
Local Reductions

Hamid Jahanjou1, Eric Miles2(B), and Emanuele Viola1

1 Northeastern University, Boston, MA, USA
{hamid,viola}@ccs.neu.edu

2 UCLA, Los Angeles, CA, USA
enmiles@cs.ucla.edu

Abstract. We reduce non-deterministic time T ≥ 2n to a 3SAT instance
φ of quasilinear size |φ| = T ·logO(1) T such that there is an explicit circuit
C that on input an index i of log |φ| bits outputs the ith clause, and each
output bit of C depends on O(1) input bits. The previous best result was
C in NC1. Even in the simpler setting of polynomial size |φ| = poly(T)
the previous best result was C in AC0.

More generally, for any time T ≥ n and parameter r ≤ n we obtain
log2 |φ| = max(log T, n/r) + O(log n) + O(log log T) and each output bit
of C is a decision tree of depth O(log r).

As an application, we tighten Williams’ connection between satisfia-
bility algorithms and circuit lower bounds (STOC 2010; SIAM J. Com-
put. 2013).

1 Introduction

The efficient reduction of arbitrary non-deterministic computation to 3SAT is a
fundamental result with widespread applications. For many of these, two aspects
of the efficiency of the reduction are at a premium. The first is the length of the
3SAT instance. A sequence of works shows how to reduce non-deterministic
time-T computation to a 3SAT instance φ of quasilinear size |φ| = Õ(T) :=
T logO(1) T [HS66,Sch78,PF79,Coo88,GS89,Rob91]. This has been extended to
PCP reductions [BGH+05,Mie09,BCGT13,BCGT12].

The second aspect is the computational complexity of producing the 3SAT
instance φ given a machine M , an input x ∈ {0, 1}n, and a time bound T =
T (n) ≥ n. It is well-known and easy to verify that a φ of size poly(T) is com-
putable even by circuits from the restricted class NC0. More generally, Agrawal,
Allender, Impagliazzo, Pitassi, and Rudich show [AAI+01] that such NC0 reduc-
tions exist whenever AC0 reductions do.

A stronger requirement on the complexity of producing φ is critical for many
applications. The requirement may be called clause-explicitness. It demands that
the ith clause of φ be computable, given i ≤ |φ| and x ∈ {0, 1}n, with resources
poly(|i|) = poly log |φ| = poly log T . In the case |φ| = poly(T), this is known to
be possible by an unrestricted circuit D of size poly(|i|). (The circuit has either

Supported by NSF grants CCF-0845003, CCF-1319206.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 749–760, 2015.
DOI: 10.1007/978-3-662-47672-7 61

750 H. Jahanjou et al.

random access to x, or, if T ≥ 2n, it may have x hardwired.) As a corollary, so-
called succinct versions of NP-complete problems are complete for NEXP. Arora,
Steurer, and Wigderson [ASW09] note that the circuit D may be taken from the
restricted class AC0. They use this to argue that, unless EXP = NEXP, standard
NP-complete graph problems cannot be solved in time poly(2n) on graphs of size
2n that are described by AC0 circuits of size poly(n).

Interestingly, applications to unconditional complexity lower bounds rely on
reductions that are clause-explicit and simultaneously optimize the length of
the 3SAT instance φ and the complexity of the circuit D computing clauses. For
example, the time-space tradeoffs for SAT need to reduce non-deterministic time
T to a 3SAT instance φ of quasilinear size Õ(T) such that the ith clause is com-
putable in time poly(|i|) = poly log |φ| and space O(log |φ|), see e.g. [FLvMV05]
or Van Melkebeek’s survey [vM06]. More recently, the importance of optimizing
both aspects of the reduction is brought to the forefront by Williams’ approach
to obtain lower bounds by satisfiability algorithms that improve over brute-force
search by a super-polynomial factor [Wil13a,Wil11b,Wil11a,SW12,Wil13b]. To
obtain lower bounds against a circuit class C using this technique, one needs
a reduction of non-deterministic time T = 2n to a 3SAT instance of size Õ(T)
whose clauses are computable by a circuit D of size poly(n) that belongs to the
class C. For example, for the ACC0 lower bounds [Wil11b,Wil13b] one needs
to compute them in ACC0. However it has seemed “hard (perhaps impossible)”
[Wil11b] to compute the clauses with such restricted resources.

Two workarounds have been devised [Wil11b,SW12]. Both exploit the fact
that, under an assumption such as P ⊆ ACC0, non-constructively there does exist
such an efficient circuit computing clauses; the only problem is constructing it.
They accomplish the latter using either nondeterminism [Wil11b] or brute-force
[SW12] (cf. [AK10]). The overhead in these arguments limits the consequences
of satisfiability algorithms: before this work, for a number of well-studied cir-
cuit classes C (discussed later) a lower bound against C did not follow from a
satisfiability algorithm for circuits in C.

2 Our Results

We show that, in fact, it is possible to reduce non-deterministic computation
of time T ≥ 2n to a 3SAT formula φ of quasilinear size |φ| = Õ(T) such that
given an index of � = log |φ| bits to a clause, one can compute (each bit of)
the clause by looking at a constant number of bits of the index. Such maps are
also known as local, NC0, or junta. More generally our results give a trade-off
between decision-tree depth and |φ|. The results apply to any time bound T ,
paying an inevitable loss in |x| = n for T close to n.

Theorem 1 (Local reductions). Let M be an algorithm running in time
T = T (n) ≥ n on inputs of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one
can output a circuit D : {0, 1}� → {0, 1}3v+3 in time poly(n, log T) mapping an
index to a clause of a 3CNF φ in v-bit variables, for v = Θ(�), such that

Local Reductions 751

1. φ is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) = 1, and
2. for any r ≤ n we can have � = max(log T, n/r)+O(log n)+O(log log T) and

each output bit of D is a decision tree of depth O(log r).

Note that for T = 2Ω(n) we get that D is in NC0 and φ has size 2� =
T · logO(1) T , by setting r := n/ log T . We also point out that the only place
where locality O(log r) (as opposed to O(1)) is needed in D is to index bits of
the string x.

The previous best result was D in NC1 [BGH+05]. Even in the simpler setting
of |φ| = poly(T) the previous best result was D in AC0 [ASW09].

Tighter connections between satisfiability and lower bounds. The quest for
non-trivial satisfiability algorithms has seen significant progress recently, see
e.g. [Wil11b,Her11,IMP12,BIS12,IPS13,CKS13]. Our results lower the bar for
obtaining new circuit lower bounds from such algorithms. Previously, a lower
bound for circuits of depth d and size s was implied by a satisfiability algorithm
for depth c · d and size sc for a constant c > 1 (for typical settings of s and d).
With our proof it suffices to have a satisfiability algorithm for depth d+c and size
c ·s for a constant c. This can be extended and optimized for several well-studied
circuit classes. In particular we obtain the following new connections.

Corollary 1. For each of the following classes C, if the satisfiability of circuits
in C can be solved in time 2n/nω(1) then there is a problem f ∈ ENP that is not
solvable by circuits in C:

(1) linear-size circuits,
(2) linear-size series-parallel circuits,
(3) linear-size log-depth circuits,
(4) quasi-polynomial-size SYM-AND circuits.

Recall that available size lower bounds for unrestricted circuits are between
3n − o(n) and 5n − o(n), depending on the basis [Blu84,LR01,IM02]. Although
Corollary 1 and Corollary 2 below are stated in terms of linear-size circuits, the
proofs provide a close correspondence between the running time for satisfiability
and the parameters of the circuit class. In particular, the constant hidden by
the circuit size in class (1) can be optimized, as discussed in the paragraph
“Subsequent work” below. At the moment this approach does not match known
lower bounds, due to the (in)efficiency of known satisfiability algorithms.

In 1977 Valiant [Val77] focused attention on classes (2) and (3). (Some miss-
ing details about series-parallel graphs are provided in [Cal08].) The class (4)
contains ACC [Yao90,BT94], and can be simulated by number-on-forehead pro-
tocols with a polylogarithmic number of players and communication [HG91].
Williams [Wil11b] gives a quasilinear-time algorithm to evaluate a SYM-AND
circuit on all inputs.

For class (4) one can in fact obtain f ∈ NE using the seminal work by
Impagliazzo, Kabanets, and Wigderson [IKW01] and its extension by Williams
[Wil13a,Wil11b]. But to do so for classes (1)-(3), one would need a strengthening
of [IKW01] to linear-size circuits, which we raise as an open problem.

752 H. Jahanjou et al.

It has long been known that the satisfiability of classes (1)-(3) in Corollary 1
can be linked to kSAT. Using Corollary 1, we can link kSAT to circuit lower
bounds. (In the following, a kSAT instance has n variables and O(n)k clauses.)

Corollary 2.
(1) Assume that the exponential time hypothesis (ETH) is false [IP01]; i.e.,

for every ε > 0, 3SAT is in time 2εn. Then there is a problem f ∈ ENP that is
not solvable by linear-size circuits.

(2) Assume that the strong exponential time hypothesis (SETH) is false [IP01];
i.e., there is ε < 1 such that for every k, kSAT is in time 2εn. Then there is a
problem f ∈ ENP that is not solvable by linear-size series-parallel circuits.

(3) Assume that there is α > 0 such that nα-SAT is in time 2n−ω(n/ log log n).
Then there is a problem f ∈ ENP that is not solvable by linear-size log-depth circuits.

In Corollary 2, only (1) was known [Wil13a, Theorem 6.1]. Our proof is
different: we obtain it immediately from (1) in Corollary 1 by the Cook-Levin
theorem.

For context, the best algorithms for kSAT run in time 2n(1−O(1/k)) [DGH+02,
PPSZ05].

Finally, we consider the class of polynomial-size depth-d circuits of thresh-
old gates, which may have unbounded or bounded weights. (The latter case
corresponds to Majority.) Recall that anything computed by a poly-size depth-
d circuit with unbounded weights can be computed by a depth d + 1 circuit
with bounded weights [HMP+93,GHR92], and that it is not known if EXPNP

has poly-size unbounded-weight circuits of depth d = 2. For these classes (and
others) we show that a lower bound for depth d follows from a satisfiability
algorithm for depth d + 2.

Corollary 3. Consider unbounded fan-in circuits consisting of threshold gates
(either bounded- or unbounded-weight). Let d be an integer.

Suppose that for every c, given a circuit of depth d+2 and size nc on n input
bits one can decide its satisfiability in time 2n/nω(1).

Then NE does not have circuits of polynomial size and depth d.

A diagram of some of the classes mentioned above, and their relative power,
can be found in [Vio13].

Our results have a few other consequences. For example they imply that
the so-called succinct version of various NP-complete problems remain NEXP-
complete even if described by an NC0 circuit. In particular we obtain this for
3SAT and 3Coloring. Our techniques are also relevant to the notion of circuit
uniformity. A standard notion of uniformity is log-space uniformity, requiring
that the circuit is computable in logarithmic space or, equivalently, that given
an index to a gate in the circuit one can compute its type and its children in
linear space. Equivalences with various other uniformity conditions are given
by Ruzzo [Ruz81], see also [Vol99]. We consider another uniformity condition
which is stronger than previously considered ones in some respects. Specifically,

Local Reductions 753

we describe the circuit by showing how to compute children by an NC0 circuit,
i.e. a function with constant locality.

Theorem 2 (L-uniform ⇔ local-uniform). Let f : {0, 1}∗ → {0, 1} be a
function computable by a family of log-space uniform polynomial-size circuits. Then
f is computable by a family of polynomial-size circuits C = {Cn : {0, 1}n →
{0, 1}}n such that there is a Turing machine that on input n (in binary) runs in
time O(poly log n) and outputs a circuit D : {0, 1}O(log n) →{0, 1}O(log n) such that
(i) D has constant locality: every output bit depends on O(1) input bits, and
(ii) on input a label g of a gate in Cn, D outputs the type of g and labels for
each child.

Does this paper simplify the proof that NEXP is not in ACC?. Recall that the
proof [Wil11b] that NEXP is not in ACC uses as a black-box a result like Theo-
rem 1 but with the requirement on the efficiency of D relaxed to polynomial-size
circuits. If one instead uses as a black-box Theorem 1, one obtains a simpler
proof, reported for completeness in the full version of this paper.

In fact, to obtain the separation of NEXP from ACC it suffices to prove a
weaker version of Theorem 1 where D is, say, in AC0. This weaker version has a
simpler proof, as explained in §3. Independently of our work, Kowalski and Van
Melkebeek proved this AC0 result (personal communication).

Subsequent work. The announcement of our results as (ECCC Technical Report
13-099, July 2013) contained the same results as above except it did not men-
tion Corollary 2 and items (2) and (4) in Corollary 1. After that announcement
several related works have appeared. Oliveira’s survey [Oli13] contains an alter-
native connection between satisfiability and circuit lower bounds, which yields a
different proof of our Corollary 3 establishing a depth-2 overhead in that connec-
tion. Williams [Wil14] shows that the ability to count the number of satisfying
assignments to circuits faster than brute-force search yields lower bounds against
related circuits. His connection preserves the type of the gates in the input layer,
a feature which is used to obtain some new lower bounds.

The work [BV14] builds on our results and is concurrent with [Wil14]. It gives
a connection between derandomization and lower bounds that also preserves the
type of the gates in the input layer. Thus, derandomization (or satisfiability), as
opposed to counting, is sufficient for the lower bounds in [Wil14]. [BV14] also
improves the depth loss of 2 in Corollary 3 to 1. Finally, they make a step in the
direction we suggested of optimizing the constants in Item (1) of Corollary 1. In
combination with the standard Cook-Levin reduction to 3SAT, they obtain that
if 3SAT is in deterministic time cn for any c < 21/10 = 1.07 . . . then ENP does
not have circuits of size 3n over the standard, full basis. Note that such a lower
bound does not easily follow from diagonalization because the description length
of a circuit of size 3n is superlinear. (Also recall the available lower bounds have
the form 3n − o(n)). The current record for solving 3SAT deterministically has
c = 1.33 . . . [MTY11], cf. [Her11].

As a corollary to [BV14], in this revision we show that even a somewhat
more modest improvement to 3SAT algorithms would imply new lower bounds

754 H. Jahanjou et al.

for non-boolean functions with range m = 2 bits. Such lower bounds do not seem
known for any m = o(n), cf. [KMM12].

Corollary 4 (Corollary to [BV14]). If 3SAT is in time cn for any c < 21/7 =
1.10 . . ., then there exists a (non-Boolean) function f : {0, 1}n → {0, 1}2 in ENP

such that any circuit over the full basis computing it requires at least 3n (non-
input) gates.

3 Techniques

Proofs of the theorems and corollaries above are omitted due to space constraints,
but they can be found in the full version of this paper at the authors’ websites.
We now give an overview of the techniques used.

Background: Reducing non-deterministic time T to size-Õ(T) 3SAT. Our start-
ing point is the reduction of non-deterministic time-T computation to 3SAT
instances of quasilinear size T ′ = Õ(T). The classical proof of this result
[HS66,Sch78,PF79,Coo88,GS89,Rob91] hinges on the oblivious Turing machine
simulation by Pippenger and Fischer [PF79]. However computing connections
in the circuit induced by the oblivious TM is a somewhat complicated recursive
procedure, and we have not been able to use this construction for our results.

Instead, we use a proof by Van Melkebeek [vM06, §2.3.1] which replaces this
simulation by coupling an argument due to Gurevich and Shelah [GS89] with
sorting circuits. We note that the idea of using sorting is already in [GS89], but
if one follows their paper one ends up using again the oblivious simulation. Van
Melkebeek’s observation is that essentially all that needs to be done obliviously
is sorting, and so one can use a sorting network, a more familiar construction
than the oblivious simulation. Specifically, Van Melkebeek uses Batcher’s odd-
even mergesort networks [Bat68]. This proof was rediscovered by a superset of
the authors as a class project [VN12]. We now recall it in more detail.

Consider any general model of (non-deterministic) computation, such as
RAM or random-access Turing machines. (One nice feature of this proof is that
it directly handles models with random-access, aka direct-access, capabilities.)
The proof reduces computation to the satisfiability of a circuit C. The latter
is then reduced to 3SAT via the textbook reduction. Only the first reduction
to circuit satisfiability is problematic and we will focus on that one here. Con-
sider a non-deterministic time-T computation. The proof constructs a circuit
of size Õ(T) whose inputs are (non-deterministic guesses of) T configurations
of the machine. Each configuration has size O(log T) and contains the state of
the machine, all registers, and the content of the memory locations indexed by
the registers. This computation is then verified in two steps. First, one verifies
that every configuration Ci yields configuration Ci+1 assuming that all bits read
from memory are correct. This is a simple check of adjacent configurations. Then
to verify correctness of read/write operations in memory, one sorts the config-
urations by memory indices, and within memory indices by timestamp. Now

Local Reductions 755

verification is again a simple check of adjacent configurations. The resulting cir-
cuit is outlined in Figure 1 (for a 2k-tape random-access Turing machine). Using
a sorting network of quasilinear size Õ(T) results in a circuit of size Õ(T).

Making low-space computation local. We employ a general technique that we call
spreading computation. This shows that any circuit C whose connections can be
computed in space linear in the description of a gate (i.e., space log |C|) has an
equivalent circuit C ′ of size |C ′| = poly|C| whose connections can be computed
with constant locality.

The main idea in the proof is simply to let the gates of C ′ represent configu-
rations of the low-space algorithm computing children in C. Then computing a
child amounts to performing one step of the low-space algorithm, (each bit of)
which can be done with constant locality in a standard Turing machine model.

We note that the technique of labeling gates by configurations goes back at
least to the work of Ruzzo [Ruz81] who uses it to show the equivalence of some
uniformity conditions involving alternating Turing machines that are simultane-
ously time and space restricted. However, [Ruz81] does not show how to compute
gate connections with small locality, which is our aim here. We note that this
task is non-trivial. For example, with constant locality one cannot even check the
validity of a configuration. This means that the circuit C ′ has many invalid gates,
i.e., gates that do not correspond to the computation of the low-space algorithm
on a label of C. These gates could induce loops that do not correspond to compu-
tation, and make the final 3SAT instance always unsatisfiable. We avoid cycles
by augmenting the low-space algorithm with a preliminary check for the validity
of the configuration, and by including a clock in the configurations. These allow
us to ensure that each invalid gate leads to a sink.

We apply spreading computation to the various sub-circuits checking con-
sistency of configurations, corresponding to the triangles in Figure 1. These
sub-circuits operate on configurations of size O(log T) and have size poly log T .
Hence, we can tolerate the polynomial increase in their complexity given by the
spreading computation technique.

There remain however tasks for which we cannot use spreading computation.
One is the sorting sub-circuit. Since it has size > T we cannot afford a polynomial
increase. Another task is indexing adjacent configurations. We now discuss these
two in turn.

Sorting. We first mention a natural approach that gets us close but not quite
to our main theorem. The approach is to define an appropriate labeling of the
sorting network so that its connections can be computed very efficiently. We are
able to define a labeling of bit-length t + O(log t) = log Õ(T) for comparators in
the odd-even mergesort network of size Õ(2t) (and depth t2) that sorts T = 2t

elements such that given a label one can compute the labels of its children
by a decision tree of depth logarithmic in the length of the label, i.e. depth
log log Õ(T). With a similar labeling we can get linear size circuits. Or we can
get constant locality at the price of making the 3SAT instance of size T 1+ε. The
details appear in the separate work [JMV14].

756 H. Jahanjou et al.

c1 � � �

sort by Ram1 head position

head positions,
bounded-register tapes

check state,

c2 cT

head positions,
bounded-register tapes

check state,
head positions,

bounded-register tapes

check state,

c1 � � �

check Ram1 contents

c87 c42

check Ram1 contents check Ram1 contents

sort by Ram2 head position

c1 � � �

check Ram2 contents

c19 c71

check Ram2 contents check Ram2 contents

sort by Regk head position

c1 � � �

check Regk contents

c5 c99

check Regk contents check Regk contents

�
�

�

AND

� � �

Fig. 1. Each of the T configurations has size O(log T). The checking circuits have size
poly log T . The sorting circuits have size Õ(T). k is a constant. Hence overall circuit
has size Õ(T).

Local Reductions 757

To obtain constant locality we use a variant by Ben-Sasson, Chiesa, Genkin,
and Tromer [BCGT13]. They replace sorting networks with routing networks
based on De Bruijn graphs. We note that routing networks have been used
extensively in the PCP literature starting, to our knowledge, with the work of
Polishchuk and Spielman [PS94]. They have been used mostly for their algebraic
properties, whereas we exploit the small locality of these networks. Specifically,
the connections of these networks involve computing bit-shift, bit-xor, and addi-
tion by 1. The first two operations can easily be computed with constant local-
ity, but the latter cannot in the standard binary representation. However, this
addition by 1 is only on O(log log T) bits. Hence we can afford an alternative,
redundant representation which gives us an equivalent network where all the
operations can be computed with constant locality. This representation again
introduces invalid labels; those are handled in a manner similar to our spreading
computation technique.

Plus one. Regardless of whether we are using sorting or routing networks,
another issue that comes up in all previous proofs is addition by 1 on strings
of > log T bits. This is needed to index adjacent configurations Ci and Ci+1

for the pairwise checks in Figure 1. As mentioned before, this operation cannot
be performed with constant locality in the standard representation. Also, we
cannot afford a redundant representation (since strings of length c log T would
correspond to an overall circuit of size > T c).

For context, we point out an alternative approach to compute addition by
1 with constant locality which however cannot be used because it requires an
inefficient pre-processing. The approach is to use primitive polynomials over
GF(2)log T . These are polynomials modulo which x has order 2log T −1. Addition
by 1 can then be replaced by multiplication by x, which can be shown to be
local. This is similar to linear feedback registers. However, it is not known how
to construct such polynomials efficiently w.r.t. their degrees, see [Sho92].

To solve this problem we use routing networks in a different way from previous
works. Instead of letting the network output an array C1, C2, . . . representing the
sorted configurations, we use the network to represent the “next configuration”
map Ci → Ci+1. Viewing the network as a matrix whose first column is the
input and the last column is the output, we then perform the pairwise checks
on every pair of input and output configurations that are in the same row. The
bits of these configurations will be in the same positions in the final label, thus
circumventing addition by one.

As we mentioned earlier, for a result such as NEXP not in ACC [Wil11b]
it suffices to prove a weaker version of our Theorem 1 where the reduction is
computed by, say, an AC0 circuit. For the latter, it essentially suffices to show
that either the sorting or the routing network’s connections are in that class.

Acknowledgments. We are very grateful to Eli Ben-Sasson for a discussion on rout-
ing networks which led us to improving our main result, cf. §3. We also thank Ryan
Williams for feedback on the write-up.

758 H. Jahanjou et al.

References

[AAI+01] Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reduc-
ing the complexity of reductions. Computational Complexity 10(2), 117–
138 (2001)

[AK10] Allender, E., Koucký, M.: Amplifying lower bounds by means of self-
reducibility. J. of the ACM, 57(3) (2010)

[ASW09] Arora, S., Steurer, D., Wigderson, A.: Towards a study of low-complexity
graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 119–131.
Springer, Heidelberg (2009)

[Bat68] Batcher, K.E.: Sorting networks and their applications. AFIPS Spring
Joint Computing Conference 32, 307–314 (1968)

[BCGT12] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete-
efficiency threshold of probabilistically-checkable proofs. Electronic Collo-
quium on Computational Complexity (ECCC) 19, 45 (2012)

[BCGT13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems. In: ACM
Innovations in Theoretical Computer Science Conf. (ITCS), pp. 401–414
(2013)

[BGH+05] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short
PCPs verifiable in polylogarithmic time. In: IEEE Conf. on Computational
Complexity (CCC), pp. 120–134 (2005)

[BIS12] Beame, P., Impagliazzo, R., Srinivasan, S.: Approximating AC0 by small
height decision trees and a deterministic algorithm for #AC0sat. In: IEEE
Conf. on Computational Complexity (CCC), pp. 117–125 (2012)

[Blu84] Blum, N.: A boolean function requiring 3n network size. Theoretical Com-
puter Science 28, 337–345 (1984)

[BT94] Beigel, R., Tarui, J.: On ACC. Computational Complexity 4(4), 350–366
(1994)

[BV14] Ben-Sasson, E., Viola, E.: Short PCPs with projection queries (2014).
http://www.ccs.neu.edu/home/viola/

[Cal08] Calabro, C.: A lower bound on the size of series-parallel graphs dense in
long paths. Electronic Colloquium on Computational Complexity (ECCC),
15(110) (2008)

[CKS13] Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT
algorithm for small De Morgan formulas. Technical Report TR13-150,
Electronic Colloquium on Computational Complexity (2013). http://www.
eccc.uni-trier.de/

[Coo88] Cook, S.A.: Short propositional formulas represent nondeterministic com-
putations. Information Processing Letters 26(5), 269–270 (1988)

[DGH+02] Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.,
Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic
(2 − 2/(k + 1))n algorithm for k-SAT based on local search. Theoretical
Computer Science 289(1), 69–83 (2002)

[FLvMV05] Fortnow, L., Lipton, R., van Melkebeek, D., Viglas, A.: Time-space lower
bounds for satisfiability. J. of the ACM 52(6), 835–865 (2005)

[GHR92] Goldmann, M., H̊astad, J., Razborov, A.A.: Majority gates vs.
general weighted threshold gates. Computational Complexity 2,
277–300 (1992)

http://www.ccs.neu.edu/home/viola/
http://www.eccc.uni-trier.de/
http://www.eccc.uni-trier.de/

Local Reductions 759

[GS89] Gurevich, Y., Shelah, S.: Nearly linear time. In: Logic at Botik, Symposium
on Logical Foundations of Computer Science, pp. 108–118 (1989)

[Her11] Hertli, T.: 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold
in general. In: IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 277–284 (2011)

[HG91] H̊astad, J., Goldmann, M.: On the power of small-depth threshold circuits.
Comput. Complexity 1(2), 113–129 (1991)

[HMP+93] Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold cir-
cuits of bounded depth. J. of Computer and System Sciences 46(2), 129–154
(1993)

[HS66] Hennie, F., Stearns, R.: Two-tape simulation of multitape turing machines.
J. of the ACM 13, 533–546 (1966)

[IKW01] Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy wit-
ness: Exponential time vs. probabilistic polynomial time. In: IEEE Conf.
on Computational Complexity (CCC) (2001)

[IM02] Iwama, K., Morizumi, H.: An explicit lower bound of 5n− o(n) for boolean
circuits. In: Symp. on Math. Foundations of Computer Science (MFCS),
pp. 353–364 (2002)

[IMP12] Impagliazzo, R., Matthews, W., Paturi, R.: A satisfiability algorithm for
AC0. In: ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 961–972
(2012)

[IP01] Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. of Computer
and System Sciences 62(2), 367–375 (2001)

[IPS13] Impagliazzo, R., Paturi, R., Schneider, S.: A satisfiability algorithm for
sparse depth-2 threshold circuits. IEEE Symp. on Foundations of Computer
Science (FOCS) (2013)

[JMV14] Jahanjou, H., Miles, E., Viola, E.: Succinct and explicit circuits for sorting
and connectivity (2014). http://www.ccs.neu.edu/home/viola/

[KMM12] Kulikov, A.S., Melanich, O., Mihajlin, I.: A 5n − o(n) lower bound on the
circuit size over U 2 of a linear boolean function. In: Cooper, S.B., Dawar,
A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 432–439. Springer, Hei-
delberg (2012)

[LR01] Lachish, O., Raz, R.: Explicit lower bound of 4.5n - o(n) for boolena circuits.
In: ACM Symp. on the Theory of Computing (STOC), pp. 399–408 (2001)

[Mie09] Mie, T.: Short pcpps verifiable in polylogarithmic time with o(1) queries.
Ann. Math. Artif. Intell. 56(3–4), 313–338 (2009)

[MTY11] Makino, K., Tamaki, S., Yamamoto, M.: Derandomizing HSSW algorithm
for 3-SAT (2011). CoRR, abs/1102.3766

[Oli13] Oliveira, I.C.: Algorithms versus circuit lower bounds (2013). CoRR,
abs/1309.0249

[PF79] Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. of
the ACM 26(2), 361–381 (1979)

[PPSZ05] Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-time
algorithm for k-sat. J. of the ACM 52(3), 337–364 (2005)

[PS94] Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In:
ACM Symp. on the Theory of Computing (STOC), pp. 194–203 (1994)

[Rob91] Robson, J.M.: An O(T log T) reduction from RAM computations to satis-
fiability. Theoretical Computer Science 82(1), 141–149 (1991)

[Ruz81] Ruzzo, W.L.: On uniform circuit complexity. J. of Computer and System
Sciences 22(3), 365–383 (1981)

http://www.ccs.neu.edu/home/viola/

760 H. Jahanjou et al.

[Sch78] Schnorr, C.-P.: Satisfiability is quasilinear complete in NQL. J. of the ACM
25(1), 136–145 (1978)

[Sho92] Shoup, V.: Searching for primitive roots in finite fields. Math. Comp. 58,
369–380 (1992)

[SW12] Santhanam, R., Williams, R.: Uniform circuits, lower bounds, and qbf algo-
rithms. Electronic Colloquium on Computational Complexity (ECCC) 19,
59 (2012)

[Val77] Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In:
Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Hei-
delberg (1977)

[Vio13] Viola, E.: Challenges in computational lower bounds (2013). http://www.
ccs.neu.edu/home/viola/

[vM06] van Melkebeek, D.: A survey of lower bounds for satisfiability and related
problems. Foundations and Trends in Theoretical Computer Science 2(3),
197–303 (2006)

[VN12] Viola, E., NEU. From RAM to SAT (2012). http://www.ccs.neu.edu/
home/viola/

[Vol99] Vollmer, H.: Introduction to circuit complexity. Springer-Verlag, Berlin
(1999)

[Wil11a] Williams, R.: Guest column: a casual tour around a circuit complexity
bound. SIGACT News 42(3), 54–76 (2011)

[Wil11b] Williams, R.: Non-uniform ACC circuit lower bounds. In: IEEE Conf. on
Computational Complexity (CCC), pp. 115–125 (2011)

[Wil13a] Williams, R.: Improving exhaustive search implies superpolynomial lower
bounds. SIAM J. on Computing 42(3), 1218–1244 (2013)

[Wil13b] Williams, R.: Natural proofs versus derandomization. In: ACM Symp. on
the Theory of Computing (STOC) (2013)

[Wil14] Williams, R.: New algorithms and lower bounds for circuits with linear
threshold gates (2014)

[Yao90] Yao, A.C.-C.: On ACC and threshold circuits. In: IEEE Symp. on Founda-
tions of Computer Science (FOCS), pp. 619–627 (1990)

http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/
http://www.ccs.neu.edu/home/viola/

	Local Reductions
	1 Introduction
	2 Our Results
	3 Techniques

