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Abstract. We study the query complexity of computing a function
f : {0, 1}n → R+ in expectation. This requires the algorithm on input x
to output a nonnegative random variable whose expectation equals f(x),
using as few queries to the input x as possible. We exactly characterize
both the randomized and the quantum query complexity by two poly-
nomial degrees, the nonnegative literal degree and the sum-of-squares
degree, respectively. We observe that the quantum complexity can be
unboundedly smaller than the classical complexity for some functions,
but can be at most polynomially smaller for Boolean functions. These
query complexities relate to (and are motivated by) the extension com-
plexity of polytopes. The linear extension complexity of a polytope is
characterized by the randomized communication complexity of comput-
ing its slack matrix in expectation, and the semidefinite (psd) exten-
sion complexity is characterized by the analogous quantum model. Since
query complexity can be used to upper bound communication complex-
ity of related functions, we can derive some upper bounds on psd exten-
sion complexity by constructing efficient quantum query algorithms. As
an example we give an exponentially-close entrywise approximation of
the slack matrix of the perfect matching polytope with psd-rank only

2n1/2+ε

. Finally, we show randomized and quantum query complexity in
expectation corresponds to the Sherali-Adams and Lasserre hierarchies,
respectively.

1 Introduction

We study the complexity of computing a function f : {0, 1}n → R+ in
expectation, where our algorithm on input x should output a nonnegative real
number whose expectation (over the algorithm’s internal randomness) exactly
equals f(x). Getting the expectation right is easier than computing the func-
tion value f(x) itself, and suffices in some applications. Suppose we want to
approximate F (x) =

∑m
i=1 fi(x) that depends on x ∈ {0, 1}n. Then we can just

compute each fi(x) in expectation and output the sum of the results. By linearity
of expectation, the output will have expectation F (x), and it will be tightly con-
centrated around its expectation if the random variables are not too wild (so the
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Central Limit Theorem applies). It is not necessary to compute or even approxi-
mate any of the values fi(x) themselves for this. This illustrates that computing
functions in expectation is an interesting model in its own right. Additionally,
it is motivated by connections with the extension complexity of polytopes that
are used in combinatorial optimization (roughly: the minimal size of linear or
semidefinite programs for optimizing over such a polytope), as described below.

The complexity of computing f can be measured in different ways, and here
we will focus on query complexity. We measure the complexity of computing a
function in expectation by the (worst-case) number of queries to the input x ∈
{0, 1}n that the best algorithm uses. We study both randomized and quantum
versions of this model and show that both of these query complexities can be
exactly characterized by natural notions of polynomial degree. In Section 3 we
show that the randomized query complexity of computing f in expectation equals
the “nonnegative literal degree” of f , which is the minimal d such that f can
be written as a nonnegative linear combination of products of up to d variables
or negations of variables. In Section 4 we show that the quantum complexity
equals the “sum-of-squares degree”, which is the minimal d such that there exist
polynomials pi of degree at most d satisfying f(x) =

∑
i pi(x)2 for all x ∈ {0, 1}n.

In Section 5 we observe that quantum and classical query complexities (equiv-
alently: the above two types of polynomial degree) can be arbitrarily far apart.
For example, the function f(x) = (

∑n
i=1 xi −1)2 is the square of a degree-1 poly-

nomial and hence computable in expectation with only 1 quantum query, while
randomized algorithms need n queries to get this expectation right. In contrast,
we show that for functions with range {0, 1} the gap can be at most cubic.

Lower bounds on the quantum query complexity can be obtained from lower
bounding the sum-of-squares degree of the function at hand, which is often
non-trivial. Using techniques from approximation theory, we prove that f(x) =
(
∑n

i=1 xi − 1)(
∑n

i=1 xi − 2) has sum-of-squares degree Ω(
√

n). Hence quantum
algorithms require Ω(

√
n) queries to compute this function in expectation.

Our main motivation for studying query complexity in expectation comes
from combinatorial optimization, in particular from linear and semidefinite pro-
grams. Many optimization problems can be formulated as maximizing or mini-
mizing a linear function over a polytope. For example, in the Traveling Salesman
Problem on n-vertex undirected graphs, one wants to minimize a linear function
(the length of the tour) over the polytope P ⊆ R

(n
2) that is the convex hull of all

Hamiltonian cycles in the complete n-vertex graph Kn. Representing this poly-
tope as the feasible region of a small linear or semidefinite program would allow
us to efficiently solve the problem using the ellipsoid or interior-point methods.

Informally, the linear extension complexity of a polytope P ⊆ R
d is the

minimum number of linear inequalities (over the d variables of P and possi-
bly auxiliary variables) whose feasible region projects down to P . Small linear
extension complexity means there is a small linear program to optimize over P .

Motivated by erroneous claims [33] that the TSP polytope had polynomial
linear extension complexity (implying P = NP), Yannakakis [36] showed that
“symmetric” linear extensions of the Traveling Salesman Polytope need 2Ω(n)
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linear inequalities. He showed the same for the perfect matching polytope (which
is spanned by all perfect matchings in Kn), despite the fact that finding a maxi-
mum matching can be done efficiently! For a long time, generalizing these lower
bounds to arbitrary (possibly non-symmetric) linear extensions was an open
question. However, recently Fiorini et al. [15] proved a 2Ω(n1/2) lower bound on
the linear extension complexity of the TSP polytope. Subsequently Rothvoß [30]
proved a 2Ω(n) lower bound for the perfect matching polytope, which via a reduc-
tion implies the same bound for TSP. Chan et al. [10] obtained lower bounds
on linear extension complexity for constraint satisfaction problems via a dif-
ferent route: roughly put, they showed that arbitrary linear extensions are not
much more powerful than the specific linear extensions produced by the “Sherali-
Adams Hierarchy”; hence they could obtain lower bounds on linear extension
complexity from known bounds on the Sherali-Adams hierarchy.

The positive semidefinite (psd) extension complexity of polytope P ,
which replaces the linear programs by potentially more powerful semidefinite
programs, is the minimal dimension of a semidefinite program whose feasible
region projects down to P . In contrast to the case of linear extension complexity,
very few lower bounds on psd extension complexity are known. Until recently,
there were only a few lower bounds for “symmetric” psd extensions [14,24].
However, in a very recent breakthrough, Lee et al. [23] generalized the approach
of [10] to show that arbitrary psd extensions are not much more powerful than
the specific psd extensions produced by the “Lasserre Hierarchy”. In particular
they showed that the TSP polytope has psd extension complexity 2Ω(n1/13).

Surprisingly, there is a very close connection between these extension com-
plexities and the model of computing functions in expectation, albeit for the
communication complexity of computing a 2-input function. More precisely, sup-
pose Alice receives input x, Bob receives input y, and they want to compute some
function g(x, y) (which may also be viewed as a matrix). In the usual setting
of communication complexity [20], one of the parties (let’s say Bob) has to out-
put this value g(x, y) exactly, either with probability 1 or with high probability.
However, we may also consider how much communication they need to compute
g(x, y) in expectation, i.e., now Bob needs to output a nonnegative random vari-
able whose expected value equals g(x, y). Faenza et al. [13] showed that the loga-
rithm of the linear extension complexity of a polytope P equals the randomized
communication complexity of computing (in expectation) a matrix associated
with P , known as the slack matrix. Lifting this result to the quantum/psd case,
Fiorini et al. [15] showed that the logarithm of the psd extension complexity
equals the one-way quantum communication complexity of computing the slack
matrix of P in expectation; in this model Alice sends a single quantum mes-
sage to Bob. These connections show that studying (linear and psd) extension
complexity of a polytope P is equivalent to studying (randomized and one-way
quantum) communication complexity in expectation, of the slack matrix of P .

How is the query complexity of computing a function in expectation related
to this communication complexity? Many functions of interest in communica-
tion complexity are of the form g(x, y) = f(x ∧ y) for some Boolean function
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f : {0, 1}n → {0, 1}, where the AND-connective is applied bitwise. Functions
of this form also arise as (submatrices of) slack matrices of interesting polytopes,
e.g. the correlation polytope. Quite generally across the usual models of worst-case
complexity (deterministic, randomized or quantum) upper bounds on the query
complexity of f imply upper bounds on the communication complexity of g. In
Section 7 we show that this also holds for the randomized and quantum models
of computing a function in expectation. As this leads to multi-round communica-
tion protocols, it implies that the one-way and two-way quantum communication
complexity of computing a function in expectation are equal.

In Section 7.1 we give an application of the connection between query algo-
rithms and communication complexity (equivalently, psd rank), by deriving an
exponentially-close entrywise approximation of the slack matrix S of the perfect
matching polytope with psd rank 2n1/2+ε

. This psd rank is surprisingly low in view
of the fact that Rothvoß [30] showed that the nonnegative rank of S is 2Ω(n), and
Braun and Pokutta [5] showed that any S̃ that is O(1/n)-close to S still needs non-
negative rank 2Ω(n). This result about approximating the slack matrix for match-
ing in low psd rank, fits in a recent line of non-quantum results derived using tools
and techniques from quantum information theory (see [11]).

Communication protocols derived from query algorithms have a specific struc-
ture. In spirit, this is somewhat similar to looking at linear/psd extensions derived
from hierarchies of specific linear or semidefinite programs like the Sherali-Adams
and Lasserre hierarchies. In Section 2.3 we show these two relaxations actually cor-
respond in a precise sense: just as the linear and psd extension complexities are
characterized by models of communication complexity in expectation, the Sherali-
Adams and Lasserre hierarchies are characterized by randomized and quantum
models of query complexity in expectation, respectively. This follows from known
characterizations of these hierarchies in terms of polynomial degrees that exactly
correspond to the ones considered here.

Remark: Due to space limitations, many of the proofs have been omitted from
this version. These can be found in the longer version at arXiv:1411.7280.

2 Preliminaries

2.1 Polytopes and Extension Complexity

While most of this paper is about query complexity in expectation, much of it
is motivated by (the hope to port our results to) communication complexity in
expectation and its consequences for linear and semidefinite extension complexity
of polytopes. Hence we start with the latter. A polytope P ⊆ R

d has both an inner
description as the convex hull of a set V ⊆ R

d of points, P = conv(V ); and an
outer description as the intersection of halfspaces, P = {x ∈ R

d : Ax ≤ b}. A
slack matrix integrates information from these two descriptions:

Definition 1. Let P = conv(V ) = {x : Ax ≤ b} be a polytope. The slack matrix
M of P has columns labeled by v ∈ V and rows labeled by constraints Aix ≤ bi,
with entries M(i, v) = bi − Aiv.
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Definition 2. Let M be a nonnegative matrix. A nonnegative factorization of M
of size d consists of two sets of d-dimensional nonnegative vectors {ax}, {by} such
that M(x, y) = aT

x by for all x, y. The nonnegative rank of M , denoted rk+(M), is
the minimal size among all nonnegative factorizations of M . Equivalently, it is the
minimum number of nonnegative rank-one matrices whose sum is M .

Definition 3. Let M be a nonnegative matrix. A psd factorization of M of size
d consists of two sets of d-by-d psd matrices {Ax}, {By} such that M(x, y) =
Tr(AxBy) for all x, y. The psd rank of M , denoted rkpsd(M), is the minimal size
among all psd factorizations of M .

A nonnegative factorization is a psd factorization by diagonal matrices.
The linear extension complexity of a polytope P is the minimum number of

facets of a (higher-dimensional) polytope which projects to P . The semidefinite
(psd) extension complexity of P is the minimum d such that an affine slice of the
cone of d-by-d positive semidefinite matrices projects to P . These complexity mea-
sures can be captured in terms of the above notions of rank of a slack matrix:

Theorem 1 ([16,36]). The linear extension complexity of a polytope P is the
nonnegative rank of a slack matrix of P . The semidefinite (psd) extension com-
plexity of P is the psd rank of a slack matrix of P .

A polytope may have different slack matrices associated with it, depending on
which inner and outer description are used. By Theorem 1 these slack matrices all
have the same nonnegative and psd rank.

One of our targets is the correlation polytope: CORn = {xxT : x ∈ {0, 1}n}.
Fiorini et al. [15] showed that lower bounds on the linear/semidefinite extension
complexity of the correlation polytope imply lower bounds on several other poly-
topes of interest, including the Traveling Salesman Polytope. The next lemma
from [28] gives a family of submatrices of the slack matrix of CORn.

Lemma 1. Let p(z) = a + bz + cz2 be a single-variate degree-2 polynomial non-
negative on {0, 1, . . . , n}. The matrix M(x, y) = p(|x ∧ y|) for (x, y) ∈ {0, 1}n is a
submatrix of a slack matrix for the correlation polytope CORn.

In Section 6 we consider the matrix M(x, y) = (|x ∧ y| − 1)(|x ∧ y| − 2) and its
associated query problem f(x) = (|x|− 1)(|x|− 2), where |x| is Hamming weight.

2.2 Polynomials

We will study two types of polynomials that are obviously nonnegative on the
Boolean cube: nonnegative literal polynomials and sum-of-squares polynomials.

Definition 4 (nonnegative literal degree). A nonnegative literal polynomial
is a nonnegative linear combination of products of variables and negations of vari-
ables, i.e., it can be written as

p(x) =
∑

S⊆[n]

∑

b∈{0,1}|S|

αS,b

∏

i∈S

((−1)bixi + bi) (1)
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where each αS,b ≥ 0. Its degree is max{|S| : αS,b 	= 0}. The nonnegative literal
degree of f : {0, 1}n → R+, denoted ldeg+(f), is the minimum degree of a nonneg-
ative literal polynomial p that equals f on {0, 1}n.

This measure has also been called the nonnegative junta certificate degree [23].

Definition 5 (sum-of-squares degree). Let d be a natural number. A sum-of-
squares polynomial of degree d is a polynomial p that can be written in the form
p(x) =

∑
i∈P pi(x)2, where P is a finite index set and the pi are polynomials

of degree ≤ d. The sum-of-squares (sos) degree of f : {0, 1}n → R+, denoted
degsos(f), is the minimum d for which such a p equals f on {0, 1}n.

Note that a sum-of-squares polynomial of degree d is actually a polynomial of
degree 2d; we allow this slight abuse of notation in order to give a clean charac-
terization in Theorem 3 below.

2.3 The Sherali-Adams and Lasserre Hierarchies

Consider the optimization problem

α(f) = max
x∈{0,1}n

f(x) (2)

where f is given by a multilinear polynomial. Many important optimization prob-
lems can be cast in this framework, including NP-hard ones. For example find-
ing the maximum cut in a graph G = (V,E) with n vertices corresponds to the
quadratic function f(x) =

∑
{i,j}∈E xi(1 − xj) + xj(1 − xi).

If c ≥ α(f), then c − f is nonnegative on {0, 1}n. One way we can witness
this is by expressing c − f as a polynomial which is obviously nonnegative for all
x ∈ {0, 1}n. The Sherali-Adams hierarchy [31] looks for a witness in the form of
a nonnegative literal polynomial. The sum-of-squares or Lasserre hierarchy looks
for a witness in the form of a sum-of-squares polynomial [21,29,32].

If we can find a nonnegative literal polynomial p of degree d such that c−f(x) =
p(x), then this witnesses that the optimal value is upper bounded as α(f) ≤ c.
Moreover, determining if the nonnegative literal polynomial degree of c − f(x)
is at most d can be formulated as a linear program of size nO(d). The value of
the d-round Sherali-Adams relaxation for (2) is the smallest value of c such that
c−f(x) is a degree-d nonnegative literal polynomial. Thus the smallest d for which
a Sherali-Adams relaxation certifies an optimal upper bound, is exactly the non-
negative literal degree ldeg+(α(f) − f) of the function α(f) − f .

Similarly, if we can find pi : {0, 1}n → R of degree at most d, such that
c − f(x) =

∑
i pi(x)2, then this witnesses that α(f) ≤ c. Searching for such poly-

nomials pi can be expressed as a semidefinite program of size nO(d). The smallest
value of c such that c − f is degree-d sum-of-squares is known to be equivalent to
the relaxation of (2) given by the dth level of the Lasserre hierarchy. The level of
the Lasserre hierarchy required to exactly capture (2) is thus degsos(α(f) − f).
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3 Randomized Query Complexity in Expectation

In this section we define and characterize classical randomized query complex-
ity in expectation, characterize it by the nonnegative literal degree, and relate it
to the Sherali-Adams hierarchy. A randomized decision tree is a probability dis-
tribution μ over deterministic decision trees. We consider deterministic decision
trees with leaves labeled by nonnegative real numbers. A randomized decision tree
computes a function f : {0, 1}n → R+ in expectation if for every x ∈ {0, 1}n the
expected output of the tree on input x is f(x). The cost of such a tree is, as usual,
the maximum cost, that is the length of a longest path from the root to a leaf, of
a deterministic decision tree that has nonzero μ-probability.

Definition 6. The randomized query complexity of computing f in expectation,
denotedRE(f), is the minimum cost among all randomized decision trees that com-
pute f in expectation.

Theorem 2. Let f : {0, 1}n → R+. Then RE(f) = ldeg+(f).

Referring back to Section 2.3, this gives a connection between randomized query
complexity in expectation and the Sherali-Adams hierarchy: the smallest d such
that the d-round Sherali-Adams relaxation certifies the optimal upper bound α(f)
on the maximization problem (2), is exactly RE(α(f) − f).

4 QuantumQuery Complexity in Expectation

Here we study quantum query complexity in expectation, characterize it by sum-
of-squares degree, and relate it to the Lasserre hierarchy. We assume familiarity
with quantum computing [27] and query complexity [9].

We define the quantum query complexity of computing a function f :
{0, 1}n → R+ in expectation. A T -query algorithm is described by unitaries
U0, . . . , UT and a final POVM measurement {Eθ}θ∈Θ, where each Eθ is a psd
matrix labeled by nonnegative real θ, and

∑
θ∈Θ Eθ = I. As usual, on input x

the query algorithm proceeds from the initial state |0̄〉 by alternately applying a
unitary and the query oracle Ox (which maps |i, b〉 �→ |i, b ⊕ xi〉), so that the
final state of the algorithm after T queries is |ψT

x 〉 = UT Ox . . . OxU1OxU0|0̄〉.
Let E =

∑
θ∈Θ θEθ. As the probability of output θ upon measuring |ψT

x 〉 is
Tr(Eθ|ψT

x 〉〈ψT
x |), the expected value of the output is Tr(E|ψT

x 〉〈ψT
x |). The algo-

rithm computes f in expectation if f(x) = Tr(E|ψT
x 〉〈ψT

x |) for every x ∈ {0, 1}n.

Definition 7. The quantum query complexity of computing f in expectation,
denoted QE(f), is the minimum T for which there is a T -query quantum algorithm
computing f in expectation.

Theorem 3. Let f : {0, 1}n → R+. Then QE(f) = degsos(f).
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Proof. QE(f) ≥ degsos(f). Say there is a T -query algorithm to compute f in
expectation. Let |ψT

x 〉 denote its state on input x after T queries. By the poly-
nomial method [2], the amplitude of each basis state in |ψT

x 〉 is an n-variate mul-
tilinear polynomial in x of degree ≤ T . We have f(x) =

∑
θ θ〈ψT

x |Eθ|ψT
x 〉. Let

Eθ =
∑

i λi|ei
θ〉〈ei

θ| be the eigenvalue decomposition of Eθ, where each λi ≥ 0.
Then 〈ψT

x |Eθ|ψT
x 〉 =

∑
i λi|〈ψT

x |ei
θ〉|2. Since 〈ψT

x |ei
θ〉 is a linear combination of

amplitudes of |ψT
x 〉, it is a degree ≤ T polynomial in x. Since the coefficients θ and

λi are nonnegative, this gives a representation of 〈ψT
x |Eθ|ψT

x 〉 as a sum-of-squares
polynomial of degree ≤ T .

QE(f) ≤ degsos(f). Let d = degsos(f). We first exhibit a quantum algorithm
for the special case where f = p2 for some degree-d polynomial p. This is inspired
by the proof of [35, Theorem 2.3]. Let p =

∑
s p̂(s)(−1)x·s be the Fourier represen-

tation of p, where s ranges over {0, 1}n. Because p has degree d, we have p̂(s) 	= 0
only if |s| ≤ d. The algorithm is as follows:

1. Prepare n-qubit state c
∑

s p̂(s)|s〉, where c = 1/
√∑

s p̂(s)2 is a constant.
2. Apply a unitary that maps |s〉 �→ (−1)x·s|s〉 for all s of weight |s| ≤ d; one can

show that this can be implemented using d queries.
3. Apply the n-qubit Hadamard transform to the state.
4. Measure the state and output 2n/c2 if the result was 0n, otherwise output 0.

Note that the amplitude of the basis state |0n〉 after step 3 is c√
2n

∑
s p̂(s)(−1)x·s =

c√
2n

p(x). Hence the probability that the final measurement results in outcome 0n is
( c√

2n
p(x))2, and the expected value of the output is ( c√

2n
p(x))2 · 2n/c2 = p(x)2 =

f(x), as desired. Now consider the general case where f =
∑

i∈P p2i . The algorithm
chooses one i ∈ P uniformly at random and runs the above algorithm to produce
an output with expected value pi(x)2. It finally outputs that output multiplied by
|P|. Clearly, this uses at most d queries to x, and the expected value of its final
output is 1

|P|
∑

i pi(x)2|P| =
∑

i pi(x)2 = f(x). ��
This connects quantum query complexity in expectation and the Lasserre hierar-
chy: the smallest level d of the Lasserre hierarchy that certifies the optimal upper
bound α(f) on the maximization problem (2), is exactly QE(α(f) − f).

5 Gaps and Relations between RE(f) and QE(f)

For some f : {0, 1}n → R+, the quantum query complexity in expectation QE(f)
can be much smaller than its classical counterpart RE(f). An extreme example
is the n-bit function f(x) = (|x| − 1)2, where QE(f) = 1 by Theorem 3, but
RE(f) = n. The latter holds because on the all-0 input the algorithm needs to
produce a nonzero output with positive probability, but on weight-1 inputs it can
never output anything nonzero, hence a classical algorithm needs n queries on the
all-0 input. In contrast, if the range of f is Boolean, then we can show that QE(f)
is at most polynomially smaller than RE(f):

Theorem 4. For every f : {0, 1}n → {0, 1} we have RE(f) ≤ 16QE(f)3.
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The main reason this query complexity result is interesting is that the analo-
gous statement for communication complexity is equivalent to the longstanding
log-rank conjecture! The communication version of Theorem 4 would say that for
all Boolean matrices M , the quantum and classical communication complexity of
computing M in expectation are at most polynomially far apart. As noted by Fior-
ini et al. [15], this is equivalent to log rk+(M) ≤ polylog(rkpsd(M)), which in turn
is equivalent to the log-rank conjecture. Presumably such a communication ver-
sion will be substantially harder to prove than the above query version. However,
in many cases results in query complexity “mirror” (often much harder) results in
communication complexity, so our Theorem 4 may be viewed as (weak) evidence
for the log-rank conjecture.

6 A QuantumQuery Complexity Lower Bound

Here we show that the n-bit function f(x) = (|x|−1)(|x|−2) has QE(f) = Ω(
√

n).
This result is motivated by the fact that a strong lower bound on the psd rank of
the closely related matrix M(x, y) = (|x∧y|−1)(|x∧y|−2) would have important
consequences for the correlation polytope (M is a submatrix of the slack matrix for
the correlation polytope, see Lemma 1). We hope that the methods of this section
may in the future help lower bound this psd rank as well.

We prove our query complexity lower bound by showing the corresponding
lower bound on the sum-of-squares degree of f . As is common in query complexity
lower bounds by the polynomial method [2], we will use a symmetrization argu-
ment to define a single-variate polynomial Q : R → R that behaves well on [n],
and then use Markov’s lemma from approximation theory to bound the degree
of Q. A new complication in our setting is the following. If f(x) =

∑
i pi(x)2

then we would like to define a “symmetrized” polynomial g : [n] → R where
g(k) = Ex:|x|=k

[∑
i pi(x)2

]
. However, we do not know how to prove that g remains

a nonnegative polynomial. To get around this, we define symmetrized polynomials
qi(k) = Ex:|x|=k [pi(x)] for each pi individually, then recombine the symmetrized
polynomials as Q(k) =

∑
i qi(k)2. We are then able to bound the sum-of-squares

degree of Q.

Theorem 5. If f(x) = (|x| − 1)(|x| − 2) for x ∈ {0, 1}n, degsos(f) ≥
√

n/48.

7 Psd Rank and Query Complexity in Expectation

Fiorini et al. [15] defined a one-way model of quantum communication to com-
pute a matrix in expectation, and showed that this complexity is characterized
by the logarithm of the psd rank. We show below that this characterization still
holds for the more general two-way communication model, which allows multiple
rounds of communication. Hence one-way and two-way quantum communication
complexity are the same for computation in expectation.

We will not formally define the model of two-way quantum communication
complexity (see [34] for more technical details), instead just highlighting the
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differences of the model of computing a function in expectation to the normal
model. As usual, Alice and Bob each start with their own input, x and y respec-
tively, and then the protocol specifies whose turn it is to speak and what message
they send to the other party. At the end of the protocol Bob must output a non-
negative number, which is a random variable z that depends on the inputs x and
y as well as on the internal randomness of the protocol.

The major difference with the usual model is the notion of when a protocol is
correct. Let M be a matrix with nonnegative real entries whose rows are indexed
by Alice’s possible inputs, and whose columns are indexed by Bob’s inputs. We
say a protocol computes the matrix M in expectation if, for every (x, y), M(x, y)
equals the expected value of the output z on input (x, y). As usual, the cost of the
protocol is the worst-case number of qubits communicated (over all rounds).

Definition 8. The quantum communication complexity of computing a matrix M
in expectation, denoted QCE(M), is the minimum q such that there exists a quan-
tum protocol of cost q that computes M in expectation. The minimum q when we
restrict to one-way protocols is denoted QCE1(M).

It turns out that two-way quantum communication complexity is not more pow-
erful than its one-way cousin: both correspond to the psd rank.

Theorem 6. log rkpsd(M) ≤ QCE(M) ≤ QCE1(f) ≤ �log(rkpsd(M) + 1)�.

7.1 Upper Bounds on psd Rank from Quantum Algorithms

We can show that efficient quantum query algorithms for computing functions
f : {0, 1}n → R+ in expectation give rise to an efficient quantum communication
protocol to compute the matrix Mf (x, y) = f(x∧ y) in expectation, and hence to
a low-rank psd factorization of Mf . We state it more generally:

Theorem 7. Let Y be a finite set. For every y ∈ Y , let fy : {0, 1}n → R+ satisfy
QE(fy) ≤ T . Define a 2n × |Y | matrix M by M(x, y) = fy(x). Then QCE(M) ≤
2T (log(n) + 1), and hence rkpsd(M) ≤ (2n)2T .

Lee et al. [23] independently proved a similar upper bound on psd rank in terms
of the sos-degree of fy rather than quantum query complexity.

As an application we will derive an exponentially-close entrywise approxima-
tion of the slack matrix S of the perfect matching polytope, by a matrix with psd
rank not much bigger than 2

√
n. This shows a big difference to the case of non-

negative rank: Braun and Pokutta [5] show that any S̃ that is O(1/n)-close to S
needs nonnegative rank 2Ω(n).

Edmonds gave a complete description of the facets of the perfect matching
polytope for the complete n-vertex graph Kn [12]. The key are the odd-set inequal-
ities: for a perfect matching M , viewed as a vector M ∈ {0, 1}(n

2) of weight m =
n/2, and an odd-sized set U ⊆ [n], the associated inequality says |δ(U) ∩ M | ≥ 1,
where δ(U) ∈ {0, 1}(n

2) denotes the cut induced by U . In addition, there are O(n2)
degree and nonnegativity constraints. Thus the corresponding slack matrix S has
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columns indexed by all perfect matchings M in Kn and rows indexed by odd-sized
sets U with entries SUM = |δ(U) ∩ M | − 1. There are O(n2) additional rows for
the degree and nonnegativity constraints.

In the full version of this paper we show that the m-bit function g(z) =
|z|−1 can be approximated (in expectation) up to exponentially small error with
quantum query complexity O(m1/2+ε log m). Define fM (x) = g(xM ), where xM

denotes the restriction of n-bit string x to the m positions in the support of M .
Applying Theorem 7 and adding O(n2) rows for the other constraints gives:

Theorem 8. ∀ε > 0 there is a matrix S̃ of psd rank 2O(n1/2+ε(log n)2) s.t.

1. SUM − 2−(n/2)2ε ≤ S̃UM ≤ SUM for the entries where |δ(U) ∩ M | > (n/2)2ε;
2. S̃xy = Sxy for all other entries.
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