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Abstract. In the MIRABEL project, a data management system for a
smart grid is developed to enable smarter scheduling of energy consump-
tion such that, e.g., charging of car batteries is done during night when
there is an overcapacity of green energy from windmills etc. Energy can
then be requested by means of flex-offers which define flexibility with
respect to time, amount, and/or price. In this paper, we describe MIRA-
BEL DW, a data warehouse (DW) for the management of the large
amounts of complex energy data in MIRABEL. We present a unified
schema that can manage data both at the level of the entire electric-
ity network and the level of individual nodes, such as a single consumer
node. The schema has a number of complexities compared to typical
DW schemas. These include facts about facts and composed non-atomic
facts and unified handling of different kinds of flex-offers and time series.
We also discuss alternative data modeling strategies and how specialized
variants of the generic schema can be used by different node types while
we maintain compatibility and consistency between them. Finally, we
present typical queries from the energy domain and a performance study.

1 Introduction

More and more green energy is being produced by renewable energy sources
(RES) such as windmills. It is, however, not possible to store larger amounts
of energy and use it later. Therefore, there often is an unused capacity, e.g.,
during nights when most consumers sleep, but not enough green energy during
day hours when most consumers are active. The EU FP7 project MIRABEL
(Micro-Request-Based Aggregation, Forecasting, Scheduling of Energy Demand.
Supply and Distribution) [14] addresses this challenge by proposing a “data-
driven” solution for balancing supply and demand utilizing their flexibilities.
Flexible demand such as for dishwashers and charging an electric vehicle can
often be shifted to a time when green energy is available. Non-flexible demand
such as lights, TV, or cooking stoves must still be satisfied at demand-time. In
the MIRABEL-settings, a consumer offers a so-called flex-offer [2,16] for every
intent of flexible energy demand. The flex-offer must describe when and how
much energy is needed and how flexible the demand is in time and amount.
Likewise, a producer can offer a flex-offer for every intent of energy supply.
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The different flex-offers can then be accepted (or rejected if they cannot be
fulfilled) and scheduled for execution at a given time. There will be extremely
large quantities of such flex-offers and they cannot be scheduled individually.
Instead flex-offers are aggregated into larger flex-offers which become scheduled
and then disaggregated into the smaller flex-offers again [16]. To enable this, there
will be smart nodes at both consumer sites and producer sites in the electricity
grid which we denote a smart grid.

There is a strong need for efficient data management in these nodes. In this
paper, we present MIRABEL DW which is a data warehouse (DW) for the man-
agement of large amounts of complex energy data in the MIRABEL project. This
paper is the first to present a DW schema for the important domain of energy
data. The schema can represent different “actors” in different “roles” as defined
by the “Harmonised Electricity Market Role Model” [6] as well as (individual
and aggregated) flex-offers, and time series. In the future, the managed data is to
be distributed over millions of nodes [2] in non-traditional ways. In the paper, we
focus on a DW on a single node, but present a unified schema that can manage
data both at the level of the entire electricity network and the level of individ-
ual nodes, such as a single consumer node. Compared to typical DW schemas,
the schema has a number of complexities which we discuss in the paper. These
include facts about facts and composed non-atomic facts and unified handling
of different kinds of flex-offers and time series. We also discuss alternative data
modeling strategies that use denormalization and arrays, respectively. We also
discuss so-called specializations which allow certain variants of the generic uni-
fied schema to simplify data management in different node types which, e.g., can
have limited hardware resources. Further, we present typical queries from the
energy domain and a performance study that compares the described schemas
with the denormalized and array-based alternatives, and the specialized schemas.

The rest of the paper is organized as follows: Our representations of flex-
offers, time series and actors are presented in Sects. 2, 3, and 4, respectively.
These parts together form the full schema which is presented in Sect. 5. Section 6
presents specializations of the generic schema to simplify data management at
different node types. Examples of analytical queries on the schema are given in
Sect. 7. A performance study is given in Sect. 8. Previous work related to this is
presented in Sect. 9 before the concluding remarks and pointers to future work
which are given in Sect. 10.

2 Modeling of Flex-Offers

In this and the following two sections, we first present the data model we use
in MIRABEL DW. Then we discuss the non-standard and advanced techniques
that are applied in the modeling.

2.1 Data Model

To represent MIRABEL’s flex-offers (both aggregated and non-aggregated) is an
essential task for MIRABEL DW. This is done by means of the tables shown
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Fig. 1. Tables for representing flex-offers

in Fig. 1. We first describe the dimensions (which are recognized by the prefix
D in their table names) and then the fact tables (recognized by the prefix F

in their names). All dimension tables have surrogate keys with names ending
with Id. The possible states for a flex-offer (such as “offered”, “accepted”, and
“rejected”) are represented in the dimension D flexEnergyState. A flex-offer has its
state for a certain reason (for example, a flex-offer becomes rejected if the offered
price is too high). The possible reasons are represented in the dimension D flex-

EnergyStateReason. As we expect few generic reason categories (e.g., “Price too
high”) and many more specific reason descriptions (e.g. “Price (499.50 euros) too
high”) to exist, we have columns for both the generic categories and the specific
reasons such that a hierarchy exists. In MIRABEL DW, we represent time by
discretized time intervals. This is done by D timeInterval which represents 15 min
intervals (for now; other interval lengths can be chosen if needed). Flex-offers
are always related to at least one metering point (at the location where the
energy is to be consumed or produced), but if a flex-offer is aggregated, it will
be associated with many metering points. To capture this, D meteringPointGroup

is used as bridge table [9] between the fact table and D meteringPoint which
represents the individual metering points. To represent the aggregation level of
a flex-offer, D aggregationLevel is used.

The fact table F flexOffer holds flex-offer facts. It references all the previously
described dimension tables. There are six foreign keys to D timeInterval to repre-
sent different times such as when the flex-offer was created and when it at the
latest has to be assigned etc. These foreign keys thus all represent an absolute
time. There is also an attribute assignmentBeforeDuration which holds a time span
telling how long before the actual execution time the assignment must take place.

Further, F flexOffer references D legalEntityRole (explained later) twice to rep-
resent who offered and accepted the flex-offer, respectively. Only the current
information about a flex-offer is held; if a flex-offer is modified, the old fact
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is overwritten. There are measures to hold the lowest and highest amount of
energy required by the flex-offer as well as a measure to hold the “fixed” amount
of energy that becomes accepted. Further, a measure holds the total cost of the
fix. Finally, each represented flex-offer is given a unique identifier in the attribute
flexOfferId which technically is a degenerate dimension.

Information about the profile intervals of flex-offers is represented in the
fact table F enProfileInterval. This fact table only has a single foreign key which
references the unique flexOfferId in F flexOffer. The imported value together with
a sequential intervalNr forms the primary key for F enProfileInterval. The reason
for this design is that a single flex-offer can have many profile intervals. For
each represented profile interval, there is a duration specifying how many time
units the profile interval spans over, and both the lowest and highest amount
of energy needed in this interval. When the flex-offer becomes fixed, the actual
amount of energy in the interval and the price for this energy also becomes
represented. An alternative to this design would be to represent the measures
of F enProfileInterval in arrays in F flexOffer such that all data about a given flex-
offer would be represented in a single fact. Yet another alternative would be to
represent all attributes of F enProfileInterval in F flexOffer, i.e., denormalize the
data and have one (wide) fact in F flexOffer for each profile interval. (For space
reasons, we do not show the alternative schemas in figures).

As flex-offers can be aggregated into larger flex-offers, we also introduce the
table F aggregationMeta which references F flexOffer twice to point to the aggregat-
ing “parent flex-offer” and the smaller “child flex-offer” which has been aggre-
gated, respectively. Profiles of each child flex-offer can be shifted relatively to the
profile start of the parent flex-offer when aggregating child flex-offers into the par-
ent. Therefore, for every child flex-offer, the childProfileTimeShift attribute indicates
the amount of time units the profiles of the child flex-offer has been shifted in the
aggregated flex-offer. This information is used in the disaggregation.

2.2 Modeling Challenges

The fact table F flexOffer is the central fact table for representation of flex-
offers. It is, however, also used as a dimension table in the sense that each
fact has a unique ID such that F enProfileInterval and F aggregationMeta can refer-
ence F flexOffer and in effect store facts about facts. Considering F flexOffer and
F enProfileInterval, it can even be discussed what a fact is. An energy profile inter-
val (in this context) always belongs to a flex-offer and any meaningful flex-offer
has an energy profile interval (a flex-offer for zero consumption/production at an
undefined point in time is hardly interesting). It could be argued that a single fact
is represented by a single row in F flexOffer and many rows in F enProfileInterval.
Unlike traditional DW schemas, we thus have non-atomic composed facts. As
pointed out above, we could alternatively have modeled this by using arrays
in F flexOffer to hold the measures that currently are represented in F enProfile-

Interval. This would, however, make it more cumbersome to compare different
measures (e.g., en low with the minimum energy requirement to en fix with the
assigned energy) as the interval position currently represented by intervalNr only
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would be implicitly represented by the position in the array. The denormalized
variant (with a fact in F flexOffer for each profile interval) would increase redun-
dancy dramatically.

Another interesting aspect of MIRABEL DW is how it represents facts for
both non-aggregated and aggregated flex-offers in a unified way. The aggregation
is unlike traditional aggregation since the parent flex-offer contains other flex-
offers that can be shifted within the parent flex-offer. We call the contained
flex-offers shiftable child facts.

3 Modeling of Time Series

3.1 Data Model

In MIRABEL DW, time series are represented by means of the tables shown
in Fig. 2. It is necessary to be able to represent time series of various types,
for now energy, power, and price. To represent these general classes, we use the
D typeClass dimension table. Apart from its surrogate key, it has the attribute
typeClassDesc which holds a textual description of the time series type (such as
“Energy”) and the attribute unit which holds the unit of measurements (such
as “kWh”). Instances of the general types are represented in the table D type.
For example, an instance of the “Energy” class is “Energy-Metered-Production-
RES-Wind”. D type references D typeClass to represent the hierarchy between

Fig. 2. Tables for representing time series
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types and type classes. For different types of time series, it is, however, necessary
to store different information. Therefore, we introduce the tables D typeEnergy,
D typePower, and D typePrice to hold the attributes that are relevant for the dif-
ferent types. These tables supplement, but cannot replace, D type. The reason is
that we need a single table to reference from D timeSeries to represent the type of
the time series in question. Thus D type is referenced from D timeSeries, but the
special attributes for an energy time series are represented in D typeEnergy. The
latter table has columns to describe the origin of the time series (e.g. “Metered”
or “Forecasted”), the flow direction (i.e., if it is production or consumption), the
category (e.g., energy from renewable energy sources), and the type of energy
(e.g. “Wind”). The design is likely to evolve in the future. For example, there is
a traditional hierarchy where types roll up into categories that roll up into flow
directions. A more advanced hierarchy is, however, needed to represent hybrid
energy types like “At least 90 % energy from renewable energy sources and the
rest produced from coal”.

D timeSeries holds a single entry for an entire time series. For each repre-
sented time series, there is a unique ID tid and a name may be given. Further,
D timeSeries references D type (as previously described), D aggregationLevel to rep-
resent the level of aggregation of the time series, and D meteringPointGroup to
represent which meters the time series describes. Thus, D timeSeries is mainly
used to relate different dimension values that describe the represented time
series. The values of the time series are, however, represented in the fact table
F timeSeriesInterval. This table references D timeSeries to identify the time series a
value belongs to and D timeInterval to identify the time instant when the value
occured. Finally, the table holds the value itself as the measure. A fact thus
exists for each value in each time series. It can, however, also be argued that a
fact consists of what it represented in F timeSeriesInterval and what is represented
in D timeSeries which – apart from a possible name – only points out to other
dimensions.

3.2 Modeling Challenges

Similarly to the representation of flex-offers, our representation of time series
also leads to compound facts where one fact can be considered to be made
up of parts in different tables (D timeSeries and F timeSeriesInterval). Actually, an
alternative design is to merge F timeSeriesInterval into D timeSeries such that the
values instead are represented in an array, meaning that a single time interval
(and all its values) only would result in one fact. Yet another alternative is
to merge D timeSeries and F timeSeriesInterval and have a row for each value in
a time series. There are thus different possible ways to represent the complex
sequence-facts arising from time series. We choose the model in Fig. 2 since it
both reduces complexity (compared to the first alternative where two arrays
must be processed to find the value for a given time instant) and redundancy
(compared to the second alternative where there is very wide fact for each value
in the time series).
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Fig. 3. Tables for representing different actors/roles

In our modeling of time series, the schema is neither a traditional star schema
nor a snowflake schema. One reason for this is of course the compound facts
discussed above. Another reason is the support for different types of time series
for which different attributes are needed. We have different tables that reference
D type which also is the dimension table referenced from the fact table. Consider
for example D typeEnergy which represents attributes that are relevant for energy
time series. An alternative design would be to join all these D type* tables into
one dimension table, but for every dimension member many attribute values
would then be NULL.

4 Modeling of Different Actors and Market Areas

4.1 Data Model

Many different entities are involved in different roles in energy trading and net-
work operation. We represent the needed actors from the “Harmonised Electric-
ity Market Role Model” [6] by means of the tables in Fig. 3

The table D role represents roles such as “Producer” and “Consumer”. A role
can belong to another parent role and this is captured by a self-reference. For
example, the parent role of both “Producer” and “Consumer” is “Party Con-
nected To Grid”. Legal entities are represented by D legalEntity. To capture when
a certain legal entity plays a certain role (a single legal entity can play several
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roles), we use D legalEntityRole. This table references both D role and D legalEntity.
Further, it has an attribute to hold a unique ID for a given legal entity playing
a given role. We include this ID as it makes it easy to point to a legal entity in a
certain role. We do exactly that from a number of tables as shown in Fig. 3. For
each role, there is a specialized table that (directly or indirectly through another
table) references D legalEntityRole. Some of them, like D lerSystemOperator, are sim-
ple and do only have one attribute which is a reference to this ID. The specialized
table can be referenced and it is then explicit what kind of role is referenced. For
example, the table D lerSystemOperator is referenced from D marketBalanceArea as
shown in Fig. 5. A slightly more complex example is D lerPartyConnectedToGrid

which references D legalEntityRole and also D lerBalanceSupplier to represent that
a party connected to the grid always is so through a balance supplier. Further,
D lerPartyConnectedToGrid is itself referenced from its specializations, D lerProducer

and D lerConsumer.

Fig. 4. Tables for representing market areas

Finally, we have tables to represent market areas as shown in Fig. 4. D local-

MeteringPoint represents the meters that are connected to the grid. Such meters
are installed both at the producer and consumer sites. D localMeteringPoint ref-
erences four different specializations of D legalEntityRole. Further, it references
D balanceGroup which in turn references D marketBalanceArea which hierarchically
groups metering points.

4.2 Modeling Challenges

To the best of our knowledge, this is the first paper to describe a DW for the
complex concepts of actors and roles in the “Harmonised Electricity Market
Role Model” [6]. Our model captures both how legal entities can play different
roles and how roles can be parts of other roles. This is captured by the tables
D legalEntity, D role, and D legalEntityRole. In addition to these tables, a (narrow)
table has been added for each role a legal entity can play (see the D ler* tables).
It is then possible to represent attributes that are only relevant for certain roles
such as done for D lerBalanceSupplier. Further, when foreign keys reference these
tables (instead of just referencing D legalEntityRole), it is explicit what kind of
role playing is referenced and it helps to avoid mistakes where, e.g., a balance
supplier is referenced where a balance responsible party actually should have
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been referenced. We note that if no special attributes must be stored for the
different roles, then instead of storing the D ler*’s as physical tables, they can be
views selecting from D legalEntityRole. This reduces the risk of mistakes further
and makes maintenance of them automatic.

5 The Full Schema

To summarize the previous descriptions, the full schema for MIRABEL DW
is shown in Fig. 5. The schema can capture the (needed) roles from the Har-
monised Model [6] as well as the “actor configurations” where different actors
play different roles. The schema also includes specializations of legal entities. Fur-
ther, the schema can capture different kinds of time series as complex sequence
facts. The schema is thus general enough to hold all the data that is needed
in the MIRABEL project. It should, however, be noted that no single node is
intended to hold all data. Instead, a node should only hold data that is rele-
vant for the site where it is installed. For an end-consumer this would typically

Fig. 5. The full schema for MIRABEL DW
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be her own non-aggregated flex-offers and time series about metered energy.
For a balance responsible party buying electricity on the market and selling it to
end-consumers, it would include both aggregated and non-aggregated flex-offers,
forecasted and metered time series, and market areas. The data will thus be dis-
tributed accordingly to the roles played by the owners of the nodes. The data
will also be at different aggregation levels such that some nodes have detailed
data while others have more aggregated data. A consumer will know the details
of her flex-offers, i.e., when she has requested energy and how much. For a bal-
ance responsible party, the individual non-aggregated flex-offers and end-users
generating may not be known, but the aggregated information will be known,
e.g., that x MWhs must be produced in a given time interval. Note that the dif-
ferent nodes can use the same schema. The distribution of data is illustrated in
Fig. 6 which shows different kinds of nodes. Non-aggregated flex-offers are shown
as small, shaded boxes. Note that the different nodes do not represent the same
flex-offers. A single node only represents the flex-offers that are relevant to its
owner. Aggregated flex-offers are shown as larger, filled boxes in Fig. 6. Note also
that although the nodes distribute the data and some represent non-aggregated
flex-offers and others only represent aggregated flex-offers, they can use the same
schema. As described in the following section, another possibility is to allow the
different kinds of nodes to use specialized schemas.

...Consumer

...Balance Supplier

...Balance Responsible Party

System Operator

Many millions of nodes

Thousands of nodes

Hundreds of nodes

Tens of nodes

Fig. 6. Data distribution in MIRABEL DW

6 Schema Specializations

The schema in Fig. 5 is generic and can be used in all kinds of nodes in
MIRABEL. It is, however, not all kinds of nodes that need to store all kinds
of data. Consider, for example, a node installed at an end-consumer’s site (i.e.,
the lowest level in the hierarchy of nodes) on limited hardware resources. Such
a node does not store aggregated flex-offers; it only knows the consumer’s own
flex-offers. Also, it only has time series and flex-offer data for the consumer’s
metering point and not (groups of) other metering points. For a node at a
balance responsible party, on the other hand, it is necessary to represent both
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individual flex-offers from end-consumers and their aggregated flex-offers that
are sent to the wholesale market. Further, it is necessary to represent informa-
tion about the involved actors to know where the energy comes from, where it
eventually gets consumed, who regulates the area, etc.

In a consumer node, some parts of the schema in Fig. 5 are thus not needed.
For example, D aggregationLevel is not needed and the attributes referencing it
from D timeSeries and F flexOffer are also not needed. If they were present, they
would always take the same values anyway and we thus say that they are context-
given. Likewise representations of legal entities are context-given in a consumer
node since the node only deals with a given consumer that belongs to a given mar-
ket area etc. Further, a consumer node typically has limited computing resources
and it can be beneficial to have a simpler database schema. At higher layers,
there is typically much more computing power, but the data amounts may also
be much bigger such that other schemas can be beneficial. To simplify the data
management in a node, such as an end-consumer node, we employ actor-specific
specializations of the schema. A specialized database schema S does not have to
be able to represent all the data of the generic schema G, but may only be able
to represent some of it and possibly in a modified form. S may have relations
that are different from those in G and can, e.g., be a star schema. At an infor-
mal level, a specialized schema S can differ from the generic schema G in the
following ways:

1. A new attribute a can be added to S if its values can be deterministically
computed
(a) from values of attributes in S or
(b) from values of attributes in G and inverse functions that for each of these

attributes in G can compute its value from the value of a are given.
2. An attribute from G can be left out from S if it in an instance of S always

would take the same value if included (i.e., if it is context-given).
3. An attribute from G can be left out from S if we have a way of determinis-

tically computing its value from the value of another attribute in S without
knowing the state of G. In particular, a surrogate key is not enough to com-
pute all other attributes of a relation.

4. An entire relation from G can be left out from S if all its attributes can be
left out.

5. A relation in S can represent several relations from G that are equi-joined on
foreign keys. A surrogate key used in a join may then be left out.

The data of an instance S must be obtainable from a number of queries on
an instance of G such that the data for each relation in S is obtainable from
one SPJ query. In particular, the queries may not use GROUP BY, HAVING,
DISTINCT, UNION, INTERSECT, or EXCEPT from SQL. The queries can
join relations on foreign keys, select an attribute once or leave it out if its values
can be deduced from other included attributes or are context-given, and finally
restrict the amount of tuples to those with certain values in certain attributes.
The queries may not aggregate G data as this would prevent us from propagating
modifications from the specialization instance back to the G instance.
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6.1 Querying a Specialization

For a query qS on a specialization S, it is possible to find a query qG on the generic
schema G that gives the same result: Since any relation in the specialization can
be considered a view over one or several equi-joined relations in G, it is possible
to find qG from qS by replacing each relation in qS with its corresponding view
definition over relations in G.

A query qG on the generic schema G can under certain circumstances also
be translated to a query qS which gives the same result on a specialization S.
Recall how a specialized schema can differ from the generic schema:

1. A new attribute can be added if its value can be computed from values of other
attributes. Such attributes can be ignored since they obviously are not used
by qG.

2. An attribute can be left out if it is context-given. If qG uses an attribute a
that is context-given in S, qS must use the appropriate constant instead of a.

3. An attribute can be left out if it can be computed from another attribute in S.
If qG uses an attribute b that is left out from S because it can be computed
from another attribute c in S, qS must do the necessary computation of b
values by means of c, i.e., occurences of b should be replaced by f(c) for a
deterministic function f .

4. A relation can be left out if it all its attributes can be left out. If qG uses
such a relation r, all usages of attributes from r (which all necessarily are
context-given or can be computed) can be replaced by appropriate constants.

5. Several relations may have been equi-joined on foreign keys. If a surrogate
key has been left out from S, it cannot be used in queries on S. But since a
surrogate key just is an integer with no special meaning, it would not make
much sense to query for it anyway since it has already been used in a join to
combine the right rows from two relations. We therefore assume that qG does
not query for a left-out surrogate key. Consider first the case where qG equi-
joins the relations r1, r2, . . . , rn on foreign keys and S has the relation r′ which
holds the result of an equi-join of r1, r2, . . . , rm (m ≤ n) on foreign keys. In
that case qS can join r′ and r′

m+1, . . . , r
′
n where r′

i (m + 1 ≤ i ≤ n) holds
the corresponding data of ri as found by applying these rules recursively.
Now consider the case where S does not hold such an r′, but instead holds a
relation r̂ with the result of an equi-join on foreign keys of r1, r2, . . . , rN in
G for an N > n. Then qG in general cannot be transformed to a query on S
that gives the same result since S might not represent all tuples from some
rj in G (in case no rows reference them) or represent some tuples too many
times. As an example of the latter, if n = 1 in qG and a relation in S holds
the result of r1 joined with r2 (i.e., N = 2) on a foreign key from r1 to r2,
tuples of r2 might be represented several times in the resulting relation.

In other words, only item (5) can be a limitation. When one creates a special-
ization S, one should thus be aware that joining (i.e., denormalizing) too much
makes some queries on the G schema impossible to translate to the S schema
and get the same results. On the other hand this is not likely to be an issue in
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realistic settings. A designer would most likely not join G tables if, e.g., one of
them holds rows that do not join with any rows from the other table(s) or if
SELECTs from a particular table are an important query category.

A specialization can provide a simpler schema that fits the needs of a certain
node and thus can be used instead of the general G schema. As discussed above,
queries can always be translated from S to G and under certain circumstances
from G to S. We, however, also wish to be able to do certain modifications
on relations in S and be able to translate them to corresponding modifications
on relations in G. We therefore now discuss which modification operations are
allowed on data in a specialization instance.

6.2 Modifications

To maintain overall compatibility and consistency among nodes, it should be
possible to propagate modifications made to S data back to G. Therefore, it is
not all operations that are allowed in a specialization. Instead, any allowable
operation on S that brings the database from a state s (obtained by applying
the specialization’s defining queries – or view definitions – on G in state g) to
another state s′ must be mappable to a number of operations on G that brings
the database from g into a state g′. As discussed above, all relations in S can be
seen as views on G. The state g′ must then be such that if the view definitions,
denoted V , are applied on a database with the schema G and the state g′, the
result is a database with the schema S and state s′:

V (G, g′) = (S, s′)

For an attribute a added to S that also can be computed from other attributes
X in S, we of course require that any modification to it is consistent. In other
words, the value assigned to a should correspond to what can be computed from
X. We now consider the possible modifications in turn and describe how they
can be supported (if so) or why they cannot be supported.

Insertion is the most needed modification type for a specialization. A node with
a specialization should be allowed to insert data about its own site, e.g., data
about the energy consumption at the site. For a relation RS in S which holds
data from a single relation RG in G, insertions can be supported in the following
way. Some attributes of RG may not be available in RS , but they are then either
context-given or computable from other attributes. Thus, for a row rS inserted
into RS , we can find a corresponding row rG to insert into RG to achieve the state
g′. This is similar to when views are updatable in SQL-92 [5] apart from that we
do not get NULL values in left-out attributes but instead find proper values. Now
consider a relation RS which is the result of an equi-join of a sequence of relations
RG,1, RG,2, . . . , RG,n from G (possibly with some attributes left out if they can
be computed or are context-given) where RG,a can have a foreign key referencing
RG,b only if a < b. If a row rS is inserted into RS , we can for each RG,i (in the
order i = n, n − 1, . . . , 1) find the corresponding part of the row rS and add
any computable or context-given attributes. We call this corresponding row part
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rG,i. If the state g of G is such that rG,i is not in RG,i, it can be inserted (if the
surrogate key is not present it should be added first and afterwards also added
to all row parts for RG,h if RG,h references RG,i). If it already is in RG,i, nothing
should be done. In SQL-92, insertions into “join views” (i.e., views with data
from more than one relations) are not allowed. In SQL:1999 such insertions are
sometimes allowed, but each of the view’s columns should be uniquely traceable
back to a single column in a single table [12]. We, on the other hand, allow a
natural join where a column in RS corresponds to two columns (namely, the
primary key of RG,b and the foreign key of RG,a) since we can consider one of
the two columns as left-out due to computability. SQL does also allow the WITH
CHECK OPTION to ensure that it is not possible to insert rows that would not
appear in the view anyway (but it is not all RDBMSs that support it). This
functionality is not available per se in a specialization, but would have to be
emulated with CHECK constraints on the relations. The described method to
support insertions does, however, not guarantee that a successful insertion into
RS can be mapped to successful insertions into the RG,i relations. For example,
a primary key violation can occur when we try to insert into RG,i for some i.
This would not be detected when inserting into RS .

Deletion is a modification which rarely will be done in specializations. We anyway
describe how it can be supported. For a row in RS in S, we either have all
corresponding G attributes directly available or can find them as argued above
(possibly apart from surrogate keys). In the simple case where a row rS is deleted
from RS which is not the result of a join, we can find the primary key value of
the corresponding row rG in RG and use that to delete rG. Consider for the more
complex case again an RS which is the result of an equi-join of a sequence of
relations RG,1, RG,2, . . . , RG,n from G (possibly with some attributes left out if
they can be computed or are context-given) where RG,a can have a foreign key
referencing RG,b only if a < b. We can either find the primary key value for each
corresponding rG,i part or find values for all its other attributes and use them to
identify the row to delete. Considering each of them in the order i = 1, . . . , n, if
the state g is such that rG,i is not referenced by any other row in any relation in
G, it can be deleted. As with insertions, we are not guaranteed that a deletion
in S results in one or more deletions in G. Another issue is whether we actually
want a deletion in S to possibly result in deletions from more relations in G.
Only the first deletion would delete detail data while the following ones would
delete from the dimension hierarchy. It depends on the concrete case whether it
makes most sense to delete from all corresponding G relations or only one, but
the latter would often be what is wanted. It should thus be specified during the
definition of a specialization how to handle deletions for relations that hold the
results of equi-joined relations from G.

Update is simple to support in the case where RS only has data from one relation,
RG, in G. In this case, the primary key value is again known and can be used
to identify the corresponding row to update in RG. For an RS with data from
several G relations, the situation is more complicated. With join views, a general
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problem is that some updates to the view cannot be mapped uniquely to a set of
modifications to the base table [5]. In the case of specializations, we can, however,
again benefit from knowing the primary key value for each corresponding row
part and use this to do upsertions. Thus we can only allow updates to a relation
holding the result of an equi-join of G relations if no surrogate keys have been
left out. For an RS which is the result of an equi-join of a sequence of relations
RG,1, RG,2, . . . , RG,n from G, we can for a row that is updated to r′

S consider
the corresponding row parts in the order n, . . . , 1. Assume that the primary key
value for RG,i is pi. The pi values can be found for each corresponding row part
of r′

S . If RG,i holds a row rG,i with the primary key value pi, it should be updated
to r′

G,i (if rG,i �= r′
G,i). If RG,i does not hold such a row, r′

G,i should be inserted.
However, rG,i could be a corresponding row part of many rows in RS , but if
only one of these rows has been updated to go from the state s to the state s′,
we will not have that V (G, g′) = (S, s′). To be able to map an update of RS to
G, we must therefore require that for any two rows x and y in RS for which the
primary key values of xG,i and yG,i are identical for some i, we also have that
xG,i = yG,i after the update. In other words, x and y should then have identical
values for all attributes originating from RG such that functional dependencies
are maintained. This can be expensive to check and another and simpler solution
is to only allow updates of the attributes in RS originating from RG,1.

Finally, we note that an attribute or relation that is left out from a special-
ization, obviously cannot be modified. If the context changes, e.g., if a consumer
gets another energy supplier, a new S instance must be created for the new
context.

In summary, insertions into a specialization are easy to support while deletions
and updates are more complex. In particular, it is necessary to specify for a
specialization how to handle deletions from a relation holding the result of a
join of G relations. Also for updates, this should be specified. Updates do also
require that no surrogate keys have been left out. In fact, only few modifications
are expected to take place in a specialization. Typically, only insertions into one
or few relations will be done; for example, meter readings from the node’s loca-
tion into F timeSeriesInterval. A specialization definition can thus specify which
relations may be modified and (for updates and deletions) how modifications to
them should be mapped to modifications to G.

6.3 Examples

As a trivial example, it is possible to define a specialization of G with the same
database schema. The mapping of modification operations is then simply the
identity function. Another and more interesting specialization is for a prosumer
C that has solar panels producing electricity and has agreed to buy all her
remaining electricity from a given energy supplier. In this case, a specialization
for a node at C’s site does not need to represent the metering point (as it only has
data for the single metering point) and the aggregation level (as no flex-offers are
aggregated). Further, the energy type is always “solar energy” when produced by
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the prosumer and “undefined” when she buys electricity (the value of energyType

can thus be computed from energyFlowDirection). Further, all flex-offers are offered
by the consumer herself and only accepted by the single balance supplier and
thus these values are context-given. Figure 7 shows SC . Note how F flexOffer and
(several instances of) D timeInterval have been joined leaving out the surrogate key
timeIntervalId. New computed attributes with time stamps have, however, been
added and they in turn allow the attributes of D timeInterval to be left out. This is
done to avoid the possibly expensive joins with D timeInterval on the C node which
is likely to have very limited hardware resources. D timeSeries, D typeEnergy, and
D type have also been joined as have F timeSerieInterval and D timeSeriesInterval.
The attribute hour has also been added to the resulting relation. This attribute
can be computed from time, but has been added to allow for efficient grouping
when considering the hourly energy consumption. New time series intervals and
flex-offers can be created at C’s site and it must be possible to represent these in
the generic schema as well. Thus insertions into D timeSeries, F timeSeriesInterval,
and F flexOffer are mapped to insertions into relations in G. Other modification
operations are not allowed. If we wanted to also support updates of facts, we
would have to include the left-out surrogate keys.

7 Queries

In this section, we give examples of interesting queries on data in MIRABEL
DW. We first focus on queries on flex-offers and then on time series.

7.1 Queries on Flex-Offers

The first example, Q1, considers the flexibility in flex-offers, both with respect
to time and amount of energy.

Fig. 7. The database schema SC of a specialization



64 L. Šikšnys et al.

Q1: SELECT AVG((enProfile_startBeforeTimeIntervalId -
enProfile_startAfterTimeIntervalId) *

(SELECT SUM((en_high - en_low) * intervalDuration)
FROM F_enProfileInterval i
WHERE i.flexOfferId = f.flexOfferId)

)
FROM F_flexOffer f;

The query uses the flexibility with respect to time, i.e., the difference between
when the flex-offer at the latest has to be executed and when it at the earliest can
be scheduled. We assume that time interval IDs are assigned sequentially and
thus use the difference between the IDs of the time intervals to find the flexibility.
This flexibility is multiplied with the SUM of the energy flexibility in each profile
interval. The energy flexibility in a profile interval is found as the length of the
profile interval multiplied with the difference between the maximally required
amount of energy and the minimally required amount of energy. Finally, the
shown query considers the average of the combined flexibility for all flex-offers.
The query is an example of a non-traditional kind of aggregation. If we consider
a graph showing the relative start and end times for profile intervals on the X
axis and the minimal and maximal energy amounts on the Y axis, the query Q1
finds the area of energy flexibility for all flex-offers and multiplies these with the
length of their time flexibilities before the entire average is found. This number is
primarily of interest before the scheduling gets done and a high number indicates
much freedom in the scheduling while a low number shows that the considered
flex-offers are not very flexible.

The next example, Q2, is of interest after the scheduling and gives the total
amount of scheduled energy. This is a simple query which, however, must read
data from many rows in a realistic setting (the DBMS we use does currently not
support materialized views).

Q2: SELECT SUM(en_fix)
FROM F_enProfileInterval;

Q3 is a more complex query to apply after scheduling has taken place. It
builds a time series that, for each time interval ID, shows the amount of fixed
energy.

Q3: SELECT timeIntervalId, SUM(en_fix_part)
FROM (SELECT en_fix_part, ROW_NUMBER() OVER (PARTITION BY i.flexOfferId

ORDER BY intervalNr) - 1 + f.enProfile_startFixTimeIntervalId
AS timeIntervalId

FROM (SELECT flexOfferId, intervalNr, en_fix / intervalDuration
AS en_fix_part, generate_series(1, intervalDuration)

FROM F_enProfileInterval
WHERE en_fix IS NOT NULL

) i, F_flexOffer f, D_flexEnergyState s
WHERE i.flexOfferId = f.flexOfferId AND f.stateId = s.stateId

AND s.stateDesc = ‘Assigned’
) AS subquery

GROUP BY timeIntervalId
ORDER BY timeIntervalId;

The query computes the IDs of the time intervals where a flex-offer’s profile
intervals are executed. But a profile interval has a duration (in intervalDuration)
which defines how many time intervals the profile interval spans. Therefore, it
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is necessary to (evenly) distribute the profile intervals’ energy amounts over one
or more time intervals. To do this, one “part” row is generated for each time
interval a profile interval covers by means of generate series. This happens in the
innermost SELECT. The result of this is used by the second SELECT which also
uses the SQL window function ROW NUMBER to enumerate the rows in each
partition where a partition consists of the part rows for a given flex offer and is
ordered by the interval numbers. Thus, the resulting row number corresponds to
the number of time intervals between the assigned start time for the entire flex
offer and the part represented by the row (we subtract 1 since ROW NUMBER
counts from 1). When we add enProfile startFixTimeInterval for the flex-offer, we
get the ID of the absolute time interval when the part executes. Finally, the
outermost SELECT aggregates the sums of fixed energy amounts over all parts
belonging to a given time interval.

7.2 Queries on Time Series

Q4 is a query that finds the balance, i.e., the difference between produced and
consumed energy, for a 24 hours period.

Q4: SELECT date, timeDesc,
SUM(CASE energyFlowDirection WHEN ‘Production’ THEN value

ELSE 0 END) AS production,
SUM(CASE energyFlowDirection WHEN ‘Consumption’ THEN value

ELSE 0 END) AS consumption
SUM(CASE energyFlowDirection WHEN ‘Production’ THEN value

WHEN ‘Consumption‘ THEN -1 * value
ELSE 0 END) AS balance

FROM F_timeSeriesInterval f, D_timeSeries ts, D_type ty,
D_typeEnergy te, D_timeInterval ti

WHERE f.tid = ts.tid AND ts.typeId = ty.typeId AND te.energyTypeId =
ty.typeId AND ti.timeIntervalId = f.timeIntervalId AND
te.energyOrigin = ‘Metered’ AND ti.date = ‘2011-06-01’

GROUP BY ti.timeIntervalId
ORDER BY ti.timeIntervalId;

The query Q4 is an example where we use the special attributes that only
apply to some time series. In this example, we consider consumed and produced
energy and we thus use energyFlowDirection and energyOrigin which only exist for
energy time series. The query sums the production values, consumption values,
and the difference between them for each time interval that belongs to a given
date.

Our last example, Q5, is a query to find those time series where the average
energy usage grouped on hours exceeds the average energy usage for the hour
with 25 % or more at least 10 times.

Q5: WITH indavguse AS (
SELECT tid, hour, COUNT(value) AS indcnt, AVG(value) AS indavg
FROM F_timeSeriesInterval NATURAL JOIN D_timeInterval
GROUP BY tid, hour

),
totavguse AS (

SELECT hour, SUM(indcnt * indavg) / SUM(indcnt) AS totavg
FROM indavguse
GROUP BY hour
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),
overuse AS (

SELECT tid, t.hour, indavg, totavg,
COUNT(*) OVER (PARTITION BY tid) AS cnt

FROM totavguse t, indavguse i
WHERE t.hour = i.hour AND indavg >= 1.25 * totavg

)
SELECT tid, cnt, hour, indavg, totavg
FROM overuse
WHERE cnt > 10
ORDER BY tid, hour;

The query has Common Table Expressions (CTEs) in the WITH part. In
the first CTE, indavguse, we compute a (temporary) table with the average
hourly energy usage for each time series. The result is used again to compute
the second CTE, totavguse, where we find the average energy use per hour
among all time series (we could join F timeSeriesInterval and D timeInterval again,
but it is faster to reuse the result of the previously computed CTE). In the third
CTE, overuse, we join the the results of the two previous CTEs to find the IDs
of time series and the hours from indavguse where the consumption is at least
25 % higher than the general hourly average consumption found in totavguse.
Further, we use COUNT as a window function to count how many such hours we
find for a given time series. Finally, we select the ID of the time series, the count
of hours with an average energy usage at least 25 % higher than the average, and
the consumption in the last SELECT clause.

8 Performance Study

In this section, we consider the queries from the previous section and use them
to evaluate and compare the different MIRABEL DW schema alternatives pre-
sented in Sects. 2–6. This section is split into two parts. In the first part, we
focus on the generalized variants of the MIRABEL DW schema – the original
(unmodified, called “MDW”), denormalized, and array-based variants – and use
them to compare the performance of the queries Q1–5. In the second part, we
compare the original (MDW) generalized MIRABEL DW schema to a specialized
variant (a specialization) by evaluating performance of Q4 in a resource-limited
environment.

8.1 Performance of Q1–Q5 on the Generic Schemas

We now consider the queries Q1–Q5 on the described (original) schema of
MIRABEL DW and its denormalized and array-based alternatives, denoted
as “MDW”, “denorm”, and “array” respectively. In the denormalized variant,
F flexOffer and F enProfileInterval are joined and so are F timeSeriesInterval and
D timeSeries (however, with the name varchar attribute replaced by an integer
to make it a typical fact table). In the array variant, the same tables are joined,
but now grouped on all dimension references and with measures aggregated
into arrays. For the tests, we use a real life data set with consumption data
from 963 customers (the data originates from the MeRegio project [13]) and we
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synthetically generate flex-offers based on this data set. This gives rise to 963
(energy consumption) time series with 32.1 million time series values, and 3,1
million flex-offers. We test the performance on a Linux server with two Quad
Core 1.86 GHz Intel Xeon CPUs, 16 GB RAM, 4 SATA 7200 RPM disks (with
one dedicated to the DBMS). The DBMS is PostgreSQL 9.1 [15] and has the
parameter shared buffers set to 4 GB, temp buffers to 128 MB, and work mem to
96MB. All tables are “fully vacuumed” such that their disk representations only
take up the needed space and do not occupy unused space. Further, the tables
are “analyzed” such that their statistics are up-to-date. Each query is executed
once in a warm-up round and then the queries are executed in a round-robin
fashion such that each query gets executed five times. We report the average
execution times. The results are shown in Fig. 8.
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Fig. 8. Performance of Q1–Q5 on the generic schema

For Q1, it can be seen that the MDW variant is the fastest followed by
the array variant (38.3 s and 49.1 s, respectively). These two query variants have
similar plans, but with arrays there are fewer rows to process. On the other hand,
these rows need to have their arrays “unnested” to produce as many values as
there are rows to consider in the MDW variant. When the denormalized variant
is considered, there are also many rows and these rows are wide. Further, the
plan is not similar to the plans for the other variants as GROUP BY is necessary
with this variant. This makes the denormalized variant the slowest (123.4 s).

For Q2, the MDW variant is again the fastest (8.9 s) to use. Again, the array
variant is the second fastest (11.1 s). With this variant, the arrays must again
be unnested to produce the values that are available in the rows in the MDW
variant. The denormalized variant uses wider rows and is the slowest (16.8 s).

For Q3, the MDW variant remains the fastest (172.1 s) while the array variant
now is the slowest (237.2 s) even though it avoids a join. On the other hand,
the array variant requires a SELECT clause to unnest the array and an extra
use of ROW NUMBER to recreate the values from intervalNr which only are
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implicitly available from the array positions. The denormalized variant (192.2 s)
is bit slower than the MDW variant even though it avoids a join.

For Q4, the MDW variant is significantly faster (0.8 s) than the others. The
denormalized variant which avoids a join, uses an order of magnitude more time
(7.7 s). The array variant is by far the slowest (131.9 s) as there is no index on
timeIntervalId which is an array. Thus all rows must be processed and have their
rows unnested to perform a join with D timeInterval.

For Q5, the MDW and denormalized variants perform similarly (59.1 and
61.3 s, respectively). The queries involve the same number of rows and are iden-
tical apart from that the denormalized variant uses a wider table. For the array
variant, the first CTE has to unnest two arrays and the query takes longer time
(143.8 s).

To summarize, the MDW variant performs the best for all queries. Another
interesting thing to consider, is the disk space usage. The tables F flexOffer,
F enProfileInterval, F timeSeriesInterval, and D timeSeries take up 4.1 GB in the
MDW variant (not counting indexes). Their alternative representations take up
7.0 GB in the denormalized variant and 1.9 GB in the array variant, respectively.
It notable how little space the array variant uses compared to the other variants
due to its fewer number of rows (and thus fewer space-consuming row headers).
Overall, the MDW variant is a good choice considering both its performance and
space requirements.

8.2 Performance of Q4 on the Specialized and Generic Schemas

We now consider MIRABEL DW at a prosumer node (e.g., a smart-meter), which
uses MIRABEL DW for storing, among other entities, electricity consumption
and production measurements. As this node is expected to have limited com-
puting and storage capabilities, we consider a MIRABEL DW specialization as
opposed to the full MIRABEL DW schema for the storage of measurements.
To simulate a resource-limited environment, we use three instances of the Ora-
cle VirtualBox virtual machine (VM), each of which runs the lightweight Linux
DSL 4.2.5 OS and the SQLite 3.3.10 DBMS. We deploy these instances on the
machine from Sect. 8.1. The configurations of these VM instances are as follows:

VM(100,1024). The CPU clock speed/frequency is 100 % of the host
machine, but the memory (RAM) is limited to 1024 MB.
VM(100,12). The CPU clock speed/frequency is 100 % of the host machine,
but the memory (RAM) is limited to 12 MB.
VM(10,12). The CPU clock speed/frequency is limited to 10 % of the host
machine, and the memory (RAM) is limited to 12 MB.

For the experiment, we use a dataset with consumption and production
measurements collected every 15 min within an eight year time interval. These
are stored as two separate time series in two databases – the first database
in the generic MIRABEL DW schema G (MDW) and the second database in
the specialization schema SC from Sect. 6.3. By varying the total amount of
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Fig. 9. Performance of Q4 on the specialized and generic schemas

measurements stored in MIRABEL DW, we submit (variants of the) query Q4
for computing the difference between production and consumption (balance) for
a 24 h period for a selected day, and measure the total time required to evalu-
ate Q4 on each of these three VM instances. The results of this experiment are
shown in Fig. 9.

As seen in the figure, the query Q4 takes up to 2.5 times more time to
evaluate for the generic schema in comparison with the specialized schema. The
fewer resources the node has, the more it pays of to use the specialization. In
summary, we can see that the use of specialized schemas has a big potential for
resource-constrained devices such a smart meters.

9 Related Work

In the energy sector, there is a number of standardized data models used to
represent the major objects in an electric utility enterprise [8] as well as to
define administrative data internally interchanged between European electricity
markets [6,7]. These models focus on various aspects of energy trading and
physical electricity delivery, and specify 1) components of a power system at the
electrical level, 2) actors and roles involved in the energy trading, 3) relationships
and data exchange between those entities. These models are used as a basis for
the MIRACLE data model [10], which further enriches them with the concept
of shiftable consumption and production. All these models, however, focus on a
semantic rather than the storage or the management of energy-related entities.
By focusing on two most important entities in MIRABEL, i.e., time series and
flex-offers, this paper, on the other hand, presents data representation models for
these two types of entities offering a convenient storage and a good performance
of analytical queries.
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This paper is a significant extension of a previous conference paper [17], and
the papers are the first to deal with the storage of flex-offers. There are previous
works which focus on time series and warehousing, e.g. UML-based modeling of
time-series in DWs [20], and temporal aggregation of multidimensional data [3],
and temporal DWs exploiting research results from the field of temporal data-
bases [11]. Our modeling of different time-series types has similarities with Bauer
et al.’s work [1]. They discuss “locally valid dimensional attributes” whose exis-
tence depends on values of dimensional elements. This is the case, e.g., for our
attribute energyType which only exists if the D type value represents an energy
time-series. The problem of representing all these attributes in a single dimension
table (as in a typical star schema) is that there will be many NULLs in the held
data. Bauer et al. propose to have separate tables with the specific attributes
and then create views “on top” of these with common attributes as well as tex-
tual values showing the name of the relation the data comes from which can be
used for hierarchical classification. In contrast, we use tables (and not views)
for the common attributes of a dimension and then represent special attributes
that only exist for some dimensional values in other tables that reference the
table with the common attributes. This makes it possible to declare foreign keys
to the dimension table with the common attributes and also declare indexes
and constraints on these tables. Bauer et al. also propose to use table inheri-
tance to represent such cases. This would also be possible in our DBMS [15],
but constraints cannot be enforced on child tables then. Yu et al. [19] present
an approach for storing very big time series from sensor networks using Cloud
technologies such as Bigtable [4]. In contrast, we use relational storage technol-
ogy and further our individual DWs cannot be merged into a single, shared DW
due to privacy concerns, as the data comes from many competing companies.

In the current paper, we consider different representations of profile inter-
vals and time series intervals which can be considered as facts with multi-valued
measures. The latter case also has a many-many relationship between the time
series facts and the time interval dimension. Previous work [18] has considered
many-many relationships between fact tables and dimension tables. Our denor-
malized representation is similar to one of the methods of [18] whereas our other
approaches with fact tables referencing other fact tables and measure values in
arrays, respectively, are different.

Compared to the conference version [17], the current paper also provides
descriptions of how to allow specializations of the generic schema. This includes
how to translate queries between them and how to support modifications to the
data in a specialization such that the generic schema can be modified corre-
spondingly. The latter is related to updatable views as discussed, e.g., in [5,12],
and includes a range of new experiments that compare standard and specialized
schemas.

10 Conclusion

In this paper, we have presented a unified, generic DW schema for managing the
complex energy data in a smart grid, including actors playing roles, flex-offers,
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and different types of time series. The schema has a number of interesting com-
plexities such as facts about facts and composed non-atomic facts. The different
nodes will hold different parts of the data accordingly to the roles of the node
owners and the data will be at different aggregation levels at different nodes. The
same schema can, however, be used for all kinds of nodes. We have considered
different alternatives for the schema modeling using denormalization and arrays,
respectively, but based on the performance and space usage, the chosen design
is favourable. Further, we have described how to allow specialized versions of
the schema for different types of nodes, but such that queries can be formu-
lated on the generic schema and automatically be translated to the specialized
schemas (and vice versa) to make the results combinable. We also described how
to support modifications on specializations.

In the near future, we are going to extend the DW schema to be able to handle
other energy-specific entities such as operating schedules, parameters, and power
network constraints, statuses, loads, and spatial models. Furthermore, we will
perform large-scale simulations with realistic data amounts from different types
of nodes. We will also perform large-scale simulations using nodes that use role-
specific specializations of the general DW schema. As part of it, we will simulate
the update propagation between different specializations.
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