values for RFV μ̃ξ̃(x), i.e., CV∗[μ̃ξ̃(x)], CV∗[μ̃ξ̃(x)] or CV[μ̃ξ̃(x)]
and so corresponding type-1 fuzzy variables (T1 FVs) are derived using these
CVs of the secondary possibilities. Then these methods are respectively called
optimistic CV reduction, pessimistic CV reduction and CV reduction method.

Example 2.4 (Continued). The possibilities of each point of the T2 FV ξ̃ in
Example 2.4, are triangular or trapezoidal RFVs. So from Theorems 2.2 and 2.3
we obtain

CV∗[μ̃ξ̃(5)] = 1
2 , CV∗[μ̃ξ̃(6)] = 2

3 , CV∗[μ̃ξ̃(7)] = 7
12 .

CV∗[μ̃ξ̃(5)] = 1
3 , CV∗[μ̃ξ̃(6)] = 1

2 , CV∗[μ̃ξ̃(7)] = 1
4 .

CV[μ̃ξ̃(5)] = 3
7 , CV[μ̃ξ̃(6)] = 4

7 , CV[μ̃ξ̃(7)] = 1
2 .

Then by optimistic CV, pessimistic CV and CV reduction methods, the T2
FV ξ̃ is reduced respectively to the following T1 FVs
(

5 6 7
1
2

2
3

7
12

)

,
(

5 6 7
1
3

1
2

1
4

)

and
(

5 6 7
3
7

4
7

1
2

)

.

In the following theorem the optimistic CV, pessimistic CV and CV reductions
of a type-2 triangular fuzzy variable are obtained. Since the secondary possibility
distribution of a type-2 triangular fuzzy variable is a triangular RFV, so applying
Theorem 2.3, Qin et al. [127] established the following theorem in which a type-2
triangular fuzzy variable is reduced to a type-1 fuzzy variable.

Theorem 2.4 (Qin et al. [127]). Let ξ̃ be a type-2 triangular fuzzy variable
defined as ξ̃ = (r1, r2, r3; θl, θr). Then we have:
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(i) Using the optimistic CV reduction method, the reduction ξ1 of ξ̃ has the
following possibility distribution

μξ1(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1+θr)(x−r1)
r2−r1+θr(x−r1)

, if x ∈ [r1, r1+r2
2 ];

(1−θr)x+θrr2−r1
r2−r1+θr(r2−x) , if x ∈ ( r1+r2

2 , r2];
(−1+θr)x−θrr2+r3

r3−r2+θr(x−r2)
, if x ∈ (r2, r2+r3

2 ];
(1+θr)(r3−x)

r3−r2+θr(r3−x) , if x ∈ ( r2+r3
2 , r3].

(56)

(ii) Using the pessimistic CV reduction method, the reduction ξ2 of ξ̃ has the
following possibility distribution

μξ2(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x−r1
r2−r1+θl(x−r1)

, if x ∈ [r1, r1+r2
2 ];

x−r1
r2−r1+θl(r2−x) , if x ∈ ( r1+r2

2 , r2];
r3−x

r3−r2+θl(x−r2)
, if x ∈ (r2, r2+r3

2 ];
r3−x

r3−r2+θl(r3−x) , if x ∈ ( r2+r3
2 , r3].

(57)

(iii) Using the CV reduction method, the reduction ξ3 of ξ̃ has the following
possibility distribution

μξ3(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1+θr)(x−r1)
r2−r1+2θr(x−r1)

, if x ∈ [r1, r1+r2
2 ];

(1−θl)x+θlr2−r1
r2−r1+2θl(r2−x) , if x ∈ ( r1+r2

2 , r2];
(−1+θl)x−θlr2+r3
r3−r2+2θl(x−r2)

, if x ∈ (r2, r2+r3
2 ];

(1+θr)(r3−x)
r3−r2+2θr(r3−x) , if x ∈ ( r2+r3

2 , r3].

(58)

Example 2.8. Consider the type-2 triangular fuzzy variable ξ̃=(2, 3, 4; 0.5, 0.8)
whose FOU is depicted in Fig. 6.

Then its optimistic CV, pessimistic CV and CV reductions are shown in the
Fig. 8.

Note 2.1: The reduced type-1 fuzzy variables from T2 FVs as obtained by
CV-based reduction methods are not always normalized, i.e. are general fuzzy
variables. For instance, from Example 2.4 (continued) we observe that the reduc-
tions of T2 FV ξ̃ are not normal. For such cases, generalized credibility measure
C̃r is used instead of the credibility measure.

The generalized credibility measure C̃r of a fuzzy event {ξ̃ ∈ B}, B ⊂ 
 is
defined as

C̃r{ξ̃ ∈ B} =
1
2
(sup
x∈


μξ̃(x) + sup
x∈B

μξ̃(x)− sup
x∈Bc

μξ̃(x)).

It is obvious that if ξ̃ is normalized (i.e. supx∈
 μξ̃(x) = 1), then C̃r coincides
with usual credibility measure Cr.
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Fig. 8. (1) optimistic CV, (2) pessimistic CV, (3) CV reductions of ξ̃.

2.4 Rough Set

Here we introduced some basic idea of approximation of a subset of a certain
universe by means of lower and upper approximation and the rough set theory.
Suppose U is a non-empty finite set of objects called the universe and A is a
non-empty finite set of attributes, then the pair S = (U,A) is called information
system. For any B ⊆ A there is associated an equivalence relation I(B) defined
as I(B) = {(x, y) ∈ U × U | ∀a ∈ B, a(x) = a(y)}, where a(x) denotes the value
of attribute a for element x. I(B) is called the B-indiscernibility relation. The
equivalence classes of the B-indiscernibility relation are denoted by [x]B .
For an information system S = (U,A) and B ⊆ A, X ⊆ U can be approximated
using only the information contained in B by constructing the B-lower and
B-upper approximations (Pawlak [122]) of X, denoted BX and BX respectively,
where

BX = {x | [x]B ⊆ X} and BX = {x | [x]B ∩X �= φ}.
Clearly, lower approximation BX is the definable (exact) set contained in X so
that the objects in BX can be with certainty classified as members of X on
the basis of knowledge in B, while the objects in BX can be only classified as
possible members of X on the basis of knowledge in B. The B-boundary region
of X is defined as

BNB = BX −BX
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and thus consists of those objects that we cannot decisively classify into X on
the basis of knowledge in B. The boundary region of a crisp (exact) set is an
empty set as the lower and upper approximation of crisp set are equal. A set is
said to be rough if the boundary region is non-empty, i.e., if BNB �= φ then X
is referred to as rough with respect to B.
Rough set can be also characterized numerically by the following coefficient

αB(X) =
| BX |
| BX |

called the accuracy of approximation, where |X| denotes the cardinality of X.
Obviously 0 ≤ αB(X) ≤ 1. If αB(X) = 1, X is crisp with respect to B and if
αB(X) < 1, X is rough with respect to B.

Example 2.9. A simple information system (also known as attribute-value
tables or information table) is shown in Table 1. This table contains informa-
tion about patients suffering from a certain disease and objects in this table
are patients, attributes can be, for example, headache, body temperature etc.
Columns of the table are labeled by attributes (symptoms) and rows by objects
(patients), whereas entries of the table are attribute values. Thus each row of
the table can be seen as information about specific patient.

Table 1. An example of information system

Patient Headache Muscle-pain Temperature Flu

p1 no yes high yes

p2 yes no high yes

p3 yes yes very high yes

p4 no yes normal no

p5 yes no high no

p6 no yes very high yes

From the table it is observed that patients p2, p3 and p5 have the same
conditions with respect to the attribute Headache. So patients p2, p3 and p5
are indiscernible with respect to the attribute Headache. Similarly patients p3
and p6 are indiscernible with respect to attributes Muscle-pain and Flu, and
patients p2 and p5 are indiscernible with respect to attributes Headache, Muscle-
pain and Temperature. Hence, the attribute Headache generates two elementary
sets {p2, p3, p5} and {p1, p4, p6}, i.e., I(Headache) = {{p2, p3, p5}, {p1, p4, p6}}.
Similarly the attributes Headache and Muscle-pain form the following elemen-
tary sets: {p1, p4, p6}, {p2, p5} and {p3}.

Now we observe that patient p2 and p5 indiscernible with respect to the
attributes Headache, Muscle-pain and Temperature, but patient p2 has flu,
whereas patient p5 does not, hence flu cannot be characterized in terms of
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attributes Headache, Muscle-pain and Temperature. Hence p2 and p5 are the
boundary-line cases, which cannot be properly classified in view of the available
knowledge. The remaining patients p1, p3 and p6 display symptoms (Muscle-
pain and at least high temperature, which are must in a patient having flu as seen
from the table) which enable us to classify them with certainty as having flu and
patient p4 for sure does not have flu, in view of the displayed symptoms. Thus
the lower approximation of the set of patients having flu is the set {p1, p3, p6}
and the upper approximation of this set is the set {p1, p2, p3, p5, p6}, whereas
the boundary-line cases are patients p2 and p5. Now consider the concept “flu”,
i.e., the set X = {p1, p2, p3, p6} and the set of attributes B = Headache, Muscle-
pain, Temperature. Then BX = {p1, p3, p6} and BX = {p1, p2, p3, p5, p6} and
BNB = BX − BX = {p2, p5} �= φ. So here X can be referred to as rough with
respect to B. Also in this case we get αB(X) = 3/5. It means that the concept
“flu” can be characterized partially employing symptoms Headache, Muscle-pain
and Temperature.

Rough Variable: The concept of rough variable is introduced by Liu [86]. The
following definitions are based on Liu [86,88].

Definition 2.11. Let Λ be a nonempty set, A be a σ-algebra of subsets of Λ, Δ
be an element in A, and π be a nonnegative, real-valued, additive set function
on A. Then (Λ,Δ,A, π) is called a rough space.

Definition 2.12 (Rough Variable). A rough variable ξ on the rough space
(Λ,Δ,A, π) is a measurable function from Λ to the set of real numbers 
 such
that for every Borel set B of 
, we have {λ ∈ Λ | ξ(λ) ∈ B} ∈ A.

Then the lower and upper approximations of the rough variable ξ are defined
as follows:

ξ = {ξ(λ) | λ ∈ Δ} and ξ = {ξ(λ) | λ ∈ Λ}.
Definition 2.13. Let ξ be a rough vector on the rough space (Λ,Δ,A, π), and
fj : 
n → 
 be continuous functions, j = 1, 2, ...,m. Then the upper trust of
the rough event characterized by fj(ξ) ≤ 0; j = 1, 2, ...,m is defined by

T r̄{fj(ξ) ≤ 0,j=1,2,...,m} =
π{λ ∈ Λ|fj(ξ(λ)) ≤ 0, j = 1, 2, ...,m}

π(Λ)
,

and the lower trust of the rough event characterized by fj(ξ) ≤ 0; j = 1, 2, ...,m
is defined by

Tr{fj(ξ) ≤ 0,j=1,2,...,m} =
π{λ ∈ Δ|fj(ξ(λ)) ≤ 0, j = 1, 2, ...,m}

π(Δ)
.

If π(Δ) = 0, then the upper trust and lower trust of the rough event are assumed
to be equivalent, i.e., T r̄{fj(ξ) ≤ 0,j=1,2,...,m} ≡ Tr{fj(ξ) ≤ 0,j=1,2,...,m}.
The trust of the rough event is defined as the average value of the lower and
upper trusts, i.e.,

Tr{fj(ξ) ≤ 0,j=1,2,...,m}=1
2
(T r̄{fj(ξ) ≤ 0,j=1,2,...,m}+Tr{fj(ξ) ≤ 0,j=1,2,...,m}).
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Definition 2.14. Let ξ be a rough variable on the rough space (Λ,Δ,A, π) and
α ∈ (0, 1], then

ξsup(α) = sup{r|Tr{ξ ≥ r} ≥ α}
is called α-optimistic value to ξ; and

ξinf (α) = inf{r|Tr{ξ ≤ r} ≥ α}

is called α-pessimistic value to ξ.

Definition 2.15. Let ξ be a rough variable on the rough space (Λ,Δ,A, π).
The expected value of ξ is defined by

E[ξ] =
∫ ∞

0

Tr{ξ ≥ r}dr −
∫ 0

−∞
Tr{ξ ≤ r}dr.

Theorem 2.5. (Liu [88]). Let ξinf (α) and ξsup(α) be the α-pessimistic and
α-optimistic values of the rough variable ξ, respectively.Then we have

(a) Tr{ξ ≤ ξinf (α) ≥ α} and Tr{ξ ≥ ξsup(α) ≥ α};
(b) ξinf (α) is an increasing and left-continuous function of α;
(c) ξsup(α) is a decreasing and left-continuous function of α;
(d) if 0 < α ≤ 1, then ξinf (α) = ξsup(1− α) and ξsup(α) = ξinf (1− α);
(e) if 0 < α ≤ 0.5, then ξinf (α) ≤ ξsup(α);
(f) if 0.5 < α ≤ 1,then ξinf (α) ≥ ξsup(α).

Example 2.10. Consider that ξ = ([a, b], [c, d]) be a rough variable with c ≤
a < b ≤ d, where [a, b] is the lower approximation and [c, d] is the upper approx-
imation. This means the elements in [a, b] are certainly members of the variable
and that of [c, d] are possible members of the variable. Here Δ = {λ|a ≤ λ ≤ b}
and Λ = {λ|c ≤ λ ≤ d}, ξ(x) = x for all x ∈ Λ, A is the Borel algebra on Λ and
π is the Lebesgue measure.

As an practical example consider the possible transportation cost of unit
product to be transported from a source i to certain destination j through a
conveyance k for a certain time period. But as transportation cost depends upon
fuel price, labor charges, tax charges, etc. and each of which is fluctuate time
to time, so it is not always possible to determine its exact value. Suppose four
experts give the possible unit transportation cost for i− j route via conveyance
k, determined in a certain time period as intervals [3,5], [3.5,6], [4,5] and [4,6]
respectively. Denotes cijk as - ’the possible value of the unit transportation cost
for i− j route through conveyance k according to the all experts’. Then cijk is
not exact and can be approximated by means of lower and upper approximation.
Here [4,5] can be taken as the lower approximation of cijk as it is the greatest
definable (exact) set that cijk contain, i.e., every member of [4,5] is certainly a
value of cijk according to all experts. Here [3,6] is the upper approximation, as
members of [3,6] may or may not be possible transportation cost according to
all experts. So cijk can be represented as the rough variable ([4,5],[3,6]).
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For a given value r and ξ = ([a, b], [c, d]), trust of rough events characterized
by ξ ≤ r and ξ ≥ r (Liu [86,88]) are given by

Tr{ξ ≤ r} =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if r ≤ c;
r−c

2(d−c) , if c ≤ r ≤ a;
1
2 ( r−a

b−a + r−c
d−c ), if a ≤ r ≤ b;

1
2 ( r−c

d−c + 1), if b ≤ r ≤ d;
1, if r ≥ d.

(59)

Tr{ξ ≥ r} =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if r ≥ d;
d−r

2(d−c) , if b ≤ r ≤ d;
1
2 (d−r

d−c + b−r
b−a ), if a ≤ r ≤ b;

1
2 (d−r

d−c + 1), if c ≤ r ≤ a;
1, if r ≤ c.

(60)

For rough variable ξ = ([4, 5], [2, 7]), Tr{ξ ≤ r} and Tr{ξ ≥ r} are depicted in
Fig. 9.
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Fig. 9. The trust of the rough event characterized by (1) ξ ≤ r and (2) ξ ≥ r.

α-optimistic value to ξ = ([a, b], [c, d]) is

ξsup(α) =

⎧

⎨

⎩

(1− 2α)d + 2αc, if α ≤ ((d− b)/2(d− c));
2(1− α)d + (2α− 1)c, if α ≥ ((2d− a− c)/2(d− c));
d(b−a)+b(d−c)−2α(b−a)(d−c)

(b−a)+(d−c) , otherwise.
(61)

α-pessimistic value to ξ is

ξinf (α) =

⎧

⎨

⎩

(1− 2α)c + 2αd, if α ≤ ((a− c)/2(d− c));
2(1− α)c + (2α− 1)d, if α ≥ ((b + d− 2c)/2(d− c));
c(b−a)+a(d−c)+2α(b−a)(d−c)

(b−a)+(d−c) , otherwise.
(62)

The expected value of ξ is E(ξ) = 1
4 (a + b + c + d).
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2.5 Single-Objective Optimization

Single-Objective Linear Programming (SOLP)/Non-linear Program-
ming (SONLP) Problem: If an optimization problem consists of only one
objective function, then problem is called a single-objective mathematical pro-
gramming (SOMP) problem. The minimization of a constrained SOMP problem
can be formulated as:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find x = (x1, x2, ...., xn)T

which minimizes f(x)
subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(63)

where, objective function f(x) and constraints gj(x), j = 1, 2, ....,m are functions
defined on n-dimensional set.

When both the objective function and the constraints are linear, the above
SOMP problem becomes a single-objective linear programming problem (SOLP).
Otherwise, it is a single-objective non-linear programming problem (SONLP).

Feasible Solution: A decision variable vector x satisfying all the constraints
is called a feasible solution to the problem. The collection of all such solutions
forms the feasible region.

Optimal Solution: If a feasible solution x∗ of (63) be such that for each fea-
sible point x, f(x) ≤ f(x∗) for maximization problem and f(x) ≥ f(x∗) for
minimization problem then x∗ is called an optimal solution of the problem.

Local Optimum: A feasible solution x∗ of (63) is said be local optimum if
there exists an ε > 0 such that f(x) ≥ f(x∗) for minimization problem and
f(x) ≤ f(x∗) for maximization problem, ∀x ∈ X : ‖ x− x∗ ‖< ε.

Global Optimum: A feasible solution x∗ of (63) is said be global optimum
if f(x) ≥ f(x∗) for minimization problem and f(x) ≤ f(x∗) for maximization
problem ∀x ∈ X.

Necessary Condition for Optimality: The necessary condition for a feasible
solution x∗ ∈ X of (63) to be optimal is that all the partial derivatives ∂f(x)

∂xr
are

exist at x = x∗ and ∂f(x)
∂xr

= 0 for r = 1, 2, ..., n.

Example 2.11. As an example of a single-objective problem we consider a
simple transportation problem with 3 sources (i = 1, 2, 3) and 3 destinations
(j = 1, 2, 3) as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Minimize Z =
∑3

i=1

∑3
j=1 cij xij ,

subject to
∑3

j=1 xij ≤ ai, i = 1, 2, 3,
∑3

i=1 xij ≥ bj , j = 1, 2, 3,

xij ≥ 0, ∀ i, j,
∑3

i=1 ai ≥
∑3

j=1 bj ,

(64)
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where cij is the cost for transportation of unit product from source i to destina-
tion j, xij is decision variable which represents the quantity to be transported
from i-th origin to j-th destination and so that the objective function Z repre-
sents the total transportation cost. The unit transportation costs are given as
follows: c11 = 5, c12 = 6, c13 = 8, c21 = 7, c22 = 9, c23 = 5, c31 = 8, c32 = 9 and
c33 = 7. The availabilities at each sources and demands of each destinations are
as follows: a1 = 36, a2 = 20.8, a3 = 28.6, b1 = 22.8, b2 = 31, b3 = 30.

2.6 Solution Techniques for Single-Objective Linear/Non-linear
Problem

Generalized Reduced Gradient (GRG): The GRG technique is a method
for solving NLP problems with equality as well as inequality constraints. Con-
sider the NLP problem as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find x = (x1, x2, ...., xn)T

which minimizes f(x)
subject to x ∈ X

where X = x :

⎧

⎨

⎩

gj(x) ≤ 0, j = 1, 2, ...,m;
hr(x) = 0, r = 1, 2, ..., p;
xi ≥ 0, i = 1, 2, ..., n.

(65)

By adding a non-negative slack variable sj(≥ 0), j = 1, 2, ...,m to each of the
above inequality constraints, the problem (65) can be stated as,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Minimize f(x)
subject to x = (x1, x2, ...., xn)T ∈ X

where X = x :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

gj(x) + sj = 0, j = 1, 2, ...,m;
hr(x) = 0, r = 1, 2, ..., p;
xi ≥ 0, i = 1, 2, ..., n.
sj ≥ 0, j = 1, 2, ...,m

(66)

where the lower and upper bounds on the slack variables, sj , j = 1, 2, ...,m are
taken as a zero and a large number (infinity) respectively.

Denote sj by xn+j , gj(x) + sj by ξj , j = 1, 2, ...,m and hr(x) by ξm+r,
r = 1, 2, ..., p. Then the above problem (66) becomes

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Minimize f(x)
subject to x = (x1, x2, ...., xn+m)T ∈ X

where X = x :
{

ξj = 0, j = 1, 2, ...,m + p;
xi ≥ 0, i = 1, 2, ..., n + m.

(67)

This GRG technique is based on the idea of elimination of variables using the
equality constraints. Theoretically, (m + p) variables (dependent variables) can
be expressed in terms of remaining (n − p) variables (independent variables).
Thus one can divide the (n + m) decision variables arbitrarily into two sets as

x = (y, z)T
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where, y is (n − p) design or independent variables and z is (m + p) state or
dependent variables and

y = (y1, y2, ...., yn−p)T , z = (z1, z2, ...., zm+p)T .

Here, the design variables are completely independent and the state variables
are dependent on the design variables used to satisfy the constraints ξj(x) = 0,
(j = 1, 2, ...,m + p). Consider the first variations of the objective and constraint
functions:

df(x) =
n−p
∑

i=1

∂f

∂yi
dyi +

m+p
∑

i=1

∂f

∂zi
dzi = ∇T

y fdy +∇T
z fdz (68)

dξj(x) =
n−p
∑

i=1

∂ξj

∂yi
dyi +

m+p
∑

i=1

∂ξj

∂zi
dzi (69)

or dξ = C dy + D dz (70)

where ∇T
y f =

( ∂f

∂y1
,

∂f

∂y2
, ...,

∂f

∂yn−p

)

∇T
z f =

( ∂f

∂z1
,

∂f

∂z2
, ...,

∂f

∂zm+p

)

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂ξ1
∂y1

... ... ... ∂ξ1
∂yn−p

∂ξ2
∂y1

... ... ... ∂ξ2
∂yn−p

... ... ... ... ...

... ... ... ... ...
∂ξm+p

∂y1
... ... ...

∂ξm+p

∂yn−p

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂ξ1
∂z1

... ... ... ∂ξ1
∂zm+p

∂ξ2
∂z1

... ... ... ∂ξ2
∂zm+p

... ... ... ... ...

... ... ... ... ...
∂ξm+p

∂z1
... ... ...

∂ξm+p

∂zm+p

⎤

⎥

⎥

⎥

⎥

⎥

⎦

dy = (dy1, dy2, ..., dyn−p)T

and dz = (dz1, dz2, ..., dzm+p)T

Assuming that the constraints are originally satisfied at the vector x (ξ(x) = 0),
any change in the vector dx must correspond to dξ = 0 to maintain feasibility
at x + dx. Thus, Eq. (70) can be solved as

C dy + D dz = 0

or dz = −D−1 Cdy (71)

The change in the objective function due to the change in x is given by the
Eq. (68), which can be expressed, using Eq. (71) as

df(x) = (∇T
y fdy −∇T

z fD−1 C)dy

or
df(x)
dy

= GR (72)

where GR = ∇T
y fdy −∇T

z fD−1 C (73)
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is called the generalized reduced gradient. Geometrically, the reduced gradient
can be described as a projection of the original n-dimensional gradient into the
(n−m) dimensional feasible region described by the design variables.

A necessary condition for the existence of minimum of an unconstrained
function is that the components of the gradient vanish. Similarly, a constrained
function assumes its minimum value when the appropriate components of the
reduced gradient are zero. In fact, the reduced gradient GR can be used to
generate a search direction S to reduce the value of the constrained objective
function. Similarly, to the gradient ∇f that can be used to generate a search
direction S for an unconstrained function. A suitable step length λ is to be
chosen to minimize the value of f(x) along the search direction. For any specific
value of λ, the dependent variable vector z is updated using Eq. (70). Noting
that Eq. (68) is based on using a linear approximation to the original non-linear
problem, so the constraints may not be exactly equal to zero at λ, i.e., dξ �= 0.
Hence, when y is held fixed, in order to have

ξj(x) + dξj(x) = 0, j = 1, 2, ...,m + p (74)

following must be satisfied.

ξ(x) + dξ(x) = 0. (75)

Using Eq. (70) for dξ in Eq. (75), following is obtained

dz = D−1(−ξ(x)− Cdy). (76)

The value dz given by Eq. (76) is used to update the value of z as

zupdate = zcurrent + dz. (77)

The constraints evaluated at the updated vector x, and the procedure of finding
dz using Eq. (76) is repeated until dz is sufficiently small.

2.7 Single-Objective Problem in Fuzzy Environment

When in a single-objective optimization problem, some of the or all the parame-
ters in objective function and constraints are not precisely defined or completely
known, then if such parameters are represented by fuzzy numbers(/variables),
the problem is termed as single-objective optimization problem in fuzzy envi-
ronment. Consider the following fuzzy programming problem,

⎧

⎨

⎩

Min f(x, ξ̃)
subject to gj(x, ξ̃) ≤ b̃j , j = 1, 2, ...,m

xi ≥ 0, i = 1, 2, ..., n

(78)

where, x = (x1, x2, ...., xn)T is a decision vector,ξ̃ is a fuzzy vector, f(x, ξ̃) is
a return function, and gj(x, ξ̃) ≤ b̃j are constraints, j = 1, 2, ...,m. It is not
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possible to minimize directly a fuzzy quantity f(x, ξ̃) and also the constraints
gj(x, ξ̃) ≤ b̃j , j = 1, 2, ...,m do not produce a crisp feasible set. In order to solve
the above fuzzy model several researchers proposed a number of different meth-
ods. Fuzzy expected value model (EVM) (Liu and Liu [94]), chance-constrained
programming model (CCP) (Liu and Iwamura [92]), dependent-chance program-
ming (DCP) (Liu [85]) are some of the such available techniques. We now provide
short description of these techniques.

Expected Value Model: In order to obtain a solution (here a decision with
minimum expected return) of (78), Liu and Liu [94] provided a spectrum of fuzzy
expected value model (EVM) as follows:

⎧

⎨

⎩

Min E[f(x, ξ̃)]
subject to E[gj(x, ξ̃)− b̃j ] ≤ 0, j = 1, 2, ...,m

xi ≥ 0, i = 1, 2, ..., n

(79)

For detail explanation, crisp equivalent form of the fuzzy EVM please see Liu
and Liu [94], Liu [90], Yang and Liu [153].

Chance-Constrained Programming Model: This method is used to solve
the problems with chance-constraints. In this method, the uncertain constraints
are allowed to be violated such that constraints must be satisfied at some chance
(/confidence) level. For example, since the fuzzy constraints gj(x, ξ̃) ≤ b̃j , j =
1, 2, ...,m do not define a deterministic feasible set, a natural idea is to provide
a confidence level α at which it is desired that the fuzzy constraints hold. A
chance constrained programming for the minimization problem (78) with fuzzy
parameters using possibility measure may be constructed as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Minx (Minf̄ f̄)
subject to Pos{f(x, ξ̃) ≤ f̄} ≥ α,

Pos{ξ̃ | gj(x, ξ̃) ≤ b̃j} ≥ αj , j = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n

(80)

where, α is a predetermined confidence level so that Min f̄ indicates the minimum
value that the objective function achieves with possibility at least α (0 < α ≤ 1).
In other words we want to minimize the α-optimistic return. αj indicates the
predetermined confidence level of satisfaction of the constraint.

A chance constrained programming for the minimization problem (78) with
fuzzy parameters using credibility measure may be constructed as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Minx (Minf̄ f̄)
subject to Cr{f(x, ξ̃) ≤ f̄} ≥ α,

Cr{gj(x, ξ̃) ≤ b̃j} ≥ αj , j = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n

(81)

where, α is a predetermined confidence (credibility) level so that Min f̄ indi-
cates the minimum value that the objective function achieves with credibility
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degree(/level) at least α (0 < α ≤ 1). In other words we want to minimize the
α-optimistic return. αj indicates the predetermined credibility level of satisfac-
tion of the constraint.

For detail explanation regarding the, crisp equivalent forms of the fuzzy CCP
problem please see Liu and Iwamura [92], Mula et al. [116], Liu [84,90], Yang
and Liu [153] and Kundu et al. [74].

Dependent-Chance Programming: The idea of dependent-chance program-
ming (DCP) is to optimize the chance of an uncertain event. Suppose for the
minimization problem like (78), a decision maker will satisfy with a solution
(decision vector x) for which the objective value is not exceed a certain value. So
a decision maker may fixed a satisfying predetermined maximal objective value
and maximize the credibility level that objective value is not exceed the prede-
termined value. Then with respect to a given predetermined maximal objective
value f̄ the dependent chance-constrained programming model for the problem
(78) is formulated as follows:

⎧

⎨

⎩

Max Cr{f(x, ξ̃) ≤ f̄}
subject to gj(x, ξ̃) ≤ b̃j , j = 1, 2, ...,m

xi ≥ 0, i = 1, 2, ..., n

(82)

For detail explanation, crisp equivalent forms of the fuzzy CCP problem please
see Liu [85], Liu [90], Yang and Liu [153].

2.8 Multi-objective Optimization

A general multi-objective programming problem (minimization problem) is of
the following form:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find x = (x1, x2, ...., xn)T

which minimizes F (x) = (f1(x), f2(x), ..., fk(x))T

subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(83)

where, f1(x), f2(x), ..., fk(x) are k ≥ 2) objectives.

Complete Optimal Solution: A feasible solution x∗ is said to be a complete
optimal solution to the multi-objective problem in (83) iff there exists x∗ ∈ X
such that fi(x∗) ≤ fi(x), i = 1, 2, ..., k for all x ∈ X. In general, the objective
functions of the multi-objective problem conflict with each other, a complete
optimal solution does not always exist and so Pareto (or non dominated) opti-
mality concept is introduced.

Pareto Optimal Solution: A feasible solution x∗ is said to be a Pareto opti-
mal solution to the (83) iff there does not exist another x ∈ X such that
fi(x) ≤ fi(x∗) for all i, i = 1, 2, ..., k and fj(x) < fj(x∗) for at least one index
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j, j = 1, 2, ...., k. An objective vector F ∗ is Pareto-optimal if there does not exist
another objective vector F (x) such that fi ≤ f∗

i , for all i, i = 1, 2, ..., k and
fj < f∗

j for at least one index j. Therefore, F ∗ is Pareto optimal if the decision
vector corresponding to it is Pareto optimal. Unless an optimization problem is
convex, only locally optimal solution is guaranteed using standard mathematical
programming techniques. Therefore, the concept of Pareto-optimality needs to
be modified to introduce the notion of a locally Pareto-optimal solution for a
non-convex problem as defined by Geoffrion [49].

Locally Pareto Optimal Solution: A feasible solution x∗ is said to be a locally
Pareto optimal solution to the multi-objective problem (83) if and only if there
exists an r > 0 such that x∗ is Pareto optimal in X ∩N(x∗, r), where N(x∗, r) is
a r-neighborhood of x∗, i.e., there does not exist another x ∈ X ∩N(x∗, r) such
that fi(x) ≤ fi(x∗).

Concept of Domination: Most evolutionary multi-objective optimization
algorithms use the concept of domination. In these algorithms, two solutions
are compared on the basis of whether one dominates the other solution or not.
Let us use the operator � between two solutions i and j as i � j denotes that
solution i is better than solution j on a particular objective. Similarly i � j for a
particular objective implies that solution i is worse than solution j on this objec-
tive. With this assumption a solution x is said to dominate the other solution y,
if both the following conditions hold.

The solution x is not worse than y in all the objectives.
The solution x is strictly better than y in at least one objective, i.e., fj(x) �

fj(y) for at least one j, j = 1, 2, ..., k. Now, let us introduce some linear/non-
linear programming techniques which are used to achieve at least local Pareto
optimal solutions of multi-objective optimization problem.

Example 2.12. In the single-objective problem (64) as presented in Sect. 2.5,
the objective function is minimization of total transportation cost. Now in case of
transportation of highly breakable items (e.g. glass-goods, toys, ceramic goods,
etc.), the breakability issue also should be considered. Breaking of items may be
due to bad condition of road, long distance of a certain route, etc. Then an addi-
tional objective function which represents minimization of total breaking items
is imposed in the problem and the problem becomes multi-objective. Suppose
rij be the rate of breakability (/percentage of breakability) for transportation of
goods from source i to destination j. Also suppose customer at destination com-
promises on receiving less amount than the demanded amount due to breaking
of items. Then the problem becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize Z =
∑3

i=1

∑3
j=1 cij xij ,

Minimize Z′ =
∑3

i=1

∑3
j=1 rij xij ,

subject to
∑3

j=1xij ≤ ai, i = 1, 2, 3,
∑3

i=1xij ≥ bj , j = 1, 2, 3,

xij ≥ 0, ∀ i, j,
∑3

i=1ai ≥∑3
j=1bj ,

(84)
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where values of rij are given by r11 = 2, r12 = 1.5, r13 = 1.2, r21 = 1, r22 = 1.2,
r23 = 1.5, r31 = 2.5, r32 = 2, r33 = 1.5. The values of the other parameters
are same as the problem (64). The solution of such multi-objective problem is
discussed in the next section and also in Sect. 3 with numerical example.

2.9 Solution Techniques for Multi-objective Linear/Non-linear
Problem

Fuzzy Programming Technique: Zimmarmann [159] introduced fuzzy lin-
ear programming approach for solving problem with multiple objectives and
he showed that fuzzy linear programming always gives efficient solutions and
an optimal compromise solution. The steps to solve the multi-objective models
using fuzzy programming technique are as follows:

Step 1: Solve the multi-objective problem (83) as a single objective problem
using, each time, only one objective fp(p = 1, 2, ..., k)(ignore all other objectives)
to obtain the optimal solution Xp∗ = xp

i of k different single objective solid
transportation problem.
Step 2: Calculate the values of all the k objective functions at all these k optimal
solutions Xp∗ (p = 1, 2, ..., k) and find the upper and lower bound for each
objective given by Up = Max{fp(X1∗), fp(X2∗), ..., fp(Xk∗)} and Lp = fp(Xp∗),
p = 1, 2, ..., k respectively.
Step 3: Then an initial fuzzy model is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find x = (x1, x2, ...., xn)T

subject to fp(x) ≤ Lp

x ∈ X, X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(85)

where x = xi, i = 1, 2, ..., n; p = 1, 2, ..., k
Step 4: case(I). Construct linear membership function μp(fp) corresponding to
p-th objective as

μp(fp) =

⎧

⎨

⎩

1, if fp ≤ Lp;
Up−fp

Up−Lp
, if Lp < fp < Up;

0, if fp ≥ Lp, ∀ p.

or,
case(II): Construct hyperbolic membership function μH

p (fp) corresponding to
p-th objective as

μH
p (fp) = 1/2 + 1/2 tanh[(

Up + Lp

2
− fp)αp], αp =

3
(Up − Lp)/2

=
6

Up − Lp
.

Step 5: For case(I), formulate fuzzy linear programming problem using max-min
operator as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Max λ
subject to λ ≤ μp(fp) = (Up − fp)/(Up − Lp), ∀p
x ∈ X, X = x :

{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(86)
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λ ≥ 0 and λ = minp{μp(Zp)}.
For case(II), formulate fuzzy programming problem with hyperbolic mem-

bership function as
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Max λ

subject to 2λ− 1 ≤ tanh[(Up+Lp

2 − fp)αp], ∀p
x ∈ X, X = x :

{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

λ ≥ 0. .

(87)

Let λ′ = tanh−1(2λ− 1), then above problem becomes
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Max λ

subject to λ′ ≤ (Up+Lp

2 − fp)αp, ∀p
x ∈ X, X = x :

{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

λ ≥ 0. .

(88)

Then since tanh and tanh−1 are strictly increasing functions, the above problem
equivalently becomes,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Max λ′

subject to λ′ + Zp αp ≤ (Up+Lp

2 ) αp, ∀p
x ∈ X, X = x :

{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

λ′ ≥ 0. .

(89)

Step-6: Now the reduced problems under case-(I) and case-(II) are solved by a
linear optimization technique and in each case the optimum compromise solu-
tions are obtained.

In case-(II), maximum overall satisfactory level of compromise is Max
λ = λ∗ = 1/2 + (tanhλ′∗)/2.

Global Criteria Method: Global criteria method gives a compromise solution
for a multi-objective problem. Actually this method is a way of achieving com-
promise in minimizing the sum in deviations of the ideal solutions (minimum
value of the each objectives in case of minimization problem) from the respec-
tive objective functions. The steps of this method to solve the multi-objective
model (83) are as follows:
Step-1: Solve the multi-objective problem as a single objective problem using,
each time, only one objective fp (p = 1, 2, ..., k) ignoring all other objectives.
Step-2: From the results of step-1, determine the ideal objective vector, say
(fmin

1 , fmin
2 , ..., fmin

k ) and corresponding values of (fmax
1 , fmax

2 , ..., fmax
k ).

Step-3: Formulate the following auxiliary problem
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find x = (x1, x2, ...., xn)T

which minimizes GC
subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(90)
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where

GC = Min

{ k
∑

t=1

(

ft(x)− fmin
t

fmin
t

)q} 1
q

, (91)

or, GC = Min

{ k
∑

t=1

(

ft(x)− fmin
t

fmax
t − fmin

t

)q} 1
q

, (92)

where 1 ≤ q ≤ ∞. An usual value of q is 2. This method is then called global
criterion method in L2 norm.

Weighted Sum Method: The weighted sum method scalarizes a set of objec-
tives into a single objective by multiplying each objective with users supplied
weights. The weights of an objective are usually chosen in proportion to the
objectives relative importance in the problem. However setting up an appropri-
ate weight vector depends on the scaling of each objective function. It is likely
that different objectives take different orders of magnitude. When such objec-
tives are weighted to form a composite objective function, it would be better to
scale them appropriately so that each objective possesses more or less the same
order of magnitude. This process is called normalization of objectives. After the
objectives are normalized, a composite objective function F (x) can be formed by
summing the weighted normalized objectives and the multi-objective problem
given in Eq. (83) is then converted to a single-objective optimization problem as
follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find x = (x1, x2, ...., xn)T

which minimizes
∑k

i=1 wifi(x), wi ∈ [0, 1]
subject to x ∈ X

where X = x :
{

gj(x) ≤ 0, j = 1, 2, ...,m;
xi ≥ 0, i = 1, 2, ..., n.

(93)

Here, wi is the weight of the i-th objective function. Since the minimum of the
above problem does not change if all the weights are multiplied by a constant, it is
the usual practice to choose weights such that their sum is one, i.e.,

∑k
i=1 wi = 1.

Miettinen [109] proved that the solution of the weighted sum problem (2.71)
is Pareto optimal if the weighting coefficients are positive, that is wi > 0,
i = 1, 2, ..., k.

3 Some Transportation Models with Fuzzy (Type-1)
Parameters

If more than one objective is to be considered and optimized at the same time in
an STP, then the problem is called multi-objective solid transportation problem
(MOSTP). If more than one type of item/product is to be transported through
the conveyances in an STP, then the problem is called multi-item solid trans-
portation problem (MISTP). Also in a solid transportation system it may happen
that several objectives are present and several types of items are to be trans-
ported, then we call this problem multi-objective multi-item solid transporta-
tion problem (MOMISTP). Besides source, destination and conveyance capacity
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constraints in an STP, there may exist several other types of constraints. For
example, budget constraints may arise due to limited budget, space constraints
may arise due to limited space in warehouses, stores, etc.

Due to insufficient information, lack of evidence, fluctuating financial mar-
ket, the available data of a transportation system such as transportation costs,
resources, demands, conveyance capacities are not always crisp or precise.
For example, transportation cost depends upon fuel price, labor charges, tax
charges, etc., each of which are fluctuate time to time. So for a future trans-
portation planning it is not always easy to predict surely the possible unit trans-
portation cost of a route in a certain time period. Similarly supply of a source can
not be always exact, because it depends upon the availability of manpower, raw-
materials, market competition, product demands, etc. Also it may not always
possible to get relevant precise data/random data with a known distribution.
So such a TP becomes more realistic if these parameters are assumed to be
flexible/imprise i.e. fuzzy nature. For example if value of certain parameter of
a decision making problem is given in an interval, then practically each of the
point in the interval may not have the same importance or possibility. So it
will be more realistic if those parameters are expressed by fuzzy numbers like
triangular, trapezoidal, etc.

To solve constrained/unconstrained optimization problem with fuzzy para-
meters, several researchers developed many methodologies. Liu and Iwamura
[92] presented chance-constrained programming with fuzzy parameters. Liu and
Liu [94] presented expected value model for fuzzy programming. Yang and Liu
[153] applied expected value model, chance-constrained programming model and
dependent-chance programming to a fixed charge STP in fuzzy environment.
Liang [82] presented a fuzzy goal programming approach for solving integrated
production/transportation planning decision problems with fuzzy multiple goals.
Mula et al. [116] applied possibilistic programming approach to a material require-
ment planing problem with fuzzy constraints and fuzzy coefficients.

In this chapter, we have investigated two solid transportation models namely, a
multi-objective solid transportation problem with budget constraint and a multi-
objective multi-item solid transportation problem both in fuzzy environment.

3.1 Related Results

Theorem 3.1 (Yang and Liu [153]). Suppose that ξ̃ is a fuzzy number with
continuous membership function μξ̃(x), and r0 = sup{r : μξ̃(r) = 1}, g(x, ξ̃) =
h(x)− ξ̃. Then we have Cr{g(x, ξ̃) ≥ 0} ≥ α if and only if h(x) ≥ Fα, where

Fα =

{

inf{F |F = μ−1

ξ̃
(2α)}, if α ≤ 0.5;

inf{F |F = μ−1

ξ̃
(2(1− α)), F > r0}, if α > 0.5.
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Theorem 3.2 (Yang and Liu [153]). Suppose that ξ̃ is a fuzzy number with
continuous membership function μξ̃(x), and r0 = inf{r : μξ̃(r) = 1}, g(x, ξ̃) =
h(x)− ξ̃. Then we have Cr{g(x, ξ̃) ≤ 0} ≥ α if and only if h(x) ≤ Fα, where

Fα =

{

sup{F |F = μ−1

ξ̃
(2α)}, if α ≤ 0.5;

sup{F |F = μ−1

ξ̃
(2(1− α)), F < r0}, if α > 0.5.

Theorem 3.3 (Liu [90]). Assume that the function g(x, ξ) can be written as ,

g(x, ξ) = h1(x)ξ̃1 + h1(x)ξ̃2 + ... + ht(x)ξ̃t + h0(x)

where ξ̃k are trapezoidal fuzzy variables (rk1, rk2, rk3, rk4), k = 1, 2, ..., t, respec-
tively. We define two functions h+

k (x) = hk(x)∨ 0 and h−
k (x) = −(hk(x)∧ 0) for

k=1,2,...,t. Then we have
(a) when α ≤ 1/2, Cr{g(x, ξ) ≤ 0} ≥ α if and only if

(1− 2α)
t
∑

k=1

[rk1h
+
k (x)− rk4h

−
k (x)] + 2α

t
∑

k=1

[rk2h
+
k (x)− rk3h

−
k (x)] + h0(x) ≤ 0;

(b) when α > 1/2, Cr{g(x, ξ) ≤ 0} ≥ α if and only if

(2−2α)
t
∑

k=1

[rk3h
+
k (x)−rk2h

−
k (x)]+(2α−1)

t
∑

k=1

[rk4h
+
k (x)−rk1h

−
k (x)]+h0(x) ≤ 0;

From the above theorem following corollaries are obtained.

Corollary 1: If ξ̃ = (r1, r2, r3, r4) is a trapezoidal fuzzy variable and h(x) is a
function of x, then Cr{h(x) ≤ ξ̃} ≥ α if and only if h(x) ≤ Fξ, where

Fξ =
{

(1− 2α)r4 + 2αr3, if α ≤ 1
2 ;

2(1− α)r2 + (2α− 1)r1, if α > 1
2 .

Proof: Cr{h(x) ≤ ξ̃} ≥ α⇔ Cr{−ξ̃+h(x) ≤ 0} ≥ α⇔ Cr{ξ̃′+h(x) ≤ 0} ≥ α,
where ξ̃′ = −ξ̃ = (−r4,−r3,−r2,−r1).
Then from the above theorem it follows that this inequality holds if and only if

(a)(1− 2α)(−r4) + 2α(−r3) + h(x) ≤ 0, if α ≤ 1
2

(b) 2(1− α)(−r2) + (2α− 1)(−r1) + h(x) ≤ 0, if α >
1
2
.

and hence the corollary follows.

Corollary 2: If ξ̃ = (r1, r2, r3, r4) is a trapezoidal fuzzy variable and h(x) is a
function of x, then Cr{h(x) ≥ ξ̃} ≥ α if and only if h(x) ≥ Fξ, where

Fξ =
{

(1− 2α)r1 + 2αr2, if α ≤ 1
2 ;

2(1− α)r3 + (2α− 1)r4, if α > 1
2 .
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Proof: Cr{h(x) ≥ ξ̃} ≥ α⇔ Cr{ξ̃ − h(x) ≤ 0} ≥ α.
Then from the above theorem it follows that this inequality holds if and only if

(a)(1− 2α)r1 + 2αr2 − h(x) ≤ 0, if α ≤ 1
2

(b) 2(1− α)r3 + (2α− 1)r4 − h(x) ≤ 0, if α >
1
2
.

and hence the corollary follows.

Corollary 3: If ξ̃ = (r1, r2, r3, r4) and η̃ = (t1, t2, t3, t4) are trapezoidal fuzzy
variables and h(x) ≥ 0 ∀x, then Cr{h(x)ξ̃ ≤ η̃} ≥ α if and only if

(a)(1− 2α)h(x)r1 + 2αh(x)r2 ≤ (1− 2α)t4 + 2αt3, when α ≤ 1
2

(b) 2(1− α)h(x)r3 + (2α− 1)h(x)r4 ≤ 2(1− α)t2 + (2α− 1)t1, when α >
1
2
.

Proof: Cr{h(x)ξ̃ ≤ η̃} ≥ α ⇔ Cr{(h(x)ξ̃ − η̃) ≤ 0} ≥ α ⇔ Cr{(h(x)ξ̃ + η̃′) ≤
0} ≥ α, where η̃′ = −η̃ = (−t4,−t3,−t2,−t1).

Then from the above theorem it follows that this inequality holds if and only if

(a)(1− 2α)(h(x)r1 − t4) + 2α(h(x)r2 − t3) ≤ 0, whenα ≤ 1
2

(b) 2(1− α)(h(x)r3 − t2) + (2α− 1)(h(x)r4 − t1) + h(x) ≤ 0, if α >
1
2
.

and hence the corollary follows.
This is obvious that these three corollaries help us to determine crisp equivalences
of various inequalities with fuzzy parameters.

3.2 A Defuzzification Method

Kikuchi [66] proposed a defuzzification method to find the most appropriate
set of crisp numbers for a set of fuzzy numbers which satisfy a set of rigid
relationships among them. The main idea of the method is to find the best set of
crisp values satisfying the relationships those maximizes the minimum degree of
membership that one of those values takes. Fuzzy linear programming is applied
in this method. The method is summarized as follows.

Let X̃1, X̃2,...,X̃n are fuzzy numbers with membership functions μX̃1
,

μX̃2
,...,μX̃n

respectively. Suppose we have to find corresponding crisp values x1,
x2,...,xn those satisfy some relationships Rj(x), j ∈ N among them. Then the
following linear programming based on fuzzy linear programming is formulated.

Max λ

s.t. μX̃i
(xi) ≥ λ, i = 1, 2, ..., n
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and the relationships Rj(x), j ∈ N

xi, λ ≥ 0, i = 1, 2, ..., n.

where λ is the minimum degree of membership that one of the values x1, x2,...,xn

takes, i.e. λ∗ = Maxλ = Max Min[μX̃1
(x1), μX̃2

(x2), ..., μX̃n
(xn)].

Kikuchi [66] applied this method to a traffic volume consistency problem taking
all observed values as triangular fuzzy numbers. Dey and Yadav [36] modified
this method with trapezoidal fuzzy numbers.

3.3 Model 3.1: Multi-objective Solid Transportation Problem
Having Budget Constraint with Fuzzy Parameters

Here a multi-objective solid transportation problem (MOSTP) is formulated
with unit transportation penalties/costs, supplies, demands and conveyance
capacities as fuzzy numbers (variables). Here the several objectives may be min-
imization of total transportation costs, minimization of total deterioration of
goods, etc. Also, apart from source, demand and capacity constraints, an extra
constraint on the total transportation budget at each destination is imposed.
Obviously these budget constraints are performed for the objective function
which represents minimization of the total transportation cost. The following
notations are used to formulate the model.

Notations:

(i) ˜cp
ijk: Fuzzy unit transportation penalties from i-th source to j-th destina-

tion via k-th conveyance for the p-th objective.
(ii) xp

ijk: The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination via k-th conveyance for the p-th
objective.

(iii) ãi: The fuzzy amount of the product available at the i-th origin.
(iv) b̃j : The fuzzy demand of the product of j-th destination.
(v) ẽk: Fuzzy transportation capacity of conveyance k.
(vi) Zp: The p-th objective.
(vii) B̃l

j : Available fuzzy budget amount for j-th destination for objective Zl.

Mathematical Model: Mathematically the MOSTP with budget constraints
having P objectives, m origins, n destinations and K conveyances is formulated
as follows.

Min Zp =
m
∑

i=1

n
∑

j=1

K
∑

k=1

˜cp
ijk xijk , p = 1, 2, ..., P (94)

s.t.

n
∑

j=1

K
∑

k=1

xijk ≤ ãi, i = 1, 2, ...,m, (95)
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m
∑

i=1

K
∑

k=1

xijk ≥ b̃j , j = 1, 2, ..., n, (96)

m
∑

i=1

n
∑

j=1

xijk ≤ ẽk, k = 1, 2, ...,K, (97)

m
∑

i=1

K
∑

k=1

˜cl
ijk xijk ≤ B̃l

j , j = 1, 2, ..., n , l ∈ {1, ..., P}, (98)

xijk ≥ 0,∀ i, j, k.

Here for p = l (say), l ∈ {1, 2, ..., P}, ˜cl
ijk represent unit transportation cost so

that available fuzzy budget amount for j-th destination, i.e. B̃l
j is imposed for

objective Zl.

Solution Methodology: Chance-Constrained Programming: We apply
the chance constrained programming (CCP) technique using credibility measure
to the above model and then it is formulated as

Min[Z̄1, Z̄2, ..., Z̄P ] (99)

s.t. Cr{
m
∑

i=1

n
∑

j=1

K
∑

k=1

˜cp
ijk xijk ≤ Z̄p} ≥ ηp, p = 1, 2, ..., P, (100)

Cr{
n
∑

j=1

K
∑

k=1

xijk ≤ ãi} ≥ αi, i = 1, 2, ...,m, (101)

Cr{
m
∑

i=1

K
∑

k=1

xijk ≥ b̃j} ≥ βj , j = 1, 2, ..., n, (102)

Cr{
m
∑

i=1

n
∑

j=1

xijk ≤ ẽk} ≥ γk, k = 1, 2, ...,K, (103)

Cr{
m
∑

i=1

K
∑

k=1

˜cl
ijk xijk ≤ B̃l

j} ≥ δl
j , j = 1, 2, ..., n , l ∈ {1, ..., P}, (104)

xijk ≥ 0,∀ i, j, k,

where ηp indicates that we are going to optimize the ηp-critical value of the
objective Zp(p = 1, 2, ..., P ), and αi, βj , γk and δl

j are predetermined credibil-
ity levels of satisfaction of the above constraints (101), (102), (103) and (104)
respectively. In other words, the constraint (101) indicates that total amount
transported from source i must be less than or equal to its supply capacity ãi at
the credibility level at least αi; the constraint (102) indicates that total amount
transported to destination j must satisfy its requirement b̃j at the credibility at
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least βj , the constraint (103) indicates that total amount transported through
conveyance k must not be more than its capacity ẽk at the credibility at least
γk and the constraints (104) indicates that for the specific objective Zl, total
transportation costs for j-th destination must not exceed the available budget
amount B̃l

j at the credibility at least δl
j .

Crisp Equivalences: Let ˜cp
ijk = (cp1

ijk, cp2
ijk, cp3

ijk, cp4
ijk), ãi = (a1

i , a
2
i , a

3
i , a

4
i ), b̃j =

(b1j , b
2
j , b

3
j , b

4
j ), ẽk = (e1k, e2k, e3k, e4k), B̃l

j = (Bl1
j , Bl2

j , Bl3
j , Bl4

j ) are trapezoidal fuzzy
numbers for all p, i, j and k.
Now since ˜cp

ijk are trapezoidal fuzzy numbers and xijk ≥ 0 for all i, j, k, so

Zp(x) =
∑m

i=1

∑n
j=1

∑K
k=1

˜cp
ijk xijk are also trapezoidal fuzzy numbers for any

feasible solution x and given by Zp(x) = (rp
1(x), rp

2(x), rp
3(x), rp

4(x)), where

rp
1(x) =

m
∑

i=1

n
∑

j=1

K
∑

k=1

cp1
ijk xijk , rp

2(x) =
m
∑

i=1

n
∑

j=1

K
∑

k=1

cp2
ijk xijk, (105)

rp
3(x) =

m
∑

i=1

n
∑

j=1

K
∑

k=1

cp3
ijk xijk , rp

4(x) =
m
∑

i=1

n
∑

j=1

K
∑

k=1

cp4
ijk xijk, (106)

p = 1, 2, ..., P.

Then the objective Z̄p in (99), i.e. Min Z̄P , s.t. Cr{Zp(x) ≤ Z̄p} ≥ ηp is equiv-
alently computed as Z̄p = inf{r : Cr{ZP (x) ≤ r} ≥ ηp} which is nothing but ηp

- pessimistic value to Zp (i.e. Zpinf
(ηp)) and so is equal to Z ′

p(x), where

Z ′
p(x) =

{

(1− 2ηp)r
p
1(x) + 2ηp rp

2(x), if α ≤ 0.5;
2(1− ηp)r

p
3(x) + (2ηp − 1)rp

4(x), if α > 0.5.

Now from corollaries 1 and 2 of the Theorem 3.3, the constraint (101) and (102)
and from corollary 1, the constraint (103) can be written respectively in equiv-
alent crisp forms as

n
∑

j=1

K
∑

k=1

xijk ≤ Fαi
, i = 1, 2, ...,m (107)

m
∑

i=1

K
∑

k=1

xijk ≥ Fβj
, j = 1, 2, ..., n (108)

m
∑

i=1

n
∑

j=1

xijk ≤ Fγk
, k = 1, 2, ...,K (109)

where, Fαi
=
{

(1− 2αi)a4
i + 2αia

3
i , if αi ≤ 0.5;

2(1− αi)a2
i + (2αi − 1)a1

i , if αi > 0.5.

Fβj
=
{

(1− 2βj)b1j + 2βjb
2
j , if βj ≤ 0.5;

2(1− βj)b3j + (2βj − 1)b4j , if βj > 0.5.
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Fγk
=
{

(1− 2γk)e4k + 2γke3k, if γk ≤ 0.5;
2(1− γk)e2k + (2γk − 1)e1k, if γk > 0.5.

Now the budget constraint (104) is in the form

Cr{
m
∑

i=1

K
∑

k=1

xijk (cl1
ijk, cl2

ijk, cl3
ijk, cl4

ijk) + (−1)(Bl1
j , Bl2

j , Bl3
j , Bl4

j ) ≤ 0} ≥ δl
j

Since xijk ≥ 0 for all i, j, k, from Corollary 2 of the Theorem 3.3, it is obvious
that this constraint will be active if and only if gl

j ≤ 0, where

gl
j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1− 2δl
j)(

m
∑

i=1

K
∑

k=1

cl1
ijk xijk −Bl4

j )+

+2δl
j(

m
∑

i=1

K
∑

k=1

cl2
ijk xijk −Bl3

j ),

if δj ≤ 0.5;

2(1− δl
j)(

m
∑

i=1

K
∑

k=1

cl3
ijk xijk −Bl2

j )+

+(2δl
j − 1)(

m
∑

i=1

K
∑

k=1

cl4
ijk xijk −Bl1

j ),

if δj > 0.5.

So finally an equivalent crisp form of the above CCP model (99)–(104) formu-
lated for the model (94)–(98) can be written as

Min[Z ′
1(x), Z ′

2(x), ..., Z ′
P (x)]

s.t. gl
j ≤ 0, j = 1, 2, ..., n , (110)

with the constraints (107), (108), (109),

xijk ≥ 0for all i, j, k.

Now the problem (110) is a multi-objective problem and so can be solved by
fuzzy programming technique, Global criteria method (cf. Sect. 2.9), etc.

Numerical Experiment: To illustrate the Model 3.1 ((94)–(98)), we consider
an example where from the past record of a transport company, the possible
values of the parameters such as the unit transportation costs, the supplies,
the demands, the available conveyance capacities can not be precisely deter-
mined. For instance, unit transportation cost for a route is “about 6”, the
supply of a source is “around 28–30”, etc. These linguistic data can be trans-
ferred into triangular or trapezoidal fuzzy numbers. For example if it is seen
from the past record that most possible value of unit transportation cost of a
route is 13 and it vary from 12 to 14 with less possibility, then it is “about
13” and represented by the fuzzy number (12,13,14)∼(12,13,13,14). Similarly
the most possible value of supply of a source ranges between 28 to 30 and
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Table 2. Penalties (costs) ˜c1ijk

i \ j 1 2 1 2

1 (10,11,13,14) (7,10,11,12) (11,13,13.5,14.5) (15,16,18,19)

2 (13,14,16,17) (8,10,10.5,11.5) (16,17,17,18) (12,13,15,17)

k 1 2

Table 3. Penalties ˜c2ijk

i \ j 1 2 1 2

1 (13,14,16,17) (7,8,10,11) (10,11.5,13,13.5) (12,13,15,16)

2 (12,13.5,14.5,16) (13,14,15,16) (12,13,13,14) (9,12,13,14)

k 1 2

is not less than 27 and greater than 32, i.e. it is “around 28-30” and repre-
sented by TrFN (27,28,30,32). For the current model, two sources, two desti-
nations, two conveyances and two objectives are considered, i.e. i, j, k, p = 1, 2.
The fuzzy penalties associated with the two objectives Z1 and Z2 are given in
Tables 2 and 3 respectively. The values of all the parameters associated with
two resources, two destinations, two conveyances and two objectives are given
below. Also budget constraint is imposed on the objective Z1 (i.e. l = 1).
ã1 = (37, 40, 46, 48), ã2 = (28, 32, 35, 37), b̃1 = (28, 29, 30, 31), b̃2 =
(31, 33, 34, 35), ẽ1 = (27, 29, 32, 34), ẽ2 = (39, 41, 44, 47), B̃1

1 =
(480, 485, 491, 497), and B̃1

2 = (501, 505, 510, 515).
Now applying chance-constrained programming technique to solve the prob-

lem, we reconstruct the problem as model (99)–(104) and use corresponding
crisp equivalent form (110). For this purpose, let us consider the credibility
level αi = 0.9 for the source constraints, βj = 0.9 for the demand constraints,
γk = 0.95 for the capacity constraints, δl

j = 0.9 for the budget constraints, where
i, j, k = 1, 2, l = 1 and let ηp = 0.9 (p = 1, 2), which implies that we want to
minimize 0.9-critical value of the objectives. Then using (110), the proposed
problem becomes

Min[Z ′
p(x)] p = 1, 2

Z ′
p(x) = 0.2 rp

3(x) + 0.8 rp
4(x) , p = 1, 2

2
∑

j=1

2
∑

k=1

xijk ≤ Fαi
, i = 1, 2

2
∑

i=1

2
∑

k=1

xijk ≥ Fβj
, j = 1, 2 (111)
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2
∑

i=1

2
∑

j=1

xijk ≤ Fγk
, k = 1, 2

0.2(
2
∑

i=1

2
∑

k=1

c13ijk xijk) + 0.8(
2
∑

i=1

2
∑

k=1

c14ijk xijk) ≤ (0.2B12
j + 0.8B11

j ), j = 1, 2

where expression of rp
3(x) and rp

4(x) are same as in (106) for i, j, k = 1, 2.
With the given data, we have Fα1 = 37.6, Fα2 = 28.8, Fβ1 = 30.8, Fβ2 = 34.6,
Fγ1 = 27.4, Fγ1 = 39.4

Solving this problem by fuzzy programming technique (with linear mem-
bership function) (cf. Sect. 2.9), the obtained optimum compromise solution is
presented in Table 4. The solution is obtained by using the standard optimization
solver - LINGO.

Table 4. Optimum results for Model (94)–(98)

x121 = 14.99, x211 = 12.40, x112 = 2.0, x122 = 19.60, x212 = 16.40,

B1
1 = 478.19, B1

2 = 370.80, λ = 0.55, Z′
1 = 901.30, Z′

2 = 895.58.

B1
1 and B1

2 represent the budget values for j=1,2 respectively for objective
Z1 and λ represents maximum overall satisfactory level of compromise.

3.4 Model 3.2: Multi-objective Multi-item Solid Transportation
Problem with Fuzzy Parameters

A multi-objective multi-item solid transportation problem (MOMISTP) with
fuzzy parameters is formulated in which several objectives (e.g., minimization
of transportation costs, minimization of total deterioration of goods, etc.) are
involved and also several types of items/goods are to be transported from sources
to destinations through the conveyances. The following notations are used to
formulate the model.

Notations:

(i) ˜ctp
ijk: for the objective Zt, fuzzy unit transportation penalty from i-th ori-

gin to j-th destination by k-th conveyance for p-th item.
(ii) xp

ijk: the decision variable that represents the amount of p-th item to be
transported from i-th source to j-th destination by k-th conveyance.

(iii) ãp
i : amount of p-th item represented by fuzzy number available at i-th origin

(iv) b̃p
j : fuzzy demand of j-th destination for p-th item

(v) ẽk: total fuzzy capacity of k-th conveyance.
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Mathematical Model: An MOMISTP with R objectives, l different items, m
origins, n destinations and K types of conveyances is formulated as follows:

Min Zt =
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

˜ctp
ijk xp

ijk , t = 1, 2, ..., R

s.t.

n
∑

j=1

K
∑

k=1

xp
ijk ≤ ãp

i , i = 1, 2, ...,m; p = 1, 2, ...l,

m
∑

i=1

K
∑

k=1

xp
ijk ≥ b̃p

j , j = 1, 2, ..., n; p = 1, 2, ..., l, (112)

l
∑

p=1

m
∑

i=1

n
∑

j=1

xp
ijk ≤ ẽk, k = 1, 2, ...,K,

xp
ijk ≥ 0, ∀ i, j, k, p.

Defuzzification Process: Consider ãp
i , b̃p

j and ẽk (∀ i, j, k, p) as trapezoidal

fuzzy numbers defined by ãp
i = (ap1

i , ap2
i , ap3

i , ap4
i ), b̃p

j = (bp1
j , bp2

j , bp3
j , bp4

j ) and
ẽk = (e1k, e2k, e3k, e4k) and their membership functions are μ

ãp
i
, μ

b̃pj
and μẽk

respec-
tively. Now to solve the above problem, we first find corresponding defuzzified
(crisp) values, say, ap

ic, bp
jc and ekc (∀ i, j, k, p) so that for each item, total available

resources greater than or equal to the total demands and also total conveyance
capacities greater than or equal to the total demands for all items, i.e.

m
∑

i=1

ap
ic ≥

n
∑

j=1

bp
jc , p = 1, 2, ..., l and

K
∑

k=1

ekc ≥
l
∑

p=1

n
∑

j=1

bp
jc.

Because defuzzified values of availabilities, demands and conveyance capacities
must have to be satisfy these conditions to have a feasible solution of the above
problem. For this purpose we apply the defuzzification method (cf Sect. 3.2)
based on fuzzy linear programming.

The method is to introduce an auxiliary variable λ and formulate the follow-
ing linear programming.

Max λ

s.t. μ
ãp
i
(ap

ic) ≥ λ, μ
b̃pj

(bp
jc) ≥ λ, μẽk

(ekc) ≥ λ,

m
∑

i=1

ap
ic ≥

n
∑

j=1

bp
jc,

K
∑

k=1

ekc ≥
l
∑

p=1

n
∑

j=1

bp
jc,

∀ i, j, k, p.

where λ is the minimum degree of membership that one of the values of the
variables ap

ic, bp
jc, ekc takes,
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i.e. Max λ = λ∗ = Max Min [μ
ãp
i
(ap

ic), μ
b̃pj

(bp
jc), μẽk

(ekc)], where

μ
ãp
i
(ap

ic) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ap
ic−ap1

i

ap2
i −ap1

i

, if ap1
i ≤ ap

ic ≤ ap2
i ;

1, if ap2
i ≤ ap

ic ≤ ap3
ic ;

ap4
i −ap

ic

ap4
i −ap3

i

, if ap3
i ≤ ap

ic ≤ ap4
i .

and similarly for μ
b̃pj

(bp
jc) and μẽk

(ekc).

Now if we denote left and right sides of the membership function μ
ãp
i
(ap

ic) by

μl

ãp
i

(ap
ic) and μr

ãp
i

(ap
ic) respectively and so on for μ

b̃pj
(bp

jc) and μẽk
(ekc), then the

above programming becomes
Max λ

s.t. μl

ãp
i

(ap
ic) ≥ λ, μr

ãp
i

(ap
ic) ≥ λ

μl

b̃pj
(bp

jc) ≥ λ, μr

b̃pj
(bp

jc) ≥ λ

μl
ẽk

(ekc) ≥ λ, μr
ẽk

(ekc) ≥ λ (113)

m
∑

i=1

ap
ic ≥

n
∑

j=1

bp
jc,

K
∑

k=1

ekc ≥
l
∑

p=1

n
∑

j=1

bp
jc,

∀ i, j, k, p.

Solution Methodology: Consider that ˜ctp
ijk are all independent trapezoidal

fuzzy numbers represented as (ctp1
ijk , ctp2

ijk , ctp3
ijk , ctp4

ijk). Now after obtaining the
defuzzified values ap

ic, bp
jc and ekc (∀ i, j, k, p) by above procedure (i.e. using

(113)), the problem (112) becomes,

Min Zt =
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

˜ctp
ijk xp

ijk , t = 1, 2, ..., R (114)

s.t.
n
∑

j=1

K
∑

k=1

xp
ijk ≤ ap

ic, i = 1, 2, ...,m; p = 1, 2, ...l (115)

m
∑

i=1

K
∑

k=1

xp
ijk ≥ bp

jc, j = 1, 2, ..., n; p = 1, 2, ..., l (116)

l
∑

p=1

m
∑

i=1

n
∑

j=1

xp
ijk ≤ ekc, k = 1, 2, ...,K (117)

xp
ijk ≥ 0, ∀ i, j, k, p.

Now, we use following methods to solve this problem.
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Method-1: Using the Concept-Minimum of Fuzzy Number: The objec-
tive functions in (114) are Zt =

∑l
p=1

∑m
i=1

∑n
j=1

∑K
k=1

˜ctp
ijk xp

ijk , t =

1, 2, ..., R. Since ˜ctp
ijk are trapezoidal fuzzy numbers and xp

ijk ≥ 0 for all i, j, k
and p, so each Zt for t = 1, 2, ..., R is also a trapezoidal fuzzy number for any
feasible solution and is given by Zt=(Z1

t , Z2
t , Z3

t , Z4
t ) where

Zr
t =

∑l
p=1

∑m
i=1

∑n
j=1

∑K
k=1

˜ctpr
ijk xp

ijk for r = 1, 2, 3, 4.
As it is not possible to minimize directly a fuzzy number Z̃, here we use a method
proposed by Buckly et al. [14]. They applied this method to a fuzzy inventory
control problem. The method is to convert min Z̃ into a multi-objective problem

MinZ̃ = (Max AL(Z̃),Min C(Z̃),Min AR(Z̃)),

where C(Z̃) is the center of the core of the fuzzy number and AL(Z̃), AR(Z̃)
are the area under graph of the membership function of Z̃ to the left and right
of C(Z) (minimization of a TrFN Z̃ is shown in Fig. 10). If the support of Z̃ be
[u1, u3] and the center of the core of Z̃ be at u2, then

AL(Z̃) =
∫ u2

u1

μZ̃(x) dx and AR(Z̃) =
∫ u3

u2

μZ̃(x) dx .

Then this multi-objective problem is converted to a single objective problem as
follows

MinZ̃ = Min{λ1[M −AL(Z̃)] + λ2C(Z̃) + λ3AR(Z̃)}, (118)

where λl > 0, for l = 1, 2, 3, λ1+λ2+λ3 = 1 and M is a large positive number so
that Max AL(Z̃) is equivalent to Min [M − AL(Z̃)]. The values of λl are taken

)
~

(Z ZA AL )
~

(R

1z 2z C(Z) 4z3z

(  )~ x
Z

μ

x0

1 

Fig. 10. Minimization of TrFN Z̃
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by decision maker or a sensitivity analysis can be done taking different values of
λl to choose appropriate values of λl.

Now for a trapezoidal fuzzy number Z̃ = (z1, z2, z3, z4), the membership
function is

μZ̃(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−z1

z2−z1 , if z1 ≤ x ≤ z2;
1, if z2 ≤ x ≤ z3;
z4−x
z4−z3 , if z3 ≤ x ≤ z4;
0, otherwise.

So the core of Z̃ is [z2, z3] and C(Z̃) = z2+z3

2 .

AL(Z̃) =
∫

z2+z3
2

z1
μZ̃(x) dx =

∫ z2

z1

x− z1

z2 − z1
dx +

∫
z2+z3

2

z2
1 dx =

1
2
(z3 − z1),

AR(Z̃) =
∫ z3

z2+z3
2

1 dx +
∫ z4

z3

z4 − x

z4 − z3
dx =

1
2
(z4 − z2).

Applying this method to the objective function (114) of the problem (114)–(117),
the corresponding crisp form of the problem becomes

MinZ̄t = λ1[M −AL(Zt)] + λ2C(Zt) + λ3AR(Zt) , t = 1, 2, ...R,

AL(Zt) =
Z3

t − Z1
t

2
, C(Zt) =

Z2
t + Z3

t

2
, AR(Zt) =

Z4
t − Z2

t

2
, (119)

subject to the constraints (115)–(117),

xp
ijk ≥ 0, ∀ i, j, k, p, λ1 + λ2 + λ3 = 1, λl > 0, l = 1, 2, 3.

Though the choice of values of λl depends upon decision maker(s), it should be
kept in mind that, as the above problem is a minimization problem, our aim
should be more in maximizing AL(Zt) (i.e. possibility of getting less values than
C(Zt)) and minimizing C(Zt) rather than in minimizing AR(Zt) (i.e. possibility
of getting more values than C(Zt)).

Method-2: Using Expected Value: Here we minimize the expected value of
the objective functions and then the problem (114)–(117) becomes

Min E[Zt] = E[
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

˜ctp
ijk xp

ijk] , t = 1, 2, ..., R

s.t. the constraints (115)− (117), (120)

xp
ijk ≥ 0, ∀ i, j, k, p

which is equivalently written as

Min E[Zt] = Z̄t =
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

E[ ˜ctp
ijk] xp

ijk , t = 1, 2, ..., R
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s.t. the constraints (115)− (117), (121)

xp
ijk ≥ 0, ∀ i, j, k, p.

Now the deterministic models (119) and (121) are multi-objective problems and
so can be solved by fuzzy programming technique, Global criteria method (cf.
Sect. 2.9), etc.

Note: Deterministic forms obtained using expected value model (EVM), chance-
constrained programming model for an optimization problem with fuzzy para-
meters having interrelated constraints like in STP may not always possesses any
feasible solution. For example if we construct the EVM for the problem (112) by
using expected value to both the objective functions and the constraints then it
becomes:

Min E[Zt] = E
[

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

˜ctp
ijk xp

ijk

]

, t = 1, 2, ..., R

s.t. E
[

n
∑

j=1

K
∑

k=1

xp
ijk − ãp

i

] ≤ 0, i = 1, 2, ...,m; p = 1, 2, ...l,

E
[

m
∑

i=1

K
∑

k=1

xp
ijk − b̃p

j

] ≥ 0, j = 1, 2, ..., n; p = 1, 2, ..., l, (122)

E
[

l
∑

p=1

m
∑

i=1

n
∑

j=1

xp
ijk − ẽk

] ≤ 0, k = 1, 2, ...,K,

xp
ijk ≥ 0, ∀ i, j, k, p.

Then by the linearity property of expected value operator, the crisp equivalence
form of this model becomes

Min E[Zt] = Z̄t =
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

E[ ˜ctp
ijk] xp

ijk , t = 1, 2, ..., R

s.t.
n
∑

j=1

K
∑

k=1

xp
ijk ≤ E[ãp

i ], i = 1, 2, ...,m; p = 1, 2, ...l,

m
∑

i=1

K
∑

k=1

xp
ijk ≥ E[b̃p

j ], j = 1, 2, ..., n; p = 1, 2, ..., l, (123)

l
∑

p=1

m
∑

i=1

n
∑

j=1

xp
ijk ≤ E[ẽk], k = 1, 2, ...,K,

xp
ijk ≥ 0, ∀ i, j, k, p.
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Table 5. Penalties/costs ˜c11ijk

i \ j 1 2 3 1 2 3

1 (5,8,9,11) (4,6,9,11) (10,12,14,16) (9,11,13,15) (6,8,10,12) (7,9,12,14)

2 (8,10,13,15) (6,7,8,9) (11,13,15,17) (10,11,13,15) (6,8,10,12) (14,16,18,20)

k 1 2

Table 6. Penalties/costs ˜c12ijk

i \ j 1 2 3 1 2 3

1 (9,10,12,13) (5,8,10,12) (10,11,12,13) (11,13,14,15) (6,7,9,11) (8,10,11,13)

2 (11,13,14,16) (7,9,12,14) (12,14,16,18) (14,16,18,20) (9,11,13,14) (13,14,15,16)

k 1 2

But in the above crisp equivalence form, the deterministic values of supplies,
demands and conveyance capacities, i.e. E[ãp

i ], E[b̃p
j ] and E[ẽk] respectively may

not satisfy the required conditions for feasible solution, i.e. for each item, total
supplies greater than or equal to the total demands and also total conveyance
capacities greater than or equal to the total demands for all items. So this method
gives a feasible solution only when the fuzzy supplies, demands and conveyance
capacities are so that their respective expected values automatically satisfy those
conditions.

Numerical Experiment: To illustrate numerically the Model 3.2 (112), we
consider an example with p = 1, 2 = i, k; j = 1, 2, 3 and the following data.
The unit transportation penalties are given in Tables 5, 6, 7 and 8. ã1

1 =
(21, 24, 26, 28), ã1

2 = (28, 32, 35, 37), b̃11 = (14, 16, 19, 22), b̃12 = (17, 20, 22, 25),
b̃13 = (12, 15, 18, 21), ã2

1 = (32, 34, 37, 39), ã2
2 = (25, 28, 30, 33), b̃21 =

(20, 23, 25, 28), b̃22 = (16, 18, 19, 22), b̃23 = (15, 17, 19, 21), ẽ1 = (46, 49, 51, 53),
ẽ2 = (51, 53, 56, 59).

Now to get the corresponding defuzzified values ap
ic, bp

jc, ekc, i = 1, 2, j =
1, 2, 3, k = 1, 2, p = 1, 2, we apply the fuzzy programming (113) and the
obtained values are
a1
1c = 23.7, a1

2c = 31.6, b11c = 15.8, b12c = 19.7, b13c = 14.7, a2
1c = 33.8, a2

2c = 27.7,
b21c = 22.7, b22c = 17.8, b23c = 16.8, e1c = 51.2, e2c = 56.3, with λ = 0.9.

Results Using Minimum of Fuzzy Number (Method-1): To solve the
above considered problem we convert the problem as in (119) and take λ1 = λ2 =
0.4, λ3 = 0.2 (as we concentrate more in maximizing AL(Zt) and minimizing
C(Zt) than in minimizing AR(Zt)) and M=500.
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Table 7. Penalties/costs ˜c21ijk

i \ j 1 2 3 1 2 3

1 (4,5,7,8) (3,5,6,8) (7,9,10,12) (6,7,8,9) (4,6,7,9) (5,7,9,11)

2 (6,8,9,11) (5,6,7,8) (6,7,9,10) (4,6,8,10) (7,9,11,13) (9,10,11,12)

k 1 2

Table 8. Penalties/costs ˜c22ijk

i \ j 1 2 3 1 2 3

1 (5,7,9,10) (4,6,7,9) (9,11,12,13) (7,8,9,10) (4,5,7,8) (8,10,11,12)

2 (10,11,13,14) (6,7,8,9) (7,9,11,12) (6,8,10,12) (5,7,9,11) (9,10,12,14)

k 1 2

Applying fuzzy linear programming (i.e. fuzzy programming with linear mem-
bership function) (cf. Sect. 2.9) we get the following results
L1 = min Z̄1 = 601.9 (AL(Z1) = 186, C(Z1) = 1095.75, AR(Z1) = 190),
U1 = 656.73 (AL(Z1) = 196.05, C(Z1) = 1231.45, AR(Z1) = 212.85),
L2 = min Z̄2 = 483.2 (AL(Z2) = 190.9, C(Z1) = 811.65, AR(Z1) = 174.5),
U2 = 541.71 (AL(Z2) = 166.15, C(Z2) = 941.55, AR(Z2) = 157.75),
and the optimal compromise solution is
x1
111 = 9, x1

221 = 19.7, x1
132 = 14.7, x1

212 = 6.8, x2
111 = 18.38394, x2

231 = 4.116056,
x2
122 = 2.732113, x2

132 = 12.68394, x2
212 = 4.316056, x2

222 = 15.06789, λ = 0.753.
Z̄1 = 615.4325, in which AL(Z1) = 182.35, C(Z1) = 1133.39, AR(Z1) =
175.0821, so that the core of the optimum value of objective function Z1 is
[1039.232, 1227.548] and 1133.39 is the center of the core.
Z̄2 = 497.6407, in which AL(Z2) = 183.092, C(Z2) = 844.4438, AR(Z2) =
165.5, so that the core of the optimum value of objective function Z2 is
[753.1357, 935.7518] and 844.4438 is the center of the core. The optimum val-
ues of Z1 and Z2 are shown in Figs. 11 and 12 respectively. Applying global
criterion method in L2 norm (cf. Sect. 2.9) the following results are obtained.
x1
111 = 9, x1

221 = 19.7, x1
132 = 14.7, x1

212 = 6.8, x1
111 = 16.4902, x2

231 = 6.0097,
x2
122 = 6.5195, x2

132 = 10.7902, x2
212 = 6.2097, x2

222 = 11.2804.
Z̄1 = 618.0837, in which AL(Z1) = 182.35, C(Z1) = 1138.12, AR(Z1) =
178.8695, so that the core of the optimum value of objective function Z1 is
the interval [1043.019, 1233.229] and 1138.12 is the center of the core.
Z̄2 = 495.3683, in which AL(Z2) = 182.1451, C(Z2) = 837.8158, AR(Z2) =
165.5, so that the core of the optimum value of objective function Z2 is
[745.5609, 930.0706] and 837.8158 is the center of the core.

It is observed from the optimal solutions of the objective functions that the
decision makers have more information in hand about the objective function
values.
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Fig. 11. Optimum values of Z1
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Fig. 12. Optimum values of Z2
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Results Using Expected Value of the Objective Function (Method-2):
To minimize the expected value of the objective functions of the above considered
problem, we reconstruct the problem as (120) and transform it to corresponding
crisp equivalence form as (121).

Then applying fuzzy linear programming (cf. Sect. 2.9) we get the following
result.
L1 = min Z̄1 = 1092.45, U1 = 1248.85, L2 = min Z̄2 = 800.45, U2 = 923.45 and
the optimal compromise solution is
x1
111 = 3.1686, x1

121 = 5.8313, x1
221 = 13.8686, x1

132 = 14.7, x1
212 = 12.6314,

x2
111 = 22.7, x2

221 = 5.6314, x2
122 = 11.1, x2

222 = 1.0686, x2
232 = 16.8, λ =

0.6989, Z̄1 = 1139.536, Z̄2 = 837.4808.
Applying global criterion method in L2 (cf. Sect. 2.9) norm we get the following
result.
Z̄1

min = 1092.45 and Z̄2
min = 800.45 and the compromise optimum solution is

x1
111 = 1.5624, x1

121 = 7.4375, x1
221 = 12.2625, x1

132 = 14.7, x1
212 = 14.2375,

x2
111 = 22.7, x2

221 = 6.7, x2
231 = 0.5375, x2

122 = 11.1, x2
232 = 16.2625, Z̄1 =

1144.894 and Z̄2 = 832.1250.
Using the crisp equivalence form (123) of the expected value model (122) we

can not find any feasible solution for this numerical example. However for any
other example with suitable data set, this method can gives feasible solution.

Overview of the Results by Two Methods: We note that the optimal
expected values of the objective functions Z1(= 1139.536) and Z2(= 837.4808)
as obtained using expected value (method-2) and fuzzy programming technique,
lie within the core [1039.232, 1227.548] and [753.1357, 935.7518] of Z1 and Z2

respectively as obtained using method-1 (method based on minimum of fuzzy
number). Also the optimal expected values Z1 and Z2 that obtained by method-
2 are close to the center of core 1133.39 and 844.4438 of Z1 and Z2 respectively
that are obtained by method-1.

Optimalexpected value of 1Z (Method-2) Core of 1Z (Method-1)

1139.536 ∈ [1039.232, 1227.548]

837.4808     ∈ [753.1357, 935.7518]

Optimalexpected value of Z2 (Method-2) Core of 2Z (Method-1)

Fig. 13. Discussion of results obtained by method-1 and method-2.

This discussion is given pictorially in Fig. 13. This is also true for the results
obtained by using global criterion method.
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3.5 Overall Conclusion

In Model 3.1, a MOSTP with fuzzy penalties, resources, demands, conveyance
capacities and budget constraints has been formulated. Budget constraints with
fuzzy budget amounts are imposed in the problem. The presented problem is
solved using chance-constrained programming with credibility measure.

For the first time, a multi-objective multi-item solid transportation problem
(Model 3.2) with fuzzy penalties, sources, demands and conveyance capacities is
formulated and solved. For defuzzification, two methods (cf. Sects. 3.2 and 3.4
(Method-1), available in the literature and not applied so far in STP have been
successfully applied in MOMISTP. Multi-objective problems are solved by two
methods and results are compared.

The presented models can be extended to include space constraints, price
discount on the basis of amount of transported units, etc. The methods, used for
solution here are quite general in nature and these can be applied to other similar
uncertain/impricise models in other areas such as inventory control, ecology,
sustainable farm management, etc.

4 Some Transportation Models with Type-2 Fuzzy
Parameters

In many real world problems, due to lack of input information, noises in data, lin-
guistic information, multiple sources of the collected data, bad statistical analysis
etc., it is sometimes difficult to determine exact membership grades to represent
an uncertain parameter by ordinary fuzzy set and as a result type-2 fuzzy set
(T2 FS) appear. Due to fuzziness in membership function, the computational
complexity is very high to deal with T2 FS. For the high computational com-
plexity of general T2 FS, till now the most widely used T2 FS is interval T2 FS
(IT2 FS), which is a special case of general T2 FS.

In case of a T2 FS, generally complete defuzzification process consists of
two parts - type reduction and defuzzification proper. Type reduction is a pro-
cedure by which a T2 FS is converted to the corresponding T1 FS, known as
type reduced set (TRS). The TRS is then easily defuzzified to a crisp value.
Karnik and Mendel [63] proposed a centroid type reduction method to reduce
IT2 FS into T1 FS. But it is very difficult to apply this method to a general
T2 FS. Because this method was derived from embedded sets representation
theory in which a T2 FS is represented as the union of its T2 embedded sets,
and this union consists of an astronomical number of T2 embedded sets, which
results a very high computational complexity. Greenfield et al. [51] have pro-
posed an extension of this procedure to discretised generalized type-2 fuzzy sets.
Other researchers (Liu, [91]; Wu and Tan, [147]) have developed type reduction
strategies for continuous generalized T2 FS. Coupland and John [31] proposed a
geometric defuzzification method for T2 FSs by converting a T2 FS into a geo-
metric T2 FS. In terms of possibility theory, Liu and Liu [99] defined a type-2
fuzzy variable as a map from a fuzzy possibility space to the set of real numbers.
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Qin et al. [127] introduced three kinds of reduction methods called optimistic
CV, pessimistic CV and CV reduction methods for type-2 fuzzy variables (T2
FVs) based on CVs (critical values) of regular fuzzy variables.

At present, type-2 fuzzy set theories are being developed and applied in var-
ious fields such as group decision making system (Chen and Lee [23,24], Chen
et al. [21], Chen et al. [26]), neural network (Aliev et al. [5]), Portfolio selec-
tion problem (Hasuike and Ishi [54]), Pattern recognition (Mitchell [112]), data
envelopment analysis (Qin et al. [127]), Ad hoc networks (Yuste et al. [155]), etc.
Figueroa-Garca and Hernndez [43] first considered a transportation problem with
interval type-2 fuzzy demands and supplies. At the best of our knowledge, we are
the first to consider the transportation problems with type-2 fuzzy parameters.
Thus this is an emerging area and is yet to be developed. In this chapter, we
have proposed a defuzzification method of type-2 fuzzy variables. We have also
introduced an interval approximation method of continuous type-2 fuzzy vari-
ables. We have formulated and solved two fixed charge transportation problems
and a multi-item solid transportation problem with type-2 fuzzy parameters.

4.1 Related Theorem

The following theorem approaches to find crisp equivalent forms of constraints
involving type-2 triangular fuzzy variables. This theorem is established using
generalized credibility measure for the reduced fuzzy variable from type-2 trian-
gular fuzzy variable by CV (critical value) reduction method.

Theorem 4.1 (Qin et al. [127]). Let ξi be the reduction of the type-2 triangular
fuzzy variable ξ̃i = (ri

1, r
i
2, r

i
3; θl,i, θr,i) obtained by the CV reduction method for

i = 1, 2, ..., n. Suppose ξ1, ξ2, ..., ξn are mutually independent, and ki ≥ 0 for
i = 1, 2, ..., n.

(i) Given the generalized credibility level α ∈ (0, 0.5], if α ∈ (0, 0.25], then
C̃r{∑n

i=1 kiξi ≤ t} ≥ α is equivalent to

n
∑

i=1

(1− 2α + (1− 4α)θr,i)kir
i
1 + 2αkir

i
2

1 + (1− 4α)θr,i
≤ t, (124)

and if α ∈ (0.25, 0.5], then C̃r{∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n
∑

i=1

(1− 2α)kir
i
1 + (2α + (4α− 1)θl,i)kir

i
2

1 + (4α− 1)θl,i
≤ t. (125)

(ii) Given the generalized credibility level α ∈ (0.5, 1], if α ∈ (0.5, 0.75], then
C̃r{∑n

i=1 kiξi ≤ t} ≥ α is equivalent to

n
∑

i=1

(2α− 1)kir
i
3 + (2(1− α) + (3− 4α)θl,i)kir

i
2

1 + (3− 4α)θl,i
≤ t, (126)
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and if α ∈ (0.75, 1], then C̃r{∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n
∑

i=1

(2α− 1 + (4α− 3)θr,i)kir
i
3 + 2(1− α)kir

i
2

1 + (4α− 3)θr,i
≤ t. (127)

Corollary 4.1: From the above theorem, equivalent expressions of
C̃r{∑n

i=1 kiξi ≥ t} ≥ α are easily obtained, since

C̃r{
n
∑

i=1

kiξi ≥ t} ≥ α⇒ C̃r{
n
∑

i=1

− kiξi ≤ −t} ≥ α

⇒ C̃r{
n
∑

i=1

kiξ
′
i ≤ t′} ≥ α,

where ξ′
i = −ξi is the reduction of −ξ̃i = (−ri

3,−ri
2,−ri

1; θr,i, θl,i) and t′ = −t.
So from (i) of the above theorem, given the generalized credibility level α ∈

(0, 0.5], if α ∈ (0, 0.25], then C̃r{∑n
i=1 kiξi ≥ t} ≥ α, i.e. C̃r{∑n

i=1 kiξ
′
i ≤ t′} ≥

α is equivalent to

n
∑

i=1

(1− 2α + (1− 4α)θl,i)ki(−ri
3) + 2αki(−ri

2)
1 + (1− 4α)θl,i

≤ t′ = −t, (128)

which implies

n
∑

i=1

(1− 2α + (1− 4α)θl,i)kir
i
3 + 2αkir

i
2

1 + (1− 4α)θl,i
≥ t, (129)

and if α ∈ (0.25, 0.5], then C̃r{∑n
i=1 kiξi ≥ t} ≥ α is equivalent to

n
∑

i=1

(1− 2α)ki(−ri
3) + (2α + (4α− 1)θr,i)ki(−ri

2)
1 + (4α− 1)θr,i

≤ −t (130)

which implies

n
∑

i=1

(1− 2α)kir
i
3 + (2α + (4α− 1)θr,i)kir

i
2

1 + (4α− 1)θr,i
≥ t. (131)

The equivalent expressions for other values of α are similarly obtained.

4.2 Theoretical Developments

Defuzzification of Type-2 Fuzzy Variables ([75]): Here we have introduced
a defuzzification process of type-2 fuzzy variables. This method consists of two
parts. First CV-based reduction method (Sect. 2.3) is applied to transform the
type-2 fuzzy variables into corresponding type-1 fuzzy variables. Then, to get
corresponding defuzzified (crisp) values, centroid method described in Sect. 2.2 is
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applied to these reduced type-1 fuzzy variables. For continuous case the formula
∫∞

−∞ xμÃ(x)dx/
∫∞

−∞ μÃ(x)dx is used while
∑

x xμÃ(x)/
∑

x μÃ(x) ia applied for
discrete case.

The entire defuzzification process is shown in Fig. 14 and illustrated with the
following two examples.

Type-2 

Fuzzy variable

CV-based 

Reduction 

Type-1 

Fuzzy variable

Centroid  

method

Crisp

Out put

Fig. 14. Defuzzification of a type-2 fuzzy variable

Example 4.1. Let us consider Ã = {(x, μ̃Ã(x)) : x ∈ X} where X = {4, 5, 6}
and the primary memberships (possibilities) of the points of X are, respectively,
J4 = {0.3, 0.4, 0.6}, J5 = {0.6, 0.8, 0.9}, and J6 = {0.5, 0.6, 0.7, 0.8}. The sec-
ondary possibility of the point 4 is

μ̃Ã(4) = μÃ(4, u) = (0.6/0.3) + (1.0/0.4) + (0.7/0.6) ∼
(

0.3 0.4 0.6
0.6 1.0 0.7

)

,

which represents a regular fuzzy variable (RFV). Similarly

μ̃Ã(5) = μÃ(5, u) = (0.7/0.6) + (1.0/0.8) + (0.8/0.9) ∼
(

0.6 0.8 0.9
0.7 1.0 0.8

)

,

μ̃Ã(6) = μÃ(6, u) = (0.3/0.5) + (0.4/0.6) + (1.0/0.7) + (0.5/0.8) ∼
(

0.5 0.6 0.7 0.8
0.3 0.4 1.0 0.5

)

.

So discrete type-2 fuzzy variable Ã is given by

Ã =

⎧

⎨

⎩

4, with membership μ̃Ã(4);
5, with membership μ̃Ã(5);
6, with membership μ̃Ã(6).

(132)

For this T2 FV Ã, μ̃Ã(4), μ̃Ã(5) and μ̃Ã(6) are discrete RFVs. So the CVs
of these RFVs can be obtained by using the formula (47), (48) and (49) (cf.
Sect. 2.3) as illustrated in Example 2.7, e.g., from (47), we have CV ∗[μ̃Ã(4)] =
supα∈[0,1][α ∧ Pos{μ̃Ã(4) ≥ α}], where

Pos{μ̃Ã(4) ≥ α} =

⎧

⎨

⎩

1, if α ≤ 0.4;
0.7, if 0.4 < α ≤ 0.6;
0, if 0.6 < α ≤ 1.

(133)

so that

CV ∗[μ̃Ã(4)] = sup
α∈[0,0.4]

[α ∧ 1] ∨ sup
α∈(0.4,0.6]

[α ∧ 0.7] ∨ sup
α∈(0.6,1]

[α ∧ 0]

= 0.4 ∨ 0.6 ∨ 0 = 0.6. (134)
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In this way, from (47), (48) and (49) (cf. Sect. 2.3) we obtain CV∗[μ̃Ã(4)] = 0.6,
CV∗[μ̃Ã(5)] = 0.8, CV∗[μ̃Ã(6)] = 0.6,

CV∗[μ̃Ã(4)] = 0.4, CV∗[μ̃Ã(5)] = 0.6, CV∗[μ̃Ã(6)] = 0.6,

CV[μ̃Ã(4)] = 0.4, CV[μ̃Ã(5)] = 0.65, CV[μ̃Ã(6)] = 0.6.

Then applying optimistic CV, pessimistic CV and CV reduction methods
(Sect. 2.3), the T2 FV Ã is reduced respectively to the following T1 FVs
(

4 5 6
0.6 0.8 0.6

)

,
(

4 5 6
0.4 0.6 0.6

)

and
(

4 5 6
0.4 0.65 0.6

)

.

Then applying centroid method to these T1 FVs we get the corresponding
complete defuzzified (crisp) values 5, 5.125 and 5.121 respectively. For practical
use, which of the defuzzified values should be considered, it is up to the decision
maker. However we recommend to take the defuzzified value (e.g., 5.121 for
this example) obtained by applying the centroid method to the reduced T1
FV as derived using CV reduction method. This is because optimistic CV and
pessimistic CV reduction methods are developed using possibility and necessity
measure respectively, while CV reduction method uses credibility measure which
is the average of possibility and necessity measures.

Example 4.2. Consider the T2 FV ξ̃ presented in Example 2.4 in Sect. 2.3,
Chap. 2. Also in Example 2.4 (continued), applying optimistic CV, pessimistic
CV and CV reduction method to ξ̃ we already obtain the corresponding reduced

type-1 fuzzy variables as
(

5 6 7
1
2

2
3

7
12

)

,
(

5 6 7
1
3

1
2

1
4

)

and
(

5 6 7
3
7

4
7

1
2

)

respectively.

Then applying centroid method to these T1 FVs we get the corresponding
complete defuzzified (crisp) values 6.0476, 5.923 and 6.0476 respectively.
Comparison with geometric defuzzification method (Coupland and John [31]):
Applying the geometric defuzzification method (cf. Sect. 2.3) to Example 4.1 we
find the defuzzified value of the discrete type-2 fuzzy variable Ã as 5.158 as
compared to 5.121, obtained by the above proposed method.

Since the domains of the secondary possibilities (memberships) of all the
points of the type-2 fuzzy variable ξ̃ of Example 4.2 are continuous over [0,1], so
to apply geometric defuzzification method we have to dicretize the continuous
domains. We discretize the continuous domains of the secondary possibilities
of the points of ξ̃ with equidistant 0.05 and applying geometric defuzzification
method we obtain defuzzified value 6.1403 of ξ̃, compared to earlier result 6.0476.

Nearest Interval Approximation of Continuous Type-2 Fuzzy Vari-
ables ([76]). Here we have proposed a method of approximation of continuous
type-2 fuzzy variable by crisp interval. For this purpose we first find the CV-
based reductions of the type-2 fuzzy variable. Then we derive the corresponding
α-cuts of these CV-based reductions. Finally applying interval approximation
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method (Grzegorzewski [52]) to the α-cuts we find approximate crisp intervals.
The entire method is shown in the Fig. 15.

Type-2 

Fuzzy variable

CV-based 

Reduction 

Type-1 

Fuzzy variable

Interval 

approximation

Crisp

Interval

| | 
| | 

| | 

| | 

|

cuts−α

Fig. 15. Nearest interval approximation of continuous T2 fuzzy variable.

Example 4.3. Now we illustrate the above method with type-2 triangular
fuzzy variable. Let ξ̃ be a type-2 triangular fuzzy variable defined as ξ̃ =
(r1, r2, r3; θl, θr). Then from Theorem 2.4 (cf. Sect. 2.3) we have the optimistic
CV reduction, pessimistic CV reduction and CV reduction of ξ̃ as ξ1, ξ2 and ξ3
respectively with the possibility distributions given by (56), (57) and (58) (cf.
Sect. 2.3). Now using the definition of α-cut of a fuzzy number we find α-cuts of
the reductions of ξ̃.

α-cut of the optimistic CV reduction ξ1 of ξ̃: Applying the definition of
α-cut of a fuzzy variable we find the α-cut of the reduction ξ1 as [ξ1L(α), ξ1R(α)],
where,

ξ1L(α) =

{

(1+θr)r1+(r2−r1−θrr1)α
(1+θr)−θrα , 0 ≤ α ≤ 0.5;

(r1−θrr2)+(r2−r1+θrr2)α
(1−θr)+θrα , 0.5 < α ≤ 1.

(135)

ξ1R(α) =

{

(r3−θrr2)−(r3−r2−θrr2)α
(1−θr)+θrα , 0.5 ≤ α ≤ 1;

(1+θr)r3−(r3−r2+θrr3)α
(1+θr)−θrα , 0 ≤ α < 0.5.

(136)

α-cut of the pessimistic CV reduction ξ2 of ξ̃: α-cut of the reduction ξ2 is
obtained as [ξ2L(α), ξ2R(α)], where,

ξ2L(α) =

{

r1+(r2−r1−θlr1)α
1−θlα

, 0 ≤ α ≤ 0.5;
r1+(r2−r1+θlr2)α

1+θlα
, 0.5 < α ≤ 1.

(137)

ξ2R(α) =

{

r3−(r3−r2−θlr2)α
1+θlα

, 0.5 ≤ α < 1;
r3−(r3−r2+θlr3)α

1−θlα
, 0 ≤ α < 0.5.

(138)
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α-cut of the CV reduction ξ3 of ξ̃: α-cut of the reduction ξ3 is obtained as
[ξ3L(α), ξ3R(α)], where,

ξ3L(α) =

{

(1+θr)r1+(r2−r1−2θrr1)α
(1+θr)−2θrα , 0 ≤ α ≤ 0.5;

(r1−θlr2)+(r2−r1+2θlr2)α
(1−θl)+2θlα

, 0.5 < α ≤ 1.
(139)

ξ3R(α) =

{

(r3−θlr2)−(r3−r2−2θlr2)α
(1−θl)+2θlα

, 0.5 ≤ α ≤ 1;
(1+θr)r3−(r3−r2+2θrr3)α

(1+θr)−2θrα , 0 ≤ α < 0.5.
(140)

Now we know that nearest interval approximation of a fuzzy number (Grze-
gorzewski [52]) Ã with α-cut [AL(α), AR(α)] is given by (cf. Sect. 2.2) Cd(Ã) =
[CL, CR], where CL =

∫ 1

0
AL(α)dα and CR =

∫ 1

0
AR(α)dα.

Using this method for the α-cuts of optimistic CV, pessimistic CV or CV
reduction of ξ̃ we can find the nearest interval approximation of ξ̃ as follows.

Nearest interval approximation of ξ̃ using α-cut of the optimistic CV reduc-
tion ξ1 of ξ̃: In this case the nearest interval approximation of ξ̃ is obtained as
[CL, CR] where,

CL =
∫ 1

0

ξ1L(α)dα

=
∫ 0.5

0

(1 + θr)r1 + (r2 − r1 − θrr1)α
(1 + θr)− θrα

dα

+
∫ 1

0.5

(r1 − θrr2) + (r2 − r1 + θrr2)α
(1− θr) + θrα

dα = CL1 + CL2, (141)

CL1 =
(1 + θr)r1

θr
ln
( 1 + θr

1 + 0.5θr

)− r2 − r1 − θrr1
θ2r

[

0.5θr−(1+θr) ln
( 1 + θr

1 + 0.5θr

)]

,

CL2 = −r1 − θrr2
θr

ln(1− 0.5θr) +
r2 − r1 + θrr2

θ2r

[

0.5θr + (1− θr) ln(1− 0.5θr)
]

.

CR =
∫ 1

0

ξ1R(α)dα

=
∫ 0.5

0

(1 + θr)r3 − (r3 − r2 + θrr3)α
(1 + θr)− θrα

dα

+
∫ 1

0.5

(r3 − θrr2)− (r3 − r2 − θrr2)α
(1− θr) + θrα

dα

= CR1 + CR2, (142)

CR1 =
(1 + θr)r3

θr
ln
( 1 + θr

1 + 0.5θr

)

+
r3 − r2 + θrr3

θ2r

[

0.5θr−(1+θr) ln
( 1 + θr

1 + 0.5θr

)]

,

CR2 = −r3 − θrr2
θr

ln(1− 0.5θr)− r3 − r2 − θrr2
θ2r

[

0.5θr + (1− θr) ln(1− 0.5θr)
]

.
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We call this interval as optimistic interval approximation of ξ̃.
Nearest interval approximation of ξ̃ using α-cut of the pessimistic CV reduc-

tion ξ2 of ξ̃: In this case the nearest interval approximation of ξ̃ is obtained as
[CL, CR] where,

CL =
∫ 1

0

ξ2L(α)dα

=
∫ 0.5

0

r1 + (r2 − r1 − θlr1)α
1− θlα

dα +
∫ 1

0.5

r1 + (r2 − r1 + θlr2)α
1 + θlα

dα

= CL1 + CL2, (143)

CL1 = −r1
θl

ln(1− 0.5θl)− r2 − r1 − θlr1
θ2l

[

0.5θl + ln(1− 0.5θl)
]

,

CL2 =
r1
θl

ln
( 1 + θl

1 + 0.5θl

)

+
r2 − r1 + θlr2

θ2l

[

0.5θl − ln
( 1 + θl

1 + 0.5θl

)]

.

CR =
∫ 1

0

ξ2R(α)dα

=
∫ 0.5

0

r3 − (r3 − r2 + θlr3)α
1− θlα

dα +
∫ 1

0.5

r3 − (r3 − r2 − θlr2)α
1 + θlα

dα

= CR1 + CR2, (144)

CR1 = −r3
θl

ln(1− 0.5θl) +
r3 − r2 + θlr3

θ2l

[

0.5θl + ln(1− 0.5θl)
]

,

CR2 =
r3
θl

ln
( 1 + θl

1 + 0.5θl

)− r3 − (r3 − r2 − θlr2
θ2l

[

0.5θl − ln
( 1 + θl

1 + 0.5θl

)]

.

We call this interval as pessimistic interval approximation of ξ̃.
Nearest interval approximation of ξ̃ using α-cut of the CV reduction ξ3 of

ξ̃: In this case the nearest interval approximation of ξ̃ is obtained as [CL, CR]
where,

CL =
∫ 1

0

ξ3L(α)dα

=
∫ 0.5

0

(1 + θr)r1 + (r2 − r1 − 2θrr1)α
(1 + θr)− 2θrα

dα

+
∫ 1

0.5

(r1 − θlr2) + (r2 − r1 + 2θlr2)α
(1− θl) + 2θlα

= CL1 + CL2, (145)

CL1 =
(1 + θr)r1

2θr
ln(1 + θr)− r2 − r1 − 2θrr1

4θ2r

[

θr − (1 + θr) ln(1 + θr)
]

,
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CL2 =
r1 − θlr2

2θl
ln(1 + θl) +

r2 − r1 + 2θlr2
4θ2l

[

θl − (1− θl) ln(1 + θl)
]

.

CR =
∫ 1

0

ξ3R(α)dα

=
∫ 0.5

0

(1 + θr)r3 − (r3 − r2 + 2θrr3)α
(1 + θr)− 2θrα

dα

+
∫ 1

0.5

(r3 − θlr2)− (r3 − r2 − 2θlr2)α
(1− θl) + 2θlα

dα

= CR1 + CR2, (146)

CR1 =
(1 + θr)r3

2θr
ln(1 + θr) +

r3 − r2 + 2θrr3
4θ2r

[

θr − (1 + θr) ln(1 + θr)
]

,

CR2 =
r3 − θlr2

2θl
ln(1 + θl)− r3 − r2 − 2θlr2

4θ2l

[

θl − (1− θl) ln(1 + θl)
]

.

We call this interval as credibilistic interval approximation of ξ̃.
For example consider the type-2 triangular fuzzy variable ξ̃ = (2, 3, 4; 0.5, 0.8)

whose FOU is depicted in Fig. 6 and its optimistic CV, pessimistic CV and CV
reductions are shown in the Fig. 8 (Sect. 2.3). We find nearest interval approxi-
mation of ξ̃. From Eqs. (141), (142), (143), (144), (145) and (146), the optimistic,
pessimistic and credibilistic interval approximations of ξ̃ are obtained as

[2.4086, 3.5913], [2.5567, 3.4432] and [2.4925, 3.5074]

respectively. These results are shown in the Fig. 16.

4.3 Model 4.1: Fixed Charge Transportation Problem with Type-2
Fuzzy Cost Parameters

Here a fixed charge transportation problem (FCTP) with unit transportation
costs and fixed(/additional) costs as type-2 fuzzy variables is formulated.

Notations:

(i) c̃ij : The unit transportation cost from i-th source to j-th destination rep-
resented by type-2 fuzzy variable.

(ii) d̃ij : Fixed(/additional) cost associated with route (i, j) represented by type-
2 fuzzy variable.

(iii) xij : The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination.

(iv) Z: The objective function.
(v) ai: The amount of the product available at the i-th origin.
(vi) bj : The demand of the product at j-th destination.
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Fig. 16. Interval approximation of ξ̃ using (1) optimistic CV, (2) pessimistic CV, (3)
CV reductions.

Mathematical Model: A FCTP with m sources and n destinations and direct
costs and fixed cost parameters as T2 FVs is as follows:

Min Z =
m
∑

i=1

n
∑

j=1

(c̃ij xij + d̃ijyij), (147)

subject to
n
∑

j=1

xij ≤ ai, i = 1, 2, ...,m, (148)

m
∑

i=1

xij ≥ bj , j = 1, 2, ..., n, (149)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j, (150)

m
∑

i=1

ai ≥
n
∑

j=1

bj (151)

It is obvious that the fixed charge d̃ij will be costed for a route (i, j) only if any
transportation activity is assigned to that route. So yij is defined such that if
xij > 0 then yij = 1, otherwise it will be 0.
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4.4 Defuzzifiaction

Since the unit transportation costs c̃ijs and the fixed(/additional) costs d̃ijs
in the above model are T2 FVs, we apply defuzzification method presented in
Sect. 4.2. We first apply CV-based reduction method to transform the T2 FVs
into corresponding T1 FVs and then centroid method to the reduced T1 FVs to
get corresponding defuzzified (crisp) values. Taking these defuzzified (crisp) cost
values, the problem can be then easily solved using any standard optimization
solver.

Numerical Experiment: In this section the presented model and methods are
illustrated numerically. To illustrate the Model 4.1 ((147)–(151)), we consider
an example with three sources and two destinations, i.e., i = 1, 2, 3 and j = 1, 2.

The unit transportation costs c̃ij are the following discrete type-2 fuzzy vari-
ables.

˜c11 =

⎧

⎨

⎩

2, withμ̃ ˜c11(2) = (0.2, 0.4, 0.6, 0.8);
4, withμ̃ ˜c11(4) = (0.5, 0.7, 0.9);
5, withμ̃ ˜c11(5) = (0.3, 0.5, 0.7).

˜c12 =

⎧

⎨

⎩

7, withμ̃ ˜c12(7) = (0.4, 0.6, 0.7);
8, withμ̃ ˜c12(8) = (0.5, 0.7, 0.8);
9, withμ̃ ˜c12(9) = (0.7, 0.9, 1).

˜c21 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4, withμ̃ ˜c21(4) =
(

0.3 0.5 0.7
0.4 1 0.7

)

;

5, withμ̃ ˜c21(5) =
(

0.6 0.8 0.9
0.5 0.9 1

)

;

7, withμ̃ ˜c21(7) =
(

0.5 0.7 0.8
0.4 1 0.7

)

.

˜c22 =

⎧

⎨

⎩

6, withμ̃ ˜c22(6) = (0.4, 0.5, 0.7, 0.8);
7, withμ̃ ˜c22(7) = (0.6, 0.8, 0.9);
9, withμ̃ ˜c22(9) = (0.4, 0.6, 0.7).

˜c31 =

⎧

⎨

⎩

3, withμ̃ ˜c31(3) = (0.3, 0.4, 0.6);
5, withμ̃ ˜c31(5) = (0.7, 0.9, 1);
6, withμ̃ ˜c31(6) = (0.4, 0.6, 0.7).

˜c32 =

⎧

⎨

⎩

8, withμ̃ ˜c32(8) = (0.3, 0.5, 0.6);
9, withμ̃ ˜c32(9) = (0.5, 0.7, 0.8, 0.9);
10, withμ̃ ˜c32(10) = (0.5, 0.6, 0.8).

The supplies ai and demands bj are as follows:
a1 = 20, a2 = 14, a3 = 18, b1 = 28, b2 = 21.
For convenience of computing we suppose that the fixed charge d̃ij = 0.5c̃ij .

Solution Using Proposed Defuzzification Method (cf. Sect. 4.2): To solve
the above problem we first find corresponding defuzzified (crisp) values of the
type-2 fuzzy cost parameters c̃ij . For this purpose we first apply CV reduction
method to reduce type-2 fuzzy variables c̃ij to type-1 fuzzy variables, then apply-
ing centroid method we get the corresponding crisp values. We denote these crisp
values as cc

ij which are obtained as
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cc
11 = 3.6956, cc

12 = 8.1071, cc
21 = 5.4615, cc

22 = 7.36, cc
31 = 4.8523 and

cc
32 = 9.0482.

Now using these crisp costs values, the optimum solution of the problem is
obtained by the standard optimization solver - LINGO and given in Table 9.

Solution Using Geometric Defuzzification (cf. Sect. 2.3): Using geometric
defuzzification method we obtain the defuzzified values of the type-2 fuzzy cost
parameters c̃ij as follows.
cc
11 = 3.6896, cc

12 = 8.219, cc
21 = 5.6355, cc

22 = 7.5651, cc
31 = 4.65 and cc

32 =
9.1932.

Using these defuzzified cost values, the optimum solution of the problem is
obtained and presented in Table 9.

Table 9. Optimum results for model-4.1

Method Defuzzified cost parameters Optimum Optimum

costs Min Z transported amounts

Proposed cc
11 = 3.6956, cc

12 = 8.1071, 283.3245 x11 = 13, x12 = 7

defuzzification cc
21 = 5.4615, cc

22 = 7.36, x22 = 14, x31 = 15

method cc
31 = 4.8523, cc

32 = 9.0482

Geometric cc
11 = 3.6896, cc

12 = 8.219, 293.2211 x11 = 13, x12 = 7

defuzzification cc
21 = 5.6355, cc

22 = 7.5651, x22 = 14, x31 = 15

method cc
31 = 4.65, cc

32 = 9.1932

So from the above two results, we see that the optimum allocations (i.e.,
values of xijs) as obtained by the two approaches are the same. However the
optimum objective value (minimum transportation cost) as obtained using the
geometric defuzzification method is something more than that of using proposed
defuzzification method.

4.5 Model 4.2: Fixed Charge Transportation Problem with Type-2
Fuzzy Costs, Supplies and Demands

Notations:

(i) c̃ij : The unit transportation costs from i-th source to j-th destination rep-
resented by type-2 fuzzy variable.

(ii) d̃ij : Fixed(/additional) cost associated with route (i, j) represented by type-
2 fuzzy variable.

(iii) xij : The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination.

(iv) Z: The objective function.
(v) ãi: The amount of the product available at the i-th origin represented by

type-2 fuzzy variable.
(vi) b̃j : The demand of the product at j-th destination represented by type-2

fuzzy variable.
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Mathematical Model: A FCTP with m sources, n destinations and unit trans-
portation costs, fixed costs, supplies and demands as T2 FVs is formulated as
follows:

Min Z =
m
∑

i=1

n
∑

j=1

(c̃ij xij + d̃ijyij), (152)

subject to

n
∑

j=1

xij ≤ ãi, i = 1, 2, ...,m, (153)

m
∑

i=1

xij ≥ b̃j , j = 1, 2, ..., n, (154)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (155)

Solution Methodology: Chance-Constrained Programming Using
Generalized Credibility: Suppose that c̃′

ij , d̃′
ij , ã′

i and b̃′
j are the reduced

T1 FVs (may not be normalized) of the T2 FVs c̃ij , d̃ij , ãi and b̃j respectively
according to CV-based reduction method. Now to solve the above problem we
formulate a chance-constrained programming model with these reduced fuzzy
parameters. Chance-constrained programming with fuzzy (type-1) parameters
was introduced by Liu and Iwamura [92] using possibility measure. Latter it is
developed (Liu [90], Yang and Liu [153], Kundu et al. [74]) by using credibility
measure. But since the reduced fuzzy parameters c̃′

ij , d̃′
ij , ã′

i and b̃′
j may not be

normalized, so usual credibility measure can not be used and hence using gener-
alized credibility (Note 2.1, Sect. 2.3), as the problem is minimization problem,
the following chance-constrained programming model is formulated:

Minx (Minf̄ f̄) (156)

subject to C̃r{
m
∑

i=1

n
∑

j=1

(c̃′
ij xij + d̃′

ijyij) ≤ f̄} ≥ α (157)

C̃r{
n
∑

j=1

xij ≤ ã′
i} ≥ αi, i = 1, 2, ...,m (158)

C̃r{
m
∑

i=1

xij ≥ b̃′
j} ≥ βj , j = 1, 2, ..., n (159)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (160)

where Min f̄ indicates the minimum possible value that the objective function
less or equal to it with generalized credibility at least α (0 < α ≤ 1). αi, βj (0 <
αi, βj ≤ 1) are the predetermined generalized credibility levels of satisfaction of
the source and destination constraints respectively for all i, j.
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Crisp Equivalences: Suppose that the c̃ij , d̃ij , ãi and b̃j are all
mutually independent type-2 triangular fuzzy variables defined by c̃ij =
(c1ij , c

2
ij , c

3
ij ; θl,ij , θr,ij), d̃ij = (d1

ij , d
2
ij , d

3
ij ; θ

′
l,ij , θ

′
r,ij), ãi = (a1

i , a
2
i , a

3
i ; θl,i, θr,i)

and b̃j = (b1j , b
2
j , b

3
j ; θl,j , θr,j). Also let c̃′

ij , d̃′
ij , ã′

i and b̃′
j are the corresponding

reductions by the CV reduction method.
Then from Theorem 4.1 and its corollary, the chance-constrained model for-

mulation (156)–(160) of Model-4.2 (i.e., (152)–(155)) can be turned into the
following crisp equivalent (for proof see the Appendix) parametric programming
problems:
Case-I: 0 < α ≤ 0.25: Then the equivalent parametric programming problem for
the model representation (156)–(160) is

Min

m
∑

i=1

n
∑

j=1

[ (1− 2α + (1− 4α)θr,ij)c1ijxij + 2αc2ijxij

1 + (1− 4α)θr,ij
+

(1− 2α + (1− 4α)θ′
r,ij)d

1
ijyij + 2αd2ijyij

1 + (1− 4α)θ′
r,ij

]

(161)

subject to

n
∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (162)

m
∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (163)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j, (164)

where Fai
and Fbj are given by (177) and (178) respectively.

Case-II: 0.25 < α ≤ 0.5: Then the equivalent parametric programming problem
for the model (156)–(160) is

Min

m
∑

i=1

n
∑

j=1

[ (1− 2α)c1ijxij + (2α + (4α− 1)θl,ij)c2ijxij

1 + (4α− 1)θl,ij
+

(1− 2α)d1ijyij + (2α + (4α− 1)θ′
l,ij)d

2
ijyij

1 + (4α− 1)θ′
l,ij

]

(165)

subject to

n
∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (166)

m
∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (167)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (168)
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Case-III: 0.5 < α ≤ 0.75: Then the equivalent parametric programming problem
for the model (156)–(160) is

Min
m
∑

i=1

n
∑

j=1

[ (2α− 1)c3ijxij + (2(1− α) + (3− 4α)θl,ij)c2ijxij

1 + (3− 4α)θl,ij
+

(2α− 1)d3ijyij + (2(1− α) + (3− 4α)θ′
l,ij)d

2
ijyij

1 + (3− 4α)θ′
l,ij

]

(169)

subject to
n
∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (170)

m
∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (171)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (172)

Case-IV: 0.75 < α ≤ 1: Then the equivalent parametric programming problem
for the model (156)–(160) is

Min
m
∑

i=1

n
∑

j=1

[ (2α− 1 + (4α− 3)θr,ij)c3ijxij + 2(1− α)c2ijxij

1 + (4α− 3)θr,ij
+

(2α− 1 + (4α− 3)θ′
r,ij)d

3
ijyij + 2(1− α)d2ijyij

1 + (4α− 3)θ′
r,ij

]

(173)

subject to
n
∑

j=1

xij ≤ Fai
, i = 1, 2, ...,m (174)

m
∑

i=1

xij ≥ Fbj , j = 1, 2, ..., n (175)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j, (176)

where,

Fai
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1−2αi+(1−4αi)θl,i)a
3
i+2αia

2
i

1+(1−4αi)θl,i
, if 0 < αi ≤ 0.25;

(1−2αi)a
3
i+(2αi+(4αi−1)θr,i)a

2
i

1+(4αi−1)θr,i
, if 0.25 < αi ≤ 0.5;

(2αi−1)a1
i+(2(1−αi)+(3−4αi)θr,i)a

2
i

1+(3−4αi)θr,i
, if 0.5 < αi ≤ 0.75;

(2αi−1+(4αi−3)θl,i)a
1
i+2(1−αi)a

2
i

1+(4αi−3)θl,i
, if 0.75 < αi ≤ 1.

(177)
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Fbj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1−2βj+(1−4βj)θr,j)b
1
j+2βjb2j

1+(1−4βj)βr,j
, if 0 < βj ≤ 0.25;

(1−2βj)b
1
j+(2βj+(4βj−1)θl,j)b

2
j

1+(4βj−1)θl,j
, if 0.25 < βj ≤ 0.5;

(2βj−1)b3j+(2(1−βj)+(3−4βj)θl,j)b
2
j

1+(3−4βj)θl,j
, if 0.5 < βj ≤ 0.75;

(2βj−1+(4βj−3)θr,j)b
3
j+2(1−βj)b

2
j

1+(4βj−3)θr,j
, if 0.75 < βj ≤ 1.

(178)

Numerical Experiment: To illustrate the Model 4.2 ((152)–(155)) numeri-
cally, consider a problem having three sources and two destinations with the
following type-2 fuzzy data.
ã1 = (16, 18, 20; 0.5, 0.8), ã2 = (15, 16, 18; 0.4, 0.6), ã3 = (14, 15, 16; 0.6, 0.9)
b̃1 = (20, 22, 24; 0.5, 0.5), b̃2 = (18, 19, 20; 0.6, 0.8).
The direct and fixed costs for this problem are given in Table 10.

Table 10. Direct costs and fixed costs

i j j

1 2 1 2

1 (2,3,4;0.4,0.7) (3.5,4,4.2;0.5,0.8) (3.5,4,4.5;0.5,0.5) (3,4,5;0.6,0.4)

2 (4,5,6;0.7,0.8) (4,6,7;0.6,0.4) (4.5,5,5.4;0.4,0.7) (4.6,5.2,5.6;0.6,0.8)

3 (4.4,4.6,5;0.5,0.5) (5,5.5,6;0.5,0.7) (5,6,6.4;0.6,0.6) (4,4.2,4.8;0.4,0.6)

cij dij

The predetermined general credibility levels for the chance-constrained pro-
gramming model (156)–(160) as formulated to solve the Model-4.2 are taken as
α = 0.9, αi = 0.9, βj = 0.9, i = 1, 2, 3; j = 1, 2.
Now using (173)–(176), the equivalent parametric programming problem
becomes

Min

3
∑

i=1

2
∑

j=1

[ (0.8 + 0.6θr,ij)c3ijxij + 0.2c2ijxij

1 + 0.6θr,ij
+

(0.8 + 0.6θ′
r,ij)d

3
ijyij + 0.2d2ijyij

1 + 0.6θ′
r,ij

]

(179)

subject to
2
∑

j=1

xij ≤ Fai
, i = 1, 2, 3 (180)

3
∑

i=1

xij ≥ Fbj , j = 1, 2 (181)

xij ≥ 0, yij =
{

1, if xij > 0;
0, otherwise. ∀ i, j (182)
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where Fa1 = 16.30, Fa2 = 15.16, Fa3 = 14.14, Fb1 = 23.69 and Fb2 = 19.86 are
obtained from Eqs. (177) and (178).

Solving this, the optimum results are x12 = 16.3, x21 = 13.11, x31 = 10.58,
x32 = 3.56 and the objective function value (minimum transportation cost)=
239.5014.

4.6 Sensitivity Analysis for the Numerical Experiment Of Model 4.2

A sensitivity analysis for the numerical experiment of Model-4.2 is presented to
show the efficiency and logically correctness of the crisp equivalent form and solu-
tion approaches of the presented problem. For some different generalized cred-
ibility levels for the objective function, source constraints and destination con-
straints of the model representation (156)–(160) formulated to solve the Model
4.2, the changes in the objective function value (minimum transportation cost)
are presented in the Table 11.

It is observed from the Table 11 that for fixed credibility levels of the objective
function and the source constraints, i.e., for fixed α and αi(i = 1, 2, 3), minimum
transportation cost increases with the increased credibility levels (βj , j = 1, 2)
of the destination constraints. The reason of this fact is that as the credibility
levels βj increase, the defuzzified amount of the demands (Fbj , j = 1, 2) are
also increased (e.g., for βj = 0.7, Fb1 = 22.27, Fb2 = 19.35 and for βj = 0.8,
Fb1 = 23.27, Fb2 = 19.65) and as a result total transported amount also increases.

Now for fixed α and βj(j = 1, 2), minimum transportation cost increases
with the increased credibility levels (αi, i = 1, 2, 3) of the source constraints. The
interesting fact is that in this case, though total transported amounts are the
same but still transportation cost increases as the credibility levels αi(i = 1, 2, 3)
increase. The reason is that, as the credibility levels αi(i = 1, 2, 3) increase,
the defuzzified amount of the availabilities (Fai

, i = 1, 2, 3) decrease (e.g., for
αi = 0.7, Fa1 = 17.31, Fa2 = 15.64, Fa3 = 14.66 and for αi = 0.8, Fa1 = 16.72,
Fa2 = 15.37, Fa3 = 14.35) and as a result for the fixed demand, the allocation
options of the product (to the less cost path) decrease.

Also we observe from the Table 11 that for fixed αi(i = 1, 2, 3) and βj(j =
1, 2) minimum transportation cost increases as the credibility level α increases.
This is because in this case defuzzified cost coefficients of the objective function
increase with increased credibility level α.

4.7 Model 4.3: Multi-item Solid Transportation Problem Having
Restriction on Conveyances with Type-2 Fuzzy Parameters

Here, we formulate a multi-item solid transportation problem (MISTP) with
restriction on some items and conveyances in the sense that some specific items
prohibited to be transported through some particular conveyances. In this prob-
lem the transportation parameters, e.g., unit transportation costs, supplies,
demands, conveyance capacities are type-2 triangular fuzzy variables.
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Table 11. Changes in transportation cost for different credibility levels

α αi βj Transported amount Transportation cost

0.7 42.07 230.3159

0.9 0.9 0.8 42.92 235.5984

0.9 43.55 239.5014

0.95 43.78 240.9197

0.7 236.3098

0.9 0.8 0.9 43.55 238.1800

0.9 239.5014

0.95 240.0048

0.7 227.0400

0.8 0.9 0.9 43.55 234.3038

0.9 239.5014

0.95 241.3965

Notations:

(i) ˜cp
ijk: The unit transportation costs from i-th source to j-th destination by

k-th conveyance for p-th item, represented by type-2 fuzzy variable.
(ii) xp

ijk: The decision variable which represents amount of p-th item to be
transported from i-th origin to j-th destination by k-th conveyance.

(iii) Z: The objective function.
(iv) ãp

i : The amount of the p-th item available at the i-th origin, represented
by type-2 fuzzy variable.

(v) b̃p
j : The demand of the p-th item at j-th destination, represented by type-2

fuzzy variable.
(vi) ẽk: Total transportation capacity of conveyance k, represented by type-2

fuzzy variable.

Mathematical Model: Let l items are to be transported from m origins (or
sources) Oi (i = 1, 2, ...,m) to n destinations Dj (j = 1, 2, ..., n) by means of K
different modes of transportation (conveyance). Also there are some restrictions
on some specific items and conveyances such a way that some items can not
be transported through some conveyances. Let us denote Ik as the set of items
which can be transported through conveyance k (k = 1, 2, ...,K). We use notation
p (= 1, 2, ..., l) to denote the items. Then the mathematical formulation of the
problem is as follows:

Min Z =
∑

p∈I1

m
∑

i=1

n
∑

j=1

˜cp
ij1 xp

ij1 +
∑

p∈I2

m
∑

i=1

n
∑

j=1

˜cp
ij2 xp

ij2 +...+
∑

p∈IK

m
∑

i=1

n
∑

j=1

˜cp
ijK xp

ijK ,

where |I1
⋃

I2
⋃

...
⋃

IK | = l
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=
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk.( ˜cp

ijk xp
ijk), (183)

subject to
n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ ãp
i , i = 1, 2, ...,m; p = 1, 2, ...l, (184)

m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ b̃p
j , j = 1, 2, ..., n; p = 1, 2, ..., l, (185)

l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ ẽk, k = 1, 2, ...,K, (186)

xp
ijk ≥ 0, ∀ i, j, k, p (187)

where dp
ijk is defined as dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p.

Solution Methodology 1: Chance-Constrained Programming Using
Generalized Credibility: Suppose that ˜

cp′
ijk, ãp′

i , b̃p′
j and ẽ′

k are the reduced

fuzzy (type-1) variables from type-2 fuzzy variables ˜cp
ijk, ãp

i , b̃p
j and ẽk respec-

tively based on CV-based reduction method. Now to solve the above problem
we formulate a chance-constrained programming model with these reduced fuzzy
parameters. Since the reduced fuzzy parameters ˜

cp′
ijk, ãp′

i , b̃p′
j and ẽ′

k may not be
normalized, so using generalized credibility for the objective function as well
as for the constraints the following chance constrained programming model is
formulated for the above problem (183)–(187).

Minx (Minf̄ f̄) (188)

C̃r{
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk.( ˜

cp′
ijk xp

ijk) ≤ f̄} ≥ α, (189)

s.t. C̃r{
n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ ãp′
i } ≥ αp

i , i = 1, 2, ...,m; p = 1, 2, ...l, (190)

C̃r{
m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ b̃p′
j } ≥ βp

j , j = 1, 2, ..., n; p = 1, 2, ..., l, (191)

C̃r{
l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ ẽ′
k} ≥ γk, k = 1, 2, ...,K, (192)
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xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p (193)

where Min f̄ indicates the minimum value that the objective function achieves
with generalized credibility at least α (0 < α ≤ 1). αp

i , βp
j and γk are predeter-

mined generalized credibility levels of satisfaction of the respective constraints
for all i, j, k, p.

Crisp Equivalence: We consider ˜cp
ijk, ãp

i , b̃p
j and ẽk are all mutually indepen-

dent type-2 triangular fuzzy variables as ˜cp
ijk = (cp1

ijk, cp2
ijk, cp3

ijk; θp
l,ijk, θp

r,ijk), ãp
i =

(ap1
i , ap2

i , ap3
i ; θp

l,i, θ
p
r,i), b̃p

j = (bp1
j , bp2

j , bp3
j ; θp

l,j , θ
p
r,j) and ẽk = (e1k, e2k, e3k; θl,k, θr,k).

Then from Theorem-4.1 and its corollary, the chance-constrained model for-
mulation (188)–(193) is turned into the following crisp equivalent parametric
programming problems:
Case-I: 0 < α ≤ 0.25: The equivalent parametric programming problem for
model (188)–(193) is

Min

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk

[ (1− 2α + (1− 4α)θp
r,ijk)cp1

ijkxp
ijk + 2αcp2

ijkxp
ijk

1 + (1− 4α)θp
r,ijk

]

,

(194)

sub. to
n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (195)

m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (196)

l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (197)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p, (198)

where Fap
i
, Fbpj

and Fek
are given by (214), (215) and (216) respectively.

Case-II: 0.25 < α ≤ 0.5: Then the equivalent parametric programming problem
for model (188)–(193) is

Min

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk

[ (1− 2α)cp1
ijkxp

ijk + (2α + (4α− 1)θp
l,ijk)cp2

ijkxp
ijk

1 + (4α− 1)θp
l,ijk

]

(199)

sub. to
n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (200)
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m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (201)

l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (202)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p. (203)

Case-III: 0.5 < α ≤ 0.75: Then the equivalent parametric programming problem
for model (188)–(193) is

Min

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk

[ (2α− 1)cp3
ijkxp

ijk + (2(1− α) + (3− 4α)θp
l,ijk)cp2

ijkxp
ijk

1 + (3− 4α)θp
l,ijk

]

(204)

sub. to

n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (205)

m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (206)

l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (207)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p. (208)

Case-IV: 0.75 < α ≤ 1: Then the equivalent parametric programming problem
for model (188)–(193) is

Min

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk

[ (2α− 1 + (4α− 3)θp
r,ijk)cp3

ijkxp
ijk + 2(1− α)cp2

ijkxp
ijk

1 + (4α− 3)θp
r,ijk

]

(209)

sub. to

n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (210)

m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l, (211)

l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K, (212)
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xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p (213)

where,

Fap
i

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1−2αp
i +(1−4αp

i )θ
p
l,i)a

p3
i +2αp

i ap2
i

1+(1−4αp
i )θ

p
l,i

, if 0 < αp
i ≤ 0.25;

(1−2αp
i )a

p3
i +(2αp

i +(4αp
i −1)θp

r,i)a
p2
i

1+(4αp
i −1)θp

r,i
, if 0.25 < αp

i ≤ 0.5;
(2αp

i −1)ap1
i +(2(1−αp

i )+(3−4αp
i )θ

p
r,i)a

p2
i

1+(3−4αp
i )θ

p
r,i

, if 0.5 < αp
i ≤ 0.75;

(2αp
i −1+(4αp

i −3)θp
l,i)a

p1
i +2(1−αp

i )a
p2
i

1+(4αp
i −3)θp

l,i
, if 0.75 < αp

i ≤ 1.

(214)

Fbpj
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1−2βp
j +(1−4βp

j )θ
p
r,j)b

p1
j +2βp

j bp2j
1+(1−4βp

j )β
p
r,j

, if 0 < βp
j ≤ 0.25;

(1−2βp
j )b

p1
j +(2βp

j +(4βp
j −1)θp

l,j)b
p2
j

1+(4βp
j −1)θp

l,j
, if 0.25 < βp

j ≤ 0.5;
(2βjp−1)bp3j +(2(1−βp

j )+(3−4βp
j )θ

p
l,j)b

p2
j

1+(3−4βp
j )θ

p
l,j

, if 0.5 < βp
j ≤ 0.75;

(2βp
j −1+(4βp

j −3)θp
r,j)b

p3
j +2(1−βp

j )b
p2
j

1+(4βp
j −3)θp

r,j
, if 0.75 < βp

j ≤ 1.

(215)

Fek
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1−2γk+(1−4γk)θl,k)e
3
k+2γke2

k

1+(1−4γk)θl,k
, if 0 < γk ≤ 0.25;

(1−2γk)e
3
k+(2γk+(4γk−1)θr,k)e

2
k

1+(4γk−1)θr,k
, if 0.25 < γk ≤ 0.5;

(2γk−1)e1
k+(2(1−γk)+(3−4γk)θr,k)e

2
k

1+(3−4γk)θr,k
, if 0.5 < γk ≤ 0.75;

(2γk−1+(4γk−3)θl,k)e
1
k+2(1−γk)e

2
k

1+(4γk−3)θl,k
, if 0.75 < γk ≤ 1.

(216)

Solution Methodology 2: Using Nearest Interval Approximation: Con-
sider costs ˜cp

ijk, supplies ãp
i , demands b̃p

j and conveyance capacities ẽk are all

mutually independent type-2 triangular fuzzy variables defined by ˜cp
ijk =

(cp1
ijk, cp2

ijk, cp3
ijk; θp

l,ijk, θp
r,ijk), ãp

i = (ap1
i , ap2

i , ap3
i ; θp

l,i, θ
p
r,i), b̃p

j =
(bp1

j , bp2
j , bp3

j ; θp
l,j , θ

p
r,j) and ẽk = (e1k, e2k, e3k; θl,k, θr,k). Then we find nearest inter-

val approximations (credibilistic interval approximation, cf. Sect. 4.2) of ˜cp
ijk, ãp

i ,

b̃p
j and ẽk, suppose these are [cp

ijkL, cp
ijkR], [ap

iL, ap
iR], [bp

jL, bp
jR] and [ekL, ekR]

respectively. Then with these nearest interval approximations, the Model (183)–
(183) becomes

Min Z =
l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk.([cp

ijkL, cp
ijkR] xp

ijk) (217)

subject to
n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ [ap
iL, ap

iR], i = 1, 2, ...,m; p = 1, 2, ...l, (218)

m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ [bp
jL, bp

jR], j = 1, 2, ..., n; p = 1, 2, ..., l,(219)
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l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ [ekL, ekR], k = 1, 2, ...,K, (220)

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p. (221)

Deterministic Form: We first obtain deterministic forms of the uncertain con-
straints using the idea of possibility degree of interval number (Zhang et al.
[161]) representing certain degree by which one interval is larger or smaller than
another. Now we denote the left hand side expressions of the source, destina-
tion and conveyance capacity constraints, i.e. (218), (219) and (220) respectively
of the model (217)–(221) by Sp

i , Dp
j and Ek respectively. Here the right hand

sides of these constraints are interval numbers and left sides are crisp, then the
possibility degree of satisfaction of these constraints are defined as

PSp
i ≤[ap

iL,ap
iR] =

⎧

⎪

⎨

⎪

⎩

1, Sp
i ≤ ap

iL;
ap
iR−Sp

i

ap
iR−ap

iL
, ap

iL < Sp
i ≤ ap

iR;
0, Sp

i > ap
iR.

PDp
j ≥[bpjL,bpjR] =

⎧

⎪

⎨

⎪

⎩

0, Dp
j < bp

jL;
Dp

j −bpjL
bpjR−bpjL

, bp
jL ≤ Dp

j < bp
jR;

1, Dp
j > bp

jR.

PEk≤[ekL,ekR] =

⎧

⎨

⎩

1, Ek ≤ ekL;
ekR−Ek

ekR−ekL
, ekL < Ek ≤ ekR;

0, Ek > ekR.

Now if the constraints are allowed to be satisfied with some predetermined
possibility degree level αp

i , βp
j and γk (0 ≤ αp

i , β
p
j , γk ≤ 1) respectively, i.e.

PSp
i ≤[ap

iL,ap
iR] ≥ αp

i , PDp
j ≥[bpjL,bpjR] ≥ βp

j and PEk≤[ekL,ekR] ≥ γk ∀ i, j, k, p, then the
equivalent deterministic inequalities of the respective constraints are obtained
as follows:

Sp
i ≤ ap

iR − αp
i (a

p
iR − ap

iL), i = 1, 2, ...,m; p = 1, 2, ..., l, (222)
Dp

j ≥ bp
jL + βp

j (bp
jR − bp

jL), j = 1, 2, ..., n; p = 1, 2, ..., l, (223)
Ek ≤ ekR − γk(ekR − ekL), k = 1, 2, ...,K. (224)

Now to deal with objective function we find minimum possible objective function
value (say Z) and maximum possible objective function value (say Z) for the
interval costs [cp

ijkL, cp
ijkR], by solving the following two problems:

Z = MincpijkL≤cpijk≤cpijkR
[Min

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk(cp

ijk xp
ijk)] (225)

Z = MaxcpijkL≤cpijk≤cpijkR
[Min

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk(cp

ijk xp
ijk)] (226)
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subject to the above constraints (4.99)–(4.101) for both cases.
So we get the range of the optimal value of the objective function of the

problem (217)–(221) as [Z,Z]. Assume that the solution of the problem (225) is
x′ = {xp′

ijk} with corresponding costs c′ = {cp′
ijk} and the solution of the problem

(226) is x′′ = {xp′′
ijk} with corresponding costs c′′ = {cp′′

ijk}, ∀ i, j, k, p.
Now we find compromise optimal solution by treating above problems (225)

and (226) together as bi-objective problem and applying fuzzy linear program-
ming (Zimmermann [159]) as follows:

Let us denote
Z1 =

∑l
p=1

∑m
i=1

∑n
j=1

∑K
k=1 dp

ijk(cp′
ijk xp

ijk) and

Z2 =
∑l

p=1

∑m
i=1

∑n
j=1

∑K
k=1 dp

ijk(cp′′
ijk xp

ijk), so that Z1(x
p′
ijk) = Z and

Z2(x
p′′
ijk) = Z.

Now we find lower and upper bound for both the objective as L1 = Z1(x
p′
ijk),

U1 = Z1(x
p′′
ijk) and L2 = Z2(x

p′′
ijk), U2 = Z2(x

p′
ijk) respectively.

Then construct the following two membership function for the objective func-
tions respectively as

μ1(Z1) =

⎧

⎨

⎩

1, if Z1 ≤ L1;
U1−Z1
U1−L1

, if L1 < Z1 < U1;
0, if Z1 ≥ U1.

and μ2(Z2) =

⎧

⎨

⎩

1, if Z2 ≤ L2;
U2−Z2
U2−L2

, if L2 < Z2 < U2;
0, if Z2 ≥ U2.

Finally solve the following problem

Max λ

subject to μ1(Z1) ≥ λ, μ2(Z2) ≥ λ (227)

and the constraints (222)−(224)

0 ≤ λ ≤ 1.

Solving this we get the optimal solution, say xp∗
ijk, ∀ i, j, k, p which minimizes

both the objectives Z1, Z2 with certain degree λ = λ∗ (say) and values of the
objectives Z1, Z2 at xp∗

ijk give the range of the objective value, say [Z∗, Z
∗
].

Numerical Experiment: Consider the Model 4.3 ((183)–(187)) with 3 (p =
1, 2, 3) items, 4 (k = 1, 2, 3, 4) conveyances, sources i = 1, 2 and destinations
j = 1, 2, 3. Also I1 = {1, 2}, I2 = {1, 2, 3}, I3 = {3}, I4 = {1, 2}.

The transportation costs are given in the Tables 12, 13 and 14.
The supplies, demands and conveyance capacities are as follows:

a1
1 = (21, 24, 25; 0.5, 0.5), a1

2 = (26, 28, 30; 0.6, 0.8), b11 = (10, 12, 14; 0.7, 0.9), b12 =
(12, 13, 15; 0.4, 0.7), b13 = (9, 12, 15; 0.4, 0.6),
a2
1 = (26, 28, 31; 0.5, 1), a2

2 = (20, 24, 26; 0.6, 0.8), b21 = (14, 16, 17; 0.4, 0.6), b22 =
(11, 13, 15; 0.8, 0.5), b23 = (10, 11, 12; 0.5, 0.5),
a3
1 = (24, 26, 28; 0.6, 0.9), a3

2 = (32, 35, 37; 0.8, 0.5), b31 = (16, 18, 20; 0.4, 0.6), b32 =
(12, 14, 16; 0.6, 1), b33 = (12, 15, 17; 0.5, 0.5),
e1 = (34, 36, 38; 0.5, 1), e2 = (46, 49, 51; 0.6, 0.8), e3 = (28, 30, 32; 0.7, 0.9), e4 =
(40, 43, 44; 0.5, 0.5).
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Table 12. Costs ˜c1ijk

i\j 1 2 3 k

1 (3,5,6;0.6,0.8) (4,6,7;0.5,0.5) (3,5,8;0.4,0.7) 1

2 (4,5,7;0.7,0.9) (5,7,8;0.7,0.9) (5,7,8;0.6,1)

1 (4,5,7;0.6,0.9) (3,5,6;0.5,0.5) (4,6,8;0.8,1) 2

2 (6,8,9;0.4,0.6) (4,6,8;0.5,0.7) (5,7,8;0.7,0.8)

1 (5,6,8;0.6,0.8) (5,6,7;0.5,0.7) (6,8,9;0.8,0.7) 4

2 (5,6,8;0.5,0.9) (7,8,9;0.8,0.6) (6,8,10;0.4,0.8)

Table 13. Costs ˜c2ijk

i\j 1 2 3 k

1 (5,7,9;0.5,0.6) (4,6,8;0.4,0.8) (6,8,10;0.5,0.5) 1

2 (6,7,8;0.8,0.6) (7,9,10;0.5,0.8) (4,5,7;0.6,0.9)

1 (6,8,10;0.8,0.9) (3,4,6;0.6,0.8) (7,8,9;0.5,0.8) 2

2 (7,9,10;0.5,1) (6,7,9;0.4,0.8) (5,7,8;0.8,0.6)

1 (4,6,8;0.5,0.5) (7,9,10;0.7,0.9) (5,7,8;0.6,0.7) 4

2 (6,8,9;1,0.6) (4,5,7;0.8,0.6) (6,7,9;0.7,0.9)

Table 14. Costs ˜c3ijk

i\j 1 2 3 k

1 (10,11,13;0.7,0.9) (8,10,11;0.5,0.5) (6,8,9;0.4,0.6) 2

2 (9,11,14;0.8,0.6) (12,13,15;0.5,1) (7,9,11;0.6,0.9)

1 (12,14,15;0.4,0.7) (7,9,11;0.5,0.1) (8,10,12;0.8,0.9) 4

2 (6,8,9;0.6,0.8) (13,14,16;0.8,0.5) (7,10,12;0.9,0.6)

Solution Using Chance-Constrained Programming (c.f. Sect. 4.7): The
predetermined general credibility levels for objective function and constraints are
taken as α = 0.9, αp

i = 0.9, βp
j = 0.9, γk = 0.9, p = 1, 2, 3, i = 1, 2, j = 1, 2, 3,

k = 1, 2, 3, 4. Then using (209)–(213) the equivalent deterministic form of the
problem becomes

Min

l
∑

p=1

m
∑

i=1

n
∑

j=1

K
∑

k=1

dp
ijk

[ (0.8 + 0.6θp
r,ijk)cp3

ijkxp
ijk + 0.2cp2

ijkxp
ijk

1 + 0.6θp
r,ijk

]

sub.to
n
∑

j=1

K
∑

k=1

dp
ijk xp

ijk ≤ Fap
i
, i = 1, 2, ...,m; p = 1, 2, ...l, (228)
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m
∑

i=1

K
∑

k=1

dp
ijk xp

ijk ≥ Fbpj
, j = 1, 2, ..., n; p = 1, 2, ...l,

l
∑

p=1

m
∑

i=1

n
∑

j=1

dp
ijk xp

ijk ≤ Fek
, k = 1, 2, ...,K,

xp
ijk ≥ 0, dp

ijk =
{

1, if p ∈ Ik;
0, otherwise. ∀ i, j, k, p,

where, Fa1
1

= 21.46, Fa1
2

= 26.29, Fa2
1

= 26.30, Fa2
2

= 20.58, Fa3
1

= 24.29,
Fa3

2
= 32.40, Fb11

= 13.74, Fb12
= 14.71, Fb13

= 14.55, Fb21
= 16.85, Fb22

= 14.69,
Fb23

= 11.84, Fb31
= 19.70, Fb32

= 15.75, Fb33
= 16.69, Fe1 = 34.30, Fe2 = 46.44,

Fe3 = 28.28, Fe4 = 40.46.
Solving this problem using LINGO solver, based upon Generalized Reduced

Gradient (GRG) algorithm, we get the optimum solution as follows:
x1
111 = 6.75, x1

211 = 6.99, x1
231 = 5.07, x1

232 = 9.48,x1
124 = 14.71, x2

211 = 3.65,
x2
231 =11.84, x2

122 = 13.1,x2
114 = 13.2, x2

224 = 1.59, x3
122 = 7.17, x3

132 = 8.54,
x3
232 = 8.15, x3

123 = 8.58, x3
213 = 19.7 and minimum transportation cost (objec-

tive value)= 1093.482.

Solution Using Nearest Interval Approximation (c.f. Sect. 4.7): The
nearest interval approximations (credibilistic) of the given triangular type-2
fuzzy parameters are calculated using the formula (145) and (146).

Table 15. Costs ˜c1ijk

i\j 1 2 3 k

1 [3.9904,5.5047] [5.0,6.50] [3.9841,6.5238] 1

2 [4.4955,6.0089] [6.0109,7.4945] [4.9820,7.0179]

1 [4.4930,6.0138] [4.0,5.50] [4.9915,7.0084] 2

2 [6.9890,8.5054] [4.9897,7.0102] [5.9953,7.5023]

1 [5.4952,7.0095] [5.4948,6.5051] [7.0095,8.4952] 4

2 [5.4904,7.0191] [7.5047,8.4952] [6.9795,9.0204]

The corresponding unit transportation costs as obtained are presented in
Tables 15, 16 and 17 and supplies, demands, capacities are as follows:
a1
1 = [22.50, 24.50], a1

2 = [26.9904, 29.0095], b11 = [10.9910, 13.0089],
b12 = [12.4920, 14.0158], b13 = [10.4835, 13.5164],
a2
1 = [26.9767, 29.5348], a2

2 = [21.9809, 25.0095], b21 = [14.9890, 16.5054], b22 =
[12.0148, 13.9851], b23 = [10.50, 11.50],
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Table 16. Costs ˜c2ijk

i\j 1 2 3 k

1 [5.9947,8.0052] [4.9795,7.0204] [7.0,9.0] 1

2 [6.5047,7.4952] [7.9851,9.5074] [4.4930,6.0138]

1 [6.9956,9.0043] [3.4952,5.0095] [7.4925,8.5074] 2

2 [7.9767,9.5116] [6.4897,8.0204] [6.0095,7.4952]

1 [5.0,7.0] [7.9910,9.5044] [5.9950,7.5024] 4

2 [7.0179,8.4910] [4.5047,5.9904] [6.4955,8.0089]

Table 17. Costs ˜c3ijk

i\j 1 2 3 k

1 [10.4955,12.0089] [9.0,10.50] [6.9890,8.5054] 2

2 [10.0095,12.4856] [12.4833,14.0232] [7.9861,10.0138]

1 [12.9841,14.5079] [7.9767,10.0232] [8.9956,11.0043] 4

2 [6.9904,8.5047] [13.5074,14.9851] [8.5208,10.9861]

a3
1 = [24.9861, 27.0138], a3

2 = [33.5222, 35.9851], b31 = [16.9890, 19.0109], b32 =
[12.9820, 15.0179], b33 = [13.50, 16.0],
e1 = [34.9767, 37.0232], e2 = [47.4856, 50.0095], e3 = [28.9910, 31.0089], e4 =
[41.50, 43.50].

Consider that the possibility degree of satisfaction of each of the source, des-
tination and conveyance capacity constraints with interval right hand sides is
0.9. Then the equivalent deterministic forms of all the constraints are obtained
using (222)–(224). Now subject to these deterministic constraints we find min-
imum and maximum possible value of the objective function by solving (225)
and (226) and corresponding optimal solutions are obtained as follows:
Z = 725.9498; x1

131 = 13.2131, x1
211 = 10.5682, x1

112 = 2.2388, x1
122 = 7.2480,

x1
222 = 6.6154, x2

231 = 11.4, x2
122 = 10.8787, x2

114 = 16.3537, x2
224 = 2.9093,

x3
122 = 4.4302, x3

132 = 10.3745, x3
232 = 5.3754, x3

123 = 10.3840, x3
213 = 18.8087

and Z = 950.1511; x1
111 = 8.8365, x1

211 = 3.9705, x1
231 = 10.6858, x1

122 = 13.8634,
x1
232 = 2.5272, x2

211 = 0.2883, x2
231 = 11.4, x2

122 = 11.1671, x2
114 = 16.0654,

x2
224 = 2.6209, x3

122 = 4.4302, x3
132 = 10.3745, x3

232 = 5.3754, x3
123 = 10.3840,

x3
111 = 18.8087.

We now apply fuzzy linear programming to obtain an unique optimum allo-
cation. We get L1 = 725.9498, U1 = 741.4106, L2 = 950.1511, U2 = 956.9979
and hence compromise optimal solution as
x1
111 = 0.2095, x1

131 = 8.6270, x1
211 = 12.5975, x1

231 = 2.3472, x1
122 = 13.8634,

x1
232 = 2.2388, x2

231 = 11.4, x2
122 = 10.8787, x2

114 = 16.3537, x2
224 = 2.9093,

x3
122 = 4.4302, x3

132 = 10.3745, x3
232 = 5.3754, x3

123 = 10.3840, x3
213 = 18.8087,

λ = 0.987, Z∗ = 726.1475, Z
∗

= 950.2386.
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4.8 Overall Conclusion

In this section, a defuzzification method of general type-2 fuzzy variable is out-
lined and compared numerically with geometric defuzzification method. A near-
est interval approximation for continuous T2 FV is also introduced. Interval
approximation method has been illustrated with type-2 triangular fuzzy vari-
able. For the first time, two FCTPs and a MISTP with type-2 fuzzy parameters
have been formulated and solved. Chance-constrained programming problems for
a FCTP and MISTP with type-2 triangular fuzzy variables are formulated and
solved. The MISTP with type-2 triangular fuzzy parameters is also solved using
interval approximations of type-2 triangular fuzzy variables. Now-a-days, the vol-
ume and complexity of the collected data in various fields is growing rapidly. In
order to describe and extract the useful information hidden in uncertain data and
to use this data properly in practical problems, many researchers have proposed
a number of improved theories including type-2 fuzzy set. The methodologies
used in this chapter are quite general and these can be applied to the decision
making problems in different areas with type-2 fuzzy parameters. The presented
models can be extended to different types of transportation problems including
price discounts, transportation time constraints, breakable/deteriorating items,
etc.

5 Transportation Mode Selection Problem with
Linguistic Terms

5.1 Introduction

Solid transportation problem (STP) is a problem of transporting goods from
some sources to some destinations through several types of conveyances (modes
of transportation) and the objective may be minimization of cost, time, maxi-
mization of profit, etc. But cost or time may not be the only criteria for select-
ing modes. There may be several other criteria for which all modes may not be
equally preferable in a transportation system. Generally the available modes of
transportation are rail, road, water, air, pipeline etc. Choice of modes depends
upon several parameters (criteria) such as transportation cost, time, distance,
product characteristics (e.g. weight, volume, value, life cycle etc.), flexibility,
safety factor, inventory cost, etc. The main difficulty to select best mode is the
conflicting nature of the modes under different criteria, i.e., under certain crite-
ria, a mode may be superior than another but may not be under another criteria.
Also all the criteria related to a transportation system may not have equal pri-
ority. For example generally faster modes are preferable than slower modes for
time saving, but for product having low value to weight ratio, slower modes are
preferable for transportation cost saving and in this case time has less priority
than transportation cost. The product having short life cycle need rapid trans-
portation modes, because here the main priority is time saving. So the tusk is to
select overall best transportation mode with respect to all the selection criteria in
a transportation system. Obviously multi-criteria (/attribute) decision making
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(MCDM/MADM), which is a procedure to determine best alternative among
some feasible alternatives, can be an efficient method to solve transportation
mode selection problem. In literature there are several articles available related
to transportation mode selection problem (Kiesmüller et al. [65], Kumru and
Kumru [71], Monahan and Berger [113], Tuzkaya and Önüt [134], Eskigun et al.
[41], Wang and Lee [138]).

Multi-criteria (/attribute) decision making (MCDM/MADM) (Anand et al.
[7], Baleentis and Zeng [10], Chen and Lee [23,24], Chen et al. [26], Dalalah et al.
[32], Ding and Liang [37], Fu [45], Wang and Lee [139], Wang and Parkan [32],
Wu and Chen [148]), is a method to select most convenient alternative among
some available alternatives with respect to some evaluation criteria provided by
decision maker(s) for a particular problem. This type of problems are often called
multi-criteria(/attribute) group decision making (MCGDM/MAGDM) problem
in presence of several decision makers. The evaluation ratings of the alternatives
with respect to the criteria and criteria weights as provided by the decision
makers are generally linguistic terms (e.g., very high, medium, fair, good, etc.).
Human judgements are not always precise and also a word does not have the
same meaning to different people and is therefore uncertain. Zadeh [157,158]
first used a fuzzy set (Zadey [156]) to model a word. Many researchers (Anand
et al. [7], Cheng and Lin [28], Dalalah et al. [32], Ding and Liang [37], Dursun
et al. [39], Hatami-Marbini and Tavana [55], Tuzkaya and Önüt [134], Wang
and Lee [139], Wang and Parkan [142]) developed MCDM problems where type-
1 fuzzy sets(/numbers) are used to describe linguistic uncertainties rather than
just single numeric value. Then the problem is called fuzzy multi-criteria decision
making (FMCDM) problem in which evaluation ratings and criteria weights are
fuzzy numbers.

Fuzzy analytical hierarchy process (FAHP) (Anand et al. [7], Chan, N. Kumar
[16], Mikhailov and Tsvetinov [111]), Fuzzy analytical network process (FANP)
(Ertay et al. [40], Mikhailov and Sing [110], Tuzkaya and Önüt [134]), fuzzy
preference relation based decision making (Lee [78], Wang [137]), fuzzy TOPSIS
method (Chen [20], Wang and Elhag [141], Wang et al. [140], Wang and Lee
[139]) are some available methods for solving FMCDM problems. The main
drawback of the FAHP and FANP methods is that these methods consist of
large number of fuzzy pair-wise comparison which makes the methods difficult for
computation. Lee’s (Lee [78]) method using extended fuzzy preference relation is
computationally efficient, but in case of two alternatives, whatever the ratings of
the two alternatives are, this method always gives total performance index of one
alternative as 1 and that of another 0. So it is difficult to compare the alternatives
with each other in the sense how much one is preferable than another and to use
the performance indices in any further requirements. In fuzzy TOPSIS method
of Wang and Elhag [141], for each member of fuzzy decision matrix, different
α-level sets are to be evaluated and for each different α-levels, two NLP models
are to be solved. So to find accurate result, large number of α-levels are to be
set and then corresponding time complexity becomes high. Fuzzy TOPSIS of
Wang et al. [140] is less complex, but the positive and negative ideal solutions
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as derived by Max and Min operations under fuzzy environment may not be
founded on feasible alternatives.

Ranking of fuzzy number is an important issue in group decision making, spe-
cially for decision making with linguistic terms, which are generally represented
by fuzzy numbers. There are several methods of fuzzy ranking (Abbasbandy
and Asady [1], Cheng [27], Chu and Tsao [29], Fortems and Roubens [44], Liu
[90], Lee [78], Liou and Wang [100]) available in the literature, each of which
has some advantages and disadvantages. Also many ranking methods are based
on defuzzification (e.g., expected value (Liu [90]), centroid (Wang et al. [143]),
magnitude (Abbasbandy and Hajjari [2]) of fuzzy number) in which, from fuzzy
numbers corresponding crisp quantities are obtained using some utility func-
tions and fuzzy numbers are ranked according to these crisp values. Drawback
of defuzzification is that it tends to loss some information and thus is unable to
grasp the sense of uncertainty. For example, expected value (Liu and Liu [90]) of
a trapezoidal fuzzy number (r1, r2, r3, r4) is just the average (r1+r2+r3+r4)/4,
though each ri does not have the same membership (/possibility) degree. Some
of the techniques (Abbasbandy and Asady [1], Chen [19]; Liou and Wang [100])
are case dependent and produce different results in different cases for certain
fuzzy numbers. Also some methods are found to be logically incorrect. For exam-
ple, Asady and Zendehnam’s [8] distance minimization method and Chen’s [19]
method are seemed to be logically incorrect as shown by Abbasbandy and Hajjari
[2] and Liou and Wang [100] respectively.

Mendel [102] explained using Popper’s Falsificationism that modeling word
using type-1 fuzzy set is not scientifically correct. Mendel [102,103] also explained
that a sensible way to model a word is to using interval type-2 fuzzy set (IT2 FS).
There are some methodologies, such as the interval approach (Liu and Mendel
[95], the person membership function approach (Mendel [104]) and the interval
end-points approach (Mendel and Wu [108]) available to obtain mathematical
models for IT2 FS for words. Chen and Lee [23,24] developed fuzzy multiple
attributes group decision-making methods (FMAGDM) based on ranking IT2
FSs and interval type-2 TOPSIS method respectively where linguistic weights
are represented by IT2 FSs. Chen et al. [26], Chen and Wang [25] developed
FMAGDM method based on ranking IT2 FSs.

In this section, a new ranking method of fuzzy numbers is developed using a
ranking function which we define using credibility measure. This ranking func-
tion is bounded over [0,1] so that it is easy to compare two fuzzy numbers with
each other. We also provide a method of ranking interval type-2 fuzzy variables
(IT2 FVs) using a ranking function which we define with the help of general-
ized credibility measure. Then we propose two computationally efficient fuzzy
MCGDM (FMCGDM) methods, first one based on proposed ranking method
of fuzzy numbers and the second one based on the proposed ranking method of
IT2 FVs. We discuss how to assign weights of modes if a decision maker wish, to
a STP in addition to the main criteria. The proposed FMCGDM methods are
applied to two transportation mode selection problems where evaluation ratings
and criteria weights are expressed by linguistic terms.
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5.2 Theoretical Developments

In the following Subsects. 5.4 and 5.6 we have developed two fuzzy multi-criteria
group decision making process, first one based on ranking fuzzy numbers and
second one based on ranking interval type-2 fuzzy variables. For the construction
of the methods we need some results which are given below.

Theorem 5.1: For any two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4) and
B̃ = (b1, b2, b3, b4), Cr{Ã ≤ B̃} ≥ α if and only if

(1− 2α)(a1 − b4) + 2α(a2 − b3) ≤ 0 for α ≤ 0.5

2(1− α)(a3 − b2) + (2α− 1)(a4 − b1) ≤ 0 for α > 0.5.

Proof: Cr{Ã ≤ B̃} ≥ α ⇔ Cr{(Ã − B̃) ≤ 0} ≥ α ⇔ Cr{(Ã + B̃′) ≤ 0} ≥ α,
where B̃′ = −B̃ = (−b4,−b3,−b2,−b1).

Then the theorem follows from Theorem 3.3 (Sect. 3).

Corollary 5.1. For any two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4) and
B̃ = (b1, b2, b3, b4), Cr{Ã ≥ B̃} ≥ α if and only if

(1− 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for α ≤ 0.5

2(1− α)(a2 − b3) + (2α− 1)(a1 − b4) ≥ 0 for α > 0.5.

Theorem 5.2: For any two triangular fuzzy numbers Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), Cr{Ã ≤ B̃} ≥ α if and only if

(1− 2α)(a1 − b3) + 2α(a2 − b2) ≤ 0 for α ≤ 0.5

2(1− α)(a2 − b2) + (2α− 1)(a3 − b1) ≤ 0 for α > 0.5.

Corollary 5.2. For any two triangular fuzzy numbers Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), Cr{Ã ≥ B̃} ≥ α if and only if

(1− 2α)(a3 − b1) + 2α(a2 − b2) ≥ 0 for α ≤ 0.5

2(1− α)(a2 − b2) + (2α− 1)(a1 − b3) ≥ 0 for α > 0.5.

5.3 A New Approach for Ranking of Fuzzy Numbers

To rank fuzzy numbers Ã and B̃, we propose to find the possible credibility
degree to which Ã ≥ B̃ or Ã ≤ B̃. For this purpose we find the maximum
satisfied credibility degree that Ã ≥ B̃ or maximum satisfied credibility degree
that Ã ≤ B̃, i.e.

Maxα∈[0,1][Cr{Ã ≥ B̃} = α] (229)

or, Maxα∈[0,1][Cr{Ã ≤ B̃} = α]. (230)

We denote (229) by Mα(Ã ≥ B̃) and (230) by Mα(Ã ≤ B̃).
Suppose for two fuzzy numbers Ã and B̃, Mα(Ã ≥ B̃) = α′, then we say that
Ã ≥ B̃ with credibility α′.
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Example 5.1. Suppose Ã and B̃ be two trapezoidal fuzzy numbers defined by
Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4). Then from Corollary 5.1 it follows
that Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] is obtained by solving

Max α

(1− 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for 0 ≤ α ≤ 0.5 (231)
2(1− α)(a2 − b3) + (2α− 1)(a1 − b4) ≥ 0 for 0.5 < α ≤ 1

0 ≤ α ≤ 1.

As our object is to find maximum possible credibility degree α, an easy way of
solving (231) is that first solve Max α with respect to the second constraint, if
such α (0.5 < α ≤ 1) exist then this is the required solution and if it does not
exist then solve Max α with respect to the first constraint.

If we consider Ã = (4, 6, 7, 9) and B̃ = (2, 3, 5, 7), then
Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] = 0.625.

Example 5.2. Suppose Ã and B̃ be two triangular fuzzy numbers defined by
Ã = (a1, a2, a3) and B̃ = (b1, b2, b3). Then from Corollary 5.2 it follows that
Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] is obtained by solving

Max α

(1− 2α)(a3 − b1) + 2α(a2 − b2) ≥ 0 for 0 ≤ α ≤ 0.5 (232)
2(1− α)(a2 − b2) + (2α− 1)(a1 − b3) ≥ 0 for 0.5 < α ≤ 1

0 ≤ α ≤ 1.

For example if Ã = (2, 4, 6) and B̃ = (3, 5, 6) then
Mα(Ã ≥ B̃)=Maxα∈[0,1][Cr{Ã ≥ B̃} = α] = 0.375.

Ranking Function: We define ranking function R to rank one fuzzy number
Ã upon another fuzzy number B̃ as follows:

R(Ã, B̃) =
{

Mα(Ã ≥ B̃), if it exist;
0, otherwise.

(233)

Obviously

R(B̃, Ã) =
{

Mα(Ã ≤ B̃), if it exist;
0, otherwise.

(234)

It follows from the definition of R(Ã, B̃) and self-duality property of the credibil-
ity measure that R is reciprocal, i.e., R(Ã, B̃) = 1−R(B̃, Ã). Also from (231) and
(232) it is clear that R is transitive for trapezoidal or triangular fuzzy numbers,
i.e. R(Ã, B̃) ≥ 1/2 and R(B̃, C̃) ≥ 1/2 ⇒ R(Ã, C̃) ≥ 1/2 for any trapezoidal
or triangular fuzzy numbers Ã, B̃, C̃. So R is total ordering and satisfies all
the criteria proposed by Yuan [154]. For any two fuzzy numbers Ã and B̃, the
ranking of Ã, B̃ is done as follows:
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Table 18. Comparative results of Example 5.3

Methods Evaluation Set 1 Set 2 Set 3

Proposed method R(Ã, B̃) 0.625 0.545 0.5

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Expected value (Liu [90]) E(Ã) 6.5 3.5 4.25

E(B̃) 4.25 3.4 4.25

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Sign distance for p = 1 dp(Ã, 0) 13 7 8.5

(Abbasbandy and Asady [1]) dp(B̃, 0) 8.5 6.8 8.5

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Sign distance for p = 2 dp(Ã, 0) 9.469 4.9665 6.298

(Abbasbandy and Asady [1]) dp(B̃, 0) 6.531 4.9625 6.531

Order relation Ã � B̃ Ã � B̃ Ã ≺ B̃

Lee [78] μF (Ã, B̃) 4.5 0.2 0

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Liou and Wang [100] (α = 1/2) Iα
T (Ã) 6.5 3.5 4.25

Iα
T (B̃) 4.25 3.4 4.25

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Fortems and Roubens [44] C(Ã ≥ B̃) 2.25 0.1 0

Order relation Ã � B̃ Ã � B̃ Ã ∼ B̃

Cheng distance (Cheng [27]) R(Ã) 6.519 3.535 4.231

R(B̃) 4.314 3.467 4.313

Order relation Ã � B̃ Ã � B̃ Ã ≺ B̃

Chu and Tsao [29] R(Ã) 3.25 1.75 2.141

R(B̃) 2.101 1.699 2.101

Order relation Ã � B̃ Ã � B̃ Ã � B̃

Abbasbandy and Hajjari [2] Mag(Ã) 6.5 3.5 4.416

Mag(B̃) 4.08 2.73 4.083

Order relation Ã � B̃ Ã � B̃ Ã � B̃

(i) Ã ! B̃ iff R(Ã, B̃) > 1/2.
(ii) Ã ≺ B̃ iff R(Ã, B̃) < 1/2.
(iii) But if R(Ã, B̃) = 1/2, then it is difficult to determine which is larger and

which is smaller. In this case we may conclude Ã ∼ B̃.

Example 5.3. Consider the following sets.
Set 1: Ã = (4, 6, 7, 9), B̃ = (2, 3, 5, 7);
Set 2: Ã = (3, 3.5, 4), B̃ = (2, 3.3, 5)
Set 3: Ã = (2, 4, 5, 6), B̃ = (2, 3, 5, 7)
A comparative results of our proposed method and several other methods are
presented in Table 18.
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Remark: From the Table 18 we observe that when value of R(Ã, B̃) (i.e. the
credibility that Ã ≥ B̃) in our proposed method is far from 0.5 (larger or smaller
than 0.5), then all the methods give the same result. For example for Set 1,
R(Ã, B̃) = 0.625 and all methods give the same result that Ã ! B̃. But as
the credibility becomes close to 0.5, all methods do not give the same result.
For example for the Set 3, results of our proposed method, Expected value (Liu
[90]), Sign distance for p = 1 (Abbasbandy and Asady [1]), Lee’s [78], Liou and
Wang’s [100], Fortems and Roubens’s [44] methods are Ã ∼ B̃, but Sign distance
for p = 2 (Abbasbandy and Asady [1]), Cheng distance (Cheng [27]) methods
give Ã ≺ B̃ and Chu and Tsao’s [29], Abbasbandy and Hajjari’s [2] methods
furnish Ã ! B̃.

5.4 The Proposed FMCGDM Method Based on Ranking Fuzzy
Numbers

Suppose A1, A2, ..., Am are m alternatives and these alternatives are evaluated
on basis of the criteria C1, C2, ..., Cn by the decision makers Dl, l = 1, 2, ..., p.
Suppose rating of Ai based on criteria Cj according to the decision maker Dl is
Ãl

ij which is represented by fuzzy number, where i = 1, 2, ...,m, j = 1, 2, ..., n

and l = 1, 2, ..., p. Let w̃l
j be the fuzzy weight of the criteria Cj indicating its

importance given by the decision maker Dl for all j and l. The proposed fuzzy
MCGDM method to rank the alternatives is as follows:

Step-1: Construct the decision matrix D̃ = [Ãij ]m×n where each Ãij is the
average of the ratings of alternative Ai given by the decision makers Dl, l =
1, 2, ..., p based on criteria Cj , i.e.,

C1 C2 .... Cn

D̃ =

A1

A2

...
Am

⎡

⎢

⎢

⎢

⎣

Ã11 Ã12 ... Ã1n

Ã21 Ã22 ... Ã2n

...
...

...
...

Ãm1 Ãm2 ... Ãmn

⎤

⎥

⎥

⎥

⎦

,

where

Ãij =
Ã1

ij ⊕ Ã2
ij ⊕ ...⊕ Ãp

ij

p
. (235)

Calculate the average weights wj of the each criteria Cj by averaging their
weights given by the decision makers Dl, l = 1, 2, ..., p, i.e.

w̃j = (w̃1
j ⊕ w̃2

j ⊕ ....⊕ w̃p
j )/p. (236)
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Step-2: Normalize the decision matrix D̃. Suppose D̃′ = [Ã′
ij ]m×n be the nor-

malized decision matrix (normalizing process is shown in the end of this method).

Step-3: Derive the relative preference (/performance) matrix P = [rij ]m×n,
where

rij =
∑

k �=i

R(Ã′
ij , Ã

′
kj), (237)

R is the ranking function as defined in (233). rij is called the relative preference
index of the alternative Ai with respective to all the remaining alternatives for
the criteria Cj .
Step-4: Calculate the fuzzy weighted relative preference of the each alternative
by

A∗
i =

n
∑

j=1

rij ⊗ w̃j , i = 1, 2, ...,m. (238)

Step-5: Find the total preference index of each alternative by

ri =
∑

k �=i

R(Ã∗
i , Ã

∗
k), i = 1, 2, ...,m. (239)

Step-6: Normalize the preference indices ri to obtain preference weights of the
alternatives that sum to 1 by

wP
i =

ri
∑m

j rj
, i = 1, 2, ..,m. (240)

Step-7: Rank alternatives according to their weights wP
i , i = 1, 2, ...,m.

The process of normalization of D̃ = [Ãij ]m×n is shown below in case when Ãij

are triangular fuzzy numbers:
Suppose each Ãij is a triangular fuzzy number defined by Ãij = (aL

ij , a
M
ij , aU

ij),
then

Ã′
ij =

(aL
ij

a∗
j

,
aM

ij

a∗
j

,
aU

ij

a∗
j

)

, where a∗
j = max

i
{aU

ij},

where j is the benefit criteria or the ratings are given in favor of the criteria (i.e.
in positive sense).

But if j is a cost criteria and Ãij is given as amount of cost but not as rating,
then normalization is done as follows:

Ã′
ij =

( a∗
j

aU
ij

,
a∗

j

aM
ij

,
a∗

j

aL
ij

)

, where a∗
j = min

i
{aL

ij}.

The flow-chart of the above method is presented in Fig. 17.
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Step 1
Construct the decision matrix

Step 2
Normalize the decision matrix

Step 3
Derive the relative preference (/performance) matrixusing the ranking function

Step 4
Calculate the fuzzy weighted relative preference of the each alternative

Step 5
Calculate the total preference index of the each alternative

Step 6
Normalize the preference indicesto obtainpreference weights of the alternatives

Step 7
Rank alternatives according to their preference weights

Fig. 17. Flow-chart of the proposed FMCGDM method

5.5 A Method of Ranking Trapezoidal Interval Type-2 Fuzzy
Variables

Some Results on Generalized Trapezoidal Fuzzy Variables: In Sect. 2, we
already mentioned that if a fuzzy variable is not normal, i.e. for generalized fuzzy
variable, generalized credibility measure C̃r has to be used instead of the usual
credibility measure. For a generalized trapezoidal fuzzy variable ξ̃ = (a, b, c, d; w),
C̃r{ξ̃ ≤ x} is obtained as follows:

C̃r{ξ̃ ≤ x} =
1
2
(w + sup

r≤x
μξ̃(x)− sup

r>x
μξ̃(x))

=
1
2
{w + 0− w} = 0, if x ≤ a

=
1
2
{w +

w(x− a)
b− a

− w} =
w(x− a)
2(b− a)

, if a ≤ x ≤ b

=
1
2
{w + w − w} =

w

2
, if b ≤ x ≤ c

=
1
2
{w + w − w(d− x)

d− c
} =

w(x + d− 2c)
2(d− c)

, if c ≤ x ≤ d

=
1
2
{w + w − 0} = w, if x ≥ d,
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i.e.,

C̃r{ξ̃ ≤ x} =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0, if x ≤ a;
w(x−a)
2(b−a) , if a ≤ x ≤ b;
w
2 , if b ≤ x ≤ c;
w(x+d−2c)

2(d−c) , if c ≤ x ≤ d;
w, if x ≥ d.

(241)

Theorem 5.3: If ξ̃ = (a, b, c, d;w) is generalized trapezoidal fuzzy variable and
0 < α ≤ 1, then Cr{ξ̃ ≤ x} ≥ α is equivalent to

(i)
1
w

((w − 2α)a + 2αb) ≤ x, if α ≤ w

2
,

(ii)
1
w

(2(w − α)c + (2α− w)d) ≤ x, if α >
w

2
.

Proof: It is clear from 241 that if α ≤ w
2 , then Cr{ξ̃ ≤ x} ≥ α implies w(x−a)

2(b−a) ≥
α, i.e. 1

w ((w − 2α)a + 2αb) ≤ x and if α > w
2 , then Cr{ξ̃ ≤ x} ≥ α implies

w(x+d−2c)
2(d−c) ≥ α, i.e. 1

w (2(w − α)c + (2α− w)d) ≤ x.

Theorem 5.4: If Ã1 = (a1, a2, a3, a4;w1) and Ã2 = (b1, b2, b3, b4; w2) be two
generalized trapezoidal fuzzy variables and 0 < α ≤ 1, then C̃r{Ã1 ≤ Ã2} ≥ α if

(w − 2α)(a1 − b4) + 2α(a2 − b3) ≤ 0 for α ≤ w/2

2(w − α)(a3 − b2) + (2α− w)(a4 − b1) ≤ 0 for α > w/2,

where w = min(w1, w2).

Proof: −Ã2 = (−b4,−b3,−b2,−b1;w2) and so Ã1− Ã2 = (a1− b4, a2− b3, a3−
b2, a4 − b1;min(w1, w2)). Now Cr{Ã1 ≤ Ã2} ≥ α ⇔ Cr{(Ã1 − Ã2) ≤ 0} ≥ α
and hence the theorem follows from Theorem5.3.

Corollary 5.3: If Ã1 = (a1, a2, a3, a4;w1) and Ã2 = (b1, b2, b3, b4; w2) be two
generalized trapezoidal fuzzy variables and 0 < α ≤ 1, then C̃r{Ã1 ≥ Ã2} ≥ α if

(w − 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for α ≤ w/2

2(w − α)(a2 − b3) + (2α− w)(a1 − b4) ≥ 0 for α > w/2,

where w = min(w1, w2).



Some Transportation Problems Under Uncertain Environments 327

Ranking Function and Relative Preference Index: Here we define a
ranking function which can be used to rank two generalized fuzzy variables,
say Ã1 and Ã2. For this purpose we find the possible credibility (generalized)
degree to which Ã1 ≥ Ã2 or Ã1 ≤ Ã2, i.e. we find the maximum satisfied credibil-
ity degree that Ã1 ≥ Ã2 or maximum satisfied credibility degree that Ã1 ≤ Ã2,
i.e.

Maxα∈[0,w][C̃r{Ã1 ≥ Ã2} = α] (242)

or, Maxα∈[0,w][C̃r{Ã1 ≤ Ã2} = α], (243)

where w is minimum of heights of Ã1 and Ã2, so 0 < w ≤ 1.
We denote (242) by Mα(Ã1 ≥ Ã2) and (242) by Mα(Ã1 ≤ Ã2).

Suppose for two generalized fuzzy numbers Ã1 and Ã2, Mα(Ã1 ≥ Ã2) = α′, then
we say that Ã1 ≥ Ã2 with credibility α′.

Suppose Ã1 = (a1, a2, a3, a4;w1) and Ã2 = (b1, b2, b3, b4; w2) be two gener-
alized trapezoidal fuzzy variables and w = min(w1, w2). Then from Corollary
5.3 it follows that Mα(Ã1 ≥ Ã2)=Maxα∈[0,w][C̃r{Ã1 ≥ Ã2} = α] is obtained by
solving

Max α

s.t. (w − 2α)(a4 − b1) + 2α(a3 − b2) ≥ 0 for 0 ≤ α ≤ w/2 (244)
2(w − α)(a2 − b3) + (2α− w)(a1 − b4) ≥ 0 for w/2 < α ≤ w

0 ≤ α ≤ w.

As the objective is to find maximum possible credibility degree α, so to solve
244, one may first find Max α with respect to the second constraint, if such α
(w/2 < α ≤ w) exist then this is the required solution and if it does not exist
then find Max α satisfying the first constraint.

Example 5.4: As an example consider Ã1 = (5, 7, 8, 9; 1) and Ã2 =
(4, 5, 6, 9; 0.8), then w = 0.8 and solving (5.16) for this example we have
Mα(Ã1 ≥ Ã2)=Maxα∈[0,w][Cr{Ã1 ≥ Ã2} = α] = 0.48.

Ranking Function: We define a ranking function that can be used to rank two
generalized fuzzy variable Ã1 and Ã2 as follows:

R(Ã1 ≥ Ã2) =
{

Mα(Ã1 ≥ Ã2), if it exist;
0, otherwise.

(245)

Obviously

R(Ã1 ≤ Ã2) =
{

Mα(Ã1 ≤ Ã1), if it exist;
0, otherwise.

(246)

It follows from the definition of R(Ã1, Ã2) and self-duality property of the cred-
ibility measure that R(Ã1 ≥ Ã2) = w−R(Ã1 ≤ Ã2). In particular if Ã1 and Ã2

are normalized, i.e. w = 1, then R is reciprocal. Also from (244) it is clear that
R is transitive for generalized trapezoidal fuzzy variables, i.e. R(Ã1, Ã2) ≥ w/2
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and R(Ã2, Ã3) ≥ w/2 ⇒ R(Ã1, Ã3) ≥ w/2 for any trapezoidal fuzzy variables
Ã1, Ã1, Ã1. So R is total ordering and satisfies all the criteria of fuzzy ranking
proposed by Yuan [154]. For any two generalized fuzzy variables Ã1 and Ã2, the
ranking of Ã1, Ã2 is done as follows:

(i) Ã1 ! Ã2 iff R(Ã1 ≥ Ã2) > w/2.
(ii) Ã1 ≺ Ã2 iff R(Ã1 ≥ Ã2) < w/2.
(iii) But if R(Ã1 ≥ Ã2) = w/2, then rank them including their heights, i.e.,

Ã1 ∼ Ã2 also if w1 = w2, Ã1 < Ã2 also if w1 < w2 and Ã1 > Ã2 also if
w1 > w2.

Now to include the three subcases of the equality case R(Ã1 ≥ Ã2) = w/2 and
for any further use of ranking values, we define relative preference index ri of
each Ãi by adding an additional value based on their heights to the ranking
value R(Ãi ≥ Ãj) as follows:

ri = R(Ãi ≥ Ãj) +
wi − w

2
, i �= j, i, j = 1, 2,

w = min(w1, w2). Then the fuzzy variables Ãi are ranked based on relative
preference indices ri.

The Method of Ranking Trapezoidal Interval Type-2 Fuzzy Variables:
Suppose Ãi, i = 1, 2, ..., n are n trapezoidal interval type-2 fuzzy variables, where
Ãi = (ÃU

i , ÃL
i ) = ((aU

i1, a
U
i2, a

U
i3, a

U
i4;w

U
i ), (aL

i1, a
L
i2, a

L
i3, a

L
i4; w

L
i )). Denote wU

M =
mini{wU

i } and wL
M = mini{wL

i }. The proposed procedure of ranking Ãi, i =
1, 2, ..., n is as follows:
First find upper relative preference index rU

i of each Ãi by

rU
i =

∑

k �=i

R(ÃU
i ≥ ÃU

k ) +
wU

i − wU
M

2
, i = 1, 2, ..., n

and lower relative preference index rL
i of each Ãi by

rL
i =

∑

k �=i

R(ÃL
i ≥ ÃL

k ) +
wL

i − wL
M

2
, i = 1, 2, ..., n.

Then the relative preference index ri of each Ãi is calculated by

ri =
rU
i + rL

i

2
, i = 1, 2, ..., n.

Rank Ãi according to the value of ri, i.e. the larger the value of ri, the better
the ranking order of Ãi.

Example 5.5: Consider trapezoidal interval type-2 fuzzy variables
A1 = ((0.4, 0.7, 0.9, 1.2; 1), (0.5, 0.7, 0.9, 1.1; 0.9)),



Some Transportation Problems Under Uncertain Environments 329

A2 = ((0.3, 0.5, 0.6, 0.9; 1), (0.4, 0.55, 0.65, 0.8; 0.9))
and A3 = ((0.6, 0.8, 1.1, 1.4; 1), (0.7, 0.9, 1, 1.2; 0.9)). Then wU

i = 1, wL
i = 0.9, i =

1, 2, 3 and so wU
M = 1 and wL

M = 0.9. Now,

rU
1 = R(ÃU

1 ≥ ÃU
2 ) + R(ÃU

1 ≥ ÃU
3 ) + wU

1 −wU
M

2 = 0.583 + 0.5 + 0 = 1.083,

rL
1 = R(ÃL

1 ≥ ÃL
2 ) + R(ÃL

1 ≥ ÃL
3 ) + wL

1 −wL
M

2 = 0.514 + 0.45 + 0 = 0.964 and so
r1 = 1.023

Similarly we obtain rU
2 = 0.717, rL

2 = 0.515, r2 = 0.616 and rU
3 = 1.2,

rL
3 = 1.221, r3 = 1.2105. Hence A3 ! A1 ! A2.

A Comparison of the Above Ranking Result: We now compare the above
ranking result of the interval type-2 fuzzy variables A1, A2 and A3 with few
existing methods as given in Table 19.

Table 19. Comparative results of Example 5.5

Methods Evaluation A1 A2 A3 Order relation

Chen and Lee [23] Rank(Ai) 0.385 0.2103 0.437 A3 � A1 � A2

Chen et al. [26] RV (Ãi) 1.4 0.9106 1.876 A3 � A1 � A2

Chen and Wang [25] Score(Ãi)

α = 0 0.3495 0.1788 0.5068 A3 � A1 � A2

α = 0.5 0.4021 0.201 0.5784 A3 � A1 � A2

α = 1 0.4546 0.2232 0.6501 A3 � A1 � A2

Proposed method ri 1.023 0.616 1.2105 A3 � A1 � A2

5.6 Proposed Fuzzy MCGDM Based on Ranking Interval Type-2
Fuzzy Variables

Suppose A1, A2, ..., Am are m alternatives and these alternatives are evaluated
on basis of the criteria C1, C2, ..., Cn by the decision makers Dl, l = 1, 2, ..., p.
Suppose rating of Ai based on criteria Cj according to the decision maker Dl

is Ãl
ij which is represented by trapezoidal interval type-2 fuzzy variable, where

i = 1, 2, ...,m, j = 1, 2, ..., n and l = 1, 2, ..., p. Let w̃l
j be the weight of the

criteria Cj indicating its importance given by the decision maker Dl, where w̃l
j

is represented by interval type-2 fuzzy variable for all j and l. The proposed
fuzzy MCGDM method to rank the alternatives is as follows:

Step 1: Construct the decision matrix D̃ = [Ãij ]m×n where each Ãij is the
average of the ratings of alternative Ai given by the decision makers Dl, l =
1, 2, ..., p based on criteria Cj , i.e.,

C1 C2 .... Cn
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D̃ =

A1

A2

...
Am

⎡

⎢

⎢

⎢

⎣

Ã11 Ã12 ... Ã1n

Ã21 Ã22 ... Ã2n

...
...

...
...

Ãm1 Ãm2 ... Ãmn

⎤

⎥

⎥

⎥

⎦

,

where

Ãij =
Ã1

ij ⊕ Ã2
ij ⊕ ...⊕ Ãp

ij

p
. (247)

Suppose each Ãij is represented by Ãij = (ÃU
ij , Ã

L
ij) with heights of ÃU

ij and ÃL
ij

as wU
ij and wL

ij respectively.
Calculate the average weights wj of the each criteria Cj by averaging their

weights given by the decision makers Dl, l = 1, 2, ..., p, i.e.

w̃j = (w̃1
j ⊕ w̃2

j ⊕ ....⊕ w̃p
j )/p. (248)

Step 2: Derive the upper relative preference matrix RPU = [rU
ij ]m×n, where rU

ij

are the upper relative preference indices of alternatives Ai based on criteria Cj ,
i.e.,

rU
ij =

∑

k �=i

R(ÃU
ij ≥ ÃU

kj) +
wU

ij − wU
Mj

2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n (249)

and similarly the lower relative preference matrix RPL = [rL
ij ]m×n, where

rL
ij =

∑

k �=i

R(ÃL
ij ≥ ÃL

kj) +
wL

ij − wL
Mj

2
, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (250)

wU
Mj = mini{wU

ij} and wL
Mj = mini{wL

ij}, wU
ij and wL

ij are the heights of the
upper and lower membership of Ãl

ij respectively.
Finally derive the relative preference matrix RP = [rij ]m×n, where rij =

rU
ij+rL

ij

2 , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Step 3: Calculate the fuzzy weighted relative preference of each alternative by
employing the importance weights of the criteria as follows:

Ã∗
i = r11 · w̃1⊕ r12 · w̃2⊕ ...⊕ r1n · w̃n = ( ˜A∗U

i , Ã∗L
i ) (say), i = 1, 2, ..., n. (251)

Step 4: Find the final upper preference index of each alternative by

rU
i =

∑

k �=i

R( ˜A∗U
i ≥ ˜A∗U

k ) +
wU

i − wU
M

2
, i = 1, 2, ...,m. (252)

and the final lower preference index

rL
i =

∑

k �=i

R(Ã∗L
i ≥ Ã∗L

k ) +
wL

i − wL
M

2
, i = 1, 2, ...,m, (253)
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where wU
i , wL

i are the heights of ˜A∗U
i , Ã∗L

i respectively and wU
M = mini{wU

i },
wL

M = mini{wL
i }. Then final preference index ri of each alternative is obtained

by ri = rU
i +rL

i

2 , i = 1, 2, ...,m.
Now the alternatives Ai can be ranked according to their ranking values ri.

However for better comparison we find preference weights of the alternatives
that sum to 1 as in the following step.

Step 5: Obtain preference weights Wi of the alternatives that sum to 1 by
normalizing the preference indices ri as

Wi =
ri

∑m
j=1 rj

, i = 1, 2, ...,m, (254)

where 0 ≤Wi ≤ 1 and
∑m

i=1 Wi = 1.
Rank the alternatives Ai according to their preference weights Wi, i = 1, 2, ...,m.

5.7 Problem 5.1: A Transportation Mode Selection Problem with
Linguistic Weights and Ratings Generated by Fuzzy Numbers
and Its Application to STP

Suppose in a solid transportation problem (STP) there are two modes of trans-
portation (conveyances) available - rail and road. Along with the main criteria
(transportation cost), decision makers want to rate the two modes with respect
to some other criteria, which are also very important for a transportation policy.
Three decision makers D1, D2, D3 select five main criteria- cost (C), speed/time
(S), product characteristics (P), flexibility (F) and safety factor (SF). Also there
are subcriteria associated with each main criteria as follows:

(1) Cost (C): This main criterion contains cost factors that are involved in
transportation system.
– C1: Transportation cost for shipment of goods from source to destination.
– C2: Cost of damages to freight incurred at the transportation or trans-

shipment stages.
– C3: Fixed cost (transport equipment, maintenance, terminal facilities,

etc.).
(2) Speed/time (S): This criterion contains time related subcriteria.

– S1: The average speed that the conveyance can provide.
– S2: The time consumed for loading, storing and unloading process.
– S3: The ratio of the distance between supply and demand points to the

transportation time.
– S4: Time reliability, i.e. the past record for delivering in time.

(3) Product characteristics (P): This criteria involved with product related fea-
tures.
– P1: The weight of the freight permissible.
– P2: The volume of the freight permissible.
– P3: Value to weight of the freight.
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(4) Flexibility (F): This criterion contains subcriteria involving capacity, route,
time schedule flexibility.
– F1: The ability to change the transportation route for unexpected cause

during transportation.
– F2: The ability to change the volume and weight capacity of the vehicles.
– F3: The ability to change the predetermined time schedule.

(5) Safety factor (SF): This criterion contains safety problem related features.
– SF1: The accidental rate in a determined time period.
– SF2: The rate of product being damaged during transportation.

The decision makers compare the criteria with each other and gives the impor-
tance weights for each criteria. The linguistic terms and related fuzzy numbers
(Lee [78], Wang and Elhag [141]) for criteria weights and evaluation ratings are
shown in Table 20. The linguistic importance weights of the main and subcriteria
are given in Tables 21 and 23 respectively. The average fuzzy weights of the main
criteria are obtained using Tables 20 and 21 by averaging their weights given by
the three decision makers and presented in Table 22. Similarly using Tables 20
and 23, the average fuzzy weights of the subcriteria are obtained and presented
in Table 24. The average weight of the each subcriterion is then multiplied by the
corresponding main criterion weight and presented in Table 25 and thus effec-
tive weight of the each subcriterion is obtained. Denotes these effective weights
of the subcriteria j by w̃j , j = 1, 2, ..., 15, where j = 1 indicates the criterion
C1, j = 2 indicates the criterion C2 and in this way j = 15 indicates the cri-
terion SF2. The evaluation ratings of the transportation modes - rail and road
as determined by the decision makers based on the selection criteria are given
in Table 26. Based on the Table 26, the group fuzzy decision matrix is derived
by averaging the ratings of the decision makers and is presented in Table 27. So
this decision matrix is denoted by D̃ = [Ãij ]2×15, where i = 1, 2 indicate the
alternatives rail and road respectively, j = 1 indicates the criterion C1, j = 2
indicates the criterion C2 and in this way j = 15 indicates the criterion SF2.
Now we apply our proposed FMCGDM method (cf. Sect.5.4) based on ranking
fuzzy numbers step by step as follows:

Step-1: The fuzzy group decision matrix (Table 27) is normalized and shown in
Table 28.
Step-2: Based on Table 28, the relative preference matrix [rij ]2×15 is derived using
Eq. (237) and shown in Table 29. For example, r11 = R(Ã′

11, Ã
′
21) = Mα(Ã′

11 ≥
Ã′

21) = 0.833, obtained by solving (232) where Ã11 = (0.83, 0.97, 1), Ã21 =
(0.57, 0.77, 0.93) and r21 = R(Ã′

21, Ã
′
11) = 1−R(Ã′

11, Ã
′
21) = 1− r11 = 0.167.

Step-3: Fuzzy weighted relative preferences of the two alternatives are calculated
through Tables 29 and 25 using Eq. (238) and shown in Table 30.
Step-4: From Table 30, using Eq. (239) total preference indices of the two alter-
natives are obtained and shown in Table 31.
Step-5: Normalizing the preference indices according to Eq. (240) the preference
weights of the two alternatives are obtained as wP

1 = 0.586 for rail and wP
2 =

0.414 for road.
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Table 20. Linguistic terms and related fuzzy numbers of criteria weights and evaluation
ratings

Linguistic terms Fuzzy weights Linguistic terms Fuzzy ratings

Very low (VL) (0,0,0.1) Very poor (VP) (0,0,1)

Low (L) (0,0.1,0.3) Poor (P) (0,1,3)

Medium low (ML) (0.1,0.3,0.5) Medium poor (MP) (1,3,5)

Medium (M) (0.3,0.5,0.7) Fair (F) (3,5,7)

Medium high (MH) (0.5,0.7,0.9) Medium good (MG) (5,7,9)

High (H) (0.7,0.9,1.0) Good (G) (7,9,10)

Very high (VH) (0.9,1.0,1.0) Very good (VG) (9,10,10)

Table 21. Linguistic importance weights of the main criteria

Main criteria D1 D2 D3

Cost (C) VH H VH

Speed (S) H MH H

Product characteristics (P) MH MH MH

Flexibility (F) M MH M

Safety factors (SF) MH M MH

Table 22. Average weights of the main criteria

C S P F SF

(0.83,0.97,1) (0.63,0.83,0.97) (0.5,0.7,0.9) (0.37,0.57,0.77) (0.43,0.63,0.83)

Table 23. Linguistic importance weights of the subcriteria

D1 D2 D3 D1 D2 D3 D1 D2 D3

C1 VH H VH S3 H H MH F1 M MH M

C2 H H MH S4 MH M MH F2 M M M

C3 H MH H P1 MH M M F3 MH M M

S1 H MH MH P2 MH M M SF1 M M M

S2 MH MH MH P3 MH MH MH SF2 MH M MH

From the above results we observe that for the current problem rail mode is
preferred than road and weights of rail and road are 0.586 and 0.414 respec-
tively. So sum of the weights is 1 and these weights can be used for any further
requirements.
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Table 24. Average weights of the subcriteria

C1 C2 C3 S1

Weights (0.83,0.97,1) (0.63,0.83,0.97) (0.63,0.83,0.97) (0.57,0.77,0.93)

S2 S3 S4 P1

Weights (0.5,0.7,0.9) (0.63,0.83,0.97) (0.43,0.63,0.83) (0.37,0.57,0.77)

P2 P3 F1 F2

Weights (0.37,0.57,0.77) (0.3,0.5,0.7) (0.37,0.57,0.77) (0.3,0.5,0.7)

F3 SF1 SF2

Weights (0.37,0.57,0.77) (0.3,0.5,0.7) (0.43,0.63,0.83)

Table 25. Average weights of the subcriteria multiplied by the corresponding main
criteria weights

C1 C2 C3 S1

Weights (0.69,0.94,1) (0.52,0.8,0.97) (0.52,0.8,0.97) (0.34,0.64,0.9)

S2 S3 S4 P1

Weights (0.32,0.58,0.87) (0.4,0.69,0.94) (0.27,0.52,0.81) (0.19,0.4,0.7)

P2 P3 F1 F2

Weights (0.19,0.4,0.7) (0.25,0.49,0.81) (0.14,0.32,0.59) (0.11,0.29,0.54)

F3 SF1 SF2

Weights (0.14,0.32,0.59) (0.13,0.32,0.58) (0.18,0.4,0.69)

Table 26. Linguistic ratings of the alternatives with respect to each criteria

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

C1 C2 C3 S1

Rail VG VG G VG G G MG G F VG G VG

Road MG G MG G G MG G G G MG MG G

S2 S3 S4 P1

Rail MG MG G MG MG MG G G MG VG VG G

Road G G VG G G G MG MG G MG G MG

P2 P3 F1 F2

Rail VG VG G MG G MG MP F F VG VG G

Road MG G MG G G G G MG G F MP F

F3 SF1 SF2

Rail F F MG G G VG VG G G

Road G VG G MG MG G MG G G
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Table 27. Fuzzy group decision matrix

C1 C2 C3 S1

Rail (8.3,9.7,10) (7.7,9.3,10) (5,7,8.7) (8.3,9.7,10)

Road (5.7,7.7,9.3) (6.3,8.3,9.7) (7,9,10) (5.7,7.7,9.3)

S2 S3 S4 P1

Rail (5.7,7.7,9.3) (5,7,9) (6.3,8.3,9.7) (8.3,9.7,10)

Road (7.7,9.3,10) (7,9,10) (5.7,7.7,9.3) (5.7,7.7,9.3)

P2 P3 F1 F2

Rail (8.3,9.7,10) (5.7,7.7,9.3) (2.3,4.3,6.3) (8.3,9.7,10)

Road (5.7,7.7,9.3) (7,9,10) (6.3,8.3,9.7) (2.3,4.3,6.3)

F3 SF1 SF2

Rail (3.7,5.7,7.7) (7.7,9.3,10) (7.7,9.3,10)

Road (7.7,9.3,10) (5.7,7.7,9.3) (6.3,8.3,9.7)

Table 28. Normalized group fuzzy decision matrix

C1 C2 C3 S1

Rail (0.83,0.97,1) (0.77,0.93,1) (0.5,0.7,0.87) (0.83,0.97,1)

Road (0.57,0.77,0.93) (0.63,0.83,0.97) (0.7,0.9,1) (0.57,0.77,0.93)

S2 S3 S4 P1

Rail (0.57,0.77,0.93) (0.5,0.7,0.9) (0.65,0.85,1) (0.83,0.97,1)

Road (0.77,0.93,1) (0.7,0.9,1) (0.59,0.79,0.96) (0.57,0.77,0.93)

P2 P3 F1 F2

Rail (0.83,0.97,1) (0.57,0.77,0.93) (0.24,0.44,0.65) (0.83,0.97,1)

Road (0.57,0.77,0.93) (0.7,0.9,1) (0.65,0.85,1) (0.23,0.43,0.63)

F3 SF1 SF2

Rail (0.37,0.57,0.77) (0.77,0.93,1) (0.77,0.93,1)

Road (0.77,0.93,1) (0.57,0.77,0.93) (0.63,0.83,0.97)

Table 29. Relative preference matrix

C1 C2 C3 S1 S2 S3 S4 P1

Rail 0.833 0.667 0.23 0.833 0.25 0.25 0.581 0.833

Road 0.167 0.333 0.77 0.167 0.75 0.75 0.419 0.167

P2 P3 F1 F2 F3 SF1 SF2

Rail 0.833 0.319 0 1 0 0.75 0.667

Road 0.167 0.681 1 0 1 0.25 0.333
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Table 30. Fuzzy weighted relative preferences of the alternatives

Rail (2.385,4.272,6.236)

Road (2.005,3.637,5.424)

Table 31. Total preference indices

Rail Road

0.586 0.414

Table 32. Comparative results of presented problem 5.1.

Methods Evaluation Rail Road Preferable mode

Proposed method Preference weights 0.586 0.414 rail

Lee [78] Performance index 1 0 rail

Wang and Lee [139] Closeness coefficient 1 0 rail

Cheng and Lin [28] defuzzified evaluations 6.854 6.791 rail

Table 33. Penalties (costs) ˜cijk

i \ j 2 3 1 2 3

1 4 6 8 7 8 4

2 7 9 7 5 6 9

3 6 8 6 4 10 5

k 1 2

Comparison with Some Other Methods: We solve the above problem by
three existing methods- Lee’s [78] method based on extended fuzzy preference
relation, fuzzy TOPSIS of Wang and Lee [139] and method of Cheng and Lin [28]
based on fuzzy Delphi method and the results are presented in Table 32. Lee’s
method gives total performance index of rail mode as 1 and that of road 0 so that
rail mode is preferable than road for this problem. Wang and Lee’s method gives
the closeness coefficient of rail as 1 and that of road 0 so that by this method rail
mode is preferable than road. Actually in case of two alternatives, whatever the
ratings of the alternatives and criteria weights are, these two methods always
give total performance index or closeness coefficient of one alternative as 1 and
that of another 0. Cheng and Lin’s method gives the defuzzified values of the
aggregate fuzzy evaluations (here aggregate triangular fuzzy numbers) for rail
and road as 6.854 and 6.791 respectively. Hence both the three methods give
same preference as obtained by our proposed method, i.e. rail mode is preferred
than road for the current problem.
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5.8 Assigning the Preference Weights of the Different Modes into
The STP

How to Assign: Suppose in a STP, K types of modes of transportation (con-
veyances) available for transportation. If objective function of a STP is mini-
mization of transportation cost, then obviously transportation cost be the main
criterion of choosing conveyances for certain route. However, if it is observed
that besides main criterion there are also some other criteria such as speed/time,
flexibility, safety factor of conveyances, etc. those are also vary important for a
particular problem, then the decision maker may seek to find overall importance
weights of the modes with respect all the criteria. Then assign the weights of the
modes to the main objective function of the problem so that optimal transporta-
tion policy is according to the main criterion in addition to the other selected
important criteria. Suppose wP

k is the weights of the conveyance k(= 1, 2, ...,K)
as obtained by the FMCGDM method under some predetermined criteria. These
transportation mode weights are assigned to the STP so that the amounts of
goods transported through conveyances are according to their weights in addi-
tion to the main criterion such as cost or time etc. Actually the main aim is
to transport the goods through the best mode as maximum as possible. The
objective function of the STP is

Max/Min Z =
m
∑

i=1

n
∑

j=1

K
∑

k=1

cijk xijk.

(i) If the problem is a maximization problem, i.e. cijk represents profit, amount
etc., then to find optimum result (values of xijk’s), assign wP

k in the objec-
tive function as follows:

Max Z ′ =
m
∑

i=1

n
∑

j=1

K
∑

k=1

wP
k (cijk xijk).

and then find the actual value of Z (total profit, amount, etc.) using the
values of obtained xijk’s and corresponding cijk’s.

(ii) If the problem is a minimization problem, i.e. cijk represents transportation
cost, etc., then to find optimum result (values of xijk’s), assign wP

k in the
objective function as follows:

Min Z ′ =
m
∑

i=1

n
∑

j=1

K
∑

k=1

1
wP

k

(cijk xijk),

because higher value of wP
k (i.e., lower value of 1/wP

k ) ensures the possibility
of increasing the amount of goods transported through the conveyance k.
Now the actual value of Z (total transportation cost) is derived using the
values of obtained xijk’s and corresponding cijk’s.

Numerical Illustration: Consider a STP with three sources (i = 1, 2, 3), three
destinations (j = 1, 2, 3) and two conveyances (k = 1, 2). Here conveyance k = 1
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indicates rail and k = 2 indicates road. The unit transportation costs (cijk) are
presented in Table 33 and the availabilities (ai), demands (bj) are given below.
a1 = 35, a2 = 30, a3 = 42, b1 = 32, b2 = 36, b3 = 35, e1 = 60, e2 = 52.

So mathematically the problem becomes

Min Z =
3
∑

i=1

3
∑

j=1

2
∑

k=1

(cijk xijk),

s.t.

3
∑

j=1

2
∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3
∑

i=1

2
∑

k=1

xijk ≥ bj , j = 1, 2, 3, (255)

3
∑

i=1

3
∑

j=1

xijk ≤ ek, k = 1, 2,

xijk ≥ 0, ∀ i, j, k.

Now introducing weights of the transportation modes in the objective function,
the problem becomes

Min Z ′ =
3
∑

i=1

3
∑

j=1

2
∑

k=1

1
wP

k

(cijk xijk),

s.t.
3
∑

j=1

2
∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3
∑

i=1

2
∑

k=1

xijk ≥ bj , j = 1, 2, 3, (256)

3
∑

i=1

3
∑

j=1

xijk ≤ ek, k = 1, 2,

xijk ≥ 0, ∀ i, j, k,

where wP
1 = 0.586 (for rail) and wP

2 = 0.414 (for road).
Solving the problem (256) we have
x111 = 20, x121 = 10, x331 = 30, x132 = 5, x222 = 26, x312 = 12 and MinZ =
4 · 20 + 6 · 10 + 6 · 30 + 4 · 5 + 6 · 26 + 4 · 12 = 544.

Now solving the problem without mode weights (problem (255)), we have
x111 = 19.5, x121 = 6, x331 = 25.5, x132 = 9.5, x222 = 30, x312 = 12.5 and
MinZ = 4 · 19.5 + 6 · 6 + 6 · 25.5 + 4 · 9.5 + 6 · 30 + 4 · 12.5 = 535.
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Table 34. Linguistic terms and related fuzzy variables of criteria weights

Linguistic terms Fuzzy weights

Very low (VL) ((0,0,0,0.1;1),(0,0,0,0.05;0.9))

Low (L) ((0,0.1,0.1,0.3;1),(0.05,0.1,0.1,0.2;0.9))

Medium low (ML) ((0.1,0.3,0.3,0.5;1),(0.2,0.3,0.3,0.4;0.9))

Medium (M) ((0.3,0.5,0.5,0.7;1),(0.4,0.5,0.5,0.6;0.9))

Medium high (MH) ((0.5,0.7,0.7,0.9;1),(0.6,0.7,0.7,0.8;0.9))

High (H) ((0.7,0.9,0.9,1;1),(0.8,0.9,0.9,0.95;0.9))

Very high (VH) ((0.9,1,1,1;1),(0.95,1,1,1;0.9))

Table 35. Linguistic terms and related fuzzy variables of evaluation ratings

Linguistic terms Fuzzy ratings

Very poor (VP) ((0,0,0,1;1),(0,0,0,0.5;0.9))

Poor (P) ((0,1,1,3;1),(0.5,1,1,2;0.9))

Medium poor (MP) ((1,3,3,5;1),(2,3,3,4;0.9))

Fair (F) ((3,5,5,7;1),(4,5,5,6;0.9))

Medium good (MG) ((5,7,7,9;1),(6,7,7,8;0.9))

Good (G) ((7,9,9,10;1),(8,9,9,9.5;0.9))

Very good (VG) ((9,10,10,10;1),(9.5,10,10,10;0.9))

Remark: We see that in case of the problem without mode weights, total trans-
ported amount through rail is 51 and through road is 52. Where as for the prob-
lem with mode weights total transported amount through rail is 60 and through
road is 43. This is as per expectation because here rail mode has higher prefer-
ence weight than road. Also we observe that the problem without mode weights
provides less transportation cost. So it is up to the decision makers whether they
decide to determine transportation policy only according to the main criterion
(i.e. cost) or according to all other criteria including the main criterion.

5.9 Problem 5.2: A Transportation Mode Selection Problem with
Linguistic Weights and Ratings Generated by IT2 FVs

Suppose in a transportation system there are two modes of transportation (con-
veyances) available - rail and road. Besides the main criterion (transportation
cost), decision makers want to rate the two modes with respect to some other
criteria, which are also very important for a transportation policy. The selection
criteria are already presented in Sect. 5.3 for the Problem 5.1.

The decision makers compare the criteria with each other and gives the
importance weights for each criteria. The linguistic terms and related fuzzy vari-
ables (Anand et al. [7], Chen and Lee [23,24]) for criteria weights and evaluation
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ratings are shown in Tables 34 and 35 respectively. The linguistic importance
weights of the main and subcriteria as given by the decision makers are same as
presented in Tables 21 and 23 respectively. Average fuzzy weights of the main
criteria and subcriteria are obtained by averaging the related IT2 fuzzy variables
(based on Eq. (248)) of the criteria weights. For example, average weight of the
cost criteria C is found ((0.83,0.97,0.97,1;1),(0.9,0.97,0.97,0.98;0.9)), obtained by
averaging the related fuzzy variables of the linguistic weights VH, H and VH.
Similarly the average weight of the subcriteria C1 is found ((0.83,0.97,0.97,1;1),
(0.9,0.97,0.97,0.98;0.9)). The average weight of the each subcriterion is then mul-
tiplied by the corresponding main criteria weight and thus effective weight of the
each subcriterion is obtained. For example, effective weight of the subcriterion
C1 is obtained ((0.69,0.94,0.94,1;1),(0.81,0.94,0.94,0.96;0.9)) by multiplying the
average weight of the subcriterion C1 with the weight of the corresponding main
criteria C. In this way we find the effective weights of all the subcriteria as
follows.
C1: ((0.69,0.94,0.94,1;1),(0.81,0.94,0.94,0.96;0.9)),
C2: ((0.52,0.8,0.8,0.97;1),(0.53,0.8,0.8,0.88;0.9)),
C3: ((0.52,0.8,0.8,0.97;1),(0.53,0.8,0.8,0.88;0.9)),
S1: ((0.34,0.64,0.64,0.9;1),(0.49,0.64,0.64,0.71;0.9)),
S2: ((0.32,0.58,0.58,0.87;1),(0.44,0.58,0.58,0.72)),
S3: ((0.4,0.69,0.69,0.94),(0.53,0.69,0.69,0.81;0.9)),
S4: ((0.27,0.52,0.52,0.81;1),(0.39,0.52,0.52,0.66;0.9)),
P1: ((0.19,0.4,0.4,0.7;1),(0.28,0.4,0.4,0.54;0.9)),
P2: ((0.19,0.4,0.4,0.7;1),(0.28,0.4,0.4,0.54;0.9)),
P3: ((0.25,0.49,0.49,0.81;1),(0.36,0.49,0.49,0.64;0.9)),
F1: ((0.14,0.32,0.32,0.59;1),(0.22,0.32,0.32,0.45;0.9)),
F2: ((0.11,0.29,0.29,0.54;1),(0.22,0.29,0.29,0.4;0.9)),
F3: ((0.14,0.32,0.32,0.59),(0.22,0.32,0.32,0.45;0.9)),
SF1: ((0.13,0.31,0.31,0.58),(0.21,0.31,0.31,0.44;0.9)),
SF2: ((0.18,0.4,0.4,0.69),(0.28,0.4,0.4,0.53;0.9)).

The evaluation ratings of the transportation modes - rail and road as deter-
mined by the decision makers based on the selection criteria are same as pre-
sented in Table 26.

Now we apply our proposed FMCGDM method based on ranking interval
type-2 fuzzy variables step by step (cf. Sect. 5.6) as follows:

Step-1: Based on the Eq. (247), the group fuzzy decision matrix is derived
by averaging the linguistic ratings of the decision makers and is presented in
Table 36. The average effective weights of all the subcriteria are already obtained
in the above.

Step-2: Upper and lower relative preference indices, i.e., rU
ij and rL

ij of the
alternatives (rail and road) with respect to each subcriteria are obtained from
Table 36 using Eqs. (249) and (250) respectively and presented in Table 37. Then
the relative preference indices rij of the alternatives are obtained by averaging
their upper and lower relative preference indices as presented in Table 37.
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Table 36. Fuzzy group decision matrix

C1 C2

Rail ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9)) ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9))

Road ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9)) ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9))

C3 S1

Rail ((5,7,7,8.7;1),(6,7,7,7.8;0.9)) ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9))

Road ((7,9,9,10;1),(8,9,9,9.5;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

S2 S3

Rail ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9)) ((5,7,7,9;1),(6,7,7,8;0.9))

Road ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9)) ((7,9,9,10;1),(8,9,9,9.5;0.9))

S4 P1

Rail ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9)) ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9))

Road ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

P2 P3

Rail ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

Road ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9)) ((7,9,9,10;1),(8,9,9,9.5;0.9))

F1 F2

Rail ((2.3,4.3,4.3,6.3),(3.3,4.3,4.3,5.3;0.9)) ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9))

Road ((8.3,9.7,9.7,10;1),(9,9.7,9.7,9.8;0.9)) ((4.3,6.3,6.3,8.3;1),(5.3,6.3,6.3,7.3;0.9))

F3 SF1

Rail ((1.7,3.7,3.7,5.7;1),(2.7,3.7,3.7,4.7;0.9)) ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9))

Road ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9)) ((5.7,7.7,7.7,9.3;1),(6.7,7.7,7.7,8.5;0.9))

SF2

Rail ((7.7,9.3,9.3,10;1),(8.5,9.3,9.3,9.7;0.9))

Road ((6.3,8.3,8.3,9.7;1),(7.3,8.3,8.3,9;0.9))

Step-3: Then the fuzzy weighted relative preferences of the alternatives rail
and road are calculated by employing the effective weights of the subcriteria as
Eq. (251) and presented in Table 38.

Step-4: From Table 38, the final upper preference indices rU
i and lower pref-

erence indices rL
i of the alternatives are obtained using Eqs. (252) and (253)

respectively and final preference indices ri are calculated by averaging them.
These results are presented in Table 39.

Step-5: Preference weights (Wi) of the alternatives that sum to 1 are obtained
by normalizing the preference indices ri and shown in Table 39.

From Table 39 we observe that weights of rail and road are 0.63 and 0.37
respectively and so for the current problem rail mode is preferred than road.
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Table 37. Relative preference matrix

rU
ij rL

ij rij rU
ij rL

ij rij rU
ij rL

ij rij

C1 C2 C3

Rail 0.75 0.9 0.825 0.667 0.75 0.708 0.23 0 0.115

Road 0.25 0 0.125 0.333 0.15 0.241 0.77 0.9 0.835

S1 S2 S3

Rail 0.833 0.9 0.866 0.25 0 0.125 0.25 0 0.125

Road 0.167 0 0.083 0.75 0.9 0.825 0.75 0.9 0.825

S4 P1 P2

Rail 0.583 0.6 0.591 0.833 0.9 0.866 0.833 0.9 0.866

Road 0.417 0.3 0.358 0.167 0 0.083 0.167 0 0.083

P3 F1 F2

Rail 0.319 0.125 0.222 0 0 0 1 0.9 0.95

Road 0.681 0.775 0.782 1 0.9 0.95 0 0 0

F3 SF1 SF2

Rail 0 0 0 0.75 0.9 0.825 0.667 0.75 0.708

Road 1 0.9 0.95 0.25 0 0.125 0.333 0.15 0.241

Table 38. Fuzzy weighted relative preferences of the alternatives

Rail ((2.265,4.07,4.07,5.961;1),(3.026,4.07,4.07,4.908;0.9))

Road ((1.917,3.458,3.458,4.879;1),(2.492,3.458,3.458,4.252;0.9))

Table 39. Final preference indices and preference weights

rU
i rL

i ri Wi

Rail 0.5949 0.5998 0.597 0.63

Road 0.4051 0.3002 0.352 0.37

5.10 Overall Conclusion

Selection of suitable transportation modes is a major issue in transportation sys-
tems. There may exist large number of conflicting criteria for selecting convenient
modes. Also human judgments are usually imprecise (i.e., linguistic, interval etc.)
rather than precise numeric values.

In this section, we have proposed a computationally efficient fuzzy multi-
criteria group decision making (FMCGDM) method (cf. Sect. 5.4) based on
ranking fuzzy numbers. For this purpose we have defined a ranking function
(cf. Sect. 5.3) based on credibility measure to rank a fuzzy number over another
fuzzy number. The proposed fuzzy MCGDM method is applied (cf. Sect. 5.7) to
find most convenient transportation mode alternatives in which the evaluation
ratings and criteria weights are expressed in linguistic terms generated by fuzzy
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numbers. Also this method gives the weights of the alternatives which can be
used for further requirements. The mode weights as founded by the method are
assigned to a STP so that best mode can be used as maximum as possible.

In Sect. 5.5, a new method of ranking IT2 FVs based on generalized credibility
measure is proposed. In Sect. 5.6, we have presented a new FMCGDM method
based on the proposed ranking method of IT2 FVs. The proposed FMCGDM
method is applied to a transportation mode selection problem (cf. Sect. 5.9) in
which the evaluation ratings and criteria weights are expressed in linguistic terms
generated by trapezoidal IT2 FVs.

The proposed methods are computationally efficient and we expect that these
methods may have potential applications in many industry based FMCGDM
problems in the future.

6 Solid Transportation Models with Transportation Cost
Parameters as Rough Variables

6.1 Introduction

Traditionally the solid transportation problem (STP) (Haley [53], Gen et al. [48],
Jiménez and Verdegay [60], Li et al. [81]) is modeled taking total supply capacity
of all the conveyances and it is assumed that this total capacity is available for
utilization for all source to destination routs whatever be the amount of prod-
uct allocated in the routs for transportation. But in many practical situations
this may not always happen. Practically most of time full vehicles, e.g., trucks,
rail coaches are to be booked and the availability of each type of conveyance at
each source may not be the same and vehicles available at one source may not
be utilized at another source due to long distance between them or some other
problems. Also fulfillment of capacity of a vehicle effects the optimal transporta-
tion policy. These practical situations motivated us to formulate some useful
solid transportation models.

Rough set theory is one of the most convenient and accepted tool to deal with
uncertainty. Though transportation problems in various types of uncertain envi-
ronments such as fuzzy, random are studied by many researchers, there are very
few research papers about TP in rough uncertain environment. Since rough set
theory is proposed by Pawlak [121], it is developed by many researchers (Pawlak
[122], Pawlak and Skowron [124], Polkowski [125], Liu and Zhu [96]) in theoretical
aspect and applied into many practical fields such as data envelopment analysis
(DEA) (Shafiee and Shams-e-alam [131], Xu et al. [151]), data mining (Lin et
al. [83]), multi-criteria decision analysis (Dembczynski et al. [35], Pawlak and
Slowinski [123]), medical diagnosis (Hirano and Tsumoto [56], Tsumoto [133],
Zhang et al. [163]), neural network (Azadeh et al. [9], Zhang et al. [162]), etc. Liu
[86] proposed the concept rough variable which is a measurable function from
rough space to the set of real numbers. Liu [87] discussed some inequalities of
rough variables and convergence concept of sequence of rough variables. Liu and
Zhu [97] introduced rough variable with values in measurable spaces. Liu [86,88]
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studied some rough programming models with rough variables as parameters.
Xu and Yao [150] studied a two-person zero-sum matrix games with payoffs as
rough variables. Tao and Xu [132] developed a rough multi-objective program-
ming for dealing with multi-objective solid transportation problem assuming that
the feasible region is not fixed but flexible due to imprecise parameters. Xu et al.
[151] proposed a rough DEA model to solve a supply chain performance evalua-
tion problem with rough parameters. Xiao and Lai [149] considered power-aware
VLIW instruction scheduling problem with power consumption parameters as
rough variables. Mondal et al. [114] considered a production-repairing inventory
model with fuzzy rough variables. But at the best of our knowledge none studied
STPs with any of the parameters as rough variables before Kundu et al. [73].

In this section, we formulate solid transportation model with vehicle capacity
and an additional cost which is incurred due to not fulfilling the vehicle capac-
ity. The unit transportation costs and unit additional costs in the models are
taken as rough variables. To solve the said models with transportation costs
as rough variables we have presented rough chance-constrained programming,
rough expected value and rough dependent-chance programming models.

6.2 Model 6.1: New Solid Transportation Model with Vehicle
Capacity

We first describe and formulate the model deterministically and then consider
the model with rough cost parameters.

Notations:

(i) cijk: The unit transportation costs from i-th source to j-th destination via
k-th conveyance according to full utilization of the vehicle capacity.

(ii) xijk: The decision variable which represents amount of product to be trans-
ported from i-th origin to j-th destination via k-th conveyance.

(iii) Z: The objective function.
(iv) ai: The amount of the product available at the i-th origin.
(v) bj : The demand of the product at j-th destination.
(vi) qk: The capacity of singe vehicle of k-th type conveyance.
(vii) zijk: The frequency (number of required vehicles) of conveyance k for trans-

porting goods from source i to destination j via conveyance k.
(viii) εijk: Total additional (penalty) cost for i− j − k route due to not fulfilling

the vehicle capacity.

Description of the Problem and Model Formulations: In traditional STP,
total transportation capacity of conveyances is taken and the problem is solved
assuming that this total capacity can be utilized for all routes whatever the
allocation of products is in the routes. But in many real transportation systems,
full vehicles (e.g. trucks for road transportation, coaches for rail transportation,
etc.) are to be booked and number of vehicles required are according to amount
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of product to be transported through a particular route. The difficulty in this
case arises when the amount of allocated product is not sufficient to fill up the
capacity of the vehicle, because then extra cost is incurred despite the unit trans-
portation cost due to not fulfilling the vehicle capacity. Here we formulate some
solid transportation models with vehicle capacity to deal with such situations.

Suppose qk be the capacity of singe vehicle of k-th type conveyance. Let zijk

be the frequency (number of required vehicles) of conveyance k for transporting
goods from source i to destination j via conveyance k and xijk (decision variable)
be the corresponding amount of goods. Then zijk is a decision variable which
takes only positive integer or zero. Also we have

xijk ≤ zijk · qk.

Now in such vehicle transportation system obviously calculation of unit trans-
portation cost is according to the full utilization of the capacity of the vehicle.
That is for a particular route i−j−k if the unit transportation cost cijk is accord-
ing to full utilization of the vehicle capacity qk then an extra cost (penalty) will
be added if the capacity qk is not fully utilized. Determination of additional cost
for deficit amount depends upon the relevant transportation authority. Two cases
may arise, either authority do not want to compromise for deficit amount and
so direct cost cijk is also represent the additional cost for unit deficit amount, or
they agree to compromise and fixed an additional cost for unit deficit amount.
For calculating additional cost first deficit amount of goods is to be calculated
for each route. This can be done by two ways - calculating deficit amount for
i−j−k route directly as (zijk ·qk−xijk) or by calculating the empty ratio (Yang
et al. [152]) of each vehicle of k-th type conveyance for transporting goods from
source i to destination j as

dijk =
{

0, if xijk

qk
= [xijk

qk
];

1− (xijk

qk
− [xijk

qk
]), otherwise.

Then the amount of deficit amount for i − j − k route is given by qk · dijk.
Now if uijk represents additional cost for unit amount of deficit from source i to
destination j via conveyance k, then additional cost for this route is given by

εijk = uijk(zijk · qk − xijk) or εijk = uijk · qk · dijk.

The total additional (penalty) cost for the problem is

C(x) =
m
∑

i=1

n
∑

j=1

K
∑

k=1

εijk.

So the STP model becomes

Min Z =
m
∑

i=1

n
∑

j=1

K
∑

k=1

(cijk xijk + εijk)
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s.t.

n
∑

j=1

K
∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m
∑

i=1

K
∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (257)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,

m
∑

i=1

ai ≥
n
∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

In the above model it is assumed that there are sufficient number of vehicles
of each type of conveyance available to transport the required amount of goods
(i.e., there is no restriction on number of available vehicles of each type of con-
veyances). If number of vehicles of conveyances limited to certain number, sup-
pose Qk for k-th type conveyance then an another constraint

m
∑

i=1

n
∑

j=1

zijk ≤ Qk, k = 1, 2, ...,K

is added to the model (257), then the above model becomes

Min Z =
m
∑

i=1

n
∑

j=1

K
∑

k=1

(cijk xijk + εijk)

s.t.
n
∑

j=1

K
∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m
∑

i=1

K
∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (258)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,
m
∑

i=1

n
∑

j=1

zijk ≤ Qk, k = 1, 2, ...,K,

m
∑

i=1

ai ≥
n
∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

This limitation of number of vehicles can effect the optimal transportation policy.
For example unavailability of sufficient number of vehicles of certain type of
conveyance may force to use another type of conveyance which costs higher than
the previous.

The hierarchical structures of the model (258) is shown in the Fig. 18.
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………

………

No of vehicles   

KkQ
K , 1,2 ,...,=

Source 1 Source 2 Source m

Destination 1 Destination 2  Destination n

Fig. 18. The hierarchical structures of the model (258).

In the above two models it is assumed that total available vehicles can be
utilized in each source as they required. But in reality in each source, the avail-
ability of different vehicles may not be the same and the vehicles available at
one source may not be utilized for another source due to long distance between
them. So there may be a situation arises that in a certain source there are more
than sufficient number of particular vehicles available to transport product to
destinations but at the same time in an another source there are less number
of that vehicles available than the requirement. As a result it may happen that
vehicle having less transportation cost leaving from certain source to destination
without being fully loaded, while vehicle having comparably high transporta-
tion cost leaving from another source to destination with fully loaded. So it is
realistic to include a constraint defining source-wise vehicle availability. Suppose
at source i, the number of available vehicles of k-th type conveyance is V k

i and
vehicles at each source can not be shared to other sources.

Then the constraints
n
∑

j=1

zijk ≤ V k
i , i = 1, 2, ...,m; k = 1, 2, ...,K

is added to the model (257) and so the model becomes

Min Z =
m
∑

i=1

n
∑

j=1

K
∑

k=1

(cijk xijk + εijk)
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Fig. 19. The hierarchical structures of the model (259).

s.t.

n
∑

j=1

K
∑

k=1

xijk ≤ ai, i = 1, 2, ...,m,

m
∑

i=1

K
∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (259)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,
n
∑

j=1

zijk ≤ V k
i , i = 1, 2, ...,m; k = 1, 2, ...,K,

m
∑

i=1

ai ≥
n
∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

The hierarchical structures of the model (259) is shown in the Fig. 19.

6.3 The Model with Unit Transportation and Additional Costs
(Penalty) as Rough Variables

Consider the unit transportation costs cijk and as well as unit additional costs
uijk for the model (257) are rough variables represented by cijk = ([c2ijk, c3ijk],
[c1ijk, c4ijk]), c1ijk ≤ c2ijk < c3ijk ≤ c4ijk and uijk = ([u2

ijk, u3
ijk], [u1

ijk, u4
ijk]), u1

ijk ≤
u2

ijk < u3
ijk ≤ u4

ijk. Then, the objective function of the model (257), given by
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Z =
∑m

i=1

∑n
j=1

∑K
k=1 (cijk xijk + εijk), εijk = uijk(zijk · qk − xijk) becomes a

rough variable defined as Z = ([Z2, Z3], [Z1, Z4]), where

Zr =
m
∑

i=1

n
∑

j=1

K
∑

k=1

(cr
ijk xijk + εr

ijk), r = 1, 2, 3, 4, (260)

εr
ijk = ur

ijk(zijk · qk − xijk), r = 1, 2, 3, 4.

Rough Chance-Constrained Programming Model: For the above problem
with rough objective function one can not directly minimize it. The main idea
of chance-constrained method is that a uncertain constraint is allowed to violet
ensuring that it must be hold at some chance/confidence level. We apply the
idea of chance-constrained programming (CCP) to the objective function of the
model (257) with rough costs (i.e. rough objective function) with the help of
trust measure. Since the problem is a minimization problem, we minimize the
smallest objective Z̄ satisfying Tr{Z ≤ Z̄} ≥ α, where α ∈ (0, 1] is a specified
trust (confidence) level, i.e., we minimize the α-pessimistic value Zinf (α) of Z.
This implies that the optimum objective value will below the Z̄ with a trust
level at least α. So the rough CCP becomes

Min (Min Z̄) (261)

s.t. T r{Z ≤ Z̄} ≥ α,
n
∑

j=1

K
∑

k=1

xijk ≤ ai, i = 1, 2, ...,m, (262)

m
∑

i=1

K
∑

k=1

xijk ≥ bj , j = 1, 2, ..., n, (263)

xijk ≤ zijk · qk, i = 1, 2, ...,m; j = 1, 2, ..., n; k = 1, 2, ...,K,(264)
m
∑

i=1

ai ≥
n
∑

j=1

bj , xijk ≥ 0, zijk ∈ Z+,∀ i, j, k. (265)

Now we also formulate another rough CCP for the model (257) with rough
costs, to minimize the greatest objective Z satisfying Tr{Z ≥ Z} ≥ α, where
α ∈ (0, 1] is a specified trust (confidence) level, i.e., we minimize the α-optimistic
value Zsup(α) of Z. In other words, we minimize maximum Z so that the opti-
mum objective value will greater or equal to the Z with a trust level at least α.
So the rough CCP becomes

Min (Max Z)

s.t. T r{Z ≥ Z} ≥ α, (266)

and the constraints (262)–(265).
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Deterministic Forms: From the definition of α-pessimistic value (Defini-
tion 2.14, Sect. 2.4), the above CCP (261)–(265) equivalently becomes

Min Z ′

s.t. the constraints (262)− (265), (267)
where

Z′ = Zinf (α)

=

⎧
⎪⎨

⎪⎩

(1 − 2α)Z1 + 2αZ4, ifα ≤ ((Z2 − Z1)/2(Z4 − Z1));
2(1 − α)Z1 + (2α − 1)Z4, ifα ≥ ((Z3 + Z4 − 2Z1)/2(Z4 − Z1));
Z1(Z3−Z2)+Z2(Z4−Z1)+2α(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.

From the definition of α-optimistic value, the above CCP (266) equivalently
becomes

Min Z ′′

s.t. the constraints (262)− (265), (268)
where

Z′′ = Zsup(α)

=

⎧
⎪⎨

⎪⎩

(1 − 2α)Z4 + 2αZ1, ifα ≤ ((Z4 − Z3)/2(Z4 − Z1));
2(1 − α)Z4 + (2α − 1)Z1, ifα ≥ ((2Z4 − Z2 − Z1)/2(Z4 − Z1));
Z4(Z3−Z2)+Z3(Z4−Z1)−2α(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.

Since for 0.5 < α ≤ 1, Zinf (α) ≥ Zsup(α), so solving the problems (267) and
(267) with trust level α (0.5 < α ≤ 1) we conclude that optimum objective value
lie within the range [Z ′′, Z ′] with the trust level at least α.

In case of models (258) and (259) with unit transportation and additional
costs as rough variables, rough CCP can be developed same way as above.

Rough Expected Value Model: We find the expected value for the objective
function of the model (257) with rough costs, so the problem becomes

Min E[Z] = E[
m
∑

i=1

n
∑

j=1

K
∑

k=1

cijk xijk + εijk], (269)

s.t. the constraints (262)− (265).

Deterministic Forms: From the expected value of a rough variable (Defini-
tion 2.15, Example 2.9, Sect. 2.4), the deterministic form of the above problem
(269) becomes

Min E[Z] = (Z1 + Z2 + Z3 + Z4)/4, (270)

s.t. the constraints (262)− (265),

where Zr =
m
∑

i=1

n
∑

j=1

K
∑

k=1

(cr
ijk xijk + εr

ijk), r = 1, 2, 3, 4,

.
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Rough Dependent-Chance Programming Model: The idea of dependent-
chance programming is to optimize the chance of an uncertain event. Suppose
in view of previous experiment, a decision maker will satisfy with a transporta-
tion plan for which the total transportation cost is not exceed a certain value.
So a decision maker may fixed a satisfying predetermined maximal objective
value, i.e. total transportation cost and maximize the trust value that total
transportation cost is not exceed the predetermined cost. So to obtain the most
trastable transportation plan with respect to a given predetermined maximal
cost Z̄ the dependent chance-constrained programming model for the model
(257) with rough objective function is formulated as follows:

Max Tr{Z =
m
∑

i=1

n
∑

j=1

K
∑

k=1

(cijk xijk + εijk) ≤ Z̄}, (271)

s.t. the constraints (262)− (265),

Deterministic Forms: The deterministic form of the objective function of
(271) can be obtained by the trust of a rough event as discussed in Exam-
ple 2.9, Sect. 2.4. Tr{Z =

∑m
i=1

∑n
j=1

∑K
k=1 (cijk xijk + εijk) ≤ Z̄}, where

Z = ([Z2, Z3], [Z1, Z4]), Zr is given by (260), can be written as the following
function:

Z ′ =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0, if Z̄ ≤ Z1;
Z̄−Z1

2(Z4−Z1) , if Z1 ≤ Z̄ ≤ Z2;
1
2 ( Z̄−Z2

Z3−Z2 + Z̄−Z1

Z4−Z1 ), if Z2 ≤ Z̄ ≤ Z3;
1
2 ( Z̄−Z1

Z4−Z1 + 1), if Z3 ≤ Z̄ ≤ Z4;
1, if Z̄ ≥ Z4.

(272)

So deterministic form of the above problem (271) becomes Max Z ′ with respect
to the constraints (262)–(265).

6.4 Numerical Experiments

Models with Unit Transportation and Additional Costs as Crisp Num-
bers: Here we demonstrate the models with crisp cost parameters for better
understanding and to show the efficiency of the models. Consider a problem
with three sources (i = 1, 2, 3), three destinations (j = 1, 2, 3), two types of
conveyances (k = 1, 2). The unit transportation costs are given in Table 40. The
availabilities at each sources, demands of each destinations and capacity of single
vehicle of each type of conveyances are given in Table 41.

For convenience suppose additional costs for unit deficit amount is uijk =
0.8 · cijk.

Now if there are sufficient number of vehicles of each type conveyances avail-
able as required (i.e., there is no restriction on number of available vehicles of
each type of conveyances), then for the above problem solving the model (257)
we have the solution given in Table 42.
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So total number of required vehicles of conveyance k = 1 is 10 and that of
conveyance k = 2 is 11.

Now as we say earlier, it may happen that number of vehicles of certain type
of conveyance is so limited that it is not sufficient to fulfill its requirement for a
transportation system.

Suppose in the above example the number of available vehicles of conveyance
k = 1 is 14 and that of conveyance k = 2 is 10, i.e., Q1 = 14 and Q2 = 10. Then
with the same data as given in Tables 40 and 41, solving the model (258) we
have the solution given in Table 43.

It should be mentioned that here in case of model (258), if number of available
vehicles of each type of conveyances at each source are greater or equal to as
required in model (257), i.e., if Q1 ≥ 10 and Q2 ≥ 11 then model (258) gives the
same result as model (257).

Now to demonstrate model (259), consider the same data as given in Tables 40
and 41 and suppose availability of vehicles of each type conveyances at each
sources are V 1

1 = 5, V 2
1 = 3, V 1

2 = 4, V 2
2 = 6, V 1

3 = 4, V 2
3 = 5.

Then solving the model (259) we have the solution as presented in Table 44.

Models with Unit Transportation and Additional Costs as Rough
Variables: Consider the model (257) with three sources (i = 1, 2, 3), three
destinations (j = 1, 2, 3), two types of conveyances (k = 1, 2). The unit trans-
portation costs are rough variables as given in Tables 45 and 46.

The availabilities at each sources, demands of each destinations and capacity
of single vehicle of each type of conveyances are same as in Table 41.

Table 40. Unit transportation costs cijk

i \ j 1 2 3 1 2 3

1 8 11 12 12 9 13

2 8 10 7 11 8 10

3 9 14 9 12 10 9

k 1 2

Table 41. Availabilities, demands and vehicle capacity.

a1 = 25.6, a2 = 16.8, a3 = 32.4, b1 = 14.8, b2 = 26.8, b3 = 23.8,

q1 = 2.48, q2 = 3.78

Table 42. Optimum results for model (257)

x111 = 14.8, x121 = 2.44, x221 = 1.68, x331 = 4.96, x122 = 7.56,

x222 = 15.12, x332 = 18.84, Min Z = 572.936, z111 = 6, z121 = 1, z221 = 1,

z331 = 2, z122 = 2, z222 = 4, z332 = 5
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Table 43. Optimum results for model (258)

x111 = 14.8, x121 = 2.48, x221 = 1.64, x231 = 3.82, x331 = 4.86, x122 = 7.56,

x222 = 11.34, x322 = 3.78, x332 = 15.12, Min Z = 579.536, z111 = 6, z121 = 1,

z221 = 1, z231 = 2, z331 = 2, z122 = 2, z222 = 3, z322 = 1, z332 = 4

Table 44. Optimum results for model (259)

x111 = 9.92, x121 = 1.64, x221 = 2.48, x231 = 2.48, x311 = 4.88, x331 = 2.48,

x122 = 11.34, x222 = 11.34, x332 = 18.9, Min Z = 576.54, z111 = 4, z121 = 1,

z221 = 1, z231 = 1, z311 = 2, z331 = 1, z122 = 3, z222 = 3, z332 = 5

Table 45. Unit transportation costs cij1

i \ j 1 2 3

1 ([7,9],[6,10]) ([10,11],[8,12]) ([11,13],[10,12])

2 ([6,8],[5,9]) ([9,10],[7,11]) ([5,7],[4,8])

3 ([8,10],[7,11]) ([13,15],[12,16]) ([8,10],[7,11])

Table 46. Unit transportation costs cij2

i \ j 1 2 3

1 ([10,12],[9,13]) ([8,10],[7,11]) ([12,14],[11,15])

2 ([11,12],[9,13]) ([6,8],[5,9]) ([9,10],[7,11])

3 ([11,12],[10,13]) ([10,11],[9,12]) ([8,9],[7,11])

For convenience suppose additional costs for unit deficit amount is uijk =
0.8 · cijk.

Solution Using Rough CCP: Now constructing rough CCP as (261)–(265)
with trust level α = 0.9, we have corresponding deterministic form using (267)
as follows:

Min Z ′

s.t.

3
∑

j=1

2
∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3
∑

i=1

2
∑

k=1

xijk ≥ bj , j = 1, 2, 3, (273)

xijk ≤ zijk · qk, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2,
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xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

where,

Z′ =

⎧
⎪⎨

⎪⎩

−0.8Z1 + 1.8Z4, if 0.9 ≤ ((Z2 − Z1)/2(Z4 − Z1));
0.2Z1 + 0.8Z4, if 0.9 ≥ ((Z3 + Z4 − 2Z1)/2(Z4 − Z1));
Z1(Z3−Z2)+Z2(Z4−Z1)+1.8(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.

Zr =
3
∑

i=1

3
∑

j=1

2
∑

k=1

(cr
ijk xijk + εr

ijk), r = 1, 2, 3, 4,

εr
ijk = 0.8cr

ijk(zijk · qk − xijk), r = 1, 2, 3, 4.
Solving this problem we get the solution presented in Table 47.

Table 47. Optimum results for model (257) with transportation costs as rough vari-
ables using rough CCP

x111 = 12.4, x121 = 4.87, x231 = 2.43, x311 = 2.4, x331 = 2.46, x122 = 7.56,

x222 = 14.36, x332 = 18.9, Min Z′ = 630.2688, z111 = 5, z121 = 2, z231 = 1,

z311 = 1, z331 = 1, z122 = 2, z222 = 4, z332 = 5

From this solution we conclude that the objective value will less or equal to
630.2688 with trust level at least 0.9.

We now construct rough CCP as (266) with trust level α = 0.9 and then we
have corresponding deterministic form using (268) as follows:

Min Z ′′

s.t.

3
∑

j=1

2
∑

k=1

xijk ≤ ai, i = 1, 2, 3,

3
∑

i=1

2
∑

k=1

xijk ≥ bj , j = 1, 2, 3, (274)

xijk ≤ zijk · qk, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2,

xijk ≥ 0, zijk ∈ Z+,∀ i, j, k.

where,

Z′′ =

⎧
⎪⎨

⎪⎩

−0.8Z4 + 1.8Z1, if 0.9 ≤ ((Z4 − Z3)/2(Z4 − Z1));
0.2Z4 + 0.8Z1, if 0.9 ≥ ((2Z4 − Z2 − Z1)/2(Z4 − Z1));
Z4(Z3−Z2)+Z3(Z4−Z1)−1.8(Z3−Z2)(Z4−Z1)

(Z3−Z2)+(Z4−Z1)
, otherwise.
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Solving this we get MinZ ′′ = 471.427. So the objective value will greater or
equal to 471.427 with trust level at least 0.9.

As we know for 0.5 < α ≤ 1, Zinf (α) ≥ Zsup(α), here our results (Z ′ > Z ′′)
shows this truth. Finally we can conclude that the optimum objective value lie
within the range [471.427, 630.2688] with trust level at least 0.9.

Table 48. Optimum results using rough expected value

x111 = 12.4, x121 = 4.86, x231 = 2.42, x311 = 2.4, x331 = 2.48, x122 = 7.56,

x222 = 14.38, x332 = 18.9, Min E[Z] = 547.358., z111 = 5, z121 = 2, z231 = 1,

z311 = 1, z331 = 1, z122 = 2, z222 = 4, z332 = 5

Solution Using Rough Expected Value: To solve the current problem using
rough expected value, we use the rough expected value model (269). Then using
its deterministic form (270) and solving it we get the solution presented in
Table 48.

So we see that the expected objective value lie within the range of objective
value as obtained by rough CCP.

Solution Using Rough Dependent CCP: The objective of this model is
that for a predetermined maximal objective value find a solution with maximum
satisfied trust level so that the optimum objective value is not more than that
predetermined value. For the current problem, suppose the decision maker sat-
isfied with a transportation plan for which the objective value is not exceed 600.
So construct the problem as (271) with Z̄ = 600. Then using (272) we find the
maximum trust level Max α = α′ = 0.843 and the corresponding transportation
planing is presented in Table 49.

Table 49. Optimum results using rough dependent CCP

x111 = 12.4, x121 = 4.895, x231 = 2.455, x311 = 2.4, x331 = 2.444, x122 = 7.56,

x222 = 14.344,x332 = 18.9, z111 = 5, z121 = 2, z231 = 1,

z311 = 1, z331 = 1, z122 = 2, z222 = 4, z332 = 5

6.5 Overall Conclusion

This section presents solid transportation model for the transportation system
where full vehicles are used for transportation so that unit transportation costs
are determined according to full utilization of the vehicle capacity. To deal with
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different situations like availability of each type of conveyances, whether the
available vehicles at one source can be utilized at another source or not, this
presented model is extended to different models with different constraints. STP
with different types of uncertain variables such as fuzzy, random, fuzzy random
are discussed by many researchers, but STP with rough variables is not discussed
before. In this paper we only assume the unit transportation costs as rough
variables, the STP with all the parameters, i.e., costs, availabilities, demands,
conveyance capacities as rough variables may be taken as a future work.

7 Overall Contribution and Future Extension

In this thesis, we have discussed several useful transportation models in different
uncertain (e.g. fuzzy, type-2 fuzzy, rough, linguistic) environments. The thesis
broadly addresses the following major sub-topics, namely:

– Transportation modeling with fuzzy parameters.
– Transportation modeling with type-2 fuzzy parameters.
– Transportation modeling with rough parameters.
– Transportation mode selection with linguistic information.

In Sect. 3 of this Article, a multi-objective solid transportation problem with
type-1 fuzzy parameters is formulated and solved. In this problem, a fuzzy budget
amount for each destination is imposed so that total transportation cost should
not exceed that budget amount. In the budget constraint, both left and right
sides have fuzzy quantity. To deal with such type of constraints, a deterministic
form is derived by the idea of chance-constraint. Here, we have also formulated a
general model (MOMISTP) to deal with transportation problem with multiple
objectives and several types of goods to be transported. In this problem the
corresponding parameters are taken as fuzzy numbers. A defuzzification process
to find crisp values of corresponding fuzzy resources, demands and conveyance
capacities is introduced so that the conditions that total available resources
and total conveyance capacities are greater than or equal to the total demands
must be satisfied. We have discussed that some well established methods like
expected value model may not yield any feasible solution for the problem having
constraints with such type of conditional relations. The idea of minimum of fuzzy
numbers is also applied to the fuzzy objective function and we obtained fuzzy
solution for the objective function with coefficients as fuzzy numbers.

For high computational complexity, there are very few methods available to
deal with type-2 fuzzy set. In Sect. 4, we have proposed a defuzzification method
of type-2 fuzzy variables. We have also introduced an interval approximation
method of continuous type-2 fuzzy variables. For the first time, different trans-
portation problems with type-2 fuzzy parameters are formulated and solved.
Defuzzification method is applied to solve a FCTP with type-2 fuzzy cost para-
meters. A chance-constrained programming model is formulated using gener-
alized credibility measure to solve a FCTP with type-2 fuzzy parameters. A
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MISTP having restriction on conveyances is formulated with type-2 fuzzy para-
meters. A deterministic form for the problem is obtained by applying interval
analysis using the interval approximations of continuous type-2 fuzzy variables.

In Sect. 5, we have proposed a computationally efficient fuzzy MCGDM
method based on a ranking function which is defined based on credibility measure
to rank a fuzzy number over another fuzzy number. The proposed FMCGDM
method is successfully applied to transportation mode selection problem with
linguistic terms generated by fuzzy numbers. We have also proposed a compu-
tationally efficient fuzzy MCGDM method based on a ranking interval type-2
fuzzy variables. This proposed FMCGDM method is applied to a transportation
mode selection problem where linguistic ratings of the alternatives and criteria
weights are represented by IT2 FVs.

In remaining part of the this Article (Sect. 6), a practical solid transportation
model is formulated considering per trip capacity for each type of conveyances.
This is applicable for the system in which full vehicles, e.g. trucks, rail coaches
are to be booked for transportation of products so that transportation cost is
determined on the basis of full conveyances. We have represented fluctuating cost
parameters by rough variables. To solve the problem with rough cost parameters,
we have used rough chance constrained programming model, rough expected
value model and rough dependent-chance programming model developed on the
basis of trust measure theory.

Future Extension: Improvement/development in existing transportation mod-
els is a major issue in transportation research. To overcome different types of
increased complexities and new challenges model should be adaptively changed
and solution strategies should be developed. The transportation models pre-
sented in the thesis also can be extended to form different types of realistic
models. For example, for transportation of several types of items, optimal distri-
bution of available vehicle capacity among the items is a very important issue. In
such case, space constraints can be implemented considering amount of goods,
preferability of goods to be transported, availability of vehicle capacity, etc. For
transportation of highly breakable items (e.g. glass-goods, toys, ceramic goods,
etc.), the breakability issue should be considered. Also safety of transportation
of goods through a particular route (specially in roadways due to land slide,
insurgency, robbery, bad road, etc.) is also very important in the transportation
system. So consideration of safety factor of the routes may be taken into account
as an additional objective or a constraint.

In Sect. 4, the interval approximation method of continuous type-2 fuzzy vari-
ables is illustrated with type-2 triangular fuzzy variable. This interval approx-
imation method can be applied to other T2 FVs such as type-2 normal fuzzy
variable, type-2 gamma fuzzy variable, etc.

In Sect. 6, the solid transportation model is formulated with only the unit
transportation costs as rough variables, the STP with all the parameters, i.e.,
costs, availabilities, demands, conveyance capacities as rough variables may be
taken as a future work.
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The models formulated in this dissertation can be formulated and solved
in fuzzy random, random fuzzy, fuzzy rough and bifuzzy environments with
unit transportation costs, sources, demands, conveyance capacities, etc. as the
corresponding imprecise parameters/variables.
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