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Abstract. We consider encoding problems for range queries on arrays.
In these problems the goal is to store a structure capable of recovering the
answer to all queries that occupies the information theoretic minimum
space possible, to within lower order terms. As input, we are given an
array A[1..n], and a fixed parameter k ∈ [1, n]. A range top-k query on an
arbitrary range [i, j] ⊆ [1, n] asks us to return the ordered set of indices
{�1, ..., �k} such that A[�m] is the m-th largest element in A[i..j], for
1 ≤ m ≤ k. A range selection query for an arbitrary range [i, j] ⊆ [1, n]
and query parameter k′ ∈ [1, k] asks us to return the index of the k′-th
largest element in A[i..j]. We completely resolve the space complexity of
both of these heavily studied problems—to within lower order terms—for
all k = o(n). Previously, the constant factor in the space complexity was
known only for k = 1. We also resolve the space complexity of another
problem, that we call range min-max, in which the goal is to return the
indices of both the minimum and maximum elements in a range.

1 Introduction

Many important algorithms make use of range queries over arrays of values
as subroutines [14,17]. As a prime example, text indexes that support pattern
matching queries often maintain an array storing the lengths of the longest
common prefixes between consecutive suffixes of the text. During a search for
a pattern this array is queried in order to find the position of the minimum
value in a given range. That is, a subroutine is needed that can preprocess an
array A in order to answer range minimum queries. Formally, as input to such
a query we are given a range [i, j] ⊆ [1, n], and wish to return the index k =
arg mini≤�≤j A[�]. In text indexing applications memory is often the constraining
factor, so the question of how many bits are needed to answer range minimum
queries has been heavily studied. After a long line of research (see [2,16]), it has
been determined that such queries can be answered in constant time, by storing
a data structure of size 2n + o(n) bits [7]. Furthermore, this space bound is
optimal to within lower order terms (see [7, Sec. 1.1.2]). The interesting thing is
that the space does not depend on the number of bits required to store individual
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elements of the array A. After constructing the data structure we can discard
the array A, while still retaining the ability to answer range minimum queries.

Results of this kind, where it is shown that the solutions to all queries can
be stored using less space than is required to store the original array, fall into
the category of encodings, and, more generally, succinct data structures [11].
Specifically, given a set of combinatorial objects χ we wish to represent an arbi-
trary member of χ using lg |χ| + o(lg |χ|) bits1, while still supporting queries, if
possible. If queries can be supported by the representation then we refer to it
as a data structure, but if not, then we refer to it as an encoding. For the case
of range minimum queries or range maximum queries, the set χ turns out to
be Cartesian trees, which were introduced by Vuillemin [18]. For a given array
A, the Cartesian tree encodes the solution to all range minimum queries, and
similarly, if two arrays have the same solutions to all range minimum queries,
then their Cartesian trees are identical [7].

Recently, there has been a lot of interest the following two problems, that
generalize range maximum queries in two different ways. The input to each of
the following problems is an array A[1..n], that we wish to preprocess into an
encoding occupying as few bits as possible, such that the answers to all queries
are still recoverable. We assume a value k ≥ 1 is fixed at preprocessing time.

– Range top-k: Given an arbitrary query range [i, j] ⊆ [1, n] and k′ ∈ [1, k],
return the indices of the k′ largest values in [i, j]. This problem is the natural
generalization of range maximum queries and has been the focus of a several
papers, leading to asymptotically optimal lower and upper space bounds of
Ω(n lg k) and O(n lg k) bits, proved by Grossi et al. [10] and Navarro, Raman,
and Rao [15], respectively. The latter upper bound is a data structure that
can answer range top-k′ queries in optimal O(k′) time.

– Range k-selection: Given an arbitrary query range [i, j] ⊆ [1, n] and k′ ≤ k,
return the index of the k′-th largest value in [i, j]. This problem was studied
in a series of recent papers (see [8] and [3] for further references), culminating
in data structures that occupy a linear number of words, and can answer
queries in O(lg k′/ lg lg n+ 1) time [4]. This query time matches a cell-probe
lower bound for near-linear space data structures [12]. It is straightforward
to see that any encoding of range top-k queries is also an encoding for range
k-selection queries, though the question of how much time is required during
a query remains unclear [15]. Very recently, Navarro, Raman, and Rao [15]
described a data structure that can be used to answer range k-selection
queries in optimal O(lg k′/ lg lg n + 1) time [15], and, like the range top-k
data structure, occupies O(n lg k) bits of space.

Our Results. We present the first space-optimal encodings to range top-k—
and therefore range selection also—as well as a new problem that we call range
min-max, in which the goal is to return the indices of both the minimum and
maximum element in the array. We emphasize that, on their own, the encodings

1 We use lg x to denote log2 x.
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Table 1. Old and new results. Both upper and lower bounds are expressed in bits.
Our bounds make use of the binary entropy function H(x) = x lg( 1

x
)+ (1−x) lg( 1

1−x
).

For the entry marked with a † the claimed bound holds when k = o(n).

Ref. Query Lower Bound Upper Bound Query Time

[7] max 2n − Θ(lg n) 2n + o(n) O(1)
[10,15] top-k Ω(n lg k) O(n lg k) O(k′)
[5] top-2 2.656n − Θ(lg n) 3.272n + o(n) O(1)

Thm. 1, 2 min-max 3n − Θ(lg(n)) 3n + o(n) O(1)
Thm. 3, 4 top-2 3nH( 1

3
) − Θ(polylog(n)) 3nH( 1

3
) + o(n) —

Thm. 3, 4 top-k (k + 1)nH( 1
k+1

)(1 − o(1))† (k + 1)nH( 1
k+1

) + o(n) —

for range top-k and selection do not support queries efficiently: they merely
store the solutions to all queries in a compressed form. However, our encoding
for range min-max can be augmented with o(n) additional bits of data to create
a data structure that supports queries in O(1) time. Furthermore, even without
query support, our encodings for range top-k and selection address a problem
posed in the papers of Grossi et al. [10] and Navarro et al. [15].

In Table 1 we present a summary of previous and new results. Prior to this
work, the only value for which the exact coefficient of n was known was the
case in which k = 1 (i.e., range maximum queries). For even k = 2 the best
previous estimate was that the coefficient of n is between 2.656 and 3.272 [5]. The
lower bound of 2.656 was derived using generating functions and an extensive
computational search [5]. In contrast, our method is purely combinatorial and
gives the exact coefficient for all k = o(n). For k = 2, 3, 4 the coefficients are
(rounding up) 2.755, 3.245, and 3.610, respectively.

As mentioned above, a negative aspect of our encodings is that they appear
to be somewhat difficult to use as the basis for a data structure. However, in the
full version [9], we present a data structure based on our encoding that nearly
matches the optimal space bound. Explicitly, we can achieve a space bound
of (k + 1.5)nH( 1.5

k+1.5 ) + o(n lg k) bits with query time O(poly(k lg n)). Thus,
our data structure achieves space much closer to the optimal bound than the
previous best result [15], but the query time is worse. We leave the following data
structure problem open: how can range top-k and selection queries be supported
with optimal query time using space matching our encodings (to within lower
order terms)?

Finally, we wish to point out that although our formulation of the range top-
k problem returns the indices in sorted order, the constant factor in our lower
bound also holds for the unsorted version, in which we return the indices in an
arbitrary order, provided k = o(n). This follows since any encoding strategy
for unsorted range top-k can be used to construct a sorted top-k encoding, by
padding the end of the input array with k − 1 values larger than any other.
The unsorted encoding of this padded array can be used to infer the solution
to an arbitrary sorted top-k query [i, j] by examining the solutions to queries
[i, j], [i, j + 1], ..., [i, n + k − 1]: see the full version for details [9].
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Discussion of Techniques and Road Map. Prior work for top-k, for
k ≥ 2, focused on encoding a decomposition of the array, called a shallow cut-
ting [10,15]. Since shallow cuttings are a general technique used to solve many
other range searching problems [12,13], these previous works [10,15] required
additional information beyond storing the shallow cutting in order to recover
the answers to top-k queries. Furthermore, in these works the exact constant
factor is not disclosed, though we estimate it to be at least twice as large as
the bounds we present. For the specific case of range top-2 queries a different
encoding has been proposed based on extended Cartesian trees [5]. In contrast
to both of the previous approaches, our encoding is based the approach of Fis-
cher and Heun [7], who describe what is called a 2D min-heap (resp. max-heap)
in order to encode range minimum queries (resp. range maximum queries). We
begin in Section 2 by showing how to generalize their technique to simultane-
ously answer both range minimum and range maximum queries. Our encoding
provides the answer to both using 3n+ o(n) bits in total, compared to 4n+ o(n)
bits using the trivial approach of constructing both encodings separately. We
then show this bound is optimal by proving that any encoding for range min-
max queries can be used to distinguish a certain class of permutations. We move
on in Section 3 to generalize Fischer and Heun’s technique in a clean and natural
way to larger values of k. Indeed, the encoding we present—like that of Fischer
and Heun—is simple enough to implement. The main difficulty is proving that
the bound achieved by our technique is optimal. For this we enumerate a partic-
ular class of walks, via an application of the so-called cycle lemma of Dvoretzky
and Motzkin [6].

Due to lack of space we focus primarily on space lower bounds for encod-
ings. However, in the full version of this paper [9] we show our encoding can be
used as the basis for a range top-k data structure. Though the resultant space
bound and query time are suboptimal, we note that interesting challenges had
to be overcome to design a data structure based on our encoding. Concisely, we
required the ability to decompose the encoding into smaller blocks in order to
support queries efficiently. To do this we, in some sense, generalized the pioneers
approach of Jacobson [11] via a non-trivial decomposition theorem. Since bal-
anced parentheses representations appear in many succinct data structures, we
believe this will likely be of independent interest.

2 Optimal Encodings of Range Min-Max Queries

In this section we describe our encoding for range min-max queries. We use
RMinMax(A[i..j]) to denote a range min-max query on a subarray A[i..j].
The solution to the query is the ordered set of indices {�1, �2} such that
�1 = arg max�∈[i,j] A[�] and �2 = arg min�∈[i,j] A[�].

2.1 Review of Fischer and Heun’s Technique

We review the algorithm of Fischer and Heun [7] for constructing the encoding
of range minimum (resp. maximum) queries.
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Consider an array A[1..n] storing n numbers. Without loss of generality we
can alter the values of the numbers so that they are a permutation, breaking ties
in favour of the leftmost element. To construct the encoding for range minimum
queries we sweep the array from left to right2, while maintaining a stack. A string
of bits Tmin (resp. Tmax) will be emitted in reverse order as we scan the array.
Whenever we push an element onto the stack, we emit a one bit, and whenever
we pop we emit a zero bit. Initially the stack is empty, so we push the position
of the first element we encounter on the stack, in this case, 1. Each time we
increment the current position, i, we compare the value of A[i] to that of the
element in the position t, that is stored on the top of the stack. While A[t] is not
less than (resp. not greater than) A[i], we pop the stack. Once A[t] is less than
(resp. greater than) the current element or the stack becomes empty, we push i
onto the stack. When we reach the end of the array, we pop all the elements on
the stack, emitting a zero bit for each element popped, followed by a one bit.

Fischer and Heun showed that the string of bits output by this process can
be used to encode a rooted ordinal tree in terms of its depth first unary degree
sequence or DFUDS [7]. To extract the tree from a sequence, suppose we read
d zero bits until we hit the first one bit. Based on this, we create a node v
of degree d, and continue building first child of v recursively. Since there are
at most 2n stack operations, the tree is therefore represented using 2n bits.
We omit the technical details of how a query is answered, but the basic idea
is to augment this tree representation with succinct data structures supporting
navigation operations.

2.2 Upper Bound for Range Min-Max Queries

We propose the following encoding for a simultaneous representation of Tmin and
Tmax. Scan the array from left to right and maintain two stacks: a min-stack for
range minimum queries, and a max-stack for range maximum queries. Notice
that in each step except for the first and last, we are popping an element from
exactly one of the two stacks. This crucial observation allows us to save space. We
describe our encoding in terms of the min-stack and the max-stack maintained
as above. Unlike before however, we maintain two separate bit strings, T and U .
If the new element causes δ ≥ 1 elements on the min-stack to be popped, then
we prepend 0δ−11 to the string T , and prepend 0 to the string U . Otherwise, if
the new element causes δ elements on the max-stack to be popped, we prepend
0δ−11 to the string T , and 1 to the string U . Since exactly 2n elements are
popped during n push operations, the bit string T has length 2n, and the bit
string U has length n, for a total of 3n bits.

In the full version [9] we show that by using techniques from succinct data
structures it is possible to also support queries on this encoding in O(1) time.

Theorem 1. There is a data structure that occupies 3n + o(n) bits of space,
such that any query RMinMax(A[i..j]) can be answered in O(1) time.
2 In the original paper the sweeping process moves from right to left, but either direc-

tion yields a correct algorithm by symmetry.



598 P. Gawrychowski and P.K. Nicholson

2.3 Lower Bound for Range Min-Max Queries

Given a permutation π = (p1, ..., pn), we say π contains the permutation pattern
s1-s2-...-sm if there exists a subsequence of π whose elements have the same
relative ordering as the elements in the pattern. That is, there exist some x1 <
x2 < ... < xm ∈ [1, n] such that for all i, j ∈ [1,m] we have that π(xi) < π(xj)
if and only if si < sj . For example, if π = (1, 4, 2, 5, 3) then π contains the
permutation pattern 1-3-4-2: we use this hyphen notation to emphasize that the
indices need not be consecutive. In this case, the series of indices in π matching
the pattern are x1 = 1, x2 = 2, x3 = 4 and x4 = 5. If no hyphen is present
between elements si and si+1 in the permutation pattern, then the indices xi

and xi+1 must be consecutive: i.e., xi+1 = xi + 1. In terms of the example, π
does not contain the permutation pattern 1-34-2.

A permutation π = (p1, ..., pn) is a Baxter permutation if there exist no
indices 1 ≤ i < j < k ≤ n such that π(j + 1) < π(i) < π(k) < π(j) or π(j) <
π(k) < π(i) < π(j+1). Thus, Baxter permutations are those that do not contain
2-41-3 and 3-14-2. Permutations with less than 4 elements are trivially Baxter
permutations, and for permutations on 4 elements the non-Baxter permutations
are exactly (2, 4, 1, 3) and (3, 1, 4, 2). Baxter permutations are well studied, and
their asymptotic behaviour is known (see, e.g., OEIS A001181 [1]).

We have the following lemma:

Lemma 1. Suppose π is a Baxter permutation, stored in an array A[1..n] such
that A[i] = π(i). If an encoding that can recover all range minimum and maxi-
mum queries is constructed on A, then π can be recovered from the encoding.

Proof. In order to recover the permutation, it suffices to show that we can per-
form pairwise comparisons on any two elements in A using range minimum and
range maximum queries. The proof follows by induction on n.

For the base case, for n = 1 there is exactly one permutation, so there is
nothing to recover. Thus, let us assume that the lemma holds for all permutations
on less than n ≥ 2 elements. For a permutation on n elements, consider the sub-
permutation induced by the array prefix A[1..(n − 1)] and suffix A[2..n]. These
subpermutations must be Baxter permutations, since deleting elements from
the prefix or suffix of a Baxter permutation cannot create a 2-41-3 or a 3-14-2.
Thus, it suffices to show that we can compare A[1] and A[n], as all the remaining
pairwise comparisons can be performed by the induction hypothesis.

Let x = RMin(A[1..n]) and y = RMax(A[1..n]) be the indices of the mini-
mum and maximum elements in the array, respectively. If x ∈ {1, n} or y ∈ {1, n}
we can compare A[1] and A[n], so assume x, y ∈ [2, n − 1]. Without loss of gen-
erality we consider the case where x < y: the opposite case is symmetric (i.e.,
replacing 3-14-2 with 2-41-3), and x �= y because n ≥ 2. Consider an arbitrary
index i ∈ [x, ..., y], and the result of comparing A[1] to A[i] and A[i] to A[n]
(that can be done by the induction hypothesis, as i ∈ [2, n − 1]). The result is a
partial order on three elements, and is either:

1. One of the two chains A[1] < A[i] < A[n] or A[n] < A[i] < A[1], in which
case we are done since A[1] and A[n] can be compared; or
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2. A partial order in which A[i] is the minimum or maximum element, and A[1]
is incomparable with A[n].

If we are in the latter case for all i ∈ [x, y], then let f(i) = 0 if A[i] is the
minimum element in this partial order, and f(i) = 1 otherwise. Because of how
x and y were chosen, f(x) = 0 and f(y) = 1. If we consider the values of f(i)
for all i ∈ [x, y], there must exist two indices i, i + 1 ∈ [x, y] such that f(i) = 0
and f(i + 1) = 1. Therefore, the indices 1, i, i + 1, n form the forbidden pattern
3-14-2, unless A[1] < A[n]. ��
Theorem 2. Any data structure encoding range minimum and maximum queries
simultaneously must occupy 3n − Θ(log n) bits, for sufficiently large values of n.

Proof. Let L(n) be the number of Baxter permutations on n elements. It is
known (cf. [1]) that limn→∞

L(n)π
√
3n4

23n+5 = 1. Since we can encode and recover
each one by the procedure discussed in Lemma 1, our encoding data structure
must occupy at least lg L(n) = 3n − Θ(log n) bits, if n is sufficiently large. ��

3 Optimal Encodings for Top-k Queries

In this section we use RTopK(A[i..j]) to denote a range top-k query on the sub-
array A[i..j]. The solution to such a query is an ordered list of indices {�1, ..., �k}
such that A[�m] is the m-th largest element in A[i..j].

3.1 Upper Bound for Encoding Top-k Queries

Like the encoding for range min-max queries, our encoding for range top-k
queries is based on representing the changes to a certain structure as we scan
through the array A. Each prefix in the array will correspond to a different
structure. We denote the structure, that we will soon describe, for prefix A[1..j]
as Sk(j), for all 1 ≤ j ≤ n. The structure Sk(j) will allow us to answer
RTopK(A[i..j]) for any i ∈ [1, j]. Our encoding will store the differences between
Sk(j) and Sk(j+1) for all j ∈ [1, n−1]. Let us begin by defining a single instance
for an arbitrary j.

We first define the directed graph Gj = (V,E) with vertices labelled {1, ..., j},
and where an edge (i′, j′) ∈ E iff both i′ < j′ and A[i′] < A[j′] for all 1 ≤ i′ <
j′ ≤ j. We call Gj the dominance graph of A[1..j], and say j′ dominates i′, or
i′ is dominated by j′, if (i′, j′) ∈ E. Next consider the out-degree dj(�) of the
vertex labelled � ∈ [1, j] in Gj . We define an array S[1..j], where S[�] = dj(�)
for 1 ≤ � ≤ j. The structure Sk(j) is defined as follows: take the array S[1..j],
and for each entry � ∈ [1, j] such that S[�] > k, replace S[�] with k. We use the
notation Sk(j, �) to refer to the �-th array entry in the structure Sk(j). We refer
to an index � to be active iff Sk(j, �) < k, and as inactive otherwise. We note
that Sk(n) is reminiscent of the one-sided top-k structure of Grossi et al. [10].

Lemma 2. The total ordering of elements A[i1], ..., A[ij′ ], where {i1, ..., ij′} are
the active indices in Sk(j), can be recovered by examining only Sk(j).
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Fig. 1. Geometric interpretation of how the structure Sk(j) is updated to Sk(j +1). In
the example k = 2, and the value of each active element in the array is represented by
its height. Black circles denote 0 values in the array S2(j), whereas crosses represent 1
values, and 2 values (inactive elements) are not depicted. When the new point (empty
circle) is inserted to the structure on the left, it increments the counters of the smallest
10 active elements, resulting in the picture on the right representing S2(j + 1).

Proof. We scan the structure Sk(j) from index j down to 1, maintaining a total
ordering on the active elements seen so far. Initially, we have an empty total
ordering. At each active location � the value Sk(j, �) indicates how many active
elements in locations [�+1, j] are larger than A[�]. This follows since an inactive
element cannot dominate an active element in the graph Gj . Thus, we can insert
A[�] into the current total ordering of active elements. ��

We define the size of Sk(j) as follows: |Sk(j)| =
∑j

�=1(k − Sk(j, �)). The key
observation is that the structure Sk(j + 1) can be constructed from Sk(j) using
the following procedure:

1. Compute the value δj = |Sk(j)|−|Sk(j+1)|+k. This quantity is always non-
negative, as we add one new element to the large staircase, which increases
the size by at most k.

2. Find the δj indices among the active elements in Sk(j) such that their values
in A are the smallest via Lemma 2. Denote this set of indices as I.

3. For each � ∈ [1, j], set Sk(j + 1, �) = Sk(j, �) + 1 iff � ∈ I, and Sk(j + 1, �) =
Sk(j, �) otherwise.

4. Add the new element at the end of the array, setting Sk(j + 1, j + 1) = 0.

Thus, to construct Sk(j + 1) all that is needed is Sk(j) and the value δj : see
Figure 1. This implies that by storing δj for j ∈ [1, n−1] we can build any Sk(j).

Theorem 3. Solutions to all queries RTopK(A[i..j]) can be encoded in at most
(k + 1)nH( 1

k+1 ) bits of space.

Proof. Suppose we store the bitvector 0δ110δ21 . . . 0δn−11. This bitvector contains
no more than kn zero bits. This follows since each active counter can be incre-
mented k times before it becomes inactive. Thus, storing the bitvector requires
no more than lg

(
(k+1)n

n

) ≤ (k + 1)nH( 1
k+1 ) bits.
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Next we prove that this is all we need to answer a query RTopK(A[i..j]). We
use the encoding to construct Sk(j). We know that for every element at inactive
index � in Sk(j) there are at least k elements with larger value in A[� + 1..j].
Consequently, these elements need not be returned in the solution, and it is
enough to recover the indices of the top-k values among the elements at active
indices at least i. We apply Lemma 2 on Sk(j) to recover these indices and return
them as the solution. ��

3.2 Lower Bound for Encoding Top-k Queries

The goal of this section is to show that the encoding from Section 3.1 is, in fact,
optimal. The first observation is that all structures Sk(j) for j ∈ [1, n] can be
reconstructed with RTopK queries.

Lemma 3. Any Sk(j) can be reconstructed with RTopK queries.

Proof. To reconstruct Sk(j), we execute the query RTopK(A[�..j]) for each � ∈
[1, j]. If index � is returned as the k′-th largest element in [�, j], then by definition
there are exactly k′ − 1 elements in locations A[� + 1..j] with value larger than
A[�]. Thus, � is an active location and Sk(j, �) = k′ − 1. If � is not returned by
the query, then it is inactive and we set Sk(j, �) = k. ��

Recall that we encode all structures by specifying δ1, δ2, . . . , δn−1. We call an
(n − 1)-tuple of nonnegative integers (δ1, δ2, . . . , δn−1) valid if it encodes some
Sk(1), Sk(2), . . . , Sk(n), i.e., if there exists at least one array A[1..n] consisting
of distinct integers such that the structure constructed for A[1..j] is exactly the
encoded Sk(j), for every j = 1, 2, . . . , n. Then the number of bits required by
the encoding is at least the logarithm of the number of valid (n − 1)-tuples
(δ1, δ2, . . . , δn−1). Our encoding from Section 3.1 shows this number is at most
(
(k+1)n

n

)
, but we need to argue in the other direction, which is far more involved.

Recall that the size of a particular Sk(j) is |Sk(j)| =
∑j

i=1(k − Sk(j, i)). We
would like to argue that there are many valid (n − 1)-tuples (δ1, δ2, . . . , δn−1).
This will be proven in a series of transformations.

Lemma 4. If (δ1, δ2, . . . , δn−1) is valid, then for any δn ∈ {0, 1, . . . ,
⌈

M
k

⌉} where
M =

∑n−1
i=1 (k − δi), the tuple (δ1, δ2, . . . , δn−1, δn) is also valid.

Proof. Let A[1..n] be an array such that the structure constructed for A[1..j]
is exactly Sk(j), for every j = 1, 2, . . . , n. By definition of δj , we have that
M =

∑n−1
i=1 (k − δi) < |Sk(n)|. Denote the number of active elements in Sk(j)

with the corresponding entry set to α as mα for α ∈ [0, k − 1]. For any s ∈
{0, 1, . . . ,

∑k−1
α=0 mα}, we can adjust A[n+1] so that it is larger than exactly the s

smallest active elements in Sk(n). Thus, choosing any δn ∈ {0, 1, . . . ,
∑k

α=1 mα}
results in a valid (δ1, δ2, . . . , δn). Since |Sk(n)| =

∑k−1
α=0(k−α)mα ≤ k

∑k−1
α=0 mα,

we have
∑k−1

α=0 mα ≥
⌈

|Sk(n)|
k

⌉
, proving the claim. ��
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Every valid (n − 1)-tuple (a1, a2, . . . , an−1) corresponds in a natural way to
a walk of length n − 1 in a plane, where we start at (0, 0) and perform steps of
the form (1, ai), for i = 1, 2, . . . , n − 1. We consider a subset of all such walks.
Denoting the current position by (xi, yi), we require that ai is an integer from
[k − ⌈

yi

k

⌉
, k]. Under such conditions, any walk corresponds to a valid (n − 1)-

tuple (δ1, δ2, . . . , δn−1), because we can choose δi = k − ai and apply Lemma 4.
Therefore, we can focus on counting such walks.

The condition [k − ⌈
yi

k

⌉
, k] is not easy to work with, though. We will count

more restricted walks instead. A Y -restricted nonnegative walk of length n
starts at (0, 0) and consists of n steps of the form (1, ai), where ai ∈ Y for
i = 1, 2, . . . , n, such that the current y-coordinate is always nonnegative. Y is an
arbitrary set of integers.

Lemma 5. The number of valid (n−1)-tuples is at least as large as the number
of [k − Δ, k]-restricted nonnegative walks of length n − 1 − Δ.

Proof. We have already observed that the number of valid (n − 1)-tuples is at
least as large as the number of walks consisting of n−1 steps of the form (1, ai),
where ai ∈ [k − ⌈

yi

k

⌉
, k] for i = 1, 2, . . . , n − 1. We distinguish a subset of such

walks, where the first Δ steps are of the form (1, k), and then we always stay
above (or on) the line y = kΔ. Under such restrictions, ai ∈ [k − Δ, k] implies
ai ∈ [k − ⌈

yi

k

⌉
, k], so counting [k − Δ, k]-restricted nonnegative walks gives us a

lower bound on the number of valid (n − 1)-tuples. ��
We move to counting Y -restricted nonnegative walks of length n. Again,

counting them directly is non-trivial, so we introduce a notion of Y -restricted
returning walk of length n, where we ignore the condition that the current y-
coordinate should be always nonnegative, but require the walk ends at (n, 0).

(0, 0) (0, 0)

rotate here

Fig. 2. Left: a Y -restricted walk ending at (n, 0). Right: a cyclic rotation of the walk
on the left such that the walk is always nonnegative.

Lemma 6. The number of Y -restricted nonnegative walks of length n is at least
as large as the number of Y -restricted returning walks of length n divided by n.

Proof. This follows from the so-called cycle lemma [6], but we prefer to provide
a simple direct proof. We consider only Y -restricted nonnegative walks of length
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n ending at (n, 0), and denote their set by W1. The set of Y -restricted returning
walks of length n is denoted by W2. The crucial observation is that a cyclic
rotation of any walk in W2 is also a walk in W2. Moreover, there is always at
least one such cyclic rotation which results in the walk becoming nonnegative
(see Figure 2). Therefore, we can define a total function f : W2 → W1, that
takes a walk w and rotates it cyclically as to make it nonnegative. Because there
are just n cyclic rotations of a walk of length n, any element of W1 is the image
of at most n elements of W2 through f . Therefore, |W1| ≥ |W2|

n as claimed. ��
The only remaining step is to count [k − Δ, k]-restricted returning walks of

length n−1−Δ. This is equivalent to counting ordered partitions of k(n−1−Δ)
into parts a1, a2, . . . , an−1−Δ, where ai ∈ [0,Δ] for every i = 1, 2, . . . , n − 1 − Δ.
This follows since a partition of size � corresponds to a step of size k − �.

Lemma 7. The number of ordered partitions of N into g parts, where every
part is from [0, B], is at least

(
N−2g′+g−1

g−g′−1

)
, where g′ =

⌊
N
B

⌋
.

Proof. The number of ordered partitions of N into g parts, where there are no
restrictions on the sizes of the parts, is simply

(
N+g−1

g−1

)
. To take the restrictions

into the account, we first split N into blocks of length B (except for the last
block, which might be shorter). This creates g′ +1 blocks. Then, we additionally
split the blocks into smaller parts, which ensures that all parts are from [0, B].
We restrict the smaller parts, so that the first and the last smaller part in every
block is strictly positive. This ensures that given the resulting partition into
parts, we can uniquely reconstruct the blocks. Therefore, we only need to count
the number of ways we can split the blocks into such smaller parts, and by
standard reasoning this is at least

(
N−2g′+g−1

g−g′−1

)
. This follows by conceptually

merging the last element in block i with the first element in block i + 1, so that
no further partitioning can happen between them, and then partitioning the
remaining set into g − g′ pieces. Every such partition corresponds to a distinct
restricted partition obtained by splitting between the merged elements, which
creates g′ additional blocks. ��

We are ready to combine all the ingredients. Setting N = k(n − 1 − Δ),
g = n − 1 − Δ, g′ =

⌊
k(n−1−Δ)

Δ

⌋
=

⌊
k(n−1)

Δ

⌋
− k and substituting, the number

of bits required by the encoding is:

lg
(

N − 2g′ + g − 1
g − g′ − 1

)

> lg
(

(k + 1)(n − 2 − Δ − g′)
n − 2 − Δ − g′

)

.

Using the entropy function as a lower bound, this is at least (k + 1)n′H( 1
k+1 ) −

Θ(log n′), where n′ = n− 2−Δ− g′ ≥ n(1− k
Δ )+ k

Δ + k − 2−Δ. Thus, we have
the following theorem:

Theorem 4. For sufficiently large values of n, any data structure that encodes
range top-k queries must occupy (k+1)n′H( 1

k+1 )−Θ(log n′) bits of space, where
n′ ≥ n(1 − k

Δ ) + k
Δ + k − 2 − Δ, and Δ ≥ 1 can be selected to be any positive

integer. If k = o(n), then Δ can be chosen such that Δ = ω(k) and Δ = o(n),
yielding that the lower bound is (k + 1)nH( 1

k+1 )(1 − o(1)) bits.
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