
Deterministic Randomness Extraction
from Generalized and Distributed

Santha-Vazirani Sources

Salman Beigi1, Omid Etesami1(B), and Amin Gohari1,2

1 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran

salman.beigi@gmail.com, etesami@ipm.ir
2 Department of Electrical Engineering,

Sharif University of Technology, Tehran, Iran
aminzadeh@sharif.edu

Abstract. A Santha-Vazirani (SV) source is a sequence of random bits
where the conditional distribution of each bit, given the previous bits,
can be partially controlled by an adversary. Santha and Vazirani show
that deterministic randomness extraction from these sources is impos-
sible. In this paper, we study the generalization of SV sources for non-
binary sequences. We show that unlike the binary case, deterministic
randomness extraction in the generalized case is sometimes possible. We
present a necessary condition and a sufficient condition for the possibility
of deterministic randomness extraction. These two conditions coincide in
“non-degenerate” cases.

Next, we turn to a distributed setting. In this setting the SV source
consists of a random sequence of pairs (a1, b1), (a2, b2), . . . distributed
between two parties, where the first party receives ai’s and the second
one receives bi’s. The goal of the two parties is to extract common ran-
domness without communication. Using the notion of maximal correla-
tion, we prove a necessary condition and a sufficient condition for the
possibility of common randomness extraction from these sources. Based
on these two conditions, the problem of common randomness extrac-
tion essentially reduces to the problem of randomness extraction from
(non-distributed) SV sources. This result generalizes results of Gács and
Körner, and Witsenhausen about common randomness extraction from
i.i.d. sources to adversarial sources.

1 Introduction

Randomized algorithms are simpler and more efficient than their deterministic
counterparts in many applications. In some settings such as communication com-
plexity and distributed computing, it is even possible to prove unconditionally
that allowing randomness improves the efficiency of algorithms (see e.g., [14,19,
30]). However, access to sources of randomness (especially common randomness)
may be limited, or the quality of randomness in the source may be far from per-
fect. Having such an imperfect source of randomness, one may be able to extract
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(almost) unbiased and independent random bits using randomness extractors.
A randomness extractor is a function applied to an imperfect source of random-
ness whose outcome is an almost perfect source of randomness.

The problem of randomness extraction from imperfect sources of randomness
was perhaps first considered by Von Neumann [28]. A later important work in
this area is [23] where Santha and Vazirani introduced the imperfect sources
of randomness now often called Santha-Vazirani (SV) sources. These sources
can easily be defined in terms of an adversary with two coins. Consider an
adversary who has two different coins, one of which is biased towards heads (e.g.,
Pr(heads) = 2/3) and the other one is biased towards tails (e.g., Pr(heads) =
1/3). The adversary, in each time step, chooses one of the two coins and tosses
it. Adversary’s choice of coin may depend (probabilistically) on the previous
outcomes of the tosses. The sequence of random outcomes of these coin tosses is
called a SV source.

Santha and Vazirani [23] show that randomness extraction from the above
sources through a deterministic method is impossible. More precisely, they show
that for every deterministic way of extracting one random bit, there is a strategy
for the adversary such that the extracted bit is biased, or more specifically, the
extracted bit is 0 with probability either ≥ 2/3 or ≤ 1/3. Subsequently, other
proofs for this result have been found (see e.g., [1,21]). Fig 1 shows a more refined
version of this result, which provides a more detailed picture of the limits of what
the adversary can achieve.

Despite this negative result, such imperfect sources of randomness are enough
for many applications. For example, as shown by Vazirani and Vazirani [25,26],
randomized polynomial-time algorithms that use perfect random bits can be
simulated using SV sources. This fact can also be verified using the fact that
the min-entropy of SV sources is linear in the size of the source (where min-
entropy, in the context of extractors, was first introduced by [9]). Indeed, by the
later theory of randomness extraction (e.g., see [31]), it is possible to efficiently
extract polynomially many almost random bits from such sources with high min-
entropy if we are, in addition to the imperfect source, endowed with a perfectly
random seed of logarithmic length. (In fact, for the special case of SV sources,
a seed of constant length is enough [27, Problem6.6]). For the application of
randomized polynomial-time algorithms, we can enumerate in polynomial time
over all possible seeds.

Enumerating over all seeds may be inefficient for some applications, or does
not work at all, e.g., in interactive proofs and one-shot scenarios such as cryptog-
raphy. Therefore, it is natural to ask whether deterministic randomness extrac-
tion from imperfect sources of randomness is possible. For most applications, it
is also necessary to require that the extractor be explicit, i.e., extraction can be
done efficiently (in polynomial time). Previous to this work, explicit determinis-
tic extractors had been constructed for many different classes of sources, includ-
ing i.i.d. bits with unknown bias [28], Markov chains [5], affine sources [7,16],
polynomial sources [11,12], and sources consisting of independent blocks [6].
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Fig. 1. Given any deterministic extractor, the pair (α, β) is above the curve specified
in this figure, where α and β are the minimum and maximum value of probability of
the output being zero that the adversary can achieve by choosing its strategy. The
plot is for the binary SV source with two coins with probability of heads respectively
equal to 1/3 and 2/3. The point (1/2, 1/2) is specified by a red star in the figure. The
curve has fractal-like self-similiarity: The curve can be split at point (1/3, 2/3) into two
curves each of which is a normalized version of the whole curve. To see how the curve
is obtained, see Appendix A of the full version [2].

Deterministic Extractors for Generalized SV Sources. Although [23]
proves the impossibility of deterministic randomness extraction from SV sources,
this impossibility is shown only for binary sources. In this paper we show that
if we consider a generalization of SV sources over non-binary alphabets, deter-
ministic randomness extraction is indeed possible under certain conditions.

To generalize SV sources over non-binary alphabets, we assume that the
adversary, instead of coins, has some multi-faceted (say 6-sided) dice. The num-
bers written on the faces of different dice are the same, but each die may have
a different probability for a given face value. The adversary throws these dice n
times, each time choosing a die to throw depending on the results of the previous
throws. Again, the outcome is an imperfect source of randomness, for which we
may ask whether deterministic randomness extraction is possible or not.

When the dice are non-degenerate, i.e., all faces of all dice have non-zero
probability, we give a necessary and sufficient condition for the existence of
a deterministic strategy for extracting one bit with arbitrarily small bias. For
example, when the dice are 6-sided, the necessary and sufficient condition implies
that we can deterministically extract an almost unbiased bit when the adver-
sary has access to any arbitrary set of five non-degenerate dice, but random-
ness extraction is not possible in general when the adversary has access to six
non-degenerate 6-sided dice. More precisely, a set of non-degenerate dice leads
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to extractable generalized SV sources if and only if the convex hull of the set
of probability distributions associated with the set of dice does not have full
dimension in the “probability simplex”. We emphasize that when we prove the
possibility of deterministic extraction, we also provide an explicit extractor.

Relation to Block-Sources. The generalized SV sources considered in this
paper are also a generalization of “block-sources” defined by Chor and Goldreich
[9], where the source is divided into several blocks such that each block has
min-entropy at least k conditioned on the value of the previous blocks. Such a
block-source can be thought as a generalized SV source where the adversary can
generate each block (given previous blocks) using any “flat” distribution with
support 2k. Being a special case of generalized SV sources (defined here), block-
sources have another difference as well: Since it is impossible to extract from
a single block-source deterministically, the common results regarding extraction
from block-sources are about either seeded extractors (e.g. [18]) or extraction
from at least two independent block-sources (e.g. [20]).

Common Randomness Extractors. Common random bits, shared by dis-
tinct parties, constitute an important resource for distributed algorithms; com-
mon random bits can be used by the parties to synchronize the randomness of
their local actions. We may ask the question of randomness extraction in this
setting too. Assuming that the parties are provided with an imperfect source of
common randomness, the question is whether perfect common randomness can
be extracted from this source or not.

Gács and Körner [15] and Witsenhausen [29] have looked at the problem of
extraction of common random bits from a very special class of imperfect sources,
namely i.i.d. sources. In this case, the bipartite source available to the parties is
generated as follows: In each time step, a pair (A,B) with some predetermined
distribution (known by the two parties) and independent of the past is generated;
A is revealed to the first party and B is revealed to the second party. After
receiving arbitrarily many repetitions of random variables A and B, the two
parties aim to extract a common random bit. It is known that in this case,
the two parties (who are not allowed to communicate) can generate a common
random bit if and only if A and B have a common data [29]. This means that
common randomness generation is possible if A and B can be expressed as
A = (A′, C) and B = (B′, C) for a nonconstant common part C, i.e., there are
nonconstant functions f, g such that C = f(A) = g(B). Observe that when a
common part exists, common randomness can be extracted by the parties by
applying the same extractor on the sequence of C’s. That is, the problem of
common randomness extraction in the i.i.d. case is reduced to the problem of
ordinary randomness extraction. These results are obtained using a measure
of correlation called maximal correlation. The key feature of this measure of
correlation that helps proving the above result is the tensorization property, i.e.,
the maximal correlation between random variables A and B is equal to that of
An and Bn for any n, where An and Bn denote n i.i.d. repetitions of A and B.
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In this paper we consider the problem of common randomness extraction
from distributed SV sources defined as follows. In a distributed SV source, the
adversary again has some multi-faceted dice, but here, instead of a single number,
a pair of numbers (A,B) is written on each face. As before, the set of values
written on the faces of the dice is the same, but the probabilities of face values
may differ in different dice. In each time step, the adversary depending on the
results of the previous throws, picks a die and throws it. If (A,B) is the result
of the throw, A is given to the first party and B to second party. Thus, the two
parties will observe random variables A and B whose joint distribution depends
on the choice of die by the adversary. An application of this distributed case
would be a key-agreement scenario under tampering.

Again consider the non-degenerate case where all faces on all the dice of the
adversary have positive probability. We show that in this case, we can extract a
common random bit from the distributed SV source if and only if it is possible
to extract randomness from the common part of A and B. That is, similar to
the i.i.d. case, the problem of common randomness extraction from distributed
SV sources is reduced to the problem of randomness extraction from non-binary
generalized SV sources. Since by our results, we know when randomness extrac-
tion from generalized SV sources is possible, we obtain a complete answer to the
problem in the distributed case too.

In cases more general than non-degenerate cases we have the following: If
C is the common data of A and B, then if there does not exist a nonzero real
function of C which has zero expectation under all the different dice of the
adversary, then common randomness extraction is impossible. This shows that
the relation between the problem of common randomness extraction and the
problem of randomness extraction from the common part holds also in some
settings other than non-degenerate cases. For example, it resolves the problem
of common randomness extraction from the following interesting distributed SV
source.

Example. A concrete example of a distributed SV source is as follows. Let
us start with the original source considered by Santha and Vazirani with two
coins. Assume that the adversary chooses coin S ∈ {1, 2} (where coin 1 is biased
towards heads and coin 2 is biased towards tails) and let the outcome of the throw
of the coin be denoted by random variable C. The first party, Alice, is assumed
to observe both the identity of the coin chosen by the adversary, i.e., S, and the
outcome of the coin, which is C. The second party, Bob, observes the outcome
of the coin C, but only gets to see the choice of the adversary with probability
0.99. That is, Bob gets B = (C, S̃) where S̃ is the result of passing S through a
binary erasure channel with erasure probability 0.01. Here the common part of
A = (C,S) and B = (C, S̃) is just C. Our result (Theorem 3) then implies that
Alice and Bob cannot benefit from their knowledge of the actions of adversary,
and should only consider the C sequence. But then from the result of [23], we
can conclude that common random bit extraction is impossible in this example.
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Proof Techniques. We briefly explain the techniques used in the proof of the
above results. For the full proofs, we refer the reader to the full version of the
paper [2].

To show the possibility of deterministic extraction, we use a nonzero real
function of the die face values that has zero expectation under all distributions
induced by the different dice of the adversary. Then as we throw the dice several
times, we consider the sum of the value of this function applied to the outcome
of the dice throws. This sum forms a martingale. We stop the martingale once its
absolute value exceeds a particular bound. Since the function used was nonzero,
the martingale has large variance after a few throws, and therefore the martingale
will be stopped with high probability. Also by the theorem of stopping times,
the martingale has zero mean whenever we stop it. Then the extracted bit,
determined by whether the stopped martingale is positive or is negative, would
be unbiased.

To show the impossibility of deterministic extraction, we view a deterministic
extractor that extracts one bit from a generalized SV source as labeling the leaves
of a rooted tree with zeros and ones. Each sequence of dice throws corresponds
to a path from the root to one of the leaves, and at each node, the adversary
has some limited control of which branch to take while moving from the root
towards the leaves. We need to show that either the minimum or the maximum
of the probability of the output bit being zero, over all adversary’s strategies, is
far from 1/2. Our idea is to track these maximum and minimum probabilities in
a recursive way, i.e., to find these probabilities for any node of the tree in terms
of these values for its children. We then by induction show that for each node
of the tree either the minimum probability or the maximum probability is far
from 1/2.

To be more precise, given a deterministic extractor, let α be the minimum
probability of output bit being zero (over all strategies of the adversary). Simi-
larly, let β be the maximum probability of output bit being zero (over all strate-
gies of the adversary). Then we show that under certain conditions, there exists
a continuous function g(·) on the interval [0, 1], such that β ≥ g(α) and fur-
thermore g(1/2) > 1/2. We prove β ≥ g(α) inductively using the tree structure
discussed above. This implies the desired impossibility result, as by the conti-
nuity of g(·), both α and β cannot be close to 1/2. For instance, for the binary
SV source with two coins having probability of heads respectively equal to 1/3
and 2/3, Figure 1 shows a curve where (α, β) always lies above it. This curve is
clearly isolated from (1/2, 1/2).

We follow similar ideas for proving our impossibility result for common ran-
domness extraction from a distributed SV source; again we construct a continu-
ous function, which somehow captures not only the minimum and maximum of
the probability of the extracted common bit being zero, but also the probabil-
ity that the two parties agree on their extracted bits. The construction of this
function is more involved in the distributed case; it has two terms one of which
is similar to the function in the non-distributed case, and the other is inspired
by the definition of maximal correlation mentioned above.
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Contributions to Information Theory. As mentioned above, the problem
of common randomness extraction from i.i.d. sources has been studied in the
information theory community. Then our work provides a generalization and an
alternative proof of known results in the i.i.d. case. In particular, we give a new
proof of Witsenhausen’s result [29] on the impossibility of common randomness
extraction from certain i.i.d. sources.

We also would like to point out that a generalized SV source as we define,
is indeed an arbitrarily varying source (AVS) [10,13] with a causal adversary.
These sources are studied in the information theory literature from the point of
view of source coding [4].

Notations. In this paper we consider functions X : C → R. Such a function can
be thought of as a random variable X = X(C). We sometimes for simplicity use
the notation X(c) = xc. The expected value and variance of X are denoted by
E[X] and Var[X] respectively.

We sometimes have several distributions over the same set C which are
indexed by elements s ∈ S. In this case to avoid confusions, the expectation
value and variance are specified by a subscript s.

For simplicity of notation a sequence C1, . . . , Cn of (not necessarily i.i.d.)
random variables is denoted by Cn. Similarly for c1, . . . , cn ∈ C we use cn =
(c1, . . . , cn). We also use the notation c[k:k+�] = (ck, ck+1, . . . , ck+�).

2 Randomness Extraction from Generalized SV Sources

Definition 1 (Generalized SV source). Let C be a finite alphabet set. Con-
sider a finite set of distributions over C indexed by a set S. That is, assume that
for any s ∈ S we have a distribution over C determined by numbers ps(c) for
all c ∈ C. A sequence C1, C2, · · · of random variables, each over alphabet set C,
is said to be a generalized SV source with respect to distributions ps(c), if the
sequence is generated as follows: Assume that C1, . . . , Ci−1 are already gener-
ated. In order to determine Ci, an adversary chooses Si = si ∈ S, depending
only on C1, . . . , Ci−1. Then Ci is sampled from the distribution psi

(c).

We can think of specifying s as choosing a particular multi-faceted die, and c
as the facet that results from throwing the die. The joint probability distribution
p(c1, c2, · · · , cn, s1, s2, · · · , sn) of random variables C1, . . . , Cn and S1, . . . , Sn in
a generalized SV source factorizes as follows:

q(s1)ps1(c1)q(s2|c1)ps2(c2) · · · q(sn|c1 · · · cn−1)psn
(cn),

where q(si|c1 · · · ci−1) describes the action of the adversary at time i. Here, first
the adversary chooses S1 = s1 with probability q(s1), and then C1 = c1 is
generated with probability ps1(c1). Then the adversary chooses S2 = s2 with
probability q(s2|c1) and then C2 = c2 is generated with probability ps2(c2), and
so on.
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Generalized SV sources can be alternatively characterized as follows: Given
i and C1 = c1, . . . , Ci−1 = ci−1, the distribution of Ci should be a convex
combination of the set of |S| distributions {ps(·) : s ∈ S}.

We emphasize that even after fixing distributions ps(c), the generalized SV
source (similar to ordinary SV sources) is not a fixed source, but rather a class of
sources. This is because in each step si is chosen arbitrarily by the adversary as
a (probabilistic) function of C1, . . . , Ci−1. Nevertheless, once we fix adversary’s
strategy, the generalized SV source is fixed in that class of sources.

Definition 2 (Deterministic extraction). We say that deterministic ran-
domness extraction from the generalized SV source determined by distributions
ps(c) is possible if for every ε > 0 there exist n and Γn : Cn → {0, 1} such
that for every strategy of the adversary, the distribution of Γn(Cn) is ε-close,
in total variation distance, to the uniform distribution. That is, independent of
adversary’s strategy, Γn(Cn) is an almost uniform bit.

In the following we present a necessary condition and separately a sufficient
condition for the existence of deterministic extractors for generalized SV sources.
In the non-degenerate case, i.e., when ps(c) > 0 for all s, c, these two conditions
coincide. Thus we fully characterize the possibility of deterministic randomness
extraction from generalized SV sources in the non-degenerate case.

2.1 A Sufficient Condition for the Existence of Randomness
Extractors

Theorem 1. Consider a generalized SV source with alphabet C, set of dice S,
and probability distributions ps(c). Suppose that there exists ψ : C → R such that
for every s ∈ S we have E(s)[ψ(C)] = 0 and Var(s)[ψ(C)] > 0, where E(s) and
Var(s) are expectation and variance with respect to the distribution ps(·). Then
randomness can be extracted from this SV source.

Observe that if ps(c) > 0 for all s, c, then this theorem can equivalently be
stated as follows: Thinking of each distribution ps(·) as a point in the probability
simplex, if the convex hull of the set of points {ps(·) : s ∈ S} in the probability
simplex does not have full dimension, then deterministic randomness extraction
is possible. For instance if |S| < |C| this condition is always satisfied and then
we can deterministically extract randomness.

Remark 1. The analysis of the proof of Theorem 1 would show that the bias
could be polynomially small, namely a bias of Θ(n−1/3).

2.2 A Necessary Condition for the Existence of Randomness
Extractors

The main result of this subsection is the following theorem.

Theorem 2. Consider a generalized SV source with alphabet C, set of dice S,
and probabilities ps(c). Suppose that there is no non-zero function ψ : C → R
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such that for all s ∈ S we have E(s)[ψ(C)] = 0. Then deterministic randomness
extraction from this generalized SV source is impossible.

Again, let us consider the case where ps(c) > 0 for all s, c. In this case
ψ being non-zero is equivalent to Var(s)[ψ] > 0 for all s. Then comparing to
Theorem 1 we find that the necessary and sufficient condition for the possibility
of deterministic extraction is the existence of a non-zero ψ with E(s)[ψ] = 0.

Corollary 1. Consider a generalized SV source with alphabet C, set of dice S,
and probabilities ps(c). Let S ′ be a subset of S and let C′ be the set of all c for
which there exists some s ∈ S ′ such that ps′(c) > 0. Suppose that there is no
non-zero function ψ : C → R such that (i) ψ is zero on C − C′, and (ii) for all
s ∈ S ′ we have E(s)[ψ(C)] = 0. Then deterministic randomness extraction from
this generalized SV source is impossible.

3 Distributed SV Sources

Distributed SV sources can be defined similarly to generalized SV sources except
that in this case, the outcome in each time step is a pair that is distributed
between two parties.

Definition 3. Fix finite sets A,B, S. Let ps(ab) define a probability distribution
over A×B for any s ∈ S. The distributed SV source with respect to distributions
ps(ab) is defined as follows. The adversary in each time step i, depending on the
previous outcomes (A1, B1) = (a1, b1), . . . , (Ai−1, Bi−1) = (ai−1, bi−1) chooses
some Si = si. Then (Ai, Bi) = (ai, bi) is sampled from the distribution psi

(aibi).
The sequence of random variables (A1, B1), (A2, B2), . . . , is called a distributed
SV source.

Here we assume that the outcomes of this SV source are distributed between
two parties, say Alice and Bob. That is, in each time step i, Ai is revealed to
Alice and Bi is revealed to Bob. So Alice receives the sequence A1, A2, . . . , and
Bob receive the sequence B1, B2, . . . .

In this section we are interested in whether two parties can generate a com-
mon random bit from distributed SV sources. To be more precise, let us first
define the problem more formally.

Definition 4. We say that common randomness can be extracted from the dis-
tributed SV source (A1, B1), (A2, B2), . . . if for every ε > 0 there is n and func-
tions Γn : An → {0, 1} and Λn : Bn → {0, 1} such that for every strategy of
adversary, the distributions of K1 = Γn(An) and K2 = Λn(Bn) are ε-close (in
total variation distance) to uniform distribution, and that Pr[K1 �= K2] < ε.

In the above definition we considered only deterministic protocols for extract-
ing a common random bit. We could also consider probabilistic protocols where
Γn and Λn are random functions depending on private randomnesses of Alice
and Bob respectively. More precisely, we could take K1 = Γn(An, R1) and



152 S. Beigi et al.

K2 = Λn(Bn, R2) with the above conditions on K1,K2, where R1 and R2 are
private randomnesses of Alice and Bob respectively, which are independent of
the SV source and of each other. Nevertheless, if a common random bit can
be extracted with probabilistic protocols, then common randomness extraction
with deterministic protocols is also possible.

Lemma 1. In the problem of common random bit extraction, with no loss of
generality we may assume that the parties do not have private randomness.

3.1 Common Data

As discussed in the introduction, the notion of the common data of two random
variables A,B first appeared in the problem of common randomness extraction
from i.i.d. sources. Briefly speaking, common data of A and B is the finest
random variable C that can be computed both as a function C = C1(A) of A,
and as a function C = C2(B) of B. In the full version of this paper [2], we give
a new proof of Witsenhausen’s theorem that randomness extraction from i.i.d.
repetitions of (A,B) is feasible if and only if common data exists, if and only if
maximal correlation is equal to 1.

Here we are interested in common randomness extraction from distributed SV
sources. So we need to define common data for such sources. The common data
of a distributed SV source (given by distributions ps(ab) indexed by s ∈ S) is the
finest random variable C that can be computed both as a function C = C1(A)
of A, and as a function C = C2(B) of B. Here we need C1(A) = C2(B) to hold
with probability 1 under all distributions ps(ab).

3.2 Common Random Bit Extraction from Distributed SV Sources

Theorem 3. Consider a distributed SV source (as in Definition 3) with cor-
responding sets S, A, and B and corresponding distributions ps(ab). Let C be
the common data of the distributed SV source. Let ps(abc) denote the induced
joint distribution of A, B, and C. Suppose that there is no non-zero function
ψ : C → R such that E(s)[ψ(C)] = 0 for all s. Then common randomness cannot
be extracted from this distributed SV source.

An algorithm to extract common random bits is to focus on the common
part C that can be computed by both Alice and Bob. Indeed C itself can be
thought of as a generalized SV source. If deterministic randomness extraction
from C is possible, then Alice and Bob can obtain a common random bit by
individually applying the randomness extraction protocol. Comparing with The-
orems 1 and 2, and assuming ps(c) > 0 for all s, c, the above theorem states that
a common random bit can be extracted if and only if deterministic randomness
extraction from C is possible.
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4 Future Work

In this paper we completely characterized the randomness extraction problem
for non-degenerate cases. A future work could be to solve this problem for the
degenerate cases. In the degenerate cases, for generalized non-distributed sources
Corollary 1 gives a mildly stronger necessary condition than Theorem 2, but
there is still a gap between this necessary condition and the sufficient condition
of Theorem 1.

We note that our randomness extractor in Theorem 1 extracts a bit whose
bias is inverse polynomially small in the length of the source sequence. It is
interesting to see if this extractor could be improved to yield a bit with an
exponentially small bias. Furthermore, if we want to produce more than one bit
of randomness, the tradeoff between the number of produced random bits and
their quality is open.

Another interesting problem is to look at efficient adversaries, similar to the
work of [1]. Our proofs only show existence of inefficient adversaries.

Another way to restrict the adversary is to put limitations on the number
of times the adversary can choose a strategy s ∈ S, i.e. there can be a cost
associated to each strategy s.

A different type of limitation can be on the adversary’s knowledge about the
sequence generated so far. More specifically, the adversary might have noisy or
partial access to the previous outcomes in the sequence (these sources are called
“active sources” [22]). These sources model adversaries with limited memory.
Space bounded sources have been studied in [17,24].

Finally, the problem of common randomness extraction can be studied for
three or more parties instead of just two parties.

References

1. Austrin, P., Chung, K.-M., Mahmoody, M., Pass, R., Seth, K.: On the impossibility
of cryptography with tamperable randomness. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 462–479. Springer, Heidelberg (2014)

2. Beigi, S., Etesami, O., Gohari, A.: Deterministic Randomness Extraction from
Generalized and Distributed Santha-Vazirani Sources (2014). arXiv:1412.6641

3. Beigi, S., Tse, D.: under preparation
4. Berger, T.: The source coding game. IEEE Trans. on Information Theory

IT–17(1), 71–76 (1971)
5. Blum, M.: Independent unbiased coin flips from a correlated biased source - a finite

state Markov chain. Combinatorica 6(2), 97–108 (1986)
6. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-

cations. International Journal of Number Theory (2005)
7. Bourgain, J.: On the construction of affine extractors. Geometric And Functional

Analysis 17(1), 33–57 (2007)
8. Chor, B., Goldreich, O., H̊astad, J., Freidmann, J., Rudich, S., Smolensky, R.: The

bit extraction problem of t-resilient functions. In: Proceedings of the 26th Annual
Symposium on Foundations of Computer Science, pp. 396–407 (1985)

http://arxiv.org/abs/1412.6641


154 S. Beigi et al.

9. Chor, B., Goldreich, O.: Unbiased Bits from Sources of Weak Randomness and
Probabilistic Communication Complexity. SIAM J. Comput. 17(2), 230–261 (1988)

10. Dobrusin, R.L.: Individual methods for transmission of information for discrete
channels without memory and messages with independent components. Sov. Math.
4, 253–256 (1963)

11. Dvir, Z.: Extractors for varieties. Computational Complexity 21(4), 515–572 (2012)
12. Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polyno-

mial sources. In: FOCS 2007: Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, pp. 52–62 (2007)

13. Dobrusin, R.L.: Unified methods of optimal quantizing of messages. Sov. Math. 4,
284–292 (1963)

14. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Information Processing Letters 14, 183–186 (1982)
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