
A PTAS for the Weighted Unit Disk Cover Problem

Jian Li and Yifei Jin(B)

IIIS, Tsinghua University, Beijing, China
lijian83@mail.tsinghua.edu.cn, jin-yf13@mails.tsinghua.edu.cn

Abstract. Weare given a set ofweighted unit disks and a set of points inEuclidean
plane. The minimum weight unit disk cover (WUDC) problem asks for a subset
of disks of minimum total weight that covers all given points. WUDC is one of
the geometric set cover problems, which have been studied extensively for the
past two decades (for many different geometric range spaces, such as (unit) disks,
halfspaces, rectangles, triangles). It is known that the unweightedWUDC problem
is NP-hard and admits a polynomial-time approximation scheme (PTAS). For the
weighted WUDC problem, several constant approximations have been developed.
However, whether the problem admits a PTAS has been an open question. In this
paper, we answer this question affirmatively by presenting the first PTAS for
WUDC. Our result implies the first PTAS for the minimum weight dominating
set problem in unit disk graphs. Combining with existing ideas, our result can also
be used to obtain the first PTAS for the maxmimum lifetime coverage problem
and an improved constant approximation ratio for the connected dominating set
problem in unit disk graphs.

1 Introduction

The set cover (SC) problem is a central problem in theoretical computer science and
combinatorial optimziation. In the problem, we are given a ground set U and collection
S of subsets of U . Each set S ∈ S has a non-nagative weight wS . The goal is to find a
subcollection C ⊆ S of minimum total weight such that

⋃ C covers all elements of U .
The approximibility of the generalSC problem is ratherwell understood: it iswell known
that the greedy algorithm is an Hn-approximation (Hn = ∑n

i=1 1/ i) and obtaining a
(1− ε) ln n-approximation for any constant ε > 0 is NP-hard [12,19]. In the geometric
set cover problem, U is a set of points in some Euclidean space R

d , and S consists
of geometric objects (e.g., disks, squares, triangles), In such geometric setting, we can
hope for better-than-logarithmic approximations due to the special structure of S. Most
geometric set cover problems are NP-hard, even for the very simple classes of objects
such as unit disks [8,24] (see [6,22] for more examples and exceptions). Approximation
algorithms for geometric set cover have been studied extensively for the past twodecades,
not only because of the importance of the problem per se, but also its rich connections
to other important notions and problems, such as VC-dimension [4,9,18], ε-net, union
complexity [7,32,33], planar separators [20,29], evenmachine scheduling problems [3].

In this work, we study the geometric set cover problemwith one of the simplest class
of objects, unit disks. The formal definition of our problem is as follows:
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Definition 1. Weighted Unit Disk Cover (WUDC): Given a set D = {D1, . . . , Dn} of
n unit disks and a set P = {P1, . . . , Pm} of m points in Euclidean plane R

2. Each disk
Di has a weight w(Di ). Our goal is to choose a subset of disks to cover all points in P ,
and the total weight of the chosen disks is minimized.

We note that WUDC is the general version of minimum weight dominating set
problem in unit disk graphs (UDG). In fact, several previous results on WUDC were
stated in the context of the dominating set problem.

1.1 Previous Results and Our Contribution
We first recall that a polynomial time approximation scheme (PTAS) for a minimization
problem is an algorithm A that takes an input instance, a constant ε > 0, returns a
solution SOL such that SOL ≤ (1 + ε)OPT, where OPT is the optimal value, and the
running time of A is polynomially in the size of the input for any fixed constant ε.

WUDC is NP-hard, even for the unweighted version (i.e., w(Di ) = 1) [8]. For
unweighted dominating set in unit disk graphs, Hunt et al. [26] obtained the first PTAS
in unit disk graphs. For the more general disk graphs, based on the connection between
geometric set cover problem and ε-nets, developed in [4,9,18], and the existence of
ε-net of size O(1/ε) for halfspaces in R

3 [30] (see also [21]), it is possible to achieve
a constant factor approximation. As estimated in [29], these constants are at best 20
(A recent result [5] shows that the constant is at most 13). Moreover, there exists a
PTAS for unweighted disk cover and minimum dominating set via the local search
technique [20,29].

For the general weighted WUDC problem, the story is longer. Ambühl et al. [2]
obtained the first approximation for WUDC with a concrete constant 72, without using
the ε-net machinery. Applying the shifting techique of [23], Huang et al. [25] obtained
a (6 + ε)-approximation algorithm for WUDC. The approximation factor was later
improved to (5+ ε) [10], and to (4+ ε) by several groups [11,16,34]. The current best
ratio is 3.63. 1 Besides, the quasi-uniform sampling method [7,33] provides another
approach to achieve a constant factor approximation for WUDC (even in disk graphs).
However, the constant depends on several other constants from rounding LPs and the size
of the union complexity. Very recently, based on the separator framework of Adamaszek
and Wiese [1], Mustafa and Raman [28] obtained a QPTAS (Quasi-polynomial time
approximation scheme) for weighted disks in R

2 (in fact, weighted halfspaces in R
3),

thus ruling out the APX-hardness of WUDC.
Another closely related work is by Erlebach and van Leeuwen [17], who obtained

a PTAS for set cover on weighted unit squares, which is the first PTAS for weighted
geometric set cover on any planar objects (except those poly-time solvable cases [6,22]).
Although it may seem that their result is quite close to a PTAS for weighted WUDC,
as admitted in their paper, their technique is insufficient for handling unit disks and
“completely different insight is required”.

In light of all the aforementioned results, it seems that we should expect a PTAS for
WUDC, but it remains to be an open question (explicitly mentioned as an open problem

1 The algorithm can be found in Du and Wan [14], who attributed the result to a manuscript by
Willson et al.
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in a number of previous papers, e.g., [2,14–17,31] ). Our main contribution in this paper
is to settle this question affirmatively by presenting the first PTAS for WUDC.

Theorem 1. There is a polynomial time approximation scheme for the WUDC problem.
The running time is nO(1/ε9).

Due to the equivalence between WUDC and minimumweight dominating set in unit
disk graphs, we immediately have the following corollary.

Corollary 1. There is a polynomial time approximation scheme for the minimum weight
dominating set problem in unit disk graphs.

We note that the running time npoly(1/ε) is nearly optimal in light of the negative
result byMarx [27], who showed that an EPTAS (i.e., Efficient PTAS, with running time
f (1/ε)poly(n) ) even for the unweighted dominating set in UDG would contradict the
exponential time hypothesis.

Finally, we show that our PTAS for WUDC can be used to obtain improved approxi-
mation algorithms for two important problems inwireless sensor networks, the connected
dominating set problem and the maximum lifetime coverage problem in UDG.

2 Our Approach - A High Level Overview

By the standard shifting technique[13], it suffices to provide a PTAS for WUDC when
all disks are located in a square of constant size (we call it a block, and the constant
depends on 1/ε). This idea is formalized in Huang et al. [25], as follows.

Lemma 1 (Huang ta al. [25]). Suppose there exists a ρ-approximation for WUDC
in a fixed L × L block, with running time f (L). Then there exists a (ρ + O(1/L))-
approximation with running time O(L · n · f (L)) for WUDC. In particular, setting L =
1/ε, there exists a (ρ+ε)-approximation for WUDC, with running time O

( 1
ε

· L · f ( 1
ε
)
)
.

In fact, almost all previous constant factor approximation algorithms for WUDC
were obtained by developing constant approximations for a single block of a constant
size (which is the main difficulty). The main contribution of the paper is to improve on
the previous work [2,10,16,25] for a single block, as in the following lemma.

Lemma 2. There exists a PTAS for WUDC in a fixed block of size L × L for L = 1/ε.
The running time of the PTAS is nO(1/ε9)

From now on, the approximation error guarantee ε > 0 is a fixed constant.Whenever
we say a quantity is a constant, the constant may depend on ε. We use OPT to repre-
sent the optimal solution (and the optimal value) in this block. We use capital letters
A, B, C, . . . to denote points, and small letters a, b, c, . . . to denote arcs. For two points
A and B, we use |AB| to denote the line segment connecting A and B (and its length).
We use Di to denote a disk and Di to denote its center. For a point A and a real r > 0,
let D(A, r) be the disk centered at A with radius r . For a disk Di , we use ∂Di to denote
its boundary. We call a segment of ∂Di an arc.
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First, we guess thatwhetherOPT containsmore thanC disks or not for some constant
C . If OPT contains no more than C disks, we enumerate all possible combinations
and choose the one which covers all points and has the minimum weight. This takes

O
(∑C

i=1

(n
i

)) = O(nC ) time, which is polynomial.

The more challenging case is whether OPT contains more than C disks. In this case,
we guess (i.e., enumerate all possibilities) the set G of the C most expensive disks in
OPT. There are at most a polynomial number (i.e., O(nC )) possible guesses. Suppose
our guess is correct. Then, we delete all disks in G and all points that are covered by
G. Let Dt (with weight wt ) be the cheapest disk in G. We can see that OPT ≥ Cwt .
Moreover, we can also safely ignore all disks with weight larger than wt (assuming that
our guess is correct). Now, our task is to cover the remaining points with the remaining
disks, each having weight at most wt . We useD′ = D \G and P ′ = P \P(G) to denote
the set of the remaining disks and the set of remaining points respectively, where P(G)

denote the set of points covered by some disk in G.
Next, we carefully choose to include in our solution a set H ⊆ D′ of at most εC

disks. The purpose ofH is to break the whole instance into many (still a constant) small
pieces (substructures), such that each substructure can be solved optimally, via dynamic
programming. 2 One difficulty is that the substructures are not independent and may
interact with each other (i.e., a disk may appear in more than one substructure). In order
to apply the dynamic programming technique to all substructures simultaneously, we
have to ensure the orders of the disks in different substructures are consistent with each
other. Choosing H to ensure a globally consistent order of disks is in fact the main
technical challenge of the paper.

Suppose we have a set H which suits our need (i.e., the remaining instance (D′ \
H,P ′ \P(H)) can be solved optimally in polynomial time by dynamic programming).
Let S be the optimal solution of the remaining instance. Our final solution is SOL =
G ∪ H ∪ S. First, we can see that w(S) ≤ w(OPT − G − H) ≤ OPT − w(G), since
OPT − G − H is a feasible solution for the instance (D′ \ H,P ′ \ P(H)). Hence, we
have that SOL = w(G) + w(H) + w(S) ≤ OPT + εCwt ≤ (1 + ε)OPT, where the
2nd to last inequality holds because |H| ≤ εC , and the last inequality uses the fact that
OPT ≥ w(G) ≥ Cwt .

Constructing H: Now, we provide a high level sketch for how to construct H ⊆ D′.
First, we partition the block into small squares of side length μ = O(ε) such that any
disk centered in a square can cover the whole square and the disks in the same square are
close enough. Let the set of small squares be Ξ = {Γi j }1≤i, j≤K where K = L/μ. For a
small square Γ , let DsΓ ∈ Γ and DtΓ ∈ Γ be the furthest pair of disks (i.e., |DsΓ DtΓ | is
maximized). We include the pair DsΓ and DtΓ inH, for every small square Γ ∈ Ξ , and
call the pair the square gadget for Γ . We only need to focus on covering the remaining
points in the uncovered region U(H).

We consider all disks in a small square Γ . The uncovered portion of those disks
defined two disjoint connected regions We call such a region, together with all relevant
arcs, a substructure (formal definition in Section 4). In fact, we can solve the disk cov-
ering problem for a single substructure optimally using dynamic programming (which

2 An individual substructure can be solved using a dynamic program similar to [2,22].
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is similar to the dynamic program in[2,22]). It appears that we are almost done, since
(“intuitively”) all square gadgets have already covered much area of the entire block,
and we should be able to use similar dynamic program to handle all such substructures
as well. However, the situation is more complicated (than we initially expected) since
the arcs are dependent. See Figure 1 for a “not-so-complicated” example. Firstly, there
may exist two arcs (sibling arcs) which belong to the same disk when the disk is centered
in the core-center area). The dynamic program has to make decisions for two sibling
arcs, which belong to two different substructures (called R-correlated substructures),
together. Second, in order to carry out dynamic program, we need a suitable order of all
arcs. To ensure such an order exists, we need all substructures interact with each other
“nicely".

In particular, besides all square gadgets, we need to add into H a constant number
of extra disks. This is done by a series of “cut" operations. A cut can either break a
cycle, or break one substructure into two substructures. To capture how substructures
interact, we define an auxiliary graph, call substructure relation graphS, in which each
substructure is a node. The aforementioned R-correlations define a set of blue edges, and
geometrically overlapping relation define a set of red edges. Though the cut operations,
we can make blue edges form a matching, and red edges also form a matching, and
S acyclic (we call S an acyclic 2-matching). The special structure of S allows us to
define an ordering of all arcs easily. Together with some other simple properties, we can
generalize the dynamic program for one substructure to all substructures.

3 Square Gadgets

We discuss the structure of a square gadget Gg(Γ ) associated with the small square
Γ . Recall that the square gadget Gg(Γ ) = Ds ∪ Dt , where Ds and Dt are the furthest
pair of disks in Γ . We can see that for any disk Di in Γ , there are either one or two
arcs of ∂Di which are not covered by Gg(Γ ). Without loss of generality, assume that
Ds Dt is horizontal. The line Ds Dt divides the whole plane into two half-planes which
are denoted by H+ (the upper half-plane) and H− (the lower half-plane). ∂Ds and ∂Dt

intersect at two points P and Q. We need a few definitions which are useful throughout
the paper.

1. (Center Area andCore-center Area) Define the center area ofGg(Γ ) as the intersec-
tion of the two disksD(Ds, rst ) andD(Dt , rst ) in the squareΓ , where rst = |Ds Dt |.
We use C to denote it. Since Ds and Dt are the furthest pair, we can see that every
other disk in Γ is centered in the center area C.

We define the core-center area ofGg(Γ ) is the intersection of two unit disks cen-
tered at P, Q respectively. Essentially, any unit disk centered in the core-center area
has four intersections with the boundary of gadget. Let us denote the area by Co.

2. (Active Region) Consider the regions
(⋃

Di ∈Co
Di − (Ds ∪ Dt )

)
∩ H+ and

(⋃
Di ∈Co

Di − (Ds ∪ Dt )
)

∩ H−. We call each of them an active region associated

with square Γ . An active region can be covered by disks in the core-center area. We
use Ar to denote an active region.
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Fig. 1. The general picture of the substructures in a block. The red points are the grid points of
squares. Dash green disks are what we have selected in H. There are five substructures in the
block.

4 Substructures

Initially, H includes all square gadgets. In Section 7, we will include in H a constant
number of extra disks. For a set S of disk, we use R(S) to denote the region covered
by disks in S (i.e., ∪Di ∈SDi ). Assuming a fixed H, we now describe the basic structure
of the uncovered region R(D′) − R(H). 3 For ease of notation, we use U(H) to denote
the uncovered region R(D′)−R(H). Figure 1 shows an example. Intuitively, the region
consists of several “strips” along the boundary of H. Now, we define some notions to
describe the structure of those strips.

1. (Baseline) We use ∂H to denote to be the boundary ofH. Consider an arc a whose
endpoints P1, P2 are on ∂H. We say the arc a cover a point P ∈ ∂H, if P lies in the
segment between P1 and P2 along ∂H. We say a point P ∈ ∂H can be covered if
some arc in D′ covers P . A baseline is a consecutive maximal segment of ∂H that
can be covered. We usually use b to denote a baseline.

2. (Substructure) A substructure St(b,A) consists of a baseline b and the collection
A of arcs which can cover some point in b. The two endpoints of each arc a ∈ A
are on b and 	 (a) is less than π . Note that every point of b is covered by some arc
in A. Figure 2 illustrates the components of an substructure.

Arc Order: Now we switch our attention to the order of the arcs in a substructure
St(b,A). Suppose the baseline b starts at point Qs and ends up at point Qt . Consider
any two points P1 and P2 on the baseline b. If P1 is more close to Qs than P2 along the
baseline b, we say that P1 appears earlier than P2 (denoted as P1 ≺ P2). Consider any
two arcs a and c inA. The endpoints of arc a are A and B and the endpoints of arc c are
C and D. All of points A, B, C, D are on the baseline b. Without loss any generality,

3 Recall that D′ = D \ G where G is the C most expensive disks in OPT.
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Fig. 2. A substructure. The baseline b consists of the red arcs which are the part of consecutive
boundary of ∂H. Qs , Qt are the endpoints of b. The black arcs are in the uncovered region. The
arc a ≺ c since A ≺ C and B ≺ D. The bold black arcs form the envelope.

we assume that A ≺ B, C ≺ D and A ≺ C . If B ≺ D, We say arc a appears earlier
than arc c (denoted as a ≺ c). Otherwise, we say a and c are incomparable. See Figure 2
for an example. It is easy to see that ≺ defines a partial order.

Adjacency:Consider two arcs a (with endpoints A ≺ B) and c (with endpointsC ≺ D).
If a ≺ c and C ≺ B, we say that a and b are adjacent (we can see they must intersect
exactly once), and c is the adjacent successor of a. Similarly, we can define the adjacent
successor of subarc a[P1, P2]. If c is the adjacent successor of a, meanwhile c intersects
with subarc a[P1, P2], we say that c is the adjacent successor of subarc a[P1, P2].
Among all adjacent successors of a[P1, P2], we call the one whose intersection with
a[P1, P2] is closest to P1 the first adjacent successor of a[P1, P2].

5 Simplifying the Problem

The substructures may overlap in a variety of ways. As we mentioned in Section 2,
we need to include in H more disks in order to make the substructures amenable to
the dynamic programming technique. However, this step is somewhat involved and we
decide to postpone it to the end of the paper (Section 7). Instead, we present in this
section what is the organization of the substructures after including more disks inH and
what properties we need for the final dynamic program.

Self-Intersections: In a substructure St, suppose there are two arcs a and c in A with
endpoints A, B and C, D respectively. If A ≺ B ≺ C ≺ D and a and c cover at least
one and the same point in P , we say the substructure is self-intersecting. So we will
eliminate all self-intersections in Section 7. In the rest of the section, we assume all
substructures are non-self-intersecting and discuss their properties.

Order Consistency:There are two types of relations between substructures which affect
how the orientations should be done. One is the overlapping relation and the other is
Remote-Correlation. See Figure 1 for some examples.

Definition 2 (Remotely correlation). Consider two substructures Stu and Stl which
are not overlapping. They contain different related active regions of the same gadget.
We say that they are remotely correlated or R-correlated.

There are two possible baseline orientations for each substructure (clockwise or
anticlockwise around the center of the arc), which gives rise to four possible ways to
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orient both Stu and Stl . However, there are only two (out of four) of them are consistent
(thus we can do dynamic programming on them). More formally, we need the following
definition:

As different substructures may interact with each other, we need a dynamic program
which can run over all substructures simultaneously. Hence, we need to define a globally
consistent ordering of all arcs.

Definition 3 (Global Order Consistency). We have global order consistency if there is
a way to orient the baseline of each substructure, such that the partial orders of the disks
for all substructures are consistent in the following sense: It can not happen that ai ≺ bi

in substructure Sti (bi ,Ai ) but a j ≺ b j in St j (b j ,A j ), where ai , a j ∈ ∂Da, bi , b j ∈
∂Db and ai , bi ∈ Ai , a j , b j ∈ A j .

Substructure Relation Graph S: we construct an auxiliary graph S, called the sub-
structure relation graph, to capture all R-correlations and Overlapping relations. Each
node inS represents a substructure. If two substructures are R-correlated, we add a blue
edge between the two substructures. If two substructure overlap, we add a red edge.

Definition 4 (Acyclic 2-Matching). We say the substructure relation graph S is an
acyclic 2-matching, if S is acyclic and is composed by a blue matching and a red
matching. In other words, S contains only paths,and the red edges and blue edges
appear alternately in each path.

Definition 5 (Point Order Consistency). Suppose a setPco of points is covered by both
of two overlapping substructures St1(b1,A1) and St2(b2,A2). Consider any two points
P1, P2 ∈ Pco and four arcs a1, a2 ∈ A1, b1, b2 ∈ A2. Suppose P1 ∈ R(a1)∩R(b1) and
P2 ∈ R(a2) ∩R(b2). But P1 /∈ R(a2) ∪R(b2) and P2 /∈ R(a1) ∪R(b1). We say P1 and
P2 are point-order consistent if a1 ≺ a2 in St1 and b1 ≺ b2 in St2. We say the points in
Pco satisfy point order consistency if all pair of points in Pco are point-order consistent.

All introducing all relevant concepts, we can finally state the set of properties we
need for the dynamic program.

Lemma 3. After choosing H, we can ensure the following properties holds:

P1. (Active Region Uniqueness) Each substructure contains at most one active region.
P2. (Non-self-intersection) Every substructure is non-self-intersecting.
P3. (Acyclic 2-Matching) The substructure relation graph S is an acyclic 2-matching,

i.e., S consists of only paths. In each path, red edges and blue edges appear alter-
nately.

P4. (Point Order Consistency) Any point is covered by at most two substructures. The
points satisfy the point order consistency.

How to ensure all these properties will be discussed in details in Section 7. Now,
everything is in place to describe the dynamic program.
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6 Dynamic Programming

Suppose we have already constructed the setH such that Lemma 3 holds (along with an
orientation for each substructure). Without loss any generality, we can assume that the
remaining disks can cover all remaining points (otherwise, either the original instance is
infeasible or our guess iswrong). In fact, our dynamic program is inspired, and somewhat
similar to those in [2,16,22].

We can see that we only need to handle each path in S separately (since different
paths have no interaction at all). Hence, from now on, we simply assume that S is a
path. Suppose the substructures are {Stk(bk,Ak)}k∈[m]. We use Ak and Bk to denote
two endpoints of bk . Generalizing the previous section, a state for the general DP is
, = {Pk}k∈[m], where Pk is an intersection point in substructure Stk . Let bP k and tP k
be the two arcs intersecting at Pk . Suppose bP k ≺ tP k . We call arc bP k base-arc and tP k
top-arc for point ¶k . Denote the endpoints of bP k by Ck, C ′

k and the endpoints of tP k by
Dk, D′

k . Suppose bP k(P, C ′
k] intersects its first successor at Pb (called base-adjacent

point) and tP (P, D′
k] intersects its first successor at Pt (called top-adjacent point). For

each k ∈ [m], we define St[Pk ]
k (bk[Pk],Ak[Pk]) as follows.

– bk[Pk] is the concatenation of subarc bP [P, C ′
k] and the original baseline segment

b1[C ′
k, Pt ]. All arcs in b[P]

1 have cost zero.
– Ak[Pk] consists of all arcs a′ ∈ Ak such that bPk ≺ a′ (of course, with the portion
covered by bk[P] subtracted). The cost each such arc is the same as its original cost.

We use P(a) (or P(A)) to denote the points can be covered by arc a (or arc set A).
Let P [{Pk}k∈[m]

]
be the point set we need to cover in the subproblem: P [{Pk}k∈[m]

] =⋃
k∈[m] P(Ak[Pk]) − ⋃

k∈[m] P(bP k). The subproblem OPT({Pk}k∈[m]) is to find, for
each substructure Stk , a valid path from Pk to Bk , such that all points in P[{Pk}k∈[m]]
can be covered and the total cost is minimized.

The additional challenge for the general case is caused by R-correlations. If two arcs
(in two different substructures) belong to the same disk, we say that they are siblings
of each other. If we processed each substructure independently, some disks would be
counted twice. In order to avoid double-counting, we should consider both siblings
together, i.e., select them together and pay the disk only once in the DP.

In order to implement the above idea, we need a few more notations. We construct
an auxiliary bipartite graph B. The nodes on one side are all disks in D′ \ H, and the
node on the other side are substructures. If disk Di has an arc in the substructure St j , we
add an edge between Di and St j . Besides, for each arc of baselines, we add a node to
represent it and add an edge between the node and the substructure which contains the
arc. Because the weight of any arc of baselines is zero, it shall not induce contradiction
that regard them as independent arcs. In fact, there is a 1-1 mapping between the edges
inB and all arcs.

Fix a state , = {Pk}k∈[m]. For any arc a in Stk (with intersection point Pk and base-
arc bP k), a has three possible positions: (1) a ≺ bP k : we label its corresponding edge
with “unprocessed”; (2) a = bP k : we label its corresponding edgewith “processing”; (3)
Others: we label its corresponding edge with “done”. As mentioned before, we need to
avoid the situation where one arc becomes the base-arc first (i.e., being added in solution
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and paid once), and its sibling becomes the base-arc in a later step (hence being paid
twice). With the above labeling, we can see that all we need to do is to avoid the states
in which one arc is “processing” and its sibling is “unprocessed”. If disk D is incident
on at least one “processing” edge and not incident on any “unprocessed” edge, we say
the D is ready. LetR be the set of ready disks. For each ready disk D, we use Np(D) to
denote the set of neighbors (i.e., substructures) of D connected by “processing” edges.
We should consider all substructures in Np(D) together.

We need in our DP indicator variables to tell us whether a certain transition is
feasible: Formally, if P[{Pk}k∈[m]] = P[[Pk][Pb

i ]{i}], let Ii = 0. Otherwise, let Ii = 1.
For ease of notation, for a set {ek}k∈[m] and S ⊆ [m], we write [ek][e′

i ]S = {ek}k∈[m]\S ∪
{e′

i }i∈S .Hence, [Pk][Pb
i ]{i} = {Pk}k∈[m]\i ∪ Pb

i and [Pk][Pt
i ]Np(D) = {Pk}k∈[m]\Np(D) ∪

{Pt
i }i∈Np(D). Then we have the dynamic program as follows:

OPT
({Pk}k∈[m]

) = min

{
mini∈[m]

{
OPT

([Pk][Pb
i ]{i}

) + Ii · ∞}
, add no disk

minD∈R
{
OPT

(
[Pk][Pt

i ]Np(D)

)
+ wD

}
, add disk D

Note that in the second line, the arc(s) in Np(D) are base-arcs (w.r.t. state , ({Pk}k∈[m]).

7 Constructing H
In this section, we describe how to construct the set H in details. We first include in H
all square gadgets. The boundary of H consists of several closed curves, as shown in
Figure 1. H and all arcs in the uncovered region U(H) define a set of substructures.

First, we note that there may exist a closed curve that all points on the curve are
covered by some arcs (or informally, we have a cyclic substructure, with the baseline
being a cycle). We need to break all such baseline cycles by including a constant number
of extra arcs intoH. This is easy after we introduce the label-cut operation, and we will
spell out all details then. Note that we cannot choose some arbitrary envelope cycle since
it may ruin some good properties we want to maintain.

From now on, we assume that all baselines are simple paths. Now, each closed curve
contains one or more baselines. So, we have an initial set of well defined substructures.
The main purpose of this section is to cut these initial substructures such that Lemma 3
holds.

We will execute a series of operations for constructingH. We first provide below an
high level sketch of our algorithm, and outline how the substructures and the substructure
relation graph S evolve along with the operations.

– First, we deal with active regions. Sometimes, two active region may overlap signif-
icantly and become inseparable (formally defined later), they essentially need to be
dealt as a single active region. In this case, we merge the two active regions together
(we do not need to do anything, but just to pretend that there is only one active
region). We can also show that one active region can be merged with at most one
other active region. For the rest of cases, two overlapping active region are separable,
and we can cut them into at most two non-overlapping active regions, by adding a
small number of extra disks in H. After the merging and cutting operations, each
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substructure contains at most one active region. Hence, the substructures satisfy the
property (P1) in Lemma 3. Moreover, we show that if any substructure contains an
active region, the substructure is limited in a small region.

– We ensure that each substructure is non-self-intersecting, using a simple greedy
algorithm. After this step, (P2) is satisfied.

– In this step, we ensure that substructure relation graph S is an acyclic 2-matching
(P3). The step has three stages. First, we prove that the set of blue edges forms a
matching. Second, we give an algorithm for cutting the substructures which overlap
with two or more other substructures. After the cut, each substructure overlaps with
no more than one other substructure. So after the first two stages, we can see thatS
is composed of a blue matching and a red matching. At last, we prove that the blue
edges and red edges cannot form a cycle, establishing S is acyclic.

– The goal of this step is to ensure the point-order consistency (P4). We first show
there does not exist a point covered by more than two substructures, when S is
an acyclic 2-matching. Hence, we only need to handle the case of two overlapping
substructures. We show it is enough to break all cycles in a certain planar directed
graph. Again, we can add a few more disks to cut all such cycles.

– Lastly, we show that the number of disks added in H in the above four steps is
O(K 2).
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