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Abstract. The F-Minor-Free Deletion problem asks, for a fixed
set F and an input consisting of a graph G and integer k, whether k
vertices can be removed from G such that the resulting graph does not
contain any member of F as a minor. Fomin et al. (FOCS 2012) showed
that the special case when F contains at least one planar graph has a ker-
nel of size f(F)·kg(F) for some functions f and g. They left open whether
this Planar F-Minor-Free Deletion problem has kernels whose size
is uniformly polynomial, of the form f(F) · kc for some universal con-
stant c. We prove that some Planar F-Minor-Free Deletion prob-
lems do not have uniformly polynomial kernels (unless NP ⊆ coNP/poly),
not even when parameterized by the vertex cover number. On the posi-
tive side, we consider the problem of determining whether k vertices can
be removed to obtain a graph of treedepth at most η. We prove that
this problem admits uniformly polynomial kernels with O(k6) vertices
for every fixed η.

Keywords: Kernelization · Treedepth · Minor-free deletion

1 Introduction

Kernelization is the subfield of parameterized and multivariate algorithmics that
investigates the power of provably effective preprocessing procedures for hard
combinatorial problems. In kernelization we study parameterized problems: deci-
sion problems where every instance x is associated with a parameter k that
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measures some aspect of its structure. A parameterized problem is said to admit
a kernel of size f : N → N if every instance (x, k) can be reduced in polyno-
mial time to an equivalent instance with both size and parameter value bounded
by f(k). For practical and theoretical reasons we are primarily interested in
kernels whose size is polynomial, so-called polynomial kernels.

One of the fundamental challenges in the area is the possibility of character-
izing general classes of parameterized problems possessing a kernel of polynomial
size. In other words, to obtain “kernelization meta-theorems”. In general, algo-
rithmic meta-theorems have the following form: problems definable in a certain
logic admit a certain kind of algorithms on certain inputs. A typical example
of a meta-theorem is Courcelle’s celebrated theorem which states that all graph
properties definable in monadic second order logic can be decided in linear time
on graphs of bounded treewidth. It seems very difficult to find a fragment of
logic for which every problem expressible in this logic admits a polynomial ker-
nel on all undirected graphs. The main obstacle in obtaining such results stems
from the fact that even a simplest form of logic can formalize problems that
are not even fixed parameter tractable (FPT). In graph theory, one can define
a general family of problems as follows. Let F be a family of graphs. Given an
undirected graph G and a positive integer k, is it possible to do at most k edits
of G such that the resulting graph does not contain a graph from F? Here one
can define edits as either vertex/edge deletions, edge additions, or edge contrac-
tion. Similarly, one may consider containment as a subgraph, induced subgraph,
or a minor. The topic of this paper is one such generic problem, namely, the
F-Minor-Free Deletion problem. It asks, for a fixed set of graphs F and an
input consisting of a graph G and integer k, whether k vertices can be removed
from G such that the resulting graph does not contain any member of F as a
minor. The problem can also be viewed as finding a set of k vertices that hit all
the minor models of H ∈ F in G, which explains the title. The parameterized
complexity of this general problem is well understood: for every k there is an
algorithm solving the problem in time f(k)·n3 [1,20]. Thus, the F-Minor-Free

Deletion problem is an interesting subject from the kernelization perspective:
For which sets F does F-Minor-Free Deletion admit a polynomial kernel?

Fomin et al. [11] studied the special case where F contains at least one planar
graph, known as Planar F-Minor-Free Deletion. It is much more restricted
than F-Minor-Free Deletion, but still generalizes problems such as Vertex

Cover and FeedbackVertex Set. These problems are essentially about delet-
ing k vertices to get a graph of constant treewidth: graphs that exclude a pla-
nar graph H as a minor have treewidth at most |V (H)|O(1) [4]. Fomin et al. [11]
exploited the properties of graphs of bounded treewidth and obtained a constant
factor approximation algorithm, a 2O(k log k) · n time parameterized algorithm,
and—most importantly, from our perspective—a polynomial sized kernel for every
Planar F-Minor-Free Deletion problem. More precisely, they showed that
Planar F-Minor-Free Deletion admits a kernel of size f(F) ·kg(F) for some
functions f and g. The degree g of the polynomial in the kernel size grows very
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quickly; it is not even known to be computable. This result is the starting point
of our research.

Does Planar F-Minor-Free Deletion have kernels whose size is
uniformly polynomial, of the form f(F) · kc for a universal constant c
that does not depend on F?

We prove that some families of Planar F-Minor-Free Deletion problems do
not have uniformly polynomial kernels (unless NP ⊆ coNP/poly). Since a graph
class has bounded treewidth if and only if it excludes a planar graph as a minor, a
canonical Planar F-Minor-Free Deletion problem is Treewidth-η Dele-

tion: can k vertices be removed to obtain a graph of treewidth at most η? We
denote by Kd and Pd a clique and path on d vertices, respectively. Our first
theorem is the following lower bound result.

Theorem 1. Let d ≥ 3 be a fixed integer and ε > 0. If the parameterization by
solution size k of one of the problems

1. {Kd+1}-Minor-Free Deletion,
2. {Kd+1, P4d}-Minor-Free Deletion, and
3. Treewidth-(d − 1) Deletion

admits a compression of bitsize O(k
d
2 −ε), or a kernel with O(k

d
4 −ε) vertices, then

NP ⊆ coNP/poly. In fact, even if the parameterization by the size x of a vertex
cover of the input graph admits a compression of bitsize O(x

d
2 −ε) or a kernel

with O(x
d
4 −ε) vertices, then NP ⊆ coNP/poly.

Theorem 1 shows that the kernelization result of Fomin et al. [11] is tight in the
following sense: the degree g of the polynomial in the kernel sizes for Planar

F-Minor-Free Deletion must depend on the family F . In fact, the theorem
gives the stronger result that even parameterized by the vertex cover number of
the graph (a larger parameter), the Treewidth-η Deletion problem does not
admit uniformly polynomial kernels unless NP ⊆ coNP/poly. This resolves an
open problem of Cygan et al. [5].

A graph class has bounded treewidth if and only if it excludes a planar graph
as a minor. Thus, by restricting the F-Minor-Free Deletion problem to those
F that contain a planar graph, one exploits the properties of graphs of bounded
treewidth to design polynomial kernels for Planar F-Minor-Free Deletion.
It is a natural question whether further restrictions on F lead to uniformly
polynomial kernels. However, the second item of Theorem 1 shows that even
when F contains a path, the degree of the polynomial must, in general, depend
on the set F . This raises the question whether there are any general families of
F-Minor-Free Deletion problems that admit uniformly polynomial kernels.

Excluding planar minors results in graphs of bounded treewidth [19]; exclud-
ing forest minors results in graphs of bounded pathwidth [18]; and excluding path
minors results in graphs of bounded treedepth [16]. A canonical F-Minor-Free

Deletion problem when F contains a path is therefore:
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Treedepth-η Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset Z ⊆ V (G) of size at most k such that
td(G − Z) ≤ η?

Here td(G) denotes the treedepth of a graph G. The set Z is called a treedepth-η
modulator of G. Surprisingly, we show that Treedepth-η Deletion admits
uniformly polynomial kernels. More precisely, we obtain the following theorem.

Theorem 2. Treedepth-η Deletion admits a kernel with 2O(η2)k6 vertices.

We prove several new results about the structure of optimal treedepth
decompositions and exploit this to obtain the desired kernel for Treedepth-η
Deletion. Unlike the kernelization algorithm of Fomin et al. [11], our kernel
is completely explicit. It does not use the machinery of protrusion replacement,
which was introduced to the context of kernelization by Bodlaender et al. [2]
and has subsequently been applied in various scenarios [8,10,12,15]. Using pro-
trusion replacement one can prove that kernelization algorithms exist, but the
technique generally does not explicitly give the algorithm nor a concrete size
bound for the resulting kernel.

Techniques. The kernelization lower bound of Theorem 1 is obtained by reduc-
tion from Exact d-Uniform Set Cover, parameterized by the number of sets
in the solution. Existing lower bounds exist for these problems due to Dell and
Marx [6] and Hermelin and Wu [14], showing that the degree of the kernel size
must grow linearly with the cardinality d of the sets in the input. While the
construction that proves Theorem 1 is relatively simple in hindsight, the fact
that the construction applies to all three mentioned problems, and also applies
to the parameterization by vertex cover number, makes it interesting.

Our main technical contribution lies in the kernelization algorithm for Tree-

depth-η Deletion. Our algorithm starts by enriching the graph G by adding
edges between vertices that are connected by many internally vertex-disjoint
paths. Like in prior work on Treewidth-η Deletion [5], adding such edges
does not change the answer to the problem. We then apply an algorithm by Reidl
et al. [17] to compute an approximate treedepth-η modulator S of the resulting
graph. The remainder of the algorithm strongly exploits the structure of the
bounded-treedepth graph G − S. By combining separators for vertices that are
not linked through many disjoint paths, we compute a small set Y such that
all the bounded-treedepth connected components of G − (S ∪ Y ) have a special
structure: their neighborhood in S forms a clique, while they have less than η
neighbors in Y . For such components C we can prove that optimal treedepth-η
modulators contain at most 2η vertices from C. This important fact allows us to
infer that optimal solutions cannot disturb the structure of the graph G[C] too
much. While it is relatively easy to bound the number of connected components
of G−(S∪Y ), the main work consists of reducing the size of each such component.
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We formulate three lemmata that analyze under which circumstances the
structure of optimal treedepth-η modulators is preserved when adding edges,
removing edges, and removing vertices of the graph. By exploiting the fact that
the solution size within a particular part C of the graph is constant, these lem-
mata ensure that even after deleting an optimal modulator from C, the remain-
der of C forces a structure of treedepth decompositions of the remaining graph
that is compatible with the graph modifications. Of particular interest is the
lemma showing that if v dominates the neighborhood of component C, then
edges of v into the component may be safely discarded if certain other technical
conditions are met.

The three described lemmata are the main tool in the reduction algorithm.
To shrink components of G−(S∪Y ) we have to add some edges, while removing
other edges, to create settings where vertices can be removed from the instance
without changing its answer. The fact that we have to combine edge additions
and removals makes our reduction algorithm quite delicate: we cannot simply
formulate reduction rules for adding and removing edges and apply them exhaus-
tively, as they would work against each other. We therefore present a recursive
algorithm that processes a treedepth-η decomposition of G−S from top to bot-
tom, making suitable transformations that bound the degree of the modulator S
into the remainder of the component C. Using a careful measure expressed in
terms of this degree, we can then prove that our algorithm achieves the desired
size reduction.

Related Results. Planar F-Minor-Free Deletion has received considerable
attention [11,15] resulting in approximation, kernelization, and FPT algorithms.
Cygan et al. [5] studied Treewidth-η Deletion parameterized by the vertex
cover number of a graph and obtained a kernel of size kO(η). In a later paper,
Fomin et al. [9] studied F-Minor-Free Deletion parameterized by the vertex
cover number of the graph. They obtained kernels of size kO(Δ(F)), where Δ(F)
is an upper bound on the maximum degree of any graph in F . Notable work
involving the parameter treedepth includes the 2O(t2) ·n-time algorithm for test-
ing treedepth by Reidl et al. [17] and the kernelization meta-theorems for prob-
lems parameterized by a treedepth-η modulator by Gajarský et al. [12].

2 Preliminaries

Notation not defined here is standard. All graphs we consider are finite, undi-
rected, and simple. We write H ⊆ G if H is a subgraph of G. Given two distinct
vertices u and v we define λG(u, v) as the maximum cardinality of a set of pair-
wise internally vertex-disjoint uv-paths in the graph G.

Treedepth. A rooted tree T is a tree with one distinguished vertex r ∈ V (T ),
called the root of T . A rooted forest is a disjoint union of rooted trees. The
roots introduce natural parent-child and ancestor-descendant relations between
vertices in forest. A vertex x is a proper ancestor (proper descendant) of a
vertex y if x is an ancestor (descendant) of y and x �= y. We denote by ancF (x)
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the proper ancestors of x; this set is empty if x is a root. We denote by π(x) the
parent of x in F . The parent of the root of the tree is ⊥. For a rooted forest F
and a vertex v ∈ V (F ), we denote by Fv the subtree rooted at v that contains
all v’s descendants, including v itself. The depth of a vertex x in a rooted forest F
is the number of vertices on the unique simple path from x to the root of the tree
to which x belongs; it is denoted depth(x, F ). The height of v is the maximum
number of vertices on a simple path from v to a leaf in Fv. The height of F is
the maximum height of a vertex of F and is denoted height(F ). Two vertices x
and y are in ancestor-descendant relation if x is an ancestor of y or vice versa.

Definition 1 (Treedepth) A treedepth decomposition of a graph G is a rooted
forest F on the vertex set V (G) (i.e., V (G) = V (F )) such that for every
edge {u, v} of G, the endpoints u and v are in ancestor-descendant relation.
The treedepth of G, denoted td(G), is the least d ∈ N such that there exists a
treedepth decomposition F of G with height(F ) = d.

The following properties follow from this definition. The treedepth of a dis-
connected graph is the maximum treedepth of its connected components. If F is
a treedepth decomposition of G and S ⊆ V (G) induces a clique in G, then there
is one root-to-leaf path in F containing all vertices of S. If H is a connected
subgraph of G, then all vertices of H belong to the same tree in any treedepth
decomposition. If u, v ∈ V (H) are not in ancestor-descendant relation in T , then
some vertex of H is a common ancestor of u and v.

We will work with the notion of a nice treedepth decomposition. A treedepth
decomposition F of a graph G is a nice treedepth decomposition if, for every v ∈
V (F ), the subgraph of G induced by the vertices in Fv is connected. The following
lemma shows that any graph has a minimum-height treedepth decomposition
that is also nice.

Lemma 1 ([17]). For every fixed η there is a polynomial-time algorithm that,
given a graph G, either determines that td(G) > η or computes a nice treedepth
decomposition F of G of depth td(G).

Lemma 2 ([12, Lemma 2]). Fix η ∈ N. Given a graph G, one can in polyno-
mial time compute a subset S ⊆ V (G) such that td(G − S) ≤ η and |S| is at
most 2η times the size of a minimum treedepth-η modulator of G.

3 Kernelization Lower Bounds

We turn our attention to kernelization and compression lower bounds. To prove
that F-Minor-Free Deletion does not have uniformly polynomial kernels
for suitable families F , we give a polynomial-parameter transformation from a
problem for which a compression lower bound is known. The following problem
is the starting point for our transformation.
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Exact d-Uniform Set Cover Parameter: The universe size n.
Input: A finite set U of size n, an integer k, and a set family F ⊆ 2U of
size-d subsets of U .
Question: Is there a subfamily F ′ ⊆ F consisting of at most k sets such that
every element of U is contained in exactly one subset of F ′?

Observe that since all subsets in F have size exactly d, the require-
ment that each universe element is contained in exactly one subset in F ′

implies that a set F ′ can only be a solution if it consists of n/d subsets. This
implies that k = n/d for all nontrivial instances of the problem. Hermelin
and Wu [14] obtained a compression lower bound for Exact d-Uniform Set

Cover. The same problem was also studied by Dell and Marx [6] under the
name Perfect d-Set Matching. They obtained a slightly stronger compres-
sion lower bound, which forms the starting point for our reduction.

Theorem 3 ([6, Theorem 1.2]). For every fixed d ≥ 3 and ε > 0, there
is no compression of size O(kd−ε) for Exact d-Uniform Set Cover unless
NP ⊆ coNP/poly.

We remark that, while Dell and Marx stated their main theorem in terms of
kernelizations, the same lower bounds indeed hold for compressions. We present
the construction that will be used to prove Theorem 1.

Lemma 3. For every fixed d there is a polynomial-time algorithm that, given a
set U of size n, an integer k, and a d-uniform set family F ⊆ (

U
d

)
, computes a

graph G′ with vertex cover number O(k2) and an integer k′ ∈ O(k2), such that:

1. If there is a set S′ ⊆ V (G′) of size at most k′ such that G′ − S′ is Kd+1-
minor-free, then there is an exact set cover of U consisting of k sets from F .

2. If there is an exact set cover of U consisting of k sets from F , then there is a
set S′ ⊆ V (G′) of size at most k′ such that G′ −S′ is Kd+1-minor-free, P4d-
minor-free, and has treewidth at most d − 1.

Proof. Given U of size n, the integer k, and the d-uniform set family F , the
algorithm proceeds as follows. If k �= n/d then no exact set cover with k sets
exists; we output G′ := Kd+1 and k′ := 0. We focus on the case that k = n/d.
The main idea behind the construction is to create an n × k matrix with one
vertex per cell. Each one of the k columns contains n vertices that correspond
to the n universe elements. By turning columns into cliques and adding small
gadgets, we will ensure that solutions to the vertex deletion problem must take
the following form: they delete all vertices of the matrix except for exactly d
per column. By enforcing that from each row, all vertices but one are deleted,
and that the d surviving vertices in a column form a subset in F , we relate the
minor-free deletion sets to solutions of the exact covering problem. The formal
construction proceeds as follows. Without loss of generality we can assume that
the universe U consists of [n] = {1, 2, . . . , n}, which simplifies the exposition.
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1. Initialize G′ as the graph consisting of n×k vertices vi,j for i ∈ [n] and j ∈ [k].
For each column index j ∈ [k] turn the vertex set {vi,j | i ∈ [n]} into a clique.
We refer to M := {vi,j | i ∈ [n], j ∈ [k]} as the matrix vertices.

2. For every row index i ∈ [n] add a dummy clique Di consisting of d−1 vertices
to G′. Make all vertices in Di adjacent to vertices {vi,j | j ∈ [k]} of the i-th
row.

3. As the last step we encode the set family F into the graph. For every set X ∈(
U
d

)\F , which is a size-d subset of [n] that is not in the set family F , we do the
following. For each column index j ∈ [k], we create an enforcer vertex fj,X

for the set X into column j. The neighborhood of fj,X consists of the d
vertices {vi,j | i ∈ X}, i.e., the vertices in column j corresponding to set X.

Observation 3.1. M ∪ (
⋃

i∈n Di) is a vertex cover of G′ of size n(k + d) ∈
O(k2).

This concludes the construction of G′. It is easy to see that it can be per-
formed in polynomial time for fixed d, since G′ has O(nd+1) vertices. Define k′ :=
k(n − d). Since d is fixed we may absorb it into the O-notation. As n = kd this
implies k′ ∈ O(k2). The proof that the construction satisfies the desired proper-
ties is deferred to the full version. 
�

The proof of Theorem 1 follows by combining Lemma 3 with standard kernel-
ization lower bound tools and Theorem 3. It can be found in the full version [13].

4 Uniformly Polynomial Kernelization for Treedepth-η
Deletion

In this section we discuss the kernelization procedure for Treedepth-η Dele-

tion. As this material spans twenty pages, space limitations prohibit us from
giving full details here. For this extended abstract we have therefore chosen to
give an intuitive high-level overview of the exploited structure and the prepro-
cessing algorithm; details can be found in the full version [13]. As described
in the introduction, the two main ingredients are a decomposition algorithm
and a reduction algorithm, to be applied to each piece of the decomposition.
Throughout this section, the reader should be aware of the two uses for the
word decomposition employed here: on the one hand we are decomposing the
input instance (G, k) of the deletion problem into several subgraphs that have a
certain structure, while on the other hand the deletion problem we are solving
asks for a set S ⊆ V (G) whose removal ensures that G−S has a bounded-height
treedepth decomposition.

4.1 Structural Decomposition of the Input Graph

The first step of the decomposition phase enriches the input instance (G, k) with
extra edges. In an analogue of previous work on Treewidth-η Deletion [5], we
show that when there are non-adjacent vertices u and v in G such that λG(u, v) ≥
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(a) Graph G, modulator S. (b) Decomposition of G − S.

Fig. 1. Schematic illustration of an instance that has been decomposed. 1(a) The result-
ing graph G and the suboptimal treedepth-4 modulator S in G used when decomposing.
Graph G − S has four connected components, of which the third is drawn in detail.
1(b) Illustration of the treedepth-4 decomposition F of G − S. The forest F contains
four decomposition trees T1, . . . , T4, one for each component of G−S. By the properties
of a treedepth decomposition, for any vertex v ∈ V (G) \ S, each neighbor u ∈ NG(v)
is an ancestor of v in F , descendant of v in F , or contained in S. The decomposition
ensures that for each connected component C of G − (S ∪ Y ), the set NG(C) ∩ S is a
clique. This is illustrated for the connected component consisting of {e, g, h, i}, whose
neighbors among S are {x, y}, a 2-clique. As the set Y is closed under taking ancestors,
it consists of the top parts of decomposition trees in F .

k + η, then adding the edge {u, v} does not change the answer to the instance.
After exhaustively adding connecting pairs for which this condition is satisfied,
we are guaranteed that for any remaining non-adjacent pair of vertices {u, v}
in G we have λG(u, v) < k + η. By Menger’s theorem, this implies that there is
a uv-vertex separator of size less than k + η.

After enriching the graph, we use the polynomial-time approximation algo-
rithm for Treedepth-η Deletion of Lemma 2 to find a suboptimal treedepth-η
modulator S in the input instance (G, k) of size O(k). We use the structure that
this modulator reveals in the bounded-treedepth subgraph G − S to guide fur-
ther processing, and compute a treedepth-η decomposition F of G − S using
Lemma 1. For every pair {u, v} of remaining non-adjacent vertices in S, we
compute a minimum uv-separator Yuv and add Yuv \ S to a set Y . Since there
are O(k2) pairs of vertices among S, by the earlier bound this yields a set Y of
size O(k2(k + η)). We then add all F -ancestors of vertices in Y to the set Y .
Since each vertex has less than η ancestors in a treedepth-η decomposition, the
size of Y increases by at most a factor η and remains O(k3).

The resulting sets S and Y decompose the graph in a useful way. For every
connected component C of G − (S ∪ Y ), we know that NG(C) ∩ S is a clique,
since Y contains separators for all pairs of non-adjacent vertices in S. In addition,
for every such component C we have |NG(C) ∩ Y | < η since all such neighbors
are contained on one root-to-leaf path of the height-η decomposition F . All such
components C are therefore what we call η-nearly clique separated : there is a
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Algorithm 1 Reduce(Graph G, treedepth-η modulator S, treedepth-η decom-
position F of G − S, node v of F , k ∈ N)

1: Let T be the tree in F containing v
2: while ∃p, q ∈ NG(Tv) ∪ {v} with {p, q} �∈ E(G) and λG[{p,q}∪Tv ](p, q) ≥ 3η do
3: Add the edge {p, q} to G
4: while ∃ distinct children c0, c1, . . . , c3η of v s.t. c0 has a neighbor s ∈ S, NG(Tc0) ⊆

NG[s], and for i ∈ [3η] we have td(G[Tci ]) ≥ td(G[Tc0 ]) and s ∈ NG(Tci) do
5: Remove the edges between s and members of Tc0 from graph G
6: while ∃ a child c∗ of v such that NG(Tc∗) is a clique, and for every w ∈ NG(Tc∗)

there are 3η distinct children cw
1 , . . . , cw

3η �= c∗ of v such that for all i ∈ [3η] we
have td(G[Tcwi

]) ≥ td(G[Tc∗ ]) and w ∈ NG(Tcwi
) do

7: Remove the vertices in Tc∗ from F and from G
8: for each remaining child c of v in T do
9: Reduce(G, S, F , c, k)

clique in G containing all but η vertices of NG(C). We prove that minimum
treedepth-η modulators contain at most 2η vertices of such components.1

The fact that minimum solutions delete at most 2η vertices (a constant inde-
pendent of k) from components C of G − (S ∪ Y ) will be extremely useful
later on. The last part of the decomposition phase bounds the number of con-
nected components of G − (S ∪ Y ). The number of non-simplicial components
(components whose S-neighborhood is not a clique) is already O(k2(k + η)),
since each component provides a path between non-adjacent vertices {u, v} ∈(
S
2

)
for which λG(u, v) < η + k. To bound the simplicial components (those

with NG(C)∩S a clique) requires more work. We give a structural lemma show-
ing how to find a simplicial component whose deletion does not change the
answer to the problem, in the case that there are many of such components.
This step is inspired by earlier work [3, Rule 6] on Pathwidth. The resulting
reduced graph is given as the output of the decomposition phase, together with
the suboptimal modulator S and the treedepth-η decomposition F of G−S. See
Fig. 1 for a schematic illustration.

4.2 Reduction Algorithm

After the decomposition phase, the goal of the reduction phase is to shrink the
size of the connected components of G − (S ∪ Y ); since S and Y have size O(k)
and O(k3), respectively, and the number of components of G − (S ∪ Y ) is also
bounded uniformly polynomially in k, bounding the size of each such component
suffices to bound the size of G. Using the notion of a nice treedepth decomposi-
tion, we can ensure that the connected components of G− (S ∪Y ) correspond to
1 If a solution S contains more than 2η vertices from C, then one would get a smaller
solution by leaving C untouched and instead deleting the at most η vertices of NG(C)
that are not part of the clique, and the vertices of the clique in NG(C) that are not
deleted by S; there are at most η of the latter since treedepth-η graphs contain
no η + 1-cliques.
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the vertex sets of subtrees of the decomposition forest F rooted at vertices that
are not in Y , but whose parent is in Y . Observe that if we could ensure that the
maximum degree in the decomposition forest F is bounded by some function of η
(but independent of k), then we would immediately get a size bound as desired:
any subtree of maximum degree f(η) has at most f(η)η vertices, since its height
is at most η. Such a degree reduction is therefore our goal. However, we are not
able to bound the degree by a function that is independent of k. Instead, by a
top-down reduction algorithm on the decomposition forest F we can guarantee
that the degree of a node v in the decomposition forest F , is bounded linearly
in |NG(Fv)∩S|, which is the number of vertices of S that are adjacent to a node
in the subtree of F rooted at v. This fact alone is not sufficient to bound the
sizes of components C of G−(S∪Y ) by a polynomial of degree independent of η,
for it does not rule out the possibility of a complete degree-|S| tree of height η,
containing Ω(kη) nodes.

The main challenge in obtaining uniformly polynomial kernels is to overcome
this obstacle. To do so, we go through the decomposition trees from top to
bottom, at every stage reducing the degree of the current node v using three
new structural insights on treedepth. We ensure that every vertex s ∈ S that has
neighbors in any subtree rooted at a child of v, has a neighbor in at most 2η · 3η
subtrees rooted at children of v. If this is violated, then we can first introduce
new edges from s to ancestors of v and other members of S using an edge addition
lemma, and afterward discard edges from s to descendants of v using an edge
deletion lemma. Then we reduce the number of children whose subtrees contain
no neighbors of S to constant, using a vertex deletion lemma. The procedure
achieving this is given as the Reduce algorithm; its initial call is for the node v
for which Fv contains the nodes of the component C we are shrinking. A careful
induction reveals that this process is successful in reducing the total number of
nodes in a connected component C of G − (S ∪ Y ) to f(η) · k. This achieves the
desired total size reduction and yields a proof of Theorem 2.

5 Conclusion

In this paper we (re-)studied the Planar F-Minor-Free Deletion prob-
lem from the perspective of (uniform) kernelization. We answered the ques-
tion whether all Planar F-Minor-Free Deletion problems have uniformly
polynomial kernels negatively, but showed that the special case Treedepth-η
Deletion (which is a Planar F-Minor-Free Deletion problem for every η,
where every F contains a path) has uniformly polynomial kernels.

The distinction between uniformly versus non-uniformly polynomial ker-
nels is similar to the distinction between algorithms whose parameter depen-
dence is fixed-parameter tractable (FPT) versus slicewise-polynomial (XP), and
opens up a similarly broad area of investigation. The kernelization complexity of
F-Minor-Free Deletion is still wide open. Some notable open problems in
this direction are: (1) Does F-Minor-Free Deletion admit a polynomial ker-
nel for any fixed set F , even when F contains no planar graphs? Even for the
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special case of deleting k vertices to get a planar graph (Vertex Planariza-

tion), we do not know the answer. (2) Is it possible to obtain a dichotomy the-
orem, characterizing the families F for which Planar F-Minor-Free Dele-

tion admits uniformly polynomial kernels? These questions are part of a large
research program into the complexity of F-Minor-Free Deletion problems,
whose importance was recognized by its listing in the Research Horizons section
of the recent textbook by Downey and Fellows [7, Chapter 33.2].
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