What Percentage of Programs Halt?

Laurent Bienvenu! ™, Damien Desfontaines?, and Alexander Shen®*

L LIAFA - CNRS and Université Paris 7, Paris, France
laurent.bienvenu@liafa.univ-paris-diderot.fr
2 Google Inc., Zurich, Switzerland
damien@desfontain.es
3 LIRMM - CNRS and Université Montpellier, Montpellier, France
4 On leave from IITP RAS, Moscow, Russia
alexander.shen@lirmm.fr

Abstract. Fix an optimal Turing machine U and for each n consider
the ratio p¥ of the number of halting programs of length at most n by the
total number of such programs. Does this quantity have a limit value? In
this paper, we show that it is not the case, and further characterise the
reals which can be the limsup of such a sequence pY . We also study, for
a given optimal machine U, how hard it is to approximate the domain
of U from the point of view of coarse and generic computability.

1 Introduction

1.1 Motivation

The title of this paper, ‘What percentage of programs halt?’ is intentionally
provocative; obviously, the answer depends on the programming language. To
make this question reasonable, we need to put some restrictions on the program-
ming language (=interpreter). Following the theory of algorithmic information,
we consider “optimal programming languages”. That is, we consider an optimal
Turing machine U (see below for the exact definition) and look, for each n, at the
fraction pU of inputs of length at most n on which U halts (among all inputs of
those lengths). It is well known that the sequence pU is not computable (knowing
the exact values of p¥, one can solve the halting problem). What else can be said
about it? For example, can pU converge to some limit? As we will see, this cannot
happen (Theorem 4). What can then be said about the limit points of p¥ ? They
are Martin-Lof random numbers, even relative to 0’ (Theorem 5). What are the
possible values of limsup p%? All 0’-lower semicomputable 0’-random numbers
(Theorem 6; for liminf similar question remains open).

In the second part of the paper we build on these results to study a related
question: can we somehow approximate the domain of U? That is, can we find
an algorithm that tells us whether U(p) terminates or not, giving the correct
answer for most inputs p? This question may be formalized in different ways.
For most of them, the answer will not depend on the particular choice of optimal
machine, with the notable exception of Theorem 15.
© Springer-Verlag Berlin Heidelberg 2015

M.M. Halldérsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 219-230, 2015.
DOI: 10.1007/978-3-662-47672-7_18

220 L. Bienvenu et al.

All these questions are quite natural and similar results appeared in differ-
ent settings. In 1974 Nancy Lynch [11] considered similar questions for a more
restricted class of machines that are optimal in some effective sense, as defined
by Schnorr [15]. Later the question for some specific universal machine was stud-
ied by Hamkins and Miasnikov who showed [7] that the halting problem can be
approximated in this case. They considered Turing machines with one-sided tape.
(Their result implies that corresponding universal machine is not optimal and
thus not effectively optimal.) The criterion for the domains of optimal machines
(a set is a domain for some optimal machine if and only if it is a computably
enumerable set such that the complexity of the number of strings of length at
most n in this set is n — O(1)) was obtained by Calude, Nies, Staiger, and
Stephan [4]. The recursion-theoretic properties of different versions of approx-
imate computability have been studied by Downey, Jockusch, and Schupp [6].
See also Antti Valmari [16] who provides a survey of some other results, includ-
ing the ones from [14] and [8]. Our goal in this paper is to provide a unified
approach that allows us to give simple proofs of known results (sometimes in a
more general form) and establish some new ones.

1.2 Definitions and Notation

For a set E, by xg we denote the characteristic function of this set. If E is finite,
|E| denotes its cardinality. We write ‘log’ for base 2 logarithms.

We denote by {0,1}* the set of all (finite) binary strings, by {0,1}" the set
of strings of length n and by {0, 1}S™ the set of strings of length at most n. The
length of a string z is denoted by |z|. We denote by {0,1}* the set of infinite
binary sequences. They are also identified with real numbers in [0, 1] in binary
notation; we mention the cases when the non-uniqueness (the same number has
two representations) creates problems.

For a partial computable function f, the domain of f, denoted by dom(f), is
the set of inputs on which f halts. A machine is a partial computable function
from {0,1}* to {0,1}*. An input p of a machine M is sometimes referred to as
a program, and if M (p) = x, we say that p is a description of x (relative to M),
or that x is the output of program p.

By C and K we respectively denote the plain and prefix-free versions of
Kolmogorov complexity. We assume that the reader has some background in
computability theory, Kolmogorov complexity and algorithmic randomness (see,
e.g., [5,10,13,17]).

Definition 1. A machine U is said to be optimal if for every machine M there
is a constant cpy such that whenever M(p) = x, there is a q such that |q| <
Ip| + enmr and U(q) = .

This definition is used to define plain Kolmogorov complexity: if U is optimal,
then Cy(z) = min{|q|: U(q) = «} is the plain Kolmogorov complexity function
(defined up to O(1) additive term).

In the rest of this paper, we assume that U is a fixed optimal Turing machine.
Let H,, be the number of programs of length at most n on which U halts, and

What Percentage of Programs Halt? 221

let pU be the fraction of programs of length at most n on which U halts among
all programs of lengths at most n. For simplicity, we define p! = H,,/2"T! even
though technically there are only 2"*! — 1 programs of length at most n. Since
we are only concerned in the asymptotic behaviour, this does not matter (to
make things completely formal we could also add an extra program of length 0).

2 Counting How Many Programs Halt

2.1 The Complexity of H,,
The following easy lemma is well-known (see for example [17]).
Lemma 2. For alln, C(Hy,|n) = C(H,) = n with O(1)-precision.

Proof. Indeed, C(Hy|n) < C(H,) < n with O(1)-precision since H,, < 2"+1.
Conversely, if we have a program ¢ that maps n to H, and is d bits shorter
than n, we may take O(logd)-bit self-delimiting description of d and append g;
the resulting string allows us to reconstruct d, then ¢, then n = |q| + d, then
H, = g(n). Then we find all strings of length at most n where U is defined, and
a string z that has no description of size at most n. This gives C(z) > n and
C(z) < O(logd) +n —d+ O(1) at the same time, so d = O(1). O

The next lemma extends this result to approximations for H,.

Lemma 3. Let N be an integer such that |[N — H,| < 2¥. Then C(Nn) >
n—k— K(kln) — O(1) and K(N|n) 2n—k—O(1).

Proof. Let N be an approximation of H,, with error at most 2¥, and let ¢ be the
program of length C'(N|n) that maps n to N. We can reconstruct H,, given n, t
and the difference N — H,, (first we reconstruct N and then H,). So C(Hy|n) <
C(t,N—Hy|n). The pair (t, N — H,,) can be described by appending ¢ to the self-
delimiting description of N — H,, (the latter requires k+ K (k|n) bits), or we could
use self-delimiting program ¢ and append plain description of N — H,, (the latter
requires k+O(1) bits).! This gives respectively n < C(N|n)+k+ K (k|n)+0O(1)
and n < K(N|n) + k+ O(1). O

2.2 Limit Points of p¥

Lemma 3 can be used to get some information about p¥. Assume that r, is
some computable sequence of rational numbers. How close can it approximate
pY? The complexity K (r,|n) is O(1), so Lemma 3 gives a constant upper bound
for n —k, so k = n— O(1), which means an absolute error for H,, of size at least
£2(2"), so |pn, — 1y is separated from 0 for sufficiently large n.

In particular, taking r, = 0 or 7, = 1, we see that ¢ < p!/ < 1 — ¢ for some
€ > 0 and for all sufficiently large n.

! In other words, we use the inequality C(u,v) < K(u) + C(v) in two different ways.

222 L. Bienvenu et al.

We will use this lemma to show that p7 has no limit. Note first that it is
very easy to construct a particular optimal machine V such that pY does not
converge. (For example, it is easy to construct an optimal machine V' defined only
on inputs of even length, then pJ, and p¥, , differ by factor 2: the numerator
is the same and the denominators differ by factor 2.) The next theorem shows
that pU never converges, no matter which optimal machine we choose.

Theorem 4. The sequence (p¥)nen does not converge.

Proof. Consider a computable sequence r,, that is everywhere dense in [0, 1] (say,
enumerates all rational numbers in [0, 1]). If pU has some limit p, then p¥ is close
to p for all sufficiently large n while r,, is close to p for infinitely many n, so the
difference r,, — p% cannot be separated from 0. O

Now that we know that the sequence pU does not converge, one can study
its limit points. The next theorem shows that any limit point of the sequence
must be quite complex, indeed, Martin-Lof random relative to 0.

Theorem 5. All limit points of (pY)nen are Martin-Lif random relative to 0'.

Proof. For this proof we need to use a theorem by Miller [12] (see also [1] for a
simple proof): a real number (a bit sequence) = € [0, 1] is Martin-Lof random
relative to 0’ if and only if there is a constant ¢ such that for every prefix o of
x, there is a finite string 7 extending o such that C(7) > |7| — c.

Suppose x is a limit point of pU. First note that x cannot be a rational
number (otherwise the constant sequence 7, = r approximates p7), so = has
a unique binary representation. Let o be a prefix of x and let k£ be the length
of o. Split [0,1] into 2* equal intervals of size 27%. Then x is strictly inside
one of these intervals (this interval consists of all binary extensions of o). Since
x is a limit point, some pY also belongs to this interval. Recall that pU is a
binary fraction H,/2"*! (here it is important that we use this denominator,
not 2"t — 1; of course, this does not change the limit points). Therefore, H,
(considered as a string of length n + 1 with leading zeros) is an extension of
o, and C(Hy,) > |H,| — O(1) due to Lemma 2, so it remains to use Miller’s
result. O

We do not know whether the converse holds, i.e., whether any real that is
Martin-Léf random relative to 0’ is a limit point of some sequence pY for some
optimal U. However, we can give a full characterisation of the reals that are
lim sup’s of those sequences.

Theorem 6. The limsup of (p¥)nen is upper semicomputable relative to 0’
(and Martin-Lof random relative to 0" by the previous theorem). Moreover, the
converse holds: every real in [0,1] that is upper semicomputable relatively to 0
and Martin-Lif random relative to 0" is the limsup of pY for some optimal
machine V.

What Percentage of Programs Halt? 223

Proof. Let us consider first a simpler question. Assume that X is an arbitrary
computably enumerable set, i.e., the domain of some machine, not necessarily
an optimal one; x, is the number of strings of length n in X, and X, is the
number of strings of length at most n in X (so X,, = xo + ...+ x,). Consider
the upper density of X, i.e., limsup X,,/2""1. Which reals can appear as upper
densities of computably enumerable sets?

Lemma 7. A real number x in [0,1] is the upper density of some computably
enumerable set X if and only if x is upper semicomputable relative to 0'.

Proof. In one direction: X,,/2" is a uniformly lower semicomputable sequence
of reals, and one can show (see, e.g., [6]) that lim sup of such a sequence is upper
semicomputable relative to 0.

Reverse direction: assume that x is upper semicomputable relative to 0’.
It is known that z can be represented as limsupk, for some computable
sequence k, of rational numbers (see [6] or [17]). Then =z = lim, K,, where
K,, = sup(ky, knt1,...) form a uniformly lower semicomputable sequence. We
may assume without loss of generality that K, € [0,1] (since the limit is in [0, 1])
and that K, are rational numbers with denominator 2™ (by rounding; note that
the resulting sequence K, may not be computable, only lower semicomputable).
Then we consider a computably enumerable set X that contains exactly K,
strings of length n (here we use that K,, are lower semicomputable). It is easy
to see that the upper density of X is x; in fact, the density (the limit, not only
lim sup) exists and is equal to z, since the fraction of n-bit strings in X converges
to x as n — oo. O

It remains to show that for x that are not only upper semicomputable relative
to 0’ but also Martin-Lof random relative to 0’, the set X can be made a domain
of an optimal machine. Our next step is the following simple observation.

Lemma 8. If some real x € [0,1] is the upper density of the domain of some
optimal machine, the same is true for x/2 and (1 + z)/2.

(In terms of binary representation x/2 is Oz, and (1 + z)/2 is 1z.)

Proof. For x/2 we just “shift” the domain of the optimal machine by adding
leading 0 to all the arguments. For (1 4 z)/2 we do the same and also add all
strings starting with 1 to the domain (with arbitrary values, e.g., they all can
be mapped to an empty string). In both cases the machine remains optimal, the
complexity increases only by 1. O

Deleting the first bit preserves randomness, so we may assume without loss
of generality that = (that is random and upper semicomputable relative to Q) is
smaller than 1/2 (starts with 0), and then apply Lemma 8 to add leading ones.

Now we are ready to use another known result: every random upper semicom-
putable x is Solovay complete among upper semicomputable reals (all properties
are considered relative to 0'); according to one of the equivalent definitions of
Solovay completeness, this means that for every other upper semicomputable

224 L. Bienvenu et al.

(relative to 0’) y and for large enough N there exists another upper semicom-
putable (relative to 0’) z such that © = y/N + z. This result combines the
work of Calude et al. [3] and Kucera-Slaman [9] (see [2] for a simplified proof).
Technically these papers consider lower semicomputable reals instead of upper
semicomputable ones. However, an upper semicomputable real is just the oppo-
site of a lower semicomputable real, randomness is stable under sign change,
and Solovay reducibility, although often restricted to numbers in [0, 1], extends
naturally to all real numbers (again, see [2]), so the result also holds for upper
semicomputable reals. Also, we need a relativized version of their result to 0’;
as usual, relativization is straightforward.

So let us assume that x € (0,1/2) and = = y/2% + 2 where y is the upper
density for some optimal machine U and z is upper semicomputable relative
to 0’. (The large denominator N is chosen to be a power of 2.) Now we combine
two tricks used for Lemmas 7 and 8. Namely, we apply Lemma 7 to 2z (note
that z < 1/2), and then add leading 1’s to all the strings in the corresponding
set. This gives us density z while using only right half of the binary tree (strings
that start with 1). Then we add d zeros to all strings in the domain of U as we
did when proving Lemma 8; this gives us density y/2% using only left half of the
binary tree (actually, a small part of it, if d is large). Then we combine both
parts and get an optimal machine (since the left part is optimal) with upper
density y/2% + z as required. (Note that in general limsup is not additive, but
in our case we have not only lim sup, but limit in one of the parts, so additivity
holds.) O

3 Approximating the Halting Problem

3.1 Generic and Coarse Computability

Instead of just counting the terminating programs of bounded length, one can
also look at a related question: is there an algorithm which, given p, predicts
whether or not p € dom(U), and is right “most of the time”? This is a rather
informal question; to make it formal we have to specify what we mean by ‘pre-
dict’, and ‘most of the time’. There are several ways to do this, and two paradigms
in particular have received a lot of attention in the recent literature, the so-called
coarse computability and generic computability. For both of them, “being right
most of the time” is understood as “being right on a set of density 1”7. (Recall
that the upper density p(A) of a set A C {0,1}* is limsup,, |[AN {0, 1}S7|/27+L,
the lower density p(A) is liminf, |A N {0,1}S"|/27*1, and when the two are
equal, their common value is called the density of A. Sometimes the density is
defined for sets of natural numbers and all the initial segments are considered,
not only powers of 2, but for density 1 this does not matter.)

The difference between coarse computability and generic computability lies
in the prediction model. In coarse computability, the predictor is a total com-
putable function which given an input p € {0,1}* should always return 0 or 1
(meaning “p ¢ dom(U)” and “p € dom(U)” respectively), but is allowed to be
incorrect sometimes, as long as the set of errors has density zero. In the generic

What Percentage of Programs Halt? 225

computability model, the predictor function is still 0/1-valued, but is allowed to
be partial as long as its domain has density 1, and whenever a 0/1-prediction is
made, it must be correct. Formally, we have the following definitions.

Definition 9. A set A C {0,1}* is coarsely computable if there exists a total
computable function f : {0,1}* — {0,1} such that the set {p | f(p) = xa(p)} has
density 1. A set A C {0,1}* is generically computable if there exists a partial
computable function f : {0,1}* — {0,1} such that dom(f) has density 1 and

f(p) =xa(p) for all p € dom f.

These two notions are incomparable: a computably enumerable set can be
coarsely computable but not generically computable and vice-versa (see [6]).
The initial informal question we started with can now be precisely formulated:
if U is an optimal machine, can dom(U) be coarsely computable? generically
computable? The answer is no, even if we allow the approximating function f
to be both non-total and sometimes wrong — still requiring that it is correct
for most inputs. Moreover, f has 2(1) fraction of errors among strings of length
at most n, for all sufficiently large n, not only for infinitely many n (as it is
needed to show that f is not coarsely/generically computable). Similar results
were obtained in a slightly different setting in [14]; we provide a simple argument
that requires only optimality and covers both generic and coarse computability.

Theorem 10. For every partial computable function f : {0,1}* — {0,1} there
exists some € > 0 so that the fraction of strings x of size at most n where
f s undefined or gives a wrong answer (f(z) # Xdom v(x)) exceeds € for all
sufficiently large n.

Proof. We repeat the proof of Lemma 3. Knowing n and some bound 2"~ for
the number of errors (of both types: f is undefined or the value is wrong) that
f makes for strings of length at most n, we wait until f becomes defined on all
strings of those lengths except for 2"~ many. Then we count the number of
positive answers; it differs from H, by at most O(2"~¢). The difference can be
specified by n—d+O(1) bits, so the complexity C(H,,|n) is bounded by K (d|n)+
(n — d) + O(1), where O(1)-constant depends on f. The bound C(Hpln) >
n — O(1) then implies that d — K(d|n) < O(1), so d = O(1). This provides the
required bound 2-9M for the fraction of errors for all large enough n. O

3.2 Allowing a Small Density of Errors and ‘Infinitely
Often’-Success

The constant ¢ in Theorem 10 may depend on the predictor f. Can we prove a
stronger result where the same ¢ is used for all predictors? It is indeed possible
if we only want the predictor to have a lot of errors for infinitely many lengths,
not for all sufficiently large ones. The result of this type was obtained in [8];
we provide a simple proof of its version for arbitrary optimal machines. More
precisely, let us consider the following definition (which makes sense when « is
close to 1).

226 L. Bienvenu et al.

Definition 11. Let o € [0,1]. A set A C {0,1}* is a-coarsely computable if
there exists a total computable function f: {0,1}* — {0,1} such that the set {p |
f(p) = xa(p)} has lower density at least . A set A C {0,1}* is a-generically
computable if there exists a partial computable function f : {0,1}* — {0,1} such
that dom(f) has lower density at least o and f(p) = xa(p) for all p € dom(f).

Although we saw that there was no implication between being generically
computable and coarsely computable, there is such a link in the quantified set-
ting. Namely, if a set is a-generically computable, it is §-coarsely computable
for any § < a. Indeed, consider some rational threshold r between 3 and . We
know that for infinitely many lengths the fraction of answers provided by generic
predictor f, exceeds r. These lengths can be ultimately discovered (by waiting
until the fraction exceeds r). Let us consider a fast growing computable sequence
that contains only these lengths (not necessarily all of them). For lengths in
this sequence we know r-fraction of correct answers and give arbitrary answers
for the rest. (There is a small technical problem since these answers could be
incompatible with the answers chosen previously, for smaller lengths. But if the
lengths in the sequence grow fast enough, this small change is compensated by
the difference between (and r.)

Theorem 12. There exists o < 1 such that dom(U) is neither a-coarsely com-
putable nor a-generically computable.

Proof. This result, like Theorem 10, remains true even if we allow errors of both
types (as before), and the proof is similar. Proving Theorem 10, we noted that
C(Hypln) < K(d|n) + (n — d) + O(1), if some (fixed) algorithm f has fraction
of errors at most 2% on strings of length at most n. Here the constant in
O(1) depends on f. We also can treat f as a parameter; the same argument
gives then C(H,|n) < K(d|n) + (n — d) + K(f|n) + O(1), where K(f|n) is the
prefix conditional complexity of an algorithm computing f, given n. Now O(1)
is the same for all f. It remains to note that for every computable f there are
infinitely many n such that K(f|n) = O(1), where the constant does not depend
on f (or n). For example, we may consider n whose binary representation starts
with self-delimited encoding of the program for f. The rest of proof remains the
same, and we get the same ¢ for all f (but only for n that make f simple). O

The next natural question is whether we can combine both results and beat
each predictor for all sufficiently large lengths, still using the same ¢ for all
predictors. The following definition formalizes this question; we use dual notions
where lower density is replaced by upper density (and “i.0.” stands for “infinitely
often”).

Definition 13. Let a € [0,1]. A set A C {0,1}* is a-i.0.-coarsely computable
if there exists a total computable function f : {0,1}* — {0,1} such that the set
{p| f(p) = xa(p)} has an upper density of at least . A set A C {0,1}* is a-i.0.-
generically computable if there exists a partial computable function f : {0,1}* —
{0,1} such that dom(f) has an upper density of at least a and f(p) = xa(p) for
all p € dom(f).

What Percentage of Programs Halt? 227

Now the situation changes.
Theorem 14. For any a < 1, dom(U) is a-i.0.-coarsely computable.

Note however that dom(U) is never 1-i.0.-computable due to Theorem 10.

Proof sketch. The proof is similar to the argument above (that relates generic
and coarse computations). Consider the value p = limsup p¥, and consider some
rational number r that is smaller than p but very close to it (the difference
is less that 1 — «). There are infinitely many lengths for which the fraction
of terminating computations exceeds r, and these lengths can be discovered
ultimately, so we can consider a computable fast increasing sequence containing
only those “good” lengths (not necessarily all of them). For each length in this
sequence, we run U until we get r-fraction of terminating programs, and use
the results for coarse prediction. The positive answers are guaranteed to be
correct, while the negative answers may be incorrect. But the fraction of incorrect
answers ultimately becomes less than 1 — «, since for large n the values pU can
only slightly exceed p (and therefore). Again we should be careful enough to
consider a fast growing sequence of lengths, so that small lengths do not interfere
with large ones. O

This argument provides i.o.-coarse computability but not i.o.-generic com-
putability. In fact, the latter may depend on the choice of the optimal machine
(the rare situation we mentioned in the introduction).

Theorem 15. There exists an optimal machine Uy such that for any o < 1 the
set dom(Uy) is a-i.o.-generically computable. But there also exists an optimal
machine Uy such that dom(Us) is not a-i.o.-generically computable for some
a < 1.

The second statement appeared (in a bit different setting) in [11].

Proof sketch. In fact, we can use any “left-total” optimal machine as U;. A
machine is called left-total if for each n it is defined on some initial segment of
{0, 1}" in lexicographical order. (Any other computable ordering on {0, 1}"™ will
work.) In other words, if such a machine is defined on some string, it is also
defined on all preceding strings of the same length.

It is easy to construct a left-total optimal machine U; by transforming a
given optimal machine U into a total one: when a new description of length n
is discovered for U, we add to U; a description of the same object using the
lexicographically first string not used earlier.

Now we need to show that for a left-total machine U its domain dom(U;)
is a-i.o.-generically computable. The idea is simple: for the left-total machine
knowing the number of n-bits strings in its domain determines what are these
strings. And if we know this number with some precision, we can guarantee
both the positive and negative answers except for some interval in the middle
(its length is the difference between the upper and lower bounds). So we use the
same trick as before, but for strings of the same length. Let us see how this can
be done.

228 L. Bienvenu et al.

Let pl, be the number of strings of length n in the domain of Uy, and let
p' = limsup p),. Fix some rational threshold that is smaller than p’ but very
close to it. If it is given to us as an advice, together with the position after
which p!, exceed p’ only by a very small margin, we can effectively find lengths
where we can generically compute U; with a small fraction of omissions. Again
we can form a computable increasing sequence of lengths with this property, and
construct a generic predictor that is quite precise for these lengths and undefined
on all other lengths (to avoid false answers for the cases where we do not have
enough information).

However, this is not enough for us, since in our definition the fraction of
prediction failures is calculated in the set of all strings of length at most n, and
even if we know everything for n-bit strings, this covers only half of the strings
in question. So in this way we cannot make the error less than 1/2.

But we can repeat the trick: consider the lengths that just precede the lengths
in the subsequence. For them we have no information yet, but we may consider
corresponding p/, and guess the limsup for this subsequence. Then, using some
rational threshold close to this limsup, and the position after which p/, exceed
this lim sup only by a small margin, we can get a (computable increasing) sub-
sequence of lengths where we have guaranteed good approximations for two
subsequent lengths, thus reducing the error from 1/2 to 1/4 (approximately).

Now we can repeat the trick finitely many times and get arbitrary small
error. Note that for this we need only finitely many bits of advice, so this still
gives a partial computable predictor. The first statement is proven.

For the second part we use the argument provided by Lynch [11]. We can take
the standard universal machine as Us: let U3(0°1p) = M.(p) where M, is eth
machine in a standard enumeration. It remains to show that the domain of U,
is not a-i.o.-generically computable for some a < 1. It is because some special
computably enumerable set is embedded into this domain with fixed density.
Here are the details.

Post has shown that there exist simple sets, i.e., computably enumerable
sets whose complement is infinite but does not contain an infinite enumerable
subset. It is easy to construct a very sparse simple set S (either by adapting
the original Post’s construction or taking the set of strings whose Kolmogorov
complexity is very small compared to their length). Such a set can be a-i.o.-
generically computable only for very small a. Indeed, our predictor gives only
finitely many negative answers (otherwise we get an enumerable infinite subset
of the complement). Also it can give positive answers only for a very sparse set
(in all lengths), since the entire set S is sparse (and positive answers form a
subset).

It remains to take machine M, whose domain is .S, and note that the strings
of the form 0¢1p form a fixed-density subset in the set of all strings; let § be this
density. A generic predictor for the domain of Us that gives error less than /2
for infinitely many n, will provide i.o.-generic prediction for S with threshold
approximately 6/2, which is not possible. O

What Percentage of Programs Halt? 229

3.3 The Probabilistic Case

Most of the results proven in this section are negative, i.e., they show that
dom(U) is hard to approximate deterministically. Does the situation change if
try to get such approximations probabilistically? This can be understood in sev-
eral ways; in the sequel we use the approach motivated by mass problems in
Medvedev’s sense. Let us start by giving the corresponding definitions. We con-
sider machines with random oracle (a sequence of independent fair coin tosses).

Definition 16. A set A C {0,1}* 4s coarsely probabilistically computable if
there exists an oracle machine I' with random oracle X such that the event
“I'X computes a total function such that the set {p | I'X(p) = xa(p)} has den-
sity 17 has positive probability. A set A C {0,1}* is generically probabilistically
computable if there exists an oracle machine I' such that the event “dom(I™)
has density 1 and I'*(p) = xa(p) for all p € dom(I'*)” has positive prob-
ability. The motions of a-coarsely probabilistically computable, a-generically
probabilistically computable, a-i.o-coarsely probabilistically computable, and a-
i.o.-generically probabilistically computable are defined in a similar way.

One could think that allowing probabilistic computations does not change
the situation. Admittedly, it does not change it much. All the results above
remain the same in the probabilistic case (with more complicated proofs), with
the exception of 1-i.0.-coarse computability.

Theorem 17. Just like in the deterministic case, for a sufficiently close to 1:

(i) dom(U) is neither a-coarsely probabilistically computable nor a-generically
probabilistically computable;
(ii) whether dom(U) is a-i.o.-generically probabilistically computable or not
depends on the particular choice of machine U,
(iii) dom(U) is not 1-i.0.-generically probabilistically computable.

However, unlike in the deterministic case:
(iv) dom(U) is always 1-i.0.-coarsely probabilistically computable.

The full proof of these statements is quite long, and is omitted due to space
restrictions.

Acknowledgments. This paper is based on the work done while D.D. was visiting
LIRMM (Montpellier) and Poncelet laboratory (Moscow). We thank our colleagues
from both laboratories (in particular the ESCAPE team, and Kolmogorov seminar
group) for hostpitality. A.S. thanks Antti Valmari for interesting discussion (during
RuFiDiM seminar in Turku) that was the starting point for some of the arguments
in this paper. Thanks also go to three anonymous referees for helpful feedback. The
authors also acknowledge the support of the Templeton Foundation.

230

L. Bienvenu et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Bienvenu, L., Muchnik, A., Shen, A., Vereshchagin, N.: Limit complexities revisited

[once more]. Technical report (2012). arxiv:1204.0201

. Bienvenu, L., Shen, A.: Random semicomputable reals revisited. In: Dinneen,

M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond. LNCS,
vol. 7160, pp. 31-45. Springer, Heidelberg (2012)

Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable
reals and chaitin omega numbers. In: Meinel, C., Morvan, M. (eds.) STACS 1998.
LNCS, vol. 1373, pp. 596-606. Springer, Heidelberg (1998)

Calude, C., Nies, A., Staiger, L., Stephan, F.: Universal recursively enumerable
sets of strings. Theoretical Computer Science 412(22), 2253-2261 (2011)
Downey, R., Hirschfeldt, D.: Algorithmic randomness and complexity. Theory and
Applications of Computability. Springer, New York (2010)

Downey, R.G., Jockusch Jr., C.G., Schupp, P.E.: Asymptotic density and com-
putably enumerable sets. Journal of Mathematical Logic 13(02) (2013)

Hamkins, J.D., Miasnikov, A.: The halting problem is decidable on a set of asymp-
totic probability one. Notre Dame Journal of Formal Logic 47(4) (2006)

Kohler, S., Schindelhauer, C., Ziegler, M.: On approximating real-world halting
problems. In: Liskiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623,
pp. 454-466. Springer, Heidelberg (2005)

Kucera, A., Slaman, T.: Randomness and recursive enumerability. SITAM Journal
on Computing 31, 199-211 (2001)

Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer, New York (2007)

Lynch, N.: Approximations to the halting problem. Journal of Computer and Sys-
tem Sciences, 9-143 (1974)

Miller, J.S.: Every 2-random real is Kolmogorov random. Journal of Symbolic Logic
69(3), 907-913 (2004)

Nies, A.: Computability and randomness. Oxford University Press, Oxford Logic
Guides (2009)

Schindelhauer, C., Jakoby, A.: The non-recursive power of erroneous computation.
In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS,
vol. 1738, p. 394. Springer, Heidelberg (1999)

Claus Peter Schnorr: Optimal enumerations and optimal Gédel numberings. Math-
ematical Systems Theory 8(2), 181-191 (1974)

Valmari, A.: The asymptotic proportion of hard instances of the halting problem.
Technical report, November 2014. arxiv:1307.7066v2

Vereshchagin, N., Uspensky, V., Shen. A.: Kolmogorov complexity and algorith-
mic randomness (In Russian. See www.lirmm.fr/~ashen for the draft translation.).
MCCME (2013)

www.lirmm.fr/~ashen

	What Percentage of Programs Halt?
	1 Introduction
	1.1 Motivation
	1.2 Definitions and Notation

	2 Counting How Many Programs Halt
	2.1 The Complexity of Hn
	2.2 Limit Points of Un

	3 Approximating the Halting Problem
	3.1 Generic and Coarse Computability
	3.2 Allowing a Small Density of Errors and `Infinitely Often'-Success
	3.3 The Probabilistic Case

	References

