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Abstract. We introduce the problem of approximating the eigenvalues
of a given stochastic/symmetric matrix in the context of classical space-
bounded computation.

The problem can be exactly solved in DET ⊆ NC2. Recently, it
has been shown that the approximation problem can be solved by a
quantum logspace algorithm. We show a BPL algorithm that approxi-
mates any eigenvalue with a constant accuracy. The result we obtain
falls short of achieving the polynomially-small accuracy that the quan-
tum algorithm achieves. Thus, at our current state of knowledge, we can
achieve polynomially-small accuracy with quantum logspace algorithms,
constant accuracy with probabilistic logspace algorithms, and no non-
trivial result is known for deterministic logspace algorithms. The quan-
tum algorithm also has the advantage of working over arbitrary, possibly
non-stochastic Hermitian operators.

Our work raises several challenges. First, a derandomization chal-
lenge, trying to achieve a deterministic algorithm approximating eigen-
values with some non-trivial accuracy. Second, a de-quantumization
challenge, trying to decide whether the quantum logspace model is
strictly stronger than the classical probabilistic one or not. It also casts
the deterministic, probabilistic and quantum space-bounded models as
problems in linear algebra with differences between symmetric, stochastic
and arbitrary operators. We therefore believe the problem of approximat-
ing the eigenvalues of a graph is not only natural and important by itself,
but also important for understanding the relative power of deterministic,
probabilistic and quantum logspace computation.

1 Introduction

A graph G can be associated with a linear operator A that describes a random
walk on G. The operator A takes an especially simple form when G is undirected:

D. Doron—Supported by the Israel science Foundation grant no. 994/14, by the
United States – Israel Binational Science Foundation grant no. 2010120 and by the
Blavatnik Fund.
A. Ta-Shma—Supported by the Israel science Foundation grant no. 994/14 and by
the United States – Israel Binational Science Foundation grant no. 2010120.

c© Springer-Verlag Berlin Heidelberg 2015
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If G is regular and undirected then A is symmetric and has a complete
basis of orthonormal eigenvectors with real eigenvalues. In other words, there
exists a unitary basis under which A is diagonal with real eigenvalues λi on
the diagonal.

If G is undirected but not necessarily regular, then A is s diagonalizable with
real eigenvalues, i.e., the picture is the same as before except that the basis
is not necessarily unitary.1

If G is directed then A does not necessarily have a full basis of eigenvectors. In
this case A (like any other linear operator) can be brought to its canonical
Jordan Normal Form, where there exists a basis under which A is block-
diagonal and each block has an eigenvalue λ on the main diagonal and 1 on
the diagonal above it.

In this paper we raise the following natural questions:

– How difficult is it to approximate the largest eigenvalues of a general (not
necessarily stochastic or non-negative) operator?

– How difficult is it to approximate all the spectrum of an operator?
– Does the problem become easy and belong to L when the graph is undirected?
– How about approximating the singular values of a graph?

1.1 The Bigger Picture

Derandomization is a major challenge of theoretical computer science. In the
space-bounded model, Nisan [1] constructed a pseudo-random generator (PRG)
against logarithmic space-bounded non-uniform algorithms that uses seed length
O(log2 n). Using that he showed BPL is contained in the class having simultane-
ously polynomial time and O(log2 n) space. Saks and Zhou [2] showed BPL is con-
tained in DSPACE(log1.5 n). Reingold [3] showed that undirected st-connectivity
(which was shown to be in RL by [4]) already belongs to L. These results seem to
indicate that randomness does not add additional power to the model and many
conjecture that in fact BPL = L. Yet, we currently do not know a PRG with
seed length o(log2 n), nor a general derandomization result that simultaneously
uses o(log2 n) space and polynomial time.

One can look up and ask which upper bounds we know on BPL. We then
know the following:

NC1 ⊆ L ⊆ RL ⊆ NL ⊆ DET ⊆ NC2 ⊆ DSPACE(O(log2 n)),

where DET is the class of languages that are NC1 Turing-reducible to the problem
intdet of computing the determinant of an integer matrix (see [5] for a definition

1 If G is undirected and irregular, then the adjacency matrix Ã is symmetric but
the transition matrix A = D−1Ã, where D is the diagonal degrees matrix, is not
symmetric. Yet, consider the matrix L = D−1/2ÃD−1/2. L is symmetric and thus
has an eigenvector basis with real eigenvalues. A = D−1/2LD1/2 is conjugate to
L and thus is diagonalizable and has the same eigenvalues. As A is stochastic its
eigenvalues are in the range [−1, 1].
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of DET). As it turns out, many important problems in linear algebra, such as
inverting a matrix, or equivalently, solving a set of linear equations are in DET,
and often complete for it (see, e.g., [5]). The fact that NL ⊆ DET is due to [5] who
showed that the directed connectivity problem, STCON is reducible to intdet.
DET ⊆ NC2 follows from Csansky’s algorithm [6] for the parallel computation of
the determinant. In addition to the above we also know that BPL ⊆ DET (e.g.,
using the fact that matrix powering is DET complete).

While matrix powering is complete for DET, approximating matrix powering
of stochastic matrices is in BPL. To see that, assume A represents a stochastic
matrix. Then one can approximate Ak[s, t] by estimating the probability a ran-
dom walk over A starting at s reaches t after k steps.2 Conversely, it is possible to
convert a BPL machine to a stochastic operator A such that the probability the
machine moves from s to t in k steps is Ak[s, t].3 Thus, in a sense, approximating
matrix-powering of stochastic operators is complete for BPL.

We now deviate from the classical picture we had so far and consider a quan-
tum space-bounded model. In 1999, Watrous [7] defined the model of quantum
logspace computation, and proved several facts on it. The definition was mod-
ified several times, see, [8]. Roughly speaking, a language is in BQL if there
exists an L–uniform family of quantum circuits solving the language with only
O(log n) qubits. The quantum circuits are over some universal basis of gates
(e.g., CNOT, HAD, T) plus intermediate measurements (that in particular may
simulate a stream of random coins). For details we refer the reader to [8,9]. The
works of Watrous, van Melkebeek and Watson showed that BQL is also contained
in NC2.

Recently, it was shown in [9], building on an earlier work by [10], that it is
possible to approximate the singular value decomposition (SVD) of a given linear
operator in BQL. This also implies that it is possible to approximately invert a
matrix in BQL. A natural question left open by this work is:

Open Problem: Is it possible to approximate the SVD of an arbitrary lin-
ear operator in BPL? The problem is also open for Hermitian operators, where
singular values and eigenvalues coincide (up to their sign).

In fact, this question is open also when the operator is the transition matrix
arising from a walk on a regular, undirected graph.

Thus, somewhat surprisingly, we see that the deterministic / probabilistic /
quantum space-bounded classes and the class DET are capable of doing some
sort of linear algebra on corresponding operators. Namely,

– In DET we can compute exactly the determinant which is the product of all
eigenvalues as well as the product of all singular values. We can also solve
matrix powering. Both problems are complete in DET. With that we can
approximately invert an operator or perform the SVD decomposition.

2 For completeness we include a proof of this in Appendix A. We also extend the class
for which this works to matrices with non-negative or complex entries as long as
their infinity norm is at most 1.

3 This reduction is standard and appears in many papers, e.g., already in [1].
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In a sense, DET is an exact computation of the spectrum (e.g., in terms of
the characteristic polynomial) of an arbitrary linear operator.

– BQL is capable of approximating the whole singular value decomposition of
any operator. This is somewhat equivalent to saying that BQL is capable of
approximating the eigenvalues of Hermitian operators.

– BPL is capable of approximating matrix powering. In this paper we will show
BPL can approximate any eigenvalue of an undirected graph with constant
accuracy. We do not know yet whether we can do the same for directed graphs
or whether we can approximate the whole spectrum of undirected graphs.

– In L we do not know how to do any of the above, but Reingold showed L is
capable of solving USTCON, i.e., connectivity on undirected graphs. Notice
that undirected graphs roughly correspond to the intersection of stochastic
and Hermitian operators.

1.2 On the Problem of Approximating Arbitrary Eigenvalues
of Undirected Graphs in BPL

We define the following promise problem:

Definition 1. (EVα,β) The input is a stochastic, Hermitian matrix A, λ ∈
[−1, 1] and α < β.

Yes instances : There is an eigenvalue λi of A such that |λi − λ| ≤ α.
No instances : All eigenvalues of A are β–far from λ.

One way to design a BPL algorithm for the problem is by “de-quantumizing”
the quantum algorithm.4 The BQL algorithm solves the above problem for any
Hermitian operator A whose eigenvalues are τ–separated, for, say, τ = n−c,
α = τ

4 and β = 2α. That is, the quantum algorithm can handle any polynomially
small accuracy. With such accuracy one can turn the solution of the promise
problem to a procedure approximating the whole spectrum.

We develop a BPL algorithm that follows the main idea of the quantum
algorithm, and in that sense we de-quantumize the quantum algorithm, but we
achieve much worse parameters. Specifically, we prove that the promise problem
EVα,β belongs to BPL, for constant parameters α < β. On the one hand the
result is disappointing because the quantum algorithm does so much better and
can handle polynomially small gaps. On the other hand, we remark that we
do not know how to achieve even constant approximation with a deterministic
logspace algorithm. We are not aware of many natural promise problems in BPL
that are not known to be in L. This paper shows EVα,β is such a promise problem.

4 We remark that Ben-Or and Eldar [11] recently de-quantumized the SVD quantum
algorithm and obtained a classical probabilistic algorithm for inverting matrices that
achieves the state of the art running time, using a completely new approach that is
derived from the quantum algorithm. We would like to do the same in the space-
bounded model.
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1.3 Our Technique

The usual way of describing the quantum algorithm is that it applies quantum
phase estimation on the completely mixed state. The completely mixed state
is a uniform mixture of the pure states that are formed from the eigenvectors
of A, and on each such eigenvector, the quantum phase estimation estimates
the corresponding eigenvalue. Thus, if the procedure can be run in (quantum)
logarithmic space, we essentially sample a random eigenvector/eigenvalue pair,
and from that we can approximately get the SVD decomposition of A.

Another (less standard) way of viewing the quantum algorithm is that it
manipulates the eigenvalues of an input matrix A without knowing the decom-
position of A to eigenvectors and eigenvalues. This can be done using the simple
fact that if λ1, . . . , λn are the roots of the characteristic polynomial of A, and
if p is an arbitrary univariate polynomial, then p(λ1), . . . , p(λn) are the roots of
the characteristic polynomial of the matrix p(A). The probability the algorithm
measures λ is proportional to Tr (p(A)), where p is a shift of the Fejér kernel
by λ (see, e.g., [12, Chapter2]). Applying p on A amplifies the eigenvalues that
are close to λ to a value close to 1, and damps eigenvalues far from λ close to 0.
Thus, Tr (p(A)) approximately counts the number of eigenvalues close to λ.

We would like to follow the same approach but with a probabilistic algorithm
rather than a quantum one. We say a matrix A is simulatable if a probabilistic
logspace algorithm can approximate Ak[s, t] for any k polynomial in n and with
polynomially-small accuracy (see Definition 2 for the exact details). From the
discussion above it is clear that if A is the transition matrix of a (directed or
undirected) graph then A is simulatable (see Lemma 1). We remark that in the
appendix we show that even non-stochastic matrices A with negative or complex
entries are simulatable as long as A has infinity norm at most 1, namely, those
matrices A for which all rows i ∈ [n] have �1 norm at most 1,

∑
j |A[i, j]| ≤ 1.

If A is simulatable and the coefficients of p(x) =
∑

i cix
i are not too large

(i.e., only polynomially large in n), then we can approximate in BPL the matrix
p(A) =

∑
i ciA

i. In particular, we can also approximate Tr (p(A)). By taking p
to be a threshold polynomial with degree logarithmic in n (that guarantees the
size of the coefficients ci is polynomial in n) and a threshold around λ, we can
solve EVα,β(A) for constants α < β (see Section 3).

There are many other possible candidate functions for a threshold polynomial
p. However, we prove in Theorem 2 that no polynomial can do significantly better
than a threshold polynomial. The reason the quantum algorithm works better is
because it is able to take p up to some polynomial degree (rather than logarithmic
degree) not worrying about the (quite large) size of the coefficients, thus leading
to much better accuracy. The quantum algorithm also has the advantage that it
works for any normal operator A, not necessarily stochastic or simulatable.

Thus, the algorithm we give for EVα,β is simple: Approximate Tr (p(A)) to
a simple logarithmic degree polynomial p. Nevertheless, we believe it features a
new component that has not been used before by probabilistic space-bounded
algorithms. An algorithm that takes a random walk on a graph and takes a
decision based on the walk length and connectivity properties of the graph (as,
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e.g., [4]) works with some power of the input matrix A. More generally, such an
algorithm can work with a convex combination of powers of the input matrix
(by probabilistically choosing which power to take). The algorithm we present
utilizes arbitrary (positive or negative) combinations of matrix powers and we
believe it is a crucial feature of the solution. We are not aware of previous BPL
algorithms using such a feature.

The approach above does not work for approximating the eigenvalues of a
directed graph G. It is still true that the resulting operator A is stochastic and
therefore simulatable. Also, it remains true that if λ is an eigenvalue of A (i.e., a
root of the characteristic polynomial) then p(λ) is a root of p(A). However, since
A is not Hermitian, the eigenvalues λ of A may be complex and we do not know
how to control p(λ) when p may have both negative and positive coefficients. We
believe it should be possible to approximate in BPL an arbitrary eigenvalue of
any stochastic operator (not necessarily Hermitian) to within constant accuracy,
but we have not been able to show it so far.

1.4 A Short Discussion

We believe the problem of approximating the eigenvalues of an undirected graph
is natural and important. Also, at our current state of knowledge, it simultane-
ously separates deterministic, probabilistic and quantum complexity: In BQL we
can solve it with polynomially-small accuracy, in BPL with constant accuracy
and in L we do not know how to solve it at all. Thus it poses several challenges:

– First, there is the natural question of whether one can approximate eigenval-
ues in BPL with better accuracy. A positive answer would imply BPL approx-
imations to many important linear algebra problems that are currently only
known to be in NC2. A negative answer would imply a separation between
BQL and BPL.

– Second, it raises the natural question of derandomization. Can one design a
deterministic algorithm approximating eigenvalues to constant accuracy?

We believe the solution of this problem is not only important by itself, but
may also shed new light on the strengths and weaknesses of the space-bounded
model, and the relative strengths of the deterministic, probabilistic and quantum
models of space-bounded computation.

2 Preliminaries

Often we are interested in approximating a value (e.g., an entry in a matrix with
integer values or the whole matrix) with a probabilistic machine. More precisely,
assume there exists some value u = u(x) ∈ R that is determined by the input
x ∈ {0, 1}n. We say a probabilistic TM M(x, y) (ε, δ)–approximates u(x) if:

∀x∈{0,1}n Pr
y

[|M(x, y) − u(x)| ≥ ε] ≤ δ. (1)
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A random walk on a graph G (or its transition matrix A) can be simulated
by a probabilistic logspace machine. As a consequence, a probabilistic logspace
machine can approximate powers of A well. Here we try to extend this notion
to arbitrary linear operators A, not necessarily stochastic. We say a matrix A is
simulatable if any power of it can be approximated by a probabilistic algorithm
running in small space. Formally:

Definition 2. We say that a family of matrices A is simulatable if there exists
a probabilistic algorithm that on input A ∈ A of dimension n with ‖A‖ ≤ poly(n),
k ∈ N, s, t ∈ [n], runs in space O(log nk

εδ ) and (ε, δ)–approximates Ak[s, t].

In Appendix A we give for completeness a proof that:

Lemma 1. The family of transition matrices of (directed or undirected) graphs
is simulatable.

We say ‖A‖∞ ≤ c if for every i ∈ [n],
∑

j |A[i, j]| ≤ c. In the same Appendix
we also show:

Lemma 2. The family of real matrices with infinity norm at most 1 is simulat-
able.

3 Approximating Eigenvalues with Constant Accuracy

In this section we prove:

Theorem 1. There exists a probabilistic algorithm that on input a stochastic
matrix B with real eigenvalues in [0, 1], constants β > α > 0 and λ ∈ [0, 1] such
that:

– There are d eigenvalues λi satisfying |λ − λi| ≤ α,
– All other eigenvalues λi satisfy |λ − λi| ≥ β,

outputs d with probability at least 2/3. Furthermore the algorithm runs in prob-
abilistic space O(log n).

We remark that Theorem 1 covers the case of transition matrices of undi-
rected graphs. As mentioned earlier, a transition matrix A of an undirected
graph has an eigenvector basis with real eigenvalues in the range [−1, 1]. Tak-
ing B = 1

2A + 1
2In×n we get a stochastic matrix with eigenvalues in the range

[0, 1], and whose eigenvectors are in a natural one-to-one correspondence with
A’s eigenvalues.

Proof. (Of Theorem 1) The input to the algorithm is n,B, λ, α, β. We assume a
univariate polynomial p(x) =

∑M
i=0 cix

i with the following properties:

– p has a sharp peak around λ, i.e., p(x) ≥ 1 − η for x ∈ [λ − α, λ + α] and
p(x) ≤ η for x ∈ [0, 1] \ (λ − β, λ + β), where η = η(n) = n−2.
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– p can be computed in L. Formally, M = deg(p) and |ci| are at most poly(n)
and for every i, ci can be computed (exactly) by a deterministic Turing
machine that uses O(log n) space.

In the next subsection we show how to obtain such a polynomial p with M =
32(β − α)−2 log n and |ci| ≤ 2O(M).

Choose ε = 1
n and δ = 1

3 . Set ε′ = ε · 2−2M and δ′ = δ · 2−M . The output of
the algorithm is the integer closest to

R =
M∑

i=0

ci · TP(B,n, i, ε′, δ′)

where TP is the probabilistic algorithm guaranteed by Lemma 2 that (ε′, δ′)–
approximates Tr (Bi).

It is easy to check that:

Claim. Pr[|R − Tr (p(B))| ≥ ε] ≤ δ.

As Tr (p(B)) =
∑n

i=1 p(λi), Pr[|R − ∑n
i=1 p(λi)| ≥ ε] ≤ δ. However, p(λi)

is large when λi is α–close to λ and small when it is β–far from λ, and we are
promised that all eigenvalues λi are either α–close or β–far from λ. Thus,

|Tr (p(B)) − d| ≤ nη.

Altogether, except for probability δ, |R−d| ≤ ε+nη ≤ 1
3 , and the nearest integer

closest to R is d. The correctness follows. It is also straightforward to check that
the space complexity is O(log(nε−1δ−1)) = O(log n).

The constant accuracy we achieve is far from being satisfying. The matrix
B has n eigenvalues in the range [0, 1], so the average distance between two
neighboring eigenvalues is 1/n. Thus, the assumption that there is an interval
of length β − α with no eigenvalue is often not true. The desired accuracy we
would like to get is o(1/n). Having such accuracy would enable outputting an
approximation of the whole spectrum of B, using methods similar to those in [9],
thus getting a true classical analogue to the quantum algorithm in [9]. However,
we do not know how to achieve subconstant accuracy. The question whether
better accuracy is possible in BPL is one of the main questions raised by this
work.

3.1 Using the Symmetric Threshold Functions

There are several natural candidates for the function p above. In this subsection
we use the threshold function to obtain such a function p. For λ = k

M for some
integers k and M , define:

pλ(x) =
M∑

i=k

(
M

i

)

xi(1 − x)M−i.
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pλ approximates well the threshold function Thλ(x) : [0, 1] → {0, 1} that
is one for x ≥ λ and zero otherwise. Specifically, using the Chernoff bound, we
obtain:

Lemma 3. Let x ∈ [0, 1]. pλ(x) approximates Thλ(x) over [0, 1] with accuracy
(ξ(ε))Mx, where ε = λ−x

x and ξ(ε) = eε

(1+ε)1+ε .

As a polynomial in x, pλ(x) =
∑M

i=0 cix
i with ci = (−1)i

∑i
j=λM

(
M
j

)(
M−j
i−j

)
(−1)j and therefore |ci| ≤ ∑i

j=λM

(
M
j

)(
M−j
i−j

) ≤ M
(

M
M/2

)2
= 2O(M).

Furthermore, ci can be computed (exactly) by a deterministic Turing machine
that uses O(M) space by simply running through the loop over j, each time
updating the current result by (−1)j

(
M
j

)(
M−j
i−j

)
.

To obtain our polynomial p, define p as the difference between the threshold
polynomial around λ + Δ and the threshold polynomial around λ − Δ,

p(x) = pλ−Δ(x) − pλ+Δ(x)

where M = 32(β − α)−2 log n and Δ = (α + β)/2. It is easy to check that

Lemma 4. p(x) ≥ 1 − n−2 for every x that is α–close to λ (i.e., |x − λ| < α)
and p(x) ≤ n−2 for every x that is β–far from λ (i.e., |x − λ| ≥ β).

3.2 The Limitation of the Technique

In this subsection, we prove the accuracy of the above technique cannot be
enhanced merely by choosing a different polynomial p. Approximating threshold
functions by a polynomial is well-studied and well understood (see, for example,
[13–15] and references therein). However, we need to adapt this work to our
needs because we have an additional requirement that the magnitude of the
polynomial’s coefficients is small.

We start by formalizing the properties of p that were useful to us. We say
that P = {pλ,n}λ∈[0,1],n∈N

is a family of polynomials if for every λ ∈ [0, 1] and
n ∈ N, pλ,n is a univariate polynomial with coefficients in R.

Definition 3. (Small family) Let P be a family of polynomials and fix λ ∈ [0, 1].
For every n ∈ N, write pλ,n(x) =

∑deg(pλ,n)
i=0 cλ,n,ix

i. We say the family is s(n)–
small if,

– deg(pλ,n) ≤ 2s(n),
– For every 0 ≤ i ≤ deg(pλ,n), |cλ,n,i| ≤ 2s(n), and
– There exists a deterministic Turing machine running in space s(n) that out-

puts cλ,n,0, . . . , cλ,n,deg(pλ,n).

Definition 4. (Distinguisher family) Let P be a family of polynomials and fix
n ∈ N. Given α < β in (0, 1) and η < 1/2, we say the family is (α, β, η)–
distinguisher for λ ∈ [0, 1] if,
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– For every x ∈ [0, 1] that is α–close to λ, pλ,n(x) ∈ [1 − η, 1], and
– For every x ∈ [0, 1] that is β–far from λ, pλ,n(x) ∈ [0, η].

Theorem 2. Let α, β, λ, η be such that α ≤ β, β = o(1), η = o(n−1) and
λ+β ≤ 1

2 . Then there is no (α, β, η)–distinguisher family for λ that is O(log n)–
small.

Proof. Assume there exists such a family {pλ,n}λ∈[0,1],n∈N
with s(n) = c′ log n.

We first show that without loss of generality p has logarithmic degree. Let rλ,n(x)
be the residual error of truncating pλ,n(x) after c log n terms, for c that will soon
be determined. Also, w.l.o.g., assume x ∈ [0, 1) is bounded away from 1. Then:

rλ,n(x) ≤
deg(pλ,n)∑

i=c log n+1

|cλ,n,i| · xi ≤ nc′ · xc log n

1 − x
≤ 1

1 − x
nc′−c log(1/x).

So, by taking c = 	 c′+2−log(1−x)
log(1/x) 
 we obtain rλ,n(x) ≤ n−2.

We now show that O(log n)–degree polynomials cannot decay around λ fast
enough. Assume to the contrary that there exists such a distinguisher family, so
|pλ,n(x)| < n−1 for x ∈ [λ + β, 1]. The following lemma states that if a function
has a small value on an interval, than it cannot be too large outside it. Namely,

Lemma 5. [16, Theorem 2.9.11] Let Tn(x) be the Chebyshev polynomial (of the
first kind) of degree n. Then, if the polynomial Pn(x) =

∑n
i=0 cix

i satisfies the
inequality |Pn(x)| ≤ L on the segment [a, b] then at any point outside the segment
we have

|Pn(x)| ≤ L ·
∣
∣
∣
∣Tn

(
2x − a − b

b − a

)∣
∣
∣
∣ .

For properties of the Chebyshev polynomials see [17, Chapter 1.1]. We men-
tion a few properties that we use. An explicit representation of Tn(x) is given by

Tn(x) = (x−√
x2−1)n

+(x+
√

x2−1)n

2 . |Tn(−x)| = |Tn(x)| and Tn is monotonically
increasing for x > 1. Also,

|Tn(1 + δ)| ≤
(
1 + δ +

√
(1 + δ)2 − 1

)n

≤
(
1 + 4

√
δ
)n

≤ e4n
√

δ ≤ 28n
√

δ (2)

for 0 ≤ δ ≤ 1. Then:

|pλ,n(λ)| ≤ n−1 ·
∣
∣
∣Tc·log n

(
λ−β−1

−λ−β+1

)∣
∣
∣

= n−1 ·
∣
∣
∣Tc·log n

(

1 + 2β
1−λ−β

)∣
∣
∣ By |Tn(x)| = |Tn(−x)|

≤ n−1 · |Tc·log n(1 + 4β)| By the monotonicity of Tn(x) for x > 1 and λ + β ≤ 1
2

By Equation (2) |pλ,n(λ)| ≤ n−1232c
√

β log n ≤ n−1+32c
√

β . As β = o(1) for n
large enough we have |pλ,n(λ)| ≤ n−1/2, contradicting the fact that |pλ,n(λ)| ≥
1 − n−1.

We note that for values very close to 1, polynomials of higher degrees are
useful, and indeed better approximations are possible. In particular, one can
separate a 1 eigenvalue from 1 − 1

n by using the polynomial xn2
.
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A Simulatable Matrices

Lemma 1. The family of transition matrices of (directed or undirected) graphs
is simulatable.

Proof. Let G = (V,E) be a graph with n vertices and let A be its transition
matrix. Let k ∈ N, s, t ∈ [n] and δ, ε > 0. Consider the algorithm that on input
k, s, t, takes T independent random walks of length k over G starting at vertex
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s. The algorithm outputs the ratio of walks that reach vertex t. Let Yi be the
random value that is 1 if the i-th trial reached t and 0 otherwise. Then, for every
i, E[Yi] = Ak[s, t]. Also, Y1, . . . , YT are independent. By Chernoff,

Pr[| 1
T

T∑

i=1

Yi − Ak[s, t]| ≥ ε] ≤ 2e−2ε2T

Taking T = poly(ε−1, log δ−1), the error probability (i.e., getting an estimate
that is ε far from the correct value) is at most δ. Altogether, the algorithm runs in
space O(log(Tnk|E|)) = O(log(nkε−1)+log log δ−1), assuming |E| = poly(n, k).

We say ‖A‖∞ ≤ c if for every i ∈ [n],
∑

j |A[i, j]| ≤ c. We show:

Lemma 2. The family of real matrices with infinity norm at most 1 is simulat-
able.

Proof. We prove the result to real matrices, with positive or negative entries, as
long as they have bounded infinity norm. By generalizing the sign of an entry
to its phase, the result easily applies to complex matrices as well.

Let A be a real matrix of dimension n such that ‖A‖∞ ≤ 1. Let di(A) =∑
j |A[i, j]|.Let k ∈ N, s, t ∈ [n] and δ, ε > 0. Note that:

Ak[s, t] =
n∑

i1=1

n∑

i2=1

· · ·
n∑

ik−1=1

A[s, i1] · A[i1, i2] · . . . · A[ik−1, t]

=
n∑

i1=1

n∑

i2=1

· · ·
n∑

ik−1=1

|A[s, i1]|
ds(A)

· |A[i1, i2]|
di1(A)

· . . . ·

×|A[ik−1, t]|
dik−1(A)

· p (A, 〈s, i1, i2, . . . , ik−1, t〉) ,

where

p (A, 〈s, i1, i2, . . . , ik−1, t〉) =
ds(A) · di1(A) · . . . · dik−1(A)

sgn (A[s, i1] · A[i1, i2] · . . . · A[ik−1, it])
.

Consider the algorithm that on input k, s, t, takes T independent random
walks of length k over G starting from vertex s. Iterating over all random walks,
the algorithm approximates 1

T

∑
i y(i), where y(i) = p(A, i) if the walk i reached

t, and 0 otherwise. Correspondingly, let Yi be the random value that is p(A, i)
if the i’th walk reached t and 0 if it did not. Then,



On the Problem of Approximating the Eigenvalues of Undirected Graphs 431

E[Yi] =
n∑

i1=1

n∑

i2=1

· · ·
n∑

ik−1=1

A[s, i1] · A[i1, i2] · . . . · A[ik−1, t] · p(A, 〈s, i1, . . . , ik−1, t〉) = Ak[s, t].

Denote the algorithm’s outcome by M(k, s, t). As in Lemma 1, and using the
fact that |p(A, i)| ≤ 1, the algorithm can (ε, δ)–approximates E[Yi] by choos-
ing T which is poly(ε−1, log δ−1). Following the same analysis as of Lemma 1,
the algorithm runs in O(log nkε−1 + log log δ−1) space. We conclude that A is
simulatable.
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