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Abstract. The Lasserre/Sum-of-Squares (SoS) hierarchy is a system-
atic procedure for constructing a sequence of increasingly tight semidef-
inite relaxations. It is known that the hierarchy converges to the 0/1
polytope in n levels and captures the convex relaxations used in the best
available approximation algorithms for a wide variety of optimization
problems.

In this paper we characterize the set of 0/1 integer linear problems
and unconstrained 0/1 polynomial optimization problems that can still
have an integrality gap at level n − 1. These problems are the hardest
for the Lasserre hierarchy in this sense.

1 Introduction

The Sum of Squares (SoS) proof system introduced by Grigoriev and Vorob-
jov [20] is a proof system based on the Positivstellensatz. Shor [37], Nesterov [30],
Parrilo [33] and Lasserre [24] show that it can be efficiently automatized using
semidefinite programming (SDP) such that any n-variable degree-d proof can
be found in time nO(d). The SDP, often called the Lasserre/SoS1 hierarchy, is
the dual of the SoS proof system, meaning that the Lasserre hierarchy value at
“level d/2” of an optimization problem is equal to the best provable bound using
a degree-d SoS proof (see the monograph by Laurent [26]). For a brief history
of the different formulations from [20], [24], [33] and the relations between them
and results in real algebraic geometry we refer the reader to [32].

The Lasserre hierarchy can be seen as a systematic procedure to strengthen a
relaxation of an optimization problem by constructing a sequence of increasingly
tight SDP relaxations. The tightness of the relaxation is parametrized by its level
or round, which corresponds to the degree of the proof in the proof system. More-
over, it captures the convex relaxations used in the best available approximation
algorithms for a wide variety of optimization problems. For example, the first
round of the hierarchy for the Independent Set problem implies the Lovász
θ-function [28] and for the Max Cut problem it gives the Goemans-Williamson

This work replaces and improves an early version of the paper titled “The Lasserre
hierarchy in almost diagonal form” appeared in arXiv.

1 For brevity, we will interchange Lasserre hierarchy with SoS hierarchy since they are
essentially the same in our context.
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relaxation [15]. The ARV relaxation of the Sparsest Cut [2] problem is no
stronger than the relaxation given in the third round of the Lasserre hierarchy,
and the subexponential time algorithm for Unique Games [1] is implied by a
sublinear number of rounds [5,21]. More recently, it has been shown that O(1)
levels of the Lasserre hierarchy is equivalent in power to any polynomial size SDP
extended formulation in approximating maximum constraint satisfaction prob-
lems [27]. Other approximation guarantees that arise from the first O(1) levels of
the Lasserre (or weaker) hierarchy can be found in [5,6,9,10,12,13,21,29,34]. For
a more detailed overview on the use of hierarchies in approximation algorithms,
see the surveys [11,25,26].

The limitations of the Lasserre hierarchy have also been studied. Most of the
known lower bounds for the hierarchy originated in the works of Grigoriev [17,18]
(also independently rediscovered later by Schoenebeck [36]). In [18] it is shown
that random 3XOR or 3SAT instances cannot be solved by even Ω(n) rounds of
SoS hierarchy. Lower bounds, such as those of [7,38] rely on [18,36] plus gadget
reductions. For a different technique to obtain lower bounds, see the recent paper
[4].

A particular weakness of the hierarchy revolves around the fact that it has
hard time reasoning about terms of the form x1 + ... + xn using the fact that all
xi’s are 0/1. Grigoriev [17] showed that �n/2� levels of Lasserre are needed to
prove that the polytope {x ∈ [0, 1]n|∑n

i=1 xi = �n/2�+1/2} contains no integer
point. A simplified proof can be found in [19].

In [8] Cheung considered a simple instance of the Min Knapsack problem,
i.e. the minimization of

∑n
i=1 xi for 0/1 variables such that

∑n
i=1 xi ≥ δ(n), for

some δ(n) < 1 that depends on n. Cheung proved that the Lasserre hierarchy
requires n levels to converge to the integral polytope. This is shown by providing
a feasible solution at level n − 1 of value n

n+1 , whereas the smallest integral
solution has value 1. This gives an integrality gap2 of 1+ 1

n that vanishes with n.
We emphasize that the main interest in the work of Cheung revolves around

understanding how fast the Lasserre hierarchy converges to the integral poly-
tope and not how fast the integrality gap reduces, therefore not ruling out the
possibility that the integrality gap might decrease slowly with the number of
levels. This is conceptually an important difference. For the Max Knapsack
(or Min Knapsack) problem the presence of an integrality gap at some “large”
level t(n), that depends on n, is promptly implied by P �= NP , whereas the
existence of a “large” integrality gap at some “large” level t(n) is not immedi-
ately clear (since both Max Knapsack and Min Knapsack problems admit
an FPTAS). With this regard, note that Cheung’s result also implies that for
the Max Knapsack the Lasserre hierarchy requires n levels to converge to the
integral polytope. However, in [23] it is shown that only O(1/ε) levels are needed
to obtain an integrality gap of 1 − ε, for any arbitrarily small constant ε > 0. It
is also worth pointing out that currently the Cheung knapsack result [8] is the

2 The integrality gap is defined to be the measure of the quality of the relaxation
described by the ratio between the optimal integral value and the relaxed optimal
value. If this ratio is different from 1 we will say that “there is an integrality gap”.
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only known integrality gap result for Lasserre/Sum-of-Squares hierarchy at level
n − 1.

Our results. With n variables, the n-th level of the Lasserre hierarchy is suffi-
cient to obtain the 0/1 polytope, where the only feasible solutions are convex
combinations of feasible integral solutions [24]. This can be proved by using the
canonical lifting lemma (see Laurent [25]), where the feasibility of a solution to
the Lasserre relaxation at level n reduces to showing that a certain diagonal
matrix is positive semidefinite (PSD).

The main challenge in analyzing integrality gap instances at level smaller
than n is showing that a candidate solution satisfies the positive semidefinite
constraints. In this paper, we first show that the feasibility of a solution to the
Lasserre relaxation at level n − 1 reduces to showing that a matrix differing
from a diagonal matrix by a rank one matrix (almost diagonal form) is PSD.
We analyze the eigenvalues of the almost diagonal matrices and obtain compact
necessary and sufficient conditions for the existence of an integrality gap of the
Lasserre relaxation at level n − 1. This result can be seen as the opposite of [16]
where they consider the case when the first order Lasserre relaxation is exact.

Interestingly, for 0/1 integer linear programs the existence of a gap at level
n−1 implies that the problem formulation contains only constraints of the form
we call Single Vertex Cutting (SVC). An SVC constraint only excludes one vertex
of the {0, 1}n hypercube. It can thus be seen as the most generic non-trivial form
of constraint, since the feasible set of any integer linear program can be modeled
using only constraints of this form.

This characterization allows us to show that n levels of Lasserre are needed
to prove that a polytope defined by (exponentially many) SVC constraints con-
tains no integer point. No other example of this kind was known at level n (the
previously known example in [17] requires �n/2� levels).

One problem where SVC constraints can arise naturally is the Knapsack
problem. By applying the computed conditions, we improve the Cheung [8] Min
Knapsack integrality gap of the Lasserre relaxation at level n− 1 from 1+1/n
to any arbitrary large number. This shows a substantial difference between the
Min Knapsack and the Max Knapsack when we take into consideration the
integrality gap size of the Lasserre relaxation.

Furthermore, we show that a similar result holds beyond the class of integer
linear programs. More precisely, we show that any unconstrained 0/1 polyno-
mial optimization problem exhibiting an integrality gap at level n − 1 of the
Lasserre relaxation has necessarily an objective function given by a polynomial
of degree n. This rules out the existence of any integrality gap at level n − 1
for any k-ary boolean constraint satisfaction problem with k < n. Finally, we
provide an example of an unconstrained 0/1 polynomial optimization problem
with an integrality gap at level n − 1 of the Lasserre hierarchy, and discuss why
the problem can be seen as a constraint satisfaction version of an SVC con-
straint. Our result complements the recent paper [14] where it is shown that the
Lasserre relaxation does not have any gap at level �n

2 � when optimizing n-variate
0/1 polynomials of degree 2.
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2 The Lasserre Hierarchy

In this section we provide a definition of the Lasserre hierarchy [24]. For the
applications that we have in mind, we restrict our discussion to optimization
problems with 0/1-variables and linear constraints. More precisely, we consider
the following general optimization problem P: Given a multilinear polynomial
f : {0, 1}n → R

P : min{f(x)|x ∈ {0, 1}n, g�(x) ≥ 0 for � ∈ [m]} (1)

where {g�(x) : � ∈ [m]} are linear functions of x.
Many basic optimization problems are special cases of P. For example, any

k-ary boolean constraint satisfaction problem, such as Max Cut, is captured
by (1) where a degree k function f(x) counts the number of satisfied constraints,
and no linear constraints g�(x) ≥ 0 are present. Also any 0/1 integer linear
program is a special case of (1), where f(x) is a linear function.

Lasserre [24] proposed a hierarchy of SDP relaxations for increasing δ,

min{L(f)|L : R[X]2δ → R, L(1) = 1, and L(u2), L(u2g�) ≥ 0, ∀ polynomial u} (2)

where L : R[X]2δ → R is a linear map with R[X]2δ denoting the ring R[X]
restricted to polynomials of degree at most 2δ.3 In particular for 0/1 problems
L vanishes on the truncated ideal generated by x2

i − xi. Note that (2) is a
relaxation since one can take L to be the evaluation map f → f(x∗) for any
optimal solution x∗.

Relaxation (2) canbe equivalently formulated in termsofmomentmatrices [24].
In the context of this paper, this matrix point of view is more convenient to use and
it is described below. In our notation we mainly follow the survey of Laurent [25]
(see also [35]).

Variables and Moment Matrix. Throughout this paper, vectors are written as
columns. Let N denote the set {1, . . . , n}. The collection of all subsets of N
is denoted by P(N). For any integer t ≥ 0, let Pt(N) denote the collection of
subsets of N having cardinality at most t. Let y ∈ R

P(N). For any nonnegative
integer t ≤ n, let Mt(y) denote the matrix with (I, J)-entry yI∪J for all I, J ∈
Pt(N). Matrix Mt(y) is termed in the following as the t-moment matrix of y.
For a linear function g(x) =

∑n
i=1 gi · xi + g0, we define g ∗ y as a vector, often

called shift operator, where the I-th entry is (g ∗ y)I =
∑n

i=1 giyI∪{i} + g0yI . Let
f denote the vector of coefficients of polynomial f(x) (where fI is the coefficient
of monomial Πi∈Ixi in f(x)).

Definition 1. The Lasserre relaxation of problem (1) at the t-th level, denoted
as Last(P), is the following

3 In [3], L(p) is written Ẽ[p] and called the “pseudo-expectation” of p.
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Last(P) : min

⎧
⎨

⎩

∑

I⊆N

fIyI |y ∈ R
P2t+2d(N) and y ∈ M

⎫
⎬

⎭
(3)

where M is the set of vectors y ∈ R
P2t+2d(N) that satisfy the following PSD

conditions

y∅ = 1 (4)
Mt+d(y) � 0 (5)

Mt(g� ∗ y) � 0 � ∈ [m] (6)

where d = 0 if m = 0 (no linear constraints) otherwise d = 1.

We will use the following known facts (see e.g. [25,35]). Consider any vector
w ∈ R

P(N) (vector w is intended to be either the vector y ∈ R
P(N) of variables

or the shifted vector g ∗ y for any g ∈ R
P(N)). For any I ∈ P(N), variables

{wN
I : I ⊆ N} are defined as follows:

wN
I :=

∑

H⊆N\I

(−1)|H|wH∪I

Note that wI =
∑

I⊆J wN
J (by using inclusion-exclusion principle, see [35]). The

latter with y∅ = 1 implies that
∑

J⊆N yN
J = 1, and that the objective function

can be rewritten as follows:
∑

I⊆N

fIyI =
∑

I⊆N

f(xI)yN
I

where f(xI) denotes the value of f(x) when xi = 1 for i ∈ I and xi = 0 for i �∈ I.
Congruent transformations are known not to change the sign of the eigen-

values (see e.g. [22]). It follows that in studying the positive-semidefiniteness
of matrices we can focus on congruent matrices without loss of generality. Let
Dt(w) denote the diagonal matrix in R

Pt(N)×Pt(N) with (I, I)-entry equal to wN
I

for all I ∈ Pt(N).

Lemma 1. [25] Matrix Mn(w) is congruent to the diagonal matrix Dn(w).

By Lemma 1, Mn(y) � 0 implies that the variables in {yN
I : I ⊆ N} can be

interpreted as a probability distribution (see [25,35]), where yN
I is the probability

that the variables with index in I are set to one and the remaining to zero.

Lemma 2. [25] For any polynomial g of degree at most one, y ∈ R
P(N) and

z = g ∗ y we have zN
I = g(xI) · yN

I where g(xI) =
∑

i∈I ai + b.

Note that, by using Lemma 1 and Lemma 2, it can be easily shown the well
known fact that at level n any solution can be written as a convex combination
of feasible integral solutions. The latter implies that any integrality gap vanishes
at level n.
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3 The (n − 1)-Moment Matrix

In the following we show that Mn−1(w) is congruent to the diagonal matrix
Dn−1(w) perturbed by a rank one matrix, and analyze its eigenvalues. For ease
of notation, we will use D to denote Dn−1(w) throughout this section.

Lemma 3. Matrix Mn−1(w) is congruent to the matrix D + wN
N · vv�, where v

is a |Pn−1(N)|-dimensional vector with vI = (−1)n+1−|I| for any I ∈ Pn−1(N).

3.1 Positive Semidefiniteness of Mn−1(y)

In this section we derive the necessary and sufficient conditions for Mn−1(w) � 0.
From Lemma 3 we have that Mn−1(y) � 0 ⇔ D + wN

N vv� � 0, where vv� is a
rank one matrix with entries ±1.

Lemma 4. If wN
N �= 0 then, for any I ⊆ N , λ = wN

I is an eigenvalue of the
matrix D+wN

N vv� if and only if there is another J �= I with wN
I = wN

J , J ⊆ N ;
The remaining eigenvalues are the solutions λ of the following equation

∑

N 	=I⊆N

1
λ − wN

I

=
1

wN
N

(7)

Proof. Consider the zeroes λ of the characteristic polynomial of D + wN
N vv�:

det(λI − (D + wN
N vv�)) = det(Dλ − wN

N vv�) = 0 (8)

where Dλ = λI − D. Applying Cauchy’s formula for the determinant of a rank-
one pertubation [22, p. 26] we can write this as

det(Dλ) − wN
N v� adj(Dλ)v = 0 (9)

Consider a solution λ to (9). Exactly one of the following three cases must hold:

1. Dλ is nonsingular, meaning that λ �= wN
I for all N �= I ⊆ N . Then adj(Dλ) =

(det Dλ)D−1
λ and the above becomes

det(Dλ)(1 − wN
N v�D−1

λ v) = 0

which simplifies to (7).
2. Dλ is singular, and λ = wN

I for exactly one N �= I ⊆ N . Then adj(Dλ) =
αeIe

�
I for some nonzero α [22, p. 22-23], where (eI)J = 1 if I = J and

(eI)J = 0 otherwise. Now (9) simplifies to

wN
N v�(αeIe

�
I )v = 0

which can only hold if wN
N = 0. Hence such λ cannot be a solution to (8).

3. Dλ is singular and there are more than one N �= I ⊆ N such that λ = wN
I .

Then adj(Dλ) = 0 [22, p. 22] and λ is a solution to (8).
��
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Lemma 5. Matrix D + wN
N vv� is positive-semidefinite if and only if either

wN
I ≥ 0 for all I ⊆ N , or the following holds

wN
K < 0, for exactly one K ⊆ N, (10)

wN
J > 0, for all K �= J ⊆ N, (11)

∑

I⊆N

1
wN

I

≤ 0 (12)

Proof. If wN
I ≥ 0 for all I ⊆ N then D + wN

N vv� � 0 since it is the sum of two
PSD matrices. Otherwise, there exists I ⊆ N with wN

I < 0 and we distinguish
between the following complementary cases.

If there are two different sets N �= I, J ⊆ N such that wN
I = wN

J < 0, then by
Lemma 4 the matrix D + wN

N vv� has a negative eigenvalue. Therefore we may
assume that all the negative entries of D are different from each other. Then
by Lemma 4, any potentially negative eigenvalue is given by (7). With this in
mind, let f(λ) =

∑
N 	=I⊆N

1
λ−wN

I

and study the points λ where f(λ) intersects

the line given by 1
wN

N

.
There are three cases:

1. For two sets N �= I, J ⊆ N we have wN
I < wN

J ≤ 0. Then since the function
f(λ) has vertical asymptotes at the points wN

I and wN
J , there must be a

point λ < 0 such that f(λ) = 1
wN

N

regardless of the value of wN
N (see Figure

1 (i)).
2. For exactly one N �= I ⊆ N we have wN

I ≤ 0 and wN
N < 0. Then f(λ) has

one vertical asymptote in (−∞, 0] and thus the line 1
wN

N

crosses the graph of
f(λ) at least in one λ < 0 (see Figure 1 (ii)).

3. For exactly one I ⊆ N we have wN
I < 0 and the rest are strictly positive.

Then we note that there can be at most one λ < 0 such that f(λ) = 1
wN

N

.
Inspecting the form of the graph shows that there is no intersection in the
negative half-plane if and only if f(0) ≥ 1

wN
N

(see Figure 1 (iii) and (iv) for
the case I = N).

��

4 Integrality Gaps of Lasserre Hierarchy at Level n − 1

In this section we characterize the set of problems P of the form (1) that can
have an integrality gap at level n−1 of the Lasserre relaxation. In particular, we
prove that in order to exhibit an integrality gap, a constrained problem can only
have constraints each of which rule out only one point of the {0, 1}n hypercube.
We fully characterize what this means in the case where the constraints are
linear. We also discuss two examples of problems with such constraints, and in
particular, we exhibit a simple instance of the Min Knapsack problem that
has an unbounded integrality gap. Finally, we show that if P is an unconstrained
problem that has an integrality gap at level n − 1, then the objective function
of P must be a polynomial of degree n.
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Fig. 1. A conceptual plot of different relevant arrangements of the graph of f(λ) and
the graph of 1

wN
N

(dotted lines)

4.1 Problems with Linear Constraints

In this subsection we focus on 0/1-integer linear programs P of the form (1). We
will assume, w.l.o.g., that if constraint g(x) ≥ 0 is satisfied by all integral points
then it is redundant and no one of these redundant constraints is present.

Theorem 1. Let P be a 0/1-integer linear program of the form (1). The Lasserre
relaxation Lasn−1(P) has an integrality gap if and only if there exists a solution
{yN

I |I ⊆ N} that satisfies the following conditions:

yN
I > 0 for all I ⊆ N, (13)

∑

I⊆N

yN
I = 1 (14)

g�(xK�
)yN

K�
< 0 for exactly one K� ⊆ N for each � ∈ [m], (15)

g�(xJ)yN
J > 0 for all � ∈ [m], for all K� �= J ⊆ N, (16)

∑

I⊆N

1
g�(xI)yN

I

≤ 0 for all � ∈ [m], (17)

∑

I⊆N

yN
I f(xI) < f(xI∗) (18)

where f(xI∗) is a minimal integral feasible solution.
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Definition 2. We call g(x) ≥ 0 a Single Vertex Cutting (SVC) constraint if
there exists only one I ⊆ N such that g(xI) < 0 and for every other I �= J ⊆ N
it holds g(xJ) > 0.

Corollary 1. Let f(xI∗) denote the integral optimum of (1). If there is an
integrality gap, i.e., y ∈ Lasn−1(P) such that

∑
I⊆N yN

I f(xI) < f(xI∗), then the
constraints in (1) are SVC.

We are considering only problems with linear constraints over {0, 1}n, so it
is straightforward to characterize the SVC constraints.

Lemma 6. Let g(x) =
∑n

i=1 aixi−b ≥ 0 be a linear SVC constraint. Then b �= 0
and ai �= 0 for all i, and if P is the set of indices such that ai < 0 ⇔ i ∈ P ,
then

∑
i∈P ai < b, but

∑
i∈Q ai > b for all P �= Q ⊆ N .

4.2 Example Problems with SVC Constraints at Level n − 1

As proved in Corollary 1, SVC constraints are in some sense the most difficult
constraints to handle for the Lasserre hierarchy. Each such constraint excludes
only one point of the {0, 1}n hypercube, and thus the feasible set of any integer
linear program can be modeled using only these constraints. It follows that if
modeled in this way, any integer linear program can potentially have an inte-
grality gap at level n − 1 of the Lasserre hierarchy. In this section we give two
examples of problems where the Lasserre hierarchy does not converge to the
integer polytope even at level n − 1.

Unbounded Integrality Gap for the Min Knapsack. One problem where
the SVC constraint naturally arises is the Knapsack problem. We show that the
minimization version of the problem has an unbounded integrality gap at level
n− 1 of the Lasserre hierarchy. Indeed, consider the following simple instance of
the Min-Knapsack:

(GapKnap)min{∑n
i=1 xi|

∑n
i=1 xi ≥ 1/P, xi ∈ {0, 1} for i ∈ [n]} (19)

Notice that the optimal integral value of (GapKnap) is one. The optimal value
of the linear programming relaxation of (GapKnap) is 1/P , so the integrality
gap of the LP is P and can be arbitrarily large.

By using Theorem 1 we prove the following dichotomy-type result. If we
allow a “large” P (exponential in the number of variables n), then the Lasserre
hierarchy is of no help to limit the unbounded integrality gap of (GapKnap),
even at level (n − 1). This analysis is tight since Lasn(GapKnap) admits an
optimal integral solution with n variables. We also show that the requirement
that P is exponential in n is necessary for having a “large” gap at level (n − 1).

Corollary 2. (Integrality Gap Bounds for Min-Knapsack) The integrality gap
of Lasn−1(GapKnap) is k, for any k ≥ 2 if and only if P = Θ(k) · 22n.
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Remark 1. We observe that the instance (19) can be easily ruled out by requir-
ing that each coefficient of any variable must be not larger than the constant
term in the knapsack constraint. However, even with this pruning step, the
integrality gap can be made unbounded up to the last but two levels of the
Lasserre hierarchy: add an additional variable xn+1 only in the constraint (not
in the objective function) and increase the constant term to 1 + 1/P . Any solu-
tion for Lasn−1(GapKnap) can be easily turned into a feasible solution for
the augmented instance by setting the new variables y′

I = yI\{n+1} for any
I ∈ P2t+2([n+1]) and observing that any principal submatrix of the new moment
matrices has either determinant equal to zero or it is a principal submatrix in
the moment matrix of the reduced problem.

Undetected Empty Integer Hull. As discussed at the beginning of this
section, any integer linear problem can be modeled using SVC constraints. For-
mulating the problem in this “pathological” way can potentially hinder the con-
vergence of the Lasserre hierarchy. We demonstrate this by showing an extreme
example, where the Lasserre hierarchy cannot detect that the integer hull is
empty even at level n − 1.

Consider the feasible set given by (exponentially many) inequalities of the
form ∑

i∈P

(1 − xi) +
∑

i∈N\P

xi ≥ b (20)

for each P ⊆ N . Clearly, any integral assignment I such that xi = 1 if i ∈ I and
xi = 0 otherwise, cannot satisfy all of the inequalities when b is positive. However,
there exists an assignment of the variables yN

I that satisfies the conditions of
Theorem 1, and is hence a feasible solution to the Lasserre relaxation of the
polytope described above at level n − 1, as shown below.

Consider a symmetric solution yN
I = 1

2n for every I ⊆ N and some constraint
of the form (20) corresponding to a given set P ⊆ N . Now the variables zN

I =
g(xI)yN

I satisfy (15) and (16), and we need to check that it is possible to satisfy
(17):

∑

I⊆N

1
zN
I

=
1
2n

∑

I⊆N

1
|P \ I| + |I \ P | − b

≤ 0 ⇔
∑

∅ 	=I⊆N

1
|I| − b

≤ 1
b

When 0 < b < 1
2 , the above is implied by

∑
∅ 	=I⊆N 2 ≤ 1

b , so choosing b = 1
2n+1

makes (17) satisfied.

4.3 Unconstrained Problems at Level n − 1

Let f : {0, 1}n → R be an objective function of a polynomial minimization
problem normalized such that minx∈{0,1}n f(x) = 0 and maxx∈{0,1}n f(x) = 1.
We start with the conditions that an unconstrained polynomial optimization
problem has to satisfy in order do admit a gap at level n − 1.
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Theorem 2. Let P denote an unconstrained polynomial optimization problem
of the form (1). The Lasserre relaxation Lasn−1(P) has an integrality gap if and
only if there exists a solution {yN

I |I ⊆ N} that satisfies (18) and the following
conditions:

∑

I⊆N

yN
I = 1 (21)

yN
K < 0 for exactly one K ⊆ N, (22)

yN
J > 0 for all K �= J ⊆ N, (23)

∑

I⊆N

1
yN

I

≤ 0 (24)

We note that f can always be represented as a multivariate polynomial of
degree at most n. The main result of this section is Theorem 3.

Theorem 3. If f is a function such that f has an integrality gap at level n− 1,
then f is a multivariate polynomial of degree n.

Proof. We will use some elementary Fourier analysis of boolean functions (see
e.g. [31, Ch.1]). To follow an established convention, we switch from studying
the function f : {0, 1}n → R to h : {−1, 1}n → R via the bijective transform
f(x) = h(1 − 2x). Observe that f is of degree t if and only if h is of degree t,
and for any S ⊆ N we have f(xS) = h(wS), where wi = −1 if i ∈ S and wi = 1
otherwise.

Assume as before that for some I1 ⊆ N , h(wI1) = 1 and 0 ≤ h(wI) ≤ 1. We
assume that |I1| is even and let I2 ⊆ N be some fixed set such that |I2| is odd
(the case where |I1| is odd is symmetric). We assume that h has an integrality
gap, so by Lemma 7 (see below) necessarily

∑
I⊆N h(wI) < 2, which we rewrite

in a more convenient form (using h(wI1) = 1)

h(wI2) < 1 −
∑

I1 	=I 	=I2

h(wI) (25)

Assume now that h has a degree smaller than n, or in other words, its Fourier
coefficient ĥ(N) is 0:

ĥ(N) = 2−n
∑

S⊆N

h(wS)(−1)|S| = 0

Removing the normalizing constant and reordering the sum the above implies
(using the assumptions on the parity of |I1|, |I2|)

∑

S 	=I1
|S| even

h(wS) −
∑

S 	=I2
|S| odd

h(wS) = −1 + h(wI2) < −
∑

I1 	=I 	=I2

h(wI)

by (25). Moving all the h terms to the left hand side yields

2
∑

S 	=I1
|S| even

h(wS) < 0
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which contradicts the assumption that h(w) ≥ 0. ��
Lemma 7. Let f(xI1) = 1 and 0 ≤ f(x) ≤ 1 for every x ∈ {0, 1}n. If f is such
that

∑
I⊆N f(xI) ≥ 2 then there is no gap at level n − 1.

We point out that there exists a function of degree n that exhibits an inte-
grality gap at level n − 1. Consider the function given by

f(x) = 1 −
∑

∅ 	=I⊆N

(−1)|I| ∏

i∈I

xi

This function has the value 1 when all the variables are 0, and 0 elsewhere.
It is a straightforward application of Theorem 2 to show that f(x) exhibits an
integrality gap at level n − 1. We remark that f(x) can be seen as a constraint
satisfaction version of an SVC constraint.
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