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Abstract. The class MIP∗ of promise problems that can be decided
through an interactive proof system with multiple entangled provers pro-
vides a complexity-theoretic framework for the exploration of the nonlo-
cal properties of entanglement. Very little is known in terms of the power
of this class. The only proposed approach for establishing upper bounds is
based on a hierarchy of semidefinite programs introduced independently
by Pironio et al. and Doherty et al. in 2006. This hierarchy converges to
a value, the field-theoretic value, that is only known to coincide with the
provers’ maximum success probability in a given proof system under a
plausible but difficult mathematical conjecture, Connes’ embedding con-
jecture. No bounds on the rate of convergence are known.

We introduce a rounding scheme for the hierarchy, establishing that
any solution to its N-th level can be mapped to a strategy for the provers
in which measurement operators associated with distinct provers have
pairwise commutator bounded by O(�2/

√
N) in operator norm, where �

is the number of possible answers per prover.
Our rounding scheme motivates the introduction of a variant of quan-

tum multiprover interactive proof systems, called MIP∗
δ , in which the

soundness property is required to hold against provers allowed to oper-
ate on the same Hilbert space as long as the commutator of operations
performed by distinct provers has norm at most δ. Our rounding scheme
implies the upper bound MIP∗

δ ⊆ DTIME(exp(exp(poly)/δ2)). In terms
of lower bounds we establish that MIP∗

2− poly contains NEXP with com-
pleteness 1 and soundness 1 − 2− poly. We discuss connections with the
mathematical literature on approximate commutation and applications to
device-independent cryptography.

1 Introduction

In a multiprover interactive proof system, a verifier with bounded resources (a
polynomial-time Turing machine) interacts with multiple all-powerful but non-
communicating provers in an attempt to verify the truth of a mathematical state-
ment — the membership of some input x, a string of bits, in a language L, such
as 3-SAT. The provers always collaborate to maximize their chances of making
the verifier accept the statement, and their maximum probability of success in
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doing so is called the value ω = ω(x) of the protocol. We will sometimes refer
to a given protocol as an “interactive game” and call the provers “players”. A
proof system’s completeness c is the smallest value of ω(x) over all x ∈ L, while
its soundness s is the largest value of ω(x) over x /∈ L; a protocol is sound if
s < c.

The class of all languages that have multiprover interactive proof systems
with c ≥ 2/3 and s ≤ 1/3, denoted MIP, is a significant broadening of its
non-interactive, single-prover analogue MA, as is witnessed by the character-
ization MIP = NEXP [BFL91]. This result is one of the cornerstones on which
the PCP theorem [AS98,ALM+98] was built, with consequences ranging from
cryptography [BOGKW88] to hardness of approximation [FGL+96].

Quantum information suggests a natural extension of the class MIP. The
laws of quantum mechanics assert that, in the physical world, a set of non-
communicating provers may share an arbitrary entangled quantum state, a
physical resource which strictly extends their set of strategies but provably
does not allow them to communicate. The corresponding extension of MIP is
the class MIP∗ of all languages that have multiprover interactive proof systems
with entangled provers [KM03].

Physical intuition for the significance of the prover’s new resource,
entanglement, dates back to Einstein, Podolsky and Rosen’s paradoxical
account [EPR35] of the consequences of quantum entanglement, later clarified
through Bell’s pioneering work [Bel64]. To state the relevance of Bell’s results
more precisely in our context we first introduce the mathematical formalism
used by Bell to model locality. With each prover’s private space is associated a
separate Hilbert space. The joint quantum state of the provers is specified by a
unit vector |Ψ〉 in the tensor product of their respective Hilbert spaces. Upon
receiving its query from the verifier, each prover applies a local measurement (a
positive operator supported on its own Hilbert space) the outcome of which is
sent back to the verifier as its answer. The supremum of the provers’ probabil-
ity of being accepted by the verifier, taken over all Hilbert spaces, states in their
joint tensor product, and local measurements, is called the entangled value ω∗
of the game. The analogue quantity for “classical” provers (corresponding to
shared states which are product states) is denoted ω.

Bell’s work and the extensive literature on Bell inequalities [CHSH69,Ara02]
and quantum games [CHTW04] establishes that there are protocols, or interac-
tive games, for which ω∗ > ω. This simple fact has important consequences
for interactive proof systems. First, a proof system sound with classical provers
may no longer be so in the presence of entanglement. Cleve et al. [CHTW04]
exhibit a class of restricted interactive proof systems, XOR proof systems, such
that the class with classical provers equals NEXP while the same proof sys-
tems with entangled provers cannot decide any language beyond EXP. Second,
the completeness property of a proof system may also increase through the
provers’ use of entanglement. As a result optimal strategies may require the
use of arbitrarily large Hilbert spaces for the provers — no explicit bound on
the dimension of these spaces is known as a function of the size of the game.
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In fact no better upper bound on the class MIP∗ is known other than its lan-
guages being recursively enumerable: they may not even be decidable! This
unfortunate state of affairs stems from the fact that, while the value ω∗ may be
approached from below through exhaustive search in increasing dimensions,
there is no verifiable criterion for the termination of such a procedure.

Bounding entangled-Prover Strategies. The question of deriving algorithmic
methods for placing upper bounds on the entangled value ω∗ of a given proto-
col has long frustrated researchers’ efforts. Major progress came in 2006 through
the introduction of a hierarchy of relaxations based on semidefinite program-
ming [DLTW08,NPA07] that we will refer to as the QCSDP hierarchy. These
relaxations follow a similar spirit as e.g. the Lasserre hierarchy in combinato-
rial optimization [Lau03], and can be formulated using the language of sums of
squares of non-commutative polynomials. In contrast with the commutative set-
ting, this leads to a hierarchy that is in general infinite and need not converge
at any finite level.

The limited convergence results that are known for the QCSDP hierarchy
involve a formalization of locality for quantum provers which originates in the
study of infinite-dimensional systems such as those that arise in quantum field
theory. Here the idea is that observations made at different space-time locations
should be represented by operators which, although they may act on the same
Hilbert space, should nevertheless commute — a minimal requirement ensur-
ing that the joint outcome of any two measurements made by distinct parties
should be well-defined and independent of the order in which the measure-
ments were performed.

For the case of finite-dimensional systems this seemingly weaker condition
is equivalent to the existence of a tensor product representation [DLTW08].
In contrast, for the case of infinite-dimensional systems the two formulations
are not known to be equivalent. This question, known as Tsirelson’s problem
in quantum information, was recently shown to be equivalent to a host of
deep mathematical conjectures [SW08,JNP+11], in particular Connes’ embed-
ding conjecture [Con76] and Kirchberg’s QWEP conjecture [Kir93]. The valid-
ity of these conjectures has a direct bearing on our understanding of MIP∗. The
QCSDP hierarchy is known to converge to a value called the field-theoretic value
ω f of the game, which is the maximum success probability achievable by com-
muting strategies of the type described above. A positive answer to Tsirelson’s
conjecture thus implies that ω∗ = ω f and both quantities are computable.
However, even assuming the conjecture and in spite of strong interest (the use
of the first few levels of the hierarchy has proven extremely helpful to study a
range of questions in device independence [BSS14,YVB+14] and the study of
nonlocality [PV10]) absolutely no bounds have been obtained on the conver-
gence rate of the hierarchy. It is only known that if a certain technical condition,
called a rank loop, holds, then convergence is achieved [NPA08]; unfortunately
the condition is computationally expensive to verify (even for low levels of the
hierarchy) and, in general, may not be satisfied at any finite level.
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Beyond the obvious limitations for practical applications, these severe com-
putational difficulties are representative of the intrinsic difficulty of working
with the model of entangled provers. Our work is motivated by this state of
affairs: we establish the first quantitative convergence results for the quantum
SDP hierarchy. Our main observation is that successive levels of the hierarchy
place bounds on the value achievable by provers employing a relaxed notion
of strategy in which measurements applied by distinct provers are allowed to
approximately commute: their commutator is bounded, in operator norm, by a
quantity that goes to zero with the level in the hierarchy.

In this abstract we describe our quantitative results, use them to motivate
the introduction of a sub-class MIP∗

ac of MIP∗ and prove non-trivial lower and
upper bounds on that class. We discuss the relevance of the study of MIP∗

ac for
that of MIP∗ and closely related results from the mathematical literature. We
refer to the full version for precise definitions as well as complete proofs of the
results announced here.

2 A Rounding Scheme for the QCSDP Hierarchy

Our main technical result is a rounding procedure for the QCSDP hierarchy
of semidefinite programs [NPA07,DLTW08]. The procedure maps any feasible
solution to the N-th level of the hierarchy to a set of measurement operators
for the provers that approximately commute. For simplicity we state and prove
our results for the case of a single round of interaction with two provers and
classical messages only. Extension to multiple provers is straightforward; we
expect generalizations to multiple rounds and quantum messages to be possible
but leave them for future work.

Definition 1. An (m, �) strategy for the provers specified by two sets of m POVMS
{Aa

x}1≤a≤� and {Bb
y}1≤b≤� with � outcomes each, where x, y ∈ {1, . . . , m}.

A strategy is said to be δ-AC if for every x, y, a and b, ‖Aa
xBb

y − Bb
y Aa

x‖ ≤ δ, where
‖ · ‖ denotes the operator norm.

Our results apply to the QCSDP hierarchy of semidefinite programs as
defined in [NPA07].

Theorem 1. Let G be a 2-prover one-round game with classical messages in which
each player has � possible answers, and ωN

QCSDP(G) the optimum of the N-th level of

the QCSDP hierarchy. Then there exists a δ = O(�2/
√

N) and a δ-AC strategy for
the provers with success probability ωN

QCSDP(G) in G.1

1 Due to the approximate commutation of the provers’ strategies the success probability
of δ-AC strategies may a priori depend on the order in which the measurement oper-
ators are applied. In our context the parameter δ will always be small enough that we
can neglect this effect. Moreover, for the particular kind of strategies constructed in
our rounding scheme the value will not be affected by the order.
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Our result is the first to derive the condition that the operator norm of com-
mutators is small. In contrast it is not hard to show that a feasible solution to
the first level of the hierarchy already gives rise to measurement operators that
exactly satisfy a commutation relation when evaluated on the state (corresponding
to the zeroth-order vector provided by the hierarchy). While the latter condi-
tion can be successfully exploited to give an exact rounding procedure from the
first level for the class of XOR games [CHTW04], and an approximate rounding
for the more general class of unique games [KRT10], we do not expect it to be
sufficient in general. In particular, even approximate tightness of the first level
of the hierarchy for three-player games would imply EXP = NEXP [Vid13].
We will furtherore show that the problem of optimizing over strategies which
approximately commute, to within sufficiently small error and in operator norm,
is NEXP-hard (see Section 3 for details).

The proof of Theorem 1 is constructive: starting from any feasible solution
to the N-th level of the QCSDP hierarchy we construct measurement operators
for the provers with pairwise commutators bounded by δ in operator norm, and
which achieve a value in the game that equals the objective value of the N-th
level SDP. Recall that this SDP has O(m�)N vector variables indexed by strings
of length at most N over the formal alphabet {Pa

x , Qb
y} containing a symbol

for each possible (question,answer) pair to any of the provers. Our main idea
is to introduce a “graded” variant of the construction in [NPA08] (which was
used to show convergence under the rank loop constraint). Rather informally,
the rounded measurement operators, {P̃a

x} for the first prover and {Q̃b
y} for the

second, can be defined as follows:

P̃a
x ≡ 1

N − 1

N−1

∑
i=1

Π≤iΠPa
x
Π≤i and Q̃b

y ≡ 1
N − 1

N−1

∑
j=1

Π≤jΠQb
y
Π≤j.

Here ΠPa
x

and ΠQb
y

are projectors as defined in [NPA08], i.e. as the projection

onto vectors associated with strings ending in the formal label Pa
x , Qb

y of the cor-
responding operator. The novelty is the introduction of the Π≤i, which project
onto the subspace spanned by all vectors associated with strings of length at
most i. Thus P̃a

x itself is not a projector, and it gives more weight to vectors
indexed by shorter strings.

The intuition behind this rounding scheme is as follows. The winning prob-
ability is unchanged because it is determined by the action of the measurement
operators on the subspace Im(Π≤1). On the other hand, the rounded opera-
tors approximately commute in the operator norm because the original opera-
tors commuted exactly on the subspace Im(Π≤N−1), and we have now shifted
the weight of the operators so that they are supported on that subspace. Fur-
thermore, while truncating the operators abruptly at level N − 1 (by conjugat-
ing by Π≤N−1 for example) could result in a large commutator, we perform a
“smooth” truncation across vectors indexed by strings of increasing length.
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3 Interactive Proofs with Approximately Commuting Provers

Motivated by the rounding procedure ascertained in Theorem 1 we propose a
modification of the class MIP∗ in which the assumption that isolated provers
must perform perfectly commuting measurements is relaxed to a weaker con-
dition of approximately commuting measurements.

Definition 2. Let MIP∗
δ(k, c, s) be the class of promise problems (Lyes, Lno) that can

be decided by an interactive proof system in which the verifier exchanges a single round
of classical messages with k quantum provers P1, . . . , Pk and such that:

– If the input x ∈ Lyes then there exists a perfectly commuting strategy for the
provers that is accepted with probability at least c,

– If x ∈ Lno then any δ-AC strategy is accepted with probability at most s.

Note that the definition of MIP∗
δ requires the completeness property to be

satisfied with perfectly commuting provers; indeed we would find it artificial
to seek protocols for which optimal strategies in the “honest” case would be
required to depart from the commutation condition. Instead, only the sound-
ness condition is relaxed by giving more power to the provers, who are now
allowed to apply any “approximately commuting” strategy. The “approxi-
mately” is quantified by the parameter δ,2 and for any δ′ ≤ δ the inclusions
MIP∗

δ ⊆ MIP∗
δ′ ⊆ MIP∗ trivially hold. It is important to keep in mind that while

δ can be a function of the size of the protocol it must be independent of the
dimension of the provers’ operators, which is unrestricted.

δ-AC strategies were previously considered by Ozawa [Oza13] in connec-
tion with Tsirelson’s problem. Ozawa proposes a conjecture, the “Strong Kirch-
berg Conjecture (I)”, which if true implies the equality MIP∗ = ∪δ>0 MIP∗

δ . We
state and discuss the conjecture further as Conjecture 1 below. Unfortunately
the conjecture seems well beyond the reach of current techniques (Ozawa him-
self formulates doubts as to its validity). However, in our context less strin-
gent formulations of the conjecture would still imply conclusive results relating
MIP∗

δ to MIP∗; we discuss such variants in Section 4.
Further motivation for the definition of MIP∗

δ may be found by thinking
operationally — with e.g. cryptographic applications in mind, how does one
ascertain that “isolated” provers indeed apply commuting measurements? The
usual line of reasoning applies the laws of quantum mechanics and special rel-
ativity to derive the tensor product structure from space-time separation. How-
ever, not only is strict isolation virtually impossible to enforce in all but the
simplest experimental scenarios, but the implication “separation =⇒ tensor
product” may itself be subject to questioning — in particular it may not be a
testable prediction, at least not to precision that exceeds the number of measure-
ments, or observations, performed. Relaxations of the tensor product condition

2 As a first approximation the reader may think of δ as a parameter that is inverse
exponential in the input length |x|. In terms of games, this corresponds to δ being
inverse polynomial in the number of questions in the game, which is arguably the
most natural setting of parameters.
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have been previously considered in the context of device-independent cryp-
tography; for instance Silman et al. [SPM13] require that the joint measurement
performed by two isolated devices be close, in operator norm, to a tensor prod-
uct measurement. Our approximate commutation condition imposes a weaker
requirement, and thus our convergence results on the hierarchy also apply to
their setting; we discuss this in more detail in Section 4.2.

A computationally Tractable Class? Theorem 1 can be interpreted as evidence
that the hierarchy converges at a polynomial rate to the maximum success
probability for MIP∗

ac provers. More formally, it implies the inclusion MIP∗
δ ⊆

TIME(exp(exp(poly)/δ2)) for any δ > 0, thereby justifying our claim that the
class MIP∗

δ is tractable. This stands in stark contrast with MIP∗ = MIP∗
0, for

which no upper bound is known.
Having shown that the new class has “reasonable” complexity, it is natu-

ral to ask whether the additional power granted to the provers might actually
make the class trivial — could provers that are δ-AC be no more useful than a
single quantum prover, even for very small δ? We show this is not the case by
establishing the inclusion NEXP ⊆ MIP∗

2− poly(2, 1, 1 − 2− poly). This is a direct
analogue of the same lower bound for MIP∗ [IKM09], and is proven using the
same technique. We conjecture that the inclusion NEXP ⊆ MIP∗

2− poly(3, 1, 2/3)
also holds, and that this can be derived by a careful extension of the results
in [IV12,Vid13].

4 Discussion

Our introduction of MIP∗
ac is motivated by a desire to develop a framework

for the study of quantum multiprover interactive proof systems that is both
computationally tractable and relevant for typical applications of such proof
systems. Our main technical result, Theorem 1, demonstrates the first aspect. In
this section we discuss the relevance of the new model, its connection with the
standard definition of MIP∗, and possible applications to quantum information.

4.1 Commuting Approximants: Some Results, Limits, and Possibilities

While we believe MIP∗
ac is of interest in itself, we do not claim that approx-

imately commuting provers are more natural than commuting provers, or
provers in tensor product form; the main goal in introducing the new class
is to shed light on its thus-far-intractable parent MIP∗. In light of the results
from Section 2 the relationship between the two classes seems to hinge on the
general mathematical problem of finding exactly commuting approximants to
approximately commuting matrices.

Limits for Commuting Approximants. The main objection to the existence
of a positive answer for the “commuting approximants” question is revealed
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by a beautiful construction of Voiculescu who exhibits a surprisingly simple
scenario in which commuting approximants provably do not exist [Voi83]. The
following is a direct consequence of Voiculescu’s result.

Theorem 2 (Voiculescu). For every d ∈ N there exists a pair of unitary matrices
U1, U2 ∈ Cd×d with ‖[U1, U2]‖ ≤ O( 1

d ), such that for any pair of complex matrices
A, B ∈ Cd×d satisfying [A, B] = 0, max(‖U1 − A‖, ‖U2 − B‖) = Ω(1).

In Voiculescu’s example U1 is a d-dimensional cyclic permutation matrix,
and U2 is a diagonal matrix whose eigenvalues are the dth roots of unity. The
proof draws on a connection to homology, in particular using a homotopy
invariant to establish the lower bound on distance to commuting approximants.
A succinct and elementary proof of the result is given by Exel and Loring
[EL89].

In the context of non-local entangled strategies one is most concerned with
Hermitian matrices representing measurements, rather than unitaries. How-
ever, as a consequence of Theorem 2 we see that if one considers the Hermitian

operators Mj
k = (−i)j

2 (Uk + (−1)jU†
k ) (j ∈ {0, 1}) we have that ‖[Mj

1, Mj′
2 ]‖ ≤

O( 1
d ), and yet any exactly commuting set of matrices must be a constant dis-

tance away in the operator norm. Thus Theorem 2 rules out the strongest form
of a “commuting approximants” statement, which would ask for approximants
in the same space as the original matrices, and with a commutator bound that
does not depend on the dimension of the matrices.

Theorem 2 invites us to refine the “commuting approximants” question and
distinguish the ways in which it may avoid the counter-example.

Ozawa’s Conjecture. Motivated by the study of Tsirelson’s problem and the
relationship with Tsirelson’s conjecture, Ozawa [Oza13] introduces two equiv-
alent conjectures, the “Strong Kirchberg Conjecture (I)” and “Strong Kirch-
berg Conjecture (II)” respectively, which conjecture the existence of commuting
approximants to approximately commuting sets of POVM measurements and
unitaries respectively. The novelty of these conjectures, which allows them to
avoid the immediate pitfall given by Voiculescu’s example, is that Ozawa con-
siders approximants in a larger Hilbert space than the original approximately
commuting operators. Precisely, his Strong Kirchberg Conjecture (I) states the
following:

Conjecture 1 (Ozawa). Let m, � ≥ 2 be such that (m, �) �= (2, 2) 3. For every
κ > 0 there exists ε > 0 such that, if dim H < ∞ and (Pk

i ), (Q
l
j) is a pair of

m projective �-outcome POVMs on H satisfying ‖[Pk
i , Ql

j]‖ ≤ ε, then there is a

finite-dimensional Hilbert space H̃ containing H and projective POVMs P̃k
i , Q̃l

j

3 The case (m, �) = (2, 2) is the only nontrivial setting for which we have some under-
standing. In particular nonlocal games with two inputs and two outputs per party
can be analyzed via an application of Jordan’s lemma [Mas05].
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on H̃ such that ‖[P̃k
i , Q̃l

j]‖ = 0 and ‖ΦH(P̃k
i )− Pk

i ‖ ≤ κ and ‖ΦH(Q̃l
j)− Ql

j‖ ≤ κ.
Here ΦH denotes the compression to H, defined by ΦH(M) ≡ PHMPH, where
PH is the projection onto H.

Ozawa gives an elegant proof of a variant of the conjecture that applies to
just two approximately commuting unitaries, thereby establishing that extend-
ing the Hilbert space can allow one to avoid the complications in Voiculescu’s
example. He also establishes that the conjecture is stronger than Kirchberg’s con-
jecture (itself equivalent to Tsirelson’s problem and Connes’ embedding conjec-
ture), casting doubt, if not on its validity, at least on its approachability.

Nevertheless, we can mention the following facts. First, Conjecture 1 implies
the equality MIP∗

ac = MIP∗; in fact it implies that MIP∗
δ = MIP∗ for small

enough δ, depending on how the parameter ε in Conjecture 1 depends on κ,
m and d. For this it suffices to verify that a state ρ optimal for a strategy based
on POVMs Pk

i and Ql
j in a given protocol can be lifted to a state ρ̃ on H̃ such

that the correlations exhibited by performing the POVMs P̃k
i , Q̃l

j on ρ̃ approx-

imately reproduce those generated by Pk
i , Ql

j on ρ; this is easily seen to be the
case provided κ is small enough.

Second, Conjecture 1 can be weakened in several ways without losing the
implication that MIP∗

ac = MIP∗. For instance, it is not necessary for the exactly
commuting P̃k

i , Q̃l
j to approximate the Pk

i , Ql
j in operator norm — in the context

of interactive games, only the correlations obtained by measuring a particular
state need to be preserved, and this does not in general imply an approximation
as strong as that promised in Conjecture 1.

Dimension Dependent Bounds. An alternative relaxation for the “commuting
approximants” question is to allow the approximation error to depend explic-
itly on the dimension of the matrices. A careful analysis of the rounding scheme
from Theorem 1 shows that it produces d-dimensional POVM elements with
an O(1/

√
log(d)) bound on the commutators (this is because the dimension

of the subspace Im(Π≤N−1) is exponential in N). Unfortunately, Voiculescu’s
result (Theorem 2) shows that one can only hope for good approximants in
the operator norm if the commutator bound is o(1/d). It remains instructive
to find any explicit existence result for commuting approximants in the general
case, regardless of dimension dependence. Concretely, we conjecture that Con-
jecture 1 may be true with a parameter κ that scales with the dimension d of the
operators {Pk

i , Ql
j} as κ = εc poly(d)(ml)2

for some constant 0 < c ≤ 1.

An Alternative Norm. Another relaxation of the “commuting approximants”
question, which would be sufficient to imply MIP∗

ac = MIP∗, is to allow for
any set of commuting approximants which approximately preserves the win-
ning probability of the game. For concreteness we include a precise version of
a possible statement along these lines:
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Conjecture 2. There exists a function f (ε, k) : R+ × N → R+ satisfying
limε→0 f (ε, k) = 0 for all k ∈ N, such that for every game G and (m, �) strategy
(Aa

x, Bb
y, ρ)which is δ-AC, there exists a 0-AC strategy (Ãa

x, B̃b
y, ρ) for G satisfying

∣∣∣ω∗(((Aa
x, Bb

y, ρ); G
) − ω∗((Ãa

x, B̃b
y, ρ); G

)∣∣∣ ≤ f (δ, m�).

4.2 Device-Independent Randomness Expansion and Weak Cross-Talk

A device-independent randomness expansion (DIRE) protocol is a protocol
which may be used by a classical verifier to certify that a pair of untrusted
devices are producing true randomness. Under the sole assumptions that the
devices do not communicate with each other, and that the verifier has access
to a small initial seed of uniform randomness, the protocol allows for the gen-
eration of much larger quantities of certifiably uniform random bits; hence the
term “randomness expansion”. This conclusion relies only on the assumption
that the two devices do not communicate, and in particular does not require
any limit on the computational power of the devices, as is typically the case in
the study of pseudorandomness. The precise formalization of DIRE protocols is
rather involved, and we direct the interested reader to the flourishing collection
of works on the topic [CK11,PAM10,MS14].

Our definition of MIP∗
ac is directly relevant to the notion of devices with weak

cross-talk introduced in [SPM13] as a model which relaxes the assumption that
the devices must not communicate, leading to protocols that are more robust to
leakage than the traditional model of device-independence. [SPM13] proposes
the use of the QCSDP hierarchy in order to optimize over the set of “weakly
interacting” quantum strategies that they introduce, but no bounds are shown
on the rate of convergence. This is where MIP∗

ac becomes relevant. Our notion of
δ-AC strategies is easily seen to be a relaxation of weak cross-talk, and thus the
analogue of the approach in [SPM13] when performed with a δ-AC constraint
is at least as robust as the weak cross-talk approach. Our rounding scheme for
the QCSDP hierarchy thus provides a specific algorithm and complexity bound
that applies to both δ-AC strategies and strategies with weak cross-talk.
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