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Abstract. Packing problems are a fundamental class of problems stud-
ied in combinatorial optimization. Three particularly important and well-
studied questions in this domain are the Unsplittable Flow on a Path
problem (UFP), the Maximum Weight Independent Set of Rectangles
problem (MWISR), and the 2-dimensional geometric knapsack problem.
In this paper, we study the Storage Allocation Problem (SAP) which is a
natural combination of those three questions. Given is a path with edge
capacities and a set of tasks that are specified by start and end vertices,
demands, and profits. The goal is to select a subset of the tasks that can
be drawn as non-overlapping rectangles underneath the capacity profile,
the height of a rectangles corresponding to the demand of the respective
task. This problem arises naturally in settings where a certain available
bandwidth has to be allocated contiguously to selected requests.

While for 2D-knapsack and UFP there are polynomial time (2 +
ε)-approximation algorithms known [Jansen and Zhang, SODA 2004]
[Anagnostopoulos et al., SODA 2014] the best known approximation fac-
tor for SAP is 9+ε [Bar-Yehuda, SPAA 2013]. In this paper, we level the
understanding of SAP and the other two problems above by presenting
a polynomial time (2 + ε)-approximation algorithm for SAP. A typically
difficult special case of UFP and its variations arises if all input tasks
are relatively large compared to the capacity of the smallest edge they
are using. For that case, we even obtain a pseudopolynomial time exact
algorithm for SAP.

1 Introduction

Packing problems belong to the most fundamental problems in combinatorial
optimization and approximation algorithms. One very prominent packing prob-
lem is the well-known Knapsack problem: given is a knapsack with a certain
capacity and a set of items I, where each item i is specified by a demand di and
a profit wi. The task is to select a subset of the given items I ′ ⊆ I such that
their total demand is bounded by the capacity of the knapsack, the objective
being to maximize the obtained profit w(I ′) :=

∑
i∈I′ wi.
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M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 973–984, 2015.
DOI: 10.1007/978-3-662-47672-7 79



974 T. Mömke and A. Wiese

There are several natural generalizations of this basic setting. One is to add
a second dimension to the problem such that each item i is represented by an
axis-parallel rectangle. The problem is then to select a set of items and place
their corresponding rectangles non-overlappingly into a rectangular box. This
yields the 2-dimensional geometric knapsack problem.

Another natural extension of knapsack is to add a temporal component such
that each item i has additionally a start time s(i) and an end time t(i) which
specify when it is active, modelling that it stays in the knapsack only during
[si, ti). We call the input items tasks in this setting. Typically, one models the
time horizon by a path where each edge represents a discrete time point and the
values s(i) and t(i) represent vertices of the path. Each edge e is equipped with
a capacity ue, modelling the available knapsack capacity at this time (which
can differ from edge to edge). For each edge e we denote by Te the input tasks
whose s(i)-t(i)-path P (i) uses e. For a computed set T ′ we then require that
d(Te ∩ T ′) ≤ ue for each edge e. This yields the well-studied Unsplittable Flow
on a Path problem (UFP).

In this paper, we study the Storage Allocation Problem (SAP) which is a
natural combination of UFP and 2-dimensional knapsack: Given the same input
as for UFP, the goal is to select a subset T ′ of the input set T and we want to
compute a vertical position h(i) for each task i ∈ T ′ such that we can represent
the selected tasks by non-overlapping rectangles underneath the capacity profile,
the rectangle for each task i ∈ T ′ is drawn at height level h(i) and has a width
of di (see Figure 1(e)). Formally, we require that (i) h(i) + di ≤ ue for each
task i ∈ T ′ and each edge e ∈ P (i) and (ii) for any two tasks i, i′ ∈ T ′ if
P (i) ∩ P (i′) �= ∅ then [h(i), h(i) + di) ∩ [h(i′), h(i′) + di′) = ∅. Observe that
any solution satifying conditions (i) and (ii) also satisfies that d(T ′ ∩ Te) ≤ ue,
for each edge e. SAP is particularly motivated by settings where tasks need a
contiguous portion of an available resource, i.e., a consecutive portion of the
computer memory or a frequency bandwidth.

Seen from a different perspective, SAP is an intermediate problem between 2-
dimensional knapsack and the Maximum Weight Independent Set of Rectangles
problem (MWISR) in which we are also given a set of items in the form of axis-
parallel rectangles that we want to select a non-overlapping subset from, but
for each rectangle its placement is predetermined. In 2-dimensional knapsack we
are allowed to translate the input rectangles in both dimensions, in SAP we can
translate them only up and down, and in MWISR they are completely fixed.
Also, SAP is related to the Dynamic Storage Allocation problem (DSA) we are
given a set of tasks as above and we want to draw their respective rectangles so
that the maximum height maxi∈T h(i) + di is minimized.

A lot of progress has been made on the packing problems listed above. Specif-
ically, we now have polynomial time (2 + ε)-approximation algorithms for 2-
dimensional knapsack [28], UFP [4], and DSA [15] and quasi-polynomial time
(1 + ε)-approximation algorithms for UFP [6], MWISR [1], and 2-dimensional
knapsack [2]. The state of the art for SAP is a (9 + ε)-approximation in poly-
nomial time [10] which is a best-of-three algorithm. It classifies a task i to be
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δ-small if di ≤ δ · b(i) where b(i) denotes the bottleneck capacity of i which
is the minimum capacity of an edge used by i. Similarly, a task i is δ-large if
di > δ · b(i). Intuitively, the value δ denote the relative size of the tasks. The
mentioned algorithm provides a (4+ε)-approximation for δ-small tasks (for some
small value δ depending on ε), a 3-approximation for 1

2 -large tasks and finally a
(2 + ε)-approximation for the remaining tasks.

1.1 Our Contribution

In this paper, we level our understanding of SAP and the other packing problems
mentioned above in terms of polynomial time approximation algorithms. We
present a (2 + ε)-approximation algorithm for SAP whose ratio matches the
factors of the respective best known polynomial time algorithms for UFP, DSA,
and 2D-knapsack. It is a best-of-two algorithm which improves all components of
the so far best known (9 + ε)-approximation algorithm [10]. First, we show that
if tasks are sufficiently small, we can get a (1 + ε)-approximation by rounding
a suitably defined new LP-relaxation. While such a result is known for UFP
[21, Corollary 3.4], it is not clear how to transfer it to SAP, in particular, since
the optimal value of the canonical LP for UFP can differ from the best SAP-
solution for a given instance by up to a factor 2, even if all input tasks are
arbitrarily small. Our key technical contribution here is that we present a way
to reduce the overall problem to assigning tasks to rectangular strips underneath
the capacity profile. Since tasks are small, at negligible loss we we can ignore the
aspect that they are supposed to be drawn as non-overlapping rectangles and
we ensure only that the load of each strip is bounded by its capacity. This yields
our new LP-formulation for the problem. With a suitable rounding method, we
prove that for any ε > 0 there exists a δ > 0 such that for SAP-instances with
only δ-small tasks we obtain a (1 + ε)-approximation algorithm.

Then we study the converse setting where we assume that we are given
a constant δ > 0 and a SAP-instance with only δ-large tasks. In the related
UFP problem, this is a rather difficult setting and the known PTAS for it [4] is
very complex and involved. In this paper we present a very clean and elegant
dynamic program for this setting for SAP. In particular, rather than computing
an approximation, we solve the problem even exactly in pseudopolynomial time.
In our DP we guess the tasks in the optimal solution step by step, ordered by their
vertical positions in OPT. We prove that by using this order we need to remember
only few information from the previous guesses. The pseudopolynomial running
time stems from the fact that there are a pseudopolynomial number of possible
vertical positions for each task and there are densely packed optimal solutions
in which it is not sufficient to allow only fewer values e.g., only powers of 1 + ε.
However, using a result by Knipe [32] about trimming graphs with bounded
treewidth, together with an argument by Erlebach et al. [23], we show that
there are (1 + ε)-approximative solutions in which the task positions come only
from a polynomial size subset. This yields a PTAS for δ-large tasks.

We round up our results by showing that any feasible solution for UFP, (i.e.,
any set of tasks satisfying the edge capacities) can be partitioned into O(1)
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subsets such that each of them is a feasible solution to SAP. In a sense, this
bounds the “price of contiguousness”. Moreover, we can also show that if we
increase the capacity of each edge by a constant factor, any UFP-solution also
yields a SAP solution. This connects well with a result by Gergov [26] which
proves an upper bound of 3 for the special case for uniform edge capacities,
improving on several earlier results [25,30,31].

1.2 Related Work

For the special case of SAP that all edges have the same capacities, a local
ratio 7-approximation algorithm is presented by Bar-Noy et al. [8], using an
algorithm by Gergov for DSA [26]. This is improved by Bar-Yehuda to a ran-
domized (2 + ε)-approximation algorithm and a deterministic 2e−1

e−1 + ε ≈ 2.582-
approximation for the same special case [9]. In fact, there is a close connection
between unsplittable flow and dynamic storage allocation in the case of uniform
edge capacities and if all tasks are sufficiently small. A result by Buchsbaum
et al. [15] implies that then, if a set of tasks is feasible for UFP then a (1 − ε)-
fraction of it yields a feasible solution for SAP. However, this connection breaks
if edges have different capacities. Chen et al. [22] provide an exact dynamic pro-
gramming algorithm running in time O(n(Kn)K) assuming that all demands
are integral multiples of 1/K and an ( e

e−1 + ε)-approximation if all demands
have size O(1/K). As mentioned above, Bar-Yehuda, Beder, and Rawitz [10]
present a (9 + ε)-approximation algorithm for general SAP with arbitrary edge
capacities which is the best known result for this case. For UFP, after a long
line of work on the special cases of uniform edge capacities [8,16,34], the no-
bottleneck-assumption [17,21] and the general case [4,6,14,20? ] the best known
results are now are quasi-PTASs due to Bansal et al. [6] and Batra et al. [11] and
a polynomial time (2+ε)-approximation algorithm by Anagnostopoulos et al. [4].
Recently, Batra et al. [11] presented PTASs for two special cases.

The two-dimensional geometric knapsack problem admits a (2 + ε)-approx-
imation algorithm due to Jansen and Zhang [28]. PTASs are known if the size
of the knapsack can be increased by a factor (1 + ε) in both dimensions [24]
or even only in one of them [27] while the compared optimum has to use the
original knapsack. Also, there is a PTAS if the profit of each item equals its
area [5]. For MWISR, there are many polynomial time O(log n)-approximations
algorithms known [3,12,29,33], and the best known result is a O(log n/ log log n)-
approximation by Chan and Har-Peled [19]. For the unweighted case, there is
also a O(log log n)-approximation by Chalermsook and Chuzhoy [18]. Recently, a
quasi-PTAS (for the weighted case) was found [1]. As mentioned above, a result
by Buchsbaum et al. [15] for DSA states that if all tasks are sufficiently small
then they can be drawn within a height of at most (1 + ε) · L where L denotes
the maximum total demand of tasks crossing any edge. Combined with a DP for
the other tasks, this yields a (2 + ε)-approximation algorithm. For bounding the
needed height as a function of L the best known bound is from Gergov [26] who
shows an upper bound of 3 · L, improving on previous results [25,30,31].
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Fig. 1. (a) Knapsack problem, (b) two-dimensional knapsack problem, (c) independent
set of rectangles, (d) unsplittable flow on a path (UFP), (e) storage allocation problem
(SAP)

2 Approximating Small Tasks up to a Factor 1 + ε

In this section, we prove that for any ε > 0 there is a δ > 0 such that for δ-small
tasks we can construct a (1 + ε)-approximation algorithm. First, we show this
result for the special case that the edge capacities are in a constant range. Then,
we show how to reduce the general case to this special case.

2.1 Edge Capacities in Constant Range

Let ε > 0. Assume that the edge capacities lie in a constant range, i. e., assume
that there is a constant U such that maxe ue ≤ U ·mine ue. Assume for simplicity
that U ∈ N and 1/ε ∈ N. We draw a set of strips in the area underneath
the capacity profile. A strip is specified by a tuple (k, v�, vr) which intuitively
represents the rectangle [v�, vr] × {k · ε · mine ue, (k + 1) · ε · mine ue} where the
vertices of the graph are interpreted as integers. Let S denote the set of all
maximally long strips whose respective rectangles fit underneath the capacity
profile. Formally, a strip (k, v�, vr) is contained in S if each edge between v� and
vr has a capacity of at least (k + 1) · ε · mine ue and the edges on the left of
v� and on the right of vr have a capacity of less than (k + 1) · ε · mine ue or do
not exist because v�/vr are the left/right-most vertices of the path. For a strip
S = (k, v�, vr) denote by P (S) the set of edges between v� and vr.

Instead of aiming directly at selecting a set of tasks T ′ and finding a non-
overlapping drawing of them, we compute a set T ′ ⊆ T and an assignment
f : T ′ → S of them to the strips. We require that for each strip S ∈ S that
(i) each task i ∈ f−1(S) fits into S, meaning that P (i) ⊆ P (S), and (ii) the total
demand of the tasks in each strip S does not exceed the capacity of S on any
edge e ∈ P (S), i. e., d(f−1(S) ∩ Te) ≤ ε · mine ue for each edge e ∈ P (S).

We call a pair (T ′, f) satisfying the above a strip assignment. It is not true
that for any feasible solution (T ′, h) we can find a strip assignment (T ′, f) with
the same set of tasks T ′, already because the total capacity of the strips using
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some edge e might be smaller than ue. The converse statement is also false,
since the second property above is only a relaxation of the requirement that
tasks should be drawn as non-overlapping rectangles. Nevertheless, we can show
that if tasks are very small compared to the capacity of each strip, then the two
notions are equivalent up to a factor 1+ε. Key to show this is that the unavailable
edge capacity is small compared to the total capacity and we assume all tasks
to be very small. Also, based on a result by Buchsbaum et al. [15], Bar-Yehuda
et al. [9] showed that if the two properties are true for some strip S, then a
(1 − ε)-fraction of the tasks in f−1(S) can be in fact drawn as non-overlapping
rectangles. Using this intuition, we can prove the following lemma.

Lemma 1. For any ε > 0 there is a δ1 > 0 with the following property.
Assume we are given an instance in which every task is δ1/U -small. Then for
any feasible solution (T ′, h) there is a strip assignment (T ′′, f ′) with w(T ′′) ≥
(1−O(ε))w(T ′). Conversely, for any strip assignment (T ′′, f ′) there is a feasible
solution (T ′, h) with w(T ′) ≥ (1 − O(ε))w(T ′′).

Knowing that it is sufficient to compute a good strip assignment, we present
now an LP-rounding algorithm for the latter goal. We formulate the problem as
an integer program whose LP-relaxation (STRIP-LP) is given below.

max
∑

i,S

wi · xi,S

s.t.
∑

i∈Te
xi,S · di ≤ ε · mine ue ∀S ∈ S, (2.1)

∀e ∈ P (S)∑
S xi,S ≤ 1 ∀i ∈ T

xi,S ≥ 0 ∀i ∈ T ∀S ∈ S
s. t. P (i) ⊆ P (S)

We compute the optimal feasible solution to the above LP. By losing only a
factor (1 + ε), we round it to a strip assignment via randomized rounding with
alteration as introduced by Calinescu et al. [16]. Important for this to work is
that the demand of each input task is sufficiently small compared to the capacity
of each strip. In the rounding, we first sample a preliminary integral solution y
such that Pr[yi,S = 1] = (1 − ε)xi,S and Pr[yi,S = 1 ∧ yi,S′ = 1] = 0 for any
task i and for any two strips S, S′ ∈ S. Such a distribution can easily be obtained
via dependant rounding similar to Bertsimas et al. [13]. Then, intuitively, in an
alteration phase for each strip, we consider the tasks in the order of their start
vertices and drop a task if it causes a capacity constraint (2.1) to be violated.
We can show that the probability that a task is dropped in this alteration phase
is bounded by O(ε). In contrast to the method of Calinescu et al. [16] we work
with dependent rounding. However, for any pair of tasks the outcomes of the
random experiment are still independent and thus the argumentation from [16]
still works.

Lemma 2. For any ε > 0 there is a δ2 > 0 such that given any instance with
only δ2/U -small tasks and a solution x∗ to (STRIP-LP), there is a polynomial
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time algorithm computing a strip assignment (T ′, f) with w(T ′) ≥ (1−ε)
∑

i,S wi·
x∗

i,S.

Together with Lemma 1, we thus obtain a (1 + O(ε))-approximation for
instances with only δ/U -small tasks where δ := min{δ1, δ2}. Next, we give a
reduction of the general case to this special case.

2.2 Arbitrary Edge Capacities

The key idea is to use some shifting arguments to remove tasks with small
total cost from the optimal solution and move some other tasks up into the
resulting empty space. As a result, afterwards each task i is drawn at a position
h(i) ∈ Ωε(b(i)), i.e., not too far below its bottleneck edge. As a result, we can
split the problem into independent subproblems, each having a bounded range
of edge capacities.

Lemma 3. Let ε > 0 such that 1/ε is an integer. There is a δ > 0 such that for
any instance I with only δ-small tasks there is an integer value � with 0 ≤ � < 1/ε
and a solution (T̄ , h̄) to I where

1. w(T̄ ) ≥ (1 − 2ε)OPT(I),
2. for each task i ∈ T̄ with b(i) ≥ 2�+1+r/ε it holds that h̄(i) ≥ 2�+r/ε, and
3. for each task i ∈ T̄ with b(i) < 2�+1+r/ε it holds that h̄(i) + di ≤ 2�+r/ε

for any r ∈ N0.

Proof sketch. Given the optimal solution (T ∗, h∗) of the δ-small tasks, we
assign the tasks into groups according to the position at which they are drawn.
Denote by T ∗

k ⊆ T ∗ all tasks from T ∗ whose rectangles have non-empty inter-
section with the horizontal strip [0, |V |] × [2k, 2k+1).

Formally, we define T ∗
k := {i ∈ T ∗|[h∗(i), h∗(i) + di) ∩ [2k, 2k+1) �= ∅}. Note

that a task might appear in several of these sets. Let k̄ denote the largest index
k such that T ∗

k �= ∅ and consider the sets T ∗̄
k−1/ε+1

, T ∗̄
k−1/ε+2

, ..., T ∗̄
k
. If δ is

sufficiently small then each task appears in at most two of these groups. We
select one set T ∗

k′ ∈ {T ∗̄
k−1/ε

, T ∗̄
k−1/ε+1

, ..., T ∗̄
k
} uniformly at random and remove

all its tasks. In expectation we lose at most an 2ε-fraction of w(
⋃k̄

k=k̄−1/ε+1 T ∗
k ).

Then, we take all tasks i ∈ T ∗ with b(i) ≥ 2k′+1 and h(i) + di ≤ 2k′
and move

them up by 2k′
units, i.e., we define h̄∗(i) := h∗(i) + 2k′

for them. As a result,
we obtain the property that for each task i ∈ T ∗ \ T ∗

k′ with b(i) ≥ 2k′+1 it holds
that h̄∗(i) ≥ 2k′

and for each task i′ ∈ T ∗ \ T ∗
k′ with b(i′) < 2k′+1 it holds

that h̄∗(i) + di < 2k′
. Iterating the above argument over multiple levels then

completes the proof. �
Observe that Lemma 3 decouples the instance into separate subinstances.

For each r ∈ N0 we have one subinstance consisting of the tasks T r := {i ∈
T : 2�+1+r/ε ≤ b(i) < 2�+1+(r+1)/ε} for which we are looking for a solution with
2�+r/ε ≤ h̄(i) and h̄(i) + di ≤ 2�+(r+1)/ε for each selected task i ∈ T r. Thus, we



980 T. Mömke and A. Wiese

can treat each group T r independently as an instance where the edge capacities
are in a range of [2�+r/ε, 2�+1+(r+1)/ε − 2�+r/ε).

We define a constant δ′ ∈ Oε(1) such that the algorithm from the previous
section gives us a (1 + ε)-approximation for the δ′-small tasks in each group T r.
This yields a (1+ ε)-approximation algorithm for instances with only min{δ, δ′}-
small tasks where δ is the constant due to Lemma 3.

Theorem 1. For each ε > 0 there is a δ > 0 such that there is a (1 + ε)-
approximation algorithm for the storage allocation problem if the input consists
of δ-small tasks only.

3 Large Tasks

In this section we present a pseudo-polynomial time exact algorithm for the
storage allocation problem for δ-large tasks, for any δ > 0. Subsequently, we
show how to turn it into a polynomial time (1 + ε)-approximation algorithm.
Together with Theorem 1 this yields a polynomial time (2 + ε)-approximation
algorithm for SAP.

Since all input data are integers we can assume w.l.o.g. that all position
values h(i) in the optimal solution are integers: for any optimal solution without
this property we can apply “gravity”, i. e., decrease the vertical position of all
tasks as much as we can. In the resulting solution each arising position of a task
is either zero or the sum of the demands of some other tasks and thus an integer.

Our algorithm is a dynamic program. Denote by (OPT, h∗) the optimal solu-
tion. In the first step, we guess the task i0 ∈ OPT with smallest position h∗(i0)
and all tasks from OPT using its bottleneck edge e(i0). Denote them by OPT0.
Since all tasks are δ-large, there can be only 1/δ of them. More precisely, we
guess these tasks as well as their positions according to h∗. The whole problem
splits then into two disjoint subproblems given by the subpath on the left of e(i0)
and the subpath on the right of e(i0). We recurse on both sides. Consider the left
side and let OPTL ⊆ OPT denote the tasks from OPT whose path is completely
contained in the subpath on the left of e(i0). Note that OPTL ∩ OPT0 = ∅. We
guess the task i1 ∈ OPTL with smallest position h∗(i1). Naively, one would
like to guess all tasks using e(i1) and then recurse again. The problem is that
e(i1) might be used by all up to 1/δ tasks in OPT0 and another 1/δ tasks from
OPTL. Thus, in each recursive step the number of tasks to be remembered would
increase by 1/δ while the recursion depth could be even linear. Thus, we could
not bound the number of DP-cells by a polynomial. Instead, we first show that
the number of tasks i ∈ OPT (not only OPTL!) using e(i1) with h(i) ≥ h∗(i1)
is bounded by 1/δ2 as the following lemma implies.

Lemma 4. Consider any solution (T ′, h′) and a task i ∈ T ′. There are at most
1/δ2 tasks i′ ∈ T ′ such that e(i) ∈ P (i′) and h(i′) ≥ h(i).

Proof. For any task i′ with h(i′) ≥ h(i) and e(i) ∈ P (i′), we have that di ≤
h(i′) ≤ b(i′)−di′ . Thus, using that i and i′ are δ-large, di′/δ ≥ b(i′) ≥ δ ·b(i)+di′

and thus di′ ≥ δ2 · b(i)/(1 − δ) > δ2 · b(i). �
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When recursing on the subpath on the left of e(i1), we specify the subproblem by
its subpath, by the at most 1/δ2 tasks i ∈ OPT using e(i1) with h(i) ≥ h∗(i1),
and the information that each task in the desired solution to this subproblem
has to have a height of at least h∗(i1).

When continuing with this recursion, each arising subproblem can be char-
acterized by two edges eL, eR, by at most 1/δ2 tasks TL using eL together with
a placement h(i) for each task i ∈ TL, at most 1/δ2 tasks TR using eR together
with a placement h(i) for each task i ∈ TR, and an integer hmin. For each such
combination we introduce a DP-cell (eL, eR, TL, TR, h, hmin). Formally, it models
the following subproblem: assume that we committed to selecting tasks TL and
TR and assigning heights to them as given by the function h. Now we ask for
the maximum profit we can obtain by selecting additional tasks whose paths are
contained in the path strictly between eL and eR (so excluding eL and eR) and
assigning heights to them such that h(i) ≥ hmin for each selected task i.

For a given DP-cell C = (eL, eR, TL, TR, h, hmin) we denote by (OPTC , h∗
C)

its optimal solution. Observe that OPTC ∩TL = ∅ = OPTC ∩TR. Let î ∈ OPTC

be the task in OPTC with minimum height h∗
C (̂i). To compute (OPTC , h∗

C) we
guess î ∈ OPTC and h∗

C (̂i). According to Lemma 4 there can be at most 1/δ2

tasks i ∈ OPTC ∪ TL ∪ TR using e(̂i) such that h∗
C(i) ≥ h∗

C (̂i). We also guess
all those tasks (the tasks from TL and TR among them are of course already
given) together with their respective heights according to h∗

C . Denote them by
T̄ . We can then show that OPTC consists of the tasks in T̄ together with the
tasks in the optimal solutions to the DP-cells C ′ := (eL, e(̂i), TL, T̄ , h′, h∗

C (̂i)) and
C ′′ := (e(̂i), eR, T̄ , TR, h′′, h∗

C (̂i)) where the assignments h′ and h′′ are obtained
by inheriting from h the values for the tasks in TL and TR, respectively, and
taking the guessed values for the tasks in T̄ . Conversely, we can easily show that
we obtain a feasible solution to the original cell C if we combine two arbitrary
feasible solutions for C ′ and C ′′, respectively, with T̄ . This proves the correctness
of our DP. Since the total number of DP-cells is bounded by (n · maxi di)O(1/δ2)

we obtain an exact pseudopolynomial time algorithm.

Theorem 2. Let δ > 0. There is an exact algorithm for instances of SAP with
only δ-large tasks whose running time is (n ·maxi di)O(1/δ2) where n denotes the
number of tasks.

In order to still obtain a PTAS, our strategy is to bound the number of
candidate values for the height h(i) of each task i. We will show that there is a
set of such candidates of polynomial size such that there is a (1+ε)-approximative
solution in which each selected task is assigned a height from this set. By allowing
only these heights in the above DP computation we then obtain a PTAS.

Our first step is to introduce a polynomial number of heights which we call
anchors lines. Those are the capacities of the input edges and all powers of 1+δ
between 1 and maxe ue. Denote by H0 this set of values. W.l.o.g. from now on we
restrictly ourselves to solutions in which for each task the height of its top edge
equals the height of an anchor line or its top edge touches the bottom edge of
some other task. We call such solutions top-aligned solutions. In a given solution,
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we say that a task is in level 1 if the height of its top edge equals an anchor line.
Recursively, a task i is in level � + 1 if its top edge touches the bottom edge of a
task in level � and i is not in level any level �′ < �. Our goal is to show that there
is a (1 + ε)-approximative solution in which each task has a level of at most c(ε)
for some constant c(ε) that holds universally for any input instance. Observe
that for the heights of the tasks in level � there are only |H0| · n� possible values
that are obtained by recursively defining Hk+1 := Hk ∪ {h − di|h ∈ Hk, i ∈ T}
for each k.

To this end, consider an optimal solution (T ∗, h∗). We construct the follow-
ing directed graph D(T ∗, h∗). For each task i ∈ T ∗ we introduce a vertex in
D(T ∗, h∗). There is an edge from the vertex for i to the vertex for i′ if and only
if the following three conditions are satisfied: P (i)∩P (i′) �= ∅; h∗(i)+di ≤ h∗(i′);
there is no anchor line strictly between h∗(i)+di and h∗(i′). Using that the tasks
are δ-large, we can show that each tasks rectangle is crossed by some anchor line
which implies that D(T ∗, h∗) is planar. Moreover, the second condition implies
that D(T ∗, h∗) is acyclic.
Proposition 1. If the length of the longest chain in D(T ∗, h∗) is bounded by
some value �, then h∗(i) ∈ H� for each i ∈ T ∗.
Unfortunately, the length of the longest chain in D(T ∗, h∗) might be Ω(n), e.g.,
when all tasks are tightly stacked on top of each other. To construct a solution
where the latter is bounded, we apply the following theorem to D(T ∗, h∗). It can
be proven by combining a result from Knipe [32] on trimming weighted graphs
with bounded treewidth with the argumentation used in Corollary 2.3 in [23]
(see also the discussion in Section 4 in the latter paper).

Theorem 3 ([23,32]). Let ε > 0. There exists a constant c(ε) ∈ N such that for
any planar graph G = (V,E) with vertex weights given by a function w : V → R

there is a set of vertices V ′ ⊆ V such that w(V ′) ≥ (1 − ε)w(V ) and the length
of the longest simple path in G[V ′] is bounded from above by c(ε).

The above theorem yields a subset of the vertices in D(T ∗, h∗) and thus a set of
tasks T̄ ∗ ⊆ T ∗ with w(T̄ ∗) ≥ (1−ε)w(T ∗). Starting from their heights according
to the function h∗ we construct a top-aligned solution (T ∗ \ T ′, h′) by pushing
up each task until the height of its top edge either equals the height of an anchor
line or the height of the bottom edge of some other task. Since the length of the
longest chain in D(T ∗ \ T ′, h′) is bounded by c(ε) the same upper bound holds
for the maximum level of a task. This shows that there is a (1−ε)-approximative
solution (T ∗ \ T ′, h′) in which h′(i) ∈ Hc(ε) for each i ∈ T ∗ \ T ′. By restricting
our DP from the previous section to use only heights in Hc(ε) for the tasks we
obtain our theorem below.

Theorem 4. Let ε > 0 and δ > 0. There is a polynomial time (1 + ε)-
approximation algorithm for instances of SAP with only δ-large tasks.

In order to obtain our overall (2+ ε)-approximation algorithm, for any given
ε > 0 we first choose δ > 0 according to Theorem 1. Then we compute a (1+ ε)-
approximations for the δ-small and the δ-large tasks using Theorems 1 and 4.
Selecting the best of these two solutions yields a (2 + ε)-approximation overall.
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Theorem 5. Let ε > 0. There is a polynomial time (2 + ε)-approximation algo-
rithm for SAP.
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16. Călinescu, G., Chakrabarti, A., Karloff, H.J., Rabani, Y.: An improved approx-
imation algorithm for resource allocation. ACM Transactions on Algorithms 7,
48:1–48:7 (2011)

17. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47, 53–78 (2007)

18. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2009), pp. 892–901. SIAM (2009)

19. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry 48(2), 373–392 (2012)

20. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and column-
restricted packing integer programs. In: APPROX-RANDOM, pp. 42–55 (2009)

21. Chekuri, C., Mydlarz, M., Shepherd, F.: Multicommodity demand flow in a tree
and packing integer programs. ACM Transactions on Algorithms 3, (2007)

22. Chen, B., Hassin, R., Tzur, M.: Allocation of bandwidth and storage. IIE Trans-
actions 34(5), 501–507 (2002)

23. Erlebach, T., Hagerup, T., Jansen, K., Minzlaff, M., Wolff, A.: Trimming of graphs,
with application to point labeling. Theory of Computing Systems 47(3), 613–636
(2010)

24. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rectangles
into a square. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol.
3618, pp. 352–363. Springer, Heidelberg (2005)

25. Gergov, J.: Approximation algorithms for dynamic storage allocation. In: Dı́az, J.
(ed.) ESA 1996. LNCS, vol. 1136, pp. 52–61. Springer, Heidelberg (1996)

26. Gergov, J.: Algorithms for compile-time memory optimization. In: Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 907–908.
Society for Industrial and Applied Mathematics (1999)

27. Jansen, K., Solis-Oba, R.: New approximability results for 2-dimensional packing
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