
Near-Linear Query Complexity
for Graph Inference

Sampath Kannan1, Claire Mathieu2, and Hang Zhou2(B)

1 Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA, USA

kannan@cis.upenn.edu
2 Département d’Informatique UMR CNRS 8548,

École Normale Supérieure, Paris, France
{cmathieu,hangzhou}@di.ens.fr

Abstract. How efficiently can we find an unknown graph using distance
or shortest path queries between its vertices? Let G = (V, E) be a con-
nected, undirected, and unweighted graph of bounded degree. The edge
set E is initially unknown, and the graph can be accessed using a distance
oracle, which receives a pair of vertices (u, v) and returns the distance
between u and v. In the verification problem, we are given a hypothetical
graph Ĝ = (V, Ê) and want to check whether G is equal to Ĝ. We ana-
lyze a natural greedy algorithm and prove that it uses n1+o(1) distance
queries. In the more difficult reconstruction problem, Ĝ is not given, and
the goal is to find the graph G. If the graph can be accessed using a short-
est path oracle, which returns not just the distance but an actual shortest
path between u and v, we show that extending the idea of greedy gives a
reconstruction algorithm that uses n1+o(1) shortest path queries. When
the graph has bounded treewidth, we further bound the query complex-
ity of the greedy algorithms for both problems by Õ(n). When the graph
is chordal, we provide a randomized algorithm for reconstruction using
Õ(n) distance queries.

1 Introduction

How efficiently can we find an unknown graph using distance or shortest path
queries between its vertices? This is a natural theoretical question from the
standpoint of recovery of hidden information. This question is related to the
reconstruction of Internet networks. Discovering the topology of the Internet
is a crucial step for building accurate network models and designing efficient
algorithms for Internet applications. Yet, this topology can be extremely difficult
to find, due to the dynamic structure of the network and to the lack of centralized
control. The network reconstruction problem has been studied extensively [1,2,
5,6,10,12]. Sometimes we have some idea of what the network should be like,
based perhaps on its state at some past time, and we want to check whether our
image of the network is correct. This is network verification and has received

The full version of the paper is available on the authors’ websites.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 773–784, 2015.
DOI: 10.1007/978-3-662-47672-7_63

774 S. Kannan et al.

attention recently [2,3,6]. This is an important task for routing, error detection,
or ensuring service-level agreement (SLA) compliance, etc. For example, Internet
service providers (ISPs) offer their customers services that require quality of
service (QoS) guarantees, such as voice over IP services, and thus need to check
regularly whether the networks are correct.

The topology of Internet networks can be investigated at the router and
autonomous system (AS) level, where the set of routers (ASs) and their physical
connections (peering relations) are the vertices and edges of a graph, respectively.
Traditionally, we use tools such as traceroute and mtrace to infer the network
topology. These tools generate path information between a pair of vertices. It
is a common and reasonably accurate assumption that the generated path is
the shortest one, i.e., minimizes the hop distance between that pair. In our
first theoretical model, we assume that we have access to any pair of vertices
and get in return their shortest path in the graph. Sometimes routers block
traceroute and mtrace requests (e.g., due to privacy and security concerns), thus
the inference of topology can only rely on delay information. In our second
theoretical model, we assume that we get in return the hop distance between a
pair of vertices. The second model was introduced in [10].

Graph inference using queries that reveal partial information has been stud-
ied extensively in different contexts, independently stemming from a number of
applications. Beerliova et al. [2] studied network verification and reconstruction
using an oracle, which, upon receiving a node q, returns all shortest paths from q
to all other nodes, instead of one shortest path between a pair of nodes as in our
first model. Erlebach et al. [6] studied network verification and reconstruction
using an oracle which, upon receiving a node q, returns the distances from q to
all other nodes in the graph, instead of the distance between a pair of nodes as
in our second model. They showed that minimizing the number of queries for
verification is NP-hard and admits an O(log n)-approximation algorithm. In the
network realization problem, we are given the distances between certain pairs
of vertices and asked to determine the sparsest graph (in the unweighted case)
or the graph of least total weight that realizes these distances. This problem
was shown to be NP-hard [4]. In evolutionary biology, a well-studied problem
is reconstructing evolutionary trees, thus the hidden graph has a tree structure.
See for example [7,9,11]. One may query a pair of species and get in return the
distance between them in the (unknown) tree. In our reconstruction problem, we
allow the hidden graph to have an arbitrarily connected topology, not necessarily
a tree structure.

1.1 The Problem

Let G = (V, E) be a hidden graph that is connected, undirected, and unweighted,
where |V | = n. We consider two query oracles. A shortest path oracle receives a
pair (u, v) ∈ V 2 and returns a shortest path between u and v.1 A distance oracle

1 If there are several shortest paths between u and u, the oracle returns an arbitrary
one.

Near-Linear Query Complexity for Graph Inference 775

receives a pair (u, v) ∈ V 2 and returns the number of edges on a shortest path
between u and v.

In the graph reconstruction problem, we are given the vertex set V and have
access to either a distance oracle or a shortest path oracle. The goal is to find
every edge in E.

In the graph verification problem, again we are given V and have access to
either oracle. In addition, we are given a connected, undirected, and unweighted
graph Ĝ = (V, Ê). The goal is to check whether Ĝ is correct, that is, whether
Ĝ = G.

The efficiency of an algorithm is measured by its query complexity2, i.e., the
number of queries to an oracle. We focus on query complexity, while all our
algorithms are of polynomial time and space. We note that O(n2) queries are
enough for both reconstruction and verification via a distance oracle or a shortest
path oracle: we only need to query every pair of vertices.

Let Δ denote the maximum degree of any vertex in the graph G. Unless
otherwise stated, we assume that Δ is bounded, which is reasonable for real
networks that we want to reconstruct or verify. Indeed, when Δ is Ω(n), both
reconstruction and verification require Ω(n2) distance or shortest path queries.

Let us focus on bounded degree graphs. It is not hard to see that Ω(n) dis-
tance or shortest path queries are required. The central question in this line
of work is therefore: Is the query complexity linear, quadratic, or some-
where in between? In [10], Mathieu and Zhou provide a first answer: the query
complexity for reconstruction via a distance oracle is subquadratic: Õ(n3/2). In
this paper, we show that the query complexity for reconstruction via a short-
est path oracle or verification via either oracle is near-linear: n1+o(1). It is open
whether there is an algorithm for reconstruction using a near-linear number of
distance queries.

1.2 Our Results

Verification

Theorem 1. For graph verification using a distance oracle, there is a determin-
istic algorithm (Algorithm 1) with query complexity n

1+O
(√

(log log n+log Δ)/ log n
)
,

which is n1+o(1) when the maximum degree Δ = no(1). If the graph has treewidth
w, the query complexity can be further bounded by O(Δ(Δ + w log n)n log2 n),
which is Õ(n) when Δ and w are O(polylog n).

The main task for verification is to confirm the non-edges of the graph.
Algorithm 1 is greedy: every time it makes a query that confirms the largest
number of non-edges that are not yet confirmed. To analyze the algorithm, first,
we show that its query complexity is roughly ln n times the optimal number of
queries OPT for verification. This is based on a reduction to the Set-Cover
problem, see Section 3.1. It only remains to bound OPT .

2 Expected query complexity in the case of randomized algorithms.

776 S. Kannan et al.

Table 1. Results (for bounded degree graphs). New results are in bold.
Objective Query complexity

verification via either oracle n1+o(1)

bounded treewidth: Õ(n)
(Thm 1, Cor 2, and Thm 3)reconstruction via a shortest path oracle

reconstruction via a distance oracle

Õ(n3/2) [10]
Ω(n log n/ log log n) (Thm 5)
outerplanar: Õ(n) [10]
chordal: Õ(n) (Thm 4)

To bound OPT and get the first statement in Theorem 1, it is enough to
prove the desired bound for a different verification algorithm. This algorithm
is a more sophisticated recursive version of the algorithm in [10]. Recursion is
a challenge because, when we query a pair (u, v) in a recursive subgraph, the
oracle returns the distance between u and v in the entire graph, not just within
the subgraph. Thus new ideas are introduced for the algorithmic design. See
Section 3.3.

To show the second statement in Theorem 1, similarly, we design another
recursive verification algorithm with query complexity Õ(n) for graphs of
bounded treewidth. The algorithm uses some bag of a tree decomposition to
separate the graph into balanced subgraphs, and then recursively verifies each
subgraph. The same obstacle to recursion occurs. Our approach here is to add
a few weighted edges to each subgraph in order to preserve the distance metric.
The complete proof is in the full version of the paper.

We note that each query to a distance oracle can be simulated by the same
query to a shortest path oracle. So from Theorem 1, we have:

Corollary 2. For graph verification using a shortest path oracle, Algorithm 1
achieves the same query complexity as in Theorem 1.

Reconstruction

Theorem 3. For graph reconstruction using a shortest path oracle, there is a
deterministic algorithm (Algorithm 4) that achieves the same query complexity
as in Theorem 1.

The key is to formulate this problem as a problem of verification using a
distance oracle, so that we get the same query complexity as in Theorem 1.
We extend the idea of greedy in Algorithm 1, and we show that each query to
a shortest path oracle makes as much progress for reconstruction as the corre-
sponding query to a distance oracle would have made for verifying a given graph.
The main realization here is that reconstruction can be viewed as the verification
of a dynamically changing graph. See Section 4.

Near-Linear Query Complexity for Graph Inference 777

Theorem 4. For reconstruction of chordal graphs using a distance oracle, there
is a randomized algorithm with query complexity O

(
Δ32Δ · n(2Δ + log2 n) log n

)
,

which is Õ(n) when the maximum degree Δ is O(log log n).

The algorithm in Theorem 4 first finds a separator using random sampling
and statistical estimates, as in [10]. Then it partitions the graph into subgraphs
with respect to this separator and recurses on each subgraph. However, the
separator here is a clique instead of an edge in [10] for outerplanar graphs. Thus
the main difficulty is to design and analyze a more general tool for partitioning
the graph. The proof of the theorem is in the full version of the paper.

Lower Bounds. For graphs of bounded degree, both reconstruction and ver-
ification require Ω(n) distance or shortest path queries. In addition, there is a
slightly better lower bound for reconstruction using a distance oracle, as in the
following theorem.

Theorem 5. For graph reconstruction using a distance oracle, assuming the
maximum degree Δ ≥ 3 is such that Δ = o

(
n1/2)

, any algorithm has query
complexity Ω(Δn log n/ log log n).

The proof of Theorem 5 is in the full version of the paper.

2 Notation

Let δ be the distance metric of G. For a subset of vertices S ⊆ V and a vertex
v ∈ V , define δ(S, v) to be mins∈S δ(s, v). For v ∈ V , let N(v) = {u ∈ V :
δ(u, v) ≤ 1} and let N2(v) = {u ∈ V : δ(u, v) ≤ 2}. We define δ̂, N̂ , and N̂2
similarly with respect to the graph Ĝ.

For a graph G = (V, E), a distinct pair of vertices uv ∈ V 2 is an edge of G if
uv ∈ E, and is a non-edge of G if uv /∈ E.

For a subset of vertices S ⊆ V , let G[S] be the subgraph induced by S. For a
subset of edges H ⊆ E, we identify H with the subgraph induced by the edges
of H. Let δH denote the distance metric of the subgraph H.

For a vertex s ∈ V and a subset T ⊆ V , define Query(s, T) as Query(s, t)
for every t ∈ T . For subsets S, T ⊆ V , define Query(S, T) as Query(s, t) for
every (s, t) ∈ S × T .

In the verification problem, an algorithm performs a set of queries, and its
output is no if some query gives the wrong distance (or shortest path), and is
yes if all queries give the right distances (or shortest paths).

3 Proof of Theorem 1

3.1 Greedy Algorithm

The task of verification comprises verifying that every edge of Ĝ is an edge of G,
and verifying that every non-edge of Ĝ is a non-edge of G. The second part is

778 S. Kannan et al.

called non-edge verification. In the second part, we assume that the first part is
already done, which guarantees that Ê ⊆ E. For graphs of bounded degree, the
first part requires only O(Δn) queries, thus the focus is on non-edge verification.

Theorem 6. For graph verification using a distance oracle, there is a deter-
ministic greedy algorithm (Algorithm 1) that uses at most Δn + (ln n + 1) ·OPT
queries, where OPT is the optimal number of queries for non-edge verification.

Now we prove Theorem 6. Let N̂E be the set of the non-edges of Ĝ. For each
pair of vertices (u, v) ∈ V 2, we define Su,v ⊆N̂E as follows:

Su,v =
{

ab ∈N̂E : δ̂(u, a) + δ̂(b, v) + 1 < δ̂(u, v)
}

. (1)

The following two lemmas relate the sets Su,v with non-edge verification.

Lemma 7. Assume that Ê ⊆ E. For every (u, v) ∈ V 2, if δ(u, v) = δ̂(u, v), then
every pair ab ∈ Su,v is a non-edge of G.

Proof. Consider any pair ab ∈ Su,v. By the triangle inequality, δ(u, a)+ δ(a, b)+
δ(b, v) ≥ δ(u, v) = δ̂(u, v). By the definition of Su,v and using Ê ⊆ E, we have
δ̂(u, v) > δ̂(u, a) + δ̂(b, v) + 1 ≥ δ(u, a) + δ(b, v) + 1. Thus δ(a, b) > 1, i.e., ab is
a non-edge of G. ��
Lemma 8. If a set of queries T verifies that every non-edge of Ĝ is a non-edge
of G, then

⋃
(u,v)∈T Su,v =N̂E.

Proof. Assume, for a contradiction, that some ab ∈ N̂E does not belong to any
Su,v for (u, v) ∈ T . Consider adding ab to the set of edges of Ê: this will not
create a shorter path between u and v, for any (u, v) ∈ T . Thus including ab
in Ê is consistent with the answers of all queries in T . This contradicts the
assumption that T verifies that ab is a non-edge of G. ��

From Lemmas 7 and 8, the non-edge verification is equivalent to the Set-
Cover problem with the universeN̂E and the sets {Su,v : (u, v) ∈ V 2}. The Set-
Cover instance can be solved using the well-known greedy algorithm [8], which
gives a (ln n + 1)-approximation. Hence our greedy algorithm for verification
(Algorithm 1). For the query complexity, first, verifying that Ê ⊆ E takes at
most Δn queries, since the graph has maximum degree Δ. The part of non-edge
verification uses a number of queries that is at most (ln n + 1) times the optimal
number of queries. This proves Theorem 6.

3.2 Bounding OPT to Prove Theorem 1

From Theorems 6, in order to prove Theorem 1, we only need to bound OPT ,
as in the following two theorems.

Theorem 9. For graph verification using a distance oracle, the optimal number
of queries OPT for non-edge verification is n

1+O
(√

(log log n+log Δ)/ log n
)
.

Near-Linear Query Complexity for Graph Inference 779

Algorithm 1. Greedy Verification
1: procedure Verify(Ĝ)
2: for uv ∈ Ê do Query(u, v)
3: Y ← ∅
4: while Ê ∪ Y does not cover all vertex pairs do
5: choose (u, v) that maximizes |Su,v \ Y | � Su,v defined in Equation (1)
6: Query(u, v)
7: Y ← Y ∪ Su,v

Theorem 10. For graph verification using a distance oracle, if the graph has
treewidth w, then the optimal number of queries OPT for non-edge verification
is O(Δ(Δ + w log n)n log n).

Theorem 1 follows trivially from Theorems 6, 9, and 10, by noting that both
Δ and log n are smaller than n

√
(log log n+log Δ)/ log n. The proof of Theorem 9 is

in Section 3.3, and the proof of Theorem 10 is in the full version of the paper.

3.3 Proof of Theorem 9

To show Theorem 9, we provide a recursive algorithm for non-edge verifica-
tion with the query complexity in the theorem statement. As in [10], the algo-
rithm selects a set of centers partitioning V into Voronoi cells and expands them
slightly so as to cover all edges of G. But unlike [10], instead of using exhaustive
search inside each cell, the algorithm verifies each cell recursively. The recur-
sion is a challenge because the distance oracle returns the distance in the entire
graph, not in the cell. Straightforward attempts to use recursion lead either to
subcells that do not cover all edges of the cell, or to excessively large subcells.
Our approach is to allow selection of centers outside the cell, while still limiting
the subcells to being contained inside the cell (Figure 1). This simple but subtle
setup is one novelty of the algorithmic design.

The verification algorithm uses the function Subset-Centers (Algo-
rithm 2), which takes as input a graph Ĝ = (V, Ê), a subset of vertices
U ⊆ V , and an integer s ∈ [1, n], and outputs a set of centers A ⊆ V
such that in the graph Ĝ, the vertices of the subset U are roughly equipar-
titioned into the Voronoi cells centered at vertices in A. This algorithm is
a generalization of the Center algorithm by Thorup and Zwick [13]: when
the subset U equals V , the Subset-Centers algorithm becomes their Cen-
ter algorithm. For every w ∈ V , we define w’s cluster in the graph G as
CA(w) = {v ∈ V : δ(w, v) < δ(A, v)}. We note that if w ∈ A, then CA(w) = ∅,
since δ(w, v) ≥ δ(A, v), for every v ∈ V . Similarly, we define w’s cluster in the
graph Ĝ as ĈA(w) = {v ∈ V : δ̂(w, v) < δ̂(A, v)}. The subscript A is omitted
when clear from the context.

The following lemma is a straightforward extension of Theorem 3.1 in [13].

780 S. Kannan et al.

Algorithm 2. Finding Centers for a Subset
1: function Subset-Centers(Ĝ, U, s)
2: A ← ∅
3: while there exists w ∈ V such that |Ĉ(w) ∩ U | > 4|U |/s do
4: W ← {w ∈ V : |Ĉ(w) ∩ U | > 4|U |/s}
5: Add each element of W to A with probability min (s/|W |, 1)
6: return A

Lemma 11. The function Subset-Centers (Algorithm 2) outputs a set A ⊆
V , such that, with probability at least 1/2, we have |A| ≤ 4s log n and |Ĉ(w) ∩
U | ≤ 4|U |/s for every w ∈ V . It uses no queries and its running time is polyno-
mial.

Next, we design a recursive algorithm for non-edge verification. Let U ⊆ V
represent the set of vertices for which we are currently verifying the induced sub-
graph. Verifying that every non-edge of Ĝ[U] is a non-edge of G[U] is equivalent
to verifying that every edge of G[U] is an edge of Ĝ[U].

Let A be a set of centers computed by Subset-Centers. We define, for each
a ∈ A, its extended Voronoi cell Da as

Da =
(⋃

{C(b) : b ∈ N2(a)} ∪ N2(a)
)

∩ U. (2)

Similarly, with respect to the graph Ĝ, we define

D̂a =
(⋃ {

Ĉ(b) : b ∈ N̂2(a)
}

∪ N̂2(a)
)

∩ U. (3)

The following lemma is a trivial extension of Lemma 3 in [10].
Lemma 12.

⋃
a∈A G[Da] covers every edge of G[U].

From Lemma 12, in order to verify that every edge of G[U] is an edge of
Ĝ[U], we only need to verify that every edge of G[Da] is an edge of Ĝ[Da], for
every a ∈ A. So we can apply recursion on each Da.

The main difficulty is: How to obtain Da efficiently? If we compute Da

from its definition, we first need to compute N2(a), which requires Ω(n) queries
since N2(a) may contain nodes outside U . Instead, a careful analysis shows that
we can check whether Da = D̂a without even knowing N2(a), whereas D̂a can
be inferred from the graph Ĝ with no queries. This is shown in Lemma 13, which
is the main novelty of the algorithmic design.

Lemma 13. Assume that Ê ⊆ E. If δ(u, v) = δ̂(u, v) for every pair (u, v) from⋃
a∈A N̂2(a) × U , then Da = D̂a for all a ∈ A.

Proof. The proof is delicate but elementary. For every b ∈ ⋃
a∈A N̂2(a), we have

Ĉ(b) ∩ U = C(b) ∩ U , because δ̂(b, u) = δ(b, u) and δ̂(A, u) = δ(A, u) for every
u ∈ U . Therefore, D̂a can be rewritten as

D̂a =
(⋃ {

C(b) : b ∈ N̂2(a)
}

∪ N̂2(a)
)

∩ U.

Near-Linear Query Complexity for Graph Inference 781

Algorithm 3. Recursive Verification
1: procedure Verify-Subgraph(Ĝ, U)
2: if |U | > n0 then
3: repeat
4: A ← Subset-Centers(Ĝ, U, s)
5: until |A| ≤ 4s log n and |Ĉ(w) ∩ U | ≤ 4|U |/s for every w ∈ V
6: for a ∈ A do
7: Query(N̂2(a), U)
8: Verify-Subgraph(Ĝ, D̂a) � D̂a defined in Equation (3)
9: else

10: Query(U, U)

Since Ê ⊆ E, we have N̂2(a) ⊆ N2(a). Therefore D̂a ⊆ Da.
On the other hand, we have N2(a)∩U ⊆ N̂2(a)∩U , because δ̂(a, u) = δ(a, u)

for every u ∈ N2(a) ∩ U . To prove Da ⊆ D̂a, it only remains to show that, for
any vertex u /∈ N2(a) such that u ∈ C(b) ∩ U for some b ∈ N2(a), we have
u ∈ C(x) ∩ U for some x ∈ N̂2(a). We choose x to be the vertex at distance 2
from a on a shortest a-to-u path in Ĝ. By the assumption and the definition of
x, we have:

δ(x, u) = δ̂(x, u) = δ̂(a, u) − 2 = δ(a, u) − 2.

By the triangle inequality, and using b ∈ N2(a) and u ∈ C(b), we have:

δ(a, u) ≤ δ(a, b) + δ(b, u) ≤ 2 + δ(b, u) < 2 + δ(A, u).

Therefore δ(x, u) < δ(A, u). Thus u ∈ C(x) ∩ U . ��
The recursive algorithm for non-edge verification is in Algorithm 3. It queries

every (u, v) ∈ ⋃
a∈A N̂2(a) × U and then recurses on each extended Voronoi cell

D̂a. See Figure 1. The parameters n0 and s are defined later. Correctness of the
algorithm follows from Lemmas 12 and 13.

Now we bound the query complexity of Verify-Subgraph(Ĝ, V). To pro-
vide intuition, we analyze an algorithm of 4 recursive levels, and show that its
query complexity is Õ(n4/3). The complete proof of the complexity stated in
Theorem 9 is in the full version of the paper.

To simplify the presentation, we assume Δ = O(1). Let s = n1/3 and
let n0 be some well-chosen constant. Consider any recursive call Verify-
Subgraph(Ĝ, U) where |U | > n0. Let A ⊆ V be the centers at the end of
the repeat loop. By Lemma 11, the expected number of repeat loops is con-
stant. For every a ∈ A, N̂2(a) has constant size, since the graph has bounded
degree. Every Ĉ(w) ∩ U has size O(|U |/n1/3), so every D̂a has size O(|U |/n1/3).
Since |A| = Õ(n1/3), the number of recursive calls on the next level is Õ(n1/3).
Therefore during the recursion, on the second level, there are Õ(n1/3) recursive
calls, where every subset has size O(n2/3); on the third level, there are Õ(n2/3)
recursive calls, where every subset has size O(n1/3); and on the fourth level, there
are Õ(n) recursive calls, where every subset has size O(1). Every recursive call

782 S. Kannan et al.

a

D̂a

a′
D̂′

a′

Fig. 1. Two levels of recursive calls of Verify-Subgraph(Ĝ, V): The solid points are
top-level centers returned by Subset-Centers(Ĝ, V, s). The dotted lines indicate the
partition of V into Voronoi cells by those centers. The region inside the outer curve rep-
resents the extended Voronoi cell D̂a of a center a. On the second level of the recursive
call for D̂a, the hollow points are the centers returned by Subset-Centers(Ĝ, D̂a, s).
Observe that some of those centers lie outside D̂a. The dashed lines indicate the par-
tition of D̂a into Voronoi cells by those centers. The region inside the inner curve
represents the extended Voronoi cell D̂′

a′ of a second-level center a′.

with subset U uses Õ(n1/3 · |U |) queries. Therefore, the overall query complexity
is Õ(n4/3).

Remark. The recursive algorithm (Algorithm 3) can be used for verification by
itself. However, we only use its query complexity to provide guarantee for the
greedy algorithm (Algorithm 1), because the greedy algorithm is much simpler.

4 Proof of Theorems 3

The algorithm (Algorithm 4) constructs an increasing set X of edges so that
in the end X = E. At any time, the candidate graph is X.3 Initially, X is the
union of the shortest paths given as answers by n − 1 queries, so that X is a
connected subgraph spanning V . At each subsequent step, the algorithm makes
a query that leads either to the confirmation of many non-edges of G, or to the
discovery of an edge of G.

Formally, we define, for every pair (u, v) ∈ V 2,

SX
u,v =

{
ab ∈ non-edges of X : δX(u, a) + δX(b, v) + 1 < δX(u, v)

}
. (4)

3 We identify X with the subgraph induced by the edges of X.

Near-Linear Query Complexity for Graph Inference 783

Algorithm 4. Greedy Reconstruction
1: procedure Reconstruct(V)
2: u0 ← an arbitrary vertex
3: for u ∈ V \ {u0} do Query(u, u0) to get a shortest u-to-u0 path
4: X ← the union of the above paths, Y ← ∅
5: while X ∪ Y does not cover all vertex pairs do
6: choose (u, v) that maximizes |SX

u,v \ Y | � SX
u,v defined in Equation (4)

7: Query(u, v) to get a shortest u-to-v path
8: if δG(u, v) = δX(u, v) then
9: Y ← Y ∪ SX

u,v

10: else
11: e ← some edge of the above u-to-v path that is not in X
12: X ← X ∪ {e}
13: return X

This is similar to Su,v defined in Equation (1). From Lemma 7, the pairs in SX
u,v

can be confirmed as non-edges of G if δG(u, v) = δX(u, v). At each step, the
algorithm queries a pair (u, v) that maximizes the size of the set SX

u,v \ Y . As
a consequence, either all pairs in SX

u,v \ Y are confirmed as non-edges of G, or
δG(u, v) �= δX(u, v), and in that case, the query reveals an edge along a shortest
u-to-v path in G that is not in X; we then add this edge to X.

To see the correctness, we note that the algorithm maintains the invariant
that the pairs in X are confirmed edges of G, and that the pairs in Y are
confirmed non-edges of G. Thus when X ∪ Y covers all vertex pairs, we have
X = E.

For the query complexity, first, consider the queries that lead to δG(u, v) �=
δX(u, v). For each such query, an edge is added to X. This can happen at most
|E| ≤ Δn times, because the graph has maximum degree Δ.

Next, consider the queries that lead to δG(u, v) = δX(u, v). Define R to be
the set of vertex pairs that are not in X ∪ Y . We analyze the size of R during
the algorithm. For each such query, the size of R decreases by |SX

u,v \ Y |. To
lower bound |SX

u,v \ Y |, we consider the problem of non-edge verification using
a distance oracle on the input graph X, and let T be an (unknown) optimal set
of queries. By Theorem 9, |T | is at most f(n, Δ) = n

1+O
(√

(log log n+log Δ)/ log n
)
.

By Lemma 8, the sets SX
u,v for all pairs (u, v) ∈ T together cover R ∪ Y , hence

R. Therefore, at least one of these pairs satisfies

|SX
u,v \ Y | ≥ |R|/|T | ≥ |R|/f(n, Δ).

Initially, |R| ≤ n(n − 1)/2, and right before the last query, |R| ≥ 1, thus the
number of queries with δG(u, v) = δX(u, v) is O(log n) · f(n, Δ).

Therefore, the overall query complexity is O(Δn + log n · f(n, Δ)). Thus we
obtained the same query bound as in the first statement of Theorem 1. To prove
the query bound for graphs of treewidth w as in the second statement, the

784 S. Kannan et al.

analysis is identical as above, except that f(n, Δ) = O(Δ(Δ + w log n)n log n),
which comes from Theorem 10.
Remark. Note that the above proof depends crucially on the fact that f(n, Δ) is
a uniform bound on the number of distance queries for the non-edge verification
of any n-vertex graph of maximum degree Δ. Thus, even though the graph X
changes during the course of the algorithm because of queries (u, v) such that
δG(u, v) �= δX(u, v), each query for which the distance in G and the current X
are equal confirms 1/f(n, Δ) fraction of non-edges.

Acknowledgments. We thank Uri Zwick for Theorem 5. We thank Fabrice Ben-
hamouda, Mathias Bæk Tejs Knudsen, Mikkel Thorup, and Jacob Holm for discus-
sions. The first author was partially supported by NSF Grant NRI 1317788. The last
two authors were partially supported by the French Agence Nationale de la Recherche
under reference ANR-12-BS02-005 (RDAM project).

References
1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute

sampling: or, power-law degree distributions in regular graphs. Journal of the ACM
(JACM) 56(4), 21 (2009)

2. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M.,
Shankar Ram, L.: Network discovery and verification. In: Kratsch, D. (ed.) WG
2005. LNCS, vol. 3787, pp. 127–138. Springer, Heidelberg (2005)

3. Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent
developments. Statistical Science 19, 499–517 (2004)

4. Chung, F., Garrett, M., Graham, R., Shallcross, D.: Distance realization prob-
lems with applications to internet tomography. Journal of Computer and System
Sciences 63, 432–448 (2001)

5. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A.: Explor-
ing networks with traceroute-like probes: Theory and simulations. Theoretical
Computer Science 355(1), 6–24 (2006)

6. Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M.: Network discovery and verifi-
cation with distance queries. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.)
CIAC 2006. LNCS, vol. 3998, pp. 69–80. Springer, Heidelberg (2006)

7. Hein, J.J.: An optimal algorithm to reconstruct trees from additive distance data.
Bulletin of Mathematical Biology 51(5), 597–603 (1989)

8. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
computer and system sciences 9(3), 256–278 (1974)

9. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary
tree reconstruction. In: SODA, pp. 444–453. SIAM (2003)

10. Mathieu, C., Zhou, H.: Graph reconstruction via distance oracles. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol.
7965, pp. 733–744. Springer, Heidelberg (2013)

11. Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees
from distance matrices. Information processing letters 101(3), 98–100 (2007)

12. Tarissan, F., Latapy, M., Prieur, C.: Efficient measurement of complex networks
using link queries. In: INFOCOM Workshops, pp. 254–259. IEEE (2009)

13. Thorup, M., Zwick, U.: Compact routing schemes. In: Symposium on Parallel Algo-
rithms and Architectures, pp. 1–10. ACM (2001)

	Near-Linear Query Complexity for Graph Inference
	1 Introduction
	1.1 The Problem
	1.2 Our Results

	2 Notation
	3 Proof of Theorem 1
	3.1 Greedy Algorithm
	3.2 Bounding OPT to Prove Theorem 1
	3.3 Proof of Theorem 9

	4 Proof of Theorems 3
	References

