Cut-and-Rewind: Extending Query Engine
for Continuous Stream Analytics

Qiming Chen™ and Meichun Hsu

HP Labs, Hewlett Packard Co., Palo Alto, CA, USA
{qiming. chen,meichun. hsu}@hp. com

Abstract. Combining data warehousing and stream processing technologies
has great potential in offering low-latency data-intensive analytics. Unfortu-
nately, such convergence has not been properly addressed so far. The current
generation of stream processing systems is in general built separately from the
data warehouse and query engine, which can cause significant overhead in data
access and data movement, and is unable to take advantage of the functionalities
already offered by the existing data warehouse systems.

In this work we tackle some hard problems in integrating stream analytics
capability into the existing query engine. We define an extended SQL query
model that unifies queries over both static relations and dynamic streaming data,
and develop techniques to extend query engines to support the unified model.
We propose the cut-and-rewind query execution model to allow a query with
full SQL expressive power to be applied to stream data by converting the latter
into a sequence of “chunks”, and executing the query over each chunk
sequentially, but without shutting the query instance down between chunks for
continuously maintaining the application context across the execution cycles as
required by sliding-window operators. We also propose the cycle-based trans-
action model to support Continuous Querying with Continuous Persisting
(CQCP) with cycle-based isolation and visibility.

We have prototyped our approach by extending the PostgreSQL. This work
has resulted in a new kind of tightly integrated, highly efficient system with the
advanced stream processing capability as well as the full DBMS functionality.
We demonstrate the system with the popular Linear Road benchmark, and report
the performance. By leveraging the matured code base of a query engine to the
maximal extent, we can significantly reduce the engineering investment needed
for developing the streaming technology. Providing this capability on proprie-
tary parallel analytics engine is work in progress.

1 Introduction

Streaming analytics is a data-intensive computation chain from event streams to
analysis results. In response to the rapidly growing data volume and the pressing need
for lower latency, Data Stream Management Systems (DSMSs) provide a paradigm
shift from the load-first analyze—later mode of data warehousing [8, 16, 17, 19].

1.1 The Problem

However, the current generation of DSMS is in general built separately from the data
warehouse query engine, due to the difference in handling stream data and static data;

© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XXI, LNCS 9260, pp. 94-114, 2015.
DOI: 10.1007/978-3-662-47804-2_5

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 95

as a result, the data transfer overhead between the two has become a performance and
scalability bottleneck [4, 6, 10]. The standalone DSMS’s also lack the full SQL
expressive power and DBMS functionalities of managing persistent data. It does not
have the appropriate transaction support for continuously persisting and sharing results
along with continuous querying. As stream processing evolves from simple to com-
plex, these functionalities are likely to be redeveloped.

In this paper we tackle the following technical challenges in integrating stream
processing with data warehouse query engine:

— A query engine manages relations (tables) which contain well defined sets. How-
ever, a stream is unbounded, and never reaches the “end of data”, which would pose
problems with the existing query model and transaction model.

— Stream processing is often based on windows, and there is a need to apply a query
repeatedly to chunks of unbounded stream data that fall in consecutive windows.
Stream analytics also requires operators that are history sensitive, such as sliding
window operators, and there is a need to continuously and efficiently maintain the
state or a synopsis of the data that falls in the previous windows.

— During stream processing, there is a need to persist periodically to allow the
analysis results to be visible to other concurrent applications, sometimes even to
another branch of the same query. This will require extended transaction semantics
that is not supported with existing query engines.

1.2 State of the Art

Since a stream query is defined on unbounded data and in general limited to
non-transactional event processing, the current generation of DSMSs is mostly built from
scratch independently of the database engine. Big players along this direction include
System S (IBM) [15], STREAM (Stanford) [3], TelegraphCQ (Berkeley) [5], as well as
Aurora, Borealis, etc. [1, 2, 7, 11, 17]. Two recently reported systems, the TruSQL
engine [16] developed by Truviso Inc, USA, and the DataCell engine [19] developed by
CWI, Netherlands, do leverage database technology but are characterized by providing a
workflow like service for launching a SQL query for each chunk of the stream data
during stream processing. To the best of our knowledge, none of the existing approaches
has leveraged the query engine without introducing an additional loosely-coupled
“middleware” layer. Oracle currently offers a “continued query” feature but it is based on
automatic view updates and is not the same feature as stream processing.

Managing data-intensive stream processing outside of the query engine causes the
data copying and moving overhead, and fails to leverage the full SQL and DBMS
functionality.

Processing streams by multiple queries may incur performance penalty due to the
overhead for frequent query setup and teardown, and more seriously, cause the
semantic difficulty in chunk-wise data manipulation. Since the backend query execu-
tion processes are in isolated memory contexts, processing each data chunk by an
individual query instance cannot maintain the application context, e.g. the data buffered
with User Defined Functions (UDFs) continuously across multiple query instances,
thus unable to deal with sliding-window like operations.

96 Q. Chen and M. Hsu

To the best of our knowledge, none of the existing approaches has solved the
difficulty of processing stream in terms of truly continued SQL query with chunk-wise
semantics but continuously tracked application context, by leveraging the query engine
without introducing an additional loosely-coupled “middleware” layer.

1.3 The Solution

We view a query engine essentially as a streaming engine, although this potential has
not been thoroughly explored. With this vision, we advocate an extended SQL model
that unifies queries over both streaming and static relational data, and a new archi-
tecture for integrating stream processing and DBMS to support continuous,
“just-in-time” analytics with window-based operators and transaction semantics.

Our proposed stream model is based on dividing an infinite stream of relation tuples
with a criterion, e.g. by every 1-minute time window, into an unbounded sequence of
chunks. The semantics of applying the query to the unbounded stream lies in applying
the query to those infinite chunks which continuously generates an unbounded
sequence of query results, one on each chunk of the stream data.

Our goal is to support the above semantics using a continuous query that runs cycle
by cycle for processing the stream data chunks, each data chunk to be processed in each
cycle, in a single, long-standing query instance. In this sense we also refer to the data
chunking criterion C as the query cycle specification. The cycle specification can be
based on time or a number of tuples, which can amount to as small as a single tuple,
and as large as billions of tuples per cycle. The stream query may be terminated based
on specification in the query (e.g. run for 300 cycles), user intervention, or a special
end-of-stream signal received from the stream source.

Specifically, our solutions include the following.

— We start with providing unbounded relation data to feed queries continuously. The
first step is to integrate the notions of stream data source, and use function-scan
instead of table-scan, for turning captured events into unbounded sequence of
relation tuples to feed to stream queries without first storing them on disk.

— We develop UDF shells [9] to deliver operators with stream semantics (e.g. moving
average, notification) that are not available in conventional SQL. We allow a UDF
to cache the state in the application context for carrying out history-sensitive
operations, such as sliding window oriented operations, along the stream processing
pipeline. We also allow a UDF to emit the current or accumulated computation
results continuously on the per-tuple basis - once a tuple from the stream has been
received and/or processed.

— We propose the cut-and-rewind query model, namely, cutting a query execution
based on some granule (“chunk™) of the stream data (e.g. in a time window), and
then rewinding the state of the query without shutting it down, for processing the
next chunk of stream data. This mechanism, on one hand, allows applying a query
continuously to the stream data chunks falling in consecutive time windows, within
a single, long-standing query; on the other hand, allows retaining the application
context (e.g. data buffered with UDFs) continuously across the execution cycles to
perform sliding-window oriented, history sensitive operations.

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 97

— To support Continuous Querying with Continuous Persisting (CQCP), we introduce
the cycle-based transaction model with the cycle-based isolation mechanism, which
makes the heap-inserted, chunk-wise database updates accessible by other appli-
cations as soon as the corresponding cycle execution commits. Note however that a
continuous query may emit non-transactional messages or events to external
receivers before “commit” — such messages are not bound by transaction semantics.

A significant advantage of the unified model lies in that it allows us to exploit the
full SQL expressive power on each data chunk. The output is also a stream consisting
of a sequence of chunks, with each chunk representing the query result of one exe-
cution cycle. While there may be different ways to implement our proposed unified
model, our approach is to generalize the SQL engine to include support for stream
sources. The approach enables queries over both static and streaming data, retains the
full SQL power, while executing stream queries efficiently.

The proposed cut-and-rewind approach enables us to support truly continuous
query in a completely different way from other DSMSs, and seamlessly integrate the
stream processing capability into a full-functional database system, creating a powerful
and flexible system that can run SQL over tables, streams (tuple by tuple or chunk by
chunk), and the combination of the two.

In this paper we have limited a query to refer to a single stream and thus a single
cycle specification. In general, our model allows multiple stream queries to refer to the
same source, and these queries can interact through database tables which may be
memory resident; our model also allows a single query to refer to multiple stream
sources with different cut criteria. Various pairing patterns [15] and the corresponding
operations to allow multiple streams or hybrid queries to interact have been investi-
gated and are to be reported separately.

We report our experience in leveraging the PostgreSQL engine for supporting stream
processing. The proposed cut-and-rewind mechanism has been implemented with min-
imal engine extension, resulting in a tightly integrated, highly efficient platform with the
advanced stream processing capability as well as the full DBMS functionality. We
demonstrated the merit of our platform using the popular Linear Road benchmark. Pro-
viding this capability on a proprietary parallel database engine is currently being explored.

The rest of this paper is organized as follows: Sect. 2 reports our approach in
handling stream source and stream analytic functions by extending a DBMS with new
source functions and UDFs for stream operations; Sect. 3 proposes the cut-and-rewind
approach; Sect. 4 deals with the transaction issues in cycle-based stream processing;
Sect. 5 shows how the proposed approach is applied to the popular Linear Road stream
processing benchmark, and discusses the experiment results; Sect. 6 concludes the paper.

2 Stream Processing as Continuous Querying

A SQL query is parsed and optimized into a query plan that is a tree of operators. The
scan operator at the leaf of the tree gets and materializes a block of data to be delivered
to the upper layer tuple by tuple. A non-blocking relational operator or a function, e.g. a
UDF, is invoked multiple times in a query execution on the per-tuple basis, which
forms a dataflow pipeline, and in this sense, similar to stream processing.

98 Q. Chen and M. Hsu

However, there exist some fundamental differences between the conventional query
processing and the stream processing. First, a query is defined on bounded relations but
stream data are unbounded; next, stream processing adopts window-based semantics,
i.e. processing the incoming data chunk by chunk falling in consecutive time windows;
however, the SQL operators are either based on one tuple (such as filter operators) or
the entire relation; Further, stream processing is also required to handle sliding window
operations continuously across chunk based data processing; and finally, endless
stream analytics results must be continuously accessible along their production, under
specific transaction semantics.

Let us use a simplified traffic system example to illustrate our unified query over
stored and stream data, where the total amount of toll charged for each highway
segment per minute are computed, given a segment toll table and events that report
vehicles’ entering a segment.

e C (vid,sid,ts), contains the event that a car (vid) enters a tolled segment (sid) with a
timestamp in second (ts),

e T (sid, charge) contains the highway segment info where charge is the toll per car
for segment sid.

We express the example first as a query over static relations only, and then as a
hybrid query that includes a stream source. The graphical representation of the two
queries is shown in Fig. 1.

For the first query QI (shown on the left of Fig. 1), the inputs are two stored
relations, C and 7. However, if the table C above is not a stored relation, but replaced

Q1 Query result Q2 Query result

Sum (charge), < SON-GE > Sum (charge), i
groupby sid, minute = groupby sid, minute
< JOIN_ > Tsid = C.sid < JOIN "> T.sid = SC.sid
C T SC

@ out’ L L ——- “chunk 0”
‘cut” - - ——=—==& “chunk 1”

Fig. 1. Querying static table vs. querying data stream chunk by chunk

by a real-time stream source, while T remains a stored relation, then the above
application becomes a streaming application. The above static SQL query is adapted to
a streaming query simply by defining SC as a stream (instead of a table) with the same
schema as C and changing the reference to C as follows (shown on the right of Fig. 1):

ol:

SELECT sid, floor(ts/60) AS minute, SUM(charge)

FROM T, C WHERE C.sid = T.sid

GROUP BY sid, minute

02:

SELECT sid, floor(ts/60) AS minute, SUM(charge)

FROM T, STREAM (SC, cycle-spec) WHERE SC.sid = T.sid

GROUP BY sid, minute

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 99

In the above query, we replace the disk-resided database table by a special kind of table
function STREAM(), called Stream Source Function (SSF), that listens or reads
data/events sequence. Further, STREAM(SC, cycle-spec) specifies that the stream
source SC is to be “cut” into an unbounded sequence of chunks SCcy, SCc;, ..., where
all tuples in SC¢; occur before any tuple in SCc;,; in the stream. The “cut point” is
specified in the cycle-spec. Let Q1 above be denoted as a query function over table C,
i.e., QI(C). The execution semantics of Q2 is defined as executing QI(SC¢;) in
sequence for all SC¢;’s in the stream source SC.

In general, given a query Q over a set of relation tables Ty,.., T, and an infinite
stream of relation tuples S with a criterion 9 for cutting S into an unbounded sequence
of chunks, e.g. by every 1-minute time window, < Sy, Sy, ..., S;, ... > where S; denotes
the i-th “chunk” of the stream according to the chunking-criterion 3. S; can be inter-
preted as a relation. The semantics of applying the query Q to the unbounded stream
S plus the bounded relations Ty,..,T, lies in

Q(S,Tl,..,Tn) — <Q(S(),T1,..,Tn), .. .Q(Si7T17..,Tn), o>

which continuously generates an unbounded sequence of query results, one on each
chunk of the stream data.

2.1 Stream Source Function

For providing unbounded relation data to fuel queries continuously, the first step is to
replace the database table, which contains a set of tuples on disk, by the special kind of
table function, called Stream Source Function (SSF) that returns a sequence of tuples to
feed queries without first storing on disk. A SSF can listen or read data/events sequence
and generate stream elements tuple by tuple continuously. A SSF is called multiple, up
to infinite, times during the execution of a continuous query, each call returns one
tuple. When the end-of-cycle event or condition is seen, the SSF signals the query
engine to terminate the current query execution cycle.

We rely on SSF and query engine for continuous querying on the basis that “as far as
data do not end, the query does not end”, rather than employing an extra scheduler to launch
a sequence of one-time query instances. The SSF scan is supported at two levels, the SSF
level and the query executor level. A data structure containing function call information,
hFC, bridges these two levels. hFC is initiated by the query executor and passed in/out the
SSF for exchanging function invocation related information. We use this mechanism for
minimizing the code change, but maximize the extensibility, of the query engine.

2.2 Stream Analytics Through UDF

One important characteristics of stream processing is the use of stream-oriented
history-sensitive analytic operators such as moving average or change point detection.
While the standard SQL engine contains a number of built-in analytic operators, stream
history-sensitive operators are not supported. Using UDFs is the generally accepted
mechanism to extend query operators in a DBMS. A UDF can be provided with a data
buffer in its function closure, and for caching stream processing state (synopsis).

100 Q. Chen and M. Hsu

Furthermore, it is also used to support one or more emitters for delivering the analytics
results to interested clients in the middle of a cycle, which is critical in satisfying stream
applications with low latency requirement.

Stream processing involves operations on (time) windows, including sliding win-
dows, and therefore is history sensitive. This represents a different requirement from
the regular query processing that only cares about the current state. We use UDFs to
add window operators and other history sensitive operators, buffering required raw data
or intermediate results within the UDF closures.

A scalar UDF is called multiple times on the per-tuple basis, following the typical
FIRST_CALL, NORMAL_CALL, FINAL_CALL skeleton. The data buffer structures
are initiated in the FIRST _CALL and used in each NORMAL_CALL. A window
function defined as a scalar UDF incrementally buffers the stream data, and manipu-
lates the buffered data chunk for the required window operation. Since the query
instance remains alive, as supported by our cut-and-rewind model, the UDF buffer is
retained between cycles of execution and the data states are traceable continuously (we
see otherwise if the stream query is made of multiple one-time instances, the buffered
data cannot be traced continuously across cycle boundaries). As a further optimization,
the static data retrieved from the database can be loaded in a window operation initially
and then retained in the entire long-standing query, which removes much of the data
access cost as seen in the multi-query-instances based stream processing.

We propose to run a SQL query cycle by cycle for deriving a sequence of
data-chunk based results, but never shutting down the query instance in order to have
the per-tuple based data processing history continuous tractable.

UDFs can be used to develop a library of reusable stream operators and further
allow the unified query model to be extended. As will be illustrated in our Linear Road
(LR) implementation, the 5-minute moving average speed is provided through a
moving average UDF, atop the per-minute average speed, the latter computed using the
standard SQL average-groupby function in one query cycle.

3 Cycle Based Continuous Query

To support the cycle based execution of stream queries, we propose the cut-and-rewind
query execution model, namely, cut a query execution based on the cycle specification
(e.g. by time), and then rewind the state of the query without shutting it down, for
processing the next chunk of stream data in the next cycle.

Under this cut-and-rewind mechanism, a stream query execution is divided into a
sequence of cycles, each for processing a chunk of data only; it, on one hand, allows
applying a SQL query to unbounded stream data chunk by chunk within a single,
long-standing query instance; on the other hand, allows the application context (e.g. data
buffered within a User Defined Function (UDF)) to be retained continuously across the
execution cycles, which is required for supporting sliding-window oriented, history
sensitive operations. Bringing these two capabilities together is the key in our approach.

Cut Cutting stream data into chunks is originated in the SSF at the bottom of the query
tree. Upon detection of end-of-cycle condition, the SSF signals end-of-data to the query

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 101

engine through setting a flag on the function call handle, that, after being interpreted by
the query engine, results in the termination of the current query execution cycle.

If the cut condition is detected by testing the newly received stream element, the
end-of-data event of the current cycle would be captured upon receipt of the first tuple
of the next cycle; in this case, that tuple will not be returned by the SSF in the current
cycle, but buffered within the SSF and returned as the first tuple of the next cycle. Since
the query instance is kept alive, that tuple can be kept across the cycle boundary.

Rewind Upon termination of an execution cycle, the query engine does not shut down
the query instance but rewinds it for processing the next chunk of stream data.
Rewinding a query is a top-down process along the query plan instance tree, with
specific treatment on each node type. In general, the intermediate results of the standard
SQL operators (associated with the current chunk of data) are discarded but the
application context kept in UDFs (e.g. for handling sliding windows) are retained. The
query will not be re-parsed, re-planned or re-initiated.

Note that rewinding the query plan instance aims to process the next chunk of data,
rather than re-deliver the current query result; therefore it is different from “rewinding a
query cursor” for re-delivering the current result set from the beginning. For example,
the conventional cursor rewind tends to keep the hash-tables for a hash-join operation
but our rewind will have such hash-tables discarded since they were built for the
previous, rather than the next, data chunk.

As mentioned above, the proposed cut-and-rewind approach has the ability to keep
the continuity of the query instance over the entire stream while dividing it to a
sequence of execution cycles. This is significant in supporting history sensitive stream
analytic operations, as discussed in the previous section.

4 Continuous Querying with Continuous Persisting (CQCP)

One problem of the current generation of DSMSs is that they do not support transac-
tions. Intuitively, as stream data are unbounded and the query for processing these data
may never end, the conventional notion of transaction boundary is hard to apply. In fact,
transaction notions have not been appropriately defined for stream processing, and the
existing DSMSs typically make application specific, informal guarantees of correctness.

However, to allow a hybrid system where stream queries can refer to static data
stored in a database, or to allow the stream analysis results (whether intermediate or
final) to persist and be visible to other concurrent queries in the system in a timely
manner, a transaction model which allows the stream processing to periodically
“commit” its results and makes them visible is needed.

Note that if a stream application does not use static data in the database, or does not
need to persist results and make them visible to other concurrent applications, then
transaction semantics are not needed. In our design, the transaction semantics is used,
and thus transaction management overhead is incurred, only when a stream application
requires persistent data management.

102 Q. Chen and M. Hsu

4.1 Query Cycle Based Transaction Model

Lacking formal transaction semantics is a problem of the current generation of stream
processing systems, as they typically make application specific, informal guarantees of
correctness.

Conventionally a query is placed in a transaction boundary; the query result and the
possible update effect are made visible only after the commitment of the transaction
(although weaker transaction semantics do exist). Since the query for processing
unbounded stream data may never end, the conventional notion of transaction
boundary is hard to apply.

In order to allow the result of a long-running stream query to be incrementally
accessible, we introduce the cycle-based transaction model coupled with the cut-and-
rewind query model, which we call continuous querying with continuous persisting.
Under this model a stream query is “committed” one cycle at a time in a sequence of
“micro-transactions”. The transaction boundaries are consistent with the query cycles,
thus synchronized with the chunk-wise stream processing. The per-cycle stream pro-
cessing results are made visible as soon as the cycle ends.

For example, in Q2 above, the query result, which is the total charge per highway
segment, is made visible every cycle; if the cycle specification is per minute, then the
total charge per segment is made visible per minute, and it can also be persisted at the
minute boundary.

4.2 Staging Results Without Data Copy/Move

With the cloud service, the analytics results are accessed by many clients through PCs
or smart phones. These results are read-only time series data, stored in the read-sharable
tables incrementally visible to users as they become available. Since the analytics
results are derived from unbounded stream of events, they are themselves unbounded
and thus must be staged step by step along with their production. Very often, only the
latest data is “most wanted”. For scaling up CaaaS, efficient data staging is the key.

Data staging is a common task of data warehouse management. The general
approach is stepwise archival of the older data, which, however, incurs data moving
and copying overhead. While this approach is acceptable for handling slowly-updated
data in data warehousing, it is not efficient for supporting real-time stream analytics.

To avoid the data moving and copying overhead in data staging, we have devel-
oped a specific mechanism characterized by staging through metadata manipulation
without real data movement. As shown in Fig. 2, we provide a list of tables for keeping
the stream analytics results generated in a given number of query execution cycles (e.g.
generated in 60 per-minute cycles, i.e. one hour). These tables are arranged as a
“table-ring” and used in a round-robin fashion. For example, to keep the results for the
latest 8 h of notifications, 9 tables say Ty, T,, ..., To, are allocated in a buffer-pool, such
that at a time, T stores the results of the current hour, say h, T, stores the results of the
hour k-1, ..., Ty stores the results of the hour /-8, the data in Tg are beyond the 8-hour
range thus being archived asynchronously during the current hour. When the hour
changes, the archiving of Ty has presumably finished and Ty is reassigned for storing
the results of the new, current hour.

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 103

The hourly based timestamp of these tables are maintained either in the data dic-
tionary or a specifically provided system table. In the above data staging, only the
“label” of a table is switched for representing the time boundary (i.e. the hour) of its
content, without moving/copying the content to another table or file thus avoiding the
read/write overhead.

Further, a stable SQL interface is provided for both the client-side users and the
server-side queries. Assuming the table holding the summarized traffic status in the
current hour is named “current_road_condition”, this name remains the same at all the
times but points to different physical tables from time to time. This may be accom-
plished by associating the table holding the latest results to “current_road_condition”
through metadata lookup, or by system internal query modification.

T T T, . T #/oading
. |§J——|§J-|§J.|§L)hourh
archiving & = = = = = = = = = = -
loading ¢T9 Ts Ts T. T,
=1=—]4=—1}| =L hourh+1
J_:J__? O3 3 o
archiving

Fig. 2. Table-ring approach for staging analytics results through metadata manipulation without
data copy/move

We have extended the query engine to support the above table ring for the
client-side query. The continuous query uses the INSERT-INTO clause to capture the
query results at each cycle. (See Sect. 2.5 for an example).The “into-relation” is closed
prior to a cycle-based transaction commits and it re-opens after the transaction for the
next cycle starts. Between the complete_transaction() call and the reopen_into_relation
() call, the number of execution cycles is checked, and if the specified staging time
boundary is reached, the switching of “into-relations”, i.e. the query destinations, takes
place, where the above data dictionary or specific system table is looked up, and the
“next” table ID is obtained and passed to the reopen_into_relation(). Thereafter another

@ create query plan

start Tx

open intoR

execute plan

rewind plan exec

close intoR look up next intoR 1D
commit Tx from data dictionary
check intoR boundary

start Tx T

v re-open intoR Next intoaR ID

Fig. 3. Cycle-based query execution, transaction, staging

104 Q. Chen and M. Hsu

into-relation will act as the query destination. This way, the query runs cycle by cycle
to process the input data stream chunk by chunk.

Overall, the cycle-based query execution, transaction commitment and multi-cycle
based data staging are illustrated in Fig. 3.

5 Example and Experiments

5.1 Modeling the Linear Road Benchmark

We use the widely-accepted Linear-Road (LR) benchmark [18] to demonstrate our
extended query engine. The LR benchmark models the traffic on express ways for the
3-hour duration; each express way has two directions and 100 segments. Cars may
enter and exit any segment. The position of each car is read every 30 s and each reading
constitutes an event, or stream element, for the system. A car position report has
attributes vid (vehicle ID), time (seconds), speed (mph), xway (express way), dir
(direction), seg (segment), etc. The benchmark requires computing the traffic statistics
for each highway segment, i.e. the number of active cars, their average speed per
minute, and the past 5-minute moving average of vehicle speed. Based on these
per-minute per-segment statistics, the application computes the tolls to be charged to a
vehicle entering a segment any time during the next minute, and notifies the toll in real
time (notification is to be sent to a vehicle within 5 s upon entering the segment). The
application also includes accident detection; an accident occurring in one segment will
impact the toll computation of that segment as well as a few downstream segments. An
accident is flagged when multiple cars are found to have stopped in the same location.
The graphical representation of our implementation of the LR stream processing
requirement is shown in Fig. 4 together with its corresponding stream query.

INSERT INTO toll_table SELECT minute, xway, dir, seg, Ir_toll(r.traffic_ok, r.cars_volume)
FROM (
SELECT minute, xway, dir, seg, cars_volume,
Ir_moving_avg(xway, dir, seg, minute, avg_speed) as mv_avg, traffic_ok
FROM (
SELECT floor(time/60)::integer AS minute, xway, dir, seg,
AVG(speed) AS avg_speed, COUNT(distinct Vid)-1) AS cars_volume,
MIN(trffic_ok) AS traffic_ok
FROM (
SELECT xway, dir, seg, time, speed, vid,
Ir_acc_affected(vid,speed,xway,dir,seg,pos) AS traffic_ok
FROM STREAM_CYCLE_Ir_data(60, 180)
WHERE Ir_notify_toll(vid, xway, dir, seg, time)>=0
)s
GROUP BY minute, xway, dir, seg
)P
)r
WHERE r.mv_avg > 0 AND r.mv_avg < 40;

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 105

This query provides the following major functions.

— Stream Source Function - The streaming tuples are generated by the SSF
STREAM_CYCLE_Ir_data(time, cycles), from the LR data source file with time-
stamps, where parameter “time” is the time-window size in seconds; “cycles” is the
number of cycles the query is supposed to run. For example, STREAM_CY-
CLE_lIr_data(60, 180) delivers the position reports one-by-one until it detects the
end of a cycle (60 s), and performs a “cut”, then onto the next cycle, for a total of
180 cycles (for 3 h).

— Segment statistics and toll generation - As illustrated by the left hand side of
Fig. 4, the tolls are derived from the segment statistics, i.e. the number of active
cars, average speed, and the 5-minute moving average speed, as well as from
detected accidents, and dimensioned by express way, direction and segment. We
leveraged the minimum, average and count-distinct aggregate-groupby operators
built into the SQL engine, and provided the moving average (Ir_moving_avg)
operator and the accident detection (Ir_accident) operator in UDFs.

— Toll persisting - Required by the LR benchmark, the segment tolls of minute
m should be generated within 5 s after m. The toll of a segment calculated in the past
minute is applied to the cars currently entering into that segment. The generated
tolls are inserted into a segment toll table (SegToll) with the transaction committed
per cycle (i.e., per minute). Therefore the tolls generated in the past minutes are
visible to the current minute.

— Toll notification - As shown on the right side of Fig. 4, the per-car toll notification
is provided by the UDF Ir_notify_toll() appearing in the following phrase

WHERE Ir_notify_toll(vid, xway, dir, seg, time) > = 0

Stream segtoll Vin N Sea Toll Table
i in —
Ir_toll Py, i | — | ol noification
- inN-1 | ==
A \ A
stream I (per minute) AN
\

\
@mvg-avg \ Stream toll_notif
operator -Read -

i segment toll (per car)
stream P (per minute) segment 1ol

(traffic_ok) (cars_volume) (avg speed) -lfacar | car
account

M) entersanew coour

@ segment, <4
AVG-GB emit a toll N
notification.
UDF " o —_—
Acar pos reports

Source stream

Fig. 4. Cycle based stream query for LR benchmark, for both the generation of per-minute, per
cycle tolls common to all cars, and the per car based retrieval of resulting tolls

106 Q. Chen and M. Hsu

This UDF keeps enough information about active cars so as to detect the event of a car
entering a new segment; and for each car entering a new segment, it emits a toll
notification while persisting the toll to a table (carAccount table) for future account
balance queries. This UDF reads the segment tolls of the previous minute within the
FIRST_CALL part of the UDF (represented by the dash line), enabling it to use the
information produced by the previous cycle of the stream query. Since this UDF is a
per-tuple UDF (i.e., the NORMAL_CALL part of the UDF is invoked per input tuple),
the toll notification is emitted immediately after the position report is received from the
source stream, and does not wait for the current cycle (minute) to terminate. This UDF
also persists the toll into the car account table. While the toll is notified immediately
upon receiving the car position report, persisting the toll is committed once per cycle, in
accordance to our CPCQ model.

Multiple features of our cycle-based stream processing approach are illustrated in
this query:

— Cut-and-Rewind. This query repeatedly applies to each data chunks falling in
I-minute time-window as an execution cycle, and rewinds 180 times in the single
query instance; the sub-query with alias p uses the standard SQL aggregate-groupby
function to yield the number of active cars and their average speed for every minute
dimensioned by segment, direction and express way. The SQL aggregate functions
are computed for each cycle with no context carried over from one cycle to the next.

— Sliding Window Function (per-tuple history sensitive). The sliding window
function [r_moving_avg() buffers the up to 5 per-minute average speed for accu-
mulating the dimensioned 5-minute moving average; since the query is only
rewound but not shut down, this buffer is retained continuously across query cycles
— this is a critical advantage of cut/rewind over shutdown/restart.

— Continuous Querying with Continuous Persisting. The top-level construct of the
LR query is actually the INSERT-SELECT phrase; with our engine extension, it
persists the result stream returned from the SELECT query (r) to the toll table on the
per-cycle basis. The transactional LR query commits per cycle to make the cycle
based result accessible to subsequent cycles or other concurrent queries after the
cycle ends. This cycle-based isolation level is supported with the appropriate
locking mechanism.

— Self-Referencing. The per-car toll notification is generated by the UDF Ir_noti-
Sy_toll(). It efficiently accesses the segment toll in the last minute directly from the
toll table. This kind of self-referencing provides a handshake mechanism for the
producer part and the consumer part of the same query to rely on the query engine
to synchronize, to perform history sensitive stream analytics, and to gain extremely
high performance due to their seamless integration. We believe that such
self-referencing represents a common paradigm in stream processing.

5.2 Experimental Setup

The experimental results are measured on HP xw8600 with 2 x Intel Xeon E54102
2.33 Ghz CPUs and 4 GB RAM, running Windows XP (x86_32) and PostgreSQL 8.4.

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 107

The input data are downloaded from the benchmark’s home page. The “L = 1”
setting was chosen for our experiment which means that the benchmark consists of 1
express way (with 100 segments in each direction). The event arrival rate ranges from a
few per second to peak at about 1,700 events per second towards the end of the 3-hour
duration. Figure 6 (Left) shows the distribution of data volume per minute, i.e. the
per-minute throughput.

The LR data can be supplied in the following two modes:

— Stress test mode: the data are read by the SSF from a file continuously without
following the real-time intervals (continuous input)

— Real-time input: the data are received from a data driver outside of the query engine
with real-time intervals. Each car position report carries a system timestamp
assigned by the data driver when the event is generated, which could be compared
with the system timestamps generated during when toll notification is emitted, for
measuring the response time.

We report our experimental results in these 2 different modes.

5.3 Performance Under Stress Test Mode

Time for computing segment tolls. Calculating the segment statistics and tolls has
been recognized as the computation bottleneck of the benchmark in the literature.
The LR benchmark requires the segment toll to be calculated based on the segment
statistics and traffic status (whether affected by accidents) every minute. We took the
left-hand-side of our LR model in Fig. 4 and ran that branch of the query up until the
toll is computed, under the stress test mode. The total computation time with L = 1
setting is shown in Fig. 5 (Left). It shows that our system is able to generate the
per-minute per-segments tolls for the total 3 h of LR data (approx. 12 Million tuples) in
a little over 2 min.

LR Segment Toll Computation Perf Comparison of Stream Query and Persist
140 180,000

160,000
120 126.37 /
@ 140,000

96.18

100,000
66.62 -

Time (Sec)
im (
B
8
8

80,000

40 40.12

20 19.65

N & 9
S 5 s
g8 8 8
8§ 8 8

Processing T

N 561
o =7 T T

o

60539 225212 495815 1830211 3792111 6251720 9016201 11928635
30min 60min 90min 120min 150min 180min
of events in 10, 20, 30, 60, 90, 120, 150, 180 minutes Data Volume by Time | ——Query —8—Direct Insert

Persist with Loggin

Fig. 5. (Left) Total time of toll computation. (Right) Performance comparison of querying-only
and query + persisting (with continuous input)

108 Q. Chen and M. Hsu

Performance of Persisting with Heap-Insert Unlike other reported DSMSs where
the stream processing results are persisted by connecting to a separate database and
issuing queries, with the proposed cycle-based CQCP approach, the continuous,
minute-cycle based query results are stored through efficient heap-insert.

From Fig. 5 (Right) we can see that persisting the cycle based stream processing results
either by inserting with logging (using INSERT INTO with extended support by the
query engine) or by direct inserting (using SELECT INTO with extended support by the
query engine — not shown in this query), does not add significant performance overhead
compared to querying only. This is because we completely push stream processing down
to the query engine and handle it in a long running query instance with direct heap
operations, with negligible overhead for data movement and for setting up update queries.

Post Cut Elapsed Time. In cycle-based stream processing, the remaining time of
query evaluation after the input data chunk is cut, called Post Cut Elapsed Time
(PCET), is particularly important since it directly affects the delta time for the results to
be accessible after the last tuple of the data chunk in the cycle has been received.

Figure 6 (Left) shows the input data volume over 1-minute time windows (i.e., the
stream workload). Figure 6 (Right) shows the query time, as well as the PCET, for
processing each 1-minute data chunk. It can be seen that the PCET (the blue line) is
well controlled around 0.2 s., meaning that the maximal response time for the segment
toll results, as measured from the time a cycle (a minute) ends, is around 0.2 s.

Data Load in Minute Time Windows Total Elapsed Time and Post Input Elapsed Time

for Data Chunk in 1-Minute Time Windows
120000

3500
100000
3000

80000 2500

2000
60000
1500

Number of Tuples

40000 1000

500

Query Time (Milliseconds)

20000

0

0 1 10 19 28 37 46 55 64 73 82 91 100109 118127136145154 163172

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 N . . total elapsed time
Minute Time Windows Minute Time Windows

postinput elapsed time

Fig. 6. (Left) Data load distribution over minute time windows (Right) Query time as well as
PCET on the data chunk falling in each minute time window

5.4 Performance Under the Real-Time Input Mode

With real-time input, the events (car position reports) are delivered by a data driver in
real-time with additional system-assigned timestamps. The query runs cycle by cycle
on each one-minute data chunk. Figure 7 shows the maximal toll notification response
time in each of the 180 1-minute windows.

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 109

Test results

400 -

= T A
L} []
250 1 ,.'-'-"d_"- - s - r-.'e-
200 M = - = u Cycle gap

150 f
100 - f'.

50 -

Cycle gap time (ms)

0 20 40 60 80 100 120 140 160 180 200

Time (minutes)

Fig. 7. Maximal toll notification response time in consecutive one-minute time windows

The maximal response time of toll notification really depends on the PCET measure
introduced above, i.e. it is essentially the delay after a cycle is “cut” in completing the
segment toll part of the query of that cycle. This is because in the beginning of each
cycle, the toll notification cannot be emitted until the segment toll generation of the last
cycle completes. In the first 2 h the toll notification response time is rather small, and
with the increased data load in the last hour, it reaches the maximal value of about
0.3 s, which is still well within the 5-second latency requirement of the benchmark.
Note that the maximal notification latency is not the average response time of notifi-
cation. On the average, the notification response time is near zero, as the ones after the
beginning of each cycle are not measurable by millisecond.

The experimental results indicate that our approach is highly competitive to any
reported one. This is because we completely pushed stream processing down to the
query engine with negligible data movement overhead and with efficient direct
heap-insert. We eliminated the middleware layer, as provided by all other systems, for
scheduling time-window based querying.

6 Cycle Based Map-Reduce

We rely on the Map-Reduce (MR) computation to scale out CaaaS. With the original
MR model; static data are partitioned “horizontally” over cluster nodes for parallel
computation; while enhancing the computation bandwidth by divide-and-conquer, it is
not defined on unbounded stream data.

We envisage that Cut-and-Rewind (CR) provides a powerful mechanism for MR to
reach stream analytics. We have investigated the combination of MR and CR on
parallel database platform as well as on network distributed MR infrastructure.

6.1 Cut-Rewind a Parallel Query

A parallel query with UDFs can naturally express Map-Reduce computation. To
explain how to apply CR to a parallel query engine for stream processing, let us review
the parallel query execution process. A SQL query is parsed and optimized into a query

110 Q. Chen and M. Hsu

plan that is a tree of operators. In parallel execution multiple sub-plan instances, called
fragments, are distributed to the participating query executors and data processors on
multiple server nodes; at each node, the scan operator at the leaf of the tree gets and
materializes a block of data, to be delivered to the upper layer tuple by tuple. The
global query execution state is kept in the initial site.

To handle streaming data in parallel, the input stream is partitioned over multiple
machine nodes, in the way similar to hash partitioning static data.

To support Cut-and-Rewind on a parallel database, every participating query
engine is facilitated with the CR capability. The same cuf condition is defined on all the
partitioned streams. Note that if the cycle based continuous querying is “cut” on time
window, the stream cannot be partitioned by time, but by other attributes.

A query execution cycle ends after end-of-cycle is signaled from all data sources,
i.e. all the partitioned streams are “cut”. As the cut condition is the same across all the
partitioned streams, the cycle-based query executions over all nodes are well syn-
chronized through data driven.

To parallelize the LR stream analysis, we hash partition the data stream by
vehicle-id (vid); use the Map function to compute and pre-aggregate the segment traffic
statistics per minute (without accident detection); use the Reduce function to globally
aggregate the segment statistics, group by express-way, direction and segment, then
calculate per segment moving average speed and finally the toll. The whole map-reduce
implementation of the application is expressed in a single query running in the
per-minute cycle.

As shown in Fig. 8, the LR stream is partitioned “horizontally” over Map nodes; all
partitions are cut on the same one-minute boundary; the chunk-wise local results are
shuffled to the Reduce nodes for global aggregation. The data partition of Map results is
based on the standard parallel query processing of “group-by”. The system runs cycle
by cycle with Map-Reduce applied to data streams in each cycle, hence supporting
scaled-out query processing over unbounded data streams.

Global aggregate seg
" Rewind O traffic status;
Compute movmg avg, toll;

@ Compute/pre-
& i = = aggregate seg
 TAduks =4 & @ traffic status
5;,7? = =4 =

Fig. 8. Parallel DB based streaming map-reduce

This design is being integrated into a commercial parallel database engine where

SSF is handled by the storage engine layer at each node, while the Map function and
Reduce function are handled by query executers.

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 111

6.2 Network-Distributed Map-Reduce Scheme

In network distributed MR scheme, query-engine based stream engines are logically
organized in the Map-Reduce style as illustrated in Fig. 9. The separation of “Map”
engines and “Reduce” engines are logical, since an engine may act as a “Map” engine,
a “Reduce” engine, or both.

Rewind

| global agg, global agg,
mv_avg, toll mv_avg, toll

—— Reduce
cut P (SsF)
e .
Rewind — —

e L Localrégg} [Localr agg] [

Local agg | [Local agg
traffic stst traffic stst J L Map

traffic stst

)

Hp—
T

_— P[S1SF] [S1SF] [S1SFJ (s

Fig. 9. Network distributed streaming map-reduce

Different from parallel database oriented MR, with the network distributed MR, a
specific application is expressed in terms of two cycle based continuous queries, say
CQuap and CQ,gyce- The same CQ,,,, tun at all the Map engines, and the same
CQ,equce at all the Reduce engines. The streams are partitioned and fed in multiple
CQ,uqps the resulting streams from CQ,,,,, are shuffled to and fused by multiple CQ,gc.
based on certain grouping criteria specified in the network replicated hash-tables. Those
CQuep and CQ,gyee synchronized by the same cut criteria, which determines the
boundaries of input streams as well as the resulting streams.

With the above simplified LR example, the stream data are hash partitioned by
vehicle ID; the stream data corresponding to express-ways, directions and segments are
crossing Map nodes.

e The Map query, CQ,,,, covers partitioned stream processing, up to the local
aggregation of car-volume, speed-sum, group-by time and location.

e The results of CQ,,,, are treated as the input streams of the Reduce query, CQ,cguce
partitioned by express-way, direction and segment, based on the network replicated
hash tables. Each CQ,.4,c. is also equipped with a SSF for receiving the Map
results.

o CQ,cauce aggregate segment traffic statistics globally, calculate the segment moving
average speed, and then the segment toll.

Both Map and Reduce queries run in the per-minute cycle.

Note the difference CR/MR schemes for parallel DB based and network-distributed
MR infrastructure. Since the parallel query engine naturally supports reduce with
aggregate-groupby, the MR is expressed by a single query, in each CR cycle the whole
MR computation is iterated. With the network distributed MR infrastructure, the Map
engines and the Reduce engines run separate cycle-based continuous queries; they

112 Q. Chen and M. Hsu

process the stream data chunk by chunk based on the common window boundary, or
cut criterion, thus cooperate without centralized scheduling. The parallel DB based MR
infrastructure generally over-performs the network-distributed one due to efficient data
transfer from the Map nodes to the Reduce nodes, but the latter is more flexible and has
obvious cost benefits.

7 Conclusions

Due to the growing data volume and the low-latency requirement, the platform sep-
aration of analytics and data management has become the performance bottleneck, and
their integration offers great potential in real-time, data-intensive analytics.

In this work we have addressed several specific challenges. Our thesis is that
database technology can be extended and applied to real-time continuous analytics
service provisioning.

We reported our experience in leveraging the DBMS for continuous stream ana-
Iytics. We tackled the key technical issues for integrating stream analytics capability
into the existing query engine, and built an integrated, efficient and robust system with
stream processing capability while retaining the full DBMS functionality, giving the
query engine a new role. We proposed the cut-and-rewind query execution model for
chunk-wise continuous stream processing with the full SQL power, while enabling
history-sensitive stream operations. We provided advanced stream processing capa-
bility by extending the existing query engine directly without introducing separate
executor or additional “middleware”. With this approach we have bridged SQL and
stream processing in a single engine.

Our platform significantly differs from the current generation of stream processing
systems which are in general built separately from the database systems. As those
systems do not have the full SQL expressive power and DBMS functionalities, incur
significant overhead in data access and movement, and lack the appropriate transaction
support for continuously persisting and sharing results, they fail to meet the require-
ments for providing high-throughput, low-latency service provisioning.

Further, the cycle-based query model allows multiple query engines to synchronize
and cooperate based on the common window boundaries. Such data-driven cooperation
is very different from the workflow like centralized scheduling used in other stream
processing systems. This feature allows us to apply MR cycle by cycle continuously
and incrementally for parallel and distributed continuous analytics, in the way not seen
previously. Accordingly, we investigated two kinds of parallel computing infrastruc-
tures, one based on parallel database engine; and another based on network distributed
Map-Reduce but with extended streaming capability.

The proposed approach has been implemented on the PostgreSQL engine. Our
future work includes further refinement of our unified query and transaction model,
further characterization and classification of UDFs (to enable optimization) and
building out stream analytics operators, additional extensions required for the optimizer
and query pipeline, and providing a front-end for demonstrating the live stream ana-
Iytics. As pointed out in [12], big data visualization issues are tightly coupe with
analytics. We are also investigating the use of a massively parallel processor

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 113

(MPP)-based, data-intensive streaming analytics platform, and looking into the issues
of privacy preservation which plays a critical roles in analytics in both centralized and
distributed environments [13, 14].

References

10.

11.

12.

13.

14.

15.

16.

Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora a new model and architecture for data stream management.
VLDB J. 12(2), 120-139 (2003)

Abadi, D.J., et al.: The design of the borealis stream processing engine. In: CIDR (2005)
Arasu, A., B, S., Widom, J.: The CQL continuous query language: semantic foundations and
query execution. VLDB J. 15(2), 121-142 (2006)

Bryant, R.E.: Data-intensive supercomputing: the case for DISC. In: CMU-CS-07-128
(2007)

Chandrasekaran, S., et al.: TelegraphCQ: continuous dataflow processing for an uncertain
world. In: CIDR (2003)

Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:
SCOPE: easy and efficient parallel processing of massive data sets. VLDB 1(2), 1265-1276
(2008)

Chen, J., et al.: NiagaraCQ: a scalable continuous query system for internet databases. In:
SIGMOD (2000)

Chen, Q., Hsu, M.: Cooperating SQL dataflow processes for In-DB analytics. In: Meersman,
R., Dillon, T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 389-397. Springer,
Heidelberg (2009)

Chen, Q., Hsu, M., Liu, R.: Extend UDF technology for integrated analytics. In: Pedersen, T.
B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 256-270.
Springer, Heidelberg (2009)

Cooper, B.F., et al.: PNUTS: Yahoo!’s hosted data serving platform. VLDB. 1(2),
1277-1288 (2008)

Cranor, C.D., et al.: Gigascope: a stream database for network applications. In: SIGMOD
(2003)

Cuzzocrea, A., Mansmann, S.: OLAP visualization: models, issues, and techniques. In:
Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn, pp. 1439-1446. IGI
Global, Hershey (2009)

Cuzzocrea, A., Sacca, D.: Balancing accuracy and privacy of OLAP aggregations on data
cubes. In: Proceedings of the 13th ACM International Workshop on Data Warehousing and
OLAP (DOLAP 2010) in conjunction with 19th ACM International Conference on
Information and Knowledge Management (CIKM 2010), Toronto, pp. 93-98, 26-30
October 2010

Cuzzocrea, A., Bertino, E.: A secure multiparty computation framework for privacy
preserving OLAP over distributed XML data. In: Proceedings of the 25th ACM International
Symposium on Applied Computing (SAC 2010), Sierre, pp. 1666—1673, 22-26 March 2010
Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.C.: SPADE: the system s declarative
stream processing engine. In: ACM SIGMOD (2008)

Franklin, M.J., et al.: Continuous analytics: rethinking query processing in a network-effect
world. In: CIDR (2009)

114

17.

18.

19.

20.

Q. Chen and M. Hsu

Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel
programs from sequential building blocks. In: EuroSys 2007, March 2007

Jain, N., et al.: Design, implementation, and evaluation of the linear road benchmark on the
stream processing core. In: SIGMOD (2006)

Liarou, E., et.al.: Exploiting the power of relational databases for efficient stream processing.
In: EDBT (2009)

Zeller, H.: NonStop SQL/MX publish subscribe: continuous data streams in transaction
processing. In: SIGMOD Conference (2003)

	Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics
	Abstract
	1 Introduction
	1.1 The Problem
	1.2 State of the Art
	1.3 The Solution

	2 Stream Processing as Continuous Querying
	2.1 Stream Source Function
	2.2 Stream Analytics Through UDF

	3 Cycle Based Continuous Query
	4 Continuous Querying with Continuous Persisting (CQCP)
	4.1 Query Cycle Based Transaction Model
	4.2 Staging Results Without Data Copy/Move

	5 Example and Experiments
	5.1 Modeling the Linear Road Benchmark
	5.2 Experimental Setup
	5.3 Performance Under Stress Test Mode
	5.4 Performance Under the Real-Time Input Mode

	6 Cycle Based Map-Reduce
	6.1 Cut-Rewind a Parallel Query
	6.2 Network-Distributed Map-Reduce Scheme

	7 Conclusions
	References

