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5.1 Introduction

A wide range of today’s real-time embedded systems, especially their most critical
parts, relies on a control-command computation core. The control-command of an
aircraft, a satellite, a car engine, is processed into a global loop repeated during the
activity of the controlled device. This loop models the acquisition of new input val-
ues via sensors, either from environment mesures (wind speed, acceleration, engine
RPM, …) or from human feedback through, for example, the brakes, the accelerator,
the stick or wheel control.
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The cost of failure of such systems is significant, and examples of such failures are
numerous, in spite of increasingly high certification requirements. In addition, as the
Federal Aviation Administration (FAA) works on defining the proper frame to open
the airspace to Unmanned Aerial Systems (UAS), a major market is about to bloom
and will benefit from automated and simple tools to facilitate product certification.
Current analysis tools focus mainly on simulations. One obvious shortcoming is
the impossibility to simulate all the possible scenarios the system will be subject
to. More advanced tools include static analysis modules, which derive properties
of the system by formally analyzing its semantics. However, in the specific case of
control systems, analyzing the computational core can prove arduous for these tools,
whereas the engineers who designed the controller have a variety of mathematical
results that can greatly facilite this analysis, and evince more subtle properties of the
implemented controller.

There are many modern techniques to analyse software. Model checking is one
that endeavors to automatically prove safety-properties of finite-state systems [1].
It is widely used in industry as recent developments have made SAT solvers and
SMT solvers much more efficient and scalable [2, 3]. Unfortunately, control software
remains subject to an explosion of the state-space, making the use of these techniques
difficult for this research.

Abstract interpretation has proven to be a powerful, scalable technique to prove
low-level properties of code. It was successfully applied on the Airbus A380 code to
prove the absence of runtime errors caused by buffer overflow or index out-of-bound
failures [4]. The choice of a proper abstract domain and good widening/narrowing
heuristics remains a difficult one. In particular, there is no good lattice structure on
the domain of ellipsoids, crucial to many results of control theory. Finally, some
control systems require highly non-linear Lyapunov functions in their proof of sta-
bility, involving transcendental functions that no current domain encompasses, to our
knowledge. Feret’s work [5, 6] is a practical approach to the problem of extracting
quadratic invariants in an abstract interpretation framework. Its goal is to address the
need by Astrée [7] to handle the linear filters present in Airbus’ real time software.
Previous work [8] by Monniaux addressed the same class of systems but not on actual
code. Both of these efforts address a strict subset of the systems we consider in this
work.

This chapter, following previous efforts aimed at demonstrating how control-
systemic domain knowledge can be leveraged for code analysis [9, 10], describes a
practical implementation of a fully automated framework, which enables a control
theorist to use familiar tools to generate credible code, that is, code delivered with
certificates ensuring certain properties will hold for all executions.

The focus is on a specific class of controllers and properties, in order to achieve
full automation; it also explores various possible extensions.

The chapter is structured as follows: We first present a high level view of the
general framework in Sect. 5.2. We then proceed to describe how control semantics
can be expressed at different levels of design, in Sect. 5.3. Section 5.4 describes
the translation process by which graphical synchronous languages familiar to the
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control theorist can be turned into credible code. Section 5.12 demonstrates how a
proof of correctness can be automatically extracted from the generated code and its
annotations.

5.2 Credible Autocoding Framework

Autocoding is an automated programming process that transforms a system expressed
in a high-level modeling language such as Simulink or SCADE into a low-level imple-
mentation language such as C. In credible autocoding, the code is generated along
with mathematically verifiable guarantees of functional correctness. The concept of
credible autocoding is analogous to credible compilation in [11]. Both processes
generate formally verifiable evidences that the output correctly preserves certain
semantics of the input. The evidences can be independently checked for correctness
by the certification authorities. Unlike credible compilation of Rinard, the formally
verifiable evidences of interest in this research are the high-level functional properties
of control systems which include stability, robustness and performance. An alternate
approach towards producing guarantees for autocoder is building a formally verified
autocoder. In a formally verified autocoder, each block transformations are mathe-
matically proved to be correct. This approach is technically challenging and has yet
to be demonstrated to be feasible.

Data-flow modeling languages such as Simulink or SCADE are the default indus-
try choice for Model-based development of safety-critical control systems. Within
this framework of software development, systems are build using a language of high-
level abstraction in order to facilitate rapid design and prototyping. The source code
is then generated automatically from the input model using an automated code gener-
ation tool or an autocoder. The trustworthiness of the autocoder has often been ques-
tioned in the industry [12]. In a data-flow language environment such as Simulink,
there are two major elements: “blocks”, and “lines.” The blocks are functions that
perform some operations on its input(s) and then output the result(s). The lines are
directed edges that flow from an origin block’s output to a destination block’s input.
This type of connectivity specifies that the origin output is equivalent to the destina-
tion input. The blocks are organized into sets of blocks, forming a library of blocks.
Some of the blocks have unpredictable variations in their semantics. For example,
the precise semantics of the Simulink product block depends on its input types, input
dimensions, number of input/output, product operator selected, etc. The variations in
Simulink block semantics, and the lack of formal documentation about them, present
an obstacle in its wide adoption for safety-critical production. A related work [13],
which is complementary to this research used a model-based approach, to assign
provably correct semantics to a set of Simulink blocks. The result of that research is
a library of trustworthy blocks—the BlockLibrary language—with precise semantics,
that can be reasoned about formally.

In the framework of credible autocoding, instead of proving that individual block
transformations are correct i.e. building the library of trustworthy blocks, the goal is to



140 T. Wang et al.

be able to show that the output code also satisfies the high-level functional properties
of the input model. The functional properties of the input model is dependent on the
domain of the input model. In the domain of control systems, a strong functional
property is an exponential stability of the closed-loop system with a global domain of
attraction, and a weaker functional property is simply the boundedness of the system.
In the domain of convex optimization, an example property is the linear convergence
of the duality gap function to zero. The verification of the code against high-level
functional property imparts an additional layer of guarantee on the correctness of
the code. For example, if a gain in a Simulink model was inverted accidentally
before autocoding, the output code while correct in the sense of each individual
block transformations, is not likely to satisfy a pre-computed property such as the
Lyapunov stability of the system.

The complete credible autocoding process from Simulink model to verified code,
for the domain of control systems, is illustrated in Fig. 5.1. In this process, the credible
autocoding portion (left half of Fig. 5.1) is performed by the code producers, who
generate the code and provide evidence that the generated code is correct. The proof-
checking portion (right half of Fig. 5.1) are performed by the certification authorities
who are independent from the code producers. The only shared knowledge between
these two parties is a common language used to express the mathematical proofs on
the code. The control semantics include stability property of the system and the plant
models used in the stability analysis for the closed-loop cases. The framework adds,
on top of a classic model-based development cycle, another layer of translations,
that converts quadratic invariant sets, computed using Lyapunov-based methods,
into code annotations on the code, which form a proof of the correctness of the
output code.

For credible autocoding of control software, compared against the traditional
model-based development, the only additional requirement on control engineers is

Fig. 5.1 Automated credible autocoding/compilation chain for control systems
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that they provide the Lyapunov function. The procedure for generating Lyapunov-
type certificate of stability and performance properties of control systems can be
automated using Linear Matrix Inequalities [14] (LMIs) and the Integral Quadratic
Constraint [15] (IQC) framework. Each of the stability and performance properties
generated can be encoded using an ellipsoid invariant, which can then be transformed
into an invariant for the code.

The advantages of the framework developed in this chapter can be summarized
as follows:

1. All the advantages of model-based development are inherited.
2. The correctness of the autocoder is more or less guaranteed by the correctness

of its output code. This is based on the idea of credible compilation in [11]. This
reduces the need to formally verify the autocoder.

3. The framework provides guarantees are of high-level functional properties, which
provides a potentially more useful characterization of the correctness of the system
to the certification authorities.

4. The framework can provide feedback information to the domain expert so errors
in the construction of the model could be diagnosed more rapidly.

5. In the context of certification, credible autocoding could potentially reduce the
number of tests required for certification of the control software. In traditional
unit testing, a piece of code, such as the control software is tested repeatedly for
many possible different inputs and scenarios. This is extremely time consuming.
The credible autocoding framework enables a meta-testing procedures, in which
the software, are tested for all possible inputs and scenarios, in one iteration.

5.2.1 Input and Output Languages of the Framework

The input language of the framework should be a graphical data-flow modeling
language such as Simulink that is familiar to control engineers. The exact choice
for the input language is up to the domain users’ preference and does not affect the
utility of the framework as it can be eventually adapted to other modeling languages
such as SCADE [16]. For the prototype tool-chain developed in this research, the
choice of the input language is a discrete-time subset of Simulink blocks. The subset
of Simulink language include basic blocks: unit delays, gain, input, output, plus,
minus, multiplication, divide, min, and max.

Likewise, for the output language, the choice is likely to depend on the prefer-
ences of the industry and the certification authority. For the experimental prototype
described in this chapter, the output language was chosen to be C because of its
industrial popularity and the wide availability of static analyzers tailored for C code.

The set of annotations in the output source code contains both the functional
properties inserted by the domain expert and the proofs, which can be used to auto-
matically prove these properties. For the analysis of the annotated output, a prototype
annotation checker that is based on the static analyzer frama-C and the theorem prover
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Fig. 5.2 Test platforms. a Quanser helicopter (© Quanser), b DGEN 380 lightweight turbofan
engine (© Price Induction)

PVS is built. For automating the proof-checking of the annotated output, a set of lin-
ear algebra definitions and theories were integrated into the standard NASA PVS
library [10].

In this chapter, the fully automated process from the input model to the verified
output is showcased for the property of close-loop stability. At this point, we restrict
the input space to only linear controllers with possible saturations in the loop. The
running example that we use in this paper is described by the state-space difference
equation in Example 5.1. This example is chosen because it has enough complexity
to be representative of many controllers used in the industry, and is simple enough
such that we can show in this paper, the output annotated code. The example system
is consisted of states x ∈ R

2, input y ∈ R, output u ∈ R, the state-transition function
in (5.1), and the output function in (5.2).

Example 5.1

x+ =
[

0.4990 −0.05
0.01 1

]
x +
[

0
0.01

]
y (5.1)

u = [564.48 0
]

x + [1280
]

y. (5.2)

In addition to the two dimensional example used in this chapter, we have worked
with several larger systems shown in Fig. 5.2, which include the Quanser 3-degree-
of-freedom Helicopter, and a FADEC control system of a small twin jet turbofan
engine [17]. The state-space size of the engine FADEC controller is 11.

5.3 Control Semantics

The set of control semantics that we can express on the model includes stability and
boundedness.

Remark 5.1 The types of systems in which we can express closed-loop stability
properties for are not just limited to simple linear systems like Example 5.1. They
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also include nonlinear systems that can be modeled as linear systems with bounded
nonlinearities in the feedback loops.

5.3.1 Control System Stability and Boundedness

A simple linear system such as Example 5.1 is commonly represented using the
following state-space formalism. For matrices A ∈ R

n×n, B ∈ R
n×m, C ∈ R

k×n, and
D ∈ R

k×m, we have

x+ = Ax + By
u = Cx + Dy

(5.3)

This state-space system has the state-transition function δ : (x, y) → Ax + By and
the output function ω : (x, y) → Cx + Dy. We also consider linear systems with
bounded nonlinearities in their feedback interconnections. This model is a closer
representation of the real control systems when there are saturations, time-delays,
anti-windup mechanisms, hysteresis, or noise in the loop. For ỹ = σ (t, y) with the
time-varying nonlinear function σ(t, y), in which ỹi ≤ Miy for Mi > 0, we have

x+ = Ax + Bỹ
u = Cx + Dỹ

(5.4)

Analogous to system (5.3), the state-transition function for (5.4) is δ : x, y →
Ax + Bσ(t, y), and the output function is ω : (x, y) → Cx + Dσ(t, y). For any
systems described by (5.3) and (5.4), we can compute efficiently the answer to the
following problem.

Problem 5.1 1. Does there exist a symmetric matrix P ∈ R
n×n such that the

quadratic function q : x → xTPx is non-increasing along the system trajectories
as t → +∞?

Generally speaking such a problem can be transformed into a linear matrix
inequality (LMI). The details of these transformations are skipped here as they are
well-established in the control literature [14, 18]. The algorithms used to solve LMIs
are based on semi-definite programming, which is tractable up to large sizes [19].

5.3.2 Prototype Tool-Chain

In this chapter, we describe a prototype tool-chain, which has been developed for
the demonstration of credible autocoding. The prototype tool-chain is split into a
credible autocoder front-end and a proof-checker back-end. The credible autocoder
front-end translates the model into annotated code. The proof-checking back-end
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analyzes the annotated code produce by the front-end and decides whether or not the
proof is coherent.

Gene-Auto [20–23] is an existing, open-source, autocoding prototype for embed-
ded systems. The front-end prototype in our tool-chain, which we dubbed Gene-
Auto+, is based on Gene-Auto. For the front-end, we have several extensions to the
language or language environments Simulink, Gene-Auto and ACSL. ACSL [24] is
a formal specification language for C programs. More details on ACSL is described
in Sect. 5.3.7. The language extensions are summarized as follows:

1. A library of Annotation blocks in Simulink and Gene-Auto.
2. An ACSL-like language within Gene-Auto.
3. Abstract types and their operators in ACSL: matrix, vector and quadratic predi-

cates.

The language extensions in Simulink and Gene-Auto are described in Sect. 5.3.3.
The language extensions in ACSL are described in Sect. 5.3.7.

5.3.3 Control Semantics in Simulink and Gene-Auto

An observer (see [25]) in Simulink takes an input signal and returns an output of 1
if the input satisfies a specific property, and 0 if otherwise. Both boundedness and
stability can be expressed, for example, using an observer with inputs xi, i = 1, . . . , n,
and the boolean-valued function

x →
∑

i,j=1,...,n

xiPijxj ≤ 1. (5.5)

To express the types of observers in (5.5) as annotations on the Simulink model,
we extended the Simulink language and the Gene-Auto environment with a set of
annotation blocks.

Annotation blocks are structurally the same as any other Simulink blocks. The
key difference is that they do not translate into code. Our prototype annotation block
library has been built to contain a minimal set of blocks needed to express the
properties of control systems that are currently verifiable from Simulink to C code.

The prototype annotation block library contains four symbols: vamux, constant,
quadratic, and system. Each annotation symbol denotes an annotation block type, To
illustrate the annotations blocks, we have Fig. 5.3, which shows a Simulink model
of an engine controller, along with 6 annotation blocks. The annotation blocks are
highlighted in red for the purpose of clarity.

In Simulink, the vamux block type takes n scalar or vector inputs xi, and outputs

a concatenated signal y = [xT
1 , . . . , xT

n

]T
. In Fig. 5.3, there are three vamux blocks,

labeled as nh, xc(t) and yd(t). The vamux block type only accepts one parameter,
which determines the number of inputs to the block type. The vamux block does not
express any property of the system. In Gene-Auto+, the main functionality of the
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Fig. 5.3 Simulink model with annotation blocks

vamux block is to establish equivalence relations between its inputs and the ith entry
of its output. i.e. xi == yi. This enables the prototype to replace the pseudo-variables
in the templates within the other annotation blocks with the actual variables from the
code.

The constant block type accepts one scalar, vector, or matrix input x, and a constant
matrix parameter [c1] or [c1, . . . , cn] for n ∈ N. The type of the constants ci are
constrained to be the same type as the input x. The output of the block is the boolean
value x == c1 or

∨n
i=1 (x == ci), which implies n sets of behaviors for the code.

Definition 5.1 A behavior is a set of unique assumptions on the parameters and
input, and output of the model.

This block type is useful for expressing the semantics of parameter varying sys-
tems such as a gain-scheduled controller. For example, the scheduling parameter
of the controller in Fig. 5.3 is the input NH, which is annotated with a constant
block labeled sampled_nh. In Gene-Auto+, the constant block type generates a set
of assumption(s) {x == ci}, i = 1, . . . , n.

The quadratic block type accepts one input vector of n variables x, a matrix
parameter P ∈ S

n×n, a logic connective symbol � ∈ {<=,<,>,==}, a level-set
constant c ∈ R, and outputs the boolean value of xTPx � c. The quadratic block type
can be used, for example, to express ellipsoidal invariant sets, sector-bound inequal-
ities, 2-norm squared, sum of squares polynomial sets, etc. The quadratic block
also accepts a positive scalar parameter mu. This is used to indicate the multiplier
computed in stability analysis. The quadratic block type behaves like an ellipsoid
observer from (5.5) in Simulink. In Gene-Auto+, the quadratic block type generates
a predicate defined on its inputs: ∀x.xTPx ≤ c. For example, in Fig. 5.3, the quadratic
block labeled stability represents a claim that xc(t) does not violate a quadratic con-
straint. The other quadratic block bounded_input is used to express a bound on the
input yd(t) to the controller.
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The system block type is parameterized by 4 matrices A, B, C, and D. An example
of a Simulink model annotated with the system block can be found in Sect. 5.3.5.
The system block type accepts two vector inputs u and y. The output of the system
block type is the state x of the dynamical system

x+ = Ax + Bu, x(0) = x0
y = Cx + Du.

(5.6)

The semantics of the system block in Gene-Auto include the semantics of the discrete-
time linear state-space system in (5.6), and a set of relations {ỹi == yi, ui = ũi} that
establish equivalence between the annotation variables y and u and their correspond-
ing variables ỹ and ũ from the controller model. The system block type can be used, for
example, to express a model of the plant the controller is expected to interact with.
The same controller model can be annotated with multiple system blocks, which
results in multiple sets of predicates for the code, which can be annotated using the
behavior keyword from ACSL.

5.3.4 Annotation Blocks and Behaviors in the Model

In a model, multiple system blocks s1, . . . , sn can be connected to the same set of
vamux blocks. This results in a set of n behaviors expressed by the formula

∨n
i si. If

there are n system blocks connected to the controller model, then there are n behaviors
in the model.

If there are also k constant blocks in the model, each connected to a different
vamux block, and each with m behaviors, then we have a total of mk behaviors
resulting from the constant blocks:

∧k
i

(∨m
i ci
)
. The complete set of behaviors in

the model resulting from both the system and constant blocks is described by the
formula (

k∧
i

(
m∨
i

ci

))
∧
(

n∨
i

si

)
(5.7)

or a total of nmk possible behaviors.
Lastly, if there are w quadratic blocks in the model as well, and all of them are

connected to the same set of vamux block, then we have w number of behaviors ∨w
i qi

due to the quadratic blocks. Combining this set of behaviors conjunctively with the
set of behaviors generated by the system and constant blocks results in

(
k∧
i

(
m∨
i

ci

))
∧
(

n∨
i

si

)
∧
(

w∨
i

qi

)
(5.8)

for a possible total of wnmk behaviors in the model. However, each of the quadratic
blocks that encode an inductive property such as stability are typically assigned a
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behavior generated by a system block. This is true for many examples, in which the
quadratic invariant is computed based on some plant model, using independent LMI-
based tools. For example, if there are n quadratic invariants and each is assigned a
behavior from a system block, then there are only n behaviors in the model:

n∨
i

(si ∧ qi) . (5.9)

This is far less than the explosion in the number of of behaviors predicted by (5.8).
Next, some annotated examples are given. Each example contains a different

possible set of control semantics.

5.3.5 Closed-Loop Stability with Bounded Input

For the running example, the closed-loop stability of the system with bounded input
is expressed with a set of the system and quadratic blocks. For example, as displayed
in Fig. 5.4, the close-loop stability of the Simulink model of the control systems is
expressed using:

1. a quadratic block stability to express the ellipsoidal invariant set that encodes the
closed-loop stability of the system.

2. another quadratic block bounded_input to express a 2-norm bound on the input,
3. a system block plant, which expresses the discrete-time linear state-space system

used in the closed-loop stability analysis

Fig. 5.4 Control system model annotated with control semantics
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5.3.6 Expressing the Observer-Based Fault-Detection
Semantics

In an observer-based fault-detection system, the dynamics of the observer are
designed such that the output of the observer changes due to specific faults in the
plant. Once the change exceeds a certain pre-defined threshold, the system is said
to be in the faulty mode. To express the faulty and nominal behavior of a fault-
detection system, one can use two different system blocks. One system block is the
model of the faulty plant that is predicted to trigger the faulty mode and the other
is the nominal plant. This is displayed in Fig. 5.5. The quadratic blocks connected
to the vamux blocks xf (t) and xn(t) express the closed-loop stability of the system.
They are assigned behaviors based on their physical connections to the system block.
For example, as displayed in Fig. 5.5, the block cl_faulty is connected to the sys-
tem block quanser_faulty using the vamux block xf (t). The two quadratic blocks

Fig. 5.5 Expressing multiple behaviors: fault-detection system
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connected to the vamux block xo(t) are used to express the stability of the observer
dynamics. They are assigned the behaviors faulty and nominal, based on the labels
in their names.

5.3.7 Control Semantics at the Level of the C Code

For the specific problem of open loop stability, the expressiveness needed at the C
code level is twofold. On the one hand, one needs to express that a vector composed
of program variables belongs to an ellipsoid. This entails a number of underlying
linear algebra concepts. On the other hand, one needs to provide the static analysis
tools with indications on how to proceed with the proof of correctness.

The ANSI/ISO C Specification Language (ACSL), is an annotation language for
C [24]. It is expressive enough to fulfill our needs, and its associated verification
tool, Frama-C [26], offers a wide variety of back-end provers that can be used to
establish the correctness of the annotated code.

5.3.7.1 Linear Algebra in ACSL

A library of ACSL symbols has been developed to express concepts and proper-
ties pertaining to linear algebra. In particular, types have been defined for matrices
and vectors, and predicates expressing that a vector of variables is a member of
the ellipsoid EP defined by {x ∈ R

n : xTPx ≤ 1}, or the ellipsoid GX defined by{
x ∈ R

n :
[

1 xT

x X

]
≥ 0

}
. For example, expressing that the vector composed of pro-

gram variables v1 and v2 is in the set EP where P =
(

1.53 10.0
10.0 507

)
, can be done with

our ACSL extensions using the annotations in Fig. 5.6.
The invariance of ellipsoidEP throughout any program execution can be expressed

by the loop invariant in Fig. 5.7. This annotation expresses that before and after every
execution of the loop, the property

[
v1 v2
]T ∈ EP will hold. In terms of expressive-

ness, it is all that is required to express open loop stability of a linear controller.
However, in order to facilitate the proof, intermediate annotations are added within
the loop to propagate the ellipsoid through the different variable assignments, as
suggested in [9] and expanded on in Sect. 5.4. For this reason, a loop body instruc-
tion can be annotated with a local contract, as in Fig. 5.8.

Fig. 5.6 Asserting that a vector with components v1 and v2 belongs to ellipsoid EP in ACSL
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Fig. 5.7 Expressing the invariance of EP on a loop in ACSL

Fig. 5.8 A local contract to assist the proof process

Fig. 5.9 Adding proof tactics to a contract to guide the proof back-end

5.3.7.2 Including Proof Elements

An extension to ACSL, as well as a plugin to Frama-C, have been developed. They
make it possible to indicate the proof steps needed to show the correctness of a
contract, by adding extra annotations. For example, the syntax in Fig. 5.9 signals
Frama-C to use the strategy AffineEllipsoid to prove the correctness of the
local contract considered. Section 5.12 expands on this topic.

5.3.8 Closed Loop Semantics

In order to express properties pertaining to the closed loop behavior of the system,
one needs to introduce a model for the plant, to be able to refer to the plant variables.
The most accurate way to do so would require a hybrid system representation, given
that the plant is commonly a continuous system, while the digital controller is a
discrete one. A large body of work is devoted to proving meaningful properties of
hybrid systems. In order to obtain actionable results, on which proof can be carried
out, we made the choice of representing the plant as a linear system, discretized at
the same period as the controller. To achieve this, we use ACSL’s ghost code feature.

Ghost code is a way to introduce variables and operations on these variables
without affecting the semantics of the code. Any valid C code can be written in ghost
code as long it does not introduce a change in the actual variables.
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At the end of the control loop, we use these variables to express the state update
of the plant that results from the computed control signal value. We also enforce
axiomatically the fact that the input read from the sensors equals the output of the
plant.

For each state variable in the plant, we introduce a global ghost variable. Within
the update function of the controller, we introduce ghost code describing the state
update resulting from the control output. A template of the structure of the code is
given in Fig. 5.10.

5.3.9 Control Semantics in PVS

Through a process described in Sect. 5.12, verifying the correctness of the annotated
C code is done with the help of the interactive theorem prover PVS. This type of
prover normally relies on a human in the loop to provide the basic steps required to
prove a theorem. In order to reason about control systems, linear algebra theories
have been developed. General properties of vectors and matrices, as well as theorems
specific to this endeavor have been written and proven manually within the PVS
environment [10].

5.3.9.1 Basic Types and Theories

Introduced in [10] and available online1 as part of the larger NASA PVS library, the
PVS linear algebra library allows one to reason about matrix and vector quantities,
by defining relevant types, operators and predicates, and proving major properties.
To name a few, we have defined:

• A vector type.
• A matrix type, along with all operations relative to the algebra of matrices.
• Various matrix subtypes such as square, symmetric and positive definite matrices.
• Block matrices
• Determinants
• High level results such as the link between Schur’s complement and positive def-

initeness

5.3.9.2 Theorems Specific to Control Theory

In [10], a theorem was introduced, named the ellipsoid theorem. A stronger version
of this theorem, along with a couple other useful results in proving open loop stability
of a controller, have been added to the library. The theorem in Fig. 5.11 expresses in

1http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
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Fig. 5.10 Template of the update function with added plant semantics in ghost code. Note that
often, the ghost code and the annotations are much larger than the code actually executed
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Fig. 5.11 Affine ellipsoid transformation theorem in PVS

Fig. 5.12 Ellipsoid combination through S procedure theorem in PVS

the PVS syntax how a generic ellipsoid GQ is transformed into GMQMT by the linear
mapping x �→ Mx.

The theorem in Fig. 5.12: expresses how, given 2 vectors x and y in 2 ellipsoids
GQ1 and GQ2 , and multipliers λ1, λ2 > 0, such that λ1 + λ2 ≤ 1, it can always be

said that

(
x
y

)
∈ GQ, where Q =

(
Q1
λ1

0

0 Q2
λ2

)

These 2 theorems are used heavily in Sect. 5.12 to prove the correctness of a given
Hoare triple. While they are not particularly novel, their proof in PVS was no trivial
process and required close to 10000 manual proof steps from the authors.

5.4 Autocoding with Control Semantics

The translation process in the credible autocoding prototype Gene-Auto+, is now
described in more details with a demonstration on the running example. From the
input model to the verified output, the property of open-loop and closed-loop stability
for a linear system with a nonlinear, but bounded input is expressed.

5.5 Building the Input Model

The model with the closed-loop stability semantics is already displayed in Fig. 5.4.
The model expressing open-loop stability is displayed in Fig. 5.13.
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Fig. 5.13 Open-loop stability

In either case, an assumption of boundedness is made on the input to the model and
it is expressed by the quadratic block bounded_input. For the closed-loop case, the
assumption of boundedness is made on the signal yd (see Fig. 5.4). For the open-loop
case, a similar boundedness assumption is made on the signal y − yd (see Fig. 5.13).
The closed-loop quadratic invariant, expressing stability, is defined by the multiplier
mu = 0.991, and P � 0,

P =

⎡
⎢⎢⎣

0.1878 0.1258 −0.0813 0.0149
0.1258 0.3757 −0.0220 0.0100

−0.0813 −0.0220 0.0660 −0.0063
0.0149 0.0100 −0.0063 0.0012

⎤
⎥⎥⎦ . (5.10)

Likewise, the stability analysis is also done for the open-loop case. The quadratic
invariants are inserted into their respective Simulink model using quadratic blocks.
Both of them are labeled as stability.

5.6 Basics of Program Verification

In the translation process, we use several notions from formal program verification.
First we have the following predicate notations for the annotations expressed in this
section. The ellipsoid sets are denoted using one of the following symbols:
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p(P, x, c) �
{
x ∈ R

n | xTPx ≤ c
}

q(Q, x, c) �
{

x ∈ R
n |
[

c xT

x Q

]
� 0

}
.

(5.11)

Without loss of generality, the sublevel set parameter c is set to 1 unless described
otherwise.

The control semantics are translated into axiomatic semantics on the code.
Axiomatic semantics is one of several approaches in theoretical computer science to
assign mathematical meanings to a program [27]. In axiomatic semantics, the seman-
tics or mathematical meanings of a program are defined using the logic predicates
that hold before the execution of the code and the ones that hold the execution of the
code. The main structure of axiomatic semantics is a Hoare triple [28].

Definition 5.2 A Hoare triple is the 3-tuple ({P} , C, {Q}), in which P is a predicate
or a set defined by a formula in some logic, and Q is also another predicate, and C
denotes a block of code.

The symbol P denotes a post-condition and the symbol Q denotes a pre-condition.

Definition 5.3 A Hoare triple {P} , C, {Q} is interpreted to be partially correct, if P
holds before the execution of C, and Q holds after the execution of C.

Remark 1 The termination of C needs to be proved for correctness. For the rest of
this chapter, correctness refers to the notion of partial correctness.

The pre and post-conditions are expressed on the code as comments before and
after the block of code. For example, given the simple while program in Fig. 5.14,
If the statement |x| ≤ 1 holds before the execution of the loop, then it should hold
for all executions of the loop.

Definition 5.4 An invariant is a predicate that holds for all executions of the loop.

The statement |x| ≤ 1 is an invariant. It can be inserted into the code as both the pre-
condition and the post-condition, see the ACSL comments in Fig. 5.14. The Hoare
triple in Fig. 5.14, therefore is {|x| ≤ 1}while a do C end {|x| ≤ 1}.

Here we give an illustration of Hoare triples on a Matlab implementation of x+ =
Ax+By (see Fig. 5.15). A Matlab example is used in this section and further on only for
the sake of brevity and clarity. In practice, a language like C is the typical choice for the
implementation of real-time control systems. We assume the Matlab example satisfies

Fig. 5.14 A while program in C
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Fig. 5.15 Annotated lead/lag compensator in matlab

some ellipsoidal invariant p(P, x, 1), computed from a stability analysis [14]. The
invariance of p(P, x, 1), which is the property of interest, is translated into axiomatic
semantics for the Matlab code. This is done by translating the set q(P, x, 1), using
type matching, into the Matlab formula x*P*x<=1 and then inserting that formula
as pre and post-condition for the program. The result is the annotated Matlab program
in Fig. 5.15. Next, the basics of deductive program verification are described.

5.6.1 Hoare Logic and Deductive Verification

Hoare logic is a formal proof system that comes with a set of axioms and infer-
ence rules for reasoning about the correctness of Hoare triples on various structures
of an imperative programming language i.e. if-else statements, assignment
statements, while statements, for statements, empty statements, etc.

For example, an axiom in Hoare logic for the while program construct is

{P ∧ a} C; {P}
{P}while a do C end {¬a ∧ P} . (5.12)

Syntactically speaking, the axioms and inference rules can be interpreted as follows:
the formula above the horizontal line implies the formula below that line. In the
while axiom in (5.12), note that pre and post-conditions of the loop has to be
same formula. This means to verify program loops, an invariant is necessary. Some
of the basic inferences rules for reasoning about imperative programs using Hoare
logic are listed in Table 5.1. The consequence rule in (5.13) is useful whenever a
stronger pre-condition or weaker post-condition is needed. The term stronger here
means the set defined by the predicate is smaller. The term weaker means precisely
the opposite. The substitution rule in (5.16) are used when the code is an assignment
statement. The weakest pre-condition expression P[x/expr] in (5.16) means P with
all free occurrences of the expression expr replaced by x. For example, given a post-
condition y<=1 for the line of code y=x+1, one can deduct that x+1<=1 is a
weakest pre-condition using the backward substitution rule in (5.16). The skip rule
in (5.15) can be used when the executing piece of code does not change any variables
in the pre and post-conditions.
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Table 5.1 Hoare logic inference rules for a imperative language

{P1 =⇒ P2}C{Q1 =⇒ Q2}
{P1}C{Q2} (5.13) {P}C1{R};{R}C2{Q}

{P}C1;C2{Q} (5.14)

{P}SKIP{P} (5.15) {P[e/x]}x:=expr{P} (5.16)

1. {p(P,x,1)} a do C end{p(P,x,1)}.
2. {p(P,x,1)}C{p(P,x,1)} by the axiom in (5.12).
3. {p(P,A∗ x+B∗ y,1)}x = A∗x+B∗y{p(P,x,1)} by the backward substitution rule in (5.16).
4. {p(P,A∗ x+B∗ y,1)}u=C ∗ x+B∗ y{p(P,Ax+By,1)} by the skip rule in (5.15).
5. {p(P,x,1), p(P,A∗ x+B∗ y,1)}C{p(P,x,1)} by the composition rule in (5.14).
6. if p(P,x,1) =⇒ p(P,A∗x+B∗y,1), then {p(P,x,1)}C{p(P,x,1)} by the consequent rule in

(5.13).

Fig. 5.16 Correctness of the program using Hoare logic deduction

To verify the Hoare triple in Fig. 5.15, use the inference rules from Table 5.1
on the code, starting from the post-condition x*P*x<=1.The process produces
an alternate pre-condition q(P, A ∗ x + B ∗ y, 1) for the loop body. By the conse-
quent rule, the correctness of the initial Hoare triple can be checked by checking if
p(P, x, 1) =⇒ p(P, A ∗ x + B ∗ y, 1). The process in Fig. 5.16 is deductive. An
algorithmic reformulation of it is Dijstra’s work on Predicate transformers [29]. By
using the Predicate transformers, the deductive process of Fig. 5.16 is reduced to a
computational process that checks the correctness of first order formulas.

5.6.2 Predicate Transformers

The Hoare triples on the code are computed using a form of the weakest pre-condition
calculus. The weakest pre-condition of C is a function wp that maps any post-
condition Q to a pre-condition. The output of the weakest pre-condition function
wp(C, Q) is the largest set such that, after the execution of C, Q holds. For example,
the correctness of a Hoare triple, for a set of variables x in the code C, is determined
by checking if the logic formula ∀x, P =⇒ wp(C, Q) holds. The wp function
can be applied to various constructs in an imperative programming language. Some
examples are given in Table 5.2. The sequence of Ii in (5.20) can be replaced by a
single I if I is an invariant of the loop. Denote the while program as P , in the
case of partial correctness, wp(P, Q) = I is the weakest literal pre-condition if
I =⇒ wp(C, I). In the case of total correctness, wp(P, I) = I is the weakest
pre-condition, if I =⇒ Q and the loop terminates. Recall the control program
in Matlab from 5.15, which is comprised of a while loop and satisfies the invariant
p(P, x, 1), Apply wp-calculus to that program i.e. wp(P, p(P, x, 1)) = p(P, x, 1)

leads to two logic formulas:
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Table 5.2 Weakest Pre-condition Calculus

wp(C1; , ..., CN , Q) = wp(C1, wp(C2, wp(C3, ..., wp(CN , Q)) . . .) (5.17)

wp(skip, Q) = Q (5.18)

wp(x := e, Q) = Q[e/x] (5.19)

wp(while a do C end, Q) = ∀i ∈ N, Ii

I0 = true (5.20)

Ii+1 = (¬a =⇒ Q) ∧ (a =⇒ wp(C, Ii))

1. I =⇒ Q and the loop terminates. The loop in 5.15 terminates after a finite
amount of iterations and clearly p(P, x, 1) =⇒ p(P, x, 1) is true.

2. I =⇒ wp(C, I) i.e. p(P, x, 1) =⇒ wp(C, p(P, x, 1)).

The second condition is harder to verify since the set wp(c, p(P, x, 1)) need to be
computed. Notice the formula p(P, x, 1) =⇒ wp(C, p(P, x, 1)) is equivalent to the
Hoare triple

{p(P, x, 1), wp(C, p(P, x, 1)) C; {p(P, x, 1)} , (5.21)

which means that p(P, x, 1) can be inserted as the pre and post-conditions of the
loop body C in Fig. 5.15. Applied additional wp-calculus on the loop body results
in the annotated code in 5.17. The set of pre-conditions generated by wp-calculus
i.e. the displayed Matlab comments inside the loop in Fig. 5.17, along with the Mat-
lab code itself, forms the translated proof of stability. Verifying this proof implies
that q(P, x, 1) is an invariant of the program, which is a strong evidence that the
implementation is good.

Fig. 5.17 Annotated lead/lag compensator in matlab
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5.6.3 Strongest Post-condition

The dual of weakest pre-condition is the strongest post-condition. The strongest post-
condition of C is a function that maps any pre-condition P to a post-condition. The
output of the strongest post-condition function sp(C, P) is the smallest set that holds
after the execution of C, given that P holds before the execution of C. To verify a
Hoare triple {P} C {Q} using sp-calculus, first compute sp(C, P) and then check that
sp(C, P) → Q.

5.7 Translation Process for a Simple Dynamical System

This section describes the credible autocoding process for a simple dynamical system,
using a mixture of mathematics, C and ACSL.

The process starts with computing a quadratic invariant set for the system. Given
a dynamical system G defined by x+ = Ax, the ellipsoid set p(P, x, 1), constructed
by solving ATPA − P ≺ 0 for P � 0, is also invariant w.r.t to G . The invariant
property of p(P, x, 1) is the key that allows us to know a priori that the Hoare
Triple {p(P, x, 1)}P2 {p(P, x, 1)}, in which P2 is a code implementation of G in
Fig. 5.18, is correct. Since P is invertible, then q(Q, x, 1) with Q = P−1 is equivalent
to p(P, x, 1). The credible autocoder inserts q(Q, x, 1) as the pre and post-conditions
of the program.

Using the weakest pre-condition function from (5.20) on q(Q, x, 1), one obtains
q(Q, x, 1) as the pre and post-conditions of the loop body in P2. Note that the set
q(Q, x, 1) is inserted into the code as pre and post-condition of the loop body. This is
displayed in lines 7 and 8 of Fig. 5.18, with the loop body enclosed in curly braces.

Fig. 5.18 P2: code implementation of G
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Next, given the pre-condition q(Q, x, 1) on the loop body, the strongest post-
condition computations i.e. sp-calculus is performed on the code. Denote the body of
the while loop inP2 as B, the credible autocoding process computes sp(B, q(Q, x, 1))

and then checks that sp(B, q(Q, x, 1)) → q(Q, x, 1) to ensures the correctness of
{q(Q, x, 1)} B {q(Q, x, 1)}.

The sp-calculus process uses ellipsoidal calculus. One of the techniques from
ellipsoidal calculus is the following regarding linear transformation of ellipsoidal
sets.

Lemma 5.1 Given a set q(Q, x, 1), and given a linear transformation T, the image
T(q(Q, x, 1)) is the set q(TQTT, x, 1).

Using the formula TQTT, we can compute a strongest post-condition for every
line of code in B. Define Ci as the ith line of code in B. Denote xi as the state

vector after the execution of Ci. For example, the state vector starts with x =
[

x1
x2

]

before the execution of C1. The 2 lines of code C1 and C2 respectively assigns some
values to the variable y1 and y2. The state vector’s dimension increases and becomes

x2 =

⎡
⎢⎢⎣

x1
x2
y1
y2

⎤
⎥⎥⎦ after the execution of C2. The state vector is x again after the execution

of C4. Because the variables y1 and y2 are discarded from the state vector when they
are not used in the code again. Next, given state vectors xi−1 and xi, and given the line
of code Ci, the affine semantics of Ci is computed and then used in the construction
of a linear transformation Ti from xi−1 to xi. For example, for C1, the code computes
the expression 0.4990 ∗ x1 + 0.1 ∗ x2 and assigns it to the variable y2. The affine
semantics of C1 is therefore y1 = Lx, in which L = [0.4990 0.1

]
. The state vector

x0 is x and the state vector x1 is x1 =
⎡
⎣x1

x2
y1

⎤
⎦. Hence T1 =

[
I
L

]
. Applying Lemma 5.1,

the strongest post-condition for Cm is

q(

1∏
i=m

TiQ
m∏

i=1

TT
i , xm, 1). (5.22)

Hence the strongest-post condition for B i.e. sp(B, q(Q, x, 1)) is q(Q4, x, 1), in which

Q4 = T4T3T2T1QTT
1 TT

2 TT
3 TT

4 (5.23)

The computed post-conditions are inserted into P2 (see Fig. 5.19) as the neces-
sary evidence for the proof-checking of P2. To verify that sp(B, q(Q, x, 1)) =⇒
q(Q, x, 1), the inclusion condition q(Q4, x, 1) ⊆ q(Q, x, 1) is checked. This can be
done using a Cholesky decomposition algorithm to check that Q − Q4 � 0.
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Fig. 5.19 P2 annotated

5.8 Gene-Auto+: A Prototype Credible Autocoder

In this section, some details of the prototype credible autocoder are given. The current
prototype is capable of translating control semantics, described in Sect. 5.3.3 into
verifiable ACSL annotations on the code.

5.8.1 Gene-Auto: Translation

Gene-Auto’s translation architecture is comprised of sequences of independent model
transformation stages. This classical, modular approach to code generator design has
the advantage of allowing relatively easy insertion of additional transformation and
formal analysis stages, such as the annotation generation stage in the prototype.
The translation process goes through two layers of intermediate languages. The first
one, called the GASystemModel, is a data-flow language that is similar to Simulink.
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Fig. 5.20 Translation in gene-auto+ versus gene-auto

The input Simulink model, after being imported, is first transformed into the system
model. The system model, which is expressed in the GASystemModel language,
is then transformed into the code model. The code model is in the GACodeModel
language representation, which has many similarities with imperative programming
languages, such as C or Ada. The main translation modules within Gene-Auto, are
the importer, the block sequencer and typer, the GACodeModel generator, and the C
printer. For the prototype, we have recycled much of the transformation modules up to
the GACodeModel generator. For the translation of the control semantics, we added
a sub-module, dubbed the GAVAModel generator, to the GACodeModel generator.
The GAVAModel is the ACSL-like language extension in Gene-Auto+. For more
details about it, including its meta-model, please see [30]. The GAVAModel language
enables common ASCL constructs such as: behavior, assumes-statement, function
contract, require-statement, ensure-statement, and ghost code to be expressed within
an intermediate representation in Gene-Auto+.

Figure 5.20 summarizes the key differences between the translation process of
Gene-Auto and Gene-Auto+. The upper half of the figure shows the process in
terms of languages and intermediate representations while the bottom part of the
figure shows the translation modules. Of the four language representations in the
translation process, only the GASystemModel representation remains unchanged.
This is because, structurally speaking, the annotation blocks are identical to the
non-annotation blocks.

5.8.2 Translation of Annotative Blocks

The annotation blocks are also first transformed into a GASystemModel represen-
tation. This transformation step is unchanged from the original Gene-Auto as the
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Fig. 5.21 Transformation of control semantics from GASystemModel to GAVAModel

same language is used to express both regular blocks and annotation blocks. In the
GACodeModel generation stage, the blocks that express the control semantics are
skipped since they are categorized as annotations. They are imported into the GAVA-
Model generation sub-module. This sub-module first translates the annotative blocks
into a set of Hoare triple objects on the code model, and then translates the Hoare
triple objects into a GAVAModel representation. This new representation of the code
model with axiomatic semantics is dubbed the annotated model.

A high-level overview of the GAVAModel generator sub-module is summarized
in Fig. 5.21. Following Gene-Auto’s modular transformation architecture, the GAVA-
Model sub-module is added as an independent stage within the GACodeModel gen-
eration module. The major stages in the translation of the annotation blocks into the
annotated model are the following:

1. The code model is converted into a control-flow graph structure X .
2. The constant blocks are inserted into X .
3. Constant propagation is executed with the definitions provided by the constant

blocks.
4. The system block is translated into two plant objects. A plant object is comprised

of an affine transformations and a set of ghost code templates expressed in GAVA-
Model. The plant objects are inserted into the beginning of X and the end of X .
The first plant object corresponds to the output function of the state-space sys-
tem y = Cx. The second plant object corresponds to the state-transition function
x+ = Ax + Bu.

5. The quadratic blocks are grouped based on their inputs as either inductive or
assertive. They are translated into ellipsoid objects and inserted into appropriate
locations within X .
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6. The strongest post-condition is computed using sp-calculus. In this process, ellip-
soid objects are generated for almost every line of code and then inserted into the
code model.

7. The ellipsoid and plant objects in the annotation model are translated into anno-
tations expressed in GAVAModel.

5.9 Translation and Insertion of the System Block

The system block, which represents the model of the plant, is split into two plant
objects representing two linear transformations: y = Cx and x+ = Ax + Bu. One
object is inserted into the beginning of the compute function and the other part
is inserted afterwards. The compute function is the function that implements the
controller loop body. The two linear transformations are used in the sp-calculus to be
described later. The GAVAModel templates, contained within the two plant objects,
are translated into a set of ACSL ghost code statements. The set of ACSL ghost code
statements, generated from the closed-loop example, is displayed in Fig. 5.22.

Fig. 5.22 Ghost code representation of the plant dynamics
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5.10 Translation of the Quadratic Blocks

A short description of the typing of the quadratic blocks and their translations is
given here. The semantics of closed-loop stability are structured in such way that
there is one inductive ellipsoid set (the Lyapunov function), on the model with another
ellipsoid set on the input (bounded input).

5.10.1 Types of Quadratic Blocks

The quadratic blocks are separated into two main groups. The first group include
the blocks that are inductive. These encode the stability property of the system.
To determine if a quadratic block is inductive, the following properties must be
computed:

1. Every one of the quadratic block’s input ports must be connected to a port of an
unit delay block or to an output port of a system block.

2. Given a setU that contains all unit delay blocks connected to the quadratic block.
For every unit delay blocks in U , there exists a path from its output node to its
input node on the system model.

The second group contains the assertive blocks. These blocks are used to either
express boundedness of inputs or sector-bound conditions. Any quadratic blocks
with one or more input connected to a block that is neither unit delay nor system is
categorized as an assertive block. The sector-bound blocks are detected by checking
to see if the level-set parameter c in the block is set to 0.

After the quadratic blocks have been categorized, the bounded-input and inductive
blocks are translated into ellipsoid objects containing the Schur form of p(P, x, 1)

i.e. q(Q, x, 1) such that Q = P−1. This conversion is necessary as all subsequent
sp-calculus are done in the Schur form due to the possibility of Qi in q(Qi, xi, 1)

being singular.

5.10.2 Insertion of Ellipsoid Objects

An assertive ellipsoid invariant q(Q, x, 1) is inserted into a location that is dependent
on x. If any of the variable in x is an input argument of the compute function,
then algorithm will back propagate using wp-calculus until x only contains either
variables that are input arguments of the compute function, or affine expressions of
the variables that are input arguments of the compute function.

The wp-calculus starts, if needed, after the assertive ellipsoid q(Q, x, 1) has been
inserted as a post-condition for the last line of code, in which, a variable belonging
to x is assigned. For example, consider the annotation block bounded_input in the
open-loop case, which expresses a boundedness assumption on the signal y − yd .
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Fig. 5.23 wp-calculus on an ellipsoids expressed in ACSL

The signal y − yd also corresponds to the variable Sum4 in Fig. 5.23. The annotation
block is translated into an assertive ellipsoid object and is inserted into the code as a
post-condition of Sum4=simple_olg_y-simple_olg_y_input. This post-
condition is displayed in the last ACSL contract of Fig. 5.23. Since the variableSum4
is not an argument of the compute function, the insertion algorithm starts the wp-
calculus, until x−n in Q(Q, x−n, 1) only contains variables that are input arguments of
the compute function. For this case, the wp-calculus terminated when the ellipsoid
in line 2 of Fig. 5.23 is generated.

The insertion of an inductive ellipsoid is more straightforward. The inductive
ellipsoid is duplicated three times and inserted as pre and post-conditions respectively
at the beginning and end of the compute function body. It is also inserted as a pre
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Fig. 5.24 Inductive ellipsoids in ACSL

and post-conditions on the function itself. These ellipsoids are the ones defined by
the matrix variable QMat_1 in Fig. 5.24.

5.11 Computing the Strongest Post-condition

The sp-calculus has been automated in Gene-Auto+ using a set of transformation
rules from ellipsoidal calculus, which are used to compute sp(q(Q, x, 1), C) or its
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over-approximation for various block of code C. The set of transformation rules can
be divided into two categories: affine transformations, and S-Procedure transforma-
tions.

5.11.1 Affine Transformation

The basics of affine transformation have been described using the example x+ = Ax in
Sect. 5.7 and proven in PVS (see Fig. 5.11). For automating the proof-checking of the
affine transformations of ellipsoids, we define a proof tactic denoted AffineEllipsoid,
which corresponds to a proof strategy of the same name defined in PVS. This rule
is applied whenever a linear abstraction of the code can be computed. Recall from
Sect. 5.7, given the pre-condition q(Qi, xi, 1) and the code z = Lxi, then the linear

transformation from xi to xi+1 is Ti =
[

I
L

]
. The strongest post-condition is therefore

q(TiQiTT
i , xi+1, 1).

In the more general case, let the affine semantic of a block of code be z := Ly,
where y ∈ R

m is vector of program states and L ∈ R
1×m. Let Qi(x) := q(Qi, x, 1),

then the AffineEllipsoid tactic is

{Qn(x)} z := a {Qn+1(x ∪ z)} , Qn+1 = F (Qn, ψ(L, y, x), φ(z, x)) , (5.24)

and the function F is defined as follows: given the functions ψ : (L, y, x) → R
1×n

and φ : (z, x) → Z, we have

F : (Qn, ψ(L, y, x), φ(z, x)) → T (ψ(L, y, x), φ(z, x))T QnT (ψ(L, y, x), φ(z, x))

T
(
ψ(L, y, x), φ(z, x)i,j

) :=
⎧⎨
⎩

1, 0 ≤ i, j ≤ n ∧ i = j ∧ i �= φ(z, x)
0, 0 ≤ i, j ≤ n ∧ i �= j ∧ i �= φ(z, x)
ψ(y, x)1,j, i = φ(z, x) ∧ 0 ≤ j ≤ n

ψ(L, y, x)1,j :=
{

L(1, k), 0 ≤ j, k ≤ n ∧ xj ∈ y ∧ yk = xj
0, 0 ≤ j ≤ n ∧ xj /∈ y

φ(z, x) :=
{

i, z ∈ x ∧ z = xi
n + 1, z /∈ x

(5.25)

The ReduceEllipsoid tactic is used, when the state xi of the program is reduced in
dimensions from the previous state xi−1. Let Q(x) := q(Q, x, 1), then the ReduceEl-
lipsoid tactic is

{Qn(x)} SKIP {Qn+1(x \ {z})} , Qn+1 = G (Qn, θ(z, x)) , (5.26)
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and the function G is defined as the following: given the function θ : (z, x) → Z,
we have

G : (Qn, θ(z, x)) → T (θ(z, x))T QnT (θ(z, x))

T
(
θ(z, x)i,j

) :=
{

1, 0 ≤ i, j ≤ n − 1 ∧ ((i < θ(z, x) ∧ i = j) ∨ (i ≥ θ(z, x) ∧ j = i + 1))

0, 0 ≤ i, j ≤ n − 1 ∧ ((i < θ(z, x) ∧ i �= j) ∨ (i ≥ θ(z, x) ∧ j �= i + 1))

θ(z, x) := { i, z = xi

(5.27)

Before the insertion of the Ellipsoid objects into the code model, each line of code
is analyzed for its affine semantics. A linear transformation matrix L is extracted from
the abstract semantics and stored in the control flow graph. For example, if we have
x = y + 2z, then the affine algorithm returns a linear function represented by the
matrix L = [1 2

]
. For the plant objects, their affine semantics are computed from

the templates stored in the semantics of the system blocks.
Figure 5.25 shows an example of the AffineEllipsoid usage in the open-loop exam-

ple. In this example, the pre-condition is the ellipsoid defined by the matrix variable
QMat_21, and the ensuing line of code assigns the expression dt_+x1 to the vari-
able Sum2. The affine transformation matrix is L = [1 1

]
, and by applying the

AffineEllipsoid rule, the ellipsoid transformation matrix T is

T =
{

Tij = 1.0, (i ≤ 4 ∧ i = j) ∨ (i = 6 ∧ (j = 6 ∨ i = 6)) ∨ (i = 5 ∧ j = 6)

Tij = 0.0, otherwise.
(5.28)

5.11.2 S-Procedure

The S-Procedure tactic, proven in PVS (see Fig. 5.12), is used to compute an over-
approximation of the strongest post-condition for the nonlinear portion of the code.
It is based on the well-known principle of Lagrangian relaxation for quadratic
forms [31]. For the bounded input stability problem, the LMI solution also yields
a small positive multiplier 1 >> λ > 0 that is associated with the bounded input
quadratic form. This small multiplier proves to be useful in the sp-calculus in the
following sense. Consider the line of code yc=yd-z with two pre-conditions. One
of the two pre-conditions is q(Qb, yd, 1), which is translated from the quadratic
block bounded_input in the closed-loop model. The other pre-condition q(Qi, xi, 1)

y ∈ xi, is generated from the sp-calculus. The multiplier λ > 0 enables us to combine
in a convex fashion the two pre-conditions q(Qb, yd, 1) and (Qi, xi, 1) into a single
post-condition q(Qi+1, xi+1, 1), xi+1 = xi ∪ {yd}, in which

Qi+1 =
[ 1

1−λ
Qi 0

0 1
λ

Qb

]
(5.29)
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Fig. 5.25 Application of AffineEllipsoid

Let Qn(xi) := q(Qn, xi, 1), the S-Procedure tactic is

{Q1(x1) ∧ Q2(x2) ∧ . . . ∧ QN (xN )} SKIP {Qn+1(x0 ∪ x1 ∪ . . . ∪ xn)}
Qn+1 =

N∑
i=1

μiH (Qi) ,
(5.30)

and H : R
ni×ni → R

Nn×Nn is defined as follows: given the function dim : Rn×n →
n, and the function ρ : n ∈ Z

+ →∑n
i=1 dim (Qi), we have
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H (Qi)(n, m) =
{

Qi(n − ρ (i − 1) , m − ρ (i − 1)), ρ (i − 1) ≤ n, m ≤ ρ (i)
0.0, otherwise

(5.31)

Given the pre-condition {Qi(xi)} and code C such that �C� � (y := Lz), the
SProcedure rule is activated only when all the following conditions are satisfied:

1. For each Qi (xi), the AffineEllipsoid rule does not apply.

2. For the set {Qi (xi)} , i = 1, . . . , N , z ⊆
N⋃

i=1

xi.

3. For Qi (xi) , i = 1, . . . , N , z � xi ∧ z ∩ xi �= {∅}.
The multipliers are computed beforehand using the S-Procedure theory to ensure

that the sp-calculus, which uses the S-Procedure rule at some point, does not result in
a strongest post-condition that violates the initial pre-condition. For the closed-loop
example in Fig. 5.26, there is one ellipsoid pre-condition defined by the matrix vari-
ableQMat_12. This ellipsoid is translated from the quadratic block bounded_input.
The other ellipsoid pre-condition, is defined by the matrix variable QMat_13. This
ellipsoid is computed by the sp-calculus. These two ellipsoids are combined to form
a post-condition ellipsoid using the S-Procedure. The matrix variable QMat_14,
which defines the post-condition ellipsoid, is expressed using the pre-defined ACSL
block matrices function block_m.

Fig. 5.26 Application of the S-Procedure tactic



172 T. Wang et al.

Fig. 5.27 Verifying the strongest post-condition

5.11.3 Verification of the Strongest Post-condition

After application of the sp-calculus, the alternative post-condition generated must
be checked against the initial pre-condition. For the closed-loop example displayed
in Fig. 5.27, this means checking if Q_1 is a “bigger” matrix than Q_32. If this
verification condition can be discharged, then one can claim the code satisfies the
stability property. For the closed-loop example, because of a subtle error introduced
into the model that went unnoticed until this point, the last verification condition
could not be discharged until the sign error was corrected in the Simulink model.

5.12 Automatic Verification of Control Semantics

As part of the credible autocoding process, the annotated C code which generation
process we described in Sect. 5.4, must be independently verifiable. Indeed, we now
describe and implement a tool that can be used by the certification authority in order
automatically check that the annotations are correct with respect to the code. This
is achieved by checking that each of the individual Hoare triples hold. Figure 5.28
presents an overview of the checking process. First, the WP plugin of Frama-C gen-
erates verification conditions for each Hoare triple, and discharges the trivial ones
with its internal prover QeD. Then, the remaining conditions are translated into PVS
theorems for further processing, as described in Sect. 5.12.1. It is then necessary to
match the types and predicates introduced in ACSL to their equivalent representation
in PVS. This is done through theory interpretation [32] and explained in Sect. 5.12.2.
Once interpreted, the theorems can be generically proven thanks to custom PVS
strategies, as described in Sect. 5.12.3. In order to automatize these various tasks
and integrate our framework within the Frama-C platform, which provides graphical
support to display the status of a verification condition (proved/unproved), we wrote
a Frama-C plugin named pvs-ellipsoid, described in Sect. 5.12.4. Finally, one verifi-
cation condition does not fall under either AffineEllipsoid of SProcedure
strategies. It is discussed in Sect. 5.12.5.
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Annotated code

C Code

+ ACSL
+ Proof tactics

A CSL linear algebra library

Frama-C

Verification Conditions

PVS Theorems

PVS
Interpreted Theorems

+ Proof tactics

PVS linear algebra library

PVS strategies

PVS proof

Go / No Go

Fig. 5.28 General view of the automated verification process described and implemented in this
section

5.12.1 From C Code to PVS Theorems

The autocoder described in the previous Section generates two C functions. One of
them is an initialization function, the other implements one execution of the loop
that acquires inputs and updates the state variables and the outputs. It is left to the
implementer to write the main function combining the two, putting the latter into
a loop, and interfacing with sensors and actuators to provide inputs and deliver
outputs. Nevertheless, the properties of open and closed loop stability, as well as
state-boundedness, can be established by solely considering the update function,
which this section now focuses on. The generated function essentially follows the
template shown in Fig. 5.29.

Frama-C is a collaborative platform designed to analyze the source code of soft-
ware written in C. The WP plugin enables deductive verification of C programs
annotated with ACSL. For each Hoare tripe {prei}insti{posti}, it generates a first
order logic formula expressing prei =⇒ wp(insti, posti).2 Through the Why3 plat-
form, these formulas can be expressed as theorems in PVS, so that, for example, the
ACSL/C triple shown in Fig. 5.30, taken directly from our running example, becomes
the theorem shown in Fig. 5.31.

2Given a program statement S and a postcondition Q, wp(S, Q) is the weakest precondition on the
initial state ensuring that execution of S terminates in a state satisfying Q.
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Fig. 5.29 Template of the generated loop update function

Fig. 5.30 Typical example of an ACSL Hoare triple

Note that, for the sake of readability, part of the hypotheses of this theorem,
including hypotheses on the nature of variables, as well as hypotheses stemming
from Hoare triples present earlier in the code, are ommitted here. Note also that in
the translation process, functions like malloc_0 or mflt_1 have appeared. They
describe the memory state of the program at different execution points.
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Fig. 5.31 Excerpt of the PVS translation of the triple shown in Fig. 5.30

5.12.2 Theory Interpretation

At the ACSL level, a minimal set of linear algebra symbols has been introduced,
along with axioms defining their semantics. Section 5.3 describes a few of them.
Each generated PVS theorem is written within a theory that contains a translation ’as
is’ of these definitions and axioms, along with some constructs specific to handling
the semantics of C programs. For example, the ACSL axiom expressing the number
of rows of a 2 by 2 matrix (in Fig. 5.32) becomes the axiom shown in Fig. 5.33 after
translation to PVS.

In order to leverage the existing results on matrices and ellipsoids in PVS, theory
interpretation is used. It is a logical technique used to relate one axiomatic theory
to another. It is used here to map types introduced in ACSL, such as vectors and
matrices, to their counterparts in PVS, as well as the operations and predicates on
these types. To ensure soundness, PVS requires that what was written as axioms in
the ACSL library be proven in the interpreted PVS formalism.

Fig. 5.32 ACSL axiomatization of 2 by 2 matrix row-size
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Fig. 5.33 Translation of the ACSL axiom from Fig. 5.32 into PVS

The interpreted symbols and soundness checks are the same for each proof objec-
tive, facilitating the mechanization of the process. Syntactically, a new theory is
created, in which the theory interpretation is carried out, and the theorem to be
proven is automatically rewritten by PVS in terms of its own linear algebra symbols.
These manipulations on the generated PVS code are carried out by a frama-C plugin
called pvs-ellipsoid, which is described below.

5.12.3 Generically Discharging the Proofs in PVS

Once the theorem is in its interpreted form, all that remains to do is to apply the
proper lemma to the proper arguments. Section 5.4 describes two different types of
Hoare triples that can be generated in ACSL. Two PVS strategies were written to
handle these possible cases. A PVS proof strategy is a generic function describing a
set of basic steps communicated to the interactive theorem prover in order to facilitate
or even fully discharge the proof of a lemma. The AffineEllipsoid strategy
handles any ellipsoid update stemming from a linear assignment of the variables.
Recall ellipsoid_general, a theorem introduced in Sect. 5.3:

To apply this theorem properly, the first step of the strategy consists of parsing the
objectives and hypotheses of the theorem to acquire the name and the dimensions
of the relevant variables, and to isolate the necessary hypotheses. The second step
consists of a case splitting on the dimensions of the variable: they are given to
the prover in order to complete the main proof, and then established separately
using the proper interpreted axioms. Next, it is established that y = Mx through
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a case decomposition and numerous calls to relevant interpreted axioms. All the
hypotheses are then present for a direct application of the theorem. The difficulties
in proof strategy design lie in intercepting and anticipating the typecheck constraints
(tccs) that PVS introduces throughout the proof. A third strategy was specifically
written to handle them.

The S-Procedure strategy follows a very similar pattern, somewhat simpler since
the associated instruction in the Hoare triple is a skip, using ellipsoid_
combination, the other main theorem presented in Sect. 5.3.

5.12.4 The pvs-ellipsoid Plugin to Frama-C

The pvs-ellipsoid plugin to Frama-C automatizes the steps mentionned in the previ-
ous subsections. It calls the WP plugin on the provided C file, then, whenever QeD
fails to prove a step, it creates the PVS theorem for the verification condition through
Why3 and modifies the generated code to apply theory interpretation. It extracts the
proof tactic to be used on this specific verification condition, and uses it to signify to
the next tool in the chain, proveit [33], what strategy to use to prove the theorem
at hand. proveit is a command line tool that can be called on a PVS file and
attempts to prove all the theories in it, possibly using user guidance such as the one
just discussed. When the execution of proveit terminates, a report is produced,
enabling the plugin to decide whether the verification condition is discharged or not.
If it is, a proof file is generated, making it possible for the proof to be replayed in
PVS.

5.12.5 Checking Inclusion of the Propagated Ellipsoid

One final verification condition falls under neither the AffineEllipsoid nor the
S-Procedure categories. It expresses that the state remains in the initial ellipsoid
GP. Through a number of transformations, we have proof that the state lies in some
ellipsoid G ′

P. The conclusion of the verification lies in the final test P − P′ ≥ 0. The
current state of the linear algebra library in PVS does not permit to make such a test,
however a number of very reliable external tools, like the INTLAB package of the
MATLAB software suite, can operate this check. In the case of our framework, the
pvs-ellipsoid plugin intercepts this final verification condition before translating it to
PVS, and uses custom code from [34] to ensure positive definiteness of the matrix,
with the added benefit of soundness with respect to floating point computations.
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5.13 Related Works

Although the efforts described in this chapter explore a new intersection between
control theory and computer science, a few notable earlier works are mentioned here.
Ursula Martin and her team developed a limited Hoare logic framework to reason on
frequency domain properties of linear controllers at the Simulink level [35]. Jerome
Ferret was the first to focus on the static analysis of digital filters in [5]. It was this
work that initiated the connections made between the control-theoretic techniques
and software analysis methods in [9]. Parallel work by Roux et al. [34] uses policy
interation to generate and refine ellipsoid invariants. We would like to thank Eric
Goubault and Sylvie Putot for the useful discussions, and mention their work on
zonotopal domain for static analyzers [36].

5.14 Conclusion

The prototype tools and various examples described in this chapter can be found
online.3 We have demonstrated in this chapter a set of prototype tools that is capable
of migrating high-level functional properties of control systems down to the code
level. In addition we have developed a tool which can independantly verify the
correctness of those properties for the code, in an automatic manner. While the nature
of controllers and properties supported is relatively restricted, this effort demonstrates
the feasability of a paradigm where domain specific knowledge is leveraged and
automatically assists code analysis. This opens the way for numerous directions
of research. As the mathematical breadth of theorem provers increase, increasingly
complex code invariants can theoretically be handled, and thus increasingly complex
controllers. In particular, generating verifiable optimization algorithms, e.g. for the
purpose of path planning, is a promising direction. Soundness of the results with
respect to floating point computations is another issue that requires attention.

The toolchain had been applied not only to the running example, but also on
industry size systems, such as the Quanser 3 degree-of-freedom helicopter, and a
very light jet turbofan engine controller from Price Induction.
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