
Mining Popular Patterns: A Novel Mining
Problem and Its Application to Static
Transactional Databases and Dynamic

Data Streams

Alfredo Cuzzocrea1, Fan Jiang2, Carson K. Leung2(B), Dacheng Liu2,3,
Aaron Peddle2, and Syed K. Tanbeer2

1 ICAR-CNR and University of Calabria, Rende, CS, Italy
cuzzocrea@si.dimes.unical.it

2 University of Manitoba, Winnipeg, MB, Canada
kleung@cs.umanitoba.ca

3 Wuhan University, Wuhan, Hubei, China

Abstract. Since the introduction of the frequent pattern mining prob-
lem, researchers have extended frequent patterns to different useful pat-
terns such as cyclic, emerging, periodic and regular patterns. In this paper,
we (i) introduce popular patterns, which capture the popularity of individ-
uals, items, or events among their peers or groups. Moreover, we also pro-
pose (ii) the Pop-tree structure to capture the essential information from
transactional databases and (iii) thePop-growth algorithm for mining pop-
ular patterns from the Pop-tree. Moreover, we illustrate how our algorithm
(iv) mines popular friends from social networks. As we are not confined to
mining popular patterns from static transactional databases, we extend
our work to mining popular patterns from dynamic data streams. Specif-
ically, we propose (v) the Pop-stream structure to capture the popular
patterns in batches of data streams and (vi) the Pop-streaming algorithm
for mining popular patterns from the Pop-stream structure. Experimental
results showed that (i) our proposed tree structure is compact and space
efficient and (ii) our proposed algorithm is time efficient in mining popular
patterns from static transactional databases and dynamic data streams.

Keywords: Data mining · Knowledge discovery · Interesting patterns ·
Popular patterns · Useful patterns · Tree-based mining · Data streams

1 Introduction

Since the introduction of the research problem of frequent pattern mining,
numerous works have been proposed. These works can mostly be classified
into two broad “categories”. Works in the first “category” mainly focused on
algorithmic efficiency, while works in the second “category” mainly focused on
extending the notion of frequent patterns to other interesting or useful patterns.
However, the mining of these patterns are mostly based on the support/frequency
c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XXI, LNCS 9260, pp. 115–139, 2015.
DOI: 10.1007/978-3-662-47804-2 6

116 A. Cuzzocrea et al.

measure. While support/frequency is a useful metric, support-based frequent
pattern mining may not be sufficient to discover many interesting knowledge
(e.g., popularity) among patterns in a transactional database (TDB). However,
in many real-life situations, users want to find popular patterns. For example, a
social analyst may want to find persons with large “groups” of friends in social
networks as these persons can be the most influential one in their groups or the
social networks [9,26]. Similarly, a new member may want to know individuals
with high connectivity so that he can get to know more members quickly. A rec-
ommender may want to know researchers with large numbers of collaborators.
As the fourth example, an event promoter may want to find events with large
numbers of participants. With the increase in usage of social network media, it
has become more important to be able to find popular individuals (or items,
objects, events).

While data in many real-life situations are static (e.g., mining popular
merchandise items from shopper market basket transactions in a transactional
database), the automation of measurements and data collection in some other
real-life situations is producing dynamic streams of data. For instance, the devel-
opment and increasing use of a large number of sensors (e.g., acoustic, chemical,
electromagnetic, mechanical, optical radiation and thermal sensors) for various
real-life applications have led to data streams [11,23].

Hence, in this paper, we aim to mine popular patterns from both static
transactional databases and dynamic data streams. Specifically, our key con-
tributions of this paper include the following:

1. our introduction of the notion of popular patterns;
2. our proposal of the Pop-tree, which is a tree structure to capture essential

information about the popularity of individuals, items, objects, or events;
3. our design and development of the Pop-growth algorithm, which mines pop-

ular patterns from the Pop-tree capturing static data;
4. our proposal of the Pop-stream, which is a structure to capture popular indi-

viduals, items, objects, or events mined from batches of dynamic data streams;
and

5. our design and development of the Pop-streaming algorithm, which finds pop-
ular patterns from the Pop-stream structure capturing dynamic data.

As the current paper is an extension and enhancement of our DaWaK 2012
paper [25], additional contributions beyond the basic mining of popular pat-
terns from static transactional databases include the following: (i) extending the
mining of popular patterns from static transactional databases to the mining of
popular patterns from dynamic data streams (Sect. 6), (ii) demonstration of our
algorithm for a useful application of mining popular friends from social networks
(Sect. 5), and (iii) running additional experiments (especially for popular pattern
mining from streams).

The remainder of this paper is organized as follows. The next section reviews
some related works. We introduce popular patterns in Sect. 3. In Sect. 4, we pro-
pose (i) the Pop-tree structure that captures important contents of the TDB and

Mining Popular Patterns: A Novel Mining Problem and its Application 117

(ii) the Pop-growth algorithm that constructs the Pop-tree, from which popu-
lar patterns can be mined recursively. In Sect. 6, we propose (i) the Pop-stream
structure that captures popular patterns mined from batches of data streams
and (ii) the Pop-streaming algorithm that calls Pop-growth to find popular pat-
terns from a batch, stores the mined patterns in the Pop-stream structure, and
returns to users popular patterns that can be mined from the dynamic data
streams. We demonstrate a useful real-life application of mining popular friends
from social networks in Sect. 5. Experimental results are presented in Sect. 7.
Finally, conclusions and future work are provided in Sect. 8.

2 Related Work

Recall from the previous section that numerous works have been proposed since
the introduction of the research problem of frequent pattern mining. These works
can mostly be classified into two broad “categories”. Works in the first “cate-
gory” mainly focused on algorithmic efficiency [22,23]. For example, to avoid the
candidate generation-and-test approach of the Apriori algorithm [1], a tree-based
algorithm called FP-growth [17] was proposed to build an FP-tree to capture
the contents of a TDB so that frequent patterns can be mined recursively from
the FP-tree with a restricted test-only approach.

Works in the second “category” mainly focused on extending the notion
of frequent patterns to other interesting or useful patterns such as sequences,
episodes, maximal and closed sets. Note that the mining of these patterns are
mostly based on the support/frequency measure. While support/frequency is
a useful metric, support-based frequent pattern mining may not be sufficient
to discover many interesting knowledge (e.g., correlation, regularity, periodicity,
popularity) among patterns in a TDB. This leads to the introduction of some
interestingness measures [31] and their corresponding patterns such as emerging
patterns [2], constrained patterns [19,24], correlated patterns [20], periodic pat-
terns [29,34], regular patterns [30], hyperclique patterns [32], and high utility
patterns [33].

Nowadays, the automation of measurements and data collection is producing
tremendously huge volumes of data. For instance, the development and increas-
ing use of a large number of sensors (e.g., acoustic, chemical, electromagnetic,
mechanical, optical radiation and thermal sensors) for various real-life appli-
cations (e.g., environment surveillance, security, manufacturing systems) have
led to data streams [11,23]. To discover useful knowledge from these streaming
data, several mining algorithms [10,12,14] have been proposed. In general, min-
ing frequent patterns from dynamic data streams [16,18,28] is more challenging
than mining from traditional static transaction databases due to the following
characteristics of data streams:

1. Data streams are continuous and unbounded. As such, we no longer have the
luxury to scan the streams multiple times. Once the streams flow through,
we lose them. We need some techniques to capture important contents of the

118 A. Cuzzocrea et al.

streams. For instance, landmark windows capture contents of all batches after
the landmark (i.e., sizes ofwindowskeep increasingwith thenumber of batches).

2. Data in the streams are not necessarily uniformly distributed. As such, a
currently infrequent pattern may become frequent in the future and vice versa.
We have to be careful not to prune infrequent patterns too early; otherwise,
we may not be able to get complete information such as frequencies of some
patterns (as it is impossible to recall those pruned patterns).

Over the past few years, several stream mining algorithms—including
FP-streaming [15], UF-streaming [22], TUF-streaming [21,23], and XTUF-
streaming [21]— have been proposed. However, most of them mine frequent
patterns (instead of popular patterns. In contrast, our Pop-streaming algorithm
mines popular patterns.

3 Our Proposed Notion of Popular Patterns

Let Item={x1, x2, . . . , xm} be a set of m domain items. A transactional database
(TDB) is the set of n transactions: {t1, t2, . . . , tn}, where each transaction tj in
the TDB is a subset of Item. We use |tj | to represent the transaction length
of tj . Let X = {x1, x2, . . . , xk} ⊆ Item be a pattern consisting of k items (i.e.,
a k-itemset), where |X| = k ≤ m. Then, the projected database of X (denoted
as DBX) is a set of TDB transactions (in the TDB) that contain X. We use
maxTL(X) and sumTL(X) to respectively represent the maximum length and
the total length of all transactions in DBX .

Example 1. Consider the TDB shown in Table 1, which consists of n=7 transac-
tions and m=9 domain items a, b, . . . , i. For pattern X = {b, c}, its projected
database DB{b,c}={t2, t3}. Hence, |DB{b,c}| = 2. In other words, the support (or
frequency) of {b, c} in the TDB is sup({b, c}, TDB) = sup({b, c},DB{b,c}) = 2.
Moreover, |t2| = |{b, c, f, g, h}| = 5, |t3| = |{b, c, d, e, f, h}| = 6, maxTL({b, c})
= max{|t2|, |t3|} = max{5, 6} = 6, and sumTL({b, c}) = |t2|+ |t3| = 5+6 = 11.

��

Table 1. A transaction database

Transaction ID Transaction

t1 {b, d}
t2 {b, c, f, g, h}
t3 {b, c, d, e, f, h}
t4 {c, e, g, h}
t5 {a, d}
t6 {a, b, i}
t7 {a, d, e}

Mining Popular Patterns: A Novel Mining Problem and its Application 119

Definition 1. The transaction popularity Pop(X, tj) of a pattern X in
transaction tj measures the membership degree of X in tj. For simplicity, we
compute the membership degree based on the difference between the transaction
length |tj | and the pattern size |X|:

Pop(X, tj) = |tj | − |X|. (1)

Note that, depending on real-life applications, the above equation can be adapted
to incorporate some other functional operations on tj and X.

Definition 2. The long transaction popularity Pop(X, tmaxTL(X)) of a
pattern X in transaction tmaxTL(X) measures the membership degree of X in
tmaxTL(X), where tmaxTL(X) is the transaction having the maximum length
in DBX :

Pop(X, tmaxTL(X)) =
(

max
tj∈DBX

|tj |
)

− |X|. (2)

Definition 3. The popularity Pop(X) of a pattern X in DBX measures an
aggregated membership degree of X in all transactions in DBX . It is defined as
an average of all transaction popularities of X:

Pop(X) =
1

sup(X,DBX)

∑
tj∈DBX

Pop(X, tj). (3)

Example 2. Reconsider the TDB shown in Table 1. The transaction popularity
of pattern {b, c} in t2 can be computed as Pop({b, c}, t2) = |t2| − |{b, c}| =
5 − 2 = 3. Similarly, Pop({b, c}, t3) = |t3| − |{b, c}| = 6 − 2 = 4. Recall from
Example 1 that DB{b,c}={t2, t3} (i.e., {b, c} appears only in t2 and t3). As
t3 is the longest transaction in DB{b,c} (because maxTL({b, c})=6), the long
transaction popularity of pattern {b, c} in tmaxTL({b,c}) can be computed as
Pop({b, c}, tmaxTL({b,c})) = max{|t2|, |t3|} − |{b, c}| = 6 − 2 = 4. Hence, the
popularity of pattern {b, c} is 1

sup({b,c},DB{b,c})
(Pop({b, c}, t2)+Pop({b, c}, t3)) =

1
2 (3+4) = 3.5 ��
Definition 4. Given a user-specified minimum popularity threshold minpop, a
pattern X is considered popular if its popularity is at least minpop (i.e., Pop(X)
≥ minpop).

Example 3. If the user-specified minpop is 3.3, then pattern {b, c} is popular in
the TDB shown in Table 1 because Pop({b, c})=3.5 ≥ 3.3=minpop. However,
pattern {b} is not popular because Pop({b}) = 1

sup({b},DB{b})
(Pop({b}, t1)+

Pop({b}, t2)+Pop({b}, t3)+Pop({b}, t6)) = 1
4 (1+4+5+2) = 3 < 3.3 = minpop.��

4 Pop-Growth: Mining Popular Patterns from Static
Transactional Databases

When mining frequent patterns, the frequency measure satisfies the downward
closure property (i.e., if a pattern is infrequent, its superset is guaranteed to be

120 A. Cuzzocrea et al.

infrequent). This helps reduce the search/solution space by pruning infrequent
patterns, and thus speeds up the mining process. However, when mining popular
patterns, observant readers may notice from Example 3 that popularity does
not satisfy the downward closure property. For example, a pattern (e.g., {b}) is
unpopular, but its superset (e.g., {b, c}) may be popular. Hence, the mining of
popular patterns can be challenging.

To handle the challenge, let us revisit Eq. (3) and redefine the popularity
Pop(X) of a pattern X (cf. Definition 3).

Definition 5. The popularity Pop(X) of a pattern X in DBX measures an
aggregated membership degree of X in all transactions in DBX . It is defined in
terms of sumTL(X) =

∑
tj∈DBX

|tj | as follows:

Pop(X) =
1

sup(X,DBX)

∑
tj∈DBX

Pop(X, tj)

=
1

sup(X,DBX)

∑
tj∈DBX

(|tj | − |X|)

=
sumTL(X)
sup(X,DBX)

− |X|. (4)

Example 4. Reconsider the TDB shown in Table 1. Recall from Example 1 that
sumTL({b, c})=11. Then, the popularity of pattern {b, c} is sumTL({b,c})

|{t2,t3}| −
|{b, c}| = 11

2 − 2 = 3.5. Similarly, the popularity of pattern {b} is sumTL({b})
|{t1,t2,t3,t6}| −

|{b}| = |t1|+|t2|+|t3|+|t6|
|{t1,t2,t3,t6}| − |{b}| = 16

4 − 1 = 3. ��

Observant readers may notice from Example 4 that sumTL({b, c})=11 ≤
16=sumTL({b}). The definition of sumTL(X) further confirms that the total
transaction length sumTL(X) of X satisfies the downward closure property. In
other words, for X ⊆ X ′,

sumTL(X) ≥ sumTL(X ′). (5)

4.1 Construction of a Pop-Tree

To mine popular patterns, we propose the Pop-growth algorithm, which consists
of two key procedures: (i) construction of a Pop-tree and (ii) mining of popular
patterns from the Pop-tree.

We first build a tree structure—called Popular pattern tree (Pop-tree)—
to capture the necessary information from the TDB with only two scans of the
TDB. Recall from Sect. 3 that Pop(X) does not satisfy the downward closure
property. So, unpopular items need to be kept in the Pop-tree as some of their
supersets may be popular. Fortunately, recall from Sect. 3 that sumTL(X) satis-
fies the downward closure property. So, not all unpopular items need to be kept.
Some of them can be pruned. See the following two lemmas.

Mining Popular Patterns: A Novel Mining Problem and its Application 121

Lemma 1. The popularity of a pattern X is always less than or equal to its long
transaction popularity, i.e., Pop(X) ≤ Pop(X, tmaxTL(X)).

Proof. Recall from Equation (3) that Pop(X) = 1
sup(X,DBX)

∑
tj∈DBX

Pop(X, tj), where Pop(X, tj) = |tj |−|X|. According to Equation (1), Pop(X, tj)
measures the membership degree of X in tj . As shown in Equation (2), The long
transaction popularity Pop(X, tmaxTL(X)) measures the membership degree of
X in the longest transaction containing X. Hence, Pop(X) is always less than
or equal to Pop(X, tmaxTL(X)):

Pop(X) =
1

sup(X,DBX)

∑
tj∈DBX

Pop(X, tj)

=
1

sup(X,DBX)

∑
tj∈DBX

(|tj | − |X|)

=

∑
tj∈DBX

|tj |
|DBX | − |X|

=

(
avg

tj∈DBX

|tj |
)

− |X|

≤
(

max
tj∈DBX

|tj |
)

− |X| = Pop(X, tmaxTL(X)). (6)

Hence, this proved that Pop(X) ≤ Pop(X, tmaxTL(X)). ��
Lemma 2. For X ⊆ X ′, Pop(X ′) cannot exceed maxTL(X) − |X ′|.

Proof. Recall from Equation (4) that Pop(X) = sumTL(X)
sup(X,TDB) − |X|. Knowing

that sumTL(X) satisfies the download closure property, we get sumTL(X ′) ≤
sumTL(X) for X ⊆ X ′ as shown in Equation (5). Then, we get the following:

Pop(X ′) =
sumTL(X ′)
sup(X ′,TDB)

− |X ′|
≤ maxTL(X ′) − |X ′|
≤ maxTL(X) − |X ′| (7)

Hence, this proved that Pop(X ′) ≤ maxTL(X) − |X ′|. ��
Based on the above two lemmas, the following equation provides us with an

upper bound of the popularity Pop(X ′) of a pattern X ′ (in terms of maxTL(X)),
where X ⊆ X ′:

PopUB(X ′) ≤ maxTL(X) − |X ′|. (8)

Based on Equation (8), we can first calculate the popularity upper bound of a
patternX ′ frommaxTL(X) where (i)X ⊆ X ′, and (ii) |X ′| ≥ |X|+1 = k+1). We
can then prune unpopular patterns. We call this super-pattern popularity check.

122 A. Cuzzocrea et al.

Similar to FP-tree [17], each node of a Pop-tree contains the parent and
child pointers as well as horizontal node traversal pointers. To facilitate popular
pattern mining, we keep (i) an item x, (ii) support of Y ∪ {x}, (iii) sumTL(Y ∪
{x}), and (iv) maxTL(Y ∪ {x}), where Y represents the set of items above x
(i.e., ancestor nodes of x).

To construct a Pop-tree, we scan the TDB to find the support(x), maximum
transaction length maxTL(x) and the popularity Pop(x) for each singleton x
in the TDB. Then, we perform the super-pattern popularity check and safely
delete a pattern x if PopUB(x′) < minpop (where x′ is an extension of x). We
then scan the TDB the second time to insert each transaction into the Pop-tree
in a similar fashion as the insertion process of FP-tree.

Example 5. Let us show how to construct a Pop-tree for the TDB shown in
Table 1 with minpop=2.4. With the first database scan, we obtain the following
information in the form of

〈x: sup(x,TDB), maxTL(x), Pop(x)〉
for each of the m=9 domain items: 〈a:3,3,1.66〉, 〈b:4,6,3.0〉, 〈c:3,6,4.0〉,
〈d:4,6,2.25〉, 〈e:3,6,3.33〉, 〈f :2,6,4.5〉, 〈g:2,5,3.5〉, 〈h:3,6,4.0〉, 〈i:1,3,2.0〉. This
information is useful as follows. (i) Based on the obtained Pop(x) values, we
noticed that all items—except a, d &i—are popular (i.e., with popularity at least
2.4). Although {a}, {d} &{i} are unpopular, their super-patterns may be pop-
ular. Hence, we cannot delete them without performing the super-pattern pop-
ularity check. So, (ii) the obtained maxTL(x) values are used for super-pattern
popularity check. The popularity upper bounds of the extensions of {a}, {d} &{i}
are at most 3−2=1, 6−2=4 &3−2=1, respectively. As the value for PopUB({d})
is greater than minpop, we keep {d} but safely delete {a} &{i}. Finally, (iii) we
sort and insert items b, c, d, e, f, g &h into a header table (H-table) in the descend-
ing order of the obtained sup(x,TDB) values: 〈b, d, c, e, h, f, g〉.

We then scan the TDB the second time. We compute the length of each
transaction, remove all items that are not in the H-table, and sort the remaining

Fig. 1. The Pop-tree construction

Mining Popular Patterns: A Novel Mining Problem and its Application 123

items in each transaction according to the H-table order. Figure 1(a) shows the
contents of the H-table in the form of

〈x: sup(x,TDB), sumTL(x), maxTL(x)〉,
and the Pop-tree structure after inserting t1 of TDB. Because t1 and t2 share
a common prefix (i.e., {b}), we increase the occurrence count of the common
node {b : 1, 2, 2} by one, its total transaction length (sumTL) by the transaction
length of t2 (i.e., |t2|=5), and update its maxTL. For the remaining (uncommon)
nodes of t2, we set support=1, sumTL=|t2| and maxTL=|t2|. The contents of
the Pop-tree after insertion of t2 are shown in Fig. 1(b). The final Pop-tree after
capturing all the transactions in the TDB is shown in Fig. 1(c). ��

Let I(tj) be the set of items in transaction tj that pass through the first
database scan. Based on the above Pop-tree construction procedure, we observed
several important properties of Pop-trees listed as follows.

Property 1. A Pop-tree registers the projection of I(tj) for tj in the TDB only
once.

Property 2. The total transaction length sumTL in a node x in a Pop-tree cap-
tures the sum of lengths of all transactions that pass through, or end at, the
node for all the nodes in the path from x up to the root.

Property 3. The total transaction length sumTL of any node in a Pop-tree is
greater than or equal to the sum of transaction lengths of its children.

Properties 2 and 3 are the result of sharing common prefixes by different
transactions, which allow our Pop-tree to be compact. Based on following lemma,
one can observe that a Pop-tree is a highly compact tree structure.

Lemma 3. The size of a Pop-tree on a TDB for minpop is bounded above by∑
tj∈TDB |I(tj)|.

Proof. Recall that I(tj) denotes the set of items in transaction tj that pass
through the first database scan. In other words, I(tj) represents the set of indi-
vidually popular items in tj . During the Pop-tree construction, these items in tj
are inserted as a tree path into a Pop-tree for popular pattern mining. Thus, as
we insert every transaction tj in the TDB, the size of the resulting Pop-tree—-in
terms of the total number of tree nodes—would be equal to the total number
of individually popular items in all the transactions, i.e.,

∑
tj∈TDB |I(tj)|. This

would be the worst case scenario, in which there is no tree path sharing (i.e.,
no common nodes can be merged). Fortunately, in most cases, some paths are
in common and can thus be merged. In those cases, the size of a Pop-tree—in
terms of the total number of tree nodes—would be lower than the total number
of individually popular items in all transactions. Hence, this proved that the size
of a Pop-tree on a TDB for minpop is bounded above by

∑
tj∈TDB |I(tj)|. ��

124 A. Cuzzocrea et al.

Fig. 2. The Pop-tree mining

Lemma 4. Given a TDB and minpop, the complete set of all popular patterns
can be obtained from a Pop-tree for the minpop on the TDB.

Proof. Given a TDB and minpop, the Pop-tree keeps every item x with Pop(x) ≥
minpop (i.e., keeps all individually popular items). Every possible pattern X with
PopUB(X) ≥ minpop can then be generated from the Pop-tree. As PopUB(X) ≥
Pop(X) for any pattern X, this implies that all patterns X with Pop(X) ≥
minpop (i.e., true positives) can be generated. As a by-product, some patterns
Y with PopUB(Y) ≥ minpop > Pop(Y) (i.e., false positives) could be generated
from the Pop-tree. As a preview, the corresponding Pop-growth algorithm would
prune these false positives as its last step and would return only those true
positives to the user. Hence, given a TDB and minpop, the complete set of all
popular patterns can be obtained from a Pop-tree for the minpop on the TDB.

��
We can justify the completeness of a Pop-tree for mining popular patterns

by Lemma 4. Based on this lemma, popular patterns can be found by mining
our Pop-tree.

4.2 Finding Popular Patterns from the Pop-Tree

Recall that, to mine popular patterns, the Pop-growth algorithm applies two key
procedures: (i) construction of a Pop-tree and (ii) mining of popular patterns
from the Pop-tree. The Pop-growth finds popular patterns from the Pop-tree,
in which each tree node captures its occurrence count, total transaction length,
and maximum transaction length. The algorithm finds popular patterns by con-
structing the projected database for potential popular patterns and recursively
mining their extensions.

While constructing the conditional pattern base from a projected database,
we perform a super-pattern popularity check for extensions of any unpopular
item, and delete the item only when it fails the check. We call such pruning
technique the lazy pruning.

The lazy pruning technique ensures that no popular patterns (having unpop-
ular subsets) will be missed by Pop-growth. The following example illustrates
how Pop-growth mines popular patterns from the Pop-tree.

Mining Popular Patterns: A Novel Mining Problem and its Application 125

Example 6. Let us continue Example 5. In other words, let us mine popular
patterns from the Pop-tree shown in Fig. 1(c) constructed for the TDB shown
in Table 1 with minpop=2.4.

Recall that the Pop-growth recursively mines the projected databases of all
items in H-table. Before constructing the projected database for an item x in
H-table, we output the item as a popular pattern if its popularity is at least min-
pop. The conditional pattern base for the {g}-projected database (i.e., DB{g}),
as shown in Fig. 2(a), is constructed by accumulating the contents in the tree
paths: 〈b:1,5,5 c:1,5,5 h:1,5,5 f :1,5,5〉 and 〈c:1,4,4 e:1,4,4 h:1,4,4〉. The
header table for DB{g}, as shown in Fig. 2(a), contains all items that co-occur
with g in the Pop-tree. It also contains the corresponding support, sumTL and
maxTL of each item in DB{g}. We then compute the exact popularity of each
item in DB{g} by using Eq. (4).

The conditional tree for any conditional pattern base of a pattern X may
contain two types of items: (i) items that are popular in DBX and (ii) items
that are unpopular in DBX but have potentially popular super-patterns. Other
items are deleted from the projected database. To find unpopular items that
having potentially popular super-patterns, we apply the lazy pruning technique
and Eq. (8).

Based on Eq. (4), the popularity of items in the H-table of DB{g} can be
computed: Pop({b, g}) = 5

1 − 2 = 3, Pop({f, g}) = 5
1 − 2 = 3, Pop({c, g}) =

9
2 −2 = 2.5, Pop({g, h}) = 9

2 −2 = 2.5 and Pop({e, g}) = 4
1 −2 = 2. All items

except e are popular together with g. By applying the lazy pruning technique,
the popularity upper bound PopUB({e, g}) for e with g can be calculated as at
most 4−2 = 2, which is less than minpop. Hence, we can safely delete e from the
projected database of g. The conditional tree for the projected database of g is
presented in Fig. 2(b).

The mining for each extension (i.e., for f, h, c &b) of g is performed recur-
sively. The set of patterns generated from the projected database of g is shown
in Fig. 2(c). The mining process terminates when we reach the top of H-table of
the Pop-tree. ��

The Pop-growth mining technique is efficient because it applies a pattern-
growth based mining technique on a Pop-tree. Moreover, the lazy pruning tech-
nique further reduces the mining cost for unpopular items whose super-patterns
cannot be popular.

5 Discussion: An Application on Mining Popular Friends
from Social Networks

In the previous section, we described how our proposed Pop-growth mines fre-
quent patterns from transactional databases. This algorithm builds a Pop-tree
structure to capture important contents of the transactional databases and recur-
sively mines popular patterns from the Pop-tree. In this section, we extend the
proposed technique and apply it to mine a special type of frequent patterns—
popular friends—from social networks.

126 A. Cuzzocrea et al.

Recent advances in technology and successes in online digital media sites
have led the surge of interest in social computing and its applications. Social
computing enables users to intersect social behaviour with computing systems
and to create social conventions as well as social contexts through the use of soft-
ware and technology. This explains why, over the past few years, various research
works on the analytics, mining and visualization of complex social networks have
been proposed. In general, social networks are structures made of social entities
(e.g., individuals, corporations, collective social units, or organizations) that are
linked by some specific types of interdependencies (e.g., kinship, friendship, com-
mon interest, beliefs, or financial exchange). These dependencies among linked
entities in the social networks present an opportunity to further infer different
properties of individuals. Because a social entity is connected to another social
entity as his next-of-kin, friend, collaborator, co-author, classmate, co-worker,
team member and/or business partner, identifying social entities or groups of
entities that have connections with a large number of other social entities may
provide useful knowledge to the user. For example, among the friends of p, some
of them may be very popular in the sense that they have many connections. Dis-
covering these popular friends provides useful knowledge to p because they may
have high social connectivity and/or could have strong influence on members
of their social groups. Similarly, a newcomer (to a city, company, or profession)
may want to be introduced to individuals having high social connectivity so that
he can get to know more people faster. Similar comments apply to users in other
social networking sites.

Note that the task of finding popular friends can be more complicated when
we do not have access to these lists of connections. For example, due to various
reasons (e.g., privacy setting), connection lists of some social entities in the social
network may not be accessible to unauthorized users. Fortunately, members
of interest groups (especially, open public groups) are usually visible. In these
situations, given a social network containing all members of these interest groups,
we can adapt our proposed Pop-growth to find popular users or a popular group
of friends. Specifically, to adapt our proposed Pop-growth algorithm for mining
popular friends from social networks, we treat (i) each interest group list like
a transaction and (ii) each social user/member in an interest group list like an
item in a transaction. With this adaption and setting of a user-specified minpop,
we find popular friends from a sample social network as illustrated in Example 7.

Example 7. Consider a collection of n=7 interest groups involving m=9 users
(namely, Alice, Bob, Cathy, Don, Ed, Fank, Gary, Helen, and Irene) as shown
in Table 2, which may represent a subset of a large social network. To adapt
our proposed Pop-growth algorithm for mining popular friends from social net-
works, we treat (i) each interest group list like a transaction and (ii) each social
user/member in an interest group list like an item. With this adaption and set-
ting of a user-specified minpop=2.4, we first scan the collection once to find
individually popular users: Bob, Cathy, Ed, Frank, Gary, or Helen, with their
popularity values of 3, 4, 3.33, 4.5, 3.5, or 4, respectively.

Mining Popular Patterns: A Novel Mining Problem and its Application 127

Table 2. A sample social network

Interest group list ID Members in the interest group list

L1 on ballet {Bob, Don}
L2 on baseball {Bob, Cathy, Frank, Gary, Helen}
L3 on curling {Bob, Cathy, Don, Ed, Frank, Helen}
L4 on football {Cathy, Ed, Gary, Helen}
L5 on hockey {Alice, Don}
L6 on lacrosse {Alice, Bob, Irene}
L7 on soccer {Alice, Don, Ed}

Note that, among the m=9 users, only six of them are popular. As for the
three unpopular users (Alice, Don, and Irene), their super-pattern may still be
popular. Hence, we cannot delete them without performing the super-pattern
popularity checks. The checks reveal that, when X={Alice}, the popularity
upper bound PopUB(X ′) of its extension X ′ (where X ′ ⊇ {Alice}; e.g., X ′

= {Alice, Bob}) is at most 3−2=1 < minpop. Similarly, when X={Irene}, the
popularity upper bound PopUB(X ′) of its extension X ′ is also at most 3−2=1 <
minpop. In contrast, when X={Don}, the popularity upper bound PopUB(X ′)
of its extension X ′ is at most 6−2=4 ≥ minpop. Hence, we keep Don but safely
delete Alice and Irene.

To find popular groups of users, we build a Pop-tree by sorting and insert-
ing the six individual popular users (Bob, Cathy, Ed, Frank, Gary, and Helen)
together with this undeleted user (Don) into a header table (H-table) in descend-
ing order of their support values: 〈Bob, Don, Cathy, Ed, Helen, Frank, Gary〉.
We then scan the collection of n=7 interest group lists the second time. During
that, we compute the length of each interest group list (e.g., |L1| = 2, |L3| = 6),
remove all uses who are not in the H-table (e.g., remove Alice from L5 to make
the resulting list become {Don}, remove both Alice and Irene from L6 to make
it become {Bob}, remove Alice from L7 to make it become {Don, Ed}), and sort
the remaining users in each interest group list according to the H-table order.
When inserting users into a Pop-tree, if two interest group lists share a com-
mon prefix (e.g., Bob appears in both L1 and L2), then the prefix is merged.
Figure 3 shows the Pop-tree after capturing all the interest group lists in the
social collection.

Once the Pop-tree is built, we call Pop-growth to recursively mine the pro-
jected databases of all users in H-table. Before constructing the projected data-
base for a user (e.g., {Gary}) in H-table, we output it as a popular user if its
popularity is at least minpop. The conditional pattern base for the {Gary}-
projected database (i.e., DB{Gary}) is constructed by accumulating the con-
tents in the tree path 〈Bob:1,5,5 Cathy:1,5,5 Helen:1,5,5 Frank:1,5,5〉 and
〈Cathy:1,4,4 Ed:1,4,4 Helen:1,4,4〉. The header table for DB{Gary} contains all
users that share a common interest with Gary in the Pop-tree. It also contains the

128 A. Cuzzocrea et al.

Fig. 3. The Pop-tree capturing interest group lists of a sample social network

corresponding support, sumTL and maxTL of each user in DB{Gary}. We then
compute the exact popularity of each item in DB{Gary} by using Eq. (4).

As the conditional tree for any conditional pattern base of a group X of users
contains (i) those who are popular in DBX and (ii) those who are unpopular
in DBX but have potentially popular super-groups, we apply the lazy pruning
technique and Eq. (8) to prune out those unpopular users who have potentially
popular super-groups. For example, we found popular groups {Bob, Gary} and
{Frank, Gary} (both with popularity value of 3), as well as {Cathy, Gary} and
{Gary, Helen} (both with popularity value of 2.5). Similar steps can be applied
to other paths in a Pop-tree to find all other popular friends or groups of friends
from social networks. ��

6 Pop-Streaminng: Mining Popular Patterns
from Dynamic Data Streams

In Sect. 4, we mined popular patterns from static transactional databases. The
corresponding Pop-growth algorithm works well when handling static data. How-
ever, there are situations in which we need to deal with dynamic streaming
data. In this section, we propose another algorithm for handling dynamic data.
The corresponding algorithm—called Pop-streaming—mines popular patterns
from dynamic data streams in a landmark model environment.

When using the landmark model for processing data streams, transactions in
each batch (regardless of whether they are historical or recent data) are treated
equally. As such, all batches (regardless of whether they are old or recent) are
assigned the same weights. To mine popular patterns from dynamic data streams,
our proposed Pop-streaming algorithm first calls Pop-growth (Sect. 4) to find
popular patterns from the current batch of transactions in the streams (using
a threshold called preMinpop, which is defined to be ≤ minpop). Note that,
although users are interested in truly popular patterns (i.e., patterns with pop-
ularity ≥ minpop > preMinpop), preMinpop is used in attempt to avoid pruning

Mining Popular Patterns: A Novel Mining Problem and its Application 129

a pattern too early. This is important because data in the continuous streams
are not necessarily uniformly distributed.

Once the popular patterns for a batch of streaming data are found, the next
step is to construct a Pop-stream structure to capture the mined popular
patterns. Each node in this tree-based Pop-stream structure corresponds to a
popular pattern. Nodes that correspond to the popular patterns sharing common
prefix are merged. In addition to the popular pattern X (or more precisely, the
suffix item in X), each node stores additional information. So, on the surface,
this Pop-stream structure may seem to be similar to that of the UF-stream
structure [21] used in frequent pattern mining. As such, it was tempting to keep
X and its popularity value Pop(X) in each node. However, a closer look reveals
that, while frequency (or support) of patterns is additive, popularity of patterns
is not. See Example 8.

Table 3. A data stream

Batch ID Transaction ID Transaction

B1 t1 {b, d}
t2 {b, c, f, g, h}

B2 t3 {b, c, d, e, f, h}
t4 {c, e, g, h}

Example 8. Consider two batches of streaming data as shown in Table 3. The
support of {c, h} in Batch B1 is 1, and that in Batch B2 is 2. So, sup({c, h}, B1∪
B2) = sup({c, h}, B1) + sup({c, h}, B2) = 1 + 2 = 3. However, the popular-
ity of {c, h} in Batch B1 is 1

|{t2}|Pop({c, h}, t2) = 3, and that in Batch B2

is 1
|{t3,t4}| (Pop({c, h}, t3) + Pop({c, h}, t4)) = 1

2 (4 + 2) = 3. So, the sum of
these two popularity values becomes 3+3 = 6, which is not equal to the pop-
ularity of {c, h} in these two batches. Mathematically, Pop({c, h}, B1 ∪ B2) =

1
|{t2,t3,t4}| (Pop({c, h}, t2)+Pop({c, h}, t3)+Pop({c, h}, t4)) = 1

3 (3+4+2) = 3.��

Recall from Definition 5 that the popularity Pop(X) of a pattern X can
be computed in terms of (i) sumTL(X) and (ii) sup(X,Bi). Moreover, both
(i) sumTL(X) and (ii) sup(X,Bi) are additive. For example, sumTL({c, h}) in
B1 is 5, sumTL({c, h}) in B2 is 6+4 = 10, whereas sumTL({c, h}) in the first
two batches is 5+(6+4) = 15. Similarly, sup({c, h}, B1) is 1, sup({c, h}, B2) is 2,
whereas sup({c, h}, B1∪B2) is 1+2 = 3. Hence, instead of storing the popularity
value of a popular pattern, we store (i) sumTL(X) and (ii) sup(X,Bi) values
so that we can compute the popularity of X based on these two values.

As we are dealing with batches of streaming data, the Pop-stream structure
needs to be updated. Hence, we need to store multiple pairs of sumTL(X)
and sup(X,Bi) values (one pair for each batch) In other words, we need to
store w pairs of sumTL(X) and sup(X,Bi) values when handling w batches of
streaming data Fortunately, when using the landmark model, all data are of the

130 A. Cuzzocrea et al.

same weights. Hence, we only need keep one pair of sumTL(X) and sup(X,Bi)
values for each node representing a popular pattern X:

(i) X, (ii) sumTL(X), and (iii) sup(X,
⋃

i Bi).

When a new batch Bj flows in, if X does not exist in the Pop-stream struc-
ture, our Pop-streaming algorithm inserts 〈X, sumTL(X), sup(X,Bj)〉 into the
Pop-stream structure. Otherwise (i.e., X exists in the Pop-stream structure), we
need to update the stored information as follows:

1. add the new sumTL(X) to the existing sumTL(X), and
2. add the new sup(X,Bj) to the existing sup(X,

⋃j−1
i=1 Bi).

This insertion (of new popular patterns) and update (of existing popular pat-
terns) step is repeated for each batch.

Note that, during the mining process, our proposed Pop-streaming algorithm
updates the sumTL(X) and sup(X) values stored in the Pop-stream structure
whenever a batch of streaming data flows in. However, the algorithm does not
repeatedly update Pop(X). It uses the delay mode for mining: It only computes
Pop(X) based on the updated sumTL(X) and sup(X) values when the user
needs the results. See Fig. 4 for a skeleton of the Pop-streaming algorithm.

Fig. 4. A skeleton of the Pop-streaming algorithm

7 Experimental Results

For experiments, we mostly use those datasets commonly used in frequent pat-
tern mining experiments because characteristics of those transactional datasets
are well known (see Table 4). More specially, we used (i) IBM synthetic datasets
(e.g., T10I4D1M, T10I4D100K, T20I4D100K). and (ii) real datasets (e.g.,

Mining Popular Patterns: A Novel Mining Problem and its Application 131

chess, mushroom, connect-4) from the Frequent Itemset Mining Dataset Repos-
itory http://fimi.ua.ac.be/data/. We obtained consistent results for all of these
datasets. Hence, to avoid repetition, we report here the experimental results on
only a subset of these datasets in the remainder of this section.

Table 4. Dataset characteristics

Dataset #transactions #items maxTL avgTL Data density

T10I4D100K 100,000 870 29 10.10 Sparse

T20I4D100K 99,996 871 42 19.81 Sparse

mushroom 8,124 119 23 23.00 Dense

All programs were written in C and run on UNIX with a quad-core processor
with 1.3 GHz. The runtime specified indicates the total execution time (i.e.,
CPU and I/Os). The reported results are based on the average of multiple runs
for each case. In all of the below experiments, Pop-trees were constructed using
descending order of occurrence counts of items.

To the best of our knowledge, our Pop-tree is the first approach to mine
popular patterns from transactional databases. Here, we first present the per-
formance of our Pop-tree structure and Pop-growth algorithm when varying the
mining parameters such as popularity threshold and dataset characteristics.

7.1 Runtime of Pop-Growth

In this section, we report the execution time that the Pop-growth requires for
mining popular patterns over datasets of different types and changes in minpop.
The execution time includes all the steps of H-table construction, the Pop-tree
building and the corresponding mining. The results on one sparse dataset (e.g.,
T20I4D100K) and one dense dataset (e.g., mushroom) are presented in Fig. 5.

To observe the effect of mining on the variation in size of such datasets,
we performed popular pattern mining while increasing the size of both of the

Fig. 5. Runtime of Pop-growth in mining transactional databases

http://fimi.ua.ac.be/data/

132 A. Cuzzocrea et al.

datasets: (i) From 2 K to full for the mushroom dataset and (ii) from 30 K to full
for T20I4D100K. Thus, the series for “Full DB” represent the results for the full
size of datasets. Both datasets required more execution time when mining larger
datasets. As the database size increased and minpop decreased, the tree structure
size and number of popular patterns increased. Hence, a comparatively longer
time was required to generate large numbers of popular patterns from large trees.
Although the mushroom dataset is smaller in size, the transaction lengths of all
transactions are the same (i.e., 23). Hence, the Pop-tree mining took a longer
time when compared to a dataset with variable length such as T20I4D100K. The
experimental results show that mining the corresponding Pop-tree for popular
patterns is time efficient for both sparse and dense datasets.

7.2 Reduction on the Number of Patterns When Changing minpop

Similar to the previous experiment, we also examined the number of patterns
generated by our Pop-growth when we varied the dataset size and minpop.
Figure 6 shows the reduction in the number of patterns in percentage when
increasing the minpop values in both the mushroom and T20I4D100K datasets
with different dataset size. Each data point in the x-axes of the graphs reports
the change of minpop from a low to a high value, while the y-axes indicate the
percentage change in the number of patterns generated from a low to a high
minpop value.

Fig. 6. Reduction on the number of patterns when changing minpop

Note that, depending on dataset characteristics, the reduction rate varied.
For example, for the mushroom dataset, the reduction rate dropped sharply
when minpop was changed from 60 %–65 % to 65 %–70 %, but the reduction
rate rose when minpop was changed to 70 %–75 %. In contrast, T20I4D100K
showed a consistent reduction rate when lowering the minpop value. However,
as observed from the graphs for both datasets, the number of patterns reduced
when increasing the minpop values. For example, for the mushroom dataset, the
reduction rate was around 40 % when increasing the threshold from 60 % to 65 %.
For 30 K of T20I4D100K, the reduction rate was around 21 % when increasing

Mining Popular Patterns: A Novel Mining Problem and its Application 133

Fig. 7. Compactness of the Pop-tree: node count on T20I4D100K

the threshold from 80 % to 82 %. It is also interesting to note that the pattern
count reduction rate was very similar irrespective of the database size.

We observed that the pattern generation characteristics of the proposed pop-
ular pattern mining algorithm were consistent with the variation of minpop and
database size.

7.3 Compactness of the Pop-Tree

Here, we report the compactness of a Pop-tree in terms of number of Pop-tree
nodes. Note that, as the mushroom dataset has a fixed transaction length, the
maximum transaction length for every possible pattern in the dataset is always
the same. Consequently, every item in the dataset passes the lazy pruning phase
and contributes to the tree. Hence, for a particular portion of the mushroom
dataset, the tree size (i.e., number of nodes) is the same with the variation of
minpop. However, the number of nodes varied from 34523 (when |TDB| = 2 K)
to 91338 (when |TDB| = 6 K). For the full dataset, it is around 100 K. The
compactness of Pop-tree on different portion of T20I4D100K is presented in
Fig. 7. The size of the tree structure gradually reduced in T20I4D100K with the
increase of minpop.

As expected, in both datasets, the number of nodes increased with the
increase in size of database. However, as far as the total number of nodes is
concerned, one can observe that, irrespective of fixed or variable transaction
length, a Pop-tree structure is compact enough to fit into a reasonable amount
of memory.

7.4 Scalability of Pop-Growth

To study the scalability of Pop-growth mining technique, we further ran our algo-
rithm on T10I4D100K, which is sparser than T20I4D100K. Figure 8 presents the
results on scalability tests on the variation of minpop and required number of
nodes on the dataset. Clearly, as the minpop decreases, the overall tree con-
struction and mining time (Fig. 8(a)), and required memory (Fig. 8(b)) increase.

134 A. Cuzzocrea et al.

However, the Pop-tree shows a stable performance with a linear increase in run-
time and memory consumption as the minpop decreased for the dataset. More-
over, the results demonstrate that, the Pop-tree can mine the set of popular
patterns on this dataset for a reasonably small value of popularity threshold
with a considerable amount of execution time and memory.

To recap, the above experimental results show that the proposed Pop-tree can
mine the set of popular patterns in both time and memory efficient manner over
different types of dataset. Furthermore, the Pop-tree structure and Pop-growth
algorithm are scalable for popularity threshold values and memory.

7.5 Mining Popular Friends from Social Networks

The aforementioned results show the time-efficiency of our proposed Pop-growth
algorithm and the space-efficiency of our proposed Pop-tree structure for mining
popular patterns from transactional data. Here, we experimented the efficiency
of the Pop-growth algorithm when adapted to mine popular friends from social
networks. To conduct this experiment, we used the social network datasets (e.g.,
Facebook, Twitter) from Stanford Large Network Dataset Collection https://
snap.stanford.edu/data/. For example, when minpop was set to 1043, Pop-
growth only took 43 s to find about 384 K popular friend groups from the Face-
book dataset (where maxTL = 1045). As another example, when minpop was set
to 1203, Pop-growth took 70 s to find more (e.g., around 484 K) popular friend
groups from another dataset—namely, the Twitter dataset (where maxTL is
higher and with a length of 1205).

7.6 Runtime of Pop-Streaming

After performing a series of experiments on popular pattern mining from static
transactional databases or static social networks, we conduct experiments on
popular pattern mining from dynamic data streams. Here, we divided datasets
into multiple batches. We report the execution time that the Pop-streaming

Fig. 8. Scalability on Pop-growth

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/

Mining Popular Patterns: A Novel Mining Problem and its Application 135

requires for mining popular patterns over batches of streaming data of different
types and changes in minpop. The execution time includes all the steps of the
application of Pop-growth, the construction of the Pop-stream structure, and the
corresponding mining. The results on dense streams (e.g., mushroom) and sparse
streams (e.g., IBM) are presented in Fig. 9. Consistent with the runtime results
on transactional database mining, Pop-streaming required shorter runtimes when
preMinpop increased.

Fig. 9. Runtime of Pop-streaming in mining batches of data streams

7.7 Compactness of the Pop-Stream Structure

Next, we report the compactness of the Pop-stream structure in terms of number
of nodes, which corresponds to the number of popular patterns mined from
batches of streaming data. Figure 10 shows that, when preMinpop increased, the
number of mined popular patterns decreased and thus reducing the size (i.e.,
reducing the number of nodes) of the Pop-stream structure.

7.8 Memory Consumption for the Pop-Streaming Algorithm

Recall that the first step of the Pop-streaming algorithm is to call Pop-growth
for finding popular patterns from each batch of streaming data. When the Pop-
growth algorithm is called, it builds a Pop-tree to capture important contents
of transactions in the batch. When mining from w batches of the streaming
data, the Pop-growth algorithm may be called w times. The size of the ing Pop-
tree may vary from one batch to another batch. Figure 11 shows the maximum
memory consumption among w Pop-trees.

Once the popular patterns are mined from a batch of streaming data, these
mined patterns are then stored in the Pop-stream structure. Recall that, in
Sect. 7.7, we measured the compactness of the Pop-stream structure. Note that
memory consumption of the Pop-streaming algorithm mainly depends on that
of the Pop-tree (measured in this section) and that of the Pop-stream structure
(measured in Sect. 7.7). Hence, based on the experimental results from these two
sections, we gained some insight about the amount of memory space required by
the Pop-streaming mining process.

136 A. Cuzzocrea et al.

Fig. 10. Compactness of the Pop-stream structure: node count

Fig. 11. Compactness of the Pop-tree structure in mining data streams: node count

Fig. 12. Compactness of the Pop-stream structure when varying #batches

7.9 Scalability of the Pop-Stream Structure

Finally, we studied the scalability of the Pop-stream structure. In particular,
Fig. 12 shows that, when the number of batches increased, the number of patterns
to be stored in the Pop-stream structure gradually increased. Hence, the total
number of nodes in the Pop-stream structure increased accordingly. The increase
in the number of mined popular patterns (i.e., in the number of stored nodes) is
proportional to the number of batches in the streaming data.

Mining Popular Patterns: A Novel Mining Problem and its Application 137

8 Conclusions and Future Work

In this paper, we introduced a new type of patterns—namely, popular patterns.
We also proposed the Pop-tree (which captures important contents of trans-
actional databases for mining popular patterns) and the Pop-growth algorithm
(which finds popular patterns by mining the Pop-tree). Although the notion
of popularity does not satisfy the downward closure property, we managed to
address this issue by using total transaction length (sumTL) together with pro-
jected databases, which allows lazy pruning. Moreover, we also proposed the
Pop-stream structure (which captures the popular patterns mined from each
batch as well as other auxiliary information for computing the popularity of
these patterns) and the Pop-streaming algorithm (which finds popular patterns
by mining the Pop-stream. Moreover, results also showed that construction of
Pop-tree and mining of popular patterns are time efficient. Furthermore, we are
not confined with mining popular patterns from static transactional databases;
we also mine popular patterns from dynamic data streams. Experimental results
showed that both Pop-tree and Pop-stream structures are compact, scalable, and
space efficient for both sparse and dense datasets (e.g., IBM synthetic data, real
data from FIMI, social network data).

As future work, we plan to further extend our proposed framework as to
incorporate novel extensions, precisely targeting several achievements: (i) incor-
porating the capability of dealing with Big Data (e.g., [8]), perhaps by adopting
consolidated data fragmentation approaches (e.g., [3]), which well-adapt to mas-
sive sizes that both transactional databases and multi-rate, heterogeneous data
streams may achieve; (ii) incorporating the capability of dealing with optimiza-
tion issues (e.g. [5,6]), perhaps by adopting non-conventional approaches like
topology control (e.g., [13]), which well-adapts to the graph-based nature of both
connected entities in transactional databases and data stream items; (iii) incor-
porating the capability of dealing with uncertain and imprecise transactional
databases (e.g., [27]) and data streams (e.g., [4]), perhaps by adopting proba-
bilistic methods (e.g., [7]).

Acknowledgement. This project is partially supported by (i) China Scholarship
Council (CSC), (ii) Mitacs (Canada), (iii) Natural Sciences and Engineering Research
Council of Canada (NSERC), and (iv) University of Manitoba.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB
1994, pp. 487–499 (1994)

2. Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast algorithms for mining emerg-
ing patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS
(LNAI), vol. 2431, pp. 39–50. Springer, Heidelberg (2002)

3. Bonifati, A., Cuzzocrea, A.: Storing and retrieving XPath fragments in structured
P2P networks. Data Knowl. Eng. 59(2), 247–269 (2006)

138 A. Cuzzocrea et al.

4. Cuzzocrea, A.: Retrieving accurate estimates to OLAP queries over uncertain and
imprecise multidimensional data streams. In: Cushing, J.B., French, J., Bowers, S.
(eds.) SSDBM 2011. LNCS, vol. 6809, pp. 575–576. Springer, Heidelberg (2011)

5. Cuzzocrea, A., Furfaro, F., Greco, S., Masciari, E., Mazzeo, G.M., Saccà, D.: A
distributed system for answering range queries on sensor network data. In: IEEE
PerCom 2005 Workshops, pp. 369–373 (2005)

6. Cuzzocrea, A., Furfaro, F., Masciari, E., Saccà, D., Sirangelo, C.: A distributed
system for answering range queries on sensor network data. In: Stefanidis, A.,
Nittel, S. (eds.) GeoSensor Networks, pp. 53–72. CRC Press (2004)

7. Cuzzocrea, A., Gunopulos, D.: A decomposition framework for computing and
querying multidimensional OLAP data cubes over probabilistic relational data.
Fundamenta Informaticae 132(2), 239–266 (2014)

8. Cuzzocrea, A., Saccà, D., Ullman, J.D.: Big data: a research agenda. In: IDEAS
2013, pp. 198–203. ACM (2013)

9. Cameron, J.J., Leung, C.K.-S., Tanbeer, S.K.: Finding strong groups of friends
among friends in social networks. In: IEEE DASC 2011, pp. 824–831 (2011)

10. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM 2006, pp. 328–339. SIAM (2006)

11. Castellanos, M., Gupta, C., Wang, S., Dayal, U.: Leveraging web streams for con-
tractual situational awareness in operational BI. In: EDBT/ICDT 2010 Workshops,
art. 7. ACM (2010)

12. Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: SpADe: on shape-based
pattern detection in streaming time series. In: IEEE ICDE 2007, pp. 786–795 (2007)

13. Cuzzocrea, A., Papadimitriou, A., Katsaros, D., Manolopoulos, Y.: Edge between-
ness centrality: a novel algorithm for QoS-based topology control over wireless
sensor networks. J. Netw. Comput. Appl. 35(4), 1210–1217 (2012)

14. Gaber, M.M., Zaslavsky, A.B., Krishnaswamy, S.: Mining data streams: a review.
SIGMOD Rec. 34(2), 18–26 (2005)

15. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data
streams at multiple time granularities. In: Kargupta, H., Joshi, A., Sivakumar, K.,
Yesha, Y. (eds.) Data Mining: Next Generation Challenges and Future Directions,
pp. 105–124. AAAI/MIT Press (2004)

16. Gupta, A., Bhatnagar, V., Kumar, N.: Mining closed itemsets in data stream using
formal concept analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.)
DaWaK 2010. LNCS, vol. 6263, pp. 285–296. Springer, Heidelberg (2010)

17. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGMOD 2000, pp. 1–12 (2000)

18. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining.
SIGMOD Rec. 35(1), 14–19 (2006)

19. Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of con-
strained frequent sets. ACM Trans. Database Syst. 28(4), 337–389 (2003)

20. Lee, Y.-K., Kim, W.-Y., Cai, Y.D., Han, J.: CoMine: efficient mining of correlated
patterns. In: IEEE ICDM 2003, pp. 581–584 (2003)

21. Leung, C.K.-S., Cuzzocrea, A., Jiang, F.: Discovering frequent patterns from uncer-
tain data streams with time-fading and landmark models. T. Large-Scale Data- and
Knowl.-Centered Syst. 8, 174–196 (2013)

22. Leung, C.K.-S., Hao, B.: Mining of frequent itemsets from streams of uncertain
data. In: IEEE ICDE 2009, pp. 1663–1670 (2009)

23. Leung, C.K.-S., Jiang, F.: Frequent pattern mining from time-fading streams of
uncertain data. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862,
pp. 252–264. Springer, Heidelberg (2011)

Mining Popular Patterns: A Novel Mining Problem and its Application 139

24. Leung, C.K.-S., Sun, L.: A new class of constraints for constrained frequent pattern
mining. In: ACM SAC 2012, pp. 199–204 (2012)

25. Leung, C.K.-S., Tanbeer, S.K.: Mining popular patterns from transactional data-
bases. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp.
291–302. Springer, Heidelberg (2012)

26. Leung, C.K.-S., Tanbeer, S.K.: Mining social networks for significant friend groups.
In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA
Workshops 2012. LNCS, vol. 7240, pp. 180–192. Springer, Heidelberg (2012)

27. Motro, A.: Imprecision and uncertainty in database systems. In: Base, P.,
Kacprzyk, J. (eds.) Fuzziness in Database Management Systems. pp. 3–22. Physica-
Verlag (1995)

28. Ng, W., Dash, M.: Discovery of frequent patterns in transactional data streams.
T. Large-Scale Data- and Knowl.-Centered Syst. 2, 1–30 (2010)

29. Rasheed, F., Alshalalfa, M., Alhajj, R.: Efficient periodicity mining in time series
databases using suffix trees. IEEE Trans. Knowl. Data Eng. 23(1), 79–94 (2011)

30. Rashid, M.M., Karim, M.R., Jeong, B.-S., Choi, H.-J.: Efficient mining regularly
frequent patterns in transactional databases. In: Lee, S., Peng, Z., Zhou, X., Moon,
Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 258–
271. Springer, Heidelberg (2012)

31. Wu, T., Chen, Y., Han, J.: Re-examination of interestingness measures in pattern
mining: a unified framework. Data Min. Knowl. Disc. 21(3), 371–397 (2010)

32. Xiong, H., Tan, P.-N., Kumar, V.: Hyperclique pattern discovery. Data Min. Knowl.
Disc. 13(2), 219–242 (2006)

33. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data
Knowl. Eng. 59(3), 603–626 (2006)

34. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with
gaprequirement from sequences, ACM Trans. Knowl. Discov. Data 1(2), art. 7
(2007)

	Mining Popular Patterns: A Novel Mining Problem and Its Application to Static Transactional Databases and Dynamic Data Streams
	1 Introduction
	2 Related Work
	3 Our Proposed Notion of Popular Patterns
	4 Pop-Growth: Mining Popular Patterns from Static Transactional Databases
	4.1 Construction of a Pop-Tree
	4.2 Finding Popular Patterns from the Pop-Tree

	5 Discussion: An Application on Mining Popular Friends from Social Networks
	6 Pop-Streaminng: Mining Popular Patterns from Dynamic Data Streams
	7 Experimental Results
	7.1 Runtime of Pop-Growth
	7.2 Reduction on the Number of Patterns When Changing minpop
	7.3 Compactness of the Pop-Tree
	7.4 Scalability of Pop-Growth
	7.5 Mining Popular Friends from Social Networks
	7.6 Runtime of Pop-Streaming
	7.7 Compactness of the Pop-Stream Structure
	7.8 Memory Consumption for the Pop-Streaming Algorithm
	7.9 Scalability of the Pop-Stream Structure

	8 Conclusions and Future Work
	References

