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Preface

Today, a great deal of attention is devoted to the issue of managing and mining big
data, whose main goal consists in efficiently representing and extracting useful
knowledge from such kind of data that encompass the well-known 3V characteristics,
i.e., volume, velocity, and variety. This has occurred after it was recognized that
traditional approaches developed during several years of data management and mining
research are not suitable to comply with such novel characteristics. Another relevant
property of big data to be considered is represented by their strict coupling with
emerging cloud computing environments, which try to deal with research challenges
deriving from managing and mining big data via specialized architectures, platforms,
and paradigms based on the principles of high performance, high availability, and
resource virtualization.

Within the broad scope of big data management and mining, data warehousing and
knowledge discovery from big data plays a leading role and collects a wide family of
models and methodologies for devising advanced data models (e.g., multidimensional
models), warehousing, OLAPing, and extracting useful knowledge from big data, via a
wide spectrum of specialized warehousing/mining “predicates,” such as ETL pro-
cessing, aggregation, data mart indexing, frequent pattern mining, machine learning
techniques, emerging pattern mining, association rule discovery, etc. All these initia-
tives have a common denominator, i.e., starting from the limitations of traditional data
warehousing and knowledge discovery approaches in dealing with big data, not being
scalability issues is the only drawback to face-off.

Last but not least, data warehousing and knowledge discovery from big data also
animates a very wide family of modern applications that, without doubt, are inspiring a
plethora of novel models, techniques, and algorithms in this scientific context. Among
others, relevant applications are: Web advertisement, scientific computing, social
network data management, energy management systems, smart city applications, etc.

In order to fulfill the innovative requirements posed by the issue of realizing data
warehousing and knowledge discovery in the big data era, this special issue on Data
Warehousing and Knowledge Discovery from Big Data of LNCS Transactions on
Large-Scale Data- and Knowledge-Centered Systems collects a selection of the best
papers presented at 14th International Conference on Data Warehousing and Knowl-
edge Discovery (DaWaK 2012), held in Vienna, Austria, during September 3–6, 2012.
Following its successful tradition, DaWaK 2012 attracted a large number of submis-
sions, and, after a rigorous selection process among the accepted conference papers,
only 10 papers were invited for submission to the LNCS Transactions on Large-Scale
Data- and Knowledge-Centered Systems special issue on Advances in Data Ware-
housing and Knowledge Discovery. After two thorough review rounds, only eight
papers were accepted for final publication in this special issue.



The aim of the special issue is to offer an innovative, modern research perspective
on the topic of data warehousing and knowledge discovery from big data, with par-
ticular emphasis on models, methods, and algorithms, by highlighting recent top-
quality contributions and results in this scientific context, and, at the same, stimulating
further investigation in the research field. In the following, we provide a summary
of the papers included in the special issue.

The first paper, titled “Efficient Level-Based Top–Down Data Cube Computation
Using MapReduce,” by Suan Lee, Jinho Kim, Yang-Sae Moon, and Wookey Lee,
identifies data cubes as essential parts of OLAP to support efficient multi-dimensional
analysis over large-size data. The computation of data cube takes relevant amounts of
time, because a data cube with d dimensions consists of 2d (i.e., exponential order of d)
cuboids. To build ROLAP (Relational OLAP) data cubes efficiently, many algorithms
(e.g., GBLP, Pipe-Sort, Pipe-Hash, BUC, etc.) have been developed, which share sort
cost and input data scans in order to reduce data computation time. Several parallel
processing algorithms have also been proposed. On the other hand, MapReduce is
recently emerging as an authoritative framework for processing huge volumes of data,
such as Web-scale data, in a distributed/parallel manner via using a large number of
computers (e.g., several hundred or thousands). In the MapReduce framework, the
degree of parallel processing is more important than elaborate strategies (e.g.,
short-share and computation-reduction) in order to reduce total execution time.
Following these main considerations, the authors propose two distributed parallel
processing algorithms. The first one, called MRLevel, heavily borrows from the
inherent features of the MapReduce framework. The second one, called MRPipeLevel,
is based on the existing Pipe-Sort algorithm that is one of the most efficient for
supporting top–down cube computation. The MRLevel algorithm tries to parallelize
cube computation and to reduce the number of data scans by level at the same time.
The MRPipeLevel algorithm is based on the functionalities and benefits of MRLevel,
and aims at further reducing the number of data scans by pipelining at the same time.
Finally, the authors also identify factors for enhancing the performance of MapReduce
in order to process very huge data.

The second paper, titled “Differentiated Multiple Aggregations in Multi-dimensional
Databases,” by Ali Hassan, Frank Ravat, Olivier Teste, Ronan Tournier, and Gilles
Zurfluh, focuses on multidimensional databases (MDBs), which support efficient
querying and analysis of data stored in a data warehouse. In this context, classical
MDBs support only the calculation of a measure made by the same aggregation
function while performing drilling or rotating operations (i.e., changing the analyzed
slice of the underlying data cube). For instance, if we consider sales amounts, these can
be calculated as the sum of the products sold by cities and years. When drilling from
cities to countries, the new amounts are calculated using the same aggregation function.
When the user wishes to change the aggregation function between two slices of the
manipulated cube, classical MDBs no longer guarantee the validity of the calculated
data, or even worse: They do not support this type of manipulation. In order to provide
solutions to this limitation, the authors provide a novel conceptual model that supports
(1) multiple aggregations, which associate to the same measure a different aggregation
function according to analysis hierarchies, and (2) differentiated aggregation, which
allows for specific aggregations at each detail level. The proposed model is based on a
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graphical formalism that allows one to control the validity of aggregation functions
(distributive, algebraic, or holistic). Finally, the authors also show how conceptual
modeling can be used in a ROLAP environment in order to build lattices of
pre-computed aggregates.

The third paper, titled “MIRABEL DW: Managing Complex Energy Data in a
Smart Grid,” by Laurynas Šikšnys, Christian Thomsen, and Torben Bach Pedersen,
presents research and practical results from the MIRABEL project, which focuses on
the definition and development of a data management system for smart grids targeted at
achieving smarter scheduling of energy consumption such that, for instance, charging
of car batteries is done during the night when there is an overcapacity of green energy
from windmills etc. Energy can then be requested by means of flex-offers which define
flexibility with respect to time, amount, and/or price. The authors describe MIRA-
BEL DW, a data warehouse (DW) for the management of the large amounts of
complex energy data in the MIRABEL system. In more detail, they present a unified
schema that can manage data both at the level of the entire electricity network and the
level of individual nodes, such as a single consumer node. The schema has a number of
complexities compared with typical DW schemas. These include facts about facts and
composed non-atomic facts and unified handling of different kinds of flex-offers and
time series. The authors also discuss alternative data modeling strategies and how
specialized variants of the generic schema can be used by different node types while
maintaining compatibility and consistency between them. Finally, the authors com-
plement their analytical contributions by presenting typical queries from the energy
domain, and a related performance study.

The fourth paper, titled “Modular Neural Networks for Extending OLAP to Pre-
diction,” by Wiem Abdelbaki, Sadok Ben Yahia, and Riadh Ben Messaoud, takes into
consideration limitations of classical OLAP analysis that, as the authors recognize,
offers a good applications package to explore and navigate data cubes, but, unfortu-
nately, it is limited to exploratory tasks. As a consequence, OLAP does not assist the
decision maker in performing information investigation. Thus, various studies have
been trying to extend OLAP to new capabilities by coupling it with data-mining
algorithms. The paper stands within this trend, and introduces two major contributions.
First, a multi-perspectives cube exploration framework (MCEF) is introduced. MCEF
is a generalized framework designed to assist the application of classical data-mining
algorithms on OLAP cubes. Second, a neural approach for prediction over high-
dimensional cubes (NAP-HC) is also introduced, which extends modular neural
networks (MNN) architecture to the multidimensional context of OLAP cubes, to
predict non-existent measures. A pre-processing stage is embedded in NAP-HC to
assist it in facing the challenges arising from the particularity of OLAP cubes. This
phase consists of an OLAP-oriented cube exploration strategy coupled with a dimen-
sionality reduction step that replies on principal component analysis (PCA). The
experiments described highlight the efficiency of MCEF in assisting the application of
MNN on OLAP cubes and the high predictive capabilities of NAP-HC.

The fifth paper, titled “Cut-and-Rewind: Extending Query Engine for Continuous
Stream Analytics,” by Qiming Chen and Meichun Hsu, focuses on combining data
warehousing and stream processing technologies, which has proved to have great
potential in offering low-latency data-intensive analytics. Unfortunately, such
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convergence has not been properly addressed so far. The current generation of
stream-processing systems is in general built separately from the data warehouse and
query engine, which can cause significant overhead in data access and data movement,
and is unable to take advantage of the functionalities already offered by the existing
data warehouse systems. Starting from this evidence, the authors tackle some hard
problems in integrating stream analytics capability into the existing query engine. They
introduce an extended SQL query model that unifies queries over both static relations
and dynamic streaming data, and they develop techniques to extend query engines to
support the unified model. Also, they propose the cut-and-rewind query execution
model to allow a query with full SQL expressive power to be applied to stream data by
converting the latter into a sequence of “chunks,” and executing the query over each
chunk sequentially, but without shutting the query instance down between chunks for
continuously maintaining the application context across the execution cycles as
required by sliding-window operators. They also propose the cycle-based transaction
model to support continuous querying with continuous persisting (CQCP) with
cycle-based isolation and visibility. In order to support their framework, the authors
finalize the implementation of their approach by extending the PostgreSQL, thus
resulting in a new kind of tightly integrated, highly efficient system with advanced
stream-processing capability as well as full DBMS functionality. The authors dem-
onstrate the system with the popular linear road benchmark, and report on the per-
formance. By leveraging the matured code base of a query engine to the maximal
extent, the proposed approach can significantly reduce the engineering investment
needed for developing the streaming technology.

The sixth paper, titled “Mining Popular Patterns: A Novel Mining Problem and Its
Application to Static Transactional Databases and Dynamic Data Streams,” by Alfredo
Cuzzocrea, Fan Jiang, Carson K. Leung, Dacheng Liu, Aaron Peddle and Syed K.
Tanbeer, recognizes that, since the introduction of the frequent pattern mining problem,
researchers have extended frequent patterns to different useful patterns such as cyclic,
emerging, periodic, and regular patterns. In line with this trend, the paper introduce
popular patterns, which captures the popularity of individuals, items, or events among
their peers or groups. Moreover, they also propose the Pop-tree structure for capturing
the essential information from transactional databases, and the Pop-growth algorithm
for mining popular patterns from the Pop-tree. The authors illustrate how the proposed
algorithm mines popular friends from social networks, as a relevant case study of the
proposed framework. Because the framework is not confined to mining popular pat-
terns from static transactional databases, they extend the work to mining popular
patterns from dynamic data streams. Specifically, the Pop-stream structure to capture
the popular patterns in batches of data streams is proposed, as well as the
Pop-streaming algorithm for mining popular patterns from the Pop-stream structure.
Finally, the experimental results show that (a) the proposed tree structure is compact
and space efficient and (b) the proposed algorithm is time efficient in mining popular
patterns from static transactional databases and dynamic data streams.

The seventh paper, titled “Rare Pattern Mining from Data Streams Using SRP-Tree
and Its Variants,” by David Tse Jung Huang, Yun Sing Koh, and Gillian Dobbie,
addresses research in the area of rare pattern mining where the researchers try to
capture patterns involving events that are unusual in a data set. These patterns are
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considered more useful than frequent patterns in some domains, including detection of
computer attacks or fraudulent credit transactions. To date, most of the research in this
area has concentrated only on finding rare rules in a static data set. Nevertheless, there
is a proliferation of applications that generate data streams, such as network logs and
banking transactions, and applying techniques that mine static data sets is not practical
for data streams. In order to fill this gap, the authors propose a novel approach called
streaming rare pattern tree (SRP-Tree) and its variations, which finds rare rules in a data
stream environment using a sliding window, and show that it both finds the complete
set of item sets and runs with fast execution time.

Finally, the eight paper, titled “Improving Cross-Document Knowledge Discovery
Through Content and Link Analysis of Wikipedia Knowledge,” by Peng Yan and Wei
Jin, focuses on the research context of the vector space model (VSM), which has been
widely used in natural language processing (NLP) for representing text documents as a
bag of words (BOW). However, according to this model, only document-level statis-
tical information is recorded (e.g., document frequency, inverse document frequency)
and word semantics cannot be captured. Improvement in understanding the meaning of
words in texts is a challenging task and sufficient background knowledge may need to
be incorporated to provide a better semantic representation of texts. Following this
main trend, the authors present a text-mining model that can automatically discover
semantic relationships between concepts across multiple documents, where the tradi-
tional search paradigm such as search engines cannot help much, and effectively
integrate various evidence mined from Wikipedia knowledge. The authors argue that
this integration may effectively complement existing information contained in text
corpus and facilitate the construction of a more comprehensive representation and
retrieval framework. Experimental results demonstrate that the search performance has
been significantly enhanced when compared with two competitive baseline methods.

The editors would like to express their sincere gratitude to the Editors-In-Chief of
LNCS Transactions on Large-Scale Data- and Knowledge-Centered Systems, Prof.
Abdelkader Hameurlain, Prof. Josef Küng, and Prof. Roland Wagner, for accepting
their proposal of a special issue focused on data warehousing and knowledge discovery
from big data, and for assisting them whenever required. The editors would also like to
thank all the reviewers who have worked within a tight schedule and whose detailed
and constructive feedbacks to authors have contributed to substantial improvement in
the quality of the final papers.

June 2015 Alfredo Cuzzocrea
Umeshwar Dayal
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Efficient Level-Based Top-Down Data Cube
Computation Using MapReduce

Suan Lee1, Jinho Kim1(&), Yang-Sae Moon1, and Wookey Lee2
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Abstract. Data cube is an essential part of OLAP(On-Line Analytical Pro-
cessing) to support efficiently multidimensional analysis for a large size of data.
The computation of data cube takes much time, because a data cube with
d dimensions consists of 2d (i.e., exponential order of d) cuboids. To build
ROLAP (Relational OLAP) data cubes efficiently, many algorithms (e.g.,
GBLP, PipeSort, PipeHash, BUC, etc.) have been developed, which share sort
cost and input data scan and/or reduce data computation time. Several parallel
processing algorithms have been also proposed. On the other hand, MapReduce
is recently emerging for the framework processing huge volume of data like
web-scale data in a distributed/parallel manner by using a large number of
computers (e.g., several hundred or thousands). In the MapReduce framework,
the degree of parallel processing is more important to reduce total execution
time than elaborate strategies like short-share and computation-reduction which
existing ROLAP algorithms use. In this paper, we propose two distributed
parallel processing algorithms. The first algorithm called MRLevel, which takes
advantages of the MapReduce framework. The second algorithm called
MRPipeLevel, which is based on the existing PipeSort algorithm which is one of
the most efficient ones for top-down cube computation. (Top-down approach is
more effective to handle big data, compared to others such as bottom-up and
special data structures which are dependent on main-memory size.) The pro-
posed MRLevel algorithm tries to parallelize cube computation and to reduce
the number of data scan by level at the same time. The MRPipeLevel algorithm
is based on the advantages of the MRLevel and to reduce the number of data
scan by pipelining at the same time. We implemented and evaluated the per-
formance of this algorithm under the MapReduce framework. Through the
experiments, we also identify the factors for performance enhancement in
MapReduce to process very huge data.

Keywords: Data cube � ROLAP � MapReduce � Hadoop � Distributed parallel
computing

© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XXI, LNCS 9260, pp. 1–19, 2015.
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1 Introduction

Due to the advance of information technology and WWW(World-Wide Web) recently,
many applications require to manage a large amount data and to analyze them on-line
over multi-dimensions. In order to handle these requirements efficiently, there have
been a lot of researches on multidimensional data cubes [1]. The data cube is an
essential part of OLAP(On-Line Analytical Processing), which maintains aggregate
results pre-computed over source data sets. It takes a lot of time to compute a data
cube., it takes a lot of time because each data cube keeps the values aggregated by
every possible combination of dimensional attributes. If a source table have T tuples,
the cost of T × 2D is required to compute a data cube with D dimensions. In order to
reduce such high cost problem of the multidimensional cube computation, many
algorithms have been proposed [2–5]. These algorithms are classified into several
categories such as Relational OLAP(ROLAP), Multidimensional OLAP (MOLAP),
and Graph-Based methods [1].

This paper focuses on ROLAP cube computation because it can be easily
incorpo-rated into existing DBMSs. GBLP [1], PipeSort [3], PipeHash [3], and BUC
[5] are examples of ROLAP cube computation. These algorithms reduce cube
computation time by sharing sort cost and input data scan and/or by reducing data
computation. Some others proposed parallel processing algorithms [6–9] e.g., RP, BPP,
ASL [9], and PnP [7]. While these algorithms use paralleling processing
computer/cluster consisting of several ten CPUs, MapReduce which are recently
emerging can use a large number of computers (e.g., several hundred or thousands
more). It becomes a popular framework to handle efficiently huge volume of data like
web-scale data in distributed parallel manner. To reduce cube computation time,
several algorithms [14–17] (e.g., MR-Cube [17]) based on the MapReduce framework
have been also developed. However these algorithms use bottom-up approach to
compute closed cubes and/or data cubes on holistic measurements. Compared to the
top-down approach, the bottom-up approach is difficult to handle very huge data set
and it is limited to utilize parallel processing, because it should load a set of data into
main memory.

Recently, it is required to analyze and to manage extremely large data such as Web
data and social media. In order to handle these massive data, this paper proposes
MRLevel and MRPipeLevel, which are distributed parallel data cube computation
algorithm to efficiently build massive data cube with the MapReduce framework. The
MRLevel calculates cuboids which are in the same level of a cube lattice and should be
sorted. The MRPipeLevel is based on the existing PipeSort algorithm which is known
as one of the most efficient ones for top-down ROLAP cube computation. This method
reduces the number of data scan by pipelining the computation of several cuboids with
the same sorting order at the same time.

In this paper, we implement and evaluate the proposed algorithms through various
experiments. We carry out a diversity of experiments with large scale high-dimensional
data, and comparative experiments with the MRNaïve, MRGBLP and MRPipeSort
(i.e., the MapReduce version of Naïve, GBLP and PipeSort algorithms respectively)
which are typical top-down ROLAP data cube algorithms. Through the experiments,
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we found that the proposed algorithm is more efficient than others and effective to
handle large-scale multidimensional data through the MapReduce framework. We also
identify the important factors for performance enhancement in MapReduce to process
very huge data.

2 Background

2.1 Data Cube

A data cube consists of measurements and dimensions which are the data to analyze
and the criteria for analysis, respectively. The cube keeps aggregate values for the
GROUP BYs of every possible combination of dimensions. The result for each
GROUP BY is called a cuboid, and all of cuboids forms a lattice structure according to
their inclusion relationship. Figure 1 shows a cube lattice structure built for sales data
by year, store and item dimensions.

Aggregate functions which calculate aggregate values stored in the cells of a data
cube, can be classified into three types as follows:

• Distributive: COUNT(), MIN(), MAX(), SUM()
• Algebraic: AVG(), standard deviation, MaxN(), MinN(), center_of_mass()
• Holistic: Median(), Mode(), Rank()

Among them, distributive and algebraic functions could compute lower cuboids by
using upper cuboids of a cube lattice structure. In Fig. 1, the <Year> cuboid can be
computed from the <Year, Store> cuboid. For example, if they use measurements as
SUM(Sales), the <Year, Store> cuboid has <2012, S1, *, 100> , <2012, S2, *,
81> , <2011, S1, *, 18> , <2011, S2, *, 57> , and <2011, S3, *, 32> cells. These cells
can be used to find out <2012, *, *, 181> and <2011, *, *, 107> cells for
the <Year> cuboid. With this inclusion relationship between cuboids, a cuboid can be
computed from several cuboids in its upper level of a cube lattice structure. By taking
advantage of this inclusion relationship, the cube computation time can be reduced.
Several top-down have been developed by using this concept.

Fig. 1. Examples of source data and cube lattice
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2.2 MapReduce

MapReduce is a distributed parallel processing technology for massive data, which was
proposed by Google in 2004 and has been applied to various services of Google. The
MapReduce are being used in various applications and it becomes a standard practi-
cally in large-scale parallel processing fields. To handle massive datasets in the
MapReduce framework, in addition, a distributed file system is needed. GFS (Google
File System) [10] and HDFS(Hadoop Distributed File System) [12] are popular dis-
tributed file systems. The GFS was developed by Google and the HDFS by an open
source software development project, the Hadoop [11], which uses similar architecture
and functions to GFS. This paper utilizes Hadoop’s MapReduce and HDFS.

As shown in Fig. 2, the data flow of the MapReduce is as follows: (1) input data is
split to deliver to map functions; (2) each map function stores the split input data into
its own in-memory buffer, and it partitions, sorts, and spills the input data into disks;
(3) the copy phase merges the partitions in the result of each map function; (4) the sort
phase delivers the merged results to corresponding reduction functions; and (5) each
reduce function processes the delivered data and output its final result to HDFS.

3 The MRLevel Algorithm

3.1 Cube Execution Tree

The MRLevel is an algorithm proceeds to the level unit, a top-down cube algorithm.
For example, the MRLevel builds a cube execution tree of Fig. 3(a) from a cube lattice
structure of Fig. 3(a) to processes level by level. The execution tree consists of the
cuboids which is smallest parents cuboids with theirs child cuboids. To create a cube
execution tree, we need sizes of cuboids but it takes additional cost to obtain the size of
data and cardinality. Therefore, the MRLevel does not perform a pre-calculated to
calculate the size of cuboids and builds a whole cube execution tree. The MRLevel
stores cuboid result with cuboid size when performing calculations in each cuboid by
level from cube lattice structure. The MRLevel can be selected the smallest parent
using cuboid size when calculating theirs child cuboids.

Fig. 2. The data flow of MapReduce
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For example, Fig. 3 includes parent cuboids and their child cuboids with cuboid
size. A cuboid A is selects smallest cuboid AB as a parent between cuboid AB and AC.
Cuboid B is also selects smallest cuboid AB between cuboid AB and cuboid BC. In the
case of cuboid C, It can be a parent cuboid with cuboid AB or cuboid BC. However, if
these are the same as the cuboid size, it may choose one anything which of two
cuboids. Thus, the MRLevel algorithm calculates child cuboid by each level using
selected smallest parent cuboid.

3.2 Shared Scanning and Reduction of MapReduce Phases

The MRLevel algorithm shares scan cost and performs MapReduce phase as much as
number of levels. A cuboid ABC in level 1 as input, cuboid AB, AC, and BC emits
when it scan the input data once at Fig. 3. In other words, the MRLevel once read
cuboid ABC, and then write cuboid AB, AC, and BC so its cost is reduced. In addition,
the MRLevel algorithm uses multiple input data in input part and emits multiple output
data in output part. For example, cuboid A and B in level 2 used cuboid AB as input,
and cuboid C used cuboid AC as input. The MRLevel algorithm emits cuboid A, B,
and C in level 1 using cuboid AB and AC as input in level 2.

3.3 Computation Cost of MRLevel

The cost of the MRLevel algorithm equals to the sum of the cost in each level.
In Fig. 3, for example, when cuboid ABC calculates cuboid AB, AC, and BC, we can
be calculated as a cost: read(ABC) + write(AB) + read(ABC) + write(AC) + read
(ABC) + write(BC). The MRLevel calculates cuboid AB, AC, and BC on the same
level from cuboid ABC at the same time. It presents the cost of the calculation: read
(ABC) + write(AB) + write(AC) + write(BC). The results of the estimated cost of basic
data cube and the MRLevel using the size of each cuboid in Fig. 3 is as follows:

Fig. 3. Examples of (a) cube lattice structure and (b) cube execution tree
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• The cost of basic data cube:
= read(ABC) + write(AB) + read(ABC) + write(AC) + read(ABC) + write(BC)
+ read(AB) + write(A) + read(AB) + write(B) + read(AC) + write(C)
+ read(A) + write(all)
= read(32) + write(16) + read(32) + write(24) + read(32) + write(24)
+ read(16) + write(8) + read(16) + write(16) + read(24) + write(24)
+ read(8) + write(1)
= 273

• The cost of the MRLevel data cube:
= read(ABC) + write(AB) + write(AC) + write(BC)
+ read(AB) + write(A) + write(B) + read(AC) + write(C)
+ read(A) + write(all)
= read(32) + write(16) + write(24) + write(24)
+ read(16) + write(8) + write(16) + read(24) + write(24)
+ read(8) + write(1)
= 193

The MRLevel algorithm reduces the cost about 30 % than the basic data cube
where the cost of reading and writing are assumed to be the same cost.

3.4 MapReduce Data Flow of MRLevel

Figure 4 is example of data flow about the MRLevel algorithm processing. In the figure,
the MRLevel executes a total of four MapReduce phases about three-dimensional input
data. In the first MapReduce phase, the MRLevel calculates cuboid ABC using raw data
as input. We use the key on the value of each cell, and use 1 value as the measure value
for obtaining function COUNT(). The MRLevel emits in the form of the <cell, value>,
and then merges cell with the same value. For example, in the map() function, the
MRLevel emits data <1 1 1, 1> and <1 1 1, 1> and merges with <1 1 1, [1]> in shuffle
phase. Then emits calculated data <1 1 1, 2> to reduce() function. It calculates a cuboid
ABC as a result of the <1 1 1, 2>, <1 1 3, 1>, and <1 2 2, 1>.

In the second MapReduce phase, the MRLevel emits cells of cuboid AB, AC, and
BC using a cuboid ABC as input in map() function and calculates each cuboid AB, AC,
and BC. In the third phase, as a cube execution tree in Fig. 3, the MRLevel emits cells
of cuboid A and B by selecting smallest parent cuboid AB and emits cells of cuboid C
using cuboid AC. Then, the MRLevel calculates cells of each cuboid in reduce()
function. Finally, in the fourth phase of MapReduce, the MRLevel calculates cuboid
All. It can be calculated any parent cuboid. Thus, the MRLevel calculates cuboid All
using smallest cuboid A as input data.

3.5 MRLevel Algorithm

The MRLevel algorithm separates by Map(), Reduce(), and MRLevel() function
shown in Fig. 5. In the MRLevel() function, it call Map() function to emit top cuboid
from raw data and call Reduce() function for calculating measure value. The MRLevel
declares set E of execution cuboids and traversals to all the cuboid in level k + 1.
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The MRLevel progresses by step in level k of cube execution tree. The MRLevel finds
candidates which can be a parent cuboid in level k + 1. The MRLevel declares parent
cuboid M as a smallest cuboid of candidates in parent cuboid P. A parent cuboid M
and child cuboid C are inserted into the set E. For example, the MRLevel stores the
form of AB → {A, B}, AC → C in E when it browses a set of execution cuboid for
level 2 in Fig. 3. A Map() function takes as input a set E of execution cuboid, and
scans every child cuboid of parent cuboid in a set E. At this time, the MRLevel emits
(cell, measure) pair of child cuboid C from (cell, measure) pair of parent cuboid M.
For example, the MRLevel emits a cell <1 * *, 3> in child cuboid A from a cell <1 1 *,
3> in parent cuboid AB. A Reduce() function merges same cell of released data from
Map() function and aggregates all measure according to a user-specified function such
as COUNT(). For example, cell <1 * *, 3> and <1 * *, 1> are merged, then it comes in
the form <1 * *, (3, 1)> in Reduce() function. If a user-specified function is COUNT(),
a Reduce() function emits cell <1 * *, 4> using function COUNT(3, 1).

4 MRPipeLevel: An Integration of MRLevel and PipeSort

The MRPipeLevel is an algorithm based on the PipeSort, a top-down cube computation
algorithm. The PipeSort generates the minimum cost sort plan tree from a cube lattice
which represents the cuboids to be sorted in corresponding orders and the other cuboids
sharing the sort result of each sorted cuboids to minimize the total cube computation
time. It computes a set of cuboids sharing the same sort order together with one scan of

Fig. 4. The example of MRLevel data flow
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source table (or another cuboid) by pipelining the computation of these cuboids. The
proposed MRPipeLevel incorporates a distributed parallel processing strategy for the
PipeSort in the MapReduce framework which maximizes the degree of parallelism and
minimizes the number of MapReduce phases and the number of data scans.

4.1 Sort Tree with Pipeline

The MRPipeLevel builds sort trees and pipelines from a cube lattice structure to
compute data cubes efficiently. The sort trees represent the cuboids which don’t share
the sort order of their parent cuboids thus have to sort these parents to compute them.
For example, Fig. 6 includes two sort trees whose root nodes are represented as dotted
circles (i.e., ABC and AC cuboids with dotted circles). The tree in the middle of the

Fig. 5. The algorithm of MRLevel
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figure shows that the cuboid BC is computed by sorting the cuboid ABC in the order of
AB and the cuboid AC by sorting the ABC in the order of AC. In order to reduce the
number of MapReduce phases and to maximize the degree of parallelism, the
MRPipeLevel processes each sort tree level by level which all the cuboids in the same
level are sorted together from their parents by one MapReduce phase. Thus two
MapReduce phases are used to process the sort trees in the example of Fig. 6. After
computing the cuboids in sort trees, the MRPipeLevel executed the other cuboids with
pipelines.

4.2 Pipelines

Pipeline Aggregation. The MRPipeLevel’s pipeline technique is a method used in the
PipeSort algorithm [3], which computes several child cuboids without sorting if they
correspond to their parent cuboid’s prefix. As shown in Fig. 7, the AB, A, and all
cuboids can be calculated in the course of calculating the ABC cuboid by the pipeline
technique, without sorting and scanning input data repeatedly. When carrying out
pipeline aggregation on the first tuple, for example, it computes ABC: <1 1 1, 1>,
AB: <1 1 *, 1>, A: <1 * *, 1>, all: <* * *, 1>, and for the second tuple, it does
ABC: <1 1 1, 2>, AB: <1 1 *, 2>, A: <1 * *, 2>, all: <* * *, 2>. If aggregating the third

Fig. 6. The example of cube execution pipe tree

Fig. 7. The example of pipeline aggregation
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tuple, <1 1 1, 2> is emitted as a resulting cell of the ABC cuboid and it produces
ABC: <1 1 3, 1>, AB: <1 1 *, 3>, A: <1 * *, 3>, all: <* * *, 3>. When accepting the
fourth tuple, <1 1 3, 1> and <1 1 *, 3> are emitted as the resulting cells of ABC and AB
cuboids respectively. If we use such a pipeline aggregation, all cells of the ABC, AB,
A, and all cuboids can be computed together by scanning input data once. The
MRPipeLevel minimizes the computation time by exploiting this pipeline aggregation
by distributed processing within a MapReduce phase.

Multi-Pipeline Aggregation. In the MRPipeLevel, multiple pipelines can be simul-
taneously executed within one MapReduce phase. Figure 8 shows an example sort plan
tree for a 5-dimensional cube. It contains three aggregation pipelines starting from
ABCE, ABDE, ACDE, BCDE cuboids, while these four cuboids can be computed
from the top cuboid ABCDE. The MRPipeLevel executes all of these three pipelines in
parallel by one MapReduce phase. That is, ABDE, ABD, ACDE, ACD, AC, BCDE,
BCD, BC and B cuboids are computed by one MapReduce phase to maximize the
degree of parallelism.

4.3 Computation Cost of MRPipeLevel

The MRPipeLevel algorithm is similar to the MRLevel. The cost of the MRPipeLevel
is as same as which excludes the cost of connected to the cuboid through pipe in the
MRLevel. For example in Fig. 6, the cost of write(ABC) includes the cost of write
(AB + A + all) because cuboid ABC is connected to the cuboid AB, A and All in the
pipe. In other words, cuboid AB, A, and All are calculated when calculating cuboid
ABC. The estimated cost using example are as follows:

Fig. 8. The example of multi-pipeline aggregation
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• The computational cost of the cube of the MRPipeLevel
= write(ABC) included (AB + A + all)
+ write(BC) included (B) + write(AC) included (C)
= read(32) included (16 + 8 + 1)
+ write(24) included (16)
+ write(24) included (24)
= 80

The cost of the MRPipeLevel reduced the cost about 40 % than the cost of
MRLevel. We read and write costs are considered equal.

4.4 Handling Big Data and High Dimensional Cube

Recently, with an explosive increase of data, big data is required for multidimensional
analysis. Because the algorithm proposed in this paper fundamentally exploits the
MapReduce, it could flexibly cope with big data through scalability that increases the
number of clusters according to the size of big data. Due to a problem such as costs of
adding clusters, however, there may be a limit to the number of clusters. In addition, for
data with a large dimension, the size of cubes is increased exponentially. The
MRPipeLevel carries out the MapReduce phases level by level. In a cube lattice
structure, the largest number of cuboids exists at an intermediate level of the lattice. For
a data cube with very high dimension, the cuboids in a level cannot be computed
together by one MapReduce phase because lots of data will be emitted at the same time.

This paper considers how to effectively control the emission of data that could not
be computed at a MapReduce phase when computing cubes for big data and
high-dimensional data as follows.

• If there are several sort sub-trees at each level, it divides the MapReduce phase for
each sub-tree. Because the scanned cuboids are not the same, it could compute
without additional costs.

• If there are lots of children cuboids emitted at the same time, it divides them to carry
out the MapReduce phase. For such a case, the cost to scan a parent cuboid
repetitively is added.

• If data is large enough to be difficult even to emit a cuboid, it partitions data itself to
carry out the MapReduce phase. In such a case, there is no additional scan cost,
however, the number of sort sub-trees and MapReduces is increased as much as the
number of partitions and additional cost is incurred as it carries out the process to
merge results of cuboids divided into each partition.

4.5 MapReduce Data Flow of MRPipeLevel

Figure 9 is an example for a data flow in the process carried out by the MRPipeLevel.
Looking at the figure, a total of three MapReduce processes are carried out for
three-dimensional input data. At the first MapReduce phase, the map function emits a
cell corresponding to the ABC cuboid for the original data. The emitted cells of the
ABC cuboid are aggregated for the same cell. At the second MapReduce phase, the
map function uses the ABC cuboid as an input to emit cells of the AC and BC cuboids.
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The reduce function computes the AC and BC cuboids to emit them. At the third
MapReduce phase, the map function uses the AC cuboid as an input to emit the C
cuboid’s cell, and the reduce function computes the C cuboid to emit. At the fourth
MapReduce phase, it computes the AB-A-all and B cuboids, which comprise of a
pipeline, to emit. However, because the ABC and BC cuboids used as input data are the
sorted data, the reduce function is not operated and the result could be computed
immediately.

4.6 MRPipeLevel Algorithm

The MRPipeLevel algorithm is as Fig. 10, and consists of the Map(), Reduce(),
MultiPipeMap() and MRPipeLevel() functions. The Map() and Reduce() functions are
similar to the MRLevel. However, the MRPipeLevel algorithm includes the part to
create the sort tree and pipelines on the cube lattice and the MultiPipeMap() function
for the multi-pipeline aggregation. First, the MRPipeLevel() function searches the cube
lattice by the level, finds the part corresponding to the cuboid’s prefix to connect to the
pipeline, and other cuboids construct the SortTree through the minimum cost matching.
If the whole cube lattice is searched, all the pipelines computable without resorting and
the SortTree requiring resort are constructed. First, the Map() and Reduce() are carried
out for the SortTree, and then the MultiPipeMap() is conducted for the pipeline.

MRPipeLevel(). MRPipeLevel() functions searches a cube lattice level by level and
constructs pipelines of cuboids with the same prefix and sort trees of the other cuboids.
For each sort tree, Map() and Reduce() functions are executed. Then MultiPipeMap()
function is invoked for the pipelines.

Fig. 9. The example of MRPipeLevel data flow
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Fig. 10. The algorithm of MRPipeLevel
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MultiPipeMap(). The MultiPipeMap() function processes aggregation for the pipeline
introduced in the Sect. 4.1, and could process the multi-pipeline aggregation together.
Looking at the algorithm, there could be one or multiple pipe-lines in the pipeline P,
and each pipeline’s cuboid has a space to store a cell. Comparing each cuboid’s cell
with the cell coming into as input, measurement is computed to store for the identical
cell, the existing cell is emitted for the non-identical cell, and the entered cell is stored.

5 Experiments

5.1 Experimental Setup

In the experiments, we used 1 NameNode, 20 DataNode and total 21 PCs in a cluster.
NameNode equipped with Intel Pentium 4 3.0 GHz CPU, 1 GB RAM, and a 400 GB
HDD. DataNode equipped with Intel Pentium 4 3.0 GHz CPU, 512 MB RAM, and a
150 GB HDD. The operating system was Ubuntu Linux, the Java was JDK 1.6, and the
MapReduce framework was Hadoop 0.20.2. The network speed was 1 Gbps.

In the experiments, we compare our MRPipeLevel algorithm against six algo-
rithms: the naïve MapReduce algorithm as MRNaïve algorithm, MapReduce version of
two existing algorithms, GBLP [1] and PipeSort [3, 6], as MRGBLP [16] and
MRPipeSort respectively, the MRChildren algorithm extending MRGBLP by calcu-
lating multiple chidren cuboids from a parent cuboid in a single MapReduce phase, and
the MRLevel algorithm computing every cuboids in a level from their parent cuboids.

5.2 Varying the Data Size

Figure 11 shows the result by varying the data size, where we increase the data size
from 20 million to 100 million. As shown in the figure, as the data size increases, the
MRNaïve algorithm execution time increases significantly. For all other algorithms,
data cube computation time by increasing the data size differences were not significant.
However, the MRPipeLevel algorithm execution time showed the fastest rate,
MRLevel algorithm showed a similar rate with MRPipeLevel algorithm.

5.3 Varying the Number of Dimensions

Figure 12 shows the elapsed time obtained by varying the number of dimensions. In
this experiment, we set the number of tuples to 50 billion, but we increase the number
of dimensions from three to nine by one. As shown in Fig. 12, MRPipeLevel algorithm
was fastest in all dimensions and MRNaïve algorithm was slowest. It did not work
correctly with emitting of too much data in 9-dimensions. MRPipeSort and MRLevel
algorithm also did not work for 9-dimensions. MRGBLP algorithm faster than
MRNaïve and MRPipeSort faster than MRLevel but MRGBLP, MRPipeLevel were
processing normally in 9-dimensions or high-dimensions.
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Fig. 11. Elapsed time by varying the number of tuples

Fig. 12. Elapsed time by varying the number of dimensions
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5.4 Varying the Number of Nodes

Figure 13 is a comparison between algorithms as increasing the number of nodes.
Figure 13 is a result that measures time of each algorithm for 5-dimensional data of 50
billion as increasing the number of nodes from 4 to 20. From the result, it could be
identified that the time to compute data cubes is decreased as the number of nodes is
increased. MRPipeLevel algorithm was fastest in all nodes and MRNaïve algorithm
increases the number of nodes most significant computation time was reduced. Up to
12 nodes, all of the algorithms the computation time was reduced a lot, more than 16
nodes, the computation time can be determined that slightly smaller decrease.

5.5 Performance Analysis of Sort Tree and Pipelines

The MRPipeLevel algorithm includes the part to create the Sort Tree and Pipelines on
the cube lattice. The pipelines reuse the sorted cuboid, so the map function is computed
without emit data. The sort tree is computed cuboid in parallel by minimizing the cost
of the scan. In Fig. 14, the MRPipeLevel algorithm’s sort tree and pipelines were
examined by (a) varying the data size, (b) varying the number of dimensions (10 M),
(c) varying the number of dimensions (50 M), and (d) varying the number of clusters.
In Fig. 14(a), pipelines’ computation time is nearly constant and sort tree’s computation
time is increases. In addition, In Fig. 14(b) and Fig. 14(c), pipelines’ computation time
is smaller than sort tree’s computation time by varying the number of dimensions. In
Fig. 14(d), pipelines don’t use distributed processing because it is computed by
scanning only once using sorted cuboid.

Fig. 13. Elapsed time by varying the number of nodes
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6 Conclusion and Future Work

Existing MapReduce data cube algorithm is very fast for low-dimensions (or small
size), but it’s difficult for high-dimensions (or big size). In addition, it’s not suitable for
distributed parallel processing of MapReudce. In this paper, we proposed the MRLevel
and the MRPipeLevel algorithm to effectively compute the data cube using MapReudce
utilizing a large number of PCs to analyze large amounts of data that can be used
online. The MRLevel algorithm builds a cube execution tree from a cube lattice to
process level by level. The execution tree consists of small parents and children. The
MRPipeLevel algorithm extracts the execution plan of sort tree and pipeline on cube
lattice structure. Cuboids in sort tree minimize scan cost for each level at a time by
MapReduce using distributed parallel computation. Cuboids in pipelines are computed
at once using sorted cuboids without emitting the data on each node. Thus, the
MRPipeLevel algorithm reduce the computation time of the full cube using a strategy
of parallel processing as much data as possible and reducing the data scan.

In this paper, we implement and evaluate the MRPipeLevel algorithm through
various experiments. We carry out a diversity of experiments with both
low-dimensional or high-dimensional data, and comparative experiments with the
MapReduce data cube algorithms which are typical top-down ROLAP data cube

Fig. 14. Elapsed time of sort tree and pipelines by (a) varying the data size, (b) varying the
number of dimensions (10 M), (c) varying the number of dimensions (50 M), and (d) varying the
number of clusters
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computation algorithms. For future works, the proposed method is compared to iceberg
cube, closed cube, and bottom-up approach algorithms. Furthermore, we will develop a
MapReduce algorithm for suitable iceberg cube or closed cube. We are also going to
investigate on approximate query answering technique over data cubes [18] to increase
the performance of OLAP query processing. When transmitting data to compute data
cubes within the MapReduce framework, it will be a good research to apply
privacy-preserving OLAP techniques [19] in order to enhance personal privacy and
security. Finally, we will be able to extend data cubes to incorporate various data
sources (e.g., XML) and diverse aggregate functions [20].
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Abstract. Many models have been proposed for modeling multidimensional
data warehouses and most consider a same function to determine how measure
values are aggregated according to different data detail levels. We provide a
conceptual model that supports (1) multiple aggregations, associating to the
same measure a different aggregation function according to analysis axes or
hierarchies, and (2) differentiated aggregation, allowing specific aggregations at
each detail level. Our model is based on a graphical formalism that allows
controlling the validity of aggregation functions (distributive, algebraic or
holistic). We also show how conceptual modeling can be used, in an R-OLAP
environment, for building lattices of pre-computed aggregates.

Keywords: Data warehouse � Conceptual modeling � Aggregate lattice �
Multiple aggregations � Aggregation functions

1 Introduction

Decision support systems, such as data warehouses, have shown their ability to inte-
grate large volumes of data by supporting effectively the analysis of stored data. These
decision support systems are elaborated from data sources, usually the operational
system of an organization; the data identified in the relevant sources are extracted,
transformed and loaded [26] in a storage area called a data warehouse. To allow
efficient querying and analysis of the data, specific data organization techniques have
been developed using multidimensional databases (MDB) [3, 13]. This type of mod-
eling considers the analyzed data from analysis indicators (i.e. measures grouped into
facts) as points in a multidimensional space, forming a data cube [8]. Each dimension
having various granularity/detail levels. Decision makers visualize extracts of data
cubes, usually a two-dimensional slice of a cube. From this structure, called a multi-
dimensional table (MT) [9], the decision maker can interact through manipulation
operations [22]. The most emblematic operations are drilling operations which change
the granularity level of the analyzed data and rotation operations which change the slice
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of the cube. These operations are the most popular ones used for On-Line Analytic
Processing (OLAP).

This environment provides a suitable analysis framework for decision makers;
however, the imposed structure may be imperfect. In particular, a classical MDB
supports only the calculation of a measure made by the same aggregation function
while performing drilling or rotating operations (i.e. changing the analyzed slice of the
cube). For example, if we consider sales amounts, these can be calculated as the sum of
the products sold by cities and years (top part of Fig. 1). When drilling from cities to
countries, the new amounts are calculated using the same aggregation function (SUM
in the bottom part of Fig. 1). When the user wishes to change the aggregation function
between two slices of the manipulated cube, the classical BDM no longer guarantees
the validity of the calculated data, or even worse: does not support this type of
manipulation.

This paper aims at allowing non-uniform aggregations during user manipulations.
To ensure the validity of such aggregations, we define differentiated multiple
aggregations. Our proposal aims at developing a multidimensional model flexible
enough for designing cubes with aggregation functions according to different levels.

1.1 Case Study

The case study concerns a diploma delivery jury. Here, decision makers (jury mem-
bers) deliver diplomas by analyzing the marks (average, maximum, minimum) of
students and their rate of absenteeism.

Students are split into groups and the academic year has two semesters. Each
semester consists of Teaching Units (TU) and each TU is composed of several courses.
Each course is associated with a coefficient that represents the importance of the course
in the TU. We must take into account this coefficient to calculate the mark of the EU,
which itself is linked to an ECTS (European Credit Transfer System) used to calculate
the mark of semester. Each semester has the same amount of ECTS. In addition to the
courses and students, analysts can analyze marks and absenteeism rates according to
the dates (academic years).

Fig. 1. Uniform aggregation in slices of a cube
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Analysts may wish to observe absenteeism in two different ways:

– The first, called simple, is to calculate the percentage of absenteeism without dis-
tinction between different courses or TUs.

– The second, called weighted, uses the same coefficients (used for calculating the
marks of TUs and semesters) to calculate absenteeism rates.

An MDB is implemented using extracting, transforming processes and loading data
from the operational system, which we will not detail in this article. Figure 2 shows the
conceptual star schema [7, 21] of the MDB of our case study. This MDB analyzes the
measures (average marks ‘Avg_Mark’, maximum marks ‘Max_Mark’, minimum
marks ‘Min_Mark’ and absenteeism rates ‘Rate_Abs’) by ‘Courses’, ‘Students’ and
‘Dates’ (dimensions).

The dimension ‘Courses’ has two hierarchies ‘HCourse_Simple’ and ‘HCourse_
weighted’. Each hierarchy corresponds to a way to analyze the absenteeism rate (simple
and weighted). The other measures (‘Avg_Mark’, ‘Max_Mark’ and ‘Min_Mark’) are
analyzed in the same way on the two hierarchies. A course is characterized by a course
number (C_Id), a teaching unit number (TU_Id) and a semester. Each student has a
student number (S_Id) and a group number (G_Id). Academic years ‘Academic_year’
of the dimension ‘Dates’ are aggregated by periods of five years ‘period-5’ and periods
of ten years ‘period-10’.

1.2 Illustration of the Problem

This schema allows getting average marks by courses and by students (Fig. 3).
Obtaining the average mark by TU in this multidimensional environment requires
aggregating the average marks by courses in accordance with the function associated

Fig. 2. The MDB of the diploma delivery case study
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with the measure Mark (AVG). But this operation gives a result that does not corre-
spond to examination modalities: an average mark by TU should be calculated from the
course marks and taking into account the coefficient of each course (Eq. 1). Similarly,
for average marks by semester, the ECTS of each TU (Eq. 2) has to be taken into
account. However, to calculate the general average mark for each student, one must
calculate the average of the TU marks (Eq. 3).

AVG TU ¼
P

Mark � CoeffP
Coeff

ð1Þ

AVG Semester ¼
P

AVG TU � ECTSP
ECTS

¼
P P

Mark�CoeffP
Coeff

� �
� ECTSP

ECTS
ð2Þ

AVG ALL ¼ AVG AVG Semesterð Þ ð3Þ

Therefore, classical approaches that consider a single aggregation function for all
modeled aggregation levels in the star schema suffer from several limits:

– Variability of the aggregation function. Traditionally, models do not allow the
use of aggregation functions that vary along dimensions or hierarchical levels. In
our example, the aggregation function changes between the levels C_Id (courses),
TU_Id (teaching units) and the semester level.

– Shortcomings of basic functions. When aggregating data across hierarchical lev-
els, in our example, we use non-standard aggregation functions which use com-
plementary data other than measure values (i.e. coefficients Coeff, weights ECTS).

– Aggregation constraints. The way to make the calculation of aggregation func-
tions may be constrained. In our example, as shown in (Eq. 2), the average per
semester cannot be obtained directly from the marks per courses. It is necessarily
calculated from the averages per TUs. Similarly, the general average is calculated
from the averages per semesters (Eq. 3).

The objective of this paper is to propose a multidimensional model sufficiently
expressive to support these various aggregations. Then, we study the impacts of this
conceptual model on the lattice of pre-aggregates [8] at the logical level.

Fig. 3. A MT visualizing the student’s average marks by course
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In previous work [11], we detailed our conceptual model and presented simply the
logical model. Here, we:

– Extend the conceptual model with a new type of aggregation (hierarchical);
– Revisit the execution order mechanism in order to be more expressive;
– Detail the logical model;
– Implement our prototype to study the consequences on lattice reductions.

The rest of this paper is organized as follows: Sect. 2 reviews related work. Sec-
tion 3 defines our conceptual multidimensional model: classical concepts, extensions
for differentiated multiple aggregations and associated graphical formalisms. Section 4
shows the logical R-OLAP model of our star schema and its optimization relations. We
detail our prototype and experiments in Sect. 5 and the last section concludes this work
and states some future work.

2 Related Work

There are typically two approaches for modeling multidimensional databases. The first
is based on the data cube (or hypercube) metaphor according to which the MDB is
represented by cubes. The second is known as multidimensional modeling, where the
MDB is described by a star schema or a constellation [13]. Our work falls in the second
category. A cube is based on an equivocal separation between the structure elements
and the values [24]: modeling analysis axes is not very expressive especially due to the
difficulty for representing the hierarchical organization of the data. It is also limited for
representing constellations of facts with shared dimensions.

Several surveys of the domain [3, 17, 25] and comparative studies [1, 2, 7, 9, 14,
16, 18–23, 27] are available in the scientific literature. One, [17], deals with problems
related to complex structures such as non-strict, roll-up incomplete and drill-down
incomplete hierarchies. We don’t address this kind of problem. We focus on the
problem of using several aggregation functions during an analysis.

Most of the existing proposals consider that a measure is associated with only one
aggregation function for all aggregation levels. This function calculates the same
aggregation for all combinations of all modeled parameters.

The treatment of aggregation of measures in the multidimensional space has
evolved (Table 1). Two contributions [9, 27] do not specify aggregation functions at
the measure level; however, they leave the possibility to use several aggregation
functions for each measure during OLAP analyses. This provides great flexibility, but
allows the user to do errors by using inappropriate aggregation functions. In addition,
one advantage of specifying the aggregation functions in the conceptual model is to use
them for the cube computation, i.e. for the pre-computation of the aggregates. In [19,
21, 23], the authors, in theirs conceptual models, can link to a single measure a set of
functions which includes only valid functions. However, in these three papers, the same
function will be used with all the dimensions and all aggregation levels.

In [4, 6], the authors assume that the aggregation function is determined for a
measure in the analysis queries. This function can change from one query to another
one while concerning the same measure. But in each query, the aggregation function
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will be used uniformly over all the dimensions involved in the analysis. In [5], although
the authors store multiple aggregations data in a hierarchical organization according to
the time granularities, they use the same function for all granularities.

The YAM2 model [1] and the work presented in [7] support a different aggregation
function with each dimension. However, these models do not support function change
neither between hierarchies nor within the hierarchical levels. This limit has been lifted
by the aggregation model of [20] which allows associating an aggregation function to
each dimension or each hierarchy or sub-hierarchy, but the model considers only
standard functions (SUM, AVG, MIN, MAX and COUNT). In [2] the authors over-
come this limit. However, these last two papers [2, 20] suffer from a limitation: the
authors do not consider the case where aggregation functions are non-commutative (for
example, average and weighted average).

Regarding commercial tools, “Business Objects” uses a single aggregation function
for each measure. By contrast, “Microsoft Analysis Services” offers the possibility that
a “custom rollup” can be applied in a hierarchy in several ways [10]:

– By using unary operators to solve the aggregation problem over a particular type of
hierarchy (parent-child attributes hierarchy). These hierarchies are built from a
single attribute with a reflexive join relationship on the attribute itself (i.e. techni-
cally a join on the dimension table itself).

– By using MDX scripts, either directly or by using the attribute property “Cus-
tomRollupColumn” which indicates a column where MDX scripts are stored.

These two ways concern aggregation functions but it is not related to a specific
dimension or an aggregation level. It is related to a member (an instance) of an
aggregation level in a hierarchy (i.e. a line in the dimension table). Therefore, applying
this “custom rollup” to a single aggregation level requires repeating it for all the
instances of that level. This poses a storage problem and reduces performance [10].
Moreover, binding a “custom rollup” with a specific instance can cause difficulties
when updating data.

The MDX language allows the possibility for building data sets (that will be
aggregated by aggregation functions) using functions: PeriodsToDate, YTD, QTD,
MTD, Crossjoin, Cousin, Descendants, Children, Hierarchize, and Members. However,
this possibility is not related to our problem: changing the aggregation function
according to a considered analysis dimension or hierarchy or level.

The above was about how the integration of aggregation functions within the
multidimensional model. But, there is another point that should be taken into con-
sideration; it is the aggregation functions itself. Aggregation functions are classified:

– From an aggregation mechanism point of view, aggregation functions belong to
three different categories [8]: The first corresponds to distributive functions that
calculate aggregated values of the selected granularity level from the values already
aggregated at the lower level (e.g. yearly amounts can be calculated by summing
monthly values). The second corresponds to algebraic functions that calculate
aggregated values from stored intermediate results (for example, the average of an
amount per year can be calculated from the sum of the amounts and counting the
occurrences from a month level). Finally, the third corresponds to holistic functions
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that cannot be calculated from intermediate results. In this case, aggregated values
must be calculated from the elementary values of the lowest granularity level (e.g.
RANK).

– From a summerizability point of view, aggregation functions are classified in two
groups [1]: (1) “Transitive” that guarantees summerizability, (2) “Non-Transitive”
which implies that aggregations must always be calculated from the base level.

– From a measure (data) point of view, aggregation functions are of three types [19]:
(1) for additive data, (2) for snapshot data that can be used for average calculations,
(3) for constant data, i.e. data that can only be counted.

All these proposals as well as aggregation functions classifications assume that the
measure aggregation can be calculated from the base level. Our goal is to add the
means to consider the opposite case (when the measure cannot be aggregated from the
base level).

Table 1 shows in the column ‘General’ if existing proposals integrate the aggre-
gation functions in the OLAP process (during the interrogation) or in the multidi-
mensional model. It also shows if these proposals offer the possibility to change the
aggregation functions with the dimensions, hierarchies, and granularity levels (columns
‘Dimension’, ‘Hierarchy’ and ‘Granularity Level’). In addition, it presents if the pro-
posals treat the case of non-commutative functions (column ‘Non-commutative’) or the
case of constraint aggregations, i.e. when the measure must be calculated from a
different level of the base level (column ‘Constraint aggregation’).

Table 1. Synthesis of works on multidimensional aggregations

General Multiple aggregation Differentiated
aggregation

Non-commutative Constraint
aggregation

Dimension Hierarchy Granularity
Level

Gyssens, 1997
[9]

OLAP – – – – –

Golfarelli, 1998
[7]

Model ✓ – – – –

Vassiliadis,
2000 [27]

OLAP – – – – –

Pedersen, 2001
[19]

Model – – – – –

Cuzzocrea,
2004, 2005,
2010 [4–6]

Query – – – – –

Abelló, 2006 [1] Model ✓ – – ✓ –

Ravat, 2007
[21]

Model – – – – –

Silva, 2008 [23] Model – – – – –

Prat, 2010 [20] Model ✓ ✓ ✓ – –

Boulil, 2011 [2] Model ✓ ✓ ✓ – –

Business
Objects

Model – – – – –

Microsoft
Analysis
Services

Model – – ✓ ✓ –

(Instance)
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Using this table, we see that the ability to change the aggregation function with the
dimensions, hierarchies, and aggregation levels had been treated [2, 20], but partially
because these proposals do not take into account the non-commutative functions.
Moreover, the works taking into account the non-commutative functions support only
changing aggregation functions with the dimensions [1] or the instances of aggregation
levels [10].

To our knowledge, all existing proposals assume that it is possible to calculate the
measure aggregation from base levels. We propose to add a way to handle the case
where the measure must be calculated from a specific level other than the base level
(column ‘Constraint aggregation’) using aggregation constraints.

Our aim is to remove these limits by designing a conceptual multidimensional
model for representing differentiated multiple multidimensional aggregates. By multi-
ple we mean that the same measure can be aggregated by several aggregation functions
according to hierarchies or analysis axes and by differentiated we mean that these
aggregations may vary, depending on the chosen aggregation level.

Our proposal conceptual can be implemented as a layer on top of an OLAP engine,
so that it can take into account these multiple and differentiated aggregation functions.
In this paper we have declined this conceptual model in a relational framework.

3 Conceptual Data Model

3.1 Classical Concepts

Let us define N , F and D such as: N = {n1, n2, … } a finite set of non-redundant
names; F = {F1,…, Fn} is a finite set of facts, n ≥ 1; and D = {D1,…, Dm} is a finite set
of dimensions, m ≥ 2.

Definition 1. A fact, denoted Fi, 8 i 2 [1..n], is defined by (nFi, MFi), where:

– nFi 2 N is the name that identifies the fact,
– MFi = {m1,…, mpi} is a set of measures or indicators.

We define the measure set as

M ¼ [n
i¼1M

Fi

Definition 2. A dimension, denoted Di, 8 i 2 [1..m], is defined by (nDi, ADi, HDi),
where:

– nDi 2 N is the name that identifies the dimension,

– ADi = aDi
1 ; . . .; aDi

ri

n o
[{ IdDi, AllDi} is the set of the attributes of the dimension,

– HDi = HDi
1 ; . . .;HDi

si

n o
is a set of hierarchies.

Hierarchies organize the attributes of a dimension, from the finest graduation (root
parameter IdDi) to the most general graduation (extremity parameter, AllDi). Thus a
hierarchy defines the valid navigation paths on an analysis axis.
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We define the attribute set and the hierarchy set respectively as

A ¼ [m
i¼1 A

Di andH ¼ [m
i¼1 H

Di

Definition 3. A hierarchy, denoted Hj (abusive notation of HDi
j , 8 i 2 [1..m], 8 j 2 [1..

si]) is defined by (nHj, PHj, ≺Hj, WeakHj), where:

– nHj 2 N is the name that identifies the hierarchy,

– PHj = pHj

1 ; . . .; pHj
qj

n o
is a set of attributes called parameters, PHj � ADi,

– ≺Hj = pHj
x ; pHj

y

� �
jpHj

x 2 PHj ^ pHj
y 2 PHj

n o
is an antisymmetric and transitive binary

relation between parameters. Remember that the antisymmetry means that

pHj

k1 �Hj pHj

k2

� �
^ pHj

k2 �Hj pHj

k1

� �
) pHj

k1p ¼ pHj

k2 while the transitivity means that

pHj

k1 �Hj pHj

k2

� �
^ pHj

k2 �Hj pHj

k3

� �
) pHj

k1 �Hj pHj

k3.

– WeakHj : PHj ! 2A
DinP

Hj

is an application that associates to each parameter a set of
dimension attributes, called weak attributes (2N represents the power set of N).

We define parameter sets as

PDi ¼ [si
j¼1PHj and P ¼ [m

i¼1P
Di ¼ [m

i¼1[si
j¼1P

Hj

Lemma 1. For each dimension Di, a root parameter, denoted IdDi 2 PDi, exists. It is

defined as follows: 8j 2 ½1::si�; 8pHj

k 2 pDi ; IdDi 6¼ pHj

k jIdDi �Hj pHj

k .

Lemma 2. For each dimension Di, a extremity parameter, denoted AllDi 2 PDi, exists.

It is defined as follows: 8j 2 ½1::si�; 8pHj

k 2 pDi ;A11Di 6¼ pHj

k jpHj

k �Hj A11Di .

Lemma 3. For each dimension Di, all its attributes are exclusively either parameters or
weak attributes, PDi \ WDi = ∅ and PDi [ WDi = ADi.

3.2 Extensions for Differentiated Multiple Aggregations

We enrich the multidimensional model for specifying how the aggregations calcula-
tions are performed during OLAP analysis. This corresponds to three extensions:

– The first extension concerns the aggregation process which allows using several
aggregation functions for the same measure:

• Differentiated aggregation. It consists in aggregating measure values between
two parameters (aggregation levels) of a hierarchy. The aggregation function is
associated with one measure and one parameter. This kind of aggregation allows
a specific aggregation over each level of granularity.

• Multiple hierarchical aggregation. It is used to aggregate the measure values
between all the parameters over a hierarchy. This is a simplified representation
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instead of a repeated use of the same differentiated function over several levels
of granularity. It is important to note that several aggregation functions can be
associated to a same measure; one for each hierarchy.

• Multiple dimensional aggregation. It consists in aggregating measure values
using different aggregation functions depending on the used dimension. Simi-
larly to multiple hierarchical aggregation, multiple dimensional aggregation is a
simplified representation instead of a repeated use of the same multiple hierar-
chical aggregation over several hierarchies. The same aggregation is performed
over each level of granularity of a dimension. The function is associated with
one measure and a dimension.

• General aggregation. This function is associated only with a measure without
taking into account neither parameter nor hierarchy nor dimension. This is a
simplified representation instead of a repeated use of the same multiple
dimensional function over several dimensions. This is equivalent to aggregation
functions in classical models.

– The second extension concerns the execution order for handling the case of non
commutative aggregation functions. It is possible to have different aggregation
functions during an analysis. These functions are generally not commutative.
Therefore, it is necessary to plan in the MDB an execution order when using the
functions between the different dimensions.

– The third extension concerns aggregation constraints which aim at handling the
case where the measure cannot be calculated from the base level. All aggregations
are not carried out uniformly using systematically all lower hierarchical levels
(contrarily to the aggregation process designed in classical multidimensional
models). Therefore, we introduce a constraint mechanism on the aggregation pro-
cess to indicate the valid aggregation level that allows obtaining the upper level.

Let F = {f1, f2,…} be a finite set of aggregation functions.

Definition 4. A multidimensional schema, denoted S, is defined by (F, D, Star,
Aggregate), where:

– F = {F1,…, Fn} is the set of facts, if |F| = 1 then the multidimensional schema is
called a star schema while if |F| > 1 it is a constellation schema,

– D = {D1,…, Dm} is the set of dimensions,
– Star: F → 2D is a function that associates each fact to a set of dimensions according

to which it can be analyzed.
– Aggregate: M ! 2N��F�2D�2H�2P�N�

associates each measure to a set of aggrega-
tion functions. Aggregate defines the different types of aggregation functions sup-
ported by our model:

• If 2D, 2H and 2P are not used (2D = ∅, 2H = ∅ and 2P = ∅) then the function is a
general aggregation function.

• If 2H and 2P are not used (2D ≠ ∅, 2H = ∅ and 2P = ∅) then the function is a
multiple dimensional aggregation function. Here, the function aggregates the
measure over the entire considered dimension.
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• If 2P only is not used (2D ≠ ∅, 2H ≠ ∅ and 2P = ∅) then the function is a
multiple hierarchical aggregation function. Here, the function aggregates the
measure over the entire considered hierarchy.

• If 2D ≠ ∅, 2H ≠ ∅ and 2P ≠ ∅ then the function is a differentiated aggregation
function. Here, the function aggregates the measure between a considered
parameter and the parameter directly above it in the same hierarchy.

ℕ* binds to each function an execution order. The aggregation function with the
smallest order is the highest priority. If the aggregation functions are commutative, then
both functions will have the same order. Choosing a valid order depends on the
requirements of the user. It may differ from one case to another, even if the functions
are the same in both cases.

ℕ− is to constraint aggregations by indicating a specific level from which the
considered aggregation must be calculated. An unconstrained aggregation will be
associated with 0 while a constrained aggregation will be associated with a negative
value to force the calculation from a chosen level lower than the considered level.

Lemma 4. Aggregation functions ensure the full coverage of multidimensional
schemas. Thus there does not exist any parameter (i.e. aggregation levels) for which the
aggregation function to be applied is unknown.

8i 2 1::n½ �; 8mk 2 MFi; 9f 2 F ;9x1 2 N
�; 9x2 2 N

�;

x1;f ; fg; fg; fg; x2
� � 2 Aggregate mkð Þ��

8Dj 2 Star Fið Þ x1;f ; Dj
	 


; fg; fg; x2
� � 2 Aggregate mkð Þ��

8Hs 2 H j x1;f ; Dj
	 


; Hsf g; fg; x2
� � 2 Aggregate mkð Þ��

8Pq 2 Psn All j
	 


x1;f ; Dj
	 


; Hsf g; Pq
	 


; x2
� � 2 Aggregate mkð Þ��

8>>>>>><
>>>>>>:

Less formally, the coverage of the schema is carried out in several ways:

– By using a general aggregation function,
– By using a multiple dimensional aggregation function for each dimension,
– By using a multiple hierarchical aggregation function for each hierarchy,
– By using a differentiated aggregation function for each aggregation level,
– By combining multiple aggregation functions with differentiated ones. Each

dimension or hierarchy having no multiple function must have a differentiated
function for each aggregation level (i.e. parameter).
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3.3 Formalisms

Textual Formalisms. The example of the diploma delivery illustrated in case study, is
defined formally by (F, D, Star, Order, Aggregate) where:

– F = {FGraduate}, where the fact is defined by FGraduate = (‘Graduate’, {Avg_Mark,
Max_Mark, Min_Mark, Rate_Abs }).

– D = {DCourses, DStudents, DDates}, where the dimensions are defined by:
• DCourses = (‘Courses’, {aC_Id, aCoeff, aCTitle, aTU_Id, aECTS, aTUTitle, aSemester,

ALLDCourses}, {HHCourse_Simple, HHCourse_weighted}) with
• HHCourse_Simple = (‘HCourse_Simple’, {aC_Id, aTU_Id, aSemester, ALL

DCourses},
{(aC_Id, aTU_Id), (aTU_Id, aSemester), (aSemester, ALL

DCourses)}, {(aC_Id, {aCoeff,
aCTitle}), (aTU_Id, {aECTS, aTUTitle})}),

• HHCourse_Simple = (‘HCourse_Simple’, {aC_Id, aTU_Id, aSemester, ALL
DCourses},

{(aC_Id, aTU_Id), (aTU_Id, aSemester), (aSemester, ALL
DCourses)}, {(aC_Id, {aCoeff,

aCTitle}), (aTU_Id, {aECTS, aTUTitle})}).

• DStudents = (‘Students’, {aS_Id, aSName, aG_Id, aGName, ALLDStudents},
{HHGroup}) with
• HHGroup = (‘HGroup’, {aS_Id, aG_Id, ALL

DStudents}, {(aS_Id, aG_Id), (aG_Id,
ALLDStudents)}, {(aS_Id, {aSName}), (aG_Id, {aGName })}).

• DDates = (‘Dates’, {aAcademic_year, aPeriod-5, aPeriod-10, ALL
DDates}, {HHDates})

with
• HHDates = (‘HDates’, {aAcademic_year, aPeriod-5, aPeriod-10, ALLDDates},

{(aAcademic_year, aPeriod-5), (aPeriod-5, aPeriod-10), (aPeriod-10, ALL
DDates)}).

– Star : F → 2D |
Star(FGraduate) = {DCourses, DStudents, DDates }

– Aggregate : M ! 2N��F�2D�2H�2P�N� j

Aggregate (Avg_Mark) = {(2, AVG(Avg_Mark), {}, {}, {}, 0),1

(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_weighted}, {C_Id}, 0),
(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_weighted}, {TU_Id},-1),2

(1, AVG(Avg_Mark), {Courses}, {HCourse_weighted}, {Semester}, -1),
(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_Simple}, {C_Id}, 0),
(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_Simple}, {TU_Id}, -1),
(1, AVG(Avg_Mark), {Courses}, {HCourse_Simple}, {Semester}, -1)}
Aggregate (Max_Mark) = {(2, MAX(Avg_Mark), {}, {}, {}, 0),
(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_weighted}, {C_Id}, 0),

1 Note that there is no constraint on the aggregation.
2 The aggregated values are computed from the values at the level directly below the one considered.
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(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_weighted}, {TU_Id},-1),
(1, AVG(Avg_Mark), {Courses}, {HCourse_weighted}, {Semester}, -1),
(1, AVG_W(Avg_Mark, Coeff), {Courses}, {HCourse_Simple}, {C_Id}, 0),
(1, AVG_W(Avg_Mark, ECTS), {Courses}, {HCourse_Simple}, {TU_Id}, -1),
(1, AVG(Avg_Mark), {Courses}, {HCourse_Simple}, {Semester}, -1)}

Aggregate (Rate_Abs) = {(2, AVG(Rate_Abs), {}, {}, {}, 0),
(1, AVG_W(Rate_Abs, Coeff), {Courses}, {HCourse_weighted}, {C_Id}, 0),
(1, AVG_W(Rate_Abs, ECTS), {Courses}, {HCourse_weighted}, {TU_Id},-1),
(1, AVG(Rate_Abs), {Courses}, {HCourse_weighted}, {Semester}, -1)}

Aggregate(Min_Mark) is identical to Aggregate(Max_Note) except that it uses the
MIN function instead of MAX.

The function Avg_W(X, Y) takes as input tow numerical parameters. It returns the
average of values of X weighted by Y. In other words, the weighted average:

Avg W X;Yð Þ ¼ R X� Yð Þ
RY

Regarding the measures ‘Avg_Mark’, ‘Max_Mark’ and ‘Min_Mark’, it is aggre-
gated in an identical way on the two hierarchies of the dimension ‘Courses’. Moreover,
the aggregation of the measures ‘Max_Mark’ and ‘Min_Mark’ is based on the
aggregation of ‘Avg_Mark’. This clearly appears through the use of the measure
‘Avg_Mark’ in aggregation functions of ‘Max_Mark’ and ‘Min_Mark’. For the
maximum mark ‘Max_Mark’ of a course or a teaching unit for a group of students, we
must first calculate the mark ‘Avg_Mark’ of this course or TU for each student, and
then we determine from the obtained marks, the maximum mark.

If we analyze for example the average marks ‘Avg_Mark’ using the dimensions
‘Dates’ and ‘Students’, the decisional system must use the general function ‘AVG
(Avg_Mark)’ to aggregate the measure values because there is no other specific
function for these dimensions. If we analyze using the dimension ‘Courses’, the system
uses on each aggregation level a different differentiated aggregation function. Aggre-
gation is done using the level directly below (AVG_W to aggregate the ‘TU_Id’ and
‘Semester’ levels using the ‘C_Id’ and ‘TU_Id’ levels respectively and AVG for ‘ALL’
level using the ‘Semester’ level). Furthermore, if we analyze data using two or more
dimensions then functions over the dimension ‘Courses’ are a priority; that means that
we must apply it before the other functions.

Graphical Formalisms. Associated with the formal definitions, we introduce a
two-level graphical formalism for easing the understanding of the MDB schema:

– Structural Schema. The structural schema is used to display globally the multi-
dimensional elements (facts, dimensions and hierarchies) hiding aggregation
mechanisms. This global view (see Fig. 2) is defined by the function Star. The
graphical formalism is based on [7, 22].

– Aggregation schema. For each measure mk2MFi, an aggregation schema is
obtained using the function Aggregate. This schema details the aggregation
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Fig. 4. Graphical notation extensions (Aggregation schemas)
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mechanisms involved in the selected measure analysis (multiple, differentiated and
general aggregations, constraints of aggregation and execution order) but shows
simply the structural elements directly related to the measure. This schema is an
extension of our previous work [11].

Figure 4 illustrates three aggregation schemes (a, b, c) corresponding to the mea-
sures ‘Rate_Abs’, ‘Avg_Mark’ and ‘Max_Mark’ (we do not present the measure
‘Min_Mark’). As shown in Fig. 4, the hierarchies are presented in split version, unlike
the structural schema (Fig. 2) where it is presented in compact version, e.g. hierarchies
‘HCourse_weighted’, ‘HCourse_Simple’ in Fig. 4 (b and c).

The aggregation functions are modeled by diamonds. Each diamond also indicates
the execution order and the possible aggregation constraint. The positions of the dia-
monds depend on the type of function:

– A general function is represented by a diamond on the fact,
– A multiple dimensional function is on the edge connecting facts to dimensions,
– A multiple hierarchical function is represented on the bottom of the hierarchy,
– A differentiated aggregation function is a label on the edge linking two parameters.

Figure 4 (d) presents multiple aggregation (dimensional and hierarchical) functions
and commutativity in the execution order. We assume that there is a multiple dimen-
sional function AVG(Rate_Abs) on the dimension ‘Dates’. This function is commu-
tative with the functions of the dimension ‘Courses’. We assume also that there is a
multiple hierarchical function on the hierarchy ‘HDates’. This function is commutative
with the general function.

Aggregation with a constraint assigned to -1 is calculated from the directly lower
level. E.g. the average mark ‘Avg_Mark’ by semester is calculated from average marks
by UEs. In case, we would have chosen to calculate this average by semester from the
marks by courses, the constraint would be assigned to -2.

4 Relational-OLAP (R-OLAP) Logical Model

Current multidimensional schema implementations use mainly the relational approach
R-OLAP [13]. This approach has many advantages such as reusing proven data
management mechanisms and the ability to manage very large volumes of data.

4.1 R-OLAP Star

In this relational context, the conceptual multidimensional structures (facts and
dimensions) are translated into relations [13]. Applied to our example, the R-OLAP
schema is the following:

COURSES (C_Id, Coeff,CTitle,TU_Id,ECTS,TUTitle,Semester)
STUDENTS (S_Id, SName, G_Id, GName)
DATES (Academic_year, Period-5, Period-10)
GRADUATE (C_Id#,S_Id#,Academic_year#, Avg_Mark, Rate_Abs)
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According to aggregation functions for the maximum and minimum marks
‘Max_Mark’, ‘Min_Mark’ (cf. Fig. 4); these measures are calculated from the average
mark measure ‘Avg_Mark’. So their values can be obtained directly from those of the
measure ‘Avg_Mark’ without storing them in the relational table corresponding to
the fact of model.

The aggregation functions are stored in the database. We use a meta-schema (not
detailed here, for more information see [12] ) to describe the multidimensional schema
(facts, dimensions and hierarchies) corresponding to the R-OLAP relations that store
the analysis data. It also describes the different aggregation functions and the possible
aggregation constraints.

4.2 Optimized Star

Conceptual modeling allows structuring hierarchically the analysis axis (dimension)
graduations (parameters). These hierarchies are exploited for pre-computing the
aggregations required by decision makers to navigate and to perform analyses in the
multidimensional space (using OLAP). Traditionally, these pre-aggregations are
modeled by a lattice of pre-computed aggregates [3, 8] where:

– each node represents a pre-computed aggregate and
– each edge represents a path for computing aggregates. If the aggregation function

used is distributive or algebraic, the aggregate can be calculated from the directly
lower aggregate, while if it is holistic, the calculus is from the base relation [8].

To avoid that the lattice is too complex, we simplify the example of the diploma
delivery jury. We take into account only two dimensions:

– ‘Courses’ with two hierarchies ‘HCourse_Simple’ and ‘HCourse_weighted’
– ‘Students’ with one hierarchy ‘HGroup’.

Fig. 5. Classical optimization lattice (We use abbreviations (‘Sem’ for ‘Semester’, ‘ALLC’ for
‘ALLDCourses’, ‘ALLS’ for ‘ALLDStudents’))
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Figure 5 shows the lattice of pre-aggregates of the measure ‘Rate_Abs’. Each node
represents a relation. E.g. the nodes ‘TU_Id_S_Id’ and ‘C_Id_ALLS’ correspond to the
following respective relations:

TU_Id_S_Id (TU_Id, S_Id, Rate_Abs, Abs_sum, Abs_count)
C_Id_ALLS (C_Id, Rate_Abs, Abs_sum, Abs_count)

In these relations, the attribute ‘Rate_Abs’ represents the absenteeism rate calcu-
lated by the aggregation function AVG. Here, it is a case of algebraic function, so we
store intermediate values (the sum ‘Abs_sum’ and the count ‘Abs_count’ of occur-
rences of the absenteeism rate) that will be used to calculate the upper nodes. In the
classical approach, contrarily to our proposition, a unique aggregation function is used
in the whole lattice for the measure ‘Rate_Abs’.

4.3 Extending the Approach with Multiple and Differentiated
Aggregations

The flexibility introduced in the conceptual model impacts the lattice.

Increasing the Number of Nodes. In our model, by using the multiple hierarchical
and/or differentiated aggregation functions, we can associate the same parameter in
different hierarchies with different aggregation functions. This gives different results for
the same analysis depending on the used hierarchy. Thus, new nodes compatible with
results of all these possible aggregations will be produced in the lattice (Fig. 6). For
example, the absenteeism rate ‘Rate_Abs’ of a TU by groups of students can be
calculated by the average function ‘AVG(Rate_Abs)’ over the hierarchy
‘HCourse_Simple’ or by the weighted average ‘AVG_W(Rate_Abs, Coeff)’ on the
hierarchy ‘HCourse_weighted’ (see Fig. 4 (a)); of course each function gives different
results.

The number of nodes in the classical lattice (Fig. 5) is calculated by multiplying the
number of parameters in each dimension:

number of nodes ¼
Ym
i¼1

PDi
�� ��

In our model, assuming that each parameter has its own aggregation function, the
number of nodes in the lattice (Fig. 6) is calculated by multiplying the sum in each
dimension of number of parameters in each hierarchy; here, we must be careful for not
count the root parameter of a dimension several times with the different hierarchies:

number of nodes =
Ym
i¼1

XSj
j¼1

PHj
�� ��� 1
� �þ 1

 !

Edge Types. The differentiated and multiple aggregation functions involve using
different aggregation computations for each edge of the lattice (Fig. 6), contrary to the
traditional approach which usually considers only a single aggregation function.
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When multiple paths are possible, the less costly path is preferred. The cost
function (not detailed here) favors the most effective computation time [15]. However,
the use of different aggregation functions on each edge of the lattice makes the cost
estimate more complex than in usual lattices.

The possibility of use different aggregation functions for a same measure requires
differentiating lattice edges. This typing to indicate the corresponding aggregation
function between two nodes. For example, Fig. 4 (a) presents the aggregation schema
of the absenteeism rate. Three aggregation functions are used to calculate the absen-
teeism rate ‘Rate_Abs’. For each teaching unit and semester over the hierarchy
‘HCourse_weighted’, the absenteeism rate takes into account the courses coefficients
and teaching units ECTS and uses a weighted function (AVG_W). Thus, in the lattice,
it is necessary to distinguish the edges between (‘C_Id’ and ‘TU_Id’) and between
(‘TU_Id’ and ‘Semester’) parameters over the hierarchy ‘HCourse_weighted’ (that use
AVG_W) from the other edges (that use AVG).

In Fig. 6, simple lines correspond to the AVG function and double or triple lines are
for AVG_W functions.

Blocking Transitivity. Constraints (the specific level from which the considered
aggregation must be calculated) associated with the aggregation functions have
repercussions on the lattice. Edges with a symbol (crosses in a circle in Fig. 7) come
from these constraints which require calculating the node from another specific node.
It is then forbidden to calculate an upper node using transitivity from lower nodes as it
would be in a classical schema. Thus the computing paths are blocked as soon as such
an edge is encountered; e.g. the node ‘Sem(HS)_S_Id’ is calculable from the direct
lower node ‘TU_Id(HS)_S_Id’; using transitivity, it is also calculable from the lower

Fig. 6. Lattice with typed edges (Execution orders (< x >) were added to facilitate the
understanding of the next impacts (blocking transitivity and pruning the lattice). And we use
abbreviations (‘HW’ for the hierarchy ‘HCourse_weighted’, ‘HS’ for the hierarchy
‘HCourse_Simple’))

Differentiated Multiple Aggregations in Multidimensional Databases 37



node ‘C_Id_S_Id’. However, the blocked edge resulting from the constraint of the
function ‘AVG_W(Rate_Abs, ECTS)’ which operates on the edge (‘TU_Id(HW)
_S_Id’, ‘Sem(HW)_S_Id’) blocks the calculation transitivity. Therefore, the node ‘Sem
(HW)_S_Id’ is calculable from the direct lower node ‘TU_Id(HW)_S_Id’ but not from
another lower node (such as ‘C_Id_S_Id’).

Similarly, the change of execution orders or functions between edges blocks also
transitivity. In other words, if all previous edges for a specific edge correspond to
different functions or different execution orders, then this edge is non transitive; e.g. the
edge (‘ALLC(HW)_S_Id’, ‘ALLC(HW)_G_Id’) corresponds to the function ‘AVG
(Rate_abs)’ with an execution order of value 2 (see Fig. 6). This edge has a single
previous edge (‘Sem(HW)_S_Id’, ‘ALLC(HW)_S_Id’) which corresponds to the same
function ‘AVG(Rate_abs)’ but with an execution order of value 1 (see Fig. 6). Because
of the difference between the execution orders, the edge (‘ALLC(HW)_S_Id’,
‘ALLC(HW)_G_Id’) is not transitive. Therefore, the node ‘ALLC(HW)_ ALLS’ is
calculable by transitivity from the node ‘ALLC(HW)_S_Id’ but it is not calculable by
transitivity from the node ‘Sem(HW)_S_Id’, because the aggregation schema (Fig. 4
(a)) requires to calculate firstly the absenteeism rates according to the dimension
‘Courses’ (node ‘ALLC(HW)_S_Id’) in order then to calculate absenteeism rate based
on the dimension ‘Students’ (‘ALLC(HW)_ ALLS’).

Figure 7 shows the resulting pre-aggregate lattice. Edges with crossed circle are
obtained either from aggregation constraints or from the change of execution orders or
aggregation functions between the edges.

Pruning the Lattice. Some paths or edges are invalid; therefore, these can be elimi-
nated to reduce the lattice size (Fig. 8). This pruning is possible using the execution
order. An edge can be deleted if it is preceded by an edge with a larger execution order
(see Fig. 6).

In our example (see Fig. 4 (a)), we cannot apply the weighted average function
‘AVG_W(Rate_Abs, Coeff)’ on the ‘Courses’ dimension (with an execution order of

Fig. 7. Lattice with non transitive edges
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value 1) after the function ‘AVG(Rate_Abs)’ on the dimension ‘Students’ (with an
execution order of value 2) as this would give erroneous results. Thus, to obtain the
node ‘TU_Id(HW)_G_Id’ (absenteeism rate by group and TU on the hierarchy
‘HCourse_weighted’), it is impossible to calculate it from the node ‘C_Id_G_Id’
(absenteeism rate by group and course on the hierarchy ‘HCourse_weighted’).
Therefore, the edge between ‘C_Id_G_Id’ and ‘TU_Id(HW)_G_Id’ can be deleted.

Figure 8 shows the final controlled pre-aggregate lattice after deleting the invalid
edges.

Modifying Edges. In our model, we have proposed a mechanism of aggregation
constraint to fix the valid aggregation level from which a higher level is calculated.
This valid level is not necessarily the one directly lower level. We express this case
when we use a constraint value other than 0 (the aggregation can be calculated from
any lower level) or - 1 (the aggregation can only be calculated from the level directly
below the selected one). Such constraints imply possible path changes in the lattice.

In our example, the absenteeism rate by semester on the hierarchy ‘HCourse_
weighted’ is calculated from the absenteeism rates by TU (constraint value = -1) (see Fig. 4
(a)). In case we had chosen to calculate this rate by semester from the rates by courses, the
constraint would have been assigned to -2 and the lattice would have been as Fig. 9.

5 Validations

To demonstrate the feasibility of our approach, we have produced a prototype: OLAP-
Multi-Function, described hereafter. We validate our proposal by overcoming the limits
suffered by the software “Business Objects” with our prototype. Finally, experiments
based on our prototype are detailed.

Fig. 8. Controlled pre-aggregate lattice (with pruned edges)
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5.1 OLAP-Multi-Function Prototype

Our prototype was implemented using Java 7 on top of the Oracle 12g DBMS. It allows
designing a MDB with differentiated and multiple aggregation functions as well as
supervising the OLAP manipulations carried out by analysts using a graphical
representation.

Prototype Architecture. The main functionality of OLAP-Multi-Function (Fig. 10) is
visualizing and facilitating the integration of aggregation functions in the multidi-
mensional model. It is based on a set of graphic interfaces (Constructor) for defining
the four types of aggregation functions (general, multiple dimensional, multiple hier-
archical, differentiated), their execution orders and aggregation constraints.

Fig. 9. Lattice with constraint = -2

Fig. 10. Prototype architecture
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The structural schema is displayed as a constellation graph based on graphic for-
malisms of facts, dimensions, and hierarchies introduced in [21, 22]. Different aggre-
gation schemas are visualized in the form of a hyperbolic graph. For querying, the
analyst selects the measure and the desired aggregation levels. After validation, OLAP-
Multi-Function automatically calculates the result and presents it in the form of an
R-OLAP table.

The storage level includes two databases. The first one contains the meta-schema
that describes the structural elements of the multidimensional schema (facts, dimen-
sions and hierarchies) as well as the aggregation functions, execution orders and
aggregation constraints to build valid and coherent SQL queries (for more information
about the meta-schema, see [12]). The second one contains facts and dimensions data
implemented with the R-OLAP model.

SQL Queries Generator. To supervise the analysis, the prototype has a SQL query
generator. The analyst configures the calculations to be done: the user must specify the
measure and the desired aggregation levels. The generator translates interactions into
SQL scripts executable in the context of an R-OLAP implementation. The generation
process consists of the four following steps, described using a BPMN diagram
(Business Process Modeling Notation) in Fig. 11:

1. Detecting tables of the logical R-OLAP model: this step identifies the tables used to
store analysis data.

2. Determining aggregation functions: using the meta-schema and the required
aggregation levels, this step identifies aggregation functions to be applied to per-
form the analysis.

3. Simplifying aggregation functions: this step is for detecting possible redundant
calculations, i.e. a needless repetition of an aggregation function

4. Generating the SQL script: from the meta-schema and the previous steps, this step
generates the final SQL query. It sends it to the DBMS that calculates the query and
returns the results to the prototype.

Fig. 11. SQL queries generator (shown in BPMN)
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5.2 Discussing

We present in this section the advantages of our prototype OLAP-Multi-Function over
one of the most used commercial tool: “Business Objects” (BO).

Business Objects. According to our knowledge, the major limit of BO is to use only one
aggregation function for each measure. To know how far we can overcome this problem,
we have applied our example (Fig. 2) in BO. We associated the measure ‘Avg_Mark’
with the aggregation function AVG. Thus, we can perform all possible analyses on
dimensions ‘Students’ and ‘Dates’. For example, we can analyze the average marks of
courses (‘C_Id’ level) by periods of five years (‘period-5’ level and ‘ALL’ level on the
‘Students’ dimension). This analysis can be performed by the following SQL query:

SELECT C.C_Id, D.Period-5, AVG(G.Avg_Mark) AS Avg_Mark
FROM COURSES C, DATES D, GRADUATE G
WHERE G.C_Id = C.C_Id AND G.Academic_year = D.Academic_year
GROUP BY C.C_Id, D.Period-5

But for analyzing the data along the dimension ‘Courses’, we use a non-standard
aggregation function: ‘AVG_W’ (weighted average). To solve this problem, there are
two proposals:

– The use of a calculated measure: this proposal means defining a new measure
(AVG_Mark_TU) calculated by Eq. 1, defined in Sect. 1.2 (Fig. 12). The problem
with this proposal is that this equation (“Select:” in Fig. 12) will not be used to
calculate the measure at the TU level but at the base level (‘C_ID’), then to calculate
the measure at the TU level, its own aggregation function will be used to aggregate
the values.

– The use of a variable: the advantage of this proposal is that the variable can use
values of an aggregated measure contrary to the calculated measure that use only
the base values. The problem is that if the variable uses values other than the
measure, these values must be used in the analysis, otherwise there will be errors;
e.g. the variable ‘AVG_Var’ (Fig. 13) is calculated by Eq. 1 where the values of
‘Coeff’ are not used in the analysis, hence the errors. To overcome this problem and
get the requested results, we can define two new measures: the first M1 = SUM
(Coeff * AVG_Mark); the second M2 = SUM(Coeff) and then the variable becomes
AVG_Var = M1 /M2.

Thus, by using variables, we can calculate:

1. A non-standard function,
2. A second aggregation function from the results of the main function associated with

the measure. This is similar to associating two aggregation functions with one
measure.

The limits of the use of a variable are when that variable is used for a specific level
(as the variable ‘AVG_Var’ in our example); then there is no constraint that forbids the
user to use it for a different level and that would give a wrong result. Another limit is
that we cannot use a variable to calculate another variable otherwise there will be errors
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(Fig. 13). Thus we cannot use the variable ‘AVG_Var’ to calculate the average marks
at the Semester level.

OLAP-Multi-Function. Our prototype integrates several aggregation functions for the
same measure in the multidimensional model. It overcomes the two principal limits of
BO: the use of non-standard functions and the use of several aggregation functions. To
use the non-standard weighted average function ‘AVG_W’, a generic aggregation
function was implemented:

– An Oracle object type (class) was used to implement the four routines of the Data
cartridge interface ODCIAggregate: ODCIAggregateInitialize, ODCIAggregateIt-
erate, ODCIAggregateMerge and ODCIAggregateTerminate. These methods cor-
respond to internal operations that each aggregation function performs (respectively
Initialize, Iterate, Merge and Terminate).

– Then, our aggregation function ‘AVG_W’ was created to compute a weighted
average based on our previous object type. This function takes one parameter
composed of the data to aggregate and the weight (TYPE data_weighted AS OBJECT

(value NUMBER, weight NUMBER)).

Fig. 12. Use of a calculated measure in a BO query

Fig. 13. Use of a variable in a BO report
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In order to use several aggregation functions in the same analysis, our SQL gen-
erator can generate nested queries. Note that the SQL queries are generated using an
interface where the user manipulates only multidimensional concepts. Thus, the
complexity of both the aggregation and the logical structure of the MDB are hidden.
E.g. the SQL query generated by our prototype for analyzing the average marks by
semester and by group of students is as follows:

5.3 Experiments

The SQL query generator serves as an experimental platform for which we show a
series of experiments.

Experiment 1. The first experiment is intended to study the impact of our proposal on
the execution time of OLAP analysis queries.

Collection: to our knowledge, there are no benchmarks that use for a same measure,
different aggregation functions according to analysis axes, hierarchies and aggregation
levels. Therefore, we use data related to the diploma delivery jury; the data grouping
size on the dimension ‘Courses’ is five, i.e. each instance of a higher level corresponds
to five instances of lower level (for example, each semester has five TUs).

Protocol: we observe the execution time (in seconds) in accordance with the number of
tuples of the fact (from two to ten millions) of three queries:

– The first query aggregates average marks at the TU level. It uses (as in the classical
model) a single aggregation function (‘AVG_W’),

– The second query aggregates average marks at the semester level. It is based on two
aggregation functions (‘AVG_W’ twice),

– The third query aggregates average marks at the ‘ALL’ level. It requires three
aggregation functions (‘AVG_W’ twice and ‘AVG’ once).
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We chose these three queries to present the impact of using several functions
(second and third queries) compared with the classical model that uses a single function
(first query).

Results: Fig. 14 (right) shows the execution time of the three queries. Queries execution
times increase regularly with the number of tuples. The distance between the curves of
the first query (aggregation in the classical model) and the second query (aggregation in
our proposed model) represents the overhead time of our model required to apply the
second aggregation function. This time is approximately 5 % of the total query exe-
cution time. The additional time to apply the third function seems to be non-remarkable
(the curve of third query is nearly on top of the curve of second query). In fact, this
phenomenon is related to the data volume that decreases with the functions previously
applied. Thus, when calculating the third function, the data volume is significantly
reduced compared with the initial volume.

Experiment 2. The second experiment aims at studying the relationship between the
execution time and the data grouping size. By grouping size, we mean the number of
values of a lower parameter that are grouped into one value of a higher parameter.

Collection: we work on two different versions of our example of the diploma delivery
jury; the first one with data grouping size 2 on the dimension ‘Courses’ and the second
one with data grouping size 5.

Protocol: we observe the execution time in accordance with the number of tuples and
the size of the data grouping of the four queries:

– Two queries at the TU level (one with a grouping size of 2 and the other with5) that
use an aggregation function.

– Two queries at ‘ALL’ level (one with a grouping size of 2 and the other with 5) that
use three aggregation functions.

Results: Fig. 14 (left) shows the execution time of the four queries. The execution time
of queries with grouping size 5 is less than that of the queries with a grouping size of 2.
We note that the query execution time seems mainly influenced by the grouping size.
Thus, the query with grouping size 2 and a single aggregation function (TU (2)) is more

Fig. 14. Experiments
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expensive in terms of computing time than the query with a grouping size of 5 despite
three aggregation functions (ALL (5)). The grouping size appears to have a crucial
impact on the execution time.

6 Conclusion and Future Work

This paper defines a conceptual multidimensional data model flexible enough to allow
the designer to specify differentiated and multiple aggregations. Multiple, as the same
measure can be aggregated by several aggregation functions according to analysis axes
or hierarchies and differentiated as these aggregations may vary, depending on the
aggregation level. Furthermore, the model is expressive enough to check the function
calculations validity. Aggregation constraints define the level from which the aggre-
gation should be calculated. The execution order defines the necessary order between
non-commutative aggregation functions.

This model is based on a two-level graphical formalism: the structural schema
describes the multidimensional structures while hiding the aggregation complexity and
aggregation schemas detail the aggregation mechanisms for each measure.

At the logical level, the implementation can be optimized by a controlled lattice of
pre-computed aggregates, where invalid edges can be pruned.

We plan to continue our work by revisiting algorithms that compute pre-aggregates,
adapting them to our model and studying the effects of changes in the lattice when
selecting nodes for improving performance. We also plan to study OLAP manipulation
operators on our model.
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Abstract. In the MIRABEL project, a data management system for a
smart grid is developed to enable smarter scheduling of energy consump-
tion such that, e.g., charging of car batteries is done during night when
there is an overcapacity of green energy from windmills etc. Energy can
then be requested by means of flex-offers which define flexibility with
respect to time, amount, and/or price. In this paper, we describe MIRA-
BEL DW, a data warehouse (DW) for the management of the large
amounts of complex energy data in MIRABEL. We present a unified
schema that can manage data both at the level of the entire electric-
ity network and the level of individual nodes, such as a single consumer
node. The schema has a number of complexities compared to typical
DW schemas. These include facts about facts and composed non-atomic
facts and unified handling of different kinds of flex-offers and time series.
We also discuss alternative data modeling strategies and how specialized
variants of the generic schema can be used by different node types while
we maintain compatibility and consistency between them. Finally, we
present typical queries from the energy domain and a performance study.

1 Introduction

More and more green energy is being produced by renewable energy sources
(RES) such as windmills. It is, however, not possible to store larger amounts
of energy and use it later. Therefore, there often is an unused capacity, e.g.,
during nights when most consumers sleep, but not enough green energy during
day hours when most consumers are active. The EU FP7 project MIRABEL
(Micro-Request-Based Aggregation, Forecasting, Scheduling of Energy Demand.
Supply and Distribution) [14] addresses this challenge by proposing a “data-
driven” solution for balancing supply and demand utilizing their flexibilities.
Flexible demand such as for dishwashers and charging an electric vehicle can
often be shifted to a time when green energy is available. Non-flexible demand
such as lights, TV, or cooking stoves must still be satisfied at demand-time. In
the MIRABEL-settings, a consumer offers a so-called flex-offer [2,16] for every
intent of flexible energy demand. The flex-offer must describe when and how
much energy is needed and how flexible the demand is in time and amount.
Likewise, a producer can offer a flex-offer for every intent of energy supply.
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The different flex-offers can then be accepted (or rejected if they cannot be
fulfilled) and scheduled for execution at a given time. There will be extremely
large quantities of such flex-offers and they cannot be scheduled individually.
Instead flex-offers are aggregated into larger flex-offers which become scheduled
and then disaggregated into the smaller flex-offers again [16]. To enable this, there
will be smart nodes at both consumer sites and producer sites in the electricity
grid which we denote a smart grid.

There is a strong need for efficient data management in these nodes. In this
paper, we present MIRABEL DW which is a data warehouse (DW) for the man-
agement of large amounts of complex energy data in the MIRABEL project. This
paper is the first to present a DW schema for the important domain of energy
data. The schema can represent different “actors” in different “roles” as defined
by the “Harmonised Electricity Market Role Model” [6] as well as (individual
and aggregated) flex-offers, and time series. In the future, the managed data is to
be distributed over millions of nodes [2] in non-traditional ways. In the paper, we
focus on a DW on a single node, but present a unified schema that can manage
data both at the level of the entire electricity network and the level of individ-
ual nodes, such as a single consumer node. Compared to typical DW schemas,
the schema has a number of complexities which we discuss in the paper. These
include facts about facts and composed non-atomic facts and unified handling
of different kinds of flex-offers and time series. We also discuss alternative data
modeling strategies that use denormalization and arrays, respectively. We also
discuss so-called specializations which allow certain variants of the generic uni-
fied schema to simplify data management in different node types which, e.g., can
have limited hardware resources. Further, we present typical queries from the
energy domain and a performance study that compares the described schemas
with the denormalized and array-based alternatives, and the specialized schemas.

The rest of the paper is organized as follows: Our representations of flex-
offers, time series and actors are presented in Sects. 2, 3, and 4, respectively.
These parts together form the full schema which is presented in Sect. 5. Section 6
presents specializations of the generic schema to simplify data management at
different node types. Examples of analytical queries on the schema are given in
Sect. 7. A performance study is given in Sect. 8. Previous work related to this is
presented in Sect. 9 before the concluding remarks and pointers to future work
which are given in Sect. 10.

2 Modeling of Flex-Offers

In this and the following two sections, we first present the data model we use
in MIRABEL DW. Then we discuss the non-standard and advanced techniques
that are applied in the modeling.

2.1 Data Model

To represent MIRABEL’s flex-offers (both aggregated and non-aggregated) is an
essential task for MIRABEL DW. This is done by means of the tables shown
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Fig. 1. Tables for representing flex-offers

in Fig. 1. We first describe the dimensions (which are recognized by the prefix
D in their table names) and then the fact tables (recognized by the prefix F

in their names). All dimension tables have surrogate keys with names ending
with Id. The possible states for a flex-offer (such as “offered”, “accepted”, and
“rejected”) are represented in the dimension D flexEnergyState. A flex-offer has its
state for a certain reason (for example, a flex-offer becomes rejected if the offered
price is too high). The possible reasons are represented in the dimension D flex-

EnergyStateReason. As we expect few generic reason categories (e.g., “Price too
high”) and many more specific reason descriptions (e.g. “Price (499.50 euros) too
high”) to exist, we have columns for both the generic categories and the specific
reasons such that a hierarchy exists. In MIRABEL DW, we represent time by
discretized time intervals. This is done by D timeInterval which represents 15 min
intervals (for now; other interval lengths can be chosen if needed). Flex-offers
are always related to at least one metering point (at the location where the
energy is to be consumed or produced), but if a flex-offer is aggregated, it will
be associated with many metering points. To capture this, D meteringPointGroup

is used as bridge table [9] between the fact table and D meteringPoint which
represents the individual metering points. To represent the aggregation level of
a flex-offer, D aggregationLevel is used.

The fact table F flexOffer holds flex-offer facts. It references all the previously
described dimension tables. There are six foreign keys to D timeInterval to repre-
sent different times such as when the flex-offer was created and when it at the
latest has to be assigned etc. These foreign keys thus all represent an absolute
time. There is also an attribute assignmentBeforeDuration which holds a time span
telling how long before the actual execution time the assignment must take place.

Further, F flexOffer references D legalEntityRole (explained later) twice to rep-
resent who offered and accepted the flex-offer, respectively. Only the current
information about a flex-offer is held; if a flex-offer is modified, the old fact
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is overwritten. There are measures to hold the lowest and highest amount of
energy required by the flex-offer as well as a measure to hold the “fixed” amount
of energy that becomes accepted. Further, a measure holds the total cost of the
fix. Finally, each represented flex-offer is given a unique identifier in the attribute
flexOfferId which technically is a degenerate dimension.

Information about the profile intervals of flex-offers is represented in the
fact table F enProfileInterval. This fact table only has a single foreign key which
references the unique flexOfferId in F flexOffer. The imported value together with
a sequential intervalNr forms the primary key for F enProfileInterval. The reason
for this design is that a single flex-offer can have many profile intervals. For
each represented profile interval, there is a duration specifying how many time
units the profile interval spans over, and both the lowest and highest amount
of energy needed in this interval. When the flex-offer becomes fixed, the actual
amount of energy in the interval and the price for this energy also becomes
represented. An alternative to this design would be to represent the measures
of F enProfileInterval in arrays in F flexOffer such that all data about a given flex-
offer would be represented in a single fact. Yet another alternative would be to
represent all attributes of F enProfileInterval in F flexOffer, i.e., denormalize the
data and have one (wide) fact in F flexOffer for each profile interval. (For space
reasons, we do not show the alternative schemas in figures).

As flex-offers can be aggregated into larger flex-offers, we also introduce the
table F aggregationMeta which references F flexOffer twice to point to the aggregat-
ing “parent flex-offer” and the smaller “child flex-offer” which has been aggre-
gated, respectively. Profiles of each child flex-offer can be shifted relatively to the
profile start of the parent flex-offer when aggregating child flex-offers into the par-
ent. Therefore, for every child flex-offer, the childProfileTimeShift attribute indicates
the amount of time units the profiles of the child flex-offer has been shifted in the
aggregated flex-offer. This information is used in the disaggregation.

2.2 Modeling Challenges

The fact table F flexOffer is the central fact table for representation of flex-
offers. It is, however, also used as a dimension table in the sense that each
fact has a unique ID such that F enProfileInterval and F aggregationMeta can refer-
ence F flexOffer and in effect store facts about facts. Considering F flexOffer and
F enProfileInterval, it can even be discussed what a fact is. An energy profile inter-
val (in this context) always belongs to a flex-offer and any meaningful flex-offer
has an energy profile interval (a flex-offer for zero consumption/production at an
undefined point in time is hardly interesting). It could be argued that a single fact
is represented by a single row in F flexOffer and many rows in F enProfileInterval.
Unlike traditional DW schemas, we thus have non-atomic composed facts. As
pointed out above, we could alternatively have modeled this by using arrays
in F flexOffer to hold the measures that currently are represented in F enProfile-

Interval. This would, however, make it more cumbersome to compare different
measures (e.g., en low with the minimum energy requirement to en fix with the
assigned energy) as the interval position currently represented by intervalNr only



52 L. Šikšnys et al.

would be implicitly represented by the position in the array. The denormalized
variant (with a fact in F flexOffer for each profile interval) would increase redun-
dancy dramatically.

Another interesting aspect of MIRABEL DW is how it represents facts for
both non-aggregated and aggregated flex-offers in a unified way. The aggregation
is unlike traditional aggregation since the parent flex-offer contains other flex-
offers that can be shifted within the parent flex-offer. We call the contained
flex-offers shiftable child facts.

3 Modeling of Time Series

3.1 Data Model

In MIRABEL DW, time series are represented by means of the tables shown
in Fig. 2. It is necessary to be able to represent time series of various types,
for now energy, power, and price. To represent these general classes, we use the
D typeClass dimension table. Apart from its surrogate key, it has the attribute
typeClassDesc which holds a textual description of the time series type (such as
“Energy”) and the attribute unit which holds the unit of measurements (such
as “kWh”). Instances of the general types are represented in the table D type.
For example, an instance of the “Energy” class is “Energy-Metered-Production-
RES-Wind”. D type references D typeClass to represent the hierarchy between

Fig. 2. Tables for representing time series
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types and type classes. For different types of time series, it is, however, necessary
to store different information. Therefore, we introduce the tables D typeEnergy,
D typePower, and D typePrice to hold the attributes that are relevant for the dif-
ferent types. These tables supplement, but cannot replace, D type. The reason is
that we need a single table to reference from D timeSeries to represent the type of
the time series in question. Thus D type is referenced from D timeSeries, but the
special attributes for an energy time series are represented in D typeEnergy. The
latter table has columns to describe the origin of the time series (e.g. “Metered”
or “Forecasted”), the flow direction (i.e., if it is production or consumption), the
category (e.g., energy from renewable energy sources), and the type of energy
(e.g. “Wind”). The design is likely to evolve in the future. For example, there is
a traditional hierarchy where types roll up into categories that roll up into flow
directions. A more advanced hierarchy is, however, needed to represent hybrid
energy types like “At least 90 % energy from renewable energy sources and the
rest produced from coal”.

D timeSeries holds a single entry for an entire time series. For each repre-
sented time series, there is a unique ID tid and a name may be given. Further,
D timeSeries references D type (as previously described), D aggregationLevel to rep-
resent the level of aggregation of the time series, and D meteringPointGroup to
represent which meters the time series describes. Thus, D timeSeries is mainly
used to relate different dimension values that describe the represented time
series. The values of the time series are, however, represented in the fact table
F timeSeriesInterval. This table references D timeSeries to identify the time series a
value belongs to and D timeInterval to identify the time instant when the value
occured. Finally, the table holds the value itself as the measure. A fact thus
exists for each value in each time series. It can, however, also be argued that a
fact consists of what it represented in F timeSeriesInterval and what is represented
in D timeSeries which – apart from a possible name – only points out to other
dimensions.

3.2 Modeling Challenges

Similarly to the representation of flex-offers, our representation of time series
also leads to compound facts where one fact can be considered to be made
up of parts in different tables (D timeSeries and F timeSeriesInterval). Actually, an
alternative design is to merge F timeSeriesInterval into D timeSeries such that the
values instead are represented in an array, meaning that a single time interval
(and all its values) only would result in one fact. Yet another alternative is
to merge D timeSeries and F timeSeriesInterval and have a row for each value in
a time series. There are thus different possible ways to represent the complex
sequence-facts arising from time series. We choose the model in Fig. 2 since it
both reduces complexity (compared to the first alternative where two arrays
must be processed to find the value for a given time instant) and redundancy
(compared to the second alternative where there is very wide fact for each value
in the time series).
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Fig. 3. Tables for representing different actors/roles

In our modeling of time series, the schema is neither a traditional star schema
nor a snowflake schema. One reason for this is of course the compound facts
discussed above. Another reason is the support for different types of time series
for which different attributes are needed. We have different tables that reference
D type which also is the dimension table referenced from the fact table. Consider
for example D typeEnergy which represents attributes that are relevant for energy
time series. An alternative design would be to join all these D type* tables into
one dimension table, but for every dimension member many attribute values
would then be NULL.

4 Modeling of Different Actors and Market Areas

4.1 Data Model

Many different entities are involved in different roles in energy trading and net-
work operation. We represent the needed actors from the “Harmonised Electric-
ity Market Role Model” [6] by means of the tables in Fig. 3

The table D role represents roles such as “Producer” and “Consumer”. A role
can belong to another parent role and this is captured by a self-reference. For
example, the parent role of both “Producer” and “Consumer” is “Party Con-
nected To Grid”. Legal entities are represented by D legalEntity. To capture when
a certain legal entity plays a certain role (a single legal entity can play several
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roles), we use D legalEntityRole. This table references both D role and D legalEntity.
Further, it has an attribute to hold a unique ID for a given legal entity playing
a given role. We include this ID as it makes it easy to point to a legal entity in a
certain role. We do exactly that from a number of tables as shown in Fig. 3. For
each role, there is a specialized table that (directly or indirectly through another
table) references D legalEntityRole. Some of them, like D lerSystemOperator, are sim-
ple and do only have one attribute which is a reference to this ID. The specialized
table can be referenced and it is then explicit what kind of role is referenced. For
example, the table D lerSystemOperator is referenced from D marketBalanceArea as
shown in Fig. 5. A slightly more complex example is D lerPartyConnectedToGrid

which references D legalEntityRole and also D lerBalanceSupplier to represent that
a party connected to the grid always is so through a balance supplier. Further,
D lerPartyConnectedToGrid is itself referenced from its specializations, D lerProducer

and D lerConsumer.

Fig. 4. Tables for representing market areas

Finally, we have tables to represent market areas as shown in Fig. 4. D local-

MeteringPoint represents the meters that are connected to the grid. Such meters
are installed both at the producer and consumer sites. D localMeteringPoint ref-
erences four different specializations of D legalEntityRole. Further, it references
D balanceGroup which in turn references D marketBalanceArea which hierarchically
groups metering points.

4.2 Modeling Challenges

To the best of our knowledge, this is the first paper to describe a DW for the
complex concepts of actors and roles in the “Harmonised Electricity Market
Role Model” [6]. Our model captures both how legal entities can play different
roles and how roles can be parts of other roles. This is captured by the tables
D legalEntity, D role, and D legalEntityRole. In addition to these tables, a (narrow)
table has been added for each role a legal entity can play (see the D ler* tables).
It is then possible to represent attributes that are only relevant for certain roles
such as done for D lerBalanceSupplier. Further, when foreign keys reference these
tables (instead of just referencing D legalEntityRole), it is explicit what kind of
role playing is referenced and it helps to avoid mistakes where, e.g., a balance
supplier is referenced where a balance responsible party actually should have
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been referenced. We note that if no special attributes must be stored for the
different roles, then instead of storing the D ler*’s as physical tables, they can be
views selecting from D legalEntityRole. This reduces the risk of mistakes further
and makes maintenance of them automatic.

5 The Full Schema

To summarize the previous descriptions, the full schema for MIRABEL DW
is shown in Fig. 5. The schema can capture the (needed) roles from the Har-
monised Model [6] as well as the “actor configurations” where different actors
play different roles. The schema also includes specializations of legal entities. Fur-
ther, the schema can capture different kinds of time series as complex sequence
facts. The schema is thus general enough to hold all the data that is needed
in the MIRABEL project. It should, however, be noted that no single node is
intended to hold all data. Instead, a node should only hold data that is rele-
vant for the site where it is installed. For an end-consumer this would typically

Fig. 5. The full schema for MIRABEL DW
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be her own non-aggregated flex-offers and time series about metered energy.
For a balance responsible party buying electricity on the market and selling it to
end-consumers, it would include both aggregated and non-aggregated flex-offers,
forecasted and metered time series, and market areas. The data will thus be dis-
tributed accordingly to the roles played by the owners of the nodes. The data
will also be at different aggregation levels such that some nodes have detailed
data while others have more aggregated data. A consumer will know the details
of her flex-offers, i.e., when she has requested energy and how much. For a bal-
ance responsible party, the individual non-aggregated flex-offers and end-users
generating may not be known, but the aggregated information will be known,
e.g., that x MWhs must be produced in a given time interval. Note that the dif-
ferent nodes can use the same schema. The distribution of data is illustrated in
Fig. 6 which shows different kinds of nodes. Non-aggregated flex-offers are shown
as small, shaded boxes. Note that the different nodes do not represent the same
flex-offers. A single node only represents the flex-offers that are relevant to its
owner. Aggregated flex-offers are shown as larger, filled boxes in Fig. 6. Note also
that although the nodes distribute the data and some represent non-aggregated
flex-offers and others only represent aggregated flex-offers, they can use the same
schema. As described in the following section, another possibility is to allow the
different kinds of nodes to use specialized schemas.

...Consumer

...Balance Supplier

...Balance Responsible Party

System Operator

Many millions of nodes

Thousands of nodes

Hundreds of nodes

Tens of nodes

Fig. 6. Data distribution in MIRABEL DW

6 Schema Specializations

The schema in Fig. 5 is generic and can be used in all kinds of nodes in
MIRABEL. It is, however, not all kinds of nodes that need to store all kinds
of data. Consider, for example, a node installed at an end-consumer’s site (i.e.,
the lowest level in the hierarchy of nodes) on limited hardware resources. Such
a node does not store aggregated flex-offers; it only knows the consumer’s own
flex-offers. Also, it only has time series and flex-offer data for the consumer’s
metering point and not (groups of) other metering points. For a node at a
balance responsible party, on the other hand, it is necessary to represent both
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individual flex-offers from end-consumers and their aggregated flex-offers that
are sent to the wholesale market. Further, it is necessary to represent informa-
tion about the involved actors to know where the energy comes from, where it
eventually gets consumed, who regulates the area, etc.

In a consumer node, some parts of the schema in Fig. 5 are thus not needed.
For example, D aggregationLevel is not needed and the attributes referencing it
from D timeSeries and F flexOffer are also not needed. If they were present, they
would always take the same values anyway and we thus say that they are context-
given. Likewise representations of legal entities are context-given in a consumer
node since the node only deals with a given consumer that belongs to a given mar-
ket area etc. Further, a consumer node typically has limited computing resources
and it can be beneficial to have a simpler database schema. At higher layers,
there is typically much more computing power, but the data amounts may also
be much bigger such that other schemas can be beneficial. To simplify the data
management in a node, such as an end-consumer node, we employ actor-specific
specializations of the schema. A specialized database schema S does not have to
be able to represent all the data of the generic schema G, but may only be able
to represent some of it and possibly in a modified form. S may have relations
that are different from those in G and can, e.g., be a star schema. At an infor-
mal level, a specialized schema S can differ from the generic schema G in the
following ways:

1. A new attribute a can be added to S if its values can be deterministically
computed
(a) from values of attributes in S or
(b) from values of attributes in G and inverse functions that for each of these

attributes in G can compute its value from the value of a are given.
2. An attribute from G can be left out from S if it in an instance of S always

would take the same value if included (i.e., if it is context-given).
3. An attribute from G can be left out from S if we have a way of determinis-

tically computing its value from the value of another attribute in S without
knowing the state of G. In particular, a surrogate key is not enough to com-
pute all other attributes of a relation.

4. An entire relation from G can be left out from S if all its attributes can be
left out.

5. A relation in S can represent several relations from G that are equi-joined on
foreign keys. A surrogate key used in a join may then be left out.

The data of an instance S must be obtainable from a number of queries on
an instance of G such that the data for each relation in S is obtainable from
one SPJ query. In particular, the queries may not use GROUP BY, HAVING,
DISTINCT, UNION, INTERSECT, or EXCEPT from SQL. The queries can
join relations on foreign keys, select an attribute once or leave it out if its values
can be deduced from other included attributes or are context-given, and finally
restrict the amount of tuples to those with certain values in certain attributes.
The queries may not aggregate G data as this would prevent us from propagating
modifications from the specialization instance back to the G instance.
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6.1 Querying a Specialization

For a query qS on a specialization S, it is possible to find a query qG on the generic
schema G that gives the same result: Since any relation in the specialization can
be considered a view over one or several equi-joined relations in G, it is possible
to find qG from qS by replacing each relation in qS with its corresponding view
definition over relations in G.

A query qG on the generic schema G can under certain circumstances also
be translated to a query qS which gives the same result on a specialization S.
Recall how a specialized schema can differ from the generic schema:

1. A new attribute can be added if its value can be computed from values of other
attributes. Such attributes can be ignored since they obviously are not used
by qG.

2. An attribute can be left out if it is context-given. If qG uses an attribute a
that is context-given in S, qS must use the appropriate constant instead of a.

3. An attribute can be left out if it can be computed from another attribute in S.
If qG uses an attribute b that is left out from S because it can be computed
from another attribute c in S, qS must do the necessary computation of b
values by means of c, i.e., occurences of b should be replaced by f(c) for a
deterministic function f .

4. A relation can be left out if it all its attributes can be left out. If qG uses
such a relation r, all usages of attributes from r (which all necessarily are
context-given or can be computed) can be replaced by appropriate constants.

5. Several relations may have been equi-joined on foreign keys. If a surrogate
key has been left out from S, it cannot be used in queries on S. But since a
surrogate key just is an integer with no special meaning, it would not make
much sense to query for it anyway since it has already been used in a join to
combine the right rows from two relations. We therefore assume that qG does
not query for a left-out surrogate key. Consider first the case where qG equi-
joins the relations r1, r2, . . . , rn on foreign keys and S has the relation r′ which
holds the result of an equi-join of r1, r2, . . . , rm (m ≤ n) on foreign keys. In
that case qS can join r′ and r′

m+1, . . . , r
′
n where r′

i (m + 1 ≤ i ≤ n) holds
the corresponding data of ri as found by applying these rules recursively.
Now consider the case where S does not hold such an r′, but instead holds a
relation r̂ with the result of an equi-join on foreign keys of r1, r2, . . . , rN in
G for an N > n. Then qG in general cannot be transformed to a query on S
that gives the same result since S might not represent all tuples from some
rj in G (in case no rows reference them) or represent some tuples too many
times. As an example of the latter, if n = 1 in qG and a relation in S holds
the result of r1 joined with r2 (i.e., N = 2) on a foreign key from r1 to r2,
tuples of r2 might be represented several times in the resulting relation.

In other words, only item (5) can be a limitation. When one creates a special-
ization S, one should thus be aware that joining (i.e., denormalizing) too much
makes some queries on the G schema impossible to translate to the S schema
and get the same results. On the other hand this is not likely to be an issue in
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realistic settings. A designer would most likely not join G tables if, e.g., one of
them holds rows that do not join with any rows from the other table(s) or if
SELECTs from a particular table are an important query category.

A specialization can provide a simpler schema that fits the needs of a certain
node and thus can be used instead of the general G schema. As discussed above,
queries can always be translated from S to G and under certain circumstances
from G to S. We, however, also wish to be able to do certain modifications
on relations in S and be able to translate them to corresponding modifications
on relations in G. We therefore now discuss which modification operations are
allowed on data in a specialization instance.

6.2 Modifications

To maintain overall compatibility and consistency among nodes, it should be
possible to propagate modifications made to S data back to G. Therefore, it is
not all operations that are allowed in a specialization. Instead, any allowable
operation on S that brings the database from a state s (obtained by applying
the specialization’s defining queries – or view definitions – on G in state g) to
another state s′ must be mappable to a number of operations on G that brings
the database from g into a state g′. As discussed above, all relations in S can be
seen as views on G. The state g′ must then be such that if the view definitions,
denoted V , are applied on a database with the schema G and the state g′, the
result is a database with the schema S and state s′:

V (G, g′) = (S, s′)

For an attribute a added to S that also can be computed from other attributes
X in S, we of course require that any modification to it is consistent. In other
words, the value assigned to a should correspond to what can be computed from
X. We now consider the possible modifications in turn and describe how they
can be supported (if so) or why they cannot be supported.

Insertion is the most needed modification type for a specialization. A node with
a specialization should be allowed to insert data about its own site, e.g., data
about the energy consumption at the site. For a relation RS in S which holds
data from a single relation RG in G, insertions can be supported in the following
way. Some attributes of RG may not be available in RS , but they are then either
context-given or computable from other attributes. Thus, for a row rS inserted
into RS , we can find a corresponding row rG to insert into RG to achieve the state
g′. This is similar to when views are updatable in SQL-92 [5] apart from that we
do not get NULL values in left-out attributes but instead find proper values. Now
consider a relation RS which is the result of an equi-join of a sequence of relations
RG,1, RG,2, . . . , RG,n from G (possibly with some attributes left out if they can
be computed or are context-given) where RG,a can have a foreign key referencing
RG,b only if a < b. If a row rS is inserted into RS , we can for each RG,i (in the
order i = n, n − 1, . . . , 1) find the corresponding part of the row rS and add
any computable or context-given attributes. We call this corresponding row part
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rG,i. If the state g of G is such that rG,i is not in RG,i, it can be inserted (if the
surrogate key is not present it should be added first and afterwards also added
to all row parts for RG,h if RG,h references RG,i). If it already is in RG,i, nothing
should be done. In SQL-92, insertions into “join views” (i.e., views with data
from more than one relations) are not allowed. In SQL:1999 such insertions are
sometimes allowed, but each of the view’s columns should be uniquely traceable
back to a single column in a single table [12]. We, on the other hand, allow a
natural join where a column in RS corresponds to two columns (namely, the
primary key of RG,b and the foreign key of RG,a) since we can consider one of
the two columns as left-out due to computability. SQL does also allow the WITH
CHECK OPTION to ensure that it is not possible to insert rows that would not
appear in the view anyway (but it is not all RDBMSs that support it). This
functionality is not available per se in a specialization, but would have to be
emulated with CHECK constraints on the relations. The described method to
support insertions does, however, not guarantee that a successful insertion into
RS can be mapped to successful insertions into the RG,i relations. For example,
a primary key violation can occur when we try to insert into RG,i for some i.
This would not be detected when inserting into RS .

Deletion is a modification which rarely will be done in specializations. We anyway
describe how it can be supported. For a row in RS in S, we either have all
corresponding G attributes directly available or can find them as argued above
(possibly apart from surrogate keys). In the simple case where a row rS is deleted
from RS which is not the result of a join, we can find the primary key value of
the corresponding row rG in RG and use that to delete rG. Consider for the more
complex case again an RS which is the result of an equi-join of a sequence of
relations RG,1, RG,2, . . . , RG,n from G (possibly with some attributes left out if
they can be computed or are context-given) where RG,a can have a foreign key
referencing RG,b only if a < b. We can either find the primary key value for each
corresponding rG,i part or find values for all its other attributes and use them to
identify the row to delete. Considering each of them in the order i = 1, . . . , n, if
the state g is such that rG,i is not referenced by any other row in any relation in
G, it can be deleted. As with insertions, we are not guaranteed that a deletion
in S results in one or more deletions in G. Another issue is whether we actually
want a deletion in S to possibly result in deletions from more relations in G.
Only the first deletion would delete detail data while the following ones would
delete from the dimension hierarchy. It depends on the concrete case whether it
makes most sense to delete from all corresponding G relations or only one, but
the latter would often be what is wanted. It should thus be specified during the
definition of a specialization how to handle deletions for relations that hold the
results of equi-joined relations from G.

Update is simple to support in the case where RS only has data from one relation,
RG, in G. In this case, the primary key value is again known and can be used
to identify the corresponding row to update in RG. For an RS with data from
several G relations, the situation is more complicated. With join views, a general
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problem is that some updates to the view cannot be mapped uniquely to a set of
modifications to the base table [5]. In the case of specializations, we can, however,
again benefit from knowing the primary key value for each corresponding row
part and use this to do upsertions. Thus we can only allow updates to a relation
holding the result of an equi-join of G relations if no surrogate keys have been
left out. For an RS which is the result of an equi-join of a sequence of relations
RG,1, RG,2, . . . , RG,n from G, we can for a row that is updated to r′

S consider
the corresponding row parts in the order n, . . . , 1. Assume that the primary key
value for RG,i is pi. The pi values can be found for each corresponding row part
of r′

S . If RG,i holds a row rG,i with the primary key value pi, it should be updated
to r′

G,i (if rG,i �= r′
G,i). If RG,i does not hold such a row, r′

G,i should be inserted.
However, rG,i could be a corresponding row part of many rows in RS , but if
only one of these rows has been updated to go from the state s to the state s′,
we will not have that V (G, g′) = (S, s′). To be able to map an update of RS to
G, we must therefore require that for any two rows x and y in RS for which the
primary key values of xG,i and yG,i are identical for some i, we also have that
xG,i = yG,i after the update. In other words, x and y should then have identical
values for all attributes originating from RG such that functional dependencies
are maintained. This can be expensive to check and another and simpler solution
is to only allow updates of the attributes in RS originating from RG,1.

Finally, we note that an attribute or relation that is left out from a special-
ization, obviously cannot be modified. If the context changes, e.g., if a consumer
gets another energy supplier, a new S instance must be created for the new
context.

In summary, insertions into a specialization are easy to support while deletions
and updates are more complex. In particular, it is necessary to specify for a
specialization how to handle deletions from a relation holding the result of a
join of G relations. Also for updates, this should be specified. Updates do also
require that no surrogate keys have been left out. In fact, only few modifications
are expected to take place in a specialization. Typically, only insertions into one
or few relations will be done; for example, meter readings from the node’s loca-
tion into F timeSeriesInterval. A specialization definition can thus specify which
relations may be modified and (for updates and deletions) how modifications to
them should be mapped to modifications to G.

6.3 Examples

As a trivial example, it is possible to define a specialization of G with the same
database schema. The mapping of modification operations is then simply the
identity function. Another and more interesting specialization is for a prosumer
C that has solar panels producing electricity and has agreed to buy all her
remaining electricity from a given energy supplier. In this case, a specialization
for a node at C’s site does not need to represent the metering point (as it only has
data for the single metering point) and the aggregation level (as no flex-offers are
aggregated). Further, the energy type is always “solar energy” when produced by
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the prosumer and “undefined” when she buys electricity (the value of energyType

can thus be computed from energyFlowDirection). Further, all flex-offers are offered
by the consumer herself and only accepted by the single balance supplier and
thus these values are context-given. Figure 7 shows SC . Note how F flexOffer and
(several instances of) D timeInterval have been joined leaving out the surrogate key
timeIntervalId. New computed attributes with time stamps have, however, been
added and they in turn allow the attributes of D timeInterval to be left out. This is
done to avoid the possibly expensive joins with D timeInterval on the C node which
is likely to have very limited hardware resources. D timeSeries, D typeEnergy, and
D type have also been joined as have F timeSerieInterval and D timeSeriesInterval.
The attribute hour has also been added to the resulting relation. This attribute
can be computed from time, but has been added to allow for efficient grouping
when considering the hourly energy consumption. New time series intervals and
flex-offers can be created at C’s site and it must be possible to represent these in
the generic schema as well. Thus insertions into D timeSeries, F timeSeriesInterval,
and F flexOffer are mapped to insertions into relations in G. Other modification
operations are not allowed. If we wanted to also support updates of facts, we
would have to include the left-out surrogate keys.

7 Queries

In this section, we give examples of interesting queries on data in MIRABEL
DW. We first focus on queries on flex-offers and then on time series.

7.1 Queries on Flex-Offers

The first example, Q1, considers the flexibility in flex-offers, both with respect
to time and amount of energy.

Fig. 7. The database schema SC of a specialization
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Q1: SELECT AVG((enProfile_startBeforeTimeIntervalId -
enProfile_startAfterTimeIntervalId) *

(SELECT SUM((en_high - en_low) * intervalDuration)
FROM F_enProfileInterval i
WHERE i.flexOfferId = f.flexOfferId)

)
FROM F_flexOffer f;

The query uses the flexibility with respect to time, i.e., the difference between
when the flex-offer at the latest has to be executed and when it at the earliest can
be scheduled. We assume that time interval IDs are assigned sequentially and
thus use the difference between the IDs of the time intervals to find the flexibility.
This flexibility is multiplied with the SUM of the energy flexibility in each profile
interval. The energy flexibility in a profile interval is found as the length of the
profile interval multiplied with the difference between the maximally required
amount of energy and the minimally required amount of energy. Finally, the
shown query considers the average of the combined flexibility for all flex-offers.
The query is an example of a non-traditional kind of aggregation. If we consider
a graph showing the relative start and end times for profile intervals on the X
axis and the minimal and maximal energy amounts on the Y axis, the query Q1
finds the area of energy flexibility for all flex-offers and multiplies these with the
length of their time flexibilities before the entire average is found. This number is
primarily of interest before the scheduling gets done and a high number indicates
much freedom in the scheduling while a low number shows that the considered
flex-offers are not very flexible.

The next example, Q2, is of interest after the scheduling and gives the total
amount of scheduled energy. This is a simple query which, however, must read
data from many rows in a realistic setting (the DBMS we use does currently not
support materialized views).

Q2: SELECT SUM(en_fix)
FROM F_enProfileInterval;

Q3 is a more complex query to apply after scheduling has taken place. It
builds a time series that, for each time interval ID, shows the amount of fixed
energy.

Q3: SELECT timeIntervalId, SUM(en_fix_part)
FROM (SELECT en_fix_part, ROW_NUMBER() OVER (PARTITION BY i.flexOfferId

ORDER BY intervalNr) - 1 + f.enProfile_startFixTimeIntervalId
AS timeIntervalId

FROM (SELECT flexOfferId, intervalNr, en_fix / intervalDuration
AS en_fix_part, generate_series(1, intervalDuration)

FROM F_enProfileInterval
WHERE en_fix IS NOT NULL

) i, F_flexOffer f, D_flexEnergyState s
WHERE i.flexOfferId = f.flexOfferId AND f.stateId = s.stateId

AND s.stateDesc = ‘Assigned’
) AS subquery

GROUP BY timeIntervalId
ORDER BY timeIntervalId;

The query computes the IDs of the time intervals where a flex-offer’s profile
intervals are executed. But a profile interval has a duration (in intervalDuration)
which defines how many time intervals the profile interval spans. Therefore, it
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is necessary to (evenly) distribute the profile intervals’ energy amounts over one
or more time intervals. To do this, one “part” row is generated for each time
interval a profile interval covers by means of generate series. This happens in the
innermost SELECT. The result of this is used by the second SELECT which also
uses the SQL window function ROW NUMBER to enumerate the rows in each
partition where a partition consists of the part rows for a given flex offer and is
ordered by the interval numbers. Thus, the resulting row number corresponds to
the number of time intervals between the assigned start time for the entire flex
offer and the part represented by the row (we subtract 1 since ROW NUMBER
counts from 1). When we add enProfile startFixTimeInterval for the flex-offer, we
get the ID of the absolute time interval when the part executes. Finally, the
outermost SELECT aggregates the sums of fixed energy amounts over all parts
belonging to a given time interval.

7.2 Queries on Time Series

Q4 is a query that finds the balance, i.e., the difference between produced and
consumed energy, for a 24 hours period.

Q4: SELECT date, timeDesc,
SUM(CASE energyFlowDirection WHEN ‘Production’ THEN value

ELSE 0 END) AS production,
SUM(CASE energyFlowDirection WHEN ‘Consumption’ THEN value

ELSE 0 END) AS consumption
SUM(CASE energyFlowDirection WHEN ‘Production’ THEN value

WHEN ‘Consumption‘ THEN -1 * value
ELSE 0 END) AS balance

FROM F_timeSeriesInterval f, D_timeSeries ts, D_type ty,
D_typeEnergy te, D_timeInterval ti

WHERE f.tid = ts.tid AND ts.typeId = ty.typeId AND te.energyTypeId =
ty.typeId AND ti.timeIntervalId = f.timeIntervalId AND
te.energyOrigin = ‘Metered’ AND ti.date = ‘2011-06-01’

GROUP BY ti.timeIntervalId
ORDER BY ti.timeIntervalId;

The query Q4 is an example where we use the special attributes that only
apply to some time series. In this example, we consider consumed and produced
energy and we thus use energyFlowDirection and energyOrigin which only exist for
energy time series. The query sums the production values, consumption values,
and the difference between them for each time interval that belongs to a given
date.

Our last example, Q5, is a query to find those time series where the average
energy usage grouped on hours exceeds the average energy usage for the hour
with 25 % or more at least 10 times.

Q5: WITH indavguse AS (
SELECT tid, hour, COUNT(value) AS indcnt, AVG(value) AS indavg
FROM F_timeSeriesInterval NATURAL JOIN D_timeInterval
GROUP BY tid, hour

),
totavguse AS (

SELECT hour, SUM(indcnt * indavg) / SUM(indcnt) AS totavg
FROM indavguse
GROUP BY hour
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),
overuse AS (

SELECT tid, t.hour, indavg, totavg,
COUNT(*) OVER (PARTITION BY tid) AS cnt

FROM totavguse t, indavguse i
WHERE t.hour = i.hour AND indavg >= 1.25 * totavg

)
SELECT tid, cnt, hour, indavg, totavg
FROM overuse
WHERE cnt > 10
ORDER BY tid, hour;

The query has Common Table Expressions (CTEs) in the WITH part. In
the first CTE, indavguse, we compute a (temporary) table with the average
hourly energy usage for each time series. The result is used again to compute
the second CTE, totavguse, where we find the average energy use per hour
among all time series (we could join F timeSeriesInterval and D timeInterval again,
but it is faster to reuse the result of the previously computed CTE). In the third
CTE, overuse, we join the the results of the two previous CTEs to find the IDs
of time series and the hours from indavguse where the consumption is at least
25 % higher than the general hourly average consumption found in totavguse.
Further, we use COUNT as a window function to count how many such hours we
find for a given time series. Finally, we select the ID of the time series, the count
of hours with an average energy usage at least 25 % higher than the average, and
the consumption in the last SELECT clause.

8 Performance Study

In this section, we consider the queries from the previous section and use them
to evaluate and compare the different MIRABEL DW schema alternatives pre-
sented in Sects. 2–6. This section is split into two parts. In the first part, we
focus on the generalized variants of the MIRABEL DW schema – the original
(unmodified, called “MDW”), denormalized, and array-based variants – and use
them to compare the performance of the queries Q1–5. In the second part, we
compare the original (MDW) generalized MIRABEL DW schema to a specialized
variant (a specialization) by evaluating performance of Q4 in a resource-limited
environment.

8.1 Performance of Q1–Q5 on the Generic Schemas

We now consider the queries Q1–Q5 on the described (original) schema of
MIRABEL DW and its denormalized and array-based alternatives, denoted
as “MDW”, “denorm”, and “array” respectively. In the denormalized variant,
F flexOffer and F enProfileInterval are joined and so are F timeSeriesInterval and
D timeSeries (however, with the name varchar attribute replaced by an integer
to make it a typical fact table). In the array variant, the same tables are joined,
but now grouped on all dimension references and with measures aggregated
into arrays. For the tests, we use a real life data set with consumption data
from 963 customers (the data originates from the MeRegio project [13]) and we
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synthetically generate flex-offers based on this data set. This gives rise to 963
(energy consumption) time series with 32.1 million time series values, and 3,1
million flex-offers. We test the performance on a Linux server with two Quad
Core 1.86 GHz Intel Xeon CPUs, 16 GB RAM, 4 SATA 7200 RPM disks (with
one dedicated to the DBMS). The DBMS is PostgreSQL 9.1 [15] and has the
parameter shared buffers set to 4 GB, temp buffers to 128 MB, and work mem to
96MB. All tables are “fully vacuumed” such that their disk representations only
take up the needed space and do not occupy unused space. Further, the tables
are “analyzed” such that their statistics are up-to-date. Each query is executed
once in a warm-up round and then the queries are executed in a round-robin
fashion such that each query gets executed five times. We report the average
execution times. The results are shown in Fig. 8.
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Fig. 8. Performance of Q1–Q5 on the generic schema

For Q1, it can be seen that the MDW variant is the fastest followed by
the array variant (38.3 s and 49.1 s, respectively). These two query variants have
similar plans, but with arrays there are fewer rows to process. On the other hand,
these rows need to have their arrays “unnested” to produce as many values as
there are rows to consider in the MDW variant. When the denormalized variant
is considered, there are also many rows and these rows are wide. Further, the
plan is not similar to the plans for the other variants as GROUP BY is necessary
with this variant. This makes the denormalized variant the slowest (123.4 s).

For Q2, the MDW variant is again the fastest (8.9 s) to use. Again, the array
variant is the second fastest (11.1 s). With this variant, the arrays must again
be unnested to produce the values that are available in the rows in the MDW
variant. The denormalized variant uses wider rows and is the slowest (16.8 s).

For Q3, the MDW variant remains the fastest (172.1 s) while the array variant
now is the slowest (237.2 s) even though it avoids a join. On the other hand,
the array variant requires a SELECT clause to unnest the array and an extra
use of ROW NUMBER to recreate the values from intervalNr which only are
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implicitly available from the array positions. The denormalized variant (192.2 s)
is bit slower than the MDW variant even though it avoids a join.

For Q4, the MDW variant is significantly faster (0.8 s) than the others. The
denormalized variant which avoids a join, uses an order of magnitude more time
(7.7 s). The array variant is by far the slowest (131.9 s) as there is no index on
timeIntervalId which is an array. Thus all rows must be processed and have their
rows unnested to perform a join with D timeInterval.

For Q5, the MDW and denormalized variants perform similarly (59.1 and
61.3 s, respectively). The queries involve the same number of rows and are iden-
tical apart from that the denormalized variant uses a wider table. For the array
variant, the first CTE has to unnest two arrays and the query takes longer time
(143.8 s).

To summarize, the MDW variant performs the best for all queries. Another
interesting thing to consider, is the disk space usage. The tables F flexOffer,
F enProfileInterval, F timeSeriesInterval, and D timeSeries take up 4.1 GB in the
MDW variant (not counting indexes). Their alternative representations take up
7.0 GB in the denormalized variant and 1.9 GB in the array variant, respectively.
It notable how little space the array variant uses compared to the other variants
due to its fewer number of rows (and thus fewer space-consuming row headers).
Overall, the MDW variant is a good choice considering both its performance and
space requirements.

8.2 Performance of Q4 on the Specialized and Generic Schemas

We now consider MIRABEL DW at a prosumer node (e.g., a smart-meter), which
uses MIRABEL DW for storing, among other entities, electricity consumption
and production measurements. As this node is expected to have limited com-
puting and storage capabilities, we consider a MIRABEL DW specialization as
opposed to the full MIRABEL DW schema for the storage of measurements.
To simulate a resource-limited environment, we use three instances of the Ora-
cle VirtualBox virtual machine (VM), each of which runs the lightweight Linux
DSL 4.2.5 OS and the SQLite 3.3.10 DBMS. We deploy these instances on the
machine from Sect. 8.1. The configurations of these VM instances are as follows:

VM(100,1024). The CPU clock speed/frequency is 100 % of the host
machine, but the memory (RAM) is limited to 1024 MB.
VM(100,12). The CPU clock speed/frequency is 100 % of the host machine,
but the memory (RAM) is limited to 12 MB.
VM(10,12). The CPU clock speed/frequency is limited to 10 % of the host
machine, and the memory (RAM) is limited to 12 MB.

For the experiment, we use a dataset with consumption and production
measurements collected every 15 min within an eight year time interval. These
are stored as two separate time series in two databases – the first database
in the generic MIRABEL DW schema G (MDW) and the second database in
the specialization schema SC from Sect. 6.3. By varying the total amount of



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 69

 0

 5

 10

 15

 20

 25

 30

 35

 40

80k 160k 240k 320k 400k 480k 560k

S
ec

on
ds

Total number of measurement values

VM(10,12), gen
VM(10,12), spe

VM(100,12), gen
VM(100,12), spe

VM(100,1024), gen
VM(100,1024), spe

Fig. 9. Performance of Q4 on the specialized and generic schemas

measurements stored in MIRABEL DW, we submit (variants of the) query Q4
for computing the difference between production and consumption (balance) for
a 24 h period for a selected day, and measure the total time required to evalu-
ate Q4 on each of these three VM instances. The results of this experiment are
shown in Fig. 9.

As seen in the figure, the query Q4 takes up to 2.5 times more time to
evaluate for the generic schema in comparison with the specialized schema. The
fewer resources the node has, the more it pays of to use the specialization. In
summary, we can see that the use of specialized schemas has a big potential for
resource-constrained devices such a smart meters.

9 Related Work

In the energy sector, there is a number of standardized data models used to
represent the major objects in an electric utility enterprise [8] as well as to
define administrative data internally interchanged between European electricity
markets [6,7]. These models focus on various aspects of energy trading and
physical electricity delivery, and specify 1) components of a power system at the
electrical level, 2) actors and roles involved in the energy trading, 3) relationships
and data exchange between those entities. These models are used as a basis for
the MIRACLE data model [10], which further enriches them with the concept
of shiftable consumption and production. All these models, however, focus on a
semantic rather than the storage or the management of energy-related entities.
By focusing on two most important entities in MIRABEL, i.e., time series and
flex-offers, this paper, on the other hand, presents data representation models for
these two types of entities offering a convenient storage and a good performance
of analytical queries.
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This paper is a significant extension of a previous conference paper [17], and
the papers are the first to deal with the storage of flex-offers. There are previous
works which focus on time series and warehousing, e.g. UML-based modeling of
time-series in DWs [20], and temporal aggregation of multidimensional data [3],
and temporal DWs exploiting research results from the field of temporal data-
bases [11]. Our modeling of different time-series types has similarities with Bauer
et al.’s work [1]. They discuss “locally valid dimensional attributes” whose exis-
tence depends on values of dimensional elements. This is the case, e.g., for our
attribute energyType which only exists if the D type value represents an energy
time-series. The problem of representing all these attributes in a single dimension
table (as in a typical star schema) is that there will be many NULLs in the held
data. Bauer et al. propose to have separate tables with the specific attributes
and then create views “on top” of these with common attributes as well as tex-
tual values showing the name of the relation the data comes from which can be
used for hierarchical classification. In contrast, we use tables (and not views)
for the common attributes of a dimension and then represent special attributes
that only exist for some dimensional values in other tables that reference the
table with the common attributes. This makes it possible to declare foreign keys
to the dimension table with the common attributes and also declare indexes
and constraints on these tables. Bauer et al. also propose to use table inheri-
tance to represent such cases. This would also be possible in our DBMS [15],
but constraints cannot be enforced on child tables then. Yu et al. [19] present
an approach for storing very big time series from sensor networks using Cloud
technologies such as Bigtable [4]. In contrast, we use relational storage technol-
ogy and further our individual DWs cannot be merged into a single, shared DW
due to privacy concerns, as the data comes from many competing companies.

In the current paper, we consider different representations of profile inter-
vals and time series intervals which can be considered as facts with multi-valued
measures. The latter case also has a many-many relationship between the time
series facts and the time interval dimension. Previous work [18] has considered
many-many relationships between fact tables and dimension tables. Our denor-
malized representation is similar to one of the methods of [18] whereas our other
approaches with fact tables referencing other fact tables and measure values in
arrays, respectively, are different.

Compared to the conference version [17], the current paper also provides
descriptions of how to allow specializations of the generic schema. This includes
how to translate queries between them and how to support modifications to the
data in a specialization such that the generic schema can be modified corre-
spondingly. The latter is related to updatable views as discussed, e.g., in [5,12],
and includes a range of new experiments that compare standard and specialized
schemas.

10 Conclusion

In this paper, we have presented a unified, generic DW schema for managing the
complex energy data in a smart grid, including actors playing roles, flex-offers,
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and different types of time series. The schema has a number of interesting com-
plexities such as facts about facts and composed non-atomic facts. The different
nodes will hold different parts of the data accordingly to the roles of the node
owners and the data will be at different aggregation levels at different nodes. The
same schema can, however, be used for all kinds of nodes. We have considered
different alternatives for the schema modeling using denormalization and arrays,
respectively, but based on the performance and space usage, the chosen design
is favourable. Further, we have described how to allow specialized versions of
the schema for different types of nodes, but such that queries can be formu-
lated on the generic schema and automatically be translated to the specialized
schemas (and vice versa) to make the results combinable. We also described how
to support modifications on specializations.

In the near future, we are going to extend the DW schema to be able to handle
other energy-specific entities such as operating schedules, parameters, and power
network constraints, statuses, loads, and spatial models. Furthermore, we will
perform large-scale simulations with realistic data amounts from different types
of nodes. We will also perform large-scale simulations using nodes that use role-
specific specializations of the general DW schema. As part of it, we will simulate
the update propagation between different specializations.
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Abstract. On-line Analytical Processing (OLAP) represents a good
applications package to explore and navigate into data cubes. Though,
it is limited to exploratory tasks. It does not assist the decision maker
in performing information investigation. Thus, various studies have been
trying to extend OLAP to new capabilities by coupling it with data min-
ing algorithms.

Our current proposal stands within this trend. It has two major
contributions. First, a Multi-perspectives Cube Exploration Framework
(MCEF) is introduced. It is a generalized framework designed to assist
the application of classical data mining algorithm on OLAP cubes.
Second, a Neural Approach for Prediction over High-dimensional Cubes
(NAP-HC) is also introduced, which extends Modular Neural Networks
(MNN)s architecture to multidimensional context of OLAP cubes, to
predict non-existent measures. A preprocessing stage is embedded in
NAP-HC to assist it in facing up the challenges arising from the particu-
larity of OLAP cubes. It consists of an OLAP oriented cube exploration
strategy coupled with a dimensions reduction step that reposes on the
Principal Component Analysis (PCA). Carried out experiments highlight
the efficiency of MCEF in assisting the application of MNNs on OLAP
cubes and the high predictive capabilities of NAP-HC.

Keywords: Data warehouse · OLAP · Data mining · Principal Com-
ponent Analysis · Multilayer Perceptrons · Modular Neural Networks

1 Introduction

Data warehouses are the corner stone in the Business Intelligence (BI) roadmap.
They are used to store analysis contexts within multidimensional data structures
referred to as Data Cubes [1]. They are usually manipulated through On-line
Analytical Processing (OLAP) applications to enable senior managers exploring
information and getting BI reportings through interactive dashboards.
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Needless to mention that OLAP tools provide efficient solutions to navigate
through data cubes. However, it is restricted to exploration tasks. Goil and
Choudhary argue that coupling OLAP with data mining techniques increases
its efficiency [2], and enables it to assist decision makers in performing advanced
knowledge discovery tasks. Since then, several studies put the focus on enhancing
OLAP by coupling it with data mining techniques to respond to various analysis
purposes, e.g. cube exploration [3] and association rule mining [4].

Nevertheless, despite the fact that, data warehouses should fundamentally
contain integrated data [1], generally, data cubes exploration discloses sparse
structures within several empty measures. In this respect, empty measures cor-
respond to non-existent facts, reflecting either out-of-date events that did not
happen, or future events that have not yet occurred and may happen in the
future. Empty measures represent a source of frustration for the enterprise man-
agement, especially when strategic decisions need to be taken.

Predicting non-existent measures would consolidate BI reporting. It would
even provide new opportunities to BI analysts by enlarging their dashboard
picture and empowering them with knowledge on what may occur if non-existent
facts had already happened. For instance, it will be very useful to a car Sale
Company to predict the potential turnover that a new agency could produce
in a new city by the end of next year. This indicator will definitely help the
company’s management to assess the potential investment.

Despite the fundamental Cood’s statement of goal seeking analysis models
(such as “What if” analysis) required in OLAP applications since the early
90’s [5], most of the recent OLAP products still lack an effective implementation
of this feature. Recently, new approaches have been attempting to extend OLAP
to prediction capabilities [6,7]. However, to the best of our knowledge; none of
them provides BI analysts with explicit values of non-existent measures.

The current work fits within the approaches trying to extend OLAP to advanced
abilities by coupling it with data mining techniques. It introduces two main con-
tributions. The first one consists of a novel generalized framework, called Multi-
perspectives Cube Exploration Framework (MCEF). It is designed to enable the
application of classical data mining techniques on OLAP cubes. As for the second
contribution, it consists of a measure prediction technique, calledNeural Approach
for Prediction over High-dimensional Cubes (NAP-HC). It is based on Modular
Neural Networks (MNN)s and designed under the MCEF formalism.

This paper is organized as follows. In Sect. 2, we expose a state of the art
of works related to predictions in data cubes. We introduce and formalize the
MCEF in Sect. 3. Section 4 details the formalization of NAP-HC. In Sect. 5, we
carry out experiments investigating the effectiveness and the efficiency of our
proposals. Finally, Sect. 6 summarizes our contributions and addresses future
research directions.

2 Related Work

In recent years, several studies have been addressing the issue of extending OLAP
to advanced analysis capacities. They were driven under different motivations
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Table 1. Proposals addressing prediction in data cubes

Proposal Goal Optimization Reduction Measures Values

Sarawagi et al. [3] Exploration + − − −
Palpanas et al. [8] Compression − + − −
Chen et al. [9] Prediction + − + −
Cuzzocrea [10] Query approximation + + + +

Chen et al. [11] Compression − + + −
Bodin-Niemczuk

et al. [6]
Prediction + − − −

Cuzzocrea and
Saccà [12]

Privacy preserving + − − +

Agarwal and
Chen [7]

Prediction + − + −

Our approach Prediction − + + +

e.g. discovery-driven cube exploration [3], association rules mining [13], cube
compression [11]. Thus, they are based on various concepts and methodologies.
In this section, we focus on those having a close linkage with prediction in data
warehouses.

Table 1 summarizes the proposals attempting to extend OLAP to predic-
tion. These proposals are detailed according to five main criteria: (1) What is
the overall goal of the proposal? (2) Does the proposal include an algorithmic
optimization? (3) Does it use a reduction technique? (4) Does it introduce new
classes of measures? And (5) Does it provide explicit predicted values of empty
measures? We note (+) if the proposal fulfils the criteria, and (−) if in the
opposite situations.

Sarawagi et al. proposed to assist data warehouse users when exploring data
by detecting exceptions [3]. Their approach is based on a log-linear model.
Palpanas et al. used the principle of information entropy to build a probabilis-
tic model capable of detecting measure deviations [8]. To compress data cubes,
Chen et al. introduced the concept of Prediction cubes, where the score or the
probabilities of measures are fetched beside their original values [9]. Prediction
Cubes are exploited to build prediction models, which predict low-level measures
from high-level pre-calculated aggregates. In [10], Cuzzocrea propose a statisti-
cal framework that provides probabilistic bounds on approximate answers. This
framework’s main goal consists at supporting OLAP applications in overcom-
ing queries’ answering, which are considered among the main bottleneck for of
OLAP applications. More specifically, it aims at enhancing the accuracy of the
approximate answers. To do so, the framework reposes on a sampling technique,
which ensures the quality of the approximate answers and generates the proba-
bilistic guarantees on their approximation’s degree. On the other hand, to ensure
the scalability of the proposal, the author extends it with a previously proposed
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data cube dimensions reduction technique [14], based on the Karhunen-Loeve
transform [15]. In [11], Chen et al. proposed a new type of multidimensional
structures called Regression Cubes, which contain compressible measures. Regres-
sion cube cells indicate measure variations and tendency. Cuzzocrea and Saccà
address the computation of privacy preserving OLAP aggregations [12]. Their
framework reposes on sampling-based data cube compression. Its strength con-
sists in the fact that the generated privacy preserving aggregates stills allow
the evaluation of approximate answers. Agarwal and Chen introduced a new
data cube class called Latent-Variable Cube, built over a statistical model [7]. It
enables the computation of aggregate functions, such as mean and variance over
latent variables. Bodin-Niemczuk et al. propose to equip OLAP with a regression
tree to predict measures of forthcoming facts [6].

Most of the cited proposals recognize that the combination of the important
dimensionality and huge volumes of data cubes represent a serious challenge for
most of the approaches trying to apply a data mining technique on OLAP cubes.
To face up this challenge, some proposals consider a preprocessing stage to reduce
the dimensionality effect on algorithm’s performance [8,10,11], while some oth-
ers rather rely on heuristics to optimize implemented algorithms [3,7,9,12].
In our case, we include a PCA-based preprocessing stage in our prediction pro-
posal, which reduces the data cubes dimensionality and generates concentrated,
information preserving training sets for the prediction stage.

We notice that all the approaches having different goals than measure’s pre-
diction do not provide explicit values for measures. While [3,6,8,10,12] provide
approximations of non-existent measures, [7,9,11] introduce new classes of data
cubes within new measures generated over the existing ones. Nevertheless, this
is totally justified since most of the cited proposals largely meet their main
objectives. Among them all, only Bodin-Niemczuk et al.’s proposal shares the
particular goal of non-existent measure prediction with us [6]. However, the
output of this approach is a set of discretized values of the targeted measures.
Subsequently, the relevance of the results is strongly depending of the nature and
the range of the produced intervals. This issue may not satisfy the analyst who
aims an explicit precise decision. The predictive model that we introduce in this
paper provides the decision maker with explicit predicted values of non-existent
measures, which do not require any further processing.

3 Multi-Perspectives Cube Exploration Framework

3.1 Motivations

Following the success of data warehouse technology, OLAP tools, which are lim-
ited to exploratory tasks, are no longer sufficient to meet the increasing needs
of OLAP users. Thus, several approaches have been trying to extend OLAP to
new abilities by coupling it with data mining techniques to deal with different
issues, e.g. cube exploration [3], association rules mining [13], non-existent mea-
sures prediction [16,17]. However, most of these proposals consist at specialized
solutions, which are tightly related to their particular goals. Thus, even if most
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Fig. 1. Possible views of a 3 dimensions cube

of them share the same general motivation of applying data mining algorithms
on OLAP cubes, they cannot exploit the already designed formalism of each
other’s.

We believe that a uniform standardized framework that assists the extension
classical data mining algorithms to OLAP cubes’ context could turn out to be
very useful. Firstly, it offers a uniform ready-to-deploy formalism for the forth-
coming proposals aiming to extend OLAP cubes context with mining algorithms.
Secondly, and most importantly, it opens the doors for interoperability between
the different proposals, since they will be based on the same formalism and han-
dling the same components type. Doing do, the outputs of one proposal could
be exploited as the inputs of another. For example, an analysis could start with
cube exploration [3], passes through association rules extraction [13] and ends
by non-existent measures prediction [16]. Doing so, the analysis would end-up
with more efficient reportings. Furthermore, implementing this platform opens
the doors for producing software packages that include multiple cube mining
algorithms, similarly to Weka and Tanagra packages [18], which are dedicated
to the bi-dimensional context.

On the other hand, the application of cube mining techniques is generally
preceded by an in-depth analysis step, which consists of a vertical cube explo-
ration that ends by selecting the most suitable hierarchical levels for the analy-
sis. However, even if it is commonly ignored, horizontal cube exploration, which
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consists at the selection of the most convenient dimensions’ distribution over
cube axes for the analysis, have to be considered.

Actually, each dimensions’ distribution across the cube axes generates a dif-
ferent cube view, i.e. data presentation. As illustrated in Fig. 1, multiple data
presentations could be obtained from a single three-dimensional data cube, fol-
lowing the dimensions’ distribution across its axes. Cuzzocrea and Mansmann
state that the efficiency of data representation has an important impact on the
data exploration and visualization [19].

Actually, the dimensions’ distribution defines the way data is delivered to
the data mining algorithm. Therefore, it has a great impact on multiple data
mining techniques, especially, the ones that are sensitive to the way data is deliv-
ered to them. For these techniques, considering a single dimensions’ distribution
may promote some dimensions at the expense of others, which causes the loss of
the relevant patterns that could be generated over the unexplored views. Nev-
ertheless, most of the researches ignore horizontal cube exploration and limit
their analysis to a single dimensions’ distribution, usually, implicitly, selected
following the user’s preferences.

In [20], Ramakrishnan and Chen highlight that mining large datasets requires
a principled way to explore the large space of possibilities and alternatives.
We further claim that; in order to obtain representative results from rich versatile
structures such as data cubes, horizontal cube exploration should be addressed
and reinforced.

To concretize these considerations, we design a Multi-perspectives Cube
Exploration Framework (MCEF). It is a generalized framework that assists the
application of classical data mining algorithm on OLAP cubes, while supporting
both horizontal and vertical cube explorations, designed to meet the following
goals:

1. Supporting the application of classical data mining algorithms on OLAP
cubes;

2. Considering both horizontal and vertical data cubes exploration approaches;
3. Ensuring equitable contributions of the dimensions to the analysis;
4. Preserving the semantics linking members to their respective dimensions and

to other dimensions’ members;
5. Covering all the possible measures’ variations in terms of dimensions’ distri-

butions;
6. Enabling BI analyst to define customized analysis contexts.

3.2 Multi-Perspectives Cube Exploration Framework

In this subsection, we thoroughly describe and elaborate the MCEF formalism.
We start by recalling Ben Messaoud et al. data cube definitions, which we

intend to reuse [13]. Afterwards, we introduce the new definitions required to
develop the MCEF formalism.

We start by recalling [13] data cube definitions, which we reuse in MCEF
formalization. Let C be a data cube having the following properties:



Modular Neural Networks for Extending OLAP to Prediction 79

– C has a nonempty set of d dimensions D = {Di}(1≤i≤d);
– C contains a nonempty set of m measures M = {Mq}(1≤q≤m);
– Hi is the set of hierarchical levels of the dimension Di. Hi

j ∈ Hi is the jth

hierarchical level of Di. In Fig. 2, H2
1 of D2 is Product name.

– Aij is the set of members of the hierarchical level Hi
j ; θijt ∈ Aij is the tth

member of the jth hierarchical level of the dimension Di. In Fig. 2, θ225 is
iPod.

Definition 1 Inter-dimensional predicate. Let Da ∈ D be a nonempty set
of p dimensions {D1, ...,Dp}(1≤p≤d) from the data cube C. An inter-dimensional-
predicate defines a conjunction of non-repetitive members, i.e., each dimension
has a distinct member in the expression. Θa = (θmi

t ∧ ...∧θnjs ) is called an inter-
dimensional predicate in Da if θmi

t is the tth member of the ith hierarchical level
of the dimension Dm and θnjs is the sth member of the jth hierarchical level of
the dimension Dn, and {Dm,Dn} ∈ Da.

In Fig. 2, let Da = {D1,D2} be a set of dimensions of C, a random inter-
dimensional predicate Θa can of be of the form: (〈θ111 ∈ A11〉∧ 〈θ225 ∈ A22〉), e.g.
(〈quarter1〉 ∧ 〈iPod〉).

Fig. 2. Example of a data cube

Hereafter, we define the new concepts required to formalize our proposal.

Definition 2 Inter-dimensional hierarchical predicate. Let Da ∈ D be a
nonempty set of p dimensions {D1, ...,Dp}(1≤p≤d) from the data cube C. An
inter-dimensional hierarchical predicate defines a conjunction of distinct hier-
archical levels of non-repetitive dimensions. Ωa = (Hs

m ∧ ... ∧ Ht
n) is called an

inter-dimensional hierarchical predicate of Da if Hs
m is the mth hierarchical level

in Ds, Ht
n is the nth hierarchical level in Dt and Ds �= Dt.
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In Fig. 2, let Da = {D1,D2} be a set of dimensions of the data cube C.
Ωa

i = (〈H1
1 ∈ H1〉 ∧ 〈H2

2 ∈ H2〉), which is, (〈Quarter〉 ∧ 〈Product name〉) is a
random inter-dimensional hierarchical predicate of Da.

In the sequel of this paper, let Dc = {D1, . . . , Dc}(0≤c≤d−2),
Dv = {D1, . . . , Dv}(0≤v≤d−2) and Dr = {D1, . . . , Dr}(0≤r≤d−2) be three non-

empty sets of c, v and r distinct dimensions, respectively; with c+v + r ≤ d and
Ωc, Ωv, Ωr be three inter-dimensional hierarchical predicates of Dc, Dv and Dr,
respectively.

Let Θc, Θv, Θr be three inter-dimensional predicates in Dc, Dv, Dr, respec-
tively, and let Ωc, Ωv, Ωr be three inter-dimensional hierarchical predicates of
Dc, Dv, Dr, respectively.

Fig. 3. Static-cube, static-slice and static-fibre

Definition 3 Static-cube. We denote by C[Ωc, Ωv, Ωr] a static-cube of a data
cube C. It is the fixed distribution of the cells obtained by the application of the
OLAP Dice operator on C, following, Ωc, Ωv and Ωr . C is identifiable by the
distribution of Ωc, Ωv, Ωr, across C axes.

The dimensions of C are distributed over three classes; Contexts dimensions Dc,
Variables dimensions Dv and Rows dimensions Dr, which we refer to as MCEF
dimensions classes. Each of these classes is designed to ensure a particular role:

– Contexts dimensions : The set of attributes generated over these dimen-
sions combination serves in identifying the different analysis subcontexts

– Variables dimensions : The set of attributes generated over these dimen-
sions combination is considered as a set of variables.

– Rows dimensions : The set of attributes generated over these dimensions
combination is considered as a set of observations.

The main goal of the static-cube concept is to depict all the possible dimensions’
distributions across the cube axes. An illustrative example is shown in Fig. 3.
The latter represents the static-cube C[Ω1, Ω2, Ω3], with Dc = {D1}, Dv = {D2},
Dr = {D3} as the sets of Contexts, Variables and Rows dimensions, respectively.
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Following the BI analyst preference, an analysis could either consider the
most relevant static-cube to the analysis or involve the entire set of static-cubes.

On the other hand, a single three-dimensional OLAP cube’s slice can generate
two distinct bi-dimensional tables, with one representing the transpose of the
other. This might cause the confusion of the data mining technique and lead to
inconsistent results. To solve this issue, in what follows, we introduce the concept
of static-slice, which enables the distinction between the different bi-dimensional
tables that can be generated over a single OLAP slice.

Definition 4 Static-slice. We denote by S[Θc, Ωv, Ωr] a static-slice of a static-
cube C. It is the fixed distribution of the cells obtained by the application of the
OLAP Slice operator on C, following Θc, Ωv and Ωr. S have the same MCEF
dimensions distribution of C.

The concept of static-slice is designed to enable browsing static-cubes in
a principled way, following the different MCEF classes. For instance, the dark
grey coloured cells in Fig. 3 represent the static-slice S[Θ1

1, Ω
2, Ω3].

Definition 5 Static-fibre. We denote by F [Θc, Θv, Ωr] a static-fibre of a static-
slice S. It is the fixed distribution of the cells obtained by the application of the
OLAP Dice operator on C, following Θc, Θv and Ωr. F have the same MCEF
dimensions distribution of S.

The concept of static-fibre is designed to enable browsing static-slices in
a principled way, following the different MCEF classes. As instance, the light
grey coloured cells in Fig. 3 represent the static-fibre F [Θ1

1, Θ
2
4, Ω

3].
Data mining could be classified into two distinct categories. The first one

concerns the data mining techniques that are not sensitive to the way data is
provided to them. Therefore, they would generate the same mining outcome
with the different static-cube. As for the second category, it concerns the data
mining that are sensitive to the way data is provided to them, which makes
each static-cube a unique dataset. For this type of category, the most optimal
scenario that ensures equitability between dimensions consists in involving all
the potential static-cubes in the analysis. Then, following the analysis aims, the
BI analyst can either combine the obtained results or consider them separately.
Still, this solution is very expensive and may turn to be non-effective, especially
if in the case of online deployment. The other alternative consists in limiting the
analysis to a the most relevant the static-cubes.

4 Neural Approach for Prediction over High-Dimensional
Cubes

4.1 Overview

As far as we know, despite their proven performances, Neural Networks (NN)s are
not yet exploited in OLAP cubes’ context. This is due to multiple factors. First,
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NNs generalization capabilities become limited when handling high-dimensional
datasets. Second, the computational requirements of NNs increase drastically
with the increase of inputs’ number, which slows down the learning rates [21].
Third, highly correlated data may corrupt the training phase of NNs and degrade
their generalization capability [22].

On the other hand, Modular Neural Networks (MNN)s represent a well-
established technique in the field of machine learning. They are generally com-
posed by set of (NN)s called modules and a combiner system [23]. They are
based on the “divide and conquer” principle. They undertake a complex prob-
lem, divide it into smaller tasks and distribute them over the modules. Modules
can be trained independently or sequentially targeting the same task. While, the
combiner system processes their outputs to generate a conclusive analysis result
of the entire system.

Fig. 4. Overview of NAP-HC architecture

Multiple researches claim that MNNs overcome multiple limitations of single
NNs [23–25]. Melin and Castillo state that MNNs are very effective to overcome
the problems defined over high-dimensional space and having high complex-
ity [25]. Happel and Murre [26] state that MNNs enable the application of NNs
on large-scale data [26]. Gallinari claim that MNNs reduce the model complex-
ity, provide robustness and enable data sources fusion [24]. Sharkey sheds the
light on the fact that decomposing a large complex task into modular compo-
nents makes the system easier to understand and to modify [23]. These factors,
make MNNs highly promising candidates to overcome the limitations of NNs
with multidimensional large structures, such as data cubes.

Despite the fact that MNNs might resolve multiple problems related to the
application on NNs on OLAP cubes, the high dimensionality and the correlated
measures still represent thriving challenges that could deteriorate the train-
ing process quality. Recently, some studies have been interested in Principal
Component Analysis (PCA) to reduce the dimensionality of prediction models
inputs [27,28]. The PCA is an exploratory statistical procedure, which aims at
transforming the original correlated variables into a smaller set of uncorrelated
ones, called principal components [29]. Its key idea is to project the initial data
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on a new orthogonal subspace to find the linear combinations that define new
summarizing variables, which concentrate the largest possible variance of the
original ones.

Therefore, we find that the PCA represents a good solution to assist in solving
the limitations caused by the important number of inputs and the measures
correlation. We intend to follow this trail as a backstage preprocessing step that
would ensure the generation of new reduced training sets that preserves the
measure variability.

On the other hand, OLAP measures have multiple linear variations following
the different axes of the data cube. Considering a single measure variation may
make the prediction process fall into the pitfall of promoting a particular set of
dimensions at the expense of the other ones. This could generate a prediction
model that may not reflect the complete multidimensional context.

Fig. 5. Overview of the preprocessing stage of a single static-cube

To tackle this issue, we introduce the Neural Approach for Prediction over
High-dimensional Cubes (NAP-HC). The NAP-HC’s main goal is to overcome
the challenges of the application of Neural Networks (NN)s within the context
of OLAP cubes. To do so, we design it over the MCEF, which is dedicated to
assist the application of classical data mining techniques on data cubes.

The NAP-HC combines the modular aspects of MCEF and MNN to provide
a prediction solution that enables the application of NNs on a data cube, while
covering all its data presentations. As shown in Fig. 4, NAP-HC is carried out in
two major stages. The first one is a preprocessing stage, which is divided, in its
turn, into two steps. The first one consists in extracting the MCEF substructures.
As for the second step, it consists at applying the PCA on the MCEF substruc-
tures to transform their correlated attributes into reduced sets of decorrelated
principal components. The second stage is a prediction one, which considers each
reduced dataset, obtained over the first stage, as the learning set of an indepen-
dent NNs module. Then, it trains a NNs combiner system, which considers the
outputs of each module as its own inputs, to come out with a unique predicted
measure of each targeted cell.
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To sum up, the NAP-HC overarching goals are as follows:

1. Generating reduced, information preserving training sets from the original
data cube;

2. Adapting NNs to the multidimensional structure of data cubes;
3. Predicting explicit values of non-existent measures;
4. Assessing predicted measures with quality indicators.

4.2 Preprocessing Stage

The main goal of this stage is to generate concentrated, independent, information-
preserving data subsets, which can be exploited later as the training sets of the
independent modules. As illustrated in Fig. 4, it is based on two main steps. The
first one consists in decomposing the complex multidimensional data cube domain
into a set of linear sub-domains, defined by the MCEF substructures. As for the
second step, it is a dimensions reduction step, which consists in applying PCA on
the obtained MCEF substructures.

The NAP-HC exploits MCEF as a modular principled cube explorations
technique. First, the dimensions are distributed over three mutually exclusive
sets, following the analysis’s goals. Each of these sets plays a different role as
one of MCEF dimensions classes. Then, all the possible MCEF classes’ combina-
tions are considered to define and extract potential static-cubes, which consist
of distinct data presentation following the dimensions’ distribution over its axes.

The second step of the preprocessing stage is illustrated in Fig. 5. It is a
dimensions reduction and data transformation step. Its main goal is to reduce
the attributes of each static-cube Variables dimensions and to transform its
members into a reduced, concentrated set of principal components. It starts
by extracting sequentially each static-cube static-slices by sequentially applying
MDX queries.

Static-slices are not dynamic such as classic OLAP slices, so they can be
directly considered as disjunctive tables with Variables dimensions as attributes’
dimension and Rows dimensions as instances’ dimension. The PCA is then
applied sequentially on the static-slices, to generate a new type of slices, which
we refer to as pc-slice. Each pc-slice shares the same Rows and Contexts dimen-
sions’ sets with its associated static-slice. However, its Variables dimensions are
replaced with a new dimension, referred to as pc-dimension. It has the set of
retained principal components as attributes. As for the obtained factorial coor-
dinates, they are stored as the values of the pc-slices.

The set of pc-slices generated over the static-slices of the same static-cube, are
gathered as a new multidimensional structure that we call pc-cube. Actually, a pc-
cube is a static structure associated to one particular static-cube. Unlike regular
OLAP cubes, pc-cubes are not dynamic and do not support OLAP operations.
Their role consists in providing an organized storage solution for the obtained
factorial coordinates to track their membership to the original cube cells. They
are trackable from the data cube through a new type of measure, which we
call pc-measure. It is an indexation measure that links each cell to its adequate
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factorial coordinates in the pc-cubes. It is embedded within the original cells’
measures after the application of PCA on each static-slice.

The usages of these new PCA oriented concepts provide an efficient storage
solution. It enables discarding each static-cube from the main memory, as soon as
its associated pc-cube is generated. The storage of pc-cubes is less expensive than
the storage of static-cubes, since they represent their reduced version. Doing so,
the preprocessing stage provides reduced, decorrelated predictors that require a
minimum storage cost.

Algorithm 1. Static-cube generation and reduction
Input: Ωc, Ωv, Ωr

Output: The pc-cube Pcc
1 C ← generate cube-face(Ωc, Ωv, Ωr);
2 Pcc ← ∅ ;
3 i = 0;
4 foreach nonempty Θc

i of Ωv do
5 Si ← generate slice(Θc

i , Ω
v, Ωr);

6 Pcsi ← PCA(Si);
7 Pcc ← Pcc + Pcsi;
8 i ← i + 1;

9 return(Pcc);

The static-cube generation and reduction is provided inAlgorithm 1. It requires
three inter-dimensional hierarchical predicates Ωc, Ωv, Ωr translating the three
MCEF classes as inputs and processes as follows:

– The static-cube C is generated according to the inter-dimensional hierarchical
predicates Ωc, Ωv and Ωr.

– Each inter-dimensional hierarchical predicate Ωc
i ⊂ Ωc is instantiated to the

next nonempty inter-dimensional predicate Θc
i .

– The static-slice S[Θc
i , Ω

v, Ωr]; Si is then generated.
– PCA is applied on Si and the obtained factorial coordinates are stored into

the pc-slice pcsi.
– pcsi is added to the pc-cube Pcc.
– the output of this algorithm is a fully indexed pc-cube, representing the

reduced version of the treated static-cube.

We admit that, similarly to of the conventional OLAP preprocessing phases,
this preprocessing stage is a time-consuming one. Therefore, we believe that it
should be executed in backstage on a regular basis by the end of each periodic
data loading of the data warehouse.

4.3 Prediction Stage

The main goal of this stage is to learn from the outputs of the preprocessing
stage, which are the pc-cubes, to come out with unique explicit value for each
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targeted measure. To the best of our knowledge, PCA has not been yet exploited
with MNNs by any previous work.

By virtue of their operation simplicity, their excellent generalization capacity
and their ability to approximate any universal function, Multilayer Perceptrons
(MLP)s represent one of the popular NNs [30]. Thus, for all the sub-networks
that compose our system, we adopt the MLPs architecture. In addition, several
theoretical and empirical studies show that a single hidden layer is sufficient
to achieve a satisfactory approximation of any nonlinear function [30]. Thus,
we associate a three layers MLPs architecture, including a single hidden layer
for each sub-network. We also use the gradient back-propagation algorithm [31],
that has proven its usefulness in several applications [30,32]. We associate it with
the conjugate gradient learning method and the sigmoid activation function.

The prediction system is composed of an interconnection of a set of module-
networks and a single combiner-network. The number of module-networks is
equal to that of pc-cubes obtained of the preprocessing stage. Each module-
network is trained independently. It considers the factorial coordinates as inputs
and targets the measure’ values. In addition, each module-network has three
layers:

1. An input layer, which contains a number of neurons equal to that of of the
principal components of the pc-cube associated to the module;

2. A hidden layer, which contains an empirically selected number of neurons;
3. An output layer that contains a single output.

As for the combiner-network, it follows the same architecture as the modules
except that its input layer neurons’ number is equal to the number of module-
networks. It brings together all the module-networks output as its own inputs.
Thus, the input vector of the combiner-network is obtained by propagating the
factorial coordinates associated to the same cell into all the module-networks.
The measure’s value of this cell represents the output of the combiner-network.
This process is repeated until the combiner-network reaches the convergence
status at its turn.

The pseudo-code of the training algorithm is described in Algorithm2.
As inputs, it requires the data cube C, the set of the obtained over the preprocess-
ing stage pc-cubes {Pcc} and the Root Mean Squared Error(RMSE) minimum
value RMSE-min. For each module-network, NAP-HC starts by selecting a
random set of cells as training set from the data cube, A[], and the pc-cube,
Pcc, associated to the treated module. For each training cell, the algorithm
accesses the pc-measure, pc, and fetches it to get its appropriate factorial coor-
dinates vector, fc[], from the pc-cube. fc[] is then injected into the input layer
of the module-network, while targeting the initial measure’s value. This process
is repeated for each module-network until there are no more training instances
or until the RMSE reaches RMSE-min value. After performing the sequential
independent training of all the module-networks, the combiner-network becomes
ready to be initialized and trained.

We stress that our approach is not a cube completion technique, i.e. it is not
designed to fill all empty measures of a data cube. However, the main goal of
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Algorithm 2. Training the prediction system
Input: C, {Pcc}, RMSE − min
Output: Trained prediction system

1 foreach module do
2 Pcc ← select Pcc({Pcc});
3 module ← initialize(module);
4 A[] ← generate random − cells(C);
5 while ((A[] �= ∅) and (RMSE(module) < RMSE − min)) do
6 m ← get measure(C, A[]);
7 pc ← get pc − measure(Pcc, A[]);
8 fc[] ← get factorial − coordiantes(Pcc, pc);
9 propagate(module, fc, m);

10 back − propagate(module, fc, m);
11 adjust(module);

12 combiner ← initialize(combiner);
13 A[] ← generate random − cells(C);
14 while ((RMSE(combiner) < RMSE − min) and (A[] �= ∅)) do
15 combiner − input[] ← ∅;
16 foreach module do
17 m ← get measure(C, A[]);
18 pc ← get pc − measure(Pcc, A[]);
19 fc[] ← get factorial − coordiantes(Pcc, pc);
20 combiner − input[] ← combiner − input[] + propagate(module, fc, m);

21 propagate(combiner, combiner − input[], m);
22 back − propagate(combiner, combiner − input[], m);
23 adjust(combiner);

24 return(Trained prediction system);

Table 2. Static-cubes description

Static-cube Contexts Variables Rows # retained components

C1 Location Education Origin 3

C2 Location Origin Education 4

C3 Education Location Origin 10

C4 Education Origin Location 4

C5 Origin Location Education 12

C6 Origin Education Location 4

NAP-HC is to promptly come-out with a predicted value of any empty measure
upon the request of the BI analyst.
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5 Experimentation

We implemented an experimental prototype of our approach, in Java, on a run-
ning on Microsoft Windows 7 with Intel Core 2 Duo, 2 GHz of CPU proces-
sor, 4 GB main memory workstation. We used Microsoft SQL Server Analysis
Services 2008 (SSAS) as an OLAP server. We performed our experiments on the
database American Community Surveys 2000–2003 1, after adapting it to the
OLAP context. It is a real-life database of the U.S.A census that concerns the
population samples treated between 2000 and 2003.

5.1 Analysis Context

We consider a four dimensions data cube; Location, Origin, Education and
Time, with 3.8 million facts. The Location dimension contains the geographic
data of the census. Origin dimension contains information about the racial
structure of the U.S.A population. Education dimension contains information on
the education levels reached by the subjects of the census. We aim at predicting
the number of people of a certain race, according to their cities and their levels
of education in 2003.

Fig. 6. Prediction quality

To be able to analyze and compare the different static-cubes outcomes, we
limited each MCEF class to one dimension Location, Education and Origin
and we selected the member 2003 of Time dimension. This led to the generation
of six static-cubes as summarized by Table 2. We selected the hierarchical levels
Location , Education and Origin, respectively. These levels include 51, 14 and
10 members, respectively. We investigated the measure person-count.
1 American Community Surveys is accessible from the official site IPUMS-USA (Inte-

grated Public Use Microdata Series); http://sda.berkeley.edu.

http://sda.berkeley.edu
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We elaborated a predictive system that faithfully represents our proposed
architecture. After the application of the preprocessing stage, we ended up with
the 6 pc-cubes from which we retained different numbers of principal components
described in Table 2. As for the prediction stage, we have set the number of
hidden neurons of each sub-network’s hidden layer to the half of its inputs.
We used the 10-fold cross-validation technique and the Root Mean Squared
Error (RMSE) as a quality indicator. For accuracy reasons, more specifically,
to avoid the impact of the random weights initialization of NNs, we ran all the
experiments five times and provided the resulting means of RMSE and execution
time in this section.

5.2 Prediction Quality

Figure 6 illustrates the prediction performances for all the sub-networks that
compose our predictive system. We notice that RMSE values vary remarkably
from of a module-network to another one. This is justified by the particularity
of the different data structures of each pc-cube. We find that the two module-
networks that provide the largest RMSEs, and thus the worst prediction quality,
are Mn1 and Mn3. We note that these two module-networks consider Origin
as their Rows dimension.

Fig. 7. Training time consumption

We recall that in our proposal, the number of available instances in a train-
ing set for a module-network is defined by the number of the Rows dimensions’
members. In our case, Origin dimension is the poorer dimension in terms of
members’ number (10 members). Subsequently, the module-networks that con-
sider it as their Rows dimension have the smallest number of training instances.
The poor prediction quality can be due to that this number has been not suffi-
cient to ensure the module-network learning. Inversely, we found that Mn4 and
Mn6, which consider Location as their Rows dimension, produce the smallest
RMSE values among all module-networks.
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Fig. 8. Performances of the different prediction systems

Interestingly enough, we find that the obtained RMSEs values are generally
acceptable. Still, the best prediction performance is achieved by the combiner-
network. It surpasses all the module-networks in the training and the test phases.
This confirms the efficiency of the modular architecture in generating better
prediction by combining the knowledge of all the module-networks. Since, each
module-network has become an expert in its particular cube perspective, joining
the modules into an ensemble make them compensate each other’s limitations
through the combiner-network, which combines all static-cubes bi-dimensional
knowledge and convert it into a multidimensional one.

As shown on Fig. 7, the training time varies from a sub-network to another
one. The most time requiring module-networks are Mn3 and Mn5. This is due
to the fact that they consider Location, which is the richest dimension in terms
of members’ number, as Variables dimension, which led to retaining a larger num-
ber of principal components after PCA application. Consequently, these module-
networks have the largest number of input and hidden neurons among all module-
networks, what makes them require a larger number of pc-measures accesses to
fetch the factorial coordinates. Moreover, their important number of neurons leads
to more complex computations, and thus they consume more time to converge.

Furthermore, we find that the combiner-network is the most time consuming
among all sub-networks. This is explained by the fact that at each turn of its
training phase, it has to access to all the module-networks’ principal components
to obtain its own input vector.

5.3 Novel Architecture Contributions

In the previous experiment, we found that several module-networks provide very
modest performances compared to the other ones. Following these results, a
logical question arises: How would the system perform if we eliminate the
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module-networks that produce the worst results from the analysis? To answer
this question, we designed and trained an additional prediction system, which we
call Limited-network. The latter is similar to NAP-HC, except that it does not
involve Mn1 nor Mn3, i.e. the module-networks that performed the least efficient
predictions through the previous experiment. Surprisingly enough, as shown in
Fig. 8, Limited-network provided worst performances than Combiner-network.
This can be explained by the fact that even if the eliminated module-networks
are not useful to perform the prediction task individually, they have a positive
role in enhancing the combiner-network knowledge about the multidimensional
structure.

To further investigate the contributions of the modular architecture, we
trained another system that follows the classical MLPs architecture, which we
refer to as Classical-network. It considers all the factorial coordinates indexed
by the pc-measure of a particular cell as the inputs of one single large MLP.
In other words, it merges all the training subsets into a unique large one. As
shown in Fig. 8, Classical-network provided the worst performances among
all the studied architectures. The näıve fusion of the training sets caused the
loss of the particularity of the information obtained over each static-cube. More-
over, the large number of inputs limited the MLP generalization abilities. This
confirms the positive contributions of MCEF and the efficiency of the combina-
tion of MCEF and MNNs.

6 Conclusion and Perspectives

In this paper, we encouraged the exploitation of machine learning techniques
to extend OLAP to advanced abilities. The key idea of our proposal is that,
these sophisticated techniques can be exploited, in the context of OLAP cubes,
even with the challenges raised by their important dimensionality and volume-
try. First, we proposed a generalized cube exploration framework, designed to
assist the application of machine learning algorithms on OLAP cubes. Then, we
exploited it to propose a novel MNNs solution called NAP-HC, which predicts
non-existent measures’ values over OLAP cubes.

NAP-HC makes use of enhanced procedure to solve the constraints raised by
applying sensitive techniques as NNs on a complex data structure like OLAP
cubes. It relies on two main stages. A preprocessing one that exploits MCEF
to explore the data cube in a principled way, and generate reduced informa-
tion preserving training subsets by applying PCA on the MCEF substructures.
As for the second stage, it exploits the outputs of the first one to train a MNN.

The experimental study proved the efficiency of MCEF in enabling the applica-
tion of classical data mining algorithms on OLAP cubes. Further, it demonstrated
the good prediction performances of NAP-HC and helped to get further insights of
the different results obtained over the sub-systems, which form the global model.
Furthermore, it compared our proposal against the classical MLPs architecture
and confirmed the successful combination between MCEF and MNN.

In future work, we plan to include a framework that explains the reasons of
non-existent measures occurrences, similarly to that of [33], which is performed
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on classical bi-dimensional data. Cuzzocrea and Mansmann state that multidi-
mensional visualization tools provide more comprehensive analysis for multiple
cube mining tasks, including discovering new knowledge from large volumes of
multidimensional data [19]. Therefore, we intend to equip the NAP-HC with a
visualization tool to assist the prediction phase. We also would like to involve the
hierarchical structure of data cubes in our system. This way, we could exploit
the different levels of aggregation to predict lower/higher-levels facts. Finally,
we believe that modeling a theoretical relation between the reduction and the
prediction stages could be very useful to optimize our proposal.
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13. Messaoud, R.B., Rabaséda, S.L., Boussaid, O., Missaoui, R.: Enhanced Mining
of Association Rules from Data Cubes. In: Proceedings of the 9th ACM Inter-
national Workshop on Data Warehousing and OLAP (DOLAP’2006), pp. 11–18.
ACM Press, Arlington (November 2006)



Modular Neural Networks for Extending OLAP to Prediction 93

14. Cuzzocrea, A.: Overcoming limitations of approximate query answering in OLAP.
In: 9th International Database Engineering and Application Symposium. IDEAS
2005, pp. 200–209 (July 2005)

15. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall Inc, Upper
Saddle River, NJ, USA (1989)

16. Abdelbaki, W., Ben Messaoud, R., Ben Yahia, S.: A neural-based approach for
extending OLAP to prediction. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012.
LNCS, vol. 7448, pp. 117–129. Springer, Heidelberg (2012)

17. Abdelbaki, W., Ben Yahia, S., Ben Messaoud, R.: NAP-SC: a neural approach for
prediction over sparse cubes. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA
2012. LNCS, vol. 7713, pp. 340–352. Springer, Heidelberg (2012)

18. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Elsevier, Morgan Kaufmann, Burlington (2005)

19. Cuzzocrea, A., Mansmann, S.: OLAP visualization: models, issues, and techniques.
In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn,
pp. 1439–1446. IGI Global, Hershey, PA (2009)

20. Ramakrishnan, R., Chen, B.C.: Exploratory mining in cube space. Data Min.
Knowl. Disc. 15(1), 29–54 (2007)

21. Azam, F.: Biologically inspired modular neural networks. Ph.D. thesis, Virginia
Polytechnic Institute and State University, Virginia, USA (2000)

22. Bishop, C.: Neural Networks For Pattern Recognition. Oxford University Press,
Oxford (1995)

23. Sharkey, A.J. (ed.): Combining Artificial Neural Nets: Ensemble and Modular
Multi-Net Systems, 1st edn. Springer-Verlag New York Inc, Secaucus, NJ, USA
(1999)

24. Gallinari, P.: The Handbook of Brain Theory and Neural Networks. MIT Press,
Cambridge, MA, USA (1998)

25. Melin, P., Castillo, O.: Modular neural networks. In: Hybrid Intelligent Systems for
Pattern Recognition Using Soft Computing. Studies in Fuzziness and Soft Com-
puting, vol. 172, pp. 109–129. Springer, Heidelberg (2005)

26. Happel, B.L., Murre, J.M.J.: The design and evolution of modular neural network
architectures. Neural Netw. 7, 985–1004 (1994)

27. Tshilidzi, M.: Computational Intelligence for Missing Data Imputation, Esti-
mation, and Management: Knowledge Optimization Techniques. IGI Publishing,
Hershey, PA (2009)

28. Wang, Z., Xu, J., Lu, F., Zhang, Y.: Using the method combining PCA with BP
neural network to predict water demand for urban development. In: Proceedings
of the 2009 Fifth International Conference on Natural Computation. ICNC 2009,
pp. 621–625. IEEE Computer Society, Washington (2009)

29. Hotelling, H.: Analysis of a complex of statistical variables into principal compo-
nents. J. Educ. Psychol. 24(7), 498–520 (1933)

30. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

31. Rumelhart, D., McClelland, J.: Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Foundations. Computational Models of Cognition and
Perception. MIT Press, Cambridge (1986)

32. Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice Hall, Prentice
Hall International Editions Series (1999)

33. Ben Othman, L., Ben Yahia, S.: Yet another approach for completing missing val-
ues. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) CLA 2006. LNCS (LNAI),
vol. 4923, pp. 155–169. Springer, Heidelberg (2008)



Cut-and-Rewind: Extending Query Engine
for Continuous Stream Analytics

Qiming Chen(&) and Meichun Hsu

HP Labs, Hewlett Packard Co., Palo Alto, CA, USA
{qiming.chen,meichun.hsu}@hp.com

Abstract. Combining data warehousing and stream processing technologies
has great potential in offering low-latency data-intensive analytics. Unfortu-
nately, such convergence has not been properly addressed so far. The current
generation of stream processing systems is in general built separately from the
data warehouse and query engine, which can cause significant overhead in data
access and data movement, and is unable to take advantage of the functionalities
already offered by the existing data warehouse systems.
In this work we tackle some hard problems in integrating stream analytics

capability into the existing query engine. We define an extended SQL query
model that unifies queries over both static relations and dynamic streaming data,
and develop techniques to extend query engines to support the unified model.
We propose the cut-and-rewind query execution model to allow a query with
full SQL expressive power to be applied to stream data by converting the latter
into a sequence of “chunks”, and executing the query over each chunk
sequentially, but without shutting the query instance down between chunks for
continuously maintaining the application context across the execution cycles as
required by sliding-window operators. We also propose the cycle-based trans-
action model to support Continuous Querying with Continuous Persisting
(CQCP) with cycle-based isolation and visibility.
We have prototyped our approach by extending the PostgreSQL. This work

has resulted in a new kind of tightly integrated, highly efficient system with the
advanced stream processing capability as well as the full DBMS functionality.
We demonstrate the system with the popular Linear Road benchmark, and report
the performance. By leveraging the matured code base of a query engine to the
maximal extent, we can significantly reduce the engineering investment needed
for developing the streaming technology. Providing this capability on proprie-
tary parallel analytics engine is work in progress.

1 Introduction

Streaming analytics is a data-intensive computation chain from event streams to
analysis results. In response to the rapidly growing data volume and the pressing need
for lower latency, Data Stream Management Systems (DSMSs) provide a paradigm
shift from the load-first analyze–later mode of data warehousing [8, 16, 17, 19].

1.1 The Problem

However, the current generation of DSMS is in general built separately from the data
warehouse query engine, due to the difference in handling stream data and static data;
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as a result, the data transfer overhead between the two has become a performance and
scalability bottleneck [4, 6, 10]. The standalone DSMS’s also lack the full SQL
expressive power and DBMS functionalities of managing persistent data. It does not
have the appropriate transaction support for continuously persisting and sharing results
along with continuous querying. As stream processing evolves from simple to com-
plex, these functionalities are likely to be redeveloped.

In this paper we tackle the following technical challenges in integrating stream
processing with data warehouse query engine:

– A query engine manages relations (tables) which contain well defined sets. How-
ever, a stream is unbounded, and never reaches the “end of data”, which would pose
problems with the existing query model and transaction model.

– Stream processing is often based on windows, and there is a need to apply a query
repeatedly to chunks of unbounded stream data that fall in consecutive windows.
Stream analytics also requires operators that are history sensitive, such as sliding
window operators, and there is a need to continuously and efficiently maintain the
state or a synopsis of the data that falls in the previous windows.

– During stream processing, there is a need to persist periodically to allow the
analysis results to be visible to other concurrent applications, sometimes even to
another branch of the same query. This will require extended transaction semantics
that is not supported with existing query engines.

1.2 State of the Art

Since a stream query is defined on unbounded data and in general limited to
non-transactional event processing, the current generation of DSMSs is mostly built from
scratch independently of the database engine. Big players along this direction include
System S (IBM) [15], STREAM (Stanford) [3], TelegraphCQ (Berkeley) [5], as well as
Aurora, Borealis, etc. [1, 2, 7, 11, 17]. Two recently reported systems, the TruSQL
engine [16] developed by Truviso Inc, USA, and the DataCell engine [19] developed by
CWI, Netherlands, do leverage database technology but are characterized by providing a
workflow like service for launching a SQL query for each chunk of the stream data
during stream processing. To the best of our knowledge, none of the existing approaches
has leveraged the query engine without introducing an additional loosely-coupled
“middleware” layer. Oracle currently offers a “continued query” feature but it is based on
automatic view updates and is not the same feature as stream processing.

Managing data-intensive stream processing outside of the query engine causes the
data copying and moving overhead, and fails to leverage the full SQL and DBMS
functionality.

Processing streams by multiple queries may incur performance penalty due to the
overhead for frequent query setup and teardown, and more seriously, cause the
semantic difficulty in chunk-wise data manipulation. Since the backend query execu-
tion processes are in isolated memory contexts, processing each data chunk by an
individual query instance cannot maintain the application context, e.g. the data buffered
with User Defined Functions (UDFs) continuously across multiple query instances,
thus unable to deal with sliding-window like operations.
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To the best of our knowledge, none of the existing approaches has solved the
difficulty of processing stream in terms of truly continued SQL query with chunk-wise
semantics but continuously tracked application context, by leveraging the query engine
without introducing an additional loosely-coupled “middleware” layer.

1.3 The Solution

We view a query engine essentially as a streaming engine, although this potential has
not been thoroughly explored. With this vision, we advocate an extended SQL model
that unifies queries over both streaming and static relational data, and a new archi-
tecture for integrating stream processing and DBMS to support continuous,
“just-in-time” analytics with window-based operators and transaction semantics.

Our proposed stream model is based on dividing an infinite stream of relation tuples
with a criterion, e.g. by every 1-minute time window, into an unbounded sequence of
chunks. The semantics of applying the query to the unbounded stream lies in applying
the query to those infinite chunks which continuously generates an unbounded
sequence of query results, one on each chunk of the stream data.

Our goal is to support the above semantics using a continuous query that runs cycle
by cycle for processing the stream data chunks, each data chunk to be processed in each
cycle, in a single, long-standing query instance. In this sense we also refer to the data
chunking criterion C as the query cycle specification. The cycle specification can be
based on time or a number of tuples, which can amount to as small as a single tuple,
and as large as billions of tuples per cycle. The stream query may be terminated based
on specification in the query (e.g. run for 300 cycles), user intervention, or a special
end-of-stream signal received from the stream source.

Specifically, our solutions include the following.

– We start with providing unbounded relation data to feed queries continuously. The
first step is to integrate the notions of stream data source, and use function-scan
instead of table-scan, for turning captured events into unbounded sequence of
relation tuples to feed to stream queries without first storing them on disk.

– We develop UDF shells [9] to deliver operators with stream semantics (e.g. moving
average, notification) that are not available in conventional SQL. We allow a UDF
to cache the state in the application context for carrying out history-sensitive
operations, such as sliding window oriented operations, along the stream processing
pipeline. We also allow a UDF to emit the current or accumulated computation
results continuously on the per-tuple basis - once a tuple from the stream has been
received and/or processed.

– We propose the cut-and-rewind query model, namely, cutting a query execution
based on some granule (“chunk”) of the stream data (e.g. in a time window), and
then rewinding the state of the query without shutting it down, for processing the
next chunk of stream data. This mechanism, on one hand, allows applying a query
continuously to the stream data chunks falling in consecutive time windows, within
a single, long-standing query; on the other hand, allows retaining the application
context (e.g. data buffered with UDFs) continuously across the execution cycles to
perform sliding-window oriented, history sensitive operations.
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– To support Continuous Querying with Continuous Persisting (CQCP), we introduce
the cycle-based transaction model with the cycle-based isolation mechanism, which
makes the heap-inserted, chunk-wise database updates accessible by other appli-
cations as soon as the corresponding cycle execution commits. Note however that a
continuous query may emit non-transactional messages or events to external
receivers before “commit” – such messages are not bound by transaction semantics.

A significant advantage of the unified model lies in that it allows us to exploit the
full SQL expressive power on each data chunk. The output is also a stream consisting
of a sequence of chunks, with each chunk representing the query result of one exe-
cution cycle. While there may be different ways to implement our proposed unified
model, our approach is to generalize the SQL engine to include support for stream
sources. The approach enables queries over both static and streaming data, retains the
full SQL power, while executing stream queries efficiently.

The proposed cut-and-rewind approach enables us to support truly continuous
query in a completely different way from other DSMSs, and seamlessly integrate the
stream processing capability into a full–functional database system, creating a powerful
and flexible system that can run SQL over tables, streams (tuple by tuple or chunk by
chunk), and the combination of the two.

In this paper we have limited a query to refer to a single stream and thus a single
cycle specification. In general, our model allows multiple stream queries to refer to the
same source, and these queries can interact through database tables which may be
memory resident; our model also allows a single query to refer to multiple stream
sources with different cut criteria. Various pairing patterns [15] and the corresponding
operations to allow multiple streams or hybrid queries to interact have been investi-
gated and are to be reported separately.

We report our experience in leveraging the PostgreSQL engine for supporting stream
processing. The proposed cut-and-rewind mechanism has been implemented with min-
imal engine extension, resulting in a tightly integrated, highly efficient platform with the
advanced stream processing capability as well as the full DBMS functionality. We
demonstrated the merit of our platform using the popular Linear Road benchmark. Pro-
viding this capability on a proprietary parallel database engine is currently being explored.

The rest of this paper is organized as follows: Sect. 2 reports our approach in
handling stream source and stream analytic functions by extending a DBMS with new
source functions and UDFs for stream operations; Sect. 3 proposes the cut-and-rewind
approach; Sect. 4 deals with the transaction issues in cycle-based stream processing;
Sect. 5 shows how the proposed approach is applied to the popular Linear Road stream
processing benchmark, and discusses the experiment results; Sect. 6 concludes the paper.

2 Stream Processing as Continuous Querying

A SQL query is parsed and optimized into a query plan that is a tree of operators. The
scan operator at the leaf of the tree gets and materializes a block of data to be delivered
to the upper layer tuple by tuple. A non-blocking relational operator or a function, e.g. a
UDF, is invoked multiple times in a query execution on the per-tuple basis, which
forms a dataflow pipeline, and in this sense, similar to stream processing.
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However, there exist some fundamental differences between the conventional query
processing and the stream processing. First, a query is defined on bounded relations but
stream data are unbounded; next, stream processing adopts window-based semantics,
i.e. processing the incoming data chunk by chunk falling in consecutive time windows;
however, the SQL operators are either based on one tuple (such as filter operators) or
the entire relation; Further, stream processing is also required to handle sliding window
operations continuously across chunk based data processing; and finally, endless
stream analytics results must be continuously accessible along their production, under
specific transaction semantics.

Let us use a simplified traffic system example to illustrate our unified query over
stored and stream data, where the total amount of toll charged for each highway
segment per minute are computed, given a segment toll table and events that report
vehicles’ entering a segment.

• C (vid,sid,ts), contains the event that a car (vid) enters a tolled segment (sid) with a
timestamp in second (ts),

• T (sid, charge) contains the highway segment info where charge is the toll per car
for segment sid.

We express the example first as a query over static relations only, and then as a
hybrid query that includes a stream source. The graphical representation of the two
queries is shown in Fig. 1.

For the first query Q1 (shown on the left of Fig. 1), the inputs are two stored
relations, C and T. However, if the table C above is not a stored relation, but replaced

by a real-time stream source, while T remains a stored relation, then the above
application becomes a streaming application. The above static SQL query is adapted to
a streaming query simply by defining SC as a stream (instead of a table) with the same
schema as C and changing the reference to C as follows (shown on the right of Fig. 1):

Q1:
SELECT sid, floor(ts/60) AS minute, SUM(charge)
FROM T, C WHERE C.sid = T.sid
GROUP BY sid, minute
Q2:
SELECT sid, floor(ts/60) AS minute, SUM(charge)
FROM T, STREAM (SC, cycle-spec) WHERE SC.sid = T.sid
GROUP BY sid, minute

T.sid = C.sid

Query result 

Sum (charge), 
groupby sid, minute 

T C 

Q1

SC 

T.sid = SC.sid

Query result 
Sum (charge), 
groupby sid, minute

T
“chunk 0”

“cut” 
“cut” 

“chunk 1”

Q2

SUM-GB 

JOIN 

SUM-GB 

JOIN 

Fig. 1. Querying static table vs. querying data stream chunk by chunk
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In the above query, we replace the disk-resided database table by a special kind of table
function STREAM(), called Stream Source Function (SSF), that listens or reads
data/events sequence. Further, STREAM(SC, cycle-spec) specifies that the stream
source SC is to be “cut” into an unbounded sequence of chunks SCC0, SCC1, …, where
all tuples in SCCi occur before any tuple in SCCi+1 in the stream. The “cut point” is
specified in the cycle-spec. Let Q1 above be denoted as a query function over table C,
i.e., Q1(C). The execution semantics of Q2 is defined as executing Q1(SCCi) in
sequence for all SCCi’s in the stream source SC.

In general, given a query Q over a set of relation tables T1,..,Tn and an infinite
stream of relation tuples S with a criterion ϑ for cutting S into an unbounded sequence
of chunks, e.g. by every 1-minute time window, < S0, S1, …, Si, … > where Si denotes
the i-th “chunk” of the stream according to the chunking-criterion ϑ. Si can be inter-
preted as a relation. The semantics of applying the query Q to the unbounded stream
S plus the bounded relations T1,..,Tn lies in

QðS;T1; ::;TnÞ ! \QðS0;T1; ::;TnÞ; . . .QðSi;T1; ::;TnÞ; . . .[

which continuously generates an unbounded sequence of query results, one on each
chunk of the stream data.

2.1 Stream Source Function

For providing unbounded relation data to fuel queries continuously, the first step is to
replace the database table, which contains a set of tuples on disk, by the special kind of
table function, called Stream Source Function (SSF) that returns a sequence of tuples to
feed queries without first storing on disk. A SSF can listen or read data/events sequence
and generate stream elements tuple by tuple continuously. A SSF is called multiple, up
to infinite, times during the execution of a continuous query, each call returns one
tuple. When the end-of-cycle event or condition is seen, the SSF signals the query
engine to terminate the current query execution cycle.

We rely on SSF and query engine for continuous querying on the basis that “as far as
data do not end, the query does not end”, rather than employing an extra scheduler to launch
a sequence of one-time query instances. The SSF scan is supported at two levels, the SSF
level and the query executor level. A data structure containing function call information,
hFC, bridges these two levels. hFC is initiated by the query executor and passed in/out the
SSF for exchanging function invocation related information. We use this mechanism for
minimizing the code change, but maximize the extensibility, of the query engine.

2.2 Stream Analytics Through UDF

One important characteristics of stream processing is the use of stream-oriented
history-sensitive analytic operators such as moving average or change point detection.
While the standard SQL engine contains a number of built-in analytic operators, stream
history-sensitive operators are not supported. Using UDFs is the generally accepted
mechanism to extend query operators in a DBMS. A UDF can be provided with a data
buffer in its function closure, and for caching stream processing state (synopsis).
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Furthermore, it is also used to support one or more emitters for delivering the analytics
results to interested clients in the middle of a cycle, which is critical in satisfying stream
applications with low latency requirement.

Stream processing involves operations on (time) windows, including sliding win-
dows, and therefore is history sensitive. This represents a different requirement from
the regular query processing that only cares about the current state. We use UDFs to
add window operators and other history sensitive operators, buffering required raw data
or intermediate results within the UDF closures.

A scalar UDF is called multiple times on the per-tuple basis, following the typical
FIRST_CALL, NORMAL_CALL, FINAL_CALL skeleton. The data buffer structures
are initiated in the FIRST_CALL and used in each NORMAL_CALL. A window
function defined as a scalar UDF incrementally buffers the stream data, and manipu-
lates the buffered data chunk for the required window operation. Since the query
instance remains alive, as supported by our cut-and-rewind model, the UDF buffer is
retained between cycles of execution and the data states are traceable continuously (we
see otherwise if the stream query is made of multiple one-time instances, the buffered
data cannot be traced continuously across cycle boundaries). As a further optimization,
the static data retrieved from the database can be loaded in a window operation initially
and then retained in the entire long-standing query, which removes much of the data
access cost as seen in the multi-query-instances based stream processing.

We propose to run a SQL query cycle by cycle for deriving a sequence of
data-chunk based results, but never shutting down the query instance in order to have
the per-tuple based data processing history continuous tractable.

UDFs can be used to develop a library of reusable stream operators and further
allow the unified query model to be extended. As will be illustrated in our Linear Road
(LR) implementation, the 5-minute moving average speed is provided through a
moving average UDF, atop the per-minute average speed, the latter computed using the
standard SQL average-groupby function in one query cycle.

3 Cycle Based Continuous Query

To support the cycle based execution of stream queries, we propose the cut-and-rewind
query execution model, namely, cut a query execution based on the cycle specification
(e.g. by time), and then rewind the state of the query without shutting it down, for
processing the next chunk of stream data in the next cycle.

Under this cut-and-rewind mechanism, a stream query execution is divided into a
sequence of cycles, each for processing a chunk of data only; it, on one hand, allows
applying a SQL query to unbounded stream data chunk by chunk within a single,
long-standing query instance; on the other hand, allows the application context (e.g. data
buffered within a User Defined Function (UDF)) to be retained continuously across the
execution cycles, which is required for supporting sliding-window oriented, history
sensitive operations. Bringing these two capabilities together is the key in our approach.

Cut Cutting stream data into chunks is originated in the SSF at the bottom of the query
tree. Upon detection of end-of-cycle condition, the SSF signals end-of-data to the query
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engine through setting a flag on the function call handle, that, after being interpreted by
the query engine, results in the termination of the current query execution cycle.

If the cut condition is detected by testing the newly received stream element, the
end-of-data event of the current cycle would be captured upon receipt of the first tuple
of the next cycle; in this case, that tuple will not be returned by the SSF in the current
cycle, but buffered within the SSF and returned as the first tuple of the next cycle. Since
the query instance is kept alive, that tuple can be kept across the cycle boundary.

Rewind Upon termination of an execution cycle, the query engine does not shut down
the query instance but rewinds it for processing the next chunk of stream data.
Rewinding a query is a top-down process along the query plan instance tree, with
specific treatment on each node type. In general, the intermediate results of the standard
SQL operators (associated with the current chunk of data) are discarded but the
application context kept in UDFs (e.g. for handling sliding windows) are retained. The
query will not be re-parsed, re-planned or re-initiated.

Note that rewinding the query plan instance aims to process the next chunk of data,
rather than re-deliver the current query result; therefore it is different from “rewinding a
query cursor” for re-delivering the current result set from the beginning. For example,
the conventional cursor rewind tends to keep the hash-tables for a hash-join operation
but our rewind will have such hash-tables discarded since they were built for the
previous, rather than the next, data chunk.

As mentioned above, the proposed cut-and-rewind approach has the ability to keep
the continuity of the query instance over the entire stream while dividing it to a
sequence of execution cycles. This is significant in supporting history sensitive stream
analytic operations, as discussed in the previous section.

4 Continuous Querying with Continuous Persisting (CQCP)

One problem of the current generation of DSMSs is that they do not support transac-
tions. Intuitively, as stream data are unbounded and the query for processing these data
may never end, the conventional notion of transaction boundary is hard to apply. In fact,
transaction notions have not been appropriately defined for stream processing, and the
existing DSMSs typically make application specific, informal guarantees of correctness.

However, to allow a hybrid system where stream queries can refer to static data
stored in a database, or to allow the stream analysis results (whether intermediate or
final) to persist and be visible to other concurrent queries in the system in a timely
manner, a transaction model which allows the stream processing to periodically
“commit” its results and makes them visible is needed.

Note that if a stream application does not use static data in the database, or does not
need to persist results and make them visible to other concurrent applications, then
transaction semantics are not needed. In our design, the transaction semantics is used,
and thus transaction management overhead is incurred, only when a stream application
requires persistent data management.

Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics 101



4.1 Query Cycle Based Transaction Model

Lacking formal transaction semantics is a problem of the current generation of stream
processing systems, as they typically make application specific, informal guarantees of
correctness.

Conventionally a query is placed in a transaction boundary; the query result and the
possible update effect are made visible only after the commitment of the transaction
(although weaker transaction semantics do exist). Since the query for processing
unbounded stream data may never end, the conventional notion of transaction
boundary is hard to apply.

In order to allow the result of a long-running stream query to be incrementally
accessible, we introduce the cycle-based transaction model coupled with the cut-and-
rewind query model, which we call continuous querying with continuous persisting.
Under this model a stream query is “committed” one cycle at a time in a sequence of
“micro-transactions”. The transaction boundaries are consistent with the query cycles,
thus synchronized with the chunk-wise stream processing. The per-cycle stream pro-
cessing results are made visible as soon as the cycle ends.

For example, in Q2 above, the query result, which is the total charge per highway
segment, is made visible every cycle; if the cycle specification is per minute, then the
total charge per segment is made visible per minute, and it can also be persisted at the
minute boundary.

4.2 Staging Results Without Data Copy/Move

With the cloud service, the analytics results are accessed by many clients through PCs
or smart phones. These results are read-only time series data, stored in the read-sharable
tables incrementally visible to users as they become available. Since the analytics
results are derived from unbounded stream of events, they are themselves unbounded
and thus must be staged step by step along with their production. Very often, only the
latest data is “most wanted”. For scaling up CaaaS, efficient data staging is the key.

Data staging is a common task of data warehouse management. The general
approach is stepwise archival of the older data, which, however, incurs data moving
and copying overhead. While this approach is acceptable for handling slowly-updated
data in data warehousing, it is not efficient for supporting real-time stream analytics.

To avoid the data moving and copying overhead in data staging, we have devel-
oped a specific mechanism characterized by staging through metadata manipulation
without real data movement. As shown in Fig. 2, we provide a list of tables for keeping
the stream analytics results generated in a given number of query execution cycles (e.g.
generated in 60 per-minute cycles, i.e. one hour). These tables are arranged as a
“table-ring” and used in a round-robin fashion. For example, to keep the results for the
latest 8 h of notifications, 9 tables say T1, T2,…, T9, are allocated in a buffer-pool, such
that at a time, T1 stores the results of the current hour, say h, T2 stores the results of the
hour h-1, …, T8 stores the results of the hour h-8, the data in T9 are beyond the 8-hour
range thus being archived asynchronously during the current hour. When the hour
changes, the archiving of T9 has presumably finished and T9 is reassigned for storing
the results of the new, current hour.
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The hourly based timestamp of these tables are maintained either in the data dic-
tionary or a specifically provided system table. In the above data staging, only the
“label” of a table is switched for representing the time boundary (i.e. the hour) of its
content, without moving/copying the content to another table or file thus avoiding the
read/write overhead.

Further, a stable SQL interface is provided for both the client-side users and the
server-side queries. Assuming the table holding the summarized traffic status in the
current hour is named “current_road_condition”, this name remains the same at all the
times but points to different physical tables from time to time. This may be accom-
plished by associating the table holding the latest results to “current_road_condition”
through metadata lookup, or by system internal query modification.

We have extended the query engine to support the above table ring for the
client-side query. The continuous query uses the INSERT-INTO clause to capture the
query results at each cycle. (See Sect. 2.5 for an example).The “into-relation” is closed
prior to a cycle-based transaction commits and it re-opens after the transaction for the
next cycle starts. Between the complete_transaction() call and the reopen_into_relation
() call, the number of execution cycles is checked, and if the specified staging time
boundary is reached, the switching of “into-relations”, i.e. the query destinations, takes
place, where the above data dictionary or specific system table is looked up, and the
“next” table ID is obtained and passed to the reopen_into_relation(). Thereafter another

T1 

hour h 
T2T3T9 T8

loading 

archiving 

T1

hour h+1

T2 T3T9 T8
loading 

archiving 

Fig. 2. Table-ring approach for staging analytics results through metadata manipulation without
data copy/move
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   open intoR 
start Tx 

start Tx 
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close intoR 
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Next intoaR ID 

look up next intoR ID
from data dictionary

rewind plan exec 

check intoR boundary 

Fig. 3. Cycle-based query execution, transaction, staging
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into-relation will act as the query destination. This way, the query runs cycle by cycle
to process the input data stream chunk by chunk.

Overall, the cycle-based query execution, transaction commitment and multi-cycle
based data staging are illustrated in Fig. 3.

5 Example and Experiments

5.1 Modeling the Linear Road Benchmark

We use the widely-accepted Linear-Road (LR) benchmark [18] to demonstrate our
extended query engine. The LR benchmark models the traffic on express ways for the
3-hour duration; each express way has two directions and 100 segments. Cars may
enter and exit any segment. The position of each car is read every 30 s and each reading
constitutes an event, or stream element, for the system. A car position report has
attributes vid (vehicle ID), time (seconds), speed (mph), xway (express way), dir
(direction), seg (segment), etc. The benchmark requires computing the traffic statistics
for each highway segment, i.e. the number of active cars, their average speed per
minute, and the past 5-minute moving average of vehicle speed. Based on these
per-minute per-segment statistics, the application computes the tolls to be charged to a
vehicle entering a segment any time during the next minute, and notifies the toll in real
time (notification is to be sent to a vehicle within 5 s upon entering the segment). The
application also includes accident detection; an accident occurring in one segment will
impact the toll computation of that segment as well as a few downstream segments. An
accident is flagged when multiple cars are found to have stopped in the same location.
The graphical representation of our implementation of the LR stream processing
requirement is shown in Fig. 4 together with its corresponding stream query.
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This query provides the following major functions.

– Stream Source Function - The streaming tuples are generated by the SSF
STREAM_CYCLE_lr_data(time, cycles), from the LR data source file with time-
stamps, where parameter “time” is the time-window size in seconds; “cycles” is the
number of cycles the query is supposed to run. For example, STREAM_CY-
CLE_lr_data(60, 180) delivers the position reports one-by-one until it detects the
end of a cycle (60 s), and performs a “cut”, then onto the next cycle, for a total of
180 cycles (for 3 h).

– Segment statistics and toll generation - As illustrated by the left hand side of
Fig. 4, the tolls are derived from the segment statistics, i.e. the number of active
cars, average speed, and the 5-minute moving average speed, as well as from
detected accidents, and dimensioned by express way, direction and segment. We
leveraged the minimum, average and count-distinct aggregate-groupby operators
built into the SQL engine, and provided the moving average (lr_moving_avg)
operator and the accident detection (lr_accident) operator in UDFs.

– Toll persisting - Required by the LR benchmark, the segment tolls of minute
m should be generated within 5 s after m. The toll of a segment calculated in the past
minute is applied to the cars currently entering into that segment. The generated
tolls are inserted into a segment toll table (SegToll) with the transaction committed
per cycle (i.e., per minute). Therefore the tolls generated in the past minutes are
visible to the current minute.

– Toll notification - As shown on the right side of Fig. 4, the per-car toll notification
is provided by the UDF lr_notify_toll() appearing in the following phrase

WHERE lr notify toll vid; xway; dir; seg; timeð Þ [ ¼ 0

(cars_volume) (avg speed)(traffic_ok)

- Read 
segment toll 
of last minute 
- If a car 
enters a new 
segment, 
emit a toll 
notification.

toll notification

COUNT 
DISTINCT-

AVG-GB

UDF

lr_toll

Stream segtoll
(per minute) Min N

Min N-1

stream p (per minute)

stream r (per minute)

UDF

mvg-avg 
operator

lr_Notify_toll

lr_moving avg

Seg Toll Table

Car 
account 
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Stream toll_notif 
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Fig. 4. Cycle based stream query for LR benchmark, for both the generation of per-minute, per
cycle tolls common to all cars, and the per car based retrieval of resulting tolls
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This UDF keeps enough information about active cars so as to detect the event of a car
entering a new segment; and for each car entering a new segment, it emits a toll
notification while persisting the toll to a table (carAccount table) for future account
balance queries. This UDF reads the segment tolls of the previous minute within the
FIRST_CALL part of the UDF (represented by the dash line), enabling it to use the
information produced by the previous cycle of the stream query. Since this UDF is a
per-tuple UDF (i.e., the NORMAL_CALL part of the UDF is invoked per input tuple),
the toll notification is emitted immediately after the position report is received from the
source stream, and does not wait for the current cycle (minute) to terminate. This UDF
also persists the toll into the car account table. While the toll is notified immediately
upon receiving the car position report, persisting the toll is committed once per cycle, in
accordance to our CPCQ model.

Multiple features of our cycle-based stream processing approach are illustrated in
this query:

– Cut-and-Rewind. This query repeatedly applies to each data chunks falling in
1-minute time-window as an execution cycle, and rewinds 180 times in the single
query instance; the sub-query with alias p uses the standard SQL aggregate-groupby
function to yield the number of active cars and their average speed for every minute
dimensioned by segment, direction and express way. The SQL aggregate functions
are computed for each cycle with no context carried over from one cycle to the next.

– Sliding Window Function (per-tuple history sensitive). The sliding window
function lr_moving_avg() buffers the up to 5 per-minute average speed for accu-
mulating the dimensioned 5-minute moving average; since the query is only
rewound but not shut down, this buffer is retained continuously across query cycles
– this is a critical advantage of cut/rewind over shutdown/restart.

– Continuous Querying with Continuous Persisting. The top-level construct of the
LR query is actually the INSERT-SELECT phrase; with our engine extension, it
persists the result stream returned from the SELECT query (r) to the toll table on the
per-cycle basis. The transactional LR query commits per cycle to make the cycle
based result accessible to subsequent cycles or other concurrent queries after the
cycle ends. This cycle-based isolation level is supported with the appropriate
locking mechanism.

– Self-Referencing. The per-car toll notification is generated by the UDF lr_noti-
fy_toll(). It efficiently accesses the segment toll in the last minute directly from the
toll table. This kind of self-referencing provides a handshake mechanism for the
producer part and the consumer part of the same query to rely on the query engine
to synchronize, to perform history sensitive stream analytics, and to gain extremely
high performance due to their seamless integration. We believe that such
self-referencing represents a common paradigm in stream processing.

5.2 Experimental Setup

The experimental results are measured on HP xw8600 with 2 x Intel Xeon E54102
2.33 Ghz CPUs and 4 GB RAM, running Windows XP (x86_32) and PostgreSQL 8.4.
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The input data are downloaded from the benchmark’s home page. The “L = 1”
setting was chosen for our experiment which means that the benchmark consists of 1
express way (with 100 segments in each direction). The event arrival rate ranges from a
few per second to peak at about 1,700 events per second towards the end of the 3-hour
duration. Figure 6 (Left) shows the distribution of data volume per minute, i.e. the
per-minute throughput.

The LR data can be supplied in the following two modes:

– Stress test mode: the data are read by the SSF from a file continuously without
following the real-time intervals (continuous input)

– Real-time input: the data are received from a data driver outside of the query engine
with real-time intervals. Each car position report carries a system timestamp
assigned by the data driver when the event is generated, which could be compared
with the system timestamps generated during when toll notification is emitted, for
measuring the response time.

We report our experimental results in these 2 different modes.

5.3 Performance Under Stress Test Mode

Time for computing segment tolls. Calculating the segment statistics and tolls has
been recognized as the computation bottleneck of the benchmark in the literature.
The LR benchmark requires the segment toll to be calculated based on the segment
statistics and traffic status (whether affected by accidents) every minute. We took the
left-hand-side of our LR model in Fig. 4 and ran that branch of the query up until the
toll is computed, under the stress test mode. The total computation time with L = 1
setting is shown in Fig. 5 (Left). It shows that our system is able to generate the
per-minute per-segments tolls for the total 3 h of LR data (approx. 12 Million tuples) in
a little over 2 min.
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Fig. 5. (Left) Total time of toll computation. (Right) Performance comparison of querying-only
and query + persisting (with continuous input)
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Performance of Persisting with Heap-Insert Unlike other reported DSMSs where
the stream processing results are persisted by connecting to a separate database and
issuing queries, with the proposed cycle-based CQCP approach, the continuous,
minute-cycle based query results are stored through efficient heap-insert.

From Fig. 5 (Right) we can see that persisting the cycle based stream processing results
either by inserting with logging (using INSERT INTO with extended support by the
query engine) or by direct inserting (using SELECT INTO with extended support by the
query engine – not shown in this query), does not add significant performance overhead
compared to querying only. This is because we completely push stream processing down
to the query engine and handle it in a long running query instance with direct heap
operations, with negligible overhead for data movement and for setting up update queries.

Post Cut Elapsed Time. In cycle-based stream processing, the remaining time of
query evaluation after the input data chunk is cut, called Post Cut Elapsed Time
(PCET), is particularly important since it directly affects the delta time for the results to
be accessible after the last tuple of the data chunk in the cycle has been received.

Figure 6 (Left) shows the input data volume over 1-minute time windows (i.e., the
stream workload). Figure 6 (Right) shows the query time, as well as the PCET, for
processing each 1-minute data chunk. It can be seen that the PCET (the blue line) is
well controlled around 0.2 s., meaning that the maximal response time for the segment
toll results, as measured from the time a cycle (a minute) ends, is around 0.2 s.

5.4 Performance Under the Real-Time Input Mode

With real-time input, the events (car position reports) are delivered by a data driver in
real-time with additional system-assigned timestamps. The query runs cycle by cycle
on each one-minute data chunk. Figure 7 shows the maximal toll notification response
time in each of the 180 1-minute windows.

Fig. 6. (Left) Data load distribution over minute time windows (Right) Query time as well as
PCET on the data chunk falling in each minute time window
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The maximal response time of toll notification really depends on the PCET measure
introduced above, i.e. it is essentially the delay after a cycle is “cut” in completing the
segment toll part of the query of that cycle. This is because in the beginning of each
cycle, the toll notification cannot be emitted until the segment toll generation of the last
cycle completes. In the first 2 h the toll notification response time is rather small, and
with the increased data load in the last hour, it reaches the maximal value of about
0.3 s, which is still well within the 5-second latency requirement of the benchmark.
Note that the maximal notification latency is not the average response time of notifi-
cation. On the average, the notification response time is near zero, as the ones after the
beginning of each cycle are not measurable by millisecond.

The experimental results indicate that our approach is highly competitive to any
reported one. This is because we completely pushed stream processing down to the
query engine with negligible data movement overhead and with efficient direct
heap-insert. We eliminated the middleware layer, as provided by all other systems, for
scheduling time-window based querying.

6 Cycle Based Map-Reduce

We rely on the Map-Reduce (MR) computation to scale out CaaaS. With the original
MR model; static data are partitioned “horizontally” over cluster nodes for parallel
computation; while enhancing the computation bandwidth by divide-and-conquer, it is
not defined on unbounded stream data.

We envisage that Cut-and-Rewind (CR) provides a powerful mechanism for MR to
reach stream analytics. We have investigated the combination of MR and CR on
parallel database platform as well as on network distributed MR infrastructure.

6.1 Cut-Rewind a Parallel Query

A parallel query with UDFs can naturally express Map-Reduce computation. To
explain how to apply CR to a parallel query engine for stream processing, let us review
the parallel query execution process. A SQL query is parsed and optimized into a query
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plan that is a tree of operators. In parallel execution multiple sub-plan instances, called
fragments, are distributed to the participating query executors and data processors on
multiple server nodes; at each node, the scan operator at the leaf of the tree gets and
materializes a block of data, to be delivered to the upper layer tuple by tuple. The
global query execution state is kept in the initial site.

To handle streaming data in parallel, the input stream is partitioned over multiple
machine nodes, in the way similar to hash partitioning static data.

To support Cut-and-Rewind on a parallel database, every participating query
engine is facilitated with the CR capability. The same cut condition is defined on all the
partitioned streams. Note that if the cycle based continuous querying is “cut” on time
window, the stream cannot be partitioned by time, but by other attributes.

A query execution cycle ends after end-of-cycle is signaled from all data sources,
i.e. all the partitioned streams are “cut”. As the cut condition is the same across all the
partitioned streams, the cycle-based query executions over all nodes are well syn-
chronized through data driven.

To parallelize the LR stream analysis, we hash partition the data stream by
vehicle-id (vid); use the Map function to compute and pre-aggregate the segment traffic
statistics per minute (without accident detection); use the Reduce function to globally
aggregate the segment statistics, group by express-way, direction and segment, then
calculate per segment moving average speed and finally the toll. The whole map-reduce
implementation of the application is expressed in a single query running in the
per-minute cycle.

As shown in Fig. 8, the LR stream is partitioned “horizontally” over Map nodes; all
partitions are cut on the same one-minute boundary; the chunk-wise local results are
shuffled to the Reduce nodes for global aggregation. The data partition of Map results is
based on the standard parallel query processing of “group-by”. The system runs cycle
by cycle with Map-Reduce applied to data streams in each cycle, hence supporting
scaled-out query processing over unbounded data streams.

This design is being integrated into a commercial parallel database engine where
SSF is handled by the storage engine layer at each node, while the Map function and
Reduce function are handled by query executers.

Fig. 8. Parallel DB based streaming map-reduce
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6.2 Network-Distributed Map-Reduce Scheme

In network distributed MR scheme, query-engine based stream engines are logically
organized in the Map-Reduce style as illustrated in Fig. 9. The separation of “Map”
engines and “Reduce” engines are logical, since an engine may act as a “Map” engine,
a “Reduce” engine, or both.

Different from parallel database oriented MR, with the network distributed MR, a
specific application is expressed in terms of two cycle based continuous queries, say
CQmap and CQreduce. The same CQmap run at all the Map engines, and the same
CQreduce at all the Reduce engines. The streams are partitioned and fed in multiple
CQmap; the resulting streams from CQmap are shuffled to and fused by multiple CQreduce

based on certain grouping criteria specified in the network replicated hash-tables. Those
CQmap and CQreduce synchronized by the same cut criteria, which determines the
boundaries of input streams as well as the resulting streams.

With the above simplified LR example, the stream data are hash partitioned by
vehicle ID; the stream data corresponding to express-ways, directions and segments are
crossing Map nodes.

• The Map query, CQmap, covers partitioned stream processing, up to the local
aggregation of car-volume, speed-sum, group-by time and location.

• The results of CQmap are treated as the input streams of the Reduce query, CQreduce,
partitioned by express-way, direction and segment, based on the network replicated
hash tables. Each CQreduce is also equipped with a SSF for receiving the Map
results.

• CQreduce aggregate segment traffic statistics globally, calculate the segment moving
average speed, and then the segment toll.

Both Map and Reduce queries run in the per-minute cycle.
Note the difference CR/MR schemes for parallel DB based and network-distributed

MR infrastructure. Since the parallel query engine naturally supports reduce with
aggregate-groupby, the MR is expressed by a single query, in each CR cycle the whole
MR computation is iterated. With the network distributed MR infrastructure, the Map
engines and the Reduce engines run separate cycle-based continuous queries; they
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Fig. 9. Network distributed streaming map-reduce
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process the stream data chunk by chunk based on the common window boundary, or
cut criterion, thus cooperate without centralized scheduling. The parallel DB based MR
infrastructure generally over-performs the network-distributed one due to efficient data
transfer from the Map nodes to the Reduce nodes, but the latter is more flexible and has
obvious cost benefits.

7 Conclusions

Due to the growing data volume and the low-latency requirement, the platform sep-
aration of analytics and data management has become the performance bottleneck, and
their integration offers great potential in real-time, data-intensive analytics.

In this work we have addressed several specific challenges. Our thesis is that
database technology can be extended and applied to real-time continuous analytics
service provisioning.

We reported our experience in leveraging the DBMS for continuous stream ana-
lytics. We tackled the key technical issues for integrating stream analytics capability
into the existing query engine, and built an integrated, efficient and robust system with
stream processing capability while retaining the full DBMS functionality, giving the
query engine a new role. We proposed the cut-and-rewind query execution model for
chunk-wise continuous stream processing with the full SQL power, while enabling
history-sensitive stream operations. We provided advanced stream processing capa-
bility by extending the existing query engine directly without introducing separate
executor or additional “middleware”. With this approach we have bridged SQL and
stream processing in a single engine.

Our platform significantly differs from the current generation of stream processing
systems which are in general built separately from the database systems. As those
systems do not have the full SQL expressive power and DBMS functionalities, incur
significant overhead in data access and movement, and lack the appropriate transaction
support for continuously persisting and sharing results, they fail to meet the require-
ments for providing high-throughput, low-latency service provisioning.

Further, the cycle-based query model allows multiple query engines to synchronize
and cooperate based on the common window boundaries. Such data-driven cooperation
is very different from the workflow like centralized scheduling used in other stream
processing systems. This feature allows us to apply MR cycle by cycle continuously
and incrementally for parallel and distributed continuous analytics, in the way not seen
previously. Accordingly, we investigated two kinds of parallel computing infrastruc-
tures, one based on parallel database engine; and another based on network distributed
Map-Reduce but with extended streaming capability.

The proposed approach has been implemented on the PostgreSQL engine. Our
future work includes further refinement of our unified query and transaction model,
further characterization and classification of UDFs (to enable optimization) and
building out stream analytics operators, additional extensions required for the optimizer
and query pipeline, and providing a front-end for demonstrating the live stream ana-
lytics. As pointed out in [12], big data visualization issues are tightly coupe with
analytics. We are also investigating the use of a massively parallel processor
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(MPP)-based, data-intensive streaming analytics platform, and looking into the issues
of privacy preservation which plays a critical roles in analytics in both centralized and
distributed environments [13, 14].
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Abstract. Since the introduction of the frequent pattern mining prob-
lem, researchers have extended frequent patterns to different useful pat-
terns such as cyclic, emerging, periodic and regular patterns. In this paper,
we (i) introduce popular patterns, which capture the popularity of individ-
uals, items, or events among their peers or groups. Moreover, we also pro-
pose (ii) the Pop-tree structure to capture the essential information from
transactional databases and (iii) thePop-growth algorithm for mining pop-
ular patterns from the Pop-tree. Moreover, we illustrate how our algorithm
(iv) mines popular friends from social networks. As we are not confined to
mining popular patterns from static transactional databases, we extend
our work to mining popular patterns from dynamic data streams. Specif-
ically, we propose (v) the Pop-stream structure to capture the popular
patterns in batches of data streams and (vi) the Pop-streaming algorithm
for mining popular patterns from the Pop-stream structure. Experimental
results showed that (i) our proposed tree structure is compact and space
efficient and (ii) our proposed algorithm is time efficient in mining popular
patterns from static transactional databases and dynamic data streams.

Keywords: Data mining · Knowledge discovery · Interesting patterns ·
Popular patterns · Useful patterns · Tree-based mining · Data streams

1 Introduction

Since the introduction of the research problem of frequent pattern mining,
numerous works have been proposed. These works can mostly be classified
into two broad “categories”. Works in the first “category” mainly focused on
algorithmic efficiency, while works in the second “category” mainly focused on
extending the notion of frequent patterns to other interesting or useful patterns.
However, the mining of these patterns are mostly based on the support/frequency
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measure. While support/frequency is a useful metric, support-based frequent
pattern mining may not be sufficient to discover many interesting knowledge
(e.g., popularity) among patterns in a transactional database (TDB). However,
in many real-life situations, users want to find popular patterns. For example, a
social analyst may want to find persons with large “groups” of friends in social
networks as these persons can be the most influential one in their groups or the
social networks [9,26]. Similarly, a new member may want to know individuals
with high connectivity so that he can get to know more members quickly. A rec-
ommender may want to know researchers with large numbers of collaborators.
As the fourth example, an event promoter may want to find events with large
numbers of participants. With the increase in usage of social network media, it
has become more important to be able to find popular individuals (or items,
objects, events).

While data in many real-life situations are static (e.g., mining popular
merchandise items from shopper market basket transactions in a transactional
database), the automation of measurements and data collection in some other
real-life situations is producing dynamic streams of data. For instance, the devel-
opment and increasing use of a large number of sensors (e.g., acoustic, chemical,
electromagnetic, mechanical, optical radiation and thermal sensors) for various
real-life applications have led to data streams [11,23].

Hence, in this paper, we aim to mine popular patterns from both static
transactional databases and dynamic data streams. Specifically, our key con-
tributions of this paper include the following:

1. our introduction of the notion of popular patterns;
2. our proposal of the Pop-tree, which is a tree structure to capture essential

information about the popularity of individuals, items, objects, or events;
3. our design and development of the Pop-growth algorithm, which mines pop-

ular patterns from the Pop-tree capturing static data;
4. our proposal of the Pop-stream, which is a structure to capture popular indi-

viduals, items, objects, or events mined from batches of dynamic data streams;
and

5. our design and development of the Pop-streaming algorithm, which finds pop-
ular patterns from the Pop-stream structure capturing dynamic data.

As the current paper is an extension and enhancement of our DaWaK 2012
paper [25], additional contributions beyond the basic mining of popular pat-
terns from static transactional databases include the following: (i) extending the
mining of popular patterns from static transactional databases to the mining of
popular patterns from dynamic data streams (Sect. 6), (ii) demonstration of our
algorithm for a useful application of mining popular friends from social networks
(Sect. 5), and (iii) running additional experiments (especially for popular pattern
mining from streams).

The remainder of this paper is organized as follows. The next section reviews
some related works. We introduce popular patterns in Sect. 3. In Sect. 4, we pro-
pose (i) the Pop-tree structure that captures important contents of the TDB and
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(ii) the Pop-growth algorithm that constructs the Pop-tree, from which popu-
lar patterns can be mined recursively. In Sect. 6, we propose (i) the Pop-stream
structure that captures popular patterns mined from batches of data streams
and (ii) the Pop-streaming algorithm that calls Pop-growth to find popular pat-
terns from a batch, stores the mined patterns in the Pop-stream structure, and
returns to users popular patterns that can be mined from the dynamic data
streams. We demonstrate a useful real-life application of mining popular friends
from social networks in Sect. 5. Experimental results are presented in Sect. 7.
Finally, conclusions and future work are provided in Sect. 8.

2 Related Work

Recall from the previous section that numerous works have been proposed since
the introduction of the research problem of frequent pattern mining. These works
can mostly be classified into two broad “categories”. Works in the first “cate-
gory” mainly focused on algorithmic efficiency [22,23]. For example, to avoid the
candidate generation-and-test approach of the Apriori algorithm [1], a tree-based
algorithm called FP-growth [17] was proposed to build an FP-tree to capture
the contents of a TDB so that frequent patterns can be mined recursively from
the FP-tree with a restricted test-only approach.

Works in the second “category” mainly focused on extending the notion
of frequent patterns to other interesting or useful patterns such as sequences,
episodes, maximal and closed sets. Note that the mining of these patterns are
mostly based on the support/frequency measure. While support/frequency is
a useful metric, support-based frequent pattern mining may not be sufficient
to discover many interesting knowledge (e.g., correlation, regularity, periodicity,
popularity) among patterns in a TDB. This leads to the introduction of some
interestingness measures [31] and their corresponding patterns such as emerging
patterns [2], constrained patterns [19,24], correlated patterns [20], periodic pat-
terns [29,34], regular patterns [30], hyperclique patterns [32], and high utility
patterns [33].

Nowadays, the automation of measurements and data collection is producing
tremendously huge volumes of data. For instance, the development and increas-
ing use of a large number of sensors (e.g., acoustic, chemical, electromagnetic,
mechanical, optical radiation and thermal sensors) for various real-life appli-
cations (e.g., environment surveillance, security, manufacturing systems) have
led to data streams [11,23]. To discover useful knowledge from these streaming
data, several mining algorithms [10,12,14] have been proposed. In general, min-
ing frequent patterns from dynamic data streams [16,18,28] is more challenging
than mining from traditional static transaction databases due to the following
characteristics of data streams:

1. Data streams are continuous and unbounded. As such, we no longer have the
luxury to scan the streams multiple times. Once the streams flow through,
we lose them. We need some techniques to capture important contents of the
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streams. For instance, landmark windows capture contents of all batches after
the landmark (i.e., sizes ofwindowskeep increasingwith thenumber of batches).

2. Data in the streams are not necessarily uniformly distributed. As such, a
currently infrequent pattern may become frequent in the future and vice versa.
We have to be careful not to prune infrequent patterns too early; otherwise,
we may not be able to get complete information such as frequencies of some
patterns (as it is impossible to recall those pruned patterns).

Over the past few years, several stream mining algorithms—including
FP-streaming [15], UF-streaming [22], TUF-streaming [21,23], and XTUF-
streaming [21]— have been proposed. However, most of them mine frequent
patterns (instead of popular patterns. In contrast, our Pop-streaming algorithm
mines popular patterns.

3 Our Proposed Notion of Popular Patterns

Let Item={x1, x2, . . . , xm} be a set of m domain items. A transactional database
(TDB) is the set of n transactions: {t1, t2, . . . , tn}, where each transaction tj in
the TDB is a subset of Item. We use |tj | to represent the transaction length
of tj . Let X = {x1, x2, . . . , xk} ⊆ Item be a pattern consisting of k items (i.e.,
a k-itemset), where |X| = k ≤ m. Then, the projected database of X (denoted
as DBX) is a set of TDB transactions (in the TDB) that contain X. We use
maxTL(X) and sumTL(X) to respectively represent the maximum length and
the total length of all transactions in DBX .

Example 1. Consider the TDB shown in Table 1, which consists of n=7 transac-
tions and m=9 domain items a, b, . . . , i. For pattern X = {b, c}, its projected
database DB{b,c}={t2, t3}. Hence, |DB{b,c}| = 2. In other words, the support (or
frequency) of {b, c} in the TDB is sup({b, c}, TDB) = sup({b, c},DB{b,c}) = 2.
Moreover, |t2| = |{b, c, f, g, h}| = 5, |t3| = |{b, c, d, e, f, h}| = 6, maxTL({b, c})
= max{|t2|, |t3|} = max{5, 6} = 6, and sumTL({b, c}) = |t2|+ |t3| = 5+6 = 11.

��

Table 1. A transaction database

Transaction ID Transaction

t1 {b, d}
t2 {b, c, f, g, h}
t3 {b, c, d, e, f, h}
t4 {c, e, g, h}
t5 {a, d}
t6 {a, b, i}
t7 {a, d, e}
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Definition 1. The transaction popularity Pop(X, tj) of a pattern X in
transaction tj measures the membership degree of X in tj. For simplicity, we
compute the membership degree based on the difference between the transaction
length |tj | and the pattern size |X|:

Pop(X, tj) = |tj | − |X|. (1)

Note that, depending on real-life applications, the above equation can be adapted
to incorporate some other functional operations on tj and X.

Definition 2. The long transaction popularity Pop(X, tmaxTL(X)) of a
pattern X in transaction tmaxTL(X) measures the membership degree of X in
tmaxTL(X), where tmaxTL(X) is the transaction having the maximum length
in DBX :

Pop(X, tmaxTL(X)) =
(

max
tj∈DBX

|tj |
)

− |X|. (2)

Definition 3. The popularity Pop(X) of a pattern X in DBX measures an
aggregated membership degree of X in all transactions in DBX . It is defined as
an average of all transaction popularities of X:

Pop(X) =
1

sup(X,DBX)

∑
tj∈DBX

Pop(X, tj). (3)

Example 2. Reconsider the TDB shown in Table 1. The transaction popularity
of pattern {b, c} in t2 can be computed as Pop({b, c}, t2) = |t2| − |{b, c}| =
5 − 2 = 3. Similarly, Pop({b, c}, t3) = |t3| − |{b, c}| = 6 − 2 = 4. Recall from
Example 1 that DB{b,c}={t2, t3} (i.e., {b, c} appears only in t2 and t3). As
t3 is the longest transaction in DB{b,c} (because maxTL({b, c})=6), the long
transaction popularity of pattern {b, c} in tmaxTL({b,c}) can be computed as
Pop({b, c}, tmaxTL({b,c})) = max{|t2|, |t3|} − |{b, c}| = 6 − 2 = 4. Hence, the
popularity of pattern {b, c} is 1

sup({b,c},DB{b,c})
(Pop({b, c}, t2)+Pop({b, c}, t3)) =

1
2 (3+4) = 3.5 ��
Definition 4. Given a user-specified minimum popularity threshold minpop, a
pattern X is considered popular if its popularity is at least minpop (i.e., Pop(X)
≥ minpop).

Example 3. If the user-specified minpop is 3.3, then pattern {b, c} is popular in
the TDB shown in Table 1 because Pop({b, c})=3.5 ≥ 3.3=minpop. However,
pattern {b} is not popular because Pop({b}) = 1

sup({b},DB{b})
(Pop({b}, t1)+

Pop({b}, t2)+Pop({b}, t3)+Pop({b}, t6)) = 1
4 (1+4+5+2) = 3 < 3.3 = minpop.��

4 Pop-Growth: Mining Popular Patterns from Static
Transactional Databases

When mining frequent patterns, the frequency measure satisfies the downward
closure property (i.e., if a pattern is infrequent, its superset is guaranteed to be
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infrequent). This helps reduce the search/solution space by pruning infrequent
patterns, and thus speeds up the mining process. However, when mining popular
patterns, observant readers may notice from Example 3 that popularity does
not satisfy the downward closure property. For example, a pattern (e.g., {b}) is
unpopular, but its superset (e.g., {b, c}) may be popular. Hence, the mining of
popular patterns can be challenging.

To handle the challenge, let us revisit Eq. (3) and redefine the popularity
Pop(X) of a pattern X (cf. Definition 3).

Definition 5. The popularity Pop(X) of a pattern X in DBX measures an
aggregated membership degree of X in all transactions in DBX . It is defined in
terms of sumTL(X) =

∑
tj∈DBX

|tj | as follows:

Pop(X) =
1

sup(X,DBX)

∑
tj∈DBX

Pop(X, tj)

=
1

sup(X,DBX)

∑
tj∈DBX

(|tj | − |X|)

=
sumTL(X)
sup(X,DBX)

− |X|. (4)

Example 4. Reconsider the TDB shown in Table 1. Recall from Example 1 that
sumTL({b, c})=11. Then, the popularity of pattern {b, c} is sumTL({b,c})

|{t2,t3}| −
|{b, c}| = 11

2 − 2 = 3.5. Similarly, the popularity of pattern {b} is sumTL({b})
|{t1,t2,t3,t6}| −

|{b}| = |t1|+|t2|+|t3|+|t6|
|{t1,t2,t3,t6}| − |{b}| = 16

4 − 1 = 3. ��

Observant readers may notice from Example 4 that sumTL({b, c})=11 ≤
16=sumTL({b}). The definition of sumTL(X) further confirms that the total
transaction length sumTL(X) of X satisfies the downward closure property. In
other words, for X ⊆ X ′,

sumTL(X) ≥ sumTL(X ′). (5)

4.1 Construction of a Pop-Tree

To mine popular patterns, we propose the Pop-growth algorithm, which consists
of two key procedures: (i) construction of a Pop-tree and (ii) mining of popular
patterns from the Pop-tree.

We first build a tree structure—called Popular pattern tree (Pop-tree)—
to capture the necessary information from the TDB with only two scans of the
TDB. Recall from Sect. 3 that Pop(X) does not satisfy the downward closure
property. So, unpopular items need to be kept in the Pop-tree as some of their
supersets may be popular. Fortunately, recall from Sect. 3 that sumTL(X) satis-
fies the downward closure property. So, not all unpopular items need to be kept.
Some of them can be pruned. See the following two lemmas.
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Lemma 1. The popularity of a pattern X is always less than or equal to its long
transaction popularity, i.e., Pop(X) ≤ Pop(X, tmaxTL(X)).

Proof. Recall from Equation (3) that Pop(X) = 1
sup(X,DBX)

∑
tj∈DBX

Pop(X, tj), where Pop(X, tj) = |tj |−|X|. According to Equation (1), Pop(X, tj)
measures the membership degree of X in tj . As shown in Equation (2), The long
transaction popularity Pop(X, tmaxTL(X)) measures the membership degree of
X in the longest transaction containing X. Hence, Pop(X) is always less than
or equal to Pop(X, tmaxTL(X)):

Pop(X) =
1

sup(X,DBX)

∑
tj∈DBX

Pop(X, tj)

=
1

sup(X,DBX)

∑
tj∈DBX

(|tj | − |X|)

=

∑
tj∈DBX

|tj |
|DBX | − |X|

=

(
avg

tj∈DBX

|tj |
)

− |X|

≤
(

max
tj∈DBX

|tj |
)

− |X| = Pop(X, tmaxTL(X)). (6)

Hence, this proved that Pop(X) ≤ Pop(X, tmaxTL(X)). ��
Lemma 2. For X ⊆ X ′, Pop(X ′) cannot exceed maxTL(X) − |X ′|.

Proof. Recall from Equation (4) that Pop(X) = sumTL(X)
sup(X,TDB) − |X|. Knowing

that sumTL(X) satisfies the download closure property, we get sumTL(X ′) ≤
sumTL(X) for X ⊆ X ′ as shown in Equation (5). Then, we get the following:

Pop(X ′) =
sumTL(X ′)
sup(X ′,TDB)

− |X ′|
≤ maxTL(X ′) − |X ′|
≤ maxTL(X) − |X ′| (7)

Hence, this proved that Pop(X ′) ≤ maxTL(X) − |X ′|. ��
Based on the above two lemmas, the following equation provides us with an

upper bound of the popularity Pop(X ′) of a pattern X ′ (in terms of maxTL(X)),
where X ⊆ X ′:

PopUB(X ′) ≤ maxTL(X) − |X ′|. (8)

Based on Equation (8), we can first calculate the popularity upper bound of a
patternX ′ frommaxTL(X) where (i)X ⊆ X ′, and (ii) |X ′| ≥ |X|+1 = k+1). We
can then prune unpopular patterns. We call this super-pattern popularity check.
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Similar to FP-tree [17], each node of a Pop-tree contains the parent and
child pointers as well as horizontal node traversal pointers. To facilitate popular
pattern mining, we keep (i) an item x, (ii) support of Y ∪ {x}, (iii) sumTL(Y ∪
{x}), and (iv) maxTL(Y ∪ {x}), where Y represents the set of items above x
(i.e., ancestor nodes of x).

To construct a Pop-tree, we scan the TDB to find the support(x), maximum
transaction length maxTL(x) and the popularity Pop(x) for each singleton x
in the TDB. Then, we perform the super-pattern popularity check and safely
delete a pattern x if PopUB(x′) < minpop (where x′ is an extension of x). We
then scan the TDB the second time to insert each transaction into the Pop-tree
in a similar fashion as the insertion process of FP-tree.

Example 5. Let us show how to construct a Pop-tree for the TDB shown in
Table 1 with minpop=2.4. With the first database scan, we obtain the following
information in the form of

〈x: sup(x,TDB), maxTL(x), Pop(x)〉
for each of the m=9 domain items: 〈a:3,3,1.66〉, 〈b:4,6,3.0〉, 〈c:3,6,4.0〉,
〈d:4,6,2.25〉, 〈e:3,6,3.33〉, 〈f :2,6,4.5〉, 〈g:2,5,3.5〉, 〈h:3,6,4.0〉, 〈i:1,3,2.0〉. This
information is useful as follows. (i) Based on the obtained Pop(x) values, we
noticed that all items—except a, d &i—are popular (i.e., with popularity at least
2.4). Although {a}, {d} &{i} are unpopular, their super-patterns may be pop-
ular. Hence, we cannot delete them without performing the super-pattern pop-
ularity check. So, (ii) the obtained maxTL(x) values are used for super-pattern
popularity check. The popularity upper bounds of the extensions of {a}, {d} &{i}
are at most 3−2=1, 6−2=4 &3−2=1, respectively. As the value for PopUB({d})
is greater than minpop, we keep {d} but safely delete {a} &{i}. Finally, (iii) we
sort and insert items b, c, d, e, f, g &h into a header table (H-table) in the descend-
ing order of the obtained sup(x,TDB) values: 〈b, d, c, e, h, f, g〉.

We then scan the TDB the second time. We compute the length of each
transaction, remove all items that are not in the H-table, and sort the remaining

Fig. 1. The Pop-tree construction
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items in each transaction according to the H-table order. Figure 1(a) shows the
contents of the H-table in the form of

〈x: sup(x,TDB), sumTL(x), maxTL(x)〉,
and the Pop-tree structure after inserting t1 of TDB. Because t1 and t2 share
a common prefix (i.e., {b}), we increase the occurrence count of the common
node {b : 1, 2, 2} by one, its total transaction length (sumTL) by the transaction
length of t2 (i.e., |t2|=5), and update its maxTL. For the remaining (uncommon)
nodes of t2, we set support=1, sumTL=|t2| and maxTL=|t2|. The contents of
the Pop-tree after insertion of t2 are shown in Fig. 1(b). The final Pop-tree after
capturing all the transactions in the TDB is shown in Fig. 1(c). ��

Let I(tj) be the set of items in transaction tj that pass through the first
database scan. Based on the above Pop-tree construction procedure, we observed
several important properties of Pop-trees listed as follows.

Property 1. A Pop-tree registers the projection of I(tj) for tj in the TDB only
once.

Property 2. The total transaction length sumTL in a node x in a Pop-tree cap-
tures the sum of lengths of all transactions that pass through, or end at, the
node for all the nodes in the path from x up to the root.

Property 3. The total transaction length sumTL of any node in a Pop-tree is
greater than or equal to the sum of transaction lengths of its children.

Properties 2 and 3 are the result of sharing common prefixes by different
transactions, which allow our Pop-tree to be compact. Based on following lemma,
one can observe that a Pop-tree is a highly compact tree structure.

Lemma 3. The size of a Pop-tree on a TDB for minpop is bounded above by∑
tj∈TDB |I(tj)|.

Proof. Recall that I(tj) denotes the set of items in transaction tj that pass
through the first database scan. In other words, I(tj) represents the set of indi-
vidually popular items in tj . During the Pop-tree construction, these items in tj
are inserted as a tree path into a Pop-tree for popular pattern mining. Thus, as
we insert every transaction tj in the TDB, the size of the resulting Pop-tree—-in
terms of the total number of tree nodes—would be equal to the total number
of individually popular items in all the transactions, i.e.,

∑
tj∈TDB |I(tj)|. This

would be the worst case scenario, in which there is no tree path sharing (i.e.,
no common nodes can be merged). Fortunately, in most cases, some paths are
in common and can thus be merged. In those cases, the size of a Pop-tree—in
terms of the total number of tree nodes—would be lower than the total number
of individually popular items in all transactions. Hence, this proved that the size
of a Pop-tree on a TDB for minpop is bounded above by

∑
tj∈TDB |I(tj)|. ��
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Fig. 2. The Pop-tree mining

Lemma 4. Given a TDB and minpop, the complete set of all popular patterns
can be obtained from a Pop-tree for the minpop on the TDB.

Proof. Given a TDB and minpop, the Pop-tree keeps every item x with Pop(x) ≥
minpop (i.e., keeps all individually popular items). Every possible pattern X with
PopUB(X) ≥ minpop can then be generated from the Pop-tree. As PopUB(X) ≥
Pop(X) for any pattern X, this implies that all patterns X with Pop(X) ≥
minpop (i.e., true positives) can be generated. As a by-product, some patterns
Y with PopUB(Y ) ≥ minpop > Pop(Y ) (i.e., false positives) could be generated
from the Pop-tree. As a preview, the corresponding Pop-growth algorithm would
prune these false positives as its last step and would return only those true
positives to the user. Hence, given a TDB and minpop, the complete set of all
popular patterns can be obtained from a Pop-tree for the minpop on the TDB.

��
We can justify the completeness of a Pop-tree for mining popular patterns

by Lemma 4. Based on this lemma, popular patterns can be found by mining
our Pop-tree.

4.2 Finding Popular Patterns from the Pop-Tree

Recall that, to mine popular patterns, the Pop-growth algorithm applies two key
procedures: (i) construction of a Pop-tree and (ii) mining of popular patterns
from the Pop-tree. The Pop-growth finds popular patterns from the Pop-tree,
in which each tree node captures its occurrence count, total transaction length,
and maximum transaction length. The algorithm finds popular patterns by con-
structing the projected database for potential popular patterns and recursively
mining their extensions.

While constructing the conditional pattern base from a projected database,
we perform a super-pattern popularity check for extensions of any unpopular
item, and delete the item only when it fails the check. We call such pruning
technique the lazy pruning.

The lazy pruning technique ensures that no popular patterns (having unpop-
ular subsets) will be missed by Pop-growth. The following example illustrates
how Pop-growth mines popular patterns from the Pop-tree.
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Example 6. Let us continue Example 5. In other words, let us mine popular
patterns from the Pop-tree shown in Fig. 1(c) constructed for the TDB shown
in Table 1 with minpop=2.4.

Recall that the Pop-growth recursively mines the projected databases of all
items in H-table. Before constructing the projected database for an item x in
H-table, we output the item as a popular pattern if its popularity is at least min-
pop. The conditional pattern base for the {g}-projected database (i.e., DB{g}),
as shown in Fig. 2(a), is constructed by accumulating the contents in the tree
paths: 〈b:1,5,5 c:1,5,5 h:1,5,5 f :1,5,5〉 and 〈c:1,4,4 e:1,4,4 h:1,4,4〉. The
header table for DB{g}, as shown in Fig. 2(a), contains all items that co-occur
with g in the Pop-tree. It also contains the corresponding support, sumTL and
maxTL of each item in DB{g}. We then compute the exact popularity of each
item in DB{g} by using Eq. (4).

The conditional tree for any conditional pattern base of a pattern X may
contain two types of items: (i) items that are popular in DBX and (ii) items
that are unpopular in DBX but have potentially popular super-patterns. Other
items are deleted from the projected database. To find unpopular items that
having potentially popular super-patterns, we apply the lazy pruning technique
and Eq. (8).

Based on Eq. (4), the popularity of items in the H-table of DB{g} can be
computed: Pop({b, g}) = 5

1 − 2 = 3, Pop({f, g}) = 5
1 − 2 = 3, Pop({c, g}) =

9
2 −2 = 2.5, Pop({g, h}) = 9

2 −2 = 2.5 and Pop({e, g}) = 4
1 −2 = 2. All items

except e are popular together with g. By applying the lazy pruning technique,
the popularity upper bound PopUB({e, g}) for e with g can be calculated as at
most 4−2 = 2, which is less than minpop. Hence, we can safely delete e from the
projected database of g. The conditional tree for the projected database of g is
presented in Fig. 2(b).

The mining for each extension (i.e., for f, h, c &b) of g is performed recur-
sively. The set of patterns generated from the projected database of g is shown
in Fig. 2(c). The mining process terminates when we reach the top of H-table of
the Pop-tree. ��

The Pop-growth mining technique is efficient because it applies a pattern-
growth based mining technique on a Pop-tree. Moreover, the lazy pruning tech-
nique further reduces the mining cost for unpopular items whose super-patterns
cannot be popular.

5 Discussion: An Application on Mining Popular Friends
from Social Networks

In the previous section, we described how our proposed Pop-growth mines fre-
quent patterns from transactional databases. This algorithm builds a Pop-tree
structure to capture important contents of the transactional databases and recur-
sively mines popular patterns from the Pop-tree. In this section, we extend the
proposed technique and apply it to mine a special type of frequent patterns—
popular friends—from social networks.
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Recent advances in technology and successes in online digital media sites
have led the surge of interest in social computing and its applications. Social
computing enables users to intersect social behaviour with computing systems
and to create social conventions as well as social contexts through the use of soft-
ware and technology. This explains why, over the past few years, various research
works on the analytics, mining and visualization of complex social networks have
been proposed. In general, social networks are structures made of social entities
(e.g., individuals, corporations, collective social units, or organizations) that are
linked by some specific types of interdependencies (e.g., kinship, friendship, com-
mon interest, beliefs, or financial exchange). These dependencies among linked
entities in the social networks present an opportunity to further infer different
properties of individuals. Because a social entity is connected to another social
entity as his next-of-kin, friend, collaborator, co-author, classmate, co-worker,
team member and/or business partner, identifying social entities or groups of
entities that have connections with a large number of other social entities may
provide useful knowledge to the user. For example, among the friends of p, some
of them may be very popular in the sense that they have many connections. Dis-
covering these popular friends provides useful knowledge to p because they may
have high social connectivity and/or could have strong influence on members
of their social groups. Similarly, a newcomer (to a city, company, or profession)
may want to be introduced to individuals having high social connectivity so that
he can get to know more people faster. Similar comments apply to users in other
social networking sites.

Note that the task of finding popular friends can be more complicated when
we do not have access to these lists of connections. For example, due to various
reasons (e.g., privacy setting), connection lists of some social entities in the social
network may not be accessible to unauthorized users. Fortunately, members
of interest groups (especially, open public groups) are usually visible. In these
situations, given a social network containing all members of these interest groups,
we can adapt our proposed Pop-growth to find popular users or a popular group
of friends. Specifically, to adapt our proposed Pop-growth algorithm for mining
popular friends from social networks, we treat (i) each interest group list like
a transaction and (ii) each social user/member in an interest group list like an
item in a transaction. With this adaption and setting of a user-specified minpop,
we find popular friends from a sample social network as illustrated in Example 7.

Example 7. Consider a collection of n=7 interest groups involving m=9 users
(namely, Alice, Bob, Cathy, Don, Ed, Fank, Gary, Helen, and Irene) as shown
in Table 2, which may represent a subset of a large social network. To adapt
our proposed Pop-growth algorithm for mining popular friends from social net-
works, we treat (i) each interest group list like a transaction and (ii) each social
user/member in an interest group list like an item. With this adaption and set-
ting of a user-specified minpop=2.4, we first scan the collection once to find
individually popular users: Bob, Cathy, Ed, Frank, Gary, or Helen, with their
popularity values of 3, 4, 3.33, 4.5, 3.5, or 4, respectively.
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Table 2. A sample social network

Interest group list ID Members in the interest group list

L1 on ballet {Bob, Don}
L2 on baseball {Bob, Cathy, Frank, Gary, Helen}
L3 on curling {Bob, Cathy, Don, Ed, Frank, Helen}
L4 on football {Cathy, Ed, Gary, Helen}
L5 on hockey {Alice, Don}
L6 on lacrosse {Alice, Bob, Irene}
L7 on soccer {Alice, Don, Ed}

Note that, among the m=9 users, only six of them are popular. As for the
three unpopular users (Alice, Don, and Irene), their super-pattern may still be
popular. Hence, we cannot delete them without performing the super-pattern
popularity checks. The checks reveal that, when X={Alice}, the popularity
upper bound PopUB(X ′) of its extension X ′ (where X ′ ⊇ {Alice}; e.g., X ′

= {Alice, Bob}) is at most 3−2=1 < minpop. Similarly, when X={Irene}, the
popularity upper bound PopUB(X ′) of its extension X ′ is also at most 3−2=1 <
minpop. In contrast, when X={Don}, the popularity upper bound PopUB(X ′)
of its extension X ′ is at most 6−2=4 ≥ minpop. Hence, we keep Don but safely
delete Alice and Irene.

To find popular groups of users, we build a Pop-tree by sorting and insert-
ing the six individual popular users (Bob, Cathy, Ed, Frank, Gary, and Helen)
together with this undeleted user (Don) into a header table (H-table) in descend-
ing order of their support values: 〈Bob, Don, Cathy, Ed, Helen, Frank, Gary〉.
We then scan the collection of n=7 interest group lists the second time. During
that, we compute the length of each interest group list (e.g., |L1| = 2, |L3| = 6),
remove all uses who are not in the H-table (e.g., remove Alice from L5 to make
the resulting list become {Don}, remove both Alice and Irene from L6 to make
it become {Bob}, remove Alice from L7 to make it become {Don, Ed}), and sort
the remaining users in each interest group list according to the H-table order.
When inserting users into a Pop-tree, if two interest group lists share a com-
mon prefix (e.g., Bob appears in both L1 and L2), then the prefix is merged.
Figure 3 shows the Pop-tree after capturing all the interest group lists in the
social collection.

Once the Pop-tree is built, we call Pop-growth to recursively mine the pro-
jected databases of all users in H-table. Before constructing the projected data-
base for a user (e.g., {Gary}) in H-table, we output it as a popular user if its
popularity is at least minpop. The conditional pattern base for the {Gary}-
projected database (i.e., DB{Gary}) is constructed by accumulating the con-
tents in the tree path 〈Bob:1,5,5 Cathy:1,5,5 Helen:1,5,5 Frank:1,5,5〉 and
〈Cathy:1,4,4 Ed:1,4,4 Helen:1,4,4〉. The header table for DB{Gary} contains all
users that share a common interest with Gary in the Pop-tree. It also contains the
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Fig. 3. The Pop-tree capturing interest group lists of a sample social network

corresponding support, sumTL and maxTL of each user in DB{Gary}. We then
compute the exact popularity of each item in DB{Gary} by using Eq. (4).

As the conditional tree for any conditional pattern base of a group X of users
contains (i) those who are popular in DBX and (ii) those who are unpopular
in DBX but have potentially popular super-groups, we apply the lazy pruning
technique and Eq. (8) to prune out those unpopular users who have potentially
popular super-groups. For example, we found popular groups {Bob, Gary} and
{Frank, Gary} (both with popularity value of 3), as well as {Cathy, Gary} and
{Gary, Helen} (both with popularity value of 2.5). Similar steps can be applied
to other paths in a Pop-tree to find all other popular friends or groups of friends
from social networks. ��

6 Pop-Streaminng: Mining Popular Patterns
from Dynamic Data Streams

In Sect. 4, we mined popular patterns from static transactional databases. The
corresponding Pop-growth algorithm works well when handling static data. How-
ever, there are situations in which we need to deal with dynamic streaming
data. In this section, we propose another algorithm for handling dynamic data.
The corresponding algorithm—called Pop-streaming—mines popular patterns
from dynamic data streams in a landmark model environment.

When using the landmark model for processing data streams, transactions in
each batch (regardless of whether they are historical or recent data) are treated
equally. As such, all batches (regardless of whether they are old or recent) are
assigned the same weights. To mine popular patterns from dynamic data streams,
our proposed Pop-streaming algorithm first calls Pop-growth (Sect. 4) to find
popular patterns from the current batch of transactions in the streams (using
a threshold called preMinpop, which is defined to be ≤ minpop). Note that,
although users are interested in truly popular patterns (i.e., patterns with pop-
ularity ≥ minpop > preMinpop), preMinpop is used in attempt to avoid pruning
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a pattern too early. This is important because data in the continuous streams
are not necessarily uniformly distributed.

Once the popular patterns for a batch of streaming data are found, the next
step is to construct a Pop-stream structure to capture the mined popular
patterns. Each node in this tree-based Pop-stream structure corresponds to a
popular pattern. Nodes that correspond to the popular patterns sharing common
prefix are merged. In addition to the popular pattern X (or more precisely, the
suffix item in X), each node stores additional information. So, on the surface,
this Pop-stream structure may seem to be similar to that of the UF-stream
structure [21] used in frequent pattern mining. As such, it was tempting to keep
X and its popularity value Pop(X) in each node. However, a closer look reveals
that, while frequency (or support) of patterns is additive, popularity of patterns
is not. See Example 8.

Table 3. A data stream

Batch ID Transaction ID Transaction

B1 t1 {b, d}
t2 {b, c, f, g, h}

B2 t3 {b, c, d, e, f, h}
t4 {c, e, g, h}

Example 8. Consider two batches of streaming data as shown in Table 3. The
support of {c, h} in Batch B1 is 1, and that in Batch B2 is 2. So, sup({c, h}, B1∪
B2) = sup({c, h}, B1) + sup({c, h}, B2) = 1 + 2 = 3. However, the popular-
ity of {c, h} in Batch B1 is 1

|{t2}|Pop({c, h}, t2) = 3, and that in Batch B2

is 1
|{t3,t4}| (Pop({c, h}, t3) + Pop({c, h}, t4)) = 1

2 (4 + 2) = 3. So, the sum of
these two popularity values becomes 3+3 = 6, which is not equal to the pop-
ularity of {c, h} in these two batches. Mathematically, Pop({c, h}, B1 ∪ B2) =

1
|{t2,t3,t4}| (Pop({c, h}, t2)+Pop({c, h}, t3)+Pop({c, h}, t4)) = 1

3 (3+4+2) = 3.��

Recall from Definition 5 that the popularity Pop(X) of a pattern X can
be computed in terms of (i) sumTL(X) and (ii) sup(X,Bi). Moreover, both
(i) sumTL(X) and (ii) sup(X,Bi) are additive. For example, sumTL({c, h}) in
B1 is 5, sumTL({c, h}) in B2 is 6+4 = 10, whereas sumTL({c, h}) in the first
two batches is 5+(6+4) = 15. Similarly, sup({c, h}, B1) is 1, sup({c, h}, B2) is 2,
whereas sup({c, h}, B1∪B2) is 1+2 = 3. Hence, instead of storing the popularity
value of a popular pattern, we store (i) sumTL(X) and (ii) sup(X,Bi) values
so that we can compute the popularity of X based on these two values.

As we are dealing with batches of streaming data, the Pop-stream structure
needs to be updated. Hence, we need to store multiple pairs of sumTL(X)
and sup(X,Bi) values (one pair for each batch) In other words, we need to
store w pairs of sumTL(X) and sup(X,Bi) values when handling w batches of
streaming data Fortunately, when using the landmark model, all data are of the
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same weights. Hence, we only need keep one pair of sumTL(X) and sup(X,Bi)
values for each node representing a popular pattern X:

(i) X, (ii) sumTL(X), and (iii) sup(X,
⋃

i Bi).

When a new batch Bj flows in, if X does not exist in the Pop-stream struc-
ture, our Pop-streaming algorithm inserts 〈X, sumTL(X), sup(X,Bj)〉 into the
Pop-stream structure. Otherwise (i.e., X exists in the Pop-stream structure), we
need to update the stored information as follows:

1. add the new sumTL(X) to the existing sumTL(X), and
2. add the new sup(X,Bj) to the existing sup(X,

⋃j−1
i=1 Bi).

This insertion (of new popular patterns) and update (of existing popular pat-
terns) step is repeated for each batch.

Note that, during the mining process, our proposed Pop-streaming algorithm
updates the sumTL(X) and sup(X) values stored in the Pop-stream structure
whenever a batch of streaming data flows in. However, the algorithm does not
repeatedly update Pop(X). It uses the delay mode for mining: It only computes
Pop(X) based on the updated sumTL(X) and sup(X) values when the user
needs the results. See Fig. 4 for a skeleton of the Pop-streaming algorithm.

Fig. 4. A skeleton of the Pop-streaming algorithm

7 Experimental Results

For experiments, we mostly use those datasets commonly used in frequent pat-
tern mining experiments because characteristics of those transactional datasets
are well known (see Table 4). More specially, we used (i) IBM synthetic datasets
(e.g., T10I4D1M, T10I4D100K, T20I4D100K). and (ii) real datasets (e.g.,
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chess, mushroom, connect-4) from the Frequent Itemset Mining Dataset Repos-
itory http://fimi.ua.ac.be/data/. We obtained consistent results for all of these
datasets. Hence, to avoid repetition, we report here the experimental results on
only a subset of these datasets in the remainder of this section.

Table 4. Dataset characteristics

Dataset #transactions #items maxTL avgTL Data density

T10I4D100K 100,000 870 29 10.10 Sparse

T20I4D100K 99,996 871 42 19.81 Sparse

mushroom 8,124 119 23 23.00 Dense

All programs were written in C and run on UNIX with a quad-core processor
with 1.3 GHz. The runtime specified indicates the total execution time (i.e.,
CPU and I/Os). The reported results are based on the average of multiple runs
for each case. In all of the below experiments, Pop-trees were constructed using
descending order of occurrence counts of items.

To the best of our knowledge, our Pop-tree is the first approach to mine
popular patterns from transactional databases. Here, we first present the per-
formance of our Pop-tree structure and Pop-growth algorithm when varying the
mining parameters such as popularity threshold and dataset characteristics.

7.1 Runtime of Pop-Growth

In this section, we report the execution time that the Pop-growth requires for
mining popular patterns over datasets of different types and changes in minpop.
The execution time includes all the steps of H-table construction, the Pop-tree
building and the corresponding mining. The results on one sparse dataset (e.g.,
T20I4D100K) and one dense dataset (e.g., mushroom) are presented in Fig. 5.

To observe the effect of mining on the variation in size of such datasets,
we performed popular pattern mining while increasing the size of both of the

Fig. 5. Runtime of Pop-growth in mining transactional databases

http://fimi.ua.ac.be/data/
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datasets: (i) From 2 K to full for the mushroom dataset and (ii) from 30 K to full
for T20I4D100K. Thus, the series for “Full DB” represent the results for the full
size of datasets. Both datasets required more execution time when mining larger
datasets. As the database size increased and minpop decreased, the tree structure
size and number of popular patterns increased. Hence, a comparatively longer
time was required to generate large numbers of popular patterns from large trees.
Although the mushroom dataset is smaller in size, the transaction lengths of all
transactions are the same (i.e., 23). Hence, the Pop-tree mining took a longer
time when compared to a dataset with variable length such as T20I4D100K. The
experimental results show that mining the corresponding Pop-tree for popular
patterns is time efficient for both sparse and dense datasets.

7.2 Reduction on the Number of Patterns When Changing minpop

Similar to the previous experiment, we also examined the number of patterns
generated by our Pop-growth when we varied the dataset size and minpop.
Figure 6 shows the reduction in the number of patterns in percentage when
increasing the minpop values in both the mushroom and T20I4D100K datasets
with different dataset size. Each data point in the x-axes of the graphs reports
the change of minpop from a low to a high value, while the y-axes indicate the
percentage change in the number of patterns generated from a low to a high
minpop value.

Fig. 6. Reduction on the number of patterns when changing minpop

Note that, depending on dataset characteristics, the reduction rate varied.
For example, for the mushroom dataset, the reduction rate dropped sharply
when minpop was changed from 60 %–65 % to 65 %–70 %, but the reduction
rate rose when minpop was changed to 70 %–75 %. In contrast, T20I4D100K
showed a consistent reduction rate when lowering the minpop value. However,
as observed from the graphs for both datasets, the number of patterns reduced
when increasing the minpop values. For example, for the mushroom dataset, the
reduction rate was around 40 % when increasing the threshold from 60 % to 65 %.
For 30 K of T20I4D100K, the reduction rate was around 21 % when increasing
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Fig. 7. Compactness of the Pop-tree: node count on T20I4D100K

the threshold from 80 % to 82 %. It is also interesting to note that the pattern
count reduction rate was very similar irrespective of the database size.

We observed that the pattern generation characteristics of the proposed pop-
ular pattern mining algorithm were consistent with the variation of minpop and
database size.

7.3 Compactness of the Pop-Tree

Here, we report the compactness of a Pop-tree in terms of number of Pop-tree
nodes. Note that, as the mushroom dataset has a fixed transaction length, the
maximum transaction length for every possible pattern in the dataset is always
the same. Consequently, every item in the dataset passes the lazy pruning phase
and contributes to the tree. Hence, for a particular portion of the mushroom
dataset, the tree size (i.e., number of nodes) is the same with the variation of
minpop. However, the number of nodes varied from 34523 (when |TDB| = 2 K)
to 91338 (when |TDB| = 6 K). For the full dataset, it is around 100 K. The
compactness of Pop-tree on different portion of T20I4D100K is presented in
Fig. 7. The size of the tree structure gradually reduced in T20I4D100K with the
increase of minpop.

As expected, in both datasets, the number of nodes increased with the
increase in size of database. However, as far as the total number of nodes is
concerned, one can observe that, irrespective of fixed or variable transaction
length, a Pop-tree structure is compact enough to fit into a reasonable amount
of memory.

7.4 Scalability of Pop-Growth

To study the scalability of Pop-growth mining technique, we further ran our algo-
rithm on T10I4D100K, which is sparser than T20I4D100K. Figure 8 presents the
results on scalability tests on the variation of minpop and required number of
nodes on the dataset. Clearly, as the minpop decreases, the overall tree con-
struction and mining time (Fig. 8(a)), and required memory (Fig. 8(b)) increase.
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However, the Pop-tree shows a stable performance with a linear increase in run-
time and memory consumption as the minpop decreased for the dataset. More-
over, the results demonstrate that, the Pop-tree can mine the set of popular
patterns on this dataset for a reasonably small value of popularity threshold
with a considerable amount of execution time and memory.

To recap, the above experimental results show that the proposed Pop-tree can
mine the set of popular patterns in both time and memory efficient manner over
different types of dataset. Furthermore, the Pop-tree structure and Pop-growth
algorithm are scalable for popularity threshold values and memory.

7.5 Mining Popular Friends from Social Networks

The aforementioned results show the time-efficiency of our proposed Pop-growth
algorithm and the space-efficiency of our proposed Pop-tree structure for mining
popular patterns from transactional data. Here, we experimented the efficiency
of the Pop-growth algorithm when adapted to mine popular friends from social
networks. To conduct this experiment, we used the social network datasets (e.g.,
Facebook, Twitter) from Stanford Large Network Dataset Collection https://
snap.stanford.edu/data/. For example, when minpop was set to 1043, Pop-
growth only took 43 s to find about 384 K popular friend groups from the Face-
book dataset (where maxTL = 1045). As another example, when minpop was set
to 1203, Pop-growth took 70 s to find more (e.g., around 484 K) popular friend
groups from another dataset—namely, the Twitter dataset (where maxTL is
higher and with a length of 1205).

7.6 Runtime of Pop-Streaming

After performing a series of experiments on popular pattern mining from static
transactional databases or static social networks, we conduct experiments on
popular pattern mining from dynamic data streams. Here, we divided datasets
into multiple batches. We report the execution time that the Pop-streaming

Fig. 8. Scalability on Pop-growth

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
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requires for mining popular patterns over batches of streaming data of different
types and changes in minpop. The execution time includes all the steps of the
application of Pop-growth, the construction of the Pop-stream structure, and the
corresponding mining. The results on dense streams (e.g., mushroom) and sparse
streams (e.g., IBM) are presented in Fig. 9. Consistent with the runtime results
on transactional database mining, Pop-streaming required shorter runtimes when
preMinpop increased.

Fig. 9. Runtime of Pop-streaming in mining batches of data streams

7.7 Compactness of the Pop-Stream Structure

Next, we report the compactness of the Pop-stream structure in terms of number
of nodes, which corresponds to the number of popular patterns mined from
batches of streaming data. Figure 10 shows that, when preMinpop increased, the
number of mined popular patterns decreased and thus reducing the size (i.e.,
reducing the number of nodes) of the Pop-stream structure.

7.8 Memory Consumption for the Pop-Streaming Algorithm

Recall that the first step of the Pop-streaming algorithm is to call Pop-growth
for finding popular patterns from each batch of streaming data. When the Pop-
growth algorithm is called, it builds a Pop-tree to capture important contents
of transactions in the batch. When mining from w batches of the streaming
data, the Pop-growth algorithm may be called w times. The size of the ing Pop-
tree may vary from one batch to another batch. Figure 11 shows the maximum
memory consumption among w Pop-trees.

Once the popular patterns are mined from a batch of streaming data, these
mined patterns are then stored in the Pop-stream structure. Recall that, in
Sect. 7.7, we measured the compactness of the Pop-stream structure. Note that
memory consumption of the Pop-streaming algorithm mainly depends on that
of the Pop-tree (measured in this section) and that of the Pop-stream structure
(measured in Sect. 7.7). Hence, based on the experimental results from these two
sections, we gained some insight about the amount of memory space required by
the Pop-streaming mining process.
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Fig. 10. Compactness of the Pop-stream structure: node count

Fig. 11. Compactness of the Pop-tree structure in mining data streams: node count

Fig. 12. Compactness of the Pop-stream structure when varying #batches

7.9 Scalability of the Pop-Stream Structure

Finally, we studied the scalability of the Pop-stream structure. In particular,
Fig. 12 shows that, when the number of batches increased, the number of patterns
to be stored in the Pop-stream structure gradually increased. Hence, the total
number of nodes in the Pop-stream structure increased accordingly. The increase
in the number of mined popular patterns (i.e., in the number of stored nodes) is
proportional to the number of batches in the streaming data.
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8 Conclusions and Future Work

In this paper, we introduced a new type of patterns—namely, popular patterns.
We also proposed the Pop-tree (which captures important contents of trans-
actional databases for mining popular patterns) and the Pop-growth algorithm
(which finds popular patterns by mining the Pop-tree). Although the notion
of popularity does not satisfy the downward closure property, we managed to
address this issue by using total transaction length (sumTL) together with pro-
jected databases, which allows lazy pruning. Moreover, we also proposed the
Pop-stream structure (which captures the popular patterns mined from each
batch as well as other auxiliary information for computing the popularity of
these patterns) and the Pop-streaming algorithm (which finds popular patterns
by mining the Pop-stream. Moreover, results also showed that construction of
Pop-tree and mining of popular patterns are time efficient. Furthermore, we are
not confined with mining popular patterns from static transactional databases;
we also mine popular patterns from dynamic data streams. Experimental results
showed that both Pop-tree and Pop-stream structures are compact, scalable, and
space efficient for both sparse and dense datasets (e.g., IBM synthetic data, real
data from FIMI, social network data).

As future work, we plan to further extend our proposed framework as to
incorporate novel extensions, precisely targeting several achievements: (i) incor-
porating the capability of dealing with Big Data (e.g., [8]), perhaps by adopting
consolidated data fragmentation approaches (e.g., [3]), which well-adapt to mas-
sive sizes that both transactional databases and multi-rate, heterogeneous data
streams may achieve; (ii) incorporating the capability of dealing with optimiza-
tion issues (e.g. [5,6]), perhaps by adopting non-conventional approaches like
topology control (e.g., [13]), which well-adapts to the graph-based nature of both
connected entities in transactional databases and data stream items; (iii) incor-
porating the capability of dealing with uncertain and imprecise transactional
databases (e.g., [27]) and data streams (e.g., [4]), perhaps by adopting proba-
bilistic methods (e.g., [7]).
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Abstract. There has been some research in the area of rare pattern
mining where the researchers try to capture patterns involving events
that are unusual in a dataset. These patterns are considered more useful
than frequent patterns in some domains, including detection of computer
attacks, or fraudulent credit transactions. Until now, most of the research
in this area concentrates only on finding rare rules in a static dataset.
There is a proliferation of applications which generate data streams, such
as network logs and banking transactions, and applying techniques that
mine static datasets is not practical for data streams. We propose a
novel approach called Streaming Rare Pattern Tree (SRP-Tree) and its
variations, which finds rare rules in a data stream environment using a
sliding window, and show that it both finds the complete set of itemsets
and runs with fast execution time.

Keywords: Rare pattern mining · FP-Growth · Data stream · Sliding
window

1 Introduction

Traditionally pattern mining techniques focus on finding frequent patterns
within a dataset. The early works in pattern mining revolve around the Apriori-
like candidate generation-and-test approach. The Apriori algorithm [2] was
widely used and studied with several variations proposed [1,15,22]. The intro-
duction of FP-Tree by Han et al. [12] directed focus in frequent pattern mining
from Apriori approaches to tree-structured approaches. Along with the intro-
duction of FP-Tree was the simultaneous proposal of FP-Growth in [12]. Since
then FP-Growth have been one of the most widely used tree mining algorithms
in the recent decade.

Even though frequent patterns are widely considered to be both informative
and useful, in some scenarios rare patterns may be more interesting as they rep-
resent infrequent events. Rare patterns are patterns that do not occur frequently
within the dataset and can be considered as exceptions. The discovery of rare
patterns also has possible application in several different areas of research such as
Wireless Sensor Networks [8] and Auction Fraud Detection [30]. An example of
a useful rare pattern in practice could be the association of certain occurrences
of symptoms to diseases. For instance, Meningitis is the inflammation of the
c© Springer-Verlag Berlin Heidelberg 2015
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protective membranes covering the brain and spinal cord. Symptoms of Menin-
gitis include headache, fever, vomiting, neck stiffness, and altered consciousness.
Most of the symptoms commonly occur with influenza except for neck stiffness.
By discovering the rare occurrence of all symptoms including neck stiffness,
we are capable of flagging a patient possibly suffering from Meningitis out of a
pool of patients suffering from common influenza. In recent years, the problem of
extracting rare patterns from static datasets has been addressed. These proposed
algorithms often follow either the Apriori algorithm or the FP-Tree algorithm.
However, as the capability of generating data streams increases, the ability to
capture useful information from streaming data becomes more important.

Ever since its inception, data stream mining has remained one of the more
challenging problems within the data mining discipline. This is mainly due to the
nature of data streams being continuous and unbounded in size as opposed to
traditional databases where data is static and stable. Therefore, techniques devel-
oped have focused on improving the execution time and storage efficiency [7].
Recently the term “Big Data” has been widely used and has close relations to
high performance data mining. Some of the important aspects of Big Data is
introduced in [9] and the problem of devising models and algorithms for such
high performance data mining tasks is further explained in [6].

Data from a wide variety of application areas ranging from online retail appli-
cations such as online auctions and online bookstores, telecommunications call
data, credit card transactions, sensor data, wireless sensor networks and climate
data are a few examples of applications that generate vast quantities of data on
a continuous basis. Data produced by such applications are highly volatile with
new patterns and trends emerging on a continuous basis. The unbounded size of
data streams is considered the main obstacle when processing data streams. As it
is unbounded, it makes it infeasible to store the entire data on disk. Furthermore,
the processing of data streams should ideally be near real time. This raises two
issues. Firstly, a multi-pass algorithm cannot be used because the entire dataset
would need to be stored before mining can commence. This restriction limits the
use of the majority of current database-based techniques as most of them require
multiple scans of the entire dataset which needs the entire dataset to be stored.
Secondly, obtaining the exact set of rules that includes both frequent and rare
rules from the data streams is too expensive. In theory, most frequent pattern
mining techniques that uses a minimum support threshold can be used to find
rare patterns as these thresholds can be lowered to find both frequent and rare
rules then later the frequent rules can be pruned out leaving only rare rules.
However, this approach is extremely inefficient as a large number of unnecessary
rules are generated and then discarded. In light of this situation, the need for
an efficient algorithm that finds only rare rules in data streams without having
to generate frequent rules is evident. In this paper we propose a technique that
achieves this aim.

Contributions. Our contribution in this paper is the proposal of a novel tech-
nique called Streaming Rare Pattern Tree (SRP-Tree), which captures the com-
plete set of rare rules in data streams using only a single pass scanning of the
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dataset and adapts a sliding window approach. We also propose two variations
of the technique where the first one involves using a novel data structure called
the Connection Table which allows us to efficiently constrain the search in our
tree, and keep track of items within the window. The second variation improves
upon the first and requires the tree to go through restructuring before mining
with FP-Growth.

Paper Structure. The paper is organized as follows. In Sect. 2 we look at
related work in the area of rare association rule mining. In Sect. 3 we present
preliminary concepts and definitions for rare pattern mining in data streams.
In Sect. 4 we describe our SRP-Tree approach, and in Sect. 5 we describe and
discuss our experimental results. Finally, Sect. 6 concludes the paper.

2 Related Work

In this section we will discuss the related work in the area of pattern mining,
specifically, frequent pattern mining and rare pattern mining. We look at the pre-
vious approaches that performs these tasks in both traditional static databases
and in stream environments.

2.1 Frequent Pattern Mining

In the area of frequent pattern mining, the first algorithm was Apriori [2] and
was proposed in the year 1994. The Apriori algorithm does multiple database
scans and generates a large number of possible rules which are later found to
be infrequent. This repeated candidate generation-and-test approach was exten-
sively studied and used until in the year 2000 when the FP-Tree algorithm was
proposed. The FP-Tree [12] is one of the most widely known techniques, and
unlike Apriori it uses a tree structure to find frequent patterns in a database.
FP-Tree solves the efficiency problem of Apriori-like approaches when finding
patterns and rules and proposes the FP-Growth algorithm as the mining algo-
rithm for the tree. FP-Tree proves to be efficient at finding the complete set
of frequent patterns from a database and the FP-Growth algorithm was later
adopted by many and considered as an efficient pattern mining algorithm. FP-
Tree, being a landmark technique, is designed as a multi-pass approach which
is not ideal in the data stream environment where data can only be read once.
In addition, it is also memory intensive and unfitting for stream environments
as streams are considered to be unbounded in data and working algorithms are
required to have an efficient memory use.

Recently, more research that considers mining frequent patterns from data
streams have been proposed. Giannella et al. [11] proposed a technique called
FP-Stream which adopts the structure of FP-Tree and finds the approximate
set of frequent patterns from data streams. FP-Stream mines time-sensitive
frequent patterns and incrementally maintains only the historical informa-
tion of frequent patterns. Overall, FP-Stream proposed efficient algorithms for
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constructing, maintaining, and updating pattern structures over data streams.
However, FP-Stream only finds the approximate set of frequent patterns and
discovering an approximate set of patterns is a disadvantage of the technique as
in most cases, the user would want to find the complete set of patterns.

The technique DSTree was proposed by Leung et al. [20] and it is also a
tree-structured algorithm. Unlike FP-Stream, DSTree finds the complete set of
frequent patterns from a data stream. Unlike FP-Tree which builds its tree based
on frequency-descending order, DSTree incrementally builds the tree based on
a canonical ordering. DSTree is unaffected by changes in item frequency and
therefore has the attractive property that it is easily updated and maintained as
data is removed and added into the tree. DSTree has a wider applicability and
can be used to find maximal, closed, and constrained itemsets.

Tanbeer et al. [27] proposed the CPS-Tree which is an efficient tree-structured
algorithm that also finds the complete set of frequent patterns from a data
stream. Unlike DSTree which uses a canonical ordering, CPS-Tree builds a com-
pact tree in frequency-descending order by performing multiple sorting opera-
tions on the tree before mining of the tree. Resorting of the tree was proven to
be more cost effective in the experiments when compared to other tree-based
frequent mining techniques.

Most pattern mining algorithms like the DSTree and CPS-Tree adopt a slid-
ing window model. However, for some applications, other models such the time-
fading model and the landmark model may be more appropriate. In [19] the
authors proposed a tree-based mining algorithm that mines frequent patterns
from data streams using the time-fading model and the landmark model. The
two different models were applied to streams of uncertain data were it is more
sensible than using the sliding window model and the proposed algorithms were
shown to be efficient through evaluation.

There has been a lot of other works in the area of data stream mining and
most of them look at finding frequent patterns from data streams [3–5,13,16,18,
21,24].

2.2 Rare Pattern Mining

There has also been a lot of work in the area of rare pattern mining, including
many recent works such as [17,23,25]. However all current research in this area is
designed for static datasets and is not able to handle a data stream environment.
Currently there are two different types of rare pattern mining approaches: level-
wise and tree based, like that of frequent pattern mining. Current itemset mining
approaches, which are based on level-wise exploration of the search space are
similar to the Apriori algorithm [2]. In Apriori, k-itemsets (itemsets of cardinality
k) are used to generate k+1-itemsets. These new k+1-itemsets are pruned using
the downward closure property, which states that the superset of a non-frequent
itemset cannot be frequent. Apriori terminates when there are no new k + 1-
itemsets remaining after pruning. MS-Apriori [22], Rarity [28], ARIMA [26],
AfRIM [1] and Apriori-Inverse [15] are five algorithms that detect rare itemsets.
They all use level-wise exploration similar to Apriori, which have candidate
generation and pruning steps.
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MS-Apriori [22] uses a bottom-up approach similar to Apriori. In MS-Apriori,
each item can be assigned a different minimum item support value (MIS). Rare
items can be assigned a low MIS, so that during candidate pruning, itemsets that
include rare items are more likely to be retained and participate in rule generation.
Apriori-Inverse [15] is used to mine perfectly rare itemsets, which are itemsets that
only consist of items below a maximum support threshold (maxSup).

Szathmary et al. [26] proposed two algorithms that can be used together to
mine rare itemsets: MRG-Exp and ARIMA. They defined three types of item-
sets: minimal generators (MG), which are itemsets with a lower support than
its subsets; minimal rare generators (MRG), which are itemsets with non-zero
support and whose subsets are all frequent; and minimal zero generators (MZG),
which are itemsets with zero support and whose subsets all have non-zero sup-
port. The first algorithm, MRG-Exp, finds all MRG by using MGs for candidate
generation in each layer in a bottom up fashion. The MRGs represent a border
that separates the frequent and rare itemsets in the search space. All itemsets
above this border must be rare according to the antimonotonic property. The
second algorithm, ARIMA, uses these MRGs to generate the complete set of rare
itemsets. ARIMA stops the search for non-zero rare itemsets when the MZG bor-
der is reached, which represents the border above which there are only zero rare
itemsets.

Adda et al. [1] proposed AfRIM, which begins with the itemset that contains
all items found in the database. Candidate generation occurs by finding com-
mon k-itemset subsets between all combinations of rare k + 1-itemset pairs in
the previous level. Troiano et al. proposed the Rarity algorithm that begins by
identifying the longest transaction within the database and uses it to perform a
top-down search for rare itemsets, thereby avoiding the lower layers that contain
only frequent itemsets.

All of the above algorithms use the fundamental generate-and-test approach
used in Apriori, which has potentially expensive candidate generation and prun-
ing steps. In addition, these algorithms attempt to identify all possible rare
itemsets, and as a result require a significant amount of execution time. RP-
Tree algorithm was proposed by Tsang et al. [29] as a solution to these issues.
RP-Tree avoids the expensive itemset generation and pruning steps by using a
tree data structure, based on FP-Tree [12], to find rare patterns. However it uses
a multi-pass approach, which is not suitable in a data stream environment.

More recently Lavergn et al. [17] proposed a rare pattern mining technique
using itemset trees and relative support called TRARM-RelSup. As opposed
to traditional techniques that used the minimum support threshold, TRARM-
RelSup used the relative support measure with the goal of capturing some addi-
tional rare rules that are missed out when using the minimum support threshold.
The algorithm combines the efficiency of targeted association mining querying
with the capabilities of rare rule mining resulting in the discovery of more rare
rules for the user.

Even though there has been many algorithms that perform rare pattern min-
ing, up until now there has been no research into rare pattern mining in data
streams.
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3 Preliminaries

In this section, we provide definitions of key terms that explain the concepts
of frequent pattern mining in a data stream. Let I = {i1, i2, . . . , in} be a set
of literals, called items, that represent a unit of information in an application
domain. A set X = {il, . . . , im} ⊆ I and l,m ∈ [1, n], is called a itemset, or a
k-itemset if it contains k items. A transaction t = (tid, Y ) is a tuple where tid
is a transaction-id and Y is a pattern. If X ⊆ Y , it is said that t contains X or
X occurs in t. Let size(t) be the size of t, i.e., the number of items in Y .

Definition 1. A data stream DS is an infinite sequence of transactions DS =
[t1, t2, . . . , tm), where ti, i ∈ [1,m] is the i th transaction in the data stream.

Definition 2. A window W is a set of all transactions between the ith and jth
(where j > i) transactions and the size of W is |W| = j − i.

Definition 3. Window W consists of blocks where W = {B1, B2, · · · , Bn}. A
block is also a set of transactions like W.

Definition 4. The count of an itemset X in W, countW(X), is the number of
transactions in W that contain X.

Definition 5. The support of an itemset X in W is the count of an itemset
divided by the size of W

supW(X) =
countW(X)

|W|
An association rule is an implication X → Y such that X ∪ Y ⊆ I and

X ∩Y = ∅. X is the antecedent and Y is the consequent of the rule. The support
of X → Y in W is the proportion of transactions in W that contains X ∪ Y .
The confidence of X → Y is the proportion of transactions in W containing X
that also contains Y .

3.1 Rare Itemsets

We adopted the rare itemsets concept from Tsang et al. [29]. We consider an
itemset to be rare when its support falls below a threshold, called the minimum
frequent support (minFreqSup) threshold. One difficulty when generating rare
itemsets is differentiating noisy itemsets from the actual rare itemsets. As the
support of the itemset is low, the potential of pushing unrelated items together
increases as well, thus producing noisy itemsets. To overcome this problem, we
define a noise filter threshold to prune out the noise called the minimum rare
support (minRareSup) threshold. Typically minRareSup is set to a very low
level, e.g., 0.01 %.

Definition 6. An itemset X is a rare itemset in a window W iff supW(X) ≤
minFreqSup and supW(X) > minRareSup.
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However not all rare itemsets that fulfill these properties are interesting. Fur-
thermore, rare itemsets can be divided into two types: rare-item itemsets and
non-rare item itemsets.

Rare item itemsets refer to itemsets which are a combination of only rare
items and itemsets that consist of both rare and frequent items. Given 4 items
{a, b, c, x} with supports a = 0.70, b = 0.45, c = 0.50, and x = 0.10, with
minFreqSup = 0.15 and minRareSup = 0.01, the itemset {a, x} would be a
rare item itemset assuming that the support of {a, x} > 0.01, since the itemset
includes the rare item x.

Definition 7. An itemset X is a rare-item itemset iff X is a rare itemset and

∃x ∈ X, supW(x) ≤ minFreqSup

Non-rare item itemsets only has frequent items which fall below the minimum
frequent support threshold. Given 4 items {a, b, c, x} with supports a = 0.70, b
= 0.45, c = 0.50, and x = 0.10, with minFreqSup = 0.15 and minRareSup =
0.01, and the itemset {a, b, c} with a support of 0.09, then this itemset would
be a non-rare item itemset as all items within the itemset are frequent, and its
support is between minFreqSup and minRareSup.

Definition 8. An itemset X is a non-rare item itemset iff X is a rare item-
set and

∀x ∈ X, supW(x) > minFreqSup

4 SRP-Tree: Rare Pattern Tree Mining for Data Streams

Current tree based rare pattern mining approaches follow the traditional FP-
Tree [12] approach. It is a two-pass approach and is affordable when mining a
static dataset. However in a data stream environment, a two-pass approach is not
suitable. To process a static environment, non-streaming rare pattern techniques
such as RP-Tree order each item within a transaction according to its frequency
before inserting it into the tree. Using these algorithms the frequency of the
items are obtained during the first pass through the dataset.

In data streams we can only look at the transactions within the stream once,
thus, a one-pass approach is necessary. This rules out the possibility of building
a tree based on the frequency of items within the data stream. Furthermore, fre-
quency of an item may change as the stream progresses. There are four scenarios
which we need to consider:

Scenario 1. A frequent item x at a particular time T1 may become rare at
time T2.

Scenario 2. A rare item x at a particular time T1 may become frequent at
time T2.

Scenario 3. A frequent item x at a particular time T1 may remain frequent at
time T2.

Scenario 4. A rare item x at a particular time T1 may remain rare at time T2.
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T1 represents a point in time, and T2 represents a future point in time after T1.
To find rare patterns within data streams, we propose a new algorithm called

SRP-Tree that mines rare patterns in a data stream using a sliding window and
tree based approach. We discuss the details of the algorithm and introduce the
two variations of the algorithm: SRP-Tree with Connection Table and SRP-Tree
with Restructuring.

4.1 Approach 1: SRP-Tree with Connection Table

In this approach, items from incoming transactions in the stream are inserted
into a tree based on a canonical ordering. A canonical ordering allows us to
capture the content of the transactions from the data stream and organise tree
nodes according to a particular order. We use the lexicographic ordering of the
items as the canonical ordering here. When we use a canonical order to build the
tree, the ordering of items is unaffected by the changes in frequency caused by
incremental updates. There has been other work carried out using a canonical
ordering to build trees for a data stream mining environment [10,20], but these
research has been tailored to find frequent patterns.

In our tree built using canonical ordering, the frequency of a node in the tree
is at least as high as the sum of frequencies of its children. However, this does
not guarantee the downward closure property which exists in a tree ordered in
frequency-descending order. The downward closure property in a traditional rare
pattern tree mining algorithm, whereby, rare-items will never be the ancestor of a
non-rare item in the initial tree due to the tree construction process is violated.
Hence, we propose a novel item list called the Connection Table which keeps
track of each unique item in the window and the items they co-occur with along
with their respective frequencies.

The Connection Table used in this approach captures in the transactions only
items that have a lower canonical ordering. For example, given a transaction in
a canonical order of {a, b} we store in the table that a is connected to b with
a frequency of 1 but it does not store b is connected to a. This is because of
the properties of the canonical ordering in the constructed tree: item a will
always be the ancestor of item b. Since mining is carried out using a bottom-
up approach, by mining item b, item a is also mined. The opposite does not
hold since mining item a does not guarantee that item b is mined. Therefore, by
using the Connection Table to keep track of connected items and adding them
as arguments to FP-Growth in the mining phase, the complete set of rare-item
itemsets can then be captured. The Connection table is designed using a hash
map which allows for O(1) access. In worst case scenarios, the table could reach
size of x(x+1)

2 where x is the total number of items; however, in reality this is
highly unlikely.

At any point of time should we decide to mine the current window, the initial
tree of the current window is used to construct conditional pattern bases and
conditional trees for each rare-item and their connected items in the Connection
Table. We trigger the mining step when a block is filled. In this example the block
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size will be equal to the window size of 12. Note that only connection items with
an occurring frequency greater than or equal to the minRareSup are included.
Each conditional tree and corresponding item are then used as arguments for
FP-Growth. The threshold used to prune items from the conditional trees is
minRareSup. The union of the results from each of these calls to FP-Growth is
a set of itemsets that contains a rare-item, or rare item itemsets.

Table 1. Set of transactions in a given window W of size 12

Tid Transaction
1 {a, g, h}
2 {a, g, h, i}
3 {b, c, d, f}
4 {b, d, j}

Tid Transaction
5 {c, f, h}
6 {a, e, g, h}
7 {g}
8 {h}

Tid Transaction
9 {c, d, h}

10 {b, f}
11 {a, h}
12 {a}

Table 2. Connection table using the window of transactions listed in Table 1

Item Items Co-occurred
a {(e:1), (g:3), (h:4), (i:1)}
b {(c:1), (d:2), (f:2), (j:1)}
c {(d:2), (f:2), (h:2)}
d {(f:1), (h:1), (j:1)}
e {(g:1), (h:1)}

Item Items Co-occurred
f {(h:1)}
g {(h:1), (i:1)}
h {(i:1)}
i {∅}
j {∅}

Example. Given the dataset in Table 1, we show how the Connection Table is
built in Table 2. The left column in Table 2 list the unique items in the window,
whereas the right column lists the set of co-occurring items along with the co-
occurrence frequency of that particular item to the item in the right column.
For example, item c co-occurs twice with items d, f , and h.

SRP-Tree with Connection Table Algorithm. Our SRP-Tree with connec-
tion table algorithm is shown in Algorithm 1. This approach essentially performs
in one pass the counting of item frequencies and the building of the initial tree.
Therefore, in a given window W, for each incoming transaction t, SRP-Tree first
updates the list of item frequencies according to the transactions contained in
the current window. We refer to this as updateItemFreqList(t) method, where we
increment the counts of items contained in the new transaction and decrement
the counts of items contained in the oldest transcations to be discarded from
the window. SRP-Tree then updates the tree structure according to the trans-
actions contained in the current window in a similar fashion, which is referred
to as updateTree(t) method in Algorithm 1. We mine the tree after a particular
number of transactions also known as a block. We refer to a preset block size as
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Algorithm 1. SRP-Tree (Connection Table)
1. Input: DS, W, B, minRareSup,minFreqSup;
2. Output: results (Set of rare item itemsets);

3. while exist(DS) do
4. t ←new incoming transaction from DS;
5. currentBlockSize ← currentBlockSize + 1;
6. updateItemFreqList(t);
7. updateConnectionTable(t);
8. tree ← updateTree(t);
9. Mining at the end of block

10. if B == currentBlockSize then
11. currentBlockSize ← 0;
12. results = ∅;
13. I ← {all unique items in W};
14. R ← {i ∈ I | supW(i) ≥ minRareSup ∧ supW(i) < minFreqSup};
15. C ← {k ∈ R, j ∈ connectionTable(k) | supW(k) ≥ minRareSup};
16. for item a in tree do
17. if a ∈ R or a ∈ C then
18. construct a’s conditional pattern-base and then a’s conditional FP-Tree

Treea;
19. results ← results ∪ FP-Growth(Treea, a);
20. end if
21. end for
22. end if
23. end while
24. return results;

B. In this algorithm, R refers to the set of rare items and C refers to the set of
items that co-occur with a particular rare item.

We would also like to point out, that another difference between SRP-Tree
and a static rare pattern mining approach is that in SRP-Tree, the tree is built
using all the transactions in the window, whereas in a static rare pattern mining
approach, only transactions with rare items are used to build the tree. A static
approach has the luxury of looking at the dataset twice and discarding items
which it is not interested in before the tree is even built. In our case, we simply
cannot know which transactions contain rare items until we decide to mine.

SRP-Tree with Connection Table Example. Applying SRP-Tree to the
window W of the 12 transactions in Table 1, the support ordered list of all
items is 〈(h:6), (a:5), (g:4), (b:3), (c:3), (d:3), (f :2), (e:1), (i:1), (j:1)〉. Using
minFreqSup = 4 and minRareSup = 2, only the items {b, c, d, f} are rare, and
included in the set of rare items, R.

The initial SRP-Tree constructed for window W of size 12 is shown in Fig. 1.
To find the rare-item itemsets, the initial SRP-Tree is used to build conditional
pattern bases and conditional SRP-Trees for each rare item {b, c, d, f} and any
additional items in the Connection Table that is connected with a rare item that



150 D.T.J. Huang et al.

null

a : 5

e : 1

g : 1

h : 1

g : 2

h : 2

i : 1

h : 1

b : 3

c : 1

d : 1

f : 1

d : 1

j : 1

f : 1

c : 2

d : 1

h : 1

f : 1

h : 1

g : 1 h : 1

rare item node

frequent item node

noise item node

Fig. 1. Pattern tree constructed from window W using SRP-Tree
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Fig. 2. Conditional tree, Treeh

has a frequency greater than the minRareSup, in this example, item h. The con-
ditional tree for item h is shown in Fig. 2. Each of the conditional SRP-Trees and
the conditional item are then used as parameters for the FP-Growth algorithm.

4.2 Approach 2: SRP-Tree with Restructuring

In the previous approach we build the tree based on a canonical ordering and
proposed the Connection Table that enables the capture of the complete set
of rare rules from the canonically ordered tree. In this approach we improve
upon the first and use an additional tree restructuring step. The additional
restructuring step replaces the Connection Table and still allows the algorithm
to find the complete set of rare rules.

The Connection Table proposed in the previous approach was used because
when building the tree with a canonical ordering, the downward closure property
is violated (see Sect. 4.1). In this second approach, instead of using the Connec-
tion Table, we perform a tree restructuring at the end of each block before
mining the tree with FP-Growth. The additional tree restructuring effectively
re-orders the nodes in the tree at each block into a strict frequency-descending
order for that block. After restructuring, the tree will maintain the downward
closure property and performing FP-Growth on the rare items themselves will
yield the complete set of rare rules.

SRP-Tree with Restructuring Algorithm. The algorithm for the restruc-
turing approach of our SRP-Tree is shown in Algorithm 2. The building and
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Algorithm 2. SRP-Tree (Restructuring)
1. Input: DS, W, B, minRareSup,minFreqSup;
2. Output: results (Set of rare item itemsets);

3. while exist(DS) do
4. t ←new incoming transaction from DS;
5. currentBlockSize ← currentBlockSize + 1;
6. updateItemFreqList(t);
7. tree ← updateTree(t);
8. Mining at the end of block
9. if B == currentBlockSize then

10. currentBlockSize ← 0;
11. tree ← restructureTree();
12. results = ∅;
13. I ← {all unique items in W};
14. R ← {i ∈ I | supW(i) ≥ minRareSup ∧ supW(i) < minFreqSup};
15. for item a in tree do
16. if a ∈ R then
17. construct a’s conditional pattern-base and then a’s conditional FP-Tree

Treea;
18. results ← results ∪ FP-Growth(Treea, a);
19. end if
20. end for
21. end if
22. end while
23. return results;

updating of the item frequency list and the tree is similar to the previous app-
roach and explained in the earlier sections. The main difference is the absence of
maintaining the Connection Table and also an additional restructuring method
at line 11.

Restructuring Technique. A tree is usually restructured by rearranging the
nodes of an existing tree built based on a previous ordering to another differ-
ent desired ordering. In our case we are restructuring the tree built based on a
canonical ordering to a frequency-descending ordering. This operation involves
sorting the item frequencies list and shifting the position of the nodes in the
tree. We adopt the restructuring technique used in [16]. The branch sorting
method (BSM) is an efficient tree restructuring technique that fits the pur-
pose of our algorithm. In summary, BSM performs tree restructures by going
through several steps. First the item-frequency-list of the items in the cur-
rent block is rearranged into frequency-descending order. Then, the technique
iterates through each unsorted path in the tree and sorts them based on the
reordered item-frequency-list. BSM is an array-based technique whereby for each
unsorted branch (path) in the tree, it first removes the path, sorts the path based
on the frequency-descending ordering, then adds the path back into the tree.



152 D.T.J. Huang et al.

Restructuring is complete when all the branches are processed and sorted which
produces the final sorted tree.

SRP-Tree with Restructuring Example. Consider the same example as
given by the transactions in Table 1. The support ordered list of all items is 〈(h:6),
(a:5), (g:4), (b:3), (c:3), (d:3), (f :2), (e:1), (i:1), (j:1)〉. Using minFreqSup = 4
and minRareSup = 2, only the items {b, c, d, f} are rare, and included in the set
of rare items, R.
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Fig. 3. Pattern tree from window W after restructuring into frequency descending
order

In this approach, instead of mining the tree (shown in Fig. 1) built with
canonical ordering a, b, c, d, e, f, g, h, i, j, we mine the restructured tree based
on the support ordered list of items in the window W with the ordering
h, a, g, b, c, d, f, e, i, j. The tree after restructuring is shown in Fig. 3.

Recall that the downward closure property in a traditional rare pattern tree
mining algorithm states that rare-items will never be the ancestor of a non-rare
item in the initial tree due to the tree construction process. From this restructured
tree built based on frequency-descending support ordering, we can observe that
all the rare-items (circular nodes) are indeed never the ancestor of a non-rare
item (rectangular nodes). Therefore, we can prove that the downward closure
property is satisfied in this case.

We also observe that because of the change in the ordering of the tree, it has
become more compact (containing fewer nodes). In general, the compactness of
a tree will have an influence on the mining time of FP-Growth. Therefore, the
more compact the tree is, the faster the mining time of FP-Growth.

5 Experimental Results

In this section we present the evaluation and results performed on the two varia-
tions of our algorithm SRP-Tree. In Sect. 5.1 we describe in detail the algorithm
we used to compare our SRP-Tree against. In Sect. 5.2 we evaluate the algorithms
on real-world datasets and compare their performance at finding rare-item item-
sets. Lastly in Sect. 5.3 we present a case study on the T40I10D100K dataset
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and perform additional evaluations by varying the minimum frequent support
threshold and the block size of the techniques.

All algorithms were implemented in Java and executed on a machine
equipped with an Intel Core i5-2400 CPU @ 3.10 GHz with 4 GB of RAM running
Windows 7 x 64.

5.1 Streaming Canonical Tree (SC-Tree)

SRP-Tree is the very first attempt at mining rare patterns in a data stream
environment so there are no other similar techniques that mine rare patterns in
a data stream to compare to for evaluation. Therefore, in these experiments we
compared the performance of our SRP-Tree to the Streaming Canonical Tree
(SC-Tree), which is a modified version of DSTree [20] with pruning of frequent
itemsets. This technique that we use for comparison, SC-Tree with pruning, finds
rare item itemsets in an unoptimized brute-force manner. The SC-Tree is a one
pass technique which stores the transactions from the stream in a tree using
canonical ordering and stores/updates item frequencies similar to DSTree. To
find all rare item itemsets, SC-Tree finds and generates all itemsets that meet
the minRareSup threshold, then removes all other itemsets except rare item
itemsets with an extra pruning step. SC-Tree produces the same itemsets and
generates the same rules as SRP-Tree (Table) and SRP-Tree (Restructure).

5.2 Real-World Dataset

In this section we present the time and relative time taken for itemset generation
of SRP-Tree (both approaches) and SC-Tree on real-world datasets. The time
is reported in seconds and the relative time is calculated by setting SC-Tree to
1.00 and SRP-Tree relative to that of SC-Tree.

relative time =
Time taken by SRP-Tree
Time taken by SC-Tree

We used a window size and block size of 25 K for all datasets except for the
Mushroom dataset where we used 2 K due to its smaller size. The minFreqSup
and minRareSup thresholds are shown in Table 3 for each dataset. The thresholds
are user-defined through examining the distribution of item frequencies in each
of the datasets. We acknowledge that given a data stream environment, this is
not the most suitable way of defining thresholds and in the future we will be
looking at a way to adapt the thresholds to the change in distribution and drift
of the transactions in the stream.

We have tested the algorithms on 6 datasets obtained from the FIMI (Fre-
quent Itemset Mining Implementations) repository1. The datasets are: Mush-
room, Retail, BMS-POS, T10I4D100K, T40I10D100K, and Kosarak (250K).

Here are brief descriptions of each dataset:
1 http://fimi.ua.ac.be/data/.

http://fimi.ua.ac.be/data/
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– The Mushroom dataset is a dense dataset with a relatively larger number
of possible rules and patterns. It contains a total of 8124 instances and 22
attributes that includes descriptions of hypothetical samples corresponding
to 23 species of gilled mushrooms in the Agaricus and Lepiota family.

– The Retail dataset, compared to Mushroom, is a much more sparse dataset
that contains anonymized retail market basket data from an Belgian retail
store over approximately 5 months. The total number of instances is 88163.

– The BMS-POS dataset contains several years worth of point-of-sale data from
a large electronics retailer. Each transaction represents customer purchases of
items at one time. It contains a total of 515597 instances and the average
transaction size is 6.5.

– The T10I4D100K and T40I10D100K originates from the same source, the IBM
Almaden Quest market basket data generator. They both contain a total of
100000 instances.

– The Kosarak dataset contains anonymized click-stream of a hungarian online
news portal. Kosarak contains a larger number of different transactions with
different characteristics (i.e. the dataset contains transactions that vary largely
in average transaction size and items).

Table 3. Comparison between SRP-Tree and SC-Tree

Dataset B MinRareSup MinFreqSup # Itemsets SRPT (Table) SRPT (Restructure) SC-Tree

Time Rel. Time Rel. Time Rel.

(s) time (s) time (s) time

Mushroom 2K 0.01 0.05 14443674 1131 0.86 86 0.07 1321 1.00

Retail 25K 0.0001 0.0005 572673 239 0.71 9 0.03 339 1.00

BMS-POS 25K 0.0002 0.0005 1426 58 0.02 25 0.01 3783 1.00

T10I4D100K 25K 0.0001 0.0005 1161 12 0.63 6 0.32 19 1.00

T40I10D100K 25K 0.003 0.05 4734806 301 0.79 94 0.25 380 1.00

Kosarak(250K) 25K 0.001 0.15 35623519 703 0.10 591 0.08 7213 1.00

Table 3 shows, for each dataset, the block size, minRareSup, and minFreqSup
used to run the algorithms then the comparison between SRP-Tree (Table),
SRP-Tree (Restructure) and SC-Tree of the itemsets generated, time it took
to run the algorithm, and the relative time. The objective of this comparison
is to look at the efficiency of each algorithm under the same conditions. SRP-
Tree (Table), SRP-Tree (Restructure) and SC-Tree generate the same number
of itemsets because both SRP-Tree approaches only generate rare-item itemsets
and SC-Tree generates all itemsets that meet the minRareSup threshold then
the extra pruning step removes all other itemsets that are not rare-item itemsets.
Therefore, the final number of itemsets generated by both algorithms is the same.

In all datasets of varying item frequency distribution, both SRP-Tree
approaches run faster than SC-Tree where SRP-Tree (Restructure) runs signifi-
cantly faster than the other two techniques. The time taken to run the various
datasets are highly dependent on the tree structure built from the transactions
in the datasets and generally have a positive correlation with the number of
itemsets generated. The number of itemsets generated also has a great variation
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and is highly dependent on the composition/nature of the respective dataset. For
datasets that are more sparse in nature like Retail, BMS-POS, and T10I4D100K,
the number of itemsets generated are usually smaller than a dense dataset like
Mushroom and the run-time is usually faster.

5.3 Case Study: T40I10D100K

The T40I10D100K dataset is generated using the generator from the IBM
Almaden Quest research group. Figures 4 and 5 shows the item frequency dis-
tribution of the T40I10D100K dataset. When we compared the distribution of
the T40I10D100K dataset, to other datasets in the FIMI repository, we observed
that the T40I10D100K dataset is more sparse in nature compared to the Mush-
room dataset, but more dense than datasets like Retail and BMS-POS. It is
also important to note that T40I10D100K contains a high proportion of items
with a frequency of less than 0.1 (approximately 90 % of the total items). This
particular distribution contains a greater number of prospective rare items and
rules to be mined from the dataset.

Fig. 4. Item frequency distribution Fig. 5. Normalized item frequency dis-
tribution

In Table 4 we show the difference in itemsets generated and the time it took
to generate items of varying minFreqSup on the T40I10D100K dataset. We aim
to look at the fluctuations in run-time and the number of itemsets generated
caused by varying the minimum frequent support threshold. As we increase the
minFreqSup, the number of itemsets generated increases and the relative time
also increases. It is important to note that the real time taken for SRP-Tree
(Table) to generate itemsets decreases as we increase the minFreqSup. This is
because at a lower minFreqSup for this particular distribution of the dataset,
there is a high co-occurrence of rare items to other items with similar item fre-
quency (indicating that these other items are also likely to have rare properties).
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Table 4. Varying MinFreqSup for T40I10D100K

MinFreqSup Itemset SRPT (Table) SRPT (Restructure) SC-Tree

Time(s) Relative Time(s) Relative Time(s) Relative

Time Time Time

0.04 4397517 333 0.93 76 0.21 357 1.00

0.05 4734806 301 0.79 94 0.25 380 1.00

0.06 5028947 278 0.66 116 0.28 421 1.00

0.10 5105892 246 0.55 148 0.33 446 1.00

0.15 5136904 238 0.52 160 0.35 454 1.00

The mining of these additional highly connected items with rare association pat-
terns incurred a larger overhead in maintaining the Connection Table. As the
minFreqSup increases and most of the highly connected potential rare items are
accounted for, the overhead decreases and this results in a faster runtime.

However, for SRP-Tree (Restructure) the time taken to generate itemsets
increases as we increase the minFreqSup like that of SC-Tree. This is because
this approach does not use the Connection Table structure to mine for itemsets
and that the time taken is generally positively correlated with the number of
itemsets. Table 5 shows the difference in execution time when the block size
varies. Similar to the above experiment, we vary one variable in the algorithms
while keeping the others constant. Here we aim to compare the behavior of the
algorithms when the block size variable is changed. Overall we observed that the
execution time is increased as the block size increases due to the increased size
of the tree being built and SRP-Tree (Restructure) is still the fastest running
technique of the three.

Table 5. Execution Time based on Varying Block Sizes for T40I10D100K

Block size SRPT (Table) SRPT (Restructure) SC-Tree

Avg time / Relative Avg. time / Relative Avg. time / Relative

window (s) time window (s) time window (s) time

10K 41 0.59 19 0.27 70 1.00

25K 75 0.79 24 0.25 95 1.00

50K 142 0.71 19 0.09 201 1.00

6 Discussion

Rare pattern mining is often a more difficult and computationally expensive task
than frequent pattern mining. Frequent patterns occur with a high frequency
and frequent itemsets will only contain frequent items, therefore, frequent pat-
tern mining techniques generally need to only consider a smaller subset of items
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out of the total set when mining. Strategies such as top-k items or minimum
frequent support threshold are used to determine what items are frequent. The
natural property of frequent items virtually constrains the search space of the
mining techniques and effectively helps guarantee mining efficiency. In contrast,
rare patterns occur with a low frequency and rare itemsets may contain both
frequent and rare items. When mining rare patterns, the search space is con-
sidered to be much larger compared to mining frequent patterns, making rare
pattern mining a more computationally expensive task. We remedy this by bet-
ter constraining the initial search space of the patterns using SRP-Tree. We
compared our two variations of SRP-Tree against SC-Tree, a modified version
of DSTree that finds rare patterns using a brute-force strategy. Using SC-Tree,
the search space included both frequent and rare patterns. It is only through an
additional pruning step that SC-Tree removes frequent patterns from the final
discovered set leaving the desired rare patterns. The effects of constraining the
initial search space using SRP-Tree is evident from the experimental evaluation
showing a significant improvement in execution time.

Traditionally pattern mining techniques are used in databases to find a spe-
cific set of useful patterns. In dynamically changing data streams, the set of
patterns can vary and change over-time. Our SRP-Tree which works in a stream
environment can be incorporated with drift detection methods [14] to provide
an effective way of discovering useful rare patterns at various points of the data
stream. Drift detection signals points where patterns have possibly changed,
then instead of using a block size variable to mine patterns periodically, the
drift points found by the detection method is used as points when SRP-Tree
mines patterns. This incorporated approach will allow the user to discover more
meaningful rare patterns and also during times when patterns do not change,
saves on the unnecessary mining steps.

7 Conclusions and Future Work

We present a new algorithm for mining rare patterns using a tree structure
in a data stream environment with two different variations. To the extent of
our knowledge, this is the first algorithm that looks at mining rare patterns in
a data stream. Our technique is a one-pass only strategy which is capable of
mining rare patterns in a static database or in a dynamic data stream. In the
case of mining data streams, our technique is also capable of mining at any given
point of time in the stream and with different window and block sizes. One of
the contributions of this algorithm is a novel approach using a Connection Table
which keeps track of related items in a sliding window and reduces the mining
space during itemset generation. In our evaluations on six different datasets,
both variations of the SRP-Tree algorithm are capable of generating itemsets in
a more efficient manner compared to the SC-Tree.

In the future we intend to investigate dynamically adapting the minRareSup
and minFreqSup thresholds on-the-fly because data streams are volatile and
neither setting fixed thresholds for all data nor defining the thresholds prior
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based on distribution is deemed suitable. We will also look at the possibility of
dynamically adjusting the window size to reflect the density of incoming data
in the stream. For example, if the new transactions in the window contained
uninteresting or duplicate itemsets and rules, we could (through varying the
window size) decide not to mine until more interesting itemsets and rules are
captured. It will also be interesting to investigate the limitations of the tree with
respect to the different characteristics and intensity of the data stream.
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Abstract. The Vector Space Model (VSM) has been widely used in Natural
Language Processing (NLP) for representing text documents as a Bag of Words
(BOW). However, only document-level statistical information is recorded (e.g.,
document frequency, inverse document frequency) and word semantics cannot
be captured. Improvement towards understanding the meaning of words in texts
is a challenging task and sufficient background knowledge may need to be
incorporated to provide a better semantic representation of texts. In this paper,
we present a text mining model that can automatically discover semantic rela-
tionships between concepts across multiple documents (where the traditional
search paradigm such as search engines cannot help much) and effectively
integrate various evidences mined from Wikipedia knowledge. We propose this
integration may effectively complement existing information contained in text
corpus and facilitate the construction of a more comprehensive representation
and retrieval framework. The experimental results demonstrate the search per-
formance has been significantly enhanced against two competitive baselines.

Keywords: Knowledge discovery � Semantic relatedness � Cross-Document
knowledge discovery � Document representation

1 Introduction

Text mining aims at mining high-quality information from mass text. However, great
challenges have been posed for many text mining tasks because of the increasing sheer
volume of text data and the difficulty of capturing valuable knowledge hidden in them.
Therefore efficient and high-quality text mining algorithms are demanded and effective
document representation and accurate semantic relatedness estimation become
increasingly crucial. Traditional approaches for document representation are mostly
based on the Vector Space (VSM) Model or the Bag of Words (BOW) model which
takes a document as an unordered collection of words and only document-level
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statistical information is recorded (e.g., document frequency, inverse document fre-
quency). Due to the lack of capturing semantics in texts, for certain tasks, especially
fine-grained information discovery applications, such as mining relationships between
concepts, VSM demonstrates its inherent limitations because of its rationale for
computing relatedness between words only based on the statistical information col-
lected from documents themselves. It leads to great semantic loss because terms not
appearing in the text literally cannot be taken into consideration.

Our previous work [1] introduced a special case of text mining focusing on detecting
semantic relationships between two concepts across documents, which we refer to as
Concept Chain Queries (CCQ). A concept chain query involving concepts A and B has
the following meaning: find the most plausible relationship between concept A and
concept B assuming that one or more instances of both concepts occur in the corpus, but
not necessarily in the same document. For example, both may be football lovers, but
mentioned in different documents. However, the previous solution was built under the
VSM assumption only for the document collection, which limited the scope of the
discovered results. For instance, “Albert Gore” is closely related to “George W. Bush”
since the two men together produced the most controversial presidential election in
2000, which was the only time in American history that the Supreme Court has deter-
mined the outcome of a presidential election. However, “Albert Gore” cannot be
identified as a relevant concept to “George W. Bush” if it does not occur in the document
collection where the concept chain queries are performed. Furthermore, the semantic
relatedness between concepts computed in [1] is solely measured by the statistical
information gathered from the corpus such as term frequency (TF), inverse document
frequency (IDF), with no background knowledge incorporated.

In this work, we present a new approach that attempts to address the above
problems by utilizing background knowledge to provide a better semantic represen-
tation of any text and a more appropriate estimation of semantic relatedness between
concepts. This is accomplished through leveraging Wikipedia, the world’s currently
largest human built encyclopedia. Specifically, in addition to inspecting the given
documents, we sift through the articles and anchor texts in the space of Wikipedia,
attempting to integrate relevant background knowledge for the topics being searched.
Our algorithm is motivated by the Explicit Semantic Analysis (ESA) [3] technique
where ESA maps a given text or concept to a conceptual vector space spanned by all
Wikipedia articles, and thus rich background knowledge can be integrated into the
semantic representation of that text or concept. Here we adapt and improve the ESA
model in two dimensions. First, we attempt to identify only the most relevant concepts
generated from ESA for topic semantic representation and relatedness computation
through introducing a series of heuristic steps for noise reduction. Second, we go one
step further to take into account anchor texts inside relevant Wikipedia articles. This is
based on the observation that the anchor texts within an article are usually highly
relevant to it. Therefore, if an article is identified to be relevant to our search topic, it is
highly likely that its anchors are topic-relevant as well. To validate the proposed
techniques, a significant amount of queries covering different scenarios were con-
ducted. The results showed that through incorporating Wikipedia knowledge, the most
relevant concepts to the given topics were ranked in top positions.
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Our contribution of this effort can be summarized as follows: (1) a new
Wiki-enabled cross-document knowledge discovery framework has been proposed and
implemented which effectively complements the existing information contained in the
document collection and provides a more comprehensive knowledge representation and
mining framework supporting various query scenarios; (2) effective noise filtering
techniques are provided through developing a series of heuristic strategies for noise
reduction, which further increases the reliability of the overall knowledge encoded;
(3) to the best of our knowledge, little work has been done to consider ESA as an
effective aid in cross-document knowledge discovery. In this work, built on the tra-
ditional BOW representation for corpus content analysis, the ESA technique has been
successfully integrated into the discovery process and a better estimation of semantic
relatedness is provided by combining various evidences from Wikipedia such as article
content and anchor texts. We envision this integration would also benefit other related
tasks such as question answering and cross–document summarization; (4) the proposed
approach presents a new perspective of alleviating semantic loss caused by only using
the Vector Space Model (VSM) on the corpus level through incorporating relevant
background knowledge from Wikipedia; (5) in addition to uncovering “what rela-
tionships might exist between two topics of interest”, our method further explores
another dimension of the analysis by generating evidence trails from Wikipedia to
interpret the nature of the potential concept relationships.

The remainder of this paper is organized as follows: Sect. 2 describes related work.
Section 3 introduces concept chain queries. In Sect. 4, we present our proposed method
of utilizing Wikipedia knowledge for answering concept chain queries. Experimental
results are presented and analysed in Sect. 5, and is followed by the conclusion and
future work.

2 Related Work

Mining semantic relationships/associations between concepts from text is important for
inferring new knowledge and detecting new trends. Built within the discovery
framework established by Swanson and Smalheiser [4], Srinivasan proposed the open
and closed text mining algorithm [2] to automatically discover interesting concepts
from MEDLINE. There has also been work on discovering connections between
concepts across documents using social network graphs, where nodes represent doc-
uments and links represent connections (typically URL links) between documents.
However, much of the work on social network analysis has focused on special prob-
lems, such as detecting communities [7, 11]. Our previous work [1] introduced Concept
Chain Queries (CCQ), a special case of text mining focusing on detecting
cross-document links between concepts in document collections, which was motivated
by Srinivsan’s closed text mining algorithm [4]. Specifically, the solution proposed
attempted to generate concept chains based on the “Bag of Words” (BOW) represen-
tation on the text corpus and extended the technique in [2] by considering multiple
levels of interesting concepts instead of just one level as in the original method. Each
document in [1] was represented as a vector containing all the words appearing in the
relevant text snippets in the corpus but did not take any auxiliary knowledge into

Improving Cross-Document Knowledge Discovery Through Content 163



consideration, whereas in this new solution, in addition to corpus level content analysis,
we further examine the potential of integrating the Explicit Semantic Analysis
(ESA) [3] technique to better serve this task which effectively incorporates more
comprehensive knowledge from Wikipedia. There have been a lot of efforts in earlier
research as discussed in [31], trying to add semantics to traditional VSM based text
processing. Deerwester [32] introduced Latent Semantic Indexing (LSI) for automatic
identification of concepts using singular value decomposition. However, it has been
found that LSI can rarely improve the strong baseline established by SVM [5, 35, 36].
This becomes part of our motivations of integrating ESA in this work.

WordNet, a lexical database for the English language [18], has been widely used to
overcome the limitations of the VSM in text retrieval [19], document clustering [20,
21] and document categorization [22, 23]. For example, Hotho et al. [6] utilized
WordNet to improve the VSM text representation and Scott et al. [9] proposed a new
representation of text based on WordNet hypernyms. These WordNet-based approa-
ches were shown to alleviate the problems of BOW model but are subject to relatively
limited coverage compared to Wikipedia, the world’s largest knowledge base to date.
Gurevych et al. used Wikipedia to integrate semantic relatedness into the information
retrieval process [24], and Müller et al. [25] used Wikipedia in domain-specific
information retrieval. Gabrilovich et al. [5] applied machine learning techniques to
Wikipedia and proposed a new method to enrich document representation from this
huge knowledge repository. Specifically, they built a feature generator to identify most
relevant Wikipedia articles for each document, and then used concepts corresponding
to these articles to create new features. As claimed in [5], one of the advantages using
Wikipedia over Open Directory Project (ODP) is the articles in Wikipedia are much
cleaner than typical Web pages, and mostly qualify as standard written English.
However, without proper feature selection strategies employed, there will still be a
large amount of noise concepts introduced by the feature generator. Another concern
needing to be drawn here is the challenge of efficiently processing large scale data.
Bonifati and Cuzzocrea [28] presented a novel technique to fragment large XML
documents using structural constraints such as size, tree-width, and tree-depth. Cu-
zzocrea et al. [29] used K-means clustering algorithm to perform the fragmentation of
very large XML data warehouses at scale. Cuzzocrea and Bertino [30] proposed a
framework for efficiently processing distributed collections of XML documents. While
in this work, we import the XML dump of Wikipedia into relational database and build
multi-level indices on the database to support efficient queries against Wiki data.

Serving as an integral part of information retrieval and natural language processing,
semantic similarity estimation between words has gained increasing attention over the
past years. Various web resources have been considered for this purpose [14–16].
Rinaldi [34] proposed a metric to compute the semantic relatedness between words
based on a semantic network built from ontological information. Bollegala [17]
developed an automatic method for semantic similarity calculation using returned page
counts and text snippets generated by a Web search engine. Gabrilovich et al. also [3]
presented a novel method, Explicit Semantic Analysis (ESA), for fine-grained semantic
representation of unrestricted natural language texts. Using this approach, the meaning
of any text can be represented as a weighted vector of Wikipedia-based concepts
(articles), called an interpretation vector [3]. Gabrilovich et al. [3] also discussed the
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problem of possibly containing noise concepts in the vector, especially for text frag-
ments containing multi-word phrases (e.g., multi-word names like George Bush). Our
proposed solution is motivated by this work and to tackle the above problems we have
developed a sequence of heuristic strategies to filter out irrelevant concepts and clean
the vector. Another interesting work is an application of ESA in a cross-lingual
information retrieval setting to allow retrieval across languages [8]. In that effort the
authors performed article selection to filter out those irrelevant Wikipedia articles
(concepts). However, we observed the selection process resulted in the loss of many
dimensions in the following mapping process, whereas in our proposed approach, the
process of article selection is postponed until two semantic profiles have been merged
so that the semantic loss could be possibly reduced to the minimum. Furthermore, in
comparison to [13, 27], we also tap into another valuable information resource, i.e. the
Wikipedia anchor texts, along with articles to provide better semantic relatedness
estimation.

3 Concept Chain Queries

As described earlier, concept chain query (CCQ) is attempting to detect links between
two concepts (e.g., two person names) across documents. A concept chain query
involving concept A and concept B intends to find the best path linking concept A to
concept B. The paths found stand for potential conceptual connections between them.
Figure 1 gives an example of CCQ, where the query pair is “Nashiri :: Nairobi attack”.
Since “Nashiri” co-occurs with “Jihad Mohammad Ali al Makki” in the same sentence
in Document 1, and “Nairobi attack” co-occurs with “Jihad Mohammad Ali al Makki”
in the same sentence in Document 2, “Nashiri” and “Nairobi attack” can be linked
through the concept “Jihad Mohammad Ali al Makki”.

3.1 Semantic Profile for Topic Representation

A semantic profile is essentially a set of concepts that together represent the corre-
sponding topic. To further differentiate between the concepts, semantic type (onto-
logical information) is employed in profile generation. The concept mapping process is
basically a two-step task: (1) we extract concepts from the document collection using

Fig. 1. A concept chain example for the query “Nashiri :: Nairobi attack”
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Semantex [10]; (2) the extracted concepts are mapped the counterterrorism domain
ontology [1]. Table 1 illustrates part of semantic type – concept mappings.

Thus each profile is defined as a vector composed of a number of semantic types.

profileðTÞ ¼ ST1; ST2; . . .; STnf g ð1Þ

Where STi represents a semantic type to which concepts appearing in the topic-related
text snippets belong. We used sentence as window size to measure relevance of
appearing concepts to the topic term. Under this representation each semantic type is
again referred to as an additional level of vector composed of a number of terms that
belong to this semantic type.

STi ¼ wi;1m1;wi;2m2; . . .;wi;nmn
� � ð2Þ

Where mj represents a concept belonging to semantic type STi, and wi,j represents its
weight under the context of STi and sentence level closeness. When generating the
profile we replace each semantic type in (1) with (2).

In (2), to compute the weight of each concept, we employ a variation of TF*IDF
weighting scheme and then normalize the weights:

wi;j ¼ si;j = highestðsi;lÞ ð3Þ

Where l = 1, 2,…, r and there are totally r concepts for STi, si,j = dfi,j*Log(N/dfj), where
N is the number of sentences in the collection, dfj is the number of sentences concept mj

occurs, and dfi,j is the number of sentences in which topic T and concept mj co-occur
and mj belongs to semantic type STi. By using the above three formulae we can build
the corresponding profile representing any given topic.

3.2 Concept Chain Generation

We adapt Srinivasan’s closed discovery algorithm [2] to build concept chains for any
two given topics. Each concept chain generated reveals a plausible path from concept A
to concept C (suppose A and C are two given topics of interest). The algorithm of
generating concept chains connecting A to C is composed of the following three steps.

Table 1. Semantic type - concept mapping

Semantic type Instances

Religion Islam, Muslim
Human action attack, killing, covert action, international terrorism
Leader vice president, chief, governor
Country Iraq, Afghanistan, Pakistan, Kuwait
Infrastructure World Trade Centre
Diplomatic building consulate, pentagon, UAE Embassy
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1. Conduct independent searches for A and C. Build the A and C profiles. Call these
profiles AP and CP respectively.

2. Compute a B profile (BP) composed of terms in common between AP and CP. The
weight of a concept in BP is the sum of its weights in AP and CP. This is the first
level of intermediate potential concepts.

3. Expand the concept chain using the created BP profile together with the topics to
build additional levels of intermediate concept lists which (i) connect the topics to
each concept in BP profile in the sentence level within each semantic type, and
(ii) also normalize and rank them (as detailed in Sect. 3.1).

4 Wikipedia as an Information Resource

Wikipedia is currently the largest human built encyclopedia in the world. It has over
5,000,000 articles by April 05, 2011, and is maintained by over 100,000 contributors
from all over the world. As of February 2013, there are editions of Wikipedia in 285
languages. Knowledge in Wikipedia ranges from psychology, math, physics to social
science and humanities. To utilize Wikipedia knowledge to complement the existing
information contained in the document collection, two important information resources,
Wikipedia article contents and anchor texts are considered. Specifically, appropriate
content and link analysis will be performed on Wikipedia data and the mined relevant
knowledge will be used to further improve our query model and semantic relatedness
estimation module.

4.1 Semantic Relatedness Measures

Semantic relatedness indicates degree to which words are associated via any type (such
as synonymy, meronymy, hyponymy, hypernymy, functional, associative and other
types) of semantic relationships [37]. The measures of computing semantic relatedness
between concepts can be grouped into four classes in general [33]: the path length
based measures that use the length of path connecting concepts in the taxonomy to
measure the closeness between concepts; the information content based measures that
rely on the shared information content between concepts; the feature based measures
that exploit the common characteristics of concepts; and the hybrid measures that
combine the previous three measures. The similarity measures defined in this work can
be viewed as an extension of the information content based measure.

4.2 Article Content Analysis

For content analysis, we have adapted the Explicit Semantic Analysis (ESA) technique
proposed by Gabrilovich et al. [3] as our underlying content-based measure for ana-
lyzing Wikipedia articles relevant to the given topics of interest. In ESA, each term
(e.g., topic of interest) is represented by a concept vector containing relevant concepts
(Wikepedia articles) to the topic along with their association strengths and each text
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fragment can also be mapped to a weighted vector of Wikipedia concepts called an
interpretation vector. Therefore, computing semantic relatedness between any two text
fragments can be naturally transformed into computing the Cosine similarity between
interpretation vectors of two texts.

Using the ESA method, each article in Wikipedia is treated as a Wikipedia concept
(the title of an article is used as a representative concept to represent the article content),
and each document is represented by an interpretation vector containing related Wi-
kipedia concepts (articles) with regard to this document. Formally, a document d can be
represented as follows:

/ðdÞ ¼ \ asðd; a1Þ; . . .; asðd; anÞ[ ð4Þ

Where as(d,ai) denotes the association strength between document d and Wikipedia
article ai. Suppose d is spanned by all words appearing in it, i.e., d =< w1, w2, …, wj > ,
and the association strength as(d,ai) is computed by the following function:

asðd; aiÞ ¼
X
wj2 d

tfdðwjÞtf � idfaiðwjÞ ð5Þ

Where tfd(wj) is the occurrence frequency of word wj in document d, and tf � idfaiðwjÞ
is the tf∙idf value of word wj in Wikipedia article ai. As a result, the vector for a
document is represented by a list of real values indicating the association strength of a
given document with respect to Wikipedia articles. By using efficient indexing strat-
egies such as single-pass in memory indexing, the computational cost of building these
vectors can be reduced to within 200–300 ms. In concept chain queries, the topic input
is always a single concept (a single term or phrase), and thus Eq. (5) can be simplified
as below as tfd(wj) always equals 1:

asðd; aiÞ ¼
X
wj2 d

tf � idfaiðwjÞ ð6Þ

As discussed above, the original ESA method is subject to the noise concepts
introduced, especially when dealing with multi-word phases. For example, when the
input is Angelina Jolie, the generated interpretation vector will contain a fair amount of
noise concepts such as Eudocia Angelina, who was the queen consort of Stephen II
Nemanjić of Serbia from 1196 to 1198. This Wikipedia concept (article) is selected and
ranked high in the interpretation vector because the term Angelina occurs many times
in the article “Eudocia Angelina”, but obviously this article is irrelevant to the given
topic Angelina Jolie.

In order to make the interpretation vector more precise and relevant to the topic, we
have developed a sequence of heuristics to clean the vector. Basically, we use a
modified Levenshtein Distance algorithm to measure the relevance of the given topic to
each Wikipedia concept generated in the interpretation vector. Instead of using
allowable edit operations of a single character to measure the similarity between two
strings as in the original Levenshtein Distance algorithm, we view a single word as a
unit for edit operations, and thus the adapted algorithm can be used to compute the
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similarity between any two text snippets. The heuristic steps used to remove noise
concepts are illustrated in Fig. 2.

4.3 Article Link Analysis

Anchor texts, another type of valuable information resource provided by Wikipedia in
addition to the textual content of articles, imply rich hidden associations between
different Wikipedia concepts. For example, the Wikipedia article talking about “Osama
bin Laden” contains a great number of potential terrorists who are related to him and
terrorism events that he was involved in (appearing as anchor texts in the article).
Therefore, through inspecting anchor texts in each relevant Wikipedia article, we are
able to find a fair amount of interesting concepts related to the topic. Figure 3 gives part
of the anchors in the article “Osama bin Laden”.

We assume that two concepts (articles) sharing similar anchors may be closer to
each other in terms of semantic relatedness. As discussed earlier, given a topic of
interest, we can represent it as an interpretation vector containing the relevant Wiki-
pedia articles using the ESA method. Also, each Wikipedia article can be further
represented by the anchors appearring in it. Therefore, we can build an additional
vector, called anchor vector, based on the interpretation vector produced for a given
search topic. Simiarly, we can approach the semantic relatedness between two topics
from another perspective by calculating the Cosine score of the two anchor vectors
built for them.

Formally, suppose the interpretation vector for a topic Ti is Vi =< article1, arti-
cle2, …, articlem > , where articlei in Vi represents a Wikipedia article relevant to Ti,
then the topic Ti can be further represented as an Anchor Vector (AV) as follows.

Input: a topic T of interest
            an interpretation vector V representing the topic T

Output: a cleaned Wikipedia-based concept vector V’ representing the topic T

           1. If T is a single word topic, then count the number of occurrences of T in the article texts represented by 
each concept vi in V, respectively. If T occurs more than 3 times, then keep vi in V, otherwise, remove vi from 
V.

           2. If T is a multi-word topic, then the adapted Levenshtein distance algorithm applies to measure the 
relevance of each Wikipedia concept (article) vi in V to topic T.

                2.1. If  NumOfWords(T) 2, then extract all text snippets TSj within the window size 
NumOfWords(T)+1 from the article text of vi. If there exists a j such that LevenshteinDistance(T, TSj) <= 1,
then keep vi in V, otherwise, remove vi from V.

                2.2. If  NumOfWords(T) > 2, then extract all text snippets TSj within the window size 
NumOfWords(T)+2 from the article text of vi. If there exists j such that LevenshteinDistance(T, TSj) 2, then
keep vi in V, otherwise, remove vi from V.

Fig. 2. The interpretation vector cleaning procedure
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AVðTiÞ ¼\\ wi;1;1anchor1;1;wi;2;1anchor2;1; . . . [ ;

. . .;

\ wi;1;manchor1;m;wi;2;manchor2;m; . . . [ [
ð7Þ

Where anchorx,y represents the anchor text anchorx appearing in articley in Vi, and wi,x,y

is the weight for anchorx,y. To calculate wi,x,y, we count the number of sub-vectors
within AV(Ti) in which anchorx,y appears, and then normalize it:

wi;x;y ¼ wi;x;y

highestðwi;d;yÞ ð8Þ

Where d = 1,2,…,r and there are totally r anchors in Wikipedia. Therefore, the
semantic relatedness between two topics of interest can be estimated as follows:

Sim Ti; Tj
� � ¼ Cosine AV Tið Þ;AV Tj

� �� � ð9Þ

4.4 Integrating Wikipedia Knowledge into Concept Chain Queries

Given the advantages of using Wikipedia as an effective information aid for semantic
representation, we integrate the knowledge derived from Wikipedia into our concept
chain queries. Specifically, we build interpretation vectors (using our adapted ESA
method) and anchor vectors (using the method described in Sect. 4.2) for both the two
given topics and each intermediate concept in the merged BP profile, and then compute
the Cosine similarities between the topics and each concept in the BP profile using the
corresponding interpretation vectors and anchor vectors, respectively. The final ranking
will be an integrated scheme considering the following three types of similarities.
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Fig. 3. Wikipedia anchors related to “Osama bin Laden”
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Corpus-level TF*IDF-based Similarity. As the most widely used document repre-
sentation, the BOW representation has demonstrated its advantages. It is simple to
compute and strictly sticking to the terms occurring in the document, thereby pre-
venting outside noise concepts that do not appear in the document from flowing into
the feature space of the representation. Given these benefits, a variation of TF*IDF
weighting scheme under the context of BOW representation is incorporated into our
final ranking to capture corpus level statistical information. We call this kind of sim-
ilarity the TF*IDF-based similarity.

ESA-based Similarity. Unlike the BOW model, ESA makes use of the knowledge
outside the documents themselves to compute semantic relatedness. It well compen-
sates for the semantic loss resulted from the BOW technique. The relatedness between
two concepts in ESA is computed using their corresponding interpretation vectors
containing related concepts derived from Wikipedia. In the context of concept chain
queries, we compute the Cosine similarity between the interpretation vectors of topic A
and each concept in the intermediate BP profile, as well as between topic C and each
concept Vi, and take the average of two Cosine similarities as the overall similarity for
each concept Vi in BP. We call this kind of similarity the ESA-based similarity.

Anchor-based Similarity. Anchor texts have served as another important information
aid in our algorithms to provide highly relevant concepts to the given topics through
considering the descriptive or contextual information for relevant Wikipedia articles.
As with the case of computing the ESA-based similarity for topic A(C) and each
concept Vi in the intermediate BP profile using the interpretation vectors, here anchor
vectors are used to measure concept closeness. We refer to this type of similarity the
Anchor-based similarity.

Integrating TF*IDF-based Similarity, ESA-based Similarity and Anchor-based
Similarity into the Final Ranking. The TF*IDF-based similarity, ESA-based simi-
larity and Anchor-based similarity are finally combined to form a final ranking for
concepts generated in the intermediate profiles:

Soverall ¼ ð1� k1 � k2ÞSTFIDF þ k1SESA þ k2Sanchor ð10Þ

Where λ1 and λ2 are two tuning parameters that can be adjusted based on the
preference on the three similarity schemes in the experiments. STFIDF refers to the
TF*IDF-based similarity, SESA the ESA-based similarity, and Sanchor the Anchor-based
similarity.

4.5 Annotating Semantic Relationships Between Concepts

In addition to answering “what relationships might exist between two topics?”, we go
one step further to collect relevant text snippets extracted from multiple Wikipedia
articles in which the discovered chains appear. This is in fact a multi-document
summary that explains the plausible relationship between topics with intensive
knowledge derived from Wikipedia. For example, given a query pair: “Bin Laden” and
“Abdel-Rahman”, one of the discovered concept chains is: Bin Laden→ Azzam→ Ab-
del-Rahman. Our goal now is to find supporting evidence that interprets how
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“Bin Laden” is linked to “Abdel-Rahman” through “Azzam” in the space of Wikipedia.
We consider this process as the chain-focused sentence retrieval problem and
decompose it into the following two subtasks.

Chain-Relevant Article Retrieval. This subtask takes a generated concept chain as
input and attempts to find relevant Wikipedia articles for it. One important criterion that
needs to be met is the identified Wikepeida articles should be relevant to the whole
chain (i.e. relevance to the given topics (end points of the chain) as well as intervening
concepts), not just to any individual segment of the chain. To achieve this, we first
(1) build the corresponding interpretation vectors for all of the concepts appearing in
the chain; (2) perform noise removal using the cleaning procedure described in Fig. 2;
(3) construct a ranked list of Wikipedia articles by intersecting the resulting interpre-
tation vectors with each article weighted using formula 6; (4) follow similar steps as
above to construct a ranked list of anchors (note that an anchor also represents a
Wikipedia article) with each anchor weighted using formula 8. The articles represented
by the concepts in the two ranked lists are viewed as chain relevant articles.

Chain-Focused Sentence Retrieval. This step inspects the content of each article
generated from the previous step and extracts sentences that explain each segment of
chain. For example, the chain Bin Laden → Azzam → Abdel-Rahman is composed of
two segments: Bin Laden→ Azzam and Azzam→ Abdel-Rahman. For the segment Bin
Laden→ Azzam, sentences where “Bin Laden” and “Azzam” co-occur will be extracted
as supporting evidence for this partial chain. Figure 4 shows the generated evidence
trail for this example.

4.6 The New Mining Model

To summarize, the new model of answering concept chain queries consists of two
sequential steps as shown in Figs. 5 and 6. Figure 5 illustrates the first step which
discovers potential relationships between two given topics from the given document
collection without background knowledge incorporated. Figure 6 details how Wiki-
pedia knowledge is integrated into this discovery process and facilitates better esti-
mation of semantic relatedness between concepts. Also, we go one step further and
require the response to be a set of Wikipedia text snippets (i.e. evidence trail) in which

Supporting Evidence for Bin Laden and Azzam
In1989,after the Soviets pulled out of Afghanistan, Azzam and his deputy Osama bin Laden
decided to keep their movement permanent and founded the Al Qaeda.

Supporting Evidence for Azzam and Abdel-Rahman
During theological studies in Egypt, Azzam met Omar Abdel-Rahman,Dr.Ayman al-Zawahiri and 
other followers of Sayyed Qutb,an extremely influential leader of the Egyptian Muslim 
Brotherhood,who had been executed by President Gamal Abdel Nasser in 1966.

Fig. 4. Evidence trail generated from Wikipedia articles for the concept chain Bin Laden → Az-
zam → Abdel-Rahman
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the discovered concept chain occurs. This may assist a user with the second dimension
of the analysis process, i.e. when the user has to peruse the documents to figure out the
nature of the relationship underlying a suggested chain.

5 Empirical Evaluation

A challenging task for the evaluation was constructing an evaluation data set, since
there are no standard data sets available for quantitatively evaluating concept chains.
We performed our evaluation using the 9/11 counterterrorism corpus. The Wikipedia
snapshot used in the experiments was dumped on April 05, 2011.

5.1 Processing Wikipedia Dumps

As an open source project, the entire content of Wikipedia is easily obtainable. All the
information from Wikipedia is available in the form of database dumps that are released
periodically, from several days to several weeks apart. The version used in this work
was released on April 05, 2011, which was separated into 15 compressed XML files
and totally occupies 29.5 GB after decompression, containing articles, templates, image
descriptions, and primary meta-pages. We leveraged MWDumper [12] to import the
XML dumps into our MediaWiki database, and after the parsing process, we identified
5,553,542 articles.
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Fig. 5. The new model of answering concept chain queries: component-1
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5.2 Evaluation Data

We performed concept chain queries on the 9/11 counterterrorism corpus. This
involves processing a large open source document collection pertaining to the 9/11
attack, including the publicly available 9/11 commission report. The report consists of
Executive Summary, Preface, 13 chapters, Appendix and Notes. Each of them was
considered as a separate document resulting in 337 documents. The whole collection
was processed using Semantex [10] and concepts were extracted and selected as shown
in Table 1. Query pairs covering various scenarios (e.g., ranging from popular entities
to rare entities) were selected by the assessors and used as our evaluation data. We
selected chains of lengths ranging from 1 to 4 in terms of the number of associations.
The chains were selected by going through the same procedure as in [26], which is also
described as follows:

1. We ran queries with various pairs of topics: in the counterterrorism corpus, the
topics were mostly named entities.

2. For each topic pair, the relevant paragraphs for either topic were then manually
inspected: we selected those where there was a logical connection between the two
topics.

3. After achieving agreement among all annotators, we then generated the concept
chains for these topic pairs (and paragraphs) as evaluation data.
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The above process generated 37 chains in 9/11 corpus which will be used as truth
chains for later experiments.

5.3 Experimental Results

Parameter Settings. As mentioned in Sect. 4.3, a combination of TF*IDF-based
similarity, ESA-based similarity and Anchor-based similarity is used to rank the links
detected by our system. λ1 and λ2 in Eq. 10 are two parameters that need to be tuned so
that the generated similarity between two concepts best matches the judgements from
our assessors. To accomplish this, we first built a set of training data composed of 10
query pairs randomly selected from the evaluation set, and then generated BP profiles
for each of them using our proposed method. Among each BP profile, we selected the
top 5 concepts (links) within each semantic type, and compared their rankings with the
assessors’ judgements. The values of λ1 and λ2 were tuned in the range of [0.1, 1].
Specifically, we set λ2 = 0 or λ1 = 0 to evaluate the contribution of each individual part
(the ESA-based similarity or the Anchor-based similarity) in the final weighting
scheme. When λ1 ≠ 0 and λ2 ≠ 0, the best performance was obtained when λ1 = 0.4 and
λ2 = 0.3. These settings were also used in our later experiments.

Query Results. Before proceeding to the evaluation of the proposed model, we first
conducted an experiment to demonstrate the improved performance of our adapted
ESA method against the original ESA. We selected 10 concepts that we have good
knowledge about as shown in Table 2 and then built the interpretation vectors for each
of them using the original ESA and our adapted ESA respectively. We calculated the
averaged precision defined as below to measure the performance of the two
approaches.

aveP ¼
XN

i¼1

concept found and relevant
total concepts found

� �
=N ð11Þ

Table 2. Ten concepts used for the interpretation vector construction

Semantic type Belonging concept

Person George Bush
Bill Clinton

Organization Central Intelligence Agency
United States Federal Government

Event World War
September 11 attacks
Lewinsky Scandal

Science Data Mining
Natural Language Processing
Artificial Intelligence
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where N is the number of concepts under consideration. The results are illustrated in
Fig. 7 where the X-axis indicates the number of concepts kept in each of the inter-
pretation vectors and the Y-axis indicates the averaged precision ratio. It is obvious that
our adapted ESA achieves significant improvement over the original one for identifying
topic-related Wikipedia concepts.

Table 3 shows the top 15 concepts generated in the interpretation vectors for 4 sample
concepts. For example, for “Lewinsky Scandal”, the top 15 concepts in the interpre-
tation vector built using our adapted ESA include most of the people involved in this
event in addition to Clinton and Lewinsky themselves, such as Linda Tripp who
secretly recorded Lewinsky’s confidential phone calls about her relationship with
Clinton, and Betty Currie who was the personal secretary of Clinton and well known in
the scandal for handling gifts given to Lewinsky by Clinton. However, most of the top
concepts identified using the original ESA are representing some irrelevant events.

To further evaluate the performance of the original ESA and the adapted ESA in
semantic profile generation, we selected 10 query pairs as shown in Table 4 and
generated semantic profiles serving as linking concepts (i.e. BP profile) through
selecting common concepts appearing in the two interpretation vectors built for the two
given topics. Each concept in the semantic profile was weighted using the original ESA
and our adapted ESA respectively. We again calculated the averaged precision to
measure the percentage of the relevant concepts in the generated profile. The results are
shown in Fig. 8 where the X-axis indicates the number of concepts kept in each
generated semantic profile and the Y-axis indicates the averaged precision. It is
demonstrated that for BP level semantic profile generation, our adapted ESA also
performs much better than the original ESA.

Fig. 7. The Averaged Precision of the generated interpretation vectors using the original ESA
and adapted ESA based on processing data in Table 2
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Table 5 below shows the top 10 concepts generated in the semantic profiles for our
sample query pairs: “George Bush :: Al Gore” and “Michael Jordan :: Charles Bark-
ley”. For the query pair “Michael Jordan :: Charles Barkley”, the top 10 concepts
identified as the interlinking terms using our adapted ESA include their most relevant
persons, events, etc., and noise concepts are successfully removed from the semantic

Table 3. Top 15 concepts in the sample interpretation vectors using the adapted ESA and the
original ESA

Input # Original ESA Adapted ESA

Data Mining 1 Open-cast_mining Relational_classification

2 Opencast_Mining Relational_data_mining

3 Mining_engineer Data_Mining_Extensions

4 Open_cast_mining Biological_data

5 data Java_Data_Mining

6 Mine_(industry) Weather_Data_Mining

7 Open-cast_mine National_Center_for_Data_Mining

8 Golden_Source_of_data Privacy_preserving_data_mining

9 Data_withholding Structure_mining

10 Data_Havens Oracle_Data_Mining

11 Data_Warehousing Cross_Industry_Standard_Process_for_Data_Mining

12 Data_Transfer Knowledge_discovery

13 Data_rate_(disambiguation) Data_Pre-processing

14 Data_General_One Data_mining_agent

15 Data_matrix_(disambiguation) Sequence_mining

Central
Intelligence
Agency

1 Agency_(disambiguation) United_States._Central_Intelligence_ Agency

2 United_States.
_Central_Intelligence_Agency

Central_Intelligence_Agency_Museum

3 Starfleet_Intelligence Central_Intelligence_Agency_library

4 Nigerian_intelligence The_Agency

5 Virginia_farmboys National_Intelligence_Agency_(United_States)

6 Directorate_for_Inter-Service_Intelligence Agency

7 Process_of_intelligence Office_of_Scientific_Intelligence

8 14th_Intelligence_Company Intelligence_officer

9 Intelligence_augmentation Security_agency

10 Human_intelligence_ (disambiguation) John_N._McMahon

11 Israeli_Intelligence_Agency National_Intelligence_Board

12 Agência_Brasileira_de_ Inteligência Director_of_the_Central_Intelligence_Agency

13 Central_(disambiguation) Military_Intelligence_Division

14 Administrative_agency Private_intelligence_agency

15 Job_agency Intelligence_agency

Lewinsky
Scandal

1 Scandal-mongering Clinton:_His_Struggle_with_Dirt

2 HIV-tainted-blood_scandal Monica_Lewinsky

3 Scandal_of_Scientology Lewinsky_scandal

4 The_Scandal_of_Scientology_ (book) Linda_Tripp

5 Iraq_War_Scandal_ (disambiguation) Susan_Schmidt

6 CDU_contribution_scandal Kramerbooks_&_Afterwords

7 Parmalat_scandal Betty_Currie

8 Coingate Monica

9 Black_Mist_Scandal Affair

10 Scandal_(disambiguation) Breuer

11 2006_Reuters_fake_photos_ scandal Charles_Ruff

12 Boesky_scandal Robert_S._Bennett

13 Panama_scandal Mark_Whitaker

14 Sex_scandals David_Horsey

15 Shell_Scandal_of_1915 1983_congressional_page_sex_scandal
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profile and key interlinking concepts are boosted to higher positions such as
“I_May_Be_Wrong_but_I_Doubt_It”, a memoir by Charles Barkley that recounts
some of Barkley’s memorable experiences including his involvement with Michael
Jordan as a member of the “Dream Team”, and “1993_NBA_Finals”, the champion-
ship round of a historic season when Michael Jordan led the Chicago Bulls to play
against the Phoenix Suns which was led by Charles Barkley. By contrast, the original
ESA failed to rank high for some very important concepts related to them.

In terms of concept chain queries, we have also conducted a qualitative evaluation
of the proposed model for generating various lengths of chains using the precision ratio
defined below.

Table 4. Ten query pairs used for the semantic profile generation comparison

Topic A Topic C

George Bush Al Gore
Michael Jordan Charles Barkley
Sadam Hussein Gulf War
Northern Alliance European Union
Wall Street New York Times
Steve Jobs Mark Zuckerberg
Knowledge Discovery Document Classification
Abdel Rahman Blind Sheikh
Saudi Arabia Kuwait
Terrorist Attack Bill Clinton

Fig. 8. The Averaged Precision of the Intermediate Semantic Profile (BP profile) Generation
using the original ESA and adapted ESA based on processing data in Table 4.
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precision ¼ concept chains found and correct
total concept chains found

ð12Þ

Figures 9, 10, 11 and 12 make a comparison of the search results in various models. We
have implemented a competitive baseline algorithm (i.e. Srinivasan’s ‘closed’ dis-
covery algorithm) where only the corpus-level TFIDF-based statistical information is

Table 5. Top 10 concepts in the sample semantic profiles generated by the adapted ESA and the
original ESA

Input # Original ESA Adapted ESA

George
Bush ::
Al Gore

1 George_Rose_(disambiguation) Electoral_history_of_George_W._ Bush
2 Electoral_history_of_George_ W.

_Bush
Al_Gore_presidential_campaign,_ 2000

3 Sir_Ralph_Gore,_4th_Baronet Snippy
4 St_George_Gore-St_George Non-rigid_designator
5 Sir_Arthur_Gore,_1st_Baronet United_States_presidential_election_

in_Massachusetts,_2000
6 Electoral_history_of_George_H.

_W._Bush
High_Performance_Computing_and_Communication_

Act_of_1991
7 Al_Gore_presidential_campaign,

_2000
Millie_(dog)

8 Tennis_at_the_1908_Summer_
Olympics_–
_Men’s_indoor_doubles

United_States_presidential_election_in_the_District_
of_Columbia,_ 2000

9 The_Betrayal_of_America John_Prescott_Ellis
10 James_Howard_Gore George_H._W._Bush

Michael
Jordan ::
Charles
Barkley

1 David_Jordan I_May_Be_Wrong_but_I_Doubt_It
2 Charles_Blount 1993_NBA_Finals
3 Charles_Evans Barkley,_Shut_Up_and_Jam:_Gaiden
4 Charles_Bronson_(disambiguation) Best_NBA_Player_ESPY_Award
5 Charles_Jordan_(magician) 1996_NBA_All-Star_Game
6 Baggir 1986–87_NBA_season
7 Manduca_fosteri 1992–93_NBA_season
8 I_May_Be_Wrong_but_I_Doubt_It 1990–91_NBA_season
9 Manduca_diffissa 1991–92_NBA_season
10 Karl_Jordan Gaiden

Fig. 9. Search results of chains of length 1
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considered. In the four figures, the X-axis indicates the number of concepts kept in each
semantic type in the search results (SN means the top N are kept) and the Y-axis
indicates the precision values. It is easy to observe that the search performance has
been significantly improved with the integration of Wikipedia knowledge, and the best
performance is observed when both the Wiki article content and anchor texts are
involved.

Fig. 10. Search results of chains of length 2

Fig. 11. Search results of chains of length 3

Fig. 12. Search results of chains of length 4
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We further used the 37 truth chains described above to measure the performance of
the baseline model and various Wiki-enabled models in detecting these chains. In
Fig. 13, the X-axis has the same meaning as in Figs. 9, 10, 11 and 12 and the Y-axis
now denotes the percentage of the 37 truth chains found by different models. The
results also agree with our expectation that the largest percentage of the truth chains
were retrieved when incorporating both article content and anchor texts from Wikipedia
into the query process.

Table 6 shows the evidence trails generated for concept chains discovered from
Wikipedia. Note that the generated evidence trail is not necessarily from the same
Wikipedia article, but could be found through the discovery of knowledge holding
across articles. For example, for the concept chain Betty Ong → September
11 → Mohamed Atta, sentences were extracted as the supporting evidence from two
different Wikipedia articles “Flight attendant” and “American Airlines Flight 11”. Our
proposed model successfully found “Flight attendant” and “American Airlines Flight
11” as two highly relevant Wikipedia articles with regard to “Betty Ong” who was a
“Flight attendant” onboard “American Airlines Flight 11” when it was hijacked and
flown into the North Tower of the World Trade Center and “Mohamed Atta” who was
one of the ringleaders of the “September 11” attacks, and crashed the “American
Airlines Flight 11” into the World Trade Center as part of the 9/11 attacks.

Fig. 13. Comparison of search results using 37 truth chains
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6 Conclusion and Future Work

This paper proposes a new solution for improving cross-document knowledge dis-
covery through our introduced concept chain queries, which focus on detecting
semantic relationships between concepts across documents. In this effort, we attempt to
incorporate relevant Wikipedia knowledge into the search process, which effectively
complements the existing knowledge in document collections and further improves
search quality and coverage. Additionally, a better measure for estimating semantic
relatedness between terms is devised through integrating various evidence resources
from Wikipedia. Experimental results demonstrate the effectiveness of our proposed
new approach and show its advantage of alleviating semantic loss caused by only using
the Vector Space Model (VSM) on the corpus level.

Future directions include the exploration of other potential resources provided by
Wikipedia to further improve query processing, such as infobox information, categories
that relevant Wiki articles belong to and the underlying category hierarchy. These
valuable information resources may be combined with our defined semantic types to
further contribute to ontology modeling. As a cross language knowledge base, we also

Table 6. Evidence trails generated from Wikipedia

Concept chain Evidence

Betty Ong → September
11 → Mohamed Atta

Sentence 1. The role of flight attendants received heightened
prominence after the September 11 attacks when flight
attendants (such as Sandra W. Bradshaw and CeeCee
Lyles of United Airlines Flight 93, Robert Fangman of
United Airlines Flight 175, Renee May of American
Airlines Flight 77 and Betty Ong and Madeline Amy
Sweeney of American Airlines Flight 11) actively
attempted to protect passengers from assault, and also
provided vital information to air traffic controllers on the
hijackings

Sentence 2. Mohamed Atta, the ringleader of the attacks,
and a fellow hijacker, Abdulaziz al-Omari, arrived at
Portland International Jetport at 05:41 Eastern Daylight
Time on September 11, 2001

Rahman → Bin Laden → Al
Qaeda

Sentence 1. Rahman built a strong rapport with bin Laden
during the Soviet war in Afghanistan and following
Azzam’s murder in 1989 Rahman assumed control of the
international jihadists arm of MAK/Al Qaeda

Gore → Bush → Stephen
Hadley

Sentence 1. Bush, at the advice of Hadley, also proposed
greater nuclear arms reductions than Gore

Atta → Huffman → Dekkers Sentence 1. Atta, along with Marwan al-Shehhi arrived in
Venice, Florida, and visited Huffman Aviation to “check
out the facility”

Sentence 2. On the eve of the trial, Dekkers sold all of
Huffman’s holdings minus 10 planes to Triple Diamond,
to gather the money needed to repay his business partner
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plan to explore the utilization of Wikipedia knowledge in a cross-lingual setting to
better serve different query purposes.
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