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Abstract. We present two fully dynamic algorithms for maximum car-
dinality matching in bipartite graphs. Our main result is a determin-
istic algorithm that maintains a (3/2 + ε) approximation in worst-case
update time O(m1/4ε−2.5). This algorithm is polynomially faster than all
previous deterministic algorithms for any constant approximation, and
faster than all previous algorithms (randomized included) that achieve a
better-than-2 approximation. We also give stronger results for bipartite
graphs whose arboricity is at most α, achieving a (1+ε) approximation in
worst-case update time O(α(α+log(n))+ε−4(α+log(n))+ε−6), which is
O(α(α+log n)) for constant ε. Previous results for small arboricity graphs
had similar update times but could only maintain a maximal matching
(2-approximation). All these previous algorithms, however, were not lim-
ited to bipartite graphs.

1 Introduction

Finding a maximum cardinality matching in a bipartite graph is a classic problem
in computer science and combinatorial optimization. There are efficient polyno-
mial time algorithms (e.g. [11]), and well-known applications, ranging from early
algorithms to minimize transportation costs (e.g. [10,13]) to recent applications
in on-line advertising and social media (e.g. [7,15]). For matching, the restriction
to bipartite graphs is natural and models many real-world applications. Further-
more, in many of these applications, the graph is actually changing over time.
We study the fully dynamic variant of bipartite matching in which the goal is
to maintain a near-maximum matching in a graph subject to a sequence of edge
insertions and deletions. When an edge change occurs, the goal is to maintain the
matching in time significantly faster than simply recomputing it from scratch.

One of our results is for bipartite small-arboricity graphs, which we define
here. The arboricity of a graph, denoted by α(G) is maxJ

|E(J)|
V (J)−1 where J =

(V (J), E(J)) is any subgraph of G induced by at least two vertices. Many classes
of graphs in practice have constant arboricity, including planar graphs, graphs
with bounded genus and graphs with bounded tree width. Every graph has
arboricity at most O(

√
m).
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M.M. Halldórsson et al. (Eds.): ICALP 2015, Part I, LNCS 9134, pp. 167–179, 2015.
DOI: 10.1007/978-3-662-47672-7 14



168 A. Bernstein and C. Stein

1.1 Previous Work

In addition to exact algorithms on static graphs, there is previous work on
approximating matching and on finding online matchings. Duan and Pettie
showed how to find a (1+ε)-approximate weighted matching in nearly linear time
[6]; their paper also contains an excellent summary of the history of matching
algorithms. Motivated partly by online advertising, there has also been signif-
icant work on “online matching” (e.g. [7,15]), both exact and approximate. In
most online matching work, the graph is dynamic, but with a restricted set of
updates. Typically, one side of the bipartite graph is fixed at the beginning of the
algorithm. The vertices on the other side arrive, one at a time, and when a vertex
arrives, we learn about all of its incident edges. Deletions are not allowed, nor
typically are changes to the matching, although some work also studies models
that measure the number of changes needed to maintain a matching [4,5,8].

We now turn to fully dynamic matchings. Algorithms can be classified by
update time, approximation ratio, whether they are randomized or deterministic
and whether they have a worst-case or amortized update time. The distinction
between deterministic and randomized is particularly important here as all of the
existing randomized algorithms require the assumption of an oblivious adversary
that does not see the algorithm’s random bits; thus, in addition to working
only with high probability, randomized dynamic algorithms must make an extra
assumption on the model which makes them inadequate in certain settings.

For maintaining an exact maximum matching, the best known update time
is O(n1.495) (Sankowski [19]), which in dense graphs is much faster than recon-
structing the matching from scratch. If we restrict the model to bipartite graphs
and to the incremental or decremental setting – where we allow only edge inser-
tions or only edge deletions (but not both) – Bosek et al.([4]) show that we can
achieve total update time (over all insertions or all deletions) m

√
n for an exact

matching and mε−1 for a (1 + ε)-matching, which is optimal in that it matches
the best known bounds for the static case. For the special case of convex bipar-
tite graphs in the fully dynamic setting, Brodal et al. showed how to maintain
an implicit (exact) matching with very fast update but slow query time.

Going back to the general problem of maintaining an explicit matching in a
fully dynamic setting, we can achieve a much faster update time than O(n1.495)
if we allow approximation. One can trivially maintain a maximal (and so 2-
approximate) matching in O(n) time per update. Ivkovic and Lloyd [12] showed
how to improve the update time to O((m+n)

√
2/2). Onak and Rubinfeld [18] were

to first to achieve truly fast update times, presenting a randomized algorithm
that maintains a O(1)-approximate matching in amortized update time O(log2 n)
time (with high probability). Baswana et al.[2] improved upon this with a ran-
domized algorithm that maintains a maximal matching (2-approximation) in
amortized update O(log n) time per update. These two algorithms are extremely
fast, but suffer from being amortized and inherently randomized, and also from
the fact their techniques focus on local changes, and so seem unable to break
through the barrier of a 2-approximation.
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The first result to achieve a better-than-2 approximation was by Neiman and
Solomon [17], who presented a deterministic, worst-case algorithm for maintain-
ing a 3/2-approximate matching. However, the price of this improvement was a
huge increase in update time: from O(log n) to O(

√
m). Gupta and Peng [9] later

improved upon the approximation, presenting a deterministic algorithm that
maintains a (1+ε)-approximate matching in worst-case update time O(

√
mε−2).

The two deterministic algorithms are strongly tethered to the
√

m bound
and do not seem to contain any techniques for breaking past it. An impor-
tant open question was thus: can we achieve o(

√
m) update with a determin-

istic algorithm? (In fact Onak and Rubinfeld [18] presented a deterministic
algorithm with amortized update time O(log2 n), but it only achieves a log(n)-
approximation.) Very recently, Bhattacharya, Henzinger, and Italiano [3] pre-
sented a deterministic algorithm with worst-case update time O(m1/3ε−2) that
maintains a (4 + ε) approximation; this can be improved to (3 + ε) at the cost
of introducing amortization. The same paper presents a deterministic algorithm
with amortized update time only O(ε−2 log n) that maintains a (2+ ε) fractional
matching. Finally, Neiman and Solomon [17] showed that in graphs of constant
arboricity we can maintain a maximal (so 2-approximate) matching in amor-
tized time O(log(n)/ log log(n)); using a recent dynamic orientation algorithm
of Kopelowitz et al.[14], this algorithm yields a O(log(n)) worst-case update
time.

Abboud and Williams [1] recently showed a conditional lower bound for
dynamic matching in general graphs assuming that 3-sum cannot be solved in
o(n2) time; they show that there exists a constant k ∈ [2, 10] with the following
property: any algorithm that maintains an approximate matching in which every
augmenting path has length at least 2k −1 has amortized update time Ω(m1/3).

1.2 Results

If we disregard special cases such as small arboricity or fractional matchings, we
see that existing algorithms for dynamic matching seem to fall into two groups:
there are fast (mostly randomized) algorithms that do not break through the 2-
approximation barrier, and there are slow algorithms with O(

√
m) update that

achieve a better-than-2 approximation. Thus the obvious question is whether we
can design an algorithm – deterministic or randomized – that achieves a tradeoff
between these two: a o(

√
m) update and a better-than-2 approximation. We

answer this question in the affirmative for bipartite graphs.

Theorem 1. Let G be a bipartite graph subject to a series of edge insertions and
deletions, and let ε be < 2/3. Then, we can maintain a (3/2 + ε)-approximate
matching in G in deterministic worst-case update time O(m1/4ε−2.5).

This theorem achieves a new trade-off even if one considers existing random-
ized algorithms. Focusing on only deterministic algorithms the improvement is
even more drastic: our algorithm improves upon not just

√
m but m1/3, and

so achieves the fastest known deterministic update time (excluding the log(n)-
approximation of [18]), while still maintaining a better-than-2 approximation.
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Also, since m1/4 = O(
√

n), our algorithm is the first to achieve a better-than-2
approximation in time strictly sublinear in the number of nodes. Of course, our
algorithm has the disadvantage of only working on bipartite graphs.

For small arboricity graphs we also show how to break through the maximal
matching (2-approximation) barrier and achieve a (1 + ε)-approximation.

Theorem 2. Let G be a bipartite graph subject to a series of edge insertions
and deletions, and let ε be < 1. Say that at all times G has arboricity at most
α. Then, we can maintain a (1+ ε)-approximate matching in G in deterministic
worst-case update time O(α(α+ log(n))+ ε−4(α+ log(n))+ ε−6) For constant α
and ε the update time is O(log(n)), and for α and ε polylogarithmic the update
time is polylogarithmic.

Note that a (1 + ε)-approximation with polylog update time is pretty much the
best we can hope for. The conditional lower bound of Abboud and Williams [1]
provides an indication that such a result might not be possible for general graphs,
but we have presented the first class of graphs (bipartite, polylog arboricity) for
which it is achievable.

1.3 Techniques

We can think of the dynamic matching problem as follows: We are given a
dynamic graph G and want to maintain a large subgraph M of maximum
degree 1. This task turns out to be quite hard because, as the graph evolves, M
is unstable and has few appropriate structural properties.

Very recently, Bhattacharya et al.[3] presented the idea of using a transition
subgraph H, which they refer to as a kernel of G: the idea is to maintain H as
G changes, and then maintain M in H. Maintaining an approximate matching
M is significantly easier in a bounded degree graph, so we need a graph H that
has the following properties: it should have bounded degree, it should be easy to
maintain in G, and most importantly, a large matching using edges in H should
be a good approximation to the maximum matching in G.

Our algorithm uses the same basic idea of transition subgraph with bounded
degree, but the details are entirely different from those in [3] . Their subgraph
H is just a maximal B-matching with B around m1/3, that allows some slack on
the maximality constraint. The use of a maximal matching is a natural choice
in a dynamic setting because maximality is a purely local constraint, and so
easier to maintain dynamically. The downside is that as long as one relies on
maximality, one can never achieve a better-than-2 approximation; due to other
difficulties, their paper in fact only achieves a (3 + ε)-approximation.

The main technical contribution of this paper is to present a new type of
bounded-degree subgraph, which we call an edge degree constrained subgraph
(EDCS). The problem with a simple B-matching is that the edges are not
sufficiently “spread out” to all the vertices: imagine that G consists of 4 sets
L1, L2, R1, R2, each of size n/2, where the edges form a complete graph except
that there are no edges between L2 and R2. One possible maximal B-matching
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includes many edges between L1 and R1 while leaving L2 and R2 completely iso-
lated. The resulting matching is only 2-approximate, which is what we are trying
to overcome. Our EDCS circumvents this problem by trying to spread out edges.
For each edge, instead of separately upper bounding the matching-degree of both
endpoints (B-matching) it upper bounds the sum of the matching-degrees of the
endpoints, and then captures the notion of maximality by also lower bounding
this sum for edges not in the matching. Using an EDCS prevents the above sce-
nario as the sum of the matching-degrees of edges from L1 to R2 will be illegally
small unless the matching-degree of R2 is raised by adding some of those edges
to the graph, thus ensuring a larger matching in H.

Although the definition is somewhat similar, the structure of an edge degree
constrained subgraph is entirely different from that of a maximal B-matching,
and for this reason both our analysis of the approximation factor and our algo-
rithm for maintining this subgraph are entirely different from those in [3]. In
particular, while the constraints in an EDCS seem purely local in that they con-
cern only the degrees of the endpoints of an edge, they in fact have a global effect
in a way that they do not in a maximal B-matching. In the latter, as long as an
edge does not directly violate the degree constraints, it can always be added to
the maximal B-matching, without concern for the edges elsewhere in the graph.
But as seen from the above example, this is not true in an EDCS: although the
edges from L1 and R1 do not themselves violate any constraints, they prevent
the constraints between L1 and R2 or L2 and R1 from being satisfied. An anal-
ysis of this global structure is what allows us to go beyond the 2-approximation.
On the other hand, the same global structure makes the EDCS more difficult
to maintain dynamically; we end up showing that an EDCS contains something
akin to augmenting paths, although more locally well behaved. We also develop
a general new technique for maintaining a transition subgraph based on dynamic
graph orientation, which allows us to reduce the update time from O(m1/3) to
O(m1/4). That being said, the additional complications inherent in an EDCS
have so far prevented us from extending our results to non-bipartite graphs.

We omit many details in this extended abstract and refer the reader to the
full paper for details.

2 Preliminaries

Let G = (L
⋃

R,E) be an undirected, unweighted bipartite graph where |L| =
|R| = n and |E| = m. Unless otherwise specified, “graph” will always refer to
a bipartite graph. In general, we will often be dealing with graphs other than
G, so all of our notation will be explicit about the graph in question. We define
dG(v) to be the degree of a vertex v in G; if the graph in question is weighted,
then dG(v) is the sum of the weights of all incident edges. We define edge degree
as δ(u, v) = d(u)+d(v). If H is a subgraph of G, we say that an edge in G is used
if it is also in H, and unused if it is not in H. Throughout this paper we will
only be dealing with subgraphs H that contain the full vertex set of G, so we
will use the notion of a subgraph and of a subset of edges of G interchangeably.
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A matching in a graph G is a set of disjoint edges in G. We let μ(G) denote
the size of the maximum matching in G. A vertex is called matched if it is
incident to one of the sets in the matching, and free or unmatched otherwise. We
now state a simple corollary of an existing result of [9].

Lemma 1 ([9]). If a dynamic graph G has maximum degree B at all times,
then we can maintain a (1 + ε)-approximation matching under insertions and
deletions in worst-case update time O(Bε−2) per update.

Proof. This lemma immediately follows from a simple algorithm presented in
Sect. 3.2 of [9] which shows how to achieve update time |E(G)|ε−2/μ(G) (for the
transition from amortized to worst-case see appendix A.3 of the same paper), as
well as the fact that we always have |E(G)|/μ(G) ≤ 2B because all edges must
be incident to one of the 2μ(G) matched vertices in the maximum matching,
and each of those vertices have degree at most B.

Orientations An orientation of an undirected graph G is an assignment of a
direction to each edge in E. Given an orientation of edge (u, v) from u to v,
we say that u owns edge (u, v) and will define the load of a vertex v to be
the number of edges owned by v. Orientations of small max load are closely
linked to arboricity: every graph with arboricity α has an α-orientation [16].
Our algorithms will at all times maintain an orientation of the dynamic graph
G. We rely on two results to do this: one by Kopelowitz et al.[14], and a second
simple result new to this paper whose proof we leave for the full version.

Theorem 3. [14] Given a dynamic graph G that at all times has arboricity
≤ α, there exists an algorithm that maintains an orientation with max load
O(α log(n)) such that every insertion/deletion to G is processed in worst-case
update time O(α(α + log(n))) and requires at most O(α + log(n)) edge reorien-
tations.

Theorem 4. Given a dynamic graph G, we can maintain an orientation with
max load O(

√
m) in worst-case update time O(1) per insertion/deletion to G.

3 The Framework

We now define the transition subgraph H mentioned in Sect. 1.3.

Definition 1. An unweighted edge degree constrained subgraph(EDCS)
(G, β, β−) is a subset of the edges H ⊆ E with the following properties:

(P1) if (u, v) is used (in H) then dH(u) + dH(v) ≤ β ,
(P2) if (u, v) is unused (in G − H) then dH(u) + dH(v) ≥ β−.

We also define a similar subgraph where edges in H have weights, effectively
allowing them to be used more than once. The properties change somewhat as
now used edges can always take more weight, so it makes sense to lower bound
the degrees of used edges as well. Recall that the degree of a vertex in a weighted
graph is the sum of the weights of the incident edges. returnpoint
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Definition 2. A weighted edge degree constrained subgraph(EDCS) (G, β, β−)
is a subset of the edges H ⊆ E with positive integer weights that has properties:

(P1) if (u, v) is used then dH(u) + dH(v) ≤ β
(P2) for all edges (u, v), we have dH(u) + dH(v) ≥ β−

Algorithm Outline: To process an edge insertion/deletion in G: First, we update
the small-max-load edge orientation (Theorem 3 or 4. Second, we update the sub-
graph H so it remains a valid EDCS of the changed graph G (Sect. 5); this relies
on the graph orientation for efficiency. Third, we update the (1+ε)-approximate
matching in H with respect to the changes to H from the previous step (See
Lemma 1). The maintained (1 + ε)-approximate matching of H is also our final
matching in G; the central claim of this paper is that because H is an EDCS,
μ(H) is not too far from μ(G), so a good approximation to μ(H) is also a decent
approximation to μ(G) (see Sectionr̃efsec:matching).

There is a subtle difficulty that arises from using a transition graph in a
dynamic algorithm. By Lemma 1, as long as H has degree bounded by ΔH , we
can maintain a (1 + ε)-approximate matching in H in time O(ΔH) per update
in H. But a single change in G could in theory causes many changes in H,
each of which would take O(ΔH) time to process. This motivates the following
definition: given an algorithm A that maintains a subgraph H in a dynamic
graph G, we define the update ratio of A to be the maximum number of edge
changes (insertions or deletions) that A could make to H given a single edge
change in G.

We can now state the main theorems of the paper. We present general and
small arboricity graphs separately, but the basic framework described above
remains the same in both cases. In all the theorems below, the parameter ε
corresponds to the desired approximation ratio (either (1 + ε) or (3/2 + ε)).

3.1 General Bipartite Graphs

For the sake of intuition, think of β in the two theorems below as roughly m1/4.

Theorem 5. Let G be a bipartite graph, and let λ = ε/4. Let H be an unweighted
EDCS with β− = β(1 − λ), where β is a parameter we will choose later. Then
μ(H) ≥ (2/3 − ε)μ(G).

Theorem 6. Let G be a bipartite graph. Let H be an unweighted EDCS with
β− = β(1 − λ), where λ is a positive constant less than 1. There is an algorithm
that maintains H over updates in G (i.e. maintains H as a valid edge degree
constrained subgraph) with the following properties:

– The algorithm has worst case update time O(
(
1
λ

) (
β +

√
m

λβ

)
).

– The update ratio of the algorithm is O(1/λ).
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Proof of Theorem 1 We use the algorithm outline presented near the beginning
of Sect. 3. We let be transition subgraph H be an unweighted EDCS(G, β, β(1−
λ)) with λ = 4ε−1 = O(ε−1) and β = m1/4ε1/2. By Theorem 6 we can maintain
H in worst-case update time O(

(
1
λ

) (
β +

√
m

λβ

)
) = O(m1/4ε−2.5 + m1/4ε−.5) =

O(m1/4ε−2.5). The update ratio is O(λ−1) = O(ε−1). Since degrees in H are
clearly bounded by β, by Lemma 1 we can maintain a (1 + ε)-approximate
matching in H in time O(βε−2); multiplying by the update ratio of maintaining
H in G, we need O(βε−3) = O(m1/4ε−2.5) time to maintain the matching per
change in G. By Theorem 7, μ(H) is a (3/2 + ε)-approximation to μ(G), so our
matching is a (3/2 + ε)(1 + ε) = (3/2 + ε)-approximate matching in G. �

3.2 Small Arboricity Graphs

Theorem 7. Let G be a bipartite graph, and let β > 4ε−2. Let H be a weighted
EDCS with β− = β − 1. Then μ(H) ≥ μ(G)(1 − ε).

Theorem 8. Let G be a bipartite graph with arboricity α. Let H be a weighted
EDCS with β− = β − 1. There is an algorithm that maintains H over updates
in G with the following properties:

– The algorithm has worse-case update time O(β2(α + log n) + α(α + log n)) .
– The update ratio of the algorithm is O(β).

The proof of Theorem 2 is analogous to that of Theorem 1 with β set to ε−2.

4 An EDCS Contains an Approximate Matching

In this section we prove Theorems 5 and 7. Both proofs will be by contra-
diction; for example, for Theorem 5 to be false, there must be an unweighted
EDCS(G, β, β(1 − λ)) H such that μ(H) < (2/3 − ε)μ(G). To exhibit the con-
tradiction, we start by establishing a property that must hold of any subgraph
H defined on the full vertex set of G for which μ(H) is smaller than μ(G); the
smaller μ(H), the more constraining the property. Loosely speaking, the prop-
erty is a generalization of the fact that the maximum matching on H establishes
an (S, T ) cut with no edges crossing in H, but at least μ(G)−μ(H) edges cross-
ing in G. We use the convention that the subscript L or R refer to the side of the
bipartition in which the vertices lie. The proof of the following lemma involves
a careful accounting of augmenting paths and is left for the full version.

Lemma 2. Let G = (V,EG) be a bipartite graph, and let H = (V,EH) be a sub-
graph of G. Then, there exist vertex sets S∗

L, SL, SR, T ∗
R, TR, TL with the following

properties:

1. |SL| + |TL| = |SR| + |TR| = μ(H).
2. In EH , all edges incident to SL

⋃
S∗

L go to SR and all edges incident to
TR

⋃
T ∗

R go to TL.



Fully Dynamic Matching in Bipartite Graphs 175

3. G contains a perfect matching between SL and SR and between TL and TR

(|SL| = |SR|, |TL| = |TR|).
4. |S∗

L| = |T ∗
R| = μ(G)−μ(H) and G contains a perfect matching between these

sets.

Let us say, for contradiction, that μ(H) is much smaller than μ(G). Then accord-
ing to Lemma 2, there is a perfect matching between S∗

L and T ∗
R in G but not

H. Thus, by property P2 of an EDCS, for every edge (v, w) on that matching
dH(v) + dH(w) must be almost β. This implies that the average degree in H of
vertices in S∗

L and T ∗
R must be at least around β/2. But all the edges in H inci-

dent to S∗
L and T ∗

R can only go to SL and TR, which are relatively small if μ(H)
is much smaller than μ(G). To close the contradiction we argue that because of
property P1 of an EDCS, we simply won’t be able to fit all those edges from S∗

L

to SR and T ∗
R to TL. We argue this by bounding how high degrees can get in

an EDCS. Intuitively, if U and V have equal size and all edges are between U
and V , we expect the average degree on each side to be no more than β/2, as
if each vertex had degree β/2 then all edge degrees would be β – the maximum
allowed by property P1. We now state a generalization of this intuition which
shows that if one of the sets U, V is larger than the other, it will have average
degree below β/2; the proof is left for the full version.

Lemma 3. Let us say that in some graph we have disjoint sets (U, V ) such that
|U | = c|V |, and all edges incident to U go to V (but there may be edges incident
to V which do not go to U). Let d(v) be the degree of vertex v in this graph, and
say that for every edge (u, v) in the graph d(u) + d(v) ≤ β for some parameter
β. Then, the average degree of vertices in U is at most β

c+1 .

Proof of Theorem 5: Let us say, for the sake of contradiction, that we had
μ(H) < (2/3−ε)μ(G). Then, we have sets S∗

L, SL, SR, T ∗
R, TR, TL as in Lemma 2.

By property 4 of this lemma, S∗
L and T ∗

R have a perfect matching between them
consisting of μ(G)−μ(H) edges in EG−EH – that is, a perfect matching of unused
edges. Thus, by the property P2 of an EDCS, for each edge (u, v) in this matching
we have dH(u)+dH(v) ≥ β(1−λ), which implies that the total degree of vertices
in S∗

L

⋃
T ∗

R is at least β(1 − λ)(μ(G) − μ(H)). Now, by property 4 of Lemma 2
we know that |S∗

L| = |T ∗
R| = μ(G) − μ(H), so |S∗

L

⋃
T ∗

R| = 2(μ(G) − μ(H)), so
we have:

average degree of S∗
L

⋃
T ∗
R ≥ β(1 − λ)(μ(G) − μ(H))

2(μ(G) − μ(H))
= β

(1 − λ)

2
. (1)

We argue such a high average degree is not possible. Since μ(H) < (2/3−ε)μ(G):

|S∗
L

⋃
T ∗
R| = 2(μ(G) − μ(H)) > μ(H)(1 + ε). (2)

Observe that we are now in the situation described in Lemma 3: S∗
L

⋃
T ∗

R corre-
sponds to U , and SR

⋃
TL corresponds to V . Property 2 of Lemma 2 precisely

tells us that all edges from U go to V , as needed in Lemma 3. We know from
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properties 3 and 1 of Lemma 2 that |V | = |SR

⋃
TL| = |SR|+|TL| = |SL|+|TL| =

μ(H) so by Eq. 2 we have |U | = |S∗
L

⋃
T ∗

R| = c|V | for some c > (1 + ε). Thus
Lemma 3 tells us that the average degree of U is at most β/(1 + c) ≤ β/(2 + ε),
which some simple algebra shows is strictly less than β(1 − λ)/2 because we set
λ = ε/4. We have thus arrived at a contradiction with Eq. 1, so our original
assumption that μ(H) < (2/3 − ε)μ(G) must be false. �

Small Arboricity Graphs: We now turn to Theorem 7. The full proof is left for
the full version, but we give some intuition here. The statement is very similar to
Theorem 5, but with two crucial differences: we are now dealing with a weighted
EDCS H, and the approximation we need to guarantee is 1−ε instead of 2/3−ε.
(Note that Theorem 7 is true of general graphs as well; we only use it for small
arboricity graphs, however, because a weighted EDCS is difficult to maintain in
general graphs.) It may seem unintuitive that a weighted EDCS contains a better
matching than an unweighted one since it will in fact have fewer total edges to
work with. To show why a weighted EDCS is better, see for a simple example
where an unweighted EDCS only contains a (3/2)-approximate matching, but a
weighted one does not suffer the same issues.

In the proof of Theorem 5 we constructed the sets S∗
L, SL, SR, T ∗

R, TR, TL

from Lemma 2 and then argued that S∗
L (and analogously T ∗

R) must have low
average degree because all of its edges go to SR, so we simply cannot fit that
many edges before violating property P1 of an EDCS. Now, we could upper
bound the average degree of S∗

L even better if we could argue that there also
had to be other edges coming into SR, taking up space. The natural candidate
would be the edges on the matching from SL to SR guaranteed by property 3
of Lemma 2. In Theorem 5 we were unable to take advantage of these edges
because we were dealing with an unweighted EDCS, so a single matching worth
of edges did not count for much. The properties of a weighted EDCS, however,
can force this single matching to be used multiple times, thus leaving even less
space for edges leaving S∗

L. The proof of Theorem 7 is thus analogous to that of
Theorem 5 but requires a stronger version of Lemma 3.

5 Maintaining an Edge Degree Constrained Subgraph

In this section, we outline the proofs of Theorems 6 and 8, leaving the details
for the full version of the paper.

Recall that δ(u, v) denotes the edge degree of (u, v), dH(u)+dH(v). We define
an edge to be full if it is in H and has edge degree β. We define it to be deficient
if it is not in H and has the minimum allowable edge degree β−: this is β − 1
for the weighted EDCS in Theorem 8 and β(1 − λ) for the unweighted EDCS
of Theorem 6. We define a vertex to be increase-safe if it has no incident full
edges and decrease-safe if it has no incident deficient edges; it is easy to see that
increasing (decreasing) the degree of an increase-safe (decrease-safe) vertex by
one does not lead to a violation of any EDCS constraints.

Now, let us say that we delete some edge (u, v) from G. If (u, v) was not in the
EDCS H then all constraints remain satisfied. Otherwise, deleting (u, v) causes
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the degree of u and v to decrease by one. Let us focus on fixing up vertex v; vertex
u can then be handled analogously. If v was decrease-safe, then all constraints
relating to v remain satisfied and we are done. Otherwise, it must have had some
incident deficient edge (v, v2). Adding this edge to H rebalances the degree of
v to what it was before the deletion, but now the degree of v2 has increased by
one. If v2 was increase-safe, the degree increase does not violate any constraints,
and we are done. Otherwise, v2 must have an incident full edge (v2, v3) which
we delete from the graph; this rebalances v2 but decreases the degree of v3, so
we look for an incident deficient edge. We continue in this fashion until we end
on an increase/decrease-safe vertex.

We can thus fix up an edge deletion by finding an alternating path of full
and deficient edges that ends in an increase/decrease-safe vertex. Insertions are
handled analogously. This is similar to finding an augmenting path in a matching
except that this latter case is much harder because we might hit a dead end and
have to back track; but we can fix up an EDCS by following any sequence of
full/deficient edges. Moreover, the resulting alternating path is always simple and
contains few edges: for the small arboricity case (Theorem 8) where β− = β − 1,
it is not hard to see that in any such alternating path the vertex degrees dH(v)
on either side of the bipartition are either increasing or decreasing by 1, so
since dH(v) is always between 0 and β, the path has length O(β); in the small
arboricity case, O(β) is small because we set β = O(1/ε2). In the general case
(Theorem 6), β is large but the gap between β and β− is βλ, so degrees on either
side change by βλ and the path has length only O(1/λ).

To find such an alternating path of full and deficient edges we maintain a
data structure that for any vertex v can return an incident full or deficient edge
(whichever is asked for), or indicate that none exists. Since the alternating path
will always be short, this data structure will only be queried a small number
of times per insertion/deletion in G. We maintain this data structure using a
dynamic orientation, in which each edge is owned by one of its endpoints (see end
of Sect. 2). Let us focus on the small arboricity case, where the dynamic orien-
tation maintains a small max load. Each vertex will maintain fullness/deficiency
information about the edges it does not own, storing each category of edge
(full/deficient) in its own list. To find a full/deficient edge incident to some ver-
tex v, the data structure simply picks an edge from the corresponding list in
O(1) time; if the list is empty, the data structure then manually checks all the
edges that v does own: since the max load is small, this can be done efficiently.
When the status of a vertex v changes, to maintain itself the data structure
must transfer this information along all edges (v, u) that are not owned by u,
but since these are precisely the edges owned by v, there can only be a small
number of them.

The basic idea is the same for general bipartite graphs (Theorem 6), except
that now the max load is O(

√
m), and we cannot afford to spend O(

√
m) per

update. Note that in this case, however, there is a gap of βλ between full and
deficient edges, so intuitively, the degree of a vertex has to change βλ time
before it must be updated in the data structure. This leads to an update time
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of around
√

m/(βλ), as needed in Theorem 6. The details, however, are quite
involved, especially since we need a worst-case update time.

6 Conclusion

We have presented the first fully dynamic matching algorithm to achieve a o(
√

m)
update time while maintaining a better-than-2-approximate bipartite matching.
It is also the fastest known deterministic algorithm for achieving any constant
approximation, and certainly any better-than-2 approximation. The main open
questions are in how far we can push this tradeoff. Can we achieve a random-
ized better-than-2 approximation with update time polylog(n)? For determin-
istic algorithms, can we achieve a constant approximation with update time
polylog(n), or a (1 + ε)-approximation with update time o(

√
m)?

The other natural question is whether our results can be extended to gen-
eral (non-bipartite) graphs and non-bipartite graphs of small arboricity. The
definition of an edge degree constrained subgraph does not inherently rely on
bipartiteness, and neither do many of the techniques in this paper. The main
obstruction to the generalization seems to lie in the structural property exhibited
in Lemma 2. Is there an analogue for non-bipartite graphs?

Acknowledgments. We thank Tsvi Kopelowitz for several helpful discussions and
for pointing us towards useful information about orientations.
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