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Abstract. We show a method resulting in the improvement of several
polynomial-space, exponential-time algorithms. The method capitalizes
on the existence of small balanced separators for sparse graphs, which
can be exploited for branching to disconnect an instance into independent
components. For this algorithm design paradigm, the challenge to date
has been to obtain improvements in worst-case analyses of algorithms,
compared with algorithms that are analyzed with advanced methods,
such as Measure and Conquer. Our contribution is the design of a gen-
eral method to integrate the advantage from the separator-branching
into Measure and Conquer, for an improved running time analysis.

We illustrate the method with improved algorithms for Max (r, 2)-
CSP and #Dominating Set. For Max (r, 2)-CSP instances with
domain size r and m constraints, the running time improves from
rm/6 to rm/7.5 for cubic instances and from r0.19·m to r0.18·m for gen-
eral instances, omitting subexponential factors. For #Dominating Set
instances with n vertices, the running time improves from 1.4143n to
1.2458n for cubic instances and from 1.5673n to 1.5183n for general
instances. It is likely that other algorithms relying on local transfor-
mations can be improved using our method, which exploits a non-local
property of graphs.

1 Introduction

Graph separators have been used for divide-and-conquer algorithms since the
70s [21]. For classes of instances with sublinear separators, e.g., planar graphs,
this often gives subexponential- or polynomial-time algorithms. It is natural to
design a branching strategy that strives to disconnect an instance into compo-
nents, even when no sublinear separators are known. While this has successfully
been done experimentally [3,4,11,17,20], we are not aware of worst-case analy-
ses of branching algorithms that are based on linear separators. Our algorithms
exploit small separators, specifically, balanced separators of size about n/6 for
cubic graphs of order n. Their existence is known since 2001, they have been used
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M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 567–579, 2015.
DOI: 10.1007/978-3-662-47672-7 46



568 S. Gaspers and G.B. Sorkin

in pathwidth-based algorithms using exponential time and exponential space,
and it is natural to try to exploit them for polynomial-space algorithms.

We now introduce the main separation results. We use standard graph nota-
tion from [5]. In a graph G = (V,E), the contraction of an edge uv ∈ E is an
operation replacing u and v by one new vertex cuv that is adjacent to NG({u, v}).
The graph G is cubic or 3-regular if each vertex has degree 3 and subcubic if
each vertex has degree at most 3.

Let (L, S,R) be a partition of the vertex set of a graph G such that there is
no edge in G with one endpoint in L and the other endpoint in R. We say that
(L, S,R) is a separation of G, and that S is a separator of G, separating L and
R. The following lemma follows from results in [9,22].

Lemma 1. For any subcubic graph G with n vertices, a separation (L, S,R)
with |S| ≤ n

6 + o(n) and |L| , |R| ≤ n−|S|+1
2 can be computed in polynomial time.

A direct application of branching on the vertices in such a separator yields
algorithms inferior to existing Measure and Conquer ones. Our improvements
have their origin in a simple observation: if an algorithm can always branch on
vertices in the separator, then the usual measure of improvement is achieved at
each step, and the splitting of the graph into two parts when the separator is
emptied is a bonus. We get the best of both. The technical challenges are to
amortize this bonus over the previous branches to prove a better running time,
and to control the balance of the separation as the algorithm proceeds so that
the bonus is significant.

We illustrate for cubic Max 2-CSP. We will be optimistic in this sketch,
doing the analysis rigorously in Section 2. The problem class will also be defined
there, but for now one may think of Max Cut, with domain size r = 2. Let
us “pivot” on a vertex v ∈ S, i.e., sequentially assign it each possible value,
eliminate it and its incident edges (see rule R3 below), and solve each case
recursively. It is possible that v has neighbors within S, but this is a favorable
case, reducing the number of subsequent branches needed. So, suppose that v
has neighbors only in L and R. If all neighbors were in one part, the separator
could be made smaller, so let us skip over this case as well. The cases of interest,
then, are when v has two neighbors in L and one in R, or vice-versa. Suppose
that these cases occur equally often; this is the bit of optimism that will require
more care to get right. In that case, after all |S| branchings, the sizes of L and
R are each reduced by 3

2 |S|, since degree-2 vertices get contracted away. This
would lead to a running time bound t(n) satisfying the recurrence

t(n) = rn/6 · 2t( 5
12n − 3

2 · 1
6n),

leading to a solution with t(n) = O�(rn/5). This conjectured bound would
improve on the best previous time bound of O�(rn/4), and Section 2 establishes
that the bound is true, modulo a subexponential factor in the running time.

Our algorithms exploit a global graph structure, the separator, while execut-
ing an algorithm based on local simplification and branching rules. The use of
global structure may also make it possible to circumvent lower bounds for classes
of algorithms restricted to local information [1,2].
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Results. Section 2 gives a first analysis of a separator-based algorithm. It solves
cubic instances of Max 2-CSP in time r(1/5+o(1))n, where n is the number of
vertices, improving on the previously fastest O�(rn/4) time polynomial-space
algorithm [25]. By [25, Theorem22], this cubic result allows solution of general
instances of Max 2-CSP in time r(9/50+o(1))m, improving on the previously
fastest O�(r(19/100)m) polynomial-space algorithm [25]. The latter improvement
holds also for Max Cut, an important special case of Max 2-CSP, and for
Polynomial and Ring CSP, generalizations encompassing graph bisection, the
Ising model, and counting problems (see [26]).

While Max 2-CSP is a central problem in exponential-time algorithms, the
analysis of its branching algorithms is typically easier than for other problems,
largely because the branching creates isomorphic subinstances. In Section 3,
we develop the Separate, Measure and Conquer method in full generality, and
use this in Section 4 to design faster polynomial-space algorithms for counting
dominating sets. For graphs with maximum degree 3, we obtain an algorithm
with a time bound of 3(1/5+o(1))n = O(1.2458n), improving on the previous best
O�(2(1/2)n) = O(1.4143n) [19]. For general graphs, we obtain a different algo-
rithm, with time bound O(1.5183n), improving on the previous best O(1.5673n)
[27]. For details and proofs omitted from this conference version, see [14].

2 Max 2-CSP

Using the notation from [25], an instance (G,S) of Max 2-CSP (also called
Max (r, 2)-CSP) is given by a constraint graph G = (V,E) and a set S of
score functions. Writing [r] = {1, ..., r} for the set of available vertex colors, we
have a dyadic score function se : [r]2 → R for each edge e ∈ E, a monadic
score function sv : [r] → R for each vertex v ∈ V , and a single niladic score
“function” s∅ : [r]0 → R which is just a constant convenient for bookkeeping. A
candidate solution is a function φ : V → [r] assigning colors to the vertices (φ is
an assignment or coloring), and its score is

s(φ) := s∅ +
∑

v∈V

sv(φ(v)) +
∑

uv∈E

suv(φ(u), φ(v)).

An optimal solution φ is one which maximizes s(φ).
Let us recall the reductions from [25]. R0–R2 are simplification rules, creating

one subinstance, and R3 is a branching rule, creating r subinstances. An optimal
solution for (G,S) can be found in polynomial time from optimal solutions of
the subinstances.

R0 If d(y) = 0, then set s∅ = s∅ + maxC∈[r] sy(C) and delete y from G.
R1 If N(y) = {x}, then replace the instance with (G′, S′) where G′ =

(V ′, E′) = G − y and S′ is the restriction of S to V ′ and E′ except that
for all C ∈ [r] we set

s′
x(C) = sx(C) + max

D∈[r]
{sxy(C,D) + sy(D)}.



570 S. Gaspers and G.B. Sorkin

R2 If N(y) = {x, z}, then replace the instance with (G′, S′) where G′ =
(V ′, E′) = (V − y, (E \ {xy, yz}) ∪ {xz}) and S′ is the restriction of S to V ′

and E′, except that for C,D ∈ [r] we set

s′
xz(C,D) = sxz(C,D) + max

F∈[r]
{sxy(C,F ) + syz(F,D) + sy(F )}

if there was already an edge xz, discarding the first term sxz(C,D) otherwise.
R3 Let y be a vertex of degree at least 3. There is one subinstance (G′, sC) for

each color C ∈ [r], where G′ = (V ′, E′) = G − y and sC is the restriction of
s to V ′ and E′, except that we set

(sC)∅ = s∅ + sy(C), and (sC)x(D) = sx(D) + sxy(D,C)

for every neighbor x of y and every D ∈ [r].

We will now describe a new separator-based algorithm for cubic Max 2-CSP,
outperforming the algorithm from [25]. Using it as a subroutine in the algorithm
for general instances [25] also gives a faster running time for Max 2-CSP.

2.1 Background

For a cubic instance of Max 2-CSP, an instance whose constraint graph G is
3-regular, the fastest known polynomial-space algorithm makes simple use of the
reductions above. The algorithm branches on a vertex v of degree 3, giving r
instances with a common constraint graph G′, where v has been deleted. In G′,
the three G-neighbors of v each have degree 2. Simplification rules are applied
to rid G′ of degree-2 vertices, and further vertices of degree 0, 1, or 2 that may
result, until the constraint graph becomes another cubic graph G′′. This results in
r instances with the common constraint graph G′′, to which the same algorithm
is applied recursively. The running time of the algorithm is exponential in the
number of branchings, and since each branching destroys 4 degree-3 vertices (the
pivot vertex v and its three neighbors), the running time is bounded by O�(rn/4);
details may be found in [24].

Here, we break this rn/4 barrier by selecting pivot vertices using global prop-
erties of the graph. Our algorithm pivots only on vertices in a separator; when
the separator is exhausted, G has been split into components L and R which can
be solved independently. The efficiency gain comes from the component splitting:
if the time to solve an instance with n vertices is O�(rcn), the time to solve an
instance consisting of components L and R is O�(rc|L|) + O�(rc|R|), which (for
L and R of comparable sizes) is hugely less than the time bound O�(rc(|L|+|R|))
for a single component of the same total order. This efficiency gain comes at no
cost: until the separator is exhausted, branching on vertices in the separator is
just as efficient as branching on any other vertex.

2.2 Analysis

To analyze the algorithm, we use the Measure and Conquer method. Our measure
associates a non-negative real to each instance. As in [13], we use penalty terms in
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the measure to treat tricky cases. We also take from [25] and [13] the treatment
of vertices of degrees 1 and 2 within the Measure and Conquer framework.

Recall [8,12,13] that the Measure and Conquer analysis applies to an algo-
rithm which polynomially transforms an instance I to one or more instances
I1, . . . , Ik, solves those instances recursively, and obtains a solution to I in poly-
nomial time from the solutions of I1, . . . , Ik. The measure μ(I) of an instance I
should satisfy that for any instance,

μ(I) ≥ 0, (1)

and for any transformation of I into I1, . . . , Ik,

rμ(I1) + · · · + rμ(Ik) ≤ rμ(I). (2)

Given these hypotheses, the algorithm solves any instance I in time O�(rμ(I))
if the number of recursive calls from the root to a leaf of the search tree is
polynomial.

Here, we present an instance of Max 2-CSP in terms of a separation (L, S,R)
of its constraint graph G = (V,E). We write L3, S3, and R3 for the subsets of
degree-3 vertices of L, S, and R, respectively, and we will always assume that
|L3| ≤ |R3|, if necessary swapping the roles of L and R to make it so. We
write |S2| for the number of degree-2 vertices in S. We define the measure of an
instance as

μ(L, S,R) = ws|S3| + ws,2|S2| + wr|R3| + wb1(|R3| = |L3|)
+ wc1(|R3| = |L3| + 1) + wd log3/2(|R3| + |S3|), (3)

where the values ws, ws,2, wr, wb, wc, and wd are constants to be determined
and the indicator function 1(event) takes the value 1 if the event is true and 0
otherwise. For the constraint (1) that μ ≥ 0, it suffices to constrain each of the
constants to be nonnegative:

ws, ws,2, wr, wb, wc, wd ≥ 0. (4)

Intuitively, the terms wb and wc are the only representations of the size of L
in μ, and account for the greater time needed when the left side is as large (or
nearly as large) as the right. The logarithmic term offsets increases in penalty
terms that may result when a new separator is computed, where the instance
may go from imbalanced to balanced.

Concretely, from (2), each reduction imposes a constraint on the measure. We
treat the reductions in their order of priority: when presenting one reduction, we
assume that no previous reduction can be applied. Denote by μ the value of the
measure before the reduction is applied and by μ′ its value after the reduction.

Degree 0. If the instance contains a vertex v of degree 0, then perform R0 on
v. Removing v has no effect on the measure and Condition (2) is satisfied.
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Half-edge deletion. A half-edge deletion occurs when the degree of a vertex v
decreases. We will require that a degree decrease does not increase the measure,
which will validate R1, the collapse of parallel edges, and R2 for vertices in L∪R.
If d(v) ≤ 2, Condition (2) is satisfied since ws,2 ≥ 0 by (4), and v only affects
the measure if v ∈ S and d(v) = 2. Now, assume d(v) = 3. Taking into account
changes in imbalance, and separately analyzing the cases where v is in L, S, and
R, we obtain the constraints:

−wb + wc ≤ 0 (5)
−ws + ws,2 ≤ 0 (6)

−wr + wc ≤ 0 (7)
and − wr + wb − wc ≤ 0. (8)

Separation. This reduction is the only one special to separation, and its con-
straint looks quite different from those in previous works. The reduction applies
when S = ∅, which arises in two cases. One is at the beginning of the algorithm,
when the instance has not been separated, and may be represented by the trivial
separation (∅, ∅, V ). The second is when reductions on separated instances have
exhausted the separator, so that S is empty but L and R are nonempty, and the
instance is solved by solving the instances on L and R independently, via a new
separation (L′, S′, R′) for R and another such separation (L′′, S′′, R′′) for L. The
reduction is applied to a graph G = (V,E) that is cubic and can be assumed
to be of at least some constant order, |V | ≥ k, since a smaller instance can be
solved in constant time. By Lemma 1 we know that, for any constant ε > 0,
there is a size k = k(ε) such that any cubic graph G of order at least k has a
separation (L, S,R) with |S| ≤ ( 16 + ε)|V | , |S|, |R| ≤ 5

12 |V |. From (2), making
worst-case assumptions about balance, it suffices to constrain that

rws|S′
3|+wr|R′

3|+wb+wd log(|R′
3|+|S′

3|)+rws|S′′
3 |+wr|R′′

3 |+wb+wd log(|R′′
3 |+|S′′

3 |)

≤ rwr|R3|+wd log(|R3|).

From the separator properties, this in turn is implied by

2 · rws(1/6+ε)|R3|+wr(5/12·|R3|)+wb+wd log(8/12·|R3|) ≤ rwr|R3|+wd log(|R3|),

where we have estimated |L′
3|, |R′

3| ≤ 5
12 |R3| and |S′

3| ≤ ( 16 + ε)|R3| ≤ 3
12 |R3| in

the log term on the left hand side. Since r ≥ 2, it suffices to constrain that

1 + ws( 16 + ε)|R3| + wr( 5
12 |R3|) + wb + wd log( 8

12 |R3|) ≤ wr|R3| + wd log(|R3|).

Taking 3
2 = 12

8 to be the logarithm’s base and setting wd = wb +1, the left term
wd log( 8

12 |R3|) is equal to −(wb + 1) + (wb + 1) log(|R3|), and it suffices to have

( 16 + ε)ws + 5
12wr ≤ wr. (9)

Degree 2 in S. If the instance has a vertex s ∈ S of degree 2, then perform R2
on s. Let N(s) = {u1, u2}. The vertex s is removed and the edge u1u2 is added
if it was not present already. If L or R contain no neighbor of s, Condition (2)
is implied by the constraints of the half-edge deletions. If u1 ∈ L and u2 ∈ R (or
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the symmetric case), then S is not a separator any more. The algorithm removes
u2 from R and adds it to S. If d(u2) = 2, we have that μ′ − μ ≤ 0. Otherwise,
d(u2) = 3 and μ′ − μ ≤ −ws,2 + ws − wr + max(0, wc, wb − wc). Since wc ≥ 0 by
(4) it suffices to constrain

−ws,2 + ws − wr + wc ≤ 0 (10) and − ws,2 + ws − wr + wb − wc ≤ 0. (11)

No neighbor in L. If the separation (L, S,R) has a vertex v ∈ S with no
neighbor in L, “drag” v into R, i.e., transform the instance by changing the
separation to (L′, S′, R′) := (L, S \ {v}, R ∪ {v}). It is easily checked that this
is a valid separation, and with |L′

3| ≤ |R′
3| implied by |L3| ≤ |R3|. Indeed the

new instance is no more balanced than the old, so that the difference between
the new and old measures is μ′ − μ ≤ −ws + wr, and to satisfy condition (2) it
suffices that

−ws + wr ≤ 0, (12)

since by (4) and (5) an increase in imbalance does not increase the measure.

No neighbor in R. A vertex v ∈ S with no neighbor in R is dragged into L.
The case where |R3| = |L3| is covered by the previous case, reversing the roles
of L and R. Otherwise, |R3| ≥ |L3|+1, and μ′ −μ ≤ −ws +max(0, wc, wb −wc).
We constrain that

−ws + wc ≤ 0 (13) and − ws + wb − wc ≤ 0. (14)
With the above cases covered, we may assume that the pivot vertex s ∈ S
has degree 3 and at least one neighbor in each of L and R.

One neighbor in each of L, S, and R. To branch on a vertex s ∈ S with one
neighbor in each of L, S, and R, perform R3 on s, deleting it from the constraint
graph. Since both L and R lose a degree-3 vertex, there is no change in balance
and the constraint is

1 − 2ws + ws,2 − wr ≤ 0. (15)

The form and the initial 1 come from the reduction’s generating r instances with
common measure μ′, so the constraint is r·rμ′ ≤ rμ, or equivalently 1+μ′−μ ≤ 0.
The value of μ′ − μ comes from S losing two degree-3 vertices but gaining a
degree-2 vertex, and R losing a degree-3 vertex.

Two neighbors in L. If s ∈ S has two neighbors in L and one neighbor in
R, applying R3 removes s, reduces the degree of a degree-3 vertex in R, and
increases the imbalance by one. The algorithm performs R3 if |R3| ≤ |L3| + 1,
where μ′ − μ ≤ −ws − wr + max(−wb + wc,−wc). Thus, we constrain

1 − ws − wr − wb + wc ≤ 0 (16) and 1 − ws − wr − wc ≤ 0. (17)
If, instead, |R3| ≥ |L3| + 2, then the algorithm drags s into L and its neigh-
bor r ∈ R into S, replacing (L, S,R) by (L ∪ {s}, (S \ {s}) ∪ {r}, R \ {r}). We
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need to ensure that −wr + max(wb, wc) ≤ 0, which, since wc ≤ wb by (5), is
satisfied if we constrain

−wr + wb ≤ 0. (18)

Two neighbors in R. If s ∈ S has two neighbors in R and one neighbor
in L, the algorithm performs R3, which removes s, reduces the degree of two
degree-3 vertices in R, and decreases the imbalance by one. For the case where
|R3| = |L3|, we refer to (16) since L and R are swapped after the reduction. For
the other cases, we constrain

1 − ws − 2wr − wc + wb ≤ 0 (19) and 1 − ws − 2wr + wc ≤ 0. (20)
This describes all the constraints on the measure. To minimize the running time
proven by the analysis, we minimize wr, obtaining the following optimal, feasible
weights:

wr = 0.2 + ε ws = 0.7 ws,2 = 0.6 wb = 0.2 wc = 0.1.

All constraints are satisfied and μ ≤ (0.2 + ε)n = (1/5 + o(1))n.
It only remains to verify that the depth of the search trees is polynomial.

Since not every reduction removes a vertex (some only modify the separation
(L, S,R)), it is crucial to guarantee some kind of progress for each reduc-
tion. Since each reduction decreases another polynomially-bounded measure
η(L, S,R,E) := 3|S3| + 2|R3| + |L3| + 2|E|, by at least one, the depth of the
search trees is indeed polynomial.

Theorem 1. On input of a Max 2-CSP instance on a constraint graph G with
n vertices and m edges, the described algorithm solves G in time rn/5+o(n) =
r2m/15+o(m) if G is cubic, time r7m/40+o(m) if G has maximum degree 4, and
time r9m/50+o(m) in general, using polynomial space.

This improves on the previous best running times [25] of O�(rm/6), O�(r3m/16),
and O�(r19m/100). The same improvements also hold for Max Cut, an important
special case of Max (2, 2)-CSP. Theorem 1 extends instantly to Polynomial
CSP and Ring CSP, where the scores are multivariate formal polynomials, or
take values in an arbitrary ring. The setting is precisely defined in [26], and the
extensions follow immediately from the fact that the algorithm here depends
only on R0–R3. Plugging our algorithm into the analysis of [16] also improves
that running time from O�(rn·(1− 3

d+1 )) to rn·(1− 3.3
d+1 )+o(n) for any Max 2-CSP

instance with n vertices and average degree d ≥ 5.

3 The Separate, Measure and Conquer Technique

Our Max 2-CSP algorithm illustrates that one can exploit separator-based
branching to design a more efficient exponential-time algorithm. However, Max
2-CSP algorithms have certain features that make the analysis simpler than for
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other problems. First, R3 produces instances with the same constraint graph,
and therefore the same measure. Second, the measure of R depends only on the
number of degree-3 vertices in R. This implies a discretized change in the measure
for R whenever L and R are swapped. In general the change in measure when
swapping L and R could take values dense within a continuous domain. Our
measure for the Max 2-CSP algorithm also implies that the initial separator
only needs to balance the number of vertices in L and R instead of the measure
of L and R, which is what is needed more generally. Finally, a general method is
needed to combine the separator-based branching, which would typically be done
for sparse instances, with the general case, where vertex degrees are arbitrary.

Our general method of analysis resolves all the complications mentioned.
It applies to recursive algorithms that label vertices of a graph, and where an
instance can be decomposed into two independent subinstances when all the
vertices of a separator have been labeled in a certain way. Let G = (V,E) be
a graph and � : V → L be a labeling of its vertices by labels in the finite set
L. For a subset of vertices W ⊆ V , denote by μr(W ) and μs(W ) two measures
for the vertices in W in the graph G labeled by �. The measure μr is used for
the vertices on the right hand side of the separator and μs for the vertices in
the separator. Let (L, S,R) be a separation of G. Initially, we use the separation
(L, S,R) = (∅, ∅, V ). We define the measure

μ(L, S,R) = μs(S) + μr(R) + max
(

0, B − μr(R) − μr(L)
2

)

+ (1 + B) · log1+ε(μr(R) + μs(S)), (21)

where ε > 0 is a constant that will be chosen small enough to satisfy constraint
(24) below, and B is an arbitrary constant greater than the maximum change in
imbalance in each transformation in the analysis, except the Separation trans-
formation. The imbalance of an instance is μr(R) − μr(L), and we assume, as
previously, that

μr(R) ≥ μr(L). (22)

To make sure a balanced separator can be computed efficiently, we will assume
that adding a vertex to R changes μr(R) by at most B (adjusting B if necessary):

|μr(R ∪ {v}) − μr(R)| ≤ B for each R ⊆ V and v ∈ V. (23)

We also assume that μr(R) can be computed in time polynomial in |V | for each
R ⊆ V .

Let us now look more closely at the measure (21). The terms μs(S) and μr(R)
naturally define measures for the vertices in S and R. No term of the measure
directly accounts for the vertices in L; we merely enforce that μr(R) ≥ μr(L).
The term max

(
0, B − μr(R)−μr(L)

2

)
is a penalty term based on how balanced

the instance is: the more balanced the instance, the larger the penalty term. The
penalty term has become continuous, varying from 0 to B. The final logarithmic
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term amortizes the increase in measure of at most B due to the balance terms
each time the instance is separated.

Let us now formulate some generic constraints that the measure should obey.

Separation. We assume that an instance with a separation (L, S,R) can be
separated into two independent subinstances (L, S, ∅) and (∅, S,R) when the
labeling of S allows it; specifically, when all vertices in S have been labeled by
a subset Ls ⊆ L. This arises in two cases. The first is at the beginning of the
algorithm when the graph has not been separated, which is represented by the
trivial separation (∅, ∅, V ). The second is when our reductions have produced a
separable instance.

Let (L, S,R) be such that �(s) ∈ Ls for each s ∈ S. The algorithm recur-
sively solves the subinstances (L, S, ∅) and (∅, S,R). Let us focus on the instance
(∅, S,R); the treatment of the other instance is symmetric. After a cleanup phase,
where simplification rules are applied, the next step is to compute a new separa-
tor of S∪R. This can be done in various ways, depending on the graph class. For
example, polynomial-time computable balanced separators can be derived from
upper bounds on the pathwidth of graphs with bounded maximum or average
degree [6,7,12]. After a balanced separator (L′, S′, R′) has been computed for
S∪R, the instance is solved recursively, and so is the instance L∪S, separated into
(L′′, S′′, R′′). Both solutions are then combined into a solution for the instance
L ∪ S ∪ R. Without loss of generality, assume μ(L′, S′, R′) ≥ μ(L′′, S′′, R′′).
Assuming that the separation and combination are done in polynomial time, the
imposed constraint on the measure is

2 · 2μr(R
′)+μs(S

′)+B+(1+B)·log1+ε(μr(R
′)+μs(S

′))

≤ 2μr(R)+μs(S)+(1+B)·log1+ε(μr(R)+μs(S)).

To satisfy the constraint, it suffices to constrain that

μr(R) + μs(S) ≥ (1 + ε)(μr(R′) + μs(S′)). (24)

This is the only constraint involving the size of a separation. It constrains that
separating (∅, S,R) to (L′, S′, R′) should reduce μr(R) + μs(S) by a constant
factor, namely 1 + ε.

Branching. Suppose a transformation taking (L, S,R, �) to (L′, S′, R′, �′)
decreases μr(R)+μr(L) by d. Since the measure includes roughly (and at least)
half of μr(R) + μr(L), ideally μr(R) + max

(
0, B − μr(R)−μr(L)

2

)
decreases by

d/2. One can show that this is indeed the case for our measure if the the following
condition holds:

If μr(R) − μr(L) > B, then μr(R) − μr(R′) ≥ μr(L) − μr(L′) . (25)

Condition (25) is very natural, expressing that, if the instance is imbalanced or
risks becoming imbalanced we would like to make more progress on the large
side. Thus, if Condition (25) holds, then the analysis is at least as good as a
non-separator based analysis, but with the additional improvement due to the
separator branching.
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Integration into a standard Measure and Conquer analysis. The Sepa-
rate, Measure and Conquer analysis will typically be used when the instance has
become sufficiently sparse that one can guarantee that a small separator exists.
We can view the part played by the Separate, Measure and Conquer analysis
as a subroutine with measure μ′, and integrate it into any other Measure and
Conquer analysis with different measure μ. We only need guarantee that the
measure of an instance does not increase when transitioning to the subroutine,
by constraining that μ′(I) ≤ μ(I) for all instances I [12].

4 Counting Dominating Sets

The #DS problem is to compute, for a given graph G, the function d such
that d(k) is the number of dominating sets of G of size k. Its current fastest
polynomial-space algorithm runs in time O(1.5673n) [27]. While many algo-
rithms for domination problems rely on a transformation to Set Cover, the
current fastest polynomial-space algorithm for subcubic graphs works directly
on the input graph and runs in time O�(2n/2) [19]. We can apply the Separate,
Measure and Conquer method to design and analyze faster algorithms for #DS
for subcubic graphs and, separately, for general graphs.

Theorem 2. #DS can be solved in time 3n/5+o(n) on subcubic graphs and in
time O(1.5183n) on general graphs, using only polynomial space.

Our algorithm for subcubic graphs uses a new 3-way branching inspired by the
inclusion/exclusion branching of [28]. The algorithm of [19] had running time
O�(4n/4). Our 3-way branching improves its running time bound to O�(3n/4) =
O(1.3161n). Using separation improves it further to 3n/5+o(n) = O(1.2458n).
Our algorithm for general graphs essentially just adds separation to [27].

5 Conclusions

We have presented a new method to analyze separator-based branching algo-
rithms within the Measure and Conquer framework. It uses a novel kind of
measure that amortizes the sudden large gain when an instance decomposes into
independent subinstances. The key feature needed to apply the method is that
an algorithm eventually reaches instances where small balanced separators can
be computed efficiently. This is so for algorithms that reach sparse graphs in
their final stages, but could also include cases where the treewidth of the graph
is bounded, or where a graph with small treewidth can be reached by branching
on a few vertices [10,15,18].

There are problems for which traditional algorithms are already so fast that
branching on separators does not seem to offer an advantage. For example, the
current fastest algorithm for Maximum Independent Set on subcubic graphs
runs in O(1.0836n) time [29], and merely branching on the vertices of the sepa-
rator would take 2n/6+o(n) = Ω(1.1225n) time. A second limitation is that Sepa-
rate, Measure and Conquer subroutines can often be replaced by treewidth-based
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dynamic programming subroutines [7], leading to the same or smaller running
times; for example, #DS can be solved in time O(1.5002n) [23]. However, such
algorithms use exponential space.

We believe that the Separate, Measure and Conquer method is widely appli-
cable, but poses fresh challenges, as it presents more choices in the design of
algorithms and more complications in the analysis. It also provides impetus to
looking for other global properties that may be exploited to derive efficient algo-
rithms.
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