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Abstract. The SINR model for the quality of wireless connections has
been the subject of extensive recent study. It attempts to predict whether
a particular transmitter is heard at a specific location, in a setting con-
sisting of n simultaneous transmitters and background noise. The SINR
model gives rise to a natural geometric object, the SINR diagram, which
partitions the space into n regions where each of the transmitters can be
heard and the remaining space where no transmitter can be heard.

Efficient point location in the SINR diagram, i.e., being able to build
a data structure that facilitates determining, for a query point, whether
any transmitter is heard there, and if so, which one, has been recently
investigated in several papers. These planar data structures are con-
structed in time at least quadratic in n and support logarithmic-time
approximate queries. Moreover, the performance of some of the proposed
structures depends strongly not only on the number n of transmitters and
on the approximation parameter ε, but also on some geometric parame-
ters that cannot be bounded a priori as a function of n or ε.

In this paper, we address the question of batched point location
queries, i.e., answering many queries simultaneously. Specifically, in one
dimension, we can answer n queries exactly in amortized polylogarithmic
time per query, while in the plane we can do it approximately.

All these results can handle arbitrary power assignments to the trans-
mitters. Moreover, the amortized query time in these results depends only
on n and ε.

Finally, these results demonstrate the (so far underutilized) power
of combining algebraic tools with those of computational geometry and
other fields.

1 Introduction

The SINR (Signal to Interference plus Noise Ratio) model attempts to more
realistically predict whether a wireless transmission is received successfully, in
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a setting consisting of multiple simultaneous transmitters in the presence of
background noise. In particular, it takes into account the attenuation of electro-
magnetic signals. The SINR model has been explored extensively in the litera-
ture [19].

Let S = {s1, . . . , sn} be a set of n points in the plane representing n trans-
mitters. Let pi > 0 be the transmission power of transmitter si, i = 1, . . . , n.
In the SINR model, a receiver located at point q is able to receive the signal
transmitted by si if the following inequality holds:

pi

|q−si|α
Σj �=i

pj

|q−sj |α + N
≥ β ,

where |a − b| denotes the Euclidean distance between points a and b, and α > 0,
β > 1,1 and N > 0 are given constants (N represents the background noise).
This inequality is also called the SINR inequality, and when it holds, we say
that q receives (or hears) si; we refer to the left hand side of the inequality as
SIN ratio (for receiver q w.r.t. transmitter si).

Notice that, since β > 1, a necessary condition for q to receive si is that
pi/|q−si| > pj/|q−sj |, for any j �= i. In particular, in the uniform power setting
where p1 = p2 = · · · = pn, a necessary condition for q to receive si is that si is the
closest to q among the transmitters in S. This simple observation implies that,
for any point q in the plane, either exactly one of the transmitters is received by
q or none of them is. Thus, one can partition the plane into n not necessarily
connected reception regions Ri, one per transmitter in S, plus an additional
region R∅ consisting of all points where none of the transmitters is received.
This partition is called the SINR diagram of S. Consider the multiplicatively-
weighted Voronoi diagram D of S in which the region Vi associated with si

consists of all points q in the plane for which 1
α
√

pi
|q − si| < 1

α
√

pj
|q − sj |, for any

j �= i [4]. Then Ri ⊂ Vi.
In a seminal paper, Avin et al. [6] studied properties of SINR diagrams, focus-

ing on the uniform power setting. Their main result is that in this setting the
reception regions Ri are convex and fat. (Here, Ri is fat if the ratio between
the radii of the smallest disk centered at si containing Ri and the largest disk
centered at si contained in Ri is bounded by some constant.) In the non-uniform
power setting, on the other hand, the reception regions are not necessarily con-
nected, and their connected components are not necessarily convex or fat. In
fact, they may contain holes [17].

A natural question that one may ask is: “Given a point q in the plane, does
q receive one of the transmitters in S, and if yes which one?” Or equivalently:
“Which region of the SINR diagram does q belong to?” The latter question is
referred to as a point-location query in the SINR diagram of S. We can answer
it in linear time by first finding the sole candidate, si, as the transmitter for

1 In this paper, we assume β > 1. A variant of our techniques applies also when β < 1:
up to 1/β receivers can be heard simultaneously, multiple nearest neighbors need to
be identified as the candidates, and the algorithms slow down correspondingly.
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which the ratio 1
α
√

p |q − s| is minimum, and then evaluating the SIN ratio and
comparing it to β. To facilitate multiple queries, one may want to build a data
structure that can guarantee faster response. We can expedite the first step by
constructing the appropriate Voronoi diagram D = D(S) together with a point-
location structure, so that the sole candidate transmitter for a point q can be
found in O(log n) time. However, the boundary of the region Ri is described by a
degree-Θ(n) algebraic curve; it seems difficult (impossible, in general?) to build
a data structure that can quickly determine the side of the curve a given point
lies on. The answer is not even obvious in one dimension (where the transmitters
and potential receivers all lie on a line), as there Ri is a collection of intervals
delimited by roots of a polynomial of degree Θ(n).

The problem has been approached by constructing data structures for approx-
imate point location in SINR diagrams. All approaches use essentially the same
logic: first find the sole candidate si that the query point q may hear and then
approximately locate q in Ri. This is done by constructing two sets R+

i , R−
i

such that R+
i ⊂ Ri ⊂ R−

i ⊂ Vi,2 and preprocessing them for point location. In
the region R+

i reception of si is guaranteed, so if q ∈ R+
i , return “can hear si.”

Outside of R−
i one cannot hear si, so if q �∈ R−

i , return “cannot hear anything.”
The set R−

i \R+
i is where the approximation occurs: si may or may not be heard

there, so if q ∈ R−
i but q �∈ R+

i , return “may or may not hear si.”
Two different notions of approximation have appeared in the literature. In the

first [6,17], it is guaranteed that the uncertain answer is only given infrequently,
namely that area(R−

i \ R+
i ) ≤ ε · area(Ri), for a suitable parameter ε > 0. In

the second [17], it is promised that the SIN ratio for every point in R−
i \ R+

i lies
within [c1β, c2β] for suitable constants c1, c2 with 0 < c1 < 1, c2 > 1.

We now briefly summarize previous work. Observing the difficulty of answer-
ing point-location queries exactly, Avin et al. [6] resorted to approximate query
answers in the uniform power setting. Given an ε > 0 they build a data struc-
ture in total time O(n2/ε) and space O(n/ε) that can be wrong only in a region
of area ε · area(Ri) for each si (i.e., approximation of the first type described
above). It supports logarithmic-time queries.

In a subsequent paper, Kantor et al. [17] studied properties of SINR diagrams
in the non-uniform power setting. After revealing several interesting and useful
properties, such as that the reception regions in the (d + 1)-dimensional SINR
diagram of a d-dimensional scene are connected, they present several solutions
to the problem of efficiently answering point-location queries. One of them uses
the second type of approximation, with c1 = (1 − ε)2α and c2 = (1 + ε)2α, for
a prespecified ε > 0. Queries can be performed in time O(log(n · ϕ/ε)), where
ϕ is an upper bound on the fatness parameters of the reception regions (which
cannot be bounded as a function of n or ε). The size of this data structure is
O(n · ϕ′/ε2) and its construction time is O(n2 · ϕ′/ε2), where ϕ′ > ϕ2 is some
function of the fatness parameters of the reception regions.

2 Notice that we have not followed the original notation in the literature, for consis-
tency with our notation below.
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Although highly non-trivial, the known results for point location in the SINR
model are unsatisfactory, in that they suffer from very large preprocessing times.
Moreover, in the non-uniform setting, the bounds include geometric parameters
such as ϕ and ϕ′ above, which cannot be bounded as a function of n or ε. In
this paper we focus on batched point location in the SINR model. That is, given
a set Q of m query points, determine for each point q ∈ Q whether it receives
one of the transmitters in S, and if yes, which one. Often the set of query points
is known in advance, for example, in the planning stage of a wireless network or
when examining an existing network. In these cases, one would like to exploit
the additional information to speed up query processing. We achieve this goal
in the SINR model; that is, we devise efficient approximation and exact algo-
rithms for batched point location in various settings. Our algorithms use a novel
combination of sophisticated geometric data structures and tools from computer
algebra for multipoint evaluation, interpolation, and fast multiplication of poly-
nomials and rational functions. For example, consider 1-dimensional batched
point location where m = n and power is non-uniform. We can answer exactly a
point-location query in amortized time O(log2 n log log n). Considering the same
problem in the plane, for any ε > 0, we can approximately answer a query in
amortized time polylogarithmic in n and ε, as opposed to the result of Kantor
et al. [17] mentioned above in which the bounds depend on additional geometric
parameters which cannot be bounded as a function of n or ε.

1.1 Related Work

The papers most relevant to ours are those by Avin et al. [6] and Kantor
et al. [17] discussed above. Avin et al. [5] also considered the problem of handling
queries of the following form (in the uniform-power setting): Given a transmit-
ter si and query point q, does q receive si by successively applying interference
cancellation? (Interference cancellation is a technology that enables a point q to
receive a transmitter s, even if s’s signal is not the strongest one received at q;
see [5] for further details.)

Gupta and Kumar [11] initiated an extensive study of the maximum capacity
and scheduling problems in the SINR model. Given a set L of sender-receiver
pairs (i.e., directional links), the maximum capacity problem is to find a fea-
sible subset of L of maximum cardinality, where L′ ⊆ L is feasible if, when
only the senders of the links in L′ are active, each of the links in L′ is feasi-
ble according to the SINR inequality. The scheduling problem is to partition L
into a minimum number of feasible subsets (i.e., rounds). We mention several
papers and results dealing with the maximum capacity and scheduling prob-
lems. Goussevskaia et al. [10] showed that both problems are NP-complete, even
in the uniform power setting. Goussevskaia et al. [9], Halldórsson and Watten-
hofer [14], and Wan et al. [24] gave constant-factor approximation algorithms for
the maximum-capacity problem yielding an O(log n)-approximation algorithm
for the scheduling problem, assuming uniform power. In [9] they note that their
O(1)-approximation algorithm also applies to the case where the ratio between
the maximum and minimum power is bounded by a constant and for the case
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where the number of different power levels is constant. More recently, Halldórsson
and Mitra [13] have considered the case of oblivious power. This is a special case
of non-uniform power where the power of a link is a simple function of the link’s
length. They gave an O(1)-approximation algorithm for the maximum capacity
problem, yielding an O(log n)-approximation algorithm for scheduling. Finally,
the version where one assigns powers to the senders (i.e., with power control)
has also been studied, see, e.g., [2,12,13,18,22].

1.2 Our Tools and Goals

Besides making progress on the actual problems being considered here, we view
this work as another demonstration of what we hope to be a developing trend
of combining tools from the computer algebra world with those of computa-
tional geometry and other fields. Several relatively recent representatives of such
synergy show examples of seemingly impossible speed-ups in geometric algo-
rithms by expressing a subproblem in algebraic terms [1,20,21]. The algebraic
tools themselves are mostly classical ones, such as Fast Fourier Transform, fast
polynomial multiplication, multipoint evaluation, and interpolation [7,23]; see
[3, Appendix A] for details. We combine them with only slightly newer tools
from computational geometry, such as Voronoi diagrams, point location struc-
tures in the plane, fast exact and approximate nearest-neighbor query data struc-
tures, and range searching data structures [8]; refer to [3, Appendix B]. One very
recent result we need is that of Har-Peled and Kumar [15] that, as a special case,
allows one to build a compact data structure for approximating multiplicatively
weighted nearest-neighbor queries in the plane; the exact version appears to
require building the classical multiplicatively weighted Voronoi diagram, which
is a quadratic-size object.

We hope that the current work will lead to further productive collaborations
between computational geometry and computer algebra.

1.3 Our Results

We now summarize our main results. We use O∗ notation to suppress logarithmic
factors and Oε to denote polynomial dependence on 1/ε, where ε > 0 is the
approximation parameter. In general, we present algorithms for both the uniform-
power and non-uniform-power settings, where the algorithms of the former type
are usually somewhat simpler.

– In one dimension, we can perform n queries among n transmitters exactly
in O∗(n) total time; see Section 2.

– In two dimensions, we can perform n queries among n transmitters approxi-
mately in O∗

ε(n) total time; see Section 3.2.
– We can also facilitate exact batch queries when queries or transmitters form

a grid; we omit the details in this version; see [3].
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2 Batched Point Location on the Line

In this section S is a set of n ≥ 3 point transmitters and Q is a set of m query
points, both on the line. We first consider the uniform-power version of the
problem, where each transmitter has transmission power 1 (i.e., p1 = · · · = pn =
1), and then extend the approach to the arbitrary power version.

2.1 Uniform Power

A query point q receives si if and only if

1
|q−si|α

Σj �=i
1

|q−sj |α + N
≥ β .

Recall that, since β > 1, if q receives one of the transmitters, then it must be
the transmitter that is closest to it; we call it the candidate transmitter for q
and denote it by s(q) = s(q,S).

Next, we define a univariate function f as

f(q) :=
n∑

j=1

1
|q − sj |α .

Then, q can hear its candidate transmitter s(q) if and only if

E(q) :=
1

|q−s(q)|α
f(q) − 1

|q−s(q)|α + N
≥ β .

Theorem 1. For any fixed positive even integer α, given a set S of transmitters
(all of power 1) and a set Q of receivers, of sizes n and m respectively, we can
determine which, if any, transmitter is received by each receiver in total time
O((n + m) log2 n log log n).

Proof. As pointed out above, a receiver q can receive only the closest transmitter
s(q), if any, as the SINR inequality implies 1

|q−s(q)|α > 1
|q−s|α for any s �= s(q),

or equivalently, |q − s(q)| < |q − s|. So, as a first step, we identify the closest
transmitter for each receiver, which can be done, for example, by sorting S, and
using binary search for each receiver, in total time O((m + n) log n). Moreover,
we can compute the term 1

|q−s(q)|α , for each q ∈ Q, in the same amount of time.
Observe that f is a sum of n low-degree fractional functions of a single real

variable q, so according to [3, Corollary 1], we can now evaluate f on all points
of Q simultaneously in time O((n + m) log2 n log log n).

In O(m) additional operations we can evaluate the expressions
E(q1), . . . , E(qm) and determine for which receivers the SINR inequality holds,
so that the signal is actually received.

Computing and evaluating the fraction dominates the computation cost, so
the total running time is O((n + m) log2 n log log n).
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2.2 Arbitrary Power

We proceed in a similar manner, except the construction of the multiplicatively
weighted Voronoi diagram on a line, which is more subtle; see [3].

Theorem 2. For any fixed positive even integer α, given a set S of transmitters
(not necessarily all of the same power) and a set Q of receivers, of sizes n and
m respectively, we can determine which, if any, transmitter is received by each
receiver in total time O((n + m) log2 n log log n).

3 Batched Point Location in the Plane

In this section S = {si} is a set of n point transmitters in the plane. We consider
three versions of (batched) point location, where in the first two the answers we
obtain are exactly correct, while in the third one the answer to a query q may
be either “s” (meaning that q receives s), “no” (meaning that q does not receive
any transmitter), or “maybe” (meaning that q may or may not be receiving some
transmitter; the SIN ratio is too close to β and we are unable to decide quickly
whether it is above or below β).

Specifically, we consider the following three versions of (batched) point loca-
tion. In the first version, we assume that the transmitters form an

√
n × √

n
non-uniform grid and that each transmitter has power 1. We show how to solve
a single point-location query in this setting in O(

√
n log2 n log log n) (rather than

linear) time. In the second version, we assume that the receivers form an n × n
non-uniform grid, but the n transmitters, on the other hand, are located any-
where in the plane. Moreover, we allow arbitrary transmission powers. We show
how to answer the n2 queries in near-quadratic (rather than cubic) time. The
details of these two versions are omitted due to space limitations; see [3].

Finally, in the third version (Section 3.2), we do not make any assumptions
on the location of the devices (either transmitters or receivers). As a result of
this, we might not be able to give a definite answer in borderline instances.
Specifically, given n transmitters and m receivers, we compute (in total time
near-linear in n + m), for each receiver q, its unique candidate transmitter s
and a value Ẽ(q), such that, if Ẽ(q) is sufficiently greater than β, then q surely
receives s, if Ẽ(q) is sufficiently smaller than β, then q surely does not receive
s, and otherwise, q may or may not receive some transmitter (i.e., Ẽ(q) lies in
the uncertainty interval). We first present a solution for which the uncertainty
interval is [2−α/2β, 2α/2β), i.e., a constant-factor approximation. We then gener-
alize it so that the uncertainty region is [(1 − ε)β, (1 + ε)β), for any ε > 0, i.e.,
a PTAS. We consider both the uniform- and arbitrary-power settings.

3.1 General Discussion

Once again, the SINR inequality determines which, if any, of the transmitters
s ∈ S can be heard by a receiver at point q and the only candidate transmit-
ter s(q) is the one that minimizes |q − s|/p1/α among all transmitters s with
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corresponding power p. In the uniform-power case, this means the transmitter
closest to q in Euclidean distance, and the matching space decomposition is the
Euclidean Voronoi diagram which can be constructed in O(n log n) time (see [8]),
where n = |S|. In the non-uniform-power case, this corresponds to the multiplica-
tively weighted Voronoi diagram in the plane, which is a structure of worst-case
complexity Θ(n2) that can be constructed in time O(n2); see [4].

Once again we define the function f(q), which represents the total signal
strength at q from all transmitters, and express the decision of whether the
transmitter s(q) is received at q by computing E(q) and comparing it with β.
The difference from the one-dimensional case is that f(q) is now a sum of low-
degree bivariate fractions, with the two variables being the coordinates of q.

In all cases, the goal is to evaluate f(q), for each receiver q, and to identify
the suitable candidate transmitter s(q), faster than by brute force. Given this
information, the decision can be made in constant time per receiver.

Due to space constraints, we omit the discussion of transmitters on a grid
and of receivers on a grid; see [3]. Therefore in the remainder of the section we
focus on the last version of the problem.

3.2 Approximating the General Case

We now abandon the ambition to get exact answers and aim for an approximation
algorithm, in the sense we will make precise below. Again, S = {si} is the set
of n transmitters, with each si a point in the plane with power pi; similarly
Q = {qj} is the set of m receivers, where a generic receiver is q = (qx, qy).

For a query point q and a transmitter s = (sx, sy) of power p, set l(q, s) =
max{|qx−sx|, |qy −sy|}; in other words, l(q, s) is the L∞ distance between points
q and s. In complete analogy to our previous approach, put

f̃(q) :=
n∑

i=1

pi

l(q, si)α
and Ẽ(q) :=

p
l(q,s)α

f̃(q) − p
l(q,s)α + N

.

What is the significance of the quantity Ẽ(q)? Since for any two points s, q,
l(q, s) ≤ |q − s| ≤ √

2l(q, s),

2−α/2 pj

l(q, sj)α
≤ pj

|q − sj |α ≤ pj

l(q, sj)α
,

so 2−α/2f̃(q) ≤ f(q) ≤ f̃(q), and therefore 2−α/2Ẽ(q) ≤ E(q) ≤ 2α/2Ẽ(q).
Informally, Ẽ(q) is “pretty close” to E(q).

This suggests an approximation strategy that begins by computing Ẽ(q)
instead of E(q). If Ẽ(q) ≥ 2α/2β, we know that E(q) ≥ β and the signal from the
unique candidate transmitter s(q) is received. If Ẽ(q) < 2−α/2β, then E(q) < β
and the signal from s(q) is not received and therefore no signal is received by q.
For intermediate values of Ẽ(q), we cannot definitely determine whether s(q)’s
signal is received at q.

Now we turn to the actual batch computation of Ẽ(q) for all receivers in Q
and point out a few additional caveats.
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Computationally, Ẽ(q) can be evaluated in constant time, given f̃(q) and
point s(q) = s(q,S). So we focus on these two subproblems. For the uniform-
power case, we can construct the Voronoi diagram of S, preprocess it for point
location, and query it with each receiver, for a total cost of O((n + m) log n) [8].
In the case of non-uniform power, if we are content with near-quadratic running
time, we can determine s(q) by computing the multiplicatively weighted Voronoi
diagram of S as outlined above, and then querying it with each receiver in total
time O(n2 + m log n) (see [4,8], which is too much for m ≈ n. We provide an
alternative below.

We show how to compute the values f̃(q1), . . . , f̃(qm) in near-linear time,
using a two-dimensional orthogonal range search tree. Indeed, observe that
l(s, q) = |qx − sx| provided |qx − sx| ≥ |qy − sy|. For a fixed q, the region
Wq containing the transmitters of S satisfying this inequality is a 90◦ dou-
ble wedge. Using (a tilted version of) the orthogonal range search tree [8]
(see, [Section B.1, Fact 14]), we can construct a pair decomposition {(Si,Qi)} of
small size, so that each pair (s, q) with s ∈ Wq appears in exactly one product
Si × Qi.

We now denote by f̃(q, Z) the sum analogous to f̃(q), where the summation
goes over the elements of the supplied set Z rather than those of S. Clearly,

f̃(q,S ∩ Wq) =
∑

i:q∈Qi

f̃(q,Si), (1)

by the definition of the pair decomposition. The number of terms in the last
sum is O(log2 n). Notice that f̃(q,Si), for a fixed i, is a sum of small fractional
univariate functions, with |Si| terms in it, since the expression for transmitters
in Wq depends only on qx and not on qy. Now for each pair (Qi,Si), we use
[3, Corollary 1] to evaluate f̃(q,Si) on each q ∈ Qi in total time O((|Qi| +
|Si|) log2 |Si| log log |Si|) = O((|Qi| + |Si|) log2 n log log n). This gives us all the
summands of (1) and therefore allows us to evaluate f̃(q,S ∩ Wq) for all q ∈ Q,
in total time at most proportional to

∑
i(|Qi|+ |Si|) log2 n log log n = (

∑
i(|Qi|+

|Si|)) log2 n log log n = O((m + n) log4 n log log n).
Of course, we have only treated those s that lie in Wq. But the calculation is

repeated in the complementary double wedge, where now only the y-coordinates
matter and f̃(q) is the sum of the two values thus obtained.

Theorem 3. For any fixed positive even integer α, given a set S of n transmit-
ters (all of power 1) and a set Q of m receivers, we can do the following in total
time O((m + n) log4 n log log n). For each q ∈ Q, we find its unique candidate
transmitter s(q) and compute a value Ẽ(q), such that (i) if Ẽ(q) ≥ 2α/2β, then
q can definitely hear s(q), (ii) if Ẽ(q) < 2−α/2β, then q definitely cannot hear
s(q), and (iii) if 2−α/2β ≤ Ẽ(q) < 2α/2β, then q may or may not hear s(q).

The algorithm for the non-uniform power case is hampered by the fact that
the obvious way to identify the candidate transmitter each receiver might hear
seems to involve constructing the multiplicatively weighted Voronoi diagram of
quadratic complexity. However, we do not need the exact multiplicatively closest
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neighbor, but rather a reasonably-close approximation of the value |q−s|/p(s)1/α,
over all s ∈ S (being off by a multiplicative factor of at most 21/2 is sufficient;
see the discussion below). Such an approximation is provided by an algorithm
of Har-Peled and Kumar [15,16], by setting ε = 21/2 − 1 (see [3]), yielding the
following:

Theorem 4. For any fixed positive even integer α and any β > 2α/2, given a set
S of n transmitters of arbitrary powers and a set Q of m receivers, we can do the
following in total time O(n log7 n+m log4 n log log n) and O(n log4 n+m log2 n)
space: For each q ∈ Q, we find a transmitter sq and compute a value Ẽ(q), such
that (i) if Ẽ(q) ≥ 2α/2β, then q can definitely hear sq (implying that sq = s(q)),
(ii) if Ẽ(q) < 2−α/2β, then q definitely cannot hear any transmitter, and (iii) if
2−α/2β ≤ Ẽ(q) < 2α/2β, then q may or may not hear one of the transmitters.

Note. The transmitter sq in the theorem above is not necessarily the unique
candidate transmitter s(q). We would like to show that if Ẽ(q) ≥ 2α/2β (and
therefore E(q) ≥ β), then sq is necessarily s(q). Assume that they are different
(i.e., that sq �= s(q)), and let eq (resp., e(q)) be the strength of sq’s signal
(resp., s(q)’s signal) at q. Then, we know that eq ≤ e(q) ≤ 2α/2eq. Notice that
E(q) ≤ e(q)/eq, since E(q) is maximized when there is no third transmitter and
no noise, so e(q)/eq ≥ β (since E(q) ≥ β). Recall that we are assuming that
β > 2α/2, so we get that e(q)/eq > 2α/2, which is a contradiction.

We now turn the algorithm described above into a PTAS, in the sense that
we will confine Ẽ(q) to the range ((1−ε)E(q), (1+ε)E(q)], for a given ε > 0. We
outline the approach below. Consider the regular k-gon Kk circumscribed around
the Euclidean unit disk, for a large enough even k ≥ 4 specified below. We modify
the above algorithm, replacing the L∞-norm whose “unit disk” is a square, with
the norm | . . . |k with Kk as the unit disk. Then |v|k ≤ |v| ≤ (1 + Θ(k−2))|v|k,
for any vector v in the plane. In the range-searching data structure, wedges with
opening angle π/2 = 2π/4 are replaced by wedges with opening angle 2π/k, and
we need k/2 copies of the structure.

In terms of the quality of approximation, the factor 2α/2 = (
√

2)α is replaced
by (1 + Θ(k−2))α ≈ 1 + αΘ(k−2). Hence to obtain an approximation factor of
1 + ε, we set 1 + ε = 1 + αΘ(k−2), or k = c(α/ε)1/2, for a suitable absolute
constant c. In other words, it is sufficient to create O(ε−1/2) copies of the data
structure. To summarize, we have:

Theorem 5. For a positive ε, any fixed positive even integer α, given a set S
of n transmitters (all of power 1) and a set Q of m receivers, we can do the
following in total time O((m + n)ε−1/2 log4 n log log n). For each q ∈ Q, we find
its unique candidate transmitter s(q) and compute a value Ẽ(q), such that (i) if
Ẽ(q) ≥ (1 + ε)β, then q can definitely hear s(q), (ii) if Ẽ(q) < (1 − ε)β, then q
definitely cannot hear s(q), and (iii) if (1 − ε)β ≤ Ẽ(q) < (1 + ε)β, then q may
or may not hear s(q).
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Theorem 6. For a positive ε, any fixed positive even integer α, and any β > 1+
ε,3 given a set S of n transmitters of arbitrary powers and a set Q of m receivers,
we can do the following in total time O(nε−6 log7 n+mε−1/2 log4 n log log n) and
O(nε−6 log4 n + mε−1/2 log2 n) space: For each q ∈ Q, we find a transmitter sq

and compute a value Ẽ(q), such that (i) if Ẽ(q) ≥ (1+ ε)β, then q can definitely
hear sq (implying that sq = s(q)), (ii) if Ẽ(q) < (1−ε)β, then q definitely cannot
hear any transmitter, and (iii) if (1−ε)β ≤ Ẽ(q) < (1+ε)β, then q may or may
not hear one of the transmitters.

4 Concluding Remarks

We described several algorithms that combine computational geometry tech-
niques and methods of computer algebra to obtain very fast batched SINR
diagram point-location queries.

We believe that Theorems 5 and 6 can be applied to speed up the prepro-
cessing stage of existing point-location results. Consider, e.g., the data structure
presented by Avin et al. [6] for a set of n uniform-power transmitters, whose con-
struction time is O(n2/δ). This data structure is actually a collection of n data
structures, one per transmitter, where the data structure DSi for transmitter
si consists of an inner (R+

i ) and outer (R−
i ) approximation for reception region

Ri, so that area(R−
i \ R+

i ) ≤ δ · area(Ri), see the definitions in the introduction.
The construction of DSi is based on the convexity and fatness of region Ri and
consists of two stages. In the first, explicit estimates for the radii of the largest
disk centered at si and contained in Ri and the smallest such disk containing
Ri are obtained, by applying a binary-search-like procedure (beginning with the
distance between si to its nearest (other) transmitter in S), where each com-
parison is resolved by explicitly evaluating the SIN ratio at some point q and
comparing it to β, i.e., by an in/out test. In the second stage, a 1/δ × 1/δ grid
scaled to exactly cover the outer disk is laid, and, by performing O(1/δ) addi-
tional in/out tests, the sets R+

i and R−
i are obtained (as collections of grid cells).

This algorithm thus performs Θ(log n + 1/δ) in/out tests per transmitter, at a
cost of Θ(n) operations each; the high cost of each test is the bottleneck.

We believe that it is possible to speed up the algorithm by constructing the
n individual data structures in parallel. During the construction, we will form
O(log n + 1/δ) batches of n queries each, and use Theorem 5 to deal with each
of them in near-linear time. The only problem is that our query answers are not
exact, but approximate; for some queries, instead of “in” or “out,” we answer
“maybe. We think that there is a way to overcome this problem, but we leave it
for a full version.

Besides speeding up the construction time of known structures, we would like
to find other applications of batched point location to other problems studied in
the SINR model.
3 This requirement is analogous to that in Theorem 4 to guarantee that the approx-

imately highest-strength transmitter returned by the data structure is in fact the
right one.
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We note that our results are general, in the sense that analogous results can
be obtained for diagrams that are induced by other inequalities similar to the
SINR inequality.

Finally, on a larger scale, we are interested in further applications where alge-
braic and geometric tools can be combined to achieve significant improvements.
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