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Abstract. We establish a generic form of hardness amplification for
the approximability of constant-depth Boolean circuits by polynomi-
als. Specifically, we show that if a Boolean circuit cannot be pointwise
approximated by low-degree polynomials to within constant error in a
certain one-sided sense, then an OR of disjoint copies of that circuit can-
not be pointwise approximated even with very high error. As our main
application, we show that for every sequence of degrees d(n), there is
an explicit depth-three circuit F : {−1, 1}n → {−1, 1} of polynomial-
size such that any degree-d polynomial cannot pointwise approximate
F to error better than 1 − exp(−Ω̃(nd−3/2)). As a consequence of our
main result, we obtain an exp(−Ω̃(n2/5)) upper bound on the the dis-

crepancy of a function in AC0, and an exp(Ω̃(n2/5)) lower bound on

the threshold weight of AC0, improving over the previous best results of
exp(−Ω(n1/3)) and exp(Ω(n1/3)) respectively.

Our techniques also yield a new lower bound of Ω(n1/2/ log(d−2)/2(n))
on the approximate degree of the AND-OR tree of depth d, which is
tight up to polylogarithmic factors for any constant d, as well as new
bounds for read-once DNF formulas. In turn, these results imply new
lower bounds on the communication and circuit complexity of these
classes, and demonstrate strong limitations on existing PAC learning
algorithms.

1 Introduction

The ε-approximate degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted
˜degε(f), is the minimum degree of a real polynomial that approximates f to error
ε in the �∞ norm. Approximate degree has pervasive applications in theoretical
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computer science. For example, lower bounds on approximate degree underly
many tight lower bounds on quantum query complexity (e.g., [2,3,5,31]), and
have been used to resolve several long-standing open questions in communication
complexity [27]. Meanwhile, upper bounds on approximate degree underly many
of the fastest known learning algorithms, including PAC learning DNF and read-
once formulas [4,14], agnostically learning disjunctions [12], and PAC learning
in the presence of irrelevant information [15,24].

Despite the range and importance of these applications, large gaps remain
in our understanding of approximate degree. The approximate degree of any
symmetric Boolean function has been understood since Paturi’s 1992 paper [22],
but once we move beyond symmetric functions, few general results are known.

In this paper, we perform a careful study of the approximate degree of
constant-depth Boolean circuits. In particular, we establish a generic form of
hardness amplification for the pointwise approximation of small depth circuits by
low-degree polynomials: we show that if a Boolean circuit f cannot be pointwise
approximated to within constant error in a certain one-sided sense by polyno-
mials of a given degree, then the circuit F obtained by taking an OR of disjoint
copies of f cannot be approximated even with error exponentially close to 1.
Notice that if f is computed by a circuit of polynomial size and constant depth,
then so is F .

Our proof extends a recent line of work [8,18,25,33] that seeks to prove
approximate degree lower bounds by constructing explicit dual polynomials,
which are dual solutions to a linear program that captures the approximate
degree of any function. Specifically, we show that given a dual polynomial demon-
strating that f cannot be approximated to within constant error, we can con-
struct a dual polynomial demonstrating that F cannot be approximated even
with error exponentially close to 1.

As the main application of our hardness amplification technique, for any
d > 0 we exhibit an explicit function F : {−1, 1}n → {−1, 1} computed by a
polynomial size circuit of depth three for which any degree-d polynomial can-
not pointwise approximate F to error 1 − exp(−Ω̃(nd−3/2)). We then use this
result to obtain new bounds on two quantities that play central roles in learn-
ing theory, communication complexity, and circuit complexity: discrepancy and
threshold weight. Specifically, we prove a new upper bound of exp(−Ω̃(n2/5)) for
the discrepancy of a function in AC0, and a new lower bound of exp(Ω̃(n2/5)) for
the threshold weight of AC0. As a second application, our hardness amplification
result allows us to resolve, up to polylogarithmic factors, the approximate degree
of AND-OR trees of arbitrary constant depth. Finally, our techniques also yield
new lower bounds for read-once DNF formulas.

2 Hardness Amplification

Recall that the ε-approximate degree of a Boolean function f is the minimum
degree of a real polynomial that pointwise approximates f to error ε. Another
fundamental measure of the complexity of f is its threshold degree, denoted
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deg±(f). The threshold degree of f is the least degree of a real polynomial that
agrees in sign with f at all Boolean inputs.

Central to our results is a measure of the complexity of a Boolean function
that we call one-sided approximate degree. This quantity, which we denote by
˜odegε(f), is an intermediate complexity measure that lies between ε-approximate
degree and threshold degree. Unlike approximate degree and threshold degree,
one-sided approximate degree treats inputs in f−1(1) and inputs in f−1(−1)
asymmetrically.

More specifically, ˜odegε(f) captures the least degree of a one-sided approx-
imation for f . Here, a one-sided approximation p for f is a polynomial that
approximates f to error at most ε at all points x ∈ f−1(1), and satisfies the
threshold condition p(x) ≤ −1 + ε at all points x ∈ f−1(−1). Notice that
˜odegε(f) is always at most ˜degε(f), but can be smaller. Similarly, ˜odegε(f)
is always at least deg±(f), but can be larger.

One-sided approximate degree is the complexity measure that we amplify for
constant-depth circuits: given a depth k circuit f on m variables that has one-
sided approximate degree greater than d, we show how to generically transform
f into a depth k +1 circuit F on t ·m variables such that F cannot be pointwise
approximated by degree d polynomials even to error 1 − 2−t.1

Theorem 1. Suppose f : {−1, 1}m → {−1, 1} has one-sided approximate degree
˜odeg1/2(f) > d. Denote by F : {−1, 1}m·t → {−1, 1} the block-wise composition
ORt(f, . . . , f), where ORt denotes the OR function on t variables. Then F can-
not be pointwise approximated by degree-d polynomials to within error 1−2−t by
degree-d polynomials. That is, the (1 − 2−t)-approximate degree of F is greater
than d.
Remark: Theorem 1 demonstrates that one-sided approximate degree admits
a form of hardness amplification within AC0, which does not generally hold for
the ordinary approximate degree. Indeed, Theorem 1 fails badly if the condition
˜odeg1/2(f) > d is replaced with the weaker condition ˜deg1/2(f) > d (in fact,
f = ORm is a counter-example).

A dual formulation of one-sided approximate degree was previously exploited
by Gavinsky and Sherstov to separate the multi-party communication versions
of NP and co-NP [9], as well as by the current authors [8] and independently by
Sherstov [25] to resolve the approximate degree of the two-level AND-OR tree. In
this paper, we introduce the primal formulation of one-sided approximate degree,
which allows us to express Theorem 1 as a hardness amplification result. We
also argue for the importance of one-sided approximate degree as a complexity
measure in its own right.

Prior Work on Hardness Amplification for Approximate Degree. For
the purposes of this discussion, we informally consider a hardness amplifica-
tion result for approximate degree to be any statement of the following form:
1 Follow-up work by Sherstov [26] has established a lower bound on the threshold
degree of F . Specifically, he has shown that there is some constant c such that
deg±(F ) > min{ct, d}. See Section 6 for further discussion of this result.
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Fix two functions f : {−1, 1}m → {−1, 1} and g : {−1, 1}t → {−1, 1}. Then
the composed function g(f, . . . , f) : {−1, 1}m·t → {−1, 1} is strictly harder to
approximate in the �∞ norm by low-degree polynomials than is the function f .

We think of such a result as establishing that application of the outer function
g to t disjoint copies of f amplifies the hardness of f . Here we consider poly-
nomial degree to be a resource, and “harder to approximate” can refer either
to the amount of resources required for the approximation, to the error of the
approximation, or to a combination of the two.

Two particular kinds of hardness amplification results for approximate degree
have received particular attention. Direct-sum theorems focus on amplifying the
degree required to obtain an approximation, but do not focus on amplifying
the error. For example, a typical direct-sum theorem identifies conditions on f

and g that guarantee that ˜degε(g(f, . . . , f)) ≥ ˜degε(g) · ˜degε(f). In contrast, a
direct-product theorem focuses on amplifying both the error and the minimum
degree required to achieve this error. An XOR lemma is a special case of either
type of theorem where the combining function g is the XOR function. Ideally, an
XOR lemma of the direct-product form establishes that there exists a sufficiently
small constant δ > 0 such that ˜deg1−2−δt(XORt(f, . . . , f)) ≥ t · ˜deg1/3(f). That
is, an XOR lemma establishes that approximating the XOR of t disjoint copies
of f requires a t-fold blowup in degree relative to f , even if one allows error
exponentially close to 1.

O’Donnell and Servedio [21] proved an XOR lemma for threshold degree,
establishing that XORt(f, . . . , f) has threshold degree t times the threshold
degree of f . In later work, Sherstov [33] proved a direct sum result for approx-
imate degree that holds whenever the combining function g has low block-
sensitivity. His techniques also capture O’Donnell and Servedio’s XOR lemma
for threshold degree as a special case. In [31], Sherstov proved a number of hard-
ness amplification results for approximate degree. Most notably, he proved an
optimal XOR lemma, as well as a direct-sum theorem that holds whenever the
combining function has close to maximal approximate degree (i.e., approximate
degree Ω(t)). Sherstov used his XOR lemma to prove direct product theorems for
quantum query complexity, and in subsequent work [32], to show direct product
theorems for the multiparty communication of set disjointness.

Comparison to Prior Work. In this paper, we are interested in establishing
approximate degree lower bounds for constant-depth circuits over the basis
{AND,OR,NOT}. For this purpose, it is essential to consider combining func-
tions (such as OR, see Theorem 1) that are themselves in AC0, ruling out the use
of XOR as a combining function. Our hardness amplification result (Theorem
1) is orthogonal to direct-sum theorems: direct-sum theorems focus on amplify-
ing degree but not error, while Theorem 1 focuses on amplifying error but not
degree. Curiously, Theorem 1 is nonetheless a critical ingredient in our proof of
a direct-sum type theorem for AND-OR trees of constant depth (Theorem 3).

Proof Idea. As discussed in the introduction, our proof of Theorem 1 relies on a
dual characterization of one-sided approximate degree (see the full version of this
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work). Specifically, for any m-variate Boolean function f satisfying ˜odeg1/2(f) >
d, there exists a dual object ψ : {−1, 1}m → R that witnesses this fact — we
refer to ψ as a “dual polynomial” for f . The dual polynomial ψ satisfies three
important properties: (1) ψ has high correlation with f , (2) ψ has zero correlation
with all polynomials of degree at most d, and (3) ψ(x) agrees in sign with f(x)
for all x ∈ f−1(−1). We refer to the second property by saying ψ has pure high
degree d, and we refer to the third property by saying that ψ has one-sided error.

Our proof proceeds by taking a dual witness ψ to the high one-sided approxi-
mate degree of f , and a certain dual witness Ψ for the function ORt, and combin-
ing them to obtain a dual witness ζ for the fact that ˜deg1−2−t(ORt(f, . . . , f)) >
d. Our analysis of the combined dual witness crucially exploits two properties:
first, that ψ has one-sided error and second, that the vector whose entries are
all equal to −1 has very large (in fact, maximal) Hamming distance from the
unique input in OR−1

t (1).
Our method of combining the two dual witnesses was first introduced by

Sherstov [33, Theorem 3.3] and independently by Lee [18]. This method was
also used by the present authors in [8] to resolve the approximate degree of the
two-level AND-OR tree, and by Sherstov [31] to prove direct sum and direct
product theorems for polynomial approximation. However, as discussed above,
prior work used this method of combining dual witnesses exclusively to amplify
the degree in the resulting lower bound; in contrast, we use the combining method
in the proof of Theorem 1 to amplify the error in the resulting lower bound.

From a technical perspective, the primary novelty in the proof of Theorem
1 lies in our choice of an appropriate (and simple) dual witness Ψ for ORt,
and the subsequent analysis of the correlation of the combined witness ζ with
ORt(f, . . . , f). By our choice of Ψ , we are able to show that ζ has correlation
with ORt(f, . . . , f) that is exponentially close to 1, yielding a lower bound even
on the degree of approximations with very high error.

3 Lower Bounds For AC0

3.1 A New One-Sided Approximate Degree Lower Bound for AC0

Our ultimate goal is to use Theorem 1 to construct a function F in AC0 that
is hard to approximate by low-degree polynomials even with error exponentially
close to 1. However, in order to apply Theorem 1, we must first identify an AC0

function f such that ˜odeg1/2(f) is large.
To this end, we identify fairly general conditions guaranteeing that the one-

sided approximate degree of a function is equal to its approximate degree, up
to a logarithmic factor. To express our result, let [N ] = {1, . . . , N}, and let
m,N,R be a triple of positive integers such that R ≥ N , and m = N · log2 R.
In most cases, we will take R = N . We specifically consider Boolean functions f
on {−1, 1}m that interpret their input x as the values of a function gx mapping
[N ] → [R]. That is, we break x up into N blocks each of length log2 R, and
regard each block xi as the binary representation of gx(i). Hence, we think of
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f as computing some property φf of functions gx : [N ] → [R]. We say that a
property φ is symmetric if for all g : [N ] → [R], all permutations σ on [R], and
all permutations π on [N ], it holds that φ(g) = φ(σ ◦ g ◦ π).

Theorem 2. Let f : {−1, 1}m → {−1, 1} be a Boolean function corresponding
to a symmetric property φf of functions gx : [N ] → [R]. Suppose that for every
pair x, y ∈ f−1(−1), there is a pair of permutations σ on [R] and π on [N ] such
that gx = σ ◦ gy ◦ π. Then ˜odegε(f) ≥ 1

log2 R · ˜degε(f) for all ε > 0.

Proof Idea. It is enough to show that any one-sided ε-approximation p to f
can be transformed into an actual ε-approximation r to f in a manner that
does not increase the degree by too much (i.e., in a manner guaranteeing that
deg(r) ≤ (log2 R) deg(p)).

Our transformation from p to r consists of two steps. In the first step, we
turn p into a “symmetric” polynomial psym(x) := Ey∼x[p(y)] where y ∼ x if
gy = σ ◦ gx ◦ π for some permutations σ on [R] and π on [N ]. It follows from
work of Ambainis [3] that the map p �→ psym increases the degree of p by a
factor of at most log2 R. In the second step, we argue that there is an affine
transformation r of psym that is an actual ε-approximation to f , completing the
construction.

The existence of the affine transformation r of psym follows from two obser-
vations: (1) if p is a one-sided approximation for f , then so is psym (this holds
because φf is symmetric), and (2) psym takes on a constant value v on f−1(−1),
i.e., psym(x) = v for all x ∈ f−1(−1) (this holds because x ∼ y for every pair of
inputs x, y ∈ f−1(−1)). Thus even if psym poorly approximates f on f−1(−1),
we can still obtain a good approximation r by applying an affine transformation
to the range of psym that maps v to −1 and moves all values closer to 1.

In our primary application of Theorem 2, we let f : {−1, 1}m → {−1, 1} be
the Element Distinctness function. Aaronson and Shi [2] showed that the
approximate degree of Element Distinctness is Ω((m/ log m)2/3). Element
Distinctness is computed by a CNF of polynomial size, and Aaronson and
Shi’s result remains essentially the best-known lower bound for the approximate
degree of a function in AC0. Theorem 2 applies to Element Distinctness,
yielding the following corollary.

Corollary 1. Let f : {−1, 1}m → {−1, 1} denote the Element Distinctness

function. Then ˜odeg(f) = Ω̃(m2/3).
The best known lower bound on the one-sided approximate degree of an AC0

function that followed from prior work was Ω(m1/2) (which holds for the AND
function [9,20]). Section 6 describes some further implications of Theorem 2.

3.2 Accuracy-Degree Tradeoff Lower Bounds for AC0

By Corollary 1, we can apply Theorem 1 to Element Distinctness to obtain
a depth-three Boolean circuit F with t ·m inputs such that ˜degε(F ) = Ω̃(m2/3),
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for ε = 1 − 2−t. By choosing t and m appropriately, we obtain a depth-three
circuit on n = t · m variables of size poly(n) such that any degree-d polynomial
cannot pointwise approximate F to error better than 1 − exp(−Ω̃(nd−3/2)).

Corollary 2. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n →
{−1, 1} of size poly(n) such that any degree-d polynomial cannot pointwise
approximate F to error better than 1 − exp(−Ω̃(nd−3/2)). In particular, there
is a depth-3 circuit F such that any polynomial of degree at most n2/5 cannot
pointwise approximate F to error better than 1 − exp(−Ω̃(n2/5)).

3.3 Discrepancy Upper Bound

Discrepancy is a central quantity in communication complexity and circuit com-
plexity. For instance, upper bounds on the discrepancy of a function f imme-
diately yield lower bounds on the cost of small-bias communication protocols
for computing f (The full version of this work has details). The first exponen-
tially small discrepancy upper bounds for AC0 were proved by Burhman et al.
[7] and Sherstov [29,30], who exhibited constant-depth circuits with discrepancy
exp(−Ω(n1/3)). We improve the best-known upper bound to exp(−Ω̃(n2/5)).

Table 1. Comparison of our new discrepancy bound for AC0 to prior work. The circuit
depth column lists the depth of the circuit used to exhibit the bound.

Reference Discrepancy Bound Circuit Depth

Sherstov [30] exp(−Ω(n1/5)) 3

Buhrman et al. [7] exp(−Ω(n1/3)) 3

Sherstov [29] exp(−Ω(n1/3)) 3

This work exp(−Ω̃(n2/5)) 4

Our result relies on a powerful technique developed by Sherstov [29], known as
the pattern-matrix method. This technique allows one to automatically translate
lower bounds on the ε-approximate degree of a Boolean function F into upper
bounds on the discrepancy of a related function F ′ as long as ε is exponentially
close to one. By applying the pattern-matrix method to Corollary 2, we obtain
the following result.

Corollary 3. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} with
discrepancy exp(−Ω̃(n2/5)).

3.4 Threshold Weight Lower Bound

A polynomial threshold function (PTF) for a Boolean function f is a multilinear
polynomial p with integer coefficients that agrees in sign with f on all Boolean
inputs. The weight of an n-variate polynomial p is the sum of the absolute
value of its coefficients. The degree-d threshold weight of a Boolean function
f : {−1, 1}n → {−1, 1}, denoted W (f, d), refers to the least weight of a degree-d
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PTF for f . We let W (f) denote the quantity W (f, n), i.e., the least weight of any
threshold function for f regardless of its degree. As discussed in the full version
of this work, threshold weight has important applications in learning theory.

Threshold weight is closely related to ε-approximate degree when ε is very
close to 1. This allows us to translate Corollary 2 into a lower bound on the
degree-d threshold weight of AC0.

Corollary 4. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n →
{−1, 1} of size poly(n) such that W (F, d) ≥ exp(Ω̃(nd−3/2)). In particular,
W (F, n2/5) = exp(Ω̃(n2/5)).

A result of Krause [16] allows us to extend our new degree-d threshold weight
lower bound for F into a degree independent threshold weight lower bound for a
related function F ′. The previous best lower bound on the threshold weight of
AC0 was exp(Ω(n1/3)), due to Krause and Pudlák [17].

Corollary 5. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} sat-
isfying W (F ′) = exp(Ω̃(n2/5)).

Moreover, while the threshold weight bound of Corollary 5 is stated for
polynomial threshold functions over {−1, 1}n, we show that the same thresh-
old weight lower bound also holds for polynomials over {0, 1}n.

4 Approximate Degree Lower Bounds for AND-OR Trees

The d-level AND-OR tree on n variables is a function described by a read-once
circuit of depth d consisting of alternating layers of AND gates and OR gates. We
assume for simplicity that all gates have fan-in n1/d. For example, the two-level
AND-OR tree is a read-once CNF in which all gates have fan-in n1/2.

Until recently, the approximate degree of AND-OR trees of depth two or
greater had resisted characterization, despite 19 years of attention [3,8,10,20,
25,33,34]. The case of of depth two was reposed as a challenge problem by
Aaronson in 2008 [1], as it captured the limitations of existing lower bound
techniques. This case was resolved last year by the current authors [8], and
independently by Sherstov [25], who proved a lower bound of Ω(

√
n), matching

an upper bound of Høyer, Mosca, and de Wolf [10]. However, the case of depth
three or greater remained open. To our knowledge, the best known lower bound
for d ≥ 3 was Ω(n1/4+1/2d), which follows by combining the depth-two lower
bound [8,25] with an earlier direct-sum theorem of Sherstov [33, Theorem 3.1].

By combining the techniques of our earlier work [8] with our hardness amplifi-
cation result (Theorem 1), we improve this lower bound to Ω(n1/2/ log(d−2)/2(n))
for any constant d ≥ 2. A line of work on quantum query algorithms [4,10,23]
established an upper bound of O(n1/2) for AND-OR trees of any depth, demon-
strating that our result is optimal up to polylogarithmic factors.

Theorem 3. Let AND-ORd,n denote the d-level AND-OR tree on n variables.
Then ˜deg(AND-ORd,n) = Ω(n1/2/ log(d−2)/2 n) for any constant d ≥ 2.
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Proof Idea. To introduce our proof technique, we first describe the method used
in [8] to construct an optimal dual polynomial in the case d = 2, and we identify
why this method breaks down when trying to extend to the case d = 3. We then
explain how to use our hardness amplification result (Theorem 1) to construct
a different dual polynomial that does extend to the case d = 3.

Let M denote the fan-in of all gates in OR-AND2,M2 . In our earlier work [8],
we constructed a dual polynomial for OR-AND2,M2 as follows. It is known that
there is a dual polynomial γ1 witnessing the fact that ˜odeg(ANDM ) = Ω(M1/2),
and a dual polynomial γ2 witnessing the fact that ˜deg(ORM ) = Ω(M1/2). We
then combined the dual witnesses γ1 and γ2, using the same “combining” tech-
nique as in the proof of Theorem 1, to obtain a dual witness γ3 : {−1, 1}M2 → R

for the high approximate degree of OR-AND2,M2 .
Recall that we say a dual witness has pure high degree d if it has zero corre-

lation with every polynomial of degree at most d. It followed from earlier work
[33] that γ3 has pure high degree equal to the product of the pure high degrees
of γ1 and γ2, yielding an Ω(M) lower bound on the pure high degree of γ3. The
new ingredient of the analysis in [8] was to use the one-sided error of the “inner”
dual witness γ1 to argue that γ3 also had good correlation with OR-AND2,M2 .

Extending to Depth Three. Let M = n1/3 denote the fan-in of all
gates in AND-OR3,n. To construct a dual witness for AND-OR3,n = ANDM

(OR-AND2,M2 , . . . ,OR-AND2,M2), it is natural to try the following approach.
Let γ4 be a dual polynomial witnessing the fact that the approximate degree of
ANDM = Ω(

√
M). Then we can combine γ3 and γ4 as above to obtain a dual

function γ5.
The difficulty in establishing that γ5 is a dual witness to the high approximate

degree of AND-OR3,n is in showing that γ5 has good correlation with AND-OR3.
In our earlier work, we showed γ3 has large correlation with OR-AND2,n by
exploiting the fact that the inner dual witness γ1 had one-sided error, i.e., γ1(y)
agrees in sign with ANDM whenever y ∈ AND−1

M (−1) . However, γ3 itself does
not satisfy an analogous property: there are inputs xi ∈ OR-AND−1

2,M2(−1) such
that γ3(xi) > 0, and there are inputs xi ∈ OR-AND−1

2,M2(1) such that γ3(xi) < 0.
To circumvent this issue, we use a different inner dual witness γ′

3 in place of
γ3. Our construction of γ′

3 utilizes our hardness amplification analysis to achieve
the following: while γ′

3 has error “on both sides”, the error from the “wrong
side” is very small. The hardness amplification step causes γ′

3 to have pure high
degree that is lower than that of the dual witness γ3 constructed in [8] by a√

log n factor. However, the hardness amplification step permits us to prove the
desired lower bound on the correlation of γ5 with AND-OR3,n. The proof for the
general case, which is quite technical, appears in the full version of this work.

5 Lower Bounds for Read-Once DNFs and CNFs

Our techniques also yield new lower bounds on the approximate degree and
degree-d threshold weight of read-once DNF and CNF formulas. Before stating
our results, we discuss relevant prior work.
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In their seminal work on perceptrons, Minsky and Papert exhibited a read-
once DNF f : {−1, 1}n → {−1, 1} with threshold degree Ω(n1/3) [19]. That is, a
real polynomial requires degree Ω(n1/3) just to agree with f in sign. However,
to our knowledge no non-trivial lower bound on the degree-d threshold weight
of read-once DNFs was known for any d = ω(n1/3).

In an influential result, Beigel [6] exhibited a polynomial-size (read-many)
DNF called ODD-MAX-BIT satisfying the following: there is some constant
δ > 0 such that ˜deg1−2−δn/d2 (ODD-MAX-BIT) > d, and hence also W (ODD-

MAX-BIT, d) = exp(Ω(n/d2)). Motivated by applications in computational
learning theory, Klivans and Servedio showed that Beigel’s lower bound is essen-
tially tight for d < n1/3 [15]. Very recently, Servedio, Tan, and Thaler showed an
alternative lower bound on the degree-d threshold weight of ODD-MAX-BIT.
Specifically, they showed that W (ODD-MAX-BIT, d) = exp(Ω(

√

n/d)) [24].
The lower bound of Servedio et al. improves over Beigel’s for any d > n1/3, and
is essentially tight in this regime (i.e., when d > n1/3).

While ODD-MAX-BIT is a relatively simple DNF (in fact, it is a decision
list), it is not a read-once DNF. Our results extend the lower bounds of Servedio
et al. and Beigel from decision lists to read-once DNFs and CNFs. In the state-
ment of the results below, we restrict ourselves to DNFs, as the case of CNFs is
entirely analogous.

5.1 Extending Servedio et al.’s Lower Bound to Read-Once DNFs

In order to extend the lower bound of Servedio et al. to read-once DNFs and
CNFs, we extend our hardness amplification techniques from one-sided approxi-
mate degree to a new quantity we call degree-d one-sided non-constant approxi-
mate weight. This quantity captures the least L1 weight (excluding the constant
term) of a polynomial of degree at most d that is a one-sided approximation of
f . We denote the degree-d one-sided approximate weight of a Boolean function
f by W ∗

ε (f, d), where ε is an error parameter. We prove the following analog of
Theorem 1.

Theorem 4. Fix d > 0. Let f : {−1, 1}m → {−1, 1}, and suppose W ∗
3/4(f, d) >

w. Let F : {−1, 1}m·t → {−1, 1} denote the function ORt(f, . . . , f). Then any
degree-d polynomial that approximates F to error 1− 2−t requires weight 2−5tw.

Adapting a proof of Servedio et al., we can show that W ∗
3/4(ANDm, d) ≥

2Ω(m/d). By applying Theorem 4 with f = ANDm, along with standard manip-
ulations, we are able to extend the lower bound of Servedio et al. to read-once
CNFs and DNFs.

Corollary 6. For each d = o(n/ log4 n), there is a read-once DNF F satisfying
W (F, d) = exp(Ω(

√

n/d)).
In particular, there is a read-once DNF that cannot be computed by any

PTF of poly(n) weight, unless the degree is Ω̃(n).
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5.2 Extending Beigel’s Lower Bound to Read-Once DNFs

It is known that ˜odeg(ANDm) = Ω(m1/2). By applying Theorem 1 with f =
ANDm, we obtain the following result.

Corollary 7. There is an (explicit) read-once DNF F : {−1, 1}n → {−1, 1}
with ˜deg1−2−n/d2 (F ) = Ω(d).

We remark that for d < n1/3, Corollary 7 is subsumed by Minsky and
Papert’s seminal result that exhibited a read-once DNF F with threshold degree
Ω(n1/3) [19]. However, for d > n1/3, it is not subsumed by Minsky and Papert’s
result, nor by Corollary 6. Indeed, Corollary 6 yields a lower bound on the
degree-d threshold weight of read-once DNFs, but not a lower bound on the
approximate-degree of read-once DNFs.

6 Discussion

Subsequent Work by Sherstov. In 1969, Minsky and Papert gave a lower
bound of Ω(n1/3) on the threshold degree of an explicit read-once DNF formula.
Klivans and Servedio [14] proved their lower bound to be tight within a loga-
rithmic factor for DNFs of polynomial size, but it remained a well-known open
question to give a threshold degree lower bound of Ω(n1/3+δ) for a function in
AC0; the only progress prior to our work was due to O’Donnell and Servedio
[21], who established an Ω(n1/3 logk n) lower bound for any constant k > 0.

Let f denote the Element Distinctness function on n3/5 variables.
In an earlier version of this work, we conjectured that the function F =
ORn2/5(f, . . . , f) appearing in Corollary 2 in fact satisfies deg±(f) = Ω̃(n2/5),
and observed that this would yield the first polynomial improvement on Minsky
and Papert’s lower bound. Sherstov [26, Theorem 7.1] has recently proved our
conjecture. His proof, short and elegant, extends our dual witness construction
in the proof of Theorem 1 to establish a different form of hardness amplifica-
tion, from one-sided approximate degree to threshold degree. Specifically, he
shows that if a Boolean function f has one-sided approximate degree d, then the
block-wise composition ORt(f, . . . , f) has threshold degree at least min{ct, d}
for some constant c. This result is incomparable to our Theorem 1 when t ≤ d,
but when t 
 d, Sherstov’s result is a substantial strengthening of Theorem 1.

In the same work, Sherstov has also proven a much stronger and more difficult
result: for any k > 2, he gives a read-once formula of depth k with threshold
degree Ω(n(k−1)/(2k−1)). Notice that for any constant δ > 0, this yields an AC0

function with threshold degree Ω(n1/2−δ). This in turn yields an improvement
of our discrepancy upper bound (Corollary 3) for AC0 to exp(−Ω(n1/2−δ)), and
of our threshold weight lower bound (Corollary 5) to exp(Ω(n1/2−δ)).

Subsequent Work by Kanade and Thaler. Existing applications of one-
sided approximate degree [8,9,25,26] have all been of a negative nature (proving
communication or circuit lower bounds, establishing limitations on PAC learning
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algorithms, etc.). Kanade and Thaler [13] have identified a positive (algorithmic)
application of one-sided approximate degree. Specifically, they show that one-
sided approximate degree upper bounds imply fast algorithms in the reliable
agnostic learning framework of Kalai et al. [11]. This framework captures learn-
ing tasks in which one type of error (such as false negative errors) is costlier than
other types. Kanade and Thaler use this result to give the first sub-exponential
time algorithms for distribution-independent reliable learning of several funda-
mental concept classes.

In light of these developments, we are optimistic that the notion of one-sided
approximate degree will continue to enable progress on questions within the
analysis of Boolean functions and computational complexity theory.

Acknowledgments. We are grateful to Sasha Sherstov, Robert Špalek, Li-Yang
Tan, and the anonymous reviewers for valuable feedback on earlier versions of this
manuscript.
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