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Abstract. On-line Analytical Processing (OLAP) represents a good
applications package to explore and navigate into data cubes. Though,
it is limited to exploratory tasks. It does not assist the decision maker
in performing information investigation. Thus, various studies have been
trying to extend OLAP to new capabilities by coupling it with data min-
ing algorithms.

Our current proposal stands within this trend. It has two major
contributions. First, a Multi-perspectives Cube Exploration Framework
(MCEF) is introduced. It is a generalized framework designed to assist
the application of classical data mining algorithm on OLAP cubes.
Second, a Neural Approach for Prediction over High-dimensional Cubes
(NAP-HC) is also introduced, which extends Modular Neural Networks
(MNN)s architecture to multidimensional context of OLAP cubes, to
predict non-existent measures. A preprocessing stage is embedded in
NAP-HC to assist it in facing up the challenges arising from the particu-
larity of OLAP cubes. It consists of an OLAP oriented cube exploration
strategy coupled with a dimensions reduction step that reposes on the
Principal Component Analysis (PCA). Carried out experiments highlight
the efficiency of MCEF in assisting the application of MNNs on OLAP
cubes and the high predictive capabilities of NAP-HC.

Keywords: Data warehouse · OLAP · Data mining · Principal Com-
ponent Analysis · Multilayer Perceptrons · Modular Neural Networks

1 Introduction

Data warehouses are the corner stone in the Business Intelligence (BI) roadmap.
They are used to store analysis contexts within multidimensional data structures
referred to as Data Cubes [1]. They are usually manipulated through On-line
Analytical Processing (OLAP) applications to enable senior managers exploring
information and getting BI reportings through interactive dashboards.
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Needless to mention that OLAP tools provide efficient solutions to navigate
through data cubes. However, it is restricted to exploration tasks. Goil and
Choudhary argue that coupling OLAP with data mining techniques increases
its efficiency [2], and enables it to assist decision makers in performing advanced
knowledge discovery tasks. Since then, several studies put the focus on enhancing
OLAP by coupling it with data mining techniques to respond to various analysis
purposes, e.g. cube exploration [3] and association rule mining [4].

Nevertheless, despite the fact that, data warehouses should fundamentally
contain integrated data [1], generally, data cubes exploration discloses sparse
structures within several empty measures. In this respect, empty measures cor-
respond to non-existent facts, reflecting either out-of-date events that did not
happen, or future events that have not yet occurred and may happen in the
future. Empty measures represent a source of frustration for the enterprise man-
agement, especially when strategic decisions need to be taken.

Predicting non-existent measures would consolidate BI reporting. It would
even provide new opportunities to BI analysts by enlarging their dashboard
picture and empowering them with knowledge on what may occur if non-existent
facts had already happened. For instance, it will be very useful to a car Sale
Company to predict the potential turnover that a new agency could produce
in a new city by the end of next year. This indicator will definitely help the
company’s management to assess the potential investment.

Despite the fundamental Cood’s statement of goal seeking analysis models
(such as “What if” analysis) required in OLAP applications since the early
90’s [5], most of the recent OLAP products still lack an effective implementation
of this feature. Recently, new approaches have been attempting to extend OLAP
to prediction capabilities [6,7]. However, to the best of our knowledge; none of
them provides BI analysts with explicit values of non-existent measures.

The current work fits within the approaches trying to extend OLAP to advanced
abilities by coupling it with data mining techniques. It introduces two main con-
tributions. The first one consists of a novel generalized framework, called Multi-
perspectives Cube Exploration Framework (MCEF). It is designed to enable the
application of classical data mining techniques on OLAP cubes. As for the second
contribution, it consists of a measure prediction technique, calledNeural Approach
for Prediction over High-dimensional Cubes (NAP-HC). It is based on Modular
Neural Networks (MNN)s and designed under the MCEF formalism.

This paper is organized as follows. In Sect. 2, we expose a state of the art
of works related to predictions in data cubes. We introduce and formalize the
MCEF in Sect. 3. Section 4 details the formalization of NAP-HC. In Sect. 5, we
carry out experiments investigating the effectiveness and the efficiency of our
proposals. Finally, Sect. 6 summarizes our contributions and addresses future
research directions.

2 Related Work

In recent years, several studies have been addressing the issue of extending OLAP
to advanced analysis capacities. They were driven under different motivations
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Table 1. Proposals addressing prediction in data cubes

Proposal Goal Optimization Reduction Measures Values

Sarawagi et al. [3] Exploration + − − −
Palpanas et al. [8] Compression − + − −
Chen et al. [9] Prediction + − + −
Cuzzocrea [10] Query approximation + + + +

Chen et al. [11] Compression − + + −
Bodin-Niemczuk

et al. [6]
Prediction + − − −

Cuzzocrea and
Saccà [12]

Privacy preserving + − − +

Agarwal and
Chen [7]

Prediction + − + −

Our approach Prediction − + + +

e.g. discovery-driven cube exploration [3], association rules mining [13], cube
compression [11]. Thus, they are based on various concepts and methodologies.
In this section, we focus on those having a close linkage with prediction in data
warehouses.

Table 1 summarizes the proposals attempting to extend OLAP to predic-
tion. These proposals are detailed according to five main criteria: (1) What is
the overall goal of the proposal? (2) Does the proposal include an algorithmic
optimization? (3) Does it use a reduction technique? (4) Does it introduce new
classes of measures? And (5) Does it provide explicit predicted values of empty
measures? We note (+) if the proposal fulfils the criteria, and (−) if in the
opposite situations.

Sarawagi et al. proposed to assist data warehouse users when exploring data
by detecting exceptions [3]. Their approach is based on a log-linear model.
Palpanas et al. used the principle of information entropy to build a probabilis-
tic model capable of detecting measure deviations [8]. To compress data cubes,
Chen et al. introduced the concept of Prediction cubes, where the score or the
probabilities of measures are fetched beside their original values [9]. Prediction
Cubes are exploited to build prediction models, which predict low-level measures
from high-level pre-calculated aggregates. In [10], Cuzzocrea propose a statisti-
cal framework that provides probabilistic bounds on approximate answers. This
framework’s main goal consists at supporting OLAP applications in overcom-
ing queries’ answering, which are considered among the main bottleneck for of
OLAP applications. More specifically, it aims at enhancing the accuracy of the
approximate answers. To do so, the framework reposes on a sampling technique,
which ensures the quality of the approximate answers and generates the proba-
bilistic guarantees on their approximation’s degree. On the other hand, to ensure
the scalability of the proposal, the author extends it with a previously proposed
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data cube dimensions reduction technique [14], based on the Karhunen-Loeve
transform [15]. In [11], Chen et al. proposed a new type of multidimensional
structures called Regression Cubes, which contain compressible measures. Regres-
sion cube cells indicate measure variations and tendency. Cuzzocrea and Saccà
address the computation of privacy preserving OLAP aggregations [12]. Their
framework reposes on sampling-based data cube compression. Its strength con-
sists in the fact that the generated privacy preserving aggregates stills allow
the evaluation of approximate answers. Agarwal and Chen introduced a new
data cube class called Latent-Variable Cube, built over a statistical model [7]. It
enables the computation of aggregate functions, such as mean and variance over
latent variables. Bodin-Niemczuk et al. propose to equip OLAP with a regression
tree to predict measures of forthcoming facts [6].

Most of the cited proposals recognize that the combination of the important
dimensionality and huge volumes of data cubes represent a serious challenge for
most of the approaches trying to apply a data mining technique on OLAP cubes.
To face up this challenge, some proposals consider a preprocessing stage to reduce
the dimensionality effect on algorithm’s performance [8,10,11], while some oth-
ers rather rely on heuristics to optimize implemented algorithms [3,7,9,12].
In our case, we include a PCA-based preprocessing stage in our prediction pro-
posal, which reduces the data cubes dimensionality and generates concentrated,
information preserving training sets for the prediction stage.

We notice that all the approaches having different goals than measure’s pre-
diction do not provide explicit values for measures. While [3,6,8,10,12] provide
approximations of non-existent measures, [7,9,11] introduce new classes of data
cubes within new measures generated over the existing ones. Nevertheless, this
is totally justified since most of the cited proposals largely meet their main
objectives. Among them all, only Bodin-Niemczuk et al.’s proposal shares the
particular goal of non-existent measure prediction with us [6]. However, the
output of this approach is a set of discretized values of the targeted measures.
Subsequently, the relevance of the results is strongly depending of the nature and
the range of the produced intervals. This issue may not satisfy the analyst who
aims an explicit precise decision. The predictive model that we introduce in this
paper provides the decision maker with explicit predicted values of non-existent
measures, which do not require any further processing.

3 Multi-Perspectives Cube Exploration Framework

3.1 Motivations

Following the success of data warehouse technology, OLAP tools, which are lim-
ited to exploratory tasks, are no longer sufficient to meet the increasing needs
of OLAP users. Thus, several approaches have been trying to extend OLAP to
new abilities by coupling it with data mining techniques to deal with different
issues, e.g. cube exploration [3], association rules mining [13], non-existent mea-
sures prediction [16,17]. However, most of these proposals consist at specialized
solutions, which are tightly related to their particular goals. Thus, even if most
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Fig. 1. Possible views of a 3 dimensions cube

of them share the same general motivation of applying data mining algorithms
on OLAP cubes, they cannot exploit the already designed formalism of each
other’s.

We believe that a uniform standardized framework that assists the extension
classical data mining algorithms to OLAP cubes’ context could turn out to be
very useful. Firstly, it offers a uniform ready-to-deploy formalism for the forth-
coming proposals aiming to extend OLAP cubes context with mining algorithms.
Secondly, and most importantly, it opens the doors for interoperability between
the different proposals, since they will be based on the same formalism and han-
dling the same components type. Doing do, the outputs of one proposal could
be exploited as the inputs of another. For example, an analysis could start with
cube exploration [3], passes through association rules extraction [13] and ends
by non-existent measures prediction [16]. Doing so, the analysis would end-up
with more efficient reportings. Furthermore, implementing this platform opens
the doors for producing software packages that include multiple cube mining
algorithms, similarly to Weka and Tanagra packages [18], which are dedicated
to the bi-dimensional context.

On the other hand, the application of cube mining techniques is generally
preceded by an in-depth analysis step, which consists of a vertical cube explo-
ration that ends by selecting the most suitable hierarchical levels for the analy-
sis. However, even if it is commonly ignored, horizontal cube exploration, which
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consists at the selection of the most convenient dimensions’ distribution over
cube axes for the analysis, have to be considered.

Actually, each dimensions’ distribution across the cube axes generates a dif-
ferent cube view, i.e. data presentation. As illustrated in Fig. 1, multiple data
presentations could be obtained from a single three-dimensional data cube, fol-
lowing the dimensions’ distribution across its axes. Cuzzocrea and Mansmann
state that the efficiency of data representation has an important impact on the
data exploration and visualization [19].

Actually, the dimensions’ distribution defines the way data is delivered to
the data mining algorithm. Therefore, it has a great impact on multiple data
mining techniques, especially, the ones that are sensitive to the way data is deliv-
ered to them. For these techniques, considering a single dimensions’ distribution
may promote some dimensions at the expense of others, which causes the loss of
the relevant patterns that could be generated over the unexplored views. Nev-
ertheless, most of the researches ignore horizontal cube exploration and limit
their analysis to a single dimensions’ distribution, usually, implicitly, selected
following the user’s preferences.

In [20], Ramakrishnan and Chen highlight that mining large datasets requires
a principled way to explore the large space of possibilities and alternatives.
We further claim that; in order to obtain representative results from rich versatile
structures such as data cubes, horizontal cube exploration should be addressed
and reinforced.

To concretize these considerations, we design a Multi-perspectives Cube
Exploration Framework (MCEF). It is a generalized framework that assists the
application of classical data mining algorithm on OLAP cubes, while supporting
both horizontal and vertical cube explorations, designed to meet the following
goals:

1. Supporting the application of classical data mining algorithms on OLAP
cubes;

2. Considering both horizontal and vertical data cubes exploration approaches;
3. Ensuring equitable contributions of the dimensions to the analysis;
4. Preserving the semantics linking members to their respective dimensions and

to other dimensions’ members;
5. Covering all the possible measures’ variations in terms of dimensions’ distri-

butions;
6. Enabling BI analyst to define customized analysis contexts.

3.2 Multi-Perspectives Cube Exploration Framework

In this subsection, we thoroughly describe and elaborate the MCEF formalism.
We start by recalling Ben Messaoud et al. data cube definitions, which we

intend to reuse [13]. Afterwards, we introduce the new definitions required to
develop the MCEF formalism.

We start by recalling [13] data cube definitions, which we reuse in MCEF
formalization. Let C be a data cube having the following properties:



Modular Neural Networks for Extending OLAP to Prediction 79

– C has a nonempty set of d dimensions D = {Di}(1≤i≤d);
– C contains a nonempty set of m measures M = {Mq}(1≤q≤m);
– Hi is the set of hierarchical levels of the dimension Di. Hi

j ∈ Hi is the jth

hierarchical level of Di. In Fig. 2, H2
1 of D2 is Product name.

– Aij is the set of members of the hierarchical level Hi
j ; θijt ∈ Aij is the tth

member of the jth hierarchical level of the dimension Di. In Fig. 2, θ225 is
iPod.

Definition 1 Inter-dimensional predicate. Let Da ∈ D be a nonempty set
of p dimensions {D1, ...,Dp}(1≤p≤d) from the data cube C. An inter-dimensional-
predicate defines a conjunction of non-repetitive members, i.e., each dimension
has a distinct member in the expression. Θa = (θmi

t ∧ ...∧θnjs ) is called an inter-
dimensional predicate in Da if θmi

t is the tth member of the ith hierarchical level
of the dimension Dm and θnjs is the sth member of the jth hierarchical level of
the dimension Dn, and {Dm,Dn} ∈ Da.

In Fig. 2, let Da = {D1,D2} be a set of dimensions of C, a random inter-
dimensional predicate Θa can of be of the form: (〈θ111 ∈ A11〉∧ 〈θ225 ∈ A22〉), e.g.
(〈quarter1〉 ∧ 〈iPod〉).

Fig. 2. Example of a data cube

Hereafter, we define the new concepts required to formalize our proposal.

Definition 2 Inter-dimensional hierarchical predicate. Let Da ∈ D be a
nonempty set of p dimensions {D1, ...,Dp}(1≤p≤d) from the data cube C. An
inter-dimensional hierarchical predicate defines a conjunction of distinct hier-
archical levels of non-repetitive dimensions. Ωa = (Hs

m ∧ ... ∧ Ht
n) is called an

inter-dimensional hierarchical predicate of Da if Hs
m is the mth hierarchical level

in Ds, Ht
n is the nth hierarchical level in Dt and Ds �= Dt.
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In Fig. 2, let Da = {D1,D2} be a set of dimensions of the data cube C.
Ωa

i = (〈H1
1 ∈ H1〉 ∧ 〈H2

2 ∈ H2〉), which is, (〈Quarter〉 ∧ 〈Product name〉) is a
random inter-dimensional hierarchical predicate of Da.

In the sequel of this paper, let Dc = {D1, . . . , Dc}(0≤c≤d−2),
Dv = {D1, . . . , Dv}(0≤v≤d−2) and Dr = {D1, . . . , Dr}(0≤r≤d−2) be three non-

empty sets of c, v and r distinct dimensions, respectively; with c+v + r ≤ d and
Ωc, Ωv, Ωr be three inter-dimensional hierarchical predicates of Dc, Dv and Dr,
respectively.

Let Θc, Θv, Θr be three inter-dimensional predicates in Dc, Dv, Dr, respec-
tively, and let Ωc, Ωv, Ωr be three inter-dimensional hierarchical predicates of
Dc, Dv, Dr, respectively.

Fig. 3. Static-cube, static-slice and static-fibre

Definition 3 Static-cube. We denote by C[Ωc, Ωv, Ωr] a static-cube of a data
cube C. It is the fixed distribution of the cells obtained by the application of the
OLAP Dice operator on C, following, Ωc, Ωv and Ωr . C is identifiable by the
distribution of Ωc, Ωv, Ωr, across C axes.

The dimensions of C are distributed over three classes; Contexts dimensions Dc,
Variables dimensions Dv and Rows dimensions Dr, which we refer to as MCEF
dimensions classes. Each of these classes is designed to ensure a particular role:

– Contexts dimensions : The set of attributes generated over these dimen-
sions combination serves in identifying the different analysis subcontexts

– Variables dimensions : The set of attributes generated over these dimen-
sions combination is considered as a set of variables.

– Rows dimensions : The set of attributes generated over these dimensions
combination is considered as a set of observations.

The main goal of the static-cube concept is to depict all the possible dimensions’
distributions across the cube axes. An illustrative example is shown in Fig. 3.
The latter represents the static-cube C[Ω1, Ω2, Ω3], with Dc = {D1}, Dv = {D2},
Dr = {D3} as the sets of Contexts, Variables and Rows dimensions, respectively.
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Following the BI analyst preference, an analysis could either consider the
most relevant static-cube to the analysis or involve the entire set of static-cubes.

On the other hand, a single three-dimensional OLAP cube’s slice can generate
two distinct bi-dimensional tables, with one representing the transpose of the
other. This might cause the confusion of the data mining technique and lead to
inconsistent results. To solve this issue, in what follows, we introduce the concept
of static-slice, which enables the distinction between the different bi-dimensional
tables that can be generated over a single OLAP slice.

Definition 4 Static-slice. We denote by S[Θc, Ωv, Ωr] a static-slice of a static-
cube C. It is the fixed distribution of the cells obtained by the application of the
OLAP Slice operator on C, following Θc, Ωv and Ωr. S have the same MCEF
dimensions distribution of C.

The concept of static-slice is designed to enable browsing static-cubes in
a principled way, following the different MCEF classes. For instance, the dark
grey coloured cells in Fig. 3 represent the static-slice S[Θ1

1, Ω
2, Ω3].

Definition 5 Static-fibre. We denote by F [Θc, Θv, Ωr] a static-fibre of a static-
slice S. It is the fixed distribution of the cells obtained by the application of the
OLAP Dice operator on C, following Θc, Θv and Ωr. F have the same MCEF
dimensions distribution of S.

The concept of static-fibre is designed to enable browsing static-slices in
a principled way, following the different MCEF classes. As instance, the light
grey coloured cells in Fig. 3 represent the static-fibre F [Θ1

1, Θ
2
4, Ω

3].
Data mining could be classified into two distinct categories. The first one

concerns the data mining techniques that are not sensitive to the way data is
provided to them. Therefore, they would generate the same mining outcome
with the different static-cube. As for the second category, it concerns the data
mining that are sensitive to the way data is provided to them, which makes
each static-cube a unique dataset. For this type of category, the most optimal
scenario that ensures equitability between dimensions consists in involving all
the potential static-cubes in the analysis. Then, following the analysis aims, the
BI analyst can either combine the obtained results or consider them separately.
Still, this solution is very expensive and may turn to be non-effective, especially
if in the case of online deployment. The other alternative consists in limiting the
analysis to a the most relevant the static-cubes.

4 Neural Approach for Prediction over High-Dimensional
Cubes

4.1 Overview

As far as we know, despite their proven performances, Neural Networks (NN)s are
not yet exploited in OLAP cubes’ context. This is due to multiple factors. First,
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NNs generalization capabilities become limited when handling high-dimensional
datasets. Second, the computational requirements of NNs increase drastically
with the increase of inputs’ number, which slows down the learning rates [21].
Third, highly correlated data may corrupt the training phase of NNs and degrade
their generalization capability [22].

On the other hand, Modular Neural Networks (MNN)s represent a well-
established technique in the field of machine learning. They are generally com-
posed by set of (NN)s called modules and a combiner system [23]. They are
based on the “divide and conquer” principle. They undertake a complex prob-
lem, divide it into smaller tasks and distribute them over the modules. Modules
can be trained independently or sequentially targeting the same task. While, the
combiner system processes their outputs to generate a conclusive analysis result
of the entire system.

Fig. 4. Overview of NAP-HC architecture

Multiple researches claim that MNNs overcome multiple limitations of single
NNs [23–25]. Melin and Castillo state that MNNs are very effective to overcome
the problems defined over high-dimensional space and having high complex-
ity [25]. Happel and Murre [26] state that MNNs enable the application of NNs
on large-scale data [26]. Gallinari claim that MNNs reduce the model complex-
ity, provide robustness and enable data sources fusion [24]. Sharkey sheds the
light on the fact that decomposing a large complex task into modular compo-
nents makes the system easier to understand and to modify [23]. These factors,
make MNNs highly promising candidates to overcome the limitations of NNs
with multidimensional large structures, such as data cubes.

Despite the fact that MNNs might resolve multiple problems related to the
application on NNs on OLAP cubes, the high dimensionality and the correlated
measures still represent thriving challenges that could deteriorate the train-
ing process quality. Recently, some studies have been interested in Principal
Component Analysis (PCA) to reduce the dimensionality of prediction models
inputs [27,28]. The PCA is an exploratory statistical procedure, which aims at
transforming the original correlated variables into a smaller set of uncorrelated
ones, called principal components [29]. Its key idea is to project the initial data
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on a new orthogonal subspace to find the linear combinations that define new
summarizing variables, which concentrate the largest possible variance of the
original ones.

Therefore, we find that the PCA represents a good solution to assist in solving
the limitations caused by the important number of inputs and the measures
correlation. We intend to follow this trail as a backstage preprocessing step that
would ensure the generation of new reduced training sets that preserves the
measure variability.

On the other hand, OLAP measures have multiple linear variations following
the different axes of the data cube. Considering a single measure variation may
make the prediction process fall into the pitfall of promoting a particular set of
dimensions at the expense of the other ones. This could generate a prediction
model that may not reflect the complete multidimensional context.

Fig. 5. Overview of the preprocessing stage of a single static-cube

To tackle this issue, we introduce the Neural Approach for Prediction over
High-dimensional Cubes (NAP-HC). The NAP-HC’s main goal is to overcome
the challenges of the application of Neural Networks (NN)s within the context
of OLAP cubes. To do so, we design it over the MCEF, which is dedicated to
assist the application of classical data mining techniques on data cubes.

The NAP-HC combines the modular aspects of MCEF and MNN to provide
a prediction solution that enables the application of NNs on a data cube, while
covering all its data presentations. As shown in Fig. 4, NAP-HC is carried out in
two major stages. The first one is a preprocessing stage, which is divided, in its
turn, into two steps. The first one consists in extracting the MCEF substructures.
As for the second step, it consists at applying the PCA on the MCEF substruc-
tures to transform their correlated attributes into reduced sets of decorrelated
principal components. The second stage is a prediction one, which considers each
reduced dataset, obtained over the first stage, as the learning set of an indepen-
dent NNs module. Then, it trains a NNs combiner system, which considers the
outputs of each module as its own inputs, to come out with a unique predicted
measure of each targeted cell.
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To sum up, the NAP-HC overarching goals are as follows:

1. Generating reduced, information preserving training sets from the original
data cube;

2. Adapting NNs to the multidimensional structure of data cubes;
3. Predicting explicit values of non-existent measures;
4. Assessing predicted measures with quality indicators.

4.2 Preprocessing Stage

The main goal of this stage is to generate concentrated, independent, information-
preserving data subsets, which can be exploited later as the training sets of the
independent modules. As illustrated in Fig. 4, it is based on two main steps. The
first one consists in decomposing the complex multidimensional data cube domain
into a set of linear sub-domains, defined by the MCEF substructures. As for the
second step, it is a dimensions reduction step, which consists in applying PCA on
the obtained MCEF substructures.

The NAP-HC exploits MCEF as a modular principled cube explorations
technique. First, the dimensions are distributed over three mutually exclusive
sets, following the analysis’s goals. Each of these sets plays a different role as
one of MCEF dimensions classes. Then, all the possible MCEF classes’ combina-
tions are considered to define and extract potential static-cubes, which consist
of distinct data presentation following the dimensions’ distribution over its axes.

The second step of the preprocessing stage is illustrated in Fig. 5. It is a
dimensions reduction and data transformation step. Its main goal is to reduce
the attributes of each static-cube Variables dimensions and to transform its
members into a reduced, concentrated set of principal components. It starts
by extracting sequentially each static-cube static-slices by sequentially applying
MDX queries.

Static-slices are not dynamic such as classic OLAP slices, so they can be
directly considered as disjunctive tables with Variables dimensions as attributes’
dimension and Rows dimensions as instances’ dimension. The PCA is then
applied sequentially on the static-slices, to generate a new type of slices, which
we refer to as pc-slice. Each pc-slice shares the same Rows and Contexts dimen-
sions’ sets with its associated static-slice. However, its Variables dimensions are
replaced with a new dimension, referred to as pc-dimension. It has the set of
retained principal components as attributes. As for the obtained factorial coor-
dinates, they are stored as the values of the pc-slices.

The set of pc-slices generated over the static-slices of the same static-cube, are
gathered as a new multidimensional structure that we call pc-cube. Actually, a pc-
cube is a static structure associated to one particular static-cube. Unlike regular
OLAP cubes, pc-cubes are not dynamic and do not support OLAP operations.
Their role consists in providing an organized storage solution for the obtained
factorial coordinates to track their membership to the original cube cells. They
are trackable from the data cube through a new type of measure, which we
call pc-measure. It is an indexation measure that links each cell to its adequate
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factorial coordinates in the pc-cubes. It is embedded within the original cells’
measures after the application of PCA on each static-slice.

The usages of these new PCA oriented concepts provide an efficient storage
solution. It enables discarding each static-cube from the main memory, as soon as
its associated pc-cube is generated. The storage of pc-cubes is less expensive than
the storage of static-cubes, since they represent their reduced version. Doing so,
the preprocessing stage provides reduced, decorrelated predictors that require a
minimum storage cost.

Algorithm 1. Static-cube generation and reduction
Input: Ωc, Ωv, Ωr

Output: The pc-cube Pcc
1 C ← generate cube-face(Ωc, Ωv, Ωr);
2 Pcc ← ∅ ;
3 i = 0;
4 foreach nonempty Θc

i of Ωv do
5 Si ← generate slice(Θc

i , Ω
v, Ωr);

6 Pcsi ← PCA(Si);
7 Pcc ← Pcc + Pcsi;
8 i ← i + 1;

9 return(Pcc);

The static-cube generation and reduction is provided inAlgorithm 1. It requires
three inter-dimensional hierarchical predicates Ωc, Ωv, Ωr translating the three
MCEF classes as inputs and processes as follows:

– The static-cube C is generated according to the inter-dimensional hierarchical
predicates Ωc, Ωv and Ωr.

– Each inter-dimensional hierarchical predicate Ωc
i ⊂ Ωc is instantiated to the

next nonempty inter-dimensional predicate Θc
i .

– The static-slice S[Θc
i , Ω

v, Ωr]; Si is then generated.
– PCA is applied on Si and the obtained factorial coordinates are stored into

the pc-slice pcsi.
– pcsi is added to the pc-cube Pcc.
– the output of this algorithm is a fully indexed pc-cube, representing the

reduced version of the treated static-cube.

We admit that, similarly to of the conventional OLAP preprocessing phases,
this preprocessing stage is a time-consuming one. Therefore, we believe that it
should be executed in backstage on a regular basis by the end of each periodic
data loading of the data warehouse.

4.3 Prediction Stage

The main goal of this stage is to learn from the outputs of the preprocessing
stage, which are the pc-cubes, to come out with unique explicit value for each
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targeted measure. To the best of our knowledge, PCA has not been yet exploited
with MNNs by any previous work.

By virtue of their operation simplicity, their excellent generalization capacity
and their ability to approximate any universal function, Multilayer Perceptrons
(MLP)s represent one of the popular NNs [30]. Thus, for all the sub-networks
that compose our system, we adopt the MLPs architecture. In addition, several
theoretical and empirical studies show that a single hidden layer is sufficient
to achieve a satisfactory approximation of any nonlinear function [30]. Thus,
we associate a three layers MLPs architecture, including a single hidden layer
for each sub-network. We also use the gradient back-propagation algorithm [31],
that has proven its usefulness in several applications [30,32]. We associate it with
the conjugate gradient learning method and the sigmoid activation function.

The prediction system is composed of an interconnection of a set of module-
networks and a single combiner-network. The number of module-networks is
equal to that of pc-cubes obtained of the preprocessing stage. Each module-
network is trained independently. It considers the factorial coordinates as inputs
and targets the measure’ values. In addition, each module-network has three
layers:

1. An input layer, which contains a number of neurons equal to that of of the
principal components of the pc-cube associated to the module;

2. A hidden layer, which contains an empirically selected number of neurons;
3. An output layer that contains a single output.

As for the combiner-network, it follows the same architecture as the modules
except that its input layer neurons’ number is equal to the number of module-
networks. It brings together all the module-networks output as its own inputs.
Thus, the input vector of the combiner-network is obtained by propagating the
factorial coordinates associated to the same cell into all the module-networks.
The measure’s value of this cell represents the output of the combiner-network.
This process is repeated until the combiner-network reaches the convergence
status at its turn.

The pseudo-code of the training algorithm is described in Algorithm2.
As inputs, it requires the data cube C, the set of the obtained over the preprocess-
ing stage pc-cubes {Pcc} and the Root Mean Squared Error(RMSE) minimum
value RMSE-min. For each module-network, NAP-HC starts by selecting a
random set of cells as training set from the data cube, A[], and the pc-cube,
Pcc, associated to the treated module. For each training cell, the algorithm
accesses the pc-measure, pc, and fetches it to get its appropriate factorial coor-
dinates vector, fc[], from the pc-cube. fc[] is then injected into the input layer
of the module-network, while targeting the initial measure’s value. This process
is repeated for each module-network until there are no more training instances
or until the RMSE reaches RMSE-min value. After performing the sequential
independent training of all the module-networks, the combiner-network becomes
ready to be initialized and trained.

We stress that our approach is not a cube completion technique, i.e. it is not
designed to fill all empty measures of a data cube. However, the main goal of
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Algorithm 2. Training the prediction system
Input: C, {Pcc}, RMSE − min
Output: Trained prediction system

1 foreach module do
2 Pcc ← select Pcc({Pcc});
3 module ← initialize(module);
4 A[] ← generate random − cells(C);
5 while ((A[] �= ∅) and (RMSE(module) < RMSE − min)) do
6 m ← get measure(C, A[]);
7 pc ← get pc − measure(Pcc, A[]);
8 fc[] ← get factorial − coordiantes(Pcc, pc);
9 propagate(module, fc, m);

10 back − propagate(module, fc, m);
11 adjust(module);

12 combiner ← initialize(combiner);
13 A[] ← generate random − cells(C);
14 while ((RMSE(combiner) < RMSE − min) and (A[] �= ∅)) do
15 combiner − input[] ← ∅;
16 foreach module do
17 m ← get measure(C, A[]);
18 pc ← get pc − measure(Pcc, A[]);
19 fc[] ← get factorial − coordiantes(Pcc, pc);
20 combiner − input[] ← combiner − input[] + propagate(module, fc, m);

21 propagate(combiner, combiner − input[], m);
22 back − propagate(combiner, combiner − input[], m);
23 adjust(combiner);

24 return(Trained prediction system);

Table 2. Static-cubes description

Static-cube Contexts Variables Rows # retained components

C1 Location Education Origin 3

C2 Location Origin Education 4

C3 Education Location Origin 10

C4 Education Origin Location 4

C5 Origin Location Education 12

C6 Origin Education Location 4

NAP-HC is to promptly come-out with a predicted value of any empty measure
upon the request of the BI analyst.
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5 Experimentation

We implemented an experimental prototype of our approach, in Java, on a run-
ning on Microsoft Windows 7 with Intel Core 2 Duo, 2 GHz of CPU proces-
sor, 4 GB main memory workstation. We used Microsoft SQL Server Analysis
Services 2008 (SSAS) as an OLAP server. We performed our experiments on the
database American Community Surveys 2000–2003 1, after adapting it to the
OLAP context. It is a real-life database of the U.S.A census that concerns the
population samples treated between 2000 and 2003.

5.1 Analysis Context

We consider a four dimensions data cube; Location, Origin, Education and
Time, with 3.8 million facts. The Location dimension contains the geographic
data of the census. Origin dimension contains information about the racial
structure of the U.S.A population. Education dimension contains information on
the education levels reached by the subjects of the census. We aim at predicting
the number of people of a certain race, according to their cities and their levels
of education in 2003.

Fig. 6. Prediction quality

To be able to analyze and compare the different static-cubes outcomes, we
limited each MCEF class to one dimension Location, Education and Origin
and we selected the member 2003 of Time dimension. This led to the generation
of six static-cubes as summarized by Table 2. We selected the hierarchical levels
Location , Education and Origin, respectively. These levels include 51, 14 and
10 members, respectively. We investigated the measure person-count.
1 American Community Surveys is accessible from the official site IPUMS-USA (Inte-

grated Public Use Microdata Series); http://sda.berkeley.edu.

http://sda.berkeley.edu
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We elaborated a predictive system that faithfully represents our proposed
architecture. After the application of the preprocessing stage, we ended up with
the 6 pc-cubes from which we retained different numbers of principal components
described in Table 2. As for the prediction stage, we have set the number of
hidden neurons of each sub-network’s hidden layer to the half of its inputs.
We used the 10-fold cross-validation technique and the Root Mean Squared
Error (RMSE) as a quality indicator. For accuracy reasons, more specifically,
to avoid the impact of the random weights initialization of NNs, we ran all the
experiments five times and provided the resulting means of RMSE and execution
time in this section.

5.2 Prediction Quality

Figure 6 illustrates the prediction performances for all the sub-networks that
compose our predictive system. We notice that RMSE values vary remarkably
from of a module-network to another one. This is justified by the particularity
of the different data structures of each pc-cube. We find that the two module-
networks that provide the largest RMSEs, and thus the worst prediction quality,
are Mn1 and Mn3. We note that these two module-networks consider Origin
as their Rows dimension.

Fig. 7. Training time consumption

We recall that in our proposal, the number of available instances in a train-
ing set for a module-network is defined by the number of the Rows dimensions’
members. In our case, Origin dimension is the poorer dimension in terms of
members’ number (10 members). Subsequently, the module-networks that con-
sider it as their Rows dimension have the smallest number of training instances.
The poor prediction quality can be due to that this number has been not suffi-
cient to ensure the module-network learning. Inversely, we found that Mn4 and
Mn6, which consider Location as their Rows dimension, produce the smallest
RMSE values among all module-networks.
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Fig. 8. Performances of the different prediction systems

Interestingly enough, we find that the obtained RMSEs values are generally
acceptable. Still, the best prediction performance is achieved by the combiner-
network. It surpasses all the module-networks in the training and the test phases.
This confirms the efficiency of the modular architecture in generating better
prediction by combining the knowledge of all the module-networks. Since, each
module-network has become an expert in its particular cube perspective, joining
the modules into an ensemble make them compensate each other’s limitations
through the combiner-network, which combines all static-cubes bi-dimensional
knowledge and convert it into a multidimensional one.

As shown on Fig. 7, the training time varies from a sub-network to another
one. The most time requiring module-networks are Mn3 and Mn5. This is due
to the fact that they consider Location, which is the richest dimension in terms
of members’ number, as Variables dimension, which led to retaining a larger num-
ber of principal components after PCA application. Consequently, these module-
networks have the largest number of input and hidden neurons among all module-
networks, what makes them require a larger number of pc-measures accesses to
fetch the factorial coordinates. Moreover, their important number of neurons leads
to more complex computations, and thus they consume more time to converge.

Furthermore, we find that the combiner-network is the most time consuming
among all sub-networks. This is explained by the fact that at each turn of its
training phase, it has to access to all the module-networks’ principal components
to obtain its own input vector.

5.3 Novel Architecture Contributions

In the previous experiment, we found that several module-networks provide very
modest performances compared to the other ones. Following these results, a
logical question arises: How would the system perform if we eliminate the
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module-networks that produce the worst results from the analysis? To answer
this question, we designed and trained an additional prediction system, which we
call Limited-network. The latter is similar to NAP-HC, except that it does not
involve Mn1 nor Mn3, i.e. the module-networks that performed the least efficient
predictions through the previous experiment. Surprisingly enough, as shown in
Fig. 8, Limited-network provided worst performances than Combiner-network.
This can be explained by the fact that even if the eliminated module-networks
are not useful to perform the prediction task individually, they have a positive
role in enhancing the combiner-network knowledge about the multidimensional
structure.

To further investigate the contributions of the modular architecture, we
trained another system that follows the classical MLPs architecture, which we
refer to as Classical-network. It considers all the factorial coordinates indexed
by the pc-measure of a particular cell as the inputs of one single large MLP.
In other words, it merges all the training subsets into a unique large one. As
shown in Fig. 8, Classical-network provided the worst performances among
all the studied architectures. The näıve fusion of the training sets caused the
loss of the particularity of the information obtained over each static-cube. More-
over, the large number of inputs limited the MLP generalization abilities. This
confirms the positive contributions of MCEF and the efficiency of the combina-
tion of MCEF and MNNs.

6 Conclusion and Perspectives

In this paper, we encouraged the exploitation of machine learning techniques
to extend OLAP to advanced abilities. The key idea of our proposal is that,
these sophisticated techniques can be exploited, in the context of OLAP cubes,
even with the challenges raised by their important dimensionality and volume-
try. First, we proposed a generalized cube exploration framework, designed to
assist the application of machine learning algorithms on OLAP cubes. Then, we
exploited it to propose a novel MNNs solution called NAP-HC, which predicts
non-existent measures’ values over OLAP cubes.

NAP-HC makes use of enhanced procedure to solve the constraints raised by
applying sensitive techniques as NNs on a complex data structure like OLAP
cubes. It relies on two main stages. A preprocessing one that exploits MCEF
to explore the data cube in a principled way, and generate reduced informa-
tion preserving training subsets by applying PCA on the MCEF substructures.
As for the second stage, it exploits the outputs of the first one to train a MNN.

The experimental study proved the efficiency of MCEF in enabling the applica-
tion of classical data mining algorithms on OLAP cubes. Further, it demonstrated
the good prediction performances of NAP-HC and helped to get further insights of
the different results obtained over the sub-systems, which form the global model.
Furthermore, it compared our proposal against the classical MLPs architecture
and confirmed the successful combination between MCEF and MNN.

In future work, we plan to include a framework that explains the reasons of
non-existent measures occurrences, similarly to that of [33], which is performed
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on classical bi-dimensional data. Cuzzocrea and Mansmann state that multidi-
mensional visualization tools provide more comprehensive analysis for multiple
cube mining tasks, including discovering new knowledge from large volumes of
multidimensional data [19]. Therefore, we intend to equip the NAP-HC with a
visualization tool to assist the prediction phase. We also would like to involve the
hierarchical structure of data cubes in our system. This way, we could exploit
the different levels of aggregation to predict lower/higher-levels facts. Finally,
we believe that modeling a theoretical relation between the reduction and the
prediction stages could be very useful to optimize our proposal.
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