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Abstract. We consider the stochastic geometry model where the location of each
node is a random point in a given metric space, or the existence of each node is
uncertain. We study the problems of computing the expected lengths of several
combinatorial or geometric optimization problems over stochastic points, includ-
ing closest pair, minimum spanning tree, k-clustering, minimum perfect matching,
and minimum cycle cover. We also consider the problem of estimating the prob-
ability that the length of closest pair, or the diameter, is at most, or at least, a
given threshold. Most of the above problems are known to be #P-hard. We obtain
FPRAS (Fully Polynomial RandomizedApproximation Scheme) formost of them
in both the existential and locational uncertainty models. Our result for stochas-
tic minimum spanning trees in the locational uncertain model improves upon the
previously known constant factor approximation algorithm. Our results for other
problems are the first known to the best of our knowledge.

1 Introduction

Background: Uncertain or imprecise data are pervasive in applications like sensor mon-
itoring, location based services, data collection and integration [12,14,33]. Consider a
temperature monitoring system which collects measures of humidity and wind speed.
Since we do not have the perfect sensing instruments, the data obtained are often con-
taminated with noises[13]. For another example, the locational data collected by the
Global-Positioning Systems (GPS) often contains measurement errors [29]. Moreover,
many machine learning and prediction algorithms also produce a variety of stochastic
models and a large volume of probabilistic data. Thus, managing, analyzing and solving
optimization problems over stochasticmodels and data have recently attracted significant
attentions in several research communities (see e.g., [30,33,34]).

In this paper, we study two stochastic geometry models, the locational uncertainty
model and the existential uncertaintymodel, both of which have been studied extensively
in recent years (see e.g., [2–4,7,20,21,24–26],some of which will be discussed in the
related work section). In fact, a special case of the locational uncertainty model where
all points follow the same distribution is a classic topic in stochastic geometry literature
(see e.g., [8–10,22,31]). The main interest there has been to derive asymptotics for the

Research supported in part by the National Basic Research Program of China Grant
2015CB358700, 2011CBA00300, 2011CBA00301, the National Natural Science Foun- dation
of China Grant 61202009, 61033001, 61361136003.

© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 910–921, 2015.
DOI: 10.1007/978-3-662-47672-7_74



Approximating the Expected Values for Combinatorial Optimization Problems 911

expected values of certain combinatorial problems (e.g., minimum spanning tree). The
stochastic geometry model is also of fundamental interest in the area of wireless net-
works. In many applications, we only have some prior information about the locations
of the transmission nodes (e.g., some sensors that will be deployed randomly in a desig-
nated area by an aircraft). Such a stochastic wireless network can be captured precisely
by this model. See the recent survey [19] and more references therein.

Stochastic Geometry Models: In this paper, we focus on two stochastic geometry
models, the locational uncertainty model and existential uncertainty model.

1. (Locational Uncertainty Model) We are given a metric space P . The location of
each node v ∈ V is a random point in the metric space P and the probability
distribution is given as the input. Formally, we use the term nodes to refer to the
vertices of the graph, points to describe the locations of the nodes in the metric
space. We denote the set of nodes as V = {v1, . . . , vn} and the set of points as
P = {s1, . . . , sm}, where n = |V| and m = |P|. A realization r can be represented
by an n-dimensional vector (r1, . . . , rn) ∈ Pn where point ri is the location of node
vi for 1 ≤ i ≤ n. LetR denote the set of all possible realizations.We assume that the
distributions of the locations of nodes in the metric space P are independent, thus r
occurs with probability Pr[r] = ∏

i∈[n] pvi ri , where pvs represents the probability
that the location of node v is point s ∈ P . The model is also termed as the locational
uncertainty model in [20].

2. (ExistentialUncertaintyModel)Aclosely relatedmodel is the existential uncertainty
model where the location of a node is a fixed point in the given metric space, but
the existence of the node is probabilistic. In this model, we use pi to denote the
probability that node vi exists (if exists, its location is si ). A realization r can be
represented by a subset S ⊂ P and Pr[r] = ∏

si ∈S pi
∏

si /∈S(1 − pi ).

Problem Formulation: We are interested in following natural problem in the above
models: estimating the expected values of certain statistics of combinatorial objects. In
this paper, we study several combinatorial or geometry problems in these two models:
the closest pair problem, minimum spanning tree, minimum perfect matching (assuming
an even number of nodes), k-clustering andminimum cycle cover. We take the minimum
spanning tree problem for example. Let MST be the length of the minimum spanning
tree (which is a random variable) and MST(r) be the length of the minimum spanning
tree spanning all points in the realization r. We would like to estimate the following
quantity:

E[MST] =
∑

r∈R
Pr[r] · MST(r).

However, the above formula does not give us an efficient way to estimate the expectation
since it involves an exponential number of terms. In fact, computing the exact expected
value (for the problems considered in this paper) are either NP-hard or #P-hard. Follow-
ing many of the theoretical computer science literatures on approximate counting and
estimation, our goal is to obtain fully polynomial randomized approximation schemes
for computing the expected values.
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Table 1. Our results for some problems in different stochastic models

Problems Existential Locational

Closest Pair (§2)
E[C] FPRAS FPRAS

Pr[C ≤ 1] FPRAS FPRAS
Pr[C ≥ 1] Inapprox Inapprox

Diameter (§2)
E[D] FPRAS FPRAS

Pr[D ≤ 1] Inapprox Inapprox
Pr[D ≥ 1] FPRAS FPRAS

Minimum Spanning Tree (§3) E[MST] FPRAS[20] FPRAS
k-Clustering E[kCL] FPRAS Open

Perfect Matching (§4) E[PM] N.A. FPRAS
kth Closest Pair E[kC] FPRAS Open
Cycle Cover E[CC] FPRAS FPRAS

kth Longest m-Nearest Neighbor E[kmNN] FPRAS Open

1.1 Our Contributions

We recall that a fully polynomial randomized approximation scheme (FPRAS) for a
problem f is a randomized algorithm A that takes an input instance x , a real number
ε > 0, returns A(x) such that Pr[(1−ε) f (x) ≤ A(x) ≤ (1+ε) f (x)] ≥ 3

4 and its running
time is polynomial in both the size of the input n and 1/ε. Our main contributions can
be summarized in Table 1. We need to explain some entries in the table in more details.

1. Closest Pair: We use C to denote the minimum distance of any pair of two nodes.
If a realization has less than two nodes, C is zero. Computing Pr[C ≤ 1] exactly in
the existential model is known to be #P-hard even in an Euclidean plane [21], but no
nontrivial algorithmic result is known before. So is computing Pr[C ≥ 1]. In fact, it
is not hard to show that computing Pr[C ≥ 1] is imapproximable within any factor
in a metric space.
We also consider the problem of computing expected distance E[C] between the
closest pair in the same model. We prove that the problem is #P-hard and give the
first known FPRAS in Section 2. Note that an FPRAS for computing Pr[C ≤ 1]
does not imply an FPRAS for computing E[C] 1.

2. Diameter: The problem of computing the expected length of the diameter can be
reduced to the closest pair problem as follows. Assume that the longest distance
between two points in P is W . We construct the new instance P ′ as follows: for any
two points u, v ∈ P , let their distance be 2W − d(u, v) in P ′. The new instance is
still a metric. The sum of the distance of closest pair in P and the diameter in P ′
is exactly 2W (if there are at least two realized points). Hence, the answer for the
diameter can be easily derived from the answer for closest pair in P ′.

3. Minimum Spanning Tree: Computing E[MST] exactly in both uncertainty models
is known to be #P-hard [20]. Kamousi, Chan, and Suri [20] developed an FPRAS

1 To the contrary, an FPRAS for computing Pr[C ≥ 1] or Pr[C = 1] would imply an FPRAS
for computing E[C] since E[C] = ∑

(si ,s j )
Pr[C = d(si , s j )]d(si , s j ) = ∫

Pr[C ≥ t]dt =
∑

(si ,s j )
Pr[C ≥ d(si , s j )](d(si , s j ) − d(s′

i , s′
j )).
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for estimating E[MST] in the existential uncertainty model and a constant factor
approximation algorithm in the locational uncertainty model.
Estimating E[MST] is amendable to several techniques. We obtain an FPRAS for
estimating E[MST] in the locational uncertainty model using the stoch-core tech-
inque in Section 3. In fact, the idea in [20] can also be extended to give an alternative
FPRAS. It is not clear how to extend their idea to other problems.

4. Clustering (k-clustering): In the deterministic k-clustering problem, we want to
partition all points into k disjoint subsets such that the spacing of the partition is
maximized, where the spacing is defined to be the minimum of any d(u, v) with
u, v in different subsets [23]. In fact, the optimal cost of the problem is the length
of the (k − 1)th most expensive edge in the minimum spanning tree [23]. We show
how to estimate E[kCL] using the HPF (hierarchical partition family) technique.

5. Perfect Matching: We assume that there are even number of nodes to ensure that
a perfect matching always exists. Therefore, only the locational uncertainty model
is relevant here. We give the first FPRAS for approximating the expected length
of minimum perfect matching in Section 4 using a more complicated stoch-core
technique.

All of our algorithms run inpolynomial time.However,wehavenot attempted tooptimize
the exact running time.

Our techniques: Perhaps the simplest and the most commonly used technique for esti-
mating the expectation of a random variable is the Monte Carlo method, that is to use
the sample average as the estimate. However, the method is only efficient (i.e., runs
in polynomial time) if the variance of the random variable is small (See Lemma 1).
To circumvent the difficulty caused by the high variance, a general methodology is to
decompose the expectation of the random variable into a convex combination of con-
ditional expectations using the law of total expectation: E[X ] = EY

[
E[X | Y ] ] =∑

y Pr[Y = y] E[X | Y = y]. Hopefully, Pr[Y = y] can be estimated (or calculated
exactly) efficiently, and the random variable X conditioning on each event y has a low
variance. However, choosing the events Y to condition on can be tricky.

We develop two new techniques for choosing such events, each being capable of
solving a subset of aforementioned problems. In the first technique, we first identify a
setH of points, called the stoch-core of the problem, such that (1): with high probability,
all nodes realize inH and (2): conditioning on event (1), the variance is small. Then, we
choose Y to be the number of nodes realized to points not inH. We compute the (1± ε)-
estimates for Y = 0, 1 using Monte Carlo by (1) and (2). The problematic part is when
Y is large, i.e., many nodes realize to points outside H. Even though the probability
of such events is very small, the value of X under such events may be considerably
large, thus contributing nontrivially. However, we can show that the contribution of such
events is dominated by the first few events and thus can be safely ignored. Choosing
appropriate stoch-core is easy for some problems, such as closest pair and minimum
spanning tree, while it may require additional idea for other problems such as minimum
perfect matching.

Our second technique utilizes a notion called Hierarchical Partition Family (HPF).
The HPF has m levels, each representing a clustering of all points. For a combinatorial
problem, for which the solution is a set of edges, we define Y to be the highest level
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such that some edge in the solution is an inter-cluster edge. Informally, conditioning
on the information of Y , we can essentially bound the variance of X (hence use the
Monte Carlo method). To implement Monte Carlo, we need to be able to take samples
efficiently conditioning on Y . We show that such sampling problems can be reduced to,
or have connections to, classical approximate counting and sampling problems, such as
approximating permanent, counting knapsack.

Due to space constraints, we omitmany details, which can be found in the full version
of this paper2.

1.2 Related Work

Several geometric properties of a set of stochastic points have been studied extensively in
the literature under the term stochastic geometry. For instance, Bearwood et al. [8] shows
that if there are n points uniformly and independently distributed in [0, 1]2, the minimal
traveling salesman tour visiting them has an expected lengthΩ(

√
n). Asymptotic results

for minimum spanning trees and minimum matchings on n points uniformly distributed
in unit balls are established by Bertsimas and van Ryzin [10]. Similar results can be
found in e.g., [9,22,31]. Compared with results in stochastic geometry, we focus on the
efficient computation of the statistics, instead of giving explicit mathematical formulas.

Recently, a number of researchers have begun to explore geometric computing under
uncertainty and many classical computational geometry problems have been studied in
different stochastic/uncertainty models. Agarwal, Cheng, Tao and Yi [4] studied the
problem of indexing probabilistic points with continuous distributions for range queries
on a line. Agarwal, Efrat, Sankararaman, and Zhang [5] also studied the same problem
in the locational uncertainty model under Euclideanmetric. Themost probable k-nearest
neighbor problem and its variants have attracted a lot of attentions in the database
community (See e.g., [11]). Several other problems have also been considered recently,
such as computing the expected volume of a set of probabilistic rectangles in a Euclidean
space [36], convex hulls [2], skylines (Pareto curves) over probabilistic points [1,7], and
shape fitting [27].

Kamousi, Chan and Suri [20] initiated the study of estimating the expected length of
combinatorial objects in this model. They showed that computing the expected length
of the nearest neighbor (NN) graph, the Gabriel graph (GG), the relative neighborhood
graph (RNG), and the Delaunay triangulation (DT) can be solved exactly in polyno-
mial time, while computing E[MST] is #P-hard and there exists a simple FPRAS for
approximating E[MST] in the existential model. They also gave a deterministic PTAS
for approximating E[MST] in an Euclidean plane. In another paper [21], they studied
the closest pair and (approximate) nearest neighbor problems (i.e., finding the point with
the smallest expected distance from the query point) in the same model.

The randomly weighted graph model where the edge weights are independent non-
negative variables has also been studied extensively. Frieze [16] and Steele [32] showed
that the expected value of the minimum spanning tree on such a graph with identically
and independently distributed edges is ζ(3)/D where ζ(3) = ∑∞

j=1 1/j3 and D is the
derivative of the distribution at 0. Alexopoulos and Jacobson [6] developed algorithms

2 http://arxiv.org/abs/1209.5828

http://arxiv.org/abs/1209.5828
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that compute the distribution of MST and the probability that a particular edge belongs
to MST when edge lengths follow discrete distributions. However, the running times of
their algorithms may be exponential in the worst cases. Recently, Emek, Korman and
Shavitt [15] showed that computing the kth moment of a class of properties, including
the diameter, radius and minimum spanning tree, admits an FPRAS for each fixed k.
Our model differs from their model in that the edge lengths are not independent.

The computational/algorithmic aspects of stochastic geometry have also gained a lot
of attention in recent years from the area of wireless networking. In many application
scenarios, it is common to assume that the nodes (e.g., sensors) are deployed randomly
across a certain area, thereby forming a stochastic network. It is of central importance to
study various properties in this network, such as connectivity [17], transmission capac-
ity [18]. We refer interested reader to a recent survey [19] for more references.

1.3 Preliminaries

Before describing our main results, we first consider the straightforward Monte Carlo
strategy, which is an important building block in our later developments. Suppose we
want to estimate E[X ]. In each Monte Carlo iteration, we take a sample (a realization of
all nodes), and compute the value of X for the sample. At the end, we output the average
over all samples. The number of samples required by this algorithm is suggested by the
following standard Chernoff bound.

Lemma 1. (Chernoff Bound) Let random variables X1, X2, . . . , X N be independent
random variables taking on values between 0 and U. Let X = 1

N

∑N
i=1 Xi and μ be the

expectation of X, for any ε > 0,

Pr [X ∈ [(1 − ε)μ, (1 + ε)μ]] ≥ 1 − 2e−N μ
U ε2/4.

Therefore, for any ε > 0, in order to get an (1 ± ε)-approximation with probability
1− 1

poly(n)
, the number of samples needs to be O( U

με2
log n). If U

μ
, the ratio between the

maximumpossible value of X and the expected valueE[X ], is bounded by poly(m, n, 1
ε
),

we can use the above Monte Carlo method to estimate E[X ] with a polynomial number
of samples. Since we use this condition often, we devote a separate definition to it.

Definition 1. We call a random variable X poly-bounded if the ratio between the max-
imum possible value of X and the expected value E[X ] is bounded by poly(m, n, 1

ε
).

2 The Closest Pair Problem

2.1 Estimating Pr[C ≤ 1]
As a warmup, we first demonstrate how to use the stoch-core technique for the closest
pair problem in the existential uncertainty model. Given a set of pointsP = {s1, . . . , sm}
in the metric space, where each point si ∈ P is present with probability pi . We use C
to denote the distance between the closest pair of vertices in the realized graph. If the
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realized graph has less than two points, C is zero. The goal is to compute the probability
Pr[C ≤ 1].

For a set H of points and a subset S ⊆ H , we use H〈S〉 to denote the event that among
all points in H , all and only points in S are present. For any nonnegative integer i , let H〈i〉
denote the event

∨
S⊆H :|S|=i H〈S〉, i.e., the event that exactly i points are present in H .

The stoch-core of the closest pair problem is simply defined to be H ={
si | pi ≥ ε

m2

}
. Let F = P \ H. We consider the decomposition

Pr[C ≤ 1] =
|F |∑

i=0

Pr[F〈i〉 ∧ C ≤ 1] =
|F |∑

i=0

Pr[F〈i〉] · Pr[C ≤ 1 | F〈i〉].

Our algorithm is very simple: estimate the first three terms (i.e., i = 0, 1, 2) and use
their sum as our final answer.

We can see that H satisfies the two properties of a stoch-core mentioned in the
introduction:

1. The probability that all nodes are realized in H, i.e., Pr[F〈0〉], is at least
1 − m · ε

m2 = 1 − ε
m ;

2. If there exist two points si , s j ∈ H such that d(si , s j ) ≤ 1, we have Pr[ C ≤ 1 |
F〈0〉 ] ≥ ε2

m4 ; otherwise, Pr[C ≤ 1 | F〈0〉] = Pr[H〈0〉 | F〈0〉] + Pr[H〈1〉 | F〈0〉].
Note that we can compute Pr[H〈0〉 | F〈0〉] and Pr[H〈1〉 | F〈0〉] in polynomial
time. We do not consider this case in the following analysis.

Both properties guarantee that the random variable I (C ≤ 1), conditioned on F〈0〉, is
poly-bounded, hence we can easily get a (1± ε)-estimation for Pr[F〈0〉 ∧ C ≤ 1] with
polynomial many samples with high probability. Similarly, Pr[F〈i〉 ∧ C ≤ 1] can also
be estimated with polynomial number of samples for i = 1, 2. The algorithm can be
found in Algorithm 1.

Algorithm 1. Estimating Pr[C ≤ 1]
1 Estimate Pr[F〈0〉 ∧ C ≤ 1]: Take N0 = O

(
(m/ε)4 lnm

)
independent samples. Suppose

M0 is the number of samples satisfying C ≤ 1 and F〈0〉. T0 ← M0
N0

.

2 Estimate Pr[F〈1〉 ∧ C ≤ 1]: For each point si ∈ F , take N1 = O((m/ε)4 lnm)

independent samples conditioning on the event F〈{si }〉. Suppose there are Mi samples
satisfying C ≤ 1. T1 ← ∑

si ∈F pi Mi /N1.

3 Estimate Pr[F〈2〉 ∧ C ≤ 1]: For each point pair si , s j ∈ F , take N2 = O((m/ε)4 lnm)

independent samples conditioning on the event F〈{si , s j }〉. Suppose there are Mi j
samples satisfying C ≤ 1. T2 ← ∑

si ,s j ∈F pi p j Mi j /N2.

4 Output: T0 + T1 + T2

Lemma 2. Steps 1,2,3 in Algorithm 1 provide (1±ε)-approximations for Pr[F〈i〉∧C ≤
1] for i = 0, 1, 2 respectively, with high probability.
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Theorem 1. There is an FPRAS for estimating the probability of the distance between
the closest pair of nodes is at most 1 in the existential uncertainty model.

Proof. We only need to show that the contribution from the rest of terms (where more
than two points outside stoch-core H are present) is negligible compared to the third
term. Suppose S is the set of all present points such that C ≤ 1 and there are at least 3
points not inH. Suppose si , s j are the closest pair in S. We associate S with a smaller set
S′ ⊂ S by making 1 present point in (S ∩ F) \ {si , s j } absent (if there are several such
S′, we choose an arbitrary one). We denote it as S ∼ S′. We use the notation S ∈ Fi to
denote that the realization S satisfies (F〈i〉 ∧ C ≤ 1). Then, we can see that for i ≥ 3,

Pr[F〈i〉 ∧ C ≤ 1] =
∑

S:S∈Fi

Pr[S] ≤
∑

S′:S′∈Fi−1

∑

S:S∼S′
Pr[S].

For a fixed S′, there are at mostm different sets S such that S ∼ S′ and Pr[S] ≤ 2ε
m2 Pr[S′]

for any such S. Hence, we have that
∑

S:S∼S′ Pr[S] ≤ 2ε
m Pr[S′]. Therefore,

Pr[F〈i〉 ∧ C ≤ 1] ≤ 2ε

m
·

∑

S′:S′∈Fi−1

Pr[S′] = 2ε

m
· Pr[F〈i − 1〉 ∧ C ≤ 1].

Hence, overall we have
∑

i≥3 Pr[F〈i〉 ∧ C ≤ 1] ≤ εPr[F〈2〉 ∧ C ≤ 1]. This finishes
the analysis.

��

2.2 Estimating E[C]
In this section, we consider the problem of estimating E[C], where C is the distance of
the closest pair of present points, in the existential uncertainty model. Now, we introduce
our second main technique, the hierarchical partition family (HPF) technique, to solve
this problem. An HPF is a family Ψ of partitions of P , formally defined as follows.

Definition 2. (Hierarchical Partition Family (HPF)) Let T be any minimum spanning
tree spanning all points of P . Suppose that the edges of T are e1, . . . , em−1 with d(e1) ≥
d(e2) ≥ . . . ≥ d(em−1). Let Ei = {ei , ei+1, . . . , em−1}. The HPF Ψ (P) consists of m
partitions Γ1, . . . , Γm. Γ1 is the entire point set P . Γi consists of i disjoint subsets of
P , each corresponding to a connected component of Gi = G(P, Ei ). Γm consists of all
singleton points inP . It is easy to see that Γ j is a refinement of Γi for j > i . Consider two
consecutive partitions Γi and Γi+1. Note that Gi contains exactly one more edge (i.e.,
ei ) than Gi+1. Let μ′

i+1 and μ′′
i+1 be the two components (called the split components)

in Γi+1, each containing an endpoint of ei . Let νi ∈ Γi be the connected component of
Gi that contains ei . We call νi the special component in Γi . Let Γ ′

i = Γi \ νi .

We observe two properties of Ψ (P) that are useful later.

P1. Consider a component C ∈ Γi . Let s1, s2 be two arbitrary points in C . Then
d(s1, s2) ≤ (m − 1)d(ei ) (this is because s1 and s2 are connected in Gi , and ei

is the longest edge in Gi ).
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P2. Consider two different components C1 and C2 in Γi . Let s1 ∈ C1 and s2 ∈ C2
be two arbitrary points. Then d(s1, s2) ≥ d(ei−1) (this is because the minimum
inter-component distance is d(ei−1) in Gi ).

Let the random variable Y be smallest integer i such that there is at most one present
point in each component of Γi+1. Note that if Y = i then each component of Γi contains
at most one point, except that the special component νi contains exactly two present
points. The following lemma is a simple consequence of P1 and P2.

Lemma 3. Conditioning on Y = i , it holds that d(ei ) ≤ C ≤ md(ei ) (hence, C is
poly-bounded).

Consider the following expansion of E[C]: E[C] = ∑m−1
i=1 Pr[Y = i]E[C | Y = i].

For a fixed i , Pr[Y = i] can be estimated as follows: For a component C ⊂ P , we use
C〈 j〉 to denote the event that exactly j points in C are present, C〈s〉 the event that only
s is present in C and C〈≤ j〉 the event that no more than j points in C are present. Let
μ′

i and μ′′
i be the two split components in Γi . Note that

Pr[Y = i] = Pr[μ′
i+1〈1〉] · Pr[μ′′

i+1〈1〉] ·
∏

C∈Γ ′
i

Pr[C〈≤ 1〉].

The remaining is to show how to estimate E[C | Y = i]. Since C is poly-bounded,
it suffices to give an efficient algorithm to take samples conditioning on Y = i .
This is again not difficult: We take exactly one point s ∈ μ′

i+1 with probability
Pr[μ′

i+1〈s〉]/Pr[μ′
i+1〈1〉]. Same for μ′′

i+1. For each C ∈ Γ ′
i , take no point from C

with probability Pr[C〈0〉]/Pr[C〈≤ 1〉]; otherwise, take exactly one point s ∈ C with
probability Pr[C〈s〉]/Pr[C〈≤ 1〉]. This finishes the description of the FPRAS in the
existential uncertainty model.

Theorem 2. There is an FPRAS for estimating the expected distance between the closest
pair of nodes in the existential uncertainty models.

3 Minimum Spanning Trees

We consider the problem of estimating the expected size of minimum spanning tree in
the locational uncertainty model. In this section, we briefly sketch how to solve it using
our stoch-core method. Recall that the term nodes refers to the vertices V of the spanning
tree and points describes the locations in P . For ease of exposition, we assume that for
each point, there is only one node that may realize at this point.

Recall that we use the notation v � s to denote the event that node v is present at point
s. Let pvs = Pr[v � s]. Since node v is realized with certainty, we have

∑
s∈P pvs = 1.

For each point s ∈ P , we let p(s) denote the probability that point s is present. For a
set H of points, let p(H) = ∑

s∈H p(s), i.e., the expected number of points present in
H . For a set H of points and a set S of nodes, we use H〈S〉 to denote the event that
all and only nodes in S are realized to some points in H . If S only contains one node,
say v, we use the notation H〈v〉 as the shorthand for H〈{v}〉. Let H〈i〉 denote the event
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∨
S:|S|=i H〈S〉, i.e., the event that exactly i nodes are in H . We use diam(H), called the

diameter of H , to denote maxs,t∈H d(s, t). Let d(p, H) be the closest distance between
point p and any point in H .

Finding stoch-core: We find the stoch-core H ← B(s, d(s, t)) = {s′ ∈ P | d(s′, s) ≤
d(s, t)}, where points s and t are the furthest two points among all points r with p(r) ≥

ε
16m .

Lemma 4. The stoch-core H satisfies the following properties:

Q1. p(H) ≥ n − ε
16 = n − O(ε)

Q2. E[ MST | H〈n〉 ] = Ω
(
diam(H) ε2

m2

)
.

Furthermore, the algorithm runs in linear time.

Estimating E[MST]:LetF = P\H. By the lawof total expectation, the expected length
of the minimum spanning tree can be expanded as follows: E[MST] = ∑

i≥0 E[ MST |
F〈i〉 ] · Pr[F〈i〉]. We only estimate the first two terms E[ MST | F〈0〉 ] · Pr[F〈0〉] and
E[ MST | F〈1〉 ] · Pr[F〈1〉] and use their sum as our final estimation. Using Properties
Q1 and Q2, we can estimate the two terms in polynomial time.
Theorem 3. There is an FPRAS for estimating the expected length of the minimum
spanning tree in the locational uncertainty model.

4 Minimum Perfect Matchings

In this section, we consider the minimum perfect matching (PM) problem. We use the
stoch-core method.
Finding stoch-core: First, we show how to find in poly-time the stoch-coreH. See the
Pseudo-code in Algorithm 2 for details.

Algorithm 2. Constructing stoch-core H for Estimating E[PM]
1 Initially, t ← 0 and each point s ∈ P is a component H{s} = B(s, t) by itself.
2 Gradually increase t ; If two different components HS1 andHS2 intersect (where
HS := ∪s∈SB(s, t)); Merge them into a new component HS1∪S2 .

3 Stop increasing t while the first time the following two conditions are satisfied by
components at t :
Q1. For each node v, there is a unique component H j such that

pv(H j ) ≥ 1 − O( ε
nm3 ). We callH j the stoch-core of node v, denoted as H(v).

Q2. For all j , |{v ∈ V | H(v) = H j }| is even.
4 Output the stopping time T and the components H1, . . . ,Hk .

Estimating E[PM]:We useH〈n〉 to denote the event that for each node v, v � H(v). We
denote the event that there are exactly i nodes which are realized out of their stoch-cores
by F〈i〉. Again, we only need to estimate two terms: E[PM | F〈0〉]] · Pr[F〈0〉] and
E[PM | F〈1〉] · Pr[F〈1〉]. Using Properties Q1 and Q2, we can estimate these terms in
polynomial time. Our final estimation is simply the sum of the first two terms.
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Theorem 4. Assuming the locational uncertainty model and that the number of nodes
is even, there is an FPRAS for estimating the expected length of the minimum perfect
matching.
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