
Linear-Time List Recovery of High-Rate
Expander Codes

Brett Hemenway1(B) and Mary Wootters2

1 University of Pennsylvania, Philadelphia, USA
fbrett@cis.upenn.edu

2 Carnegie Mellon University, Pittsburgh, USA
marykw@cs.cmu.edu

Abstract. We show that expander codes, when properly instantiated,
are high-rate list recoverable codes with linear-time list recovery algo-
rithms. List recoverable codes have been useful recently in constructing
efficiently list-decodable codes, as well as explicit constructions of matri-
ces for compressive sensing and group testing. Previous list recoverable
codes with linear-time decoding algorithms have all had rate at most 1/2;
in contrast, our codes can have rate 1 − ε for any ε > 0. We can plug
our high-rate codes into a framework of Alon and Luby (1996) and Meir
(2014) to obtain linear-time list recoverable codes of arbitrary rates R,
which approach the optimal trade-off between the number of non-trivial
lists provided and the rate of the code.

While list-recovery is interesting on its own, our primary motivation
is applications to list-decoding. A slight strengthening of our result would
imply linear-time and optimally list-decodable codes for all rates. Thus,
our result is a step in the direction of solving this important problem.

1 Introduction

In the theory of error correcting codes, one seeks a code C ⊂ F
n so that it

is possible to recover any codeword c ∈ C given a corrupted version of that
codeword. The most standard model of corruption is from errors: some constant
fraction of the symbols of a codeword might be adversarially changed. Another
model of corruption is that there is some uncertainty: in each position i ∈ [n],
there is some small list Si ⊂ F of possible symbols. In this model of corruption,
we cannot hope to recover c exactly; indeed, suppose that Si = {ci, c

′
i} for some

codewords c, c′ ∈ C. However, we can hope to recover a short list of codewords
that contains c. Such a guarantee is called list recoverability.

While this model is interesting on its own—there are several settings in which
this sort of uncertainty may arise—one of our main motivations for studying list-
recovery is list-decoding. We elaborate on this more in Section 1.1 below.

We study the list recoverability of expander codes. These codes—introduced
by Sipser and Spielman in [29]—are formed from an expander graph and an

M. Wootters–Research funded by NSF MSPRF grant DMS-1400558.

c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 701–712, 2015.
DOI: 10.1007/978-3-662-47672-7 57

702 B. Hemenway and M. Wootters

inner code C0. One way to think about expander codes is that they preserve
some property of C0, but have some additional useful structure. For example,
[29] showed that if C0 has good distance, then so does the the expander code; the
additional structure of the expander allows for a linear-time decoding algorithm.
In [20], it was shown that if C0 has some good (but not great) locality properties,
then the larger expander code is a good locally correctable code. In this work,
we extend this list of useful properties to include list recoverability. We show
that if C0 is a list recoverable code, then the resulting expander code is again
list recoverable, but with a linear-time list recovery algorithm.

1.1 List Recovery

List recoverable codes were first studied in the context of list-decoding and soft-
decoding: a list recovery algorithm is at the heart of the celebrated Guruswami-
Sudan list-decoder for Reed-Solomon codes [17] and for related codes [16].
Guruswami and Indyk showed how to use list recoverable codes to obtain good
list- and uniquely-decodable codes [12–14]. More recently, list recoverable codes
have been studied as interesting objects in their own right, and have found sev-
eral algorithmic applications, in areas such as compressed sensing and group
testing [7,23,28].

We consider list recovery from erasures, which was also studied in [8,14]. That
is, some fraction of symbols may have no information; equivalently, Si = F for
a constant fraction of i ∈ [n]. Another, stronger guarantee is list recovery from
errors. That is, ci �∈ Si for a constant fraction of i ∈ [n]. We do not consider this
stronger guarantee here, and it is an interesting question to extend our results
for erasures to errors. It should be noted that the problem of list recovery is
interesting even when there are neither errors nor erasures. In that case, the
problem is: given Si ⊂ F, find all the codewords c ∈ C so that ci ∈ Si for all i.

There are two parameters of interest. First, the rate R := logq(|C|)/n of the
code: ideally, we would like the rate to be close to 1. Second, the efficiency of the
recovery algorithm: ideally, we would be able to perform list-recovery in time
linear in n. We survey the relevant results on list recoverable codes in Figure 1.
While there are several known constructions of list recoverable codes with high
rate, and there are several known constructions of list recoverable codes with
linear-time decoders, there are no known prior constructions of codes which
achieve both at once.

In this work, we obtain the best of both worlds, and give constructions of
high-rate, linear-time list recoverable codes. Additionally, our codes have con-
stant (independent of n) list size and alphabet size. As mentioned above, our
codes are actually expander codes—in particular, they retain the many nice
properties of expander codes: they are explicit linear codes which are efficiently
(uniquely) decodable from a constant fraction of errors.

We can use these codes, along with a construction of Alon and Luby [1],
recently highlighted by Meir [26], to obtain linear-time list recoverable codes of
any rate R, which obtain the optimal trade-off between the fraction 1 − α of
erasures and the rate R. More precisely, for any R ∈ [? ?], � ∈ N, and η > 0,

Linear-Time List Recovery of High-Rate Expander Codes 703

there is some L = L(η, �) so that we can construct rate R codes which are
(R + η, �, L)-list recoverable in linear time. The fact that our codes from the
previous paragraph have rate approaching 1 is necessary for this construction.
To the best of our knowledge, linear-time list-decodable codes obtaining this
trade-off were also not known.

It is worth noting that if our construction worked for list recovery from
errors, rather than erasures, then the reduction above would obtain linear-time
list decodable codes, of rate R and tolerating 1 − R − η errors. (In fact, it would
yield codes that are list-recoverable from errors, which is a strictly stronger
notion). So far, all efficiently list-decodable codes in this regime have polynomial-
time decoding algorithms. In this sense, our work is a step in the direction of
linear-time optimal list decoding, which is an important open problem in coding
theory.1

1.2 Expander Codes

Our list recoverable codes are actually properly instantiated expander codes.
Expander codes are formed from a d-regular expander graph, and an inner code
C0 of length d, and are notable for their extremely fast decoding algorithms. We
give the details of the construction below in Section 2. The idea of using a graph
to create an error correcting code was first used by Gallager [6], and the addition
of an inner code was suggested by Tanner [30]. Sipser and Spielman introduced
the use of an expander graph in [29]. There have been several improvements over
the years by Barg and Zemor [2–4,31].

Recently, Hemenway, Ostrovsky and Wootters [20] showed that expander
codes can also be locally corrected, matching the best-known constructions in
the high-rate, high-query regime for locally-correctable codes. That work showed
that as long as the inner code exhibits suitable locality, then the overall expander
code does as well. This raised a question: what other properties of the inner code
does an expander code preserve? In this work, we show that as long as the inner
code is list recoverable (even without an efficient algorithm), then the expander
code itself is list recoverable, but with an extremely fast decoding algorithm.

It should be noted that the works of Guruswami and Indyk cited above
on linear-time list recovery are also based on expander graphs. However, that
construction is different from the expander codes of Sipser and Spielman. In
particular, it does not seem that the Guruswami-Indyk construction can achieve
a high rate while maintaining list recoverability.

1 In fact, adapting our construction to handle errors, even if we allow polynomial-time
decoding, is interesting. First, it would give a new family of efficiently-decodable,
optimally list-decodable codes, very different from the existing algebraic construc-
tions. Secondly, there are no known uniformly constructive explicit codes (that is,
constructible in time poly(n) · Cη) with both constant list-size and constant alpha-
bet size—adapting our construction to handle errors, even with polynomial-time
recovery, could resolve this.

704 B. Hemenway and M. Wootters

1.3 Our Contributions

We summarize our contributions below:

1. The first construction of linear-time list-recoverable codes with
rate approaching 1. As shown in Figure 1, existing constructions have
either low rate or substantially super-linear recovery time. The fact that our
codes have rate approaching 1 allows us to plug them into a construction
of [26], to achieve the next bullet point:

2. The first construction of linear-time list-recoverable codes with
optimal rate/erasure trade-off. We will show in Section 3.2 that our
high-rate codes can be used to construct list-recoverable codes of arbitrary
rates R, where we are given information about only an R + ε fraction of
the symbols. As shown in Figure 1, existing constructions which achieve this
trade-off have substantially super-linear recovery time.

3. A step towards linear-time, optimally list decodable codes. Our
results above are for list-recovery from erasures. While this has been studied
before [14], it is a weaker model than a standard model which considers
errors. As mentioned above, a solution in this more difficult model would
lead to algorithmic improvements in list decoding (as well as potentially in
compressed sensing, group testing, and related areas). It is our hope that
understanding the erasure model will lead to a better understanding of the
error model, and that our results will lead to improved list decodable codes.

4. New tricks for expander codes. One take-away of our work is that
expander codes are extremely flexible. This gives a third example (after
unique- and local- decoding) of the expander-code construction taking
an inner code with some property and making that property efficiently
exploitable. We think that this take-away is an important observation, wor-
thy of its own bullet point. It is a very interesting question what other
properties this may work for.

2 Definitions and Notation

An error correcting code is (α, �, L) list recoverable (from errors) if given lists of
� possible symbols at every index, there are at most L codewords whose symbols
lie in a α fraction of the lists. We will use a slightly different definition of list
recoverability, matching the definition of [14]; to distinguish it from list recovery
from errors, we will call it list recoverability from erasures.

Definition 1 (List recoverability from erasures). An error correcting code
C ⊂ F

n
q is (α, �, L)-list recoverable from erasures if the following holds. Fix any

sets S1, . . . , Sn with Si ⊂ Fq, so that |Si| ≤ � for at least αn of the i’s and
Si = Fq for all remaining i. Then there are most L codewords c ∈ C so that
c ∈ S1 × S2 × · · · × Sn.

Linear-Time List Recovery of High-Rate Expander Codes 705

Source Rate List size Alphabet Agreement Recovery Explicit
L size α time Linear

Random code 1− γ O(�/γ) �O(1/γ) 1− O(γ)
Random

pseudolinear code
[11]

1− γ O
(

� log(�)

γ2

)
�O(1/γ) 1− O(γ)

Random linear
code [9] 1− γ �O(�/γ2) �O(1/γ) 1− O(γ) L

Folded
Reed-Solomon

codes [16]
1− γ nO(log(�)/γ) nO(log(�)/γ2) 1− O(γ) nO(log(�)/γ2) EL

Folded RS
subcodes:

evaluation points
in an explicit

subspace-evasive
set [5]

1− γ (1/γ)O(�/γ) nO(�/γ2) 1− O(γ) nO(�/γ2) E

Folded RS
subcodes:

evaluation points
in a non-explicit
subspace-evasive

set [10]

1− γ O
(

�
γ2

)
nO(�/γ2) 1− O(γ) nO(�/γ2)

(Folded) AG
subcode [18,19]

1 - γ O(�/γ) exp(Õ(�/γ2)) 1− O(γ) C�,γnO(1)

[13] 2−2O(�)
� 22

2O(�)

1− 2−2�O(1)

O(n) E

[14] �−O(1) � 2�O(1)
.999 (�) O(n) E

This work 1− γ �γ−4��C�/γ2

�O(1/γ) 1− O(γ3) (�) O(n) EL

Fig. 1. Results on high-rate list recoverable codes and on linear-time decodable list
recoverable codes. Above, n is the block length of the (α, �, L)-list recoverable code,
and γ > 0 is sufficiently small and independent of n. Agreement rates marked (�) are
for erasures, and all others are from errors. An empty “recovery time” field means that
there are no known efficient algorithms. We remark that [19], along with the explicit
subspace designs of [15], also give explicit constructions of high-rate AG subcodes with
polynomial time list-recovery and somewhat complicated parameters; the list-size L
becomes super-constant.

The results listed above of [5,10,16,18,19] also apply for any rate R and agree-
ment R + γ. In Section 3.2, we show how to achieve the same trade-off (for erasures)
in linear time using our codes.

Our construction will be based on expander graphs. We say a d-regular graph
H is a spectral expander with parameter λ, if λ is the second-largest eigenvalue

706 B. Hemenway and M. Wootters

of the normalized adjacency matrix of H. Intuitively, the smaller λ is, the better
connected H is—see [22] for a survey of expanders and their applications. We
will take H to be a Ramanujan graph, that is, so that λ ≤ 2

√
d−1
d ; explicit

constructions of Ramanujan graphs are known [24,25,27] for arbitrarily large
values of d. For a graph H with vertices V (H) and edges E(H), we use the
following notation. For a set S ⊂ V (H), we use Γ (S) to denote the neighborhood

Γ (S) = {v : ∃u ∈ S, (u, v) ∈ E(H)} .

For a set of edges F ⊂ E(H), we use ΓF (S) to denote the neighborhood restricted
to F :

ΓF (S) = {v : ∃u ∈ S, (u, v) ∈ F} .

Given a d-regular H and an inner code C0, we define the Tanner code C(H, C0)
as follows.

Definition 2 (Tanner code [30]). If H is a d-regular graph on n vertices and
C0 is a linear code of block length d, then the Tanner code created from C0 and
H is the linear code C ⊂ F

E(H)
q , where each edge H is assigned a symbol in Fq

and the edges adjacent to each vertex form a codeword in C0.

C = {c ∈ F
E(H)
q : ∀v ∈ V (H), c|Γ (v) ∈ C0}

Because codewords in C0 are ordered collections of symbols whereas edges adja-
cent to a vertex in H may be unordered, creating a Tanner code requires choos-
ing an ordering of the edges at each vertex of the graph. Although different
orderings lead to different codes, our results (like all previous results on Tanner
codes) work for all orderings. As our constructions work with any ordering of
the edges adjacent to each vertex, we assume that some arbitrary ordering has
been assigned, and do not discuss it further.

When the underlying graph H is an expander graph,2 we call the resulting
Tanner code an expander code. Sipser and Spielman showed that expander codes
are efficiently uniquely decodable from about a δ20 fraction of errors. We will only
need unique decoding from erasures; the same bound of δ20 obviously holds for
erasures as well, but for completeness we state the following lemma, which we
prove in the full version [21].

Lemma 1. If C0 is a linear code of block length d that can recover from an
δ0d number of erasures, and H is a d-regular expander with normalized second
eigenvalue λ, then the expander code C can be recovered from a δ0

k fraction of
erasures in linear time whenever λ < δ0 − 2

k .

Throughout this work, C0 ⊂ F
d
q will be (α0, �, L)-list recoverable from erasures,

and the distance of C0 is δ0. We choose H to be a Ramanujan graph, and C =
C(H, C0) will be the expander code formed from H and C0.

2 Although many expander codes rely on bipartite expander graphs (e.g. [31]), we find
it notationally simpler to use the non-bipartite version.

Linear-Time List Recovery of High-Rate Expander Codes 707

3 Results and Constructions

In this section, we give an overview of our constructions and state our results. Our
main result (Theorem 1) is that list recoverable inner codes imply list recoverable
expander codes. We then instantiate this construction to obtain the high-rate
list recoverable codes claimed in Figure 1. Next, in Theorem 3 we show how
to combine our codes with a construction of Meir [26] to obtain linear-time list
recoverable codes which approach the optimal trade-off between α and R.

3.1 High-Rate Linear-Time List Recoverable Codes

Our main theorem is that list recoverable codes imply list recoverable expander
codes:

Theorem 1. Suppose that C0 is (α0, �, L)-list recoverable from erasures, of rate
R0, length d, and distance δ0, and suppose that H is a d-regular expander graph
with normalized second eigenvalue λ, if

λ <
δ20

12�L

Then the expander code C formed from C0 and H has rate at least 2R0 − 1 and
is (α, �, L′)-list recoverable from erasures, where

L′ ≤ exp�

(
72 �2L

δ20(δ0 − λ)2

)

and α satisfies

1 − α ≥ (1 − α0)
(

δ0(δ0 − λ)
6

)
.

Further, the running time of the list recovery algorithm is OL,�,δ0,d(n).

Above, the notation exp�(·) means �(·). Before we discuss the proof of Theorem
1 and the recovery algorithm, we show how to instantiate these codes to give
the parameters claimed in Figure 1.

We will use a random linear code as the inner code. A probabilistic argument
shows that there exist inner codes with R0 = 1 − γ, distance δ0 = γ(1 + O(γ))
that are (α0, �, L)-list recoverable, over an alphabet of size qO(1/γ). (See the full
version of this paper [21]). Plugging all this into Theorem 1, we get explicit codes
of rate 1 − 2γ which are (α, �, L′)-list recoverable in linear time, for

L′ = exp�

(
γ−4 exp�

(
exp�

(
C�/γ2

)))
and for α = 1 − C ′γ3 for some constants C,C ′. This recovers the parameters
claimed in Figure 1. Above, we can choose d = O

(
�2L

γ4

)
so that the Ramanujan

graph would have parameter λ obeying the conditions of Theorem 1. Thus,
when �, γ are constant, so is the degree d, and the running time of the recovery
algorithm is linear in n, and thus in the block length nd of the expander code.
By Lemma 1, because the distance of the inner code is δ0 = γ(1 + O(γ)), the
distance of our construction is δ = Ω(γ2).

708 B. Hemenway and M. Wootters

Remark 1. Both the alphabet size and the list size L′ are constant, if � and γ are
constant. However, L′ depends rather badly on �, even compared to the other
high-rate constructions in Figure 1. This is because the bound on random linear
codes that we use for our inner code is likely not tight; it would be interesting to
either improve this bound or to give an inner code with better list size L. The
key restrictions for such an inner code are that (a) the rate of the code must be
close to 1; (b) the list size L must be constant, and (c) the code must be linear.
Notice that (b) and (c) prevent the use of either Folded Reed-Solomon codes or
their restriction to a subspace evasive set, respectively.

3.2 List Recoverable Codes Approaching Capacity

We can use our list recoverable codes, along with a construction of Alon and
Luby [1] (which has also been used for similar purposes by Guruswami and
Indyk [12], and was recently used and highlighted by Meir [26]), to construct
codes which approach the optimal trade-off between the rate R and the agree-
ment α. To quantify this, we state the following analog of the list-decoding
capacity theorem.

Theorem 2 (List recovery capacity theorem). For every R > 0, and L ≥ �,
there is some code C of rate R over Fq which is (R+η(�, L), �, L)-list recoverable
from erasures, for any

η(�, L) ≥ 4�

L
and q ≥ �2/η.

Further, for any constant R > 0, any integer �, and any sufficiently small η > 0,
any code of rate R which is (R−η, �, L)-list recoverable from erasures must have
L = qΩ(n).

The proof is a straightforward probabilistic argument and is given in the full
version [21]. Although Theorem 2 ensures the existence of certain list-recoverable
codes, the proof of Theorem 2 is probabilistic, and does not provide a means of
efficiently identifying (or list recovering) these codes. Using the approach of [26]
we can turn our construction of linear-time list recoverable codes into linear-time
list recoverable codes approaching capacity.

Theorem 3. For any R > 0, � > 0, and for all sufficiently small η > 0, there
is some L, depending only on � and η, and some constant d, depending only
on η, so that whenever q ≥ �6/η there is a family of (α, �, L)-list recoverable
codes C ⊂ F

n
qd with rate at least R, for α = R + η. Further, these codes can be

list-recovered in linear time.

We follow the approach of [26], which adapts a construction of [1] to take advan-
tage of high-rate codes with a desirable property. Informally, the takeaway of [26]
is that, given a family of codes with any nice property and rate approaching 1,
one can make a family of codes with the same nice property that acheives the
Singleton bound. The proof of Theorem 3, as well as the construction, can be
found in the full version [21].

Linear-Time List Recovery of High-Rate Expander Codes 709

4 Recovery Procedure and Proof of Theorem 1

In this section, we outline at a high level the ideas and techniques in our list
recovery algorithm. A detailed description of the recovery algorithm and the
proof of correctness can be found in the full version [21]. The complete list
recovery algorithm is presented in the full version. The algorithm proceeds in
three steps, which we describe below. Due to space constraints, we omit the
details of these steps, which can be found in the full version of the paper [21].

1. First, we list recover locally at each vertex, using the list recoverability of
the inner code.
This step yields a list of L codewords at each vertex.

2. Next, we choose an edge, and one of the � possible symbols on that edge.
The crux of the decoding algorithm is identifying how this choice propagates
through the graph.
This propagation will cover a constant fraction of the edges in the graph.
We repeat this propagation for each of the � choices of symbol for the chosen
edge. This yields a collection of � possible partial codewords.

3. Step 2 yields partial assignments (that assign values to a constant fraction
of the symbols in the expander code). To turn these partial assignments into
full assignments, we repeat Step 2 a constant number of times until we have
partial assignments that cover essentially the entire graph. We stop once
we have covered enough edges, and we use the minimum distance of the
expander code to uniquely fill in the unknown edges. Since each iteration of
Step 2 yields � possible partial assignments (all to the same set of edges), if
we repeat Step 2 t times, we can stitch them together to obtain �t possible
assignments.

The difficulty in analyzing this algorithm comes from determining how a
choice of a symbol in Step 2 propagates through the graph. We sketch the intu-
ition below; the formal discussion can be found in [21].

For simplicity, suppose there are no erasures—our final algorithm can recover
from a constant fraction of erasures, but the intuition is cleaner if there are no
erasures—and suppose that each edge of H holds a list of � possible symbols.
Suppose (v, u) is the edge chosen at Step 2. We might hope that a choice of
a symbol on this edge (or even the choice of a codeword at vertex u) would
determine the codeword at v. This is unfortunately not likely to be true because
L > �: a choice of one of � symbols on (v, u) is not sufficient to uniquely determine
one of the L codewords on vertex v. Instead of analyzing propagation at a vertex
level, we focus on propagation at the edge level.

To do this, we introduce the notion of equivalence classes of edges. Suppose
that the neighbors of v are u1, . . . , ud. There are L possible codewords at v, and
there are � possible choices of symbol at (v, ui); thus there are at most �L possible
maps from codeword at v to symbol at (v, ui). If d 	 �L, then by the pigeonhole
principle some of these maps must be identical. We call edges (v, ui) and (v, uj)
equivalent with respect to v if their maps are identical. In particular, this means

710 B. Hemenway and M. Wootters

that a choice of symbol of (v, ui) defines the choice of symbol on (v, uj). Thus a
choice of symbol on (v, u1) (say), will determine symbols of (v, ui) for all (v, ui)
in the same equivalence class as (v, u1).

We can then repeat this logic at each of these vertices ui: the choice of symbol
on (ui, v) will determine symbols on edges (ui, w) that are equivalent to (ui, v)
with respect to ui. In this way, the choice of a single symbol propagates through
a large portion of the graph. We use the expansion of the graph to show that
this propagation ends up covering a constant fraction of the graph. Thus, after
making a constant number of choices (and using the distance of the expander
code to take care of the small fraction of untouched edges), we will have recovered
every assignment of symbols which is consistent with the given lists.

There are several details omitted from the sketch above. For example, we
argued above that some equivalence classes are large. Of course, some may also
be small. What if (v, u) belongs to a small equivalence class and our choice does
not propagate? We show in the appendix that there is a large subgraph H ′ of
H so that every equivalence class in H ′ is large. The full details, and a complete
description of the recovery algorithm, can be found in the full version of the
paper [21].

5 Conclusion and Open Questions

We have shown that expander codes, properly instantiated, are high-rate list
recoverable codes with constant list size and constant alphabet size, which can
be list recovered in linear time. To the best of our knowledge, no such con-
struction was known. Our work leaves several open questions. Most notably, our
algorithm can handle erasures, but it seems much more difficult to handle errors.
As mentioned above, handling list recovery from errors would open the door for
many of the applications of list recoverable codes, to list-decoding and other
areas. Extending our results to errors with linear-time recovery would be most
interesting, as it would immediately lead to optimal linear-time list-decodable
codes. However, even polynomial-time recovery would be interesting: in addition
to given a new, very different family of efficient locally-decodable codes, this
could lead to explicit (uniformly constructive), efficiently list-decodable codes
with constant list size and constant alphabet size, which is (to the best of our
knowledge) currently an open problem. Second, the parameters of our construc-
tion could be improved: our choice of inner code (a random linear code), and its
analysis, is clearly suboptimal. Our construction would have better performance
with a better inner code. As mentioned in Remark 1, we would need a high-rate
linear code which is list recoverable with constant list-size (the reason that this
is not begging the question is that this inner code need not have a fast recovery
algorithm). We are not aware of any such constructions.

Acknowledgments. We thank Venkat Guruswami for raising the question of obtain-
ing high-rate linear-time list-recoverable codes, and for very helpful conversations. We
also thank Or Meir for pointing out [26].

Linear-Time List Recovery of High-Rate Expander Codes 711

References

1. Alon, N., Luby, M.: A linear time erasure-resilient code with nearly optimal recov-
ery. IEEE Transactions on Information Theory 42(6), 1732–1736 (1996)

2. Barg, A., Zemor, G.: Error exponents of expander codes. IEEE Transactions on
Information Theory 48(6), 1725–1729 (2002)

3. Barg, A., Zemor, G.: Concatenated codes: serial and parallel. IEEE Transactions
on Information Theory 51(5), 1625–1634 (2005)

4. Barg, A., Zemor, G.: Distance properties of expander codes. IEEE Transactions
on Information Theory 52(1), 78–90 (2006)

5. Dvir, Z., Lovett, S.: Subspace evasive sets. In: Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC), pp. 351–358. ACM (2012)

6. Gallager, R.G.: Low Density Parity-Check Codes. Technical report. MIT (1963)
7. Gilbert, A.C., Ngo, H.Q., Porat, E., Rudra, A., Strauss, M.J.: �2/�2-foreach sparse

recovery with low risk. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 461–472. Springer, Heidelberg
(2013)

8. Guruswami, V.: List decoding from erasures: Bounds and code constructions. IEEE
Transactions on Information Theory 49(11), 2826–2833 (2003)

9. Guruswami, V.: List decoding of error-correcting codes. LNCS, vol. 3282. Springer,
Heidelberg (2004)

10. Guruswami, V.: Linear-algebraic list decoding of folded reed-solomon codes. In:
Proceedings of the 26th Annual Conference on Computational Complexity (CCC),
pp. 77–85. IEEE (2011)

11. Guruswami, V., Indyk, P:. Expander-based constructions of efficiently decodable
codes. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 658–667. IEEE (October 2001)

12. Guruswami, V., Indyk, P.: Near-optimal linear-time codes for unique decoding
and new list-decodable codes over smaller alphabets. In: Proceedings of the 34th
Annual ACM Aymposium on Theory of computing (STOC), pp. 812–821. ACM
(2002)

13. Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes. In: Pro-
ceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC),
pp. 126–135. ACM, New York (2003)

14. Guruswami, V., Indyk, P.: Linear-time list decoding in error-free settings. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 695–707. Springer, Heidelberg (2004)

15. Guruswami, V., Kopparty, S.: Explicit subspace designs. In: Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computing (FOCS),
pp. 608–617. IEEE (2013)

16. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory
54(1), 135–150 (2008)

17. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6) (1999)

18. Guruswami, V., Xing, C.: Folded codes from function field towers and improved
optimal rate list decoding. In: Proceedings of the 44th Annual ACM Symposium
on Theory of Computing (STOC), pp. 339–350. ACM (2012)

19. Guruswami, V., Xing, C.: List decoding reed-solomon, algebraic-geometric, and
gabidulin subcodes up to the singleton bound. In: Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), pp. 843–852. ACM (2013)

712 B. Hemenway and M. Wootters

20. Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes.
Information and Computation (2014)

21. Hemenway, B., Wootters, M.: Linear-time list recovery of high-rate expander codes.
ArXiv preprint 1503.01955 (2015)

22. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-
letin of the American Mathematical Society 43(4), 439–561 (2006)

23. Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently decodable non-adaptive group testing.
In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1126–1142. Society for Industrial and Applied Mathematics (2010)

24. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3),
261–277 (1988)

25. Margulis, G.A.: Explicit Group-Theoretical Constructions of Combinatorial
Schemes and Their Application to the Design of Expanders and Concentrators.
Probl. Peredachi Inf. 24(1), 51–60 (1988)

26. Meir, O.: Locally correctable and testable codes approaching the singleton bound,
ECCC Report TR14-107 (2014)

27. Morgenstern, M.: Existence and Explicit Constructions of q + 1 Regular Ramanu-
jan Graphs for Every Prime Power q. Journal of Combinatorial Theory, Series B
62(1), 44–62 (1994)

28. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable compressed sensing by list-
recoverable codes and recursion. In: Proceedings of the Symposium on Theoretical
Aspects of Computer Science (STACS), vol. 14, pp. 230–241 (2012)

29. Sipser, M., Spielman, D.A.: Expander codes. IEEE Transactions in Information
Theory 42(6) (1996)

30. Tanner, R.: A recursive approach to low complexity codes. IEEE Transactions on
Information Theory 27(5), 533–547 (1981)

31. Zemor, G.: On expander codes. IEEE Transactions on Information Theory 47(2),
835–837 (2001)

	Linear-Time List Recovery of High-Rate Expander Codes
	1 Introduction
	1.1 List Recovery
	1.2 Expander Codes
	1.3 Our Contributions

	2 Definitions and Notation
	3 Results and Constructions
	3.1 High-Rate Linear-Time List Recoverable Codes
	3.2 List Recoverable Codes Approaching Capacity

	4 Recovery Procedure and Proof of Theorem 1
	5 Conclusion and Open Questions
	References

