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Abstract. There has been some research in the area of rare pattern
mining where the researchers try to capture patterns involving events
that are unusual in a dataset. These patterns are considered more useful
than frequent patterns in some domains, including detection of computer
attacks, or fraudulent credit transactions. Until now, most of the research
in this area concentrates only on finding rare rules in a static dataset.
There is a proliferation of applications which generate data streams, such
as network logs and banking transactions, and applying techniques that
mine static datasets is not practical for data streams. We propose a
novel approach called Streaming Rare Pattern Tree (SRP-Tree) and its
variations, which finds rare rules in a data stream environment using a
sliding window, and show that it both finds the complete set of itemsets
and runs with fast execution time.

Keywords: Rare pattern mining · FP-Growth · Data stream · Sliding
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1 Introduction

Traditionally pattern mining techniques focus on finding frequent patterns
within a dataset. The early works in pattern mining revolve around the Apriori-
like candidate generation-and-test approach. The Apriori algorithm [2] was
widely used and studied with several variations proposed [1,15,22]. The intro-
duction of FP-Tree by Han et al. [12] directed focus in frequent pattern mining
from Apriori approaches to tree-structured approaches. Along with the intro-
duction of FP-Tree was the simultaneous proposal of FP-Growth in [12]. Since
then FP-Growth have been one of the most widely used tree mining algorithms
in the recent decade.

Even though frequent patterns are widely considered to be both informative
and useful, in some scenarios rare patterns may be more interesting as they rep-
resent infrequent events. Rare patterns are patterns that do not occur frequently
within the dataset and can be considered as exceptions. The discovery of rare
patterns also has possible application in several different areas of research such as
Wireless Sensor Networks [8] and Auction Fraud Detection [30]. An example of
a useful rare pattern in practice could be the association of certain occurrences
of symptoms to diseases. For instance, Meningitis is the inflammation of the
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protective membranes covering the brain and spinal cord. Symptoms of Menin-
gitis include headache, fever, vomiting, neck stiffness, and altered consciousness.
Most of the symptoms commonly occur with influenza except for neck stiffness.
By discovering the rare occurrence of all symptoms including neck stiffness,
we are capable of flagging a patient possibly suffering from Meningitis out of a
pool of patients suffering from common influenza. In recent years, the problem of
extracting rare patterns from static datasets has been addressed. These proposed
algorithms often follow either the Apriori algorithm or the FP-Tree algorithm.
However, as the capability of generating data streams increases, the ability to
capture useful information from streaming data becomes more important.

Ever since its inception, data stream mining has remained one of the more
challenging problems within the data mining discipline. This is mainly due to the
nature of data streams being continuous and unbounded in size as opposed to
traditional databases where data is static and stable. Therefore, techniques devel-
oped have focused on improving the execution time and storage efficiency [7].
Recently the term “Big Data” has been widely used and has close relations to
high performance data mining. Some of the important aspects of Big Data is
introduced in [9] and the problem of devising models and algorithms for such
high performance data mining tasks is further explained in [6].

Data from a wide variety of application areas ranging from online retail appli-
cations such as online auctions and online bookstores, telecommunications call
data, credit card transactions, sensor data, wireless sensor networks and climate
data are a few examples of applications that generate vast quantities of data on
a continuous basis. Data produced by such applications are highly volatile with
new patterns and trends emerging on a continuous basis. The unbounded size of
data streams is considered the main obstacle when processing data streams. As it
is unbounded, it makes it infeasible to store the entire data on disk. Furthermore,
the processing of data streams should ideally be near real time. This raises two
issues. Firstly, a multi-pass algorithm cannot be used because the entire dataset
would need to be stored before mining can commence. This restriction limits the
use of the majority of current database-based techniques as most of them require
multiple scans of the entire dataset which needs the entire dataset to be stored.
Secondly, obtaining the exact set of rules that includes both frequent and rare
rules from the data streams is too expensive. In theory, most frequent pattern
mining techniques that uses a minimum support threshold can be used to find
rare patterns as these thresholds can be lowered to find both frequent and rare
rules then later the frequent rules can be pruned out leaving only rare rules.
However, this approach is extremely inefficient as a large number of unnecessary
rules are generated and then discarded. In light of this situation, the need for
an efficient algorithm that finds only rare rules in data streams without having
to generate frequent rules is evident. In this paper we propose a technique that
achieves this aim.

Contributions. Our contribution in this paper is the proposal of a novel tech-
nique called Streaming Rare Pattern Tree (SRP-Tree), which captures the com-
plete set of rare rules in data streams using only a single pass scanning of the
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dataset and adapts a sliding window approach. We also propose two variations
of the technique where the first one involves using a novel data structure called
the Connection Table which allows us to efficiently constrain the search in our
tree, and keep track of items within the window. The second variation improves
upon the first and requires the tree to go through restructuring before mining
with FP-Growth.

Paper Structure. The paper is organized as follows. In Sect. 2 we look at
related work in the area of rare association rule mining. In Sect. 3 we present
preliminary concepts and definitions for rare pattern mining in data streams.
In Sect. 4 we describe our SRP-Tree approach, and in Sect. 5 we describe and
discuss our experimental results. Finally, Sect. 6 concludes the paper.

2 Related Work

In this section we will discuss the related work in the area of pattern mining,
specifically, frequent pattern mining and rare pattern mining. We look at the pre-
vious approaches that performs these tasks in both traditional static databases
and in stream environments.

2.1 Frequent Pattern Mining

In the area of frequent pattern mining, the first algorithm was Apriori [2] and
was proposed in the year 1994. The Apriori algorithm does multiple database
scans and generates a large number of possible rules which are later found to
be infrequent. This repeated candidate generation-and-test approach was exten-
sively studied and used until in the year 2000 when the FP-Tree algorithm was
proposed. The FP-Tree [12] is one of the most widely known techniques, and
unlike Apriori it uses a tree structure to find frequent patterns in a database.
FP-Tree solves the efficiency problem of Apriori-like approaches when finding
patterns and rules and proposes the FP-Growth algorithm as the mining algo-
rithm for the tree. FP-Tree proves to be efficient at finding the complete set
of frequent patterns from a database and the FP-Growth algorithm was later
adopted by many and considered as an efficient pattern mining algorithm. FP-
Tree, being a landmark technique, is designed as a multi-pass approach which
is not ideal in the data stream environment where data can only be read once.
In addition, it is also memory intensive and unfitting for stream environments
as streams are considered to be unbounded in data and working algorithms are
required to have an efficient memory use.

Recently, more research that considers mining frequent patterns from data
streams have been proposed. Giannella et al. [11] proposed a technique called
FP-Stream which adopts the structure of FP-Tree and finds the approximate
set of frequent patterns from data streams. FP-Stream mines time-sensitive
frequent patterns and incrementally maintains only the historical informa-
tion of frequent patterns. Overall, FP-Stream proposed efficient algorithms for
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constructing, maintaining, and updating pattern structures over data streams.
However, FP-Stream only finds the approximate set of frequent patterns and
discovering an approximate set of patterns is a disadvantage of the technique as
in most cases, the user would want to find the complete set of patterns.

The technique DSTree was proposed by Leung et al. [20] and it is also a
tree-structured algorithm. Unlike FP-Stream, DSTree finds the complete set of
frequent patterns from a data stream. Unlike FP-Tree which builds its tree based
on frequency-descending order, DSTree incrementally builds the tree based on
a canonical ordering. DSTree is unaffected by changes in item frequency and
therefore has the attractive property that it is easily updated and maintained as
data is removed and added into the tree. DSTree has a wider applicability and
can be used to find maximal, closed, and constrained itemsets.

Tanbeer et al. [27] proposed the CPS-Tree which is an efficient tree-structured
algorithm that also finds the complete set of frequent patterns from a data
stream. Unlike DSTree which uses a canonical ordering, CPS-Tree builds a com-
pact tree in frequency-descending order by performing multiple sorting opera-
tions on the tree before mining of the tree. Resorting of the tree was proven to
be more cost effective in the experiments when compared to other tree-based
frequent mining techniques.

Most pattern mining algorithms like the DSTree and CPS-Tree adopt a slid-
ing window model. However, for some applications, other models such the time-
fading model and the landmark model may be more appropriate. In [19] the
authors proposed a tree-based mining algorithm that mines frequent patterns
from data streams using the time-fading model and the landmark model. The
two different models were applied to streams of uncertain data were it is more
sensible than using the sliding window model and the proposed algorithms were
shown to be efficient through evaluation.

There has been a lot of other works in the area of data stream mining and
most of them look at finding frequent patterns from data streams [3–5,13,16,18,
21,24].

2.2 Rare Pattern Mining

There has also been a lot of work in the area of rare pattern mining, including
many recent works such as [17,23,25]. However all current research in this area is
designed for static datasets and is not able to handle a data stream environment.
Currently there are two different types of rare pattern mining approaches: level-
wise and tree based, like that of frequent pattern mining. Current itemset mining
approaches, which are based on level-wise exploration of the search space are
similar to the Apriori algorithm [2]. In Apriori, k-itemsets (itemsets of cardinality
k) are used to generate k+1-itemsets. These new k+1-itemsets are pruned using
the downward closure property, which states that the superset of a non-frequent
itemset cannot be frequent. Apriori terminates when there are no new k + 1-
itemsets remaining after pruning. MS-Apriori [22], Rarity [28], ARIMA [26],
AfRIM [1] and Apriori-Inverse [15] are five algorithms that detect rare itemsets.
They all use level-wise exploration similar to Apriori, which have candidate
generation and pruning steps.
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MS-Apriori [22] uses a bottom-up approach similar to Apriori. In MS-Apriori,
each item can be assigned a different minimum item support value (MIS). Rare
items can be assigned a low MIS, so that during candidate pruning, itemsets that
include rare items are more likely to be retained and participate in rule generation.
Apriori-Inverse [15] is used to mine perfectly rare itemsets, which are itemsets that
only consist of items below a maximum support threshold (maxSup).

Szathmary et al. [26] proposed two algorithms that can be used together to
mine rare itemsets: MRG-Exp and ARIMA. They defined three types of item-
sets: minimal generators (MG), which are itemsets with a lower support than
its subsets; minimal rare generators (MRG), which are itemsets with non-zero
support and whose subsets are all frequent; and minimal zero generators (MZG),
which are itemsets with zero support and whose subsets all have non-zero sup-
port. The first algorithm, MRG-Exp, finds all MRG by using MGs for candidate
generation in each layer in a bottom up fashion. The MRGs represent a border
that separates the frequent and rare itemsets in the search space. All itemsets
above this border must be rare according to the antimonotonic property. The
second algorithm, ARIMA, uses these MRGs to generate the complete set of rare
itemsets. ARIMA stops the search for non-zero rare itemsets when the MZG bor-
der is reached, which represents the border above which there are only zero rare
itemsets.

Adda et al. [1] proposed AfRIM, which begins with the itemset that contains
all items found in the database. Candidate generation occurs by finding com-
mon k-itemset subsets between all combinations of rare k + 1-itemset pairs in
the previous level. Troiano et al. proposed the Rarity algorithm that begins by
identifying the longest transaction within the database and uses it to perform a
top-down search for rare itemsets, thereby avoiding the lower layers that contain
only frequent itemsets.

All of the above algorithms use the fundamental generate-and-test approach
used in Apriori, which has potentially expensive candidate generation and prun-
ing steps. In addition, these algorithms attempt to identify all possible rare
itemsets, and as a result require a significant amount of execution time. RP-
Tree algorithm was proposed by Tsang et al. [29] as a solution to these issues.
RP-Tree avoids the expensive itemset generation and pruning steps by using a
tree data structure, based on FP-Tree [12], to find rare patterns. However it uses
a multi-pass approach, which is not suitable in a data stream environment.

More recently Lavergn et al. [17] proposed a rare pattern mining technique
using itemset trees and relative support called TRARM-RelSup. As opposed
to traditional techniques that used the minimum support threshold, TRARM-
RelSup used the relative support measure with the goal of capturing some addi-
tional rare rules that are missed out when using the minimum support threshold.
The algorithm combines the efficiency of targeted association mining querying
with the capabilities of rare rule mining resulting in the discovery of more rare
rules for the user.

Even though there has been many algorithms that perform rare pattern min-
ing, up until now there has been no research into rare pattern mining in data
streams.
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3 Preliminaries

In this section, we provide definitions of key terms that explain the concepts
of frequent pattern mining in a data stream. Let I = {i1, i2, . . . , in} be a set
of literals, called items, that represent a unit of information in an application
domain. A set X = {il, . . . , im} ⊆ I and l,m ∈ [1, n], is called a itemset, or a
k-itemset if it contains k items. A transaction t = (tid, Y ) is a tuple where tid
is a transaction-id and Y is a pattern. If X ⊆ Y , it is said that t contains X or
X occurs in t. Let size(t) be the size of t, i.e., the number of items in Y .

Definition 1. A data stream DS is an infinite sequence of transactions DS =
[t1, t2, . . . , tm), where ti, i ∈ [1,m] is the i th transaction in the data stream.

Definition 2. A window W is a set of all transactions between the ith and jth
(where j > i) transactions and the size of W is |W| = j − i.

Definition 3. Window W consists of blocks where W = {B1, B2, · · · , Bn}. A
block is also a set of transactions like W.

Definition 4. The count of an itemset X in W, countW(X), is the number of
transactions in W that contain X.

Definition 5. The support of an itemset X in W is the count of an itemset
divided by the size of W

supW(X) =
countW(X)

|W|
An association rule is an implication X → Y such that X ∪ Y ⊆ I and

X ∩Y = ∅. X is the antecedent and Y is the consequent of the rule. The support
of X → Y in W is the proportion of transactions in W that contains X ∪ Y .
The confidence of X → Y is the proportion of transactions in W containing X
that also contains Y .

3.1 Rare Itemsets

We adopted the rare itemsets concept from Tsang et al. [29]. We consider an
itemset to be rare when its support falls below a threshold, called the minimum
frequent support (minFreqSup) threshold. One difficulty when generating rare
itemsets is differentiating noisy itemsets from the actual rare itemsets. As the
support of the itemset is low, the potential of pushing unrelated items together
increases as well, thus producing noisy itemsets. To overcome this problem, we
define a noise filter threshold to prune out the noise called the minimum rare
support (minRareSup) threshold. Typically minRareSup is set to a very low
level, e.g., 0.01 %.

Definition 6. An itemset X is a rare itemset in a window W iff supW(X) ≤
minFreqSup and supW(X) > minRareSup.
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However not all rare itemsets that fulfill these properties are interesting. Fur-
thermore, rare itemsets can be divided into two types: rare-item itemsets and
non-rare item itemsets.

Rare item itemsets refer to itemsets which are a combination of only rare
items and itemsets that consist of both rare and frequent items. Given 4 items
{a, b, c, x} with supports a = 0.70, b = 0.45, c = 0.50, and x = 0.10, with
minFreqSup = 0.15 and minRareSup = 0.01, the itemset {a, x} would be a
rare item itemset assuming that the support of {a, x} > 0.01, since the itemset
includes the rare item x.

Definition 7. An itemset X is a rare-item itemset iff X is a rare itemset and

∃x ∈ X, supW(x) ≤ minFreqSup

Non-rare item itemsets only has frequent items which fall below the minimum
frequent support threshold. Given 4 items {a, b, c, x} with supports a = 0.70, b
= 0.45, c = 0.50, and x = 0.10, with minFreqSup = 0.15 and minRareSup =
0.01, and the itemset {a, b, c} with a support of 0.09, then this itemset would
be a non-rare item itemset as all items within the itemset are frequent, and its
support is between minFreqSup and minRareSup.

Definition 8. An itemset X is a non-rare item itemset iff X is a rare item-
set and

∀x ∈ X, supW(x) > minFreqSup

4 SRP-Tree: Rare Pattern Tree Mining for Data Streams

Current tree based rare pattern mining approaches follow the traditional FP-
Tree [12] approach. It is a two-pass approach and is affordable when mining a
static dataset. However in a data stream environment, a two-pass approach is not
suitable. To process a static environment, non-streaming rare pattern techniques
such as RP-Tree order each item within a transaction according to its frequency
before inserting it into the tree. Using these algorithms the frequency of the
items are obtained during the first pass through the dataset.

In data streams we can only look at the transactions within the stream once,
thus, a one-pass approach is necessary. This rules out the possibility of building
a tree based on the frequency of items within the data stream. Furthermore, fre-
quency of an item may change as the stream progresses. There are four scenarios
which we need to consider:

Scenario 1. A frequent item x at a particular time T1 may become rare at
time T2.

Scenario 2. A rare item x at a particular time T1 may become frequent at
time T2.

Scenario 3. A frequent item x at a particular time T1 may remain frequent at
time T2.

Scenario 4. A rare item x at a particular time T1 may remain rare at time T2.
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T1 represents a point in time, and T2 represents a future point in time after T1.
To find rare patterns within data streams, we propose a new algorithm called

SRP-Tree that mines rare patterns in a data stream using a sliding window and
tree based approach. We discuss the details of the algorithm and introduce the
two variations of the algorithm: SRP-Tree with Connection Table and SRP-Tree
with Restructuring.

4.1 Approach 1: SRP-Tree with Connection Table

In this approach, items from incoming transactions in the stream are inserted
into a tree based on a canonical ordering. A canonical ordering allows us to
capture the content of the transactions from the data stream and organise tree
nodes according to a particular order. We use the lexicographic ordering of the
items as the canonical ordering here. When we use a canonical order to build the
tree, the ordering of items is unaffected by the changes in frequency caused by
incremental updates. There has been other work carried out using a canonical
ordering to build trees for a data stream mining environment [10,20], but these
research has been tailored to find frequent patterns.

In our tree built using canonical ordering, the frequency of a node in the tree
is at least as high as the sum of frequencies of its children. However, this does
not guarantee the downward closure property which exists in a tree ordered in
frequency-descending order. The downward closure property in a traditional rare
pattern tree mining algorithm, whereby, rare-items will never be the ancestor of a
non-rare item in the initial tree due to the tree construction process is violated.
Hence, we propose a novel item list called the Connection Table which keeps
track of each unique item in the window and the items they co-occur with along
with their respective frequencies.

The Connection Table used in this approach captures in the transactions only
items that have a lower canonical ordering. For example, given a transaction in
a canonical order of {a, b} we store in the table that a is connected to b with
a frequency of 1 but it does not store b is connected to a. This is because of
the properties of the canonical ordering in the constructed tree: item a will
always be the ancestor of item b. Since mining is carried out using a bottom-
up approach, by mining item b, item a is also mined. The opposite does not
hold since mining item a does not guarantee that item b is mined. Therefore, by
using the Connection Table to keep track of connected items and adding them
as arguments to FP-Growth in the mining phase, the complete set of rare-item
itemsets can then be captured. The Connection table is designed using a hash
map which allows for O(1) access. In worst case scenarios, the table could reach
size of x(x+1)

2 where x is the total number of items; however, in reality this is
highly unlikely.

At any point of time should we decide to mine the current window, the initial
tree of the current window is used to construct conditional pattern bases and
conditional trees for each rare-item and their connected items in the Connection
Table. We trigger the mining step when a block is filled. In this example the block
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size will be equal to the window size of 12. Note that only connection items with
an occurring frequency greater than or equal to the minRareSup are included.
Each conditional tree and corresponding item are then used as arguments for
FP-Growth. The threshold used to prune items from the conditional trees is
minRareSup. The union of the results from each of these calls to FP-Growth is
a set of itemsets that contains a rare-item, or rare item itemsets.

Table 1. Set of transactions in a given window W of size 12

Tid Transaction
1 {a, g, h}
2 {a, g, h, i}
3 {b, c, d, f}
4 {b, d, j}

Tid Transaction
5 {c, f, h}
6 {a, e, g, h}
7 {g}
8 {h}

Tid Transaction
9 {c, d, h}
10 {b, f}
11 {a, h}
12 {a}

Table 2. Connection table using the window of transactions listed in Table 1

Item Items Co-occurred
a {(e:1), (g:3), (h:4), (i:1)}
b {(c:1), (d:2), (f:2), (j:1)}
c {(d:2), (f:2), (h:2)}
d {(f:1), (h:1), (j:1)}
e {(g:1), (h:1)}

Item Items Co-occurred
f {(h:1)}
g {(h:1), (i:1)}
h {(i:1)}
i {∅}
j {∅}

Example. Given the dataset in Table 1, we show how the Connection Table is
built in Table 2. The left column in Table 2 list the unique items in the window,
whereas the right column lists the set of co-occurring items along with the co-
occurrence frequency of that particular item to the item in the right column.
For example, item c co-occurs twice with items d, f , and h.

SRP-Tree with Connection Table Algorithm. Our SRP-Tree with connec-
tion table algorithm is shown in Algorithm 1. This approach essentially performs
in one pass the counting of item frequencies and the building of the initial tree.
Therefore, in a given window W, for each incoming transaction t, SRP-Tree first
updates the list of item frequencies according to the transactions contained in
the current window. We refer to this as updateItemFreqList(t) method, where we
increment the counts of items contained in the new transaction and decrement
the counts of items contained in the oldest transcations to be discarded from
the window. SRP-Tree then updates the tree structure according to the trans-
actions contained in the current window in a similar fashion, which is referred
to as updateTree(t) method in Algorithm 1. We mine the tree after a particular
number of transactions also known as a block. We refer to a preset block size as
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Algorithm 1. SRP-Tree (Connection Table)
1. Input: DS, W, B, minRareSup,minFreqSup;
2. Output: results (Set of rare item itemsets);

3. while exist(DS) do
4. t ←new incoming transaction from DS;
5. currentBlockSize ← currentBlockSize + 1;
6. updateItemFreqList(t);
7. updateConnectionTable(t);
8. tree ← updateTree(t);
9. Mining at the end of block

10. if B == currentBlockSize then
11. currentBlockSize ← 0;
12. results = ∅;
13. I ← {all unique items in W};
14. R ← {i ∈ I | supW(i) ≥ minRareSup ∧ supW(i) < minFreqSup};
15. C ← {k ∈ R, j ∈ connectionTable(k) | supW(k) ≥ minRareSup};
16. for item a in tree do
17. if a ∈ R or a ∈ C then
18. construct a’s conditional pattern-base and then a’s conditional FP-Tree

Treea;
19. results ← results ∪ FP-Growth(Treea, a);
20. end if
21. end for
22. end if
23. end while
24. return results;

B. In this algorithm, R refers to the set of rare items and C refers to the set of
items that co-occur with a particular rare item.

We would also like to point out, that another difference between SRP-Tree
and a static rare pattern mining approach is that in SRP-Tree, the tree is built
using all the transactions in the window, whereas in a static rare pattern mining
approach, only transactions with rare items are used to build the tree. A static
approach has the luxury of looking at the dataset twice and discarding items
which it is not interested in before the tree is even built. In our case, we simply
cannot know which transactions contain rare items until we decide to mine.

SRP-Tree with Connection Table Example. Applying SRP-Tree to the
window W of the 12 transactions in Table 1, the support ordered list of all
items is 〈(h:6), (a:5), (g:4), (b:3), (c:3), (d:3), (f :2), (e:1), (i:1), (j:1)〉. Using
minFreqSup = 4 and minRareSup = 2, only the items {b, c, d, f} are rare, and
included in the set of rare items, R.

The initial SRP-Tree constructed for window W of size 12 is shown in Fig. 1.
To find the rare-item itemsets, the initial SRP-Tree is used to build conditional
pattern bases and conditional SRP-Trees for each rare item {b, c, d, f} and any
additional items in the Connection Table that is connected with a rare item that
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Fig. 1. Pattern tree constructed from window W using SRP-Tree
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Fig. 2. Conditional tree, Treeh

has a frequency greater than the minRareSup, in this example, item h. The con-
ditional tree for item h is shown in Fig. 2. Each of the conditional SRP-Trees and
the conditional item are then used as parameters for the FP-Growth algorithm.

4.2 Approach 2: SRP-Tree with Restructuring

In the previous approach we build the tree based on a canonical ordering and
proposed the Connection Table that enables the capture of the complete set
of rare rules from the canonically ordered tree. In this approach we improve
upon the first and use an additional tree restructuring step. The additional
restructuring step replaces the Connection Table and still allows the algorithm
to find the complete set of rare rules.

The Connection Table proposed in the previous approach was used because
when building the tree with a canonical ordering, the downward closure property
is violated (see Sect. 4.1). In this second approach, instead of using the Connec-
tion Table, we perform a tree restructuring at the end of each block before
mining the tree with FP-Growth. The additional tree restructuring effectively
re-orders the nodes in the tree at each block into a strict frequency-descending
order for that block. After restructuring, the tree will maintain the downward
closure property and performing FP-Growth on the rare items themselves will
yield the complete set of rare rules.

SRP-Tree with Restructuring Algorithm. The algorithm for the restruc-
turing approach of our SRP-Tree is shown in Algorithm 2. The building and
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Algorithm 2. SRP-Tree (Restructuring)
1. Input: DS, W, B, minRareSup,minFreqSup;
2. Output: results (Set of rare item itemsets);

3. while exist(DS) do
4. t ←new incoming transaction from DS;
5. currentBlockSize ← currentBlockSize + 1;
6. updateItemFreqList(t);
7. tree ← updateTree(t);
8. Mining at the end of block
9. if B == currentBlockSize then

10. currentBlockSize ← 0;
11. tree ← restructureTree();
12. results = ∅;
13. I ← {all unique items in W};
14. R ← {i ∈ I | supW(i) ≥ minRareSup ∧ supW(i) < minFreqSup};
15. for item a in tree do
16. if a ∈ R then
17. construct a’s conditional pattern-base and then a’s conditional FP-Tree

Treea;
18. results ← results ∪ FP-Growth(Treea, a);
19. end if
20. end for
21. end if
22. end while
23. return results;

updating of the item frequency list and the tree is similar to the previous app-
roach and explained in the earlier sections. The main difference is the absence of
maintaining the Connection Table and also an additional restructuring method
at line 11.

Restructuring Technique. A tree is usually restructured by rearranging the
nodes of an existing tree built based on a previous ordering to another differ-
ent desired ordering. In our case we are restructuring the tree built based on a
canonical ordering to a frequency-descending ordering. This operation involves
sorting the item frequencies list and shifting the position of the nodes in the
tree. We adopt the restructuring technique used in [16]. The branch sorting
method (BSM) is an efficient tree restructuring technique that fits the pur-
pose of our algorithm. In summary, BSM performs tree restructures by going
through several steps. First the item-frequency-list of the items in the cur-
rent block is rearranged into frequency-descending order. Then, the technique
iterates through each unsorted path in the tree and sorts them based on the
reordered item-frequency-list. BSM is an array-based technique whereby for each
unsorted branch (path) in the tree, it first removes the path, sorts the path based
on the frequency-descending ordering, then adds the path back into the tree.
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Restructuring is complete when all the branches are processed and sorted which
produces the final sorted tree.

SRP-Tree with Restructuring Example. Consider the same example as
given by the transactions in Table 1. The support ordered list of all items is 〈(h:6),
(a:5), (g:4), (b:3), (c:3), (d:3), (f :2), (e:1), (i:1), (j:1)〉. Using minFreqSup = 4
and minRareSup = 2, only the items {b, c, d, f} are rare, and included in the set
of rare items, R.

null

h : 7

a : 4

g : 3

e : 1 i : 1

c : 2

d : 1 f : 1

g : 1 b : 3

f : 1 c : 1

d : 1

f : 1

d : 1

j : 1

a : 1

rare item node

frequent item node

noise item node

Fig. 3. Pattern tree from window W after restructuring into frequency descending
order

In this approach, instead of mining the tree (shown in Fig. 1) built with
canonical ordering a, b, c, d, e, f, g, h, i, j, we mine the restructured tree based
on the support ordered list of items in the window W with the ordering
h, a, g, b, c, d, f, e, i, j. The tree after restructuring is shown in Fig. 3.

Recall that the downward closure property in a traditional rare pattern tree
mining algorithm states that rare-items will never be the ancestor of a non-rare
item in the initial tree due to the tree construction process. From this restructured
tree built based on frequency-descending support ordering, we can observe that
all the rare-items (circular nodes) are indeed never the ancestor of a non-rare
item (rectangular nodes). Therefore, we can prove that the downward closure
property is satisfied in this case.

We also observe that because of the change in the ordering of the tree, it has
become more compact (containing fewer nodes). In general, the compactness of
a tree will have an influence on the mining time of FP-Growth. Therefore, the
more compact the tree is, the faster the mining time of FP-Growth.

5 Experimental Results

In this section we present the evaluation and results performed on the two varia-
tions of our algorithm SRP-Tree. In Sect. 5.1 we describe in detail the algorithm
we used to compare our SRP-Tree against. In Sect. 5.2 we evaluate the algorithms
on real-world datasets and compare their performance at finding rare-item item-
sets. Lastly in Sect. 5.3 we present a case study on the T40I10D100K dataset
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and perform additional evaluations by varying the minimum frequent support
threshold and the block size of the techniques.

All algorithms were implemented in Java and executed on a machine
equipped with an Intel Core i5-2400 CPU @ 3.10 GHz with 4 GB of RAM running
Windows 7 x 64.

5.1 Streaming Canonical Tree (SC-Tree)

SRP-Tree is the very first attempt at mining rare patterns in a data stream
environment so there are no other similar techniques that mine rare patterns in
a data stream to compare to for evaluation. Therefore, in these experiments we
compared the performance of our SRP-Tree to the Streaming Canonical Tree
(SC-Tree), which is a modified version of DSTree [20] with pruning of frequent
itemsets. This technique that we use for comparison, SC-Tree with pruning, finds
rare item itemsets in an unoptimized brute-force manner. The SC-Tree is a one
pass technique which stores the transactions from the stream in a tree using
canonical ordering and stores/updates item frequencies similar to DSTree. To
find all rare item itemsets, SC-Tree finds and generates all itemsets that meet
the minRareSup threshold, then removes all other itemsets except rare item
itemsets with an extra pruning step. SC-Tree produces the same itemsets and
generates the same rules as SRP-Tree (Table) and SRP-Tree (Restructure).

5.2 Real-World Dataset

In this section we present the time and relative time taken for itemset generation
of SRP-Tree (both approaches) and SC-Tree on real-world datasets. The time
is reported in seconds and the relative time is calculated by setting SC-Tree to
1.00 and SRP-Tree relative to that of SC-Tree.

relative time =
Time taken by SRP-Tree
Time taken by SC-Tree

We used a window size and block size of 25 K for all datasets except for the
Mushroom dataset where we used 2 K due to its smaller size. The minFreqSup
and minRareSup thresholds are shown in Table 3 for each dataset. The thresholds
are user-defined through examining the distribution of item frequencies in each
of the datasets. We acknowledge that given a data stream environment, this is
not the most suitable way of defining thresholds and in the future we will be
looking at a way to adapt the thresholds to the change in distribution and drift
of the transactions in the stream.

We have tested the algorithms on 6 datasets obtained from the FIMI (Fre-
quent Itemset Mining Implementations) repository1. The datasets are: Mush-
room, Retail, BMS-POS, T10I4D100K, T40I10D100K, and Kosarak (250K).

Here are brief descriptions of each dataset:
1 http://fimi.ua.ac.be/data/.

http://fimi.ua.ac.be/data/
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– The Mushroom dataset is a dense dataset with a relatively larger number
of possible rules and patterns. It contains a total of 8124 instances and 22
attributes that includes descriptions of hypothetical samples corresponding
to 23 species of gilled mushrooms in the Agaricus and Lepiota family.

– The Retail dataset, compared to Mushroom, is a much more sparse dataset
that contains anonymized retail market basket data from an Belgian retail
store over approximately 5 months. The total number of instances is 88163.

– The BMS-POS dataset contains several years worth of point-of-sale data from
a large electronics retailer. Each transaction represents customer purchases of
items at one time. It contains a total of 515597 instances and the average
transaction size is 6.5.

– The T10I4D100K and T40I10D100K originates from the same source, the IBM
Almaden Quest market basket data generator. They both contain a total of
100000 instances.

– The Kosarak dataset contains anonymized click-stream of a hungarian online
news portal. Kosarak contains a larger number of different transactions with
different characteristics (i.e. the dataset contains transactions that vary largely
in average transaction size and items).

Table 3. Comparison between SRP-Tree and SC-Tree

Dataset B MinRareSup MinFreqSup # Itemsets SRPT (Table) SRPT (Restructure) SC-Tree

Time Rel. Time Rel. Time Rel.

(s) time (s) time (s) time

Mushroom 2K 0.01 0.05 14443674 1131 0.86 86 0.07 1321 1.00

Retail 25K 0.0001 0.0005 572673 239 0.71 9 0.03 339 1.00

BMS-POS 25K 0.0002 0.0005 1426 58 0.02 25 0.01 3783 1.00

T10I4D100K 25K 0.0001 0.0005 1161 12 0.63 6 0.32 19 1.00

T40I10D100K 25K 0.003 0.05 4734806 301 0.79 94 0.25 380 1.00

Kosarak(250K) 25K 0.001 0.15 35623519 703 0.10 591 0.08 7213 1.00

Table 3 shows, for each dataset, the block size, minRareSup, and minFreqSup
used to run the algorithms then the comparison between SRP-Tree (Table),
SRP-Tree (Restructure) and SC-Tree of the itemsets generated, time it took
to run the algorithm, and the relative time. The objective of this comparison
is to look at the efficiency of each algorithm under the same conditions. SRP-
Tree (Table), SRP-Tree (Restructure) and SC-Tree generate the same number
of itemsets because both SRP-Tree approaches only generate rare-item itemsets
and SC-Tree generates all itemsets that meet the minRareSup threshold then
the extra pruning step removes all other itemsets that are not rare-item itemsets.
Therefore, the final number of itemsets generated by both algorithms is the same.

In all datasets of varying item frequency distribution, both SRP-Tree
approaches run faster than SC-Tree where SRP-Tree (Restructure) runs signifi-
cantly faster than the other two techniques. The time taken to run the various
datasets are highly dependent on the tree structure built from the transactions
in the datasets and generally have a positive correlation with the number of
itemsets generated. The number of itemsets generated also has a great variation
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and is highly dependent on the composition/nature of the respective dataset. For
datasets that are more sparse in nature like Retail, BMS-POS, and T10I4D100K,
the number of itemsets generated are usually smaller than a dense dataset like
Mushroom and the run-time is usually faster.

5.3 Case Study: T40I10D100K

The T40I10D100K dataset is generated using the generator from the IBM
Almaden Quest research group. Figures 4 and 5 shows the item frequency dis-
tribution of the T40I10D100K dataset. When we compared the distribution of
the T40I10D100K dataset, to other datasets in the FIMI repository, we observed
that the T40I10D100K dataset is more sparse in nature compared to the Mush-
room dataset, but more dense than datasets like Retail and BMS-POS. It is
also important to note that T40I10D100K contains a high proportion of items
with a frequency of less than 0.1 (approximately 90 % of the total items). This
particular distribution contains a greater number of prospective rare items and
rules to be mined from the dataset.

Fig. 4. Item frequency distribution Fig. 5. Normalized item frequency dis-
tribution

In Table 4 we show the difference in itemsets generated and the time it took
to generate items of varying minFreqSup on the T40I10D100K dataset. We aim
to look at the fluctuations in run-time and the number of itemsets generated
caused by varying the minimum frequent support threshold. As we increase the
minFreqSup, the number of itemsets generated increases and the relative time
also increases. It is important to note that the real time taken for SRP-Tree
(Table) to generate itemsets decreases as we increase the minFreqSup. This is
because at a lower minFreqSup for this particular distribution of the dataset,
there is a high co-occurrence of rare items to other items with similar item fre-
quency (indicating that these other items are also likely to have rare properties).
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Table 4. Varying MinFreqSup for T40I10D100K

MinFreqSup Itemset SRPT (Table) SRPT (Restructure) SC-Tree

Time(s) Relative Time(s) Relative Time(s) Relative

Time Time Time

0.04 4397517 333 0.93 76 0.21 357 1.00

0.05 4734806 301 0.79 94 0.25 380 1.00

0.06 5028947 278 0.66 116 0.28 421 1.00

0.10 5105892 246 0.55 148 0.33 446 1.00

0.15 5136904 238 0.52 160 0.35 454 1.00

The mining of these additional highly connected items with rare association pat-
terns incurred a larger overhead in maintaining the Connection Table. As the
minFreqSup increases and most of the highly connected potential rare items are
accounted for, the overhead decreases and this results in a faster runtime.

However, for SRP-Tree (Restructure) the time taken to generate itemsets
increases as we increase the minFreqSup like that of SC-Tree. This is because
this approach does not use the Connection Table structure to mine for itemsets
and that the time taken is generally positively correlated with the number of
itemsets. Table 5 shows the difference in execution time when the block size
varies. Similar to the above experiment, we vary one variable in the algorithms
while keeping the others constant. Here we aim to compare the behavior of the
algorithms when the block size variable is changed. Overall we observed that the
execution time is increased as the block size increases due to the increased size
of the tree being built and SRP-Tree (Restructure) is still the fastest running
technique of the three.

Table 5. Execution Time based on Varying Block Sizes for T40I10D100K

Block size SRPT (Table) SRPT (Restructure) SC-Tree

Avg time / Relative Avg. time / Relative Avg. time / Relative

window (s) time window (s) time window (s) time

10K 41 0.59 19 0.27 70 1.00

25K 75 0.79 24 0.25 95 1.00

50K 142 0.71 19 0.09 201 1.00

6 Discussion

Rare pattern mining is often a more difficult and computationally expensive task
than frequent pattern mining. Frequent patterns occur with a high frequency
and frequent itemsets will only contain frequent items, therefore, frequent pat-
tern mining techniques generally need to only consider a smaller subset of items
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out of the total set when mining. Strategies such as top-k items or minimum
frequent support threshold are used to determine what items are frequent. The
natural property of frequent items virtually constrains the search space of the
mining techniques and effectively helps guarantee mining efficiency. In contrast,
rare patterns occur with a low frequency and rare itemsets may contain both
frequent and rare items. When mining rare patterns, the search space is con-
sidered to be much larger compared to mining frequent patterns, making rare
pattern mining a more computationally expensive task. We remedy this by bet-
ter constraining the initial search space of the patterns using SRP-Tree. We
compared our two variations of SRP-Tree against SC-Tree, a modified version
of DSTree that finds rare patterns using a brute-force strategy. Using SC-Tree,
the search space included both frequent and rare patterns. It is only through an
additional pruning step that SC-Tree removes frequent patterns from the final
discovered set leaving the desired rare patterns. The effects of constraining the
initial search space using SRP-Tree is evident from the experimental evaluation
showing a significant improvement in execution time.

Traditionally pattern mining techniques are used in databases to find a spe-
cific set of useful patterns. In dynamically changing data streams, the set of
patterns can vary and change over-time. Our SRP-Tree which works in a stream
environment can be incorporated with drift detection methods [14] to provide
an effective way of discovering useful rare patterns at various points of the data
stream. Drift detection signals points where patterns have possibly changed,
then instead of using a block size variable to mine patterns periodically, the
drift points found by the detection method is used as points when SRP-Tree
mines patterns. This incorporated approach will allow the user to discover more
meaningful rare patterns and also during times when patterns do not change,
saves on the unnecessary mining steps.

7 Conclusions and Future Work

We present a new algorithm for mining rare patterns using a tree structure
in a data stream environment with two different variations. To the extent of
our knowledge, this is the first algorithm that looks at mining rare patterns in
a data stream. Our technique is a one-pass only strategy which is capable of
mining rare patterns in a static database or in a dynamic data stream. In the
case of mining data streams, our technique is also capable of mining at any given
point of time in the stream and with different window and block sizes. One of
the contributions of this algorithm is a novel approach using a Connection Table
which keeps track of related items in a sliding window and reduces the mining
space during itemset generation. In our evaluations on six different datasets,
both variations of the SRP-Tree algorithm are capable of generating itemsets in
a more efficient manner compared to the SC-Tree.

In the future we intend to investigate dynamically adapting the minRareSup
and minFreqSup thresholds on-the-fly because data streams are volatile and
neither setting fixed thresholds for all data nor defining the thresholds prior
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based on distribution is deemed suitable. We will also look at the possibility of
dynamically adjusting the window size to reflect the density of incoming data
in the stream. For example, if the new transactions in the window contained
uninteresting or duplicate itemsets and rules, we could (through varying the
window size) decide not to mine until more interesting itemsets and rules are
captured. It will also be interesting to investigate the limitations of the tree with
respect to the different characteristics and intensity of the data stream.
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